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Preface

Likelihood is the central concept in statistical modelling and inference. In
All Likelihood covers the essential aspects of likelihood-based modelling
as well as likelihood’s fundamental role in inference. The title is a gentle
reminder of the original meaning of ‘likelihood’ as a measure of uncertainty,
a Fisherian view that tends to be forgotten under the weight of likelihood’s
more technical role.

Fisher coined the term ‘likelihood’ in 1921 to distinguish the method of
maximum likelihood from the Bayesian or inverse probability argument. In
the early days its application was fairly limited; few statistical techniques
from the 1920s to 1950s could be called ‘likelihood-based’. To see why, let
us consider what we mean by ‘statistical activities’:

e planning: making decisions about the study design or sampling proto-
col, what measurements to take, stratification, sample size, etc.

e describing: summarizing the bulk of data in few quantities, finding or
revealing meaningful patterns or trends, etc.

e modelling: developing mathematical models with few parameters to
represent the patterns, or to explain the variability in terms of rela-
tionship between variables.

o inference: assessing whether we are seeing a real or spurious pattern or
relationship, which typically involves an evaluation of the uncertainty
in the parameter estimates.

e model checking: assessing whether the model is sensible for the data.
The most common form of model checking is residual analysis.

A lot of early statistical works was focused on the first two activities, for
which likelihood thinking does not make much contribution. Often the
activity moved directly from description to inference with little modelling
in between. Also, the early modelling scene was dominated by the normal-
based linear models, so statisticians could survive with least-squares, and
t tests or F tests (or rank tests if the data misbehaved).

The emergence of likelihood-based modelling had to wait for both the
advent of computing power and the arrival of more challenging data anal-
ysis problems. These problems typically involve nonnormal outcome data,
with possible complexities in their collection such as censoring, repeated
measures, etc. In these applications, modelling is important to impose
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structure or achieve simplification. This is where the likelihood becomes
indispensable.

Plan of the book

The chapters in this book can be categorized loosely according to
e modelling: Chapters 4, 6, 11, 14, 17, 18;
e inference: Chapters 2, 3, 5, 7, 10, 13, 15, 16.

The inference chapters describe the anatomy of likelihood, while the mod-
elling chapters show its physiology or functioning. The other chapters are
historical (Chapter 1) or technical support (Chapters 8, 9, 12).

There is no need to proceed sequentially. Traditionally, likelihood in-
ference requires the large sample theory covered in Chapter 9, so some
instructors might feel more comfortable to see the theory developed first.
Some sections are starred to indicate that they can be skipped on first read-
ing, or they are optional as teaching material, or they involve ideas from
future sections. In the last case, the section is there more for organizational
reasons, so some ‘nonlinear’ reading might be required.

There is much more material here than can be covered in two semesters.
In about 50 lectures to beginning graduate students I covered a selection
from Chapters 2 to 6, 8 to 11, 13 and 14. Chapter 1 is mostly for reading;
I use the first lecture to discuss the nature of statistical problems and the
different schools of statistics. Chapter 7 is also left as reading material.
Chapter 12 is usually covered in a separate statistical computing course.
Ideally Chapter 15 is covered together with Chapters 13 and 14, while
the last three chapters also form a unit on mixed models. So, for a more
leisurely pace, Chapters 13 to 14 can be removed from the list above,
and covered separately in a more advanced modelling course that covers
Chapters 13 to 18.

Prerequisites

This book is intended for senior students of statistics, which include ad-
vanced undergraduate or beginning graduate students. Students taking
this course should already have

e two semesters of introductory applied statistics. They should be fa-
miliar with common statistical procedures such as z, t, and x? tests,
P-value, simple linear regression, least-squares principle and analysis
of variance.

e two semesters of introduction to probability and theory of statistics.
They should be familiar with standard probability models such as the
binomial, negative binomial, Poisson, normal, exponential, gamma,
etc.; with the concepts of conditional expectation, Bayes theorem,
transformation of random variables; with rudimentary concepts of esti-
mation, such as bias and the method of moments; and with the central
limit theorem.
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e two semesters of calculus, including partial derivatives, and some ma-
trix algebra.

e some familiarity with a flexible statistical software package such as
Splus or R. Ideally this is learned in conjunction with the applied
statistics course above.

The mathematical content of the book is kept relatively low (relative to
what is possible). I have tried to present the whole spectrum of likelihood
ideas from both applied and theoretical perspectives, both showing the
depth of the ideas. To make these accessible I am relying (most of the time)
on a nontechnical approach, using heuristic arguments and encouraging
intuitive understanding. What is intuitive for me, however, may not be
so for the reader, so sometimes the reader needs to balance the personal
words with the impersonal mathematics.

Computations and examples

Likelihood-based methods are inherently computational, so computing is
an essential part of the course. Inability to compute impedes our thought
processes, which in turn will hamper our understanding and willingness
to experiment. For this purpose it is worth learning a statistical software
package. However, not all packages are created equal; different packages
have different strengths and weaknesses. In choosing a software package
for this course, bear in mind that here we are not trying to perform routine
statistical analyses, but to learn and understand what is behind them, so
graphics and programming flexibility are paramount.

All the examples in this book can be programmed and displayed quite
naturally using R or Splus. R is free statistical programming software
developed by a dedicated group of statisticians; it can be downloaded from
http://cran.r-project.org.

Most educators tell us that understanding is best achieved through
direct experience, in effect letting the knowledge pass through the fingers
rather than the ears and the eyes only. Students can get such an experience
from verifying or recreating the examples, solving the exercises, asking
questions that require further computations, and, best still, trying out the
methodology with their own data. To help, I have put all the R programs
I used for the examples in http://www.meb.ki.se/ yudpaw.
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1
Introduction

Statistical modelling and inference have grown, above all else, to deal with
variation and uncertainty. This may sound like an ambitious undertaking,
since anyone going through life, even quietly, realizes ubiquitous uncertain-
ties. It is not obvious that we can say something rigorous, scientific or even
just sensible in the face of uncertainty.

Different schools of thought in statistics have emerged in reaction to
uncertainty. In the Bayesian world all uncertainties can be modelled and
processed through the standard rules of probability. Frequentism is more
sceptical as it limits the type of uncertainty that can be studied statis-
tically. Our focus is on the likelihood or Fisherian school, which offers a
Bayesian—frequentist compromise. The purpose of this chapter is to discuss
the background and motivation of these approaches to statistics.

1.1 Prototype of statistical problems

Consider the simplest nontrivial statistical problem, involving only two
values. Recent studies show a significant number of drivers talk on their
mobile phones while driving. Has there been an impact on accident rates?
Suppose the number of traffic deaths increases from 170 last year to 190
this year. Numerically 190 is greater than 170, but it is not clear if the
increase is ‘real’. Suppose instead the number this year is 174, then in this
case we feel intuitively that the change is not ‘real’. If the number is 300
we feel more confident that it is a ‘real’ increase (although it is a totally
different matter whether the increase can be attributed to mobile-phone
use; see Redelmeier and Tibshirani (1997) for a report on the risk of car
collision among drivers while using mobile phones).

Let us say that a change is ‘significant’ if we sense that it is a ‘real’
change. At the intuitive level, what is this sense of significance? It definitely
responds to a numerical stimulus since we ‘feel’ 174 is different from 300.
At which point do we change from being uncertain to being more confident?
There is nothing in the basic laws of arithmetic or calculus that can supply
us with a numerical answer to this problem. And for sure the answer cannot
be found in the totality of the data itself (the two values in this case).

Uncertainty is pervasive in problems that deal with the real world, but
statistics is the only branch of science that puts systematic effort into deal-
ing with uncertainty. Statistics is suited to problems with inherent uncer-
tainty due to limited information; it does not aim to remove uncertainty,
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but in many cases it merely quantifies it; uncertainty can remain even after
an analysis is finished.

Aspirin data example

In a landmark study of the preventive benefits of low-dose aspirin for
healthy individuals (Steering Committee of the Physicians’ Health Study
Research Group 1989), a total of 22,071 healthy physicians were random-
ized to either aspirin or placebo groups, and were followed for an average
of 5 years. The number of heart attacks and strokes during follow-up are
shown in Table 1.1.

Group Heart  Strokes  Total

attacks
Aspirin 139 119 11,037
Placebo 239 98 11,034
Total 378 217 22,071

Table 1.1: The number of heart attacks and strokes during follow-up in the
Physicians’ Health Study.

The main medical question is statistical: is aspirin beneficial? Obvi-
ously, there were fewer heart attacks in the aspirin group, 139 versus 239,
but we face the same question: is the evidence strong enough so we can
answer the question with confidence? The side effects, as measured by the
number of strokes, were greater in the aspirin group, although 119 versus
98 are not as convincing as the benefit.

Suppose we express the benefit of aspirin as a relative risk of

139/11,037

oo ()58,
239/11, 034

A relative risk of one indicates aspirin is not beneficial, while a value much
less than one indicates a benefit. Is 0.58 ‘far enough’ from one? Answering
such a question requires a stochastic model that describes the data we
observe. In this example, we may model the number of heart attacks in the
aspirin group as binomial with probability 6; and those in the placebo group
as binomial with probability 6. Then the true relative risk is 6 = 6, /6-.

Let us denote the observed relative risk by 9 = 0.58. No uncertainty
is associated with this number, so it fails to address the statistical nature
of the original question. Does the trial contain information that € is truly
‘much’ less than one? Now suppose the study is 10 times larger, so, assum-
ing similar event rates, we observed 1390 versus 2390 heart attacks. Then
¢ = 0.58 as before, but intuitively the information is now stronger. So, the
data must have contained some measure of precision about 6, from which
we can assess our confidence that it is far from one.
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We can now state the basic problem of statistical inference: how do we
go from observed data to statements about the parameter of interest 67

1.2 Statistical problems and their models
Stochastic element

In a statistical problem there is an obvious stochastic or random element,
which is not treated by the basic laws of arithmetic. In the traffic example,
we intuitively accept that there are various contingencies or random events
contributing to the number of deaths; in fact, we would be surprised if
the two numbers were exactly the same. Thus statistical methods need
stochastic models to deal with this aspect of the problem. The development
of models and methods is the deductive or mathematical aspect of statistics.

While the mathematical manipulation of models is typically precise and
potentially free from arguments, the choice of the model itself is, however,
uncertain. This is important to keep in mind since the validity of most
statistical analysis is conditional on the model being correct. It is a trade-
off: we need some model to proceed with an analysis, especially with sparse
data, but a wrong model can lead to a wrong conclusion.

Inductive process

Statistical problems are inductive: they deal with questions that arise as
consequences of observing specific facts. The facts are usually the outcome
of an experiment or a study. The questions are typically more general
than the observations themselves; they ask for something not directly ob-
served, but somehow logically contained in the observed data. We say we
‘infer’ something from the data. In the traffic deaths example, we want to
compare the underlying accident/death rates after accounting for various
contingencies that create randomness.

For deductive problems like mathematics, sometimes only parts of the
available information are needed to establish a new theorem. In an induc-
tive problem every piece of the data should be accounted for in reaching
the main conclusion; ignoring parts of the data is generally not acceptable.
An inductive problem that has some parallels with statistical inference is a
court trial to establish the guilt or the innocence of a defendant. The wit-
ness’s oath to tell ‘the truth, the whole truth, and nothing but the truth’
embodies the requirements of the inductive process.

In deductive problems the truth quality of the new theorem is the same
as the quality of the ‘data’ (axioms, definitions and previous theorems)
used in establishing it. In contrast, the degree of certainty in an inductive
conclusion is typically stronger than the degree in the data constituent,
and the truth quality of the conclusion improves as we use more and more
data.

However, a single new item of information can destroy a carefully crafted
conclusion; this aspect of inductive inference is ideal for mystery novels
or courtroom dramas, but it can be a bane for practising statisticians.
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Suppose we want to estimate the number of BSE- (Bovine Spongiform
Encephalopathy, or ‘mad-cow’) infected cattle that entered the food chain
in Ireland. This is not a trivial problem, but based on the observed number
of BSE cases and some assumptions about the disease, we can estimate the
number of infected animals slaughtered prior to showing symptoms. New
but last-minute information on exported cattle might invalidate a current
estimate; further information that exported animals have a different age
distribution from the animals for domestic consumption will also change
the estimate.

Statistics plays an important role in science because all scientific en-
deavours are inductive, although many scientific questions are determinis-
tic rather than stochastic. The emergence of statistical science is partly
the result of the effort to make the inductive process rigorous. However,
Lipton (1993), a philosopher of science, warns that

inductive inference is about weighing evidence and judging likelihood,
not definite proof.

The inductive process is inherently underdetermined: the input does not
guarantee a unique solution, implying that even a correct induction is fal-
lible.

Empirical or mechanistic models

The models used to deal with statistical problems can be either empirical
or mechanistic. The latter is limited to applications where there is detailed
knowledge regarding the underlying processes. For example, Newtonian
laws in physics or Mendelian laws in genetics are mechanistic models. Here
the exact relationships between the different quantities under observation
are proposed mostly by some subject matter consideration rather than by
looking at the data. A mechanistic model describes an underlying mecha-
nism that explains the observed data.

Models in the applied sciences, such as medicine, epidemiology, psy-
chology, climatology or agriculture, tend to be empirical. The analytical
unit such as a human being or an area of land is usually too complex to be
described by a scientific formula. If we model the number of deaths in the
traffic example as having a Poisson distribution, we barely explain why we
observe 170 rather than 100 deaths. Empirical models can be specified just
by looking at the data without much subject matter consideration (this of
course does not mean it is acceptable for a statistician to work on a desert
island). The main requirement of an empirical model is that it explains the
variability, rather than the underlying mechanism, in the observed data.

The separation between these two types of models is obviously not
complete. There will be grey areas where some empirical evidence is used
to help develop a mechanistic model, or a model may be composed of
partly mechanistic and partly empirical submodels. The charge on the
electron, for example, is an empirical quantity, but the (average) behaviour
of electrons is mechanistically modelled by the quantum theory.
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In the 19th and early 20th centuries most experiments were performed
in the basic sciences; hence scientific models then were mostly mechanistic.
The rise of empirical modelling was a liberating influence. Now experiments
can be performed in most applied sciences, or even ‘worse’: data can be
collected from observational studies rather than controlled experiments.
Most of the general models in statistics, such as classes of distributions
and linear or nonlinear regression models, are empirical models. Thus the
rise of statistical modelling coincides with empirical modelling,.

While empirical models are widely applicable, we must recognize their
limitations; see Example 1.1. A mechanistic model is more satisfying than
an empirical model, but a current empirical model may be a future mecha-
nistic model. In some areas of statistical applications, there may never be
a mechanistic model; for example, there will never be a mechanistic model
for the number of traffic accidents. The compromise is an empirical model
with as much subject matter input as possible.

The role of models from a statistical point of view is discussed further
in Lehmann (1990) and Cox (1990).

Example 1.1: A classic example of an empirical model is the 18th century
Bode’s geometric law of progression of the planetary distance di from the Sun.
Good (1969) and Efron (1971) provided a statistical evaluation of the ‘reality’ of
this law, which specifies

d =4+ 3 x 2",

where £ = —00,0,1,... and di is scaled so that di = 10 for Earth. With some
‘jiggling’ the law fitted very well for the known planets at the time it was proposed
(planets as far as Saturn can be seen by the naked eye). To get a better fit, Jupiter
was shifted up to position k = 4, leaving a missing spot at £ = 3 between Mars
and Jupiter. After the law was proposed there was a search for the ‘missing
planet’. Uranus at £ = 6 was discovered first at the predicted distance, hence
strengthening the confidence in the law. The missing planet was never found;
there is, however, a band of asteroids at approximately the predicted distance.

Bode’s Observed Fourth-degree

Planet k law distance polynomial
Mercury —00 4 4.0 4.1
Venus 0 7 7.2 6.7
Earth 1 10 10 10.2
Mars 2 16 15.3 16.0
? 3 28 ? 26.9
Jupiter 4 52 51.9 50.0
Saturn 5 100 95.5 97.0
Uranus (1781) 6 196 191.4 186.5
Neptune (1846) 7 388 300.0 312.8
Pluto (1930) 8 772 394.6 388.2

Even though the formula fits the data well (up to Uranus; see Figure 1.1),
the question remains: is this a ‘real’ physical law? As it happened, the law did
not fit Neptune or Pluto. A better fit to the data is given by a fourth-degree
polynomial, but now it is clear that we cannot attach much mechanistic value to
the model.
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Figure 1.1: Empirical model of planetary distances in terms of the order
number from the Sun: Bode’s law (solid) and a fourth-degree polynomial fit
(dotted).

1.3 Statistical uncertainty: inevitable controver-
sies
As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain they do not refer to reality. — Albert
Einstein (1879-1955)

The characteristics discussed in the previous section, especially for empir-
ical problems, militate to make statistical problems appear vague. Here it
is useful to recognize two types of statistical uncertainty:

(i) stochastic uncertainty: this includes the uncertainty about a fixed pa-
rameter and a random outcome. This uncertainty is relatively easy
to handle. Uncertainty about a fixed parameter, in principle, can al-
ways be reduced by performing a larger experiment. Many concepts in
statistical inference deal with this uncertainty: sampling distribution,
variability, confidence level, P-value, etc.

(ii) inductive uncertainty: owing to incomplete information, this uncer-
tainty is more difficult to deal with, since we may be unable to quantify
or control it.

Mathematically, we can view stochastic uncertainty as being conditional
on an assumed model. Mathematics within the model can be precise and
potentially within the control of the statistician. However, the choice of
model itself carries an inductive uncertainty, which may be less precise and
potentially beyond the control of the statistician.

The contrast between these two uncertainties is magnified when we are
analysing a large dataset. Now the stochastic uncertainty becomes less
important, while the inductive uncertainty is still very much there: Have
we chosen the right class of models? Can we generalize what we find in the
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data? Have we considered and measured all the relevant variables? Are we
asking the right questions? Given a set of data, depending on the way it
was collected, there is usually an uncertainty about its variable definitions
or meaning, wording and ordering of questions, representativeness of the
sample, etc.

While it is possible to deal with stochastic uncertainty in an axiomatic
way, it is doubtful that inductive uncertainty would ever yield to such an
effort. It is important to recognize that, in statistical data analysis, induc-
tive uncertainty is typically present in addition to the stochastic nature of
the data itself. Due to the inductive process and the empirical nature of
statistical problems, controversy is sometimes inevitable.

The traffic deaths example illustrates how controversies arise. If the
number of deaths increases from 170 to 300, it would seem like a ‘real’
change and it would not be controversial to claim that the accident rate
has increased, i.e. the uncertainty is small. But what if further scrutiny
reveals one major traffic accident involving 25 cars and a large number
of deaths, or an accident involving a bus where 40 people died? At this
point we start thinking that, probably, a better way to look at the problem
is by considering the number of accidents rather than deaths. Perhaps
most accidents this year happened in the winter, whereas before they were
distributed over the year. Possibly the number of younger drivers has
increased, creating the need to split the data by age group. Splitting the
data by years of driving experience may make more sense, but such a
definition is only meaningful for drivers, while the death count also includes
passengers and pedestrians!

This inductive process, which is very much a scientific process, raises
two problems: one is that it tends to increase the stochastic uncertainty,
since, by splitting the original observations into smaller explanatory groups,
we are bound to compare smaller sets of numbers. The other problem is
deciding where to stop in finding an explanation. There is no formal or pre-
cise answer to this question, so statisticians or scientists would have to deal
with it on a case-by-case basis, often resorting to a judgement call. The
closest guideline is to stop at a point where we have a reasonable control
of stichastic uncertainty, deferring any decision on other factors of interest
where too much uncertainty exists. Statisticians will have different experi-
ence, expertise, insight and prejudice, so from the same set of observations
they might arrive at different conclusions. Beware! This is where we might
find ‘lies, damned lies and statistics’.

Pedagogic aspect

It is easier to learn, teach or describe methods that deal with stochastic
uncertainty, and these have some chance of being mastered in a traditional
academic or classroom setting. The unavoidable limitation of statistical
texts is that they tend to concentrate on such methods. The joy and the
pain of data analysis come as a reaction to uncertainties, so this discussion
is not merely pedantic. Some might argue that the vagueness is part of
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the problem rather than of statistics, but even if we view it as such, the
consequent difficulty in empirical model building and model selection is
very much part of statistics and a statistician’s life. This discussion also
contains a warning that statisticians cannot work in a vacuum, since most
of the relevant factors that create inductive uncertainties in a problem are
subject matter specific.

1.4 The emergence of statistics
It is impossible to calculate accurately events which are determined by
chance. — Thucydides (c. 400BC)
There were two strands in the emergence of statistics. One was the devel-
opment of the theory of probability, which had its original motivation in the
calculation of expectation or uncertainties in gambling problems by Pas-
cal (1623-1662) and Fermat (1601-1665). The theory was later developed
on the mathematical side by Huygens (1629-1695), the Bernoulli broth-
ers, in particular James Bernoulli (1654-1705), de Moivre (1667-1754) and
Laplace (1749-1827), and on the logical side by Bayes (1701-1761), Boole
(1815-1864) and Venn (1834-1923).

The growth of probability theory was an important milestone in the
history of science. Fisher liked to comment that it was unknown to the
Greek and the Islamic mathematicians (Thucydides was a historian); Persi
Diaconis once declared that our brain is not wired to solve probability
problems. With probability theory, for the first time since the birth of
mathematics, we can make rigorous statements about uncertain events.
The theory, however, is mostly deductive, which makes it a true branch
of mathematics. Probability statements are evaluated as consequences of
axioms or assumptions rather than specific observations. Statistics as the
child of probability theory was born with the paper of Bayes in 1763 and
was brought to maturity by Laplace.

The second strand in the emergence of statistics was an almost paral-
lel development in the theory of errors. The main emphasis was not on
the calculation of probabilities or uncertainties, but on summarizing ob-
servational data from astronomy or surveying. Gauss (1777-1855) was the
main contributor in this area, notably with the principle of least squares
as a general method of estimation. The important ingredient of this sec-
ond line of development was the data-rich environment. In this connection
Fisher noted the special role of Galton (1822-1911) in the birth of modern
statistics towards the end of the 19th century. A compulsive data gath-
erer, Galton had a passionate conviction in the power of quantitative and
statistical methods to deal with ‘variable phenomena’.

Further progress in statistics continues to depend on data-rich environ-
ments. This was first supplied by experiments in agriculture and biom-
etry, where Fisher was very much involved. Later applications include:
industrial quality control, the military, engineering, psychology, business,
medicine and health sciences. Other influences are found in data gathering
and analysis for public or economic policies.
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Bayesians and frequentists

The Bayesian and frequentist schools of statistics grew in response to prob-
lems of uncertainty, in particular to the way probability was viewed. The
early writers in the 18th and 19th centuries considered it both a (subjec-
tive) degree of belief and (objective) long-run frequency. The 20th century
brought a strong dichotomy. The frequentists limit probability to mean
only a long-run frequency, while for the Bayesians it can carry the subjec-
tive notion of uncertainty.

This Bayesian—frequentist divide represents the fundamental tension
between the need to say something relevant on a specific instance/dataset
and the sense of objectivity in long-run frequencies. If we toss a coin, we
have a sense of uncertainty about its outcome: we say the probability of
heads is 0.5. Now, think about the specific next toss: can we say that
our sense of uncertainty is 0.5, or is the number 0.5 meaningful only as a
long-term average? Bayesians would accept both interpretations as being
equally valid, but a true frequentist allows only the latter.

Since the two schools of thought generate different practical method-
ologies, the distinction is real and important. These disagreements do not
hinder statistical applications, but they do indicate that the foundation of
statistics is not settled. This tension also provides statistics with a fruitful
dialectical process, at times injecting passion and emotion into a poten-
tially dry subject. (Statisticians are probably unique among scientists with
constant ponderings of the foundation of their subject; physicists are not
expected to do that, though Einstein did argue with the quantum physicists
about the role of quantum mechanics as the foundation of physics.)

Inverse probability: the Bayesians

The first modern method to assimilate observed data for quantitative in-
ductive reasoning was published (posthumously) in 1763 by Bayes with his
Essay towards Solving a Problem in the Doctrine of Chances. He used an
inverse probability, via the now-standard Bayes theorem, to estimate a bi-
nomial probability. The simplest form of the Bayes theorem for two events
A and B is

P(AB) P(B|A)P(A)

P(A|B) = P(B) ~ P(B[A)P(A) + P(B|A)P(A) (1.1)

Suppose the unknown binomial probability is # and the observed number
of successes in n independent trials is . Then, in modern notation, Bayes’s

solution is F(2.0) 10 £(6)
x, x
fOlz) = = 7 (1.2)
fl@) [ f(xl0)f(6)do

where f(f|x) is the conditional density of 6 given z, f(6) is the so-called
prior density of § and f(z) is the marginal probability of z. (Note that we
have used the symbol f(-) as a generic function, much like the way we use
P(-) for probability. The named argument(s) of the function determines
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what the function is. Thus, f(6,x) is the joint density of 6 and x, f(x|6)
is the conditional density of = given 0, etc.)

Leaving aside the problem of specifying f(0), Bayes had accomplished
a giant step: he had put the problem of inductive inference (i.e. learning
from data x) within the clean deductive steps of mathematics. Alas, ‘the
problem of specifying f(#)’ a priori is an equally giant point of controversy
up to the present day.

There is nothing controversial about the Bayes theorem (1.1), but (1.2)
is a different matter. Both A and B in (1.1) are random events, while
in the Bayesian use of (1.2) only z needs to be a random outcome; in a
typical binomial experiment # is an unknown fixed parameter. Bayes was
well aware of this problem, which he overcame by considering that 6 was
generated in an auziliary physical experiment — throwing a ball on a level
square table — such that 6 is expected to be uniform in the interval (0,1).
Specifically, in this case we have f(f) =1 and

91(1 _ e)n—x
f0x) = .
Cl) fol u® (1 —u)"*du

(1.3)

Fisher was very respectful of Bayes’s seeming apprehension about using an
axiomatic prior; in fact, he used Bayes’s auxiliary experiment to indicate
that Bayes was not a Bayesian in the modern sense. If # is a random
variable then there is nothing ‘Bayesian’ in the use of the Bayes theorem.
Frequentists do use Bayes theorem in applications that call for it.

Bayes did, however, write a Scholium (literally, a ‘dissertation’; see
Stigler 1982) immediately after his proposition:

... the same rule [i.e. formula (1.3) above] is a proper one to be used in
the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trial made concerning it.

In effect, he accepted the irresistible temptation to say that if we know
nothing about 6 then it is equally probable to be between zero and one.
More significantly, he accepted that the uniform prior density, which now
can be purely axiomatic, can be processed with the objective binomial
probability to produce a posterior probability. So, after all, Bayes was a
Bayesian, albeit a reluctant one. (In hindsight, probability was then the
only available concept of uncertainty, so Bayes did not have any choice.)
Bayes’s paper went largely unnoticed until Pearson (1920). It was
Laplace, who, after independently discovering Bayes theorem, developed
Bayesian statistics as we understand it today. Boole’s works on the prob-
ability theory (e.g. Laws of Thought, published in 1854), which discussed
Bayes theorem in the ‘problem of causes’, clearly mentioned Laplace as
the main reference. Laplace’s Théorie Analytique des Probabilités was first
published in 1812 and became the standard reference for the rest of the
century. Laplace used the flat or uniform prior for all estimation problems,
presented or justified as a reasonable expression of ignorance. The princi-
ple of inverse probability, hence Bayesian statistics, was an integral part of



1.4. The emergence of statistics 11

the teaching of probability until the end of the 19th century. Fisher (1936)
commented that that was how he learned inverse probability in school and
‘for some years saw no reason to question its validity’.

Statistical works by Gauss and others in the 19th and early 20th cen-
turies were largely Bayesian with the use of inverse probability arguments.
Even Fisher, who later became one of the strongest critics of axiomatic
Bayesianism, in his 1912 paper ‘On an absolute criterion for fitting fre-
quency curves’, erroneously called his maximum likelihood the ‘most prob-
able set of values’, suggesting inverse probability rather than likelihood,
although it was already clear he had distinguished these two concepts.

Repeated sampling principle: the frequentists

A dominant section of statistics today views probability formally as a long-
run frequency based on repeated experiments. This is the basis of the
frequentist ideas and methods, where the truth of a mathematical model
must be validated through an objective measure based on externally ob-
servable quantities. This feels natural, but as Shafer (1990) identified, ‘the
rise of frequentism’ in probability came only in the mid-19th century from
the writings of empiricist philosophers such as John Stuart Mill. Popula-
tion counting and classification was also a factor in the empirical meaning
of probability when it was used for modelling.

The repeated sampling principle specifies that procedures should be eval-
uated on the basis of repeat experimentation under the same conditions.
The sampling distribution theory, which expresses the possible outcomes
from the repeated experiments, is central to the frequentist methodology.
Many concepts in use today, such as bias, variability and standard error of
a statistic, P-value, type I error probability and power of a test, or confi-
dence level, are based on the repeated sampling principle. The dominance
of these concepts in applied statistics today proves the practical power of
frequentist methods. Neyman (1894-1981) and Wald (1902-1950) were the
most influential exponents of the frequentist philosophy. Fisher contributed
enormously to the frequentist methodology, but did not subscribe fully to
the philosophy.

True frequentism states that measures of uncertainties are to be inter-
preted only in a repeated sampling sense. In areas of statistical application,
such as medical laboratory science or industrial quality control, where pro-
cedures are naturally repeated many times, the frequentist measures are
very relevant.

The problem arises as the requirement of repeat experimentation is
allowed to be hypothetical. There are many areas of science where experi-
ments are unlikely to be repeated, for example in archaeology, economics,
geology, astronomy, medicine, etc. A reliance on repeated sampling ideas
can lead to logical paradoxes that appear in common rather than esoteric
procedures.

Extreme frequentism among practical statisticians is probably quite
rare. An extremist will insist that an observed 95% confidence interval,
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say 1.3 < 6 < 7.1, either covers the parameter or it does not, we do not
know which, and there is no way to express the uncertainty; the 95% applies
only to the procedure, not to the particular interval. That is in fact the
orthodox interpretation of the confidence interval. It neglects the evidence
contained in a particular interval/dataset, because measures of uncertainty
are only interpreted in hypothetical repetitions.

Most scientists would probably interpret the confidence interval intu-
itively in a subjective/Bayesian way: there is a 95% probability the interval
contains the true parameter, i.e. the value 95% has some evidential attach-
ment to the observed interval.

Bayesians versus frequentists

A great truth is a truth whose opposite is also a great truth. — Thomas
Mann (1875-1955)

In Bayesian computations one starts by explicitly postulating that a pa-
rameter 6 has a distribution with prior density f(#); for example, in a
problem to estimate a probability 6, one might assume it is uniformly dis-
tributed on (0,1). The distinguishing attitude here is that, since 6 does
not have to be a random outcome of an experiment, this prior can be spec-
ified axiomatically, based on thinking alone. This is the methodological
starting point that separates the Bayesians from the frequentists, as the
latter cannot accept that a parameter can have a distribution, since such a
distribution does not have an external reality. Bayesians would say there is
an uncertainty about # and insist any uncertainty be expressed probabilis-
tically. The distribution of € is interpreted in a subjective way as a degree
of belief.

Once one accepts the prior f() for § and agrees it can be treated as
a regular density, the way to proceed is purely deductive and (internally)
consistent. Assuming that, given 6, our data x follows a statistical model
po(x) = f(x]0), then the information about 6 contained in the data is given
by the posterior density, using the Bayes theorem as in (1.2),

f(z]0)f(6)
fl@) -

In Bayesian thinking there is no operational difference between a prior
density f(), which measures belief, and f(z|f), which measures an ob-
servable quantity. These two things are conceptually equal as measures of
uncertainty, and they can be mixed using the Bayes theorem.

The posterior density f(6|z), in principle, captures from the data all
the information that is relevant for #. Hence, it is an update of the prior
f(0). In a sequence of experiments it is clear that the current posterior
can function as a future prior, so the Bayesian method has a natural way
of accumulating information.

When forced, most frequentists would probably admit that a degree of
belief does exist subjectively. The disagreement is not that a parameter

f@Olz) =
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can assume a density, since frequentists could also think of f() as a prior
likelihood (the likelihood of the parameter before we have any data). Two
genuine concerns exist:

(i) the practical problem of choosing an appropriate prior. Leaving aside
the problem of subjective interpretation, there is an ongoing contro-
versy on how we should pick f(6). Several early writers such as Boole
(1854, pages 384, 392) and Venn (1876) had criticized the arbitrari-
ness in the axiomatic choice of f(6); Fisher was also explicit in his
rejection of any axiomatic prior, although he did not rule out that
some applications, such as genetics, may have physically meaningful
f(8). Modern Bayesians seem to converge toward the so-called ‘objec-
tive priors’ (e.g. Gatsonis et al. 1997), but there are many shades of
Bayesianism (Berger 2000).

(ii) the ‘rules of engagement’ regarding a subjective degree of belief. There
is nothing really debatable about how one feels, and there is nothing
wrong in thinking of probability in a subjective way. However, one’s
formal action based on such feeling is open to genuine disagreement.
Treating a subjective probability density like a regular density function
means, for example, that it can be integrated out, and it needs a
Jacobian term when transformed to a different scale. The latter creates
a lack of invariance in the choice of prior: seeming ignorance in one
scale becomes information in another scale (see Section 2.8).

Efron (1998) compares the psychological differences between the two
schools of thought. A comparative study highlights the strengths and weak-
nesses of each approach. The strength of the Bayesian school is its unified
approach to all problems of uncertainty. Such unity provides clarity, espe-
cially in complex problems, though it does not mean Bayesian solutions are
practical. In fact, until recently Bayesians could not solve complex prob-
lems because of computational difficulties (Efron 1986a). While, bound by
fewer rules, the strength of a frequentist solution is usually its practicality.

Example 1.2: A new eye drug was tested against an old one on 10 subjects.
The two drugs were randomly assigned to both eyes of each person. In all cases
the new drug performed better than the old drug. The P-value from the observed
data is 2719 = 0.001, showing that what we observe is not likely due to chance
alone, or that it is very likely the new drug is better than the old one. O

Such simplicity is difficult to beat. Given that a physical randomization
was actually used, very little extra assumption is needed to produce a valid
conclusion. And the final conclusion, that the new drug is better than the
old one, might be all we need to know from the experiment. The achieved
simplicity is a reward of focus: we are only interested in knowing if chance
alone could have produced the observed data. In real studies, of course, we
might want to know more about the biological mechanism or possible side
effects, which might involve more complicated measurements.
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The advent of cheap computer power and Monte Carlo techniques (e.g.
Gilks et al. 1995) have largely dismantled the Bayesian computational wall.
Complex problems are now routinely solved using the Bayesian method-
ology. In fact, being pragmatic, one can separate the Bayesian numerical
methods from the underlying philosophy, and use them as a means of ob-
taining likelihood functions. This is a recent trend, for example, in molec-
ular genetics. In Section 10.6 we will see that the Bayesian and likelihood
computations have close numerical connections.

Luckily, in large-sample problems, frequentist and Bayesian computa-
tions tend to produce similar numerical results, since in this case the data
dominate the prior density and the level of uncertainty is small. In small-
to medium-sized samples, the two approaches may not coincide, though in
real data analysis the difference is usually of smaller order of magnitude
than the inductive uncertainty in the data and in the model selection.

The following ‘exchange paradox’, discussed in detail by Christensen
and Utts (1992), illustrates how our handling of uncertainty affects our
logical thinking. To grasp the story quickly, or to entertain others with it,
replace x by 100.

Example 1.3: A swami puts an unknown amount of money in one envelope
and twice that amount in another. He asks you to pick one envelope at random,
open it and then decide if you would exchange it with the other envelope. You
pick one (randomly), open it and see the outcome X = z dollars. You reason
that, suppose Y is the content of the other envelope, then Y is either x/2 or 2z
with probability 0.5; if you exchange it you are going to get (z/2+2x)/2 = 5z/4,
which is bigger than your current x. ‘With a gleam in your eye’, you would
exchange the envelope, wouldn’t you?

The reasoning holds for any value of x, which means that you actually do
not need to open the envelope in the first place, and you would still want to
exchange it! Furthermore, when you get the second envelope, the same reasoning
applies again, so you should exchange it back. A discussion of the Bayesian and
frequentist aspects of this paradox is left as an exercise. O

1.5 Fisher and the third way

The likelihood approach offers a distinct ‘third way’, a Bayesian-frequentist
compromise. We might call it Fisherian as it owes most of its conceptual
development to Fisher (1890-1962). Fisher was clearly against the use of
the axiomatic prior probability fundamental to the Bayesians, but he was
equally emphatic in his rejection of long-run frequency as the only way
to interpret probability. Fisher was a frequentist in his insistence that
statistical inference should be objectively verifiable; however, his advocacy
of likelihood inference in cases where probability-based inference is not
available puts him closer to the Bayesian school.

In a stimulating paper on Fisher’s legacies, Efron (1998) created a sta-
tistical triangle with Fisherian, Bayesian and frequentist nodes. He then
placed various statistical techniques within the triangle to indicate their
flavour.
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Fisher’s effort for an objective inference without any use of prior prob-
ability led him to the idea of fiducial probability (Fisher 1930, 1934). This
concept prompted the confidence interval procedure (Neyman 1935). It ap-
pears that Fisher never managed to convince others what fiducial probabil-
ity was, despite his insistence that, conceptually, it is ‘entirely identical with
the classical probability of the early writers’ (Fisher 1973, page 54). In some
models the fiducial probability coincides with the usual frequentist/long-
run-frequency probability. The problems occur in more complex models
where exact probability statements are not possible.

From his last book Statistical Methods and Scientific Inference (1973,
in particular Chapter III) it is clear that Fisher settled with the idea that

e whenever possible to get exact results we should base inference on
probability statements, otherwise it should be based on the likelihood,;

e the likelihood can be interpreted subjectively as a rational degree of
belief, but it is weaker than probability, since it does not allow an
external verification, and

e in large samples there is a strengthening of likelihood statements where
it becomes possible to attach some probabilistic properties (‘asymp-
totic approach to a higher status’ — Fisher 1973, page 78).

These seem to summarize the Fisherian view. (While Fisher’s probability
was fiducial probability, let us take him at his own words that it is ‘entirely
identical with the classical probability’.) About 40 years elapsed between
the explicit definition of the likelihood for the purpose of estimation and
Fisher’s final judgement about likelihood inference. The distinguishing
view is that inference is possible directly from the likelihood function; this
is neither Bayesian nor frequentist, and in fact both schools would reject
such a view as they allow only probability-based inference.

These Fisherian views also differ from the so-called ‘pure likelihood
view’ that considers the likelihood as the sole carrier of uncertainty in
statistical inference (e.g. Royall 1997, although he would call it ‘evidence’
rather than ‘uncertainty’). Fisher recognized two ‘well-defined levels of log-
ical status’ for uncertainty about parameters, one supplied by probability
and the other by likelihood. A likelihood-based inference is used to ‘ana-
lyze, summarize and communicate statistical evidence of types too weak to
supply true probability statements’ (Fisher 1973, page 75). Furthermore,
when available, a probability statement must allow for an external verifica-
tion (a verification by observable quantities), so it is clear that frequentist
consideration is also an important aspect of the Fisherian view.

Fisher’s requirement for an exact probability inference is more strin-
gent than the so-called ‘exact inference’ in statistics today (Fisher 1973,
pages 69-70). His prototype of an exact probability-based inference is the
confidence interval for the normal mean (even though the term ‘confidence
interval’ is Neyman’s). The statement

P(T —1.960/\v/n < u < T+ 1.960/v/n) = 0.95
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is unambiguous and exactly/objectively verifiable; it is an ideal form of
inference. However, the so-called ‘exact 95% confidence interval’ for the
binomial proportion (see Section 5.8) in fact does not have exactly 95%
coverage probability, so logically it is of lower status than the exact interval
for the normal model. It is for this situation the likelihood is indicated.

For Fisher, both likelihood and probability are measures of uncertainty,
but they are on a different footing. This is a non-Bayesian view, since for
Bayesians all uncertainty is measured with probability. The subjective ele-
ment in the interpretation of likelihood, however, is akin to a Bayesian/non-
frequentist attitude. It is worth noting that, when backed up with large-
sample theory to supply probability statements, the mechanics and numer-
ical results of likelihood inference are generally acceptable to frequentist
statisticians. So, in their psychology, Fisherians are braver than the fre-
quentists in saying that inference is possible from the likelihood function
alone, but not as brave as the Bayesians to admit an axiomatic prior into
the argument.

Legacies

By 1920 the field of statistics must have been a confusing place. Yates
(1990) wrote that it was the age of correlation and coefficients of all kinds.
To assess association in 2x2 tables there were the coefficient of association,
coefficient of mean square contingency, coefficient of tetrachoric correlation,
equiprobable tetrachoric correlation, and coefficient of colligation, but the
idea of estimating the association and its test of significance were mixed up.
There were many techniques available, such as the least squares principle,
the method of moments, the inverse probability method, the x2 test, the
normal distribution, Pearson’s system of curves, the central limit theorem,
etc., but there was no firm logical foundation.

The level of confusion is typified by the title of Edgeworth’s paper
in 1908 and Pearson’s editorial in Biometrika in 1913: ‘On the probable
errors of frequency constants’, which in modern terminology would be ‘the
standard error of fixed parameters’. There was simply no logical distinction
or available terms for a parameter and its estimate. On the mathematical
side, the x? test of association for the 2x2 tables had 3 degrees of freedom!

A more serious source of theoretical confusion seems to be the implicit
use of inverse probability arguments in many early statistical works, no
doubt the influence of Laplace. The role of the prior distribution in inverse
probability arguments was never seriously questioned until early 20th cen-
tury. When explicitly stated, the arbitrariness of the prior specification was
probably a stumbling block to a proper appreciation of statistical questions
as objective questions. Boole (1854) wrote in the Laws of Thoughts (Chap-
ter XX, page 384) that such arbitrariness

seems to imply, that definite solution is impossible, and to mark the
point where inquiry ought to stop.

Boole discussed the inverse probability method at length and identified its
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weakness, but did not see any alternative; he considered the question of
inductive inference as

second to none other in the Theory of Probabilities in importance, [I
hope it] will receive the careful attention which it deserves.

In his works on the theory of errors, Gauss was also aware of the problem,
but he got around it by justifying his method of estimation in terms of
the least-squares principle; this principle is still central in most standard
introductions to regression models, which is unfortunate, since (i) in itself
it is devoid of inferential content and (ii) it is not natural for general prob-
ability models, so it creates an unnecessary conceptual gap with the far
richer class of generalized linear models.

Fisher answered Boole’s challenge by clearly identifying the likelihood
as the key inferential quantity that is free of subjective prior probabilities.
He stressed that if, prior to the data, we know absolutely nothing about
a parameter (recall Bayes’s Scholium in Section 1.4) then all of the infor-
mation from the data is in the likelihood. In the same subjective way the
Bayesians interpret probability, the likelihood provides a ‘rational degree
of belief” or an ‘order of preferences’ on possible parameter values; the
fundamental difference is that the likelihood does not obey probability laws.
So probability and likelihood are different concepts available to deal with
different levels of uncertainty.

There were earlier writers, such as Daniel Bernoulli or Venn, who had
used or mentioned the idea of maximum likelihood in rudimentary forms
(see Edwards 1992, Appendix 2). It usually appeared under the name
of ‘most probable value’, indicating the influence of inverse probability
argument. Even Fisher in 1912 used that name, even though it was clear
from the discussion he had likelihood in mind. The confusion was only
cleared in 1921 when Fisher invented the term ‘likelihood’.

In a series of the most influential papers in statistics Fisher (in particular
in 1922 and 1925) introduced order into the chaos by identifying and nam-
ing the fundamental concepts such as ‘parameter’, ‘statistic’, ‘variance’,
‘sufficiency’, ‘consistency’; ‘information’, and ‘estimation’,‘maximum like-
lihood estimate’, ‘efficiency’ and ‘optimality’. He was the first to use Greek
letters for unknown parameters and Latin letters for the estimates. He set
up the agenda for statistical research by identifying and formulating the
important questions.

He ‘fixed’ the degree of freedom of the x? test for the 2x2 tables in
1922. He recognized the paper by ‘Student’ in 1908 on the t-test, which
was ignored by the large-sample-based statistical world at the time, as
a milestone in the history of statistics: it was the first exact test. He
emphasized the importance of inference based on exact distribution and
identified ‘the problem of distribution’ as a respectable branch of theoretical
statistics. Fisher was unsurpassed in this area, being the first to derive the
exact distribution of the ¢ and F' statistics, as well as that of the sample
correlation and multiple correlation coefficient.
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Fisher’s influence went beyond the foundation of statistics and the like-
lihood methods. His Statistical Methods for Research Workers, first pub-
lished in 1925, brought the new ideas to generations of practical research
workers. Fisher practically invented the field of experimental design, in-
troducing the fundamental ideas of randomization, replication, blocking,
factorial experiments, etc., and its analysis of variance. His Design of Fz-
periments, first published in 1935, emphasized the importance of carefully
collected data to simplify subsequent analysis and to arrive at unambigu-
ous conclusions. He contributed significantly to areas of sampling distribu-
tion theory, regression analysis, extreme value theory, nonparametric and
multivariate analysis. In a careful study of Fisher’s legacy, Savage (1976)
commented that it would be a lot faster to list areas in statistics where
Fisher did not contribute fundamentally, for example sequential analysis
and time series modelling.

Outside statistics, many geneticists consider Fisher as the most impor-
tant evolutionary biologist after Darwin. In 1930 Fisher was the first to
provide a key synthesis of Mendelian genetics and Darwin’s theory of evo-
lution, thus giving a quantitative basis for the latter. Fisher was never a
professor of statistics: he was Galton Professor of Eugenics at University
College London, then Balfour Professor of Genetics at Cambridge Univer-
sity.

For a statistician, his writings can be inspirational as they are full of
conviction on the fundamental role and contributions of statistical methods
in science and in ‘refinement of human reasoning’. Fisher (1952) believed
that

Statistical Science was the peculiar aspect of human progress which
gave to the twentieth century its special character. ... it is to the

statistician that the present age turns for what is most essential in all
its more important activities.

The ‘important activities’ include the experimental programmes, the ob-
servational surveys, the quality control engineering, etc. He identified the
crucial contribution of statistical ideas to the fundamental scientific ad-
vances of the 19th century such as in Lyell’s Principles of Geology and
Darwin’s theory of evolution.

It is an unfortunate turn of history that Fisher’s articles and books are
no longer standard reading in the study of statistics. Fisher was often crit-
icized for being obscure or hard to read. Savage (1976), however, reported
that his statistical mentors, which included Milton Friedman and W. Allen
Wallis, gave the advice: ‘To become a statistician, practice statistics and
mull Fisher over with patience, respect and scepticism’. Savage closed his
1970 Fisher Memorial Lecture with ‘I do hope that you won'’t let a week
go by without reading a little bit of Fisher’.

Fisher’s publications were collected in the five-volume Collected Papers
of R.A. Fisher, edited by Bennett and Cornish (1974). His biography,
entitled R.A. Fisher, The Life of a Scientist, was published by his daughter
Joan Fisher Box in 1978. Other notable biographies, memoirs or reviews
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of his works were written by Barnard (1963), Bartlett (1965), Yates and
Mather (1963), Kendall (1963), Neyman (1961, 1967), Pearson (1974) and
Savage (1976). Recent articles include Aldrich (1997), Efron (1998) and
Hald (1999). Edwards’s (1992) book on likelihood was largely influenced
by Fisher and the Appendices contain useful accounts of the history of
likelihood and Fisher’s key contributions. Fienberg and Hinkley (1980)
contains a wide-ranging discussion of Fisher’s papers and his impact on
statistics.

1.6 Exercises

Exercise 1.1: Discuss the stochastic and inductive uncertainty in the following
statements:

(a) A study shows that children of mothers who smoke have lower IQs than
those of non-smoking mothers.

(b) A report by Interpol in 1994 shows a rate of (about) 55 crimes per 1000
people in the USA, compared to 100 in the UK and 125 in Sweden. (‘Small’
note: the newspaper that published the report later published a letter by an
official from the local Swedish Embassy saying that, in Sweden, if a swindler
defrauds 1000 people the case would be recorded as 1000 crimes.)

(c) Life expectancy in Indonesia is currently 64 years for women and 60 years
for men. (To which generation do these numbers apply?)

(d) The current unemployment rate in Ireland is 4.7%. (What does ‘unemployed’
mean?)

(e) The total fertility rate for women in Kenya is 4.1 babies.

(f) The population of Cairo is around 16 million people. (Varies by a few million
between night and day.)

(g) The national clinical trial of aspirin, conducted on about 22,000 healthy male
physicians, established the benefit of taking aspirin. (To what population
does the result apply?)

Exercise 1.2: What is wrong with the reasoning in the exchange paradox in
Example 1.37 Discuss the Bayesian and frequentist aspects of the paradox, first
assuming the ‘game’ is only played once, then assuming it is played repeatedly.
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Elements of likelihood
inference

2.1 Classical definition

The purpose of the likelihood function is to convey information about un-
known quantities. The ‘information’ is incomplete, and the function will
express the degree of incompleteness. Unknown quantities in statistical
problems may be fized parameters, with the associated estimation prob-
lem, or unobserved random values; in a real prediction problem the two
unknowns can be easily mixed. We will consider the extended definition
that solves the prediction problem in Section 16.2.

Recall first the standard mode of deductive mathematical thinking:
given a probabilistic model and parameter values we derive a description of
data. In a deductive mode we derive the consequences of certain assump-
tions. For example, if we perform a binomial experiment with parameters
n = 10 and # = 0.3, and denote X to be the number of successes, then
Py(X = 0) = 0.0282, etc. This means if we repeat the experiment 10,000
times, we expect around 282 of them would yield no successes.

Now suppose we toss a coin 10 times and observe X = 8 heads. Based
on this information alone, what is the probability of heads 87 (That is,
assuming we know absolutely nothing about it prior to the experiment.)
Information about 6 is not complete, so there will be some uncertainty.
Now, 6 cannot be zero and is very unlikely to be very small. We can say
this, since, deductively we know Py(X = 8) is zero or very tiny. In contrast,
0 = 0.6 or § = 0.7 is likely, since Pyp(X = 8) = 0.1209 or 0.2335. We
have thus found a deductive way of comparing different 6’s: compare the
probability of the observed data under different values of 6. As a function
of the unknown parameter

L(0) = Py(X = 8)

is called the likelihood function: see Figure 2.1. The plot shows 6 is unlikely
to be less than 0.5 or to be greater than 0.95, but is more likely to be in
between. Given the data alone (and no other information) we should prefer
values between 0.5 and 0.95 over values outside this interval.

In a simple and deductive way we have found a numerical quantity to
express the order of preferences on 6. Of course we still do not know exactly
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where 6 is, but we have captured the information provided in the data by
showing where 6 is likely to fall. The uncertainty in the data is inherent,
and that is what is conveyed in the likelihood function.

Likelihood function
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Figure 2.1: Likelihood function of the success probability 6 in a binomial
experiment with n = 10 and * = 8. The function is normalized to have
unit mazrmum.

The likelihood provides us with a measure of relative preferences for
various parameter values. Given a model, the likelihood L(f) is an exact
and objective quantity, hence a measure of ‘rational belief’; it is objective
in the sense that it exists outside any subjective preference. This is an
important fact about the likelihood function as it implies that quantities
that we compute from the function are also exact and objective. In practice,
what we do or how we act given the information from the likelihood are
another matter.

There is a tendency in classical teaching to focus immediately on the
maximum of the likelihood and disregard the function itself. That is not a
fruitful thought process regarding what we want to learn about 6 from the
data. Barnard et al. (1962) were emphatic that one should try the habit of
sketching the likelihood functions for some time to realize how helpful they
are. It is the entire likelihood function that is the carrier of information
on #, not its maximizer. In the above example the likelihood is maximized
at 0.8, but there is a range of values of # which are almost equally likely.
In Section 2.5 we will examine in more detail the role of the maximum
likelihood estimate.

Definition 2.1 Assuming a statistical model parameterized by a fized and
unknown 6, the likelihood L(0) is the probability of the observed data x
considered as a function of 0.

The generic data = include any set of observations we might get from an
experiment of any complezity: a range of values rather than exact measure-
ments, a vector of values, a matrix, an array of matrices, a time series or a
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2D image. The generic parameter 6 can also be as complex as the model
requires; in particular it can be a vector of values. In the future chapters
we will embark on a grand tour to show the richness of the likelihood world
from a simple toy model to very complex studies.

Discrete models

There is no ambiguity about the probability of the observed data in the
discrete models, since it is a well-defined nonzero quantity. For the binomial
example above, the likelihood function is

L) = Py(X =2)

( Z )9@(1 — o).

Figure 2.2 shows four likelihood functions computed from four binomial
experiments with n = 10 and x = 0, 2,5, 10. Interpretation of the functions
is immediate. For example, when z = 0 the likelihood is concentrated near
zero, indicating strong evidence that 6 is very likely to be near zero.

Likelihood functions
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Figure 2.2: Likelihood functions of the success probability 0 in four binomial
experiments with n = 10 and x = 0,2,5,10. The functions are normalized
to have unit mazimum.

Continuous models

A slight technical issue arises when dealing with continuous outcomes, since
theoretically the probability of any point value x is zero. We can resolve
this problem by admitting that in real life there is only a finite precision:
observing z is short for observing x € (x — €/2,x + ¢/2), where € is the
precision limit. If € is small enough, on observing x the likelihood for 6 is

L) = PoX € (x—e/20+e/2)}
z+e/2

= / po(z)dr ~ € po(x). (2.1)

—€/2
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For the purpose of comparing 6 within the model py(x) the likelihood is
only meaningful up to an arbitrary constant (see Section 2.4), so we can
ignore €. Hence, in all continuous models where the outcome x is observed
with good precision we will simply use the density function pg(x) to compute
the likelihood.

In many applications, continuous outcomes are not measured with good
precision. It can also happen that the outcome has been categorized into
a few classes, so the data involve a range of values. In clinical studies
observations are commonly censored: the lifetime of a subject is only known
to be greater than a certain point. In these cases the simple approximation
(2.1) does not apply, and either the integral must be evaluated exactly or
other more appropriate approximations used.

Mathematical convention

The treatment of discrete or continuous random variables differs little in
probability theory, and the term ‘probability density’ or ‘probability’ will
be applied to cover both discrete and continuous models. In most cases the
likelihood is the probability density seen as a function of the parameter.
The original definition is important when the data are both discrete and
continuous, or when we are comparing separate models.

When we say we ‘integrate’ a density this means (i) the usual integration
when we are dealing with continuous random variables:

/ h(z)da

or (ii) summation when dealing with discrete ones
PIUC
T

where h(z) is some density function. When we discuss a particular ex-
ample, we might use either an integration or a summation, depending on
the context, but it should be understood that the idea under consideration
usually covers both the continuous and discrete cases.

2.2 Examples

Example 2.1: Suppose 100 seeds were planted and it is known only that = < 10
seeds germinated. The exact number of germinating seeds is unknown. Then the
information about 6 is given by the likelihood function

L) = P(X <10)
= Z( 120 >9I(10)”””.

Figure 2.3(a) compares this likelihood with the likelihood based on z = 5. O
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(a) Germinating probability (b) The number of badgers
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Figure 2.3: (a) Likelihood functions from two binomial experiments: n =
100 and x < 11, and n = 100 and x = 5. (b) The likelihood of the number
of badgers. (c¢) The likelihood of the prevalence of a certain genotype. (d)
The likelihood of the normal mean based on observing 0.9 < x < 4 (solid
line), x = 2.45 (dashed line), and the mazimum x5y = 3.5 (dotted line).
All likelihoods are set to have unit maximum.

Example 2.2: A useful technique for counting a population is to mark a
subset of the population, then take a random sample from the mixture of the
marked and unmarked individuals. This capture-recapture technique is used,
for example, to count the number of wild animals. In census applications a
post-enumeration survey is conducted and one considers the previously counted
individuals as ‘marked’ and the new ones as ‘unmarked’; the proportion of new
individuals in the survey would provide an estimate of the undercount during the
census. To estimate the number of people who attend a large rally one can first
distribute colourful hats, then later on take a random sample from the crowd.

As a specific example, to estimate the number of badgers (N) in a certain
region, the Department of Agriculture tags N1 = 25 of them. Later on it captures
n = 60 badgers, and finds ny = 55 untagged and n1 = 5 tagged ones. Assuming
the badgers were caught at random, the likelihood of N can be computed based
on the hypergeometric probability:

(25 ) ( N—25)

5 55

L(N) = P(ny =5) = 5 .
(@)
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Figure 2.3(b) shows the likelihood function for a range of N. O

Example 2.3: A team of geneticists is investigating the prevalence of a certain
rare genotype, which makes its first appearance on the 53rd subject analysed. As-
suming the subjects are independent, the likelihood of the prevalence probability
0 is given by the geometric probability

L(0) = (1 — 0)%0.

Suppose the scientists had planned to stop when they found five subjects with the
genotype of interest, at which point they analysed 552 subjects. The likelihood
of 6 is now given by a negative binomial probability

L(0) = ( ik )95(1 — )%,
Figure 2.3(c) shows these likelihoods in solid and dotted lines, respectively. O
Example 2.4: Suppose z is a sample from N (6, 1); the likelihood of 6 is

L0) = bz — ) = \/%e*%“*"f

The dashed curve in Figure 2.3(d) is the likelihood based on observing = = 2.45.
Suppose it is known only that 0.9 < z < 4; then the likelihood of 6 is

L(0) = P(0.9 < X < 4) = ®(4—0) — $(0.9 — 0),

where ®(z) is the standard normal distribution function. The likelihood is shown
in solid line in Figure 2.3(d).

Suppose x1, ..., Z, are an identically and independently distributed (iid) sam-
ple from N(6,1), and only the maximum x(,) is reported, while the others are
missing. The distribution function of z(,) is

Bt) = P(X@ <t)
P(X; <t, for each 1)
{®(t—06)}".

So, the likelihood based on observing x(,) is

L(0) = po((n)) = n{®(z () — )} (x(n) — 0).

Figure 2.3(d) shows this likelihood as a dotted line for n=>5 and x(,) = 3.5.
There is a general heuristic to deal with order statistics for an iid sample from
continuous density pg(z). Assume a finite precision €, and partition the real line
into a regular grid of width e. Taking an iid sample x1, ..., x, is like performing a
multinomial experiment: throw n balls to cells with probability p(z)e and record
where they land. For example, the probability of the order statistics z(1y, ..., %)

is approximately
nle” Hpg (®@))-
i

Knowing only the maximum z(,), the multinomial argument yields immediately
the likelihood given above. If only x(1y and z(,) are given, the likelihood of 6 is
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n(n —1)

L(9) = =

€po((1))Po (T () {Fo(2(n)) — Folx1))}" 2,

where Fp(x) is the underlying distribution function. O

Example 2.5: Let us now solve the exchange paradox described in Example 1.3
using the likelihood. Treat the amounts of money as the unknown parameters 6
and 260. On seeing the amount x in the envelope, the likelihood of 6 is

Ll@=z) = PX==z|0=1)
P(X =60 = z) = 0.5,

and

LO==z/2) = P(X==z|0=2z/2)
P(X = 26|60 = 2/2) = 0.5,

which means the data x cannot tell us any preference over two possible values
of 6. The (unknown) amount in the other envelope is either z/2 (if 6 = z/2) or
2z (if 8 = z) with equal likelihood, not probability, and we have to stop there.
The likelihood analysis provides that, given = alone and no other information,
there is no rational way for preferring one envelope over the other. The paradox
is avoided as we cannot take an average using the likelihood values as weights. O

2.3 Combining likelihoods

The likelihood definition immediately provides a simple rule for combining
likelihoods from different datasets. If xy and x5 are independent datasets
with probabilities p1 g(21) and p2 g(x2) that share a common parameter 6,
then the likelihood from the combined data is

L) = pie(z1)p2,e(z2)
L1(0)Ls(0), (2:2)

where L1(0) and Lo (6) are the likelihoods from the individual datasets. In
log scale this property is a simple additive property

log L(6) = log L1(0) + log L2 (),

giving a very convenient formula for combining information from inde-
pendent experiments: simply add the log-likelihoods. For analytical and
computational purposes it is usually more convenient to work in the log-
likelihood scale. It turns out that most of the (frequentist) properties of
the likelihood function are associated with the log-likelihood and quantities
derived from it.

The simplest case occurs if x1 and x5 are an iid sample from the same
density pg(z), so

L(0) = po(x1)po(2),
or log L(0) = logpe(x1) + logpg(x2). So, if x1,...,x, are an iid sample
from pg(z) we have

L(9) = [T po (o),
i=1

or log L(6) = 1, log po ().
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Example 2.6: Let z1,...,2z, be an iid sample from N (6, 02) with known 2.
The contribution of z; to the likelihood is

Li(0) = V;T?exp{—(mz;f)},

and the total log-likelihood is

log L(O) = ZlogLi(G)
i=1

n

n 2 1 2
—3 log(2mo”) — pye) Z(wl —6)°. O

1=1

Example 2.7: Suppose we have two independent samples taken from N (6, 1).
From the first sample it is reported that the sample size is n1 = 5, and the
maximum x5y = 3.5. The second sample has size n2 = 3, and only the sample
mean § = 4 is reported. From Example 2.4 we have

L1(0) = 5{®(z(5) — 0)}' ¢(x(5) — 0),

and, since g is N(0,1/3),

La(0) = ﬁexp{—;’w—e)?}.

The log-likelihood from the combined data is
log L(0) = log L1(0) + log L2(0).
These likelihoods are shown in Figure 2.4. O

Combining likelihoods
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Figure 2.4: Likelihood based on the mazimum x5y of the first sample
(dashed line), on the sample mean § = 4 of the second sample (dotted
line), and on the combined data (solid line).
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Connection with Bayesian approach*

Recall that in Bayesian computation we begin with a prior f(#) and com-
pute the posterior

f(8lz) = constant x f(9)f(x|0)
= counstant x f(0)L(0), (2.3)

where, to follow Bayesian thinking, we use f(z]|0) = pg(z). Comparing
(2.3) with (2.2) we see that the Bayesian method achieves the same effect
as the likelihood method: it combines the information from the prior and
the current likelihood by a simple multiplication.

If we treat the prior f(f) as a ‘prior likelihood’ then the posterior is
a combined likelihood. If we know absolutely mothing about 6 prior to ob-
serving X = x (recall Bayes’s Scholium in Section 1.4), the prior likelihood
is f(#) = 1, and the likelihood function expresses the current information
on 0 after observing x. Using a uniform prior and scaling the functions to
integrate to one, the posterior density and the likelihood functions would
be the same.

2.4 Likelihood ratio

How should we compare the likelihood of different values of a parameter,
say L(61) versus L(62)? Suppose y is a one-to-one transformation of the
observed data x; if x is continuous,

ox

po(y) = po(x(y)) e

)

so the likelihood based on the new data y is
Ox

dy

L(0;y) = L(0; x)

Obviously z and y should carry the same information about 6, so to com-
pare 6, and 65 only the likelihood ratio is relevant since it is invariant with
respect to the transformation:

L(62;y) _ L(02; )

L(01;y)  L(61;2)

Since only the ratio is important, within a model pg(z), the likelihood
function is only meaningful up to a multiplicative constant. This means,
for example, in setting up the likelihood we can ignore terms not involving
the parameter. Proportional likelihoods are equivalent as far as evidence
about 6 is concerned and we sometimes refer to them as being the same
likelihood. To make it unique, especially for plotting, it is customary to
normalize the likelihood function to have unit maximum, i.e. we divide the
function by its maximum. From now on if we report a likelihood value as
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a percentage it is understood to be a normalized value. Alternatively, we
can set the log-likelihood to have zero maximum.

It may be tempting to normalize the likelihood so that it integrates to
one, but there are reasons for not doing that. In particular there will be
an invariance problem when we deal with parameter transformation; see
Section 2.8.

Example 2.8: Suppose z is a sample from the binomial(n, ), where n is
known. We have, ignoring irrelevant terms,

LO)=0"1-06)""",
or log L(0) = zlogf + (n — x)log(1 — 0). O

It is stated earlier that the likelihood gives us a measure of rational
belief or relative preferences. How do we interpret the actual values of
the likelihood function or likelihood ratio? In the binomial example with
n = 10 and outcome x = 8, how should we react to the statement

L(0=0.8)

— 2 x~209=N?
L(6=0.3) 09

Is there a way to calibrate this numerical value with something objective?
The answer is yes, but for the moment we will try to answer it more sub-
jectively with an analogy.

Imagine taking a card at random from a deck of NV well-shuffled cards
and consider the following two hypotheses:

Hy: the deck contains N different cards labelled as 1 to V.
Hj: the deck contains N similar cards labelled as, say, 2.

Suppose we obtain a card with label 2; the likelihood ratio of the two
hypotheses is

L(H3) _ N:

L(Ho)

that is, Ho is N = 209 times more likely than Hy. That is how we can
gauge our ‘rational belief” about 8 = 0.8 versus € = 0.3 based on observing
x = 8. Interpretations like this, unfortunately, cannot withstand a careful
theoretical scrutiny (Section 2.6), which is why we call it only a subjective
interpretation.

2.5 Maximum and curvature of likelihood

Fisher (1922) introduced likelihood in the context of estimation via the
method of maximum likelihood, but in his later years he did not think
of it as simply a device to produce parameter estimates. The likelihood
is a tool for an objective reasoning with data, especially for dealing with
the uncertainty due to the limited amount of information contained in the
data. It is the entire likelihood function that captures all the information
in the data about a certain parameter, not just its maximizer.
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The obvious role of the maximum likelihood estimate (MLE) is to pro-
vide a point estimate for a parameter of interest; the purpose of having
a point estimate is determined by the application area. In cases where a
model parameter has a physical meaning, it is reasonable to ask what is the
best estimate given by the data; the uncertainty is in a way a nuisance, not
part of the scientific question. The MLE is usually a sensible answer. An-
other important role is for simplifying a multiparameter likelihood through
a profile likelihood (Section 3.4): nuisance parameters are replaced by the
MLEs.

We should view the MLE as a device to simplify the presentation of the
likelihood function, especially in a real data analysis situation; a number
is a lot simpler than a function. Imagine the standard task of describing
the characteristics of a study population: it is still possible for our mind to
absorb, communicate, compare and reason with 10 or even 20 sample means
or proportions, but it would be futile to keep referring to 20 likelihood
functions.

Generally, a single number is not enough to represent a function; the
MLE is rarely enough to represent a likelihood function. If the log-likelihood
is well approximated by a quadratic function, then we need at least two
quantities to represent it: the location of its maximum and the curvature at
the maximum. In this case we call the likelihood function ‘regular’. When
our sample becomes large the likelihood function generally does become
regular; the large-sample theory in Chapter 9 establishes this practical
fact.

To repeat this crucial requirement, reqular problems are those where we
can approximate the log-likelihood around the MLE by a quadratic function;
for such cases we will also say that the likelihood function is regular. (Not
to be pedantic, when we say ‘a likelihood function has a good quadratic
approximation’, we mean the log-likelihood does.) This approximation is
the port of entry for calculus into the likelihood world. For simplicity we
will start with a scalar parameter; the multiparameter case is discussed in
Section 3.3. First we define the score function S(€) as the first derivative
of the log-likelihood:

0
= —logL(#).
S0) = £5logL(0)
Hence the MLE 8 is the solution of the score equation
S(0) = 0.

At the maximum, the second derivative of the log-likelihood is negative, so
we define the curvature at 6 as I(6), where
2
1) = ——=logL(6).

-~

A large curvature I () is associated with a tight or strong peak, intuitively
indicating less uncertainty about 6. In likelihood theory I(6) is a key
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quantity called the observed Fisher information; note that it is evaluated
at the MLE, so it is a number rather than a function.

Example 2.9: Let 1, ..., 2, be an iid sample from N (6, ). For the moment
assume that o2 is known. Ignoring irrelevant constant terms

n

logL(A) = L Z(l’i_e)Q:

202
i=1

so we immediately get

n

S(6) = % log L(6) — % S @i - 0).

i=1

Solving S(6) = 0 produces = T as the MLE of 6. The second derivative of the
log-likelihood gives the observed Fisher information

Here var(a) =o%/n = 171(5), so larger information implies a smaller variance.
Furthermore, the standard error of 8 is se(d) = o/v/n = I~ '/%(6).

This is an important example, for it is a common theme in statistics that
many properties which are exactly true in the normal case are approximately
true in regular problems. O

Example 2.10: Based on z from the binomial(n, ) the log-likelihood function
is
log L(0) = zlog 0 + (n — x) log(1 — 6).

We can first find the score function

9]
SO = %logL(Q)
- r_n-zT
0 1-0’

giving the MLE 0= x/n and

82
1(0) = fﬁlog L(0)
= X, n-T
T2 1-6)2

so at the MLE we have the Fisher information

Example 2.11: In realistic problems we do not have a closed form solution
to the score equation. Suppose an iid sample of size n = 5 is taken from N(6,1),
and only the maximum x5y = 3.5 is reported. From Example 2.4 we have
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L(0) = 5{®(x(s5) — 0)} d(x(s) — 0).

It is best to use a numerical optimization procedure to find @\directly from L(6);
in practice we do not even need to find S(f) analytically, and the procedure can

~

also provide I(6) numerically. In this example
0 =244, 1(0)=24.

Informally, we might say the maximum carries the same information as 2.4 ob-
servations from N(6,1). O

Using a second-order Taylor’s expansion around 6

-~ ~ ~ ~ ~

log L(8) ~ log L(B) + S(8)(6 — ) — %1(0)(9 _ 9

we get
LO) 1 o

providing a quadratic approximation of the normalized log-likelihood around
0.

We can judge the quadratic approximation by plotting the true log-
likelihood and the approximation together. In a log-likelihood plot, we set
the maximum of the log-likelihood to zero and check a range of 6 such
that the log-likelihood is approximately between —4 and 0. In the normal
example above (Example 2.9) the quadratic approximation is exact:

L) _

=~

1
L) 2

~

1(0)(0 - 0)?,

so a quadratic approximation of the log-likelihood corresponds to a normal
approximation of §. We have here a practical rule in all likelihood appli-
cations: a reasonably regular likelihood means 6 is approximately normal,
so statements which are exactly true for the normal model will be approx-
imately true for 6.

Alternatively, in terms of the score function, we can take the derivative
of the quadratic approximation (2.4) to get

~

S(6) ~ —1(0)(0 — 0)

or

—I7Y2(6)S(0) ~ I'/2(6)(0 - ).

The latter has the advantage of being dimensionless, in the sense that it is
not affected by the scale of the parameter ¢. So, a quadratic approximation

-~ A~

can be checked graphically by plotting —I~1/2(0)S(6) against I'/2(6)(0—0),
which should be linear with unit slope. We can check that it is exactly true
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in the normal case. Any smooth function is locally linear, so the question
is how wide we should expect to see the linearity. In the ideal (normal)
case I'/2 (5) (0 — 5) is a N(0,1)-variate, so intuitively we should check at
least between —2 and 2.

Example 2.12: Figure 2.5(a) shows the log-likelihood function of the binomial
parameter € based on n = 10 trials and x = 8 successes. Here # = 0.8 and
I(0) = 62.5. Both Figure 2.5(a) and (b) show a poor quadratic approximation.
In Figure 2.5(c) we have the log-likelihood of a much larger sample size n = 100,
but the same estimate § = 0.8; the Fisher information is I(6) = 625. Now the
quadratic approximation is more successful. O

(a) n=10, x=8 (b) Linearity of score function
g ~
=
Sw |
o o -
g =
= @ 2
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(c) n=100, x=80 (d) Linearity of score function
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Figure 2.5: Quadratic approzimation of the log-likelihood function. (a) The
true log-likelihood (solid) and the approximation (dotted) for the binomial
parameter 0. (b) Linearity check of the score function, showing a poor
approzimation; (c)—-(d) The same as (a)—(b) for a bigger experiment.

In cases where the MLE @ and the curvature I (5) can represent the
likelihood function, one can simply report the pair 6 and () instead of
showing the graph, though this still leaves the question of 1nterpret1ng I (9)
In the normal case var(&) I~ (9) or the standard error se(é\) —1/2 (0)
This is approximately true in nonnormal cases, so se(@) =1V 2(9) is the
most commonly used quantity to supplement the MLE. We will come back
to this in Section 2.7.
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If the likelihood function is not reqular, then the curvature of the log-
likelihood at the MLE or the standard error is not meaningful. In this case,
a set of likelihood or confidence intervals described in the coming section
is a better supplement to the MLE.

2.6 Likelihood-based intervals

How do we communicate the statistical evidence using the likelihood? We
can simply show the likelihood function and, based on it, state our con-
clusion regarding the question of interest, or let others draw their own
conclusion. We adopt this approach in many of our examples, but such
an approach can be very impractical, especially when we are dealing with
many parameters.

In Section 2.5 we show that in regular cases we can simply present
the MLE and its standard error. In less regular cases we can construct
intervals that still acknowledge the existing uncertainty, while simplifying
the communication of the likelihood function.

Pure likelihood inference

In his last book Fisher (1973, pages 75-78) proposed that in some problems
we interpret the observed likelihood function directly to communicate our
uncertainty about . These problems include those where exact probability-
based inference is not available, while the sample size is too small to allow
large-sample results to hold. A likelihood interval is defined as a set of
parameter values with high enough likelihood:

{0, L@ > c} ,

L(0)
for some cutoff point ¢, where L(6)/ L(a) is the normalized likelihood.Among
modern authors, Barnard et al. (1962), Sprott (1975, 2000), Edwards (1992),
Royall (1997) and Lindsey (1996, 1999a,b) are proponents of direct likeli-
hood inference.

Fisher gave a specific example in the case of a binomial parameter.
The question of how to choose the cutoff point ¢ is left open, but he sug-
gested that parameter values with less than 1/15 or 6.7% likelihood ‘are
obviously open to grave suspicion’. This prescription only works for scalar
parameters; in general there is a calibration issue we have to deal with.

Example 2.13: In the binomial example where we observe z = 8 out of n =
10, the likelihood intervals for 6 at ¢ = 15% and 4% are (0.50,0.96) and (0.41,0.98),
shown in Figure 2.6. Typically there will not be any closed form formula for the
interval, but in practice it can be found quite easily using numerical methods.
For scalar parameters, we can use a simple grid search. O

Probability-based inference

While convenient, the pure likelihood inference suffers a serious weakness:
there is no externally validated way to justify the cutoff point ¢, since a
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Likelihood intervals
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Figure 2.6: Likelihood intervals at 15% and 4% cutoff for the binomial
parameter 0 are (0.50,0.96) and (0.41,0.98).

o
o

chosen value ¢ does not refer to anything observable. This is a general
calibration problem associated with the likelihood: a 5% likelihood does
not have a strict meaning (it depends on the size of the parameter space).
In contrast, a 5% probability is always meaningful as a long-term frequency,
so one way to ‘calibrate’ the likelihood is via probability. This is in fact
the traditional likelihood-based inference in statistics. Fisher maintained
that whenever possible we should use probability-based inference; here he
included cases where an exact confidence level is available and the large-
sample cases.

Traditional (frequentist) inference on an unknown parameter 6 relies on
the distribution theory of its estimate 0. A large-sample theory is needed
in the general case, but it is simple in the normal mean model. From
Example 2.9 we have

L) n
©8 L(@) 202

Now, we know 7 is N(#,0%/n), so

or

LO)  »
W =21 ~ X1 2.5
W is called Wilk’s likelihood ratio statistic. Its y? distribution is exact in
the normal mean model, and as will be shown in Chapter 9, it is approx-
imately true in general cases. A practical guide to use the approximation
is that the likelihood is reasonably regular.
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This is the key distribution theory needed to calibrate the likelihood. In
view of (2.5), for an unknown but fixed 6, the probability that the likelihood
interval covers 6 is

L(6) L(H)
Pl —>c¢ = P|2log—+ < —2logc
(Lw) ) ( L)
= P(x? < —2loge).
So, if for some 0 < a < 1 we choose a cutoff
_1.2
c=¢e 2X1,(1—0<)7 (26)

where yx? ( is the 100(1 — «) percentile of x?, we have

1—a)
Lo
P <L(A) > c) =P(i3 < Xi(lfa)) =1-o.

This means that by choosing ¢ in (2.6) the likelihood interval

{97 i@ > c}
L(9)

is a 100(1 — a)% confidence interval for 6.

In particular, for & = 0.05 and 0.01 formula (2.6) gives ¢ = 0.15 and
0.04. So, we arrive at the important conclusion that, in the normal mean
case, we get an exact 95% or 99% confidence interval for the mean by
choosing a cutoff of 15% or 4%, respectively. This same confidence interval
interpretation is approximately true for reasonably regular problems.

When can we use a pure likelihood interval?

A likelihood interval represents a set of parameter values which are well sup-
ported by, or consistent with, the data. Given a model, a likelihood interval
is an objective interval in the sense that it does not involve any subjective
choice of prior. Fisher was clear, however, that the likelihood on its own
provides only a weaker form of inference than probability-based inference.
Unlike the confidence interval, a pure likelihood interval does not have a
repeated sampling interpretation; i.e. it is silent regarding its long-term
properties if the experiment is repeated a large number of times. These
long-term properties provide a (potential) external validity to probability-
based confidence intervals.

Names such as ‘likelihood-based interval’ can be confusing, since both
pure likelihood intervals and traditional likelihood-based confidence inter-
vals are derived from the same likelihood function. In fact, numerically
they can be the same. What we are discussing here is the sense of un-
certainty associated with the interval. Traditionally it is only available in
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terms of probability (or confidence level), but in the Fisherian view it can
also be reported in terms of likelihood. From here on, if a likelihood-based
interval has a theoretically justified confidence level it is called a ‘confidence
interval’, otherwise it is called a ‘likelihood interval’.

It is well known that generally a confidence level does not actually apply
to an observed interval, as it only makes sense in the long run. If we think
of an interval as a guess of where 6 is, a 95% probability of being correct
does not apply to a particular guess. (In contrast, the sense of uncertainty
provided by the likelihood does apply to a particular guess.) The following
example is adapted from Berger and Wolpert (1988).

Example 2.14: Someone picks a fixed integer # and asks you to guess it based
on some data as follows. He is going to toss a coin twice (you do not see the
outcomes), and from each toss he will report 6 + 1 if it turns out heads, or § — 1
otherwise. Hence the data x1 and x2 are an iid sample from a distribution that
has probability 0.5 on § — 1 or 6 + 1. For example, he may report 1 = 5 and
T = 5.

The following guess will have 75% probability of being correct:

l(1’1—|—LL‘2) if 21 751:2
_ 2
C(xth)_ { 513171 ifan = T2.

According to the standard logic of confidence procedure, the above guess has 75%
‘confidence level’. But if 1 # z2 we should be ‘100% confident’ that the guess
is correct, otherwise we are only ‘50% confident’. It will be absurd to insist that
on observing xz1 # x2 you only have 75% confidence in {(z1 + z2)/2}. A pure
likelihood approach here would match our common sense: it would report at each
observed {z1,x2} what our uncertainty is about 6. It would not say anything,
however, about the long-term probability of being correct. O

In Section 5.10 we will discuss additional statistical examples that have
similar problems. Fisher himself added an extra requirement for the use
of probability for inference: it should not be possible to recognize a subset
of the sample space, for which we can make an equally valid but different
(conditional) probability statement. The literature on these ‘recognizable
subsets’ is rather esoteric, and so far there has not been any impact on
statistical practice.

In general we will interpret a likelihood interval this way:

e as the usual confidence interval if an exact or a large-sample approxi-
mate justification is available. This covers most of routine data anal-
ysis where parameters are chosen so that the likelihood is reasonably
regular.

e as a pure likelihood interval if there is no exact probability-based jus-
tification and the large-sample theory is suspect. This usually involves
small-sample problems with nonnormal or complicated distributions,
where the likelihood is decidedly not regular. It also includes cases
where a probability-based statement is obviously absurd as in the pre-
vious example.
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In a real data analysis there is always an inevitable judgement call; ac-
knowledging the current dominance of confidence procedure, we will err
on the side of regularity and tend to report approximate confidence in-
tervals. This is mitigated by the fact that the regularity requirement for
likelihood-based confidence intervals is quite forgiving; see Section 2.9.

Example 2.15: Let z1,...,z, be a sample from Uniform(0, §) for some 6 > 0.

Let x(,) be the maximum of x1,...,z,. The likelihood function is
Le = 67", for z; < 6 for all ¢
= 9,n7 for 6 > T(n),

and equal to zero otherwise. For example, given data 2.85, 1.51, 0.69, 0.57 and
2.29, we get x(,) = 2.85 and the likelihood is shown in Figure 2.7. Asymmetric
likelihood typically occurs if 0 is a boundary parameter. The likelihood interval
at 5% cutoff is (2.85,5.19).

Uniform model

1.0
1 1

likelihood
00 02 04 06 0.8

3 4 5 6 7
6

Figure 2.7: Likelihood function of 6 in Uniform(0,0) based on x5 = 2.85.

While the likelihood is not regular, it is still possible to provide an exact
theoretical justification for a confidence interval interpretation. Now

X(n
(L(g) >C> P( (n) >Cl/n)
L(9) 0
X
= 1—P( é"><c1/”>

_ 1_(c1/n)n
= l—-c

So the likelihood interval with cutoff ¢ is a 100(1 — ¢)% confidence interval. O

Example 2.16: This is a continuation of Example 2.1. Suppose 100 seeds were
planted and it is recorded that x < 11 seeds germinated. Assuming a binomial
model we obtain the likelihood in Figure 2.8 from
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10
n x n—x
L) = Z<w>e(19) . (2.7)
=0
The MLE is = 0 and its standard error is not well defined, while the likelihood

Binomial likelihood, n=100

1.0
1 1

Likelihood
00 02 04 06 0.8

T T T T
0.00 0.10 0.20 0.30

6

Figure 2.8: Likelihood functions from two binomial experiments: n = 100
and x < 11, and n = 100 and x = 5. The latter is reasonably regular.

interval at 15% cutoff is (0,0.14). Since the likelihood is irregular, and we do not
have any theoretical justification, it is not clear how to assign a confidence level for
this interval. To get a confidence level we also need to make an extra assumption
about how data are to be collected in future (hypothetical) experiments.

Had we observed z = 5 the information on # would have been more precise,
and the likelihood reasonably regular. So we can report an approximate 95% CI
0.02 <6 <0.10. O

Likelihood ratio test

To use the likelihood directly for hypothesis testing, for example to test
a null hypothesis Hy: 8 = 6y, we can report the likelihood of Hj as the
normalized likelihood of 6

L(6o)

—~ -

L(9)

We can ‘reject Hy’, declaring it ‘unsupported by data’; if its likelihood is
‘too small’, indicating there are other hypotheses which are much better
supported by the data.

How small is too small can be left arbitrary, depending on the appli-
cation or other considerations that may include informal prior knowledge.
In court cases a low level of likelihood may be set for the hypothesis ‘the
defendant is innocent’ before we can reject it, while the hypothesis ‘ge-
netically engineered food has no side effects’ can be rejected more readily.
However, the issue of calibration of the likelihood is also relevant here as a
likelihood of 5%, say, does not have a fixed meaning.
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In regular one-parameter problems, a probability-based calibration is
available to produce a P-value via the distribution of Wilk’s statistic. From

(2.5), on observing L(6y)/L(6) = ¢, the approximate P-value is
P(x} > —2logc).

This shows that there is typically some relationship between likelihood ratio
and P-value, so when P-value is used it is used as a measure of support.
However, since P-value depends on the sample space of the experiment, the
relationship depends on the experiment; see Chapter 5 for more discussion.
Even though it is under constant criticism from statisticians, the P-value
is still widely used in practice, and it seems unlikely to disappear.

In non-regular problems, where we do not know how to calibrate the
likelihood, we may have to use the pure likelihood ratio as a measure of
support. This is in line with the use of pure likelihood intervals when
there is no justification for probability-based inference. For example, in
Example 2.16 it is not clear how to define a P-value, say to test § =
0.5. Another example, discussed in more detail in Section 5.4, is a general
situation where the distribution of the test statistic is asymmetric: the
‘exact’ two-sided P-value is ambiguous and there are several competing
definitions.

2.7 Standard error and Wald statistic

The likelihood or confidence intervals are a useful supplement to the MLE,
acknowledging the uncertainty in a parameter ¢; they are simpler to com-
municate than the likelihood function. In Section 2.5 we also mention the
observed Fisher information I(6) as a supplement to the MLE. What is its
relationship with the likelihood-based interval?

In regular cases where a quadratic approximation of the log-likelihood

~

works well and () is meaningful, we have

~

so the likelihood interval {6, L(6)/L(#) > ¢} is approximately

0++/—2loge x I(6)~1/2,

In the normal mean model in Example 2.9 this is an exact CI with confi-
dence level
P(x? < —2logc).

For example, R N
0 +1.96 1(6)1/2

is an exact 95% CI. In nonnormal cases this is an approximate 95% CI. In
these cases, note the two levels of approximation to set up this interval:
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the log-likelihood is approximated by a quadratic and the confidence level
is approximate. R
Also in analogy with the normal mean model, in general [ (9)’1/ 2 pro-
vides the standard error of 6. It is common practice to report the pair in
the form ‘MLE(standard error)’. Its main use is to test Hp: 8 = 6, using
the Wald statistic R
0 — 0
2= —=
se(6)
or to compute Wald confidence intervals. For example, the Wald 95% CI
for 0 is

b

0+ 1.96s¢(0). (2.8)
Under Hy in the normal mean model the statistic z has an exact standard
normal distribution, and approximately so in the nonnormal case. A large
value of |z| is associated with a low likelihood of Hy: 6 = 6. For example,
|z| > 2 is associated with a likelihood less than 15%, or P-value less than
5%.

What if the log-likelihood function is far from quadratic? See Figure
2.9. From a likelihood point of view the Wald interval is deficient since
it includes values with lower likelihood compared to values outside the
interval.

1.0
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Likelihood
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Figure 2.9: Poor quadratic approzimation (dotted) of a likelihood function
(solid).

Wald intervals might be called MLE-based intervals. To be clear, confi-
dence intervals based on {6, L(0)/L(0) > c} will be called likelihood-based
confidence intervals. Wald intervals are always symmetric, but likelihood-
based intervals can be asymmetric. Computationally the Wald interval is
much easier to compute than the likelihood-based interval. If the likelihood
is regular the two intervals will be similar. However, if they are not similar
a likelihood-based CI is preferable; see the binomial example below and
the discussion in Section 2.9. If the likelihood is available we will usually

report the likelihood-based intervals.
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Example 2.17: In the binomial example with n = 10 and = = 8 the quadratic
approximation was poor. The standard error of 8 is 1(6) /2 = 1/1/62.5 = 0.13,
so the Wald 95% CI is

0.8+ 1.96/v62.5,
giving 0.55 < 6 < 1.05, clearly not appropriate. For n = 100 and = = 80, the

standard error for 0 is 1(5)71/2 = 1/4/625 = 0.04. Here we have a much better
quadratic approximation, with the Wald 95% CI

0.8 + 1.96/v/625
or 0.72 < 6 < 0.88, compared with 0.72 < 6 < 0.87 from the exact likelihood. O

To use the ‘MLE(standard error)’ pair to represent the likelihood func-
tion, should we always check whether the likelihood is regular? In principle
yes, but in practice we learn that certain problems or parameters tend to
have better behaviour than others. Plotting the likelihood function in unfa-
miliar problems is generally advised. This is why in many of our examples
we regularly show the likelihood function. When the data are sparse or
if the parameter estimate is near a boundary, such as 0 or 1 for a proba-
bility parameter, then the quadratic approximation is not appropriate. It
is almost never meaningful to report the standard error of odds-ratios or
correlation coefficients.

2.8 Invariance principle

The likelihood function represents the uncertainty for a fixed parameter,
but it is not a probability density function. How do we deal with parameter
transformation? We will assume a one-to-one transformation, but the idea
applies generally. In the first binomial example with n = 10 and x = 8, the
likelihood ratio of 8; = 0.8 versus 65 = 0.3 is

L6 =08) 631 —6,)?
L(y =0.3)  65(1 — 6)2

i.e. given the data 8 = 0.8 is about 200 times more likely than 6 = 0.3.
Suppose we are interested in expressing 6 on the logit scale as

¢ =log{0/(1—-0)},

then ‘intuitively’ our relative information about ¥; = log(0.8/0.2) = 1.39
versus 2 = l0g(0.3/0.7) = —0.85 should be

L) _ L(01) _ o0 -

L*(¢2)  L(62)
That is, our information should be invariant to the choice of parameteri-
zation.

This is not the case in the Bayesian formulation. Suppose 6 has a

‘non-informative’ prior f(#) = 1; the posterior is

a0
O

= 208.7,

fWlz) = fO()]x) x (2.9)
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e?

= f(e(w)\x)m- (2.10)

In the new 1-scale the relative information about 1, versus s is now equal
to

f@Walz) _ L(6y)  e”(1+e%)?

- X
f(3a]) L(63)  e¥2(1+ e¥1)?
= 208.7 x 0.81 = 169.0.

Thus the invariance property of the likelihood ratio is incompatible with
the Bayesian habit of assigning a probability distribution to a parameter.

It seems sensible that, if we do not know where 6 is, then we should not
know where log{6/(1 — 6)} or 62 or 1/6 are; in other words, we should be
equally ignorant regardless of how we model our problem. This is not true
in the Bayesian world: if we assume 6 is uniform between zero and one,
then 6?2 is more likely to be closer to zero than to one.

Note that the invariance property of the likelihood ratio is not an im-
plication of the repeated sampling principle, so it is not a frequentist re-
quirement. However, frequentists generally adopt the invariance without
question. This is in line with the frequentist refusal to accept the distri-
butional reality for a fixed parameter, so a Jacobian term to account for
parameter transformation is not meaningful.

There is actually some element of truth in the Bayesian position. It
seems pedantic to think that we should be equally ignorant about the
unknown probability 6, which is known to be between 0 and 1, as we are
about 6'%°. T would bet the latter would be closer to zero than to one (if
100 is not big enough for you, make it 1000 or 10,000), thus violating the
invariance principle. The only way to accommodate the changing degree
of ignorance after transformation is by adopting a probability density for
the parameter, i.e. being a fully-fledged Bayesian. However, the loss of
the invariance property of likelihood ratio would be a substantial loss in
practice, since

e we lose the invariance property of the MLE (see Section 2.9)

e the likelihood of every parameterization would then require a Jaco-
bian term, which must be computed analytically starting from a prior
density, and consequently

e we are cornered into having to specify the prior density axiomatically.

These reasons alone may be enough to justify the utilitarian value of the
invariance principle. However, the invariant property of the likelihood ratio
should be seen only as a convenient axiom, rather than a self-evident truth.

(These discussions do not apply in random effects models where a pa-
rameter can have an objective distribution. Here the invariance property
of the likelihood is not needed, as the likelihood can function like a density;
see Section 16.1 and Section 16.2.)
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2.9 Practical implications of invariance principle

Computing the likelihood of new parameters

The invariance principle implies that plotting the likelihood of a new pa-
rameter ¢ = g(0) is automatic, a useful fact when performing likelihood-
based inference for ¢. Consider the pair {6, L(6)} as the graph of the
likelihood of 8; then the graph of the likelihood of % is simply

{o, L7()} = {9(0),L7(9(0))}

In effect, with fixed parameters, the likelihood function is treated like a
probability mass function of a discrete distribution, i.e. no Jacobian is used
to account for the transformation. This does not create any inconsistency
since the likelihood is not a density function, so it does not have to integrate
to one.

If g(0) is not one-to-one we need to modify the technique slightly. For
example, consider

¥ =g(0) =07,

so § = +1 implies ¢p = 1. If L(# = 1) = 0.5 and L(f = —1) = 0.3 what is
L*(1p = 1)? In this case, we define

L (v =1) = max L(6
W ) {0,9(0)=1} (6)
= max{0.5,0.3}
= 0.5
In general
L* = max L(6). 2.11
(1) o (0) (2.11)

Invariance property of the MLE

An important implication of the invariance of likelihood ratio is the so-
called invariance property of the MLE.

~

Theorem 2.1 If 0 is the MLE of 6 and g() is a function of 0, then g(f)
is the MLE of ¢(0).

The function g(6) does not have to be one-to-one, but the definition of
the likelihood of g(#) must follow (2.11). The proof is left as an exercise
(Exercise 2.19).

It seems intuitive that if 0 is most likely for # and our knowledge remains

the same then g(6) is most likely for g(#). In fact, we would find it strange
if 6 is an estimate of 8, but 62 is not an estimate of #2. In the binomial
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example with n = 10 and = = 8 we get 6 = 0.8, so the MLE of g(0) =
0/(1—10)is

~ ~ ~

9(0) =0/(1 —8) = 0.8/0.2 = 4.

This convenient property is not necessarily true with other estimates. For
example, if 6 is the minimum variance unbiased estimate (MVUE) of 6,

then g(0) is generally not MVUE for ¢(9).

Improving the quadratic approximation

In practice we often consider a transformation i = ¢(#) to ‘improve’ the
likelihood function so that it is more regular. We know that in such a case
we can rely on the MLE and the standard error. Given such a transform,
confidence intervals of 6 can be first set for g(6) using the Wald interval:

~ ~

9(0) +1.96 se{g(0)},

then retransformed back to the original #-scale. For scalar # we can show
(Exercise 2.20) that

~

se{g(B)} = se() |2

=

00

Example 2.18: Suppose x = 8 is a sample from the binomial(n = 10,0). The
MLE of 6 is 8 = 0.8. Consider the log-odds

¥ =9(0) =log 7—-

Figure 2.10(b) shows the likelihood of ¢ is more regular than in the original
f-scale.

(a) Probability scale (b) Log—odds scale
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Figure 2.10: (a) Log-likelihood of the probability 0 from binomial data n =
10 and x = 8. (b) Log-likelihood of the log-odds 1 is more regular.
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The MLE of 1 is

-~ 0.8
=log — = 1.39.

Y =log 5 = 139

To get the standard error of ¢, we first compute

99 _ 1, 1
90 06 1-6

SO

= 0.79.

The Wald 95% CI for v is
1.39 4+ 1.96 x 0.79,

giving —0.16 < ¥ < 2.94. Transforming this back to the original scale yields
0.46 < 6 < 0.95.

This compares with 0.5 < 6 < 0.96 using the likelihood-based 95% CI, and
0.55 < 6 < 1.05 using the Wald 95% CI on the original scale § (Example 2.17). O

Likelihood-based ClI is better than Wald ClI

We do not always know how to transform a parameter to get a more regular
likelihood. This difficulty is automatically overcome by likelihood-based
intervals. Let us consider a scalar parameter case. The likelihood-based

approximate 95% CI is
L(6)
0,2log —+ < 3.84
{ ©) }
and the Wald interval is R N
0+ 1.96 se(6).
While both are based on a similar normal-approximation theory, the likelihood-

based interval is better than the Wald interval.
The Wald interval is correct only if

o-9 N(0,1).
se(#)

In contrast, because of invariance of the likelihood ratio, the likelihood-
based interval is correct as long as there ezists a one-to-one transformation
g(+), which we do not need to know, so that

90) —9(0)
se(g(6))

To show this, suppose L < g(6) < U is the 95% CI for g(6) based on ¢(9).
From normality of ¢g(#), the interval (L, U) is a likelihood interval at 15%

N(0,1). (2.12)
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cutoff. The invariance of the likelihood ratio implies that the likelihood
interval of 8 at 15% cutoff is

g (L) <8 <g ' (U),

which then has exactly the same 95% confidence level. The proof is clear
if you draw the likelihood functions of 6 and g(6) next to each other. It
should be emphasized that g(6) need not be known, only that it exists.

With the same argument, if an exact normalizing transform does not
exist, the likelihood-based CI still has the same confidence level as the
transform that makes the likelihood most regular. In other words, for the
purpose of probability calibration, the likelihood-based CI is automatically
employing the best possible normalizing transform. R

The main source of problems with the Wald interval is that  may be
far from normal, and if we want to transform it to improve the normality
we need to know what transform to use. The likelihood interval does the
required transform automatically. Hence the applicability of the likelihood-
based CI is much wider and, consequently, it is much safer to use than the
Wald interval.

2.10 Exercises

Exercise 2.1: To estimate the proportion of luxury cars # in a city, a group
of students stands on a street corner and counts 213 cars by the time they see
the 20th luxury car, at which point they stop counting. Draw the likelihood of
0. What assumption do you need to make in your analysis? Should it make
a difference (in terms of the information about #) whether the number 20 was
decided in advance or decided in the ‘spur of the moment’?

Exercise 2.2: N runners participate in a marathon and they are each assigned
a number from 1 to N. From one location we record the following participants:

218 88 254 33 368 235 294 115 9

Make a reasonable assumption about the data and draw the likelihood of N.

Exercise 2.3: The train service between cities A and B announces scheduled
departures at 07:00 and arrivals at 10:05. Assume that the train always leaves
on time. The arrival time is based on the earliest arrival recorded on 10 sampled
journeys. Assume journey time is normally distributed with standard deviation 5
minutes. Draw the likelihood of the average journey time. What is a reasonable
guess for a late arrival?

Exercise 2.4: Suppose X(1),..., X(n) are the order statistics of an iid sample
from a continuous distribution F'(x).
(a) Show that
P(Xx) <) = P{N(z) > k}
where N(z), the number of sample values less than z, is binomial with
parameters n and probability p = F(z).

(b) Use (a) to show that the density of Xy is

n!

p(z) = m{F(x)}kil{l — F(z)}" " f(x)
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where f(x) is the density from F(x). Verify the density using the multino-
mial argument in Example 2.4.

(c) Use the multinomial argument to find the joint density of {X;), X(x)} for
any j and k.

Exercise 2.5: The following shows the heart rate (in beats/minute) of a person,
measured throughout the day:

73 75 84 76 93 79 85 80 76 78 80

Assume the data are an iid sample from N(0,0?), where ¢? is known at the
observed sample variance. Denote the ordered values by x(1),...,x(11). Draw
and compare the likelihood of 6 if

(a) the whole data z1,...,z11 are reported.

b

~

(b) only the sample mean T is reported.
(c
(d

(

e

~

only the sample median x ) is reported.

Na

only the minimum ;) and maximum (1) are reported.

~

only the lowest two values x(1) and x(2) are reported.
Exercise 2.6: Given the following data
0.5 -0.32 -0.55 -0.76 -0.07 0.44 -0.48
draw the likelihood of 6 based on each of the following models:
(a) The data are an iid sample from a uniform distribution on (6 — 1,0 + 1).

(b) The data are an iid sample from a uniform distribution on (-6, 6).
(c) The data are an iid sample from N(0, 9).

Exercise 2.7: Given the following data
2.32 3.98 3.41 3.08 2.51 3.01 2.31 3 .07 2.97 3.86

draw the likelihood of 6 assuming the data are an iid sample from a uniform
distribution on (6, 26). Find the MLE of 6, and report a likelihood-based interval
for §. Comment on the use of standard error here. Comment on the use of
probability-based inference here.

Exercise 2.8: For the following paired data (z;,y:)

z | —0.18 —0.16 —0.73 0.80 —0.41 0.00 —0.08
yi | 018 —051 —0.62 —0.32 0.55 0.57 —0.32

assume that they are an iid sample from a uniform distribution in a circle with
mean (0,0) and radius 6. Draw the likelihood of 6, find the MLE of 0, and report
a likelihood-based interval for 6.

Exercise 2.9: For the data in the previous exercise assume that they are an iid
sample from a uniform distribution in a square (# —1,6+1) x (6 —1,0+1). Draw
the likelihood of 0, find the MLE of 6, and report a likelihood-based interval for
0.

Exercise 2.10: Suppose x1,...,%, are an iid sample from the exponential
distribution with density

plz) = A"te /N,
Derive the MLE and its standard error.



50 2. Elements of likelihood inference

Exercise 2.11: Ten light bulbs are left on for 30 days. One fails after 6 days,
another one after 28 days, but the others are still working after 30 days. Assume
the lifetime is exponential with density

plz) =A"te /™,

(a) Given A, what is the probability of a light bulb working more than 30 days?

(b) Derive and draw the likelihood of A. (Hint: only the first two order statistics
are reported.)

(c) Derive the MLE of A.
(d) Estimate how long it takes before 90% of the light bulbs will fail.

(e) Suppose the only information available is that two have failed by 30 days,
but not their exact failure times. Draw the likelihood of A and compare with

(b).

Exercise 2.12: A communication device transmits a sequence of 0 and 1 digits.
To ensure correctness a sequence of length n is transmitted twice. Let 6 be the
probability of error during transmission of a single digit and let X be the number
of digits that differ in the two transmissions. For example, for n = 8 and if the
two received messages are 00011000 and 00010001, then z = 2. Write down the
likelihood in general, and draw it for this simple example. Interpret why the
likelihood is bimodal.

Exercise 2.13: Suppose the following observed data
0.5 -0.32 -0.55 -0.76 -0.07 0.44 -0.48

are an iid sample from the double-exponential (Laplacian) distribution with den-
sity
1 .-
po(x) = 56‘ le
(a) Draw the log-likelihood of 6.
(b) Find the MLE of 6, and report a likelihood-based interval for 6.

(c) Change the largest value in the data (0.5) to 2.5, and redraw the log-
likelihood function. Comment about the inference for 6.

—o00 < x < 00.

Exercise 2.14: To estimate the proportion 6 of business people who cheat
on their taxes, a randomized response survey is tried. Each person is asked to
secretly flip a fair coin and answer question A if it comes out heads, or answer
question B otherwise:

A. Did you cheat on your last year’s tax form?

B. Was your mother born between January and June? (Assume that the prob-
ability of this event is 0.5.)

The data show 15 said Yes and 30 No.
(a) Find the probability of a ‘Yes’ answer.

(b) Draw the likelihood of . Report the MLE, its standard error, and likelihood-
based interval for 6.

(¢) Compare the method-of-moment estimate of 6, and its 95% CI based on the
Wald CI from the sample proportion.

(d) Repeat (a) to (c) based on 10 Yes’s and 40 No’s. Describe the advantage of
the likelihood approach over the method of moments here.
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Exercise 2.15: Modify Example 2.14 by changing the coin toss with a card
draw (with replacement), where each card ¢; is valued from 1 to 13 (Ace=1 ...
King=13) and after each draw the sum x; = 6 + ¢; is reported.

(a) Based on the following report from 10 draws
16 22 15 17 12 20 15 23 16 23

present your guess in terms of likelihood. Split the data into two sets of
five observations and repeat the exercise for each set. (Hint: construct the
likelihood based on each observation and find the overlap.)

(b) Discuss pure likelihood and probability-based inference as used in this case.

Exercise 2.16: According to the Hardy—Weinberg law, if a population is in
equilibrium, the frequencies of genotypes AA, Aa and aa are 6%, 20(1 — 6) and
(1 — 0)%. Suppose we type N subjects and find a breakdown of (n1,na,n3) for
the three genotypes.

(a) Find the MLE of 6 and the Fisher information I(0) as a function of (n1, n2, n3).

(b) Given data ni = 125, no = 34 and ng = 10, draw the likelihood of 6, and
report the MLE and the standard error.

(c) Compare the 95% likelihood-based interval for # with the Wald interval.

(d) If A is a dominant trait, then the first two groups will show the same
phenotype, and there are only two observable groups. Repeat the previous
exercises based on phenotype data only. (From part (b): add n; and ns.)

Exercise 2.17: For the previous Exercise 2.5:

1 ompare the 0 ased on the different available data (a) to (e). For

i) C he MLE 6 based he diff lable d F
(a) and (b) derive the estimate theoretically. For (c), (d) and (e), use a
numerical optimization program to get the estimate.

~

(ii) Compare the Fisher information () based on the different available data
(a) to (e). For (a) and (b) derive the Fisher information theoretically. For
(c), (d) and (e), use a numerical optimization program to get the Fisher
information.

(iii) Compute and compare the 99% likelihood-based ClIs for 6.

(iv) Compute and compare the 99% Wald CIs for 6.
Exercise 2.18: Find the approximate likelihood of Hp: 6 = 6y from the
‘MLE(standard error)’ pair. Apply it in Example 2.17 to test Ho : 6 = 0.5,

and compare it with the exact result. When is the approximate likelihood larger
or smaller than the exact value?

Exercise 2.19: Prove Theorem 2.1.

Exercise 2.20: For scalar § show that the Fisher information on g(0) is

~

-2

- 5| 99(9)
I'{g(0)} = 1(0) | ==
00
So the standard error of g(é\) is
I ~ |ag

se{g(®)} = se(d)
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Exercise 2.21: Suppose we observe z = 3 misprints on a newspaper page and
consider a Poisson model with mean 6.

(a) Find a transformation of 6 so that the log-likelihood is well approximated
by a quadratic. (Hint: consider transformations of the form 6 for small a
and log6.)

(b) Compute the Wald-based CI based on a transform with reasonably regular
likelihood. Report the interval for the original 6.

(c¢) Compare the interval with the likelihood-based interval.
Exercise 2.22: We measure some scores from n = 10 subjects

0.88 1.07 1.27 1.54 1.91 2.27 3.84 4.50 4.64 9.41
and assume they are an iid sample from N(u,o?); for simplicity assume o? is
known at the observed value. Draw the likelihood, and find the MLE and the
standard errors of the following parameters. Comment on the quadratic approx-
imation of the likelihood.

(a) e™H.
(b) The threshold probability P(X > 3).
(¢) The coefficient of variation o /pu.

Exercise 2.23: For binomial data with n = 10 and x = 8 repeat the previous
exercise for

(a) g(0) =0/(1 - 0)
(b) 9(6) = log{6/(1 - 0)}
(c) g(8) = sin~* V0.

Check for which parameter the standard error quantity is most meaningful. Com-
pute the Wald CI for 6 based on each transform, and compare with the likelihood-
based CI.



3

More properties of
likelihood

3.1 Sufficiency

The idea of Fisher information (Section 2.5) captures the notion of ‘infor-
mation’ only roughly. Owing to its association with a quadratic approxi-
mation of the likelihood, it is typically meaningful only in large samples.
The qualitative concept of sufficiency (Fisher 1922) captures precisely the
idea of information in the data. An estimate T'(z) is sufficient for 6 if it
summarizes all relevant information contained in the data about 6. This
is true if for any other estimate U(x), the distribution of U(z) given T'(z)
is free of 6. So, once T'(x) is known U(z) does not carry any additional
information.

It is a fundamental result that the likelihood function is minimal suf-
ficient. This means the likelihood function captures all of the information
in the data, and anything less involves some loss of information.

First we define an experiment E to be a collection {x, 8, pg(x)}. Such a
definition is completely general, since the data z can be of any complexity.
The probability model pg(z) describes how the data are generated, such as
an iid sampling, or sequential experiment, etc.

Definition 3.1 A statistic T(X) is sufficient for 0 in an experiment E if
the conditional distribution of X|T =t is free of 0.

Note first the intuitive content of the definition: if X|T' = ¢ is free of 6,
then once we know T' =t we could have simulated X from the conditional
distribution so that, unconditionally, X still follows the model py with the
true (but unknown) 6. Since X|T = t itself does not involve 6, then it
cannot carry any information about # and all information about it must
be contained in T'.

Technically the definition does include the full description of the exper-
iment, in particular the model pg(z), so sufficiency is only meaningful in
this context. It is wrong and meaningless to state that the sample mean
is sufficient for the population mean without any reference to the model
po(x).

Example 3.1: Suppose Xi,...,X, are an iid sample from a Poisson distri-
bution with mean 6. Then T'(X) = 3" X; is sufficient for 6.
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Proof: We want to show that the conditional distribution of X1, ..., X, given
T =t is free of §. First we can show, for example using the moment generating
function technique, that 7" is Poisson with parameter nf. Then, using the Bayes
theorem, we have

P(X1:$1,...,Xn:$n|T:t) _ P(X1:$1,P(,1:)£nt):$n,T:t)
. P(X1:$1,...,Xn:$n)
N P(T=t)

e 092 A IEZ
e~"%(nh)t/t!
t! 1\ %

for x1,...,x, such that Zml = t, and the probability is zero otherwise. Note
that any one-to-one function of Z:m is also sufficient, so in particular T is a
sufficient estimate of 6.

For example, given n = 2 and x1 4+ z2 = 10, a further determination whether
we have observed (0, 10) or (1,9) ... or (10, 0) involves an event whose probability
is free of 6. So this process can add no information about 6, and inference about

0 should be the same regardless of which event is obtained. This means that all
information about 6 is contained in 1 + z2. O

From the example, it is clear that sufficiency is a useful concept of data
reduction: x1,...,x, are summarized to T only. As stated earlier the notion
of sufficiency is tied with or conditional on an assumed model. Knowing
T alone is not enough to capture the uncertainty in the population mean;
we also need to know the probability model such as z1,...,z, are an iid
sample from Poisson(f).

Proving the sufficiency of a statistic from first principles is usually not
very illuminating. A much more direct way is given by the so-called fac-
torization theorem.

Theorem 3.1 T(X) is sufficient for 6 in an experiment E if and only if
the model pg(x) can be factorized in the form

po(x) = g(t(x),0) h(z),
where h(x) is free of 6.

Example 3.2: Suppose z1,...,T, are an iid sample from N(u,o?) and let
0 = (u,02). The density is

pola) = <2m?>‘"/2exp{2i22<wim2}

2 2
_ (27T02)"/2exp{ iT BT }

202 o2 202

From the factorization theorem, it is clear that
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(a) if o2 is known >, @i is sufficient for p;
(b) if p is known Y (z; — p)? is sufficient for o;
(c) if (11, 07) is unknown (3°. zs, Y, «7) is sufficient.

Knowing (El Ti, ZL x?) is sufficient means that the rest of the data does not

add any more information about (i, o?). If normality has been established, this
means we only need to keep (Zl xi,zi x?) for further analysis. (In practice

we do not routinely throw most of the data away, since instinctively we do not

believe in any specific model, in which case (ZZ T, Zl mf) is not sufficient.) O

3.2 Minimal sufficiency

Fisher originally defined sufficiency as a property of an estimate, but cur-
rently, as defined above, the concept applies to any set of values computed
from the data. For a particular dataset there are infinitely many sufficient
statistics; for example, the whole dataset is always sufficient for any model.
If z1,...,x, are an iid sample from N(6,1), then the following statistics
are sufficient for p: Y xi, T, (3072, @i, Y1, 41 %) for any m, or the set
of order statistics (z(1),...,%(n)). Notice that Z is a function of the other
sufficient statistics, while the set of order statistics, for example, is not a
function of 7.

From the definition we can immediately see that if T' is sufficient then
any one-to-one function of 7" is also sufficient. There is no such guarantee
if the function is many-to-one, as in this case there is a reduction in the
sample space of the statistic. It is then useful to consider the following
concept:

Definition 3.2 A sufficient statistic T(X) is minimal sufficient if it is a
function of any other sufficient statistic.

So a statistic is minimal sufficient if no further data reduction is allowed.
Generally, if the dimension of the sufficient statistic is the same as that
of the parameter space, then the statistic is minimal sufficient; or, if an
estimate is sufficient then it is minimal sufficient. Any further reduction
of the data from the minimal sufficient statistic would involve some loss
of information. Establishing minimal sufficiency relies on the connection
between sufficiency and likelihood.

Example 3.3: Suppose z1,...,z, are an iid sample from N(6,1), so by the
factorization theorem, 7 is sufficient. Based on z1,...,z, we have

L(O;z1,...,2,) = <\/127> exp {; Z(:Z:z - 9)2} .

The dependence on the data is made explicit for later comparison. With some
algebra

log L(O;2z1,...,2n) = _1L Z(wz —-z)° — g(f— 0)*
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= constant — g(f —0)?,

so the likelihood depends on the data only through the sample mean . Suppose,
from this same experiment, only the sample mean 7 is recorded. Then, since T
is N(0,1/n), the likelihood based on Z is

LO:7) = ——exp{ 2@ 0)*},
\/2m/n 2
or n
log L(0; T) = constant — 5@ —0)°.
Therefore the likelihood based on the whole dataset x1,...,xz, is the same as

that based on T alone. O

The preceding result is true for any sufficient statistic. If ¢ is any func-
tion of the data x, the likelihood based on z is the same as the likelihood
based on both x and ¢. So, if ¢ is sufficient

L(0;z) = L(0;z,t) = po(x,t) = pe(t)p(z[t)
constant x py(t)
= constant x L(6;t),

meaning that L(6;x) can be computed based on t alone.

The likelihood function itself is a sufficient statistic. If this sounds
surprising, note that there is an ambiguity with the function notation:
L(0) can mean the entire function over all possible 6, or the function at
a particular value of #. To make an explicit distinction, let L(-;z) be
the entire likelihood function based on x; it is a statistic since it can be
computed from the data alone, no unknown value is involved. Then, for
any choice of 6,

L(:; )
t = —
= L)
is sufficient. To prove this, we use the factorization theorem by defining
L(6;2)
t,0)= ——+=
W0 = Tgora

and h(x) = L(fp; x). Similarly, the normalized likelihood function is also
a sufficient statistic. Hence we arrive at a fundamental property of the
likelihood function:

Theorem 3.2 IfT is sufficient for 0 in an experiment E then the likelihood
of 0 based on the whole data x is the same as that based on T alone.
Therefore, the likelihood function is minimal sufficient.

Recall that we say two likelihoods are the same (or equivalent) if they
are proportional. The proof of the second part is immediate: that any suf-
ficient statistic would yield the same likelihood function implies that the
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likelihood function is a function of any other sufficient statistic. The theo-
rem implies that any statistic that is a one-to-one map with the likelihood
function is minimal sufficient. This occurs if different values of the statistic
lead to different (normalized) likelihood functions.

Example 3.4: Based on z1,...,z, from N(u,1) the likelihood function
L(u;x1,...,2,) = constant x exp{—g(f —u)?}

is a one-to-one map with z: if we have two different samples z1,...,z, and
Y1, ..., Yn then

L(p;x1,...,2n) = constant X L(u;y1,...,yn) iff T=7.

This establishes = as minimal sufficient. With a similar argument we can show
that (7, S?) is minimal sufficient for an iid sample from N(p, 0?), where S? is the
sample variance. O

Example 3.5: Suppose z1,...,T, are an iid sample from the uniform distri-
bution on (6 — 1,0 + 1). The likelihood function is

L(0) = 27" I(Zmax — 1 < 0 < Tmin + 1),

80 (Zmin, Tmax) 1S minimal sufficient for 6. Since the minimal sufficient statistic
is two-dimensional no estimate of 6 is sufficient; the MLE of 6 is not even well
defined.

The nonexistence of a sufficient estimate does not mean there is no sensible
inference for #. We can simply report that 6 must be between xmax — 1 and
Tmin + 1. For example, given data

1.07 1.11 1.31 1.51 1.69 1.72 1.92 2.24 2.62 2.98

we are certain that (2.98 — 1) < 6 < (1.07 + 1). If a point estimate is required
we can take the midpoint of the interval, which in this case is a better estimate
than the sample mean or median. Here T = 1.817 and the sample median 1.705
have zero likelihood, so they are not even sensible estimates. O

Monotone likelihood ratio property

If the parameter 6 is not a boundary parameter, minimal sufficiency can
be expressed in terms of likelihood ratio. Being a one-to-one map with the
likelihood function means that a statistic ¢(x) is minimal sufficient iff, for
any choice of 6y and 6, the likelihood ratio L(61)/L(6y) is a one-to-one
function of ¢(x). If t(x) is scalar, this is called a monotone likelihood ratio
property. Furthermore, if L(6) is smooth enough, as 6; approaches 6y,

L(61) _ L(6o) + L'(60) (61 — 6o)
L(6o) L(6)
0log L(6y)
T o6,

1 (601 — 6o),

for any 6p. Hence we get a simple characterization that ¢(x) is minimal
sufficient iff the score statistic is a one-to-one function of ¢(x).
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3.3 Multiparameter models

Most real problems require multiparameter models; for example, the nor-
mal model N (p,0?) needs two parameters for the mean and the variance.
Model complexity is determined by the number of parameters, not by the
number of observations. No new definition of likelihood is required. Given
data z, the likelihood is
L(o) = Do (I)v

where py(z) is the probability of the observed data. With the same argu-
ment as the one in Section 2.1, it is sufficient to use the density function
for purely continuous models.

Example 3.6: Let zi,...,7, be an iid sample from N(u,0?). Ignoring
irrelevant constant terms, we can write

n 1
log L(p, 0°%) = . logo® — 592 Z(wl —u)?. (3.1)

Suppose n1,...,n, are a sample from the multinomial distribution with known
N = Zl n; and unknown probabilities p1,...,pr. There are (k — 1) free pa-

rameters since Zim = 1. Ignoring irrelevant terms, the log-likelihood of the
parameters (p1,...,pg) is

log L(p1,...,pk) Zmlogp,

For k£ = 3, the parameter space is a 2D simplex satisfying p1 +p2 +p3s = 1, which
can be represented in a triangle. O

We have limited ability to view or communicate L(#) in high dimen-
sions. If @ is two dimensional, we can represent L(6) in a contour plot or a
perspective plot. In general a mathematical analysis of the likelihood sur-
face is essential for its description. Let 6 = (61, ...,0,). Assuming log L(6)
is differentiable, the score function is the first derivative vector

0
20 log L(6),

and the MLE # is the solution of the score equation S(0) = 0. The Fisher
information I(f) is a matrix of second derivatives with elements

5(0) =

2

1,;(0) log L(6)| .

Z]( ) 8989 Og ( )9:6
The original idea of the Fisher information introduced in Section 2.5 is
related to a quadratic approximation of the log-likelihood function. Such
an idea has a natural extension in the multiparameter case. In regular cases
the likelihood function can be represented by the MLE 9 and information

matrix [ (9) via a second-order approximation

log L() ~ logL(8)+ S(@ )(975)75(979)'1( )0 — 0)
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Example 3.7: Let z1,..., 2, be an iid sample from N(u, c?). Taking deriva-
tives of the log-likelihood (3.1), we obtain the score functions

2 o 0 2y 1
Si(p,0%) = @IOgL(/AU )= = E (zi — )
S(ﬂ::imua%ﬁl+i§@—f
2K, 902 g 1y 202 204 i B -

Equating these to zero yields the MLEs

l/;:

T
~ 1 _
(7'2 = EZ(%@ —33)2.

Note the 1/n divisor for the variance estimate, which is different from the usual
1/(n — 1) divisor for the sample variance S2.
Taking further derivatives of the log-likelihood gives the Fisher information

matrix
~ 2y _ [ n/o? 0
I(/Lao-)( 0 n/(za\_él) )'D

Example 3.8: Suppose z1,..., T, are an iid sample from the gamma distri-
bution with density

p(z) = I‘(la) )\axa—lef)\z’ z>0.

The log-likelihood of 6 = (A, &) is

log L(0)

Z{f logl(a) + alog A + (o — 1) log x; — Axi }

—nlogT'(a) + nalog A + (o — I)ZIngi - AZmi.

The score function is a vector with elements

Olog L(\, « no
sy - Bl w5,
S2(0) = %%W:—mﬂ(a)—i—nlog)\—&—Zlogm,

where 9(a) = 0logI'(a) /0. The MLE (X, Q) satisfies

~

no

Zi Ti

/)::

8l Q)
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and
—nh(@) + nlog(a/z) + » _logzi = 0. (3.2)
A numerical procedure is needed to solve (3.2).
The elements of the Fisher information matrix 7(0) are

na
Ill = =
22
n
I = —=x=
A
Inn = 12

I, = ny'(@).O

Example 3.9: Suppose ni,...,n; are a sample from the multinomial distri-

bution with known N = Zl n; and unknown probabilities p1,...,pr. The MLE
is p; = n;/N. We can show this, using the Lagrange multiplier technique, by
maximizing

Q1. Pk, A) = Znilogpi—i-)\ (Zpl — 1>

with respect to p1,...,pr and A (Exercise 3.12). The estimate is intuitive, since
we can collapse the categories into two: the ¢’th category and the rest, hence
creating binomial data.

Often there are theories on how the probabilities vary with a certain param-
eter 0, so p; = pi(0). The log-likelihood of 6 is

log L(0) = Z n; log p;i(0).

The following table shows the grouped data of 100 measurements of the speed of
light (as deviations from 299 in 1000’s km/s) from Michelson’s experiment. (The
original data are given in Example 4.8.)

Intervals Counts  Probability
x <0.75 n =9 P1
0.75 <z <085 mn2=46 D2
0.85<x<0.95 n3=33 p3
095 <x<1.05 ng4=11 P4
x> 1.05 ns =1 Ps5
Suppose the original data 1, ..., 2100 are an iid sample from N(u,c?). A

particular probability p; is given by a normal probability; for example,

pi(p,0) = P(X <0.75) = @ (()é%u)

where ®(-) is the standard normal distribution function.



3.4. Profile likelihood 61

There is no closed formula for the MLEs. Numerical optimization of the
likelihood yields the MLEs

= 0.8485, & = 0.0807.

This compares to 1z = 0.8524 and ¢ = 0.0790 from the original data; see Ex-
ample 4.8 for further discussion. The Fisher information based on the grouped
data
1G.3) = ( 13507.70  513.42 )
’ 513.42 21945.03

is also found numerically. O

3.4 Profile likelihood

While the definition of likelihood covers the multiparameter models, the
resulting multidimensional likelihood function can be difficult to describe
or to communicate. Even when we are interested in several parameters, it is
always easier to describe one parameter at a time. The problem also arises
in cases where we may be interested in only a subset of the parameters;
in the normal model, we might only be interested in the mean u, while o2
is a ‘nuisance’, being there only to make the model able to adapt to data
variability. A method is needed to ’concentrate’ the likelihood on a single
parameter by eliminating the nuisance parameter.

Accounting for the extra uncertainty due to unknown nuisance param-
eters is an essential consideration, especially in small-sample cases. Almost
all of the analytical complexities in the theory and application of the like-
lihood are associated with this problem. Unfortunately, there is no single
technique that is acceptable in all situations (see, for example, Bayarri et
al. 1987). Speaking of the uncertainty about one parameter independently
from the other is not always meaningful.

The likelihood approach to eliminate a nuisance parameter is to replace
it by its MLE at each fixed value of the parameter of interest. The resulting
likelihood is called the profile likelihood. It is a pragmatic approach that
leads to a reasonable answer. We will discuss the problem of nuisance
parameters more responsibly in Chapter 10.

Bayesians eliminate all unwanted parameters by integrating them out;
that is consistent with their view that parameters have regular density func-
tions. However, the likelihood function is not a probability density function,
and it does not obey probability laws (see Section 2.8), so integrating out a
parameter in a likelihood function is not a meaningful operation. It turns
out, however, there is a close connection between the Bayesian integrated
likelihood and a modified profile likelihood (Section 10.6).

For the moment we will only introduce the bare minimum to be able
to deal with the basic models in the next chapter. Specifically, let (6,7) be
the full parameter and 6 is the parameter of interest.

Definition 3.3 Given the joint likelihood L(6,7n) the profile likelihood of
0 is
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L(#) = max L(0,n),
7
where the mazimization is performed at fized value of 6.

It should be emphasized that at fixed § the MLE of 7 is generally a
function of 6, so we can also write

L(0) = L(6,70)-

The profile likelihood is then treated like a regular likelihood; for example,
we can normalize it, display it, calibrate it and compute likelihood intervals
from it. Note that we have adopted a convenient generic notation for the
likelihood function L(-), where the named argument and context determine
the meaning of the function. This is similar to using the symbol P(-) to
indicate the ‘probability of’ the event inside the bracket. If there is any
danger of confusion, we use L,(6) to indicate a profile likelihood.

Example 3.10: Suppose 1, ..., T, are an iid sample from N (i, o) with both
parameters unknown. The likelihood function of (u, 0?) is given by

L(p,0°) = <\/21T7) exp {—%iz Z(ml — H)Z} .

(3

A likelihood of p without reference to o is not an immediately meaningful quan-
tity, since it is very different at different values of o2. As an example, suppose
we observe

0.88 1.07 1.27 1.54 1.91 2.27 3.84 4.50 4.64 9.41.

The MLEs are ;i = 3.13 and 02 = 6.16. Figure 3.1(a) plots the contours of the
likelihood function at 90%, 70%, 50%, 30% and 10% cutoffs. There is a need to
plot the likelihood of each parameter individually: it is more difficult to describe
or report a multiparameter likelihood function, and usually we are not interested
in a simultaneous inference of y and o2

The profile likelihood function of u is computed as follows. For fixed u the
maximum likelihood estimate of o2 is

so the profile likelihood of p is

L(p) = constantx(ai)_"/Q.

This is not the same as
2 ~2y 1 ‘ 2
L(u,0° =0°) = constant X exp {%‘\2 Z(m, -,
K3

the slice of L(u,0?) at 02 = 52; this is known as an estimated likelihood. Both
likelihoods will be close if o2 is well estimated, otherwise the profile likelihood is
preferred.
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(a) Likelihood contour (b) Likelihood of u
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Figure 3.1: (a) Likelihood function of (u,a?). The contour lines are plotted
at 90%, 70%, 50%, 30% and 10% cutoffs; (b) Profile likelihood of the mean
w (solid), L(u,0? = 52) (dashed), and L(u,0? = 1) (dotted).

For the observed data L(y) and L(u, 0 = 52) are plotted in Figure 3.1(b). Tt
is obvious that ignoring the unknown variability, e.g. by assuming o = 1, would
give a wrong inference. So, in general a nuisance parameter is needed to allow
for a better model, but it has to be eliminated properly in order to concentrate
the inference on the parameter of interest.

The profile likelihood of o2 is given by

1
2y _ 2y—n/2 B a2
L(c") = constant x (¢°) exp{ 557 E (z; — T) }
= constant x (02) "% exp{—no?/(20%)}. O

Curvature of profile likelihood

The curvature of a profile log-likelihood is related to the elements of the
Fisher information matrix; the proof is given in Section 9.11. Suppose we
are interested in #; from the total parameter § = (61, 603). We partition the
information matrix T (a) as

~ _ f I o
1) = ( Iy 1o )

oA Ill 112
I 1(9)5 ( 72t 22 >
Then the curvature of the profile log-likelihood of 6; is not I11, but (I*1)~1.

The latter is, in general, smaller than the former; the proof is given in
Section 8.7. As an example, consider the following matrix:

= (5% 13 )

and its inverse



64 3. More properties of likelihood

The inverse is

I’l(é\) o 2.097561 —1.365854
~\ —1.365854 1.121951

so, for example, I, = 2.3 is greater than (I'!)~! =1/2.097561 = 0.48.

This numerical result has a simple statistical interpretation: the infor-
mation index I;; is the curvature of the log-likelihood of 61, where 605 is
assumed known at the observed MLE 6, while (I'1)~! is the information
on #; that takes into account that 65 is unknown. Hence, it is sensible that
Iy is greater than (711)~1.

From the result above, individual profile likelihoods for each parameter
can be quadratically approximated using the pair {6;, (I*")~1} via

log L(6;) ~ —=(I'"")y~1(6; — 6;)?,

1

2
and the standard error of é\l is simply

se(@-) = VI

namely the square root of the diagonal elements of 1! (5) For Michelson’s
data in Example 3.9 we obtain

I (.8) = 7409771 x 10-9°  —1.733578 x 10~
0) =\ 1733578 x 10-%6  4.560895 x 10~9°

and

se(fi) = 1/7.409771 x 1095 = 0.0086.

3.5 Calibration in multiparameter case

A fundamental question in likelihood inference is how one should react
to an observed likelihood. In the one parameter case we can declare a
hypothesis is doubtful if its likelihood is less than 15%, say. We will now
show that, in repeated sampling sense, this prescription does not work in
higher dimensions.

Consider the case of several normal means; the results are approxi-

mately true in the general case if the likelihood is regular. Let x1,...,z, be
an independent sample from the normal distribution with mean 1, ..., up,
respectively, and known common variance 2. Suppose we are interested

to test Hy: pu1 = --- = pp = 0 against the alternative that at least one y; is
not zero. The standard test statistic in this case is Wilk’s likelihood ratio
statistic

-~

_ L(0)
W = 210gL(00)
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&
wsw

where 0 = (p1,...,up), and 6y = (0,...,0). Under Hy the random variate
W has a x? distribution with p degrees of freedom. In classical (frequen-
tist) computations we use this distribution theory to calibrate the observed
likelihood ratio.

A classical test of level « is to reject Hy: 0 = 6 if

L(6)

2log ——= (60) > X;(l_a) (3.3)
or, in terms of likelihood, if
Ll _ 4xaa, (3.4)

L(9)
An observed L(GO)/L(é\) = r corresponds to w = —2logr, and
P-value = P(W > —2logr),

which depends on the degrees of freedom or the number of parameters

being tested.
An observed w = 3.84 is associated with a fixed likelihood of 15% and
the following P-values depending on p:

D 1 2 3 4 ) 6 7 8 9 10
P-value 0.05 0.15 0.28 043 0.57 0.70 0.80 0.87 0.92 0.95

(It can be verified generally for p = 2 that the likelihood of Hp is the
same as the P-value.) The table indicates that in high dimensions it is not
at all unusual to get a likelihood of 15% or less. So declaring significant
evidence with 15% critical value will lead to many spurious results, and it
is essential to calibrate an observed likelihood differently depending on the
dimensionality of the parameter.

When there are nuisance parameters, we have stated in Section 3.4
that a profile likelihood of the parameters of interest is to be treated like
a regular likelihood. This means that the calibration of a multiparameter
profile likelihood also follows the result above.

Likelihood-based confidence region
From (3.4) it is immediate that the set

0,20 o 9w
L(0)

is a 100(1 — a))% confidence region for 6. In the normal case the confidence
level is exact, otherwise it is only approximate.
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Because of display problems confidence regions are only used (if at all)
for two-parameter cases. At p = 2 we can show this interesting relationship:

{G,L(@ > a}
L(9)

is a 100(1 — )% confidence region for 6. For example, Figure 3.1(a) shows
approximate 90%, ... ,10% confidence regions for (u,o?).

AlC-based calibration

In Section 2.6 we discuss pure likelihood and probability-based inference;
for multiparameter problems the latter has just been described. How can
we account for parameter dimension in pure likelihood inference, without
appealing to probability considerations? One solution, proposed by Lindsey
(1999b), leads to the Akaike information criterion (AIC), a general criterion
for model selection. To get the idea in the simplest case, suppose we have
two parameters 61 and 65 such that

L(91,92) = L(91)L(92)-

Suppose, individually, the likelihood of Hy: #; = 0 and Hp: 62 = 0 are
both 0.2, so the joint likelihood of Hy: 61 = 6, = 0 is 0.22 = 0.04. A
simplistic prescription that a likelihood less than 15% indicates evidence
against a hypothesis leads to a logical problem: Hy: 6; = 65 = 0 is rejected,
but individually we do not have evidence to reject either Hy: 61 = 0 or
Hol 91 =0.

An immediate solution is to compare the likelihood with ¢P, where ¢ is
the critical value for a single parameter and p is the dimension of the param-
eter space. So, in the above example, if we set ¢ = 0.15, then the joint like-
lihood of Hy: §; = 0 = 0 must be compared against 0.15%2 = 0.0225. The
evaluation of hypotheses in different dimensions is then logically compati-
ble, in the sense that if Hy: 61 = 05 = 0 is rejected, then one of Hy: 61 =0
or Hy: 81 = 0 must be rejected.

The method to account for the dimension of the parameter space above
is closely related to the AIC, discussed in detail in Section 13.5. The AIC
of a model with free parameter 6 is defined as

~

AIC = —2log L(6) + 2p, (3.5)

where 0 is the MLE and p is the dimension of . Using the AIC, the
log-likelihood of a model is penalized by the number of parameters in the
model, which makes for a fairer comparison between models or hypotheses.
The prescription is simple: the model with a smaller AIC wins.

A particular hypothesis Hy: 8 = 6y describes a model of zero dimension
(it has no free parameter), so its AIC is
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Based on the AIC, the full model with free parameter 6 is preferable to the
simple model Hy: 6 = 6y (i.e. evidence against Hy) if

2log f((;o)) > 2p (3.6)
or L6 o
L(é\) <e P (3.7)

that is, if the likelihood of 6 is less than ¢P, using the critical value ¢ =
e~ = 0.37, which fits the method we just describe above. It is instructive
to compare (3.3) against (3.6), and (3.4) against (3.7).

One controversial aspect of the use of AIC is in how to attach signif-
icance (in the classical P-value sense) to an observed difference. There is
no easy answer to this problem. While it is possible to derive the AIC
using large-sample theory, Lindsey’s idea of compatible inference implies
that (3.7) can be justified from the likelihood alone. This means the AIC
has the same logical level as a pure likelihood inference: it is weaker than
probability-based inference, and it is especially useful if probability-based
inference is not available.

At a fixed level of «, the critical value XQ’ 1_qo) increases with p, but
not as fast as 2p in the AIC-based calibration. For oo = 0.05 we have:

P 1 2 3 4 5 7 8 10
2p 2 1 6 8 10 4 16 20
X2i_o 384 599 7.8l 949 11.07 1407 1551 18.31

Compared with the probability-based x? criterion, the AIC would allow
a model to grow (p > 1), but it does not permit too many parameters
(p > 6). Using the AIC is equivalent to changing the a-level depending on
the number of parameters.

3.6 Exercises

Exercise 3.1: Prove Theorem 3.1.

Exercise 3.2: Use the factorization theorem to find the (nontrivial) sufficient
statistics based on an iid sample from the following distributions:

(a) Uniform on (0, 6).

(b) Uniform on (§ — 1,6 + 1).

(c) Uniform on (01, 62) with both parameters unknown.
(d) Uniform on (-6, 0).

(e) Uniform on (6, 26).

(f) Uniform in the circle with mean (0,0) and radius 6.
(

(

g) Uniform in the square (6 — 1,0 +1) x (§ — 1,0 + 1).

)
)

Exponential with mean 6.
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(i) Gamma with density

p(z) = ﬁ/\amaflefh, x>0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(j) Weibull with distribution function
Flz)=1-—e " 2>0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(k) Beta with density

a4+ 6) a-1 B-1
p(z)= —>——=2" (1—-2)""", 0<z<1,
I(a)l'(B)
first assuming one parameter is known, then assuming both parameters are
unknown.
Exercise 3.3: We have shown that if z1, ..., 2, are an iid sample from N (6, 1)

then T is sufficient for . What is the conditional distribution of the data given
Z? (It must be free of #.) How would you simulate a dataset from the conditional
distribution?

Exercise 3.4: Suppose the model Py is the class of all continuous distributions;
this is called a ‘nonparametric family’, where the unknown parameter 6 is the
whole distribution function. Let x1,...,z, be an iid sample from Py. Show that
the order statistics are sufficient for Pp.

Exercise 3.5: Suppose 1, ..., T, are an iid sample from the double-exponential
distribution with density

po(z) = (20)"'e” 717,
It is obvious from the factorization theorem that t(z) = ) . |xi| is sufficient.

What is the conditional distribution of the data given T' = ¢?

Exercise 3.6: By definition, if T is sufficient for 6 then p(z|T = t) is free of
0. We can use this theoretical fact to remove nuisance parameters in hypothesis
testing. For example, suppose n;j, for + = 1,..., I and j = 1,...,J, form a
two-way contingency table. We are interested to test the independence between
the row and column characteristics. Show that, under independence, the set of
marginal totals is sufficient. Explain how you might test the hypothesis.

Exercise 3.7: Establish if the statistics you found in Exercise 3.2 are minimal
sufficient.

Exercise 3.8: Find the minimal sufficient statistics in the following cases:

(a) ys, for i = 1,...,n, are independent Poisson with mean u;, with

log pi = Bo + Prxi,

where z;’s are known predictors, and (o, 81) are unknown parameters.



3.6. Exercises 69

(b) yi, for i = 1,...,n, are independent Poisson with mean p;, with

wi = Bo + Brxs,

where x;’s are known predictors, and (8o, 81) are unknown parameters.
(¢) y1,...,yn are an iid sample from N (0, 0).
(d) y1,...,yn are an iid sample from N(6,6?).

(e) yi, for ¢ = 1,...,n, are independent normal with mean p; and variance o2,
with
pi = Po + Prx,
where z;’s are known predictors, and (8o, $1,0?) are unknown parameters.

(f) ys, for i = 1,...,n, are independent normal with mean p;, with

fi = Bo + fre”",

where x;’s are known predictors, and (8o, 1, B2, 02) are unknown parame-
ters.

Exercise 3.9: Suppose (z1,91), - ., (Tn,yn) are an iid sample from the bivariate
normal distribution with mean (., pty) and covariance matrix

2
s=(, 2 ),
PO=z0y Oy
Find the minimal sufficient statistics under each of the following conditions:
(a) All parameters are unknown.

(b) All parameters are unknown, but o2 = 0.

(c) Assuming o2 = 02 =1, but all the other parameters are unknown.
Exercise 3.10: Let x1,...,z, be an iid sample. Show that for the Cauchy and

double-exponential model with location 6 the entire order statistics are minimal
sufficient. The Cauchy density is

1
pe(m)—m, —oo<Tr <o
and the double-exponential density is

1 .-
po(z) = ze "0

—o00 < x < 00.
2

Exercise 3.11: Suppose z1, ..., Ty are an iid sample from the inverse Gaussian
distribution IG(u, \) with density

A 1/2 A (x—,l,b)2
p(x) = (27r:c3> exp {_Wm , x> 0.

It has mean u and variance p®/\.

(a) Derive the score equations for the MLE.
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(b) Find the Fisher information matrix.

Exercise 3.12: For the multinomial model in Example 3.9 show that p; =
n;/N. Find the Fisher information for (p1,...,px—1).

Exercise 3.13: Suppose we have multinomial data ni,...,ns, but the last
probability is known to be ps = 0.25. Find the MLE of the unknown probabilities
P1,- .-, P4, and interpret the result.

Exercise 3.14: In the ABO blood grouping, each person can be classified into
group A, B, O, or AB. Because of recessive and dominant characteristics, the
phenotypes consist of various genotypes according to A = {AA, AO}, B= {BB,
BO}, AB={AB} and O={OO0}. Suppose that in a population the frequencies of
the ABO genes are p, ¢ and r, respectively, with p+ ¢+ 1 = 1.

(a) Assuming random mixing, show that the proportions of groups A, B, O and
AB are, respectively,

%, 2pq.

(»* +2pr), (¢° +2qr), 7
(b) From a sample of 435 people we observe the following frequencies (Rao 1973,
page 372):
A =182, B=60, O =176, AB=17.
Find the MLEs of the parameters. (Use an optimization program.) Compare
the observed and estimated blood group frequencies.

(c¢) Report the standard errors of the estimates and the 95% Wald Cls.
(d) Find the profile likelihood of ¢, the proportion of gene B.

Exercise 3.15: Use the following data
2.85 1.51 0.69 0.57 2.29

to find the profile likelihood of the mean i, where it is assumed that the data are
uniform on (u — o, u + o) with unknown o. Compare with the profile likelihood
assuming N (u, 0?) model. Modify a single value of the data so that the profiles
become dramatically different.

Exercise 3.16: The following are the first 20 measurements of the speed of
light (as deviations from 299 in 1000’s km/s) from Michelson’s speed-of-light
experiment (see Example 4.8):

0.85 0.74 0.90 1.07 0.
1.00 0.98 0.93 0.65 0.

1 93 0.85 0.95 0.98 0.98 0.88
0. 76 0.81 1.00 1.00 O

.96 0.96
Denote the data by 1, ..., Z,, and assume these are an iid sample from N(6,0?)
with both parameters unknown. Let x(1), ..., ) be the order statistics.

(a) Draw the likelihood of (6, 0®) based only on z (1) and z(,,). (See Example 2.4.)

(b) Compare the profile likelihood of u based on the whole data, and the one
based only on z(;) and x(,).

(c) Repeat (a) and (b), where only the minimum, median and maximum values
are available.

(d) Repeat (a) and (b), where only the first, second and third quartiles are
available.

(e) Repeat (a) and (b), where the data are only available in grouped form:
x <0.75,0.75 < < 0.85, 0.85 < = < 0.95, 0.95 < < 1.05 and = > 1.05.
The numbers in each category are (2,4,5,8,1).
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Exercise 3.17: Plot the profile likelihood of o2 for the data in Example 3.10.
The sample variance is commonly defined as

n
1
52 = m_1 Zl(xl —5)2.

It is known that (n — 1)s?/o? is x2_,, which would generate a likelihood of o2
free of p; Fisher called this a second-stage likelihood. Using the data example,
compare this likelihood with the profile likelihood.

Exercise 3.18: Generalize the capture-recapture model in Example 2.2 to the
case of more than one unknown N. For example, suppose in the whole population
we have marked 55 deer of species A. In a sample of size 60 we identified 5 marked
deer of species A, 25 unmarked deer of species A, and 30 unmarked deer of species
B.

(a) Draw the joint likelihood of N4 and Npg, the population sizes of species A
and B. (Hint: use the hypergeometric probability involving more than two
types of objects.)

(b) Find the MLE of N4 and Np, the Fisher information matrix, and the
standard errors.

(c) Compute the profile likelihood of N4 and Np.

Exercise 3.19: Because of a possible connection with bovine tuberculosis it is
of interest to estimate the number N of badgers in a certain area. The traps set
in the area over five consecutive week periods caught 31, 15, 22, 19 and 6 badgers
each week, and each time they were removed from the area. Give a sensible
model to describe the number of catches, and present a likelihood inference on
N. (Hint: assume a Poisson model, where the catch rate is a function of the
current number of badgers. For example, yi is Poisson with mean ANy, where
Ny, is the existing number of badgers, and A is a nuisance parameter.)

Exercise 3.20: From Section 3.3, under what condition is I1; = (I**)™!? How
would you interpret this statistically?

Exercise 3.21: Let x1,...,z, be an iid sample from N(u,c?). Show that the
Fisher information matrix for the parameter 8 = (u,0?) is

~ n/c? 0
1(9):( /o n/(284)>

so the standard error of T is &/+/n. For the observed data in Example 3.10, check
the quadratic approximation for the profile likelihood of p and 2. Verify that

the curvatures at the maximum correspond to the appropriate entries of 17*(6).
Exercise 3.22: Generalize the result in Exercise 2.20 for vector parameter 6,
and find the Fisher information of ¢g(6), where 6 € RP. In particular, show that
for a fixed vector a the standard error of a’0 is

se(a'0) = {d' I (0)a}"/?.

As an important special case, if the Fisher information is diagonal, show that the
standard error of a contrast 61 — 65 is

o~ o~

se(al — 52)2 = se(61)° + se(62)*.



72 3. More properties of likelihood

Exercise 3.23: Let (z1,41),..., (@n,yn) be an iid sample from the bivariate
normal distribution with mean zero and covariance matrix

_ =21 p
E—U(p 1).

(a) Verify the Fisher information

2 I el
I(U 7p) = np n(1l+4p<) )

T oZ(1-p?) (1=p%)2

and find a standard error formula for p.

(b) For the following 1Q scores, where 2 = verbal thinking and y = mathematical
thinking, jointly and individually, draw the likelihood of o* and p. Compare
Ino with (I*?)™! and comment. (For simplicity, assume the mean is known
at the observed value, so the data can be centred before analysis.)

T y T y
109 116 85 91
88 77 100 88
96 95 113 115
96 79 117 119
109 113 107 100
116 122 104 115
114 109 101 95
96 94 81 90

(c) Investigate how well the quadratic approximation works. Experiment with
transformations of p and o2 to get a more regular likelihood.

(d) The so-called Fisher’s z transform of the sample correlation

1 ~
z:flogiﬂ
2 1-p

is approximately normal with mean

1 1+p
= —log —F
v=3 81—,

and variance 1/(n — 3). Compare the likelihood of p based on Fisher’s z
transform with the profile likelihood.
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Basic models and simple
applications

We use models to represent reality in simpler ways, so we can understand,
describe, predict or control it better. In statistics, the reality is variability,
without which there would be no statistics (and life would be rather dull).
In modelling we typically separate a systematic pattern from the stochastic
variation. The systematic pattern may describe a relationship between
variables of interest, while the stochastic variation usually represents the
unaccounted part of the total variation. Probability models are used to
represent this stochastic variation.

From a statistical point of view, any probability model has the poten-
tial for data analysis, although we tend to concentrate on models that are
convenient from analytical and computational aspects, and have parame-
ters that are easy to interpret. The models covered in this chapter are the
basic building blocks for real data analytic models. Only the simplest sys-
tematic structure is presented, mostly in terms of one-sample or one-group
structure. The exceptions are the comparison of two binomial proportions
and two Poisson means.

4.1 Binomial or Bernoulli models

The Bernoulli model is useful for experiments with dichotomous outcomes.
Each experimental unit is thought of as a trial; in their simplest form
Bernoulli trials are assumed to be independent, each with probability 6 for
a successful outcome. Some simple examples are a coin tossing experiment,
the sex of children in a family, the success or failure of business enterprises,
the success or failure of a medical procedure, etc. In studies of twins it is
common to collect data where at least one of the twins has a particular
condition; in these studies a pair of twins is the ‘trial’ and the ‘success’
occurs if both twins have the condition. Such a study usually tries to
establish if there is a genetic factor in the condition under examination.

Suppose we observe z = (x1,...,x,), which are a realization of a
Bernoulli experiment with P(X; = 1) = 6 and P(X; =0) =1 —6. The
likelihood function is

L) = ﬁem(l—e)l—“
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Example 4.1: For example, we observe a sequence 0111110111; then n = 10,
> xz; = 8, and the likelihood function for 0 is given in Figure 4.1. It is easy to
show that the MLE is 6§ = le/n = 0.8. The likelihood interval at 15% cutoff
(computed numerically) is (0.50,0.96); since the likelihood is reasonably regular
this is an approximate 95% CI for 6. (From here on, we will report only one
interval or the other depending on the regularity of the likelihood, and we will
err on the side of regularity.) O

Likelihood from Bernoulli trial

1.0
1

Likelihood

0.0 02 04 06 08

| 95% confidence

o
=}

0.2 0.4 0.6 0.8 1.0

Figure 4.1: Likelihood function of 6 from a Bernoulli experiment with out-
come 0111110111, son = 10 and Y x; = 8. This is the same likelihood
from a binomial experiment with n = 10 trials and © = 8 successes. The
approzimate 95% CI is (0.50,0.96).

We have described the likelihood construction for a simple binomial
observation in Section 2.1. For completeness, suppose X ~ binomial(n, 6)
and we observe X = x; then

L(0) = ( Z )9%(1 — o).

If we observe x = 8 successes in n = 10 trials, the likelihood function and
other quantities are exactly as obtained above. This is sensible since know-
ing the order of the 0—1 outcomes in an independent Bernoulli experiment
should not add any information about €; this would not be the case if, for
example, the sequence is dependent and the dependence is also a function
of 6.

Discrete data are usually presented in grouped form. For example,
suppose 1, ...,zy are an iid sample from binomial(n, ) with n known.
We first summarize the data as
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ko 1 - n
nk‘no ny Np

where nj, is the number of z;’s equal to k, so ), ny = N. We can now
think of the data (ng,...,n,) as having a multinomial distribution with
probabilities (po,...,p,) given by the binomial probabilities

n n—
The log-likelihood is given by

log L(9) = Z ng 1og pi.-
k=0

We can show that the MLE of 0 is

é\ _ Zk knk
Nn
with standard error
~ (1 —6)
0) =4 ——.
se(0) N

Example 4.2: In a classic study of human sex ratio in 1889, based on hospital
records in Saxony, Geissler reported the distribution of the number of boys per
family. Among 6115 families with 12 children he observed:

No. boys k |0 1 2 3 4 5 6
No. families ng \ 3 24 104 286 670 1033 1343
No. boys k | 7 8 9 10 11 12

No. families ng, | 1112 829 478 181 45 7

The estimated proportion of boys is

7 dopknk 38,100

6115 x12 615 x12 0192

~

with standard error se(d) = 0.0018. (For comparison, in Ireland in 1994 the
proportion of boys among 48,255 births was 0.5172.) O

Negative binomial model

In the so-called negative or inverse binomial experiment we continue a
Bernoulli trial with parameter 6 until we obtain x successes, where x is
fixed in advance. Let m be the number of trials needed; the likelihood
function is

L6) = P(N=n)
_ <Zj )996(1_9)“.

Again here we find the same likelihood function as the one from the bino-
mial experiment, even though the sampling property is quite different. This
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is an example where the likelihood function ignores the sampling scheme.
Further uses of the negative binomial model are given in Section 4.5, which
connects it with the Poisson model.

4.2 Binomial model with under- or overdisper-
sion
For modelling purposes the binomial model has a weakness in that it spec-

ifies a rigid relationship between the mean and the variance.

Example 4.3: In Example 4.2, using the estimate 0 = 0.5192 we can compute
the expected frequencies
€ = Npk:

given in the table below. We then obtain the goodness-of-fit statistic
=3 (e —ex)” _ 1105
X - e -9,

which is highly significant at 11 degrees of freedom. To see the nature of the
model violation, define a residual

Tk ek
L= e
such that x* = >, r7.
No. boys k ‘ 0 1 2 3 4 5 6
Observed ny, 3 24 104 286 670 1033 1343
Expected ey 1 12 72 258 628 1085 1367

21 34 38 17 17 -16 —0.7

No.boysk | 7 8 9 10 11 12
Observed ng | 1112 829 478 181 45 7
Expected e, | 1266 854 410 133 26 2
Residual 7 —-43 -09 34 42 37 3.0

Residual 7

Hence the observed frequencies tend to be larger at the edges, and lower in the
middle of the distribution, indicating greater variability than expected under the
binomial model. O

We now describe theoretically how the standard binomial model might
fail. Suppose X3, ..., X,, are independent Bernoulli trials with probabilities
P1y---,Pn- Let X =3 X;; then

E(X) = Zpi =nd
where 0 = > p;/n, but

var(X) = Z var(X;)



4.2. Binomial model with under- or overdispersion 77
Zpi - ZP?
S opi— Qo)== O m)?/n}

= nf—nb?— ncrf]

= nb(1-0)—nop,

where we have defined the variance among the p;’s as
{Z 2 _ Z pv }

So, allowing individual Bernoulli probabilities to vary produces less-than-
standard binomial variance.

Now, suppose X;’s, for i = 1,...,m, are independent binomial(n, p;),
and let X = X7 be a random choice from one of these X;’s, i.e. the random
index I = 4 has probability 1/m. This process produces a mixture of
binomials with marginal probability

P(X=2) = E{P(X;=z|I)}

Il
| —
/N
S
N——
=
Ty
—~
—
[
3
3
L8

which does not simplify further, but
E(X) = FE{EX/ID}
1
= — EZ:E(X)
= % zi:pi =nb
where we set § = Y p;/m. The variance is
var(X) = FE{var(X;|I)} + var{E(X;|])}
1 1
- % Zvar(Xi) +— ZEZ(XZ-) - QZ: E(X
= Xmnl-p) ;Zmpi)? - (n0)?
= nb(1—0)+n(n—1)o; Z

where ag is the variance among the p;’s as defined previously. So, here we
have greater-than-standard binomial variation.
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The equal sampling probability simplifies the previous evaluation of
mean and variance, but the extra-binomial variance is always observed
when we sample from a mixed population. For example, if families in the
population have different probabilities p;’s for an outcome of interest x;,
then a random sample of families will exhibit values with extra-binomial
variance.

A wrong binomial assumption can adversely impact inference by pro-
ducing wrong standard errors (i.e. the assumed likelihood is too narrow
or too wide). Section 4.9 describes a general model that allows under- or
overdispersion within the general exponential family models. In random
effects modelling (Section 17.1) the individual estimates of p;’s may be of
interest, in which case we typically put more structure on how they vary.
Lindsey and Altham (1998) analyse Geissler’s (complete) data taking the
overdispersion into account; see also Exercise 4.4.

4.3 Comparing two proportions

Comparing two binomial proportions is probably the most important sta-
tistical problem in epidemiology and biostatistics.

Example 4.4: A geneticist believes she has located a gene that controls the
spread or metastasis of breast cancer. She analyzed the expression pattern of the
gene in the cells of 15 patients whose cancer had spread (metastasized) and 10
patients whose cancer did not spread. The first group had 5 patients with the gene
overexpressed, while one patient in the second group had the gene overexpressed.
Such data are usually presented in a 2x2 table:

Overexpression  Spread Localized Total

Present 533%)  1(10%) 6
Absent 10 9 19
Total 15 10 25

Is the evidence strong enough to justify her belief? O

It is instructive to start with the (large-sample) frequentist solution.
First put names on the elements of the 2 x 2 table

Spread Localized Total

Present T Y t=z+y
Absent m —x n—y N —t
Total m n N=m+n

The standard test of equality of proportions is the famous x2 test given by

2 N{z(n—y) —y(m —=)}?
mnt(N —t) ’

X

which, under the null hypothesis, has x? distribution.
For the observed data

2:25(5><9—1><10)2

Bx10x6x10 T
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producing a P-value of 0.18; this is a two-sided P-value for the hypothesis
of equal proportion. This method has an appealing simplicity, but note
that in small samples its validity is doubtful, and it does not give full
information about the parameter of interest (e.g. it is not clear how to get
a confidence interval).

In small-sample situations we commonly use the so-called Fisher’s exact
test. Under the null hypothesis and conditional on the observed margins,
the probability of an observed table is a hypergeometric probability

() ()
T Y
T) = —F—~F———.
p(x) ——
z+y
Fisher’s exact P-value is then computed as the probability of the observed
or more-extreme tables. For the above example, there is only one more-

extreme table, namely when we get 0 ‘present’ out of 10 localized cases.
The one-sided P-value is

15 10 15 10
> ! + 0 0 =0.1740.03 =0.20
25 25 e R
6 6
To proceed with a likelihood analysis, suppose the number of successes

X in the first group is binomial B(m,,), and, independently, Y in the
second group is B(n,m,). On observing z and y the joint likelihood of

(g, my) 18

P-value =

L(my,my) =75 (1 — Ww)m_wwg(l —my)" Y.

The comparison of two proportions can be expressed in various ways, for
example using the difference 7, — m,, the relative risk m,/m, or the log
odds-ratio 6 defined by

gzlogw

/(1 —1,)
In terms of 6 the null hypothesis of interest Hy: m, = m, is equivalent to
Hy: 6 = 0. Each parameterization has its own advantage/disadvantage in
terms of interpretation and statistical properties.

The reader can check that, in small samples, the likelihood of the log
odds-ratio is more regular than the likelihood of the other parameters.
So, we will consider the log odds-ratio parameter 6 as the parameter of
interest. Any other parameter can be used as a nuisance parameter, but
for convenience we will use the log odds 7 defined by

m
=1 Y.
n Ogl—ﬂ'
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Some simple algebra would show that

e’
T T I en
eftn
Ty = 714—6‘94"7.

Therefore, we get the joint likelihood

(77) a-mm (125 ) a-myr

(mﬂlﬂHY( m f”amwawf

Ty /(1 = my) I —my
— eewen(w+y)(1 + 69+n)—m(1 +emm,

L(0,n)

The MLE of 8 is available directly from the invariance property:

5= log M=)

y/(n—y)

The standard error has an interesting formula

. 1 1 1 1\
se(9)<++ + > .

T Yy m—z n-—y

Its derivation is left as an exercise.

To get the profile likelihood of 6 we can compute the MLE of  at each
fixed value of €, but there is no closed form formula for the MLE. The profile
likelihood has to be computed numerically according to the definition:

L(#) = max L(6,n).

Example 4.4: continued. Figure 4.2(a) shows the contours of the joint
likelihood at 10%, 30%, 50%, 70% and 90% cutoffs. The profile likelihood in
Figure 4.2(b) shows little evidence of the gene associated with the spread of
cancer. The likelihood-based 95% CI for 0 is (—0.54,4.52), with the corresponding
95% CI (0.58,92.22) for the odds ratio. The MLE of 6 is

0 =1log 2L~ =150

~

with se(d) = 1.19.

Now consider the analysis of the more extreme table: z = 6 out of m = 15,
versus y = 0 out of n = 10. The MLE of 6 is § = oo, and the likelihood is
irregular. Figure 4.2(c) shows the joint likelihood, and Figure 4.2(d) the profile
likelihood. The 15% likelihood interval for 6 is now a naturally one-sided interval
6 > 0.93. The likelihood of Ho: 6 = 0 is around 2.5%, indicating stronger evidence
of association. O
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Figure 4.2: (a) Joint likelihood of @ and n for the original data. (b) Profile
likelihood of 0. (c) For extreme data: 6 out of 15 versus 0 out of 10. (d)
Profile likelihood from (c).

A series of 2x2 tables

In practice, we often stratify the study groups according to some risk fac-
tor if the risk factor is not balanced. For example, the evidence of cancer
depends on age, and the two groups being compared have different age
distributions. In epidemiology, age is called a confounding variable. Strat-
ifying by age reduces the comparison bias due to confounding. Thus we
divide the study subjects into young and old strata, and for each stratum
we construct a 2x2 table.

Assuming the tables have a common odds-ratio parameter 6, we can
compute the profile likelihood L;(6) from each table, and combine them
using

log L(0) = Z log L;(0).
This method works for a small number of strata, otherwise there can be a

serious bias problem; the proper method for combining information from
many sparse tables is given in Section 10.5.
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4.4 Poisson model

A discrete random variable X has a Poisson distribution with parameter
if

_p0”
PX=z)=e ok
This model is extremely versatile for modelling any data involving counts:
the number of accidents on a highway each year, the number of deaths due
to a certain illness per week, the number of insurance claims in a region
each year, the number of typographical errors per page in a book, etc.
The famous example of the number of soldiers killed by horse kicks in the
Prussian army is given in Exercise 4.12.

For modelling purposes, it is fruitful to remember that the Poisson
model with mean 6 is an approximation of the binomial model with large
n and a small success probability = = 6/n:

P(X=2) — (Z)Wz(lw)”“”

(1) (1)

n® z! n

01}
- —e "
x!
On observing an iid sample z1,...,z, from Poisson(f), the likelihood

of 6 is given by

L(0) = e 092",

The maximum likelihood estimate is § = T with standard error se(é\) =
/Z/n. We can check that the likelihood is quite regular if > a; is large

enough; this is true even for n = 1.

Example 4.5: For each year in the past 5 years, a town recorded 3, 2, 5, 0 and
4 earthquakes (of at least a certain magnitude). Assuming a Poisson model, the
likelihood function Aof the earthquake frequency 6 is given in Figure 4.3. There
was an average of = 2.8 (se = 0.75) earthquakes per year, with approximate
95% CI 1.6 <6 <4.5.0

Example 4.6: The Poisson assumption can be checked if we have grouped data.
Jenkins and Johnson (1975) reported 64 incidents of international terrorism in the
USA between January 1968 and April 1974. The data are categorized according
to the monthly number of incidents as follows:
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Figure 4.3: Likelihood function of earthquake frequency.

Number of Number of
incidents k months ng

0 38
1 26
2 8
3 2
4 1
12 1

The idea of a Poisson plot (Hoaglin and Tukey 1985) is to plot k against a
function of ny such that it is expected to be a straight line for Poisson data.
Since pr. = P(X = k) = e=?0* /k!, then

log pr, + log k! = —6 + klog0,

indicating that we should plot log(pkk!) versus k, where py is estimated by
nk/ Y ne. Figure 4.4 shows that the months with k& = 0,...,3 incidents fol-
low the Poisson prescription, but the month with 4 incidents is rather unusual
and the one with 12 incidents is extremely unusual. (It turns out that 11 of those
12 incidents were carried out by an anti-Castro group. This raises inductive
questions as discussed in Section 1.3: how should we define an event? Should we
instead count the groups involved?)

In general, for a Poisson model with mean € the likelihood based on observing

ng, for k =0,1,...,is
L) = [ [ »i*.
k
where pr = P(X = k) = e 0" /k!, and the log-likelihood is

log L(0) = =0 ) " mx + Y _ kny log0.
k k

‘We can show that the MLE 6 = Zk kng/ Zk ng. Figure 4.4 shows the likelihood
functions including and excluding the month with & = 12. It is clear that the
likelihood is sensitive to the outlier. The mean number of incidents is 0.84 and
0.69, with approximate 95% CIs given by 0.65 < # < 1.06 and 0.53 < # < 0.90. O
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(a) Poisson plot (b) Likelihood functions
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Figure 4.4: (a) The Poisson plot of the incidents of international terrorism
in the USA. The months with 4 and 12 incidents are unusual. (b) Likelihood
function of the mean number of incidents including (solid) and excluding
(dotted) the month with k = 12 incidents.

4.5 Poisson with overdispersion

Like the binomial model, the Poisson model imposes a strict relationship
between the mean and variance that may not be appropriate for the data.

Example 4.7: The first two columns of the following table summarizes the
number of accidents among factory workers (Greenwood and Yule 1920). For
example, 447 workers did not have any accident.

Number of Number of Fitted number
accidents k&  workers nr ~ Poisson  Negative binomial
0 447 406.3 446.2
1 132 189.0 134.1
2 42 44.0 44.0
3 21 6.8 14.9
4 3 0.8 5.1
>4 2 0.1 2.7

Assuming a Poisson model, the average accident rate is
Z knk/ Z N = 0.47.
k k

To simplify the computation, assume that the last category is represented by five
accidents. Comparing the observed and fitted frequencies, the Poisson model is
clearly inadequate. The x? statistic is 107.3 with four degrees of freedom. The
observed data show an overdispersion: there are more accident-free and accident-
prone workers than predicted by the Poisson model. O

Since the Poisson model is a limit of the binomial, models for under-
or overdispersion described in Section 4.2 also apply. General modelling
of Poisson-type data with extra variation is described under the general
exponential family models in Section 4.9.
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Overdispersion can occur if, conditionally on i, an outcome X, is Pois-
son with mean p, and p is random with mean Ey and variance o2. For
example, individuals vary in their propensity to have accidents, so even if
the number of accidents per individual is Poisson, the marginal distribution
will show some overdispersion. In this setup, the marginal distribution of

X, has

EBE(X,) = E{EX.uW}=Eun

var(X,) = Bfvar(X,|u)} + var{E(X,|u)}
= Eup+var(p)
= Eu+o?

showing an extra variability compared with the standard Poisson model.

If 1 has a gamma distribution we will get a closed form formula for the
marginal probabilities. Specifically, let X, be Poisson with mean u, where
1 has density

— a71>\a 7/\;1,'
f(w) ()" e
A random sample of X from the mixture of X, for all ;4 has mean
E(X)=Eu="2<
A
and variance
var(X) = FEp+ var(p)
_ o, o
PNt

For likelihood modelling we need to compute the marginal probability,
forz=0,1,...,

P(X=2) = B{P(X,=u|n)

= F <e“’ur>
x!

)\a
— —p,,x,,a—=1 = d
I'(a)x! /e pone e a
AT (z + «)
(A4 D)ztol(a)z!

()R 2w

using as a definition (z + @ — 1)! = T'(x + «). For integer o we have a
negative binomial distribution: the outcome x is the number of failures
recorded when we get exactly « successes, and the probability of success is
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Note, however, that as a parameter of the gamma distribution « does not
have to be an integer. Given the probability formula, and on observing
data z1,...,z,, we can construct the likelihood of (a, A) or (a, 7).

Example 4.7: continued. To fit the negative binomial model to the data,
the log-likelihood of («,7) is

4
log L(a, ) = Z nglog P(X = k) + npsq log{l — P(X > 4)}
k=0

where P(X = k) is given by (4.1). Numerical optimization of the log-likelihood
yields
a=0.84, 7T =0.64

The fitted frequencies shown in the previous table are now much closer to the
observed data; the x? statistic is 3.7, with 3 degrees of freedom, indicating a very
good fit. The estimated accident rate is 0.84(1 — 0.64)/0.64 = 0.47; this is the
same as in Poisson model, but has different profile likelihood and standard error
(Exercise 4.18). O

4.6 Traffic deaths example

In our prototypical problem suppose the number of traffic deaths increases
from x = 170 last year to y = 190 this year. Is this a significant increase?
Let us assume that the number of deaths X and Y are independent Poisson
with parameters A, and A,. Then the likelihood function is

L(Ap, Ay) = e~ Qe oy,

Here we are only interested in comparing the two rates, not in the absolute
level.

We define the parameter of interest § = A, /., and consider A, as the
nuisance parameter. (Alternatively one might consider A, as nuisance.) We
have reparameterized (Az, Ay) as (A, 0A;), so using the invariance principle

we obtain
L(0,\,) = e =(F0) \t+ygy

For each fixed 6 the MLE for A, is Xw(H) = (z+1y)/(1+6), so the profile
likelihood of 0 is

L(a) _ ef//\\w(O)(l+9)Xx(0)w+y9y

= constant x Lyim
- constan 1+6 1+6) °

The MLE of 0 is 6 = y/x = 1.12. Figure 4.5 shows the profile likelihood
and the approximate 95% CI of € is (0.91,1.37). So, there is not enough
evidence to claim that there is an increase.

Suppose the death count is now redefined as the number of drivers
involved in the accidents (several deaths may be associated with one driver),
and this is split according to the age of drivers. Table 4.1 summarizes the
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Age group Last year Current year ) Approx. 95% CI

Under 20 20 35 1.75 (1.05,3.05)
20-30 40 54 1.35 (0.93,2.03)
40-50 () 65 0.87 (0.65,1.20)
Over 50 10 2 0.20 (0.05,0.73)

Table 4.1: Traffic deaths data according to the number of drivers involved,

categorized by the drivers’ age, and the summaries from the likelihood func-
tions.

data. The profile likelihood functions for the four age groups are shown in
Figure 4.5. We see here the need to summarize the plot: it is too busy and
contains too much information. In the table, each likelihood is represented
by the MLE and the 95% CI. The data show that the accident rate ratio
f is a function of age and it appears that the accident rate has increased
among the ‘under 20’ group, but has not increased for other age groups
and in fact has dropped significantly for the ‘over 50’ group.

(a) Likelihood of rate ratio (b) For four groups
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Figure 4.5: (a) Profile likelihood of rate ratio 0. (b) Profile likelihood of 0
for the four age groups shown in Table 4.1.

4.7 Aspirin data example

The analysis of the aspirin data example (Section 1.1) is similar to that
of the traffic death example. Suppose that the number of heart attacks
in the active group X, is binomial(n,,6,) and that in the placebo group
X, is binomial(n,,8,). We observed z, = 139 from a total n, = 11,037
subjects, and x, = 239 from a total of n, = 11,034. The parameter of
interest is @ = 6,/60,. Since n, and n, are large, while the event rates
are small, X, and X, are approximately Poisson with parameter n,0, and
nplp. The analysis can be further simplified by using n, ~ n,, though the
simplification is minor. The likelihood of 8, and § = 6,/6, is
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L(0,6,) = e Mefetm)(n,0,)" (n,0,)"
= constant x e~ r(nefFnp)gre gratey

and one proceeds in the usual way to produce the profile likelihood of 6
(Exercise 4.21)

naa Tq na9 Tp
L) = mb+m) \' T wbrm)
(6) = constant x (na9 I nb) ( nq0 + nb)

Exactly the same theory also applies for the number of strokes. The profile
likelihoods of 6 for heart attacks and stroke are shown in Figure 4.6. The
approximate 95% Cls for 6 are (0.47,0.71) and (0.93,1.59), respectively.
There is a significant benefit of aspirin in reducing heart attacks, but the
evidence for increased rate of stroke is not significant.

(a) Heart attacks (b) Strokes
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Figure 4.6: (a) Profile likelihood of 6 for the number of heart attacks. The
approzimate 95% CI is (0.47,0.71). (b) Profile likelihood of 8 for the num-
ber of strokes. The approzimate 95% CI is (0.93,1.59).

Delta method

As a comparison we will analyse the aspirin data in a more ad hoc way,
without using any likelihood. We will use the Delta method, one of the
most useful classical tools to derive distributions of statistical estimates.

Assuming that X, and X,, are Poisson with rate n,0, and n,0,, we can
show (Exercise 4.22) that the conditional distribution of X, given X, + X,
is binomial with parameters X, + X, and m = n,0,/(ne0q + npbp). Since
ne = 11,307 = n, = 11,304, we approximately have 7 = 6/(6 + 1) or
6 =7/(1 —m). On observing z, = 139 and z, + x, = 378, we get

~ 139

-~ s

0 = = 0.58.
—= 0.58

We then use the following theorem to get a confidence interval for 6.
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Theorem 4.1 (Delta method) Let 1? be an estimate of 1 based on a sample
of size n such that

V(¥ — ) = N(0,0?).
Then, for any function h(-) that is differentiable around ¥ and h'(v) # 0,

we have

-~

V(h(v) = h(1)) = N(0, 0|1 (¢)]*).

In view of the central limit theorem, the Delta method applies to func-
tions of the sample mean. Informally we say that h(v)) is approximately
normal with mean k(1) and variance |h/(1))|2var(i)).

To apply the method here, recall that 7 is approximately N (m, 02/378),
where

o? =7(1—m).

So, from h(m) =7/(1 — ), we have

. 1
Wr) = Gz
~ 1 7(1—-mn)
varlf) = G 3
T 3I8(1—n)?
139/378

=0.3849 x 1072

378(1 — 139/378)3

So, the approximate 95% CI for 6, given by 6+ 1.96\/var(§), is
0.46 < 0 < 0.70,

shifted slightly to the left of the likelihood-based interval. (Of course in
practice the difference is not important; what matters for discussion here
is how we arrive at the intervals.)

We may interpret the Delta method this way: we obtain a single obser-
vation 6 = 0.58 from N(6,0.3849 x 10~2). This produces an approximate
likelihood of 6, differing slightly from the likelihood we derived before; see
Figure 4.7. Hence the Delta method can be seen to produce a quadratic
approximation of the likelihood function.

4.8 Continuous data

Normal models

We have discussed the normal model N (p,0?) in Section 2.5 as the ideal or
exactly regular case for likelihood inference. It is one of the most commonly
used models for analysing continuous outcomes. Many results in classical
statistics are derived for normal data. Let z1,...,x, be an iid sample
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(a) Heart attacks (b) Strokes
«© | @ |
o o
© kel
s o
(] (]
£ £
o< R
= o 5o
o | o |l | T
o T T T T T o T T T T T T
0.2 0.4 0.6 0.8 1.0 08 10 12 14 16 18 2.0
0 0

Figure 4.7: (a) Profile likelihood of 0 for the number of heart attacks in the
aspirin data example and its normal approximation (dotted line). (b) The
same as (a) for strokes.

from N (u,o?) with both parameters unknown. Ignoring irrelevant constant
terms, we can write

n 1
log L(p,0°%) = _510g02_ﬁ2($i_ﬂ)2a

so maximizing the likelihood function for u is equivalent to finding the
least-squares estimate. The MLEs are given by

i =

T
1

~2 _ 1 =2

o’ = n% (x; — )~

Note the 1/n divisor for the variance estimate, which is different from the
usual 1/(n — 1) divisor for the sample variance s2.

Example 4.8: The following are 100 measurements of the speed of light (in
km/s, minus 299,000) made by A. Michelson between 5 June and 2 July 1879
(Stigler 1977). The data were based on five series of experiments, each with 20
runs. The first two lines of data (read by row) are from the first experiment, etc.

850 740 900 1070 930 850 950 980 980 880
1000 980 930 650 760 810 1000 1000 960 960
960 940 960 940 880 800 850 880 900 840
830 790 810 880 880 830 800 790 760 800
880 880 880 860 720 720 620 860 970 950
880 910 850 870 840 840 850 840 840 840
890 810 810 820 800 770 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870
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The MLEs of the normal parameters are i = 852.4 and 52 = 6180.24. The sample
variance is 5% = 6242.67; it is common practice to use s/y/n as the standard error

for i. The 95% CI for p is
[+ 1.96s/v/n,

yielding 803.4 < p < 901.4; this does not cover the ‘true’ value pu = 734.5 (based
on the currently known speed of light in vacuum, 299,792.5 km/s, corrected for
the air condition at the time of the experiment). There are several problems: the
means of the five experiments are 909, 856, 845, 820.5, 831.5, so there seems to
be a problem with the first experiment (Exercise 4.24). The average from the last
four experiments is 838.3 (se = 7.2). Also, there is a correlation of 0.54 between
consecutive measurements, so the data are not independent, and the standard
error is wrong (too small). O

A normal assumption can be checked using a QQ-plot, which is a general
method to see the shape and texture of a distribution. If X has a continuous
distribution F'(x), then

P{F(X)<u}=P{X < F *u)}=FF *(u) =u

This means F(X) is a standard uniform variate. Conversely, if U is stan-
dard uniform, then F'~!(U) is a random variable with distribution function
F(z). If Xy,...,X, are an iid sample from F(x), then F(X;),..., F(X,)
are an iid sample from U(0, 1).

Suppose z1, ..., T, have a hypothesized distribution F'. Intuitively the

ordered values x(1),...,2(,) should behave like order statistics si,..., s,
simulated from F. We can plot s; against z(;): if the data come from F', we
can expect to see a straight line. To remove the randomness of s1,..., s,
we might use the median of the order statistics. Denoting by U(;) the i’th
order statistic from Uy, ..., U,, we have

median(s;) = median{F~"(Uy))}

= F~'(median{U;})

el i—1/3
n+1/3)"
The approximate median of U(;) is accurate even for very small n (Hoaglin

1985); for example, for n = 5 the median of U(1) is 0.129, and the approx-
imation is (1 —1/3)/(5+ 1/3) = 0.125. The QQ-plot is a plot of

i —1/3
F1 <;+1//3) VETsus T (;).

As a visual aid, we can draw a line going through the first and third quar-
tiles of the distribution.

If X = 06Xy + p for some standard variate Xy and some unknown
location g and scale o, we do not need to estimate p and 0. We can use
the distribution of X, as the basis of the QQ-plot. Here we have

Q

,—1/3
median(s;) ~ o F ! (M) +p
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where F{ is the distribution of X,. For example, to check normality we
use the standard normal distribution function ®(z) in place of Fy(x). The

(a) Full data (b) Excluding first experiment
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Figure 4.8: (a) The normal QQ-plot indicates that Michelson’s data are not
normal. (b) Ezxcluding data from the first experiment, the rest of the data
appears normal. (c¢) Simulated exponential data, showing skewed distribu-
tion. (d) Simulated uniform data, showing short-tailed distribution.

QQ-plot of Michelson’s data in Figure 4.8(a) indicates some nonnormality:
notice the deviation from the guideline, especially of the upper half. This
occurs because the first experiment is different from the rest. As shown
in Figure 4.8(b), excluding data from the first experiment, the remaining
data look normal, except for rounding and possibly a single outlier.

The normal QQ-plot is a useful exploratory tool even for nonnormal
data. The plot shows skewness, heavy-tailed or short-tailed behaviour, digit
preference, or outliers and other unusual values. Figure 4.8(c) shows the
QQ-plot of simulated exponential data (skewed to the right) and uniform
data (short tail).

The case n =1

In the extreme case n = 1 the likelihood function becomes unbounded at
[ =, 50 [ =1, 02 = 0, and the estimated distribution is degenerate
at z1. The maximized likelihood is L(Ji,52) = co. This has been cited
as a weakness of the likelihood method: the likelihood suggests there is
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very strong evidence that 62 = 0, which is ‘surprising’ as we feel a single
observation cannot tell us anything about variability.

The infinite likelihood can be avoided by using a finite precision model
and the original definition of likelihood as probability (although we will end
up with the same result that the best model is ‘degenerate’ at x1, where ‘x;’
represents an interval (z — e, x + €)). This example is a valid caveat about
over-interpretation of the (observed maximized) likelihood: even an enor-
mous likelihood ratio does not establish the objective truth (of a parameter
value). Unlike the likelihood, our sense of surprise is affected not just by
the data, but also by our prior expectation (e.g. the data are continuous).
The likelihood evidence will not feel as surprising if we know beforehand
that a discrete point model = 1 and o2 = 0 is a real possibility.

Two-sample case

Suppose 1, ..., T, are an iid sample from N(u,02), and y1,...,y, from
N(p+6,07). If we are only interested in the mean difference 4, there are
three nuisance parameters. Computation of the profile likelihood of § is
left as an exercise.

In practice it is common to assume that the two variances are equal.
Under this assumption, the classical analysis is very convenient; the t-
statistic

y—T—6
t=-"2 :
1 1

o\ m T

where 512) is the pooled variance

2 (m—1)s2 4 (n—1)s2

P m+n—2

9

has a t-distribution with m +n — 2 degrees of freedom. We can use this for
testing hypotheses or setting Cls on 4.

For Michelson’s data, suppose we want to compare the first experiment
with the remaining data. We obtain

m =20, T=909, s2=11009.47
n =280, 7=8382, s,=4161.5

and t = —3.58 to test § = 0, so there is strong evidence that the first
experiment differs from the subsequent ones.

Nonnormal models

As an example of a nonnormal continuous model, the gamma model is
useful for positive outcome data such as measures of concentration, weight,
lifetime, etc. The density of the gamma(a, A) model is

1 AY O~ 1 6—)@

(o) , x>0.

fz) =
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The parameter « is called the shape parameter and A~! is the scale pa-
rameter. One important property of the gamma model is that the mean
E(X) = a/X is quadratically related to the variance var(X) = a/\? =
E?(X)/a. Tt is sometimes useful to reparameterize using pu = a/\ and
¢ = 1/a, so that we have gamma(u, ¢) with mean E(X) = u, variance ¢u>
and coefficient of variation v/¢. The density can be written as

@) = 175 (;;)w exp (—(;;) s

If the shape parameter o = 1 we obtain the exponential model with density

fla) = ptem /.

Example 4.9: The following data are the duration of service (in minutes) for
15 bank customers. Of interest is the average length of service pu.

23.91 27.33 0.15 3.65 5.
0.17 14.17 6.18 0.05

w ©
© o
© w
o ®

9
3.
Assuming the gamma model, Figure 4.9 shows the joint likelihood of p and ¢;
the contour lines are drawn at 90%, 70%, 50%, 30% and 10% cutoffs. The
profile likelihood for p can be computed numerically from the joint likelihood.
Also shown are the gamma likelihood assuming ¢ is known at ¢ = 2.35 and the

exponential likelihood by assuming ¢ = 1. From Figure 4.9(a) it is clear that the
exponential model (¢ = 1) is not well supported by the data. O

(a) Likelihood contour (b) Likelihood of n
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Figure 4.9: (a) Joint likelihood of 11 and ¢ using the gamma model. (b)
The profile likelihood of p from the gamma model (solid line), the estimated
likelihood using the gamma model assuming ¢ = (E = 2.35 (dotted line) and
the likelihood using an exponential model (dashed line), which is equivalent
to the gamma model with ¢ = 1.
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4.9 Exponential family

The exponential family is a very wide class of models that includes most
of the commonly used models in practice. It is an unfortunate family
name, since it is mixed up with the standard exponential model, which
is a member of the exponential family. However, we will stick with the
terminology as no one has come up with a better name, and usually what
we mean is clear from the context. A general p-parameter exponential
family has 6 = (61, ...,0,) and its log-density is of the form

p

logpa(z) = > m(0)T;(x) — A(0) + (=) (4.2)

i=1

for known functions A(f) and c(x), and n;(6) and T;(z) for each i. Fur-
thermore the support of the distribution must not involve the unknown
parameter §. The parameters 7;’s are called the natural parameters of the
family, and 7T;’s the natural statistics. To avoid trivialities we assume that
there is no linear dependence between 7;’s nor that between 7;’s. Under this
assumption, the T;’s can be shown to be minimal sufficient (Exercise 4.28).

The family is called ‘full rank’ or simply ‘full’ if the natural parameter
space contains an open set; for example, a 2D square in 2D space contains
an open set, but a curve in 2D-space does not. Typically the family is full
if the number of unknown parameters is the same as the number of natural
sufficient statistics.

If there is a nonlinear relationship among the natural parameters, the
number of natural sufficient statistics is greater than the number of free
parameters, and the family is called a curved exponential family. The
distinction is important, since many theoretical results are true only for
full exponential families. Compared with those of a full family, problems
involving the curved exponential family are somewhat ‘more nonlinear’.

The exponential family includes both discrete and continuous random
variables. The normal, binomial, Poisson or gamma models are in the
exponential family, but the Cauchy and t-distributions are not.

Example 4.10: For the normal model with 6 = (u, 0?), with both parameters
unknown,

T 1
log po(z) = % “ %% 9,273 log(2mc?)

is a two-parameter full exponential family model with natural parameters 17; =
u/o? and ne = —1/(20?), and natural statistics T1(x) = = and Te(z) = 2.

If & has a known coefficient of variation ¢, such that it is N(u, c*u?), with
unknown g > 0, then z is a curved exponential family. Even though there is only
one unknown parameter, the natural statistics are still T} (z) =  and Tz (z) = 22,

and they are minimal sufficient. O
Example 4.11: For the Poisson model with mean p we have
log p,.(x) = wlog p — 1 — log a';

therefore it is a one-parameter exponential family.
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If z is a truncated Poisson distribution in the sense that x = 0 is not observed,
we have, for z = 1,2, ...,

e Hu®/x!
PX=2)= ———
(X =)= LT
S0
log P(X =z) =zlogp — pu—log(l —e™*) — logx!.
This also defines a one-parameter exponential family with the same canonical
parameter and statistic, but a slightly different A(u) function. O

The joint distribution of an iid sample from an exponential family is
also in the exponential family. For example, let x1,...,x, be an iid sample
from N(u,0?). The joint density is

. 2 2
D VLD VL S )
o2 202 202 2

logpg(xl, .. 'axn)

This has the same natural parameters 11 = p/0? and 7o = —1/(20?), and
natural statistics Ty = Y., z; and Th = >, z7.

To illustrate the richness of the exponential family and appreciate the
special role of the function A(f), suppose X is any random variable with
density exp{c(z)} and moment generating function

m() = BelX.

Let A(f) = logm(0), usually called the cumulant generating function.
Then

/60m+c(m)dz _ A0)

or

/60I7A(9)+c(w)dl‘ -1

for all 8. So
pa(x) = eGm—A(Q)—i—c(m) (43)

defines an exponential family model with parameter 6. Such a construction
is called an ‘exponential tilting’ of the random variable X; the original X
corresponds to 6 = 0.

For any exponential model of the form (4.3) we can show (Exercise 4.30)
that

p=Eo(X)=A'0)

and

varg(X) = A”(0) = %E@(X) = v(p).
Therefore A(6) implies a certain relationship between the mean and vari-
ance.
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Exponential dispersion model

For statistical modelling it is often adequate to consider a two-parameter
model known as the exponential dispersion model (Jgrgensen 1987). Based
on an observation z the log-likelihood of the scalar parameters 6 and ¢ is

of the form 0 Al
log L(0, ¢) = % +e(@, 9), (4.4)

where A(f) and c¢(z, ¢) are assumed known functions. In this form the pa-
rameter 6 is called the canonical parameter and ¢ the dispersion parameter.
Since ¢(z, ¢) or A(f) can be anything there are infinitely many submodels
in this exponential family, though of course the density must satisfy

zzjexp{xe_(;l(a) +c(a:,¢)} =1,

which forces a certain relationship between A(6) and c(z, ¢).
The dispersion parameter allows the variance to vary freely from the
mean:

5= Eg(X) = A'(6)
and

varg(X) = ¢A”(0)
655 Es(X) = 9uln).

This is the biggest advantage of the exponential dispersion model over the
more rigid model (4.3).

In practice the form of A(f) in (4.4) is usually explicitly given from the
standard models, while ¢(z, @) is left implicit. This is not a problem as far
as estimation of 6 is concerned, since the score equation does not involve
c(x, ). However, without explicit ¢(z, ¢), a likelihood-based estimation of
¢ and a full likelihood inference on both parameters are not available. One
might compromise by using the method of moments to estimate ¢, or the
approximation of the likelihood given later.

Example 4.12: For the normal model N(u,o?) we have

2 2
- 2 1
):7x‘u ,LL/ —710g0'2_

log L 2 el
og L(u, 0 e 3 557"

so the normal model is in the exponential family with a canonical parameter 6 =
p, dispersion parameter ¢ = 0%, and A(0) = 6*/2 and c(z, ¢) = — 3 log p— 12%/¢.
This is a rare case where ¢(z, ¢) is available explicitly. O

Example 4.13: For the Poisson model with mean p
log L(p) = zlog u — p — log !

so we have a canonical parameter § = log u, dispersion parameter ¢ = 1 and
A@) = pu=é°.
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By keeping A(0) = ¢f, but varying the dispersion parameter, we would gen-
erate a Poisson model with under- or overdispersion: with the same EX = p we
have

var(X) = 6A”(6) = ép.
The function c¢(z, ¢) has to satisfy

e}

x0 — & .
> exp o Te@d)| =1,

x=0

for all § and ¢. To compute the likelihood we need c(z, ¢) explicitly, but finding
the solution c(zx, ¢) that satisfies such an equation is not trivial. O

Example 4.14: The following data shows the number of paint defects recorded
in a sample of 20 cars using an experimental process:

010 1 1 1 2 1 411 0 5 2 5 2 0 2 0 1 3 O

The sample mean is T = 2.55 and the sample variance is s> = 9.84, indicating

overdispersion. Using the Poisson-type model above A(6) = €?, so

Varg(X) = ¢E9 (X),

and the method-of-moments estimate of ¢ is $ = 9.84/2.55 = 3.86. Obviously

there is some variability in QAS; is it significantly away from one? An exact like-
lihood analysis is difficult, but instead we can do a Monte Carlo experiment to
test ¢ =1 (Exercise 4.33):

1. Generate z7,...,75; as an iid sample from the Poisson distribution with
mean g =2 = 2.55.

2. Compute ¢* = (s*)*/T* from the data in part 1.

3. Repeat 1 and 2 a large number of times and consider the &5\*’5 as a sample
from the distribution of ¢.

4. Compute P-value = the proportion of r})\* > the observed $

Figure 4.10 shows the QQ-plot of 500 ;5*’5 and we can see that P-value =~ 0,
confirming that ¢ > 1.
An approximate likelihood inference for p can proceed based on assuming

that ¢ is known at ngS; this is made particularly simple since the term c(z;, @) is
constant relative to p or 6. Figure 4.10 compares the standard Poisson likelihood

with the estimated likelihood using Zb\ = 3.86. For small samples this approach
is not satisfying as the uncertainty in ¢ is not accounted for in the inference for
pn. O

Approximate likelihood*

While an exact likelihood of the exponential dispersion model (4.4) might
not be available, there is a general approximation that can be computed
easily. The main advantage of the approximate likelihood is that it puts the
whole inference of the mean and dispersion parameters within the likelihood
context. It also facilitates further modelling of the dispersion parameter.
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Figure 4.10: (a) Monte Carlo estimate of the distribution of qAﬁ under the
standard Poisson model. (b) Likelihood of p based on the standard Poisson
model (¢ = 1, dotted line) and the model with extra Poisson variability
(¢ = ¢A> = 3.86, solid line).

At fixed ¢ the MLE of € is the solution of

~

A'(0) = z.

Alternatively i = x is the MLE of u = A’(f). The Fisher information on
0 based on z is

~ ~

1(0) = A"(0)/ ¢
From Section 9.8, at fixed ¢, the approximate density of 9 is

0) ~ o)~ 1/2 A1/2L(9»¢)
p(0) ~ (2m)~/71(0) L0.0)

Since p = A’(0), the density of fi, and hence of z, is

(@) =) = p(d) gg
= p(O){A" ()}
~ {2n0A" (0 4”@.
(o' @) 72

The potentially difficult function ¢(x, ¢) in (4.4) cancels out in the like-
lihood ratio term, so we end up with something simpler. In commonly
used distributions, the approximation is highly accurate for a wide range
of parameter values.

Let us define the deviance function

LO,¢=1
Dia,p) = 2logL59f21§
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= 2{0z — 0z — A(D) + A(0)},
where 4 = A’(6). The approximate log-likelihood contribution from a
single observation x is
1

log L(9, ¢) = —% log{2m¢v(x)} — %

where v(z) = A”(0).

The formula is exact if o is N(u,0?), in which case 0 = pu, ¢ = o2,
v(z) =1, and D(z,u) = (z—p)?. In general it is called an extended quasi-
likelihood formula by Nelder and Pregibon (1987). It is very closely related
to the double-exponential family (Efron 1986b). The idea is that, given 0,
the dispersion parameter also follows an exponential family likelihood.

Given an iid sample z1,...,x,, at fixed ¢, the estimate of u is the
minimizer of the total deviance

ZD(%',M)

The approximate profile log—likelihood of ¢ is
log L(¢) = —= Z log{2m¢v(z;)} % Z D(z;,
and the approximate MLE of ¢ is the average deviance

6== 3" D)

Example 4.15: In Example 4.13 we cannot provide an explicit two-parameter
Poisson log-likelihood

zlogp —p

log L(p, ¢) = 3

+ c(x, 9),

since c(z, ¢) is not available. Using

0 =logp, A)=e"=p
0 =logz, A(@) =z
D(z,p) =2(zlogz — zlogpu — x + p)
v(z) = A”(/Q\) —f =2

we get an approximate likelihood
1 1
log L, &) ~ -5 log{2m¢x} — g(azlogx —zlogp —x + p).

Nelder and Pregibon (1987) suggest replacing log{2w¢z} by

log{2n¢(x +1/6)}

to make the formula work for z > 0.
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For the data in Example 4.14 the estimate of the mean u is T = 2.55, and
d= > D(xi,7) =3.21
20 . ) 9

where we have used 0log0 = 0; recall g/b\ = 3.86 using the method of moments.
The approximate profile likelihood of ¢ can also be computed from (4.5). O

Minimal sufficiency and the exponential family*

There is a surprising connection between minimal sufficiency and the ex-
ponential family: under mild conditions, a (minimal) sufficient estimate
exists if and only if the model pg(x) is in the full exponential family. The
exponential family structure in turn implies that the likelihood function has
a unique maximum, and the MLE is sufficient. Therefore, if a sufficient
estimate exists, it is provided by the MLE.

It is easy to show that the MLE of 6 in a full exponential family model is
sufficient (Exercise 4.28). To show that the existence of a sufficient estimate
implies the exponential family, we follow the development in Kendall et al.
(1977) for the scalar case. Assume that we have an iid sample z4,...,z,
from pg(x), t(x) is a sufficient estimate (i.e. it is minimal sufficient for 9),
and that the support of pg(z) does not depend on 6. By the factorization
theorem,

dlog L(0) <~ Ologpa(x;)
e -y oy = K(L.0)

for some function K(t,6). From Section 3.2, minimal sufficiency implies
K (t,0) is a one-to-one function of ¢. Since this is true for any 6, choose one
value of 6, so t must be of the form

t= M{Z k(zi)}

for some function M (-) and k(). Defining w(z) = >, k(x;), then K(t,6)
is a function of w and 6 only, say N(w,#). Now

d*log L(6) ON dw
8r;00 ~ Ow Ox;
Since 92 log L(6)/02;00 and dw/dx; only depend on x; and 0, it is clear

that ON /0w is also a function of 6 and x;. To be true for all z; then
ON /Ow must be a function of § alone, which means

N(w,0) =w(x)u(d) + v(0)

for some function u(#) and v(@), or, in terms of the log-likelihood,

;’9 log L(6) = u(6) Z k(z:) + v(0).
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This implies the model must be in the exponential family with log-density
of the form

log pg(x) = n(0)T'(x) — A(0) + c(x).

Now it is straightforward to show that the likelihood is unimodal, so it has
a unique maximum.

4.10 Box—Cox transformation family

Box—Cox (1964) transformation family is another useful class of nonnor-
mal models for positive-valued outcomes. Typical characteristics of such
outcomes are skewness, and some relationship between the mean and vari-
ance. In the Box—Cox transformation model it is assumed that there is
A # 0 such that a transformation of the observed data y according to

_yr -1
Yx = b\

has a normal model N(u,02). As A approaches zero yyx — logy, so this
family includes the important log-transformation. For convenience we will
simply write A = 0 to represent the log-transformation. The log-likelihood
contribution of a single observation y is

log L(A, pr,0°) = logp(ya) + (A —1)logy

(yx — p)?
202

—%10g02— + (A =1)logy,

where p(y,) is the density of y) and (A —1)logy is the log of the Jacobian.
Note that if y is positive then y, cannot be strictly normal for any

A # 0. The possibility of a truncated normal may be considered, and we

should check the normal plot of the transformed data. If yy > 0 has a

truncated normal distribution, it has a density

PR OCRIG

where ¢(-) and ®(-) are the standard normal density and distribution func-
tions. So we only need to modify the log-likelihood above by adding
log{1 — ®(—p/o)}. If p/o is quite large, ®(—p/o) ~ 0, so we can sim-
ply ignore the effect of truncation.

For data with a skewed distribution sometimes a transformation is more
successful when applied to shifted values, i.e.

+e)r =1
yx=7(y ; .

The shift parameter ¢ can be estimated from the data by maximizing the
likelihood above.

Interpretation of the parameters is an important practical issue when
using a transformation. After transformation p and ¢ may not have a
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simple interpretation in terms of the original data. However, since the
Box—Cox transformation is monotone, the median of yx is the transformed
median of the original data y. For example, if A = 0 and the median of
yx is g1 = 0, then the median of the original data y is e# = €% = 1. It is
sensible to limit the choice of A to a few meaningful values.

The main reason to consider the Box—Cox transformation family is to
analyse the data in a more normal scale. Such a scale typically leads to
models that are simpler and easier to interpret, have well-behaved residuals,
and clearer inference.

To decide what transformation parameter A to use in a dataset y1, ..., yn,
it is convenient to compare a range of values or simply several sensible val-
ues such as A = —1, 0, 0.5, 1 and 2. In practice, it will not be very sensible
to transform data using, say, A = 0.5774. The natural criterion to compare
is the profile likelihood of X, which is very simple to compute. At fixed A
we simply transform the data to get y», and the MLEs of x and o2 are
simply the sample mean and variance of the transformed data:

A == Y

and

00 =+ 3 i - AP

7

The profile log-likelihood for A is

log L(\) = —g log 52(\) — g + (=1 logy:.

One needs to be careful in the inference on p based on the transformed
data Y5 Mathematically we expect to ‘pay’ for having to estimate A (Bickel
and Doksum 1981), for example by taking a profile likelihood over A\. How-
ever, such an approach can be meaningless. A serious problem in the use
of transformation is the logical meaning of y and the parameter u. Here
is a variation of a simple example from Box and Cox (1982): suppose we
have a well-behaved sample from a normal population with mean around
1000 and a small variance. Then there is an extremely wide range of \ for
which the transformation is essentially linear and the transformed data are
close to normal. This means A is poorly determined from the data, and its
profile likelihood is flat as it has a large uncertainty. Propagating this large
uncertainty to the estimation of p produces a very wide CI for p. That is
misleading, since in fact the untransformed data (A = 1) provide the best
information.

So, a rather flat likelihood of A indicates that the Box—Cox transfor-
mation family is not appropriate; it warrants a closer look at the data. If
we limit the use of the Box—Cox transformation model to cases where A is
well determined from the data, then it is reasonable to perform inference
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on p assuming that A is known at X i.e. we do not have to pay for having
to estimate A.

Example 4.16: The following figures are the population of 27 countries
already in or wishing to join the European Union:

82 59 59 57 39 38 22 16 10 10 10 10
10998555442210.70.40.4

Figure 4.11(a) shows the population data are skewed to the right. The profile log-

likelihood of A is maximized at A = 0.12, pointing to the log-transform A =0 as a
sensible transformation. The QQ-plots of the square-root and the log-transform
indicate we should prefer the latter. (The reader can verify that log(y + 1) is
a better normalizing transform). The use of log-transform is, for example, for
better plotting of the data to resolve the variability among low as well as high
population counts. O

(a) Population data (b) Profile likelihood of A
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Figure 4.11: (a) Normal plot of the population data. (b) the profile likeli-
hood function of the transformation parameter \. (¢) and (d) QQ-plots of

Quantiles of standard normal

the log- and square-root transforms of the original data.

4.11 Location-scale family

The location-scale family is a family of distributions parameterized by p
and o, and a known density fo(-), such that any member of the family has

a density of the form

g

@)= 20 (251).
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The parameter p is called the location parameter and o the scale parameter,
and fo(-) is called the standard density of the family. For example, N (u, 0?)
is a location-scale family with standard density

fole) = —s=e 2

Another famous example is the Cauchy(u, o) with standard density

1
fo(.lf) = 7_(_(1 +$2)

The Cauchy model is useful as a model for data with heavy tails, charac-
terized by the presence of outliers. Furthermore, in theoretical studies the
Cauchy model is a good representative of complex models.

Example 4.17: Recording of the difference in maximal solar radiation between
two geographical regions over a time period produced the following (sorted) data:

-26.8 -3.5 -3.4 -1.2 0.4 1.3 2.32.73.03.23.23.5
3.6 3.94.24.45.06.56.77.18.110.5 10.7 24.0 32.8

The normal plot in Figure 4.12(a) shows clear outliers or a heavy-tailed behaviour.
The mean and median of the data are 4.5 and 3.6 respectively; they are not
dramatically different since there are outliers on both ends of the distribution.
The Cauchy model with location p and scale o has a likelihood function

L(p,0) = Hé {1 TnCihetly 0_2“)2 } :

%

from which we can compute a profile likelihood for p, shown in Figure 4.12(b);
there is no closed form solution to get the MLE of o at a fixed value of u, so
it needs to be found numerically. The MLE from the Cauchy model is 1z = 3.7,
closer to the median, and & = 2.2.

To illustrate the potential of robust modelling, the profile likelihood is com-
pared with that assuming a normal model. The normal likelihood is centered at
the sample mean. There is clearly a better precision for the location parameter
1 using the Cauchy model than using the normal model. (Note that in these two
models the parameter p is comparable as the median of the distributions, but
the scale parameter ¢ in the Cauchy model does not have meaning as a standard
deviation.)

What if the data are closer to normal? The following data are from the last
two series of Michelson’s speed of light measurements in Example 4.8.

890 810 810 820 800 770 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870

Figure 4.12(c) indicates that, except for some repeat values (at 810), the data
are quite normal. As shown in Figure 4.12(d) the normal and Cauchy models
produce comparable results. Generally, there will be some loss of efficiency if we
use the Cauchy model for normal data and vice versa. However, as we see in this
example, the amount of loss is not symmetrical; it is usually larger if we wrongly
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(a) Radiation data
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(b) Profile likelihood of n
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Figure 4.12: (a) Normal plot of radiation data. (b) The profile likelihood
function of the location parameter assuming the normal model (dashed line)
and assuming the Cauchy model (solid line). (c)-(d) the same as (a)-(b)
for Michelson’s last two experiments.

assume a normal model, so it is not a bad strategy to err on a heavier-tailed
model than the normal. O

We can use the AIC (Section 3.5) to choose between the normal and
Cauchy models. For the radiation data, the AIC of the normal model is

AIC

—2log L(ji,0?) + 4
nlog(2752) +n + 4 = 189.7,

where n = 25, and 52 = 98.64. For the Cauchy model, using the MLEs
= 3.7 and ¢ = 2.2, the AIC is 169.3. Therefore, as expected from the
QQ-plot, the Cauchy model is preferred. For Michelson’s data, the AICs
are 439.6 and 456.3, now preferring the normal model.

Another useful general technique is to consider a larger class of location
models that includes both the Cauchy and the normal families. Such a
class is provided by the t-family with v degrees of freedom. The standard
density is given by

_ M +1)/2}

= T/ i L T

fo(z)
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If v = 1 we obtain the Cauchy model, while as v — oo we get the normal
model. So as the parameter v is allowed to vary we can adapt it to the tail
behaviour of the data.

To find which degree of freedom v is appropriate for particular data,
one can maximize the profile likelihood of v at several values such as v = 1,
2, 4, 8 and oo. Inference on p can be performed at the observed value of
V. As is commonly the case with complex models, all computations must
be done numerically. The application of the t-family models on the above
datasets is left as an exercise.

Other useful location-scale families of distributions include the logistic
family, with the standard density

x

e
fo(z) = m, —00 < x <00,
and the double-exponential or Laplacian family, with density
1
folz) = 567‘1‘, —00 < & < 0.

Both of these distributions have heavier tails than the normal, so they offer
protection against outliers if we are interested in the location parameter.
The MLE of the location parameter u under the Laplacian assumption is
the sample median, an estimate known to be resistant to outliers.

The existence of a wide variety of models tends to overwhelm the data
analyst. It is important to reflect again that model selection is generally
harder than model fitting once a model is chosen.

4.12 Exercises

Exercise 4.1: The following table shows Geissler’s data for families of size 2
and 6.

No. boys k | 0 1 2 3 4 5 6
No. families ny | 42,860 89,213 47,819
No. families ny, 1096 6233 15,700 22,221 17,332 7908 1579

(a) For each family size, assuming a simple binomial model(n, 8) for the number
of boys, write down the likelihood of 6.

(b) Combining the data from families of size 2 and 6, draw the likelihood of 6;
find the MLE of 6 and its standard error.

(c) Based on (b), examine if the binomial model is a good fit to the data.
Describe the nature of the model violation and discuss what factors might
cause it.

Exercise 4.2: Now suppose that (in another experiment on sex ratio) the
family information is based on questioning 100 boys from families of size k that
attend a boys-only school. Explain what is unusual in this sampling scheme and
what needs to be modified in the model.

Exercise 4.3: Simulate binomial-type data with under- and overdispersion.
Compare the realizations with simulated binomial data. Identify real examples
where you might expect to see each case.
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Exercise 4.4: Another example of a binomial mixture is the so-called beta—
binomial distribution. Conditional on p let X, be binomial(n, p), where p itself
is random with beta distribution with density

) =5 ML)

YV 4
(o, B)
If « = 8 = 1 then p has uniform distribution. Let X be a sample from the

mixture distribution.
(a) Simulate data from the mixture for n =10, a = 1 and 8 = 3.

(b) Find the mean and variance formula for X, and show that there is an extra-
binomial variation.

(c) Verify the marginal probability

Bla+z,84+n—x)
(n+1) Blz+1,n—z+ 1)B(a, 8)’

P(X=z)=

forx=0,1,...,n.

(d) Using Geissler’s family data of size 6 in Exercise 4.1, find the joint likelihood
of 8 = (a, 8) as well as the profile likelihood of «, 8 and the mean of X.

(e) Compare the expected frequencies under the beta—binomial model with the
observed frequency, and perform a goodness-of-fit test.

(f) Compare the profile likelihood of the mean of X in part (d) with the likeli-
hood assuming the data are simple binomial. Comment on the result.

Exercise 4.5: Generalize the negative binomial distribution along the same
lines as the beta—binomial distribution, where the success probability p is a ran-
dom parameter.

Exercise 4.6: A total of 678 women, who got pregnant under planned pregnan-
cies, were asked how many cycles it took them to get pregnant. The women were
classified as smokers and nonsmokers; it is of interest to compare the association
between smoking and probability of pregnancy. The following table (Weinberg
and Gladen 1986) summarizes the data.

Cycles Smokers Nonsmokers

1 29 198
2 16 107
3 17 55
4 4 38
5 3 18
6 9 22
7 4 7
8 5 9
9 1 5
10 1 3
11 1 6
12 3 6
> 12 7 12
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(a) Fit a geometric model to each group and compare the estimated probability
of pregnancy per cycle.

(b) Check the adequacy of the geometric model. (Hint: devise a plot, or run a
goodness-of-fit test.)

(¢) Allow the probability to vary between individuals according to a beta dis-
tribution (see Exercise 4.4), and find the beta—geometric probabilities.

(d) Fit the beta—geometric model to the data and check its adequacy.
Exercise 4.7: The Steering Committee of the Physicians’ Health Study (1989)

also reported the following events during follow-up. Recall that 11,037 subjects
were assigned to the aspirin group, and 11,034 to the placebo. For each end-point,

Events Aspirin  Placebo
Total cardiac deaths 81 83
Fatal heart attacks 10 28
Sudden deaths 22 12

report the relative risk of aspirin versus placebo, the profile likelihood, and the
approximate 95% CI.

Exercise 4.8: To investigate the effect of race in the determination of death
penalty a sociologist M. Wolfgang in 1973 examined the convictions on 55 rapes
in 19 Arkansas counties between 1945 and 1965.

(a) Out of 34 black defendants 10 received the death penalty, compared with 4
out of 21 white defendants.

(b) Out of 39 cases where the victims were white, 13 led to the death penalty,
compared with 1 out 15 cases with black victims.

Find in each case the significance of the race factor, and state your overall con-
clusion.

Exercise 4.9: Breslow and Day (1980) reported case-control data on the occur-
rence of esophageal cancer among French men. The main risk factor of interest
is alcohol consumption, where ‘high’ is defined as over one litre of wine per day.
The data are stratified into six age groups.

Age  Consumption Cancer No cancer

25-34 High 1 9
Low 0 106

35-44 High 4 26
Low 5 164

45-54 High 25 29
Low 21 138

55-64 High 42 27
Low 34 139

65-74 High 19 18
Low 36 88

> 175 High 5 0
Low 8 31

(a) Assess the association between alcohol consumption and cancer using the
unstratified data (by accumulating over the age categories).

(b) Compare the result using the stratified data, assuming that the odds ratio
is common across strata.
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(c) Compare the profile likelihoods of odds-ratio across strata and assess the
common odds ratio assumption.

Exercise 4.10: We showed that the one-sided P-value from Fisher’s exact test
of the data in Example 4.4 is 0.20. What do you think is the exact two-sided
P-value?

Exercise 4.11: Let 6 be the odds-ratio parameter for a 2x2 table as described
in Section 4.3. Use the Delta method to show that the standard error of 6 is

1/2
~ 1 1 1 1
se(@) = ($+y+ + )

m—-x n—y

The Wald statistic z = é\/se(é\) satisfies 2% =~ x?. Verify this for several 2x2 tables.
This also means that, if the likelihood is regular, the approximate likelihood of
HO is

e X2,
Verify this for several 2x2 tables.

Exercise 4.12: A famous example of Poisson modelling was given by L.J.
Bortkiewicz (1868-1931). The data were the number of soldiers killed by horse
kicks per year per Prussian army corp. Fourteen corps were examined with
varying number of years, resulting in a total 200 corp-year combinations.

Number of deaths k | 0 1 2 3 4 >5
Number of corp-years ny, | 109 65 22 3 1 0

Fit a simple Poisson model and evaluate the goodness of fit of the model.

Exercise 4.13: To ‘solve’ the authorship question of 12 of the so-called ‘Fed-
eralist’ papers between Madison or Hamilton, the statisticians Mosteller and
Wallace (1964) collated papers of already known authorship, and computed the
appearance of some keywords in blocks of approximately 200 words. From 19
of Madison’s papers, the appearance of the word ‘may’ is given in the following
table.

5 6
1 1

Number of occurrences k \ 0 1 2 3
Number of blocks ng | 156 63 29 8

4
4
Check the Poissonness of the data and test whether the observed deviations are

significant. Fit a Poisson model and compute a goodness-of-fit test.

Exercise 4.14: Modify the idea of the Poisson plot to derive a binomial plot,
i.e. to show graphically if some observed data are binomial. Try the technique
on Geissler’s data in Exercise 4.1.

Exercise 4.15: Another way to check the Poisson assumption is to compare
consecutive frequencies (Hoaglin and Tukey 1985). Under the Poisson assumption
with mean 6 show that
kpk/ Pr—1 =10
and in practice we can estimate pi/pr—1 by nk/nk,L
(a) Apply the technique to the datasets in Example 4.6 and Exercise 4.13.
(b) Develop a method to test whether an observed deviation is significant.

(¢) Modify the technique for the binomial and negative binomial distributions,
and apply them to the datasets in Exercises 4.13 and 4.1, respectively.
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Exercise 4.16: This is an example of a binomial-Poisson mixture. Suppose
X,, is binomial with parameters n and p, but n itself is a Poisson variate with
mean u. Find the marginal distribution of X,,. Discuss some practical examples
where this mixture model is sensible.

Exercise 4.17: The annual report of a pension fund reported a table of the
number of children of 4075 widows, who were supported by the fund (Cramér
1955).

Number of children‘ 0 1 2 3 4 5 6
Number of widows \3062 587 284 103 33 4 2

(a) Fit a simple Poisson model and indicate why it fails.

(b) Fit a negative binomial model to the data, and check its adequacy using the
x? goodness-of-fit test.

(c) Consider a mixture model where there is a proportion 6 of widows without
children, and another proportion (1 —0) of widows with = children, where x
is Poisson with mean A. Show that the marginal distribution of the number
of children X follows

P(X=0)=0+(1—-0)e >

and, for k > 0,

L
k!

This model is called the ‘zero-inflated’ Poisson model.

P(X=k)=(1-0)e

(d) Fit the model to the data, and compare its adequacy with the negative
binomial model.

Exercise 4.18: Refer to the data in Example 4.7.

(a) Check graphically the two candidate models, the Poisson and negative bi-
nomial models, using the technique described in Exercise 4.15.

(b) Verify the fit of the Poisson and negative binomial models to the data.

(c) Compare the likelihood of the mean parameter under the two models. (It
is a profile likelihood under the negative binomial model.) Comment on the
results.

Exercise 4.19: Repeat the previous exercise for the dataset in Exercise 4.13.

Exercise 4.20: The following table (from Evans 1953) shows the distribution
of a plant species Glauz maritima (from the primrose family) in 500 contiguous
areas of 20cm squares.

count k 0 1 2 3 4 5 6 7
Number of squaresn, | 1 15 27 42 77 77 89 57
count k 8 9 10 11 12 13 14
Number of squares ny, | 48 24 14 16 9 3 1

Compare Poisson and negative binomial fits of the data. Interpret the result in
terms of clustering of the species: do the plants tend to cluster?

Exercise 4.21: Verify the profile likelihood in Section 4.7 for the parameter of
interest 0 = 0,/0,.
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Exercise 4.22: Assuming that X and Y are Poisson with rate A, and \,, show
that the conditional distribution of X given X + Y is binomial with parameters
n=X+Y and m = Aa/(As + Ay).

Exercise 4.23: Prove Theorem 4.1.

Exercise 4.24: Verify that Michelson’s first experiment is out of line with the
rest. If you know the analysis of variance technique, use it to analyse all experi-

ments together, and then repeat the analysis after excluding the first experiment.
Otherwise, use a series of two-sample t-tests.

Exercise 4.25: Suppose Uy, ..., U, are an iid sample from the standard uni-
form distribution, and let U(yy,...,Ur) be the order statistics. Investigate the
approximation

i—1/3

dian{U;)} & ———
median{U;} n T3
for n = 5 and n = 10. (Hint: use the distribution of the order statistics in
Exercise 2.4.)

Exercise 4.26: Suppose 1,...,Z, are an iid sample from N(u,o2), and
Y1, .-, Yn from N(u+9, 05). Define Michelson’s first experiment as the x-sample,
and the subsequent experiment as the y-sample.

(a) Compute the profile likelihood for § assuming that o2 = 05.
(b) Compute the profile likelihood for § without further assumption.
(c) Compute the profile likelihood for o2 /0.
Exercise 4.27: The following is the average amount of rainfall (in mm/hour)

per storm in a series of storms in Valencia, southwest Ireland. Data from two
months are reported below.

January 1940
0.15 0.25 0.10 0.20 1.85 1.97 0.80 0.20 0.10 0.50 0.82 0.40
1.80 0.20 1.12 1.83 0.45 3.17 0.89 0.31 0.59 0.10 0.10 0.90
0.10 0.25 0.10 0.90

July 1940
0.30 0.22 0.10 0.12 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.17
0.20 2.80 0.85 0.10 0.10 1.23 0.45 0.30 0.20 1.20 0.10 0.15
0.10 0.20 0.10 0.20 0.35 0.62 0.20 1.22 0.30 0.80 0.15 1.53
0.10 0.20 0.30 0.40 0.23 0.20 0.10 0.10 0.60 0.20 0.50 0.15
0.60 0.30 0.80 1.10 0.20 0.10 0.10 0.10 0.42 0.85 1.60 0.10
0.25 0.10 0.20 0.10

(a) Compare the summary statistics for the two months.

(b) Look at the QQ-plot of the data and, based on the shape, suggest what
model is reasonable.

(c) Fit a gamma model to the data from each month. Report the MLEs and
standard errors, and draw the profile likelihoods for the mean parameters.
Compare the parameters from the two months.

(d) Check the adequacy of the gamma model using a gamma QQ-plot.

Exercise 4.28: In a p-parameter exponential family (4.2) show that the natural
statistics T1 (z), . . . , Tp(x) are minimal sufficient. If the family is full rank, explain
why these statistics are the MLE of their own mean vector, which is a one-to-one
function of 6, so the MLE of 6 is sufficient.
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Exercise 4.29: Let z1,...,x, be an iid sample from uniform(0, 8). The maxi-
mum order statistic x(,) is a sufficient estimate of 0, yet the uniform is not in the
exponential family. This does not conform to the basic theorem about minimal
sufficiency. What condition is not satisfied?

Exercise 4.30: In Section 4.9 verify the general mean and variance formulas
as derivatives of A(6).

Exercise 4.31: Identify the exponential and gamma models as exponential
family models; in particular, find the canonical and dispersion parameters, and
the function c(z, ¢).

Exercise 4.32: Identify the inverse Gaussian model as an exponential family
model. The density is

1/2 Y
f<y>—<27fy3) exp{—Q;(yy“)}, y>0.

Verify that it has mean p and variance p%/\.

Exercise 4.33: Perform the Monte Carlo test described in Example 4.14 and
verify the results.

Exercise 4.34: Compare the likelihood analysis of the mean parameter for
the dataset in Exercise 4.18 using the negative binomial model and the general
exponential family model. Discuss the advantages and disadvantages of each
model.

Exercise 4.35: Compare the likelihood analysis of the mean parameter for the
dataset in Exercise 4.4 using the beta—binomial model and the general exponential
family model.

Exercise 4.36: Suppose z is in the exponential family with log-density
logpu(z) = 26 — A(9) + ¢(z),

where u = A’(6) = EX is used as the index; the variance is v(u) = A”(0). The
double-exponential family (Efron 1986b) is defined as

g(@) = b(0, @)a'*{p,. (@)} {ps ()} .

Efron shows that the normalizing constant b(6, @) &~ 1, and the mean and variance
are approximately p and v(u)/a.

(a) Starting with a standard Poisson model with mean u, find the density of a
double Poisson model.

(b) Show that the likelihood from part (a) is approximately the same as the
extended quasi-likelihood formula in Example 4.15. Hint: use Stirling’s
approximation for the factorial:

n! = V2mre "n T2, (4.6)

Exercise 4.37: Starting with a standard binomial model, find the density
function of a double binomial model.

Exercise 4.38: The following dataset is the sulphur dioxide (SO2) content of
air (in 1075 g/m?®) in 41 US cities averaged over 3 years:
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10 13 12 17 56 36 29 14 10 24 110 28 17
8 30 9 47 35 29 14 56 14 11 46 11 23
65 26 69 61 94 10 18 9 10 28 31 26 29
31 16

Use the Box—Cox transformation family to find which transform would be sensible
to analyse the data. Plot the profile likelihood of the mean SOz content. Check
the normal plot of the data before and after the transformation.

Exercise 4.39: The following data are the average adult weights (in kg) of 28
species of animals.

0.41.01.93.05.5 8.1 12.1 25.6 50.0 56.0 70.0 115.0
115.0 119.5 154.5 157.0 175.0 179.0 180.0  406.0
419.0 423.0 440.0 655.0 680.0 1320.0 4603.0 5712.0

Use the Box—Cox transformation family to find which transform would be sensible
to analyse or present the data.

Exercise 4.40: In a study of the physiological effect of stress, Miralles et al.
(1983) measured the level of beta endorphine in patients undergoing surgery.
(Beta endorphine is a morphine-like chemical with narcotic effects found in the
brain.) The measurements were taken at 12-14 hours and at 10 minutes before
surgery.

Patient 12-14 h 10 min Patient 12-14h 10 min

1 10.0 6.5 11 4.7 25.0
2 6.5 14.0 12 8.0 12.0
3 8.0 13.5 13 7.0 52.0
4 12.0 18.0 14 17.0 20.0
5 5.0 14.5 15 8.8 16.0
6 11.5 9.0 16 17.0 15.0
7 5.0 18.0 17 15.0 11.5
8 3.5 42.0 18 4.4 2.5
9 7.5 7.5 19 2.0 2.0
10 5.8 6.0

(a) Draw the QQ-plot of the data at 12-14 hours and 10 minutes prior to surgery,
and comment on the normality.

(b) Draw the QQ-plot of the change in the beta endorphine level. To get a
measure of change note that the beta endorphine level is a positive variate, so
it may be more meaningful to use a ratio or to consider a log-transformation.
Examine the need to add a shift parameter.

(¢) Compare the likelihood of the location parameter assuming normal and
Cauchy models for the three variables above.

Exercise 4.41: Consider the Box—Cox tranformation family for the data from
Michelson’s fifth experiment:

890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870

(a) Plot the profile likelihood of A.
(b) Plot the profile likelihood of p assuming A = 1.
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(c) Compare the plot in (b) with the profile likelihood of u by profiling over A
and 2. Comment on the result.

Exercise 4.42: Suppose x1,...,T, are an iid sample from the Laplacian dis-
tribution with parameters p and o. Find the MLE of the parameters and find
the general formula for the profile likelihood of u.

Exercise 4.43: Use the t-family model for a range of degrees of freedom v for
the datasets in Example 4.17; in particular plot the profile likelihood over v.

Exercise 4.44: Repeat the likelihood analysis given for the datasets in Exam-
ple 4.17 using logistic and Laplacian models, and compare the results.






5
Frequentist properties

Frequentist or repeated sampling properties of sample statistics form a basis
of probability-based inference. These properties also indicate a potential
objective verification of our statistical procedures. In this chapter we will
expand our discussion on important frequentist properties such as bias and
variance of point estimates, calibration of likelihood using P-values, and
coverage probability of CIs. We will introduce a powerful computational
method called the bootstrap, and cover the so-called ‘exact’ confidence
procedures for specific models.

5.1 Bias of point estimates

Definition 5.1 Suppose T(X) is an estimate of 6. Bias and mean square
error of T' are defined as

b#) = FEoT—6
MSE() = Eo(T — 6)* = varg(T) + b*(6).

We say T is unbiased for 6 if EgT = 0.

The subscript 6 in Fyp means that the expected value is taken with
respect to the probability model pp(z). Why do we want a small (or no)
bias in our estimates?

e It gives a sense of objectivity, especially if var(T) is small. This is
closely related to the idea of consistency of point estimates: in large
samples our estimate should be close to the true parameter. Generally,
it is sensible to require that bias does not dominate variability. Or,
the bias and variability components in the MSE should be balanced.

e If we are pooling information from many relatively small samples, un-
biasedness of the estimate from each sample is vital to avoid an ac-
cumulation of bias (the pooled dataset is said to be highly stratified,
discussed in detail in Section 10.1). This is also true if point estimates
are used for further modelling. For example, in repeated measures ex-
periments we sometimes need to simplify the data by taking summary
statistics from each subject.

The above reasons do not point to the need for an exact unbiasedness,
since it is not always practical. For example, suppose z1,...,z, are an iid
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sample from N (u,0?) with both parameters unknown. Do we really use

the sample variance
1
82_’]7, 1 E (.I‘i—ﬂf)z

2

because it is unbiased? If we do, why do we not worry that the sample
standard deviation is biased? From the fact that (n — 1)s?/0? is x2_;, we

can show that
B = — LO/AV2
I'((n—1)/2)yn—1
where I'(+) is the gamma function. We can correct the bias, but in practice
we almost never do so. (The likelihood-based reason to use the (n — 1)-
divisor for the variance is given in Chapter 10.)

As discussed by Hald (1999), Fisher had two aversions: (arguments
based on) unbiasedness, and lack of invariance. Nonetheless, a lot of clas-
sical estimation theory is built around unbiasedness. Here are further ex-
amples showing the problem with the exact unbiasedness requirement.

Producing an unbiased estimate is never automatic

Suppose 1, ..., T, are an iid sample from N (u,0?), and we want to esti-
mate the threshold probability § = P(X; > 2). It is not obvious how to
obtain an unbiased estimate of 6 (see Lehmann 1983, pages 8687, for an
answer). In contrast, the MLE is immediate:

~ 9 _7
9=P(Z> Ax>,
g

where Z is the standard normal variate, and T and ¢ are the sample mean
and standard deviation of the data.

In general, except for linear ¢g(T'), if T is unbiased for 6 then ¢(T) is
a biased estimate of g(#); this is a lack of invariance with regards to the
choice of parameterization.

Not all parameters have an unbiased estimator

In complex problems it is not always clear whether there even exists an
unbiased estimator for a parameter of interest. For example, let X ~
binomial(n, 7); there is no unbiased estimate for the odds § = 7 /(1 — ).
To show this, consider any statistic T'(X). We have

t(z) ( Z ) (1 — )

for some function ¢(x). But, while ET is a polynomial of maximum degree
n?
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4 k
0= T = Z T
k=1
is an infinite-degree polynomial. So, there is no T(X) such that ET(X)
6. This does not mean that there is no reasonable inference for 6. If 7 is
a reasonable estimate for 7, then the MLE 6 = 7/(1 — 7), while biased, is
also reasonable.

The unbiasedness requirement can produce terrible estimates

Let X be a sample from a Poisson distribution with mean p. Suppose the
parameter of interest is = e~ **. If T'(X) is unbiased for 6 then

ET = E t(m)e‘“'u—' =e ",
x!
=0

or
oo T
ro_ o (-a
Zt(x)x! = e
=0
o0 T
= Y-y
= z!

so t(z) = (1 — a)®; see also Lehmann (1983, page 114). If ¢ = 1 then
0 = P(X = 0) is estimated by t(z) = I(xz = 0), which is equal to one if
2 = 0, and zero otherwise. Even worse: if @ = 2 then 8 = e~2* is estimated
by t(z) = (—1)®, which is equal to 1 if x is even, and —1 if x is odd.

5.2 Estimating and reducing bias

The bias of the MLE of ¢2 based on a random sample zi,...,z, from
N(u,o?) is
o2
n

Generally, in regular estimation problems the bias of an estimate of 6 is
usually of the form

where by’s are functions of € only, but not of sample size n. The standard
deviation of an estimate is typically of the form

S1

S92 S3
Et Tt

n3/2
Therefore bias is usually smaller than the stochastic uncertainty in the
estimate. It may not be worth all that much to try to correct for bias in
this general case. Correction is important in less regular cases, where bias is
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known to be large relative to the variance such as when we pool information
over many small samples or when the data are highly stratified.

When an exact theoretical result is not available or too complicated,
there are three general, but approximate, methods to remove or reduce the
bias of a point estimate:

1. Taylor series method.
2. Jackknife or leave-one-out cross-validation method.

3. Bootstrap method.

Taylor series method for functions of the mean

This is closely related to the Delta method in Section 4.7. The proof of the
following result is left as an exercise.

Theorem 5.1 Suppose we estimate h(p) by h(T). If the second derivative
h'(-) is continuous around u, then

I 1 J—
Eh(X) = h(p) + 5h" (i) var(X),
with the last term providing an approximate bias.

Example 5.1: The following is the number of accidents recorded on a stretch
of highway for the past 10 months:

1100241203

Assume that the accidents are an iid sample from a Poisson distribution with
mean u. Let the parameter of interest be

0 = P(no accident)
P(X=0)=e".

From the data we get T = 1.4, so the MLE of 6 is 0 =e 4 =0.25. To obtain a
bias-corrected estimate, let h(u) = e #, so h” (1) = e *. Hence the bias is

[—s
b(p) =~ e M-
W~ 3¢5
and the bias-corrected estimate is
~ = 1 7o
f=e"— e "= =0.23.
e 26 0 0.23

Using the Delta method (Section 4.7) the standard error of 9 is

e "\/Z/10 = 0.09,

which is much larger than the bias.
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Jackknife or cross-validation method

Suppose we want to predict an outcome y, where a large number of predic-
tors x1,...,Tx are available, and we want to choose an optimal subset of
the predictors. We cannot use as our criterion the usual residual variance
from each possible regression model, since it is a biased estimate. In par-
ticular, a larger model will have a smaller residual variance, even though
it is not a better model. Consider instead the following commonly used
validation technique: split the data into two, and

e use half of the dataset (called the training set) to develop the compet-
ing regression models

e use the other half of the data (the validation set) to estimate the
prediction error variance of each model. This variance can then be
used for model selection or comparison.

The jackknife or leave-one-out cross-validation method is an extreme
version of the above technique; a lot of computation is typically required,
so if there are enough subjects the above method is much more practical.
For clarity we will continue to use the error variance estimation to describe
the general methodology:

e use (n — 1) units/subjects to develop the regression models

e use the one left-out for validation; i.e. compute the prediction error
using each of the models

e (this is the laborious part) cycle around every single unit of the data
as the one left-out.

In the end, we can compute for each competing model an unbiased estimate
of its prediction error variance, and the best model can be chosen as the
minimizer of the crossvalidated error variance. Simpler methods, requiring
much less computations, are available for regression model selection.

For bias estimation the general prescription is as follows. Suppose we
have data 1, ..., z,, and an estimate T for a parameter 6. The leave-z;-out
data is

r—_; = (xl, ey Li—1, Tj41y - - ,l‘n).

Let T; be the ‘jackknife replicate’ of T" based on x_;; then its bias is esti-
mated by
b=(n—-1)(T-T),

where T = %Z T;, and the bias-corrected estimate is T' — b. Exercise 5.5
shows that this correction procedure removes bias of order 1/n.

Example 5.2: Let 7= 1 3" (z; — 7)* be an estimate of the variance o°. The

jackknife replicate is
_ 1 — 2
TZ'— n—lz(mj 7277;)
J#i
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where

_ 1
Xr; = ] ij.
J#i
Some algebra will show that

so that the bias-corrected estimate is

T-b= 3 (@ -7,

n—1

which is the usual sample variance formula. O

Bootstrap method

The most general way of estimating bias is provided by the bootstrap
method. It was first presented by Efron in 1977 Rietz lecture as an al-
ternative to the jackknife; a general exposition is given by Efron and Tib-
shirani (1993). In its evolution the bootstrap becomes the main frequentist
tool to deal with complicated sampling distributions. In practice there is
almost no analytical work required by the method, but, in exchange, we
must perform a lot of computations.

Underlying the bootstrap is the plug-in principle: replace the unknown
distribution F' in a quantity of interest by an estimate F'. Thus, for exam-
ple, the bias of T as an estimate of 6 is

b(0) = ExT — 0,

where FrT means that the expectation is taken with respect to the distri-
bution F'. Intuitively, using the plug-in principle, an estimate of the bias
is

b= BT —9.

The estimate F' may be parametric or nonparametric. In almost all boot-
strap applications the evaluation of expected values with respect to F' is
done using Monte Carlo simulations. In the following example the method
is parametric, as F is a member of the parametric family. In nonparametric
bootstrap applications we use the empirical distribution function (EDF).
Sampling from the EDF is equivalent to sampling with replacement from
the sample itself, hence the name ‘bootstrap’.

Example 5.3: In the Poisson example above T = 1.4, so F is Poisson with

mean 1.4. The estimated bias of T = ¢~ " is

~
_ —-X —x
b= Ese e "

In this case the term E;efx can be computed analytically. Since X; is Poisson
with mean p we have
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Ee'™ = exp(—p + pe'),
and

Ere ™ = exp(—nu+ nue” /™).

Using & = T = 1.4 we obtain

Eqe™™ = exp(—14+ 14e~ /1) = 0.264.

To illustrate a general scheme of bootstrap simulation, without any analytical
derivation this quantity can be computed as follows:
e Generate z7, ..., z], iid from Poisson(mean=1.4). These are called the boot-
strap sample.

e Compute T* and e~®" from the bootstrap sample.

e Repeat a large number of times B, and take the average of e ™. The
collection of e™* is an approximate random sample from the distribution
of e=%, and forms the bootstrap distribution of e~

Figure 5.1 shows the histogram of e~® using B = 1000. The average e ™ s

0.263, close to the theoretically derived value above, and the estimated bias is

b average(eii*) —e Mt

0.263 — 0.246 = 0.017,

so the bias-corrected estimate is e~ !4 — 0.017 = 0.23, the same as the estimate
found using the Taylor series method. O

250
1 ]

Frequency
150
1

r T T T T T 1
01 02 03 04 05 06 07
exp(—X*)

Figure 5.1: Bootstrap distribution of e~ .

5.3 Variability of point estimates
Compare the following statements:

1. ‘Aspirin reduces heart attacks by 42%.’

2. ‘We are 95% confident that the risk of heart attacks in the aspirin
group is between 47% to 71% of the risk in the placebo group.’
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When a parameter has some physical meaning it is usually desirable to
report its estimate. While appealing, the first statement does not convey
the sense of uncertainty found in the second statement. The uncertainty
is embodied by statistical variability, so the deficiency is usually remedied
by also reporting the standard error (or ‘margin of error’) of the point
estimate: the relative risk is 58% (standard error= 6%).

More generally, in classical (frequentist) statistics, probability state-
ments made regarding the uncertainty of a point estimate are based on
the sampling distribution. This is the distribution of the estimate as it
varies from sample to sample. Except in some specific cases deriving exact
sampling distributions is notoriously difficult; in practice we often rely on
the normal approximation. We will refer to regular cases as those where
the normal approximation is reasonable. (This is a parallel sampling-based
argument to representing the likelihood with the MLE and its curvature.)
In such cases we only need to compute the estimate and its variance; infer-
ence follows from these two quantities alone. For example, an approximate
95% Cl is

6 + 1.96s¢(d),

where the standard error se(a) is the estimated standard deviation of .
While 8 does not have to be an MLE, we will still refer to this CI as a
Wald(-type) CIL.

Estimating variance

The general methods for estimating the variance of an estimate are similar
to those for estimating bias. The most important classical method is the
Delta method, used in the analysis of the aspirin data in Section 4.7. The
method is based on the Taylor series expansion and generally works for
estimates which are functions of the sample mean.

The jackknife procedure to estimate the variance of a statistic T is given,
for example, in Miller (1964). Practical statistics seems to have ignored this
method. The problem is that we need the procedure in complicated cases
where we cannot use the Delta method, but in such cases there is no guar-
antee that the procedure works. See Efron (1979) for further discussion.

The most general method is again provided by the bootstrap method.
We are interested in

v =varp(T).

Using the plug-in principle we replace the unknown distribution F' by its
estimate F, so the variance estimate is

v =varg(T).

The variance evaluation is usually done using Monte Carlo sampling from
F', though in some cases it might be possible to do it analytically.
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Example 5.4: Continuing the analytical result in Example 5.3,

~ — —\ 2
f— —2/n —1/n
= exp(—nu+ nue ) — exp(—2nu + 2nue ).
Using n = 10 and T = 1.4, the variance is estimated by
7}) = exp(—nZ+ nfefQ/") — exp(—2nT + anefl/")

= 0.079 — 0.264° = 0.0093

var (e

It is intuitive that the bootstrap replications of e~®" contain much more in-

formation than bias alone. Such replications are an approximate random sample
from the distribution of e™*. We can simply compute the sample variance as an
estimate of the population variance.

From the same 1000 bootstrap replications in Example 5.3, the estimated
variance of e™ % is .

var(e” X ) = 0.0091,

close to the analytically derived estimate. For comparison, using the Delta
method, the estimated variance is

var(e ) = (e ™)L = 0.0085. O

3sl

Example 5.5: The bootstrap method is indispensible for more complicated
statistics. Consider the IQ data in Exercise 3.23, giving paired data (z;,y;) for
i =1,...,16. The sample correlation between the verbal (x) and mathematical
thinking (y) is p = 0.83. Without making further assumptions on the bivariate
distribution of (z,y), we can perform a nonparametric bootstrap by:

e taking a sample of size n = 16 with replacement from the paired data
e computing p* from the new dataset
e repeating this B times.

Figure 5.2 shows the plot of the data and the histogram of the bootstrap replicates
p* using B = 500. The estimated variance of p is 0.00397, so the standard error
of pis 0.063. O

To end with a note of caution, in practice the bootstrap method is used
in complex situations where it may not be common knowledge whether
asymptotic normality holds. Some care is required if the observed bootstrap
distribution is decidedly nonnormal. In Sections 5.6 and 15.3 we will discuss
some bootstrap-based inference that uses the whole bootstrap distribution
rather than just the variance information.

5.4 Likelihood and P-value

P-value is the most common measure of evidence, although it is more cor-
rect to say that P-value measures the ‘extremeness’ or ‘unusualness’ (not
the probability or likelihood) of the observed data given a null hypothesis.
The null hypothesis is doubtful if it is associated with a small P-value.
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Figure 5.2: 1Q data and the bootstrap distribution of the sample correlation.

While we can construct examples where P-value is meaningless (e.g.
Royall 1997, Chapter 3), in many cases of practical interest it does measure
evidence, since there is a close relationship between likelihood and P-value.
Throughout, when we say ‘likelihood’ we mean ‘normalized likelihood’.
However, since P-value depends on the sample and the parameter spaces,
the relationship is not the same over different experiments.

Even though P-value is the most rudimentary form of inference, it has
some attractive properties:

e Only the ‘null model’ is needed to compute a P-value, but producing
a likelihood requires a model specification over the whole parameter
space. There are practical situations (e.g. Example 4.14) where a
statistical analysis can readily produce a P-value, but not a likelihood.

e There are simple adjustments of P-value to account for multiple test-
ing.

e P-value provides a way of calibrating the likelihood, especially for high-
dimensional problems (Section 3.5).

The weakness of P-value is apparent, even in one-parameter problems,
when the sampling distribution of the test statistic is not symmetric. While
the one-sided P-value is obvious and essentially unique (at least for contin-
uous distributions), there are many ways of defining a two-sided P-value,
none of which is completely satisfactory (Example 5.7).

For testing simple-versus-simple hypotheses, namely Hy: 6 = 6, versus
H;y: 0 = 01, an observed likelihood ratio r (think of a small r < 1) satisfies

Py, {L(‘%) < r} <r

L(61)
If we treat the probability as a P-value, we have a simple result that the
P-value is always smaller than or equal to the likelihood ratio. This is not

(5.1)
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true for general alternatives, although it is true for many one-parameter
models. To prove the relationship

L(6o) } /
P, { <ry = pe, () dx
“1L(O) L)< LOD]
< / rL(0) dx
[L(60)<rL(61)]

= / rpy, () dx
[L(80)<rL(61)]

< T/Pel(w) dx

= T

A

The next example, first discussed by Edwards et al. (1963), is more typical.

Example 5.6: Suppose z1,..., T, are an iid sample from N(p,o?), with o
known and where we are interested to test Ho: u = po. The likelihood of p is

no_ 2
L(p) = constant x exp {fﬁ(:c — ) } .

Since the MLE of p is T, the normalized likelihood of Hy is

L(lu’o) 67z2/2
L(z) '
where _
z= L~ Ho
o/\/n

is the usual Wald or z-statistic. The two-sided P-value associated with an ob-
served z is

P(1Z] > [2)),

where Z has the standard normal distribution.

Figure 5.3(a) shows the plot of P-value and likelihood as a function of z.
Figure 5.3(b) shows P-value as a function of likelihood. For example, a P-value
of 5% is equivalent to a 15% likelihood. O

Since in the normal model there is no complication in the definition of
P-value, we may view the relationship between likelihood and P-value here
as an ideal relationship. This will help us decide which two-sided P-value
is best in the following Poisson example.

Example 5.7: Suppose z (x > 1) is a single observation from the Poisson
distribution with mean 6. We want to test Ho: 8 = 1. The one-sided P-value is

-1
Prr(X >2) =Y %

k>x

The asymmetric sampling distribution, however, presents a problem in defining
a two-sided P-value. Fisher once recommended simply doubling the one-sided
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Figure 5.3: (a) Plot of P-value (solid) and likelihood (dashed) as a function
of z. (b) Relationship between likelihood and P-value.

P-value, a proposal commonly used in practice, but it is not without its defects.
The (normalized) likelihood of Hy is

L) _ ey,

L(z)

Figure 5.4(a) shows that the P-value is still smaller than the likelihood. The solid
line in Figure 5.4(b) shows that, as a function of likelihood, the P-value is higher
than in the ideal normal case (dashed line). Hence doubling the P-value seems
to produce a bigger P-value than necessary.

As an alternative, some authors, for example Lancaster (1961) or Agresti
(1996), suggested a one-sided mid-P-value defined as

%P(X =z)+ P(X > z).

The two-sided version is simply double this amount. Figure 5.4(b) shows that
this definition matches very closely the likelihood-P-value relationship obtained
in the normal case. This result holds across a very wide range of null parameter
values.

Note, however, that these definitions of two-sided P-value are not satisfactory
for x = 0. To test the same Hp: 6 = 1, the one-sided P-value is

P(X=0)=¢ '=0.37,

exactly the same as the likelihood of Hy. O

5.5 CIl and coverage probability

We have used the idea of confidence procedure by appealing to the simple
normal model: if z1,...,x, are an iid sample from N(6,0?) with known
o2, then the 95% CI for 6 is

ZT—196 0/vVn<0<ZT+196c/\/n.

In general, the 100(1 — )% CI for 0 is a random interval L < 0 < U
satisfying, for each fixed 6,
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Figure 5.4: (a) Plot of two-sided P-value (solid) and likelihood (dashed) as
a function of x to test Hy: 8 = 1 for the Poisson model. (b) Relationship
between likelihood and two-sided P-value using doubling method (solid), for
the normal model (dashed) and using mid-P-value method (dotted).

Py(L<0<U)=1-aq.

The probability Py(L < 6 < U) as a function of 6 is called the coverage
probability of the interval. It is the probability of a correct guess of where
the unknown parameter is.

For a simple normal mean model, the coverage probability of a 95%
CI is exactly 95%. For nonnormal models the coverage probability rarely
matches the advertised (claimed) confidence level. For some specific mod-
els, such as Poisson or binomial models, it is sometimes possible to guar-
antee a minimum coverage; for example, a 100(1 — «)% CI for 0 satisfies

P(L<f<U)>1-au

In more complex models we can only get an approximate coverage with no
guaranteed minimum.

A general procedure to construct Cls can be motivated based on a close
connection between Cls and hypothesis testing. Given a test procedure, a
100(1 — )% CT is the set of null hypotheses that are not rejected at level
«. Specifically, if we compute a two-sided P-value to test Hy: 6 = 6, the
100(1 — @)% CI is the set

{0y, P-value > a}.

In particular, the lower and upper limits L and U are the parameter values
with P-value equals a. We say we ‘invert’ the test into a CI; it is intuitive
that a ‘good’ test procedure will generate a ‘good’ CI.

Depending on the shape of the likelihood function, likelihood-based
intervals are naturally either one sided or two sided; CIs do not have such
restriction. We can obtain one-sided Cls using the connection with one-
sided tests. Suppose T is a sensible estimate of 0, and t is the observed
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value of T. The 100(1 — )% lower confidence bound L for § is the value
of the parameter associated with a one-sided (right-side) P-value equals «,
ie.

PL(T > t) = Q. (52)

The 100(1 — a))% upper confidence bound U can be defined similarly as the
solution of the left-side P-value equation

PU(T S t) = Q.

Figure 5.5 illustrates the computation of L and U. The curve t1_,(0) is
the 100(1 — ) percentile of the distribution of T" as a function of 6. (The
interval L < 6 < U is the 100(1 — 2a))% CI for 9).

- : :
t1—a(9) E E
4(©) / |
L o U
0

Figure 5.5: Finding the lower and upper confidence bounds from T = t.

Example 5.8: Suppose 21,...,x, are an iid sample from N(u,0?), with o2
known. The 100(1 — a)% lower confidence bound for p is
T — Z21—a O’/\/ﬁ

For Michelson’s data in Example 4.8 we observe T = 852.4(se = 7.9), so we are
95% confident that p is larger than

852.4 — 1.65 x 7.9 = 839.4.

The upper confidence bound can be found similarly. O

If T is continuous, the 100(1 — «)% lower confidence bound L is a
random quantity that satisfies

Py, (L <o) =1-a, (5.3)

where 6 is the true parameter value, which means L has a correct coverage
probability. This is true, since the event [L < 6] is equivalent to [T' <
t1-o(6o)]; see Figure 5.5. By definition of ¢1_,(f), we have
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PQO(T < tl,a(GO)) =1—-a.

Note that finding L in (5.2) is a sample-based computation, no unknown
parameter is involved. However, the probability in (5.3) is a theoretical
quantity.

5.6 Confidence density, Cl and the bootstrap

Let T be a sensible estimate of a scalar parameter 8, and t represent the
observed value of T'. For a fixed ¢, as a function of 6, the one-sided P-value

a(f) = Py(T > t),

looks like a distribution function: it is monotone increasing and ranging
from zero to one. It is a statistic in the sense that no unknown parameter
is involved in its computation. Fisher (1930) called it the fiducial distribu-
tion of € (though he required T to be sufficient and continuous). To follow
the current confidence-based procedures, we will call it the confidence dis-
tribution of 6 (Efron 1998), and we do not require T to be sufficient nor
continuous. Its derivative
o(0) = Oa(8)

00
will be called the confidence density of 8. To put it more suggestively, we
might write

Cl < a) = / " c(u)du,

— 00
where C(+) is read as ‘the confidence of’, to represent the confidence level of
the statement # < a. Remember, however, that # is not a random variable.
The confidence distribution is a distribution of our (subjective) confidence
about where 6 is. It is an alternative representation of uncertainty other
than the likelihood function.

Example 5.9: In the normal case, suppose we observe X = z from N(f,0?)
with known 2. The confidence distribution is

Py(X>z) = P(Z>(x—-6)/0)
1-o (22).

and the confidence density is the derivative with respect to 6:

0=t (55Y).

g

This is exactly the normal density centred at the observed 0= x, which is also the
likelihood function (if normalized to integrate to one). The equality between the
confidence density and such normalized likelihood holds generally for symmetric
location problems (Section 9.8). O

The confidence distribution can be viewed simply as a collection of P-
values across the range of null hypotheses. Alternatively, P-value can be
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represented as the tail area of the confidence density. The main use of
the confidence density is to derive and show graphically Cls with certain
confidence level. In the continuous case, let 6, = L be a 100(1 — a)% lower
confidence bound 6 such that

C0 < 0,) =Py (T>1)=a.

This means 6, behaves like the 100a percentile of the confidence distribu-
tion. Furthermore, from (5.3), 8, has coverage probability

Py(0 < 0,) = . (5.4)

Therefore, the confidence density works intuitively like a Bayesian density
on 6, but it can be justified by standard probability arguments without
invoking any prior probability. This was Fisher’s original motivation for
the fiducial distribution in 1930.

For a two-sided 100(1 — a))% CI we can simply set

Oaya <0 < 01_q2,
which satisfies the confidence requirement
Cllae <0<bi_gp)=1-a
as well as the probability requirement, from (5.4),
Py(Oass <0 <01_g)2) =1—a. (5.5)

In the normal example above it is easy to see how to construct Cls from
the confidence density.

The use of confidence density is attractive when the confidence and
probability statements match, but that does not hold generally in discrete
cases or when there are nuisance parameters. We will discuss the Poisson
and binomial models in the coming sections.

Example 5.10: Suppose we observe X = z from a Poisson distribution with
mean 0. The commonly defined one-sided P-value is

P-value = P(X > x),

so the confidence distribution is

Py(X >a) = e 0" k!
k=x
and the confidence density is
o(0) =Y (ke 0* " —e 00" /Kl = e 00" J(z — 1)),
k=x

coincidentally the same as the likelihood based on observing X = z — 1. See Fig-
ures 5.6(a)—(b). For nonlocation parameters the confidence density is generally
different from the likelihood function (normalized to integrate to one).
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If x = 0 the above definition of P-value produces a degenerate confidence
density at § = 0, which is not sensible.

A two-sided CI for 0 can be derived by appropriately allocating the tail prob-
abilities of the confidence density; see Figure 5.6(b). This interval, however, does
not match the standard definition to be discussed in the next section. O

(a) Confidence distribution (b) Confidence density
=y 8
s | >
S 82
o o
o o
o4 T T T T T g Y T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
0 i

Figure 5.6: (a) The confidence distribution of the Poisson mean 6 based on
observing x = 3. (b) The corresponding confidence density (solid) and like-
lihood (dashed) functions; the vertical lines mark the 2.5% tail probabilities
of the confidence distribution.

Bootstrap density as confidence density

Let ¢ = g(0) be a one-to-one increasing function of 6, and 6, be the
100(1 — @)% lower confidence bound for 8. For ¢, = g(f,) we have

CY <va) = C{g(0) <g(0a)} = a,

which means 1), is the 100« percentile of the confidence distribution of
¥. In other words the rule of transformation for confidence distributions
follows the usual rule for probability distributions.

We can exploit this result to get an inference directly from the bootstrap
distribution of an estimate 6. Suppose there exists a transformation ¢(6)

such that, for all 8, the random variable ¢g(#) is normally distributed with
mean g(#) and constant variance. From Example 5.9 the confidence density

o~

of ¢g(f) matches the probability density of g(#). By back-transformation,
this means the confidence density of ¢ matches the probability density of
0. The latter is exactly what we get from the bootstrap! To emphasize, we
can interpret the bootstrap distribution as a confidence distribution of 6.

Therefore, without knowing ¢(-), but only assuming that it exists, the
100(1 — @)% CT of 6 is the appropriate percentiles of the bootstrap distri-
bution. For example, the 95% CI for 6 is

00.025 < 0 < 0p.97s5,
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where @0.025 and @0.975 are the 2.5 and 97.5 percentiles of the bootstrap
distribution. This is called the bootstrap percentile method (Efron 1982).
Using a similar argument as that used in Section 2.9 for the likelihood-based
intervals, the bootstrap CI is safer to use than the Wald CI, especially if 6
is nonnormal. In effect the bootstrap CI automatically employs the best
normalizing transform.

Alternatively, by viewing the bootstrap density as a confidence density,
we can compute the one-sided (right-side) P-value for testing Hy: 6 = 6,
simply by finding the proportion of bootstrap replicates 0*’s that are less
than 6,

The percentile method is not valid if the required g(f) does not ex-
ist. Efron (1987) proposed the BC, method (Section 15.3) as a general
improvement of the percentile method.

Example 5.11: From the boostrap distribution of the sample correlation in
Example 5.5, using B = 500 replications, we obtain the 95% CI

0.68 < p < 0.93

directly from the bootstrap distribution. Note that it is an asymmetric interval
around the estimate p = 0.83. For comparison, using the previously computed
standard error, the Wald 95% CT is 0.83 4= 1.95 x 0.063, or 0.71 < p < 0.95. The
one-sided P-value to test Ho: p = 0.5 is 1/500, since there is just one bootstrap
replicate p* less than 0.5. O

5.7 Exact inference for Poisson model

Suppose we observe x from a Poisson distribution with mean 6. If we
want a 100(1 — a)% CI for 6, then the standard construction is based on
performing two one-sided hypothesis tests. The upper limit U is chosen so
that the left-side P-value is

Py(X <z)=a/2
where X is Poisson with mean U. The lower limit L is chosen so that
PL(X >z)=«/2

where X is Poisson with mean L. This technique is clearly seen graphically
in the normal case, where the limits match the standard formula.

In the Poisson case a problem occurs again at x = 0: naturally we only
get a one-sided interval, which is associated with one-sided tests. Should
we allow a full « for the one-sided P-value to find U, namely by solving

In practice the latter is used.
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A CI found using the method above is called an ‘exact’ interval, but
that is a misnomer. The discreteness and asymmetry in the sampling dis-
tribution creates inexact coverage: 95% Cls do not have 95% coverage
probability. In this case, we can show (Exercise 5.13) that the true cover-
age probability is larger than the stated or nominal level.

Example 5.12: For x = 1, the upper limit of 95% CI for 6 is the solution of
P(X <1)=e %406 =0.025,
which yields 8 = U = 5.57. The lower limit is the solution of
P(X>1)=1-¢"=0.025,

which yields § = L = 0.0253. The following table shows the 95% confidence
limits for a range of x.

x 0 1 2 3 4 5 6 7 8
L(x) 0 0.03 0.24 0.62 1.09 1.60 2.20 2.82 3.45
U(z) 3.69 557 7.22 877 1024 11.67 13.06 14.42 15.76

The Cls are shown in Figure 5.7(a). The coverage probability is based on nu-
merically computing

Pp{L(X) <0 <UX)} =Y {L(x) <0< U()} e 0" /al,
where I{-} is one if the condition in the bracket is true, and zero otherwise. For
example, for § = 1,
Py{L(X) <0 <U(X)} = Pp(X =0,1,2,3) = 0.98.

Figure 5.7(b) shows that the true coverage probability is higher than 95% for all
values of 6. O

(a) Interval limits (b) Coverage probability
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Figure 5.7: (a) ClIs for the Poisson mean 0 based on observing z. (b) The
true coverage probability of the ‘exact’ 95% CI.
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In terms of confidence density

The discreteness of Poisson data creates a slight complication. Define a
confidence density cr,(#) based on the P-value formula

P-value = Py(X > z).

The 100a/2 percentile of this density gives the lower limit L. To get the
upper limit U, we compute another confidence density ¢y () based on the

P-value formula
P-value = Py(X > x)

and find U as the 100(1 — «/2) percentile of this density. Figures 5.8(a)—(b)
show the confidence distributions and densities based on these P-values.
(a) Confidence distributions (b) Confidence densities

Distribution
00 02 04 06 08 1.0

Distribution
00 02 04 06 08 1.0

Figure 5.8: (a) The confidence distributions of the Poisson mean 0, based
on two definitions of P-value for x = 3. (b) The corresponding confidence
densities ¢, (0) and cy(0) in solid and dashed curves; both are required to
get the standard two-sided Cls, marked by the two vertical lines. (c¢) The
confidence distribution based on the mid-P-value (solid) and the previous
definitions (dashed). (d) The corresponding confidence densities of (c).
The vertical lines mark the 95% CI based on the mid-P-value.

It is desirable to have a single P-value that works for both the lower
and upper confidence bounds. Such a P-value is given by the mid-P-value

1
P-value = Py(X > ) + §P9(X =1).
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Figures 5.8(c)—(d) show the confidence distribution and density based on
the mid-P-value for x = 3; for example, a 95% CI derived from the con-
fidence density is 0.76 < 6 < 8.17. The CIs derived from this definition,
however, no longer have guaranteed minimum coverage.

Exact coverage of likelihood-based intervals

In the normal case the likelihood interval at 15% cutoff has an exact 95%
coverage probability. We do not expect such a simple relationship in the
Poisson case, but we expect it to be approximately true. In general when x
is observed from a Poisson distribution with mean 6, the likelihood interval
at cutoff « is the set of § such that

L0 _ 0 (2) s

L(x) z

Example 5.13: To be specific let us compare the case when x = 3. The
exact 95% CI is 0.62 < 6 < 8.76. The likelihood interval at 15% cutoff (hence
an approximate 95% CI) is 0.75 < 6 < 7.77. Figure 5.9 shows that the exact
CI includes values of 6 that have lower likelihood than some values outside the
interval. O

Exact interval and the likelihood

1.0
1 1

Likelihood
0.0 0.2 04 0.6 0.8

N
/

6

Figure 5.9: The exact 95% CI for Poisson mean 0 (marked by the vertical
lines) and the likelihood based on x = 3.

Example 5.14: For comparison with the exact CIs the following table shows
the likelihood intervals at 15% cutoff for the same values of x shown in Example
5.12. For convenience we also name the interval limits as L(z) and U(z):

T 0 1 2 3 4 5 6 7 8
L(x) 0 0.06 034 075 125 1.80 2.39 3.01 3.66
U(x) 192 440 6.17 7.77 9.28 10.74 12.15 13.54 14.89

Figure 5.10(a) shows that there is very little practical difference between the
two types of intervals, except at © = 0. The coverage probability plot in Figure
5.10(b), however, shows that the likelihood interval may have less than 95%
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Figure 5.10: (a) Likelihood intervals for the Poisson mean 6 based on ob-
serving x; the dotted lines are the limits of 95% exact confidence intervals.
(b) The coverage probability of the likelihood-based intervals at 15% cutoff.

coverage. The minimum coverage of 85% is observed at 6 around 1.95, just
outside the upper limit for x = 0. O

Now note that the likelihood function based on x = 0 is
L) =e"?,

which is not regular, so we cannot relate 15% cutoff with the usual (approx-
imate) 95% confidence level. The problem of how to construct a sensible
interval when = = 0 arises also with the exact method. It is interesting to
see the dramatic change in the coverage probability plot if we simply ‘fix’
the likelihood interval at x = 0 to match the CI; that is, change the upper
limit from 1.92 to 3.69 (corresponding to a cutoff of 2.5%). Figure 5.11

Changing the interval at x=0

1.00
1

Coverage probability
0.80 0.85 0.90 0.95

Figure 5.11: The coverage probability of the likelihood-based intervals where
the upper limit at x = 0 is changed from 1.92 to 3.68.

shows that the coverage probability is now mostly above 95%, except for
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some small intervals of . The minimum coverage is now 92%; the low
coverage is mainly caused by the interval for x = 1 (Exercise 5.12).

5.8 Exact inference for binomial model

Suppose we observe x from a binomial distribution with a known n and an
unknown probability . The normal approximation of the sample propor-
tion 0 gives the Wald CI formula

0+ Za)2 se(a)

where the standard error is

~ ~

se(6) = 1/6(1 — 6)/n.

This approximate interval works well if n is large enough and 6 is far
from zero or one. For small n, Agresti and Coull (1998) suggest adding ‘2
successes and 2 failures’ to the observed data before using the Wald interval
formula.

There is a large literature on the ‘exact’ CI for the binomial proportion.
Many texts recommend the Clopper—Pearson (1934) interval, similar to the
one described previously for the Poisson mean. A 100(1 — )% CI for 0
based on observing x is L(z) to U(x), where they satisfy two one-sided
P-value conditions

PQZL(X Z x) = a/2

and
Po—y(X <z)=a/2.

At £ =0 and x = n the CI is naturally one sided, which is associated with
one-sided tests, so, as in the Poisson case, there is the question whether
we allow the full a or still /2 in the computation above. However, to
guarantee a coverage probability of at least the nominal (claimed) value,
we must use «/2.

Example 5.15: For n = 10 the confidence limits based on observing z =
0,...,10 are given in the table and plotted in Figure 5.12(a).

T 0 1 2 3 4 5 6 7 8 9 10
L(x) o .01 .03 .07r .13 .19 26 .35 44 .56 .70
U(z) 30 44 56 65 .74 8 .87 .93 97 99 1

As before the coverage probability is computed according to

ZI{L(@ <0< U(x)} ( 1360 ) 97 (1— 9)'0.
z=0

The coverage probability is plotted in Figure 5.12(b), showing that the procedure
is quite conservative. A simple average of the coverage probability is 98%, much
higher than the intended 95% level. O
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(a) Exact 95% confidence intervals ° (b) Coverage probability
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Figure 5.12: (a) Clopper—Pearson 95% Cls for binomial proportion. (b)
The coverage probability of the ‘exact’ 95% CL.

5.9 Nuisance parameters

We will discuss very briefly the classical confidence procedures when there
are nuisance parameters. We want a CI with the correct coverage at all
possible values of the nuisance parameters. There are two classical ways to
deal with the nuisance parameters: using pivotal statistics and condition-
ing.

Pivotal quantity

A pivot is a random variable whose distribution is free of any unknown
parameter; typically it is a function of both the data and the unknown
parameters. Freedom from the nuisance parameter implies that a CI con-
structed from a pivot has a simple coverage probability statement, true for
all values of the unknown parameter. This is an ideal route to arrive at a
CI, but there is no guarantee that we can find such a statistic for the prob-
lem at hand. Pivots are usually available in normal theory linear models,
which form a large part of classical statistics.

One-sample problems

If x1,...,2, are an iid sample from N(u,o?), then

X —
278 i

for all p and 2. So the 100(1 — a)% CI for pu given by

S

tn—l,a/2%

has an exact coverage of 100(1 — )% for all u and o2.

T — <N’<I+tn—l,a/2

vn
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Two-sample problems

Ifz1,..., 2, are an iid sample from N (i, 0%) and y1, . . ., yy, from N (u,, 0?),
then
Ty — (pa — piy)

~ tmgn—
spy/1/m+1/n e

for all p1,, p, and o2, where

2 2
2 (m—1)s3 + (n—1)s)

p m+n—2

and s2 and si are the sample variances. We can then derive the CI for
Ha — Hy-
One-sample variance
If z1,...,2, are an iid sample from N (u,c?), then
(n—1)s?

2
0_2 ~ Xn—1-

So the 100(1 — @)% CI for o2 is

n—1)s? n—1)s
e U
anl,lfoz/2 anl,a/Z

For Michelson’s first twenty measurements of the speed of light in Exam-
ple 4.8 we get s2 = 11,009.5, so the 95% CI for o2 is

0.58s% < 02 < 2.1352,

giving
6,367 < 02 < 23,486.

Conditioning

Conditioning on the minimal sufficient statistics for the nuisance parame-
ters is used to reduce the unknown parameter space to the parameter of
interest only. This method usually works for models in the exponential
family.

Comparing two Poisson means

We have already seen this problem in the aspirin data example (Sec-
tion 4.7); our current discussion provides a repeated sampling interpre-
tation to the usual likelihood intervals found by conditioning.

Suppose = and y are independent Poisson samples with means A, and
Ay. We are not interested in the magnitude of A, or Ay, but in the relative
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size § = Ag/A\,. The conditional distribution of z given z +y = n is
binomial with parameters n and

Az 0

T=——=—".
ety O+1

Using the method given in the previous section we can construct a CI for

m, which can then be transformed to an interval for 6. Suppose we set the
100(1 — @)% CI for 6 such that

POeCIX+Y)>1-a,

for all Az and A,. That is, the coverage probability is greater than 1 — «
for every value of X + Y. So, unconditionally,

POeCl)>1—a.

Preference test

Suppose we asked 50 people for their preferences for a cola drink of brand
A or B, and we obtained the following result:

Prefer A 17
Prefer B 10
No preference 23

Is A really preferred over B? The ‘no preference’ group is a nuisance in this
comparison. Suppose we model the number of responses (n4,np, ne) in the
three groups as multinomial with probability pa, pp and pc =1—pa —pp.
Then the conditional distribution of n4 given ng = 23 is binomial with
parameters 50 — 23 = 27 and pa/(pa +pp) = 0/(0+ 1), from which we can
derive a conditional inference for 6 (Exercise 5.18).

5.10 Criticism of Cls

A fundamental issue in statistical inference is how to attach a relevant
measure of uncertainty to a sample-based statement such as a confidence
interval. In practice the confidence level is usually interpreted as such
a measure: an observed 95% CI has ‘95% level of certainty’ of covering
the true parameter. However, using a long-run frequency property for
such a purpose sometimes leads to logical contradictions. A weakness of
the traditional confidence theory is that, even when there is an obvious
contradiction, no alternative measure of uncertainty is available.

First, it is sometimes possible to know that a particular interval does
not contain the true parameter. This creates a rather absurd situation,
where we are ‘95% confident’ in an interval that we know is wrong, just
because in the long run we are 95% right.
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Example 5.16: Suppose z1,...,z10 are an iid sample from N(u, 1), where u
is known to be nonnegative. On observing T = —1.0, the 95% CI for u is

T +1.96/V/10,

yielding —1.62 < p < —0.38, which cannot cover a nonnegative u. (In a single
experiment, there is a 2.5% chance for this to happen if u = 0.) We can

e cither take the interval at face value and start questioning the assumption
that p > 0,

e or still believe u > 0 to be true, but in this case it only makes sense to report
a (likelihood) interval over p > 0.

How we react depends on our relative strength of belief about the data and the
assumption. O

The logical problem is captured by a quality control anecdote. A US
car company ordered parts from a Japanese supplier and stated that they
would accept 1% defectives. Sure enough, the parts came in two separate
boxes, a large one marked ‘perfect’ and a small one marked ‘defective’.

The moral of the story is that a global confidence statement such as
‘we are 95% confident’ can be meaningless when there are recognizable or
relevant subsets, for which we can make an equally valid but different state-
ment. This is a Fisherian insight that has not become common knowledge
in statistics.

The previous problem tends to happen if we restrict the parameter
space, but a similar phenomenon can also happen without parameter re-
striction. The following example from Buehler and Fedderson (1963) is
of fundamental importance, since it strikes at the t-based CIs. See also
Lehmann (1986, page 557).

Example 5.17: Suppose x1, 2 are an iid sample from N(u,o?), where o2 is

unknown. The exact 50% CI for u is
Ty < < T2,

where z(;y and () are the order statistics; such an interval is a likelihood interval
at 16% cutoff. We can show, however, that the conditional coverage

P(Xa) <p<X[0)>2/3
for all p and o, where C is a set of the form

C = {(x1, x2), coefficient of variation > v/2/(v/2 + 1) = 0.59}, (5.6)
and the coefficient of variation is

s V2|1 — a2

Y

So, if the observations are rather far apart in the sense of C', which can be readily
checked, then we know that the coverage is greater than 67%, and vice versa if the
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(a) 50% confidence intervals (b) Coverage probability
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Figure 5.13: (a) One hundred simulated intervals (1) < p < x(2y arranged
by the coefficient of variation. (b) The estimated coverage probability as a
function of the coefficient of variation. The vertical line at the coefficient
of variation of 0.59 corresponds to value in (5.6).

observations are closer together. What we have shown here is that it is possible
to group the intervals according to the recognizable subset C, so that different
groups have a different coverage probability, but overall they are 50% correct.

Figure 5.13(a) shows 100 simulated intervals z(1y < p < x(2) arranged by
the corresponding coefficient of variation; the true mean is puo = 1. The cover-
age probability in Figure 5.13(b) is based on smoothing the 100 pairs of values
{coefficient of variation, y}, where y = 1 if the interval covers po, and zero oth-
erwise. The coverage is lower than the nominal 50% if the coefficient of variation
is small, and can be greater otherwise.

The question is, if we observe (z1,z2) in C, say (—2,10), what ‘confidence’
do we have in the CI —2 < p < 10?7 How should we report the CI? Is it a 50%
or 67% CI? Suppose (z1,22) is a member of other relevant subsets with different
coverage probabilities; which one should we attach to a particular interval? Note
that in this example z(1y < p < z(9) is a unique likelihood interval with 16%
cutoff, unaffected by the existence of C. O

The phenomenon in the example is true for the general one-sample
problem: ‘wide’ Cls in some sense have larger coverage probability than the
stated confidence level, and vice versa for ‘short’ intervals. Specifically, let
T1,...,%, be an iid sample from N (u,0?) with both parameters unknown,
and

C={(z1,...,24),8/|Z| > k},
for some k, be a set where T is small relative to s, or where the hypothesis
1 = 0 is not rejected at a certain level. The standard CI for p is
S

s
th— — —_—.
n—1,a/2 \/ﬁ \/ﬁ
It has been shown (Lehmann 1986, Chapter 10) that, for some € > 0,
PpeClC)>(1—a)+e

T — <M<f+tn71,o¢/2

for all ;1 and 02. This means C' is a relevant subset.
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There has been no satisfactory answer to this problem from the fre-
quentist quarters. In fact, Lehmann (1986, page 558) declared that the
existence of certain relevant subsets is ‘an embarrassment to confidence
theory’. The closest thing to an answer is the area of conditional inference
(Reid 1995), which has produced many theoretical results, but as yet no
ready methodology or rules for routine data analysis. We should bear in
mind, however, that these criticisms are not directed at the interval it-
self, but at the relevance of long-run frequentist properties as a measure of
uncertainty for an observed interval.

5.11 Exercises

Exercise 5.1: Let T' = T be an estimate of the mean u. Show that the jackknife
estimate of the bias is b = 0.

Exercise 5.2: Let T'= 2 Y (z; — %) be an estimate of the variance o°. Show
that the jackknife estimate of the bias is

]

so that the corrected estimate is the unbiased estimate

T-b= ——3 (@ -

n—1

Exercise 5.3: Use the jackknife method to estimate the bias of e~® in Exam-
ple 5.1.

Exercise 5.4: Let X be a sample from the binomial distribution with parame-

ters n and 6, and the estimate 0= X/n. Find the general bias formula for 92 as
an estimate of 0. Find the jackknife estimate of #% and show that it is unbiased.

Exercise 5.5: Suppose the bias of T" as an estimate of  is of the form

')

b(0) = ax/n",

k=1

where ar may depend on 6, but not on n. Show that the corrected estimate using
the jackknife has a bias of order n=2. That is, the jackknife procedure removes

the bias of order n™t.

Exercise 5.6: Investigate the relationship between likelihood and two-sided
P-value in the binomial model with n = 10 and success probability 6. Test
Hy : 0 = 0 for some values of 6.

Exercise 5.7: Efron (1993) defines an implied likelihood from a confidence
density as
Cza(0)

cx(0)

where cz»(0) is the confidence density based on doubling the observed data x,
and c.(0) is based on the original data z. For example, if we observe z = 5
from Poisson(f), doubling the data means observing (z,z) = (5,5) as an iid
sample. Using simple observations, compare the exact and implied likelihoods in
the normal, Poisson and binomial cases.

L(9) =
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Exercise 5.8: Verify the bootstrap variance and CI for the correlation coef-
ficient given in Example 5.5 and its continuation in Section 5.6. Compare the
results of the nonparametric bootstrap with a parametric bootstrap that assumes
bivariate normal model.

Exercise 5.9: Suppose z is N(uz, 1) and y is N(uy, 1), and they are indepen-
dent. We are interested in the ratio 6 = py/pz. Define z = y — 0z, so z is
N(0,1+6?), which depends only on # and can be a basis for inference for §. The
so-called Fieller’s CI is based on

— 0z)?

Find the general conditions so that the 95% CI for 6 is (i) an interval, (ii) two
disjoint intervals, or (iii) the whole real line. Discuss how we should interpret
part (iii). As a separate exercise, given £ = —1 and y = 1.5,

(a) find Fieller’s 95% CI for 6.
(b) plot the likelihood function of 6.

(c) find the 100(1 — @)% CI for 6 at various values of «, so you obtain the
conditions that satisfy (i), (ii) or (iii) above. Explain the result in terms of
the likelihood function.

(d) Discuss the application of confidence density concept to this problem.
Exercise 5.10: For the simple Poisson mean model, compute and plot the
coverage probability of the two-sided intervals based on the mid-P-value.

Exercise 5.11: It is known that the Poisson distribution with a large mean 6
is approximately normal.

(a) Derive an approximate confidence interval based on this result.

(b) Show that it is equivalent to a likelihood-based interval using quadratic
approximation on the log-likelihood function. Discuss the problem at x = 0.

(c) Compare the intervals we get using the approximation with the intervals in
the text.

(d) Find the coverage probability for § between 0 and 7.

Exercise 5.12: The likelihood of the Poisson mean 6 based on x = 1 is also
quite asymmetric. Revise the likelihood-based interval to match the exact confi-
dence interval, and recompute the coverage probability plot.

Exercise 5.13: For the exact 100(1 — )% CI defined in Section 5.7 show
that the coverage probability is at least (1 — «). (Hint: draw a plot similar
to Figure 5.5, and express the probability of L(z) < 8 < U(x) in terms of the
random variable z. Note that x is a discrete random variable.)

Exercise 5.14: Investigate and compare the coverage probability of the Wald
and likelihood-based ClIs for 6 based on z from binomial(n = 10, 8).

Exercise 5.15: For inference of binomial 6 for n small, consider transforming
the parameter to the log-odds

0
=log ——.
P 8T 5

Show that the standard error of zz is
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Se(l//)\):<l+ 1 )1/2.

x n—x

We can construct a 95% confidence interval for v, and then transform back to
get a 95% CI for 6. (For x = 0 and = = n, use the exact intervals.) For n = 10,
compare and investigate the coverage probability of the resulting intervals.

Exercise 5.16: For inference of binomial 6, Agresti and Coull (1998) suggest
adding ‘2 successes and 2 failures’ to the observed x and then using the Wald
interval formula. For n = 10, investigate this interval and compare it with the
Clopper—Pearson and the likelihood-based intervals. Discuss the advantages.

Exercise 5.17: Using Michelson’s first twenty measurements of the speed of
light in Example 4.8, compute the confidence density of variance parameter. Hint:
use the marginal distibution of the sample variance

(n—1)s? 2
T2 Y Xe-l
Compare the confidence density with the (normalized) likelihood function based
on the same distribution. Compute the 95% CI for o from the confidence density
and show that it matches the 95% CI using the pivotal statistic method.

Exercise 5.18: Compute the likelihood-based and exact Cls for € in the pref-
erence data in Section 5.9.






6

Modelling relationships:
regression models

Modelling relationships and comparing groups is the essence of statisti-
cal modelling. Separate descriptions of individual groups are usually less
interesting than group comparisons. Most scientific knowledge is about
relationships between various measurements; for example, £ = mc?, or
‘population grows exponentially but resources only grow linearly’, etc.

In this chapter we will learn that any of the basic models in Chapter 4
can be extended to a regression model. The outcome variable is no longer
an iid observation, but a function of some predictor variable(s). What
model to use and when is generally determined by the nature of the data;

it is knowledge that we acquire by working through many examples.

Example 6.1: To allow an estimate of altitude without carrying a barometer,
in the mid-19th century the physicist James Forbes conducted experiments relat-
ing the water boiling point 7" and barometric pressure p. The latter had a known
relationship to altitude. The measurements are shown in first two columns of Ta-
ble 6.1; the last column is computed according to a known formula (6.1) below.
The barometric pressure p has a physical relationship with altitude A according
to differential equation
dp

= —cp,
dA b
where ¢ is a known constant. The solution is

log(p/po) = —cA

where p, is the pressure at sea level. If p is in mmHg and A is in metres, then
Po = 760 and ¢~ = 8580.71, so

A = —8580.71log(p/760)
= fo+ pPilogp (6.1)
with By = 8580.711og 760 and $; = —8580.71. Except for one possible outlier,

Figure 6.1 shows a clear linear relationship between boiling point and altitude.
The dashed line is a regression line, also of the form

A=by+ T,

for appropriate regression coefficients bg and by. It is rare in statistical applica-
tions to see such a perfect relationship. (In fact physicists now have a determin-
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Boiling point  Pressure  Altitude

(°F) (in Hg) (m)

194.5 20.79 3124.21
194.3 20.79 3124.21
197.9 22.40 2484.18
198.4 22.67 2381.37
199.4 23.15 2201.59
199.9 23.35 2127.77
200.9 23.89 1931.59
201.1 23.99 1895.75
201.4 24.02 1885.03
201.3 24.01 1888.60
203.6 25.14 1493.98
204.6 26.57 1019.27
209.5 28.49 420.59
208.6 27.76 643.32
210.7 29.04 256.52
211.9 29.88 11.84
212.2 30.06 -39.69

Table 6.1: Forbes’ data on boiling point, barometric pressure and altitude
(Weisberg 1985).

Forbes’ data

Altitude (metres)
1000 2000 3000
1 1 1 1 1
s
o

‘o
o

"o

0
L

T T T T T T
90 92 94 96 98 100
Boiling point (Celsius)

Figure 6.1: Relationship between boiling point and altitude. The dashed line
1s the regression line.

istic phase diagram of water, which has a curve for boiling point as a function of
pressure.) O

6.1 Normal linear models

The normal regression model is the basis of classical statistical modelling.
It is natural for models in the natural sciences, where the outcome variables
are usually continuous and the error variable usually represents measure-
ment noise.

In the basic model the outcomes y1,...,y, are iid observations from
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N(u,0?). The nontrivial extension that allows some modelling of the rela-
tionship with predictors is to drop the identical requirement from the iid:
y;’s are independent N (p;,02). The mean y; is then modeled as a function
of the predictors. We say the mean vector follows a particular structure;
for example, given a predictor x; we might specify

for some function h depending on unknown an vector parameter 3. The
simplest structure is the linear model

i = x;ﬁ,
where § € RP. Traditionally the model is written in matrix form as
y=XB+e,

where X is an n x p design matrix. Now e;’s are iid N(0, o?), but note that
this explicit error specification is not necessary. It is sufficient to specify
that y; is N(u;,02) and p; = 3. This is especially relevant for nonnormal
regression models, since in this case there is no explicit error term.

Let the parameter 6 = (3,02). The likelihood is

1 n/2 1 n Lo
20) = (5o ) o5 D2l
=1

It is straightforward to show (Exercise 6.1) that the MLEs of 3 and o2 are

B = (X'X)'X'Y
52 = 72 —xﬁ

and the observed Fisher information for § is
I(B) = %(X'X).

The standard errors of the regression estimates are the square root of the
diagonal of R
I7H(B) =3*(X'X)~

To make these correspond exactly with standard practice in regression anal-
ysis, we can use the (n — p) divisor for 2. A likelihood justification for
this divisor is given in Example 10.11 in Section 10.6.

The standard regression models are usually solved using the least-squares
(LS) principle, i.e. we estimate 8 by minimizing

Z(yi —if)*.
i
This is equivalent to the likelihood approach as far as the computation is
concerned, but there is a great difference in the statistical content of the
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two methods. To use the likelihood method we start by making a distribu-
tional assumption on the outcome y, while the LS method does not make
such an assumption. The implication is that with the likelihood approach
inference on [ is already implicit; it is a matter of further computation.
In contrast, inference on LS estimates requires further analytical work in
terms of distribution or sampling theory, at which point we need some
distributional assumptions.

If o2 is unknown, as is commonly the case, it is straightforward to
compute the profile likelihood for 3. For fixed 3 the MLE of o2 is

~ 1
7%(8) = n Z(yi —aiB)?,
so we obtain the profile
L(B) = constant x {52(8)} /2.
Profile likelihood of individual regression parameters can be also computed

analytically (Exercise 6.2).

Example 6.2: Plutonium has been produced in Hanford, Washington State,
since World War II. It is believed that radioactive waste has leaked into the water
table and the Columbia River, which flows through parts of Oregon on its way
to the Pacific Ocean. Fadeley (1965) reported the following data:

Index of Cancer

County exposure mortality
Clatsop 8.34 210.3
Columbia 6.41 177.9
Gilliam 3.41 129.9
Hood River 3.83 162.2
Morrow 2.57 130.1
Portland 11.64 207.5
Sherman 1.25 113.5
Umatilla 2.49 147.1
‘Wasco 1.62 137.5

Key to this study are the choice of counties, the definition of ‘index of ex-
posure’ and the cancer classification; these carry an inductive uncertainty and
are open to controversy. The chosen counties in this study have a waterfront on
the Columbia River or the Pacific Ocean; the index of exposure was computed
from several factors, for example the average distance of the population from the
waterfront, and the cancer mortality is the number of cancer deaths per 100,000
person-years between 1959-1964.

Figure 6.2(a) shows that a linear model

Yi=0o+ b1 (xzi = T) + e

is quite sensible to describe the relationship, where (3; is the parameter of interest.
Assuming a normal model Figure 6.2(b) shows the likelihood contour of (5o, 81)
at 90% to 10% cutoffs; these define the approximate 10% to 90% confidence
regions. It is convenient to summarize the MLEs in the following table:
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(a) Hanford data (b) Contour of the likelihood
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Figure 6.2: (a) The scatter plot of Hanford data. (b) The likelihood contour
of the regression parameters (8o, 51). (¢) The profile likelihood of B1; the
approzimate 95% CI for By is (6.5,11.9). (d) The residual plot indicates
some nonnormal behaviour.

Effect Parameter Estimate se
Intercept Bo 157.33 4.67
Exposure b1 9.23 1.42

Figure 6.2(c) shows the profile likelihood for 81; the Wald statistic for testing
Hy: 1 =01is z =9.23/1.42 = 6.5, so there is a strong evidence that exposure to
radioactive waste is associated with increased cancer rate. The QQ-plot of the
residuals in Figure 6.2(d) shows evidence of non-normality. Some extra data and
modelling may be warranted; for example, the counties have different populations,
so the observed cancer rates have different precision. There could be other factors
that need to enter the model, such as age distribution and gender balance, etc. O

Nonlinear regression models

The normal models can be extended to cover nonlinear relationships be-
tween the outcome and the predictors. Suppose we believe that

yi = f(xi, B) + e

where f(-) is a known function up to the regression parameter 3; for ex-
ample,
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f(x’uﬂ) = ﬁO + 616_B2Iia

and e;’s are iid N(0,02). Then we can derive the likelihood function for
0 = (Bo, B1, B2, 0%) and compute inferential quantities for 3 (Exercise 6.4).
A nonlinear optimization routine is required for parameter estimation.

6.2 Logistic regression models

The extension of classical linear models to cover non-normal outcomes is
one of the most successful applications of likelihood-based modelling. In
classical linear models we usually assume the outcomes are independent
and normally distributed with equal variance. These assumptions are man-
ifestly doubtful when the outcome variable is, for example, the success or
failure of an operation, the number of hits per hour for a website, the
number of insurance claims per month, etc. In these cases

e normality is not plausible,

e a linear model Ey; = }f is usually not natural,

e variance generally depends on the mean.

Example 6.3: Table 6.2 shows the data from an experimental surgery, where
y; = 1 if the patient died within 30 days of surgery and zero otherwise. Age
is recorded for each patient and the question is whether age is associated with
survival rate. There is a total of n = 40 patients and Zyi = 14 deaths. The
pattern is shown in Figure 6.3(a). O

Patient Age Patient Age i
1 50 0 21 61 0
2 50 0 22 61 1
3 51 0 23 61 1
4 51 0 24 62 1
5 53 0 25 62 1
6 54 0 26 62 0
7 54 0 27 62 1
8 54 0 28 63 0
9 55 0 29 63 0

10 55 0 30 63 1
11 56 0 31 64 0
12 56 0 32 64 1
13 56 0 33 65 0
14 57 1 34 67 1
15 57 1 35 67 1
16 57 0 36 68 0
17 57 0 37 68 1
18 58 0 38 69 0
19 59 1 39 70 1
20 60 0 40 71 0

Table 6.2: Surgical mortality and age information on 40 patients
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It is natural to model y; as a Bernoulli event with probability 6; de-
pending on age. We might, for example, consider

(i) 8; = Bo + P1 Age;. This simple choice is not very natural, since 6; is
not constrained to be between 0 and 1.

(ii) 6; = F(Bo + P1 Age;), where 0 < F(-) < 1. In principle, any distri-
bution function F(-) will work. For example, the choice of the normal
distribution function gives the so-called probit regression.

(iii) the logistic regression model:

o exp(Bo + B1 Age;)
" 1+exp(Bo + 81 Age;)’

or

9,
1 L — Age,
" Bo + B1 Age;,

i.e. the log odds is linear in age, or the effect of age on the odds
(loosely means risk) of death is multiplicative. For example, f; = 0.1
means that for every year increase in age the odds of death increases
by a factor of €®! = 1.11. For ease of interpretation and computation
logistic regression is more commonly used than probit regression.

For the logistic regression model, given the observed data, the likelihood
function of the parameters (5, 81) is

L(Bo,B1) = [Jora—e,)'—
i=1

H(leieiyi (1—6,).

i

To reduce the correlation between the estimates of 5y and (1, we centre
the age by recomputing Age <+ Age — mean(Age). This redefinition only
affects By, but does not change the magnitude or meaning of 5;. The
log-likelihood is

log L(Bo, B1) = Y _[(Bo + BrAge;)yi —log{1 + exp(By + B1Age;)}].

7

In principle the statistical problem is over: the rest is a matter of computing
or finding summaries from the likelihood. The numerical method to obtain
the MLE is discussed in Section 6.7.

The contours of this likelihood function are given in Figure 6.3(b).
These contour lines represent the approximate 10% to 90% confidence
region for the parameters. A summary of the estimates is given in the
following table:

Effect Parameter Estimate se
Intercept Bo —0.723  0.367
Age 51 0.160 0.072
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Figure 6.3: (a) The surgical mortality data with the fitted logistic regression
line. (b) The contours of the likelihood function. (c¢) The profile likelihood
of B1. (d) Quadratic approximation of the log-likelihood of 1.

The profile likelihood of 8; is shown in Figure 6.3(c). The approximate
95% CI for 3, computed from the profile likelihood, is (0.03,0.32), indicat-
ing some evidence of association between age and surgical mortality. Fig-
ure 6.3(d) shows a good quadratic approximation of the profile likelihood.
So, alternatively we can report the Wald statistic z = 0.160/0.072 = 2.22.

In contrast with the normal model, note that there is no explicit vari-
ance parameter in the logistic regression model. The Bernoulli model au-
tomatically specifies a relationship between the mean and the variance;
in engineering terms we use a ‘Bernoulli noise’. Of course this implied
specification might be wrong, for example the observed variance is incon-
sistent with the Bernoulli variance. An extension of the Bernoulli model
that allows a more flexible variance term is the exponential family model
in Section 6.5.

Grouped data

Suppose the i’th outcome consists of the number of successes y; in n; trials.
A sensible model for such an outcome is that y; is binomial(n;, 6;), where
the success probability 6; is a function of some predictors x;. Consideration
of the model and derivation of the likelihood (Exercise 6.8) are similar to
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the preceding development, which is only a special case for n; = 1.

Example 6.4: Table 6.3, from Crowder (1978), shows the results of a 2x2
factorial experiment on seed variety and type of root extract. The outcome y; is
the number of seeds that germinated out of n; planted seeds.

Seed A Seed B
Extract 1 Extract 2 Extract 1 Extract 2
Yi ng Yi n; Yi n; Yi n;
10 39 5 6 8 16 3 12

23 62 53 74 10 30 22 41

23 81 55 72 8 28 15 30

26 51 32 51 23 45 32 51

17 39 46 79 0 4 3 7
10 13

Table 6.3: Seed germination data from Crowder (1978). The outcome y; is
the number seeds that germinated out of n; planted seeds.

The average germination rates for the four treatments are 0.36, 0.68, 0.39
and 0.53. The effect of root extract appears to be larger for seed A, so there is
an indication of interaction. Assuming that y; is binomial(n;,p;), consider the
logistic regression

logit p; = =
where (3 contains the constant term, the main effects for seed and root extract,
and their interaction. The appropriate design matrix X is given by

e e N e e N e
HEHERRERRHERERHEFFFOOO0OO000O0C0OOOO

PR RFHRHOOOOORKRHHHHOOOOO
HFRERHFOO0OO00000000000O0O

Table 6.4 confirms the significant interaction term. Separate analyses within each
seed group show that root extract has a significant effect. O

6.3 Poisson regression models

Example 6.5: A health insurance company is interested in studying how age
is associated with the number of claims y filed for the previous year. The data
from a sample of 35 customers are given in Table 6.5. Figure 6.4(a) shows the
scatter plot of the number of claims versus age. O
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Effects Estimate se

Constant —0.56 0.13
Seed variety 0.15 0.22
Root extract 1.32 0.18
Interaction —0.78 0.31

Table 6.4: Summary analysis of germination data.

Number of Number of

Customer Age claims Customer Age claims
1 18 0 19 31 0
2 20 1 20 31 3
3 22 1 21 32 4
4 23 0 22 33 2
5 23 0 23 33 0
6 24 0 24 33 1
7 24 1 25 34 2
8 25 0 26 34 3
9 25 5 27 34 0
10 27 0 28 35 1
11 28 1 29 35 2
12 28 2 30 35 1
13 28 2 31 37 2
14 29 4 32 37 5
15 30 2 33 37 1
16 30 1 34 39 2
17 30 3 35 40 4
18 30 1

Table 6.5: Health insurance claim data.

It is sensible in this case to start with the assumption that y; is Poisson
with mean 6;, where 6; is a function of age. For example,

(i) 6; = Bo + P1Age;. Again, this simple linear model has a weakness in
that it is not constrained to the range of 6; > 0. This is especially
important if #; is near zero.

(ii) 0; = exp(Bo+ L1 Age;) or logb; = o+ 51 Age;. This log-linear structure
is the most commonly used model for Poisson regression; it overcomes
the weakness of the simple linear model.

Assuming a Poisson log-linear model, the log-likelihood of the parameters

is given by

log L(Bo, 1) = > {—0i+uy;logbi}
=1

= ) {—exp(Bo+ frAge;) +vi(Bo + Pr1Age,)}

7
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Figure 6.4: (a) The customer claims data with the Poisson regression esti-
mate. (b) The contours of the likelihood function. (¢) The profile likelihood
of B1. (d) The quadratic approxzimation of the log-likelihood of (3.

where 6; is a function of (g, 81). To reduce the correlation between the
estimates of By and ;1 we centre the age data by setting Age «+ Age —
mean(Age). Figure 6.4(b) shows the contours at the approximate 10% to
90% confidence regions for the parameters. The MLEs of the parameters
are summarized in the following table:

Effect Parameter Estimate se
Intercept Bo 0.43 0.14
Age 51 0.066 0.026

The profile likelihood of 51 and its quadratic approximation are shown
in Figures 6.4(c) and (d). Here the quadratic approximation is excellent.
The Wald statistic to test Hp: 1 = 0 is z = 0.066/0.026 = 2.54, so
there is evidence that the number of claims is associated with age. The
approximate 95% CI for the claim rate is 0.02 to 0.12 claims per customer
per year.

Example 6.6: The following table shows the number of accidents at eight
different locations, over a number of years, before and after installation of some
traffic control measures. The question is whether there has been a significant
change in the rate of accidents. For example, in location 1, before the traffic
control measure was installed, there were 13 accidents occurring in 9 years; no
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accidents transpired for the 2 years following the installation. With a simple

Before After
Location Years Accidents Years Accidents
13 2
6
30
20
10
15
7
13
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0 © 00 © WY O
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analysis, if the accident rate is constant over locations, we can simply compare
the total of 114 accidents over 68 location-years (rate of 1.676/year) versus 15
accidents over 18 location-years (rate of 0.833/year). This indicates the rate has
dropped (rate ratio = 0.833/1.676 = 0.497).

Let y;; be the number of accidents in location ¢ under ‘treatment’ j, with j = 0
for ‘before’ and j = 1 for ‘after’ installation of the traffic control. Assume y;; is
Poisson with mean p;; = pijAi;j, where p;; is the known period of observations.
The rate \;; is modelled as the function of predictors. For example, assuming
there is no location effect, we can consider a log-linear model

log pi = logpi; + log Aij
log pij + Ao + 75,

where 7; is the effect of treatment j; assume that 79 = 0, so 71 is the treatment
contrast. The special predictor logp;; is called an offset term; we can think of it
as a predictor with known coefficient (equal to one in this case).

Computing the Poisson regression as in the previous example, we obtain a
summary table:

Effect Parameter Estimate se z
Constant Ao 0.517  0.094
Treatment a1 —0.699 0.274 —2.55

So, the observed drop in accident rate appears to be significant. Note that the
relative drop is e~ %% = 0.497, matching the previous simple computation.

The main advantage of the Poisson regression model is that it can be easily
extended if we believe there are other factors associated with accident rates. For
example, we might consider

log Aij = Ao + 4 + 75, (6'2)

where ¢; is the effect of location ¢; for identifiability assume, for example, that
lo = 0. Estimation of this model is left as an exercise. O

6.4 Nonnormal continuous regression

Example 6.7: In a study of plant competition, a certain species was planted
in 10 plots using various densities d; the density is measured by the number of
plants per unit area. The outcome of interest y is the average yield per plant.
The data are given in Table 6.6 and plotted in Figure 6.5(a).
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Plot  Density Yield

1 5 122.7
2 10 63.0
3 15 32.5
4 20 34.5
5 30 31.4
6 40 17.7
7 60 21.9
8 80 21.3
9 100 18.4

Table 6.6: Plant competition data.

In view of Figure 6.5(a) and (b) it is sensible to model yield as inversely
related to plant density. As a first approach and for future comparison we
will analyse the data according to a normal linear model, where

1/yi = Bo + P1logd; + e;,

but note that the errors appear to have larger variance for larger values of
1/y;. As before, to avoid the correlation between the estimates of Gy and
B1 the log-density is centred: logd; + logd;—mean(logd;). The results of
the regression analysis are summarized in the following table.

Effect Parameter Estimate se
Intercept Bo 0.0355  0.0023
Log-density B1 0.0155  0.0024

The unbiased estimate of error variance is 72 = 0.0000468. The Wald
statistic here is z = 0.0155/0.0024 = 6.46, which, as expected, confirms a
strong competition effect.

To account for unequal variability in the outcome values we now assume
that y; is exponential with mean p;, where

1/pi = Bo + P log d,.

The variance of y; is p?; using the Delta method the variance of 1/y; is
approximately 1/u?, consistent with the pattern in Figure 6.5(b). The
exponential density is given by

Pus (ys) = piy tev/m

Given the observed data, the log-likelihood for the parameter 8 = (5o, 81)
is

log L(B) = Z{—logui—yi/ui}
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Figure 6.5: (a) Competition data showing yield as a function of plant den-
sity. (b) Inverse yield is approzimately linear in log density, but note the
increasing variance. (c¢) Contours of the likelihood function. (d) The profile
likelihood of (.

= Z{log(ﬁo + 51 logd;) — yi(Bo + 51 logd;)}.

The Fisher information of regression parameter S = (8o, 51) is
2

0
I(B) = " 9BoF log L(ﬁ)‘

~2 /
E My TiZy
i

where the vector z; = (1,logd;). Defining the design matrix X appropri-
ately, and setting a diagonal weight matrix W = diag{fi?}, we can write

B=8

-~

1(B) = XWX,

so the estimated variance of J is (XWX)- L

Figure 6.5(c) shows the contours of the likelihood function with the
usual approximate 10% to 90% confidence regions. Figure 6.5(d) shows
the profile likelihood of 8;. A summary of the parameter estimates is
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Effect Parameter Estimate se
Intercept Bo 0.0347  0.0123
Log-density B1 0.0157  0.0085

The parameter estimates are similar to the normal-based estimates, but
there is a dramatic change in the standard errors. The Wald statistic is
z = 0.0157/0.0085 = 1.85, so now there is only moderate evidence for
association. There is obviously something wrong with this approach.

The exponential model implies that the variance is the square of the
mean. How do we check this assumption? If var(y;) = p?, then we should

expect
var <M> =1.
i

From the estimated model we can compute

1 (yi — )?

— Z == 0.025,
where we use the (n—p) divisor to get a less biased estimate. This suggests
that the exponential model is not appropriate. The problem with the fixed
mean—variance relationship is the same as that in the Poisson and logistic
regression models. A larger family of models that overcomes this general
weakness is given by the exponential family model discussed in the coming
section.

6.5 Exponential family regression models

As discussed in Section 4.9, in these models the log-likelihood contribution
of an outcome y; is of the form

_yibi — A(0;)
B ¢

where A(6;) and c(y;, ¢) are known functions; the latter does not need to be
explicit. The parameter ¢ is the dispersion parameter that allows a more
flexible relationship between the mean and variance. For an exponential
family model we have

logL<9L7¢) + C(yi7¢)7

Ey; = A'(0;) = i

and
var(y;) = ¢A” (0;) = dv(ps).

Suppose we are interested to analyse the association between an out-
come y and a predictor vector xz. Using the general exponential family
for a regression analysis requires two specifications. Firstly we need to
specify A(6;), which is usually chosen from among the standard models:
A(6;) = 62 /2 from the normal model, A(6;) = €% from the Poisson model,
etc.; see Section 4.9. Hence we usually refer to this specification as the
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choice of distribution or family. The choice of A(6;) implies a certain mean-
variance relationship.
Secondly we need to specify a link function h(u;) so that

h(pi) = x3B.

In the previous sections we have used:

1. the identity link h(u;) = p; for normal data

2. the logistic link h(u;) = log{u;/(1 — p;)} for Bernoulli data
3. the log link h(u;) = log p; for Poisson data

4. the inverse link h(p;) = 1/p; for exponential data.

These cover most of the link functions used in practice; other possible links
are, for example, the probit, complementary log-log and square-root. The
choice of link function is usually determined by some subject matter or
other theoretical considerations. With these two specifications, we might
fit ‘a normal model with an identity link’, or ‘a gamma model with a log
link’; etc.

Since p; = A’(6;), there is an implied relationship

9(0;) = =38
between 6; and 8. The choice of h(y;) such that 6; = h(u;) or

is called the canonical-link function. We can check that the link functions
listed above are the canonical link for the corresponding distributions. By
choosing a canonical link we need only specify A(6;) or a distribution of y;.
While convenient, there is no reason why the canonical link is necessarily
an appropriate link. For example, in some applications we may need to
model a Poisson outcome using identity link.

The class of linear models under the general exponential family is called
generalized linear models (GLM). Most of the nonnormal regression models
performed in practice, such as logistic or Poisson regressions, are instances
of GLM, so the class constitutes one of the most important frameworks
for data analysis. One might argue that it will be easier to specify the
mean—variance relationship directly, and, furthermore, one can check the
relationship graphically. Such an approach is provided by the estimating
equation approach, which is discussed in Chapter 14.

To apply the model for the competition data from Example 6.7, first
look at the basic exponential model

log L(p:) = —yi/pi — log ju;.

To extend this model we simply state that we use the exponential family
model with 6; = 1/u;, and

A(0;) = log p; = —log 0;.
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The standard exponential model corresponds to ¢ = 1; it can be shown
that extending the standard model with free parameter ¢ is equivalent to
using the gamma(u;, ¢) model.

Let us continue with the inverse relationship

1

Hi= Bo + B logd;’

or
1/p; = Bo + P1logd;,

i.e. using the inverse-link function h(u;) = 1/u,. Since 1/p; = 6; the inverse
link is the canonical-link function in this case; the possibility of the log-link
function is given in Exercise 6.21. The total log-likelihood of 8 = (B, 51)

is
—y;0; +log 0;
log L(5,0) =Y {W +c(y¢,¢>},

where the explicit form of ¢(y;, ¢) is given by the gamma model (Section
4.8). For fixed value of ¢, the estimation of § is exactly the same as that
for the basic exponential model, so we will get the same MLE.

The dispersion parameter ¢ only modifies the standard errors. The
Fisher information of the regression parameter is

g

1(B) = log L(8, qb)’

g s

92
—  _ 41 § .
= 9 0pIp’ 4 log 0
= ¢ 'Y fw]

where the vector z} = (1,logd;). Defining the design matrix X appropri-
ately like before, and setting a diagonal weight matrix W = diag{i?}, we
can write N
1(3) = o~ (XWX).

Thus the Fisher information is modified by a factor ¢—! compared with the
basic exponential model, or the standard errors of the MLEs are modified
by a factor of v/¢.

In this example it is possible to estimate ¢ using an exact gamma like-
lihood; the approximate likelihood method is given in the next section.
Alternatively, we might use the method of moments estimate: from

Va’r(yi) = ¢/u‘227

or var{(y; — u;)/ i} = ¢, we have

~ 1 (yi — H
e
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Using a standard statistical package that allows GLM with the gamma
family, we obtain the following summary table for the model estimates:

Effect Parameter Estimate se
Intercept Bo 0.0347  0.0019
Log-density 051 0.0157  0.0013

The estimated value of ¢ is (E = 0.025. The standard error of Bl is now
more in line with the value from the normal regression; in fact, here we
have a better standard error as a reward for better modelling of the unequal
variances.

6.6 Deviance in GLM

One of the most important applications of the likelihood ratio statistic is
in the concept of deviance in GLM. Its main use is for comparison nested
models: analysis of deviance is a generalization of the classical analysis
of variance. In some special cases, deviance also works as a measure of
lack-of-fit.

For the moment assume a dispersion model with ¢ = 1, so by definition
the contribution of an outcome y; to the log-likelihood is

log L5 y:) = yibs — A(6;) + c(yi, ¢ = 1),

where p; = A’(0;). Given outcome data y = (y1,...,y,) and a model for
the mean p = Fy, let L(p;y) be the likelihood of u based on data y. For
independent outcomes log L(y;y) = . log L(pi;9;). The model p might
depend on further parameters; for example:

1. u = By, the constant model, also known as the ‘null model’. It has one
free parameter.

2. h(p) = XB, a general model with p unknown regression parameters.
(The link function h(u) applies element-wise to p.) Given an estimate

B, we compute i = h~*(Xf3).

If 1 does not follow any regression model, so 1 = v, it is called the ‘saturated
model’, having n free parameters.

The deviance of a model for p is defined as the likelihood ratio of the
saturated model versus the particular model:

L(y; y)
L(psy)

D(y, n) = 2log

It is a measure of distance between a particular model y and the observed
data y or the saturated model. The deviance of the null model is called
the null deviance.
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The term ‘deviance’ covers both the theoretical D(y,u) and the ob-
served D(y, [1). We can also define an individual deviance

L(%%Zh‘)
D(y;, p;) = 2log —————.
(Wi 1) L1 i)

where L(u;;y;) is the likelihood contribution of y; given a mean model ;.
For independent data

D(y, p) = ZD(yi7ui)-

Example 6.8: Suppose y; is independent N(ui, 02 =1) fori=1,...,n. We
have

1
log L(piy) = —5 ) _(vi — i)’
so the deviance of a model p is
D(y,p) =Y (yi — i),

2

which is equal to the error sum of squares, and motivates calling the observed
deviance D(y, i) a ‘residual deviance’. The individual deviance

D(yi, pi) = (yi — pa)?

suggests a concept of ‘deviance residual’

rpi = sign(y: — pi)\/ D(Yi, i)

that might be useful for residual analysis.

Suppose we model y = X3, where X is of rank p. Then the observed deviance
D(y, i) is x? with n — p degrees of freedom. Note that this assumes o = 1, and
the x? distribution is not generally true for nonnormal models. However, the
degrees of freedom n — p is deemed applicable in all cases. O

Example 6.9: Suppose y; is binomial(n;, p;), where u; = n;p;. Then
log L(p) = Y {yilogpi+ (n: — i) log(1 — pi)}

S oo+ oo B}
g n

7

(3

SO

~ Yi i — Yi
D(y,u)—ZZ{yilogAJr(myi)log = }
- i ni — i
In the extreme case n; = 1, which usually happens if we perform logistic regres-
sion on a continuous predictor, y; is a zero-one outcome. Defining 0log0 = 0, we
get
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D(y, ) = —2log L(u;y). O

Example 6.10: Suppose y; is independent Poisson with mean p; for i =
1,...,n. The individual deviance is

Yi
D(ys, pa) =2 {yi log 7+ — (i — m)} :
From independence, the total deviance is D(y, pu) = Zl D(yi, i)

Model comparison

Deviance is used mainly to compare two nested models. Suppose we have:

A raA = X161
B: pup X181 + Xof30,

where X is of rank p and X3 is of rank ¢, i.e. model A is a subset of model
B. The difference in the observed deviance

L(iig;y)

L(fiayy)’

is the usual likelihood ratio test for the hypothesis Hg: B2 = 0; the null
distribution is approximately x? with ¢ degrees of freedom, equal to the
difference in degrees of freedom of D(y,ia) and D(y, ip). Assuming ¢ =
1, this use of deviance is asymptotically valid, regardless of whether the
individual deviances are x? or not.

D(y7ﬁA) - D(yaﬁB) = 210g

Example 6.11: For the logistic regression analysis of the surgical data (Ex-
ample 6.3), it is common to report an analysis of deviance table

Model Deviance df Change df
Constant 51.796 39 — -
Constant + Age 46.000 38 5.796 1

The change in deviance (5.796 with 1 degree of freedom) indicates that the effect
of age is significant. For comparison, we have shown before that 81 = 0.160
with standard error equal to 0.072, so the Wald test gives (0.160/0.072)% = 4.94,
comparable to the change in deviance. O

Example 6.12: The analysis of deviance of the accident data in Example 6.6
can be summarized as follows.

Model Deviance df Change df
Constant 58.589 15 — —
Constant + Treatment 50.863 14 7.726 1

The x? test for treatment effect is 7.726 with one degree of freedom, indicating
a strong treatment effect (P-value= 0.005). O
Scaled deviance

Deviance is defined using ¢ = 1. If ¢ # 1 then the change in deviance no
longer matches the likelihood ratio statistic, but we only need to divide it
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by ¢ to make it valid. The quantity D(y, 1)/¢ is called the scaled deviance.
To compare models A and B above we would use

D(y,1ia) — D(y, [iB)
¢ 9

which is approximately x? with g degrees of freedom. If ¢ is unknown it is
common practice simply to plug in an estimated value.

Normal models

Suppose y; is N(ui,02), independently over i = 1,...,n. The observed
deviance is still
D(y,fi) = > (v — fis)*.
i
If the error variance o? is known externally, the scaled deviance can be
used to test whether the model for p is acceptable. Assuming p = X3,
where X is of rank p,

D(y,i)/0” ~ X7 -
More often than not ¢? is unknown, in which case D cannot work as a

goodness-of-fit statistic. From the normal theory linear models, to compare
two models A versus B we use the scaled deviance

D(y, iia) = D(y, i) o
52 Xdf,—df

where the error variance o2 is usually estimated from the larger model B,

and df4 and dfp are the degrees of freedom of D(y,4) and D(y, lip),
respectively. Note that, under the normal assumption, we also have an
exact F-distribution for the change in scaled deviance.

Deviance as a measure of lack of fit

Under some conditions we can use the deviance for a goodness-of-fit test:
a large deviance indicates a poor fit, which can happen for one or both of
the following reasons:

e the mean model is not adequate; for example, there should be more
predictors in the model

e there is overdispersion, i.e. the assumption of ¢ = 1 is not tenable.

Uncovering the reasons for the lack of fit is not always straightforward.
Some subject matter knowledge about the model or a careful residual anal-
ysis might be required. If we can attribute the lack of fit to overdispersion,
model comparison should be based on scaled deviances.
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We have derived in Example 6.9 for binomial data

~ Yi Ny —Yi
D(y. ) = 2Z{yz‘10gﬁ + (ni — i) log ﬁ-}'
i 1 (3 1

We can think of the data as an n x 2 contingency table with y;’s and
(n; — y;)’s as the observed (O) frequencies, and fi;’s and (n; — fi;)’s the
expected (F) frequencies. Thus, we can recognize

D:QZOlog%,

which is approximately the same as Pearson’s y? goodness-of-fit statistic
(see Theorem 9.9)

XQ:Z(O;EE)Q'

So if the expected frequencies are large enough the deviance may be used
as a measure of lack of fit. The same reasoning applies to counting data
generally.

In the extreme case n; = 1, defining 0log 0 = 0, we get

D(y, 1) = —2log L(j1;y),

which is not meaningful as a measure of goodness-of-fit. Here D(y, i) is
used only for model comparisons. Checking the adequacy of the model
takes more work, for example by splitting the data into several groups.

Example 6.13: For the analysis of surgery data in Example 6.11, n; = 1, so
the deviance value D = 46.0 with 38 degrees of freedom is not meaningful as a
measure of lack of fit.

Example 6.14: Deviance also works as a measure of lack of fit in Poisson
regression, provided the means 1i;’s are large enough. For the analysis of accident
data in Example 6.12, the deviance of 50.863 with 14 degrees of freedom indicates
a lack of fit for a model that only contains the treatment effect. It can be
verified that adding location as a categorical variable into the model (adding
7 parameters) would give a final deviance of 16.28 with 7 degrees of freedom.
This is a significant improvement on the model fit, though the deviance is still
borderline significant (P-value=0.03).

Estimating dispersion parameter ¢

From Section 4.9 the approximate log-likelihood contribution from a single
observation y; is

1 1
log L; ~ ~5 log{2m¢v(y;)} — %D(yi,ui). (6.3)

The formula is exact if y; is N(u;,0?). Nelder and Pregibon (1987) call it
the extended quasi-likelihood. The approximation is sensible if the likeli-
hood based on y; is reasonably regular.
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Given independent data yq,...,¥y,, for any ¢ the estimate of y; is the
minimizer of the total deviance

Z D(yi, pi)-
Therefore the profile log-likelihood of ¢ is

oy 2(0) ~ Y- { - towt2monu)} - 5 D)}

i

and the approximate MLE of ¢ is the average deviance
~ 1 R
¢=- > D(yi ii)-
i

Likelihood inference on ¢ is available using the profile likelihood. In prac-
tice it is common to use a bias-corrected estimate

where n — p is the degrees of freedom of the deviance. For example, in
Example 6.14 above, assuming Poisson model with overdispersion for the
final model, we can estimate ¢ by ¢ = 16.28/7 = 2.3.

If the likelihood approximation is doubtful, we can use the method of
moments estimate. Since Ey; = p; and var(y;) = ¢v(u;), we have

Yi — K
= ¢,
( v(m))
~\2

~ 1 i — i
b= Z(yv(u)

n—p i)

suggesting

as a sensible estimate of ¢.

Profile deviance plot

There is a variety of software programs to perform GLM, and most would
report the deviance of a model. Although there is usually no option to
output the profile likelihood for a particular parameter of interest, it is
quite easy to generate one. This is useful when the normality of the Wald
statistic is in doubt. GLM programs generally allow an offset term, a known
part of the mean model, so we can compute the deviance over a range of
fixed values of the parameter of interest.
For example, for the surgical data in Example 6.3:
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e fix f1 and run
logit p; = By + offset(8; Age)

and record the value of the deviance as D(/31). (In a general regression
model, there will be other predictors in the model.)

e repeat this over a range of reasonable values of 5; around B\l

e up to an additive constant, the deviance and the profile likelihood are
related by

D(p1)/¢ = —2log L(B1).

(The dispersion parameter ¢ = 1 in the standard logistic regression.
If it is unknown then we use the estimated value.) Likelihood-based
ClIs can be read off the deviance plot:

Cl = {ﬂla D(ﬂl);D(ﬁl) <Xi(1_a)}~

It is convenient to set the minimum of the deviance plot to zero, which
is equivalent to setting the maximum of the likelihood plot to one. We
can gauge the validity of the Wald statistic by how close the deviance
plot is approximated by a quadratic function around ;. See Figure
6.6.

Profile deviance

Deviance

00 01 02 03
B1

Figure 6.6: Profile deviance of the slope parameter 31 (solid line) and its
normal approximation (dotted line).

Example 6.15: A survey is conducted of a number of companies to find out
whether they are planning to use internet trading facilities (internet=1 if yes).
The following table shows the breakdown of the companies by whether they are
located in a big city (city=1), and whether they serve only the domestic market
(domestic=1). We want to establish if differences exist among various types of
companies.
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Internet
City Domestic 1 0
0 0 0 3
0 1 3 4
1 0 50 2
1 1 27 14

Consider the full model
logit p; = Bo + B1City 4+ P2Domestic + B3City x Dom.

Standard logistic regression programs produce the following output:

Binomial Binary
Effects 163 se B se
Constant —20.9 12,111 -7.6 154
City 20.6 12,111 7.3 154
Domestic 24.1 12,111 10.8 154

City x Dom. —23.1 12,111 —-9.8 154

The ‘Binomial’ columns show the output using data given in the table as binomial
outcomes, while the ‘Binary’ columns show the output when the outcome was
set at zero-one value. In both cases the interaction effect is not significant. That
the two results are so different indicates something suspicious.

The analysis of deviance for the additive model

logit p; = Bo + B1City 4+ f2Domestic

yields D = 8.44, highly significant at 1 degree of freedom. The deviance of the
additive model provides a test for the term CityxDom., so D = 8.44 indicates
a significant interaction effect, inconsistent with the output table. The Wald
statistics computed from the table are either 2% = (—23.1/12,111)% = 0.000004
or 22 = (—9.8/15.4)% = 0.40.

(a) Profile deviance (b) Conservative estimate
0
0
7 o ¥ /
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Bs: interaction Bs: interaction

Figure 6.7: (a) Profile deviance for interaction effect B3. (b) A conser-
vative estimate of B3 is obtained by changing the zero outcome to one in
the first row of the data. The profile deviance (solid) in this case is well
approzimated by a quadratic (dotted).

The Wald statistic fails here since the MLE B\g = —o0; this is due to the zero-
level outcome in one of the categories. See Figure 6.7 for the profile deviance of
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Bs. This means that the quadratic approximation for the log-likelihood is off, and
the Wald statistic or the standard error term is meaningless. This problem will
always occur in logistic regression with categorical predictors where one category

has zero outcome. That (s is highly significant is ascertained by considering
a conservative analysis where the zero outcome in the first line of the data is
replaced by one. Figure 6.7 shows that even in this small sample the log-likelihood
is well approximated by a quadratic. O

6.7 Iterative weighted least squares

Numerical algorithms to find the MLEs and standard errors are crucial
for routine applications of GLM. It turns out that there is one general
algorithm, called the iterative weighted least squares (IWLS), that works
reliably for GLM. There are several ways to derive IWLS (Section 14.2),
but one that is relevant now is via the Newton-Raphson procedure.

Newton—Raphson procedure

This is a general procedure to solve g(x) = 0. We start with an initial
estimate 2%, then linearize g(x) around x°, and set it to zero:

9(z) = g(2°) + ¢'(2°)(z — 2°) = 0.
The solution of the linear equation provides an update formula
ot =2 —g(a°) /g (z°).
For maximum likelihood estimation we want to solve the score equation

S(8) =o.

Starting with 8°, the updating formula is

glo= B0 {S"(B")} 188
B +{1(8")}~18(8%).

Note that a linear approximation of the score function is equivalent to a
quadratic approximation of the log-likelihood.

IWLS

Applying this to GLM estimation problems, we start with the log-likelihood
contribution of an observation y; of the form

yil; — A(ei)
¢

and assume that the observations are independent. We consider a regres-
sion model h(u;) = z}8, and try to get the estimate of 5 at a fixed value
of ¢. The score equation is

IOgL(GZ,(;S) = +C(yia¢)7
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and the Fisher information is

. 90; 00; ,,
= ¢ Z[ Bﬂaﬂ’ —A(Gi)}—kaﬂaB,A (0:)]

which in general can be complicated.
Since A’(6;) = p;, we have

98  Ou; Oh 9B
— ,U_flauz
' Oh

so the second term of I(3) is

) —1
Z { (55) ¢vi} iz, =U.

7

Similarly

SB) = Z{(g;) ¢Uz} xi%(%—m‘)-

(3
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A major simplification of the Newton—Raphson algorithm occurs when

we use the canonical-link function 0; = h(u;) = 28, from which

o0 _
og ~ "
20.
0 _
0pos’
SO
1) =U

and the Newton—Raphson update is

B =0+ UTlS(8).

With the canonical link we also have an interesting relationship du; /0h =

Op;/00; = v;, or Oh/Ou; = v;l.
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Now let X be the design matrix of predictor variables, ¥ a diagonal

matrix with elements 5
oh
Eii = iy
(3/%) b

5(8) = X'z*g—Z@/ ),

soU = (X'Y71X) and

where @(y — p) is a vector of g—:_(yi — ;). We can now re-express the

F)
update f%rmula as

gl = B+ (X’E’IX)’lX’Z’l%(y — 1)
= ETTXS X S )
= (X'o7x)"lX'2ly, (6.5)
where Y is a vector of
Yo = 2480+ 2 (g — ) (6.6)

Opi

and all unknown parameters are evaluated at the current values. Note that
¢ cancels out in the formula to compute 3. In GLM terminology Y is
called the working vector. The iteration continues by first recomputing u,
Y and X. So, (6.5) and (6.6) are the key formulae in IWLS.

These formulae can be connected to a quadratic approximation of the
log-likelihood. In effect, starting with (9, the exponential family log-
likelihood is approximated by

~ 3 log[S] — (¥ — XB)'S!(Y — X) (6.7)

with Y and ¥ defined above.
At convergence, we can evaluate the standard errors for the estimates
from inverse of

1(B) = (X's71X),

where the variance matrix ¥ is evaluated using the estimates B and gg

For general link functions we can actually still view the IWLS algorithm
as a Newton-Raphson algorithm with the so-called Fisher scoring, i.e. by
using the expected Fisher information

Z(B) = EI(B)

instead of the observed information I(8). Since Ey; = A’(6;), we get from
(6.4)

so the IWLS algorithm stays as it is.
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Example 6.16: Suppose y; is Poisson with mean p; (dispersion parameter
¢ = 1), and we specify a log-linear model

h(pi) = log i = 3.

From these assumptions, var(y;) = v; = ps, and Oh/9p; = 1/ s, so the algorithm
proceeds as follows. Start with £°, then iterate the following until convergence:

e compute

H? = 61260
Vi = aiB°+ (yi —pd)/ul
Sioo= (/p)?ud =1/uf

e update ' = (X'S7' X)X’y

The starting value 8° can be computed, for example, from the ordinary least-
squares estimate of 8 in the model log(y; +0.5) = x}3. Alternatively, we can start
will all the S-coffecients set to zero, except for the constant term. As a numerical
exercise, the reader can now verify the output summaries given in Section 6.3.

Example 6.17: When a noncanonical-link function is used, the IWLS is
still the algorithm of choice to compute the parameter estimates. In practice,
however, it is common to then compute the standard errors of the estimate using
the expected Fisher information. To see that there is something at issue, the first
term in the observed Fisher information in (6.4) contains a general formula

8291' . 8291 (8,[14)2 o 00; 82m L
apap’ — o2 \on ) T pu; an2

In the Poisson model, we have the canonical parameter
0; = log(pi),
so if we use, for example, the identity link
h(pi) = pi = =38

we obtain ,
Opi _ 0" pi
ah 1 and 2

=0,
and

I(8) = ot Z {Jg(yz — i) TiTh + /i;clx;} .

In contrast, the expected Fisher information is
6 =67y ]
T Z

Standard errors derived from these can be quite different if p;’s are not too large.
We will discuss in Section 9.6 that, for the purpose of inference, I(3) is better
than Z(3).
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6.8 Box—Cox transformation family

The use of transformation is discussed in Section 4.10 as a way of extending
the normal model for positive-valued continuous data. It is assumed that
there is A # 0 such that a transformation of the observed data y according

to
_y -1
U=y

has a normal model N(u,02). The value A = 0 is defined to represent
the log-transformation. Extension to a regression model is clear: we can
specify that the transformed value y,; follows a linear model in terms of
some predictors z;, i.e.
EYy = pi = ;B
and var(Yy;) = o2.
The log-likelihood contribution of a single observation y; is
/1 2\2
(W2 — @) 20?5) + (A —1)logy;.
At each value of A, the estimation of the other parameters follows exactly
the usual normal-based regression analysis of the transformed data. By
defining the design matrix X and vector Y) appropriately

B\ = (X' X)) XY,

1
log L(\, B,0%) = ~3 log o —

and, setting fi;(\) = xga()\),
A 1 .
020\) ~n Z{yxi - Ni()‘)}Q-

The appropriate value of A can be found from the profile log-likelihood
of A

log L(\) = f% log 52(\) — % +(A-1) Zlogyi.

In practice we use simple values of A so that there is no serious problem of
interpretation.

Example 6.18: Sulphur dioxide is one of the major air pollutants; it is
released into the air by gas, oil or coal burning, and, on chronic exposure, it
can cause respiratory diseases. The dataset in Table 6.7 (from Sokal and Rohlf
1981) was collected in 41 US cities in 1969-1971. The outcome variable y is the
sulphur dioxide content of air (micrograms/ m3), and the predictor variable z is
the number of manufacturing enterprises employing 20 or more workers. Since
there is no indication that the industry is limited to those relying on oil or coal
for energy, we expect to see a lot of noise in the relationship; see Figure 6.8(a).

We first log-transform the z-axis to show a clearer pattern. From Fig-
ure 6.8(b) it seems obvious that we should consider a quadratic model

yi = Bo + Bilogx; + Bolog® i + e;.

(We will treat this as an empirical model and not try to interpret the relationship.
Note also that 1 and 2 cannot be interpreted separately; for that we need, at
least, to centre the predictor variable before analysis.)
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City =« y City T Y
1 35 31 22 361 28
2 44 46 23 368 24
3 46 11 24 379 29
4 8 36 25 381 14
5 91 13 26 391 11
6 96 31 27 412 56
7104 17 28 434 29
8§ 125 8 29 453 12
9 136 14 30 454 17
10 137 28 31 462 23
11 181 14 32 569 16
12 197 26 33 625 47
13 204 9 34 641 9
14 207 10 35 699 29
15 21 10 36 721 10
16 266 26 37 775 56
17 275 18 38 1007 65
18 291 30 39 1064 35
19 337 10 40 1692 69
20 343 94 41 3344 110
21 347 61

Table 6.7: Pollution data from 41 US cities (Sokal and Rohlf 1981). The
variable x is the number of manufacturing enterprises employing 20 or more
workers, and y is the sulphur diozide content of air (micrograms/m?3).

(a) Pollution data

(b) Transform x-axis
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Figure 6.8: (a) It is hard to see any relationship in the original scale. (b)
Putting industry on a log-scale shows a clearer pattern. The dashed line is
a quadratic fit.

Assuming a normal model on e; we get the following summary table for the
model estimates.
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Effect Parameter Estimate se

Intercept Bo 231.44 68.37
log x 51 —84.97 24.36
log? B 8.47 2.15

The estimated residual variance is 62 = 18.3%, and, as expected, the quadratic
model is highly significant. The residual plot in Figure 6.9(a) indicates some
nonnormality, so it is a question whether y is the right scale for analysis.

Now consider the family of Box—Cox transforms so that

yxi = Bo + B1logw; + B2 log” z; + ei.
The profile likelihood of X in Figure 6.9(b) shows that we should use A = 0 or log

transformation. From the log-transformed data we obtain the following summary
table:

Effect Parameter Estimate se

Intercept Bo 8.14 2.29
log x 51 —2.08 0.81
log? Ba 0.20 0.072

The estimated residual variance is > = 0.61%. The normal plot in Figure 6.9(d)
shows better behaved residuals. O

(a) A=1 (b) Profile likelihood of A
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Figure 6.9: (¢) Normal plot of the residuals from Figure 6.8(b). (b) The
profile likelihood of \ indicates we should use A = 0 or a log-transform on
the outcome. (c¢) The data in a log-log scale with the quadratic fit. (d)
Normal plot of the residuals from (c).
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Transform the mean or the observation?

The exponential and Box—Cox transformation families are the two main
approaches in dealing with nonlinear transformations. Their common ob-
jective is to arrive at a sensible linear model. In the former we apply a link
function h(-) on the mean parameter p such that

h(p) = '8,

so the model can be aptly called a parameter—transform model. With Box—
Cox models we apply the transformation g(-) on the observations y so that

Eg(y) =25,

where ¢(-) belongs to a certain class of functions. Such a model is called
an observation—transform model. We have actually used both on the same
dataset: see the analysis of plant competition data in Sections 6.4 and 6.5.

The main advantage of the parameter—transform model is that the dis-
tribution of the data is not affected by the transformation; this may make
the analysis easier to interpret, especially if the result is used for prediction.
See also the discussion in Section 4.10. When used empirically to describe
relationships both models are on an equal footing. ‘Let the data decide’
would be the best approach. We can use the AIC (Section 3.5) for such
a purpose, but generally it can be a difficult question with no definitive
answer.

A joint approach is possible. For example, we might consider the Box—
Cox transformation as a family of link functions

N = b
The parameter A\ gives the link function an extra flexibility in possible
shapes. Additionally, we can compare the likelihood of different link func-
tions such as identity, inverse or log links by comparing the likelihood of
different A values.

6.9 Location-scale regression models

Example 6.19: The stack-loss dataset in Table 6.8 has been analysed by many
statisticians. Brownlee (1965), the source of the data, Daniel and Wood (1971)
and Draper and Smith (1981) used the classical regression model. Denby and
Mallows (1977), Li (1985) and Lange et al. (1989) applied the robust regression
approach. The data were recorded from 21 days of operation of a chemical plant
to oxidize ammonia NHjs into nitric acid HNOj3. The variables are

x1 = air flow, which measures the rate of operation.
2 = cooling temperature of the coils in the absorbing tower of HNOs.

x3 = concentration of HNOj3 in the absorbing liquid (coded as 10x (original
data—50)).

y = the ‘stack loss’, which is the percentage loss of NHs (x10).
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Figure 6.10(a) show the relationship between stack loss and air flow. A linear
fit of stack loss on air flow produces heavy-tailed residuals, as shown in Figure
6.10(b). This indicates the need to consider a heavy-tailed model such as the
Cauchy. O

Day Flow Temp. Concen. Loss

1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15
10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15

Table 6.8: Stack-loss data from Brownlee (1965).

We can model the outcome y; to have a location u; and scale o, and a
regression model

pi = 3.
The standardized variable z; = (y; — p;)/o is assumed to have a known
density fo(z). We will consider the Cauchy model

fO(Zz) = ﬁ7

so the likelihood contribution of observation y; is

/ -1
Liw,a):al{u@i—agﬁf}

and, assuming independence, the total likelihood is

L(B,0) = ][ Li(B.0).

All estimates and profile likelihood computations for this model must
be done numerically; in Section 12.6 we show how to use the IWLS to
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(a) Stack-loss data (b) Heavy-tailed residuals
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Figure 6.10: (a) Relationship between stack loss and air flow, and the linear
fits using normal error (solid line) and Cauchy error (dotted). (b) Normal
plot of the residuals from the normal model. (c¢) The profile likelihood of 1
using normal error (solid) and Cauchy error (dotted). (d) Poor quadratic

approzimation (dashed) of the profile likelihood of 81 using Cauchy error
(dotted).

compute 3. For example, if 8 = (8o, 51), to get the profile likelihood for a
scalar (1, we simply compute

L(ﬁl) = {Ié}ﬁl;(} L(ﬁo, B, U)

for each fixed B over a range of values. Such a profile likelihood is im-
portant, since experience with Cauchy models indicates that the quadratic
approximation does not usually hold.

Analysis of air flow and stack loss

For the data in Figure 6.10(a) we first show the summary of the normal
regression model

Yi = Bo + frx1 + e

in the following table:
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Effect Parameter Estimate se
Intercept Bo —-44.13  6.11
Air flow b1 1.02 0.10
Residual o 4.1

It is no surprise that there is a strong relationship between air flow and loss,
since air flow is a measure of rate of operation. For future comparison the
profile likelihood of $; is shown in Figure 6.10(c). However, the inference
based on the normal model is doubtful, since the residuals in Figure 6.10(b)
clearly show a heavy-tailed distribution.

Now we fit the same model

Yi = Bo + Brr1; + e

but e;’s are assumed to iid Cauchy with location zero and scale o (the
scale parameter does not have the usual meaning as standard deviation).
We obtain the following summary:

Effect Parameter Estimate se
Intercept Bo —41.37

Air flow 051 0.97 0.045
Residual o 1.28

The standard error of Bl is computed numerically from the observed profile
likelihood. (The standard errors for 5y and o are not computed, since they
are not relevant.)

There is little difference in the estimates compared with those from
the normal model. However, Figure 6.10(c) shows that the Cauchy model
leads to a more precise likelihood. This gain in efficiency is the reward for
using a better model for the errors. Figure 6.10(d) shows a poor quadratic
approximation of the log profile likelihood of 5 from the Cauchy model.
This means that the standard error quantity reported in the table (0.045)
is not meaningful.

To select between the normal or the Cauchy model, we can use the AIC
defined in Section 3.5:

-~

AIC = —2log L(0) + 2p,

where 8 is the MLE of the model parameters; the number of parameter p
equals 3 for both models. (Note that all the constant terms in the density
function must be included in the computation of the maximized likelihood
in the AIC formula.) The AIC is 160.26 for the normal model and 115.49
for the Cauchy model, so the Cauchy model is preferable.

As an alternative to the Cauchy model, we can fit a t-distribution to
the error term and vary the degrees of freedom k. This family includes
the Cauchy at k¥ = 1 and the normal at large k, so model selection can be
based on testing the parameter k& (Exercise 6.27).
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Analysis of cooling temperature and stack loss

Analysis of the cooling temperature reveals a surprising aspect of the data.
Figure 6.11(a) shows the relationship between stack loss and cooling tem-
perature. Using the same methodology as before, we first perform a normal-
based regression model, giving the following output:

Effect Parameter Estimate se
Intercept Bo —41.91 7.61
Temperature 51 2.82 0.36
Residual o 5.04
(a) Stack-loss data (b) Normal residuals
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Figure 6.11: (a) Relationship between stack loss and cooling temperature,
and the linear fits using normal error (solid) and Cauchy error (dotted);
the printed value is the operating day. (b) Normal plot of the residuals from
the normal model. (c) Normal plot of the residuals from the Cauchy model.
(d) The profile likelihood of 81 using normal error (solid) and Cauchy error
(dotted).

The normal plot in Figure 6.11(b) shows that the residuals are reason-
ably normal. By comparison, the Cauchy-based model gives
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Effect Parameter Estimate  se
Intercept Bo —20.69
Temperature 51 1.72 0.50
Residual o 2.71

Now we have a genuine disagreement in the estimation of ;. As shown in
Figure 6.11(a) the normal fit follows all of the data; the Cauchy fit only
follows the bulk of the data and allows some large errors. The normal
QQ-plot of the Cauchy errors in Figure 6.11(c) indicates a heavy right-tail.
The profile likelihood of 51 in Figure 6.11(d) is bimodal, implying that the
standard error (0.50) for B, is meaningless. The likelihood interval at 15%
cutoff, which does not have a CI interpretation, is wide, indicating a large
uncertainty in the estimate.

One of the two models is obviously wrong. The AIC is 131.4 for the
normal model, and 141.4 for the Cauchy model, pointing to the normal
model as the preferred model.

The observations were actually taken as a time series. As shown in
Figure 6.11(c) large residuals of the Cauchy model are associated with days
1 to 4 of the operation. If there is a transient state, then we can include it
as an effect in a multiple regression; then the effect of cooling temperature
would be closer to the Cauchy model. Perhaps the most satisfying way to
check the model is to collect more data at high cooling temperature.

As another interpretation, the discrepancy might indicate that neither
model is a good fit. Assuming that all the measurements are valid, or
that there is no transient state in the operation, Figure 6.12 shows a much
better fit achieved by a (normal) quadratic model; its AIC is 120.5, better
than the AIC of the linear model. Verifying the fit and the AIC is left as
an exercise.

Quadratic fit

Loss

T
18 20 22 24 26
Cooling temperature

Figure 6.12: Quadratic fit of stack-loss as a function of cooling temperature.
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6.10 Exercises

Exercise 6.1: Verify the MLEs of 8 and o2 in Section 6.1. You can use some
matrix calculus, or verify that

Y = XBIP=||Y - XB >+ | XB— X5 |

where || a ||*= a’a for any vector a.

Exercise 6.2: Derive in general the profile likelihood for a scalar slope param-
eter 81 in a normal linear model, and describe how it should be computed. Use
the Hanford data in Example 6.2 and verify the likelihoods in Figure 6.2.

Exercise 6.3: For the Hanford data example in Example 6.2, check the quadratic
approximation of the profile likelihood of 51, and verify the plot in Figure 6.13.

Profile for B4

-0.5
1

Log-likelihood
-1.5

-2.5
1

-3.5
|

Figure 6.13: Quadratic approzimation (dashed line) of the profile likelihood
of B1 for the Hanford data.

Exercise 6.4: The following dataset shows the weight (in pounds) of a lamb
over a period of time (in weeks).

Time 0 1 2 3 4 6 9 12
Weight 12.6 15.3 26.2 27.9 32.7 34.4 42.3 39.1

Fit a sensible model that captures the growth curve and find the profile likelihood
for the growth rate parameter.

Exercise 6.5: Singh et al. (1992) reported the length y (in cm) of plants
germinating from seeds irradiated with a dose x of gamma radiation.

X 0 10 20 30 40 50 60 70 80 90 100 110
y 8.859.40 9.18 8.70 7.53 6.43 5.85 4.73 3.98 3.50 3.10 2.80

Plot the data and fit a nonlinear model

_ Bo
L+ exp{—Ba (1 — 1)}

Yi + €4,

and report the estimates and their standard errors. Compute the profile likeli-
hood of B1. Check the normality of the residuals.
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Exercise 6.6: Verify the regression output (including the standard errors) and
the likelihood plots for Examples 6.3 and 6.4.

Exercise 6.7: Show that the Fisher information of the vector parameter 3 in
the logistic regression is of the form

1(3) = 0i(1 = )i

where the vector z; = (1, Age;).

Exercise 6.8: Group the subjects in Example 6.3 into five age groups; the
i’th group has n; subjects and y; deaths. Use the binomial model to derive the
likelihood for a logistic regression, and compare the results with the full data
analysis. What is the advantage of the grouped data version?

Exercise 6.9: Verify the Poisson regression estimates and the plots given for
the data analysis in Examples 6.5 and 6.6.

Exercise 6.10: Show that the Fisher information for the Poisson log-linear
model is N N

where z; = (1,Age;). Verify the standard errors given in the analysis of claims
data.

Exercise 6.11: Using the accident data in Example 6.6, suggest ways to check
the Poisson assumption in a Poisson regression.

Exercise 6.12: Fit the location and treatment effects in model (6.2) for the
accident data in Example 6.6. Compare the inference on the treatment effect
when location is not in the model.

Exercise 6.13: The dataset in the following table was collected in a study
to compare the number of naevi (pronounced neeVYE), a raised skin lesion of
darker colour similar to a mole, among children with spina bifida and normal
controls. The controls were match in terms of sex and age. The main hypothesis
is that spina bifida is associated with more occurrence of naevi.

(a) Investigate the relationship between the number of naevi and age and sex
among the controls, and separately among the cases.

(b) Let yi1 and y;2 be the number of naevi for the i'th case and control, respec-
tively. Assume y;; is Poisson with mean A;j, which includes the effects of
pair ¢ and other covariates. We have shown that, conditional on the sum
ni = Yi1 + Yi2, Yi1 is binomial with paramaters n; and

o Gi—‘y-l’

U

where 0; = X\ij1/Xi2. Explain how the conditioning removes the pair effect.
Show that the logistic regression based on binomial data (ns,y:1) is equiva-
lent to a log-linear model for rate ratio 6;.

(c) Fit the simplest model log 6; = Bo, and interpret the test of 8o = 0.

(d) Fit the model
log 0, = ﬁo —+ ﬂ1SeXi + BgAgei,
and interpret the results. Investigate also the interaction between age and
sex.
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Pair Sex Age Case Cont. Pair Sex Age Case Cont.

1 f 16 5 6 22 m 17 27 6
2 f 5 0 3 23 m 10 11 3
3 m 10 15 15 24 f 12 17 1
4 m 6 2 1 25 m 8 3 8
5 f 12 11 7 26 f 11 16 4
6 f 18 22 6 27 m 15 22 3
7 m 11 15 4 28 m 4 0 0
8 m 16 10 73 29 f 11 31 52
9 m 14 29 4 30 f 7 3 17
10 m 10 13 3 31 m 10 18 6
11 f 8 8 14 32 f 8 4 3
12 f 8 6 0 33 f 11 10 0
13 f 5 0 1 34 f 12 5 52
14 m 7 5 10 35 f 15 63 5
15 m 8 7 12 36 f 10 0 4
16 m 17 30 52 37 f 16 47 11
17 f 12 31 2 38 f 8 20 1
18 f 18 19 10 39 f 5 10 5
19 m 3 1 0 40 m 19 20 8
20 f 11 8 3 41 f 4 2 1
21 f 9 7 0 42 m 5 0 3

Table 6.9: The naevi data from 42 pairs of spina bifida cases and their
matched controls. The column under ‘Case’ gives the number of naevi for
the cases.

(e) In each case of (a), (c) and (d) above, check the goodness of fit of the model.
State the overall conclusion for the study.

Exercise 6.14: The data in the following table (Fairley 1977) are the monthly
accident counts on Route 2, a major highway entering Boston, Massachusetts,
from the west. The data for the last three months of 1972 are not available.

Year 1 2 3 4 5 6 7 8 9 10 11 12
1970 52 37 49 29 31 32 28 34 32 39 50 63
1971 35 22 17 27 34 23 42 30 36 65 48 40
1972 33 26 31 25 23 20 25 20 36

(a) Using the Poisson regression with log link, fit an additive model with year
and month effects, and describe the result in plain language.

(b) Use the model in (a) to predict the last three months of 1972.

(c) Check the goodness of fit of the model in (a).

Exercise 6.15: The following table (from Simon 1985) shows the occurrences
of rare words in James Joyce’s Ullyses, for example there are 16,432 different
words that occur ezactly once in the whole book. It is also known that a total of
29,899 different words were used in the book.
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Number of Number of
occurrences words
16,432
4776
2194
1285
906
637
483
371
298
222

e e e N N

(a) A naive model for the word frequencies is like this: a word in Joyce’s vocab-

()

ulary will appear x number of times according to a simple Poisson model
with mean A. Estimate A from the data and assess the adequacy of the
model. (Hint: in deriving the likelihood for this model note that the total
of 29,899 words must occur at least once. So, obviously words that did not
occur are not observed here.)

Now consider a slightly more complex model: the number of words that
occur exactly k times is Poisson with mean A, where

log A = Bo + B1log(k +1).

Use the IWLS algorithm to estimate the parameters and assess the adequacy
of the model. Is it really better than the other model? Plot the data and
the model fits from both models.

Using models (a) and (b), compare the estimates of the number of words
that Joyce knew.

Exercise 6.16: Verify the regression outputs and plots for the competition
data given in Section 6.4.

Exercise 6.17: Show that the Fisher information for the parameter f =
(Bo, B1) in the exponential model where 1/u; = Bo + 51 logd; is

1(3) =Y i,

by defining =} = (1,logd;).

Exercise 6.18: Estimate the dispersion parameter ¢ in the Poisson regression
example in Section 6.3. Perform an approximate test of Ho: ¢ = 1.

Exercise 6.19: Discuss the application of the general exponential family model
for logistic regression with zero-one outcomes. Use the surgical data in Section
6.2 as an example.

Exercise 6.20: Verify the Fisher information matrix

1(B) = ¢~ (XWX)

given in Section 6.5.

Exercise 6.21: Figure 6.14 is a log-log plot of the plant competition data,
showing we can try a model
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logy; = Bo + p1logd; + e,
where (31 is negative.

Competition data
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Figure 6.14: Competition data in a log-log plot, showing an underlying
linear relationship.

(a) Estimate the linear regression above, report a summary result and check the
normality of the residuals.

(b) As a comparison run an exponential family model as given in Section 6.5,
but using a log-link function

log i = ﬂo + ﬂl log di.
(c) For the link function in part (b) show that the Fisher information is given
by
I1B) = ¢ 'X'WX,
by defining the design matrix X appropriately and the weight matrix is
W = diag{y: /i }.
(d) Compare the fits of these two models and the previous models using inverse
link. Explain the advantages and disadvantages of each model.

Exercise 6.22: Using the canonical and some sensible noncanonical links, de-
rive the IWLS algorithm for the binomial and exponential outcome data.

Exercise 6.23: Implement the IWLS for the logistic and Poisson regression
models in Examples 6.3 and 6.5.

Exercise 6.24: The inverse Gaussian distribution provides a framework for a
regression model where the variance is a cubic function of the mean. Specifically,
the density is

1/2 Y
f(y)—(27;\y3> exp{Q;\LQ(yyﬂ)}, y>0

and it has mean u and variance p®/\.

(a) Given outcome values yi, ..., y» and covariates z1, ..., n, suppose we model
yi as IG(ui, A), where p; = Ey; = h(z;3). Write down the log-likelihood
function for the parameters § and A, and identify the canonical link function.
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(b) Describe the iteratively weighted least squares (IWLS) procedure to get the
estimate for 8 using the canonical link function.

(c¢) Find the MLE of the dispersion parameter .

(d) Give the formula for the deviance in this case and describe what the deviance
may be used for. Can we use it as a measure of goodness of fit of the current
model?

Exercise 6.25: Verify all of the computations given in Section 6.9.

Exercise 6.26: Check the ‘Cauchy plot’ of the residual from the Cauchy-based
regression of stack loss on air flow in Section 6.9.

Exercise 6.27: Fit the regression of stack loss on air flow in Section 6.9 as-
suming the error term has a t-distribution with unknown degrees of freedom k.
The density is given in Section 4.11. Perform the likelihood computation at fixed
k, and try several values of k, so you obtain a profile likelihood of k. Report the
profile likelihood of 81 when k is fixed at the MLE.

Exercise 6.28: Perform a multiple regression analysis of the stack-loss data
with both air flow and cooling temperature as predictors in the model. Obtain
the individual profile likelihoods for the slope parameters. Check the quadratic
approximation of the profile likelihoods.
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Evidence and the likelihood
principle”

There is a strong consensus about the utility of likelihood for modelling,
but its direct use for inference is controversial. This is not surprising: most
of the consensus in statistics is associated with modelling, and most of the
controversies with inference. While we are able to specify and estimate
very complex models, statisticians still cannot agree on how to interpret
the ClIs (see Section 5.10). The persistent controversies indicate that the
issues are not simple.

7.1 Ideal inference machine?

Assuming a correct model, the likelihood function L(#) is an ‘inference ma-
chine’: every inference we need about € can be derived from L(#); and, in
principle, once a model is constructed, we can proceed fairly automatically.
The development of a model is the only statistical step. Finding the likeli-
hood and quantities for inference is merely computational. The advent of
computers and computational methods have allowed us (i) to concentrate
more on the modelling aspect and (ii) to compromise less on the model
complexity.

Can we rely on the likelihood alone? If yes, the likelihood forms an
ideal inference machine. Unfortunately we cannot answer it categorically.
While the likelihood is appealing as an objective quantity that is totally
determined by the observed data, are the observed data all that are relevant
from an experiment? How about the sampling scheme or the way we collect
the data?

These fundamental issues remain controversial in statistical inference,
and are related to the so-called likelihood principle. An informal statement
of the (strong) likelihood principle is that two datasets that produce equal
(proportional) likelihoods should lead to the same conclusion. The princi-
ple has far-reaching implications in statistical inference. For example, the
ubiquitous P-value violates the likelihood principle: it is possible to find
two datasets (from two experiments) producing the same likelihood, but
different P-values (see Example 7.1).

Most statisticians do not accept the seeming implication of the likeli-
hood principle that we base conclusions on the likelihood alone. There are
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serious reservations:

e It is possible to generate a biased dataset, e.g. by a sequential sampling
scheme (Section 7.5), but the likelihood function completely ignores
the sampling scheme. This can lead to spurious evidence that does
not stand up under repeated experiments.

e The computation of likelihood requires a probability model. While
the likelihood contains all the information about the parameter of the
model, we may not have full conviction in the model. The likelihood
cannot convey uncertainty about the model it is based on, while the
correctness of the conclusion might depend on the correctness of the
model.

e There is a fundamental difficulty in dealing with multi-parameter mod-
els. Without frequentist consideration a joint likelihood inference of
all parameters can have a very poor repeated sampling property (Sec-
tion 3.5). Generally, if the parameter space is ‘too large’ relative to
the available data the likelihood function can produce spurious results.
This problem can be called ‘parameter snooping’ as opposed to ‘data
snooping’. In ‘parameter snooping’ the observed data are fixed but we
keep enlarging the parameter space to find a model that best explains
the data. The result is a spurious model that overfits the data, see the
example in Section 7.7, but the likelihood on its own cannot inform us
about the problem.

7.2 Sufficiency and the likelihood principles
The so-called sufficiency principle states that

all sufficient statistics based on data z for a given model pg(z) should
lead to the same conclusion.

This seems reasonable: since any sufficient statistic contains all of the
information about 6, different choices of statistic should carry the same
information; then, from the same information one should reach the same
conclusion. Since all sufficient statistics lead to the same likelihood func-
tion, as a consequence we have the weak likelihood principle that

any set of observations from a given model pg(z) with the same likeli-
hood should lead to the same conclusion.

Thus the sufficiency principle is equivalent to the weak likelihood principle.

Now let us restate the idea above in terms of evidence. A sufficient
statistic summarizes all the evidence (about the parameter) from an ex-
periment. Then it seems reasonable that the likelihood principle should
say that the likelihood function contains all the evidence about 6. This feels
somewhat stronger. To state that the humble T is in a one-to-one map with
the likelihood function is fine from the frequentist point of view. However,
we still feel intuitively that the likelihood function contains more than just
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T. We know that T is not meaningful without the original sampling model
po(x), e.g. we cannot get a measure of uncertainty from Z alone, so we
still need py(z). But the likelihood function contains more: it captures the
model in its computation and, seemingly, we can derive inferences from it.

If the likelihood function contains all the evidence, after obtaining the
likelihood, can we throw away the model? The strong version of the like-
lihood principle says: yes, the likelihood is it, do throw the model away,
since it is no longer relevant as evidence. It is a dramatic proposition, but
it is not as crazy as it sounds.

We have seen before that data from the binomial and negative bino-
mial experiments can produce the same likelihood. If they do produce the
same likelihood, can we say they carry the same evidence about 6, even if
sampling properties of the likelihood functions are different? The strong
likelihood principle says yes. Note the crucial difference: the weak like-
lihood principle states that different outcomes from the same experiment
having the same likelihood carry the same evidence. The strong likelihood
principle allows the outcomes to come from different experiments with dif-
ferent sampling schemes. So, according to the strong likelihood principle,
evidence about 6 does not depend on the sampling scheme.

If the likelihood functions carry the same evidence, shouldn’t they lead
to the same conclusion about 07 It is difficult to say no, but unfortunately
the answer is controversial. If we think that we make conclusions based on
evidence alone, then the same likelihood should lead to the same conclusion.
But in statistics we deal with uncertainties, not just evidence, so there could
be other nondata considerations that may affect our conclusions.

Example 7.1: To see that there is a real and fundamental issue involved,
consider closely the binomial versus the negative binomial case. Suppose we
obtain x = 8 out of n = 10 trials in a binomial experiment, and z = 8 successes
in a negative binomial experiment where we had planned to stop when we get
two failures. The likelihood functions of the success probability 6 from these
observations are the same

L(0) = constant x 6%(1 — 0)?,

so the strong likelihood principle would assert that the two experiments have the
same evidence about 6.

Now consider the test of hypothesis Ho: § = 0.5 versus Hi: 0 > 0.5. The
one-sided P-value from the first experiment is

P(X > 8]0 =0.5)

10 10
E ( >0.51°
X
=8

0.055,

p1

so we commonly say ‘there is not enough evidence to reject Hy at the 5% level’.
From the second experiment we have

ps = P(X>8]0=05)



196 7. Evidence and the likelihood principle*

oo

= > (@+1)0.5""

=8

= 0.020,

leading to rejection of Ho at the 5% level, i.e. "we do have enough evidence’ to
reject Hy. Hence the standard significance testing is in conflict with the strong
likelihood principle. O

The frequentists’ first reaction is to suspect and to reject the strong
likelihood principle, while Bayesians generally accept the principle, since
it is a consequence of their axiomatics. However, even the frequentists
cannot simply ignore the principle, since Birnbaum (1962) showed that
it is a consequence of the sufficiency and conditionality principles, two
seemingly reasonable principles.

7.3 Conditionality principle and ancillarity

Informally, the conditionality principle asserts that only the observed data
matter, or information about 6 should only depend on the experiment
performed. To appreciate that this is sensible, consider an example which
is a variant of Cox (1958) or Berger and Wolpert (1988).

Example 7.2: A certain substance can be sent for analysis to either Lab B
or Lab C. A coin is tossed to decide the location, and suppose it is decided that
we use Lab C. Now, when we evaluate the lab result, do we account for the coin
toss? To be specific, suppose Lab B measures with normal error with variance
0% = 1, and similarly Lab C has 0% = 4. We receive a report that z = 3 and we
want to test Ho: p = 0.

If we account for the coin toss in the overall randomness, the outcome X has
a normal mixture

0.5N(p,1) + 0.5N (p, 4)
and the one-sided P-value is

1 =0.5P(Z > 3)+0.5P(Z > 3/2) = 0.034,

where Z has the standard normal distribution. But, knowing that Lab C pro-
duced the actual measurement we obtain a one-sided P-value

p2 = P(Z > 3/2) = 0.067.

We say p2 is a conditional P-value, i.e. it is conditional on the result of the coin
toss, while p; is unconditional. O

Which P-value is more meaningful? Even frequentists would be tempted
to say that po is more meaningful as evidence. This is the essence of the
conditionality principle. As remarked earlier the sufficiency principle is also
reasonable, so Birnbaum’s result about the likelihood principle deserves a
closer look.

The last example is not as contrived as it seems, since in practice there
are many ‘nontechnical’ contingencies in real experiments that resemble a
coin toss, for example funding, patience, industrial strikes, etc. Theoret-
ically, the same issue always arises when there is an ancillary statistic, a



7.4. Birnbaum’s theorem 197

function of the data whose distribution is free of the unknown parameter.
For example, the sample size in most experiments is typically an ancil-
lary information. If x1,...,2, are an iid sample from N(u,1), then any
difference z; — x; is ancillary.

The idea of conditionality is that our inference should be made condi-
tional on the observed value of the ancillary statistic. This follows from
the likelihood principle: if our data are (x,a), where a is ancillary, then
the likelihood of the observed data is

L(0) = po(x, a) = p(a)pe(z|a).

This means the part that matters in the likelihood is only the conditional
model py(x|a), rather than the marginal model py(x).

7.4 Birnbaum’s theorem

Following Berger and Wolpert (1988) we will describe Birnbaum’s theo-
rem for the discrete case. Barnard et al. (1962) gave a very closely related
development. First recall what we mean by an experiment E as a col-
lection {X,0,pp(z)}. From an experiment we obtain evidence about 0;
this is a function of E and the observed data z, denoted by Ev(E,z).
This does not need to be specified exactly, in principle anything sensible
will do. For example, we may use the likelihood function itself; or, for
an iid sample z1,...,z, from N(u,o?), with 02 known, we may define
Ev(E,z) = (z,0%/n).

We first state the sufficiency principle formally in terms of evidence.
Suppose we perform an experiment E, and T'(X) is a sufficient statistic for
0.

Definition 7.1 SUFFICIENCY PRINCIPLE: If z andy are sample data from
E such that T(x) = T(y) then

Ev(E,x) = Ev(E,y).

The idea of a mixture experiment as in Example 7.2 is important in
the formal definition of the conditionality principle. Suppose there are two
experiments E1 = {X1,0,p1,0(z1)} and By = {X5,0,p2¢(x2)}; only the
parameter 6 need to be common in the two experiments. Now consider a
mixture experiment E*, where a random index J = 1 or 2 is first generated
with probability 0.5 each, and E; is then performed. Formally E* =
{X*,0,p5(x*)}, where X* = (J, X ;) and p}(j, z;) = 0.5p;j0(x;).

Definition 7.2 CONDITIONALITY PRINCIPLE: The evidence from a miz-
ture experiment is equal to the evidence from the experiment performed,
that is

Ev(E*,z*) = Ev(E;, x;).
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To define the likelihood principle in terms of evidence consider two
experiments F; and F, again.

Definition 7.3 STRONG LIKELIHOOD PRINCIPLE: Suppose x1 and xo are
data from Ey and Es respectively such that the likelihood functions are
proportional, namely

L1(0) = CLQ(G),
for some constant ¢, i.e. p1 g(x1) = cp2g(x2) for all . Then the evidence

is the same:
E"U(l?l7 1‘1) = EU(EQ, .132).

Theorem 7.1 (Birnbaum’s theorem) The sufficiency and conditionality
principles together are equivalent to the strong likelihood principle.

Proof: We first show that the sufficiency and conditionality principles
together imply the strong likelihood principle. Let us start with the premise
of the strong likelihood principle that data x; and zs have proportional
likelihoods. Now consider the mixed experiment E* as defined for the
conditionality principle, and recall that on observing any (j,z;) we have

Ev{E*, (j,z;)} = Ev(E;, ;). (7.1)
For the mixed experiment E* with random outcome (J, X ;) we define

[ (e iT=2X =
T(J,X,) —{ (J, X ) otherwise.

Note that there is some data reduction in T'(J, X ;) since if we observe
T =t = (1,21) we do not know if we have performed (1,z) or (2,z3); in
fact this is the only data reduction. The essence of the proof is to show
that such a reduction does not result in any loss of information; that is to
show that T'(J, X ;) is sufficient for 6. To satisfy the definition of sufficient
statistic we find the conditional probabilities

P{X™ = ()T =t#(1,21)} = { 0 otherwise,
and
P{X*=(Lz)|T=t=(1,21)} = 1-PX*"=2,z)|T=t=(1,21))
_ 0.5]91’9(1'1)
0.5])179(%‘1) + 0.5])279(%‘2)
c
T oce+1
and see that they are independent of 8. The sufficiency principle implies
Ev{E", (1,21)} = Ev{E",(2,22)}. (7.2)

Now it is clear that (7.1) and (7.2) imply Ev(Eq,x1) = Ev(Es,x2). This
proves the first part of the theorem.
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To prove the converse, the likelihood of 6 based on (j, z;) in experiment
E* is
L*(0) = 0.5pj0(z;),

so it is proportional to the likelihood of  based on x; in experiment Ej.
The strong likelihood principle implies

Ev(E", (j,z;)) = Ev(Ej, x;),

which is the conditionality principle. In Section 3.2 we have shown that
if T(X) is sufficient and T'(x) = T(y), then z and y have proportional
likelihood functions, so by the strong likelihood principle

Ev(E,z) = Ev(E,y),

which is the sufficiency principle. O

A simple corollary of Birnbaum’s theorem is the requirement that Ev(E, x)
depend on E and x only through the likelihood function. We can see that
by defining a new experiment EY where we only record

1 ifX=xa
Y= { 0 otherwise,

then P(Y = 1) = pp(x), so
Ev(E,z) = Ev(EY, 1),

but EY depends only on py(x) = L(f).

The corollary has fundamental implications on statistical inference. For
example, the standard P-value is generally not a function of the likelihood;
hence if we adopt the strong likelihood principle, we have to admit that
P-value is not evidence from the data. The key idea in the computation of
P-value is the notion of more extreme values in the sample space other than
the observed data; such a notion is in conflict with the likelihood principle.
Recall the binomial-negative binomial experiments in Example 7.1; it is
a special case of sequential experiments, an important branch of statistics
where the likelihood and traditional frequentist inference do not match.

7.5 Sequential experiments and stopping rule

Without loss of generality, suppose independent observations are taken
one at a time, where after each new observation we make a decision about
taking another independent observation. In many sequential experiments,
the decision to carry on is typically of this form:

at time m and given z1,...,%m, continue to obtain x,,+1 with prob-
ability hm,(z1,...,%m); that is, the decision depends only on the past
data, but not on the unobserved 1.
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For example, in the negative binomial experiment, we continue a Bernoulli
trial until the current number of successes is equal to a pre-specified value
r. In this experiment z; is zero or one, and

1 if S a<r
hm(zl"'”l‘m):{ 0 if %g‘ii‘rizr'

Given a model pg(z), and observations x1,...,Z,, and assuming that
the decision function h;(-) does not depend on the unknown parameter, the
likelihood function is

L(9) = P(deciding to observe x1)pg(z1) X
P(deciding to observe xa|x1)pg(x2) X
. X
P(deciding to observe x,|z1, ..., Tn—1)ps(zs) X

P(stop at zp|z1,...,25)

= hopg(z1) X
hi(x1)pe(z2) X
X
hnfl(xla B 7xn71)p9($n) X

(1= hp(x1,...,20))
= constant x Hpg(a?i).

7

So, we arrive at a remarkable conclusion that the likelihood function ignores
the stopping rule altogether. A strict adherence to the strong likelihood
principle in this case implies that the evidence from such an experiment
does not depend on the stopping rule. That is, if we want to find out
what the data say, we can ignore the stopping rule in the analysis. This is
convenient if we stop a study for some unrelated reason (e.g. a power cut),
but it is also the case even if we decide to stop because ‘we are ahead’ or
the ‘data look good’.

To see that this is not a trivial issue, consider the problem of sequential
trials from the frequentist point of view. In industrial experiments involv-
ing expensive units or destructive testing, for which sequential testing was
originally conceived (Wald 1947), it makes sense to proceed sequentially to
try to minimize cost. In clinical trials sequential testing is adopted for an
added ethical reason: if a drug or a procedure is harmful then we want to
stop a trial early to avoid harming the study subjects, while if a drug is
beneficial then it should be made readily available.

Example 7.3: Suppose we observe z1,z2,... sequentially and independently
from N(6,1), where we are interested to test Ho: 6 = 0 versus Hy: 6 > 0. (This
setup includes the group sequential testing since we can think of z; as representing
the average of, say, 100 observations.) A simple sequential procedure is to test
at each stepn=1,2,...
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VN, >k,

where T,, is the current sample mean and k is a fixed critical value, and reject Hy
the first time the test is significant. There is an immediate problem: under Hy
the test will be significant for some n with probability one! This is a consequence
of Kolmogorov’s law of iterated logarithm that \/n|Z,| ‘grows’ like v/2loglogn,
so eventually it will cross any fixed boundary. This means the true type I error
probability of the test is 100%, not a very desirable property.

In practice we may not want to wait too long for a conclusion, which can
happen if the true 0 is near zero. Typically we plan to have, say, a maximum
of N = 4 tests. Using the same rule above the type I error probability can be

computed as
N=4
S
n=1

where p,, can be interpreted as the current a-level defined as
pn = P(\/nTy > k,and \/n — jTn—j < k,for j=1,....,n—1).

While this looks complicated, it can be easily found using the Monte Carlo tech-
nique. For example, for N =4 and k = 1.65 we obtain (Exercise 7.1)

p = 0.050
p2 = 0.033
ps = 0.018
ps = 0.010,

so the overall type I error probability is a = > p; = 0.111. To obtain a sequential
test with 5% level we can set the critical value to k = 2.13. In sequential analysis
terminology we ‘spend’ our a-level according to a prescription of (p1,p2, ps,pa).
We can make it hard or easy to stop early by controlling the relative sizes of p;
to ps. O

The main consideration above has been the frequentist concern over the
type I error probability. That this concern is not universally accepted can
be seen from the following example (Berger and Berry 1987).

Example 7.4: A scientist has n = 100 iid observations assumed coming from
N(0,1) and wants to test Ho: & = 0 versus Hi: 6 # 0. The observed average
is Tipo = 0.2, so the standardized test statistic is 2 = /n|Ti00 — 0] = 2.0.
‘A careless classical statistician might simply conclude that there is significant
evidence against Hy at the 0.05 level. But a more careful one will ask the scientist,
“Why did you cease experimentation after 100 observations?” If the scientist
replies, “I just decided to take a batch of 100 observations”, there would seem
to be no problem, and few statisticians would pursue the issue. But there is
another important question that should be asked (from the classical perspective),
namely: “What would you have done had the first 100 observations not yielded
significance?”

To see the reasons for this question, suppose the scientist replies: “I would
then have taken another batch of 100 observations.” The scientist was implicitly
considering a procedure of the form:

(a) take 100 observations

(b) if v/100|Z100| > k then stop and reject Ho;
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(c¢) if v/100|Z100] < k then take another 100 observations and reject Hp if
V200|Z200| > k.
For this procedure to have level o = 0.05, k must be chosen to be k = 2.18 (Ex-
ercise 7.2). For the observed z = 2.0 at step (b), the scientist could not actually
conclude significance, and hence would have to take the next 100 observations!’
What is obviously disturbing is that the ‘significance’ of an observed P-value
depends on the thoughts or intention of the scientist rather than the data alone.
This example can be elaborated to create further paradoxes. Suppose the
scientist got another 100 observations and the final z = v/200|Z200| = 2.1 < 2.18,
which is not significant at & = 0.05. The ‘proper P-value’ that takes the half-way
analysis into account is

P(v100|Z100| > 2.18) + P(v/100|Z100| < 2.18,v/200|T200| > 2.1) = 0.055.

If the full dataset is published and another scientist analyses it, the latter will
get a significant result, with P-value

P(Vv/200|Z200| > 2.1) = 0.036.
So the same data produce different ‘evidence’. O

That we can ignore the optional stopping is a liberating implication of
the likelihood principle. It simplifies our analysis and, regardless of our
intention, we would report the same evidence. Adherence to the strong
likelihood principle, however, creates a puzzle of its own: consider the
following example from Armitage (1961).

Example 7.5: Fix a value k in advance and take x1,x2,... randomly from
N(0,1) until
Zn = \/NTn > k.

Think of z, as a time series with index n and the stopping rule as a boundary
crossing. Figure 7.1 shows a sample realization of z,, where the boundary of
k = 2 is crossed at n = 48. This means that only z1,...,x4s are available for
analysis.

0 10 20 30 40 50
n

Figure 7.1: A sample realization of \/nT, computed from x1,xs,... for
n=1,...,50. The boundary s crossed at n = 48.
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Since the stopping rule is a function of the observed data alone, the likelihood
of 6 based on the data x1,...,z, is

L(0) = constant x e E@ 07

In particular 0= T, as before. The likelihood of Hp: 0 =0 is

Lo _,

L0

—nz?/2 < 67k2/2.

~—

What is puzzling here is that the evidence about Hp appears to be determined
in advance by the choice of k; for example, using k = 2, the likelihood of § = 0 is
less than 15%. Here the data have been ‘rigged’, but the computation of evidence
via the likelihood does not take that into account. O

It must be emphasized that even if the likelihood is not affected by the
stopping rule, the likelihood principle does not say ‘so, go ahead and use the
standard frequentist-style likelihood ratio test for inference’. The principle
only states something about evidence, but not any particular course of
action.

Suppose we decide to stop if \/nT, > 2, and we observe x; = 2.5 and
stop. What can we say about 6 given that z; is a sample from N(6,1)?
To illustrate frequentist calculations, suppose 6 = 0; given that we stop at
n = 1, the average of X; is

E(X1|X, >2) =24.

This seems unacceptable: if we stop early then there is the potential of a
large positive bias. However, if 6 is much larger than k = 2, then there is
very little bias; for example, if z; = 50 then we know that there should be
very little bias due to stopping.

Stopping at a large n is evidence that 6 is small. In this case the sample
mean T will be near k/+/n, which is small if £ is moderate. So the likelihood,
which is concentrated at the sample mean, is not going to be very biased.
Also, as the sample size n goes to infinity L(# = 0) > L(6;), meaning that
0 = 0 has better support, for any fized 81 > 0.

The preceding discussion suggests that the sample size n carries infor-
mation about #: a small n is evidence of a large 0, and a large n a small 6.
This is true, but unlike in the negative binomial case, in the normal case
n is not sufficient so inference based on n alone will be inefficient.

Sequential analysis such as those in industrial quality control appli-
cations is ‘made’ for a true frequentist testing. In this case there is no
difficulty in accepting the relevance of long-term operating characteristics
such as false alarm rate, etc. Later applications such as sequential clin-
ical trials are justified more on ethical rather than on efficiency grounds;
here we find that a full-blown inference including estimation and confidence
procedure meets inherent logical difficulties.

Even a frequentist estimation procedure can lead to a logical quandary:
Exercise 8.11 shows a simple example where the best unbiased estimate
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from a two-stage experiment ignores the second-stage data. Frequentist
inference from a stopped experiment can be found, for example, in White-
head (1986), Rosner and Tsiatis (1988), or Whitehead et al. (2000). Note,
however, that any analysis that takes the sampling scheme into account
will violate the likelihood principle and, as illustrated by Example 7.4, any
such violation will make the analysis or its conclusions open to paradoxes.

A common practice in sequential clinical trials is to use a formal se-
quential testing procedure during the trial (see Example 7.3), but then to
ignore the stopping rule when analysing the data for further scientific pub-
lications. This seems a sensible compromise. Adopting a sequential testing
procedure would prevent experimenters from stopping too soon unless the
evidence is very strong. Ignoring the stopping rule when presenting the
evidence avoids having the intention of the experimenters interfere with
the interpretation of the data (Example 7.4).

Informative stopping

There is a subtle point in the analysis of a sequential trial that has a
general relevance. In the above analysis, the likelihood ignores the optional
stopping if A, (z1,...,T,), the probability of stopping at time m, is a
function of observed data alone. We can pretend that the values x1, xo, ...
were already observed, but when we decide to stop at n, then we simply
drop/delete x,y1,Tp 2, ..., and keep only x1,...,z,.

Imagine a scheme where we take one observation at a time, note the last
value and drop/delete it if it is too large, and stop the experiment. In this
case the probability of stopping is also a function of the unknown parameter
and the likelihood will not ignore it. So, the general rule is that dropping
an observation because of its value will always affect the likelihood, but
dropping it with a probability determined by other available data does not
affect the likelihood from the available data.

For example, suppose z1,...,x, are an iid sample, and we drop all
values except the maximum. The likelihood based on the maximum value
is quite different from the likelihood based on a single random value x;
(Example 2.4). Similarly, other processing of the data prior to analysis
may or may not have an effect on the likelihood from the final dataset.

Thus the idea of optional stopping is also related to analysis of missing
data. If the missing mechanism is a function of available data, the likelihood
ignores it; if it is also a function of the missing data the likelihood will take
it into account.

7.6 Multiplicity

The frequentist concern in the sequential experiment example is a special
case of the problem of ‘multiplicity’, which is pervasive in applied science
or applied statistics. If we get a significant result after performing many
tests or ‘repeated looks’ at the data, how should we account for these in
our conclusion?
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In its mild form, multiplicity is known as a ‘multiple comparison prob-
lem’ (Miller 1981; Hochberg and Tamhane 1987). If we are comparing
many things, some of them are bound to be significant purely by chance:
under the null hypothesis, if each test has a 5% level then for every 20 tests
we expect one significant result, and even if such a result is unexpected it
is usually ‘easy’ to supply a ‘scientific explanation’.

The standard F-test protects the a-level against this problem, as does
the Bonferroni adjustment or Tukey’s procedure. At what point do we
stop protecting our a-level against multiplicity? Within a single analysis
of variance table? Within an experiment? Or within the lifetime of a
scientist? In addition, the use of P-value as a measure of evidence presents
problems. There will be paradoxes similar to Example 7.4: the ‘intention’ of
the experimenter in planning how many tests to perform becomes relevant
in evaluating the ‘significance’ of a revealed pattern.

In its extreme form multiplicity carries a pejorative term such as ‘data
snooping’ or ‘fishing expedition’ or ‘data dredging’, etc. The problem is
obvious: if we look long enough around a large dataset we are going to
see some statistically significant patterns, even when in truth no such pat-
tern exists; this means the true a-level of the procedure is near 100%.
The strength of evidence as reported by the likelihood or standard P-value
becomes meaningless, since it usually does not take into account the unor-
ganized nature of the data snooping.

The likelihood might not be affected by data snooping. For example,
after seeing the result of one variable, it may occur to us to test another
variable. It is obvious that the evidence about the first variable should
not be affected by our intention about the second variable. In situations
where we ignore data after seeing them (e.g. they are not ‘significant’),
data snooping can be more complicated than a sequential trial, and the
likelihood will be affected.

As with the optional stopping it is liberating not to worry about multi-
plicity or various decisions at data pre-processing. However, we learn from
the sequential trial that, even when the likelihood is not affected by the
optional stopping, inference from the final data can be elusive.

Inference after model selection

Model selection is a bread-and-butter statistical activity that is accompa-
nied by the problem of multiplicity. It can be formal as in a stepwise or
best-subset variable selection procedure. Or it can be informal and undoc-
umented, where we make decisions about inclusion/exclusion criteria for
subjects of analysis, definition of categories or groups for comparison, etc.
The formal process is clearly guided by the data to arrive at simple but
significant results, so it is well known and intuitive that model selection
can produce spurious results. The question is how to account for the selec-
tion process in the reporting of evidence in the final model. This is not a
question of model selection itself, which can be done for example using the
AIC, but of the uncertain inference associated with the parameters of the



206 7. Evidence and the likelihood principle*

chosen model.

The common practice is in fact to ignore the selection process: P-values
are typically reported as if the final model is what has been contemplated
initially. While convenient, such P-values can be spurious. Moreover, gen-
erally we cannot invoke the likelihood principle to justify the evidence in
the final model.

There are general techniques we can use to measure uncertainty due
to model selection. For example, we can use the cross-validation approach
(Section 5.2): split the dataset into two parts, then use one part (‘the
training set’) to develop the best model, and the other (‘the validation set’)
to validate the model or measure its uncertainty. For example, the training
set may indicate that ‘social-economic level’ is an important predictor of
‘health status’ in the best-subset model; then we find the P-value of the
variable in the best subset model based on an analysis of the validation set.

The method is not feasible if the dataset is small. In this case it is
common practice to use the whole dataset as the training set. If a scien-
tifically interesting model is found after an extensive model selection, then
it is probably best to collect more data to get an external validation. This
is consistent with the conservative tendency in the scientific community to
believe only results that have been validated by several experiments.

7.7 Questioning the likelihood principle

Tt is common to hear some statisticians declare that they ‘reject’ the (strong)
likelihood principle. How can they reject a correct theorem? It is impor-
tant here to distinguish between the formal and informal statements of the
likelihood principle. The formal statement is that

two datasets (regardless of experimental source) with the same like-
lihood carry the same evidence, so that evidence is in the likelihood
alone — assuming the model is correct, of course.

The informal likelihood principle states that

two datasets (regardless of experimental source) with the same likeli-
hood should lead to the same conclusion.

These are two very different statements, with the latter being the commonly
rejected one. What we do (e.g. drawing conclusions or other actions) given
the likelihood is outside the boundary of the formal likelihood principle.

Lying in the gap between the statements is a fundamental question
whether our conclusion should depend only on the observed data. If yes,
then it should follow from the likelihood alone. Most statisticians from
all persuasions in fact reject this. Bayesians use the prior information
formally to arrive at conclusions, while frequentists care very much about
how we arrive at the data. The informal principle is also stronger than the
Fisherian view that both likelihood and probability inference are possible,
and that likelihood is weaker than probability.
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Interpretation of likelihood ratio

An important aspect of Fisherian inference is that, when needed as a mea-
sure of support, the likelihood ratio can be interpreted subjectively. For
example, when considering hypotheses A versus B, a likelihood ratio of 209
in favour of B means B is preferred over A, and 209 measures the strength
of preference. Now, if in another experiment we report a likelihood ratio
of 21 between two competing hypotheses, can we say that the first exper-
iment shows stronger evidence? This is a question of calibration: can we
interpret the likelihood ratio as is, or does it require another measure to
calibrate it?

The sequential experiment in Example 7.5 shows that the likelihood
cannot tell if a dataset has been ‘rigged’. We now come back to the exper-
iment in Section 2.4 to show that the likelihood also cannot tell that the
parameter space may be too large, or that an observed pattern is spurious,
and we have overfitted the data.

Imagine taking a card at random from a deck of N = 209 well-shuffled
cards and consider the following two hypotheses:

Hy : the deck contains N different cards labelled as 1 to V.
Hj : the deck contains N similar cards labelled as, say, 2.

Suppose card with label 2 is obtained; then the likelihood ratio of the two
hypotheses is
L(H>)
L(Ho)

= N =209,

that is, Hs is N = 209 times more likely than Hy, so the evidence indicates
that Hs should be preferred over Hy.

There is nothing unusual in the above interpretation that a likelihood
ratio of 209 gives strong evidence for Hy. Now suppose the card experiment
is conducted without any hypothesis in mind. One card is taken at random,
and a card with label 5 is obtained; then one sets the hypothesis

Hj : the deck contains N similar cards labelled as 5.

Then L(Hs)/L(Hy) = N = 209, that is Hs is 209 times more likely than
Hy. Some may find this disturbing: Hj for any obtained label k£ > 0 is
always more likely than Hy.

The difference with the previous interpretation, that the hypothesis Hj
is set after seeing the data (label 5), is actually not important. We may
consider N + 1 hypotheses in advance: Hy for k =0,..., N. Then, for any
observed label k we have L(Hy)/L(Hy) = N. This is a potent reminder
that the likelihood ratio compares the relative merits of two hypotheses in
light of the data; it does not provide an absolute support for or against a
particular hypothesis on its own. That L(Hs)/L(Hgy) = N = 209 does not
mean Hj in itself is a reasonable hypothesis.

One may find the original interpretation above more acceptable; there
is an implicit suggestion, before we collect the data (pick a card), that Hy
and Hs are the only possible hypotheses because they are explicitly stated;
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hence observing label 2 ‘feels’ like evidence for Hy. This ‘suggestion’ is not
based on data, but on prior information.

To make the last argument more specific and to clarify the way the data
enters our reasoning, suppose we conduct an extra layer of experiment by
first choosing Hy or Hy at random so that

P(Hy) = P(Hs) =1/2.
Then, on observing a card with label 2,
P(Ho) P(2|Ho)
P(2)
1/2 x 1/N

1/2x 1/N +1/2
1/(N+1)

P(Hol2) =

and P(H3|2) = N/(N 4 1). Here it is true a posteriori that Hs has more
chance to be true. However, it is not the case if a priori P(Hs) is tiny, e.g.
a lot smaller than 1/N. Note that the ratio of the posterior probability

P(Hy2) _ P(H3) y P(2|Hz)

P(Hy|2) P(Hy)  P(2[Ho)
_ P(Hy)  L(Hy)

P(Hy) — L(Hy)’

so the data enter the posterior comparison only through the likelihood
ratio.

Our sense of surprise in viewing an experimental result is a function
of both our prior belief and likelihood. This is how we can explain why
the interpretation of L(Hs)/L(Hy) = N above feels ‘surprising’: we are
mixing up evidence in the data (which is strong) with a prior belief (which
is weak).

If Hs is truly considered after seeing the data, then it is a spurious
hypothesis; including it in the list of possible hypotheses enlarges the ‘size
of the parameter space’. This example shows that some prior knowledge
can be important to avoid over-interpretation of likelihood. The knowledge
is used mainly to limit consideration of sensible hypotheses. This leans
towards the Bayesian attitude, though we may not want to invest formally
in our prior.

A Fisherian attitude here is closer to a frequentist’s: if some evidence
is not likely to be repeatable, then it is spurious and the uncertainty is not
adequately measured by the likelihood alone. What we know theoretically
is that if the parameter space is large the likelihood ratio tends to be large,
so to avoid spurious results we have to adapt our assessment of likelihood
according to the size of the parameter space (Section 3.5).
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Empirical distribution function

The above example is not far fetched. In statistics we regularly use the
empirical distribution function (EDF), which is the (nonparametric) MLE
in the class of all possible distributions (discrete and continuous). For
example, given data xr; = 1.2, the EDF is a degenerate distribution at
21; this has higher likelihood than any other distribution. (To avoid the
technical problem of comparing the discrete and continuous models, simply
assume that measurements have finite precision, so 1.2 means 1.2 + ¢ for
a small e.) Given n distinct sample points, the EDF puts a weight 1/n at
each point (see Section 15.1).

It is not necessary to ‘believe’ that our sample actually comes from the
EDF to accept that the EDF is a reasonable estimate of the distribution
function.

Example from Fraser et al.

Fraser et al. (1984) give an example where a pure likelihood inference
seems to be in conflict with the repeated sampling principle. Suppose
0e{1,2,...} and

1,2,3 if0=1
po(x) =1/3 forx =< 60/2,20,20 + 1 if 0 is even
(0—1)/2,20,20+1 if 0 is odd.

This probability model is best shown in a graph: see Figure 7.2. The
nonzero probabilities, all with value 1/3, are on the circles. From the
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Figure 7.2: Probability model from Fraser et al. (1984): the probability is
1/3 on the circles and zero otherwise.

graph it is obvious that, for any observed z, the likelihood function is flat
on the three possible values of 6:

1,2,3 ifz =1

L(®)=1/3for 0 =< x/2,2x,2x +1 if = is even
(x—1)/2,2z,20 4+ 1 if x is odd.
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So from the likelihood function alone we cannot prefer one value of 6 over
the other.

Now consider using the first, middle and last values as an estimate of ¢
and call them 6, 6> and f3. Then, the probability of hitting the true value
is

P =) = { DX =1{123)=1 if =1
oL n Py(X ={20,20 +1}) =2/3 otherwise
~ 1/3 if 6 is even
Po(02=0) = R(X=6/2)= { 0/ otherwise
~ 1/3 if 6 is odd, but not 1
Po(0s=0) = Pp(X =(0-1)/2) = { O/ otherwise.

This computation suggests that we should use 9\1.

The probability of hitting the true value is not evidence in the data, it
is a consequence of repeated sampling from the assumed probability model.
In this example evidence in the data from a single experiment cannot tell
us which choice of 0 is best, but the experimental setup tells us it is better
in the long run to use ;. If the experiment is to be repeated exactly, say
by different participants, where 6 is fixed in advance and it is desirable to
have maximum hitting probability, then 91 is better than 92 or 93

Goldstein and Howard (1991) modified the example to become more
contradictory. Let 6 be a nonnegative integer. Given 6, 99 balls are
marked with # and put in a bag together with 992 balls marked with
9920 +1,...,992(0 + 1). For example, if § = 0, 99 balls are marked with
0, and 992 balls with 1,...,99%. One picks a ball at random from the bag
and notes the mark. If it is X = k, then 0 is either 6, = [( - 1)/992] or
92 = k. The likelihood of 92 is 99 times the likelihood of 91, SO 02 is the
MLE of 8, while the hitting probabilities are

~ 1 ifg=0
P1=9) = {0.99 if 0 >0
P@,=6) = P(X=6) =001,

which indicates that 51 is a better choice ‘in the long run’.

The long-run interpretation requires that 6 is fixed, and the repeat
experiments are performed without any accumulation of data (otherwise
6 is known exactly once we observe two distinct marks). Such a model is
appropriate, for example, if the experiment is to be repeated by different
people who act independently. Without such restriction we can end up
with a paradox: on observing, say, k = 55, 0 is either 0 or 55; if we restrict
0 to these two values, then the MLE has a superior long-run property.

It should be emphasized that Fraser et al.’s example is not a counterex-
ample of the likelihood principle. It only highlights the fundamental fact
that the likelihood on its own is silent regarding the long-term properties.
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Conditionality

A serious question on the formal likelihood principle is directed at the
conditionality principle: there can be more information from a mixed ex-
periment. That is, in the previous notation,

EV{E*? (]"T?)} > EV(EJ" xj)'

Under this assumption the likelihood principle does not follow. Here is a
famous example using a finite sampling experiment (Godambe and Thomp-
son 1976; Helland 1995).

Suppose there are N units in a population each having, on a certain
measurement, values u1,...,uy. We take a sample of size n without re-
placement from the population and are interested in the mean parameter

| N
0=— i
N2
The full parameter space is (u1, ..., un,0). Enumerate all K possible sam-

ples of size n, i.e.

- ()

and let Fj be the experiment of measuring the n units in sample k. Now
it is obvious that Ej does not contain evidence about 8. However, a mized
experiment which chooses one sample k at random with probability 1/K
would produce the usual simple random sample and have some information
about 6.

The problem with this example is that the parameter 6 is not well
defined within each experiment Fj, so the setup lies outside the formal
definition of the strong likelihood principle.

7.8 Exercises

Exercise 7.1: Verify the current a-levels shown in Example 7.3.
Exercise 7.2: Verify the critical value k = 2.18 stated in Example 7.4.
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Score function and Fisher
information

Given data x and probability model py(x) in Chapter 2 we have defined
the likelihood function as

L(0) = po(x)
and the first derivative of the log-likelihood as

S(0) = % log L(0).
As a function of 6 we call S(6) the score function, while as a random
variable for fixed 6 we call S(0) the score statistic.

The score statistic turns out to have rich frequentist properties. In
likelihood theory we use the frequentist analytical tools to operate or ma-
nipulate likelihood quantities, to establish needed characteristics, and to
derive approximations.

8.1 Sampling variation of score function

The sampling distribution of the score function shows what we should ex-
pect as the data vary from sample to sample. We will study this through
a series of specific models.

Normal model

Let z1,...,2, be an iid sample from N(f,0?) with o> known. Then the
log-likelihood and the score functions are

n 1
log L(#) = —§log02—ﬁ (z; — 0)?
0
S@O) = %logL(ﬁ)

1

= 2 4(%—9)
n . _

= ;(z—@)

Figure 8.1(a) shows 20 score functions, each based on an iid sample of size
n = 10 from N(4,1). We have noted before that the score function of the
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normal mean is exactly linear. At the true parameter § = 4 the score varies
around zero.

(a) Normal n=10 (b) Poisson n=10

Score

(c) Bernoullin=10

10 20 30

Score
0

\

-20
L

T T T T T T
01 02 03 04 05 06 0.7 08
0

Figure 8.1: Sampling variation of score functions for different models.

Poisson model

Let x1,...,z, be an iid sample from Poisson(f). The log-likelihood and
the score function are

logL(0) = -nf+» x;logh
SO = —n+ ngi
n, _

Figure 8.1(b) shows 20 score functions based on 20 independent samples of
size 10 from a Poisson distribution with mean 4. Here the score function
is only approximately linear. At the true parameter (§ = 4) the score
function also varies around zero.

Binomial model

Let x1,...,x, be an iid sample from binomial(N,#). The log-likelihood
and the score functions are
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n

log L(A) = Z {z;logf + (N — z;)log(1 —0)}
" (z; N-—u
50) = 2{9_ 19}
n(T — N6)
6(1—6) °

Figure 8.1(c) shows 20 score functions based on 20 independent samples of
size n = 10 from binomial(10, 0.4).
Cauchy model

Let x1,...,x, be an iid sample from Cauchy(0) with density

po(z) = {m(1+ (z - 6)*)} 7",

where 6 is the location parameter. The log-likelihood and the score func-
tions are

L) = =Y logl(1+ (@i —0)))

S = —_—
( ) Zl: 1+ (:L‘i — 9)2
Figure 8.1(d) shows 20 score functions based on independent samples of
size 10 from Cauchy(6 = 4). The score function is quite irregular compared
with the previous three examples. The Cauchy model can be considered as

a representative of problems with complicated likelihood.

8.2 The mean of S(0)

We have seen in all cases above that, at the true parameter the score statistic
varies around zero. For normal data

n
5(6) = 5@~ 6)
and for Poisson data n
S(6) = g(f— 0).

In both cases EpS(f) = 0. The subscript 6 on the expected value is im-
portant: it communicates that 6 is the true parameter that generates the
data. The result is true in general:

Theorem 8.1 Assuming reqularity conditions so that we can take the deriva-
tive under the integral sign, we have

E¢S(6) = 0.
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Proof: Without loss of generality, we consider the continuous case:

EpS(0) = /S(@)pg(x)dx

- / {869 log L(@)} po(x)dx

9
- /azl(/e(f)pg(m)dx

= /%L(G)dw

0
= %/pg(x)dxzo. O

The general conditions for taking the derivative under the integral sign
are rather technical (e.g. Apostol 1974, page 283). For example, § cannot be
a boundary parameter, and, as a function of x in the neighbourhood of the
true parameter 6, |0L(6;2)/060| < g(x) where [ g(x)duz is finite. Essentially,
this requires the model pg(z) to be ‘smooth enough’ as a function of 6. It
can be shown that the exponential family models or other models commonly
used in practice, including the Cauchy model, satisfy the conditions.

8.3 The variance of S(0)

We have defined in Section 2.5 the observed Fisher information as minus
the second derivative of the log-likelihood function evaluated at the MLE
0. Its generic form is
0? 0
1(0) = —==log L(0) = —=5(09).
(6) =~ 55 1o L(6) = ~£55(0)
This is minus the slope of the score function. This quantity varies from
sample to sample; see Figure 8.1. Now we define the average or ezrpected
Fisher information as

I(0) = EoI(0).

The expected value is taken at the fized and true value of 6; ‘true’ in the
sense that the data are generated at that value of 6.

There are notable qualitative differences between the expected and the
observed Fisher information. The expected information is meaningful as a
function of 6 across the admissible values of 8, but I(6) is only meaningful
in the neighbourhood of 9. More importantly, as an observed likelihood
quantity the observed information applies to a single dataset; it is better
to think of it as a single value, or a single statistic, rather than as a function
of 6. In contrast, the ‘expected information’ is an average quantity over
all possible datasets generated at a true value of the parameter. It is not
immediately obvious whether Z(6) is a relevant measure of information for
a particular dataset.



8.3. The variance of S(f) 217

As a function of @, the expected information tells how ‘hard’ it is to
estimate 0: parameters with greater information can be estimated more
easily, requiring less sample to achieve a required precision. It might seem
surprising then to arrive at a theorem that the expected information is
equal to the variance of the score statistic. The proof is left as an exercise.

Theorem 8.2 Assuming regularity conditions so that we can take two
derivatives under the integral sign, we have

vargS(6) = Z(6).
Since EyS(#) = 0, the theorem is equivalent to stating that
2

5o 2tost0)) = -5 Losrio).

The regularity conditions are satisfied by the exponential family or other
commonly used models. In our discussions we will assume that this theorem
holds.

Normal model

Let x1,...,x, be an iid sample from N(6,0?) with 02 known. We have

vargS(0) = var{

1) = —=:5(0)=

so vargS(0) = Eyl(0). In this case Z(6) = I(¢), a happy coincidence in any
exponential family model with canonical parameter § (Exercise 8.3). We

have noted before that var(6) = 1/1(6), so larger I(#) implies more precise
information about 6.

Poisson model

For x1,...,x, an iid sample from Poisson(f) we have
n n
vargS(f) = var{g(f— 6)} =3
0 nT
I6) = —%S(Q) =0
n
e = rE

Now Z(0) # I(0), but at 0 = 9 = 7 we have I(é\) = 1(5) This is true
generally for the full exponential family (Exercise 8.3). It means we can

~ o~

estimate the variance of the score statistic by either Z(6) or I(6). This

-~

is a remarkable result, since I(6) is a feature of the observed likelihood
function, while the variance of the score statistic is a frequentist quantity.
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Cauchy model

Let x1, ..., 2, be an iid sample from Cauchy(¢) with density p(z) = {7(1+
(x —6)?)}~L. Here we have

10 = 22{50170 -1}

{(x; — )2 +1}2
- (X1—9) -1 _?’l
Ho = ‘Q”Ee{«xl—e)ul}?}ﬁ

B 2(X1 —0)
vargS(0) = nvar{(Xl_la)z_H}

n

5"
So varyS(0) = Z(6), but now Z(0 ) #1(0 ) a common occurrence in complex
cases. Both quantities are related to the precision of 5, so when they are
different, there is a genuine question: which is a better or more relevant
measure of information? For sample size n = 20, there is 90% probability
for 1(6) to fall between 5.4 and 16.3, while Z(9) = 10. The quantity I(9) is
‘closer to the data’, as it describes the curvature of the observed likelihood,
while Z(6) is an average curvature that may be quite far from the observed
data. Efron and Hinkley (1978) made this idea more rigorous; we will come
back to this isssue in Section 9.6.

Censored data example

Let t1,...,t, be an iid sample from the exponential distribution with mean
1/6, which are censored at fixed time c. This means an event time is
observed only if it is less than ¢. So, the observed data are (y;,Jd;), for
i=1,...,n, where

yi:ti andéizl, iftigc,

and

y; =cand §; =0, if t; > c.
The variable ¢§; is an event indicator, which is Bernoulli with probability
(1 —e~%). Using

po(t) = ge 0"
(t) = P(T>t)=e %

S

)

the contribution of (y;, ;) to the likelihood is

Li(0) = {pG(yi)}éi {Pg(yi)}1*5i.
So,

log L(#) = Z{(Silnge(yi)+(l_5i)10gP0(yi)}
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= ZéilogQ—HZyi.
s = =Y
1(0) = %fi
7(0) E;?@
n(1 —e=%)
92

and 6 = 3" 4;/3" 6;. The sum 3. §; is the number of uncensored events.

So in general Z(6 ) # 1(0 ) but there is a sense here that I(G) is the
proper amount of information. For example, if there is no censored value

1(6) = n/6?,

but R
Z(0) = n(1 — e=%) /62 < I(0).

The quantity n(1 — e~%), the expected number of events, is not relevant
when the observed number is known. The dependence on ¢, an arbitrary
censoring parameter that depends on the study design, makes I(@) unde-
sirable. The standard practice of survival analysis always uses the observed
information 1(0).

8.4 Properties of expected Fisher information
Additive property for independent data

Let Z,(0) be the Fisher information on 6 based on data X and Z,(0) based
on Y. If X and Y are independent, then the total information contained
in X and Y is Z,(0) + Z,(0). In particular if x1,...,z, are an iid sample
from py(z), then the information contained in the sample is nZ,, (9).

Information for location parameter

If po(x) = f(x — 0) for some standard density f(-), then Z(0) is a constant
free of #. This means that any location 6 can be estimated with the same
precision. To prove it:

() = / s<e>2pe<x>da:
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Information for scale parameter

We call 6§ a scale parameter if

@) =75 (3

for some standard density f(-). The family pg(x) is called a scale family;
for example, N(0,6?) is a scale family. In this case we can show that

Z(#) = constant/6?,

implying that it is easier to estimate a small 6 than a large one. The proof
is left as an exercise.

Transformation of parameter

Let ¢ = g(0) for some function g(-). The score function of 9 is

S* () = 7 logL(6)

so the expected information on v is

°(¢) = varS*(¢)

20\ >
(w) )

Z(0)
(00/00)2"

For example, based on a sample of size one from Poisson(6) we have

10) = %
16
(1/6)2

(Vo) = 4.

Therefore, in the log-scale, it is easier to estimate a large parameter value
than a small one. In generalized linear modelling of Poisson data this means
that inference in the log-scale is easier if we have data with large means.
The parameter V6 behaves like a location parameter.
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8.5 Cramér—Rao lower bound

We estimate the normal mean p by T(x) = T. Is this the best possible?
What do we mean by ‘best’? These are questions of optimality, which
drove much of classical estimation theory. The standard way to express
‘best’ is to say that among unbiased estimates T has the smallest variance,
implying that it is the most precise. The restriction to unbiasedness is quite
arbitrary, but it is necessary in order to develop some theory. Furthermore,
for the variance to be meaningful the sampling distribution must be normal
or close to normal.
In the normal model we know that

02

var(X) = —.

@) ==

Is it possible to get another estimate with lower variance? The Cramér—
Rao lower bound theorem addresses this. It states the best we can achieve
in terms of variability in estimating a parameter g(6). If the bound is
achieved we know that we cannot do better.

Theorem 8.3 Let EyT(X) = g(0) and Z(0) be the Fisher information for
0 based on X. Assuming regularity conditions we have

{g'(0)}”
varg{T(X)} > “Z0)

In particular, if EgT = 0, then

1
varg{T(X)} > 70"

The value {g’(0)}?/Z(9) is called the Cramér—Rao lower bound (CRLB).
The proof, to be given later, does not illuminate why such a result should
be true.

Example 8.1: Let z1,...,z, be an iid sample from Poisson(6). We have
shown before that Z(8) = n/0, so to estimate § by an unbiased estimate T', we
must have 1

>
~ ()

Since var(X) = 6/n we conclude that X is the best unbiased estimate. Theoret-
ically, it will be satisfying to be able to say that this is a unique best estimate,
but that would require the concept of completeness, which we defer until Sec-
tion 8.6.

var(T)

0
-

Example 8.2: Let z1,...,2, be an iid sample from Poisson(f) and we would
like to estimate g(8) = P(X1 = 0) = e~?. If T is unbiased for g(f), then

(_679)2 06720
> — = .
var(T) > /0 -
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The theorem does not provide guidance to finding an estimate that achieves the
bound, or even to say whether such an estimate exists. If we use the MLE

T(x) = €%, then, using the Delta method,

— —26
var (e*X) ~ Qen — CRLB,

so the MLE approximately achieves the CRLB. The best unbiased estimate in
this case is given by (see Example 8.9)

T(z) = (1 — l)"5

n

To see the connection with the MLE, we know from calculus that (1—1/n)" — e™*

as n gets large. This estimate does not achieve the CRLB; from the proof of the
CRLB theorem we shall see that only T that is linearly related to the score
statistic will achieve the CRLB exactly. O

Example 8.3: Let z1,...,2, be an iid sample from Poisson(f) and we would
like to estimate g() = 6. If T is unbiased for 62, then according to the theorem

3
var(T) > ﬁ
n

What is the best unbiased T'? First guess T = YQ, which has

EX’ = var(X) + (EX)? = % + 62,

soT =X — X /n is unbiased for 2. In fact, using the method given in the next
section, we can show that T is the best unbiased estimate for 62, but

var(T) = EBE(X° —X/n)? - (6%)?
- X' - 2pX 4 LEpxt g
n n
3 2
T .
n n

This generally occurs in small or fixed sample cases. O

Proof of the CRLB theorem

From the covariance inequality, for any two random variables S and T we
have )
|cov(S,T)|
T) > ———~
var(T) = var(S)

with equality if and only if S and T are perfectly correlated. Choose S to be
the score statistic S(6), so we only need to show that cov{S(9),T} = ¢'(6).
We showed before that ES(6) = 0, so

cov{S(0), T} = E{S()T(x)}
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— [ 8612 @p(e)da
-/ B )

po(x)
= / %pg(x)T(:c)dm

= %/T(;ﬂ)pg(m)d:p
g'(0).

Connection with the exponential family

From the proof above, the only statistics T'(x) that can achieve CRLB are
those which are linearly related to the score statistic. In such cases, for
some functions u(0) and v(6),

o 1ogp(x) = u(O)T(x) + v(0).

This implies that, if there exists a statistic that achieves the CRLB, the
model must be in the exponential family, with log-density of the form

log pg(x) = n(0)T(x) — A(0) + c(x).

This also means that, up to a linear transformation, the CRLB is only
achievable for one function g(#).

Example 8.4: For the normal, Poisson and binomial models, the sample mean
is the natural statistic, so it achieves the CRLB for estimation of the mean. No
other statistics that are not linearly related to the sample mean can achieve the
CRLB. O

Example 8.5: Suppose z1,..., T, are a sample from the Cauchy distribution
with location 6. Since it is not in the exponential family there is no statistic that
can achieve the CRLB. O

8.6 Minimum variance unbiased estimation*

If the CRLB is not achieved, is there still a ‘best’ estimate? Among unbi-
ased estimates, suppose we define the best estimate as the one with min-
imum variance. Establishing such a minimum variance unbiased estimate
(MVUE) requires a new concept called completeness. (The MVUE theory
is a class of theory of statistics that investigates how much can be achieved
theoretically given a certain criterion of optimality. It is quite different
from the likelihood approach followed in this book, where data modelling
is the primary consideration.)

Definition 8.1 A sufficient statistic T is complete if, for any function
9(T),
Eog(T) =0
for all 6 implies
g(t) =0.
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Example 8.6: Suppose z is a sample from the binomial(n,0). Then z is a
complete sufficient statistic for 6. Sufficiency is trivial, since x is the whole data.
Now, for any function g(x),

Eog(X)

Zg(m)( " )eﬂ”(l —0)" "

= Z c(x)0”,

x=0

for some function ¢(x) not involving 6. Hence Fyg(X) is a polynomial of maxi-
mum order n. Therefore, the condition Egg(X) = 0 for all 6 implies ¢(z) = 0, or
g(x) =0 for all z. O

Example 8.7: Let z1,...,x, be a sample from a one-parameter exponential
family, with log-density of the form

log po(xi) = n(0)t1 (i) — A(9) + ().

Then T = ZZ t1(z;) is a complete sufficient statistic for 6. By the factorization
theorem 7T is clearly sufficient. The density of T is also of the exponential family
form

log po(t) = 7(0)t — nA() + ¢ (¢)
so, for any function g(7),

FaglT) = [ a0

and Egg(T) = 0 for all # means

/g(t)ec*(t)en(ﬁ)t -0
for all n(0). From the theory of Laplace transform,
g(t)eh*(t) =0

but " ® > 0, s0 g(t) = 0. O

Example 8.8: Extending the result to the p-parameter exponential family,
where 6 € RP, follows the same route. Specifically, if z1, ..., x, are an iid sample
from a distribution with log-density

log po(x) = Y me(B)tx(x) — A(6) + c(w),
k=1

then {>, ti(xi),..., >, tp(xi)} is a complete sufficient statistic. The only con-
dition in the Laplace transform theory is that the set {(ni,...,7;),for all 6}
contains an open set in R”. This is exactly the requirement of a full exponential
family.

If 21,..., %, are an iid sample from N (u,o?), then (ZZ i, ZZ z?) is complete
sufficient for = (i, o). But, if, additionally, ¢ = u then the set {(n1,72), for all §}
is a curve in R?. In this case (3, @, Y, #7) is not complete sufficient, though it
is still minimal sufficient.
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Completeness implies unique estimates

In connection with estimation, completeness implies uniqueness: if T is a
complete sufficient statistic for 6, then h(T) is a unique unbiased estimate
of Eg{h(T)}. To see this, suppose u(T) is another unbiased estimate of
Ep{h(T)}. Then,

Eo{h(T) —u(T)} =0

for all 0, which, by completeness of T, implies h(t) = u(t).

Completeness implies minimal sufficiency

Completeness implies minimal sufficiency, but not vice versa. Let U be the
minimal sufficient statistic and T be the complete sufficient statistic for 6.
From minimality, U is a function of 7"

U=n(T)
and, since
E{E(T|U) - T} =0,
completeness of T implies
T—-ETWU)=0

or T'= g(U). This means U is a one-to-one function of T', so T is minimal
sufficient.

Construction of MVUE

Lehmann and Scheffé (1950) established that, in a model that admits a
complete sufficient statistic we can always construct the MVUE. This is
regardless of the CRLB. The construction of the estimate follows the so-
called Rao—Blackwell step:

Theorem 8.4 Suppose U(x) is any unbiased estimate of g(0), and T (z)
1s a complete sufficient statistic for 6. Then a new estimate

S(z) = E(U|T)
is the unique MVUE of ¢(0).

Proof: The new estimate S(z) is a proper statistic, i.e. it does not
depend on the unknown 6, since T is sufficient. It is also unbiased, since

E@S = EQ{E(U|T)} = E@U = g(@)
From the variance equality
var(U) = E{var(U|T)} + var{E(U|T)},

we immediately get
var(U) > var(S).

So S has smaller variance among any unbiased estimate U. Completeness
of T implies that S is a unique function of T' that is unbiased for g().
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Example 8.9: Suppose z1,...,T, are an iid sample from the Poisson distri-
bution with mean # and we are interested to estimate g(6) = P(X; = 0) = e~°.
Since the Poisson model is in the exponential family, T = ZZ x; is a complete
sufficient statistic for 6. Let

U=1I(z1=0),

so FgU = P(X; = 0), or U is an unbiased estimate of g(f). The MVUE of ¢(8)
is

S

E(U|T)
= P(Xi=0) @)

- (-

n

since the conditional distribution of X; given Zl x; is binomial with n = Zl €T
and p=1/n. O

8.7 Multiparameter CRLB

In practice, we are more likely to have many parameters, some of which
may be a nuisance. Is there any effect of the extra parameters on the CRLB
of the parameter of interest? This question is meaningful since the CRLB
is usually achieved by the MLE in large samples. This section is closely
related to Section 3.3 on multiparameter (observed) Fisher information,
but for completeness we repeat some of the notations.

Let @ = (61, ...,0,). The score function is now a gradient vector

8%'1 log L(9)

0 log L(0) =

S(6) = =5

a—gp log L(6)

The observed Fisher information is minus the Hessian of the log-likelihood

function )

0

The expected Fisher information is
Z(0) = EgI(6).

Using similar methods as in the scalar case, assuming regularity conditions,
we can show that

EoS() = 0
varg{S(0)} = Z(0).

The information matrix Z(6) is now a p X p variance matrix, which means
it is a nonnegative definite matrix.
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Example 8.10: Let z1,...,2, be an iid sample from N(u,o?) and let § =
(u,02). Then we have the following:

n 1
log L) = 7510ga2ff‘2§ (z; — p)?
amyw)) ( = (T —p) )
S 9 = 9 = 7 T —u)?
(®) (ih%um PN MC
el 7 (T~ p)
I(e) N ( — : )
2T — ) _%_sz(gie)“)
L 0
7(0) = <<’02 2n4>.m

We now state the multiparameter version of the CRLB theorem:

Theorem 8.5 Let T(X) be a scalar function, EgT = g(0) and Z(0) the
expected Fisher information for 6 based on data X. Then

varg(T) > /Z(0) L,
where o = Zg(0).

Proof: The proof relies on an extension of the covariance inequality
involving a scalar random variable T and a vector of random variables S:

var(T) > cov(S, T) {var(S)} ‘cov(S,T).

and showing that cov{S(0), T} = & g(0). The proof of these statements is
left as an exercise. O

Example 8.11: Let g(f) = a’0 for some known vector a. Then for any
unbiased estimate T we have

var(T) > d'Z(0) a.

In particular, let g(f) = 61 (or any other 6;), which is obtained using a =
(1,0,...,0), so
var(T) > [Z(9) ', 8.1)

where [Z(0)"']11 is the (1,1) element of the inverse Fisher information, which

is sometimes denoted by Z''(6). This is the bound for the variance if 6; is the

parameter of interest, and we do not know the value of the other parameters.
For comparison, if #; is the only unknown parameter then any unbiased esti-

mate T of 0, satisfies
( ) I11 (9) ( )

To see which bound is larger, partition the information matrix Z(6) and its inverse

Z(0)™! as
| Iun Iao
Z(9) = ( Zor T2 >
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and
B Ill 112
Z(9) t= ( 721 722 -
Using some matrix algebra we can show (Exercise 8.10)
(T =T — ThiaTsy T (8.3)

Since Zso is a variance matrix and Z;2 = Z5;, the quadratic form is nonnegative,
S0
1171
(I ) S Ill,

and the bound in (8.2) is smaller than in (8.1). This bound is generally achieved
by the MLE in large samples, so this result has an important statistical modelling
implication: there is a cost in having to estimate extra parameters.

We can also interpret (I“)f1 as the Fisher information on 6, when the other
parameters are unknown. It makes statistical sense that the information is less
than if other parameters are known. In modelling we consider extra parameters to
explain the data better; for example, N (6, 0?) is likely to fit better than N (6, 1).
The reward for better fitting is a reduced bias, but our discussion here warns
that this must be balanced against the increase in variability.

From (8.3) the cost in terms of increased variability is (asymptotically) zero if
Zi2 = 0. This happens in the normal example above. The ‘asymptotic’ qualifier
is ever present if we are thinking of CRLB as a variance quantity. From the
normal example we also know that the zero-cost benefit does not apply in small
samples. O

8.8 Exercises

Exercise 8.1: Prove Theorem 8.2.

Exercise 8.2: Let x1,...,x, be an iid sample from the following distributions.
In each case, find the score statistics and the Fisher information.

(a) Gamma with density

_ 1 a_a—1_—Ax
p(x)—ir(a))\x e, x>0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(b) Weibull with distribution function
Flz)=1-—e Y% 23>0,

first assuming one parameter is known, then assuming both parameters are
unknown. The parameter « is the shape parameter.

(c) Beta with density
F(Oé + ﬁ) a—1

p(m):ml’ 1-2)"" o0<z<1,

first assuming one parameter is known, then assuming both parameters are
unknown.
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Exercise 8.3: Show that for the general exponential family model with log-
density of the form

log po(x) = t(x)n(0) — A(6) + c(x)

we have N N

Z(0) = 1(0),
where 0 is the MLE of 6. If 6 is the canonical parameter, then Z(0) = I(6).
Exercise 8.4: Suppose y1, ..., ¥y, are an iid sample from N(6,0?) with known

o?. Find the CRLB for unbiased estimates of the following parameters:
(a) P(Y1 < 2).
(b) P(—2< Y1 <2).
(c) po(2), the density function at y = 2.

Exercise 8.5: Repeat the previous exercise for unknown o2.

Exercise 8.6: Suppose y1,...,yn are an iid sample from N(0,02). Find the
CRLB for estimating o. Is it achievable by some statistic?

Exercise 8.7: Suppose y1, ..., yn are an iid sample from Poisson(f). Based on
Y1, -..,Yn, find the CRLB for unbiased estimates of the following parameters:
(a) P(Y1=1).

(b) P(Y1 <1).
Find the MLE of the parameters above, and compute the bias and variance of
the MLE. Compare the variance of the MLE with the CRLB.

Exercise 8.8: Suppose y1, ...,y are an iid sample from a Weibull distribution
(Exercise 8.2) with the shape parameter known. What is the CRLB for estimates
of the median? Repeat the exercise for both parameters unknown.

Exercise 8.9: If x1,...,2, are an iid sample from N(#,6?), then show that
O mi Y, x?) is minimal sufficient but not complete. (Hint: give an example of a
non-zero statistic that has mean zero.) Give another example showing a minimal
sufficient statistic that is not complete.

Exercise 8.10: Prove the matrix equality given by (8.3).

Exercise 8.11: To study the toxicity of a certain chemical a two-stage experi-
ment was conducted. In the first stage, seven rats were injected with the chemical
and monitored. If none died then another batch of seven rats was injected, oth-
erwise the experiment was stopped. Say S is the number of survivors from the
first batch, and T" from the second batch. Let 6 be the probability of survival, so
S is binomial(7,0), and P(T =0|S < 7) =1, and T is binomial(7,0) if S = 7.

(a) Show that the joint probability distribution of S and T is

N (7). N
polst) = () <t>‘9 H (1 gyTmemtHTI(42T)

fort=0if0<s<7,andfor0 <t <T7ifs=7and I(s+¢t>7)is an
indicator function.

(b) Find and interpret the maximum likelihood of 6.
(c) Show that S + T is a complete sufficient statistic.

(d) Show that S/7 is the MVUE for 6. (This means the best unbiased estimate
uses data only from the first batch!)
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Large-sample results

While likelihood-based quantities can be computed at any sample size,
small-sample frequentist calibration depends on specific models such as
the normal, Poisson, binomial, etc. (Chapter 5). A general technique for
complex models is provided by the large-sample theory. As the price for
this generality, the theory is only approximate. The results in this chap-
ter provide theoretical justifications for the previous claims regarding the
sampling properties of likelihood ratio and the MLE. In modelling, we use
the large-sample theory to suggest approximate likelihoods.

9.1 Background results

What we need to know for our large-sample theory is mostly captured
by the behaviour of the sample mean X as the sample size gets large.
The theorems listed in this section are sufficient for most of the standard
likelihood theory. Further grounding is needed, however, if we want to
prove theoretical extensions or nonstandard results. It is important to
recognize two types of results:

e first-order results that capture the magnitude of an estimate. The
basis for these results is the law of large numbers, and in particular
we would use the concept of convergence in probability.

e second- or higher-order results that deal with the variability or the dis-
tribution of an estimate. We rely mainly on the central limit theorem
to establish them.

Law of large numbers

As a first-order behaviour, we expect intuitively that X will become close
to the true mean p. This can be shown easily as follows. Let Xi,..., X,
be an iid sample from a population with mean u and variance 2. By
Chebyshev’s inequality, for any € > 0,

var(X)

P(X—pl>9 < ™

o2

—— —0
eZn

as n goes to infinity. (It helps to think of € as a small but fixed positive
number.) Equivalently,
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P(IX —p|l<e€) — 1,

that is, with high probability, with large enough n, we expect X to be
within € of . We say that X converges to p in probability or

X%

This result is called the weak law of large numbers (WLLN). It is far
from the best result, which is known as the strong law of large numbers
(SLLN); it states

P(X — | = 0)=1

as long as y exists. This means X is guaranteed (i.e. with probability
one) to converge to p in the usual numerical sense; hence we are correct in
thinking that an observed T is numerically close to the true p; this is not
guaranteed by the convergence in probability. This mode of convergence is
called almost sure convergence and we write

X 3 H.

We may interpret the WLLN as a frequentist theorem: if we repeat
an experiment a large number of times, each time computing the sample
mean, then a large proportion of the sample means is close to the true
mean. The statement ‘the sample mean is close to the true mean’ does not
apply to a particular realization. In contrast, the SLLN deals with what
happens to the result of a single realization of the data.

The SLLN is one of Kolmogorov’s celebrated theorems, and is standard
fare in any course on advanced probability theory (e.g. Chung 1974). The
techniques needed to establish almost sure convergence are beyond the
scope of this text, so we will rely on the convergence in probability.

Central limit theorem

For statistical inference the first-order property given by the law of large
numbers is not enough. We need to know the second-order property, the
variability of X around . This is given by the central limit theorem (CLT):
if Xq,...,X, are an iid sample from a population with mean y and variance
o? then

V(X — ) = N(0,02).

It is striking that only u and o2 matter in the asymptotic distribution of X
other features of the parent distribution, such as skewness or discreteness,
do not matter. These features do, however, determine how fast the true
distribution of X converges to the normal distribution. Figure 9.1 shows
the normal QQ-plots of X simulated from the standard uniform, standard
exponential and Poisson(3) distributions; note the effect of skewness and
discreteness.
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Figure 9.1: First row: the normal QQ-plots of simulated X from the stan-
dard uniform, standard exponential and Poisson(3) distributions. In each
case 400 samples of size n = 3 were generated. Second row: the corre-
sponding QQ-plots for n = 20.

The CLT is the most important example of convergence in distribu-
tion or convergence in law. Suppose X, has distribution F,, and X has
distribution F'; we say X,, converges to X in distribution or

X, % x

if F,(z) — F(z) for all x such that F(z) is continuous. If X is degenerate,
convergence in distribution is equivalent to the convergence in probability.

Example 9.1: To see why we need the last condition, let X, be a random
variate with distribution N(0,1/n) and X is a degenerate distribution at zero.

As we expect, X, > X. In this case F, () — F(x) at every = # 0, but at z =0
we have F,(x) =0.5# F(0)=1.0

The CLT states that S, = > X; is approximately normal with mean
ES,, and variance var(S,). We expect this to be true also for non-iid
observations as long as no individual X; dominates in the summation.
There are many non-iid versions of the CLT of varying generalities (Chung
1974, Chapter 7), we will state only the one due to Liapounov. Suppose
X1,..., X, are an independent sample; let p; and o7 be the mean and
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variance of X;, and
Vi = B|1X; — .

Zi Vi
OO

If
—0

as n goes to infinity, then

{var(Sn)}/2 (32, 08)1/2
The condition of the theorem guarantees that no individual X; dominates
in the summation S,,. This is usually satisfied in statistical applications
where the observations have comparable weights or variability. It is trivially
satisfied in the iid case, since Y 7; = ny; and Y 02 = no?. More generally,
it is satisfied if 7; < M < oo and 0? > m > 0, i.e. the individual third

moment is finite and the individual variance is bounded away from zero.

Other results

The following results are intuitive, although the proofs are actually quite
technical (e.g. Serfling 1980, Chapter 1).

Theorem 9.1 (Slutsky) If A, 5 a, B, Bband X, L X then

A X, + By % aX +b.

It is worth noting that there is no statement of dependency between A,,,
B,, and X,,.

In applications we often consider the transformation of parameters. If
Z 5 11 then we expect that e=® % e=#. Such a result is covered under the
following ‘continuous mapping theorems’.

Theorem 9.2 If X,, & X and g(x) is a continuous function then
9(Xn) 5 g(X).

Theorem 9.3 If X, 4 X and g(z) is a continuous function then
9(X0) % g(X).

Using these theorems we can show that, from an iid sample,

1
% = Z(zz - 7)? 5 2,

n—1

3
so the sample standard deviation s % o, and

V(X —p)

> 4 N(0,1).

Furthermore,
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0.2 Distribution of the score statistic

The results in this section form the basis for most of the large-sample
likelihood theory, and for the so-called score tests or locally most powerful
tests. We will assume that our data x4, ..., z, are an iid sample from pg(z)
and @ is not a boundary parameter; the independent but not identical case
follows from Liapounov’s CLT. Thus,

log L(0) = Z log po ()

SO) = 3 s lon(e)
10) = =3 s logm(a)
T(0) = Eo(6).

Let
0
i = —1 i
Yi 90 ng@(xz)7

the individual score statistic from each z;. In view of Theorems 8.1 and
8.2, y1,...,Yn are an iid sample with mean Fy; = 0 and variance

var(y1) = 71 (0),

so immediately by the CLT we get

Vam—-0) % N{0,Z,(6)},

or

5\%) 4 N{0,Z,(0)}.

Since Z(0) = nZ1(0), as the sample size gets large, we have approximately
{Z(6)}1/25(0) ~ N(0, 1), (9.1)

or, informally, S(0) ~ N{0,Z(6)}.
These arguments work whether 6 is a scalar or a vector parameter. In
the vector case S(0) is a vector and Z(#) is a matrix.

Example 9.2: Let z1,...,2, be an iid sample from Poisson(#) with n = 10
and 0 = 4. Figure 9.2(a) shows the score function for a single sample, and Figure
9.2(b) shows the functions from 25 samples. Figure 9.2(c) shows the distribution
of S(0) at the true 6 = 4 over repeated Monte Carlo samples. The superimposed
normal curve is the density of N{0,Z(0)}, where Z(0) = n/0 = 2.5. Figure 9.2(d)
is shown to illustrate the variability of I(6 = 4).
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(a) Score function (b) Repeated sampling
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Figure 9.2: Distribution of the score statistic in the Poisson case. (a) Score
function from a single realization. (b) Score function from 25 realizations.
(¢) Histogram of S(0 = 4) and its normal approzimation. (d) Histogram
of 1(0 =4).

Score tests

From classical perspectives, we can immediately use the distribution theory
for testing
Hy: 6 =10y versus Hy: 0+ 6.

Hy is rejected if [S(0g)] is ‘too large’. According to the theory, we may
compute the standardized z-statistic
S5(6o)
Z(6o)
and
P-value = P(|Z] > |z]),

where Z has the standard normal distribution. This test is called the score
test, or Rao’s test, or the locally most powerful test.

From Figure 9.2(a) the test is intuitively clear: a large |S(6p)| means
0y is far from the MLE 9. The normal approximation is sensible if S() is

close to linear in the neighbourhood of 6 + 2/\/1(5). The linearity of S(6)
is equivalent to a quadratic log-likelihood.
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Example 9.3: Let X1,..., X, be an iid sample from N (6, o) with o known.
Then

n

$6) = L@-0)
(0) = 2;;.

The score test rejects Ho: 0 = 0g if

el = | 222 | > Jzaal
= a/2]s
v/ o2/n /
which is the standard z-test. O
Example 9.4: Let x1,...,x10 be an iid sample from Poisson(6). Suppose we

observe T = 3.5 and we would like to test Ho: 6§ = 5 versus Hqi: 0 # 5. In
Section 8.1 we obtain

S©O) = F@-0)
) = %
so the score test yields
1))
Z(6o)
_ 35—5 — 9219

\/5/10

which is significant at the 5% level. O

Using observed Fisher information
The observed information version of the previous result can be developed
easily. By the WLLN

1 02 » 0?
- i @10gp9($i)—>E0@10gp9(X1)7

£§?2 5 7.(0),

where I(0) is the observed Fisher information. So, by Slutsky’s theorem
{10)}725(0) 5 N(0,1), (9.2)

which is to be compared with (9.1). Now, in most models Z(6) # I(0)
and at/\the moment it is not clear which is better. The other option is to

use I(0), with a disadvantage that we have to find the MLE 0. We will
compare these three quantities in Section 9.7.
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Example 9.4: continued. In the Poisson example above we have

o= (Z(00)) T 25(00) = YT

7\/%
I(6o) = @
5 — —1/2 _ V(T — 6o)
2= {I(00)}~ /°S(6o) — i
10) = %
o= (1(6))25(00) = YIEZ—%)

V02T

Under the null hypothesis, all these statistics are equivalent. The statistic z; is
commonly used, but z2 and z3 are rather unusual. To put it in a slightly different
form:

2 (nT — nbp)? _ (0= E)?
1 ’I’L@o - FE ’
where ‘O’ and ‘E’ are the usual notation for ‘observed’ and ‘expected’ frequencies,
and

2 (nT —nbho)®> _ (O —E)?
2T nT 0]

9.3 Consistency of MLE for scalar ¢

Given an estimation procedure it is reasonable to require that it produces
a ‘good’ estimate if the experiment is large enough, and a ‘better’ estimate
as the experiment becomes larger. One simple requirement is as follows.
Suppose 6y is the true parameter, and € is a small positive value. For any
choice of ¢, by making the experiment large enough, can we guarantee (with
large probablhty) that the estimate # will fall within e of 0o? If yes, we say

. g

that 6 is consistent. Put it more simply, 9 is consistent for 0o if IREN Op.
This is a frequentist requirement: if we repeat the large experiment many
times then a large proportion of the resulting 6 will be within € of 6.

Before we state and prove the main theorem it is useful to mention
Jensen’s inequality involving convex functions. By definition g(x) is convex
on an interval (a,b) if for any two points x1,z2 in the interval, and any
O0<a<l,

ag(z1) + (1 — a)g(r2) > glars + (1 — a)zz).

It is strictly convex if the inequality is strict. This condition is clear graphi-
cally: g(z) lies under the line connecting points (z1, g(x1)) and (z2, g(z2)).
Statistically, the (weighted) average of the function value is greater than
the value of the function at some weighted average.

If g(z) is convex and (xg,g(x0)) is any point on the function, there
exists a straight line with some slope m:

L(z) = g(xo) + m(z — o)
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passing through (zg, g(xo)) such that g(x) > L(z). If g(x) is differentiable
we can simply choose L(z) to be the tangent line. If g(x) is twice differen-
tiable, it is convex if ¢’ (x) > 0, and strictly convex if g’ (z) > 0.

Theorem 9.4 (Jensen’s inequality) If X has the mean EX and g(x) is
convex then
E{g(X)} > g(EX),

with strict inequality if g(x) is strictly convex and X is nondegenerate.

Proof: Since g(x) is convex, there is a straight line passing through
{EX, g(EX)} such that

g(x) > g(EX)+m(z — EX).
We finish the proof by taking an expected value of the inequality. O

Using Jensen’s inequality we can immediately claim the following for
nondegenerate X:

E(X?) > (EX)?
and if additionally X > 0:

E1/X) > 1/E(X)
E(-logX) > —logEX.

The last inequality provides a proof of the information inequality. The
term ‘information’ here refers to the so-called Kullback—Leibler information
(Section 13.2), not Fisher information.

Theorem 9.5 (Information inequality) If f(x) and g(x) are two densities,

then ()
g
FE,log =—= >0,
)
where E, means the expected value is taken assuming X has density g(x).
The inequality is strict unless f(x) = g(x).

One way to interpret Theorem 9.5 is that
Eglog g(X) = Eglog f(X),

which means the log-likelihood of the ‘true’ model tends to be larger than
the log-likelihood of a ‘wrong’ model. This, in fact, provides an intuition
for the consistency of the MLE.

For our main theorem assume that the support of pg(z) does not depend
on 0, and pg, (z) # pe, (x) if 61 # . If the likelihood has several maxima,
we will call each local maximizer a potential MLE 0.
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Theorem 9.6 Let x1,...,2, be an #d sample from py,(x), and assume
that pg(x) is a continuous function of 8. Then as n — oo there exists, with
probability tending to one, a consistent sequence of MLE 6.

Proof: For any fixed € > 0 we need to show that there is a potential
MLE 6 in the interval (8y — €,6y 4 €). This is true if we can show that

L(eo) > L(Qo—e)
L(6y) > L6y +e),

with probability tending to one as n — oo. The first inequality above
follows from

1 L(6p) 1 Do, ()
~log ——F— = = log —2—
n & L6y —¢) n ; & Dog—e(T)
p pao (Xl)
—  FEy lo
6o g 9075(X1>
> 0

using the WLLN and the information inequality. The second inequality is
proved the same way. O

The essence of the proof is that, as we enlarge the sample, the true
parameter 6y becomes more likely than any pre-specified point in its local
neighbourhood. A global result that captures this property is that, for any
0 # 0y and any constant ¢ (think of large c),

L(6) 1
Fo <L(90) S ) =
This means that when the likelihood function becomes concentrated, it is
unlikely that we will find an estimate far from the true value; see the proof
following equation (5.1).

The condition and the proof of the consistency result are simple, but
the conclusion is far from the best possible result. It is only an ‘existence
theorem’: if the likelihood contains several maxima the theorem does not
say which one is the consistent estimate; if we define the global maximizer
as the MLE, then the theorem does not guarantee that the MLE is consis-
tent. Conditions that guarantee the consistency of the MLE are given, for
example, in Wald (1949).

The method of proof also does not work for a vector parameter 6 €
RP. A lot more assumptions are required in this case, though it will not
discussed further here; see, for example, Lehmann (1983, Chapter 6).

However, Theorem 9.6 does guarantee that if the MLE is unique for all
n, or if it is unique as n — oo, then it is consistent. As discussed in Section
4.9, this is true in the full exponential family models. Furthermore, the
proof can be modified slightly to argue that in the world of finite precision
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and finite parameter space, the MLE is consistent. This is because we can
guarantee, with probability tending to one, that 6y becomes more likely
than any other point in a finite set.

9.4 Distribution of MLE and the Wald statistic

Consistency properties are not enough for statistical inference. The results
in this section provide methods of inference under very general conditions.
As the price for the generality, the method is only approximate. The ap-
proximation is typically accurate in large samples, but in small to medium
samples its performance varies. The difficulty in practice is in knowing
when the sample is large enough. From the previous discussions we can
check whether the log-likelihood is nearly quadratic, or the score statistic
is nearly linear.

Theorem 9.7 Let x1,...,x, be an iid sample from py,(z), and assume
that the MLE 0 is consistent. Then, under some reqularity conditions,

V(0 — 00) = N(0,1/Z1(6p)),

where I1(0y) is the Fisher information from a single observation.

First recall the CRLB (Section 8.5): if ET = ¢ then

1

var(T) > 70)

The theorem states that 8 is approximately normal with mean 6y and

variance

~ 1 1
R ATy

which means that asymptotically 9 achieves the CRLB, or it is asymptoti-
cally the best estimate.

For a complete list of standard ‘regularity conditions’ see Lehmann
(1983, Chapter 6). Essentially the conditions ensure that

e 0 is not a boundary parameter (otherwise the likelihood cannot be
regular);

e the Fisher information is positive and bounded (otherwise it cannot
be a variance);

e we can take (up to third) derivatives of [ pg(z)dz under the integral
sign;

e simple algebra up to a second-order expansion of the log-likelihood is
sufficient and valid.
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Proof: A linear approximation of the score function S(6) around 6,
gives
5(0) =~ S(60) — 1(60)(0 — o)

and since S(f) = 0, we have
V(0 — 60) ~ {1(6)/n} " S(60) /v/n.
The result follows using Slutsky’s theorem, since
I(6o)/n 2 T1(60)

and

S(60)/v/n 5 N{0,Z,(60)}. O

We can then show that all of the following are true:

VZ(00)(@ —6,) — N(0,1)
VI(00)(0—6)) — N(0,1)
Z0)(6—6,) — N(0,1)

10)(6—6y) — N(0,1).

The last two forms are the most practical, and informally we say

~ N(6o,1/Z(6))

0
6 ~ N(b,1/1(6)).

In the full exponential family these two versions are identical. In more

~ ~ ~

complex cases where Z(0) # I(6), the use of () is preferable (Section
9.6).

Wald tests and intervals

We have now proved our previous claim in Section 2.7 that the approximate
standard error of the MLE in regular cases is

se(0) = I"/2(D).

The MLE distribution theory can be used for testing Hy: 0 = 6y versus Hi:
0 # 0y using the Wald statistic

9 — 0,
z2=——=
se()
or R
2 (0—00)°
se2(0)

which, under Hy, are distributed as N(0,1) and x? respectively.
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Secondly, the result can be used to get the approximate 100(1 — @)%
CI formula N R
0 % 242 se().

This is the same as the approximate likelihood interval, based on the
quadratic approximation, at cutoff equal to

exp {722/2/2} .

Example 9.5: For the aspirin data in Section 4.7 we have

logL(f) = 139logh — 378log(6 + 1)
139 378
56) = 0 6+1
139 378
10) = — - 2%
®) 0> (0+1)2
SO
0 = 139/(378 —139) = 0.58
~ 139 378
10) = - = 259.82
©) (139/2302 (1 + 139,230 _ 2>0-82%87
var(9) = 1/I(6) = 0.003849.

~

Note that var(0) is equal to that found using the Delta method. So

se(f) = /0.003849 = 0.062,
and the Wald 95% CI for 0 is
0.46 < 6 < 0.70. O

0.5 Distribution of likelihood ratio statistic

In the development of the distribution theory of S(#) and 6 we do not refer
to the likelihood function itself. We now show that the previous results
are equivalent to a quadratic approximation of the log-likelihood function.
However, as described in Section 2.9, we do get something more from the
likelihood function. The approximate method in this section is the basis
for frequentist calibration of the likelihood function.

Using second-order expansion around 6

~ -~ -~ ~ ~

log L(6) ~ log L)+ S@)(6 — ) — ~1(8)(6 — 0)?

[\

~

log L,(8) — %1(0)(9 _92. 9.3)

This means

L(0) = constant x exp {;I(é)(@ - 5)2} )

which is the likelihood based on a single observation 6 taken from N (0,1/1 (5))
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From (9.3) we get

-~

L)
L(9)
= 10)0 -0 53,
where W is Wilk’s likelihood ratio statistic. The distribution theory may

be used to get an approximate P-value for testing Hy : 0 = 0y versus H; :
0 # 6y. Specifically, on observing a normalized likelihood

L(0o)
L(0)

W = 2log

we compute w = —2logr, and
P-value = P(W > w),

where W has a x? distribution. The approximate connection between like-
lihood and P-value follows the pattern under the normal model in Example
5.6.

From the distribution theory we can also set an approximate 100(1 —
a)% CI for 0 as

Co10e LO) _
CI = {0, 210gm < Xl,(la)} .

For example, an approximate 95% CI is
L(0)
1 = ; 21 .84
C {9, ogL(9)<38}
= {6;L(h) > 0.15 x L(B)}.

This is the likelihood interval at 15% cutoff. So we have established that,
in general, the confidence level of a likelihood interval at cutoff « is ap-
proximately

P(W < —2loga).

9.6 Observed versus expected information*

According to our theory the following statistics are asymptotically equiva-
lent

Wi =Z(0)@-0)? ~ 3
Wo=1(0)0 0?2 ~ 3
L L) )
Wﬁ?lOgL(G) ~ X1

It was emphasized previously that W; and W, are sensible only if the
likelihood is reasonably regular. The only difference between W7 and Wy
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is in the use of the observed versus expected Fisher information. In the
full exponential family Z(8) = I(0), so Wi = W5 (see Exercise 8.3). If
I(g) # 1 (GA), how should we choose between W7 and Wa, and how do they
compare with W? Efron and Hinkley (1978) discussed these questions in
detail and showed that I (9) is better than Z(6 ) Overall, W is preferred.

If 0 is a location parameter then I (0) does not carry information about
where the true 6y is. However, I (5) tells us something about precision,
so potentially different probability statements can be made conditional or
unconditional on I(¢). This means I(f) is relevant information. We call
all those properties together ancillarity; for example, the sample size in
an experiment is typically ancillary information. From the discussion in
Section 5.10 it makes sense to require our inference to be conditional on the
the observed ancillary statistic. This will make the inferential statements
(such as confidence level or significance level) relevant for the data at hand.

As a specific example, we will describe the simulation study of the
Cauchy location parameter (Efron and Hinkley 1978). Let 21,...,2, be a
sample from the Cauchy distribution with density

1

P i oy

From routine calculations

21'7;—9
0 = CriG g

10 - Z?{@—H -1}

{(z; — 0)2+1}2
n
Z(0) = EpI(0)=—
For n = 20, we generate z1, ..., T2 from the Cauchy distribution with

location 6y = 0. From each realization we estimate the MLE 6, and com-
pute Wy, Wy and W. This is repeated 2000 times. The 2000 values of
W can be checked against the x? distribution. However, it is more con-
venient to compute the signed root of all of the statistics and check them
against the standard normal distribution. Thus, under Hy: # = 6y and
asymptotically

sign(0 — 0o)v/ Wi = \/Z(0)(0 — b)) ~ N(0,1)
sign(f — 00)/Wa = \/1(0)(0 — 6y) ~ N(0,1)

sign(0 — 0))VW ~ N(0,1),

where ‘sign(+)’ is +1 if the value in the bracket is positive, and —1 otherwise.
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(a) Expected information (b) Observed information (c) Likelihood ratio
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Figure 9.3: First row: (a) Wald statistic normalized using the expected

~ ~

Fisher information Z(0). (b) Wald statistic normalized using 1(0). (c)
Likelihood ratio statistic. Second row: the corresponding estimated con-

~

ditional probability P{W; > 3.84|I(0)}, in solid line, and P{W; >

~

6.63|1(0)}, in dashed line.

The normal plots in the first row of Figure 9.3 show that these three
statistics are reasonably normal; the tail of W is slightly better behaved
than the others. These plots indicate that the problem is quite regular,
so here we are not concerned with the regularity issue. We can also check

~

that, conditional on I(#), the distribution is also quite normal. We can do
this by grouping together realizations where I (@\) falls in a small interval.
The first plot in the second row of Figure 9.3 shows the estimated
conditional probability R
P{W; > 3.84]1(0)}

as a function of I(#). Unconditionally the probability is 0.05. We compute
the estimate using a scatterplot smoother for the paired data

~

{1(0), Ind(W; > 3.84)}

where Ind(W; > 3.84) is the indicator function, taking value one if the
condition inside the bracket is true and zero otherwise. A similar curve
(dashed line) can be computed for



9.7. Proper variance of the score statistic* 247

~

P{W; > 6.63|1(0)},

which unconditionally is 0.01. The plot shows that the distribution of Wy
varies with (), so statements based on W; are open to the criticisms
discussed in Section 5.10. For example, a reported confidence level is not
relevant for the data at hand, since it is different if we make it conditional
on an observed I(9).

The other plots in the second row of Figure 9.3 show that the distri-

butions of Wy and W are relatively constant across (), so inferential
statements based on them are safe from the previous criticisms.

9.7 Proper variance of the score statistic*

The same issue also occurs with the score test. The following score tests
for Hy: 68 = 0y are asymptotically equivalent:

P S(6h)
Z(0o)
L S)
’ 1(00)
_ S(bo)
zZ3 = .
1(0)

Which should be the preferred formula, especially if the denominators are
very different?

Using the same Cauchy simulation setup as in the previous section,
but increasing the sample size to 30, at each realization we can compute
21, 22, z3 and I(f). Under the null hypothesis these are all supposed to
be standard normal. The first row of Figure 9.4 shows that all three test
statistics are reasonably normal.

The second row shows the conditional probabilities of the three statistics

~

given I(#). The score statistic z; has the poorest conditional property,
while 29 is not as good as z3. This means | (5) is actually the best variance
quantity for S(6p). Recall the discussion in Section 8.3 that we should
think of the observed Fisher information as a single quantity [ (’0\) The
quantity I(6p) in complicated models, as in the Cauchy example, is not

even guaranteed to be positive.

9.8 Higher-order approximation: magic formula*

What if we do not believe in the normal approximation? From the standard
theory we have, approximately,

0~ N{0,1(6)""}

so the approximate density of 9 is
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(b) 1(8o)
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Figure 9.4: First row: (a) Score statistic normalized using the expected
Fisher information Z(6p). (b) Score statistic normalized using I1(6y). (c)
Score statistic normalized using I (5) Second row: the corresponding es-
timated conditional probability P{|Z1| > 1.96|I(§)}, in solid line, and

-~

P{|Z1| > 2.57|1(0)}, in dashed line.

. . (0 ~
po(6) ~ (27) /2| (B)] " exp {—(j(e - 0)?} S o
We have also shown the quadratic approximation
L(6 1(6) ~
log (—A) = —@(9 —0)?,
L(0) 2
so we have another approximate density
~ ~ L
pol6) ~ (22| 1() 2 ). 95)

L(0)

We will refer to this as the likelihood-based p-formula, which turns out to
be much more accurate than the normal-based formula (9.4). Intuitively,

if pg(0) were available then we would obtain L(6) from it directly, but L(#)
is an exact likelihood, so (9.5) must be a good density for 6.
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Even though we are using a likelihood ratio it should be understood
that (9.5) is a formula for a sampling density: 6 is fixed and 6 varies. The
observed likelihood function is not enough to derive pg (@) over 5, for such
a purpose the original model for the data is still required.

Recall that the p-formula (9.5) has been used in Section 4.9 to develop
an approximate likelihood of the exponential dispersion model.

Example 9.6: Let z1,...,z, be an iid sample from N (6, 0?) with o2 known.
Here we know that § = X is N(0,0%/n). To use formula (9.5) we need

log L(6) —2%2 {Z(w —m)2+n(x—9)2}

i

logL(é\) = _T;Z(xi_E)Q
I(é\) = njo’,

SO
N\~ —1/2 211/2 n o 2
pe(z) ~ (2m) In/o”["/" exp {—ﬁ(m —0) } )

exactly the density of the normal distribution N (0,02 /n). O

Example 9.7: Let y be Poisson with mean §. The MLE of 6 is 0 = y, and
the Fisher information is 1(#) = 1/6 = 1/y. So, the p-formula (9.5) is

1/2 e 0¥ /y!
e vy /y!

Q

(2m) 2 (1/y)

e %9y

(2my)t/2evyy’

po(y)

so in effect we have approximated the Poisson probability by replacing y! with
its Stirling’s approximation. The approximation is excellent for y > 3, but not
so good for y < 3. Nelder and Pregibon (1987) suggested a simple modification
of the denominator to

(2m(y + 1/6))/2e vy,

which works remarkably well for all y > 0. O

The p-formula can be improved by a generic normalizing constant to
make the density integrate to one. The formula

« B — oo\ om 12112 L)
po(0) = c(0)(2m) " /=1(0)] G (9.6)

is called Barndorff-Nielsen’s (1983) p*-formula. As we would expect in
many cases c(f) is very nearly one; in fact, ¢(f) ~ 1 + B(0)/n, where B(6)
is bounded over n. If difficult to derive analytically, ¢(d) can be computed
numerically. In many examples the approximation is so good that the
p*-formula is called a ‘magic formula’ (Efron 1998).
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In the exponential family formula (9.6) coincides with the so-called
saddlepoint approzimation. Durbin (1980) shows that

0) = ¢ L) 1/2@ n—3/2
peo(0) = c(0)(2m)~ /71(0)] L(a){H—O( )b

where we can think of the error term O(n~=3/2) = bn=3/2 for some bounded
b. This is a highly accurate approximation; by comparison, the standard
rate of asymptotic approximation using (9.4) is only of order O(n~1/2).

In the full exponential family the MLE § is sufficient (Section 4. 9)

the likelihood ratio L(6)/L(#) depends on the data z only through . To
make it explicit, we may write

L(0) = L(0; z) = L(6:0),

0 (9.5) or (9.6) are not ambiguous.

If § is not sufficient the formulae are ambiguous. It turns out, however,
that it still provides an approximate conditional density of 6 given some
ancillary statistic a(x). Suppose there is a one-to-one function of the data
to {g,a(a:)}, so that the likelihood

L(0) = L(0;z) = L(6;0, a(x)),

where the dependence of the likelihood on the data is made explicit. Then

la) ~ (20)-1/2 1/2L(9§ a)
po(0la) ~ (2m)V/2|1(B)] L@0.a)

In particular, and this is its most important application, it gives an exact
conditional distribution in the location family; see the subsection below.

Exponential family models

Example 9.8: Let z1,...,z, be an iid sample from gamma(u, 8), where EX; =
n and B is the shape parameter, and the density is given by

B
P(®) = 55 (ﬁ) o,

For simplicity assume that p is known; note, however, that formula (9.6) also
applies in multivariate settings. First we get

logL(,B):fnlogF(/B)Jrn,BIng B—1) Zlog:vszZm“

SO

al%é/(ﬁ):_nw(ﬂ) <10g+1> Zlogflh_*zmm
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where ¥(8) = dlogI'(8)/08. The MLE B satisfies

> > 1
—ny(B) + nlog g = —Zlog:pi+ ﬁin-i-nlog,u—n,

and

log iig\i = —nlogT(B) + nlog F(B\) +n <B logg — Blog i)

~ ~ 1
+(B=5) Y logzi — (B-F); >
= —nlogT(§) +nlogT(B) +n{(5 — B)v(B) ~ flog i + B}.
On taking another derivative of the log-likelihood we obtain the observed Fisher

information N N N
/
1(B) = n{y'(B) —1/B}.
The approximate density of B\ is then given by

pﬁ(B\) ~ constant X |I(§)\1/2(—,\). (9.7)
L(B)
To show how close the approximation is, we simulate data x1,...,x10 iid

from gamma(p = 1,8 = 1), which is equal to the exponential distribution. The
parameter p is assumed known. For each dataset we compute S by solving

—n(B) +nlogB =~ logai+ Y _a: - 10.

This is repeated 500 times, so we have a sample of size 500 from the true distri-

bution of 3. Figure 9.5(a) shows that B is far from normal. Figure 9.5(b) shows
the histogram of the 500 values and the approximate density from (9.7). O

(a) Normal plot (b)
< oo o - _
N
™ i 1 N
f@ ‘? w | H
< & g o
o o
a
<
o
o oo™ o =0
T T T T T T T o r T T 1
-3 2 -1 0 1 2 3 1 2, 3 4
Normal quantiles B

Figure 9.5: (a) The normal plot ofg from simulation. (b) The histogram
of B and the approzimate density using (9.7).
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Example 9.9: A key result in saddlepoint approximation theory is an improved
formula for the distribution of the sample mean. Let z1,...,x, be an iid sam-
ple from some distribution with density ¢ and moment generating function
m(9) = Ee™. Let K(0) = logm(#), the cumulant generating function of X.
Then
pe(l’) = e@x—K(9)+h(a:)
defines an exponential family with parameter 6, called the exponential tilting of
X (Section 4.9). Given z1,...,Zn, the MLE 9 is the solution of the ‘saddlepoint
equation’
K'(0) =7

and the Fisher information is I() = nK"”(6). From (9.6), the approximate
density of 0 is

p*(9) = constant x | K" (8)/2 exp {(9 —0)> @ - n{K@®) - K@)

20
oT

~

P = po)

constant x |K” (0)| /% exp {(9 —0)> @ - n{K@©) - KO)}|.

At & = 0, we have the original distribution of the data, and the saddlepoint
formula for the distribution of the sample mean:

p*(T) = constant x |K"(8)| /2 exp[n{K(8) — 07}]. (9.8)

If there is no explicit formula for 9 in terms of T, then we need to solve the

saddlepoint equation numerically at each value of Z. If we approximate K (0)
around zero by a quadratic function, then formula (9.8) reduces to the CLT
(Exercise 9.2). O

Location family

Let z1,...,z, be an iid sample from the location family with density

po(z) = fo(z —0),

where fy(+) is an arbitrary but known density. Without further assumptions
on the density, the minimal sufficient statistic for 6 is the whole set of order
statistics {2(1),...,%()}. That is, we need the whole set to compute the
likelihood

L(0) = Hfo(ﬂﬁ(i) —0).

The distribution of (x; —0) is free of 6, so is the distribution of (z(;) —0)
for each 4, and, consequently, that of any spacing a; = x(;) — x(;—1). The
relevant ancillary statistic a(z) in this case is the set of (n — 1) spacings
A2y ... Qp.
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Let 6 be the MLE of 6. There is a one-to-one map between {z (1), ..., %)}

and (9\, a), and the Jacobian of the transformation is equal to one (Exer-
cise 9.7). The joint density of x(1),..., () is

CHfo(x(i) —0).

Each ;) — 0 is expressible in terms of (a, 0 — ), so the joint density of

~

(a,0) is
[ fita.0-0),

for some functions f;(-) not depending on 6. Therefore, the conditional
distribution of # given a is in the location family

~

po(fla) = pa(6 — 0),

for some (potentially complicated) function p,(-). This means the original
density of = can be decomposed as

~

po(x) = cpa(0 — 0)g(a)

where g(a) is the density of a, which is free of §. Writing py(x) = L(8), we
obtain

o~

pa(0—0) _ L(0)

Pa(0) L(0)
po(8la) = pa(@ — ) = c(a) 20

L(9)

where it is understood that L(#) = L(6; 9, a), so the formula is exactly in
the form of (9.6).

If 0 is symmetric around 6 then the estimated conditional density of )
is given by the likelihood function itself (normalized to integrate to one).
This is a remarkable simplification, since the likelihood function L(#) is
easy to compute. There is an immediate frequentist implication: likelihood
intervals have an exact coverage probability given by the area under the
likelihood curve. A simple example is given by the normal and Cauchy
models. Another way to state the result is that the confidence density of 6
matches the likelihood function; see Example 5.9 in Section 5.6.

Improved approximation of P-value

One major use of the normal approximation is to provide the P-value for
testing Hy: 0 = 0y. Specifically, on observing 6, we compute

L(6)

w=2lo
% L(6o)
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and approximate the P-value by
P-value = P(x} > w).

To get a one-sided P-value we can also compute the signed root of the
likelihood ratio test R
r = sign(f — 0p)vw

and compute the left-side P-value by
pr=P(Z <),

where Z is the standard normal variate. Alternatively, we can compute the
Wald statistic R R
2= [1(0)]'/*(0 - 6o)

and evaluate the left-side P-value by
p. = P(Z < z2).

If r and z are very different then it is an indication that the normal ap-
proximation is poor, and both P-values are inappropriate. The saddlepoint
approximation leads to an improved formula. (Note that once a P-value is
defined we can compute the associated confidence distribution for a more
complete inference; see Section 5.6).

For the exponential models of the form

Do (.’L‘) — eet(x)—A(9)+h(x)

there are tail probability formulae based on (9.6). In particular, the left-
side P-value is

p*=P(Z <r") (9.9)
where

N 1 z
r* =r+ -log -
roor

or, by expanding the normal probability around r, we can also use

p' = P(Z <)+ 6(r) (1 - 1) , (9.10)

r z

where ¢(-) is the standard normal density function. Note that the parame-
ter 6 must be the canonical parameter, and the formulae are not invariant
under transformation.

Example 9.10: Let x1,...,x, be an iid sample from the exponential distri-
bution with mean 1/6, so the density is

po(x) = e .

Routine algebra yields

logL(0) = nlogf—0 Z Zs

i



9.8. Higher-order approximation: magic formula* 255

;oL
T
~ n
therefore
L(0) o~
= 2log—+* =2nlog - —2(0 — i
w OgL(G) nlog (0 H)Zx

sign(@\— 0)vw
125 _ gy — VRO Z6)

=

,3
Il

z = |10

Here we actually know the exact distribution of 6, since Zl X, has a gamma
distribution, so the exact P-value can be compared.

To be specific, suppose we want to test Hp : § = 1 based on a sample of size
n = 5. The computed P-values are left-side or right-side, depending on whether

0 falls on the left or the right side of o = 1. (In this example the saddlepoint
formula (9.6) actually gives an exact density.)

*

Pr Pz P Exact

0 w T (%) z (%) r* (%) (%)
0.35 8.07 —2.84 022 —4.15 0.00 -297 0.15 0.15
0.55 220 —1.48 6.89 —-1.83 337 -—-1.63 5.21 5.21
2.50 3.16 1.78 3.77 1.34 8.99 1.62 5.26 5.27
4.00 6.26 2.52 0.58 1.68 4.68 0.36 0.91 0.91

Figure 9.6 shows the corresponding log-likelihood functions, and their normal
approximations, for the four values of 0 in the table. O

Bartlett correction

The saddlepoint improvement in the distribution of the MLE is closely
related to the Bartlett correction for the distribution of the likelihood ratio
statistic. Asymptotically, under the null hypothesis, W is x%, so EW ~ 1.
Following the general bias formula, the expected value of the statistic is of
the form

b(6)

EW =1+ T + O(TL?Z)
for some function b(#). Bartlett (1953) suggested a simple correction

w

o = 15wy /m

and treated W}, as a x? variate. The Bartlett correction factor 1+ b(6)/n
is connected to the unspecified normalizing constant in (9.6). A rigorous
proof is given by Barndorff-Nielsen and Cox (1984).

We can estimate the Bartlett factor using the Delta method or, in com-
plicated cases, using the Monte Carlo technique discussed in Section 5.2.
Here we want to estimate
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Figure 9.6: The log-likelihood functions (solid curves) and normal approxi-
mations (dotted curves) associated with the four different values ofa in the
table. The horizontal line is the 5% limit for the two-sided P-value based
on the likelihood ratio statistic W.

E@W = 2E9 log LEZ;

where 0 is the random estimate, and @ is fixed at the null hypothesis. So,

1. generate a new dataset x* from the parametric model py(z),

2. compute 0* and the corresponding likelihood ratio statistic w* from
the data z*,

3. repeat steps 1 and 2 a large number of times and simply take the
average of w* as an estimate of FyIV.

We can actually check from the w*’s whether the distribution of W is well
approximated by the x? distribution.

9.9 Multiparameter case: 0 € R?

The asymptotic theory for the multiparameter case follows the previous de-
velopment with very little change in the notation. The score statistic S(6)
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is now a vector and the Fisher information I(6) a matrix. It is convenient
to define the so-called square root of any covariance matrix A

Al? =TAY2TY

where I' is the matrix of eigenvectors of A and A is a diagonal matrix of the
corresponding eigenvalues. We shall use this concept of square-root matrix
only in an abstract way, i.e. in practice we seldom need to compute one.
It is a useful concept since the square-root matrix can be treated like the
usual square root for scalar quantities. Let us denote the identity matrix
of size p by 1,; then we can show

A1/2A1/2 - A
(A1/2)—1 _ (A_1)1/2 _ A—1/2
A1/2A71/2 _ ]-pa

and if random vector X is multivariate N(y,X) then L~V/2(X — ) is
N(O,1,).

Basic results

Let x1,...,2, be an iid sample from py(z), where § € RP. Under simi-
lar regularity conditions, the following results are direct generalizations of
those for scalar parameters. All results can be used to test Hy : 6 = 6.
The Wald statistic is particularly convenient to test individual parameters,
while, in the current setting, the score and the likelihood ratio statistics test
all parameters jointly. The same issue of expected versus observed Fisher
information also arises with the same resolution: it is generally better to
use the observed Fisher information.

Score statistic

For the score statistic, the basis of the score test or Rao’s test, we have

n250) % N{0,7,(0)}
(0)"Y/25(00) % N(0,1,)
1(0)7128(0) % N(0,1,)
SOY16)7's06) 5 ¥

From our discussion in Section 9.7, we can informally write

~

S(8) ~ N{0,1(d)}.

Wald statistic

The asymptotic distribution of the MLE 0 is given by the following equiv-
alent results:

VR -0 % N©O,7,0)7)
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()20 -0) 4 N(0,1,)
1026 -0) %5 N(0,1,)
@-0)10)(F—-0) 5 2

In practice, we would use
0~ N(6,16)").
The standard error of @ is given by the estimated standard deviation

se(6;) = VI,
where i is the i'th diagonal term of I(8)~1. A test of an individual
parameter Hy : 6; = 6,9 is given by the Wald statistic
B 0; — 6,0

Zq ~_

se(;)

which has approximately a standard normal distribution as its null distri-
bution.

Likelihood ratio statistic

~

The asymptotic behaviour of L(0) is governed by Wilk’s likelihood ratio
statistic:

W = 210g§2§§

~ (B-0)10)6-6) 52

This result gives the connection between the normalized likelihood and P-
value, as well as the confidence and likelihood intervals. For example, a
normalized likelihood

L(0)

L(6)

is associated with the likelihood ratio statistic

w=—2logr

and
P-value = P(W > w),

where W is x2.
The asymptotic distribution theory also gives an approximate 100(1 —
a)% likelihood-based confidence region:

o L),
CR = {6,210g L(G) < Xp,(loz)}
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= 9;@>e‘%xi=<m> :
L(0)

This type of region is unlikely to be useful for p > 2 because of the display
problem. The case of p = 2 is particularly simple, since 100a% likelihood
cutoff has an approximate 100(1 — )% confidence level. This is true since

1
exp {—2)(12)(1 - a)} =a,

o~

so the contour {6; L(0) = aL(f)} defines an approximate 100(1 — )%
confidence region.

9.10 Examples
Logistic regression

Recall our logistic regression example (Example 6.3) where the outcome y;
is surgical mortality and the predictor x1; is the age of the i’th patient. We
assume that y; is Bernoulli with parameter p;, where

eBot+B1 Age,
pi = m
or
logit p; = Bo + 51 Age;.

Denoting 8 = (Bo, A1) and z; = (1,z1;)" we obtain
log L(B) = D _{yif —log(1+ ")}
SB) = D (v~ i)
1(8) = Zm(l — pi)aix;.

Using the IWLS algorithm discussed in Section 6.7, we get Bo = —0.723
and B; = 0.160. To get the standard errors for these estimates we can

verify that
I(B) [ 7.843175 9.365821
T\ 9.365821  202.474502

S0, the estimated covariance matrix of g is

1(B)! = 0.3672  —0.006242531
— \ —0.006242531 0.07232

and the standard errors are 0.367 and 0.072. The Wald statistic for age
effect is
2 =0.160/0.072 = 2.22.
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Poisson regression

In the Poisson regression example (Section 6.3) the outcome y; is the num-
ber of claims, and the predictor xy; is the age of client i. Assuming y; is
Poisson with mean p,; and

i = ePothi Agei = ewiﬂ’

we can derive the following:
log L(g) = (=" +yiaif)
S8 = Z(yi — pi);
I(8) = Zﬂi$i9€§~
We can verify that 3 = (0.43,0.066) and
1®=( snor w60rs )

so we can summarize the analysis in the following table

Effect Parameter Estimate se z
Intercept Bo 0.43 0.14
Age 51 0.066 0.026 2.54

Previous likelihood analysis shows that the profile likelihood of 3; is rea-
sonably regular, so the Wald test can be used safely.

One-way random effects

Table 9.1 (from Fears et al. 1996) shows the estrone measurements from five
menopausal women, where 16 measurements were taken from each woman.
The questions of interest include the variability between the women and
reliability of the measurements. The data are plotted in Figure 9.7(a).

It is natural to model persons as random, so

Yij = 1+ a; + €45

where
¥i; = 10 xlogq of estrone measurements,
a; = person effect, for:=1,...,N =5,
e;j = residual effect, for j =1,...,n = 16.

We assume that a;’s are iid N(0,02), e;;’s are iid N(0,0%) and they are
independent. The standard analysis of variance table from the dataset is
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Table 9.1: Estrone measurements from five menopausal women; there were
16 measurements taken from each woman from Fears et al. (1996).

Source df SS MS
Person 4 SSA 28.32
Error 75 SSE 0.325

The standard F-test for Hy: 02 = 0 gives
F =28.32/0.325 = 87.0,

with 4 and 75 degrees of freedom; this is highly significant as we expect
from the plot. Now we will show that the MLE of o2 is 2 = 1.395 with
standard error 0.895, so the Wald test gives

z =1.395/0.895 = 1.56,

which is not at all significant. What is wrong? To get a clear explanation
we need to analyse the likelihood function.
Measurements within a person are correlated according to

cov(Yij, Yix) = 02-
So, yi = (Yi1,- -, Yin)" is multivariate normal with mean p and variance
S = o?I, + 0%, (9.11)

where I, is an n X n identity matrix and J, is an n X n matrix of ones.
The likelihood of § = (u, 02, 02) is

L(0) = 5 Tog]8] — 3 (o — 'S~ (i — ).

i
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(a) Estrone concentration (b) Likelihood contour
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Figure 9.7: Likelihood analysis of a one-way random effects experiment.

(a) This plot shows a significant person-to-person variability. (b) Joint

likelihood of (0%,02). (¢) The profile likelihood of o* is well approvimated

by the normal. (d) Poor normal approximation of the profile likelihood of
2

oy

To simplify the terms in the likelihood, we need some matrix algebra results
(Rao 1973, page 67) that

S| = oD (0® + noy)
g1 _ I ad

o2 02(02 +no2)’™

We can then compute a profile likelihood of (02, 02) found by maximizing
over p for a fixed value of (02,02). We can show that

fi(o?,02) = 2 VS5
o) = R s
= > wi/Nn=7.
ij

We now define the following (corrected) total, person and error sum-of-
squares
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SST = Z(yij—?)z
Z{Z Yij — } /n

SSE = SST—SSA.

SSA

Then the profile likelihood can be shown to be

I%Mﬁﬁﬁz—ﬂnlﬂgaH%Q+M»}_{%E SSA }

0?2 o024 no?

Figure 9.7(b) shows that the contour of the profile likelihood is far from
quadratic. From the likelihood we obtain the MLEs

., SSE
7 T Nmn-1
52 = (SSA/N —&2)/n.

From the ANOVA table we can verify 62 = 0.325 and 52 = 1.395 as stated
earlier.
Taking the second derivatives produces (Exercise 9.8)

N(n4l)_|_ 2N 2)2 2Nn 2)2
I(0?,02) = 2o% L Hlettnon)t eThngl)® ) (9.12)
2(024no2)? 2(024no2)?

and the observed Fisher information

o oy _ [ 354.08 0.0779
1@,3.) = ( 0.0779 1.2472 )

from which we get the asymptotic variance matrix of (52,52)

2 Aoy — 0.0532 0.0
1(6%,50) 1( 0.0 0.8952>

and standard errors se(5?) = 0.053 and se(52) = 0.895.

Flgures 9.7(c)—(d) compare the approximate normal likelihoods for o2
and o2 versus the profile likelihood. The normal likelihood is based on
the asymptotic theory that, approximately, 2 ~ N(c,0.053?) and 52 ~

N(02,0.8952). It is obvious now that the normal approximation for 2 is
inappropriate. As an exercise it can be verified that the likelihood of log o,
is reasonably regular. The likelihood-based 95% CIs are 0.24 < 02 < 0.45
and 0.51 < 02 < 6.57.

The reliability of the measurement can be expressed as the correlation
of y;; and y;x for j # k, i.e. the similarity of different measurements from
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the same person. The measurement is reliable if the correlation is high.
From the model

COV(yija yik)
{var y;; var y;, }1/2
cov(p + a; + e, b+ a; + eix)
o2+ 02

Cor(yijw yik) =

0.2

= —*—. 9.13
0% 4 o2 (9.13)
This quantity is also called the intraclass correlation. Its estimate for the
above data is
6.\2
/\2711,\2 - 081
o+ o0}
Finding the profile likelihood for the intraclass correlation is left as an
exercise.

9.11 Nuisance parameters

While convenient for dealing with individual parameters in a multiparam-
eter setting, the Wald statistic has serious weaknesses. In particular, pa-
rameter transformation has a great impact on Wald-based inference, so
the choice of parameterization becomes unduly important. In contrast,
because of its invariance property, the likelihood ratio test is safer to use
(Section 2.9). We now develop a likelihood ratio theory for some parame-
ters while treating the others as nuisance parameters.

The theory we develop is also useful for situations where we want to
test a hypothesis that is not easily parameterized. For example,

e goodness-of-fit tests
e test of independence for multiway tables.
We follow the general method of profile likelihood to remove the nui-
sance parameters. Let § = (61,602) € RP, where 6; € R? is the parameter

of interest and f; € R" is the nuisance parameter, so p = g + r. Given the
likelihood L(61,62) we compute the profile likelihood as

L(61)

r%aXL(Gl,HQ)

L(61,02(61)),

where 9\2 (01) is the MLE of 65 at a fixed value of 6.

The theory indicates that we can treat L(67) as if it is a true likelihood;
in particular, the profile likelihood ratio follows the usual asymptotic the-
ory:

W =2log < xﬁ = X;2>7r~ (9.14)
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Here is another way of looking at the profile likelihood ratio from the
point of view of testing Hy: 81 = 61¢. This is useful to deal with hypotheses
that are not easily parameterized. By definition,

L(o = L(6:,0
(10) 62%1132)(010 (1 2)
= II}I%XL(G)
L(6,) = max{maxL(6,0)}
91 02
= moaxL(H).

Therefore,
max L(#), no restriction on 6

max L(6), 6 € Hy

A large value of W means Hj has a small likelihood, or there are other
values with higher support, so we should reject Hy.

How large is ‘large’ will be determined by the sampling distribution of
W. We can interpret p and r as

W = 2log

p = dimension of the whole parameter space 6

= the total number of free parameters

= total degrees of freedom of the parameter space
r = dimension of the parameter space under Hy

= the number of free parameters under Hy

= degrees of freedom of the model under Hy.

Hence the degree of freedom in (9.14) is the change in the dimension of the
parameter space from the whole space to the one under Hy.

Before we prove the general asymptotic result, it is important to note
that in some applications it is possible to get an exact distribution for W.
Many normal-based classical tests, such as the t-test or F-test, are exact
likelihood ratio tests.

Example 9.11: Let x1,...,z, be an iid sample from N(u,o?) with ¢ un-
known and we are interested in testing Ho: p = po versus Hi: p # po. Under Hy

the MLE of o2 is 1
~2 1 ERY
5% = nZ_(m o)”.
2

Up to a constant term,
—n/2
maxL(9) = {iZ(w - uo)Q}
1 e
max L(0) = {nZ(xl — w)z}
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and
— nlo Ez(xl - ”0)2
W = log S (@ —7)
~ nlog Y@ — )% 4+ n(T — po)?
ONEEE

2
= nlog(1+ ),
n—1

where t = /n(Z — po)/s) and s? is the sample variance. Now, W is monotone
increasing in ¢2, so we reject Ho for large values of 2 or [t|. This is the usual ¢-test.
A critical value or a P-value can be determined from the ¢, _1-distribution. O

Having an exact distribution for a likelihood ratio statistic is a fortunate
coincidence; generally there is a reliance on a large-sample approximation
given in the following theorem. Its proof will also provide a justification of
the claim made in Section 3.4 about the curvature of the profile likelihood.

Theorem 9.8 Assuming regularity conditions, under Hy: 61 = 019

max L(6)

W =2log————~
8 maxp, L(6)

2
= Xpp-

Proof: Let 6 = (51,52) be the unrestricted MLE and 6y = (610, 520) be
the MLE under Hy. Let the true parameter be 0y = (619,62). We want to
show that under Hy

LG
W = 2log (Ae) = Xp_p-
L(6o)

The difficult step is to find the adjusted estimate 9\20 in terms of . From
our basic results we have, approximately,

) PRI AD LU
(52_02>NN{0,1(9) =<Iz1 722 :

The problem can be stated more transparently as follows. Suppose we

ObSerVe
y Iuy yr vy

where the variance matrix is assumed known. If (44, ft,) are both unknown
then we obtain the MLE i, = y. But what if p, is known? Intuitively, if =
and y are correlated then x will contribute some information about f,. In
fact, from the standard normal theory we have the conditional distribution

yla ~ N(py + UyrU;acl(x — Ha)s Oyy.a = Oyy — UyrU;aclgmy)‘
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So, given z, y and pi,, the MLE of pu, is
fly =y = 0ye0, (€ — p1g).
So, equivalently, given 61 = 61, 51 and 52, we get
B0 = Oy — IP(I'Y)71(6) — B19).
A simple manipulation of the partitioned matrix gives a simpler form

B0 = O + 12_21[21(51 —610),

Iy Iip
I =
< Iy I )
for the Fisher information.

Previously we have used the quadratic approximation

L(H) ~

using the partition

~ /\_ / —
2log 7o) = 0—0)1(0)(6—0),
so under Hy : 01 = 61p, and assuming I(é\) A I(é\o),
L) L(9) L(00)
= = 2lo — 2lo,
7.(0o) *L60) L)

~

~ (0~ 00)1(0)(0 ~ 00) — (B0 — 00)'1(8) (B0 — bo)-
Since (50 —bp) = (0, B — 62) and

fa0 — 0 = 0y — 0, + 12_21[21(51 —010)
then
(Bo — 00)'1(0)(B — 0o) = (G20 — 02) o2 (820 — 62)

() (v ) (5
0> — 65 In o I 0—0> )

Collecting all the terms, we get

L0 ~ _ ~
2log (A) ~ (01— 6010) (In1 — L2l I51) (61 — 010)

L(0o)

2

= (61— 610)'(I") 1B — b1o),

so the profile likelihood ratio is again asymptotically equivalent to the Wald
test on 6. This quadratic approximation shows that the curvature of the
profile likelihood is given by (I'')~!, the claim made in Section 3.4. From

-~

the asymptotics of the MLE 6 we have
61 — 010 % N(0, 1Y),
so we arrive at

LO) 4

2log —— — x5_...
L(6)
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9.12 ? goodness-of-fit tests

One major use of the likelihood ratio test is in the test of hypotheses
involving categorical data, including the goodness-of-fit tests. We will first
consider the simple case where there is no nuisance parameter.

Example 9.12: Are birthdays uniformly distributed throughout the year?

Here is the monthly breakdown of birthdays of 307 students in a first-year statis-
tics class. Almost all students have the same age. O

Month 1 2 3 4 5 6 7 8 9 10 11 12
No. 28 18 30 30 32 21 30 25 30 20 22 21

Suppose Ny, ..., Ng are multinomial with total size n and probability
0 = (p1,...,pK), with > N; = n and Y p; = 1. We want to test a null
hypothesis that birthdays are uniformly distributed. There is no explicit
parameter of interest; it is a lot easier to express the problem using the
likelihood ratio test than using the Wald test. Specifically,

No. of days in month 14
365

Hy: pi=pio=

versus Hi: p; # p;o for some 4. If there is no restriction on the parameters,
we get the MLEs p; = n;/n, so the likelihood ratio test is simply

2logLEz; = QZnilog

U

npio

= QZOlog%,

where ‘O’ stands for the observed frequencies and ‘E’ the expected frequen-
cies under Hy. W is in fact numerically close to the more commonly used

Pearson’s x2 statistic
2\~ (0-FE)
X = Z E :

Theorem 9.9 If the expected frequencies E are large enough in every cell

then, under Hy,
0] (O — E)?
2 E OlogE R E —F

Proof: Consider a second-order expansion of logx around 1
1 2
log:cz(:c—l)—§(x—1) .
Under Hy we expect O/FE = 1, so we apply the second-order expansion on

log O/FE and finish the algebra.

Example 9.12: continued. For the birthday data we can verify that W =
9.47 (and the corresponding Pearson’s x> = 9.35), which is not significant at
12 — 1 = 11 degrees of freedom. Therefore, there is no evidence of nonuniform
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birth pattern. Note, however, that a test with high degrees of freedom is not
very desirable in practice, since it has low power against specific alternatives.
In this case, grouping the months into three-month (3 degree-of-freedom test)
and six-month intervals (1 degree-of-freedom test) does not reveal any significant
nonuniformity (Exercise 9.13). O

Nuisance parameters

As usual, the more important case is when there are nuisance parameters.
For example:

e Checking the distributional assumption of the residual after model
fitting. To test if the errors are normally distributed, the regression
model parameters are treated as nuisance parameters.

e Testing the independence in a 2-way table: the marginal distributions
are nuisance parameters.

Suppose ny, ..., nk are multinomial with parameters n and (p1, ..., pK)-
We want to test

Hy : p;i = pi(bo),

i.e. p;’s follow a parametric form with dim(6y) = r, versus Hy: p; is ar-
bitrary, satisfying only > p; = 1. Here the parameter 6 is the nuisance
parameter. The likelihood ratio test is

QZOlog%
ZZnilog%

np; 0)’

where 9\0 is the MLE of 6y based on data nq,...,nk. (This point is im-
portant if the group data are based on grouping continuous data, in which
case there is a temptation to use 6 based on the original data.) According
to our theory, under the null hypothesis, W is x? with K — 1 — r degrees
of freedom.

w

Example 9.13: One of the most common applications of the x? test is in test-
ing the independence of two characteristics; for example, eye versus hair colour.
The data are usually presented in a two-way contingency table. Consider a table
with cell frequencies n;; for ¢ = 1,...,I and j = 1,...,J, and corresponding
probabilities p;j, such that Zij pi; = 1. The log-likelihood of the parameter
0 = {pi; } given the observed data n;; is

L(G) = Z Nij logpij.

Under the null hypothesis of independence between the row and column charac-
teristics: p;; = ric;, where r; is the true proportion of the 7’th row characteristic
and c¢; is the true proportion of the j’th column characteristic. The free pa-
rameter under the null hypothesis is 6o = (r1,...,71,¢1,...,cs), satisfying the
constraint Zl r; =1 and Zj ¢; = 1. Under independence we obtain
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nin.j

pij(Bo) =

n2 ’

where the row total n;, = Zj n;;, the column total n; = ZZ n;; and the grand
total n.. = Zm n;;. The test of independence is

2 Z n;j log ————

~ Z {nij — n.pi; ()} '

n..pi; (0o)

w

T. . Dij (90)

Since dim(0y) = I+ J —2, the degrees of freedom of the test is [J—1—1—J+2 =
(I—-1)(J-1).

0.13 Exercises

Exercise 9.1: The noncentral hypergeometric probability is defined as

P(X = J]) = ’

for x = 0,...,t, where m, n and t are known constants. At § = 0 we have the
(central) hypergeometric model, where P(X = z) is the probability of getting =
black balls in a random sample of ¢ balls without replacement from an urn with
m black and n white balls. Show that the score test for testing Ho: 6 = 0 is of
the form

T — Ko
oo

z =
where po and o¢ are the mean and variance of the (central) hypergeometric
distribution.

Exercise 9.2: As stated in Example 9.9, show that if we approximate K(b\)
around zero by a quadratic function

K() ~ K(0) + K'(0)8 + %K”(o)@)‘2

then we obtain the standard central limit theorem from the saddlepoint formula.

Exercise 9.3: The saddlepoint approximation of the distribution of the sample
mean in Example 9.9 can be used as a theoretical alternative of the bootstrap
computation. Define the empirical cumulant generating function

K(0) = log (i 3 69%> ‘

For the following observations

50 44 102 72 22 39 3 15 197 188 79 88
46 5 5 36 22139 210 97 30 23 13 14
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compare the bootstrap distribution of the sample mean with the saddlepoint
approximation (9.8) based on the empirical cumulant function.

Exercise 9.4: Suppose y1,...,yn are an iid sample from the inverse Gaussian
distribution with density

1/2 2
_ (2 A =)
p(y) = (27@) exp{ 52 g ,y>0.

(a) Assuming X is known, find the saddlepoint approximation of the density of
the MLE of pu.

(b) Assuming p is known find the saddlepoint approximation of the density of
the MLE of .

(¢) For u =1, A = 1, and n = 10, show how good is the approximation in (b)
by performing a Monte Carlo simulation similar to the one in Example 9.8.

Exercise 9.5: Let x1,...,z, be an iid sample from N(u,o?) with u known.
Give the approximate density of the sample variance using formula (9.6).

Exercise 9.6: Let x1,...,z, be an iid sample from gamma(u, 8), with known
8. Derive the approximate density for p using formula (9.6) and show that the
formula is exact.

Exercise 9.7: For the location family in Section 9.8 show that the Jacobian

in the transformation from z(yy,...,z) to (a, /9\) is equal to one. (Hint: first
transform the data to (x(1), a), then transform (z(1),a) to ((/9\, a), so the Jacobian
is |d:c(1)/d/9\\.)

Exercise 9.8: Verify the Fisher information (9.12) for the variance components
in one-way random effects.

Exercise 9.9: For the variance matrix (9.11) verify that its inverse is

I, 2
L [ S

o2 0%(02 +no2)

To find its determinant one needs to get the eigenvalues of S. Treat this as an
exercise only if you are familiar enough with matrix algebra.

Exercise 9.10: For the random effects example in Section 9.10 show that the
likelihood of log o, is reasonably regular. Find the normal approximation of the
distribution of log 7.

Exercise 9.11: Compute the profile likelihood for the intraclass correlation
(9.13) based on the data in Table 9.1. Comment on the regularity of the likeli-
hood.

Exercise 9.12: Complete the detail of the proof of Theorem 9.9 that

2y 0105 %~ 3 OB

Exercise 9.13: Test the uniformity of the birthdays in Example 9.12 by split-
ting the data into three-month and six-month intervals. Compute both W and
Pearson’s x? statistics.
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Dealing with nuisance
parameters

Nuisance parameters create most of the complications in likelihood theory.
They appear on the scene as a natural consequence of our effort to use
‘bigger and better’ models: while some parameters are of interest, others
are only required to complete the model. The issue is important since
nuisance parameters can have a dramatic impact on the inference for the
parameters of interest. Even if we are interested in all of the parameters in
a model, our inability to view multidimensional likelihood forces us to see
individual parameters in isolation. While viewing one, the other parameters
are a nuisance.

We have used the idea of profile likelihood as a general method to elim-
inate nuisance parameters. The generality comes with a price, namely the
potential for bias (even in large samples) and overly optimistic precision.
For example, the MLE of the normal variance is

1
~2 L =2
a—ng(xl z)”.

i
Since >, (v; — Z)?/0? is X2 _4,

=% n—1
Es? = — 52,
n

For n = 2 this is a severe underestimate. Furthermore, the profile likelihood
of the variance
2 n 2 1 2
logL(c?) = —=logo* — — » (z; — ) (10.1)
2 202 -
is the same as the likelihood of o2 if the mean p is known at . This
means we are not ‘paying’ the price for not knowing p. Hence, bias is only
a symptom of a potentially more serious problem. The bias itself can be
traced from the score function
n il — T)?

0
8(0%) = oz loallo®) = =5 5 + =55
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This yields E,2S5(0?) = —1/(20%) # 0, not satisfying the usual zero-mean
property of a true score statistic. We can also show that the variance of
the score statistic does not match the expected Fisher information:

n—2
204

n —

1
oot 7 E,21(0?) =

vary2{S(c%)} =

If there are more mean parameters to estimate, as in analysis of variance
problems, the mismatch is worse.

In regular problems, bias is small relative to standard error, and it
goes away as the sample gets large. That is typically the case when the
number of nuisance parameters is small relative to the sample size. There
is a genuine concern, however, when bias does not disappear as the sample
size gets large, or bias is large relative to standard error, resulting in an
inconsistent estimation. This usually occurs when the number of nuisance
parameters is of the same order of magnitude as the sample size, technically
known as ‘infinitely many nuisance parameters’.

The main theoretical methods to eliminate nuisance parameters are via
conditioning or marginalizing. Unlike the profile likelihood, the resulting
conditional or marginal likelihoods are a true likelihood, based on the prob-
ability of observed quantities. These methods typically correct the profile
likelihood in terms of the bias in the MLE, or the overly optimistic preci-
sion level, or both. If an exact method is not available, we use approximate
conditional or marginal likelihoods based on a modification of the profile
likelihood.

The simplest method to deal with nuisance parameters is to replace the
unknowns by their estimates. This is especially useful when other methods
are either not available or too complicated. The resulting likelihood will
be called the estimated likelihood. For example, the likelihood (10.1) is an
estimated likelihood. The main problem with the estimated likelihood is
that it does not take into account the extra uncertainty due to the unknown
nuisance parameters.

10.1 Inconsistent likelihood estimates

Neyman and Scott (1948) demonstrated that the profile likelihood can
be severely biased even as the sample size gets large. This is a common
ocurrence if there are ‘infinitely many’ nuisance parameters.

Example 10.1: Consider a highly stratified dataset below where y;1 and y;2
are an iid sample from N(u;,0?), for i = 1,..., N, and they are all independent
over index i. The parameter of interest is o2. The total number of unknown
parameters is N 4+ 1 and the number of observations is 2IN. To convince ourselves
of the bias, and appreciate the corrected procedure, we simulate data from the
model as shown in Table 10.1. The advantage of simulated data is that we know
the true o® = 1 and wi’s, so we can show the ‘true’ likelihood of 2. To make the
bias visible, the number of strata N should be large enough; N = 20 is sufficient
in this case.
Letting 6 = (1, ..., pn, 02), the full likelihood is
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i Yil Yi2 Y,
0.88 —0.31 —0.51 —0.41
2.51 3.20 3.57 3.38
1.74 1.70 2.81 2.26
—6.74 —6.67 —5.37 —6.02
1.42 3.12 3.74 3.43
-3.34 -—-3.15 -=-3.27 -=3.21
—2.72 —2.11 -3.10 —2.60
6.89 6.88 6.53 6.70
0.67 0.81 —-2.70 —-0.94
—4.18 —4.25 —-3.64 —-3.94
11 8.43 8.58 7.08 7.83
12 0.15 1.88 —1.15 0.36
13 3.89 5.18 4.31 4.74
14 4.52 3.81 5.86 4.84
15 —4.05 —4.68 —4.55 —4.62
16 —-6.95 —-6.58 —7.52 —7.05
17 -261 -—-2.16 -—-1.13 -—-1.64
18 —-6.52 -—-799 —7.53 -—7.76
19 -6.06 —-648 —-6.13 —6.30
20 0.92 0.89 1.33 1.11

—_
O O 0O Ok WN |,

Table 10.1: Simulated highly stratified data: y;1 and y;2 are iid N(p;, 0?).

N 2
1
log L(#) = —Nlog o” — pyes ZZ(W — pi)?.

i=1 j=1

Assuming p;’s are known, the full likelihood is the ‘true’ likelihood of o; this
serves as the gold standard in our analysis. The true likelihood is shown as the
dotted curve in Figure 10.1.

Profile and true likelihoods

1.0
1

Likelihood
0.0 0.2 04 0.6 0.8

78

0.5 1.0 1.5 2.0

2
o

Figure 10.1: Simulation from highly stratified data: the profile likelihood
(solid line) is compared with the true likelihood (dotted line).

To compute the profile likelihood of o2, at each o we can show that 11; = [
We denote the residual sum of squares RSS = ZZ Z]. (yi; —7;)?; hence the profile
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likelihood of o2 is

log L(0%) = maxy,,..y log L(p, ..., ux,0”)
. RSS
= —Nlogo® — 252

and the MLE is

~2 _ RSS

o=
From the data we can verify that RSS = 18.086 and ° = 0.452. Figure 10.1
shows the profile likelihood function; also, using the profile likelihood, the true
value 0 = 1 only has 0.7% likelihood, clearly unexpected in a regular problem.

Note that what we have is simply a one-way analysis of variance model, where

the residual degrees of freedom is equal to N. It is clear that the RSS is o2x%,
so E6% = 0?/2 for any N. Furthermore, var(c?) = o*/(2N), so

52 0%,
or the estimate is not consistent. O

Example 10.2: A similar problem can also occur with a regression parameter.
Suppose y;; are binomial outcomes with parameters n;; and p;;, following a
logistic model
logit pi; = Bo + Si + Tj,

where S;’s are the strata effects, for ¢ = 1,...,I, and 7;’s are the treatment
effects, for 7 = 0,1. For identifiability assume that 79 = 0; the parameter of
interest is treatment contrast 71. This model assumes that the treatment effect
is the same across strata.

If n;; is small and [ is large, we have highly stratified data. For example,
a stratum may represent a subject, and treatments are assigned within each
subject; or, a stratum may represent a family, and the treatments are assigned to
the specific members of the family. The standard MLE of 7; is seriously biased,
and inference based on the ordinary profile likelihood is questionable. In the
extreme case where n;; = 1 (e.g. matched pairs with Bernoulli outcomes), the
MLE 71 — 271 (Breslow 1981).

The following y;;’s are simulated data with 7 = 1 and some random S;’s.
The first 50 values (first two rows, representing 50 strata) come from treatment
j =0, and the second from j = 1:

0010101000100000010000000
0001000000000101010000000
0101001011111010101101110
0111100110011100100100001

Fitting the logistic regression, the estimated treatment effect 71 = 3.05 (se=0.70)
indicates a serious bias. The solution to this problem is given in Section 10.5. O

10.2 Ideal case: orthogonal parameters

An ideal situation occurs if we have data & depending on a model py(x)
and y on p,(y), where x and y are independent, and there is no logical
connection between 6 and 7. The joint likelihood of (0, 7) is

L(0,n) = pe(x)py(y)
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= L(6;x)L(n; ).
There can be no argument that the true likelihood of 6 should be
L(0) = L(0; ),

since y does not carry any information about 6.
Also ideal is the situation where we can factorize the likelihood

L(0,n) = L1(0)L2(n),

where we do not care how the data enter Li(-) and Lao(-). It is clear that
the information on 6 is captured by L;(#). When such a factorization exists
0 and 7 are called orthogonal parameters.

Example 10.3: In the traffic deaths example in Section 4.6 we assume that
the number of deaths x and y are independent Poisson with parameters A, and
Ay. The joint likelihood function is

L(s, Ay) = e~ QoA \2)\y

Assuming the parameter of interest is 6 = A\, /\z, now let the nuisance parameter
ben = Az + Ay. So

Il
N
—

+ <
)
N———
<
/N
—
—+ |~
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—
3
8
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<
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~
o
—
>
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~
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3
=

where 0 ’ 1 .
L(6) = (1+9) (1+9) '

As shown before L;(#) is also the profile likelihood of §. This is generally true:
if there exists an orthogonal parameter for 6 then, without having to specify 7,
the profile likelihood computation would automatically provide L1 (6). O

Often we do not achieve the ideal case, but only
L(97 77) = L1(9)L2(9, 77))

with the additional argument that Lo (8, 7) contains little information about
6, or L1(0) captures most of the information about 6.

Example 10.4: Suppose 1, ..., &, are an iid sample from N(u,o?) with both
parameters unknown. It is well known that the sample mean T and the sample

variance 1
2 —\2
s° = T; — T
@)
k2

are independent. However, Z is N(u,0%/n) and (n — 1)s® is o?x2_;, so the
parameters do not separate cleanly. In likelihood terms we can write with obvious
notation

2 2, 2, 2
L(p,0%) = L(p, 07 7)L(0"; s7).

If we are interested in o2, and p is unknown, we can ponder whether there is

information in Z about o%. In repeated sampling terms, yes there is, but it is



278 10. Dealing with nuisance parameters

intuitive that the observed T itself does not carry any information about the
variance. This means that we can ignore Z, and concentrate our likelihood based
on s° . ( w
n— 2 n—1)s

logo 592
now free of the unknown parameter p. Such a likelihood is called a marginal
likelihood. O

log L(0®) = —

10.3 Marginal and conditional likelihoods

As a general method, consider a transformation of the data x to (v, w) such
that either the marginal distribution of v or the conditional distribution
of v given w depends only on the parameter of interest 6. Let the total
parameter be (6,7). In the first case

L(Gvn) = p@,"?(’U?w)
po(v)pe,,(wlv)
= Li(0)L2(6,m),

so the marginal likelihood of 0 is defined as

Li(0) = pe(v).

In the second case

LO,n) = pe(v|w)ps,,(w)
= L1(0)L2(9,77),

where the conditional likelihood is defined as
Ly (0) = po(v|w).

The question of which one is applicable has to be decided on a case-by-case
basis. If v and w are independent the two likelihood functions coincide.

In 1922 Fisher used a two-stage maximum likelihood estimation to esti-
mate the error variance in one-way classification problems; a similar argu-
ment was used in 1915 for the correlation coefficient, but then the likelihood
terminology was not explicit. Suppose (6,7) is the usual MLE of (6,7). If
the distribution of 6 depends only on ¢, then a second-stage estimation
of 6 should be based on py(#). This corresponds to a marginal likelihood
approach. To see intuitively why the second-stage estimate has less bias,
suppose 6 is normal with mean 6 + b(6)/n. Up to a first-order approxi-
mation, the second-stage estimate is 6 — b(é\) /m, i.e. it is a bias-corrected
estimate.

The marginal or conditional likelihoods are useful if

e po(v) or pg(v|w) are simpler than the original model pg ,(z).

e Not much information is lost by ignoring Lo (6, 7).
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e The use of full likelihood is inconsistent.

The second condition is usually argued informally on an intuitive basis.
Under the last condition the use of marginal or conditional likelihood is
essential.

When available, these likelihoods are true likelihoods in the sense that
they correspond to a probability of the observed data; this is their main
advantage over profile likelihood. However, the problem is that it is not
always obvious how to transform the data to arrive at a model that is free
of the nuisance parameter.

Example 10.1: continued. To get an unbiased inference for o2, consider
the following transformations:

vi = (yi—yia)/V2
wp = (yi1+yi2)/\/§v

Clearly v;’s are iid N (0, 02), and w;’s are iid N(,u,'\/i, 02). The likelihood of o2
based on v;’s is a marginal likelihood, given by

Lv(g‘z) = <\/21T?> exp <—%i2 ZU?) .

i=1

Since v; and w; are independent, in this case it is also a conditional likelihood.
Figure 10.2 shows that the marginal likelihood corrects both the bias and over-
precision of the profile likelihood. In fact, the MLE from the marginal likelihood
is
N
~2 1 o2 RSS
o2 = — 2 _ W0
K3 N )

i=1

the same as the unbiased estimator from the analysis of variance. O

1.0
1 1

Likelihood
0.0 0.2 04 06 0.8

Figure 10.2: The marginal likelihood (dashed line) corrects the bias of the
profile likelihood (solid), with the ‘true’ likelihood (dotted) shown as com-
parison.
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Example 10.5: Conditional likelihood is generally available if both the pa-
rameter of interest and the nuisance parameter are the natural parameters of
an exponential family model. Suppose z is in the (q + r)-parameter exponential
family with log-density

log po.n(x) = 0't1(x) +n't2(x) — A0, 1) + c(x),

where 60 is a g-vector of parameters of interest, and 7 is an r-vector of nuisance
parameters. The marginal log-density of ¢1(x) is of the form

lngﬁ,n(tl) = altl(a‘:) - A(97 77) +ca (tla 77)7

which involves both 6 and n. But the conditional density of ¢; given ¢2 depends
only on 6, according to

log pe(t1ta) = 0't1(z) — A1 (0, t2) + ha(t1, t2),

for some (potentially complicated) functions A;(-) and hi(-). A simple approxi-
mation of the conditional likelihood using the likelihood-based p-formula is given
in Section 10.6. O

Example 10.6: Let y1,. .., y, be independent exponential outcomes with mean
Uiy -y b, Where

1

— = fBo + Pr;

I

i

and x; is a known predictor. The log-likelihood is

log L(fo,B1) = —» (logpi+yi/m)

= > log(Bo+ fr) = Bo Yy i~ B > wviws,

so we can get a conditional likelihood of (1. This result can be extended to
several predictors. O

Example 10.7: Even in the exponential family, parameters of interest can
appear in a form that cannot be isolated using conditioning or marginalizing. Let
y1 and y2 be independent exponential variates with mean 7 and 67 respectively;
the parameter of interest 6 is the mean ratio. Here

log p(y1,y2) = —log® — 2logn — y1/n — y=2/(6n).

The parameter of interest is not a natural parameter, and the conditional distri-
bution of y2 given y; is not free of 7.

The same problem occurs in general regression with noncanonical link: let
Y1, ...,Yn be independent exponential outcomes with mean g1, ..., t,, where

log pi = Bo + Prx;.
An approximate conditional inference using a modified profile likelihood is given

in Section 10.6. O

Information loss

In Example 10.1 it is natural to ask if we lose information by ignoring
wy, ..., wy. Without further assumptions about p;’s, it seems intuitively
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clear that little information is lost, but it is not easy to quantify the amount
of loss. The upper bound on the information loss is reached when pu;’s are
known: using the original data, the expected Fisher information on o2 is
N/o*, and using v;’s alone the Fisher information is N/(20%), so the loss is
50%. (Note, however, the quadratic approximation of the log-likelihood of
variance parameters is usually poor, except the sample is quite large. This
means a comparison based on the Fisher information is meaningful only in
large samples.)

Further analysis can be made assuming pu;’s are an iid sample from
N(u, ai), where aﬁ is known. This is now a random effects model, where

O’i is the variance component parameter for the strata variable i. One can

compare the Fisher information of o2 under this assumption. Using the
result in Section 9.10, the expected Fisher information on o2 is

N n N
201 2(0%+202)%

Compared with the Fisher information we get from the marginal likelihood,
the proportion of information loss is

1
o2\ 2
1+ (1+2%)

The ratio aﬁ /o? measures the variability between strata relative to within-
strata variability; if it is large the information loss is small. For example,
if 0* = 07 = 1 there is a 10% loss. If there are no strata effects (o7 = 0)
we get the upper bound of 50% loss.

10.4 Comparing Poisson means
Traffic deaths example

In the traffic deaths example (Section 4.6) we assume that the number
of deaths z and y are independent Poisson with parameters A, and A,.
The conditional distribution of y given the sum z + y is binomial with
parameters n = x + y and probability

Ay

Assuming the parameter of interest is 8 = A, /A, we have

0
T 146

which is free of nuisance parameters. The total z + y intuitively carries
little or no information about the ratio parameter 6, so on observing y, the
conditional likelihood of 6 is
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0 \'( 1Y\
0= (v45) (v5a)
as we have seen before using the orthogonal parameter or profile likelihood
arguments.

This example may be used to illustrate another fundamental difference
between the profile and the conditional/marginal likelihoods: the profile
likelihood is totally determined by the probability of the observed data,
while the latter is affected by the sampling scheme or a contrived rear-
rangement of the sample space. In the comparison of two Poisson means,
the conditional argument produces the binomial distribution as the basis
for the likelihood provided we have a standard sample. If parts of the sam-
ple space are censored, then the conditional distribution is affected, even if
the observed data are not censored.

To be specific, suppose x values greater than five cannot be observed
exactly, and in such a case only ‘x > 5’ is reported; the underlying variate
X is assumed Poisson with mean \,. Suppose we observe t =3 and y = 7,
i.e. the data are actually observed exactly; the joint likelihood of (A, Ay)
is

L(a, Ay) = e M A3e AT,

and the profile likelihood of 6 is

o N/ 1\’
LO)=(— —
0 ~(r5s) (59)
as before. However, the conditional likelihood is no longer available, since

the probability P(X +Y = 10) and the conditional probability P(Y =
7|X +Y = 10) cannot be computed.

Aspirin data example

Let us go back to the aspirin data example in Section 1.1. We assume that
the number of heart attacks in the aspirin group z, is binomial(n,, 8,) and
that in the placebo group z, is binomial(n,,d,). We observed z, = 139
from a total n, = 11,037 subjects, and x, = 239 from a total of n, =
11,034. The parameter of interest is § = 6,/6,.

Consider a one-to-one transformation of the data (24, zp) to (za, a+2zp)
and the parameter (6,,6,) to (6,6,). The likelihood function based on
(Tas e + xp) is

L(9,0,) = pos,(Ta,Ta+ )
Do (xa|xa + xp)pQ,Gp (xa + xp)

Intuitively, x4+, does not contain much information about 6, so inference
about € can be based on the first term in the likelihood function.
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Since 6, and 6, are small, we consider the useful approximation that z,
and z,, are Poisson with parameters n,60, and n,0,, respectively. Therefore,
conditionally on x, +x, = t, 2, is binomial with parameters ¢t and 7, where

g0 N0

Nala + nply T ngd+ Np '

So the likelihood function of § based on X,|X, + X, is

L) = P(Xy=za|Xoe+Xp=124+17p)

Tq T
N0 N0 P
constant x | ——— l——— | .
ngd + ny ngd + nyp

This is exactly the profile likelihood of 8 we derived previously. See Section
4.7 for exact numerical results and plots of the likelihood function.

10.5 Comparing proportions

Section 4.3 used the profile likelihood for the comparison of two binomial
proportions. We now show the conditional likelihood solution.

Suppose we want to compare the proportion of a certain characteristic
in two groups. Let x be the number of cases where the characteristic is
present in the first group; assume z is binomial B(m,r,); independently
we observe y as B(n,m,). We present the data as

Group 1 Group 2  total

present T Y t
absent m—x n—y u
total m n m+n

As the parameter of interest, just as before, we consider the log odds-
ratio 6 defined by
T2/ (1 — 7a)
my /(1 —my)
In terms of # the hypothesis of interest Hy: m, = 7, is equivalent to Hy:
6 =0.

Now we make the following transformation: (z,y) to (z,z + y). The
conditional probability of X = x given X +Y =t is

0 = log

PX=z,X+Y=1t)

PO =alX +Y = 1) = =5

The numerator is equal to
e

() G (25)
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X(1 —mg)™(1 —my)"

OB N

so the conditional probability is

PX=z|X+Y =t)= (T;><t7—1x)€‘9x

() ()

which is independent of the nuisance parameter. This conditional model
is known as the noncentral hypergeometric probability, which is in the
exponential family with 6 being the canonical parameter. At § = 0 we
obtain the standard hypergeometric probability, which forms the basis of
Fisher’s exact test (Section 4.3).

The total number of cases t = x + y intuitively does not carry much
information about the odds-ratio parameter, so we can use the conditional
distribution of X given X + Y =t as the basis for likelihood. Specifically,
on observing X = x the conditional likelihood of 8 is

L(0) = t< : 21( tfx) - . (10.2)
(1))

While the conditional and profile likelihoods are not the same, they are
numerically very close, even for small datasets. Figures 10.3(a) and (b)
compare the conditional likelihood (dotted line) based on formula (10.2)
with the profile likelihood (solid), using the genetic data in Example 4.4.

Series of 2x2 tables

Example 10.2 states the problem of bias in highly stratified binomial data.
We can think of the data as a series of 2x2 tables, where each stratum
contributes one table. There is a rich body of applications in epidemiology
associated with this data structure (see e.g. Breslow and Day 1980).

With so many nuisance parameters for strata effects, bias in the stan-
dard MLE of the common odds ratio can accumulate and dominate vari-
ability. One solution of the problem is to condition on the margin of each
table, so stratum ¢ contributes a likelihood L;(#) given by (10.2) with the
corresponding m;, n;, t; and x;. Conditioning eliminates the strata effects
in the original logistic model. The total log-likelihood from all the tables
is the sum of individual log-likelihoods:

log L(0) = Z log L;(9).
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(a) 5/15 versus 1/10 (b) 6/15 versus 0/10
© | @
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Figure 10.3: Comparing two binomial proportions: conditional likelihood
is very close to profile likelihood. (a) Profile likelihood (solid line) and
conditional likelihood (dotted) for the genetic data in Example 4.4. (b)

Same as (a) for an extreme case where § = oo.

The score test of Hy: 6 = 0 derived from this conditional log-likelihood is
known as Mantel-Haenzel test. From Exercise 9.1 it is of the form
_ i@ — i)

{>afpt2

where p1; and o2 are the mean and variance of the standard hypergeometric
random variable x;:

z

i = mgt; o2 — minit;(m; +n; —t;)
! my +TL¢7 ¢ (ml+nl)2(ml+nz — ].)

In the extreme case m =n =1 for each table (e.g. matched-pairs with
Bernoulli outcomes), only tables with discordant entries (z = 1,y = 0) or
(x = 0,y = 1) contribute to the likelihood. We can think of each pair as
a new success—failure outcome (i.e. ‘success’ = (x = 1,y = 0), ‘failure’ =
(x =0,y =1)). The null hypothesis of odds ratio equal to one is simply a
test of binomial proportion equal to 0.5; this is known as McNemar’s test.

For the data in Example 10.2 there are 28 discordant pairs, of which
23 (=82%) belong to treatment j = 1. The bias-corrected estimate of the
treatment contrast parameter 7 is

0.82

7 = log 2% = 1.52.
T =log e = 1.5

Using the formula in Example 2.18 the standard error is
0.5
1 1
T1)=<—+ - = 0.49.
se(T1) {23 + 5}

Additionally, the likelihood function of 7; can be computed based on the
binomial probability.
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It is difficult to analyse how much information is lost by ignoring the
marginal information. Intuitively, the loss can be substantial if there is in
fact no strata effect; in this case we should have done an unconditional
analysis. An alternative to the conditional analysis is the mixed effects
model discussed in Section 17.8.

10.6 Moaodified profile likelihood*

Exact marginal or conditional likelihoods are not always available. Even
when theoretically available, the exact form may be difficult to derive (Ex-
ample 10.6). An approximate marginal or conditional likelihood can be
found by modifying the ordinary profile likelihood.

First recall the likelihood-based p-formula from Section 9.8 that pro-
vides an approximate density of 6:

po(@) ~ (2m) 1721 (@) 11220,
L(0)
A better approximation is possible via Barndorff-Nielsen’s p*-formula, which
sets a normalizing constant ¢(f) such that the density integrates to one.
However, it is less convenient for likelihood approximation since ¢(f) is
rarely available. We will use the simpler p-formula, since the normalizing
constant is free of 6. R
In a multiparameter setting let (6,7) be the MLE of (0,7); then we
have the approximate density

where ¢ = (27)P/2, and p is the dimensionality of (f,7). Throughout this
section the constant c is free of 6.

The profile likelihood appears naturally in the approximate marginal
distribution of 7. In fact, this is the theoretical basis of the construction
of modified profile likelihood. Let 7y be the MLE of n at a fixed value of
0, and I(7g) the corresponding observed Fisher information. The profile
likelihood of @ is

The marginal density of 7 is

~

o
p(i) | 22

o

p(7)

L(6,n) |9ng
L(0,79) | O

Q

cl I(7)|"/ (10.3)

The conditional distribution of 6 given 7] is

- p(é\, A)




10.6. Modified profile likelihood* 287

on

0.7
~ el rERI B

L(0.7)
where we have used the p-formula on both the numerator and the denom-
inator. Hence, the approximate conditional log-likelihood of 6 is

. 1 N on
log Ln(0) = log L(0,7) — 3 log |(7y)| +log | 5=
1 N on
= log Ly(6) — 5 log |1(7)| + log | 52 (10.4)
Mo

L., (0) is the required modified profile likelihood. We can arrive at the same
formula using a marginal distribution of 9.

The quantity % log |I(7)g)| can be interpreted as a penalty term, which
subtracts from the profile log-likelihood the ‘undeserved’ information on the
nuisance parameter 7. The Jacobian term |07)/0ny| works as an ‘invariance-
preserving’ quantity, which keeps the modified profile likelihood invariant
with respect to transformations of the nuisance parameter. Being a difficult
quantity to evaluate, it is a major theoretical hurdle preventing a routine
application of (10.4).

The modified profile likelihood formula (10.4) applies in the general
setting where (é\, 7) is not sufficient. Suppose there is a one-to-one function
of the data z to (5, 7,a(x)), where a(z) is ancillary. To make explicit the
dependence on the data, we can write

L(8,n) = L(0,m; ) = L(8,1; 0,7, ),
For fixed 6, the MLE 7y satisfies

ilogL(9 779,9 n,a) = 0.

Iy
Taking the derivative with respect to 7y we obtain
2 2
S OB L0, .7.0) + = 0w L(0. 0.7 0) 5 = 0
” on 1)
‘aﬁe N ] 2 Jog L(0,759: 0,7, a)| (109
amedn AR

The denominator is potentially difficult to get, since we may not have an
explicit dependence of the likelihood on (6,7).

In lucky situations we might have 7y = 7, implying |07/07| = 1, and
the last term of (10.4) vanishes. If 6 is scalar it is possible to set the
nuisance parameter n such that [07/07g| =~ 1 (Cox and Reid 1987). This
is achieved by choosing 7 so that

2

0
E——IloglL =0. 10.

Such parameters are called ‘information orthogonal’.
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It is interesting to compare these results with Bayesian formulae as
it suggests how to compute modified likelihoods using Bayesian computa-
tional methods. For scalar parameters, the quadratic approximation

LO) & 1@ -9
L) 51(0)(6 —0)

implies

/L(@)d@ ~ L(é)/e*%f@@*@%a
= L(O)(2m)V?|1(8) 72

This is known as Laplace’s integral approximation; it is highly accurate if
log L(0) is well approximated by a quadratic. For a two-parameter model,
we immediately have, for fixed 6, the integrated likelihood

Lint(0) = /L(9777)d77 ~ eL(0,70)|1(70)|~'/?,
where c is free of 6, so

1 ~
log Line(6) ~ log Ly (6) — 5 log |1(7v)

exactly the modified profile likelihood in the case of orthogonal parameters.

Example 10.8: Suppose z is in the (g+r)-parameter exponential family with
log-density
log po,,(z) = 0't1(x) +n'ta(z) — A6, n) + c(x),
where 6 is a g-vector of parameters of interest, and 7 is an r-vector of nuisance
parameters. We know that the conditional distribution of ¢; given ¢3 is free of n
(Example 10.5), but the explicit form can be complicated. The modified profile
likelihood provides an explicit, but approximate, conditional likelihood.
The information term is

1(e) = 7=

To get the Jacobian term, first note that MLE (é\, 7) satisfies

0
t = 7A 9,"]
1 % (0,m)

ta = —=A0,7)=A(,7).

At fixed value of 6 we have

SO
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A'(0,7) - A'(6,7) = 0,
and taking the derivative with respect to 7y, we obtain
"R 87/7\ " ~\
A"(0,7) 5~ — A"(0,70) =0
one
or R R
o _ A"(0,np)
O A"(0,7)
Hence, up to a constant term, the modified profile likelihood is

~

~ 1

log L (0) = log L(0,m9) + 3 log A" (6,7s).
Ignoring the Jacobian term would have led to a minus sign rather than the correct
plus sign on the right-hand side. O
Example 10.9: We observe the following

-56.3 -4.5 -1.0 -0.7 3.7 3.9 4.2 5.5 6.8 7.4 9.3
and assume that they are an iid sample from N(M,O'Q) with both parameters
unknown. The log-likelihood is
2y _ I 2 1 Y
log L(p,07) = -3 logo™ — 592 Z(wz 1)
7

where n = 11.
(a) We first find the modified profile likelihood of y. Given p the MLE of o

~ 1
0. = EZ(xifu)z

SN -1 @

is

= 4@ —-p’
Immediately,
~2 n ~2 n
IOgL(/'Lqu) = 75 lOgUu - 57
and , n
I(E ) = 5=a1°
B 2o
and 02
T,
Jdo?

Up to a constant term, the modified profile likelihood is

n ~ 1 A
log L () = —§logai—§logl(ai)

n—2 ~2
logo,,

the same as the profile likelihood based on (n — 2) observations.



290 10. Dealing with nuisance parameters

Log-likelihood
-4 -2
1

-6

-8

Figure 10.4: Log-likelihoods of p: normal approximation (solid), ordinary
profile (dashed) and modified profile (dotted).

Figure 10.4 shows the log-likelihoods of p based on the normal approxima-
tion, profile and modified profile. The normal approximation is equivalent to the
quadratic approximation of the profile likelihood. All likelihoods are maximized
in the same location, but they have varying precision. The exact 95% CI for p is
the ¢-interval

T =& t10,0.0255/V/7,

producing —0.60 < p < 5.93. The normal-based interval —0.21 < p < 5.54 is
too narrow; the profile and modified profile likelihood intervals at 15% cutoff are
—0.35 < p < 5.67 and —0.73 < p < 6.06. In this case the modified likelihood
gives the closest likelihood-based interval to the exact interval.

(b) Now suppose o? is the parameter of interest. At each o2 we obtain

o2 =T = L,

so O11/01i,2 = 1. The Fisher information is

~ n
I(/'LO'Q) = ?7

so the modified profile likelihood is

n—1 s (n—1)s
1 _m=o)s
ogo o7

log Lim(0?) = —

exactly the same as the marginal likelihood based on s shown in Example 10.4. O

Example 10.10: With highly stratified data, a modification of the profile
likelihood will have a dramatic impact. Suppose y;;’s are independent normal
data with mean p and variance o, where ¢ = 1,..., 1 and j = 1,...,n;. Given
1, the MLEs of the variance parameters are

~2 1 2
Tin = o D i —w?.
i

The profile likelihood of p is
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Uz ~
log (i) = = » 5 log a7,

i

Using the same derivations as in the previous example, the modified profile like-

lihood is 5
n; — ~
log L (1) = *Z 5 logaiu.

i

Both likelihoods will produce the same estimate of w, but different levels of
precision. O

Example 10.11: Suppose y1,...,y. are independent normal outcomes with
means fi1,. .., in and common variance o2, where
Hi = m;ﬁ>

and z; is a vector of p predictors. For fixed 8 the MLE of o2 is
o5 = & E (yi — iB)*
n .
K3

= Y B S @B - alpy?

7

~ 1 ~
= o7+ o Z(l“;ﬂ —2iB)%,

which implies 8?7\/23 /052 = 1. The required Fisher information is T (3[23) =n/ (23?3)
so the modified profile likelihood for S is

-2 ~
log L (8) = —nT log 5.

There is no simple formula for the modified profile likelihood of the individual
coefficients.

Using similar derivations as in the one-sample case, the modified profile like-
lihood of o2 is

_ 1 N
IOng(O'2) -_n 5 P logU2 - — Z(yz — SU;ﬂ)Q-
I

%

This leads not only to the (n — p)-divisor for the estimate of o2

e O

n—p

but also to a better likelihood-based inference. In Exercise 10.8 this is extended
to the general dispersion parameter. O

Example 10.12: The variance estimation in Example 10.11 is a special case
of the general variance components estimation. Suppose an array of outcomes y
is normal with mean p and variance V, where

p=XpB
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for known design matrix X, and V = V(). Let 0 be the parameter of interest;
it is known as the variance component parameter. The overall likelihood is

log L(B,6) = —3 log V| = 3y = X8V ™" (y — XB).
Given 0, the MLE of  is the usual weighted least-squares estimate
Bo=(X'VIX)'X'V 1y

The profile likelihood of 6 is

log Ly(6) = —5 log V] — 5y — XBo) V™" (y — XF).
The observed Fisher information is

I(Be) = X'V7'X.

There is no general formula for 83 / 839, but we can check that

10V
00;

E {82 log L(8, 9)} -F {X’V’

-1 _
e % (fom}_o

for any 0;, so 8 and 6 are information orthogonal, and the Jacobian |83/ 839| ~ 1.
Hence the modified profile likelihood is

1 o
log Ly (6) = log Ly(6) — 5 log IX'VIX].

This matches exactly the so-called restricted maximum likelihood (REML), de-
rived by Patterson and Thompson (1971) and Harville (1974) using the marginal

distribution of the error term y — X 5. See also Harville (1977) for further dis-
cussion on normal-based variance component estimation. O

10.7 Estimated likelihood

Suppose the total parameter space is (6,7), where 6 is the parameter of
interest. Let 77 be an estimate of 7; it can be any reasonable estimate, and
in particular it does not have to be an MLE. The estimated likelihood of
is

Le(o) = L(G, ﬁ)

Not to be confused with the profile likelihood L(6,7y), the estimate 7 here
is to be estimated free from the parameter of interest 8. Some authors (e.g.
Gong and Samaniego 1981) use the term ‘pseudo’ likelihood, but we will
keep the descriptive name ‘estimated’.

Example 10.13: Suppose 1, ...,2, are an iid sample from N(u,o?) with
both parameters unknown. Using the sample variance

2 1 ) —\2
s _nflz(ml_x)
K3
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as a sensible estimate of o2, the estimated likelihood of y is

1
constant X exp {_232 Z(m, — u)g}

i

Le(p)
= constant X exp {f%n(f — ,u)2/32} .

This is exactly the likelihood based on an iid sample from N (u, 52), i.e. we assume
that o2 is known at the observed value s2. O

The estimated likelihood does not account for the extra uncertainty due
to the nuisance parameter. For the normal variance parameter and the
highly stratified data in Example 10.1 the estimated and profile likelihoods
are the same. Inference from the estimated likelihood typically relies on
the asymptotic distribution of the estimate 6, the solution of
0 .
accounting for the extra variability from estimating 7. The following the-
orem is due to Gong and Samaniego (1981).

Theorem 10.1 Assume similar reqularity conditions as stated in Section 9.4,
and let (0o, m0) be the true parameters.

(a) If i is consistent, then there exists a consistent sequence of solution

6.

(b) If n=Y/28(0g,m0) and /n(f—n0) are asymptotically normal with mean
zero and covariance matriz

011 012
012 022

then \/ﬁ(é —0g) is asymptotically normal with mean zero and variance
0? = I + T2 T2 (022Th2 — 20712).

(c) If the estimate 1} is asymptotically equivalent to the MLE of 1, then
o12 =0, 022 = (Zaz — InZ11'T12) ™t and 0? = (Tiy — T12Zsy Io1) 72,
so that 0 is asymptotically equivalent to the MLE.

The simplest case occurs if we use the MLE 7 and Z;2 = 0 (6 and 7
are information orthogonal). Asymptotically we can treat L(6,7) like a
standard likelihood; this is a compromise solution in more general cases.
In the normal example above, suppose we replace the unknown o2 by its
MLE 2. Then, inference on p is the same as if o2 is known at 2. In
general, if we use an estimate other than the MLE for 7), the covariance 12
is the most difficult quantity to evaluate.
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10.8 Exercises

Exercise 10.1: Prove the statement in Example 10.3 that if there exists an or-
thogonal parameter for 6 then, without having to specify 7, the profile likelihood
computation would automatically provide the likelihood factor Li(6).

Exercise 10.2: Verify the conditional analysis of the data in Example 10.2
as given in Section 10.5. Reanalyse the full data assuming there is no strata
effect and compare the results. Discuss the advantages and disadvantages of the
conditional analysis.

Exercise 10.3: For the stratified data in Exercise 4.9, compare the profile
likelihood of the common odds ratio with the conditional likelihood given in
Section 10.5. Report also the Mantel-Haenzel test of the odds ratio.

Exercise 10.4: Show that the modified profile likelihood (10.4) is invariant
with respect to transformation of the nuisance parameter. For example, define a
new nuisance parameter ¥ = ¢g(n) and show that the modified profile likelihood
for 0 stays the same, up to a constant term. Note the role of the Jacobian term
as an invariance preserver.

Exercise 10.5: Suppose y1 and y2 are independent exponentials with mean 7
and 6n; the parameter of interest 6 is the mean ratio.

(a) Express the likelihood L(6,7) as a function of both the parameters and the
MLEs:

L0,m) = L(0,m:6,7)
(0 +96)
= —logf—2logn — ——=.
n o

(b) Derive the observed Fisher information

(c) Find 7y in terms of 7 and show that

oy 20
oo 6+6

(d) Show that the modified profile likelihood of 6 is the same as the ordinary
profile likelihood.

Exercise 10.6: Suppose y1, ..., yn are independent exponential outcomes with
mean f1, ..., ln, where

log i = Bo + Bz,
and ZZ x; = 0. Verify the following results:

(a) Bo and f1 are information orthogonal.

(b) The profile likelihood of B; is

log Ly(B1) = —nlog(Y_yie”"1"0).
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(c) The Fisher information on B\o,gl is

](ﬁoyﬁl) = TL,
so the modified profile likelihood of £; is the same as the ordinary profile
likelihood.
Exercise 10.7: Let y1,...,y, be an iid sample from the gamma distribution

with mean 6 and shape parameter 7. The likelihood of the parameters is

log L(6,1) = nnlogg —nlogT(n) +1Y  logy — gZyi-

Let D(n) = dlogI'(n)/0n. Verify the following results:
(a) We can express the likelihood in terms of the MLEs by using

~

Z logy; = -—nlog %\ +nD(n)

(b) The required Fisher information is
1(9) = n{D' (M) — 1/}

(¢) The Jacobian term is
On _ I(ne)

e I(n)’
so the modified profile likelihood of 8 is

1 .
log Lm (0) = log L(6, mo) + 5 log I (7).

Exercise 10.8: Assuming the exponential dispersion model, the log-likelihood
contribution from a single observation y; is

log L(0:, 5 y:) = {yi0: — A(0:)}/ b + c(yi, b)-

In Sections 4.9 and 6.6 we describe an approximation

log L(0:, ¢; y:) = *% log{2m¢u(y:)} — %D(yi,m),

where Ly 6= 1:90)
Yi, » = 13 Yi
D(yi, pi) = 2log —/————7—%,
( ) L(ps, ¢ = 1Ly 4)
and L(pi,¢ = 1;y;) is the likelihood of p; based on a single observation y;,
assuming ¢ = 1. Assuming a regression model h(u;) = 3, where 8 € R?, show
that the modified profile log-likelihood of ¢ is

log L(6) ~ ) {” S log{2mgu(y:)} - 21¢D<yz-,ﬁi>} :

i

This justifies the (n — p) divisor for the estimate of ¢.
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Exercise 10.9: Compare the profile and the estimated likelihoods in the two-
sample Poisson and binomial examples in Sections 10.4 and 10.5.

Exercise 10.10: Provide a rough proof of Theorem 10.1
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