


In All Likelihood
Statistical Modelling and Inference

Using Likelihood

Yudi Pawitan
Department of Medical Epidemiology and Biostatistics

Karolinska Institutet
Stockholm, Sweden

yudi.pawitan@ki.se

CLARENDON PRESS · OXFORD
2001





3
Great Clarendon Street, Oxford, ox2 6dp,

United Kingdom

Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries

c© Yudi Pawitan 2013

The moral rights of the author have been asserted

First published in paperback 2013

Impression: 2 4 6 8 10 9 7 5 3 1

All rights reserved. No part of this publication may be reproduced, stored in

a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted

by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the

above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form

and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

ISBN 978–0–19–850765–9 (Hbk.)

ISBN 978–0–19–967122–9 (Pbk.)

Printed and bound by

CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and

for information only. Oxford disclaims any responsibility for the materials

contained in any third party website referenced in this work.





Preface

Likelihood is the central concept in statistical modelling and inference. In
All Likelihood covers the essential aspects of likelihood-based modelling
as well as likelihood’s fundamental role in inference. The title is a gentle
reminder of the original meaning of ‘likelihood’ as a measure of uncertainty,
a Fisherian view that tends to be forgotten under the weight of likelihood’s
more technical role.

Fisher coined the term ‘likelihood’ in 1921 to distinguish the method of
maximum likelihood from the Bayesian or inverse probability argument. In
the early days its application was fairly limited; few statistical techniques
from the 1920s to 1950s could be called ‘likelihood-based’. To see why, let
us consider what we mean by ‘statistical activities’:

• planning: making decisions about the study design or sampling proto-
col, what measurements to take, stratification, sample size, etc.

• describing: summarizing the bulk of data in few quantities, finding or
revealing meaningful patterns or trends, etc.

• modelling: developing mathematical models with few parameters to
represent the patterns, or to explain the variability in terms of rela-
tionship between variables.

• inference: assessing whether we are seeing a real or spurious pattern or
relationship, which typically involves an evaluation of the uncertainty
in the parameter estimates.

• model checking: assessing whether the model is sensible for the data.
The most common form of model checking is residual analysis.

A lot of early statistical works was focused on the first two activities, for
which likelihood thinking does not make much contribution. Often the
activity moved directly from description to inference with little modelling
in between. Also, the early modelling scene was dominated by the normal-
based linear models, so statisticians could survive with least-squares, and
t tests or F tests (or rank tests if the data misbehaved).

The emergence of likelihood-based modelling had to wait for both the
advent of computing power and the arrival of more challenging data anal-
ysis problems. These problems typically involve nonnormal outcome data,
with possible complexities in their collection such as censoring, repeated
measures, etc. In these applications, modelling is important to impose
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structure or achieve simplification. This is where the likelihood becomes
indispensable.

Plan of the book

The chapters in this book can be categorized loosely according to

• modelling: Chapters 4, 6, 11, 14, 17, 18;

• inference: Chapters 2, 3, 5, 7, 10, 13, 15, 16.

The inference chapters describe the anatomy of likelihood, while the mod-
elling chapters show its physiology or functioning. The other chapters are
historical (Chapter 1) or technical support (Chapters 8, 9, 12).

There is no need to proceed sequentially. Traditionally, likelihood in-
ference requires the large sample theory covered in Chapter 9, so some
instructors might feel more comfortable to see the theory developed first.
Some sections are starred to indicate that they can be skipped on first read-
ing, or they are optional as teaching material, or they involve ideas from
future sections. In the last case, the section is there more for organizational
reasons, so some ‘nonlinear’ reading might be required.

There is much more material here than can be covered in two semesters.
In about 50 lectures to beginning graduate students I covered a selection
from Chapters 2 to 6, 8 to 11, 13 and 14. Chapter 1 is mostly for reading;
I use the first lecture to discuss the nature of statistical problems and the
different schools of statistics. Chapter 7 is also left as reading material.
Chapter 12 is usually covered in a separate statistical computing course.
Ideally Chapter 15 is covered together with Chapters 13 and 14, while
the last three chapters also form a unit on mixed models. So, for a more
leisurely pace, Chapters 13 to 14 can be removed from the list above,
and covered separately in a more advanced modelling course that covers
Chapters 13 to 18.

Prerequisites

This book is intended for senior students of statistics, which include ad-
vanced undergraduate or beginning graduate students. Students taking
this course should already have

• two semesters of introductory applied statistics. They should be fa-
miliar with common statistical procedures such as z, t, and χ2 tests,
P-value, simple linear regression, least-squares principle and analysis
of variance.

• two semesters of introduction to probability and theory of statistics.
They should be familiar with standard probability models such as the
binomial, negative binomial, Poisson, normal, exponential, gamma,
etc.; with the concepts of conditional expectation, Bayes theorem,
transformation of random variables; with rudimentary concepts of esti-
mation, such as bias and the method of moments; and with the central
limit theorem.
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• two semesters of calculus, including partial derivatives, and some ma-
trix algebra.

• some familiarity with a flexible statistical software package such as
Splus or R. Ideally this is learned in conjunction with the applied
statistics course above.

The mathematical content of the book is kept relatively low (relative to
what is possible). I have tried to present the whole spectrum of likelihood
ideas from both applied and theoretical perspectives, both showing the
depth of the ideas. To make these accessible I am relying (most of the time)
on a nontechnical approach, using heuristic arguments and encouraging
intuitive understanding. What is intuitive for me, however, may not be
so for the reader, so sometimes the reader needs to balance the personal
words with the impersonal mathematics.

Computations and examples

Likelihood-based methods are inherently computational, so computing is
an essential part of the course. Inability to compute impedes our thought
processes, which in turn will hamper our understanding and willingness
to experiment. For this purpose it is worth learning a statistical software
package. However, not all packages are created equal; different packages
have different strengths and weaknesses. In choosing a software package
for this course, bear in mind that here we are not trying to perform routine
statistical analyses, but to learn and understand what is behind them, so
graphics and programming flexibility are paramount.

All the examples in this book can be programmed and displayed quite
naturally using R or Splus. R is free statistical programming software
developed by a dedicated group of statisticians; it can be downloaded from
http://cran.r-project.org.

Most educators tell us that understanding is best achieved through
direct experience, in effect letting the knowledge pass through the fingers
rather than the ears and the eyes only. Students can get such an experience
from verifying or recreating the examples, solving the exercises, asking
questions that require further computations, and, best still, trying out the
methodology with their own data. To help, I have put all the R programs
I used for the examples in http://www.meb.ki.se/~yudpaw.
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1

Introduction

Statistical modelling and inference have grown, above all else, to deal with
variation and uncertainty. This may sound like an ambitious undertaking,
since anyone going through life, even quietly, realizes ubiquitous uncertain-
ties. It is not obvious that we can say something rigorous, scientific or even
just sensible in the face of uncertainty.

Different schools of thought in statistics have emerged in reaction to
uncertainty. In the Bayesian world all uncertainties can be modelled and
processed through the standard rules of probability. Frequentism is more
sceptical as it limits the type of uncertainty that can be studied statis-
tically. Our focus is on the likelihood or Fisherian school, which offers a
Bayesian–frequentist compromise. The purpose of this chapter is to discuss
the background and motivation of these approaches to statistics.

1.1 Prototype of statistical problems
Consider the simplest nontrivial statistical problem, involving only two
values. Recent studies show a significant number of drivers talk on their
mobile phones while driving. Has there been an impact on accident rates?
Suppose the number of traffic deaths increases from 170 last year to 190
this year. Numerically 190 is greater than 170, but it is not clear if the
increase is ‘real’. Suppose instead the number this year is 174, then in this
case we feel intuitively that the change is not ‘real’. If the number is 300
we feel more confident that it is a ‘real’ increase (although it is a totally
different matter whether the increase can be attributed to mobile-phone
use; see Redelmeier and Tibshirani (1997) for a report on the risk of car
collision among drivers while using mobile phones).

Let us say that a change is ‘significant’ if we sense that it is a ‘real’
change. At the intuitive level, what is this sense of significance? It definitely
responds to a numerical stimulus since we ‘feel’ 174 is different from 300.
At which point do we change from being uncertain to being more confident?
There is nothing in the basic laws of arithmetic or calculus that can supply
us with a numerical answer to this problem. And for sure the answer cannot
be found in the totality of the data itself (the two values in this case).

Uncertainty is pervasive in problems that deal with the real world, but
statistics is the only branch of science that puts systematic effort into deal-
ing with uncertainty. Statistics is suited to problems with inherent uncer-
tainty due to limited information; it does not aim to remove uncertainty,
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but in many cases it merely quantifies it; uncertainty can remain even after
an analysis is finished.

Aspirin data example

In a landmark study of the preventive benefits of low-dose aspirin for
healthy individuals (Steering Committee of the Physicians’ Health Study
Research Group 1989), a total of 22,071 healthy physicians were random-
ized to either aspirin or placebo groups, and were followed for an average
of 5 years. The number of heart attacks and strokes during follow-up are
shown in Table 1.1.

Group Heart Strokes Total
attacks

Aspirin 139 119 11,037
Placebo 239 98 11,034
Total 378 217 22,071

Table 1.1: The number of heart attacks and strokes during follow-up in the
Physicians’ Health Study.

The main medical question is statistical: is aspirin beneficial? Obvi-
ously, there were fewer heart attacks in the aspirin group, 139 versus 239,
but we face the same question: is the evidence strong enough so we can
answer the question with confidence? The side effects, as measured by the
number of strokes, were greater in the aspirin group, although 119 versus
98 are not as convincing as the benefit.

Suppose we express the benefit of aspirin as a relative risk of

139/11, 037

239/11, 034
= 0.58.

A relative risk of one indicates aspirin is not beneficial, while a value much
less than one indicates a benefit. Is 0.58 ‘far enough’ from one? Answering
such a question requires a stochastic model that describes the data we
observe. In this example, we may model the number of heart attacks in the
aspirin group as binomial with probability θ1 and those in the placebo group
as binomial with probability θ2. Then the true relative risk is θ ≡ θ1/θ2.

Let us denote the observed relative risk by θ̂ = 0.58. No uncertainty
is associated with this number, so it fails to address the statistical nature
of the original question. Does the trial contain information that θ̂ is truly
‘much’ less than one? Now suppose the study is 10 times larger, so, assum-
ing similar event rates, we observed 1390 versus 2390 heart attacks. Then
θ̂ = 0.58 as before, but intuitively the information is now stronger. So, the
data must have contained some measure of precision about θ̂, from which
we can assess our confidence that it is far from one.
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We can now state the basic problem of statistical inference: how do we
go from observed data to statements about the parameter of interest θ?

1.2 Statistical problems and their models
Stochastic element

In a statistical problem there is an obvious stochastic or random element,
which is not treated by the basic laws of arithmetic. In the traffic example,
we intuitively accept that there are various contingencies or random events
contributing to the number of deaths; in fact, we would be surprised if
the two numbers were exactly the same. Thus statistical methods need
stochastic models to deal with this aspect of the problem. The development
of models and methods is the deductive or mathematical aspect of statistics.

While the mathematical manipulation of models is typically precise and
potentially free from arguments, the choice of the model itself is, however,
uncertain. This is important to keep in mind since the validity of most
statistical analysis is conditional on the model being correct. It is a trade-
off: we need some model to proceed with an analysis, especially with sparse
data, but a wrong model can lead to a wrong conclusion.

Inductive process

Statistical problems are inductive: they deal with questions that arise as
consequences of observing specific facts. The facts are usually the outcome
of an experiment or a study. The questions are typically more general
than the observations themselves; they ask for something not directly ob-
served, but somehow logically contained in the observed data. We say we
‘infer’ something from the data. In the traffic deaths example, we want to
compare the underlying accident/death rates after accounting for various
contingencies that create randomness.

For deductive problems like mathematics, sometimes only parts of the
available information are needed to establish a new theorem. In an induc-
tive problem every piece of the data should be accounted for in reaching
the main conclusion; ignoring parts of the data is generally not acceptable.
An inductive problem that has some parallels with statistical inference is a
court trial to establish the guilt or the innocence of a defendant. The wit-
ness’s oath to tell ‘the truth, the whole truth, and nothing but the truth’
embodies the requirements of the inductive process.

In deductive problems the truth quality of the new theorem is the same
as the quality of the ‘data’ (axioms, definitions and previous theorems)
used in establishing it. In contrast, the degree of certainty in an inductive
conclusion is typically stronger than the degree in the data constituent,
and the truth quality of the conclusion improves as we use more and more
data.

However, a single new item of information can destroy a carefully crafted
conclusion; this aspect of inductive inference is ideal for mystery novels
or courtroom dramas, but it can be a bane for practising statisticians.
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Suppose we want to estimate the number of BSE- (Bovine Spongiform
Encephalopathy, or ‘mad-cow’) infected cattle that entered the food chain
in Ireland. This is not a trivial problem, but based on the observed number
of BSE cases and some assumptions about the disease, we can estimate the
number of infected animals slaughtered prior to showing symptoms. New
but last-minute information on exported cattle might invalidate a current
estimate; further information that exported animals have a different age
distribution from the animals for domestic consumption will also change
the estimate.

Statistics plays an important role in science because all scientific en-
deavours are inductive, although many scientific questions are determinis-
tic rather than stochastic. The emergence of statistical science is partly
the result of the effort to make the inductive process rigorous. However,
Lipton (1993), a philosopher of science, warns that

inductive inference is about weighing evidence and judging likelihood,
not definite proof.

The inductive process is inherently underdetermined: the input does not
guarantee a unique solution, implying that even a correct induction is fal-
lible.

Empirical or mechanistic models

The models used to deal with statistical problems can be either empirical
or mechanistic. The latter is limited to applications where there is detailed
knowledge regarding the underlying processes. For example, Newtonian
laws in physics or Mendelian laws in genetics are mechanistic models. Here
the exact relationships between the different quantities under observation
are proposed mostly by some subject matter consideration rather than by
looking at the data. A mechanistic model describes an underlying mecha-
nism that explains the observed data.

Models in the applied sciences, such as medicine, epidemiology, psy-
chology, climatology or agriculture, tend to be empirical. The analytical
unit such as a human being or an area of land is usually too complex to be
described by a scientific formula. If we model the number of deaths in the
traffic example as having a Poisson distribution, we barely explain why we
observe 170 rather than 100 deaths. Empirical models can be specified just
by looking at the data without much subject matter consideration (this of
course does not mean it is acceptable for a statistician to work on a desert
island). The main requirement of an empirical model is that it explains the
variability, rather than the underlying mechanism, in the observed data.

The separation between these two types of models is obviously not
complete. There will be grey areas where some empirical evidence is used
to help develop a mechanistic model, or a model may be composed of
partly mechanistic and partly empirical submodels. The charge on the
electron, for example, is an empirical quantity, but the (average) behaviour
of electrons is mechanistically modelled by the quantum theory.
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In the 19th and early 20th centuries most experiments were performed
in the basic sciences; hence scientific models then were mostly mechanistic.
The rise of empirical modelling was a liberating influence. Now experiments
can be performed in most applied sciences, or even ‘worse’: data can be
collected from observational studies rather than controlled experiments.
Most of the general models in statistics, such as classes of distributions
and linear or nonlinear regression models, are empirical models. Thus the
rise of statistical modelling coincides with empirical modelling.

While empirical models are widely applicable, we must recognize their
limitations; see Example 1.1. A mechanistic model is more satisfying than
an empirical model, but a current empirical model may be a future mecha-
nistic model. In some areas of statistical applications, there may never be
a mechanistic model; for example, there will never be a mechanistic model
for the number of traffic accidents. The compromise is an empirical model
with as much subject matter input as possible.

The role of models from a statistical point of view is discussed further
in Lehmann (1990) and Cox (1990).

Example 1.1: A classic example of an empirical model is the 18th century
Bode’s geometric law of progression of the planetary distance dk from the Sun.
Good (1969) and Efron (1971) provided a statistical evaluation of the ‘reality’ of
this law, which specifies

dk = 4 + 3× 2k,

where k = −∞, 0, 1, . . . and dk is scaled so that d1 = 10 for Earth. With some
‘jiggling’ the law fitted very well for the known planets at the time it was proposed
(planets as far as Saturn can be seen by the naked eye). To get a better fit, Jupiter
was shifted up to position k = 4, leaving a missing spot at k = 3 between Mars
and Jupiter. After the law was proposed there was a search for the ‘missing
planet’. Uranus at k = 6 was discovered first at the predicted distance, hence
strengthening the confidence in the law. The missing planet was never found;
there is, however, a band of asteroids at approximately the predicted distance.

Bode’s Observed Fourth-degree
Planet k law distance polynomial
Mercury −∞ 4 4.0 4.1
Venus 0 7 7.2 6.7
Earth 1 10 10 10.2
Mars 2 16 15.3 16.0
? 3 28 ? 26.9
Jupiter 4 52 51.9 50.0
Saturn 5 100 95.5 97.0
Uranus (1781) 6 196 191.4 186.5
Neptune (1846) 7 388 300.0 312.8
Pluto (1930) 8 772 394.6 388.2

Even though the formula fits the data well (up to Uranus; see Figure 1.1),
the question remains: is this a ‘real’ physical law? As it happened, the law did
not fit Neptune or Pluto. A better fit to the data is given by a fourth-degree
polynomial, but now it is clear that we cannot attach much mechanistic value to
the model.
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Figure 1.1: Empirical model of planetary distances in terms of the order
number from the Sun: Bode’s law (solid) and a fourth-degree polynomial fit
(dotted).

1.3 Statistical uncertainty: inevitable controver-
sies

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain they do not refer to reality. – Albert
Einstein (1879–1955)

The characteristics discussed in the previous section, especially for empir-
ical problems, militate to make statistical problems appear vague. Here it
is useful to recognize two types of statistical uncertainty:

(i) stochastic uncertainty: this includes the uncertainty about a fixed pa-
rameter and a random outcome. This uncertainty is relatively easy
to handle. Uncertainty about a fixed parameter, in principle, can al-
ways be reduced by performing a larger experiment. Many concepts in
statistical inference deal with this uncertainty: sampling distribution,
variability, confidence level, P-value, etc.

(ii) inductive uncertainty: owing to incomplete information, this uncer-
tainty is more difficult to deal with, since we may be unable to quantify
or control it.

Mathematically, we can view stochastic uncertainty as being conditional
on an assumed model. Mathematics within the model can be precise and
potentially within the control of the statistician. However, the choice of
model itself carries an inductive uncertainty, which may be less precise and
potentially beyond the control of the statistician.

The contrast between these two uncertainties is magnified when we are
analysing a large dataset. Now the stochastic uncertainty becomes less
important, while the inductive uncertainty is still very much there: Have
we chosen the right class of models? Can we generalize what we find in the
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data? Have we considered and measured all the relevant variables? Are we
asking the right questions? Given a set of data, depending on the way it
was collected, there is usually an uncertainty about its variable definitions
or meaning, wording and ordering of questions, representativeness of the
sample, etc.

While it is possible to deal with stochastic uncertainty in an axiomatic
way, it is doubtful that inductive uncertainty would ever yield to such an
effort. It is important to recognize that, in statistical data analysis, induc-
tive uncertainty is typically present in addition to the stochastic nature of
the data itself. Due to the inductive process and the empirical nature of
statistical problems, controversy is sometimes inevitable.

The traffic deaths example illustrates how controversies arise. If the
number of deaths increases from 170 to 300, it would seem like a ‘real’
change and it would not be controversial to claim that the accident rate
has increased, i.e. the uncertainty is small. But what if further scrutiny
reveals one major traffic accident involving 25 cars and a large number
of deaths, or an accident involving a bus where 40 people died? At this
point we start thinking that, probably, a better way to look at the problem
is by considering the number of accidents rather than deaths. Perhaps
most accidents this year happened in the winter, whereas before they were
distributed over the year. Possibly the number of younger drivers has
increased, creating the need to split the data by age group. Splitting the
data by years of driving experience may make more sense, but such a
definition is only meaningful for drivers, while the death count also includes
passengers and pedestrians!

This inductive process, which is very much a scientific process, raises
two problems: one is that it tends to increase the stochastic uncertainty,
since, by splitting the original observations into smaller explanatory groups,
we are bound to compare smaller sets of numbers. The other problem is
deciding where to stop in finding an explanation. There is no formal or pre-
cise answer to this question, so statisticians or scientists would have to deal
with it on a case-by-case basis, often resorting to a judgement call. The
closest guideline is to stop at a point where we have a reasonable control
of stichastic uncertainty, deferring any decision on other factors of interest
where too much uncertainty exists. Statisticians will have different experi-
ence, expertise, insight and prejudice, so from the same set of observations
they might arrive at different conclusions. Beware! This is where we might
find ‘lies, damned lies and statistics’.

Pedagogic aspect
It is easier to learn, teach or describe methods that deal with stochastic
uncertainty, and these have some chance of being mastered in a traditional
academic or classroom setting. The unavoidable limitation of statistical
texts is that they tend to concentrate on such methods. The joy and the
pain of data analysis come as a reaction to uncertainties, so this discussion
is not merely pedantic. Some might argue that the vagueness is part of
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the problem rather than of statistics, but even if we view it as such, the
consequent difficulty in empirical model building and model selection is
very much part of statistics and a statistician’s life. This discussion also
contains a warning that statisticians cannot work in a vacuum, since most
of the relevant factors that create inductive uncertainties in a problem are
subject matter specific.

1.4 The emergence of statistics
It is impossible to calculate accurately events which are determined by
chance. – Thucydides (c. 400BC)

There were two strands in the emergence of statistics. One was the devel-
opment of the theory of probability, which had its original motivation in the
calculation of expectation or uncertainties in gambling problems by Pas-
cal (1623–1662) and Fermat (1601–1665). The theory was later developed
on the mathematical side by Huygens (1629–1695), the Bernoulli broth-
ers, in particular James Bernoulli (1654–1705), de Moivre (1667–1754) and
Laplace (1749–1827), and on the logical side by Bayes (1701–1761), Boole
(1815–1864) and Venn (1834–1923).

The growth of probability theory was an important milestone in the
history of science. Fisher liked to comment that it was unknown to the
Greek and the Islamic mathematicians (Thucydides was a historian); Persi
Diaconis once declared that our brain is not wired to solve probability
problems. With probability theory, for the first time since the birth of
mathematics, we can make rigorous statements about uncertain events.
The theory, however, is mostly deductive, which makes it a true branch
of mathematics. Probability statements are evaluated as consequences of
axioms or assumptions rather than specific observations. Statistics as the
child of probability theory was born with the paper of Bayes in 1763 and
was brought to maturity by Laplace.

The second strand in the emergence of statistics was an almost paral-
lel development in the theory of errors. The main emphasis was not on
the calculation of probabilities or uncertainties, but on summarizing ob-
servational data from astronomy or surveying. Gauss (1777–1855) was the
main contributor in this area, notably with the principle of least squares
as a general method of estimation. The important ingredient of this sec-
ond line of development was the data-rich environment. In this connection
Fisher noted the special role of Galton (1822-1911) in the birth of modern
statistics towards the end of the 19th century. A compulsive data gath-
erer, Galton had a passionate conviction in the power of quantitative and
statistical methods to deal with ‘variable phenomena’.

Further progress in statistics continues to depend on data-rich environ-
ments. This was first supplied by experiments in agriculture and biom-
etry, where Fisher was very much involved. Later applications include:
industrial quality control, the military, engineering, psychology, business,
medicine and health sciences. Other influences are found in data gathering
and analysis for public or economic policies.
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Bayesians and frequentists

The Bayesian and frequentist schools of statistics grew in response to prob-
lems of uncertainty, in particular to the way probability was viewed. The
early writers in the 18th and 19th centuries considered it both a (subjec-
tive) degree of belief and (objective) long-run frequency. The 20th century
brought a strong dichotomy. The frequentists limit probability to mean
only a long-run frequency, while for the Bayesians it can carry the subjec-
tive notion of uncertainty.

This Bayesian–frequentist divide represents the fundamental tension
between the need to say something relevant on a specific instance/dataset
and the sense of objectivity in long-run frequencies. If we toss a coin, we
have a sense of uncertainty about its outcome: we say the probability of
heads is 0.5. Now, think about the specific next toss: can we say that
our sense of uncertainty is 0.5, or is the number 0.5 meaningful only as a
long-term average? Bayesians would accept both interpretations as being
equally valid, but a true frequentist allows only the latter.

Since the two schools of thought generate different practical method-
ologies, the distinction is real and important. These disagreements do not
hinder statistical applications, but they do indicate that the foundation of
statistics is not settled. This tension also provides statistics with a fruitful
dialectical process, at times injecting passion and emotion into a poten-
tially dry subject. (Statisticians are probably unique among scientists with
constant ponderings of the foundation of their subject; physicists are not
expected to do that, though Einstein did argue with the quantum physicists
about the role of quantum mechanics as the foundation of physics.)

Inverse probability: the Bayesians

The first modern method to assimilate observed data for quantitative in-
ductive reasoning was published (posthumously) in 1763 by Bayes with his
Essay towards Solving a Problem in the Doctrine of Chances. He used an
inverse probability, via the now-standard Bayes theorem, to estimate a bi-
nomial probability. The simplest form of the Bayes theorem for two events
A and B is

P (A|B) =
P (AB)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)
. (1.1)

Suppose the unknown binomial probability is θ and the observed number
of successes in n independent trials is x. Then, in modern notation, Bayes’s
solution is

f(θ|x) = f(x, θ)

f(x)
=

f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ , (1.2)

where f(θ|x) is the conditional density of θ given x, f(θ) is the so-called
prior density of θ and f(x) is the marginal probability of x. (Note that we
have used the symbol f(·) as a generic function, much like the way we use
P (·) for probability. The named argument(s) of the function determines
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what the function is. Thus, f(θ, x) is the joint density of θ and x, f(x|θ)
is the conditional density of x given θ, etc.)

Leaving aside the problem of specifying f(θ), Bayes had accomplished
a giant step: he had put the problem of inductive inference (i.e. learning
from data x) within the clean deductive steps of mathematics. Alas, ‘the
problem of specifying f(θ)’ a priori is an equally giant point of controversy
up to the present day.

There is nothing controversial about the Bayes theorem (1.1), but (1.2)
is a different matter. Both A and B in (1.1) are random events, while
in the Bayesian use of (1.2) only x needs to be a random outcome; in a
typical binomial experiment θ is an unknown fixed parameter. Bayes was
well aware of this problem, which he overcame by considering that θ was
generated in an auxiliary physical experiment – throwing a ball on a level
square table – such that θ is expected to be uniform in the interval (0, 1).
Specifically, in this case we have f(θ) = 1 and

f(θ|x) = θx(1− θ)n−x∫ 1

0
ux(1− u)n−xdu

. (1.3)

Fisher was very respectful of Bayes’s seeming apprehension about using an
axiomatic prior; in fact, he used Bayes’s auxiliary experiment to indicate
that Bayes was not a Bayesian in the modern sense. If θ is a random
variable then there is nothing ‘Bayesian’ in the use of the Bayes theorem.
Frequentists do use Bayes theorem in applications that call for it.

Bayes did, however, write a Scholium (literally, a ‘dissertation’; see
Stigler 1982) immediately after his proposition:

. . . the same rule [i.e. formula (1.3) above] is a proper one to be used in
the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trial made concerning it.

In effect, he accepted the irresistible temptation to say that if we know
nothing about θ then it is equally probable to be between zero and one.
More significantly, he accepted that the uniform prior density, which now
can be purely axiomatic, can be processed with the objective binomial
probability to produce a posterior probability. So, after all, Bayes was a
Bayesian, albeit a reluctant one. (In hindsight, probability was then the
only available concept of uncertainty, so Bayes did not have any choice.)

Bayes’s paper went largely unnoticed until Pearson (1920). It was
Laplace, who, after independently discovering Bayes theorem, developed
Bayesian statistics as we understand it today. Boole’s works on the prob-
ability theory (e.g. Laws of Thought, published in 1854), which discussed
Bayes theorem in the ‘problem of causes’, clearly mentioned Laplace as
the main reference. Laplace’s Théorie Analytique des Probabilités was first
published in 1812 and became the standard reference for the rest of the
century. Laplace used the flat or uniform prior for all estimation problems,
presented or justified as a reasonable expression of ignorance. The princi-
ple of inverse probability, hence Bayesian statistics, was an integral part of
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the teaching of probability until the end of the 19th century. Fisher (1936)
commented that that was how he learned inverse probability in school and
‘for some years saw no reason to question its validity’.

Statistical works by Gauss and others in the 19th and early 20th cen-
turies were largely Bayesian with the use of inverse probability arguments.
Even Fisher, who later became one of the strongest critics of axiomatic
Bayesianism, in his 1912 paper ‘On an absolute criterion for fitting fre-
quency curves’, erroneously called his maximum likelihood the ‘most prob-
able set of values’, suggesting inverse probability rather than likelihood,
although it was already clear he had distinguished these two concepts.

Repeated sampling principle: the frequentists
A dominant section of statistics today views probability formally as a long-
run frequency based on repeated experiments. This is the basis of the
frequentist ideas and methods, where the truth of a mathematical model
must be validated through an objective measure based on externally ob-
servable quantities. This feels natural, but as Shafer (1990) identified, ‘the
rise of frequentism’ in probability came only in the mid-19th century from
the writings of empiricist philosophers such as John Stuart Mill. Popula-
tion counting and classification was also a factor in the empirical meaning
of probability when it was used for modelling.

The repeated sampling principle specifies that procedures should be eval-
uated on the basis of repeat experimentation under the same conditions.
The sampling distribution theory, which expresses the possible outcomes
from the repeated experiments, is central to the frequentist methodology.
Many concepts in use today, such as bias, variability and standard error of
a statistic, P-value, type I error probability and power of a test, or confi-
dence level, are based on the repeated sampling principle. The dominance
of these concepts in applied statistics today proves the practical power of
frequentist methods. Neyman (1894–1981) and Wald (1902–1950) were the
most influential exponents of the frequentist philosophy. Fisher contributed
enormously to the frequentist methodology, but did not subscribe fully to
the philosophy.

True frequentism states that measures of uncertainties are to be inter-
preted only in a repeated sampling sense. In areas of statistical application,
such as medical laboratory science or industrial quality control, where pro-
cedures are naturally repeated many times, the frequentist measures are
very relevant.

The problem arises as the requirement of repeat experimentation is
allowed to be hypothetical. There are many areas of science where experi-
ments are unlikely to be repeated, for example in archaeology, economics,
geology, astronomy, medicine, etc. A reliance on repeated sampling ideas
can lead to logical paradoxes that appear in common rather than esoteric
procedures.

Extreme frequentism among practical statisticians is probably quite
rare. An extremist will insist that an observed 95% confidence interval,
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say 1.3 < θ < 7.1, either covers the parameter or it does not, we do not
know which, and there is no way to express the uncertainty; the 95% applies
only to the procedure, not to the particular interval. That is in fact the
orthodox interpretation of the confidence interval. It neglects the evidence
contained in a particular interval/dataset, because measures of uncertainty
are only interpreted in hypothetical repetitions.

Most scientists would probably interpret the confidence interval intu-
itively in a subjective/Bayesian way: there is a 95% probability the interval
contains the true parameter, i.e. the value 95% has some evidential attach-
ment to the observed interval.

Bayesians versus frequentists
A great truth is a truth whose opposite is also a great truth. – Thomas
Mann (1875–1955)

In Bayesian computations one starts by explicitly postulating that a pa-
rameter θ has a distribution with prior density f(θ); for example, in a
problem to estimate a probability θ, one might assume it is uniformly dis-
tributed on (0,1). The distinguishing attitude here is that, since θ does
not have to be a random outcome of an experiment, this prior can be spec-
ified axiomatically, based on thinking alone. This is the methodological
starting point that separates the Bayesians from the frequentists, as the
latter cannot accept that a parameter can have a distribution, since such a
distribution does not have an external reality. Bayesians would say there is
an uncertainty about θ and insist any uncertainty be expressed probabilis-
tically. The distribution of θ is interpreted in a subjective way as a degree
of belief.

Once one accepts the prior f(θ) for θ and agrees it can be treated as
a regular density, the way to proceed is purely deductive and (internally)
consistent. Assuming that, given θ, our data x follows a statistical model
pθ(x) = f(x|θ), then the information about θ contained in the data is given
by the posterior density, using the Bayes theorem as in (1.2),

f(θ|x) = f(x|θ)f(θ)
f(x)

.

In Bayesian thinking there is no operational difference between a prior
density f(θ), which measures belief, and f(x|θ), which measures an ob-
servable quantity. These two things are conceptually equal as measures of
uncertainty, and they can be mixed using the Bayes theorem.

The posterior density f(θ|x), in principle, captures from the data all
the information that is relevant for θ. Hence, it is an update of the prior
f(θ). In a sequence of experiments it is clear that the current posterior
can function as a future prior, so the Bayesian method has a natural way
of accumulating information.

When forced, most frequentists would probably admit that a degree of
belief does exist subjectively. The disagreement is not that a parameter
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can assume a density, since frequentists could also think of f(θ) as a prior
likelihood (the likelihood of the parameter before we have any data). Two
genuine concerns exist:

(i) the practical problem of choosing an appropriate prior. Leaving aside
the problem of subjective interpretation, there is an ongoing contro-
versy on how we should pick f(θ). Several early writers such as Boole
(1854, pages 384, 392) and Venn (1876) had criticized the arbitrari-
ness in the axiomatic choice of f(θ); Fisher was also explicit in his
rejection of any axiomatic prior, although he did not rule out that
some applications, such as genetics, may have physically meaningful
f(θ). Modern Bayesians seem to converge toward the so-called ‘objec-
tive priors’ (e.g. Gatsonis et al. 1997), but there are many shades of
Bayesianism (Berger 2000).

(ii) the ‘rules of engagement’ regarding a subjective degree of belief. There
is nothing really debatable about how one feels, and there is nothing
wrong in thinking of probability in a subjective way. However, one’s
formal action based on such feeling is open to genuine disagreement.
Treating a subjective probability density like a regular density function
means, for example, that it can be integrated out, and it needs a
Jacobian term when transformed to a different scale. The latter creates
a lack of invariance in the choice of prior: seeming ignorance in one
scale becomes information in another scale (see Section 2.8).

Efron (1998) compares the psychological differences between the two
schools of thought. A comparative study highlights the strengths and weak-
nesses of each approach. The strength of the Bayesian school is its unified
approach to all problems of uncertainty. Such unity provides clarity, espe-
cially in complex problems, though it does not mean Bayesian solutions are
practical. In fact, until recently Bayesians could not solve complex prob-
lems because of computational difficulties (Efron 1986a). While, bound by
fewer rules, the strength of a frequentist solution is usually its practicality.

Example 1.2: A new eye drug was tested against an old one on 10 subjects.
The two drugs were randomly assigned to both eyes of each person. In all cases
the new drug performed better than the old drug. The P-value from the observed
data is 2−10 = 0.001, showing that what we observe is not likely due to chance
alone, or that it is very likely the new drug is better than the old one. �

Such simplicity is difficult to beat. Given that a physical randomization
was actually used, very little extra assumption is needed to produce a valid
conclusion. And the final conclusion, that the new drug is better than the
old one, might be all we need to know from the experiment. The achieved
simplicity is a reward of focus: we are only interested in knowing if chance
alone could have produced the observed data. In real studies, of course, we
might want to know more about the biological mechanism or possible side
effects, which might involve more complicated measurements.
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The advent of cheap computer power and Monte Carlo techniques (e.g.
Gilks et al. 1995) have largely dismantled the Bayesian computational wall.
Complex problems are now routinely solved using the Bayesian method-
ology. In fact, being pragmatic, one can separate the Bayesian numerical
methods from the underlying philosophy, and use them as a means of ob-
taining likelihood functions. This is a recent trend, for example, in molec-
ular genetics. In Section 10.6 we will see that the Bayesian and likelihood
computations have close numerical connections.

Luckily, in large-sample problems, frequentist and Bayesian computa-
tions tend to produce similar numerical results, since in this case the data
dominate the prior density and the level of uncertainty is small. In small-
to medium-sized samples, the two approaches may not coincide, though in
real data analysis the difference is usually of smaller order of magnitude
than the inductive uncertainty in the data and in the model selection.

The following ‘exchange paradox’, discussed in detail by Christensen
and Utts (1992), illustrates how our handling of uncertainty affects our
logical thinking. To grasp the story quickly, or to entertain others with it,
replace x by 100.

Example 1.3: A swami puts an unknown amount of money in one envelope
and twice that amount in another. He asks you to pick one envelope at random,
open it and then decide if you would exchange it with the other envelope. You
pick one (randomly), open it and see the outcome X = x dollars. You reason
that, suppose Y is the content of the other envelope, then Y is either x/2 or 2x
with probability 0.5; if you exchange it you are going to get (x/2+2x)/2 = 5x/4,
which is bigger than your current x. ‘With a gleam in your eye’, you would
exchange the envelope, wouldn’t you?

The reasoning holds for any value of x, which means that you actually do
not need to open the envelope in the first place, and you would still want to
exchange it! Furthermore, when you get the second envelope, the same reasoning
applies again, so you should exchange it back. A discussion of the Bayesian and
frequentist aspects of this paradox is left as an exercise. �

1.5 Fisher and the third way
The likelihood approach offers a distinct ‘third way’, a Bayesian-frequentist
compromise. We might call it Fisherian as it owes most of its conceptual
development to Fisher (1890–1962). Fisher was clearly against the use of
the axiomatic prior probability fundamental to the Bayesians, but he was
equally emphatic in his rejection of long-run frequency as the only way
to interpret probability. Fisher was a frequentist in his insistence that
statistical inference should be objectively verifiable; however, his advocacy
of likelihood inference in cases where probability-based inference is not
available puts him closer to the Bayesian school.

In a stimulating paper on Fisher’s legacies, Efron (1998) created a sta-
tistical triangle with Fisherian, Bayesian and frequentist nodes. He then
placed various statistical techniques within the triangle to indicate their
flavour.
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Fisher’s effort for an objective inference without any use of prior prob-
ability led him to the idea of fiducial probability (Fisher 1930, 1934). This
concept prompted the confidence interval procedure (Neyman 1935). It ap-
pears that Fisher never managed to convince others what fiducial probabil-
ity was, despite his insistence that, conceptually, it is ‘entirely identical with
the classical probability of the early writers’ (Fisher 1973, page 54). In some
models the fiducial probability coincides with the usual frequentist/long-
run-frequency probability. The problems occur in more complex models
where exact probability statements are not possible.

From his last book Statistical Methods and Scientific Inference (1973,
in particular Chapter III) it is clear that Fisher settled with the idea that

• whenever possible to get exact results we should base inference on
probability statements, otherwise it should be based on the likelihood;

• the likelihood can be interpreted subjectively as a rational degree of
belief, but it is weaker than probability, since it does not allow an
external verification, and

• in large samples there is a strengthening of likelihood statements where
it becomes possible to attach some probabilistic properties (‘asymp-
totic approach to a higher status’ – Fisher 1973, page 78).

These seem to summarize the Fisherian view. (While Fisher’s probability
was fiducial probability, let us take him at his own words that it is ‘entirely
identical with the classical probability’.) About 40 years elapsed between
the explicit definition of the likelihood for the purpose of estimation and
Fisher’s final judgement about likelihood inference. The distinguishing
view is that inference is possible directly from the likelihood function; this
is neither Bayesian nor frequentist, and in fact both schools would reject
such a view as they allow only probability-based inference.

These Fisherian views also differ from the so-called ‘pure likelihood
view’ that considers the likelihood as the sole carrier of uncertainty in
statistical inference (e.g. Royall 1997, although he would call it ‘evidence’
rather than ‘uncertainty’). Fisher recognized two ‘well-defined levels of log-
ical status’ for uncertainty about parameters, one supplied by probability
and the other by likelihood. A likelihood-based inference is used to ‘ana-
lyze, summarize and communicate statistical evidence of types too weak to
supply true probability statements’ (Fisher 1973, page 75). Furthermore,
when available, a probability statement must allow for an external verifica-
tion (a verification by observable quantities), so it is clear that frequentist
consideration is also an important aspect of the Fisherian view.

Fisher’s requirement for an exact probability inference is more strin-
gent than the so-called ‘exact inference’ in statistics today (Fisher 1973,
pages 69–70). His prototype of an exact probability-based inference is the
confidence interval for the normal mean (even though the term ‘confidence
interval’ is Neyman’s). The statement

P (x− 1.96σ/
√
n < μ < x+ 1.96σ/

√
n) = 0.95
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is unambiguous and exactly/objectively verifiable; it is an ideal form of
inference. However, the so-called ‘exact 95% confidence interval’ for the
binomial proportion (see Section 5.8) in fact does not have exactly 95%
coverage probability, so logically it is of lower status than the exact interval
for the normal model. It is for this situation the likelihood is indicated.

For Fisher, both likelihood and probability are measures of uncertainty,
but they are on a different footing. This is a non-Bayesian view, since for
Bayesians all uncertainty is measured with probability. The subjective ele-
ment in the interpretation of likelihood, however, is akin to a Bayesian/non-
frequentist attitude. It is worth noting that, when backed up with large-
sample theory to supply probability statements, the mechanics and numer-
ical results of likelihood inference are generally acceptable to frequentist
statisticians. So, in their psychology, Fisherians are braver than the fre-
quentists in saying that inference is possible from the likelihood function
alone, but not as brave as the Bayesians to admit an axiomatic prior into
the argument.

Legacies

By 1920 the field of statistics must have been a confusing place. Yates
(1990) wrote that it was the age of correlation and coefficients of all kinds.
To assess association in 2×2 tables there were the coefficient of association,
coefficient of mean square contingency, coefficient of tetrachoric correlation,
equiprobable tetrachoric correlation, and coefficient of colligation, but the
idea of estimating the association and its test of significance were mixed up.
There were many techniques available, such as the least squares principle,
the method of moments, the inverse probability method, the χ2 test, the
normal distribution, Pearson’s system of curves, the central limit theorem,
etc., but there was no firm logical foundation.

The level of confusion is typified by the title of Edgeworth’s paper
in 1908 and Pearson’s editorial in Biometrika in 1913: ‘On the probable
errors of frequency constants’, which in modern terminology would be ‘the
standard error of fixed parameters’. There was simply no logical distinction
or available terms for a parameter and its estimate. On the mathematical
side, the χ2 test of association for the 2×2 tables had 3 degrees of freedom!

A more serious source of theoretical confusion seems to be the implicit
use of inverse probability arguments in many early statistical works, no
doubt the influence of Laplace. The role of the prior distribution in inverse
probability arguments was never seriously questioned until early 20th cen-
tury. When explicitly stated, the arbitrariness of the prior specification was
probably a stumbling block to a proper appreciation of statistical questions
as objective questions. Boole (1854) wrote in the Laws of Thoughts (Chap-
ter XX, page 384) that such arbitrariness

seems to imply, that definite solution is impossible, and to mark the
point where inquiry ought to stop.

Boole discussed the inverse probability method at length and identified its
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weakness, but did not see any alternative; he considered the question of
inductive inference as

second to none other in the Theory of Probabilities in importance, [I
hope it] will receive the careful attention which it deserves.

In his works on the theory of errors, Gauss was also aware of the problem,
but he got around it by justifying his method of estimation in terms of
the least-squares principle; this principle is still central in most standard
introductions to regression models, which is unfortunate, since (i) in itself
it is devoid of inferential content and (ii) it is not natural for general prob-
ability models, so it creates an unnecessary conceptual gap with the far
richer class of generalized linear models.

Fisher answered Boole’s challenge by clearly identifying the likelihood
as the key inferential quantity that is free of subjective prior probabilities.
He stressed that if, prior to the data, we know absolutely nothing about
a parameter (recall Bayes’s Scholium in Section 1.4) then all of the infor-
mation from the data is in the likelihood. In the same subjective way the
Bayesians interpret probability, the likelihood provides a ‘rational degree
of belief’ or an ‘order of preferences’ on possible parameter values; the
fundamental difference is that the likelihood does not obey probability laws.
So probability and likelihood are different concepts available to deal with
different levels of uncertainty.

There were earlier writers, such as Daniel Bernoulli or Venn, who had
used or mentioned the idea of maximum likelihood in rudimentary forms
(see Edwards 1992, Appendix 2). It usually appeared under the name
of ‘most probable value’, indicating the influence of inverse probability
argument. Even Fisher in 1912 used that name, even though it was clear
from the discussion he had likelihood in mind. The confusion was only
cleared in 1921 when Fisher invented the term ‘likelihood’.

In a series of the most influential papers in statistics Fisher (in particular
in 1922 and 1925) introduced order into the chaos by identifying and nam-
ing the fundamental concepts such as ‘parameter’, ‘statistic’, ‘variance’,
‘sufficiency’, ‘consistency’, ‘information’, and ‘estimation’,‘maximum like-
lihood estimate’, ‘efficiency’ and ‘optimality’. He was the first to use Greek
letters for unknown parameters and Latin letters for the estimates. He set
up the agenda for statistical research by identifying and formulating the
important questions.

He ‘fixed’ the degree of freedom of the χ2 test for the 2×2 tables in
1922. He recognized the paper by ‘Student’ in 1908 on the t-test, which
was ignored by the large-sample-based statistical world at the time, as
a milestone in the history of statistics: it was the first exact test. He
emphasized the importance of inference based on exact distribution and
identified ‘the problem of distribution’ as a respectable branch of theoretical
statistics. Fisher was unsurpassed in this area, being the first to derive the
exact distribution of the t and F statistics, as well as that of the sample
correlation and multiple correlation coefficient.
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Fisher’s influence went beyond the foundation of statistics and the like-
lihood methods. His Statistical Methods for Research Workers, first pub-
lished in 1925, brought the new ideas to generations of practical research
workers. Fisher practically invented the field of experimental design, in-
troducing the fundamental ideas of randomization, replication, blocking,
factorial experiments, etc., and its analysis of variance. His Design of Ex-
periments, first published in 1935, emphasized the importance of carefully
collected data to simplify subsequent analysis and to arrive at unambigu-
ous conclusions. He contributed significantly to areas of sampling distribu-
tion theory, regression analysis, extreme value theory, nonparametric and
multivariate analysis. In a careful study of Fisher’s legacy, Savage (1976)
commented that it would be a lot faster to list areas in statistics where
Fisher did not contribute fundamentally, for example sequential analysis
and time series modelling.

Outside statistics, many geneticists consider Fisher as the most impor-
tant evolutionary biologist after Darwin. In 1930 Fisher was the first to
provide a key synthesis of Mendelian genetics and Darwin’s theory of evo-
lution, thus giving a quantitative basis for the latter. Fisher was never a
professor of statistics: he was Galton Professor of Eugenics at University
College London, then Balfour Professor of Genetics at Cambridge Univer-
sity.

For a statistician, his writings can be inspirational as they are full of
conviction on the fundamental role and contributions of statistical methods
in science and in ‘refinement of human reasoning’. Fisher (1952) believed
that

Statistical Science was the peculiar aspect of human progress which
gave to the twentieth century its special character. . . . it is to the
statistician that the present age turns for what is most essential in all
its more important activities.

The ‘important activities’ include the experimental programmes, the ob-
servational surveys, the quality control engineering, etc. He identified the
crucial contribution of statistical ideas to the fundamental scientific ad-
vances of the 19th century such as in Lyell’s Principles of Geology and
Darwin’s theory of evolution.

It is an unfortunate turn of history that Fisher’s articles and books are
no longer standard reading in the study of statistics. Fisher was often crit-
icized for being obscure or hard to read. Savage (1976), however, reported
that his statistical mentors, which included Milton Friedman and W. Allen
Wallis, gave the advice: ‘To become a statistician, practice statistics and
mull Fisher over with patience, respect and scepticism’. Savage closed his
1970 Fisher Memorial Lecture with ‘I do hope that you won’t let a week
go by without reading a little bit of Fisher’.

Fisher’s publications were collected in the five-volume Collected Papers
of R.A. Fisher, edited by Bennett and Cornish (1974). His biography,
entitled R.A. Fisher, The Life of a Scientist, was published by his daughter
Joan Fisher Box in 1978. Other notable biographies, memoirs or reviews
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of his works were written by Barnard (1963), Bartlett (1965), Yates and
Mather (1963), Kendall (1963), Neyman (1961, 1967), Pearson (1974) and
Savage (1976). Recent articles include Aldrich (1997), Efron (1998) and
Hald (1999). Edwards’s (1992) book on likelihood was largely influenced
by Fisher and the Appendices contain useful accounts of the history of
likelihood and Fisher’s key contributions. Fienberg and Hinkley (1980)
contains a wide-ranging discussion of Fisher’s papers and his impact on
statistics.

1.6 Exercises
Exercise 1.1: Discuss the stochastic and inductive uncertainty in the following
statements:

(a) A study shows that children of mothers who smoke have lower IQs than
those of non-smoking mothers.

(b) A report by Interpol in 1994 shows a rate of (about) 55 crimes per 1000
people in the USA, compared to 100 in the UK and 125 in Sweden. (‘Small’
note: the newspaper that published the report later published a letter by an
official from the local Swedish Embassy saying that, in Sweden, if a swindler
defrauds 1000 people the case would be recorded as 1000 crimes.)

(c) Life expectancy in Indonesia is currently 64 years for women and 60 years
for men. (To which generation do these numbers apply?)

(d) The current unemployment rate in Ireland is 4.7%. (What does ‘unemployed’
mean?)

(e) The total fertility rate for women in Kenya is 4.1 babies.

(f) The population of Cairo is around 16 million people. (Varies by a few million
between night and day.)

(g) The national clinical trial of aspirin, conducted on about 22,000 healthy male
physicians, established the benefit of taking aspirin. (To what population
does the result apply?)

Exercise 1.2: What is wrong with the reasoning in the exchange paradox in
Example 1.3? Discuss the Bayesian and frequentist aspects of the paradox, first
assuming the ‘game’ is only played once, then assuming it is played repeatedly.
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Elements of likelihood
inference

2.1 Classical definition
The purpose of the likelihood function is to convey information about un-
known quantities. The ‘information’ is incomplete, and the function will
express the degree of incompleteness. Unknown quantities in statistical
problems may be fixed parameters, with the associated estimation prob-
lem, or unobserved random values; in a real prediction problem the two
unknowns can be easily mixed. We will consider the extended definition
that solves the prediction problem in Section 16.2.

Recall first the standard mode of deductive mathematical thinking:
given a probabilistic model and parameter values we derive a description of
data. In a deductive mode we derive the consequences of certain assump-
tions. For example, if we perform a binomial experiment with parameters
n = 10 and θ = 0.3, and denote X to be the number of successes, then
Pθ(X = 0) = 0.0282, etc. This means if we repeat the experiment 10,000
times, we expect around 282 of them would yield no successes.

Now suppose we toss a coin 10 times and observe X = 8 heads. Based
on this information alone, what is the probability of heads θ? (That is,
assuming we know absolutely nothing about it prior to the experiment.)
Information about θ is not complete, so there will be some uncertainty.
Now, θ cannot be zero and is very unlikely to be very small. We can say
this, since, deductively we know Pθ(X = 8) is zero or very tiny. In contrast,
θ = 0.6 or θ = 0.7 is likely, since Pθ(X = 8) = 0.1209 or 0.2335. We
have thus found a deductive way of comparing different θ’s: compare the
probability of the observed data under different values of θ. As a function
of the unknown parameter

L(θ) = Pθ(X = 8)

is called the likelihood function: see Figure 2.1. The plot shows θ is unlikely
to be less than 0.5 or to be greater than 0.95, but is more likely to be in
between. Given the data alone (and no other information) we should prefer
values between 0.5 and 0.95 over values outside this interval.

In a simple and deductive way we have found a numerical quantity to
express the order of preferences on θ. Of course we still do not know exactly
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where θ is, but we have captured the information provided in the data by
showing where θ is likely to fall. The uncertainty in the data is inherent,
and that is what is conveyed in the likelihood function.
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Figure 2.1: Likelihood function of the success probability θ in a binomial
experiment with n = 10 and x = 8. The function is normalized to have
unit maximum.

The likelihood provides us with a measure of relative preferences for
various parameter values. Given a model, the likelihood L(θ) is an exact
and objective quantity, hence a measure of ‘rational belief’; it is objective
in the sense that it exists outside any subjective preference. This is an
important fact about the likelihood function as it implies that quantities
that we compute from the function are also exact and objective. In practice,
what we do or how we act given the information from the likelihood are
another matter.

There is a tendency in classical teaching to focus immediately on the
maximum of the likelihood and disregard the function itself. That is not a
fruitful thought process regarding what we want to learn about θ from the
data. Barnard et al. (1962) were emphatic that one should try the habit of
sketching the likelihood functions for some time to realize how helpful they
are. It is the entire likelihood function that is the carrier of information
on θ, not its maximizer. In the above example the likelihood is maximized
at 0.8, but there is a range of values of θ which are almost equally likely.
In Section 2.5 we will examine in more detail the role of the maximum
likelihood estimate.

Definition 2.1 Assuming a statistical model parameterized by a fixed and
unknown θ, the likelihood L(θ) is the probability of the observed data x
considered as a function of θ.

The generic data x include any set of observations we might get from an
experiment of any complexity: a range of values rather than exact measure-
ments, a vector of values, a matrix, an array of matrices, a time series or a
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2D image. The generic parameter θ can also be as complex as the model
requires; in particular it can be a vector of values. In the future chapters
we will embark on a grand tour to show the richness of the likelihood world
from a simple toy model to very complex studies.

Discrete models
There is no ambiguity about the probability of the observed data in the
discrete models, since it is a well-defined nonzero quantity. For the binomial
example above, the likelihood function is

L(θ) = Pθ(X = x)

=

(
n
x

)
θx(1− θ)n−x.

Figure 2.2 shows four likelihood functions computed from four binomial
experiments with n = 10 and x = 0, 2, 5, 10. Interpretation of the functions
is immediate. For example, when x = 0 the likelihood is concentrated near
zero, indicating strong evidence that θ is very likely to be near zero.
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Figure 2.2: Likelihood functions of the success probability θ in four binomial
experiments with n = 10 and x = 0, 2, 5, 10. The functions are normalized
to have unit maximum.

Continuous models
A slight technical issue arises when dealing with continuous outcomes, since
theoretically the probability of any point value x is zero. We can resolve
this problem by admitting that in real life there is only a finite precision:
observing x is short for observing x ∈ (x − ε/2, x + ε/2), where ε is the
precision limit. If ε is small enough, on observing x the likelihood for θ is

L(θ) = Pθ{X ∈ (x− ε/2, x+ ε/2)}

=

∫ x+ε/2

x−ε/2

pθ(x)dx ≈ ε pθ(x). (2.1)
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For the purpose of comparing θ within the model pθ(x) the likelihood is
only meaningful up to an arbitrary constant (see Section 2.4), so we can
ignore ε. Hence, in all continuous models where the outcome x is observed
with good precision we will simply use the density function pθ(x) to compute
the likelihood.

In many applications, continuous outcomes are not measured with good
precision. It can also happen that the outcome has been categorized into
a few classes, so the data involve a range of values. In clinical studies
observations are commonly censored: the lifetime of a subject is only known
to be greater than a certain point. In these cases the simple approximation
(2.1) does not apply, and either the integral must be evaluated exactly or
other more appropriate approximations used.

Mathematical convention

The treatment of discrete or continuous random variables differs little in
probability theory, and the term ‘probability density’ or ‘probability’ will
be applied to cover both discrete and continuous models. In most cases the
likelihood is the probability density seen as a function of the parameter.
The original definition is important when the data are both discrete and
continuous, or when we are comparing separate models.

When we say we ‘integrate’ a density this means (i) the usual integration
when we are dealing with continuous random variables:∫

h(x)dx

or (ii) summation when dealing with discrete ones∑
x

h(x)

where h(x) is some density function. When we discuss a particular ex-
ample, we might use either an integration or a summation, depending on
the context, but it should be understood that the idea under consideration
usually covers both the continuous and discrete cases.

2.2 Examples

Example 2.1: Suppose 100 seeds were planted and it is known only that x ≤ 10
seeds germinated. The exact number of germinating seeds is unknown. Then the
information about θ is given by the likelihood function

L(θ) = P (X ≤ 10)

=

10∑
x=0

(
100
x

)
θx(1− θ)n−x.

Figure 2.3(a) compares this likelihood with the likelihood based on x = 5. �
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(a) Germinating probability
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(b) The number of badgers
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(c) Prevalence probability
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(d) Normal mean examples

Figure 2.3: (a) Likelihood functions from two binomial experiments: n =
100 and x < 11, and n = 100 and x = 5. (b) The likelihood of the number
of badgers. (c) The likelihood of the prevalence of a certain genotype. (d)
The likelihood of the normal mean based on observing 0.9 < x < 4 (solid
line), x = 2.45 (dashed line), and the maximum x(5) = 3.5 (dotted line).
All likelihoods are set to have unit maximum.

Example 2.2: A useful technique for counting a population is to mark a
subset of the population, then take a random sample from the mixture of the
marked and unmarked individuals. This capture–recapture technique is used,
for example, to count the number of wild animals. In census applications a
post-enumeration survey is conducted and one considers the previously counted
individuals as ‘marked’ and the new ones as ‘unmarked’; the proportion of new
individuals in the survey would provide an estimate of the undercount during the
census. To estimate the number of people who attend a large rally one can first
distribute colourful hats, then later on take a random sample from the crowd.

As a specific example, to estimate the number of badgers (N) in a certain
region, the Department of Agriculture tags N1 = 25 of them. Later on it captures
n = 60 badgers, and finds n2 = 55 untagged and n1 = 5 tagged ones. Assuming
the badgers were caught at random, the likelihood of N can be computed based
on the hypergeometric probability:

L(N) = P (n1 = 5) =

(
25
5

)(
N − 25

55

)
(

N
60

) .
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Figure 2.3(b) shows the likelihood function for a range of N . �

Example 2.3: A team of geneticists is investigating the prevalence of a certain
rare genotype, which makes its first appearance on the 53rd subject analysed. As-
suming the subjects are independent, the likelihood of the prevalence probability
θ is given by the geometric probability

L(θ) = (1− θ)52θ.

Suppose the scientists had planned to stop when they found five subjects with the
genotype of interest, at which point they analysed 552 subjects. The likelihood
of θ is now given by a negative binomial probability

L(θ) =

(
552− 1
5− 1

)
θ5(1− θ)552−5.

Figure 2.3(c) shows these likelihoods in solid and dotted lines, respectively. �

Example 2.4: Suppose x is a sample from N(θ, 1); the likelihood of θ is

L(θ) = φ(x− θ) ≡ 1√
2π

e−
1
2
(x−θ)2 .

The dashed curve in Figure 2.3(d) is the likelihood based on observing x = 2.45.
Suppose it is known only that 0.9 < x < 4; then the likelihood of θ is

L(θ) = P (0.9 < X < 4) = Φ(4− θ)− Φ(0.9− θ),

where Φ(z) is the standard normal distribution function. The likelihood is shown
in solid line in Figure 2.3(d).

Suppose x1, . . . , xn are an identically and independently distributed (iid) sam-
ple from N(θ, 1), and only the maximum x(n) is reported, while the others are
missing. The distribution function of x(n) is

F (t) = P (X(n) ≤ t)

= P (Xi ≤ t, for each i)

= {Φ(t− θ)}n.

So, the likelihood based on observing x(n) is

L(θ) = pθ(x(n)) = n{Φ(x(n) − θ)}n−1φ(x(n) − θ).

Figure 2.3(d) shows this likelihood as a dotted line for n=5 and x(n) = 3.5.
There is a general heuristic to deal with order statistics for an iid sample from

continuous density pθ(x). Assume a finite precision ε, and partition the real line
into a regular grid of width ε. Taking an iid sample x1, . . . , xn is like performing a
multinomial experiment: throw n balls to cells with probability p(x)ε and record
where they land. For example, the probability of the order statistics x(1), . . . , x(n)

is approximately

n!εn
∏
i

pθ(x(i)).

Knowing only the maximum x(n), the multinomial argument yields immediately
the likelihood given above. If only x(1) and x(n) are given, the likelihood of θ is
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L(θ) =
n(n− 1)

2
ε2pθ(x(1))pθ(x(n)){Fθ(x(n))− Fθ(x(1))}n−2,

where Fθ(x) is the underlying distribution function. �

Example 2.5: Let us now solve the exchange paradox described in Example 1.3
using the likelihood. Treat the amounts of money as the unknown parameters θ
and 2θ. On seeing the amount x in the envelope, the likelihood of θ is

L(θ = x) = P (X = x|θ = x)

= P (X = θ|θ = x) = 0.5,

and

L(θ = x/2) = P (X = x|θ = x/2)

= P (X = 2θ|θ = x/2) = 0.5,

which means the data x cannot tell us any preference over two possible values
of θ. The (unknown) amount in the other envelope is either x/2 (if θ = x/2) or
2x (if θ = x) with equal likelihood, not probability, and we have to stop there.
The likelihood analysis provides that, given x alone and no other information,
there is no rational way for preferring one envelope over the other. The paradox
is avoided as we cannot take an average using the likelihood values as weights. �

2.3 Combining likelihoods
The likelihood definition immediately provides a simple rule for combining
likelihoods from different datasets. If x1 and x2 are independent datasets
with probabilities p1,θ(x1) and p2,θ(x2) that share a common parameter θ,
then the likelihood from the combined data is

L(θ) = p1,θ(x1)p2,θ(x2)

= L1(θ)L2(θ), (2.2)

where L1(θ) and L2(θ) are the likelihoods from the individual datasets. In
log scale this property is a simple additive property

logL(θ) = logL1(θ) + logL2(θ),

giving a very convenient formula for combining information from inde-
pendent experiments: simply add the log-likelihoods. For analytical and
computational purposes it is usually more convenient to work in the log-
likelihood scale. It turns out that most of the (frequentist) properties of
the likelihood function are associated with the log-likelihood and quantities
derived from it.

The simplest case occurs if x1 and x2 are an iid sample from the same
density pθ(x), so

L(θ) = pθ(x1)pθ(x2),

or logL(θ) = log pθ(x1) + log pθ(x2). So, if x1, . . . , xn are an iid sample
from pθ(x) we have

L(θ) =
∏
i=1

pθ(xi),

or logL(θ) =
∑n

i=1 log pθ(xi).
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Example 2.6: Let x1, . . . , xn be an iid sample from N(θ, σ2) with known σ2.
The contribution of xi to the likelihood is

Li(θ) =
1√
2πσ2

exp

{
− (xi − θ)2

2σ2

}
,

and the total log-likelihood is

logL(θ) =

n∑
i=1

logLi(θ)

= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − θ)2. �

Example 2.7: Suppose we have two independent samples taken from N(θ, 1).
From the first sample it is reported that the sample size is n1 = 5, and the
maximum x(5) = 3.5. The second sample has size n2 = 3, and only the sample
mean y = 4 is reported. From Example 2.4 we have

L1(θ) = 5{Φ(x(5) − θ)}4φ(x(5) − θ),

and, since y is N(θ, 1/3),

L2(θ) =
1√
2π/3

exp
{
−3

2
(y − θ)2

}
.

The log-likelihood from the combined data is

logL(θ) = logL1(θ) + logL2(θ).

These likelihoods are shown in Figure 2.4. �
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Figure 2.4: Likelihood based on the maximum x(5) of the first sample
(dashed line), on the sample mean y = 4 of the second sample (dotted
line), and on the combined data (solid line).
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Connection with Bayesian approach�

Recall that in Bayesian computation we begin with a prior f(θ) and com-
pute the posterior

f(θ|x) = constant× f(θ)f(x|θ)
= constant× f(θ)L(θ), (2.3)

where, to follow Bayesian thinking, we use f(x|θ) ≡ pθ(x). Comparing
(2.3) with (2.2) we see that the Bayesian method achieves the same effect
as the likelihood method: it combines the information from the prior and
the current likelihood by a simple multiplication.

If we treat the prior f(θ) as a ‘prior likelihood’ then the posterior is
a combined likelihood. If we know absolutely nothing about θ prior to ob-
serving X = x (recall Bayes’s Scholium in Section 1.4), the prior likelihood
is f(θ) ≡ 1, and the likelihood function expresses the current information
on θ after observing x. Using a uniform prior and scaling the functions to
integrate to one, the posterior density and the likelihood functions would
be the same.

2.4 Likelihood ratio
How should we compare the likelihood of different values of a parameter,
say L(θ1) versus L(θ2)? Suppose y is a one-to-one transformation of the
observed data x; if x is continuous,

pθ(y) = pθ(x(y))

∣∣∣∣∂x∂y
∣∣∣∣ ,

so the likelihood based on the new data y is

L(θ; y) = L(θ;x)

∣∣∣∣∂x∂y
∣∣∣∣ .

Obviously x and y should carry the same information about θ, so to com-
pare θ1 and θ2 only the likelihood ratio is relevant since it is invariant with
respect to the transformation:

L(θ2; y)

L(θ1; y)
=

L(θ2;x)

L(θ1;x)
.

Since only the ratio is important, within a model pθ(x), the likelihood
function is only meaningful up to a multiplicative constant. This means,
for example, in setting up the likelihood we can ignore terms not involving
the parameter. Proportional likelihoods are equivalent as far as evidence
about θ is concerned and we sometimes refer to them as being the same
likelihood. To make it unique, especially for plotting, it is customary to
normalize the likelihood function to have unit maximum, i.e. we divide the
function by its maximum. From now on if we report a likelihood value as
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a percentage it is understood to be a normalized value. Alternatively, we
can set the log-likelihood to have zero maximum.

It may be tempting to normalize the likelihood so that it integrates to
one, but there are reasons for not doing that. In particular there will be
an invariance problem when we deal with parameter transformation; see
Section 2.8.

Example 2.8: Suppose x is a sample from the binomial(n, θ), where n is
known. We have, ignoring irrelevant terms,

L(θ) = θx(1− θ)n−x,

or logL(θ) = x log θ + (n− x) log(1− θ). �

It is stated earlier that the likelihood gives us a measure of rational
belief or relative preferences. How do we interpret the actual values of
the likelihood function or likelihood ratio? In the binomial example with
n = 10 and outcome x = 8, how should we react to the statement

L(θ = 0.8)

L(θ = 0.3)
≈ 209 ≡ N?

Is there a way to calibrate this numerical value with something objective?
The answer is yes, but for the moment we will try to answer it more sub-
jectively with an analogy.

Imagine taking a card at random from a deck of N well-shuffled cards
and consider the following two hypotheses:

H0: the deck contains N different cards labelled as 1 to N .
H2: the deck contains N similar cards labelled as, say, 2.

Suppose we obtain a card with label 2; the likelihood ratio of the two
hypotheses is

L(H2)

L(H0)
= N ;

that is, H2 is N = 209 times more likely than H0. That is how we can
gauge our ‘rational belief’ about θ = 0.8 versus θ = 0.3 based on observing
x = 8. Interpretations like this, unfortunately, cannot withstand a careful
theoretical scrutiny (Section 2.6), which is why we call it only a subjective
interpretation.

2.5 Maximum and curvature of likelihood
Fisher (1922) introduced likelihood in the context of estimation via the
method of maximum likelihood, but in his later years he did not think
of it as simply a device to produce parameter estimates. The likelihood
is a tool for an objective reasoning with data, especially for dealing with
the uncertainty due to the limited amount of information contained in the
data. It is the entire likelihood function that captures all the information
in the data about a certain parameter, not just its maximizer.
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The obvious role of the maximum likelihood estimate (MLE) is to pro-
vide a point estimate for a parameter of interest; the purpose of having
a point estimate is determined by the application area. In cases where a
model parameter has a physical meaning, it is reasonable to ask what is the
best estimate given by the data; the uncertainty is in a way a nuisance, not
part of the scientific question. The MLE is usually a sensible answer. An-
other important role is for simplifying a multiparameter likelihood through
a profile likelihood (Section 3.4): nuisance parameters are replaced by the
MLEs.

We should view the MLE as a device to simplify the presentation of the
likelihood function, especially in a real data analysis situation; a number
is a lot simpler than a function. Imagine the standard task of describing
the characteristics of a study population: it is still possible for our mind to
absorb, communicate, compare and reason with 10 or even 20 sample means
or proportions, but it would be futile to keep referring to 20 likelihood
functions.

Generally, a single number is not enough to represent a function; the
MLE is rarely enough to represent a likelihood function. If the log-likelihood
is well approximated by a quadratic function, then we need at least two
quantities to represent it: the location of its maximum and the curvature at
the maximum. In this case we call the likelihood function ‘regular’. When
our sample becomes large the likelihood function generally does become
regular; the large-sample theory in Chapter 9 establishes this practical
fact.

To repeat this crucial requirement, regular problems are those where we
can approximate the log-likelihood around the MLE by a quadratic function;
for such cases we will also say that the likelihood function is regular. (Not
to be pedantic, when we say ‘a likelihood function has a good quadratic
approximation’, we mean the log-likelihood does.) This approximation is
the port of entry for calculus into the likelihood world. For simplicity we
will start with a scalar parameter; the multiparameter case is discussed in
Section 3.3. First we define the score function S(θ) as the first derivative
of the log-likelihood:

S(θ) ≡ ∂

∂θ
logL(θ).

Hence the MLE θ̂ is the solution of the score equation

S(θ) = 0.

At the maximum, the second derivative of the log-likelihood is negative, so
we define the curvature at θ̂ as I(θ̂), where

I(θ) ≡ − ∂2

∂θ2
logL(θ).

A large curvature I(θ̂) is associated with a tight or strong peak, intuitively

indicating less uncertainty about θ. In likelihood theory I(θ̂) is a key
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quantity called the observed Fisher information; note that it is evaluated
at the MLE, so it is a number rather than a function.

Example 2.9: Let x1, . . . , xn be an iid sample from N(θ, σ2). For the moment
assume that σ2 is known. Ignoring irrelevant constant terms

logL(θ) = − 1

2σ2

n∑
i=1

(xi − θ)2,

so we immediately get

S(θ) =
∂

∂θ
logL(θ) =

1

σ2

n∑
i=1

(xi − θ).

Solving S(θ) = 0 produces θ̂ = x as the MLE of θ. The second derivative of the
log-likelihood gives the observed Fisher information

I(θ̂) =
n

σ2
.

Here var(θ̂) = σ2/n = I−1(θ̂), so larger information implies a smaller variance.

Furthermore, the standard error of θ̂ is se(θ̂) = σ/
√
n = I−1/2(θ̂).

This is an important example, for it is a common theme in statistics that
many properties which are exactly true in the normal case are approximately
true in regular problems. �

Example 2.10: Based on x from the binomial(n, θ) the log-likelihood function
is

logL(θ) = x log θ + (n− x) log(1− θ).

We can first find the score function

S(θ) ≡ ∂

∂θ
logL(θ)

=
x

θ
− n− x

1− θ
,

giving the MLE θ̂ = x/n and

I(θ) ≡ − ∂2

∂θ2
logL(θ)

=
x

θ2
+

n− x

(1− θ)2
,

so at the MLE we have the Fisher information

I(θ̂) =
n

θ̂(1− θ̂)
. �

Example 2.11: In realistic problems we do not have a closed form solution
to the score equation. Suppose an iid sample of size n = 5 is taken from N(θ, 1),
and only the maximum x(5) = 3.5 is reported. From Example 2.4 we have
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L(θ) = 5{Φ(x(5) − θ)}4φ(x(5) − θ).

It is best to use a numerical optimization procedure to find θ̂ directly from L(θ);
in practice we do not even need to find S(θ) analytically, and the procedure can

also provide I(θ̂) numerically. In this example

θ̂ = 2.44, I(θ̂) = 2.4.

Informally, we might say the maximum carries the same information as 2.4 ob-
servations from N(θ, 1). �

Using a second-order Taylor’s expansion around θ̂

logL(θ) ≈ logL(θ̂) + S(θ̂)(θ − θ̂)− 1

2
I(θ̂)(θ − θ̂)2

we get

log
L(θ)

L(θ̂)
≈ −1

2
I(θ̂)(θ − θ̂)2, (2.4)

providing a quadratic approximation of the normalized log-likelihood around
θ̂.

We can judge the quadratic approximation by plotting the true log-
likelihood and the approximation together. In a log-likelihood plot, we set
the maximum of the log-likelihood to zero and check a range of θ such
that the log-likelihood is approximately between −4 and 0. In the normal
example above (Example 2.9) the quadratic approximation is exact:

log
L(θ)

L(θ̂)
= −1

2
I(θ̂)(θ − θ̂)2,

so a quadratic approximation of the log-likelihood corresponds to a normal
approximation of θ̂. We have here a practical rule in all likelihood appli-
cations: a reasonably regular likelihood means θ̂ is approximately normal,
so statements which are exactly true for the normal model will be approx-
imately true for θ̂.

Alternatively, in terms of the score function, we can take the derivative
of the quadratic approximation (2.4) to get

S(θ) ≈ −I(θ̂)(θ − θ̂)

or
−I−1/2(θ̂)S(θ) ≈ I1/2(θ̂)(θ − θ̂).

The latter has the advantage of being dimensionless, in the sense that it is
not affected by the scale of the parameter θ. So, a quadratic approximation
can be checked graphically by plotting−I−1/2(θ̂)S(θ) against I1/2(θ̂)(θ−θ̂),
which should be linear with unit slope. We can check that it is exactly true
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in the normal case. Any smooth function is locally linear, so the question
is how wide we should expect to see the linearity. In the ideal (normal)

case I1/2(θ̂)(θ − θ̂) is a N(0, 1)-variate, so intuitively we should check at
least between −2 and 2.

Example 2.12: Figure 2.5(a) shows the log-likelihood function of the binomial

parameter θ based on n = 10 trials and x = 8 successes. Here θ̂ = 0.8 and

I(θ̂) = 62.5. Both Figure 2.5(a) and (b) show a poor quadratic approximation.
In Figure 2.5(c) we have the log-likelihood of a much larger sample size n = 100,

but the same estimate θ̂ = 0.8; the Fisher information is I(θ̂) = 625. Now the
quadratic approximation is more successful. �
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Figure 2.5: Quadratic approximation of the log-likelihood function. (a) The
true log-likelihood (solid) and the approximation (dotted) for the binomial
parameter θ. (b) Linearity check of the score function, showing a poor
approximation; (c)–(d) The same as (a)–(b) for a bigger experiment.

In cases where the MLE θ̂ and the curvature I(θ̂) can represent the

likelihood function, one can simply report the pair θ̂ and I(θ̂) instead of

showing the graph, though this still leaves the question of interpreting I(θ̂).

In the normal case var(θ̂) = I−1(θ̂), or the standard error se(θ̂) = I−1/2(θ̂).

This is approximately true in nonnormal cases, so se(θ̂) = I−1/2(θ̂) is the
most commonly used quantity to supplement the MLE. We will come back
to this in Section 2.7.
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If the likelihood function is not regular, then the curvature of the log-
likelihood at the MLE or the standard error is not meaningful. In this case,
a set of likelihood or confidence intervals described in the coming section
is a better supplement to the MLE.

2.6 Likelihood-based intervals
How do we communicate the statistical evidence using the likelihood? We
can simply show the likelihood function and, based on it, state our con-
clusion regarding the question of interest, or let others draw their own
conclusion. We adopt this approach in many of our examples, but such
an approach can be very impractical, especially when we are dealing with
many parameters.

In Section 2.5 we show that in regular cases we can simply present
the MLE and its standard error. In less regular cases we can construct
intervals that still acknowledge the existing uncertainty, while simplifying
the communication of the likelihood function.

Pure likelihood inference
In his last book Fisher (1973, pages 75–78) proposed that in some problems
we interpret the observed likelihood function directly to communicate our
uncertainty about θ. These problems include those where exact probability-
based inference is not available, while the sample size is too small to allow
large-sample results to hold. A likelihood interval is defined as a set of
parameter values with high enough likelihood:{

θ,
L(θ)

L(θ̂)
> c

}
,

for some cutoff point c, where L(θ)/L(θ̂) is the normalized likelihood.Among
modern authors, Barnard et al. (1962), Sprott (1975, 2000), Edwards (1992),
Royall (1997) and Lindsey (1996, 1999a,b) are proponents of direct likeli-
hood inference.

Fisher gave a specific example in the case of a binomial parameter.
The question of how to choose the cutoff point c is left open, but he sug-
gested that parameter values with less than 1/15 or 6.7% likelihood ‘are
obviously open to grave suspicion’. This prescription only works for scalar
parameters; in general there is a calibration issue we have to deal with.

Example 2.13: In the binomial example where we observe x = 8 out of n =
10, the likelihood intervals for θ at c = 15% and 4% are (0.50,0.96) and (0.41,0.98),
shown in Figure 2.6. Typically there will not be any closed form formula for the
interval, but in practice it can be found quite easily using numerical methods.
For scalar parameters, we can use a simple grid search. �

Probability-based inference
While convenient, the pure likelihood inference suffers a serious weakness:
there is no externally validated way to justify the cutoff point c, since a
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Figure 2.6: Likelihood intervals at 15% and 4% cutoff for the binomial
parameter θ are (0.50,0.96) and (0.41,0.98).

chosen value c does not refer to anything observable. This is a general
calibration problem associated with the likelihood: a 5% likelihood does
not have a strict meaning (it depends on the size of the parameter space).
In contrast, a 5% probability is always meaningful as a long-term frequency,
so one way to ‘calibrate’ the likelihood is via probability. This is in fact
the traditional likelihood-based inference in statistics. Fisher maintained
that whenever possible we should use probability-based inference; here he
included cases where an exact confidence level is available and the large-
sample cases.

Traditional (frequentist) inference on an unknown parameter θ relies on

the distribution theory of its estimate θ̂. A large-sample theory is needed
in the general case, but it is simple in the normal mean model. From
Example 2.9 we have

log
L(θ)

L(θ̂)
= − n

2σ2
(x− θ)2.

Now, we know x is N(θ, σ2/n), so

n

σ2
(x− θ)2 ∼ χ2

1,

or

W ≡ 2 log
L(θ̂)

L(θ)
∼ χ2

1. (2.5)

W is called Wilk’s likelihood ratio statistic. Its χ2 distribution is exact in
the normal mean model, and as will be shown in Chapter 9, it is approx-
imately true in general cases. A practical guide to use the approximation
is that the likelihood is reasonably regular.
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This is the key distribution theory needed to calibrate the likelihood. In
view of (2.5), for an unknown but fixed θ, the probability that the likelihood
interval covers θ is

P

(
L(θ)

L(θ̂)
> c

)
= P

(
2 log

L(θ̂)

L(θ)
< −2 log c

)
= P (χ2

1 < −2 log c).

So, if for some 0 < α < 1 we choose a cutoff

c = e−
1
2χ

2
1,(1−α) , (2.6)

where χ2
1,(1−α) is the 100(1− α) percentile of χ2

1, we have

P

(
L(θ)

L(θ̂)
> c

)
= P (χ2

1 < χ2
1,(1−α)) = 1− α.

This means that by choosing c in (2.6) the likelihood interval{
θ,

L(θ)

L(θ̂)
> c

}

is a 100(1− α)% confidence interval for θ.
In particular, for α = 0.05 and 0.01 formula (2.6) gives c = 0.15 and

0.04. So, we arrive at the important conclusion that, in the normal mean
case, we get an exact 95% or 99% confidence interval for the mean by
choosing a cutoff of 15% or 4%, respectively. This same confidence interval
interpretation is approximately true for reasonably regular problems.

When can we use a pure likelihood interval?

A likelihood interval represents a set of parameter values which are well sup-
ported by, or consistent with, the data. Given a model, a likelihood interval
is an objective interval in the sense that it does not involve any subjective
choice of prior. Fisher was clear, however, that the likelihood on its own
provides only a weaker form of inference than probability-based inference.
Unlike the confidence interval, a pure likelihood interval does not have a
repeated sampling interpretation; i.e. it is silent regarding its long-term
properties if the experiment is repeated a large number of times. These
long-term properties provide a (potential) external validity to probability-
based confidence intervals.

Names such as ‘likelihood-based interval’ can be confusing, since both
pure likelihood intervals and traditional likelihood-based confidence inter-
vals are derived from the same likelihood function. In fact, numerically
they can be the same. What we are discussing here is the sense of un-
certainty associated with the interval. Traditionally it is only available in
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terms of probability (or confidence level), but in the Fisherian view it can
also be reported in terms of likelihood. From here on, if a likelihood-based
interval has a theoretically justified confidence level it is called a ‘confidence
interval’, otherwise it is called a ‘likelihood interval’.

It is well known that generally a confidence level does not actually apply
to an observed interval, as it only makes sense in the long run. If we think
of an interval as a guess of where θ is, a 95% probability of being correct
does not apply to a particular guess. (In contrast, the sense of uncertainty
provided by the likelihood does apply to a particular guess.) The following
example is adapted from Berger and Wolpert (1988).

Example 2.14: Someone picks a fixed integer θ and asks you to guess it based
on some data as follows. He is going to toss a coin twice (you do not see the
outcomes), and from each toss he will report θ+ 1 if it turns out heads, or θ− 1
otherwise. Hence the data x1 and x2 are an iid sample from a distribution that
has probability 0.5 on θ − 1 or θ + 1. For example, he may report x1 = 5 and
x2 = 5.

The following guess will have 75% probability of being correct:

C(x1, x2) =

{
1
2
(x1 + x2) if x1 �= x2

x1 − 1 if x1 = x2.

According to the standard logic of confidence procedure, the above guess has 75%
‘confidence level’. But if x1 �= x2 we should be ‘100% confident’ that the guess
is correct, otherwise we are only ‘50% confident’. It will be absurd to insist that
on observing x1 �= x2 you only have 75% confidence in {(x1 + x2)/2}. A pure
likelihood approach here would match our common sense: it would report at each
observed {x1, x2} what our uncertainty is about θ. It would not say anything,
however, about the long-term probability of being correct. �

In Section 5.10 we will discuss additional statistical examples that have
similar problems. Fisher himself added an extra requirement for the use
of probability for inference: it should not be possible to recognize a subset
of the sample space, for which we can make an equally valid but different
(conditional) probability statement. The literature on these ‘recognizable
subsets’ is rather esoteric, and so far there has not been any impact on
statistical practice.

In general we will interpret a likelihood interval this way:

• as the usual confidence interval if an exact or a large-sample approxi-
mate justification is available. This covers most of routine data anal-
ysis where parameters are chosen so that the likelihood is reasonably
regular.

• as a pure likelihood interval if there is no exact probability-based jus-
tification and the large-sample theory is suspect. This usually involves
small-sample problems with nonnormal or complicated distributions,
where the likelihood is decidedly not regular. It also includes cases
where a probability-based statement is obviously absurd as in the pre-
vious example.
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In a real data analysis there is always an inevitable judgement call; ac-
knowledging the current dominance of confidence procedure, we will err
on the side of regularity and tend to report approximate confidence in-
tervals. This is mitigated by the fact that the regularity requirement for
likelihood-based confidence intervals is quite forgiving; see Section 2.9.

Example 2.15: Let x1, . . . , xn be a sample from Uniform(0, θ) for some θ > 0.
Let x(n) be the maximum of x1, . . . , xn. The likelihood function is

L(θ) = θ−n, for xi < θ for all i

= θ−n, for θ > x(n),

and equal to zero otherwise. For example, given data 2.85, 1.51, 0.69, 0.57 and
2.29, we get x(n) = 2.85 and the likelihood is shown in Figure 2.7. Asymmetric
likelihood typically occurs if θ is a boundary parameter. The likelihood interval
at 5% cutoff is (2.85,5.19).
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Figure 2.7: Likelihood function of θ in Uniform(0, θ) based on x(5) = 2.85.

While the likelihood is not regular, it is still possible to provide an exact
theoretical justification for a confidence interval interpretation. Now

P

(
L(θ)

L(θ̂)
> c

)
= P

(
X(n)

θ
> c1/n

)
= 1− P

(
X(n)

θ
< c1/n

)
= 1− (c1/n)n

= 1− c.

So the likelihood interval with cutoff c is a 100(1− c)% confidence interval. �

Example 2.16: This is a continuation of Example 2.1. Suppose 100 seeds were
planted and it is recorded that x < 11 seeds germinated. Assuming a binomial
model we obtain the likelihood in Figure 2.8 from
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L(θ) =

10∑
x=0

(
n
x

)
θx(1− θ)n−x. (2.7)

The MLE is θ̂ = 0 and its standard error is not well defined, while the likelihood
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Figure 2.8: Likelihood functions from two binomial experiments: n = 100
and x < 11, and n = 100 and x = 5. The latter is reasonably regular.

interval at 15% cutoff is (0,0.14). Since the likelihood is irregular, and we do not
have any theoretical justification, it is not clear how to assign a confidence level for
this interval. To get a confidence level we also need to make an extra assumption
about how data are to be collected in future (hypothetical) experiments.

Had we observed x = 5 the information on θ would have been more precise,
and the likelihood reasonably regular. So we can report an approximate 95% CI
0.02 < θ < 0.10. �

Likelihood ratio test

To use the likelihood directly for hypothesis testing, for example to test
a null hypothesis H0: θ = θ0, we can report the likelihood of H0 as the
normalized likelihood of θ0

L(θ0)

L(θ̂)
.

We can ‘reject H0’, declaring it ‘unsupported by data’, if its likelihood is
‘too small’, indicating there are other hypotheses which are much better
supported by the data.

How small is too small can be left arbitrary, depending on the appli-
cation or other considerations that may include informal prior knowledge.
In court cases a low level of likelihood may be set for the hypothesis ‘the
defendant is innocent’ before we can reject it, while the hypothesis ‘ge-
netically engineered food has no side effects’ can be rejected more readily.
However, the issue of calibration of the likelihood is also relevant here as a
likelihood of 5%, say, does not have a fixed meaning.
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In regular one-parameter problems, a probability-based calibration is
available to produce a P-value via the distribution of Wilk’s statistic. From
(2.5), on observing L(θ0)/L(θ̂) = c, the approximate P-value is

P (χ2
1 > −2 log c).

This shows that there is typically some relationship between likelihood ratio
and P-value, so when P-value is used it is used as a measure of support.
However, since P-value depends on the sample space of the experiment, the
relationship depends on the experiment; see Chapter 5 for more discussion.
Even though it is under constant criticism from statisticians, the P-value
is still widely used in practice, and it seems unlikely to disappear.

In non-regular problems, where we do not know how to calibrate the
likelihood, we may have to use the pure likelihood ratio as a measure of
support. This is in line with the use of pure likelihood intervals when
there is no justification for probability-based inference. For example, in
Example 2.16 it is not clear how to define a P-value, say to test θ =
0.5. Another example, discussed in more detail in Section 5.4, is a general
situation where the distribution of the test statistic is asymmetric: the
‘exact’ two-sided P-value is ambiguous and there are several competing
definitions.

2.7 Standard error and Wald statistic
The likelihood or confidence intervals are a useful supplement to the MLE,
acknowledging the uncertainty in a parameter θ; they are simpler to com-
municate than the likelihood function. In Section 2.5 we also mention the
observed Fisher information I(θ̂) as a supplement to the MLE. What is its
relationship with the likelihood-based interval?

In regular cases where a quadratic approximation of the log-likelihood
works well and I(θ̂) is meaningful, we have

log
L(θ)

L(θ̂)
≈ −1

2
I(θ̂)(θ − θ̂)2

so the likelihood interval {θ, L(θ)/L(θ̂) > c} is approximately

θ̂ ±
√
−2 log c× I(θ̂)−1/2.

In the normal mean model in Example 2.9 this is an exact CI with confi-
dence level

P (χ2
1 < −2 log c).

For example,
θ̂ ± 1.96 I(θ̂)−1/2

is an exact 95% CI. In nonnormal cases this is an approximate 95% CI. In
these cases, note the two levels of approximation to set up this interval:
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the log-likelihood is approximated by a quadratic and the confidence level
is approximate.

Also in analogy with the normal mean model, in general I(θ̂)−1/2 pro-

vides the standard error of θ̂. It is common practice to report the pair in
the form ‘MLE(standard error)’. Its main use is to test H0: θ = θ0 using
the Wald statistic

z =
θ̂ − θ0

se(θ̂)
,

or to compute Wald confidence intervals. For example, the Wald 95% CI
for θ is

θ̂ ± 1.96se(θ̂). (2.8)

Under H0 in the normal mean model the statistic z has an exact standard
normal distribution, and approximately so in the nonnormal case. A large
value of |z| is associated with a low likelihood of H0: θ = θ0. For example,
|z| > 2 is associated with a likelihood less than 15%, or P-value less than
5%.

What if the log-likelihood function is far from quadratic? See Figure
2.9. From a likelihood point of view the Wald interval is deficient since
it includes values with lower likelihood compared to values outside the
interval.
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Figure 2.9: Poor quadratic approximation (dotted) of a likelihood function
(solid).

Wald intervals might be called MLE-based intervals. To be clear, confi-
dence intervals based on {θ, L(θ)/L(θ̂) > c} will be called likelihood-based
confidence intervals. Wald intervals are always symmetric, but likelihood-
based intervals can be asymmetric. Computationally the Wald interval is
much easier to compute than the likelihood-based interval. If the likelihood
is regular the two intervals will be similar. However, if they are not similar
a likelihood-based CI is preferable; see the binomial example below and
the discussion in Section 2.9. If the likelihood is available we will usually
report the likelihood-based intervals.
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Example 2.17: In the binomial example with n = 10 and x = 8 the quadratic

approximation was poor. The standard error of θ̂ is I(θ̂)−1/2 = 1/
√
62.5 = 0.13,

so the Wald 95% CI is
0.8± 1.96/

√
62.5,

giving 0.55 < θ < 1.05, clearly not appropriate. For n = 100 and x = 80, the

standard error for θ̂ is I(θ̂)−1/2 = 1/
√
625 = 0.04. Here we have a much better

quadratic approximation, with the Wald 95% CI

0.8± 1.96/
√
625

or 0.72 < θ < 0.88, compared with 0.72 < θ < 0.87 from the exact likelihood. �

To use the ‘MLE(standard error)’ pair to represent the likelihood func-
tion, should we always check whether the likelihood is regular? In principle
yes, but in practice we learn that certain problems or parameters tend to
have better behaviour than others. Plotting the likelihood function in unfa-
miliar problems is generally advised. This is why in many of our examples
we regularly show the likelihood function. When the data are sparse or
if the parameter estimate is near a boundary, such as 0 or 1 for a proba-
bility parameter, then the quadratic approximation is not appropriate. It
is almost never meaningful to report the standard error of odds-ratios or
correlation coefficients.

2.8 Invariance principle
The likelihood function represents the uncertainty for a fixed parameter,
but it is not a probability density function. How do we deal with parameter
transformation? We will assume a one-to-one transformation, but the idea
applies generally. In the first binomial example with n = 10 and x = 8, the
likelihood ratio of θ1 = 0.8 versus θ2 = 0.3 is

L(θ1 = 0.8)

L(θ2 = 0.3)
=

θ81(1− θ1)
2

θ82(1− θ2)2
= 208.7,

i.e. given the data θ = 0.8 is about 200 times more likely than θ = 0.3.
Suppose we are interested in expressing θ on the logit scale as

ψ ≡ log{θ/(1− θ)},
then ‘intuitively’ our relative information about ψ1 = log(0.8/0.2) = 1.39
versus ψ2 = log(0.3/0.7) = −0.85 should be

L∗(ψ1)

L∗(ψ2)
=

L(θ1)

L(θ2)
= 208.7.

That is, our information should be invariant to the choice of parameteri-
zation.

This is not the case in the Bayesian formulation. Suppose θ has a
‘non-informative’ prior f(θ) = 1; the posterior is

f(ψ|x) = f(θ(ψ)|x)×
∣∣∣∣ ∂θ∂ψ

∣∣∣∣ (2.9)
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= f(θ(ψ)|x) eψ

(1 + eψ)2
. (2.10)

In the new ψ-scale the relative information about ψ1 versus ψ2 is now equal
to

f(ψ1|x)
f(ψ2|x) =

L(θ1)

L(θ2)
× eψ1(1 + eψ2)2

eψ2(1 + eψ1)2

= 208.7× 0.81 = 169.0.

Thus the invariance property of the likelihood ratio is incompatible with
the Bayesian habit of assigning a probability distribution to a parameter.

It seems sensible that, if we do not know where θ is, then we should not
know where log{θ/(1− θ)} or θ2 or 1/θ are; in other words, we should be
equally ignorant regardless of how we model our problem. This is not true
in the Bayesian world: if we assume θ is uniform between zero and one,
then θ2 is more likely to be closer to zero than to one.

Note that the invariance property of the likelihood ratio is not an im-
plication of the repeated sampling principle, so it is not a frequentist re-
quirement. However, frequentists generally adopt the invariance without
question. This is in line with the frequentist refusal to accept the distri-
butional reality for a fixed parameter, so a Jacobian term to account for
parameter transformation is not meaningful.

There is actually some element of truth in the Bayesian position. It
seems pedantic to think that we should be equally ignorant about the
unknown probability θ, which is known to be between 0 and 1, as we are
about θ100. I would bet the latter would be closer to zero than to one (if
100 is not big enough for you, make it 1000 or 10,000), thus violating the
invariance principle. The only way to accommodate the changing degree
of ignorance after transformation is by adopting a probability density for
the parameter, i.e. being a fully-fledged Bayesian. However, the loss of
the invariance property of likelihood ratio would be a substantial loss in
practice, since

• we lose the invariance property of the MLE (see Section 2.9)

• the likelihood of every parameterization would then require a Jaco-
bian term, which must be computed analytically starting from a prior
density, and consequently

• we are cornered into having to specify the prior density axiomatically.

These reasons alone may be enough to justify the utilitarian value of the
invariance principle. However, the invariant property of the likelihood ratio
should be seen only as a convenient axiom, rather than a self-evident truth.

(These discussions do not apply in random effects models where a pa-
rameter can have an objective distribution. Here the invariance property
of the likelihood is not needed, as the likelihood can function like a density;
see Section 16.1 and Section 16.2.)
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2.9 Practical implications of invariance principle
Computing the likelihood of new parameters

The invariance principle implies that plotting the likelihood of a new pa-
rameter ψ ≡ g(θ) is automatic, a useful fact when performing likelihood-
based inference for ψ. Consider the pair {θ, L(θ)} as the graph of the
likelihood of θ; then the graph of the likelihood of ψ is simply

{ψ,L∗(ψ)} = {g(θ), L∗(g(θ))}
= {g(θ), L(θ)}.

In effect, with fixed parameters, the likelihood function is treated like a
probability mass function of a discrete distribution, i.e. no Jacobian is used
to account for the transformation. This does not create any inconsistency
since the likelihood is not a density function, so it does not have to integrate
to one.

If g(θ) is not one-to-one we need to modify the technique slightly. For
example, consider

ψ = g(θ) = θ2,

so θ = ±1 implies ψ = 1. If L(θ = 1) = 0.5 and L(θ = −1) = 0.3 what is
L∗(ψ = 1)? In this case, we define

L∗(ψ = 1) ≡ max
{θ,g(θ)=1}

L(θ)

= max{0.5, 0.3}
= 0.5.

In general

L∗(ψ) = max
{θ,g(θ)=ψ}

L(θ). (2.11)

Invariance property of the MLE

An important implication of the invariance of likelihood ratio is the so-
called invariance property of the MLE.

Theorem 2.1 If θ̂ is the MLE of θ and g(θ) is a function of θ, then g(θ̂)
is the MLE of g(θ).

The function g(θ) does not have to be one-to-one, but the definition of
the likelihood of g(θ) must follow (2.11). The proof is left as an exercise
(Exercise 2.19).

It seems intuitive that if θ̂ is most likely for θ and our knowledge remains
the same then g(θ̂) is most likely for g(θ). In fact, we would find it strange

if θ̂ is an estimate of θ, but θ̂2 is not an estimate of θ2. In the binomial
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example with n = 10 and x = 8 we get θ̂ = 0.8, so the MLE of g(θ) =
θ/(1− θ) is

g(θ̂) = θ̂/(1− θ̂) = 0.8/0.2 = 4.

This convenient property is not necessarily true with other estimates. For
example, if θ̂ is the minimum variance unbiased estimate (MVUE) of θ,

then g(θ̂) is generally not MVUE for g(θ).

Improving the quadratic approximation

In practice we often consider a transformation ψ = g(θ) to ‘improve’ the
likelihood function so that it is more regular. We know that in such a case
we can rely on the MLE and the standard error. Given such a transform,
confidence intervals of θ can be first set for g(θ) using the Wald interval:

g(θ̂)± 1.96 se{g(θ̂)},

then retransformed back to the original θ-scale. For scalar θ we can show
(Exercise 2.20) that

se{g(θ̂)} = se(θ̂)

∣∣∣∣∂g
∂θ̂

∣∣∣∣ .
Example 2.18: Suppose x = 8 is a sample from the binomial(n = 10, θ). The

MLE of θ is θ̂ = 0.8. Consider the log-odds

ψ = g(θ) = log
θ

1− θ
.

Figure 2.10(b) shows the likelihood of ψ is more regular than in the original
θ-scale.
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Figure 2.10: (a) Log-likelihood of the probability θ from binomial data n =
10 and x = 8. (b) Log-likelihood of the log-odds ψ is more regular.



2.9. Practical implications of invariance principle 47

The MLE of ψ is

ψ̂ = log
0.8

0.2
= 1.39.

To get the standard error of ψ, we first compute

∂g

∂θ
=

1

θ
+

1

1− θ
,

so

se(ψ̂) = se(θ̂)

(
1

θ̂
+

1

1− θ̂

)
=
(
1

x
+

1

n− x

)0.5

= 0.79.

The Wald 95% CI for ψ is
1.39± 1.96× 0.79,

giving −0.16 < ψ < 2.94. Transforming this back to the original scale yields

0.46 < θ < 0.95.

This compares with 0.5 < θ < 0.96 using the likelihood-based 95% CI, and
0.55 < θ < 1.05 using the Wald 95% CI on the original scale θ (Example 2.17). �

Likelihood-based CI is better than Wald CI
We do not always know how to transform a parameter to get a more regular
likelihood. This difficulty is automatically overcome by likelihood-based
intervals. Let us consider a scalar parameter case. The likelihood-based
approximate 95% CI is {

θ, 2 log
L(θ̂)

L(θ)
≤ 3.84

}
and the Wald interval is

θ̂ ± 1.96 se(θ̂).

While both are based on a similar normal-approximation theory, the likelihood-
based interval is better than the Wald interval.

The Wald interval is correct only if

θ̂ − θ

se(θ̂)
∼ N(0, 1).

In contrast, because of invariance of the likelihood ratio, the likelihood-
based interval is correct as long as there exists a one-to-one transformation
g(·), which we do not need to know, so that

g(θ̂)− g(θ)

se(g(θ̂))
∼ N(0, 1). (2.12)

To show this, suppose L < g(θ) < U is the 95% CI for g(θ) based on g(θ̂).

From normality of g(θ̂), the interval (L,U) is a likelihood interval at 15%



48 2. Elements of likelihood inference

cutoff. The invariance of the likelihood ratio implies that the likelihood
interval of θ at 15% cutoff is

g−1(L) < θ < g−1(U),

which then has exactly the same 95% confidence level. The proof is clear
if you draw the likelihood functions of θ and g(θ) next to each other. It
should be emphasized that g(θ) need not be known, only that it exists.

With the same argument, if an exact normalizing transform does not
exist, the likelihood-based CI still has the same confidence level as the
transform that makes the likelihood most regular. In other words, for the
purpose of probability calibration, the likelihood-based CI is automatically
employing the best possible normalizing transform.

The main source of problems with the Wald interval is that θ̂ may be
far from normal, and if we want to transform it to improve the normality
we need to know what transform to use. The likelihood interval does the
required transform automatically. Hence the applicability of the likelihood-
based CI is much wider and, consequently, it is much safer to use than the
Wald interval.

2.10 Exercises
Exercise 2.1: To estimate the proportion of luxury cars θ in a city, a group
of students stands on a street corner and counts 213 cars by the time they see
the 20th luxury car, at which point they stop counting. Draw the likelihood of
θ. What assumption do you need to make in your analysis? Should it make
a difference (in terms of the information about θ) whether the number 20 was
decided in advance or decided in the ‘spur of the moment’?

Exercise 2.2: N runners participate in a marathon and they are each assigned
a number from 1 to N . From one location we record the following participants:

218 88 254 33 368 235 294 115 9

Make a reasonable assumption about the data and draw the likelihood of N .

Exercise 2.3: The train service between cities A and B announces scheduled
departures at 07:00 and arrivals at 10:05. Assume that the train always leaves
on time. The arrival time is based on the earliest arrival recorded on 10 sampled
journeys. Assume journey time is normally distributed with standard deviation 5
minutes. Draw the likelihood of the average journey time. What is a reasonable
guess for a late arrival?

Exercise 2.4: Suppose X(1), . . . , X(n) are the order statistics of an iid sample
from a continuous distribution F (x).

(a) Show that
P (X(k) ≤ x) = P{N(x) ≥ k}

where N(x), the number of sample values less than x, is binomial with
parameters n and probability p = F (x).

(b) Use (a) to show that the density of X(k) is

p(x) =
n!

(k − 1)!(n− k)!
{F (x)}k−1{1− F (x)}n−kf(x)
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where f(x) is the density from F (x). Verify the density using the multino-
mial argument in Example 2.4.

(c) Use the multinomial argument to find the joint density of {X(j), X(k)} for
any j and k.

Exercise 2.5: The following shows the heart rate (in beats/minute) of a person,
measured throughout the day:

73 75 84 76 93 79 85 80 76 78 80

Assume the data are an iid sample from N(θ, σ2), where σ2 is known at the
observed sample variance. Denote the ordered values by x(1), . . . , x(11). Draw
and compare the likelihood of θ if

(a) the whole data x1, . . . , x11 are reported.

(b) only the sample mean x is reported.

(c) only the sample median x(6) is reported.

(d) only the minimum x(1) and maximum x(11) are reported.

(e) only the lowest two values x(1) and x(2) are reported.

Exercise 2.6: Given the following data

0.5 -0.32 -0.55 -0.76 -0.07 0.44 -0.48

draw the likelihood of θ based on each of the following models:

(a) The data are an iid sample from a uniform distribution on (θ − 1, θ + 1).

(b) The data are an iid sample from a uniform distribution on (−θ, θ).

(c) The data are an iid sample from N(0, θ).

Exercise 2.7: Given the following data

2.32 3.98 3.41 3.08 2.51 3.01 2.31 3 .07 2.97 3.86

draw the likelihood of θ assuming the data are an iid sample from a uniform
distribution on (θ, 2θ). Find the MLE of θ, and report a likelihood-based interval
for θ. Comment on the use of standard error here. Comment on the use of
probability-based inference here.

Exercise 2.8: For the following paired data (xi, yi)

xi −0.18 −0.16 −0.73 0.80 −0.41 0.00 −0.08
yi 0.18 −0.51 −0.62 −0.32 0.55 0.57 −0.32

assume that they are an iid sample from a uniform distribution in a circle with
mean (0, 0) and radius θ. Draw the likelihood of θ, find the MLE of θ, and report
a likelihood-based interval for θ.

Exercise 2.9: For the data in the previous exercise assume that they are an iid
sample from a uniform distribution in a square (θ−1, θ+1)×(θ−1, θ+1). Draw
the likelihood of θ, find the MLE of θ, and report a likelihood-based interval for
θ.

Exercise 2.10: Suppose x1, . . . , xn are an iid sample from the exponential
distribution with density

p(x) = λ−1e−x/λ.

Derive the MLE and its standard error.
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Exercise 2.11: Ten light bulbs are left on for 30 days. One fails after 6 days,
another one after 28 days, but the others are still working after 30 days. Assume
the lifetime is exponential with density

p(x) = λ−1e−x/λ.

(a) Given λ, what is the probability of a light bulb working more than 30 days?

(b) Derive and draw the likelihood of λ. (Hint: only the first two order statistics
are reported.)

(c) Derive the MLE of λ.

(d) Estimate how long it takes before 90% of the light bulbs will fail.

(e) Suppose the only information available is that two have failed by 30 days,
but not their exact failure times. Draw the likelihood of λ and compare with
(b).

Exercise 2.12: A communication device transmits a sequence of 0 and 1 digits.
To ensure correctness a sequence of length n is transmitted twice. Let θ be the
probability of error during transmission of a single digit and let X be the number
of digits that differ in the two transmissions. For example, for n = 8 and if the
two received messages are 00011000 and 00010001, then x = 2. Write down the
likelihood in general, and draw it for this simple example. Interpret why the
likelihood is bimodal.

Exercise 2.13: Suppose the following observed data

0.5 -0.32 -0.55 -0.76 -0.07 0.44 -0.48

are an iid sample from the double-exponential (Laplacian) distribution with den-
sity

pθ(x) =
1

2
e|x−θ|, −∞ < x < ∞.

(a) Draw the log-likelihood of θ.

(b) Find the MLE of θ, and report a likelihood-based interval for θ.

(c) Change the largest value in the data (0.5) to 2.5, and redraw the log-
likelihood function. Comment about the inference for θ.

Exercise 2.14: To estimate the proportion θ of business people who cheat
on their taxes, a randomized response survey is tried. Each person is asked to
secretly flip a fair coin and answer question A if it comes out heads, or answer
question B otherwise:

A. Did you cheat on your last year’s tax form?

B. Was your mother born between January and June? (Assume that the prob-
ability of this event is 0.5.)

The data show 15 said Yes and 30 No.

(a) Find the probability of a ‘Yes’ answer.

(b) Draw the likelihood of θ. Report the MLE, its standard error, and likelihood-
based interval for θ.

(c) Compare the method-of-moment estimate of θ, and its 95% CI based on the
Wald CI from the sample proportion.

(d) Repeat (a) to (c) based on 10 Yes’s and 40 No’s. Describe the advantage of
the likelihood approach over the method of moments here.
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Exercise 2.15: Modify Example 2.14 by changing the coin toss with a card
draw (with replacement), where each card ci is valued from 1 to 13 (Ace=1 . . .
King=13) and after each draw the sum xi = θ + ci is reported.

(a) Based on the following report from 10 draws

16 22 15 17 12 20 15 23 16 23

present your guess in terms of likelihood. Split the data into two sets of
five observations and repeat the exercise for each set. (Hint: construct the
likelihood based on each observation and find the overlap.)

(b) Discuss pure likelihood and probability-based inference as used in this case.

Exercise 2.16: According to the Hardy–Weinberg law, if a population is in
equilibrium, the frequencies of genotypes AA, Aa and aa are θ2, 2θ(1 − θ) and
(1 − θ)2. Suppose we type N subjects and find a breakdown of (n1, n2, n3) for
the three genotypes.

(a) Find the MLE of θ and the Fisher information I(θ) as a function of (n1, n2, n3).

(b) Given data n1 = 125, n2 = 34 and n3 = 10, draw the likelihood of θ, and
report the MLE and the standard error.

(c) Compare the 95% likelihood-based interval for θ with the Wald interval.

(d) If A is a dominant trait, then the first two groups will show the same
phenotype, and there are only two observable groups. Repeat the previous
exercises based on phenotype data only. (From part (b): add n1 and n2.)

Exercise 2.17: For the previous Exercise 2.5:

(i) Compare the MLE θ̂ based on the different available data (a) to (e). For
(a) and (b) derive the estimate theoretically. For (c), (d) and (e), use a
numerical optimization program to get the estimate.

(ii) Compare the Fisher information I(θ̂) based on the different available data
(a) to (e). For (a) and (b) derive the Fisher information theoretically. For
(c), (d) and (e), use a numerical optimization program to get the Fisher
information.

(iii) Compute and compare the 99% likelihood-based CIs for θ.

(iv) Compute and compare the 99% Wald CIs for θ.

Exercise 2.18: Find the approximate likelihood of H0: θ = θ0 from the
‘MLE(standard error)’ pair. Apply it in Example 2.17 to test H0 : θ = 0.5,
and compare it with the exact result. When is the approximate likelihood larger
or smaller than the exact value?

Exercise 2.19: Prove Theorem 2.1.

Exercise 2.20: For scalar θ show that the Fisher information on g(θ) is

I∗{g(θ̂)} = I(θ̂)

∣∣∣∣∂g(θ̂)
∂θ̂

∣∣∣∣−2

.

So the standard error of g(θ̂) is

se{g(θ̂)} = se(θ̂)

∣∣∣∣∂g
∂θ̂

∣∣∣∣ .
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Exercise 2.21: Suppose we observe x = 3 misprints on a newspaper page and
consider a Poisson model with mean θ.

(a) Find a transformation of θ so that the log-likelihood is well approximated
by a quadratic. (Hint: consider transformations of the form θa for small a
and log θ.)

(b) Compute the Wald-based CI based on a transform with reasonably regular
likelihood. Report the interval for the original θ.

(c) Compare the interval with the likelihood-based interval.

Exercise 2.22: We measure some scores from n = 10 subjects

0.88 1.07 1.27 1.54 1.91 2.27 3.84 4.50 4.64 9.41

and assume they are an iid sample from N(μ, σ2); for simplicity assume σ2 is
known at the observed value. Draw the likelihood, and find the MLE and the
standard errors of the following parameters. Comment on the quadratic approx-
imation of the likelihood.

(a) e−μ.

(b) The threshold probability P (X > 3).

(c) The coefficient of variation σ/μ.

Exercise 2.23: For binomial data with n = 10 and x = 8 repeat the previous
exercise for

(a) g(θ) = θ/(1− θ)

(b) g(θ) = log{θ/(1− θ)}
(c) g(θ) = sin−1

√
θ.

Check for which parameter the standard error quantity is most meaningful. Com-
pute the Wald CI for θ based on each transform, and compare with the likelihood-
based CI.
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More properties of
likelihood

3.1 Sufficiency
The idea of Fisher information (Section 2.5) captures the notion of ‘infor-
mation’ only roughly. Owing to its association with a quadratic approxi-
mation of the likelihood, it is typically meaningful only in large samples.
The qualitative concept of sufficiency (Fisher 1922) captures precisely the
idea of information in the data. An estimate T (x) is sufficient for θ if it
summarizes all relevant information contained in the data about θ. This
is true if for any other estimate U(x), the distribution of U(x) given T (x)
is free of θ. So, once T (x) is known U(x) does not carry any additional
information.

It is a fundamental result that the likelihood function is minimal suf-
ficient. This means the likelihood function captures all of the information
in the data, and anything less involves some loss of information.

First we define an experiment E to be a collection {x, θ, pθ(x)}. Such a
definition is completely general, since the data x can be of any complexity.
The probability model pθ(x) describes how the data are generated, such as
an iid sampling, or sequential experiment, etc.

Definition 3.1 A statistic T (X) is sufficient for θ in an experiment E if
the conditional distribution of X|T = t is free of θ.

Note first the intuitive content of the definition: if X|T = t is free of θ,
then once we know T = t we could have simulated X from the conditional
distribution so that, unconditionally, X still follows the model pθ with the
true (but unknown) θ. Since X|T = t itself does not involve θ, then it
cannot carry any information about θ and all information about it must
be contained in T .

Technically the definition does include the full description of the exper-
iment, in particular the model pθ(x), so sufficiency is only meaningful in
this context. It is wrong and meaningless to state that the sample mean
is sufficient for the population mean without any reference to the model
pθ(x).

Example 3.1: Suppose X1, . . . , Xn are an iid sample from a Poisson distri-
bution with mean θ. Then T (X) =

∑
Xi is sufficient for θ.
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Proof: We want to show that the conditional distribution of X1, . . . , Xn given
T = t is free of θ. First we can show, for example using the moment generating
function technique, that T is Poisson with parameter nθ. Then, using the Bayes
theorem, we have

P (X1 = x1, . . . , Xn = xn|T = t) =
P (X1 = x1, . . . , Xn = xn, T = t)

P (T = t)

=
P (X1 = x1, . . . , Xn = xn)

P (T = t)

=
e−nθθ

∑
xi/
∏

xi!

e−nθ(nθ)t/t!

=
t!∏
xi!

∏(
1

n

)xi

,

for x1, . . . , xn such that
∑

xi = t, and the probability is zero otherwise. Note
that any one-to-one function of

∑
xi is also sufficient, so in particular x is a

sufficient estimate of θ.
For example, given n = 2 and x1 + x2 = 10, a further determination whether

we have observed (0, 10) or (1, 9) . . . or (10, 0) involves an event whose probability
is free of θ. So this process can add no information about θ, and inference about
θ should be the same regardless of which event is obtained. This means that all
information about θ is contained in x1 + x2. �

From the example, it is clear that sufficiency is a useful concept of data
reduction: x1, . . . , xn are summarized to x only. As stated earlier the notion
of sufficiency is tied with or conditional on an assumed model. Knowing
x alone is not enough to capture the uncertainty in the population mean;
we also need to know the probability model such as x1, . . . , xn are an iid
sample from Poisson(θ).

Proving the sufficiency of a statistic from first principles is usually not
very illuminating. A much more direct way is given by the so-called fac-
torization theorem.

Theorem 3.1 T (X) is sufficient for θ in an experiment E if and only if
the model pθ(x) can be factorized in the form

pθ(x) = g(t(x), θ) h(x),

where h(x) is free of θ.

Example 3.2: Suppose x1, . . . , xn are an iid sample from N(μ, σ2) and let
θ = (μ, σ2). The density is

pθ(x) = (2πσ2)−n/2 exp

{
− 1

2σ2

∑
i

(xi − μ)2

}

= (2πσ2)−n/2 exp

{
−
∑

i
x2
i

2σ2
+

μ
∑

i
xi

σ2
− nμ2

2σ2

}
.

From the factorization theorem, it is clear that
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(a) if σ2 is known
∑

i
xi is sufficient for μ;

(b) if μ is known
∑

i
(xi − μ)2 is sufficient for σ2;

(c) if (μ, σ2) is unknown (
∑

i
xi,
∑

i
x2
i ) is sufficient.

Knowing (
∑

i
xi,
∑

i
x2
i ) is sufficient means that the rest of the data does not

add any more information about (μ, σ2). If normality has been established, this
means we only need to keep (

∑
i
xi,
∑

i
x2
i ) for further analysis. (In practice

we do not routinely throw most of the data away, since instinctively we do not
believe in any specific model, in which case (

∑
i
xi,
∑

i
x2
i ) is not sufficient.) �

3.2 Minimal sufficiency
Fisher originally defined sufficiency as a property of an estimate, but cur-
rently, as defined above, the concept applies to any set of values computed
from the data. For a particular dataset there are infinitely many sufficient
statistics; for example, the whole dataset is always sufficient for any model.
If x1, . . . , xn are an iid sample from N(θ, 1), then the following statistics
are sufficient for μ:

∑
xi, x, (

∑m
i=1 xi,

∑n
i=m+1 xi) for any m, or the set

of order statistics (x(1), . . . , x(n)). Notice that x is a function of the other
sufficient statistics, while the set of order statistics, for example, is not a
function of x.

From the definition we can immediately see that if T is sufficient then
any one-to-one function of T is also sufficient. There is no such guarantee
if the function is many-to-one, as in this case there is a reduction in the
sample space of the statistic. It is then useful to consider the following
concept:

Definition 3.2 A sufficient statistic T (X) is minimal sufficient if it is a
function of any other sufficient statistic.

So a statistic is minimal sufficient if no further data reduction is allowed.
Generally, if the dimension of the sufficient statistic is the same as that
of the parameter space, then the statistic is minimal sufficient; or, if an
estimate is sufficient then it is minimal sufficient. Any further reduction
of the data from the minimal sufficient statistic would involve some loss
of information. Establishing minimal sufficiency relies on the connection
between sufficiency and likelihood.

Example 3.3: Suppose x1, . . . , xn are an iid sample from N(θ, 1), so by the
factorization theorem, x is sufficient. Based on x1, . . . , xn we have

L(θ;x1, . . . , xn) =

(
1√
2π

)n

exp

{
−1

2

∑
i

(xi − θ)2

}
.

The dependence on the data is made explicit for later comparison. With some
algebra

logL(θ;x1, . . . , xn) = −1

2

∑
i

(xi − x)2 − n

2
(x− θ)2
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= constant− n

2
(x− θ)2,

so the likelihood depends on the data only through the sample mean x. Suppose,
from this same experiment, only the sample mean x is recorded. Then, since x
is N(θ, 1/n), the likelihood based on x̄ is

L(θ;x) =
1√
2π/n

exp
{
−n

2
(x̄− θ)2

}
,

or
logL(θ;x) = constant− n

2
(x− θ)2.

Therefore the likelihood based on the whole dataset x1, . . . , xn is the same as
that based on x alone. �

The preceding result is true for any sufficient statistic. If t is any func-
tion of the data x, the likelihood based on x is the same as the likelihood
based on both x and t. So, if t is sufficient

L(θ;x) = L(θ;x, t) = pθ(x, t) = pθ(t)p(x|t)
= constant× pθ(t)

= constant× L(θ; t),

meaning that L(θ;x) can be computed based on t alone.
The likelihood function itself is a sufficient statistic. If this sounds

surprising, note that there is an ambiguity with the function notation:
L(θ) can mean the entire function over all possible θ, or the function at
a particular value of θ. To make an explicit distinction, let L(·;x) be
the entire likelihood function based on x; it is a statistic since it can be
computed from the data alone, no unknown value is involved. Then, for
any choice of θ0,

t(x) =
L(·;x)
L(θ0;x)

is sufficient. To prove this, we use the factorization theorem by defining

g(t, θ) =
L(θ;x)

L(θ0;x)

and h(x) = L(θ0;x). Similarly, the normalized likelihood function is also
a sufficient statistic. Hence we arrive at a fundamental property of the
likelihood function:

Theorem 3.2 If T is sufficient for θ in an experiment E then the likelihood
of θ based on the whole data x is the same as that based on T alone.
Therefore, the likelihood function is minimal sufficient.

Recall that we say two likelihoods are the same (or equivalent) if they
are proportional. The proof of the second part is immediate: that any suf-
ficient statistic would yield the same likelihood function implies that the



3.2. Minimal sufficiency 57

likelihood function is a function of any other sufficient statistic. The theo-
rem implies that any statistic that is a one-to-one map with the likelihood
function is minimal sufficient. This occurs if different values of the statistic
lead to different (normalized) likelihood functions.

Example 3.4: Based on x1, . . . , xn from N(μ, 1) the likelihood function

L(μ;x1, . . . , xn) = constant× exp{−n

2
(x− μ)2}

is a one-to-one map with x: if we have two different samples x1, . . . , xn and
y1, . . . , yn then

L(μ;x1, . . . , xn) = constant× L(μ; y1, . . . , yn) iff x = y.

This establishes x as minimal sufficient. With a similar argument we can show
that (x, S2) is minimal sufficient for an iid sample from N(μ, σ2), where S2 is the
sample variance. �

Example 3.5: Suppose x1, . . . , xn are an iid sample from the uniform distri-
bution on (θ − 1, θ + 1). The likelihood function is

L(θ) = 2−nI(xmax − 1 < θ < xmin + 1),

so (xmin, xmax) is minimal sufficient for θ. Since the minimal sufficient statistic
is two-dimensional no estimate of θ is sufficient; the MLE of θ is not even well
defined.

The nonexistence of a sufficient estimate does not mean there is no sensible
inference for θ. We can simply report that θ must be between xmax − 1 and
xmin + 1. For example, given data

1.07 1.11 1.31 1.51 1.69 1.72 1.92 2.24 2.62 2.98

we are certain that (2.98 − 1) < θ < (1.07 + 1). If a point estimate is required
we can take the midpoint of the interval, which in this case is a better estimate
than the sample mean or median. Here x = 1.817 and the sample median 1.705
have zero likelihood, so they are not even sensible estimates. �

Monotone likelihood ratio property
If the parameter θ is not a boundary parameter, minimal sufficiency can
be expressed in terms of likelihood ratio. Being a one-to-one map with the
likelihood function means that a statistic t(x) is minimal sufficient iff, for
any choice of θ0 and θ1, the likelihood ratio L(θ1)/L(θ0) is a one-to-one
function of t(x). If t(x) is scalar, this is called a monotone likelihood ratio
property. Furthermore, if L(θ) is smooth enough, as θ1 approaches θ0,

L(θ1)

L(θ0)
≈ L(θ0) + L′(θ0)(θ1 − θ0)

L(θ0)

= 1 +
∂ logL(θ0)

∂θ0
(θ1 − θ0),

for any θ0. Hence we get a simple characterization that t(x) is minimal
sufficient iff the score statistic is a one-to-one function of t(x).
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3.3 Multiparameter models
Most real problems require multiparameter models; for example, the nor-
mal model N(μ, σ2) needs two parameters for the mean and the variance.
Model complexity is determined by the number of parameters, not by the
number of observations. No new definition of likelihood is required. Given
data x, the likelihood is

L(θ) = pθ(x),

where pθ(x) is the probability of the observed data. With the same argu-
ment as the one in Section 2.1, it is sufficient to use the density function
for purely continuous models.

Example 3.6: Let x1, . . . , xn be an iid sample from N(μ, σ2). Ignoring
irrelevant constant terms, we can write

logL(μ, σ2) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − μ)2. (3.1)

Suppose n1, . . . , nk are a sample from the multinomial distribution with known
N =

∑
i
ni and unknown probabilities p1, . . . , pk. There are (k − 1) free pa-

rameters since
∑

i
pi = 1. Ignoring irrelevant terms, the log-likelihood of the

parameters (p1, . . . , pk) is

logL(p1, . . . , pk) =
∑
i

ni log pi.

For k = 3, the parameter space is a 2D simplex satisfying p1+p2+p3 = 1, which
can be represented in a triangle. �

We have limited ability to view or communicate L(θ) in high dimen-
sions. If θ is two dimensional, we can represent L(θ) in a contour plot or a
perspective plot. In general a mathematical analysis of the likelihood sur-
face is essential for its description. Let θ = (θ1, . . . , θp). Assuming logL(θ)
is differentiable, the score function is the first derivative vector

S(θ) =
∂

∂θ
logL(θ),

and the MLE θ̂ is the solution of the score equation S(θ) = 0. The Fisher

information I(θ̂) is a matrix of second derivatives with elements

Iij(θ̂) = − ∂2

∂θi∂θj
logL(θ)

∣∣∣∣
θ=θ̂

.

The original idea of the Fisher information introduced in Section 2.5 is
related to a quadratic approximation of the log-likelihood function. Such
an idea has a natural extension in the multiparameter case. In regular cases
the likelihood function can be represented by the MLE θ̂ and information
matrix I(θ̂) via a second-order approximation

logL(θ) ≈ logL(θ̂) + S(θ̂)(θ − θ̂)− 1

2
(θ − θ̂)′I(θ̂)(θ − θ̂)
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= logL(θ̂)− 1

2
(θ − θ̂)′I(θ̂)(θ − θ̂).

Example 3.7: Let x1, . . . , xn be an iid sample from N(μ, σ2). Taking deriva-
tives of the log-likelihood (3.1), we obtain the score functions

S1(μ, σ
2) =

∂

∂μ
logL(μ, σ2) =

1

σ2

∑
i

(xi − μ)

S2(μ, σ
2) =

∂

∂σ2
logL(μ, σ2) = − n

2σ2
+

1

2σ4

∑
i

(xi − μ)2.

Equating these to zero yields the MLEs

μ̂ = x

σ̂2 =
1

n

∑
i

(xi − x)2.

Note the 1/n divisor for the variance estimate, which is different from the usual
1/(n− 1) divisor for the sample variance S2.

Taking further derivatives of the log-likelihood gives the Fisher information
matrix

I(μ̂, σ̂2) =

(
n/σ̂2 0
0 n/(2σ̂4)

)
. �

Example 3.8: Suppose x1, . . . , xn are an iid sample from the gamma distri-
bution with density

p(x) =
1

Γ(α)
λαxα−1e−λx, x > 0.

The log-likelihood of θ ≡ (λ, α) is

logL(θ) =
∑
i

{− log Γ(α) + α log λ+ (α− 1) log xi − λxi}

= −n log Γ(α) + nα log λ+ (α− 1)
∑
i

log xi − λ
∑
i

xi.

The score function is a vector with elements

S1(θ) =
∂ logL(λ, α)

∂λ
=

nα

λ
−
∑
i

xi,

S2(θ) =
∂ logL(λ, α)

∂α
= −nψ(α) + n log λ+

∑
i

log xi,

where ψ(α) ≡ ∂ log Γ(α)/∂α. The MLE (λ̂, α̂) satisfies

λ̂ =
nα̂∑
i
xi

=
α̂

x
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and

−nψ(α̂) + n log(α̂/x) +
∑
i

log xi = 0. (3.2)

A numerical procedure is needed to solve (3.2).

The elements of the Fisher information matrix I(θ̂) are

I11 =
nα̂

λ̂2

I12 = −n

λ̂
I21 = I12

I22 = nψ′(α̂). �

Example 3.9: Suppose n1, . . . , nk are a sample from the multinomial distri-
bution with known N =

∑
i
ni and unknown probabilities p1, . . . , pk. The MLE

is p̂i = ni/N . We can show this, using the Lagrange multiplier technique, by
maximizing

Q(p1, . . . , pk, λ) =
∑
i

ni log pi + λ

(∑
i

pi − 1

)

with respect to p1, . . . , pk and λ (Exercise 3.12). The estimate is intuitive, since
we can collapse the categories into two: the i’th category and the rest, hence
creating binomial data.

Often there are theories on how the probabilities vary with a certain param-
eter θ, so pi ≡ pi(θ). The log-likelihood of θ is

logL(θ) =
∑
i

ni log pi(θ).

The following table shows the grouped data of 100 measurements of the speed of
light (as deviations from 299 in 1000’s km/s) from Michelson’s experiment. (The
original data are given in Example 4.8.)

Intervals Counts Probability
x ≤ 0.75 n1 = 9 p1

0.75 < x ≤ 0.85 n2 = 46 p2
0.85 < x ≤ 0.95 n3 = 33 p3
0.95 < x ≤ 1.05 n4 = 11 p4

x > 1.05 n5 = 1 p5

Suppose the original data x1, . . . , x100 are an iid sample from N(μ, σ2). A
particular probability pi is given by a normal probability; for example,

p1(μ, σ) = P (X ≤ 0.75) = Φ
(
0.75− μ

σ

)
where Φ(·) is the standard normal distribution function.
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There is no closed formula for the MLEs. Numerical optimization of the
likelihood yields the MLEs

μ̂ = 0.8485, σ̂ = 0.0807.

This compares to μ̂ = 0.8524 and σ̂ = 0.0790 from the original data; see Ex-
ample 4.8 for further discussion. The Fisher information based on the grouped
data

I(μ̂, σ̂) =

(
13507.70 513.42
513.42 21945.03

)
is also found numerically. �

3.4 Profile likelihood
While the definition of likelihood covers the multiparameter models, the
resulting multidimensional likelihood function can be difficult to describe
or to communicate. Even when we are interested in several parameters, it is
always easier to describe one parameter at a time. The problem also arises
in cases where we may be interested in only a subset of the parameters;
in the normal model, we might only be interested in the mean μ, while σ2

is a ‘nuisance’, being there only to make the model able to adapt to data
variability. A method is needed to ’concentrate’ the likelihood on a single
parameter by eliminating the nuisance parameter.

Accounting for the extra uncertainty due to unknown nuisance param-
eters is an essential consideration, especially in small-sample cases. Almost
all of the analytical complexities in the theory and application of the like-
lihood are associated with this problem. Unfortunately, there is no single
technique that is acceptable in all situations (see, for example, Bayarri et
al. 1987). Speaking of the uncertainty about one parameter independently
from the other is not always meaningful.

The likelihood approach to eliminate a nuisance parameter is to replace
it by its MLE at each fixed value of the parameter of interest. The resulting
likelihood is called the profile likelihood. It is a pragmatic approach that
leads to a reasonable answer. We will discuss the problem of nuisance
parameters more responsibly in Chapter 10.

Bayesians eliminate all unwanted parameters by integrating them out;
that is consistent with their view that parameters have regular density func-
tions. However, the likelihood function is not a probability density function,
and it does not obey probability laws (see Section 2.8), so integrating out a
parameter in a likelihood function is not a meaningful operation. It turns
out, however, there is a close connection between the Bayesian integrated
likelihood and a modified profile likelihood (Section 10.6).

For the moment we will only introduce the bare minimum to be able
to deal with the basic models in the next chapter. Specifically, let (θ, η) be
the full parameter and θ is the parameter of interest.

Definition 3.3 Given the joint likelihood L(θ, η) the profile likelihood of
θ is
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L(θ) = max
η

L(θ, η),

where the maximization is performed at fixed value of θ.

It should be emphasized that at fixed θ the MLE of η is generally a
function of θ, so we can also write

L(θ) = L(θ, η̂θ).

The profile likelihood is then treated like a regular likelihood; for example,
we can normalize it, display it, calibrate it and compute likelihood intervals
from it. Note that we have adopted a convenient generic notation for the
likelihood function L(·), where the named argument and context determine
the meaning of the function. This is similar to using the symbol P (·) to
indicate the ‘probability of’ the event inside the bracket. If there is any
danger of confusion, we use Lp(θ) to indicate a profile likelihood.

Example 3.10: Suppose x1, . . . , xn are an iid sample from N(μ, σ2) with both
parameters unknown. The likelihood function of (μ, σ2) is given by

L(μ, σ2) =

(
1√
2πσ2

)n

exp

{
− 1

2σ2

∑
i

(xi − μ)2

}
.

A likelihood of μ without reference to σ2 is not an immediately meaningful quan-
tity, since it is very different at different values of σ2. As an example, suppose
we observe

0.88 1.07 1.27 1.54 1.91 2.27 3.84 4.50 4.64 9.41.

The MLEs are μ̂ = 3.13 and σ̂2 = 6.16. Figure 3.1(a) plots the contours of the
likelihood function at 90%, 70%, 50%, 30% and 10% cutoffs. There is a need to
plot the likelihood of each parameter individually: it is more difficult to describe
or report a multiparameter likelihood function, and usually we are not interested
in a simultaneous inference of μ and σ2.

The profile likelihood function of μ is computed as follows. For fixed μ the
maximum likelihood estimate of σ2 is

σ̂2
μ =

1

n

∑
i

(xi − μ)2,

so the profile likelihood of μ is

L(μ) = constant× (σ̂2
μ)

−n/2.

This is not the same as

L(μ, σ2 = σ̂2) = constant× exp

{
− 1

2σ̂2

∑
i

(xi − μ)2

}
,

the slice of L(μ, σ2) at σ2 = σ̂2; this is known as an estimated likelihood. Both
likelihoods will be close if σ2 is well estimated, otherwise the profile likelihood is
preferred.
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Figure 3.1: (a) Likelihood function of (μ, σ2). The contour lines are plotted
at 90%, 70%, 50%, 30% and 10% cutoffs; (b) Profile likelihood of the mean
μ (solid), L(μ, σ2 = σ̂2) (dashed), and L(μ, σ2 = 1) (dotted).

For the observed data L(μ) and L(μ, σ2 = σ̂2) are plotted in Figure 3.1(b). It
is obvious that ignoring the unknown variability, e.g. by assuming σ2 = 1, would
give a wrong inference. So, in general a nuisance parameter is needed to allow
for a better model, but it has to be eliminated properly in order to concentrate
the inference on the parameter of interest.

The profile likelihood of σ2 is given by

L(σ2) = constant× (σ2)−n/2 exp

{
− 1

2σ2

∑
i

(xi − x)2

}
= constant× (σ2)−n/2 exp{−nσ̂2/(2σ2)}. �

Curvature of profile likelihood

The curvature of a profile log-likelihood is related to the elements of the
Fisher information matrix; the proof is given in Section 9.11. Suppose we
are interested in θ1 from the total parameter θ = (θ1, θ2). We partition the

information matrix I(θ̂) as

I(θ̂) ≡
(

I11 I12
I21 I22

)
and its inverse

I−1(θ̂) ≡
(

I11 I12

I21 I22

)
.

Then the curvature of the profile log-likelihood of θ1 is not I11, but (I
11)−1.

The latter is, in general, smaller than the former; the proof is given in
Section 8.7. As an example, consider the following matrix:

I(θ̂) =

(
2.3 2.8
2.8 4.3

)
.
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The inverse is

I−1(θ̂) =

(
2.097561 −1.365854

−1.365854 1.121951

)
so, for example, I11 = 2.3 is greater than (I11)−1 = 1/2.097561 = 0.48.

This numerical result has a simple statistical interpretation: the infor-
mation index I11 is the curvature of the log-likelihood of θ1, where θ2 is
assumed known at the observed MLE θ̂2, while (I11)−1 is the information
on θ1 that takes into account that θ2 is unknown. Hence, it is sensible that
I11 is greater than (I11)−1.

From the result above, individual profile likelihoods for each parameter
can be quadratically approximated using the pair {θ̂i, (Iii)−1} via

logL(θi) ≈ −1

2
(Iii)−1(θi − θ̂i)

2,

and the standard error of θ̂i is simply

se(θ̂i) =
√
Iii,

namely the square root of the diagonal elements of I−1(θ̂). For Michelson’s
data in Example 3.9 we obtain

I−1(μ̂, σ̂) =

(
7.409771× 10−05 −1.733578× 10−06

−1.733578× 10−06 4.560895× 10−05

)
and

se(μ̂) =
√

7.409771× 10−05 = 0.0086.

3.5 Calibration in multiparameter case
A fundamental question in likelihood inference is how one should react
to an observed likelihood. In the one parameter case we can declare a
hypothesis is doubtful if its likelihood is less than 15%, say. We will now
show that, in repeated sampling sense, this prescription does not work in
higher dimensions.

Consider the case of several normal means; the results are approxi-
mately true in the general case if the likelihood is regular. Let x1, . . . , xp be
an independent sample from the normal distribution with mean μ1, . . . , μp,
respectively, and known common variance σ2. Suppose we are interested
to test H0: μ1 = · · · = μp = 0 against the alternative that at least one μi is
not zero. The standard test statistic in this case is Wilk’s likelihood ratio
statistic

W ≡ 2 log
L(θ̂)

L(θ0)
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=

p∑
i=1

x2
i

σ2
,

where θ = (μ1, . . . , μp), and θ0 = (0, . . . , 0). Under H0 the random variate
W has a χ2 distribution with p degrees of freedom. In classical (frequen-
tist) computations we use this distribution theory to calibrate the observed
likelihood ratio.

A classical test of level α is to reject H0: θ = θ0 if

2 log
L(θ̂)

L(θ0)
> χ2

p,(1−α) (3.3)

or, in terms of likelihood, if

L(θ0)

L(θ̂)
< e−

1
2χ

2
p,(1−α) . (3.4)

An observed L(θ0)/L(θ̂) = r corresponds to w = −2 log r, and

P-value = P (W ≥ −2 log r),

which depends on the degrees of freedom or the number of parameters
being tested.

An observed w = 3.84 is associated with a fixed likelihood of 15% and
the following P-values depending on p:

p 1 2 3 4 5 6 7 8 9 10
P-value 0.05 0.15 0.28 0.43 0.57 0.70 0.80 0.87 0.92 0.95

(It can be verified generally for p = 2 that the likelihood of H0 is the
same as the P-value.) The table indicates that in high dimensions it is not
at all unusual to get a likelihood of 15% or less. So declaring significant
evidence with 15% critical value will lead to many spurious results, and it
is essential to calibrate an observed likelihood differently depending on the
dimensionality of the parameter.

When there are nuisance parameters, we have stated in Section 3.4
that a profile likelihood of the parameters of interest is to be treated like
a regular likelihood. This means that the calibration of a multiparameter
profile likelihood also follows the result above.

Likelihood-based confidence region
From (3.4) it is immediate that the set{

θ,
L(θ)

L(θ̂)
> e−

1
2χ

2
p,(1−α)

}

is a 100(1−α)% confidence region for θ. In the normal case the confidence
level is exact, otherwise it is only approximate.
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Because of display problems confidence regions are only used (if at all)
for two-parameter cases. At p = 2 we can show this interesting relationship:{

θ,
L(θ)

L(θ̂)
> α

}

is a 100(1−α)% confidence region for θ. For example, Figure 3.1(a) shows
approximate 90%, . . . ,10% confidence regions for (μ, σ2).

AIC-based calibration

In Section 2.6 we discuss pure likelihood and probability-based inference;
for multiparameter problems the latter has just been described. How can
we account for parameter dimension in pure likelihood inference, without
appealing to probability considerations? One solution, proposed by Lindsey
(1999b), leads to the Akaike information criterion (AIC), a general criterion
for model selection. To get the idea in the simplest case, suppose we have
two parameters θ1 and θ2 such that

L(θ1, θ2) = L(θ1)L(θ2).

Suppose, individually, the likelihood of H0: θ1 = 0 and H0: θ2 = 0 are
both 0.2, so the joint likelihood of H0: θ1 = θ2 = 0 is 0.22 = 0.04. A
simplistic prescription that a likelihood less than 15% indicates evidence
against a hypothesis leads to a logical problem: H0: θ1 = θ2 = 0 is rejected,
but individually we do not have evidence to reject either H0: θ1 = 0 or
H0: θ1 = 0.

An immediate solution is to compare the likelihood with cp, where c is
the critical value for a single parameter and p is the dimension of the param-
eter space. So, in the above example, if we set c = 0.15, then the joint like-
lihood of H0: θ1 = θ2 = 0 must be compared against 0.152 = 0.0225. The
evaluation of hypotheses in different dimensions is then logically compati-
ble, in the sense that if H0: θ1 = θ2 = 0 is rejected, then one of H0: θ1 = 0
or H0: θ1 = 0 must be rejected.

The method to account for the dimension of the parameter space above
is closely related to the AIC, discussed in detail in Section 13.5. The AIC
of a model with free parameter θ is defined as

AIC = −2 logL(θ̂) + 2p, (3.5)

where θ̂ is the MLE and p is the dimension of θ. Using the AIC, the
log-likelihood of a model is penalized by the number of parameters in the
model, which makes for a fairer comparison between models or hypotheses.
The prescription is simple: the model with a smaller AIC wins.

A particular hypothesis H0: θ = θ0 describes a model of zero dimension
(it has no free parameter), so its AIC is

AIC(H0) = −2 logL(θ0).
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Based on the AIC, the full model with free parameter θ is preferable to the
simple model H0: θ = θ0 (i.e. evidence against H0) if

2 log
L(θ̂)

L(θ0)
> 2p (3.6)

or
L(θ0)

L(θ̂)
< e−p; (3.7)

that is, if the likelihood of θ0 is less than cp, using the critical value c =
e−1 = 0.37, which fits the method we just describe above. It is instructive
to compare (3.3) against (3.6), and (3.4) against (3.7).

One controversial aspect of the use of AIC is in how to attach signif-
icance (in the classical P-value sense) to an observed difference. There is
no easy answer to this problem. While it is possible to derive the AIC
using large-sample theory, Lindsey’s idea of compatible inference implies
that (3.7) can be justified from the likelihood alone. This means the AIC
has the same logical level as a pure likelihood inference: it is weaker than
probability-based inference, and it is especially useful if probability-based
inference is not available.

At a fixed level of α, the critical value χ2
p,(1−α) increases with p, but

not as fast as 2p in the AIC-based calibration. For α = 0.05 we have:

p 1 2 3 4 5 7 8 10
2p 2 4 6 8 10 14 16 20
χ2
p,1−α 3.84 5.99 7.81 9.49 11.07 14.07 15.51 18.31

Compared with the probability-based χ2 criterion, the AIC would allow
a model to grow (p > 1), but it does not permit too many parameters
(p > 6). Using the AIC is equivalent to changing the α-level depending on
the number of parameters.

3.6 Exercises
Exercise 3.1: Prove Theorem 3.1.

Exercise 3.2: Use the factorization theorem to find the (nontrivial) sufficient
statistics based on an iid sample from the following distributions:

(a) Uniform on (0, θ).

(b) Uniform on (θ − 1, θ + 1).

(c) Uniform on (θ1, θ2) with both parameters unknown.

(d) Uniform on (−θ, θ).

(e) Uniform on (θ, 2θ).

(f) Uniform in the circle with mean (0, 0) and radius θ.

(g) Uniform in the square (θ − 1, θ + 1)× (θ − 1, θ + 1).

(h) Exponential with mean θ.
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(i) Gamma with density

p(x) =
1

Γ(α)
λαxα−1e−λx, x > 0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(j) Weibull with distribution function

F (x) = 1− e−(λx)α , x > 0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(k) Beta with density

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1,

first assuming one parameter is known, then assuming both parameters are
unknown.

Exercise 3.3: We have shown that if x1, . . . , xn are an iid sample from N(θ, 1)
then x is sufficient for θ. What is the conditional distribution of the data given
x? (It must be free of θ.) How would you simulate a dataset from the conditional
distribution?

Exercise 3.4: Suppose the model Pθ is the class of all continuous distributions;
this is called a ‘nonparametric family’, where the unknown parameter θ is the
whole distribution function. Let x1, . . . , xn be an iid sample from Pθ. Show that
the order statistics are sufficient for Pθ.

Exercise 3.5: Suppose x1, . . . , xn are an iid sample from the double-exponential
distribution with density

pθ(x) = (2θ)−1e−|x|/θ.

It is obvious from the factorization theorem that t(x) =
∑

i
|xi| is sufficient.

What is the conditional distribution of the data given T = t?

Exercise 3.6: By definition, if T is sufficient for θ then p(x|T = t) is free of
θ. We can use this theoretical fact to remove nuisance parameters in hypothesis
testing. For example, suppose nij , for i = 1, . . . , I and j = 1, . . . , J , form a
two-way contingency table. We are interested to test the independence between
the row and column characteristics. Show that, under independence, the set of
marginal totals is sufficient. Explain how you might test the hypothesis.

Exercise 3.7: Establish if the statistics you found in Exercise 3.2 are minimal
sufficient.

Exercise 3.8: Find the minimal sufficient statistics in the following cases:

(a) yi, for i = 1, . . . , n, are independent Poisson with mean μi, with

log μi = β0 + β1xi,

where xi’s are known predictors, and (β0, β1) are unknown parameters.
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(b) yi, for i = 1, . . . , n, are independent Poisson with mean μi, with

μi = β0 + β1xi,

where xi’s are known predictors, and (β0, β1) are unknown parameters.

(c) y1, . . . , yn are an iid sample from N(θ, θ).

(d) y1, . . . , yn are an iid sample from N(θ, θ2).

(e) yi, for i = 1, . . . , n, are independent normal with mean μi and variance σ2,
with

μi = β0 + β1xi,

where xi’s are known predictors, and (β0, β1, σ
2) are unknown parameters.

(f) yi, for i = 1, . . . , n, are independent normal with mean μi, with

μi = β0 + β1e
β2xi ,

where xi’s are known predictors, and (β0, β1, β2, σ
2) are unknown parame-

ters.

Exercise 3.9: Suppose (x1, y1), . . . , (xn, yn) are an iid sample from the bivariate
normal distribution with mean (μx, μy) and covariance matrix

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
.

Find the minimal sufficient statistics under each of the following conditions:

(a) All parameters are unknown.

(b) All parameters are unknown, but σ2
x = σ2

y.

(c) Assuming σ2
x = σ2

y = 1, but all the other parameters are unknown.

Exercise 3.10: Let x1, . . . , xn be an iid sample. Show that for the Cauchy and
double-exponential model with location θ the entire order statistics are minimal
sufficient. The Cauchy density is

pθ(x) =
1

π{1 + (x− θ)2} , −∞ < x < ∞

and the double-exponential density is

pθ(x) =
1

2
e−|x−θ|, −∞ < x < ∞.

Exercise 3.11: Suppose x1, . . . , xn are an iid sample from the inverse Gaussian
distribution IG(μ, λ) with density

p(x) =
(

λ

2πx3

)1/2

exp

{
− λ

2μ2

(x− μ)2

x

}
, x > 0.

It has mean μ and variance μ3/λ.

(a) Derive the score equations for the MLE.
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(b) Find the Fisher information matrix.

Exercise 3.12: For the multinomial model in Example 3.9 show that p̂i =
ni/N . Find the Fisher information for (p1, . . . , pk−1).

Exercise 3.13: Suppose we have multinomial data n1, . . . , n5, but the last
probability is known to be p5 = 0.25. Find the MLE of the unknown probabilities
p1, . . . , p4, and interpret the result.

Exercise 3.14: In the ABO blood grouping, each person can be classified into
group A, B, O, or AB. Because of recessive and dominant characteristics, the
phenotypes consist of various genotypes according to A = {AA, AO}, B= {BB,
BO}, AB={AB} and O={OO}. Suppose that in a population the frequencies of
the ABO genes are p, q and r, respectively, with p+ q + r = 1.

(a) Assuming random mixing, show that the proportions of groups A, B, O and
AB are, respectively,

(p2 + 2pr), (q2 + 2qr), r2, 2pq.

(b) From a sample of 435 people we observe the following frequencies (Rao 1973,
page 372):

A = 182, B = 60, O = 176, AB = 17.

Find the MLEs of the parameters. (Use an optimization program.) Compare
the observed and estimated blood group frequencies.

(c) Report the standard errors of the estimates and the 95% Wald CIs.

(d) Find the profile likelihood of q, the proportion of gene B.

Exercise 3.15: Use the following data

2.85 1.51 0.69 0.57 2.29

to find the profile likelihood of the mean μ, where it is assumed that the data are
uniform on (μ− σ, μ+ σ) with unknown σ. Compare with the profile likelihood
assuming N(μ, σ2) model. Modify a single value of the data so that the profiles
become dramatically different.

Exercise 3.16: The following are the first 20 measurements of the speed of
light (as deviations from 299 in 1000’s km/s) from Michelson’s speed-of-light
experiment (see Example 4.8):

0.85 0.74 0.90 1.07 0.93 0.85 0.95 0.98 0.98 0.88
1.00 0.98 0.93 0.65 0.76 0.81 1.00 1.00 0.96 0.96

Denote the data by x1, . . . , xn, and assume these are an iid sample from N(θ, σ2)
with both parameters unknown. Let x(1), . . . , x(n) be the order statistics.

(a) Draw the likelihood of (θ, σ2) based only on x(1) and x(n). (See Example 2.4.)

(b) Compare the profile likelihood of μ based on the whole data, and the one
based only on x(1) and x(n).

(c) Repeat (a) and (b), where only the minimum, median and maximum values
are available.

(d) Repeat (a) and (b), where only the first, second and third quartiles are
available.

(e) Repeat (a) and (b), where the data are only available in grouped form:
x ≤ 0.75, 0.75 < x ≤ 0.85, 0.85 < x ≤ 0.95, 0.95 < x ≤ 1.05 and x > 1.05.
The numbers in each category are (2,4,5,8,1).
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Exercise 3.17: Plot the profile likelihood of σ2 for the data in Example 3.10.
The sample variance is commonly defined as

s2 =
1

n− 1

n∑
i=1

(xi − x)2.

It is known that (n − 1)s2/σ2 is χ2
n−1, which would generate a likelihood of σ2

free of μ; Fisher called this a second-stage likelihood. Using the data example,
compare this likelihood with the profile likelihood.

Exercise 3.18: Generalize the capture-recapture model in Example 2.2 to the
case of more than one unknown N . For example, suppose in the whole population
we have marked 55 deer of species A. In a sample of size 60 we identified 5 marked
deer of species A, 25 unmarked deer of species A, and 30 unmarked deer of species
B.

(a) Draw the joint likelihood of NA and NB , the population sizes of species A
and B. (Hint: use the hypergeometric probability involving more than two
types of objects.)

(b) Find the MLE of NA and NB , the Fisher information matrix, and the
standard errors.

(c) Compute the profile likelihood of NA and NB .

Exercise 3.19: Because of a possible connection with bovine tuberculosis it is
of interest to estimate the number N of badgers in a certain area. The traps set
in the area over five consecutive week periods caught 31, 15, 22, 19 and 6 badgers
each week, and each time they were removed from the area. Give a sensible
model to describe the number of catches, and present a likelihood inference on
N . (Hint: assume a Poisson model, where the catch rate is a function of the
current number of badgers. For example, yk is Poisson with mean λNk, where
Nk is the existing number of badgers, and λ is a nuisance parameter.)

Exercise 3.20: From Section 3.3, under what condition is I11 = (I11)−1? How
would you interpret this statistically?

Exercise 3.21: Let x1, . . . , xn be an iid sample from N(μ, σ2). Show that the
Fisher information matrix for the parameter θ = (μ, σ2) is

I(θ̂) =

(
n/σ̂2 0
0 n/(2σ̂4)

)
so the standard error of x is σ̂/

√
n. For the observed data in Example 3.10, check

the quadratic approximation for the profile likelihood of μ and σ2. Verify that

the curvatures at the maximum correspond to the appropriate entries of I−1(θ̂).

Exercise 3.22: Generalize the result in Exercise 2.20 for vector parameter θ,

and find the Fisher information of g(θ̂), where θ̂ ∈ Rp. In particular, show that

for a fixed vector a the standard error of a′θ̂ is

se(a′θ̂) = {a′I−1(θ̂)a}1/2.

As an important special case, if the Fisher information is diagonal, show that the

standard error of a contrast θ̂1 − θ̂2 is

se(θ̂1 − θ̂2)
2 = se(θ̂1)

2 + se(θ̂2)
2.
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Exercise 3.23: Let (x1, y1), . . . , (xn, yn) be an iid sample from the bivariate
normal distribution with mean zero and covariance matrix

Σ = σ2

(
1 ρ
ρ 1

)
.

(a) Verify the Fisher information

I(σ2, ρ) =

(
n
σ4 − nρ

σ2(1−ρ2)

− nρ
σ2(1−ρ2)

n(1+ρ2)

(1−ρ2)2

)
,

and find a standard error formula for ρ̂.

(b) For the following IQ scores, where x = verbal thinking and y =mathematical
thinking, jointly and individually, draw the likelihood of σ2 and ρ. Compare
I22 with (I22)−1 and comment. (For simplicity, assume the mean is known
at the observed value, so the data can be centred before analysis.)

x y x y
109 116 85 91
88 77 100 88
96 95 113 115
96 79 117 119
109 113 107 100
116 122 104 115
114 109 101 95
96 94 81 90

(c) Investigate how well the quadratic approximation works. Experiment with
transformations of ρ and σ2 to get a more regular likelihood.

(d) The so-called Fisher’s z transform of the sample correlation

z =
1

2
log

1 + ρ̂

1− ρ̂

is approximately normal with mean

ψ =
1

2
log

1 + ρ

1− ρ

and variance 1/(n − 3). Compare the likelihood of ρ based on Fisher’s z
transform with the profile likelihood.
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Basic models and simple
applications

We use models to represent reality in simpler ways, so we can understand,
describe, predict or control it better. In statistics, the reality is variability,
without which there would be no statistics (and life would be rather dull).
In modelling we typically separate a systematic pattern from the stochastic
variation. The systematic pattern may describe a relationship between
variables of interest, while the stochastic variation usually represents the
unaccounted part of the total variation. Probability models are used to
represent this stochastic variation.

From a statistical point of view, any probability model has the poten-
tial for data analysis, although we tend to concentrate on models that are
convenient from analytical and computational aspects, and have parame-
ters that are easy to interpret. The models covered in this chapter are the
basic building blocks for real data analytic models. Only the simplest sys-
tematic structure is presented, mostly in terms of one-sample or one-group
structure. The exceptions are the comparison of two binomial proportions
and two Poisson means.

4.1 Binomial or Bernoulli models
The Bernoulli model is useful for experiments with dichotomous outcomes.
Each experimental unit is thought of as a trial; in their simplest form
Bernoulli trials are assumed to be independent, each with probability θ for
a successful outcome. Some simple examples are a coin tossing experiment,
the sex of children in a family, the success or failure of business enterprises,
the success or failure of a medical procedure, etc. In studies of twins it is
common to collect data where at least one of the twins has a particular
condition; in these studies a pair of twins is the ‘trial’ and the ‘success’
occurs if both twins have the condition. Such a study usually tries to
establish if there is a genetic factor in the condition under examination.

Suppose we observe x ≡ (x1, . . . , xn), which are a realization of a
Bernoulli experiment with P (Xi = 1) = θ and P (Xi = 0) = 1 − θ. The
likelihood function is

L(θ) =

n∏
i=1

θxi(1− θ)1−xi
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= θ
∑

xi(1− θ)n−
∑

xi .

Example 4.1: For example, we observe a sequence 0111110111; then n = 10,∑
xi = 8, and the likelihood function for θ is given in Figure 4.1. It is easy to

show that the MLE is θ̂ =
∑

xi/n = 0.8. The likelihood interval at 15% cutoff
(computed numerically) is (0.50,0.96); since the likelihood is reasonably regular
this is an approximate 95% CI for θ. (From here on, we will report only one
interval or the other depending on the regularity of the likelihood, and we will
err on the side of regularity.) �
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Likelihood from Bernoulli trial

Figure 4.1: Likelihood function of θ from a Bernoulli experiment with out-
come 0111110111, so n = 10 and

∑
xi = 8. This is the same likelihood

from a binomial experiment with n = 10 trials and x = 8 successes. The
approximate 95% CI is (0.50,0.96).

We have described the likelihood construction for a simple binomial
observation in Section 2.1. For completeness, suppose X ∼ binomial(n, θ)
and we observe X = x; then

L(θ) =

(
n
x

)
θx(1− θ)n−x.

If we observe x = 8 successes in n = 10 trials, the likelihood function and
other quantities are exactly as obtained above. This is sensible since know-
ing the order of the 0–1 outcomes in an independent Bernoulli experiment
should not add any information about θ; this would not be the case if, for
example, the sequence is dependent and the dependence is also a function
of θ.

Discrete data are usually presented in grouped form. For example,
suppose x1, . . . , xN are an iid sample from binomial(n, θ) with n known.
We first summarize the data as
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k 0 1 · · · n
nk n0 n1 · · · nn

where nk is the number of xi’s equal to k, so
∑

k nk = N . We can now
think of the data (n0, . . . , nn) as having a multinomial distribution with
probabilities (p0, . . . , pn) given by the binomial probabilities

pk =

(
n
k

)
θk(1− θ)n−k.

The log-likelihood is given by

logL(θ) =
n∑

k=0

nk log pk.

We can show that the MLE of θ is

θ̂ =

∑
k knk

Nn

with standard error

se(θ̂) =

√
θ̂(1− θ̂)

Nn
.

Example 4.2: In a classic study of human sex ratio in 1889, based on hospital
records in Saxony, Geissler reported the distribution of the number of boys per
family. Among 6115 families with 12 children he observed:

No. boys k 0 1 2 3 4 5 6
No. families nk 3 24 104 286 670 1033 1343

No. boys k 7 8 9 10 11 12
No. families nk 1112 829 478 181 45 7

The estimated proportion of boys is

θ̂ =

∑
k
knk

6115× 12
=

38, 100

6115× 12
= 0.5192,

with standard error se(θ̂) = 0.0018. (For comparison, in Ireland in 1994 the
proportion of boys among 48,255 births was 0.5172.) �

Negative binomial model
In the so-called negative or inverse binomial experiment we continue a
Bernoulli trial with parameter θ until we obtain x successes, where x is
fixed in advance. Let n be the number of trials needed; the likelihood
function is

L(θ) = Pθ(N = n)

=

(
n− 1
x− 1

)
θx(1− θ)n−x.

Again here we find the same likelihood function as the one from the bino-
mial experiment, even though the sampling property is quite different. This



76 4. Basic models and simple applications

is an example where the likelihood function ignores the sampling scheme.
Further uses of the negative binomial model are given in Section 4.5, which
connects it with the Poisson model.

4.2 Binomial model with under- or overdisper-
sion

For modelling purposes the binomial model has a weakness in that it spec-
ifies a rigid relationship between the mean and the variance.

Example 4.3: In Example 4.2, using the estimate θ̂ = 0.5192 we can compute
the expected frequencies

ek = Np̂k,

given in the table below. We then obtain the goodness-of-fit statistic

χ2 =
∑
k

(nk − ek)
2

ek
= 110.5,

which is highly significant at 11 degrees of freedom. To see the nature of the
model violation, define a residual

rk =
nk − ek√

ek

such that χ2 =
∑

k
r2k.

No. boys k 0 1 2 3 4 5 6
Observed nk 3 24 104 286 670 1033 1343
Expected ek 1 12 72 258 628 1085 1367
Residual rk 2.1 3.4 3.8 1.7 1.7 −1.6 −0.7

No. boys k 7 8 9 10 11 12
Observed nk 1112 829 478 181 45 7
Expected ek 1266 854 410 133 26 2
Residual rk −4.3 −0.9 3.4 4.2 3.7 3.0

Hence the observed frequencies tend to be larger at the edges, and lower in the
middle of the distribution, indicating greater variability than expected under the
binomial model. �

We now describe theoretically how the standard binomial model might
fail. SupposeX1, . . . , Xn are independent Bernoulli trials with probabilities
p1, . . . , pn. Let X =

∑
i Xi; then

E(X) =
∑

pi ≡ nθ

where θ =
∑

pi/n, but

var(X) =
∑
i

var(Xi)

=
∑
i

pi(1− pi)
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=
∑
i

pi −
∑
i

p2i

=
∑
i

pi − (
∑
i

pi)
2/n− {

∑
i

p2i − (
∑
i

pi)
2/n}

= nθ − nθ2 − nσ2
p

= nθ(1− θ)− nσ2
p,

where we have defined the variance among the pi’s as

σ2
p =

1

n

{∑
i

p2i −
(
∑

i pi)
2

n

}
.

So, allowing individual Bernoulli probabilities to vary produces less-than-
standard binomial variance.

Now, suppose Xi’s, for i = 1, . . . ,m, are independent binomial(n, pi),
and let X = XI be a random choice from one of these Xi’s, i.e. the random
index I = i has probability 1/m. This process produces a mixture of
binomials with marginal probability

P (X = x) = E{P (XI = x|I)}

=
1

m

m∑
i=1

P (Xi = x)

=
1

m

∑
i

(
n
x

)
pxi (1− pi)

n−x,

which does not simplify further, but

E(X) = E{E(XI |I)}
=

1

m

∑
i

E(Xi)

=
n

m

∑
i

pi ≡ nθ

where we set θ =
∑

pi/m. The variance is

var(X) = E{var(XI |I)}+ var{E(XI |I)}
=

1

m

∑
i

var(Xi) +
1

m

∑
i

E2(Xi)− (
∑
i

E(Xi)/m)2

=
1

m

∑
i

npi(1− pi) +
1

m

∑
i

(npi)
2 − (nθ)2

= nθ(1− θ) + n(n− 1)σ2
p

where σ2
p is the variance among the pi’s as defined previously. So, here we

have greater-than-standard binomial variation.
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The equal sampling probability simplifies the previous evaluation of
mean and variance, but the extra-binomial variance is always observed
when we sample from a mixed population. For example, if families in the
population have different probabilities pi’s for an outcome of interest xi,
then a random sample of families will exhibit values with extra-binomial
variance.

A wrong binomial assumption can adversely impact inference by pro-
ducing wrong standard errors (i.e. the assumed likelihood is too narrow
or too wide). Section 4.9 describes a general model that allows under- or
overdispersion within the general exponential family models. In random
effects modelling (Section 17.1) the individual estimates of pi’s may be of
interest, in which case we typically put more structure on how they vary.
Lindsey and Altham (1998) analyse Geissler’s (complete) data taking the
overdispersion into account; see also Exercise 4.4.

4.3 Comparing two proportions
Comparing two binomial proportions is probably the most important sta-
tistical problem in epidemiology and biostatistics.

Example 4.4: A geneticist believes she has located a gene that controls the
spread or metastasis of breast cancer. She analyzed the expression pattern of the
gene in the cells of 15 patients whose cancer had spread (metastasized) and 10
patients whose cancer did not spread. The first group had 5 patients with the gene
overexpressed, while one patient in the second group had the gene overexpressed.
Such data are usually presented in a 2×2 table:

Overexpression Spread Localized Total
Present 5(33%) 1(10%) 6
Absent 10 9 19
Total 15 10 25

Is the evidence strong enough to justify her belief? �

It is instructive to start with the (large-sample) frequentist solution.
First put names on the elements of the 2× 2 table

Spread Localized Total
Present x y t = x+ y
Absent m− x n− y N − t
Total m n N = m+ n

The standard test of equality of proportions is the famous χ2 test given by

χ2 =
N{x(n− y)− y(m− x)}2

mnt(N − t)
,

which, under the null hypothesis, has χ2
1 distribution.

For the observed data

χ2 =
25(5× 9− 1× 10)2

15× 10× 6× 19
= 1.79,
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producing a P-value of 0.18; this is a two-sided P-value for the hypothesis
of equal proportion. This method has an appealing simplicity, but note
that in small samples its validity is doubtful, and it does not give full
information about the parameter of interest (e.g. it is not clear how to get
a confidence interval).

In small-sample situations we commonly use the so-called Fisher’s exact
test. Under the null hypothesis and conditional on the observed margins,
the probability of an observed table is a hypergeometric probability

p(x) =

(
m
x

)(
n
y

)
(

m+ n
x+ y

) .

Fisher’s exact P-value is then computed as the probability of the observed
or more-extreme tables. For the above example, there is only one more-
extreme table, namely when we get 0 ‘present’ out of 10 localized cases.
The one-sided P-value is

P-value =

(
15
5

)(
10
1

)
(

25
6

) +

(
15
6

)(
10
0

)
(

25
6

) = 0.17 + 0.03 = 0.20.

To proceed with a likelihood analysis, suppose the number of successes
X in the first group is binomial B(m,πx), and, independently, Y in the
second group is B(n, πy). On observing x and y the joint likelihood of
(πx, πy) is

L(πx, πy) = πx
x(1− πx)

m−xπy
y(1− πy)

n−y.

The comparison of two proportions can be expressed in various ways, for
example using the difference πx − πy, the relative risk πx/πy or the log
odds-ratio θ defined by

θ = log
πx/(1− πx)

πy/(1− πy)
.

In terms of θ the null hypothesis of interest H0: πx = πy is equivalent to
H0: θ = 0. Each parameterization has its own advantage/disadvantage in
terms of interpretation and statistical properties.

The reader can check that, in small samples, the likelihood of the log
odds-ratio is more regular than the likelihood of the other parameters.
So, we will consider the log odds-ratio parameter θ as the parameter of
interest. Any other parameter can be used as a nuisance parameter, but
for convenience we will use the log odds η defined by

η = log
πy

1− π
.
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Some simple algebra would show that

πy =
eη

1 + eη

πx =
eθ+η

1 + eθ+η
.

Therefore, we get the joint likelihood

L(θ, η) =

(
πx

1− πx

)x

(1− πx)
m

(
πy

1− πy

)y

(1− πy)
n

=

(
πx/(1− πx)

πy/(1− πy)

)x(
πy

1− πy

)x+y

(1− πx)
m(1− πy)

n

= eθxeη(x+y)(1 + eθ+η)−m(1 + eη)−n.

The MLE of θ is available directly from the invariance property:

θ̂ = log
x/(m− x)

y/(n− y)
.

The standard error has an interesting formula

se(θ̂) =

(
1

x
+

1

y
+

1

m− x
+

1

n− y

)1/2

.

Its derivation is left as an exercise.
To get the profile likelihood of θ we can compute the MLE of η at each

fixed value of θ, but there is no closed form formula for the MLE. The profile
likelihood has to be computed numerically according to the definition:

L(θ) = max
η

L(θ, η).

Example 4.4: continued. Figure 4.2(a) shows the contours of the joint
likelihood at 10%, 30%, 50%, 70% and 90% cutoffs. The profile likelihood in
Figure 4.2(b) shows little evidence of the gene associated with the spread of
cancer. The likelihood-based 95% CI for θ is (−0.54,4.52), with the corresponding
95% CI (0.58,92.22) for the odds ratio. The MLE of θ is

θ̂ = log
5/10

1/9
= 1.50

with se(θ̂) = 1.19.
Now consider the analysis of the more extreme table: x = 6 out of m = 15,

versus y = 0 out of n = 10. The MLE of θ is θ̂ = ∞, and the likelihood is
irregular. Figure 4.2(c) shows the joint likelihood, and Figure 4.2(d) the profile
likelihood. The 15% likelihood interval for θ is now a naturally one-sided interval
θ > 0.93. The likelihood ofH0: θ = 0 is around 2.5%, indicating stronger evidence
of association. �
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(b) Profile likelihood
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(d) Profile likelihood

Figure 4.2: (a) Joint likelihood of θ and η for the original data. (b) Profile
likelihood of θ. (c) For extreme data: 6 out of 15 versus 0 out of 10. (d)
Profile likelihood from (c).

A series of 2×2 tables

In practice, we often stratify the study groups according to some risk fac-
tor if the risk factor is not balanced. For example, the evidence of cancer
depends on age, and the two groups being compared have different age
distributions. In epidemiology, age is called a confounding variable. Strat-
ifying by age reduces the comparison bias due to confounding. Thus we
divide the study subjects into young and old strata, and for each stratum
we construct a 2×2 table.

Assuming the tables have a common odds-ratio parameter θ, we can
compute the profile likelihood Li(θ) from each table, and combine them
using

logL(θ) =
∑
i

logLi(θ).

This method works for a small number of strata, otherwise there can be a
serious bias problem; the proper method for combining information from
many sparse tables is given in Section 10.5.
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4.4 Poisson model
A discrete random variable X has a Poisson distribution with parameter θ
if

P (X = x) = e−θ θ
x

x!
.

This model is extremely versatile for modelling any data involving counts:
the number of accidents on a highway each year, the number of deaths due
to a certain illness per week, the number of insurance claims in a region
each year, the number of typographical errors per page in a book, etc.
The famous example of the number of soldiers killed by horse kicks in the
Prussian army is given in Exercise 4.12.

For modelling purposes, it is fruitful to remember that the Poisson
model with mean θ is an approximation of the binomial model with large
n and a small success probability π = θ/n:

P (X = x) =

(
n
x

)
πx(1− π)n−x

=
n!

(n− x)!x!

(
θ

n

)x(
1− θ

n

)n−x

=
n · (n− 1) · · · (n− x+ 1)

nx
× θx

x!

(
1− θ

n

)n−x

→ θx

x!
e−θ.

On observing an iid sample x1, . . . , xn from Poisson(θ), the likelihood
of θ is given by

L(θ) = e−nθθ
∑

xi .

The maximum likelihood estimate is θ̂ = x with standard error se(θ̂) =√
x/n. We can check that the likelihood is quite regular if

∑
xi is large

enough; this is true even for n = 1.

Example 4.5: For each year in the past 5 years, a town recorded 3, 2, 5, 0 and
4 earthquakes (of at least a certain magnitude). Assuming a Poisson model, the
likelihood function of the earthquake frequency θ is given in Figure 4.3. There

was an average of θ̂ = 2.8 (se = 0.75) earthquakes per year, with approximate
95% CI 1.6 < θ < 4.5. �

Example 4.6: The Poisson assumption can be checked if we have grouped data.
Jenkins and Johnson (1975) reported 64 incidents of international terrorism in the
USA between January 1968 and April 1974. The data are categorized according
to the monthly number of incidents as follows:
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Figure 4.3: Likelihood function of earthquake frequency.

Number of Number of
incidents k months nk

0 38
1 26
2 8
3 2
4 1
12 1

The idea of a Poisson plot (Hoaglin and Tukey 1985) is to plot k against a
function of nk such that it is expected to be a straight line for Poisson data.
Since pk = P (X = k) = e−θθk/k!, then

log pk + log k! = −θ + k log θ,

indicating that we should plot log(pkk!) versus k, where pk is estimated by
nk/
∑

nk. Figure 4.4 shows that the months with k = 0, . . . , 3 incidents fol-
low the Poisson prescription, but the month with 4 incidents is rather unusual
and the one with 12 incidents is extremely unusual. (It turns out that 11 of those
12 incidents were carried out by an anti-Castro group. This raises inductive
questions as discussed in Section 1.3: how should we define an event? Should we
instead count the groups involved?)

In general, for a Poisson model with mean θ the likelihood based on observing
nk, for k = 0, 1, . . ., is

L(θ) =
∏
k

p
nk
k ,

where pk = P (X = k) = e−θθk/k!, and the log-likelihood is

logL(θ) = −θ
∑
k

nk +
∑
k

knk log θ.

We can show that the MLE θ̂ =
∑

k
knk/

∑
k
nk. Figure 4.4 shows the likelihood

functions including and excluding the month with k = 12. It is clear that the
likelihood is sensitive to the outlier. The mean number of incidents is 0.84 and
0.69, with approximate 95% CIs given by 0.65 < θ < 1.06 and 0.53 < θ < 0.90. �
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(b) Likelihood functions

Figure 4.4: (a) The Poisson plot of the incidents of international terrorism
in the USA. The months with 4 and 12 incidents are unusual. (b) Likelihood
function of the mean number of incidents including (solid) and excluding
(dotted) the month with k = 12 incidents.

4.5 Poisson with overdispersion
Like the binomial model, the Poisson model imposes a strict relationship
between the mean and variance that may not be appropriate for the data.

Example 4.7: The first two columns of the following table summarizes the
number of accidents among factory workers (Greenwood and Yule 1920). For
example, 447 workers did not have any accident.

Number of Number of Fitted number
accidents k workers nk Poisson Negative binomial

0 447 406.3 446.2
1 132 189.0 134.1
2 42 44.0 44.0
3 21 6.8 14.9
4 3 0.8 5.1

> 4 2 0.1 2.7

Assuming a Poisson model, the average accident rate is∑
k

knk/
∑
k

nk = 0.47.

To simplify the computation, assume that the last category is represented by five
accidents. Comparing the observed and fitted frequencies, the Poisson model is
clearly inadequate. The χ2 statistic is 107.3 with four degrees of freedom. The
observed data show an overdispersion: there are more accident-free and accident-
prone workers than predicted by the Poisson model. �

Since the Poisson model is a limit of the binomial, models for under-
or overdispersion described in Section 4.2 also apply. General modelling
of Poisson-type data with extra variation is described under the general
exponential family models in Section 4.9.
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Overdispersion can occur if, conditionally on μ, an outcome Xμ is Pois-
son with mean μ, and μ is random with mean Eμ and variance σ2. For
example, individuals vary in their propensity to have accidents, so even if
the number of accidents per individual is Poisson, the marginal distribution
will show some overdispersion. In this setup, the marginal distribution of
Xμ has

E(Xμ) = E{E(Xμ|μ)} = Eμ

var(Xμ) = E{var(Xμ|μ)}+ var{E(Xμ|μ)}
= Eμ+ var(μ)

= Eμ+ σ2,

showing an extra variability compared with the standard Poisson model.
If μ has a gamma distribution we will get a closed form formula for the

marginal probabilities. Specifically, let Xμ be Poisson with mean μ, where
μ has density

f(μ) =
1

Γ(α)
μα−1λαe−λμ.

A random sample of X from the mixture of Xμ for all μ has mean

E(X) = Eμ =
α

λ

and variance

var(X) = Eμ+ var(μ)

=
α

λ
+

α

λ2
.

For likelihood modelling we need to compute the marginal probability,
for x = 0, 1, . . .,

P (X = x) = E{P (Xμ = x|μ)}
= E

(
e−μμ

x

x!

)
=

λα

Γ(α)x!

∫
e−μμxμα−1e−λμ dμ

=
λαΓ(x+ α)

(λ+ 1)x+αΓ(α)x!

≡
(

x+ α− 1
α− 1

)(
λ

λ+ 1

)α(
1− λ

λ+ 1

)x

. (4.1)

using as a definition (x + α − 1)! ≡ Γ(x + α). For integer α we have a
negative binomial distribution: the outcome x is the number of failures
recorded when we get exactly α successes, and the probability of success is

π =
λ

λ+ 1
.
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Note, however, that as a parameter of the gamma distribution α does not
have to be an integer. Given the probability formula, and on observing
data x1, . . . , xn, we can construct the likelihood of (α, λ) or (α, π).

Example 4.7: continued. To fit the negative binomial model to the data,
the log-likelihood of (α, π) is

logL(α, π) =

4∑
k=0

nk logP (X = k) + n[>4] log{1− P (X > 4)}

where P (X = k) is given by (4.1). Numerical optimization of the log-likelihood
yields

α̂ = 0.84, π̂ = 0.64.

The fitted frequencies shown in the previous table are now much closer to the
observed data; the χ2 statistic is 3.7, with 3 degrees of freedom, indicating a very
good fit. The estimated accident rate is 0.84(1 − 0.64)/0.64 = 0.47; this is the
same as in Poisson model, but has different profile likelihood and standard error
(Exercise 4.18). �

4.6 Traffic deaths example
In our prototypical problem suppose the number of traffic deaths increases
from x = 170 last year to y = 190 this year. Is this a significant increase?
Let us assume that the number of deaths X and Y are independent Poisson
with parameters λx and λy. Then the likelihood function is

L(λx, λy) = e−(λx+λy)λx
xλ

y
y.

Here we are only interested in comparing the two rates, not in the absolute
level.

We define the parameter of interest θ = λy/λx, and consider λx as the
nuisance parameter. (Alternatively one might consider λy as nuisance.) We
have reparameterized (λx, λy) as (λx, θλx), so using the invariance principle
we obtain

L(θ, λx) = e−λx(1+θ)λx+y
x θy.

For each fixed θ the MLE for λx is λ̂x(θ) = (x+ y)/(1 + θ), so the profile
likelihood of θ is

L(θ) = e−λ̂x(θ)(1+θ)λ̂x(θ)
x+yθy

= constant×
(

θ

1 + θ

)y (
1

1 + θ

)x

.

The MLE of θ is θ̂ = y/x = 1.12. Figure 4.5 shows the profile likelihood
and the approximate 95% CI of θ is (0.91,1.37). So, there is not enough
evidence to claim that there is an increase.

Suppose the death count is now redefined as the number of drivers
involved in the accidents (several deaths may be associated with one driver),
and this is split according to the age of drivers. Table 4.1 summarizes the
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Age group Last year Current year θ̂ Approx. 95% CI
Under 20 20 35 1.75 (1.05,3.05)
20–30 40 54 1.35 (0.93,2.03)
40–50 75 65 0.87 (0.65,1.20)
Over 50 10 2 0.20 (0.05,0.73)

Table 4.1: Traffic deaths data according to the number of drivers involved,
categorized by the drivers’ age, and the summaries from the likelihood func-
tions.

data. The profile likelihood functions for the four age groups are shown in
Figure 4.5. We see here the need to summarize the plot: it is too busy and
contains too much information. In the table, each likelihood is represented
by the MLE and the 95% CI. The data show that the accident rate ratio
θ is a function of age and it appears that the accident rate has increased
among the ‘under 20’ group, but has not increased for other age groups
and in fact has dropped significantly for the ‘over 50’ group.
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(b) For four groups

Figure 4.5: (a) Profile likelihood of rate ratio θ. (b) Profile likelihood of θ
for the four age groups shown in Table 4.1.

4.7 Aspirin data example
The analysis of the aspirin data example (Section 1.1) is similar to that
of the traffic death example. Suppose that the number of heart attacks
in the active group Xa is binomial(na, θa) and that in the placebo group
Xp is binomial(np, θp). We observed xa = 139 from a total na = 11, 037
subjects, and xp = 239 from a total of np = 11, 034. The parameter of
interest is θ = θa/θp. Since na and np are large, while the event rates
are small, Xa and Xp are approximately Poisson with parameter naθa and
npθp. The analysis can be further simplified by using na ≈ np, though the
simplification is minor. The likelihood of θp and θ = θa/θp is
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L(θ, θp) = e−(naθa+npθp)(naθa)
xa(npθp)

xp

= constant× e−θp(naθ+np)θxaθxa+xp
p

and one proceeds in the usual way to produce the profile likelihood of θ
(Exercise 4.21)

L(θ) = constant×
(

naθ

naθ + nb

)xa
(
1− naθ

naθ + nb

)xp

.

Exactly the same theory also applies for the number of strokes. The profile
likelihoods of θ for heart attacks and stroke are shown in Figure 4.6. The
approximate 95% CIs for θ are (0.47,0.71) and (0.93,1.59), respectively.
There is a significant benefit of aspirin in reducing heart attacks, but the
evidence for increased rate of stroke is not significant.
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(a) Heart attacks
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(b) Strokes

Figure 4.6: (a) Profile likelihood of θ for the number of heart attacks. The
approximate 95% CI is (0.47,0.71). (b) Profile likelihood of θ for the num-
ber of strokes. The approximate 95% CI is (0.93,1.59).

Delta method
As a comparison we will analyse the aspirin data in a more ad hoc way,
without using any likelihood. We will use the Delta method, one of the
most useful classical tools to derive distributions of statistical estimates.

Assuming that Xa and Xp are Poisson with rate naθa and npθp, we can
show (Exercise 4.22) that the conditional distribution of Xa given Xa+Xp

is binomial with parameters Xa +Xp and π = naθa/(naθa + nbθb). Since
na = 11, 307 ≈ np = 11, 304, we approximately have π = θ/(θ + 1) or
θ = π/(1− π). On observing xa = 139 and xa + xp = 378, we get

π̂ =
139

378
= 0.368

θ̂ =
π̂

1− π̂
= 0.58.

We then use the following theorem to get a confidence interval for θ.
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Theorem 4.1 (Delta method) Let ψ̂ be an estimate of ψ based on a sample
of size n such that √

n(ψ̂ − ψ) → N(0, σ2).

Then, for any function h(·) that is differentiable around ψ and h′(ψ) 
= 0,
we have √

n(h(ψ̂)− h(ψ)) → N(0, σ2|h′(ψ)|2).

In view of the central limit theorem, the Delta method applies to func-
tions of the sample mean. Informally we say that h(ψ̂) is approximately

normal with mean h(ψ) and variance |h′(ψ)|2var(ψ̂).
To apply the method here, recall that π̂ is approximately N(π, σ2/378),

where

σ2 = π(1− π).

So, from h(π) = π/(1− π), we have

h′(π) =
1

(1− π)2

var(θ̂) =
1

(1− π)4
π(1− π)

378

=
π

378(1− π)3

≈ 139/378

378(1− 139/378)3
= 0.3849× 10−2.

So, the approximate 95% CI for θ, given by θ̂ ± 1.96

√
var(θ̂), is

0.46 < θ < 0.70,

shifted slightly to the left of the likelihood-based interval. (Of course in
practice the difference is not important; what matters for discussion here
is how we arrive at the intervals.)

We may interpret the Delta method this way: we obtain a single obser-
vation θ̂ = 0.58 from N(θ, 0.3849 × 10−2). This produces an approximate
likelihood of θ, differing slightly from the likelihood we derived before; see
Figure 4.7. Hence the Delta method can be seen to produce a quadratic
approximation of the likelihood function.

4.8 Continuous data
Normal models

We have discussed the normal model N(μ, σ2) in Section 2.5 as the ideal or
exactly regular case for likelihood inference. It is one of the most commonly
used models for analysing continuous outcomes. Many results in classical
statistics are derived for normal data. Let x1, . . . , xn be an iid sample
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(b) Strokes

Figure 4.7: (a) Profile likelihood of θ for the number of heart attacks in the
aspirin data example and its normal approximation (dotted line). (b) The
same as (a) for strokes.

fromN(μ, σ2) with both parameters unknown. Ignoring irrelevant constant
terms, we can write

logL(μ, σ2) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − μ)2,

so maximizing the likelihood function for μ is equivalent to finding the
least-squares estimate. The MLEs are given by

μ̂ = x

σ̂2 =
1

n

∑
i

(xi − x)2.

Note the 1/n divisor for the variance estimate, which is different from the
usual 1/(n− 1) divisor for the sample variance s2.

Example 4.8: The following are 100 measurements of the speed of light (in
km/s, minus 299,000) made by A. Michelson between 5 June and 2 July 1879
(Stigler 1977). The data were based on five series of experiments, each with 20
runs. The first two lines of data (read by row) are from the first experiment, etc.

850 740 900 1070 930 850 950 980 980 880
1000 980 930 650 760 810 1000 1000 960 960
960 940 960 940 880 800 850 880 900 840
830 790 810 880 880 830 800 790 760 800
880 880 880 860 720 720 620 860 970 950
880 910 850 870 840 840 850 840 840 840
890 810 810 820 800 770 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870
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The MLEs of the normal parameters are μ̂ = 852.4 and σ̂2 = 6180.24. The sample
variance is s2 = 6242.67; it is common practice to use s/

√
n as the standard error

for μ̂. The 95% CI for μ is
μ̂± 1.96s/

√
n,

yielding 803.4 < μ < 901.4; this does not cover the ‘true’ value μ = 734.5 (based
on the currently known speed of light in vacuum, 299,792.5 km/s, corrected for
the air condition at the time of the experiment). There are several problems: the
means of the five experiments are 909, 856, 845, 820.5, 831.5, so there seems to
be a problem with the first experiment (Exercise 4.24). The average from the last
four experiments is 838.3 (se = 7.2). Also, there is a correlation of 0.54 between
consecutive measurements, so the data are not independent, and the standard
error is wrong (too small). �

A normal assumption can be checked using a QQ-plot, which is a general
method to see the shape and texture of a distribution. IfX has a continuous
distribution F (x), then

P{F (X) ≤ u} = P{X ≤ F−1(u)} = F (F−1(u)) = u.

This means F (X) is a standard uniform variate. Conversely, if U is stan-
dard uniform, then F−1(U) is a random variable with distribution function
F (x). If X1, . . . , Xn are an iid sample from F (x), then F (X1), . . . , F (Xn)
are an iid sample from U(0, 1).

Suppose x1, . . . , xn have a hypothesized distribution F . Intuitively the
ordered values x(1), . . . , x(n) should behave like order statistics s1, . . . , sn
simulated from F . We can plot si against x(i): if the data come from F , we
can expect to see a straight line. To remove the randomness of s1, . . . , sn
we might use the median of the order statistics. Denoting by U(i) the i’th
order statistic from U1, . . . , Un, we have

median(si) = median{F−1(U(i))}
= F−1(median{U(i)})

≈ F−1

(
i− 1/3

n+ 1/3

)
.

The approximate median of U(i) is accurate even for very small n (Hoaglin
1985); for example, for n = 5 the median of U(1) is 0.129, and the approx-
imation is (1− 1/3)/(5 + 1/3) = 0.125. The QQ-plot is a plot of

F−1

(
i− 1/3

n+ 1/3

)
versus x(i).

As a visual aid, we can draw a line going through the first and third quar-
tiles of the distribution.

If X = σX0 + μ for some standard variate X0 and some unknown
location μ and scale σ, we do not need to estimate μ and σ. We can use
the distribution of X0 as the basis of the QQ-plot. Here we have

median(si) ≈ σF−1
0

(
i− 1/3

n+ 1/3

)
+ μ
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where F0 is the distribution of X0. For example, to check normality we
use the standard normal distribution function Φ(x) in place of F0(x). The
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(c) Exponential data
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(d) Uniform data

Figure 4.8: (a) The normal QQ-plot indicates that Michelson’s data are not
normal. (b) Excluding data from the first experiment, the rest of the data
appears normal. (c) Simulated exponential data, showing skewed distribu-
tion. (d) Simulated uniform data, showing short-tailed distribution.

QQ-plot of Michelson’s data in Figure 4.8(a) indicates some nonnormality:
notice the deviation from the guideline, especially of the upper half. This
occurs because the first experiment is different from the rest. As shown
in Figure 4.8(b), excluding data from the first experiment, the remaining
data look normal, except for rounding and possibly a single outlier.

The normal QQ-plot is a useful exploratory tool even for nonnormal
data. The plot shows skewness, heavy-tailed or short-tailed behaviour, digit
preference, or outliers and other unusual values. Figure 4.8(c) shows the
QQ-plot of simulated exponential data (skewed to the right) and uniform
data (short tail).

The case n = 1

In the extreme case n = 1 the likelihood function becomes unbounded at
μ = x1, so μ̂ = x1, σ̂

2 = 0, and the estimated distribution is degenerate
at x1. The maximized likelihood is L(μ̂, σ̂2) = ∞. This has been cited
as a weakness of the likelihood method: the likelihood suggests there is
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very strong evidence that σ̂2 = 0, which is ‘surprising’ as we feel a single
observation cannot tell us anything about variability.

The infinite likelihood can be avoided by using a finite precision model
and the original definition of likelihood as probability (although we will end
up with the same result that the best model is ‘degenerate’ at x1, where ‘x1’
represents an interval (x− ε, x+ ε)). This example is a valid caveat about
over-interpretation of the (observed maximized) likelihood: even an enor-
mous likelihood ratio does not establish the objective truth (of a parameter
value). Unlike the likelihood, our sense of surprise is affected not just by
the data, but also by our prior expectation (e.g. the data are continuous).
The likelihood evidence will not feel as surprising if we know beforehand
that a discrete point model μ = x1 and σ2 = 0 is a real possibility.

Two-sample case

Suppose x1, . . . , xm are an iid sample from N(μ, σ2
x), and y1, . . . , yn from

N(μ + δ, σ2
y). If we are only interested in the mean difference δ, there are

three nuisance parameters. Computation of the profile likelihood of δ is
left as an exercise.

In practice it is common to assume that the two variances are equal.
Under this assumption, the classical analysis is very convenient; the t-
statistic

t =
y − x− δ

sp

√
1
m + 1

n

,

where s2p is the pooled variance

s2p =
(m− 1)s2x + (n− 1)s2y

m+ n− 2
,

has a t-distribution with m+n− 2 degrees of freedom. We can use this for
testing hypotheses or setting CIs on δ.

For Michelson’s data, suppose we want to compare the first experiment
with the remaining data. We obtain

m = 20, x = 909, s2x = 11009.47

n = 80, y = 838.2, s2y = 4161.5

and t = −3.58 to test δ = 0, so there is strong evidence that the first
experiment differs from the subsequent ones.

Nonnormal models

As an example of a nonnormal continuous model, the gamma model is
useful for positive outcome data such as measures of concentration, weight,
lifetime, etc. The density of the gamma(α, λ) model is

f(x) =
1

Γ(α)
λαxα−1e−λx, x > 0.
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The parameter α is called the shape parameter and λ−1 is the scale pa-
rameter. One important property of the gamma model is that the mean
E(X) = α/λ is quadratically related to the variance var(X) = α/λ2 =
E2(X)/α. It is sometimes useful to reparameterize using μ = α/λ and
φ = 1/α, so that we have gamma(μ, φ) with mean E(X) = μ, variance φμ2

and coefficient of variation
√
φ. The density can be written as

f(x) =
1

xΓ(1/φ)

(
x

φμ

)1/φ

exp

(
− x

φμ

)
, x > 0.

If the shape parameter α = 1 we obtain the exponential model with density

f(x) = μ−1e−x/μ.

Example 4.9: The following data are the duration of service (in minutes) for
15 bank customers. Of interest is the average length of service μ.

23.91 27.33 0.15 3.65 5.99 0.88 0.93 0.53
0.17 14.17 6.18 0.05 3.89 0.24 0.08.

Assuming the gamma model, Figure 4.9 shows the joint likelihood of μ and φ;
the contour lines are drawn at 90%, 70%, 50%, 30% and 10% cutoffs. The
profile likelihood for μ can be computed numerically from the joint likelihood.

Also shown are the gamma likelihood assuming φ is known at φ̂ = 2.35 and the
exponential likelihood by assuming φ = 1. From Figure 4.9(a) it is clear that the
exponential model (φ = 1) is not well supported by the data. �
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Figure 4.9: (a) Joint likelihood of μ and φ using the gamma model. (b)
The profile likelihood of μ from the gamma model (solid line), the estimated

likelihood using the gamma model assuming φ = φ̂ = 2.35 (dotted line) and
the likelihood using an exponential model (dashed line), which is equivalent
to the gamma model with φ = 1.
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4.9 Exponential family
The exponential family is a very wide class of models that includes most
of the commonly used models in practice. It is an unfortunate family
name, since it is mixed up with the standard exponential model, which
is a member of the exponential family. However, we will stick with the
terminology as no one has come up with a better name, and usually what
we mean is clear from the context. A general p-parameter exponential
family has θ ≡ (θ1, . . . , θp) and its log-density is of the form

log pθ(x) =

p∑
i=1

ηi(θ)Ti(x)−A(θ) + c(x) (4.2)

for known functions A(θ) and c(x), and ηi(θ) and Ti(x) for each i. Fur-
thermore the support of the distribution must not involve the unknown
parameter θ. The parameters ηi’s are called the natural parameters of the
family, and Ti’s the natural statistics. To avoid trivialities we assume that
there is no linear dependence between ηi’s nor that between Ti’s. Under this
assumption, the Ti’s can be shown to be minimal sufficient (Exercise 4.28).

The family is called ‘full rank’ or simply ‘full’ if the natural parameter
space contains an open set; for example, a 2D square in 2D space contains
an open set, but a curve in 2D-space does not. Typically the family is full
if the number of unknown parameters is the same as the number of natural
sufficient statistics.

If there is a nonlinear relationship among the natural parameters, the
number of natural sufficient statistics is greater than the number of free
parameters, and the family is called a curved exponential family. The
distinction is important, since many theoretical results are true only for
full exponential families. Compared with those of a full family, problems
involving the curved exponential family are somewhat ‘more nonlinear’.

The exponential family includes both discrete and continuous random
variables. The normal, binomial, Poisson or gamma models are in the
exponential family, but the Cauchy and t-distributions are not.

Example 4.10: For the normal model with θ = (μ, σ2), with both parameters
unknown,

log pθ(x) =
μx

σ2
− x2

2σ2
− μ2

2σ2
− 1

2
log(2πσ2)

is a two-parameter full exponential family model with natural parameters η1 =
μ/σ2 and η2 = −1/(2σ2), and natural statistics T1(x) = x and T2(x) = x2.

If x has a known coefficient of variation c, such that it is N(μ, c2μ2), with
unknown μ > 0, then x is a curved exponential family. Even though there is only
one unknown parameter, the natural statistics are still T1(x) = x and T2(x) = x2,
and they are minimal sufficient. �

Example 4.11: For the Poisson model with mean μ we have

log pμ(x) = x log μ− μ− log x!;

therefore it is a one-parameter exponential family.
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If x is a truncated Poisson distribution in the sense that x = 0 is not observed,
we have, for x = 1, 2, . . .,

P (X = x) =
e−μμx/x!

1− e−μ
,

so
logP (X = x) = x log μ− μ− log(1− e−μ)− log x!.

This also defines a one-parameter exponential family with the same canonical
parameter and statistic, but a slightly different A(μ) function. �

The joint distribution of an iid sample from an exponential family is
also in the exponential family. For example, let x1, . . . , xn be an iid sample
from N(μ, σ2). The joint density is

log pθ(x1, . . . , xn) =
μ
∑

i xi

σ2
−
∑

i x
2
i

2σ2
− nμ2

2σ2
− n

2
log(2πσ2).

This has the same natural parameters η1 = μ/σ2 and η2 = −1/(2σ2), and
natural statistics T1 =

∑
i xi and T2 =

∑
i x

2
i .

To illustrate the richness of the exponential family and appreciate the
special role of the function A(θ), suppose X is any random variable with
density exp{c(x)} and moment generating function

m(θ) = EeθX .

Let A(θ) ≡ logm(θ), usually called the cumulant generating function.
Then ∫

eθx+c(x)dx = eA(θ)

or ∫
eθx−A(θ)+c(x)dx = 1

for all θ. So

pθ(x) ≡ eθx−A(θ)+c(x) (4.3)

defines an exponential family model with parameter θ. Such a construction
is called an ‘exponential tilting’ of the random variable X; the original X
corresponds to θ = 0.

For any exponential model of the form (4.3) we can show (Exercise 4.30)
that

μ = Eθ(X) = A′(θ)

and

varθ(X) = A′′(θ) =
∂

∂θ
Eθ(X) = v(μ).

Therefore A(θ) implies a certain relationship between the mean and vari-
ance.
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Exponential dispersion model
For statistical modelling it is often adequate to consider a two-parameter
model known as the exponential dispersion model (Jørgensen 1987). Based
on an observation x the log-likelihood of the scalar parameters θ and φ is
of the form

logL(θ, φ) =
xθ −A(θ)

φ
+ c(x, φ), (4.4)

where A(θ) and c(x, φ) are assumed known functions. In this form the pa-
rameter θ is called the canonical parameter and φ the dispersion parameter.
Since c(x, φ) or A(θ) can be anything there are infinitely many submodels
in this exponential family, though of course the density must satisfy∑

x

exp

{
xθ −A(θ)

φ
+ c(x, φ)

}
= 1,

which forces a certain relationship between A(θ) and c(x, φ).
The dispersion parameter allows the variance to vary freely from the

mean:
μ = Eθ(X) = A′(θ)

and

varθ(X) = φA′′(θ)

= φ
∂

∂θ
Eθ(X) = φv(μ).

This is the biggest advantage of the exponential dispersion model over the
more rigid model (4.3).

In practice the form of A(θ) in (4.4) is usually explicitly given from the
standard models, while c(x, φ) is left implicit. This is not a problem as far
as estimation of θ is concerned, since the score equation does not involve
c(x, φ). However, without explicit c(x, φ), a likelihood-based estimation of
φ and a full likelihood inference on both parameters are not available. One
might compromise by using the method of moments to estimate φ, or the
approximation of the likelihood given later.

Example 4.12: For the normal model N(μ, σ2) we have

logL(μ, σ2) =
xμ− μ2/2

σ2
− 1

2
log σ2 − x2

2σ2
,

so the normal model is in the exponential family with a canonical parameter θ =
μ, dispersion parameter φ = σ2, and A(θ) = θ2/2 and c(x, φ) = − 1

2
log φ− 1

2
x2/φ.

This is a rare case where c(x, φ) is available explicitly. �

Example 4.13: For the Poisson model with mean μ

logL(μ) = x log μ− μ− log x!

so we have a canonical parameter θ = log μ, dispersion parameter φ = 1 and
A(θ) = μ = eθ.
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By keeping A(θ) = eθ, but varying the dispersion parameter, we would gen-
erate a Poisson model with under- or overdispersion: with the same EX = μ we
have

var(X) = φA′′(θ) = φμ.

The function c(x, φ) has to satisfy

∞∑
x=0

exp

[{
xθ − eθ

φ

}
+ c(x, φ)

]
= 1,

for all θ and φ. To compute the likelihood we need c(x, φ) explicitly, but finding
the solution c(x, φ) that satisfies such an equation is not trivial. �

Example 4.14: The following data shows the number of paint defects recorded
in a sample of 20 cars using an experimental process:

0 10 1 1 1 2 1 4 11 0 5 2 5 2 0 2 0 1 3 0

The sample mean is x = 2.55 and the sample variance is s2 = 9.84, indicating
overdispersion. Using the Poisson-type model above A(θ) = eθ, so

varθ(X) = φEθ(X),

and the method-of-moments estimate of φ is φ̂ = 9.84/2.55 = 3.86. Obviously

there is some variability in φ̂; is it significantly away from one? An exact like-
lihood analysis is difficult, but instead we can do a Monte Carlo experiment to
test φ = 1 (Exercise 4.33):

1. Generate x∗
1, . . . , x

∗
20 as an iid sample from the Poisson distribution with

mean μ = x = 2.55.

2. Compute φ̂∗ = (s2)∗/x∗ from the data in part 1.

3. Repeat 1 and 2 a large number of times and consider the φ̂∗’s as a sample

from the distribution of φ̂.

4. Compute P-value = the proportion of φ̂∗ > the observed φ̂.

Figure 4.10 shows the QQ-plot of 500 φ̂∗’s and we can see that P-value ≈ 0,
confirming that φ > 1.

An approximate likelihood inference for μ can proceed based on assuming

that φ is known at φ̂; this is made particularly simple since the term c(xi, φ) is
constant relative to μ or θ. Figure 4.10 compares the standard Poisson likelihood

with the estimated likelihood using φ̂ = 3.86. For small samples this approach

is not satisfying as the uncertainty in φ̂ is not accounted for in the inference for
μ. �

Approximate likelihood�

While an exact likelihood of the exponential dispersion model (4.4) might
not be available, there is a general approximation that can be computed
easily. The main advantage of the approximate likelihood is that it puts the
whole inference of the mean and dispersion parameters within the likelihood
context. It also facilitates further modelling of the dispersion parameter.
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Figure 4.10: (a) Monte Carlo estimate of the distribution of φ̂ under the
standard Poisson model. (b) Likelihood of μ based on the standard Poisson
model (φ = 1, dotted line) and the model with extra Poisson variability

(φ = φ̂ = 3.86, solid line).

At fixed φ the MLE of θ is the solution of

A′(θ̂) = x.

Alternatively μ̂ = x is the MLE of μ = A′(θ). The Fisher information on
θ based on x is

I(θ̂) = A′′(θ̂)/φ.

From Section 9.8, at fixed φ, the approximate density of θ̂ is

p(θ̂) ≈ (2π)−1/2I(θ̂)1/2
L(θ, φ)

L(θ̂, φ)
.

Since μ̂ = A′(θ̂), the density of μ̂, and hence of x, is

p(x) = p(μ̂) = p(θ̂)

∣∣∣∣∣ ∂θ̂∂μ̂
∣∣∣∣∣

= p(θ̂){A′′(θ̂)}−1

≈ {2πφA′′(θ̂)}−1/2L(θ, φ)

L(θ̂, φ)
.

The potentially difficult function c(x, φ) in (4.4) cancels out in the like-
lihood ratio term, so we end up with something simpler. In commonly
used distributions, the approximation is highly accurate for a wide range
of parameter values.

Let us define the deviance function

D(x, μ) = 2 log
L(θ̂, φ = 1)

L(θ, φ = 1)
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= 2{θ̂x− θx−A(θ̂) +A(θ)},
where μ = A′(θ). The approximate log-likelihood contribution from a
single observation x is

logL(θ, φ) ≈ −1

2
log{2πφv(x)} − 1

2φ
D(x, μ), (4.5)

where v(x) = A′′(θ̂).
The formula is exact if x is N(μ, σ2), in which case θ = μ, φ = σ2,

v(x) = 1, and D(x, μ) = (x−μ)2. In general it is called an extended quasi-
likelihood formula by Nelder and Pregibon (1987). It is very closely related
to the double-exponential family (Efron 1986b). The idea is that, given θ,
the dispersion parameter also follows an exponential family likelihood.

Given an iid sample x1, . . . , xn, at fixed φ, the estimate of μ is the
minimizer of the total deviance∑

i

D(xi, μ).

The approximate profile log-likelihood of φ is

logL(φ) ≈ −1

2

∑
i

log{2πφv(xi)} − 1

2φ

∑
i

D(xi, μ̂)

and the approximate MLE of φ is the average deviance

φ̂ =
1

n

∑
i

D(xi, μ̂).

Example 4.15: In Example 4.13 we cannot provide an explicit two-parameter
Poisson log-likelihood

logL(μ, φ) =
x log μ− μ

φ
+ c(x, φ),

since c(x, φ) is not available. Using

θ = log μ, A(θ) = eθ = μ

θ̂ = log x, A(θ̂) = x

D(x, μ) = 2(x log x− x log μ− x+ μ)

v(x) = A′′(θ̂) = eθ̂ = x

we get an approximate likelihood

logL(μ, φ) ≈ −1

2
log{2πφx} − 1

φ
(x log x− x log μ− x+ μ).

Nelder and Pregibon (1987) suggest replacing log{2πφx} by

log{2πφ(x+ 1/6)}
to make the formula work for x ≥ 0.
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For the data in Example 4.14 the estimate of the mean μ is x = 2.55, and

φ̂ =
1

20

∑
i

D(xi, x) = 3.21,

where we have used 0 log 0 = 0; recall φ̂ = 3.86 using the method of moments.
The approximate profile likelihood of φ can also be computed from (4.5). �

Minimal sufficiency and the exponential family�

There is a surprising connection between minimal sufficiency and the ex-
ponential family: under mild conditions, a (minimal) sufficient estimate
exists if and only if the model pθ(x) is in the full exponential family. The
exponential family structure in turn implies that the likelihood function has
a unique maximum, and the MLE is sufficient. Therefore, if a sufficient
estimate exists, it is provided by the MLE.

It is easy to show that the MLE of θ in a full exponential family model is
sufficient (Exercise 4.28). To show that the existence of a sufficient estimate
implies the exponential family, we follow the development in Kendall et al.
(1977) for the scalar case. Assume that we have an iid sample x1, . . . , xn

from pθ(x), t(x) is a sufficient estimate (i.e. it is minimal sufficient for θ),
and that the support of pθ(x) does not depend on θ. By the factorization
theorem,

∂ logL(θ)

∂θ
=
∑
i

∂ log pθ(xi)

∂θ
= K(t, θ)

for some function K(t, θ). From Section 3.2, minimal sufficiency implies
K(t, θ) is a one-to-one function of t. Since this is true for any θ, choose one
value of θ, so t must be of the form

t = M{
∑
i

k(xi)}

for some function M(·) and k(·). Defining w(x) =
∑

i k(xi), then K(t, θ)
is a function of w and θ only, say N(w, θ). Now

∂2 logL(θ)

∂xi∂θ
=

∂N

∂w

∂w

∂xi
.

Since ∂2 logL(θ)/∂xi∂θ and ∂w/∂xi only depend on xi and θ, it is clear
that ∂N/∂w is also a function of θ and xi. To be true for all xi then
∂N/∂w must be a function of θ alone, which means

N(w, θ) = w(x)u(θ) + v(θ)

for some function u(θ) and v(θ), or, in terms of the log-likelihood,

∂

∂θ
logL(θ) = u(θ)

∑
i

k(xi) + v(θ).
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This implies the model must be in the exponential family with log-density
of the form

log pθ(x) = η(θ)T (x)−A(θ) + c(x).

Now it is straightforward to show that the likelihood is unimodal, so it has
a unique maximum.

4.10 Box–Cox transformation family
Box–Cox (1964) transformation family is another useful class of nonnor-
mal models for positive-valued outcomes. Typical characteristics of such
outcomes are skewness, and some relationship between the mean and vari-
ance. In the Box–Cox transformation model it is assumed that there is
λ 
= 0 such that a transformation of the observed data y according to

yλ =
yλ − 1

λ

has a normal model N(μ, σ2). As λ approaches zero yλ → log y, so this
family includes the important log-transformation. For convenience we will
simply write λ = 0 to represent the log-transformation. The log-likelihood
contribution of a single observation y is

logL(λ, μ, σ2) = log p(yλ) + (λ− 1) log y

= −1

2
log σ2 − (yλ − μ)2

2σ2
+ (λ− 1) log y,

where p(yλ) is the density of yλ and (λ− 1) log y is the log of the Jacobian.
Note that if y is positive then yλ cannot be strictly normal for any

λ 
= 0. The possibility of a truncated normal may be considered, and we
should check the normal plot of the transformed data. If yλ > 0 has a
truncated normal distribution, it has a density

p(yλ) =
σ−1φ{(yλ − μ)/σ}

1− Φ(−μ/σ)

where φ(·) and Φ(·) are the standard normal density and distribution func-
tions. So we only need to modify the log-likelihood above by adding
log{1− Φ(−μ/σ)}. If μ/σ is quite large, Φ(−μ/σ) ≈ 0, so we can sim-
ply ignore the effect of truncation.

For data with a skewed distribution sometimes a transformation is more
successful when applied to shifted values, i.e.

yλ =
(y + c)λ − 1

λ
.

The shift parameter c can be estimated from the data by maximizing the
likelihood above.

Interpretation of the parameters is an important practical issue when
using a transformation. After transformation μ and σ2 may not have a
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simple interpretation in terms of the original data. However, since the
Box–Cox transformation is monotone, the median of yλ is the transformed
median of the original data y. For example, if λ = 0 and the median of
yλ is μ = 0, then the median of the original data y is eμ = e0 = 1. It is
sensible to limit the choice of λ to a few meaningful values.

The main reason to consider the Box–Cox transformation family is to
analyse the data in a more normal scale. Such a scale typically leads to
models that are simpler and easier to interpret, have well-behaved residuals,
and clearer inference.

To decide what transformation parameter λ to use in a dataset y1, . . . , yn,
it is convenient to compare a range of values or simply several sensible val-
ues such as λ = −1, 0, 0.5, 1 and 2. In practice, it will not be very sensible
to transform data using, say, λ = 0.5774. The natural criterion to compare
is the profile likelihood of λ, which is very simple to compute. At fixed λ
we simply transform the data to get yλ, and the MLEs of μ and σ2 are
simply the sample mean and variance of the transformed data:

μ̂(λ) =
1

n

∑
i

yλi

and

σ̂2(λ) =
1

n

∑
i

{yλi − μ̂(λ)}2.

The profile log-likelihood for λ is

logL(λ) = −n

2
log σ̂2(λ)− n

2
+ (λ− 1)

∑
i

log yi.

One needs to be careful in the inference on μ based on the transformed
data y

λ̂
. Mathematically we expect to ‘pay’ for having to estimate λ (Bickel

and Doksum 1981), for example by taking a profile likelihood over λ. How-
ever, such an approach can be meaningless. A serious problem in the use
of transformation is the logical meaning of yλ and the parameter μ. Here
is a variation of a simple example from Box and Cox (1982): suppose we
have a well-behaved sample from a normal population with mean around
1000 and a small variance. Then there is an extremely wide range of λ for
which the transformation is essentially linear and the transformed data are
close to normal. This means λ is poorly determined from the data, and its
profile likelihood is flat as it has a large uncertainty. Propagating this large
uncertainty to the estimation of μ produces a very wide CI for μ. That is
misleading, since in fact the untransformed data (λ = 1) provide the best
information.

So, a rather flat likelihood of λ indicates that the Box–Cox transfor-
mation family is not appropriate; it warrants a closer look at the data. If
we limit the use of the Box–Cox transformation model to cases where λ is
well determined from the data, then it is reasonable to perform inference
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on μ assuming that λ is known at λ̂, i.e. we do not have to pay for having
to estimate λ.

Example 4.16: The following figures are the population of 27 countries
already in or wishing to join the European Union:

82 59 59 57 39 38 22 16 10 10 10 10
10 9 9 8 5 5 5 4 4 2 2 1 0.7 0.4 0.4

Figure 4.11(a) shows the population data are skewed to the right. The profile log-

likelihood of λ is maximized at λ̂ = 0.12, pointing to the log-transform λ = 0 as a
sensible transformation. The QQ-plots of the square-root and the log-transform
indicate we should prefer the latter. (The reader can verify that log(y + 1) is
a better normalizing transform). The use of log-transform is, for example, for
better plotting of the data to resolve the variability among low as well as high
population counts. �
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Figure 4.11: (a) Normal plot of the population data. (b) the profile likeli-
hood function of the transformation parameter λ. (c) and (d) QQ-plots of
the log- and square-root transforms of the original data.

4.11 Location-scale family
The location-scale family is a family of distributions parameterized by μ
and σ, and a known density f0(·), such that any member of the family has
a density of the form

f(x) =
1

σ
f0

(
x− μ

σ

)
.
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The parameter μ is called the location parameter and σ the scale parameter,
and f0(·) is called the standard density of the family. For example, N(μ, σ2)
is a location-scale family with standard density

f0(x) =
1√
2π

e−x2/2.

Another famous example is the Cauchy(μ, σ) with standard density

f0(x) =
1

π(1 + x2)
.

The Cauchy model is useful as a model for data with heavy tails, charac-
terized by the presence of outliers. Furthermore, in theoretical studies the
Cauchy model is a good representative of complex models.

Example 4.17: Recording of the difference in maximal solar radiation between
two geographical regions over a time period produced the following (sorted) data:

-26.8 -3.5 -3.4 -1.2 0.4 1.3 2.3 2.7 3.0 3.2 3.2 3.5
3.6 3.9 4.2 4.4 5.0 6.5 6.7 7.1 8.1 10.5 10.7 24.0 32.8

The normal plot in Figure 4.12(a) shows clear outliers or a heavy-tailed behaviour.
The mean and median of the data are 4.5 and 3.6 respectively; they are not
dramatically different since there are outliers on both ends of the distribution.
The Cauchy model with location μ and scale σ has a likelihood function

L(μ, σ) =
∏
i

1

σ

{
1 +

(xi − μ)2

σ2

}−1

,

from which we can compute a profile likelihood for μ, shown in Figure 4.12(b);
there is no closed form solution to get the MLE of σ at a fixed value of μ, so
it needs to be found numerically. The MLE from the Cauchy model is μ̂ = 3.7,
closer to the median, and σ̂ = 2.2.

To illustrate the potential of robust modelling, the profile likelihood is com-
pared with that assuming a normal model. The normal likelihood is centered at
the sample mean. There is clearly a better precision for the location parameter
μ using the Cauchy model than using the normal model. (Note that in these two
models the parameter μ is comparable as the median of the distributions, but
the scale parameter σ in the Cauchy model does not have meaning as a standard
deviation.)

What if the data are closer to normal? The following data are from the last
two series of Michelson’s speed of light measurements in Example 4.8.

890 810 810 820 800 770 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870

Figure 4.12(c) indicates that, except for some repeat values (at 810), the data
are quite normal. As shown in Figure 4.12(d) the normal and Cauchy models
produce comparable results. Generally, there will be some loss of efficiency if we
use the Cauchy model for normal data and vice versa. However, as we see in this
example, the amount of loss is not symmetrical; it is usually larger if we wrongly
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Figure 4.12: (a) Normal plot of radiation data. (b) The profile likelihood
function of the location parameter assuming the normal model (dashed line)
and assuming the Cauchy model (solid line). (c)–(d) the same as (a)–(b)
for Michelson’s last two experiments.

assume a normal model, so it is not a bad strategy to err on a heavier-tailed
model than the normal. �

We can use the AIC (Section 3.5) to choose between the normal and
Cauchy models. For the radiation data, the AIC of the normal model is

AIC = −2 logL(μ̂, σ̂2) + 4

= n log(2πσ̂2) + n+ 4 = 189.7,

where n = 25, and σ̂2 = 98.64. For the Cauchy model, using the MLEs
μ̂ = 3.7 and σ̂ = 2.2, the AIC is 169.3. Therefore, as expected from the
QQ-plot, the Cauchy model is preferred. For Michelson’s data, the AICs
are 439.6 and 456.3, now preferring the normal model.

Another useful general technique is to consider a larger class of location
models that includes both the Cauchy and the normal families. Such a
class is provided by the t-family with ν degrees of freedom. The standard
density is given by

f0(x) =
Γ{(ν + 1)/2}

Γ(1/2)Γ(ν/2)ν1/2
(1 + x2/ν)−(ν+1)/2.
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If ν = 1 we obtain the Cauchy model, while as ν → ∞ we get the normal
model. So as the parameter ν is allowed to vary we can adapt it to the tail
behaviour of the data.

To find which degree of freedom ν is appropriate for particular data,
one can maximize the profile likelihood of ν at several values such as ν = 1,
2, 4, 8 and ∞. Inference on μ can be performed at the observed value of
ν̂. As is commonly the case with complex models, all computations must
be done numerically. The application of the t-family models on the above
datasets is left as an exercise.

Other useful location-scale families of distributions include the logistic
family, with the standard density

f0(x) =
ex

(1 + ex)2
, −∞ < x < ∞,

and the double-exponential or Laplacian family, with density

f0(x) =
1

2
e−|x|, −∞ < x < ∞.

Both of these distributions have heavier tails than the normal, so they offer
protection against outliers if we are interested in the location parameter.
The MLE of the location parameter μ under the Laplacian assumption is
the sample median, an estimate known to be resistant to outliers.

The existence of a wide variety of models tends to overwhelm the data
analyst. It is important to reflect again that model selection is generally
harder than model fitting once a model is chosen.

4.12 Exercises
Exercise 4.1: The following table shows Geissler’s data for families of size 2
and 6.

No. boys k 0 1 2 3 4 5 6
No. families nk 42,860 89,213 47,819
No. families nk 1096 6233 15,700 22,221 17,332 7908 1579

(a) For each family size, assuming a simple binomial model(n, θ) for the number
of boys, write down the likelihood of θ.

(b) Combining the data from families of size 2 and 6, draw the likelihood of θ;
find the MLE of θ and its standard error.

(c) Based on (b), examine if the binomial model is a good fit to the data.
Describe the nature of the model violation and discuss what factors might
cause it.

Exercise 4.2: Now suppose that (in another experiment on sex ratio) the
family information is based on questioning 100 boys from families of size k that
attend a boys-only school. Explain what is unusual in this sampling scheme and
what needs to be modified in the model.

Exercise 4.3: Simulate binomial-type data with under- and overdispersion.
Compare the realizations with simulated binomial data. Identify real examples
where you might expect to see each case.
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Exercise 4.4: Another example of a binomial mixture is the so-called beta–
binomial distribution. Conditional on p let Xp be binomial(n, p), where p itself
is random with beta distribution with density

f(p) =
1

B(α, β)
pα−1(1− p)β−1.

If α = β = 1 then p has uniform distribution. Let X be a sample from the
mixture distribution.

(a) Simulate data from the mixture for n = 10, α = 1 and β = 3.

(b) Find the mean and variance formula for X, and show that there is an extra-
binomial variation.

(c) Verify the marginal probability

P (X = x) =
B(α+ x, β + n− x)

(n+ 1) B(x+ 1, n− x+ 1)B(α, β)
,

for x = 0, 1, . . . , n.

(d) Using Geissler’s family data of size 6 in Exercise 4.1, find the joint likelihood
of θ = (α, β) as well as the profile likelihood of α, β and the mean of X.

(e) Compare the expected frequencies under the beta–binomial model with the
observed frequency, and perform a goodness-of-fit test.

(f) Compare the profile likelihood of the mean of X in part (d) with the likeli-
hood assuming the data are simple binomial. Comment on the result.

Exercise 4.5: Generalize the negative binomial distribution along the same
lines as the beta–binomial distribution, where the success probability p is a ran-
dom parameter.

Exercise 4.6: A total of 678 women, who got pregnant under planned pregnan-
cies, were asked how many cycles it took them to get pregnant. The women were
classified as smokers and nonsmokers; it is of interest to compare the association
between smoking and probability of pregnancy. The following table (Weinberg
and Gladen 1986) summarizes the data.

Cycles Smokers Nonsmokers
1 29 198
2 16 107
3 17 55
4 4 38
5 3 18
6 9 22
7 4 7
8 5 9
9 1 5
10 1 3
11 1 6
12 3 6

> 12 7 12
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(a) Fit a geometric model to each group and compare the estimated probability
of pregnancy per cycle.

(b) Check the adequacy of the geometric model. (Hint: devise a plot, or run a
goodness-of-fit test.)

(c) Allow the probability to vary between individuals according to a beta dis-
tribution (see Exercise 4.4), and find the beta–geometric probabilities.

(d) Fit the beta–geometric model to the data and check its adequacy.

Exercise 4.7: The Steering Committee of the Physicians’ Health Study (1989)
also reported the following events during follow-up. Recall that 11,037 subjects
were assigned to the aspirin group, and 11,034 to the placebo. For each end-point,

Events Aspirin Placebo
Total cardiac deaths 81 83
Fatal heart attacks 10 28
Sudden deaths 22 12

report the relative risk of aspirin versus placebo, the profile likelihood, and the
approximate 95% CI.

Exercise 4.8: To investigate the effect of race in the determination of death
penalty a sociologist M. Wolfgang in 1973 examined the convictions on 55 rapes
in 19 Arkansas counties between 1945 and 1965.

(a) Out of 34 black defendants 10 received the death penalty, compared with 4
out of 21 white defendants.

(b) Out of 39 cases where the victims were white, 13 led to the death penalty,
compared with 1 out 15 cases with black victims.

Find in each case the significance of the race factor, and state your overall con-
clusion.

Exercise 4.9: Breslow and Day (1980) reported case-control data on the occur-
rence of esophageal cancer among French men. The main risk factor of interest
is alcohol consumption, where ‘high’ is defined as over one litre of wine per day.
The data are stratified into six age groups.

Age Consumption Cancer No cancer
25–34 High 1 9

Low 0 106
35–44 High 4 26

Low 5 164
45–54 High 25 29

Low 21 138
55–64 High 42 27

Low 34 139
65–74 High 19 18

Low 36 88
≥ 75 High 5 0

Low 8 31

(a) Assess the association between alcohol consumption and cancer using the
unstratified data (by accumulating over the age categories).

(b) Compare the result using the stratified data, assuming that the odds ratio
is common across strata.



110 4. Basic models and simple applications

(c) Compare the profile likelihoods of odds-ratio across strata and assess the
common odds ratio assumption.

Exercise 4.10: We showed that the one-sided P-value from Fisher’s exact test
of the data in Example 4.4 is 0.20. What do you think is the exact two-sided
P-value?

Exercise 4.11: Let θ be the odds-ratio parameter for a 2×2 table as described

in Section 4.3. Use the Delta method to show that the standard error of θ̂ is

se(θ̂) =

(
1

x
+

1

y
+

1

m− x
+

1

n− y

)1/2

TheWald statistic z = θ̂/se(θ̂) satisfies z2 ≈ χ2. Verify this for several 2×2 tables.
This also means that, if the likelihood is regular, the approximate likelihood of
H0 is

e−χ2/2.

Verify this for several 2×2 tables.

Exercise 4.12: A famous example of Poisson modelling was given by L.J.
Bortkiewicz (1868–1931). The data were the number of soldiers killed by horse
kicks per year per Prussian army corp. Fourteen corps were examined with
varying number of years, resulting in a total 200 corp-year combinations.

Number of deaths k 0 1 2 3 4 ≥ 5
Number of corp-years nk 109 65 22 3 1 0

Fit a simple Poisson model and evaluate the goodness of fit of the model.

Exercise 4.13: To ‘solve’ the authorship question of 12 of the so-called ‘Fed-
eralist’ papers between Madison or Hamilton, the statisticians Mosteller and
Wallace (1964) collated papers of already known authorship, and computed the
appearance of some keywords in blocks of approximately 200 words. From 19
of Madison’s papers, the appearance of the word ‘may’ is given in the following
table.

Number of occurrences k 0 1 2 3 4 5 6
Number of blocks nk 156 63 29 8 4 1 1

Check the Poissonness of the data and test whether the observed deviations are
significant. Fit a Poisson model and compute a goodness-of-fit test.

Exercise 4.14: Modify the idea of the Poisson plot to derive a binomial plot,
i.e. to show graphically if some observed data are binomial. Try the technique
on Geissler’s data in Exercise 4.1.

Exercise 4.15: Another way to check the Poisson assumption is to compare
consecutive frequencies (Hoaglin and Tukey 1985). Under the Poisson assumption
with mean θ show that

kpk/pk−1 = θ

and in practice we can estimate pk/pk−1 by nk/nk−1.

(a) Apply the technique to the datasets in Example 4.6 and Exercise 4.13.

(b) Develop a method to test whether an observed deviation is significant.

(c) Modify the technique for the binomial and negative binomial distributions,
and apply them to the datasets in Exercises 4.13 and 4.1, respectively.
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Exercise 4.16: This is an example of a binomial–Poisson mixture. Suppose
Xn is binomial with parameters n and p, but n itself is a Poisson variate with
mean μ. Find the marginal distribution of Xn. Discuss some practical examples
where this mixture model is sensible.

Exercise 4.17: The annual report of a pension fund reported a table of the
number of children of 4075 widows, who were supported by the fund (Cramér
1955).

Number of children 0 1 2 3 4 5 6
Number of widows 3062 587 284 103 33 4 2

(a) Fit a simple Poisson model and indicate why it fails.

(b) Fit a negative binomial model to the data, and check its adequacy using the
χ2 goodness-of-fit test.

(c) Consider a mixture model where there is a proportion θ of widows without
children, and another proportion (1− θ) of widows with x children, where x
is Poisson with mean λ. Show that the marginal distribution of the number
of children X follows

P (X = 0) = θ + (1− θ)e−λ

and, for k > 0,

P (X = k) = (1− θ)e−λ λ
k

k!
.

This model is called the ‘zero-inflated’ Poisson model.

(d) Fit the model to the data, and compare its adequacy with the negative
binomial model.

Exercise 4.18: Refer to the data in Example 4.7.

(a) Check graphically the two candidate models, the Poisson and negative bi-
nomial models, using the technique described in Exercise 4.15.

(b) Verify the fit of the Poisson and negative binomial models to the data.

(c) Compare the likelihood of the mean parameter under the two models. (It
is a profile likelihood under the negative binomial model.) Comment on the
results.

Exercise 4.19: Repeat the previous exercise for the dataset in Exercise 4.13.

Exercise 4.20: The following table (from Evans 1953) shows the distribution
of a plant species Glaux maritima (from the primrose family) in 500 contiguous
areas of 20cm squares.

count k 0 1 2 3 4 5 6 7
Number of squares nk 1 15 27 42 77 77 89 57

count k 8 9 10 11 12 13 14
Number of squares nk 48 24 14 16 9 3 1

Compare Poisson and negative binomial fits of the data. Interpret the result in
terms of clustering of the species: do the plants tend to cluster?

Exercise 4.21: Verify the profile likelihood in Section 4.7 for the parameter of
interest θ = θa/θp.
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Exercise 4.22: Assuming that X and Y are Poisson with rate λx and λy, show
that the conditional distribution of X given X + Y is binomial with parameters
n = X + Y and π = λx/(λx + λy).

Exercise 4.23: Prove Theorem 4.1.

Exercise 4.24: Verify that Michelson’s first experiment is out of line with the
rest. If you know the analysis of variance technique, use it to analyse all experi-
ments together, and then repeat the analysis after excluding the first experiment.
Otherwise, use a series of two-sample t-tests.

Exercise 4.25: Suppose U1, . . . , Un are an iid sample from the standard uni-
form distribution, and let U(1), . . . , U(n) be the order statistics. Investigate the
approximation

median{U(i)} ≈ i− 1/3

n+ 1/3

for n = 5 and n = 10. (Hint: use the distribution of the order statistics in
Exercise 2.4.)

Exercise 4.26: Suppose x1, . . . , xm are an iid sample from N(μ, σ2
x), and

y1, . . . , yn from N(μ+δ, σ2
y). Define Michelson’s first experiment as the x-sample,

and the subsequent experiment as the y-sample.

(a) Compute the profile likelihood for δ assuming that σ2
x = σ2

y.

(b) Compute the profile likelihood for δ without further assumption.

(c) Compute the profile likelihood for σ2
x/σ

2
y.

Exercise 4.27: The following is the average amount of rainfall (in mm/hour)
per storm in a series of storms in Valencia, southwest Ireland. Data from two
months are reported below.

January 1940
0.15 0.25 0.10 0.20 1.85 1.97 0.80 0.20 0.10 0.50 0.82 0.40
1.80 0.20 1.12 1.83 0.45 3.17 0.89 0.31 0.59 0.10 0.10 0.90
0.10 0.25 0.10 0.90

July 1940
0.30 0.22 0.10 0.12 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.17
0.20 2.80 0.85 0.10 0.10 1.23 0.45 0.30 0.20 1.20 0.10 0.15
0.10 0.20 0.10 0.20 0.35 0.62 0.20 1.22 0.30 0.80 0.15 1.53
0.10 0.20 0.30 0.40 0.23 0.20 0.10 0.10 0.60 0.20 0.50 0.15
0.60 0.30 0.80 1.10 0.20 0.10 0.10 0.10 0.42 0.85 1.60 0.10
0.25 0.10 0.20 0.10

(a) Compare the summary statistics for the two months.

(b) Look at the QQ-plot of the data and, based on the shape, suggest what
model is reasonable.

(c) Fit a gamma model to the data from each month. Report the MLEs and
standard errors, and draw the profile likelihoods for the mean parameters.
Compare the parameters from the two months.

(d) Check the adequacy of the gamma model using a gamma QQ-plot.

Exercise 4.28: In a p-parameter exponential family (4.2) show that the natural
statistics T1(x), . . . , Tp(x) are minimal sufficient. If the family is full rank, explain
why these statistics are the MLE of their own mean vector, which is a one-to-one
function of θ, so the MLE of θ is sufficient.
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Exercise 4.29: Let x1, . . . , xn be an iid sample from uniform(0, θ). The maxi-
mum order statistic x(n) is a sufficient estimate of θ, yet the uniform is not in the
exponential family. This does not conform to the basic theorem about minimal
sufficiency. What condition is not satisfied?

Exercise 4.30: In Section 4.9 verify the general mean and variance formulas
as derivatives of A(θ).

Exercise 4.31: Identify the exponential and gamma models as exponential
family models; in particular, find the canonical and dispersion parameters, and
the function c(x, φ).

Exercise 4.32: Identify the inverse Gaussian model as an exponential family
model. The density is

f(y) =

(
λ

2πy3

)1/2

exp

{
− λ

2μ2

(y − μ)2

y

}
, y > 0.

Verify that it has mean μ and variance μ3/λ.

Exercise 4.33: Perform the Monte Carlo test described in Example 4.14 and
verify the results.

Exercise 4.34: Compare the likelihood analysis of the mean parameter for
the dataset in Exercise 4.18 using the negative binomial model and the general
exponential family model. Discuss the advantages and disadvantages of each
model.

Exercise 4.35: Compare the likelihood analysis of the mean parameter for the
dataset in Exercise 4.4 using the beta–binomial model and the general exponential
family model.

Exercise 4.36: Suppose x is in the exponential family with log-density

log pμ(x) = xθ −A(θ) + c(x),

where μ = A′(θ) = EX is used as the index; the variance is v(μ) = A′′(θ). The
double-exponential family (Efron 1986b) is defined as

g(x) = b(θ, α)α1/2{pμ(x)}α{px(x)}1−α.

Efron shows that the normalizing constant b(θ, α) ≈ 1, and the mean and variance
are approximately μ and v(μ)/α.

(a) Starting with a standard Poisson model with mean μ, find the density of a
double Poisson model.

(b) Show that the likelihood from part (a) is approximately the same as the
extended quasi-likelihood formula in Example 4.15. Hint: use Stirling’s
approximation for the factorial:

n! =
√
2πe−nnn+1/2. (4.6)

Exercise 4.37: Starting with a standard binomial model, find the density
function of a double binomial model.

Exercise 4.38: The following dataset is the sulphur dioxide (SO2) content of
air (in 10−6 g/m3) in 41 US cities averaged over 3 years:
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10 13 12 17 56 36 29 14 10 24 110 28 17
8 30 9 47 35 29 14 56 14 11 46 11 23

65 26 69 61 94 10 18 9 10 28 31 26 29
31 16

Use the Box–Cox transformation family to find which transform would be sensible
to analyse the data. Plot the profile likelihood of the mean SO2 content. Check
the normal plot of the data before and after the transformation.

Exercise 4.39: The following data are the average adult weights (in kg) of 28
species of animals.

0.4 1.0 1.9 3.0 5.5 8.1 12.1 25.6 50.0 56.0 70.0 115.0
115.0 119.5 154.5 157.0 175.0 179.0 180.0 406.0
419.0 423.0 440.0 655.0 680.0 1320.0 4603.0 5712.0

Use the Box–Cox transformation family to find which transform would be sensible
to analyse or present the data.

Exercise 4.40: In a study of the physiological effect of stress, Miralles et al.
(1983) measured the level of beta endorphine in patients undergoing surgery.
(Beta endorphine is a morphine-like chemical with narcotic effects found in the
brain.) The measurements were taken at 12–14 hours and at 10 minutes before
surgery.

Patient 12–14 h 10 min Patient 12–14 h 10 min
1 10.0 6.5 11 4.7 25.0
2 6.5 14.0 12 8.0 12.0
3 8.0 13.5 13 7.0 52.0
4 12.0 18.0 14 17.0 20.0
5 5.0 14.5 15 8.8 16.0
6 11.5 9.0 16 17.0 15.0
7 5.0 18.0 17 15.0 11.5
8 3.5 42.0 18 4.4 2.5
9 7.5 7.5 19 2.0 2.0
10 5.8 6.0

(a) Draw the QQ-plot of the data at 12–14 hours and 10 minutes prior to surgery,
and comment on the normality.

(b) Draw the QQ-plot of the change in the beta endorphine level. To get a
measure of change note that the beta endorphine level is a positive variate, so
it may be more meaningful to use a ratio or to consider a log-transformation.
Examine the need to add a shift parameter.

(c) Compare the likelihood of the location parameter assuming normal and
Cauchy models for the three variables above.

Exercise 4.41: Consider the Box–Cox tranformation family for the data from
Michelson’s fifth experiment:

890 840 780 810 760 810 790 810 820 850
870 870 810 740 810 940 950 800 810 870

(a) Plot the profile likelihood of λ.

(b) Plot the profile likelihood of μ assuming λ = 1.
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(c) Compare the plot in (b) with the profile likelihood of μ by profiling over λ
and σ2. Comment on the result.

Exercise 4.42: Suppose x1, . . . , xn are an iid sample from the Laplacian dis-
tribution with parameters μ and σ. Find the MLE of the parameters and find
the general formula for the profile likelihood of μ.

Exercise 4.43: Use the t-family model for a range of degrees of freedom ν for
the datasets in Example 4.17; in particular plot the profile likelihood over ν.

Exercise 4.44: Repeat the likelihood analysis given for the datasets in Exam-
ple 4.17 using logistic and Laplacian models, and compare the results.
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Frequentist properties

Frequentist or repeated sampling properties of sample statistics form a basis
of probability-based inference. These properties also indicate a potential
objective verification of our statistical procedures. In this chapter we will
expand our discussion on important frequentist properties such as bias and
variance of point estimates, calibration of likelihood using P-values, and
coverage probability of CIs. We will introduce a powerful computational
method called the bootstrap, and cover the so-called ‘exact’ confidence
procedures for specific models.

5.1 Bias of point estimates
Definition 5.1 Suppose T (X) is an estimate of θ. Bias and mean square
error of T are defined as

b(θ) = EθT − θ

MSE(θ) = Eθ(T − θ)2 = varθ(T ) + b2(θ).

We say T is unbiased for θ if EθT = θ.

The subscript θ in Eθ means that the expected value is taken with
respect to the probability model pθ(x). Why do we want a small (or no)
bias in our estimates?

• It gives a sense of objectivity, especially if var(T ) is small. This is
closely related to the idea of consistency of point estimates: in large
samples our estimate should be close to the true parameter. Generally,
it is sensible to require that bias does not dominate variability. Or,
the bias and variability components in the MSE should be balanced.

• If we are pooling information from many relatively small samples, un-
biasedness of the estimate from each sample is vital to avoid an ac-
cumulation of bias (the pooled dataset is said to be highly stratified,
discussed in detail in Section 10.1). This is also true if point estimates
are used for further modelling. For example, in repeated measures ex-
periments we sometimes need to simplify the data by taking summary
statistics from each subject.

The above reasons do not point to the need for an exact unbiasedness,
since it is not always practical. For example, suppose x1, . . . , xn are an iid
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sample from N(μ, σ2) with both parameters unknown. Do we really use
the sample variance

s2 =
1

n− 1

∑
i

(xi − x)2

because it is unbiased? If we do, why do we not worry that the sample
standard deviation is biased? From the fact that (n− 1)s2/σ2 is χ2

n−1, we
can show that

E(s) =
Γ(n/2)

√
2

Γ((n− 1)/2)
√
n− 1

σ,

where Γ(·) is the gamma function. We can correct the bias, but in practice
we almost never do so. (The likelihood-based reason to use the (n − 1)-
divisor for the variance is given in Chapter 10.)

As discussed by Hald (1999), Fisher had two aversions: (arguments
based on) unbiasedness, and lack of invariance. Nonetheless, a lot of clas-
sical estimation theory is built around unbiasedness. Here are further ex-
amples showing the problem with the exact unbiasedness requirement.

Producing an unbiased estimate is never automatic

Suppose x1, . . . , xn are an iid sample from N(μ, σ2), and we want to esti-
mate the threshold probability θ = P (X1 > 2). It is not obvious how to
obtain an unbiased estimate of θ (see Lehmann 1983, pages 86–87, for an
answer). In contrast, the MLE is immediate:

θ̂ = P

(
Z >

2− x

σ̂

)
,

where Z is the standard normal variate, and x and σ̂ are the sample mean
and standard deviation of the data.

In general, except for linear g(T ), if T is unbiased for θ then g(T ) is
a biased estimate of g(θ); this is a lack of invariance with regards to the
choice of parameterization.

Not all parameters have an unbiased estimator

In complex problems it is not always clear whether there even exists an
unbiased estimator for a parameter of interest. For example, let X ∼
binomial(n, π); there is no unbiased estimate for the odds θ = π/(1 − π).
To show this, consider any statistic T (X). We have

ET (X) =
n∑

x=0

t(x)

(
n
x

)
πx(1− π)n−x

=
n∑

x=0

c(x)πx

for some function c(x). But, while ET is a polynomial of maximum degree
n,
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θ =
π

1− π
=

∞∑
k=1

πk

is an infinite-degree polynomial. So, there is no T (X) such that ET (X) =
θ. This does not mean that there is no reasonable inference for θ. If π̂ is
a reasonable estimate for π, then the MLE θ̂ = π̂/(1− π̂), while biased, is
also reasonable.

The unbiasedness requirement can produce terrible estimates

Let X be a sample from a Poisson distribution with mean μ. Suppose the
parameter of interest is θ = e−aμ. If T (X) is unbiased for θ then

ET =

∞∑
x=0

t(x)e−μμ
x

x!
= e−aμ,

or

∞∑
x=0

t(x)
μx

x!
= e(1−a)μ

=
∞∑
x=0

(1− a)x
μx

x!

so t(x) = (1 − a)x; see also Lehmann (1983, page 114). If a = 1 then
θ = P (X = 0) is estimated by t(x) = I(x = 0), which is equal to one if
x = 0, and zero otherwise. Even worse: if a = 2 then θ = e−2μ is estimated
by t(x) = (−1)x, which is equal to 1 if x is even, and −1 if x is odd.

5.2 Estimating and reducing bias
The bias of the MLE of σ2 based on a random sample x1, . . . , xn from
N(μ, σ2) is

−σ2

n
.

Generally, in regular estimation problems the bias of an estimate of θ is
usually of the form

b1
n

+
b2
n2

+
b3
n3

+ · · · ,

where bk’s are functions of θ only, but not of sample size n. The standard
deviation of an estimate is typically of the form

s1
n1/2

+
s2
n

+
s3
n3/2

+ · · · .

Therefore bias is usually smaller than the stochastic uncertainty in the
estimate. It may not be worth all that much to try to correct for bias in
this general case. Correction is important in less regular cases, where bias is
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known to be large relative to the variance such as when we pool information
over many small samples or when the data are highly stratified.

When an exact theoretical result is not available or too complicated,
there are three general, but approximate, methods to remove or reduce the
bias of a point estimate:

1. Taylor series method.

2. Jackknife or leave-one-out cross-validation method.

3. Bootstrap method.

Taylor series method for functions of the mean

This is closely related to the Delta method in Section 4.7. The proof of the
following result is left as an exercise.

Theorem 5.1 Suppose we estimate h(μ) by h(x). If the second derivative
h′′(·) is continuous around μ, then

Eh(X) ≈ h(μ) +
1

2
h′′(μ)var(X),

with the last term providing an approximate bias.

Example 5.1: The following is the number of accidents recorded on a stretch
of highway for the past 10 months:

1 1 0 0 2 4 1 2 0 3

Assume that the accidents are an iid sample from a Poisson distribution with
mean μ. Let the parameter of interest be

θ = P (no accident)

= P (X = 0) = e−μ.

From the data we get x = 1.4, so the MLE of θ is θ̂ = e−1.4 = 0.25. To obtain a
bias-corrected estimate, let h(μ) = e−μ, so h′′(μ) = e−μ. Hence the bias is

b(μ) ≈ 1

2
e−μ μ

10

and the bias-corrected estimate is

θ̂ = e−x − 1

2
e−x x

10
= 0.23.

Using the Delta method (Section 4.7) the standard error of θ̂ is

e−x
√

x/10 = 0.09,

which is much larger than the bias.
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Jackknife or cross-validation method

Suppose we want to predict an outcome y, where a large number of predic-
tors x1, . . . , xK are available, and we want to choose an optimal subset of
the predictors. We cannot use as our criterion the usual residual variance
from each possible regression model, since it is a biased estimate. In par-
ticular, a larger model will have a smaller residual variance, even though
it is not a better model. Consider instead the following commonly used
validation technique: split the data into two, and

• use half of the dataset (called the training set) to develop the compet-
ing regression models

• use the other half of the data (the validation set) to estimate the
prediction error variance of each model. This variance can then be
used for model selection or comparison.

The jackknife or leave-one-out cross-validation method is an extreme
version of the above technique; a lot of computation is typically required,
so if there are enough subjects the above method is much more practical.
For clarity we will continue to use the error variance estimation to describe
the general methodology:

• use (n− 1) units/subjects to develop the regression models

• use the one left-out for validation; i.e. compute the prediction error
using each of the models

• (this is the laborious part) cycle around every single unit of the data
as the one left-out.

In the end, we can compute for each competing model an unbiased estimate
of its prediction error variance, and the best model can be chosen as the
minimizer of the crossvalidated error variance. Simpler methods, requiring
much less computations, are available for regression model selection.

For bias estimation the general prescription is as follows. Suppose we
have data x1, . . . , xn, and an estimate T for a parameter θ. The leave-xi-out
data is

x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn).

Let Ti be the ‘jackknife replicate’ of T based on x−i; then its bias is esti-
mated by

b̂ = (n− 1)(T − T ),

where T = 1
n

∑
Ti, and the bias-corrected estimate is T − b̂. Exercise 5.5

shows that this correction procedure removes bias of order 1/n.

Example 5.2: Let T = 1
n

∑
(xi − x)2 be an estimate of the variance σ2. The

jackknife replicate is

Ti =
1

n− 1

∑
j �=i

(xj − xi)
2
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where

xi =
1

n− 1

∑
j �=i

xj .

Some algebra will show that

b̂ = − 1

n

{
1

n− 1

∑
(xi − x)2

}
,

so that the bias-corrected estimate is

T − b̂ =
1

n− 1

∑
(xi − x)2,

which is the usual sample variance formula. �

Bootstrap method

The most general way of estimating bias is provided by the bootstrap
method. It was first presented by Efron in 1977 Rietz lecture as an al-
ternative to the jackknife; a general exposition is given by Efron and Tib-
shirani (1993). In its evolution the bootstrap becomes the main frequentist
tool to deal with complicated sampling distributions. In practice there is
almost no analytical work required by the method, but, in exchange, we
must perform a lot of computations.

Underlying the bootstrap is the plug-in principle: replace the unknown
distribution F in a quantity of interest by an estimate F̂ . Thus, for exam-
ple, the bias of T as an estimate of θ is

b(θ) = EFT − θ,

where EFT means that the expectation is taken with respect to the distri-
bution F . Intuitively, using the plug-in principle, an estimate of the bias
is

b̂ = E
F̂
T − θ̂.

The estimate F̂ may be parametric or nonparametric. In almost all boot-
strap applications the evaluation of expected values with respect to F̂ is
done using Monte Carlo simulations. In the following example the method
is parametric, as F̂ is a member of the parametric family. In nonparametric
bootstrap applications we use the empirical distribution function (EDF).
Sampling from the EDF is equivalent to sampling with replacement from
the sample itself, hence the name ‘bootstrap’.

Example 5.3: In the Poisson example above x = 1.4, so F̂ is Poisson with

mean 1.4. The estimated bias of T = e−x is

b̂ = E
F̂
e−X − e−x.

In this case the term E
F̂
e−X can be computed analytically. Since Xi is Poisson

with mean μ we have
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EetXi = exp(−μ+ μet),

and

EF e
−X = exp(−nμ+ nμe−1/n).

Using μ̂ = x = 1.4 we obtain

E
F̂
e−X = exp(−14 + 14e−1/10) = 0.264.

To illustrate a general scheme of bootstrap simulation, without any analytical
derivation this quantity can be computed as follows:

• Generate x∗
1, . . . , x

∗
10 iid from Poisson(mean=1.4). These are called the boot-

strap sample.

• Compute x∗ and e−x∗
from the bootstrap sample.

• Repeat a large number of times B, and take the average of e−x∗
. The

collection of e−x∗
is an approximate random sample from the distribution

of e−X , and forms the bootstrap distribution of e−X .

Figure 5.1 shows the histogram of e−x∗
using B = 1000. The average e−x∗

is
0.263, close to the theoretically derived value above, and the estimated bias is

b̂ = average(e−x∗
)− e−1.4

= 0.263− 0.246 = 0.017,

so the bias-corrected estimate is e−1.4 − 0.017 = 0.23, the same as the estimate
found using the Taylor series method. �
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Figure 5.1: Bootstrap distribution of e−X .

5.3 Variability of point estimates
Compare the following statements:

1. ‘Aspirin reduces heart attacks by 42%.’

2. ‘We are 95% confident that the risk of heart attacks in the aspirin
group is between 47% to 71% of the risk in the placebo group.’
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When a parameter has some physical meaning it is usually desirable to
report its estimate. While appealing, the first statement does not convey
the sense of uncertainty found in the second statement. The uncertainty
is embodied by statistical variability, so the deficiency is usually remedied
by also reporting the standard error (or ‘margin of error’) of the point
estimate: the relative risk is 58% (standard error= 6%).

More generally, in classical (frequentist) statistics, probability state-
ments made regarding the uncertainty of a point estimate are based on
the sampling distribution. This is the distribution of the estimate as it
varies from sample to sample. Except in some specific cases deriving exact
sampling distributions is notoriously difficult; in practice we often rely on
the normal approximation. We will refer to regular cases as those where
the normal approximation is reasonable. (This is a parallel sampling-based
argument to representing the likelihood with the MLE and its curvature.)
In such cases we only need to compute the estimate and its variance; infer-
ence follows from these two quantities alone. For example, an approximate
95% CI is

θ̂ ± 1.96se(θ̂),

where the standard error se(θ̂) is the estimated standard deviation of θ̂.

While θ̂ does not have to be an MLE, we will still refer to this CI as a
Wald(-type) CI.

Estimating variance

The general methods for estimating the variance of an estimate are similar
to those for estimating bias. The most important classical method is the
Delta method, used in the analysis of the aspirin data in Section 4.7. The
method is based on the Taylor series expansion and generally works for
estimates which are functions of the sample mean.

The jackknife procedure to estimate the variance of a statistic T is given,
for example, in Miller (1964). Practical statistics seems to have ignored this
method. The problem is that we need the procedure in complicated cases
where we cannot use the Delta method, but in such cases there is no guar-
antee that the procedure works. See Efron (1979) for further discussion.

The most general method is again provided by the bootstrap method.
We are interested in

v = varF (T ).

Using the plug-in principle we replace the unknown distribution F by its
estimate F̂ , so the variance estimate is

v̂ = var
F̂
(T ).

The variance evaluation is usually done using Monte Carlo sampling from
F̂ , though in some cases it might be possible to do it analytically.
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Example 5.4: Continuing the analytical result in Example 5.3,

varF (e
−X) = EF e

−2X −
(
EF e

−X
)2

= exp(−nμ+ nμe−2/n)− exp(−2nμ+ 2nμe−1/n).

Using n = 10 and x = 1.4, the variance is estimated by

var
F̂
(e−X) = exp(−nx+ nxe−2/n)− exp(−2nx+ 2nxe−1/n)

= 0.079− 0.2642 = 0.0093

It is intuitive that the bootstrap replications of e−x∗
contain much more in-

formation than bias alone. Such replications are an approximate random sample

from the distribution of e−X . We can simply compute the sample variance as an
estimate of the population variance.

From the same 1000 bootstrap replications in Example 5.3, the estimated

variance of e−X is

var(e−X
∗
) = 0.0091,

close to the analytically derived estimate. For comparison, using the Delta
method, the estimated variance is

v̂ar(e−X) = (e−x)2
x

n
= 0.0085. �

Example 5.5: The bootstrap method is indispensible for more complicated
statistics. Consider the IQ data in Exercise 3.23, giving paired data (xi, yi) for
i = 1, . . . , 16. The sample correlation between the verbal (x) and mathematical
thinking (y) is ρ̂ = 0.83. Without making further assumptions on the bivariate
distribution of (x, y), we can perform a nonparametric bootstrap by:

• taking a sample of size n = 16 with replacement from the paired data

• computing ρ̂∗ from the new dataset

• repeating this B times.

Figure 5.2 shows the plot of the data and the histogram of the bootstrap replicates
ρ̂∗ using B = 500. The estimated variance of ρ̂ is 0.00397, so the standard error
of ρ̂ is 0.063. �

To end with a note of caution, in practice the bootstrap method is used
in complex situations where it may not be common knowledge whether
asymptotic normality holds. Some care is required if the observed bootstrap
distribution is decidedly nonnormal. In Sections 5.6 and 15.3 we will discuss
some bootstrap-based inference that uses the whole bootstrap distribution
rather than just the variance information.

5.4 Likelihood and P-value
P-value is the most common measure of evidence, although it is more cor-
rect to say that P-value measures the ‘extremeness’ or ‘unusualness’ (not
the probability or likelihood) of the observed data given a null hypothesis.
The null hypothesis is doubtful if it is associated with a small P-value.



126 5. Frequentist properties

80 85 90 95 105 115

80
90

10
0

12
0

Verbal

M
at

he
m

at
ic

al

(a) IQ data

ρ̂*
F

re
qu

en
cy

0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

(b) Bootstrap distribution

Figure 5.2: IQ data and the bootstrap distribution of the sample correlation.

While we can construct examples where P-value is meaningless (e.g.
Royall 1997, Chapter 3), in many cases of practical interest it does measure
evidence, since there is a close relationship between likelihood and P-value.
Throughout, when we say ‘likelihood’ we mean ‘normalized likelihood’.
However, since P-value depends on the sample and the parameter spaces,
the relationship is not the same over different experiments.

Even though P-value is the most rudimentary form of inference, it has
some attractive properties:

• Only the ‘null model’ is needed to compute a P-value, but producing
a likelihood requires a model specification over the whole parameter
space. There are practical situations (e.g. Example 4.14) where a
statistical analysis can readily produce a P-value, but not a likelihood.

• There are simple adjustments of P-value to account for multiple test-
ing.

• P-value provides a way of calibrating the likelihood, especially for high-
dimensional problems (Section 3.5).

The weakness of P-value is apparent, even in one-parameter problems,
when the sampling distribution of the test statistic is not symmetric. While
the one-sided P-value is obvious and essentially unique (at least for contin-
uous distributions), there are many ways of defining a two-sided P-value,
none of which is completely satisfactory (Example 5.7).

For testing simple-versus-simple hypotheses, namely H0: θ = θ0 versus
H1: θ = θ1, an observed likelihood ratio r (think of a small r < 1) satisfies

Pθ0

{
L(θ0)

L(θ1)
≤ r

}
≤ r. (5.1)

If we treat the probability as a P-value, we have a simple result that the
P-value is always smaller than or equal to the likelihood ratio. This is not
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true for general alternatives, although it is true for many one-parameter
models. To prove the relationship

Pθ0

{
L(θ0)

L(θ1)
≤ r

}
=

∫
[L(θ0)≤rL(θ1)]

pθ0(x) dx

≤
∫
[L(θ0)≤rL(θ1)]

rL(θ1) dx

=

∫
[L(θ0)≤rL(θ1)]

rpθ1(x) dx

≤ r

∫
pθ1(x) dx

= r.

The next example, first discussed by Edwards et al. (1963), is more typical.

Example 5.6: Suppose x1, . . . , xn are an iid sample from N(μ, σ2), with σ2

known and where we are interested to test H0: μ = μ0. The likelihood of μ is

L(μ) = constant× exp
{
− n

2σ2
(x− μ)2

}
.

Since the MLE of μ is x, the normalized likelihood of H0 is

L(μ0)

L(x)
= e−z2/2,

where

z =
x− μ0

σ/
√
n

is the usual Wald or z-statistic. The two-sided P-value associated with an ob-
served z is

P (|Z| > |z|),
where Z has the standard normal distribution.

Figure 5.3(a) shows the plot of P-value and likelihood as a function of z.
Figure 5.3(b) shows P-value as a function of likelihood. For example, a P-value
of 5% is equivalent to a 15% likelihood. �

Since in the normal model there is no complication in the definition of
P-value, we may view the relationship between likelihood and P-value here
as an ideal relationship. This will help us decide which two-sided P-value
is best in the following Poisson example.

Example 5.7: Suppose x (x > 1) is a single observation from the Poisson
distribution with mean θ. We want to test H0: θ = 1. The one-sided P-value is

Pθ=1(X ≥ x) =
∑
k≥x

e−1

k!
.

The asymmetric sampling distribution, however, presents a problem in defining
a two-sided P-value. Fisher once recommended simply doubling the one-sided
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Figure 5.3: (a) Plot of P-value (solid) and likelihood (dashed) as a function
of z. (b) Relationship between likelihood and P-value.

P-value, a proposal commonly used in practice, but it is not without its defects.
The (normalized) likelihood of H0 is

L(1)

L(x)
= ex−1x−x.

Figure 5.4(a) shows that the P-value is still smaller than the likelihood. The solid
line in Figure 5.4(b) shows that, as a function of likelihood, the P-value is higher
than in the ideal normal case (dashed line). Hence doubling the P-value seems
to produce a bigger P-value than necessary.

As an alternative, some authors, for example Lancaster (1961) or Agresti
(1996), suggested a one-sided mid-P-value defined as

1

2
P (X = x) + P (X > x).

The two-sided version is simply double this amount. Figure 5.4(b) shows that
this definition matches very closely the likelihood–P-value relationship obtained
in the normal case. This result holds across a very wide range of null parameter
values.

Note, however, that these definitions of two-sided P-value are not satisfactory
for x = 0. To test the same H0: θ = 1, the one-sided P-value is

P (X = 0) = e−1 = 0.37,

exactly the same as the likelihood of H0. �

5.5 CI and coverage probability
We have used the idea of confidence procedure by appealing to the simple
normal model: if x1, . . . , xn are an iid sample from N(θ, σ2) with known
σ2, then the 95% CI for θ is

x− 1.96 σ/
√
n < θ < x+ 1.96 σ/

√
n.

In general, the 100(1 − α)% CI for θ is a random interval L < θ < U
satisfying, for each fixed θ,



5.5. CI and coverage probability 129

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

x

P
−

va
lu

e 
or

 li
ke

lih
oo

d

(a)

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

Likelihood
P

−
va

lu
e

(b)

Figure 5.4: (a) Plot of two-sided P-value (solid) and likelihood (dashed) as
a function of x to test H0: θ = 1 for the Poisson model. (b) Relationship
between likelihood and two-sided P-value using doubling method (solid), for
the normal model (dashed) and using mid-P-value method (dotted).

Pθ(L < θ < U) = 1− α.

The probability Pθ(L < θ < U) as a function of θ is called the coverage
probability of the interval. It is the probability of a correct guess of where
the unknown parameter is.

For a simple normal mean model, the coverage probability of a 95%
CI is exactly 95%. For nonnormal models the coverage probability rarely
matches the advertised (claimed) confidence level. For some specific mod-
els, such as Poisson or binomial models, it is sometimes possible to guar-
antee a minimum coverage; for example, a 100(1− α)% CI for θ satisfies

Pθ(L < θ < U) ≥ 1− α.

In more complex models we can only get an approximate coverage with no
guaranteed minimum.

A general procedure to construct CIs can be motivated based on a close
connection between CIs and hypothesis testing. Given a test procedure, a
100(1− α)% CI is the set of null hypotheses that are not rejected at level
α. Specifically, if we compute a two-sided P-value to test H0: θ = θ0, the
100(1− α)% CI is the set

{θ0, P-value ≥ α}.
In particular, the lower and upper limits L and U are the parameter values
with P-value equals α. We say we ‘invert’ the test into a CI; it is intuitive
that a ‘good’ test procedure will generate a ‘good’ CI.

Depending on the shape of the likelihood function, likelihood-based
intervals are naturally either one sided or two sided; CIs do not have such
restriction. We can obtain one-sided CIs using the connection with one-
sided tests. Suppose T is a sensible estimate of θ, and t is the observed
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value of T . The 100(1 − α)% lower confidence bound L for θ is the value
of the parameter associated with a one-sided (right-side) P-value equals α,
i.e.

PL(T ≥ t) = α. (5.2)

The 100(1−α)% upper confidence bound U can be defined similarly as the
solution of the left-side P-value equation

PU (T ≤ t) = α.

Figure 5.5 illustrates the computation of L and U . The curve t1−α(θ) is
the 100(1− α) percentile of the distribution of T as a function of θ. (The
interval L < θ < U is the 100(1− 2α)% CI for θ).

θ

T

t

L Uθ0

t1−α(θ)

tα(θ)

Figure 5.5: Finding the lower and upper confidence bounds from T = t.

Example 5.8: Suppose x1, . . . , xn are an iid sample from N(μ, σ2), with σ2

known. The 100(1− α)% lower confidence bound for μ is

x− z1−α σ/
√
n.

For Michelson’s data in Example 4.8 we observe x = 852.4(se = 7.9), so we are
95% confident that μ is larger than

852.4− 1.65× 7.9 = 839.4.

The upper confidence bound can be found similarly. �

If T is continuous, the 100(1 − α)% lower confidence bound L is a
random quantity that satisfies

Pθ0(L < θ0) = 1− α, (5.3)

where θ0 is the true parameter value, which means L has a correct coverage
probability. This is true, since the event [L < θ0] is equivalent to [T <
t1−α(θ0)]; see Figure 5.5. By definition of t1−α(θ), we have
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Pθ0(T < t1−α(θ0)) = 1− α.

Note that finding L in (5.2) is a sample-based computation, no unknown
parameter is involved. However, the probability in (5.3) is a theoretical
quantity.

5.6 Confidence density, CI and the bootstrap
Let T be a sensible estimate of a scalar parameter θ, and t represent the
observed value of T . For a fixed t, as a function of θ, the one-sided P-value

α(θ) ≡ Pθ(T ≥ t),

looks like a distribution function: it is monotone increasing and ranging
from zero to one. It is a statistic in the sense that no unknown parameter
is involved in its computation. Fisher (1930) called it the fiducial distribu-
tion of θ (though he required T to be sufficient and continuous). To follow
the current confidence-based procedures, we will call it the confidence dis-
tribution of θ (Efron 1998), and we do not require T to be sufficient nor
continuous. Its derivative

c(θ) =
∂α(θ)

∂θ
will be called the confidence density of θ. To put it more suggestively, we
might write

C(θ < a) =

∫ a

−∞
c(u)du,

where C(·) is read as ‘the confidence of’, to represent the confidence level of
the statement θ < a. Remember, however, that θ is not a random variable.
The confidence distribution is a distribution of our (subjective) confidence
about where θ is. It is an alternative representation of uncertainty other
than the likelihood function.

Example 5.9: In the normal case, suppose we observe X = x from N(θ, σ2)
with known σ2. The confidence distribution is

Pθ(X ≥ x) = P (Z ≥ (x− θ)/σ)

= 1− Φ
(
x− θ

σ

)
,

and the confidence density is the derivative with respect to θ:

c(θ) =
1

σ
φ
(
x− θ

σ

)
.

This is exactly the normal density centred at the observed θ̂ = x, which is also the
likelihood function (if normalized to integrate to one). The equality between the
confidence density and such normalized likelihood holds generally for symmetric
location problems (Section 9.8). �

The confidence distribution can be viewed simply as a collection of P-
values across the range of null hypotheses. Alternatively, P-value can be
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represented as the tail area of the confidence density. The main use of
the confidence density is to derive and show graphically CIs with certain
confidence level. In the continuous case, let θα ≡ L be a 100(1−α)% lower
confidence bound θ such that

C(θ < θα) = Pθα(T ≥ t) = α.

This means θα behaves like the 100α percentile of the confidence distribu-
tion. Furthermore, from (5.3), θα has coverage probability

Pθ(θ < θα) = α. (5.4)

Therefore, the confidence density works intuitively like a Bayesian density
on θ, but it can be justified by standard probability arguments without
invoking any prior probability. This was Fisher’s original motivation for
the fiducial distribution in 1930.

For a two-sided 100(1− α)% CI we can simply set

θα/2 < θ < θ1−α/2,

which satisfies the confidence requirement

C(θα/2 < θ < θ1−α/2) = 1− α

as well as the probability requirement, from (5.4),

Pθ(θα/2 < θ < θ1−α/2) = 1− α. (5.5)

In the normal example above it is easy to see how to construct CIs from
the confidence density.

The use of confidence density is attractive when the confidence and
probability statements match, but that does not hold generally in discrete
cases or when there are nuisance parameters. We will discuss the Poisson
and binomial models in the coming sections.

Example 5.10: Suppose we observe X = x from a Poisson distribution with
mean θ. The commonly defined one-sided P-value is

P-value = P (X ≥ x),

so the confidence distribution is

Pθ(X ≥ x) =

∞∑
k=x

e−θθk/k!

and the confidence density is

c(θ) =

∞∑
k=x

(ke−θθk−1 − e−θθk)/k! = e−θθx−1/(x− 1)!,

coincidentally the same as the likelihood based on observing X = x− 1. See Fig-
ures 5.6(a)–(b). For nonlocation parameters the confidence density is generally
different from the likelihood function (normalized to integrate to one).
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If x = 0 the above definition of P-value produces a degenerate confidence
density at θ = 0, which is not sensible.

A two-sided CI for θ can be derived by appropriately allocating the tail prob-
abilities of the confidence density; see Figure 5.6(b). This interval, however, does
not match the standard definition to be discussed in the next section. �
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Figure 5.6: (a) The confidence distribution of the Poisson mean θ based on
observing x = 3. (b) The corresponding confidence density (solid) and like-
lihood (dashed) functions; the vertical lines mark the 2.5% tail probabilities
of the confidence distribution.

Bootstrap density as confidence density

Let ψ ≡ g(θ) be a one-to-one increasing function of θ, and θα be the
100(1− α)% lower confidence bound for θ. For ψα ≡ g(θα) we have

C(ψ < ψα) = C{g(θ) < g(θα)} = α,

which means ψα is the 100α percentile of the confidence distribution of
ψ. In other words the rule of transformation for confidence distributions
follows the usual rule for probability distributions.

We can exploit this result to get an inference directly from the bootstrap
distribution of an estimate θ̂. Suppose there exists a transformation g(θ̂)

such that, for all θ, the random variable g(θ̂) is normally distributed with
mean g(θ) and constant variance. From Example 5.9 the confidence density

of g(θ) matches the probability density of g(θ̂). By back-transformation,
this means the confidence density of θ matches the probability density of
θ̂. The latter is exactly what we get from the bootstrap! To emphasize, we
can interpret the bootstrap distribution as a confidence distribution of θ.

Therefore, without knowing g(·), but only assuming that it exists, the
100(1− α)% CI of θ is the appropriate percentiles of the bootstrap distri-
bution. For example, the 95% CI for θ is

θ̂0.025 < θ < θ̂0.975,
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where θ̂0.025 and θ̂0.975 are the 2.5 and 97.5 percentiles of the bootstrap
distribution. This is called the bootstrap percentile method (Efron 1982).
Using a similar argument as that used in Section 2.9 for the likelihood-based
intervals, the bootstrap CI is safer to use than the Wald CI, especially if θ̂
is nonnormal. In effect the bootstrap CI automatically employs the best
normalizing transform.

Alternatively, by viewing the bootstrap density as a confidence density,
we can compute the one-sided (right-side) P-value for testing H0: θ = θ0,

simply by finding the proportion of bootstrap replicates θ̂∗’s that are less
than θ0

The percentile method is not valid if the required g(θ) does not ex-
ist. Efron (1987) proposed the BCa method (Section 15.3) as a general
improvement of the percentile method.

Example 5.11: From the boostrap distribution of the sample correlation in
Example 5.5, using B = 500 replications, we obtain the 95% CI

0.68 < ρ < 0.93

directly from the bootstrap distribution. Note that it is an asymmetric interval
around the estimate ρ̂ = 0.83. For comparison, using the previously computed
standard error, the Wald 95% CI is 0.83± 1.95× 0.063, or 0.71 < ρ < 0.95. The
one-sided P-value to test H0: ρ = 0.5 is 1/500, since there is just one bootstrap
replicate ρ̂∗ less than 0.5. �

5.7 Exact inference for Poisson model
Suppose we observe x from a Poisson distribution with mean θ. If we
want a 100(1 − α)% CI for θ, then the standard construction is based on
performing two one-sided hypothesis tests. The upper limit U is chosen so
that the left-side P-value is

PU (X ≤ x) = α/2

where X is Poisson with mean U . The lower limit L is chosen so that

PL(X ≥ x) = α/2

where X is Poisson with mean L. This technique is clearly seen graphically
in the normal case, where the limits match the standard formula.

In the Poisson case a problem occurs again at x = 0: naturally we only
get a one-sided interval, which is associated with one-sided tests. Should
we allow a full α for the one-sided P-value to find U , namely by solving

P (X = 0) = e−U = α,

or still only allow α/2 and solve

P (X = 0) = e−U = α/2?

In practice the latter is used.
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A CI found using the method above is called an ‘exact’ interval, but
that is a misnomer. The discreteness and asymmetry in the sampling dis-
tribution creates inexact coverage: 95% CIs do not have 95% coverage
probability. In this case, we can show (Exercise 5.13) that the true cover-
age probability is larger than the stated or nominal level.

Example 5.12: For x = 1, the upper limit of 95% CI for θ is the solution of

P (X ≤ 1) = e−θ + θe−θ = 0.025,

which yields θ = U = 5.57. The lower limit is the solution of

P (X ≥ 1) = 1− e−θ = 0.025,

which yields θ = L = 0.0253. The following table shows the 95% confidence
limits for a range of x.

x 0 1 2 3 4 5 6 7 8
L(x) 0 0.03 0.24 0.62 1.09 1.60 2.20 2.82 3.45
U(x) 3.69 5.57 7.22 8.77 10.24 11.67 13.06 14.42 15.76

The CIs are shown in Figure 5.7(a). The coverage probability is based on nu-
merically computing

Pθ{L(X) ≤ θ ≤ U(X)} =

∞∑
x=0

I{L(x) ≤ θ ≤ U(x)} e−θθx/x!,

where I{·} is one if the condition in the bracket is true, and zero otherwise. For
example, for θ = 1,

Pθ{L(X) ≤ θ ≤ U(X)} = Pθ(X = 0, 1, 2, 3) = 0.98.

Figure 5.7(b) shows that the true coverage probability is higher than 95% for all
values of θ. �
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Figure 5.7: (a) CIs for the Poisson mean θ based on observing x. (b) The
true coverage probability of the ‘exact’ 95% CI.
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In terms of confidence density
The discreteness of Poisson data creates a slight complication. Define a
confidence density cL(θ) based on the P-value formula

P-value = Pθ(X ≥ x).

The 100α/2 percentile of this density gives the lower limit L. To get the
upper limit U , we compute another confidence density cU (θ) based on the
P-value formula

P-value = Pθ(X > x)

and find U as the 100(1−α/2) percentile of this density. Figures 5.8(a)–(b)
show the confidence distributions and densities based on these P-values.
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Figure 5.8: (a) The confidence distributions of the Poisson mean θ, based
on two definitions of P-value for x = 3. (b) The corresponding confidence
densities cL(θ) and cU (θ) in solid and dashed curves; both are required to
get the standard two-sided CIs, marked by the two vertical lines. (c) The
confidence distribution based on the mid-P-value (solid) and the previous
definitions (dashed). (d) The corresponding confidence densities of (c).
The vertical lines mark the 95% CI based on the mid-P-value.

It is desirable to have a single P-value that works for both the lower
and upper confidence bounds. Such a P-value is given by the mid-P-value

P-value = Pθ(X > x) +
1

2
Pθ(X = x).
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Figures 5.8(c)–(d) show the confidence distribution and density based on
the mid-P-value for x = 3; for example, a 95% CI derived from the con-
fidence density is 0.76 < θ < 8.17. The CIs derived from this definition,
however, no longer have guaranteed minimum coverage.

Exact coverage of likelihood-based intervals

In the normal case the likelihood interval at 15% cutoff has an exact 95%
coverage probability. We do not expect such a simple relationship in the
Poisson case, but we expect it to be approximately true. In general when x
is observed from a Poisson distribution with mean θ, the likelihood interval
at cutoff α is the set of θ such that

L(θ)

L(x)
= ex−θ

(
θ

x

)x

> α.

Example 5.13: To be specific let us compare the case when x = 3. The
exact 95% CI is 0.62 < θ < 8.76. The likelihood interval at 15% cutoff (hence
an approximate 95% CI) is 0.75 < θ < 7.77. Figure 5.9 shows that the exact
CI includes values of θ that have lower likelihood than some values outside the
interval. �
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Figure 5.9: The exact 95% CI for Poisson mean θ (marked by the vertical
lines) and the likelihood based on x = 3.

Example 5.14: For comparison with the exact CIs the following table shows
the likelihood intervals at 15% cutoff for the same values of x shown in Example
5.12. For convenience we also name the interval limits as L(x) and U(x):

x 0 1 2 3 4 5 6 7 8
L(x) 0 0.06 0.34 0.75 1.25 1.80 2.39 3.01 3.66
U(x) 1.92 4.40 6.17 7.77 9.28 10.74 12.15 13.54 14.89

Figure 5.10(a) shows that there is very little practical difference between the
two types of intervals, except at x = 0. The coverage probability plot in Figure
5.10(b), however, shows that the likelihood interval may have less than 95%
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Figure 5.10: (a) Likelihood intervals for the Poisson mean θ based on ob-
serving x; the dotted lines are the limits of 95% exact confidence intervals.
(b) The coverage probability of the likelihood-based intervals at 15% cutoff.

coverage. The minimum coverage of 85% is observed at θ around 1.95, just
outside the upper limit for x = 0. �

Now note that the likelihood function based on x = 0 is

L(θ) = e−θ,

which is not regular, so we cannot relate 15% cutoff with the usual (approx-
imate) 95% confidence level. The problem of how to construct a sensible
interval when x = 0 arises also with the exact method. It is interesting to
see the dramatic change in the coverage probability plot if we simply ‘fix’
the likelihood interval at x = 0 to match the CI; that is, change the upper
limit from 1.92 to 3.69 (corresponding to a cutoff of 2.5%). Figure 5.11
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Figure 5.11: The coverage probability of the likelihood-based intervals where
the upper limit at x = 0 is changed from 1.92 to 3.68.

shows that the coverage probability is now mostly above 95%, except for
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some small intervals of θ. The minimum coverage is now 92%; the low
coverage is mainly caused by the interval for x = 1 (Exercise 5.12).

5.8 Exact inference for binomial model
Suppose we observe x from a binomial distribution with a known n and an
unknown probability θ. The normal approximation of the sample propor-
tion θ̂ gives the Wald CI formula

θ̂ ± zα/2 se(θ̂)

where the standard error is

se(θ̂) =

√
θ̂(1− θ̂)/n.

This approximate interval works well if n is large enough and θ is far
from zero or one. For small n, Agresti and Coull (1998) suggest adding ‘2
successes and 2 failures’ to the observed data before using the Wald interval
formula.

There is a large literature on the ‘exact’ CI for the binomial proportion.
Many texts recommend the Clopper–Pearson (1934) interval, similar to the
one described previously for the Poisson mean. A 100(1 − α)% CI for θ
based on observing x is L(x) to U(x), where they satisfy two one-sided
P-value conditions

Pθ=L(X ≥ x) = α/2

and
Pθ=U (X ≤ x) = α/2.

At x = 0 and x = n the CI is naturally one sided, which is associated with
one-sided tests, so, as in the Poisson case, there is the question whether
we allow the full α or still α/2 in the computation above. However, to
guarantee a coverage probability of at least the nominal (claimed) value,
we must use α/2.

Example 5.15: For n = 10 the confidence limits based on observing x =
0, . . . , 10 are given in the table and plotted in Figure 5.12(a).

x 0 1 2 3 4 5 6 7 8 9 10
L(x) 0 .01 .03 .07 .13 .19 .26 .35 .44 .56 .70
U(x) .30 .44 .56 .65 .74 .81 .87 .93 .97 .99 1

As before the coverage probability is computed according to

10∑
x=0

I{L(x) ≤ θ ≤ U(x)}
(

10
x

)
θx(1− θ)10−x.

The coverage probability is plotted in Figure 5.12(b), showing that the procedure
is quite conservative. A simple average of the coverage probability is 98%, much
higher than the intended 95% level. �
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Figure 5.12: (a) Clopper–Pearson 95% CIs for binomial proportion. (b)
The coverage probability of the ‘exact’ 95% CI.

5.9 Nuisance parameters
We will discuss very briefly the classical confidence procedures when there
are nuisance parameters. We want a CI with the correct coverage at all
possible values of the nuisance parameters. There are two classical ways to
deal with the nuisance parameters: using pivotal statistics and condition-
ing.

Pivotal quantity

A pivot is a random variable whose distribution is free of any unknown
parameter; typically it is a function of both the data and the unknown
parameters. Freedom from the nuisance parameter implies that a CI con-
structed from a pivot has a simple coverage probability statement, true for
all values of the unknown parameter. This is an ideal route to arrive at a
CI, but there is no guarantee that we can find such a statistic for the prob-
lem at hand. Pivots are usually available in normal theory linear models,
which form a large part of classical statistics.

One-sample problems

If x1, . . . , xn are an iid sample from N(μ, σ2), then

X − μ

s/
√
n

∼ tn−1

for all μ and σ2. So the 100(1− α)% CI for μ given by

x− tn−1,α/2
s√
n
< μ < x+ tn−1,α/2

s√
n

has an exact coverage of 100(1− α)% for all μ and σ2.
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Two-sample problems

If x1, . . . , xm are an iid sample fromN(μx, σ
2) and y1, . . . , yn fromN(μy, σ

2),
then

x− y − (μx − μy)

sp
√
1/m+ 1/n

∼ tm+n−2

for all μx, μy and σ2, where

s2p =
(m− 1)s2x + (n− 1)s2y

m+ n− 2

and s2x and s2y are the sample variances. We can then derive the CI for
μx − μy.

One-sample variance

If x1, . . . , xn are an iid sample from N(μ, σ2), then

(n− 1)s2

σ2
∼ χ2

n−1.

So the 100(1− α)% CI for σ2 is

(n− 1)s2

χ2
n−1,1−α/2

< σ2 <
(n− 1)s2

χ2
n−1,α/2

.

For Michelson’s first twenty measurements of the speed of light in Exam-
ple 4.8 we get s2 = 11, 009.5, so the 95% CI for σ2 is

0.58s2 < σ2 < 2.13s2,

giving

6, 367 < σ2 < 23, 486.

Conditioning

Conditioning on the minimal sufficient statistics for the nuisance parame-
ters is used to reduce the unknown parameter space to the parameter of
interest only. This method usually works for models in the exponential
family.

Comparing two Poisson means

We have already seen this problem in the aspirin data example (Sec-
tion 4.7); our current discussion provides a repeated sampling interpre-
tation to the usual likelihood intervals found by conditioning.

Suppose x and y are independent Poisson samples with means λx and
λy. We are not interested in the magnitude of λx or λy, but in the relative
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size θ = λx/λy. The conditional distribution of x given x + y = n is
binomial with parameters n and

π =
λx

λx + λy
=

θ

θ + 1
.

Using the method given in the previous section we can construct a CI for
π, which can then be transformed to an interval for θ. Suppose we set the
100(1− α)% CI for θ such that

P (θ ∈ CI|X + Y ) ≥ 1− α,

for all λx and λy. That is, the coverage probability is greater than 1 − α
for every value of X + Y . So, unconditionally,

P (θ ∈ CI) ≥ 1− α.

Preference test

Suppose we asked 50 people for their preferences for a cola drink of brand
A or B, and we obtained the following result:

Prefer A 17
Prefer B 10
No preference 23

Is A really preferred over B? The ‘no preference’ group is a nuisance in this
comparison. Suppose we model the number of responses (nA, nB , nC) in the
three groups as multinomial with probability pA, pB and pC ≡ 1−pA−pB .
Then the conditional distribution of nA given nC = 23 is binomial with
parameters 50−23 = 27 and pA/(pA+pB) = θ/(θ+1), from which we can
derive a conditional inference for θ (Exercise 5.18).

5.10 Criticism of CIs
A fundamental issue in statistical inference is how to attach a relevant
measure of uncertainty to a sample-based statement such as a confidence
interval. In practice the confidence level is usually interpreted as such
a measure: an observed 95% CI has ‘95% level of certainty’ of covering
the true parameter. However, using a long-run frequency property for
such a purpose sometimes leads to logical contradictions. A weakness of
the traditional confidence theory is that, even when there is an obvious
contradiction, no alternative measure of uncertainty is available.

First, it is sometimes possible to know that a particular interval does
not contain the true parameter. This creates a rather absurd situation,
where we are ‘95% confident’ in an interval that we know is wrong, just
because in the long run we are 95% right.



5.10. Criticism of CIs 143

Example 5.16: Suppose x1, . . . , x10 are an iid sample from N(μ, 1), where μ
is known to be nonnegative. On observing x = −1.0, the 95% CI for μ is

x± 1.96/
√
10,

yielding −1.62 < μ < −0.38, which cannot cover a nonnegative μ. (In a single
experiment, there is a 2.5% chance for this to happen if μ = 0.) We can

• either take the interval at face value and start questioning the assumption
that μ ≥ 0,

• or still believe μ ≥ 0 to be true, but in this case it only makes sense to report
a (likelihood) interval over μ ≥ 0.

How we react depends on our relative strength of belief about the data and the
assumption. �

The logical problem is captured by a quality control anecdote. A US
car company ordered parts from a Japanese supplier and stated that they
would accept 1% defectives. Sure enough, the parts came in two separate
boxes, a large one marked ‘perfect’ and a small one marked ‘defective’.

The moral of the story is that a global confidence statement such as
‘we are 95% confident’ can be meaningless when there are recognizable or
relevant subsets, for which we can make an equally valid but different state-
ment. This is a Fisherian insight that has not become common knowledge
in statistics.

The previous problem tends to happen if we restrict the parameter
space, but a similar phenomenon can also happen without parameter re-
striction. The following example from Buehler and Fedderson (1963) is
of fundamental importance, since it strikes at the t-based CIs. See also
Lehmann (1986, page 557).

Example 5.17: Suppose x1, x2 are an iid sample from N(μ, σ2), where σ2 is
unknown. The exact 50% CI for μ is

x(1) < μ < x(2),

where x(1) and x(2) are the order statistics; such an interval is a likelihood interval
at 16% cutoff. We can show, however, that the conditional coverage

P (X(1) < μ < X(2)|C) > 2/3

for all μ and σ2, where C is a set of the form

C = {(x1, x2), coefficient of variation >
√
2/(

√
2 + 1) = 0.59}, (5.6)

and the coefficient of variation is

s

|x| =
√
2|x1 − x2|
|x1 + x2| .

So, if the observations are rather far apart in the sense of C, which can be readily
checked, then we know that the coverage is greater than 67%, and vice versa if the
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Figure 5.13: (a) One hundred simulated intervals x(1) < μ < x(2) arranged
by the coefficient of variation. (b) The estimated coverage probability as a
function of the coefficient of variation. The vertical line at the coefficient
of variation of 0.59 corresponds to value in (5.6).

observations are closer together. What we have shown here is that it is possible
to group the intervals according to the recognizable subset C, so that different
groups have a different coverage probability, but overall they are 50% correct.

Figure 5.13(a) shows 100 simulated intervals x(1) < μ < x(2) arranged by
the corresponding coefficient of variation; the true mean is μ0 = 1. The cover-
age probability in Figure 5.13(b) is based on smoothing the 100 pairs of values
{coefficient of variation, y}, where y = 1 if the interval covers μ0, and zero oth-
erwise. The coverage is lower than the nominal 50% if the coefficient of variation
is small, and can be greater otherwise.

The question is, if we observe (x1, x2) in C, say (−2, 10), what ‘confidence’
do we have in the CI −2 < μ < 10? How should we report the CI? Is it a 50%
or 67% CI? Suppose (x1, x2) is a member of other relevant subsets with different
coverage probabilities; which one should we attach to a particular interval? Note
that in this example x(1) < μ < x(2) is a unique likelihood interval with 16%
cutoff, unaffected by the existence of C. �

The phenomenon in the example is true for the general one-sample
problem: ‘wide’ CIs in some sense have larger coverage probability than the
stated confidence level, and vice versa for ‘short’ intervals. Specifically, let
x1, . . . , xn be an iid sample from N(μ, σ2) with both parameters unknown,
and

C = {(x1, . . . , xn), s/|x| > k},
for some k, be a set where x is small relative to s, or where the hypothesis
μ = 0 is not rejected at a certain level. The standard CI for μ is

x− tn−1,α/2
s√
n
< μ < x+ tn−1,α/2

s√
n
.

It has been shown (Lehmann 1986, Chapter 10) that, for some ε > 0,

P (μ ∈ CI|C) > (1− α) + ε

for all μ and σ2. This means C is a relevant subset.
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There has been no satisfactory answer to this problem from the fre-
quentist quarters. In fact, Lehmann (1986, page 558) declared that the
existence of certain relevant subsets is ‘an embarrassment to confidence
theory’. The closest thing to an answer is the area of conditional inference
(Reid 1995), which has produced many theoretical results, but as yet no
ready methodology or rules for routine data analysis. We should bear in
mind, however, that these criticisms are not directed at the interval it-
self, but at the relevance of long-run frequentist properties as a measure of
uncertainty for an observed interval.

5.11 Exercises
Exercise 5.1: Let T = x be an estimate of the mean μ. Show that the jackknife

estimate of the bias is b̂ = 0.

Exercise 5.2: Let T = 1
n

∑
(xi − x)2 be an estimate of the variance σ2. Show

that the jackknife estimate of the bias is

b̂ = − 1

n

{
1

n− 1

∑
(xi − x)2

}
,

so that the corrected estimate is the unbiased estimate

T − b̂ =
1

n− 1

∑
(xi − x)2.

Exercise 5.3: Use the jackknife method to estimate the bias of e−x in Exam-
ple 5.1.

Exercise 5.4: Let X be a sample from the binomial distribution with parame-

ters n and θ, and the estimate θ̂ = X/n. Find the general bias formula for θ̂2 as
an estimate of θ2. Find the jackknife estimate of θ2 and show that it is unbiased.

Exercise 5.5: Suppose the bias of T as an estimate of θ is of the form

b(θ) =

∞∑
k=1

ak/n
k,

where ak may depend on θ, but not on n. Show that the corrected estimate using
the jackknife has a bias of order n−2. That is, the jackknife procedure removes
the bias of order n−1.

Exercise 5.6: Investigate the relationship between likelihood and two-sided
P-value in the binomial model with n = 10 and success probability θ. Test
H0 : θ = θ0 for some values of θ0.

Exercise 5.7: Efron (1993) defines an implied likelihood from a confidence
density as

L(θ) =
cxx(θ)

cx(θ)

where cxx(θ) is the confidence density based on doubling the observed data x,
and cx(θ) is based on the original data x. For example, if we observe x = 5
from Poisson(θ), doubling the data means observing (x, x) = (5, 5) as an iid
sample. Using simple observations, compare the exact and implied likelihoods in
the normal, Poisson and binomial cases.
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Exercise 5.8: Verify the bootstrap variance and CI for the correlation coef-
ficient given in Example 5.5 and its continuation in Section 5.6. Compare the
results of the nonparametric bootstrap with a parametric bootstrap that assumes
bivariate normal model.

Exercise 5.9: Suppose x is N(μx, 1) and y is N(μy, 1), and they are indepen-
dent. We are interested in the ratio θ = μy/μx. Define z ≡ y − θx, so z is
N(0, 1+ θ2), which depends only on θ and can be a basis for inference for θ. The
so-called Fieller’s CI is based on

P

(
(y − θx)2

1 + θ2
< χ2

1−α

)
= 1− α.

Find the general conditions so that the 95% CI for θ is (i) an interval, (ii) two
disjoint intervals, or (iii) the whole real line. Discuss how we should interpret
part (iii). As a separate exercise, given x = −1 and y = 1.5,

(a) find Fieller’s 95% CI for θ.

(b) plot the likelihood function of θ.

(c) find the 100(1 − α)% CI for θ at various values of α, so you obtain the
conditions that satisfy (i), (ii) or (iii) above. Explain the result in terms of
the likelihood function.

(d) Discuss the application of confidence density concept to this problem.

Exercise 5.10: For the simple Poisson mean model, compute and plot the
coverage probability of the two-sided intervals based on the mid-P-value.

Exercise 5.11: It is known that the Poisson distribution with a large mean θ
is approximately normal.

(a) Derive an approximate confidence interval based on this result.

(b) Show that it is equivalent to a likelihood-based interval using quadratic
approximation on the log-likelihood function. Discuss the problem at x = 0.

(c) Compare the intervals we get using the approximation with the intervals in
the text.

(d) Find the coverage probability for θ between 0 and 7.

Exercise 5.12: The likelihood of the Poisson mean θ based on x = 1 is also
quite asymmetric. Revise the likelihood-based interval to match the exact confi-
dence interval, and recompute the coverage probability plot.

Exercise 5.13: For the exact 100(1 − α)% CI defined in Section 5.7 show
that the coverage probability is at least (1 − α). (Hint: draw a plot similar
to Figure 5.5, and express the probability of L(x) < θ < U(x) in terms of the
random variable x. Note that x is a discrete random variable.)

Exercise 5.14: Investigate and compare the coverage probability of the Wald
and likelihood-based CIs for θ based on x from binomial(n = 10, θ).

Exercise 5.15: For inference of binomial θ for n small, consider transforming
the parameter to the log-odds

ψ = log
θ

1− θ
.

Show that the standard error of ψ̂ is
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se(ψ̂) =
(
1

x
+

1

n− x

)1/2

.

We can construct a 95% confidence interval for ψ, and then transform back to
get a 95% CI for θ. (For x = 0 and x = n, use the exact intervals.) For n = 10,
compare and investigate the coverage probability of the resulting intervals.

Exercise 5.16: For inference of binomial θ, Agresti and Coull (1998) suggest
adding ‘2 successes and 2 failures’ to the observed x and then using the Wald
interval formula. For n = 10, investigate this interval and compare it with the
Clopper–Pearson and the likelihood-based intervals. Discuss the advantages.

Exercise 5.17: Using Michelson’s first twenty measurements of the speed of
light in Example 4.8, compute the confidence density of variance parameter. Hint:
use the marginal distibution of the sample variance

(n− 1)s2

σ2
∼ χ2

n−1.

Compare the confidence density with the (normalized) likelihood function based
on the same distribution. Compute the 95% CI for σ2 from the confidence density
and show that it matches the 95% CI using the pivotal statistic method.

Exercise 5.18: Compute the likelihood-based and exact CIs for θ in the pref-
erence data in Section 5.9.
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Modelling relationships:
regression models

Modelling relationships and comparing groups is the essence of statisti-
cal modelling. Separate descriptions of individual groups are usually less
interesting than group comparisons. Most scientific knowledge is about
relationships between various measurements; for example, E = mc2, or
‘population grows exponentially but resources only grow linearly’, etc.

In this chapter we will learn that any of the basic models in Chapter 4
can be extended to a regression model. The outcome variable is no longer
an iid observation, but a function of some predictor variable(s). What
model to use and when is generally determined by the nature of the data;
it is knowledge that we acquire by working through many examples.

Example 6.1: To allow an estimate of altitude without carrying a barometer,
in the mid-19th century the physicist James Forbes conducted experiments relat-
ing the water boiling point T and barometric pressure p. The latter had a known
relationship to altitude. The measurements are shown in first two columns of Ta-
ble 6.1; the last column is computed according to a known formula (6.1) below.
The barometric pressure p has a physical relationship with altitude A according
to differential equation

dp

dA
= −cp,

where c is a known constant. The solution is

log(p/po) = −cA

where po is the pressure at sea level. If p is in mmHg and A is in metres, then
po = 760 and c−1 = 8580.71, so

A = −8580.71 log(p/760)

≡ β0 + β1 log p (6.1)

with β0 = 8580.71 log 760 and β1 = −8580.71. Except for one possible outlier,
Figure 6.1 shows a clear linear relationship between boiling point and altitude.
The dashed line is a regression line, also of the form

A = b0 + b1T,

for appropriate regression coefficients b0 and b1. It is rare in statistical applica-
tions to see such a perfect relationship. (In fact physicists now have a determin-
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Boiling point Pressure Altitude
(oF) (in Hg) (m)
194.5 20.79 3124.21
194.3 20.79 3124.21
197.9 22.40 2484.18
198.4 22.67 2381.37
199.4 23.15 2201.59
199.9 23.35 2127.77
200.9 23.89 1931.59
201.1 23.99 1895.75
201.4 24.02 1885.03
201.3 24.01 1888.60
203.6 25.14 1493.98
204.6 26.57 1019.27
209.5 28.49 420.59
208.6 27.76 643.32
210.7 29.04 256.52
211.9 29.88 11.84
212.2 30.06 -39.69

Table 6.1: Forbes’ data on boiling point, barometric pressure and altitude
(Weisberg 1985).
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Figure 6.1: Relationship between boiling point and altitude. The dashed line
is the regression line.

istic phase diagram of water, which has a curve for boiling point as a function of
pressure.) �

6.1 Normal linear models
The normal regression model is the basis of classical statistical modelling.
It is natural for models in the natural sciences, where the outcome variables
are usually continuous and the error variable usually represents measure-
ment noise.

In the basic model the outcomes y1, . . . , yn are iid observations from
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N(μ, σ2). The nontrivial extension that allows some modelling of the rela-
tionship with predictors is to drop the identical requirement from the iid:
yi’s are independent N(μi, σ

2). The mean μi is then modeled as a function
of the predictors. We say the mean vector follows a particular structure;
for example, given a predictor xi we might specify

μi = h(xi, β)

for some function h depending on unknown an vector parameter β. The
simplest structure is the linear model

μi = x′
iβ,

where β ∈ Rp. Traditionally the model is written in matrix form as

y = Xβ + e,

where X is an n×p design matrix. Now ei’s are iid N(0, σ2), but note that
this explicit error specification is not necessary. It is sufficient to specify
that yi is N(μi, σ

2) and μi = x′
iβ. This is especially relevant for nonnormal

regression models, since in this case there is no explicit error term.
Let the parameter θ = (β, σ2). The likelihood is

L(θ) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(yi − x′
iβ)

2

}
.

It is straightforward to show (Exercise 6.1) that the MLEs of β and σ2 are

β̂ = (X ′X)−1X ′Y

σ̂2 =
1

n

∑
(yi − x′

iβ̂)
2,

and the observed Fisher information for β is

I(β̂) = σ̂−2(X ′X).

The standard errors of the regression estimates are the square root of the
diagonal of

I−1(β̂) = σ̂2(X ′X)−1.

To make these correspond exactly with standard practice in regression anal-
ysis, we can use the (n − p) divisor for σ̂2. A likelihood justification for
this divisor is given in Example 10.11 in Section 10.6.

The standard regression models are usually solved using the least-squares
(LS) principle, i.e. we estimate β by minimizing∑

i

(yi − x′
iβ)

2.

This is equivalent to the likelihood approach as far as the computation is
concerned, but there is a great difference in the statistical content of the
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two methods. To use the likelihood method we start by making a distribu-
tional assumption on the outcome y, while the LS method does not make
such an assumption. The implication is that with the likelihood approach
inference on β is already implicit; it is a matter of further computation.
In contrast, inference on LS estimates requires further analytical work in
terms of distribution or sampling theory, at which point we need some
distributional assumptions.

If σ2 is unknown, as is commonly the case, it is straightforward to
compute the profile likelihood for β. For fixed β the MLE of σ2 is

σ̂2(β) =
1

n

∑
(yi − x′

iβ)
2,

so we obtain the profile

L(β) = constant× {σ̂2(β)}−n/2.

Profile likelihood of individual regression parameters can be also computed
analytically (Exercise 6.2).

Example 6.2: Plutonium has been produced in Hanford, Washington State,
since World War II. It is believed that radioactive waste has leaked into the water
table and the Columbia River, which flows through parts of Oregon on its way
to the Pacific Ocean. Fadeley (1965) reported the following data:

Index of Cancer
County exposure mortality
Clatsop 8.34 210.3
Columbia 6.41 177.9
Gilliam 3.41 129.9
Hood River 3.83 162.2
Morrow 2.57 130.1
Portland 11.64 207.5
Sherman 1.25 113.5
Umatilla 2.49 147.1
Wasco 1.62 137.5

Key to this study are the choice of counties, the definition of ‘index of ex-
posure’ and the cancer classification; these carry an inductive uncertainty and
are open to controversy. The chosen counties in this study have a waterfront on
the Columbia River or the Pacific Ocean; the index of exposure was computed
from several factors, for example the average distance of the population from the
waterfront, and the cancer mortality is the number of cancer deaths per 100,000
person-years between 1959–1964.

Figure 6.2(a) shows that a linear model

yi = β0 + β1 (xi − x) + ei

is quite sensible to describe the relationship, where β1 is the parameter of interest.
Assuming a normal model Figure 6.2(b) shows the likelihood contour of (β0, β1)
at 90% to 10% cutoffs; these define the approximate 10% to 90% confidence
regions. It is convenient to summarize the MLEs in the following table:
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Figure 6.2: (a) The scatter plot of Hanford data. (b) The likelihood contour
of the regression parameters (β0, β1). (c) The profile likelihood of β1; the
approximate 95% CI for β1 is (6.5,11.9). (d) The residual plot indicates
some nonnormal behaviour.

Effect Parameter Estimate se
Intercept β0 157.33 4.67
Exposure β1 9.23 1.42

Figure 6.2(c) shows the profile likelihood for β1; the Wald statistic for testing
H0: β1 = 0 is z = 9.23/1.42 = 6.5, so there is a strong evidence that exposure to
radioactive waste is associated with increased cancer rate. The QQ-plot of the
residuals in Figure 6.2(d) shows evidence of non-normality. Some extra data and
modelling may be warranted; for example, the counties have different populations,
so the observed cancer rates have different precision. There could be other factors
that need to enter the model, such as age distribution and gender balance, etc. �

Nonlinear regression models
The normal models can be extended to cover nonlinear relationships be-
tween the outcome and the predictors. Suppose we believe that

yi = f(xi, β) + ei

where f(·) is a known function up to the regression parameter β; for ex-
ample,
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f(xi, β) = β0 + β1e
−β2xi ,

and ei’s are iid N(0, σ2). Then we can derive the likelihood function for
θ = (β0, β1, β2, σ

2) and compute inferential quantities for β (Exercise 6.4).
A nonlinear optimization routine is required for parameter estimation.

6.2 Logistic regression models
The extension of classical linear models to cover non-normal outcomes is
one of the most successful applications of likelihood-based modelling. In
classical linear models we usually assume the outcomes are independent
and normally distributed with equal variance. These assumptions are man-
ifestly doubtful when the outcome variable is, for example, the success or
failure of an operation, the number of hits per hour for a website, the
number of insurance claims per month, etc. In these cases

• normality is not plausible,

• a linear model Eyi = x′
iβ is usually not natural,

• variance generally depends on the mean.

Example 6.3: Table 6.2 shows the data from an experimental surgery, where
yi = 1 if the patient died within 30 days of surgery and zero otherwise. Age
is recorded for each patient and the question is whether age is associated with
survival rate. There is a total of n = 40 patients and

∑
yi = 14 deaths. The

pattern is shown in Figure 6.3(a). �

Patient Age yi Patient Age yi
1 50 0 21 61 0
2 50 0 22 61 1
3 51 0 23 61 1
4 51 0 24 62 1
5 53 0 25 62 1
6 54 0 26 62 0
7 54 0 27 62 1
8 54 0 28 63 0
9 55 0 29 63 0
10 55 0 30 63 1
11 56 0 31 64 0
12 56 0 32 64 1
13 56 0 33 65 0
14 57 1 34 67 1
15 57 1 35 67 1
16 57 0 36 68 0
17 57 0 37 68 1
18 58 0 38 69 0
19 59 1 39 70 1
20 60 0 40 71 0

Table 6.2: Surgical mortality and age information on 40 patients
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It is natural to model yi as a Bernoulli event with probability θi de-
pending on age. We might, for example, consider

(i) θi = β0 + β1 Agei. This simple choice is not very natural, since θi is
not constrained to be between 0 and 1.

(ii) θi = F (β0 + β1 Agei), where 0 ≤ F (·) ≤ 1. In principle, any distri-
bution function F (·) will work. For example, the choice of the normal
distribution function gives the so-called probit regression.

(iii) the logistic regression model:

θi =
exp(β0 + β1 Agei)

1 + exp(β0 + β1 Agei)
,

or

log
θi

1− θi
= β0 + β1 Agei,

i.e. the log odds is linear in age, or the effect of age on the odds
(loosely means risk) of death is multiplicative. For example, β1 = 0.1
means that for every year increase in age the odds of death increases
by a factor of e0.1 = 1.11. For ease of interpretation and computation
logistic regression is more commonly used than probit regression.

For the logistic regression model, given the observed data, the likelihood
function of the parameters (β0, β1) is

L(β0, β1) =

n∏
i=1

θyi

i (1− θi)
1−yi

=
∏
i

(
θi

1− θi

)yi

(1− θi).

To reduce the correlation between the estimates of β0 and β1, we centre
the age by recomputing Age ← Age − mean(Age). This redefinition only
affects β0, but does not change the magnitude or meaning of β1. The
log-likelihood is

logL(β0, β1) =
∑
i

[(β0 + β1Agei)yi − log{1 + exp(β0 + β1Agei)}].

In principle the statistical problem is over: the rest is a matter of computing
or finding summaries from the likelihood. The numerical method to obtain
the MLE is discussed in Section 6.7.

The contours of this likelihood function are given in Figure 6.3(b).
These contour lines represent the approximate 10% to 90% confidence
region for the parameters. A summary of the estimates is given in the
following table:

Effect Parameter Estimate se
Intercept β0 −0.723 0.367
Age β1 0.160 0.072
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Figure 6.3: (a) The surgical mortality data with the fitted logistic regression
line. (b) The contours of the likelihood function. (c) The profile likelihood
of β1. (d) Quadratic approximation of the log-likelihood of β1.

The profile likelihood of β1 is shown in Figure 6.3(c). The approximate
95% CI for β1, computed from the profile likelihood, is (0.03,0.32), indicat-
ing some evidence of association between age and surgical mortality. Fig-
ure 6.3(d) shows a good quadratic approximation of the profile likelihood.
So, alternatively we can report the Wald statistic z = 0.160/0.072 = 2.22.

In contrast with the normal model, note that there is no explicit vari-
ance parameter in the logistic regression model. The Bernoulli model au-
tomatically specifies a relationship between the mean and the variance;
in engineering terms we use a ‘Bernoulli noise’. Of course this implied
specification might be wrong, for example the observed variance is incon-
sistent with the Bernoulli variance. An extension of the Bernoulli model
that allows a more flexible variance term is the exponential family model
in Section 6.5.

Grouped data

Suppose the i’th outcome consists of the number of successes yi in ni trials.
A sensible model for such an outcome is that yi is binomial(ni, θi), where
the success probability θi is a function of some predictors xi. Consideration
of the model and derivation of the likelihood (Exercise 6.8) are similar to
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the preceding development, which is only a special case for ni = 1.

Example 6.4: Table 6.3, from Crowder (1978), shows the results of a 2×2
factorial experiment on seed variety and type of root extract. The outcome yi is
the number of seeds that germinated out of ni planted seeds.

Seed A Seed B
Extract 1 Extract 2 Extract 1 Extract 2
yi ni yi ni yi ni yi ni

10 39 5 6 8 16 3 12
23 62 53 74 10 30 22 41
23 81 55 72 8 28 15 30
26 51 32 51 23 45 32 51
17 39 46 79 0 4 3 7

10 13

Table 6.3: Seed germination data from Crowder (1978). The outcome yi is
the number seeds that germinated out of ni planted seeds.

The average germination rates for the four treatments are 0.36, 0.68, 0.39
and 0.53. The effect of root extract appears to be larger for seed A, so there is
an indication of interaction. Assuming that yi is binomial(ni, pi), consider the
logistic regression

logit pi = x′
iβ

where β contains the constant term, the main effects for seed and root extract,
and their interaction. The appropriate design matrix X is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 6.4 confirms the significant interaction term. Separate analyses within each
seed group show that root extract has a significant effect. �

6.3 Poisson regression models

Example 6.5: A health insurance company is interested in studying how age
is associated with the number of claims y filed for the previous year. The data
from a sample of 35 customers are given in Table 6.5. Figure 6.4(a) shows the
scatter plot of the number of claims versus age. �
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Effects Estimate se
Constant −0.56 0.13
Seed variety 0.15 0.22
Root extract 1.32 0.18
Interaction −0.78 0.31

Table 6.4: Summary analysis of germination data.

Number of Number of
Customer Age claims Customer Age claims

1 18 0 19 31 0
2 20 1 20 31 3
3 22 1 21 32 4
4 23 0 22 33 2
5 23 0 23 33 0
6 24 0 24 33 1
7 24 1 25 34 2
8 25 0 26 34 3
9 25 5 27 34 0
10 27 0 28 35 1
11 28 1 29 35 2
12 28 2 30 35 1
13 28 2 31 37 2
14 29 4 32 37 5
15 30 2 33 37 1
16 30 1 34 39 2
17 30 3 35 40 4
18 30 1

Table 6.5: Health insurance claim data.

It is sensible in this case to start with the assumption that yi is Poisson
with mean θi, where θi is a function of age. For example,

(i) θi = β0 + β1Agei. Again, this simple linear model has a weakness in
that it is not constrained to the range of θi > 0. This is especially
important if θi is near zero.

(ii) θi = exp(β0+β1Agei) or log θi = β0+β1Agei. This log-linear structure
is the most commonly used model for Poisson regression; it overcomes
the weakness of the simple linear model.

Assuming a Poisson log-linear model, the log-likelihood of the parameters
is given by

logL(β0, β1) =
n∑

i=1

{−θi + yi log θi}

=
∑
i

{− exp(β0 + β1Agei) + yi(β0 + β1Agei)}
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Figure 6.4: (a) The customer claims data with the Poisson regression esti-
mate. (b) The contours of the likelihood function. (c) The profile likelihood
of β1. (d) The quadratic approximation of the log-likelihood of β1.

where θi is a function of (β0, β1). To reduce the correlation between the
estimates of β0 and β1 we centre the age data by setting Age ← Age −
mean(Age). Figure 6.4(b) shows the contours at the approximate 10% to
90% confidence regions for the parameters. The MLEs of the parameters
are summarized in the following table:

Effect Parameter Estimate se
Intercept β0 0.43 0.14
Age β1 0.066 0.026

The profile likelihood of β1 and its quadratic approximation are shown
in Figures 6.4(c) and (d). Here the quadratic approximation is excellent.
The Wald statistic to test H0: β1 = 0 is z = 0.066/0.026 = 2.54, so
there is evidence that the number of claims is associated with age. The
approximate 95% CI for the claim rate is 0.02 to 0.12 claims per customer
per year.

Example 6.6: The following table shows the number of accidents at eight
different locations, over a number of years, before and after installation of some
traffic control measures. The question is whether there has been a significant
change in the rate of accidents. For example, in location 1, before the traffic
control measure was installed, there were 13 accidents occurring in 9 years; no
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accidents transpired for the 2 years following the installation. With a simple

Before After
Location Years Accidents Years Accidents

1 9 13 2 0
2 9 6 2 2
3 8 30 3 4
4 8 20 2 0
5 9 10 2 0
6 8 15 2 6
7 9 7 2 1
8 8 13 3 2

analysis, if the accident rate is constant over locations, we can simply compare
the total of 114 accidents over 68 location-years (rate of 1.676/year) versus 15
accidents over 18 location-years (rate of 0.833/year). This indicates the rate has
dropped (rate ratio = 0.833/1.676 = 0.497).

Let yij be the number of accidents in location i under ‘treatment’ j, with j = 0
for ‘before’ and j = 1 for ‘after’ installation of the traffic control. Assume yij is
Poisson with mean μij = pijλij , where pij is the known period of observations.
The rate λij is modelled as the function of predictors. For example, assuming
there is no location effect, we can consider a log-linear model

log μij = log pij + log λij

= log pij + λ0 + τj ,

where τj is the effect of treatment j; assume that τ0 = 0, so τ1 is the treatment
contrast. The special predictor log pij is called an offset term; we can think of it
as a predictor with known coefficient (equal to one in this case).

Computing the Poisson regression as in the previous example, we obtain a
summary table:

Effect Parameter Estimate se z
Constant λ0 0.517 0.094
Treatment τ1 −0.699 0.274 −2.55

So, the observed drop in accident rate appears to be significant. Note that the
relative drop is e−0.699 = 0.497, matching the previous simple computation.

The main advantage of the Poisson regression model is that it can be easily
extended if we believe there are other factors associated with accident rates. For
example, we might consider

log λij = λ0 + �i + τj , (6.2)

where �i is the effect of location i; for identifiability assume, for example, that
�0 = 0. Estimation of this model is left as an exercise. �

6.4 Nonnormal continuous regression

Example 6.7: In a study of plant competition, a certain species was planted
in 10 plots using various densities d; the density is measured by the number of
plants per unit area. The outcome of interest y is the average yield per plant.
The data are given in Table 6.6 and plotted in Figure 6.5(a).
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Plot Density Yield
1 5 122.7
2 10 63.0
3 15 32.5
4 20 34.5
5 30 31.4
6 40 17.7
7 60 21.9
8 80 21.3
9 100 18.4

Table 6.6: Plant competition data.

In view of Figure 6.5(a) and (b) it is sensible to model yield as inversely
related to plant density. As a first approach and for future comparison we
will analyse the data according to a normal linear model, where

1/yi = β0 + β1 log di + ei,

but note that the errors appear to have larger variance for larger values of
1/yi. As before, to avoid the correlation between the estimates of β0 and
β1 the log-density is centred: log di ← log di−mean(log di). The results of
the regression analysis are summarized in the following table.

Effect Parameter Estimate se
Intercept β0 0.0355 0.0023
Log-density β1 0.0155 0.0024

The unbiased estimate of error variance is σ̂2 = 0.0000468. The Wald
statistic here is z = 0.0155/0.0024 = 6.46, which, as expected, confirms a
strong competition effect.

To account for unequal variability in the outcome values we now assume
that yi is exponential with mean μi, where

1/μi = β0 + β1 log di.

The variance of yi is μ2
i ; using the Delta method the variance of 1/yi is

approximately 1/μ2
i , consistent with the pattern in Figure 6.5(b). The

exponential density is given by

pμi
(yi) = μ−1

i e−yi/μi .

Given the observed data, the log-likelihood for the parameter β = (β0, β1)
is

logL(β) =
∑
i

{− logμi − yi/μi}
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Figure 6.5: (a) Competition data showing yield as a function of plant den-
sity. (b) Inverse yield is approximately linear in log density, but note the
increasing variance. (c) Contours of the likelihood function. (d) The profile
likelihood of β1.

=
∑
i

{log(β0 + β1 log di)− yi(β0 + β1 log di)}.

The Fisher information of regression parameter β = (β0, β1) is

I(β̂) = − ∂2

∂β∂β′ logL(β)
∣∣∣∣
β=β̂

=
∑
i

μ̂2
ixix

′
i

where the vector x′
i ≡ (1, log di). Defining the design matrix X appropri-

ately, and setting a diagonal weight matrix W = diag{μ̂2
i }, we can write

I(β̂) = XWX,

so the estimated variance of β̂ is (XWX)−1.
Figure 6.5(c) shows the contours of the likelihood function with the

usual approximate 10% to 90% confidence regions. Figure 6.5(d) shows
the profile likelihood of β1. A summary of the parameter estimates is



6.5. Exponential family regression models 163

Effect Parameter Estimate se
Intercept β0 0.0347 0.0123
Log-density β1 0.0157 0.0085

The parameter estimates are similar to the normal-based estimates, but
there is a dramatic change in the standard errors. The Wald statistic is
z = 0.0157/0.0085 = 1.85, so now there is only moderate evidence for
association. There is obviously something wrong with this approach.

The exponential model implies that the variance is the square of the
mean. How do we check this assumption? If var(yi) = μ2

i , then we should
expect

var

(
yi − μi

μi

)
= 1.

From the estimated model we can compute

1

n− 2

∑
i

(yi − μ̂i)
2

μ̂2
i

= 0.025,

where we use the (n−p) divisor to get a less biased estimate. This suggests
that the exponential model is not appropriate. The problem with the fixed
mean–variance relationship is the same as that in the Poisson and logistic
regression models. A larger family of models that overcomes this general
weakness is given by the exponential family model discussed in the coming
section.

6.5 Exponential family regression models
As discussed in Section 4.9, in these models the log-likelihood contribution
of an outcome yi is of the form

logL(θi, φ) =
yiθi −A(θi)

φ
+ c(yi, φ),

where A(θi) and c(yi, φ) are known functions; the latter does not need to be
explicit. The parameter φ is the dispersion parameter that allows a more
flexible relationship between the mean and variance. For an exponential
family model we have

Eyi = A′(θi) ≡ μi

and
var(yi) = φA′′(θi) ≡ φv(μi).

Suppose we are interested to analyse the association between an out-
come y and a predictor vector x. Using the general exponential family
for a regression analysis requires two specifications. Firstly we need to
specify A(θi), which is usually chosen from among the standard models:
A(θi) = θ2i /2 from the normal model, A(θi) = eθi from the Poisson model,
etc.; see Section 4.9. Hence we usually refer to this specification as the
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choice of distribution or family. The choice of A(θi) implies a certain mean-
variance relationship.

Secondly we need to specify a link function h(μi) so that

h(μi) = x′
iβ.

In the previous sections we have used:

1. the identity link h(μi) = μi for normal data
2. the logistic link h(μi) = log{μi/(1− μi)} for Bernoulli data
3. the log link h(μi) = log μi for Poisson data
4. the inverse link h(μi) = 1/μi for exponential data.

These cover most of the link functions used in practice; other possible links
are, for example, the probit, complementary log-log and square-root. The
choice of link function is usually determined by some subject matter or
other theoretical considerations. With these two specifications, we might
fit ‘a normal model with an identity link’, or ‘a gamma model with a log
link’, etc.

Since μi = A′(θi), there is an implied relationship

g(θi) = x′
iβ

between θi and β. The choice of h(μi) such that θi = h(μi) or

θi = x′
iβ

is called the canonical-link function. We can check that the link functions
listed above are the canonical link for the corresponding distributions. By
choosing a canonical link we need only specify A(θi) or a distribution of yi.
While convenient, there is no reason why the canonical link is necessarily
an appropriate link. For example, in some applications we may need to
model a Poisson outcome using identity link.

The class of linear models under the general exponential family is called
generalized linear models (GLM). Most of the nonnormal regression models
performed in practice, such as logistic or Poisson regressions, are instances
of GLM, so the class constitutes one of the most important frameworks
for data analysis. One might argue that it will be easier to specify the
mean–variance relationship directly, and, furthermore, one can check the
relationship graphically. Such an approach is provided by the estimating
equation approach, which is discussed in Chapter 14.

To apply the model for the competition data from Example 6.7, first
look at the basic exponential model

logL(μi) = −yi/μi − logμi.

To extend this model we simply state that we use the exponential family
model with θi = 1/μi, and

A(θi) = logμi = − log θi.
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The standard exponential model corresponds to φ = 1; it can be shown
that extending the standard model with free parameter φ is equivalent to
using the gamma(μi, φ) model.

Let us continue with the inverse relationship

μi =
1

β0 + β1 log di
,

or
1/μi = β0 + β1 log di,

i.e. using the inverse-link function h(μi) = 1/μi. Since 1/μi = θi the inverse
link is the canonical-link function in this case; the possibility of the log-link
function is given in Exercise 6.21. The total log-likelihood of β = (β0, β1)
is

logL(β, φ) =
∑
i

{−yiθi + log θi
φ

+ c(yi, φ)

}
,

where the explicit form of c(yi, φ) is given by the gamma model (Section
4.8). For fixed value of φ, the estimation of β is exactly the same as that
for the basic exponential model, so we will get the same MLE.

The dispersion parameter φ only modifies the standard errors. The
Fisher information of the regression parameter is

I(β̂) = − ∂2

∂β∂β′ logL(β, φ)
∣∣∣∣
β=β̂

= −φ−1 ∂2

∂β∂β′
∑
i

log θi

∣∣∣∣∣
β=β̂

= φ−1
∑
i

μ̂2
ixix

′
i

where the vector x′
i ≡ (1, log di). Defining the design matrix X appropri-

ately like before, and setting a diagonal weight matrix W = diag{μ̂2
i }, we

can write
I(β̂) = φ−1(XWX).

Thus the Fisher information is modified by a factor φ−1 compared with the
basic exponential model, or the standard errors of the MLEs are modified
by a factor of

√
φ.

In this example it is possible to estimate φ using an exact gamma like-
lihood; the approximate likelihood method is given in the next section.
Alternatively, we might use the method of moments estimate: from

var(yi) = φμ2
i ,

or var{(yi − μi)/μi} = φ, we have

φ̂ =
1

n− 2

∑
i

(yi − μ̂i)
2

μ̂2
i

.
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Using a standard statistical package that allows GLM with the gamma
family, we obtain the following summary table for the model estimates:

Effect Parameter Estimate se
Intercept β0 0.0347 0.0019
Log-density β1 0.0157 0.0013

The estimated value of φ is φ̂ = 0.025. The standard error of β̂1 is now
more in line with the value from the normal regression; in fact, here we
have a better standard error as a reward for better modelling of the unequal
variances.

6.6 Deviance in GLM
One of the most important applications of the likelihood ratio statistic is
in the concept of deviance in GLM. Its main use is for comparison nested
models: analysis of deviance is a generalization of the classical analysis
of variance. In some special cases, deviance also works as a measure of
lack-of-fit.

For the moment assume a dispersion model with φ = 1, so by definition
the contribution of an outcome yi to the log-likelihood is

logL(μi; yi) = yiθi −A(θi) + c(yi, φ = 1),

where μi = A′(θi). Given outcome data y = (y1, . . . , yn) and a model for
the mean μ = Ey, let L(μ; y) be the likelihood of μ based on data y. For
independent outcomes logL(μ; y) =

∑
i logL(μi; yi). The model μ might

depend on further parameters; for example:

1. μ = β0, the constant model, also known as the ‘null model’. It has one
free parameter.

2. h(μ) = Xβ, a general model with p unknown regression parameters.
(The link function h(μ) applies element-wise to μ.) Given an estimate

β̂, we compute μ̂ = h−1(Xβ̂).

If μ does not follow any regression model, so μ̂ = y, it is called the ‘saturated
model’, having n free parameters.

The deviance of a model for μ is defined as the likelihood ratio of the
saturated model versus the particular model:

D(y, μ) = 2 log
L(y; y)

L(μ; y)
.

It is a measure of distance between a particular model μ and the observed
data y or the saturated model. The deviance of the null model is called
the null deviance.
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The term ‘deviance’ covers both the theoretical D(y, μ) and the ob-
served D(y, μ̂). We can also define an individual deviance

D(yi, μi) = 2 log
L(yi; yi)

L(μi; yi)
.

where L(μi; yi) is the likelihood contribution of yi given a mean model μi.
For independent data

D(y, μ) =
∑
i

D(yi, μi).

Example 6.8: Suppose yi is independent N(μi, σ
2 = 1) for i = 1, . . . , n. We

have

logL(μ; y) = −1

2

∑
i

(yi − μi)
2,

so the deviance of a model μ is

D(y, μ) =
∑
i

(yi − μi)
2,

which is equal to the error sum of squares, and motivates calling the observed
deviance D(y, μ̂) a ‘residual deviance’. The individual deviance

D(yi, μi) = (yi − μi)
2

suggests a concept of ‘deviance residual’

rDi = sign(yi − μi)
√

D(yi, μi)

that might be useful for residual analysis.
Suppose we model μ = Xβ, where X is of rank p. Then the observed deviance

D(y, μ̂) is χ2 with n− p degrees of freedom. Note that this assumes σ2 = 1, and
the χ2 distribution is not generally true for nonnormal models. However, the
degrees of freedom n− p is deemed applicable in all cases. �

Example 6.9: Suppose yi is binomial(ni, pi), where μi = nipi. Then

logL(μ) =
∑
i

{yi log pi + (ni − yi) log(1− pi)}

=
∑
i

{
yi log

μi

ni
+ (ni − yi) log

ni − μi

ni

}
,

so

D(y, μ̂) = 2
∑
i

{
yi log

yi
μ̂i

+ (ni − yi) log
ni − yi
ni − μ̂i

}
.

In the extreme case ni ≡ 1, which usually happens if we perform logistic regres-
sion on a continuous predictor, yi is a zero-one outcome. Defining 0 log 0 ≡ 0, we
get
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D(y, μ̂) = −2 logL(μ̂; y). �

Example 6.10: Suppose yi is independent Poisson with mean μi for i =
1, . . . , n. The individual deviance is

D(yi, μi) = 2

{
yi log

yi
μi

− (yi − μi)

}
.

From independence, the total deviance is D(y, μ) =
∑

i
D(yi, μi).

Model comparison
Deviance is used mainly to compare two nested models. Suppose we have:

A : μA = X1β1

B : μB = X1β1 +X2β2,

where X1 is of rank p and X2 is of rank q, i.e. model A is a subset of model
B. The difference in the observed deviance

D(y, μ̂A)−D(y, μ̂B) = 2 log
L(μ̂B ; y)

L(μ̂A; y)
,

is the usual likelihood ratio test for the hypothesis H0: β2 = 0; the null
distribution is approximately χ2 with q degrees of freedom, equal to the
difference in degrees of freedom of D(y, μ̂A) and D(y, μ̂B). Assuming φ =
1, this use of deviance is asymptotically valid, regardless of whether the
individual deviances are χ2 or not.

Example 6.11: For the logistic regression analysis of the surgical data (Ex-
ample 6.3), it is common to report an analysis of deviance table

Model Deviance df Change df
Constant 51.796 39 − −
Constant + Age 46.000 38 5.796 1

The change in deviance (5.796 with 1 degree of freedom) indicates that the effect

of age is significant. For comparison, we have shown before that β̂1 = 0.160
with standard error equal to 0.072, so the Wald test gives (0.160/0.072)2 = 4.94,
comparable to the change in deviance. �

Example 6.12: The analysis of deviance of the accident data in Example 6.6
can be summarized as follows.

Model Deviance df Change df
Constant 58.589 15 − −
Constant + Treatment 50.863 14 7.726 1

The χ2 test for treatment effect is 7.726 with one degree of freedom, indicating
a strong treatment effect (P-value= 0.005). �

Scaled deviance
Deviance is defined using φ = 1. If φ 
= 1 then the change in deviance no
longer matches the likelihood ratio statistic, but we only need to divide it
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by φ to make it valid. The quantity D(y, μ)/φ is called the scaled deviance.
To compare models A and B above we would use

D(y, μ̂A)−D(y, μ̂B)

φ
,

which is approximately χ2 with q degrees of freedom. If φ is unknown it is
common practice simply to plug in an estimated value.

Normal models

Suppose yi is N(μi, σ
2), independently over i = 1, . . . , n. The observed

deviance is still

D(y, μ̂) =
∑
i

(yi − μ̂i)
2.

If the error variance σ2 is known externally, the scaled deviance can be
used to test whether the model for μ is acceptable. Assuming μ = Xβ,
where X is of rank p,

D(y, μ̂)/σ2 ∼ χ2
n−p.

More often than not σ2 is unknown, in which case D cannot work as a
goodness-of-fit statistic. From the normal theory linear models, to compare
two models A versus B we use the scaled deviance

D(y, μ̂A)−D(y, μ̂B)

σ̂2
∼ χ2

dfA−dfB

where the error variance σ̂2 is usually estimated from the larger model B,
and dfA and dfB are the degrees of freedom of D(y, μ̂A) and D(y, μ̂B),
respectively. Note that, under the normal assumption, we also have an
exact F -distribution for the change in scaled deviance.

Deviance as a measure of lack of fit

Under some conditions we can use the deviance for a goodness-of-fit test:
a large deviance indicates a poor fit, which can happen for one or both of
the following reasons:

• the mean model is not adequate; for example, there should be more
predictors in the model

• there is overdispersion, i.e. the assumption of φ = 1 is not tenable.

Uncovering the reasons for the lack of fit is not always straightforward.
Some subject matter knowledge about the model or a careful residual anal-
ysis might be required. If we can attribute the lack of fit to overdispersion,
model comparison should be based on scaled deviances.
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We have derived in Example 6.9 for binomial data

D(y, μ̂) = 2
∑
i

{
yi log

yi
μ̂i

+ (ni − yi) log
ni − yi
ni − μ̂i

}
.

We can think of the data as an n × 2 contingency table with yi’s and
(ni − yi)’s as the observed (O) frequencies, and μ̂i’s and (ni − μ̂i)’s the
expected (E) frequencies. Thus, we can recognize

D = 2
∑

O log
O

E
,

which is approximately the same as Pearson’s χ2 goodness-of-fit statistic
(see Theorem 9.9)

χ2 =
∑ (O − E)2

E
.

So if the expected frequencies are large enough the deviance may be used
as a measure of lack of fit. The same reasoning applies to counting data
generally.

In the extreme case ni ≡ 1, defining 0 log 0 ≡ 0, we get

D(y, μ̂) = −2 logL(μ̂; y),

which is not meaningful as a measure of goodness-of-fit. Here D(y, μ̂) is
used only for model comparisons. Checking the adequacy of the model
takes more work, for example by splitting the data into several groups.

Example 6.13: For the analysis of surgery data in Example 6.11, ni = 1, so
the deviance value D = 46.0 with 38 degrees of freedom is not meaningful as a
measure of lack of fit.

Example 6.14: Deviance also works as a measure of lack of fit in Poisson
regression, provided the means μ̂i’s are large enough. For the analysis of accident
data in Example 6.12, the deviance of 50.863 with 14 degrees of freedom indicates
a lack of fit for a model that only contains the treatment effect. It can be
verified that adding location as a categorical variable into the model (adding
7 parameters) would give a final deviance of 16.28 with 7 degrees of freedom.
This is a significant improvement on the model fit, though the deviance is still
borderline significant (P-value=0.03).

Estimating dispersion parameter φ

From Section 4.9 the approximate log-likelihood contribution from a single
observation yi is

logLi ≈ −1

2
log{2πφv(yi)} − 1

2φ
D(yi, μi). (6.3)

The formula is exact if yi is N(μi, σ
2). Nelder and Pregibon (1987) call it

the extended quasi-likelihood. The approximation is sensible if the likeli-
hood based on yi is reasonably regular.
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Given independent data y1, . . . , yn, for any φ the estimate of μi is the
minimizer of the total deviance∑

i

D(yi, μi).

Therefore the profile log-likelihood of φ is

logL(φ) ≈
∑
i

{
−1

2
log{2πφv(yi)} − 1

2φ
D(yi, μ̂i)

}
,

and the approximate MLE of φ is the average deviance

φ̂ =
1

n

∑
i

D(yi, μ̂i).

Likelihood inference on φ is available using the profile likelihood. In prac-
tice it is common to use a bias-corrected estimate

φ̂ =
1

n− p

∑
i

D(yi, μ̂i).

where n − p is the degrees of freedom of the deviance. For example, in
Example 6.14 above, assuming Poisson model with overdispersion for the
final model, we can estimate φ by φ̂ = 16.28/7 = 2.3.

If the likelihood approximation is doubtful, we can use the method of
moments estimate. Since Eyi = μi and var(yi) = φv(μi), we have

var

(
yi − μi√
v(μi)

)
= φ,

suggesting

φ̂ =
1

n− p

∑
i

(yi − μ̂i)
2

v(μ̂i)

as a sensible estimate of φ.

Profile deviance plot

There is a variety of software programs to perform GLM, and most would
report the deviance of a model. Although there is usually no option to
output the profile likelihood for a particular parameter of interest, it is
quite easy to generate one. This is useful when the normality of the Wald
statistic is in doubt. GLM programs generally allow an offset term, a known
part of the mean model, so we can compute the deviance over a range of
fixed values of the parameter of interest.

For example, for the surgical data in Example 6.3:
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• fix β1 and run

logit pi = β0 + offset(β1Age)

and record the value of the deviance as D(β1). (In a general regression
model, there will be other predictors in the model.)

• repeat this over a range of reasonable values of β1 around β̂1

• up to an additive constant, the deviance and the profile likelihood are
related by

D(β1)/φ = −2 logL(β1).

(The dispersion parameter φ = 1 in the standard logistic regression.
If it is unknown then we use the estimated value.) Likelihood-based
CIs can be read off the deviance plot:

CI =

{
β1;

D(β1)−D(β̂1)

φ
< χ2

1,(1−α)

}
.

It is convenient to set the minimum of the deviance plot to zero, which
is equivalent to setting the maximum of the likelihood plot to one. We
can gauge the validity of the Wald statistic by how close the deviance
plot is approximated by a quadratic function around β̂1. See Figure
6.6.
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Figure 6.6: Profile deviance of the slope parameter β1 (solid line) and its
normal approximation (dotted line).

Example 6.15: A survey is conducted of a number of companies to find out
whether they are planning to use internet trading facilities (internet=1 if yes).
The following table shows the breakdown of the companies by whether they are
located in a big city (city=1), and whether they serve only the domestic market
(domestic=1). We want to establish if differences exist among various types of
companies.
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Internet
City Domestic 1 0
0 0 0 3
0 1 3 4
1 0 50 2
1 1 27 14

Consider the full model

logit pi = β0 + β1City + β2Domestic + β3City×Dom.

Standard logistic regression programs produce the following output:

Binomial Binary

Effects β̂ se β̂ se
Constant −20.9 12,111 −7.6 15.4
City 20.6 12,111 7.3 15.4
Domestic 24.1 12,111 10.8 15.4
City × Dom. −23.1 12,111 −9.8 15.4

The ‘Binomial’ columns show the output using data given in the table as binomial
outcomes, while the ‘Binary’ columns show the output when the outcome was
set at zero-one value. In both cases the interaction effect is not significant. That
the two results are so different indicates something suspicious.

The analysis of deviance for the additive model

logit pi = β0 + β1City + β2Domestic

yields D = 8.44, highly significant at 1 degree of freedom. The deviance of the
additive model provides a test for the term City×Dom., so D = 8.44 indicates
a significant interaction effect, inconsistent with the output table. The Wald
statistics computed from the table are either z2 = (−23.1/12, 111)2 = 0.000004
or z2 = (−9.8/15.4)2 = 0.40.
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(b) Conservative estimate

Figure 6.7: (a) Profile deviance for interaction effect β3. (b) A conser-
vative estimate of β3 is obtained by changing the zero outcome to one in
the first row of the data. The profile deviance (solid) in this case is well
approximated by a quadratic (dotted).

The Wald statistic fails here since the MLE β̂3 = −∞; this is due to the zero-
level outcome in one of the categories. See Figure 6.7 for the profile deviance of



174 6. Modelling relationships: regression models

β3. This means that the quadratic approximation for the log-likelihood is off, and
the Wald statistic or the standard error term is meaningless. This problem will
always occur in logistic regression with categorical predictors where one category

has zero outcome. That β̂3 is highly significant is ascertained by considering
a conservative analysis where the zero outcome in the first line of the data is
replaced by one. Figure 6.7 shows that even in this small sample the log-likelihood
is well approximated by a quadratic. �

6.7 Iterative weighted least squares
Numerical algorithms to find the MLEs and standard errors are crucial
for routine applications of GLM. It turns out that there is one general
algorithm, called the iterative weighted least squares (IWLS), that works
reliably for GLM. There are several ways to derive IWLS (Section 14.2),
but one that is relevant now is via the Newton–Raphson procedure.

Newton–Raphson procedure

This is a general procedure to solve g(x) = 0. We start with an initial
estimate x0, then linearize g(x) around x0, and set it to zero:

g(x) ≈ g(x0) + g′(x0)(x− x0) = 0.

The solution of the linear equation provides an update formula

x1 = x0 − g(x0)/g′(x0).

For maximum likelihood estimation we want to solve the score equation

S(β) = 0.

Starting with β0, the updating formula is

β1 = β0 − {S′(β0)}−1S(β0)

= β0 + {I(β0)}−1S(β0).

Note that a linear approximation of the score function is equivalent to a
quadratic approximation of the log-likelihood.

IWLS

Applying this to GLM estimation problems, we start with the log-likelihood
contribution of an observation yi of the form

logL(θi, φ) =
yiθi −A(θi)

φ
+ c(yi, φ),

and assume that the observations are independent. We consider a regres-
sion model h(μi) = x′

iβ, and try to get the estimate of β at a fixed value
of φ. The score equation is
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S(β) = φ−1
∑
i

∂θi
∂β

{yi −A′(θi)},

and the Fisher information is

I(β) = φ−1
∑
i

[
− ∂2θi
∂β∂β′ {yi −A′(θi)}+ ∂θi

∂β

∂θi
∂β′A

′′(θi)
]
, (6.4)

which in general can be complicated.
Since A′(θi) = μi, we have

A′′(θi) = ∂μi/∂θi = vi
∂θi
∂β

=
∂θi
∂μi

∂μi

∂h

∂h

∂β

= v−1
i

∂μi

∂h
xi,

so the second term of I(β) is

∑
i

{(
∂h

∂μi

)2

φvi

}−1

xix
′
i ≡ U.

Similarly

S(β) =
∑
i

{(
∂h

∂μi

)2

φvi

}−1

xi
∂h

∂μi
(yi − μi).

A major simplification of the Newton–Raphson algorithm occurs when
we use the canonical-link function θi = h(μi) = x′

iβ, from which

∂θi
∂β

= xi

∂2θi
∂β∂β′ = 0,

so

I(β) = U

and the Newton–Raphson update is

β1 = β0 + U−1S(β0).

With the canonical link we also have an interesting relationship ∂μi/∂h =
∂μi/∂θi = vi, or ∂h/∂μi = v−1

i .
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Now let X be the design matrix of predictor variables, Σ a diagonal
matrix with elements

Σii =

(
∂h

∂μi

)2

φvi,

so U = (X ′Σ−1X) and

S(β) = X ′Σ−1 ∂h

∂μ
(y − μ),

where ∂h
∂μ (y − μ) is a vector of ∂h

∂μi
(yi − μi). We can now re-express the

update formula as

β1 = β0 + (X ′Σ−1X)−1X ′Σ−1 ∂h

∂μ
(y − μ)

= (X ′Σ−1X)−1X ′Σ−1{Xβ0 +
∂h

∂μ
(y − μ)}

≡ (X ′Σ−1X)−1X ′Σ−1Y, (6.5)

where Y is a vector of

Yi = x′
iβ

0 +
∂h

∂μi
(yi − μi) (6.6)

and all unknown parameters are evaluated at the current values. Note that
φ cancels out in the formula to compute β1. In GLM terminology Y is
called the working vector. The iteration continues by first recomputing μ,
Y and Σ. So, (6.5) and (6.6) are the key formulae in IWLS.

These formulae can be connected to a quadratic approximation of the
log-likelihood. In effect, starting with β0, the exponential family log-
likelihood is approximated by

−1

2
log |Σ| − 1

2
(Y −Xβ)′Σ−1(Y −Xβ) (6.7)

with Y and Σ defined above.
At convergence, we can evaluate the standard errors for the estimates

from inverse of
I(β̂) = (X ′Σ−1X),

where the variance matrix Σ is evaluated using the estimates β̂ and φ̂.
For general link functions we can actually still view the IWLS algorithm

as a Newton–Raphson algorithm with the so-called Fisher scoring, i.e. by
using the expected Fisher information

I(β) = EI(β)

instead of the observed information I(β). Since Eyi = A′(θi), we get from
(6.4)

I(β) = U,

so the IWLS algorithm stays as it is.
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Example 6.16: Suppose yi is Poisson with mean μi (dispersion parameter
φ = 1), and we specify a log-linear model

h(μi) = log μi = x′
iβ.

From these assumptions, var(yi) = vi = μi, and ∂h/∂μi = 1/μi, so the algorithm
proceeds as follows. Start with β0, then iterate the following until convergence:

• compute

μ0
i = ex

′
iβ

0

Yi = x′
iβ

0 + (yi − μ0
i )/μ

0
i

Σii = (1/μ0
i )

2μ0
i = 1/μ0

i

• update β1 = (X ′Σ−1X)−1X ′Σ−1Y .

The starting value β0 can be computed, for example, from the ordinary least-
squares estimate of β in the model log(yi+0.5) = x′

iβ. Alternatively, we can start
will all the β-coffecients set to zero, except for the constant term. As a numerical
exercise, the reader can now verify the output summaries given in Section 6.3.

Example 6.17: When a noncanonical-link function is used, the IWLS is
still the algorithm of choice to compute the parameter estimates. In practice,
however, it is common to then compute the standard errors of the estimate using
the expected Fisher information. To see that there is something at issue, the first
term in the observed Fisher information in (6.4) contains a general formula

∂2θi
∂β∂β′ =

∂2θi
∂μ2

i

(
∂μi

∂h

)2

xix
′
i +

∂θi
∂μi

∂2μi

∂h2
xix

′
i.

In the Poisson model, we have the canonical parameter

θi = log(μi),

so if we use, for example, the identity link

h(μi) = μi = x′
iβ

we obtain
∂μi

∂h
= 1 and

∂2μi

∂h2
= 0,

and

I(β) = φ−1
∑
i

{
1

μ2
i

(yi − μi)xix
′
i +

1

μi
xix

′
i

}
.

In contrast, the expected Fisher information is

I(β) = φ−1
∑
i

1

μi
xix

′
i.

Standard errors derived from these can be quite different if μi’s are not too large.
We will discuss in Section 9.6 that, for the purpose of inference, I(β) is better
than I(β).
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6.8 Box–Cox transformation family
The use of transformation is discussed in Section 4.10 as a way of extending
the normal model for positive-valued continuous data. It is assumed that
there is λ 
= 0 such that a transformation of the observed data y according
to

yλ =
yλ − 1

λ

has a normal model N(μ, σ2). The value λ = 0 is defined to represent
the log-transformation. Extension to a regression model is clear: we can
specify that the transformed value yλi follows a linear model in terms of
some predictors xi, i.e.

EYλi = μi = x′
iβ

and var(Yλi) = σ2.
The log-likelihood contribution of a single observation yi is

logL(λ, β, σ2) = −1

2
log σ2 − (yλi − x′

iβ)
2

2σ2
+ (λ− 1) log yi.

At each value of λ, the estimation of the other parameters follows exactly
the usual normal-based regression analysis of the transformed data. By
defining the design matrix X and vector Yλ appropriately

β̂(λ) = (X ′X)−1X ′Yλ

and, setting μ̂i(λ) = x′
iβ̂(λ),

σ̂2(λ) =
1

n

∑
i

{yλi − μ̂i(λ)}2.

The appropriate value of λ can be found from the profile log-likelihood
of λ

logL(λ) = −n

2
log σ̂2(λ)− n

2
+ (λ− 1)

∑
i

log yi.

In practice we use simple values of λ so that there is no serious problem of
interpretation.

Example 6.18: Sulphur dioxide is one of the major air pollutants; it is
released into the air by gas, oil or coal burning, and, on chronic exposure, it
can cause respiratory diseases. The dataset in Table 6.7 (from Sokal and Rohlf
1981) was collected in 41 US cities in 1969–1971. The outcome variable y is the
sulphur dioxide content of air (micrograms/m3), and the predictor variable x is
the number of manufacturing enterprises employing 20 or more workers. Since
there is no indication that the industry is limited to those relying on oil or coal
for energy, we expect to see a lot of noise in the relationship; see Figure 6.8(a).

We first log-transform the x-axis to show a clearer pattern. From Fig-
ure 6.8(b) it seems obvious that we should consider a quadratic model

yi = β0 + β1 log xi + β2 log
2 xi + ei.

(We will treat this as an empirical model and not try to interpret the relationship.
Note also that β1 and β2 cannot be interpreted separately; for that we need, at
least, to centre the predictor variable before analysis.)



6.8. Box–Cox transformation family 179

City x y City x y
1 35 31 22 361 28
2 44 46 23 368 24
3 46 11 24 379 29
4 80 36 25 381 14
5 91 13 26 391 11
6 96 31 27 412 56
7 104 17 28 434 29
8 125 8 29 453 12
9 136 14 30 454 17
10 137 28 31 462 23
11 181 14 32 569 16
12 197 26 33 625 47
13 204 9 34 641 9
14 207 10 35 699 29
15 21 10 36 721 10
16 266 26 37 775 56
17 275 18 38 1007 65
18 291 30 39 1064 35
19 337 10 40 1692 69
20 343 94 41 3344 110
21 347 61

Table 6.7: Pollution data from 41 US cities (Sokal and Rohlf 1981). The
variable x is the number of manufacturing enterprises employing 20 or more
workers, and y is the sulphur dioxide content of air (micrograms/m3).
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(b) Transform x−axis

Figure 6.8: (a) It is hard to see any relationship in the original scale. (b)
Putting industry on a log-scale shows a clearer pattern. The dashed line is
a quadratic fit.

Assuming a normal model on ei we get the following summary table for the
model estimates.



180 6. Modelling relationships: regression models

Effect Parameter Estimate se
Intercept β0 231.44 68.37
log x β1 −84.97 24.36
log2 x β2 8.47 2.15

The estimated residual variance is σ̂2 = 18.32, and, as expected, the quadratic
model is highly significant. The residual plot in Figure 6.9(a) indicates some
nonnormality, so it is a question whether y is the right scale for analysis.

Now consider the family of Box–Cox transforms so that

yλi = β0 + β1 log xi + β2 log
2 xi + ei.

The profile likelihood of λ in Figure 6.9(b) shows that we should use λ = 0 or log
transformation. From the log-transformed data we obtain the following summary
table:

Effect Parameter Estimate se
Intercept β0 8.14 2.29
log x β1 −2.08 0.81
log2 x β2 0.20 0.072

The estimated residual variance is σ̂2 = 0.612. The normal plot in Figure 6.9(d)
shows better behaved residuals. �
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Figure 6.9: (c) Normal plot of the residuals from Figure 6.8(b). (b) The
profile likelihood of λ indicates we should use λ = 0 or a log-transform on
the outcome. (c) The data in a log-log scale with the quadratic fit. (d)
Normal plot of the residuals from (c).
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Transform the mean or the observation?

The exponential and Box–Cox transformation families are the two main
approaches in dealing with nonlinear transformations. Their common ob-
jective is to arrive at a sensible linear model. In the former we apply a link
function h(·) on the mean parameter μ such that

h(μ) = x′β,

so the model can be aptly called a parameter–transform model. With Box–
Cox models we apply the transformation g(·) on the observations y so that

Eg(y) = x′β,

where g(·) belongs to a certain class of functions. Such a model is called
an observation–transform model. We have actually used both on the same
dataset: see the analysis of plant competition data in Sections 6.4 and 6.5.

The main advantage of the parameter–transform model is that the dis-
tribution of the data is not affected by the transformation; this may make
the analysis easier to interpret, especially if the result is used for prediction.
See also the discussion in Section 4.10. When used empirically to describe
relationships both models are on an equal footing. ‘Let the data decide’
would be the best approach. We can use the AIC (Section 3.5) for such
a purpose, but generally it can be a difficult question with no definitive
answer.

A joint approach is possible. For example, we might consider the Box–
Cox transformation as a family of link functions

μλ
i − 1

λ
= x′

iβ.

The parameter λ gives the link function an extra flexibility in possible
shapes. Additionally, we can compare the likelihood of different link func-
tions such as identity, inverse or log links by comparing the likelihood of
different λ values.

6.9 Location-scale regression models

Example 6.19: The stack-loss dataset in Table 6.8 has been analysed by many
statisticians. Brownlee (1965), the source of the data, Daniel and Wood (1971)
and Draper and Smith (1981) used the classical regression model. Denby and
Mallows (1977), Li (1985) and Lange et al. (1989) applied the robust regression
approach. The data were recorded from 21 days of operation of a chemical plant
to oxidize ammonia NH3 into nitric acid HNO3. The variables are

x1 = air flow, which measures the rate of operation.

x2 = cooling temperature of the coils in the absorbing tower of HNO3.

x3 = concentration of HNO3 in the absorbing liquid (coded as 10×(original
data−50)).

y = the ‘stack loss’, which is the percentage loss of NH3 (×10).
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Figure 6.10(a) show the relationship between stack loss and air flow. A linear
fit of stack loss on air flow produces heavy-tailed residuals, as shown in Figure
6.10(b). This indicates the need to consider a heavy-tailed model such as the
Cauchy. �

Day Flow Temp. Concen. Loss
1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15
10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15

Table 6.8: Stack-loss data from Brownlee (1965).

We can model the outcome yi to have a location μi and scale σ, and a
regression model

μi = x′
iβ.

The standardized variable zi = (yi − μi)/σ is assumed to have a known
density f0(z). We will consider the Cauchy model

f0(zi) =
1

π(1 + z2i )
,

so the likelihood contribution of observation yi is

Li(β, σ) = σ−1

{
1 +

(yi − x′
iβ)

2

σ2

}−1

and, assuming independence, the total likelihood is

L(β, σ) =
∏
i

Li(β, σ).

All estimates and profile likelihood computations for this model must
be done numerically; in Section 12.6 we show how to use the IWLS to
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(b) Heavy−tailed residuals
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(c) Profile for β1
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(d) Quadratic appoximation

Figure 6.10: (a) Relationship between stack loss and air flow, and the linear
fits using normal error (solid line) and Cauchy error (dotted). (b) Normal
plot of the residuals from the normal model. (c) The profile likelihood of β1

using normal error (solid) and Cauchy error (dotted). (d) Poor quadratic
approximation (dashed) of the profile likelihood of β1 using Cauchy error
(dotted).

compute β. For example, if β = (β0, β1), to get the profile likelihood for a
scalar β1, we simply compute

L(β1) = max
{β0,σ}

L(β0, β1, σ)

for each fixed β1 over a range of values. Such a profile likelihood is im-
portant, since experience with Cauchy models indicates that the quadratic
approximation does not usually hold.

Analysis of air flow and stack loss

For the data in Figure 6.10(a) we first show the summary of the normal
regression model

yi = β0 + β1x1i + ei

in the following table:
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Effect Parameter Estimate se
Intercept β0 −44.13 6.11
Air flow β1 1.02 0.10
Residual σ 4.1

It is no surprise that there is a strong relationship between air flow and loss,
since air flow is a measure of rate of operation. For future comparison the
profile likelihood of β1 is shown in Figure 6.10(c). However, the inference
based on the normal model is doubtful, since the residuals in Figure 6.10(b)
clearly show a heavy-tailed distribution.

Now we fit the same model

yi = β0 + β1x1i + ei

but ei’s are assumed to iid Cauchy with location zero and scale σ (the
scale parameter does not have the usual meaning as standard deviation).
We obtain the following summary:

Effect Parameter Estimate se
Intercept β0 −41.37
Air flow β1 0.97 0.045
Residual σ 1.28

The standard error of β̂1 is computed numerically from the observed profile
likelihood. (The standard errors for β̂0 and σ are not computed, since they
are not relevant.)

There is little difference in the estimates compared with those from
the normal model. However, Figure 6.10(c) shows that the Cauchy model
leads to a more precise likelihood. This gain in efficiency is the reward for
using a better model for the errors. Figure 6.10(d) shows a poor quadratic
approximation of the log profile likelihood of β1 from the Cauchy model.
This means that the standard error quantity reported in the table (0.045)
is not meaningful.

To select between the normal or the Cauchy model, we can use the AIC
defined in Section 3.5:

AIC = −2 logL(θ̂) + 2p,

where θ̂ is the MLE of the model parameters; the number of parameter p
equals 3 for both models. (Note that all the constant terms in the density
function must be included in the computation of the maximized likelihood
in the AIC formula.) The AIC is 160.26 for the normal model and 115.49
for the Cauchy model, so the Cauchy model is preferable.

As an alternative to the Cauchy model, we can fit a t-distribution to
the error term and vary the degrees of freedom k. This family includes
the Cauchy at k = 1 and the normal at large k, so model selection can be
based on testing the parameter k (Exercise 6.27).
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Analysis of cooling temperature and stack loss

Analysis of the cooling temperature reveals a surprising aspect of the data.
Figure 6.11(a) shows the relationship between stack loss and cooling tem-
perature. Using the same methodology as before, we first perform a normal-
based regression model, giving the following output:

Effect Parameter Estimate se
Intercept β0 −41.91 7.61
Temperature β1 2.82 0.36
Residual σ 5.04
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Figure 6.11: (a) Relationship between stack loss and cooling temperature,
and the linear fits using normal error (solid) and Cauchy error (dotted);
the printed value is the operating day. (b) Normal plot of the residuals from
the normal model. (c) Normal plot of the residuals from the Cauchy model.
(d) The profile likelihood of β1 using normal error (solid) and Cauchy error
(dotted).

The normal plot in Figure 6.11(b) shows that the residuals are reason-
ably normal. By comparison, the Cauchy-based model gives
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Effect Parameter Estimate se
Intercept β0 −20.69
Temperature β1 1.72 0.50
Residual σ 2.71

Now we have a genuine disagreement in the estimation of β1. As shown in
Figure 6.11(a) the normal fit follows all of the data; the Cauchy fit only
follows the bulk of the data and allows some large errors. The normal
QQ-plot of the Cauchy errors in Figure 6.11(c) indicates a heavy right-tail.
The profile likelihood of β1 in Figure 6.11(d) is bimodal, implying that the

standard error (0.50) for β̂1 is meaningless. The likelihood interval at 15%
cutoff, which does not have a CI interpretation, is wide, indicating a large
uncertainty in the estimate.

One of the two models is obviously wrong. The AIC is 131.4 for the
normal model, and 141.4 for the Cauchy model, pointing to the normal
model as the preferred model.

The observations were actually taken as a time series. As shown in
Figure 6.11(c) large residuals of the Cauchy model are associated with days
1 to 4 of the operation. If there is a transient state, then we can include it
as an effect in a multiple regression; then the effect of cooling temperature
would be closer to the Cauchy model. Perhaps the most satisfying way to
check the model is to collect more data at high cooling temperature.

As another interpretation, the discrepancy might indicate that neither
model is a good fit. Assuming that all the measurements are valid, or
that there is no transient state in the operation, Figure 6.12 shows a much
better fit achieved by a (normal) quadratic model; its AIC is 120.5, better
than the AIC of the linear model. Verifying the fit and the AIC is left as
an exercise.
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Figure 6.12: Quadratic fit of stack-loss as a function of cooling temperature.
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6.10 Exercises
Exercise 6.1: Verify the MLEs of β and σ2 in Section 6.1. You can use some
matrix calculus, or verify that

‖ Y −Xβ ‖2=‖ Y −Xβ̂ ‖2 + ‖ Xβ̂ −Xβ ‖2

where ‖ a ‖2= a′a for any vector a.

Exercise 6.2: Derive in general the profile likelihood for a scalar slope param-
eter β1 in a normal linear model, and describe how it should be computed. Use
the Hanford data in Example 6.2 and verify the likelihoods in Figure 6.2.

Exercise 6.3: For the Hanford data example in Example 6.2, check the quadratic
approximation of the profile likelihood of β1, and verify the plot in Figure 6.13.
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Figure 6.13: Quadratic approximation (dashed line) of the profile likelihood
of β1 for the Hanford data.

Exercise 6.4: The following dataset shows the weight (in pounds) of a lamb
over a period of time (in weeks).

Time 0 1 2 3 4 6 9 12
Weight 12.6 15.3 26.2 27.9 32.7 34.4 42.3 39.1

Fit a sensible model that captures the growth curve and find the profile likelihood
for the growth rate parameter.

Exercise 6.5: Singh et al. (1992) reported the length y (in cm) of plants
germinating from seeds irradiated with a dose x of gamma radiation.

x 0 10 20 30 40 50 60 70 80 90 100 110
y 8.85 9.40 9.18 8.70 7.53 6.43 5.85 4.73 3.98 3.50 3.10 2.80

Plot the data and fit a nonlinear model

yi =
β0

1 + exp{−β1(xi − μ)} + ei,

and report the estimates and their standard errors. Compute the profile likeli-
hood of β1. Check the normality of the residuals.
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Exercise 6.6: Verify the regression output (including the standard errors) and
the likelihood plots for Examples 6.3 and 6.4.

Exercise 6.7: Show that the Fisher information of the vector parameter β in
the logistic regression is of the form

I(β̂) =
∑
i

θ̂i(1− θ̂i)xix
′
i

where the vector xi ≡ (1,Agei).

Exercise 6.8: Group the subjects in Example 6.3 into five age groups; the
i’th group has ni subjects and yi deaths. Use the binomial model to derive the
likelihood for a logistic regression, and compare the results with the full data
analysis. What is the advantage of the grouped data version?

Exercise 6.9: Verify the Poisson regression estimates and the plots given for
the data analysis in Examples 6.5 and 6.6.

Exercise 6.10: Show that the Fisher information for the Poisson log-linear
model is

I(β̂) =
∑
i

θ̂ixix
′
i

where xi ≡ (1,Agei). Verify the standard errors given in the analysis of claims
data.

Exercise 6.11: Using the accident data in Example 6.6, suggest ways to check
the Poisson assumption in a Poisson regression.

Exercise 6.12: Fit the location and treatment effects in model (6.2) for the
accident data in Example 6.6. Compare the inference on the treatment effect
when location is not in the model.

Exercise 6.13: The dataset in the following table was collected in a study
to compare the number of naevi (pronounced neeVYE), a raised skin lesion of
darker colour similar to a mole, among children with spina bifida and normal
controls. The controls were match in terms of sex and age. The main hypothesis
is that spina bifida is associated with more occurrence of naevi.

(a) Investigate the relationship between the number of naevi and age and sex
among the controls, and separately among the cases.

(b) Let yi1 and yi2 be the number of naevi for the i’th case and control, respec-
tively. Assume yij is Poisson with mean λij , which includes the effects of
pair i and other covariates. We have shown that, conditional on the sum
ni ≡ yi1 + yi2, yi1 is binomial with paramaters ni and

πi =
θi

θi + 1
,

where θi = λi1/λi2. Explain how the conditioning removes the pair effect.
Show that the logistic regression based on binomial data (ni, yi1) is equiva-
lent to a log-linear model for rate ratio θi.

(c) Fit the simplest model log θi = β0, and interpret the test of β0 = 0.

(d) Fit the model
log θi = β0 + β1Sexi + β2Agei,

and interpret the results. Investigate also the interaction between age and
sex.
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Pair Sex Age Case Cont. Pair Sex Age Case Cont.
1 f 16 5 6 22 m 17 27 6
2 f 5 0 3 23 m 10 11 3
3 m 10 15 15 24 f 12 17 1
4 m 6 2 1 25 m 8 3 8
5 f 12 11 7 26 f 11 16 4
6 f 18 22 6 27 m 15 22 3
7 m 11 15 4 28 m 4 0 0
8 m 16 10 73 29 f 11 31 52
9 m 14 29 4 30 f 7 3 17
10 m 10 13 3 31 m 10 18 6
11 f 8 8 14 32 f 8 4 3
12 f 8 6 0 33 f 11 10 0
13 f 5 0 1 34 f 12 5 52
14 m 7 5 10 35 f 15 63 5
15 m 8 7 12 36 f 10 0 4
16 m 17 30 52 37 f 16 47 11
17 f 12 31 2 38 f 8 20 1
18 f 18 19 10 39 f 5 10 5
19 m 3 1 0 40 m 19 20 8
20 f 11 8 3 41 f 4 2 1
21 f 9 7 0 42 m 5 0 3

Table 6.9: The naevi data from 42 pairs of spina bifida cases and their
matched controls. The column under ‘Case’ gives the number of naevi for
the cases.

(e) In each case of (a), (c) and (d) above, check the goodness of fit of the model.
State the overall conclusion for the study.

Exercise 6.14: The data in the following table (Fairley 1977) are the monthly
accident counts on Route 2, a major highway entering Boston, Massachusetts,
from the west. The data for the last three months of 1972 are not available.

Year 1 2 3 4 5 6 7 8 9 10 11 12
1970 52 37 49 29 31 32 28 34 32 39 50 63
1971 35 22 17 27 34 23 42 30 36 65 48 40
1972 33 26 31 25 23 20 25 20 36

(a) Using the Poisson regression with log link, fit an additive model with year
and month effects, and describe the result in plain language.

(b) Use the model in (a) to predict the last three months of 1972.

(c) Check the goodness of fit of the model in (a).

Exercise 6.15: The following table (from Simon 1985) shows the occurrences
of rare words in James Joyce’s Ullyses, for example there are 16,432 different
words that occur exactly once in the whole book. It is also known that a total of
29,899 different words were used in the book.
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Number of Number of
occurrences words

1 16,432
2 4776
3 2194
4 1285
5 906
6 637
7 483
8 371
9 298
10 222

(a) A naive model for the word frequencies is like this: a word in Joyce’s vocab-
ulary will appear x number of times according to a simple Poisson model
with mean λ. Estimate λ from the data and assess the adequacy of the
model. (Hint: in deriving the likelihood for this model note that the total
of 29,899 words must occur at least once. So, obviously words that did not
occur are not observed here.)

(b) Now consider a slightly more complex model: the number of words that
occur exactly k times is Poisson with mean λk, where

log λk = β0 + β1 log(k + 1).

Use the IWLS algorithm to estimate the parameters and assess the adequacy
of the model. Is it really better than the other model? Plot the data and
the model fits from both models.

(c) Using models (a) and (b), compare the estimates of the number of words
that Joyce knew.

Exercise 6.16: Verify the regression outputs and plots for the competition
data given in Section 6.4.

Exercise 6.17: Show that the Fisher information for the parameter β =
(β0, β1) in the exponential model where 1/μi = β0 + β1 log di is

I(β̂) =
∑
i

μ̂2
ixix

′
i,

by defining x′
i ≡ (1, log di).

Exercise 6.18: Estimate the dispersion parameter φ in the Poisson regression
example in Section 6.3. Perform an approximate test of H0: φ = 1.

Exercise 6.19: Discuss the application of the general exponential family model
for logistic regression with zero-one outcomes. Use the surgical data in Section
6.2 as an example.

Exercise 6.20: Verify the Fisher information matrix

I(β̂) = φ−1(XWX)

given in Section 6.5.

Exercise 6.21: Figure 6.14 is a log-log plot of the plant competition data,
showing we can try a model
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log yi = β0 + β1 log di + ei,

where β1 is negative.
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Figure 6.14: Competition data in a log-log plot, showing an underlying
linear relationship.

(a) Estimate the linear regression above, report a summary result and check the
normality of the residuals.

(b) As a comparison run an exponential family model as given in Section 6.5,
but using a log-link function

log μi = β0 + β1 log di.

(c) For the link function in part (b) show that the Fisher information is given
by

I(β̂) = φ−1X ′WX,

by defining the design matrix X appropriately and the weight matrix is
W = diag{yi/μ̂i}.

(d) Compare the fits of these two models and the previous models using inverse
link. Explain the advantages and disadvantages of each model.

Exercise 6.22: Using the canonical and some sensible noncanonical links, de-
rive the IWLS algorithm for the binomial and exponential outcome data.

Exercise 6.23: Implement the IWLS for the logistic and Poisson regression
models in Examples 6.3 and 6.5.

Exercise 6.24: The inverse Gaussian distribution provides a framework for a
regression model where the variance is a cubic function of the mean. Specifically,
the density is

f(y) =

(
λ

2πy3

)1/2

exp

{
− λ

2μ2

(y − μ)2

y

}
, y > 0

and it has mean μ and variance μ3/λ.

(a) Given outcome values y1, ..., yn and covariates x1, ..., xn, suppose we model
yi as IG(μi, λ), where μi = Eyi = h(x′

iβ). Write down the log-likelihood
function for the parameters β and λ, and identify the canonical link function.
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(b) Describe the iteratively weighted least squares (IWLS) procedure to get the
estimate for β using the canonical link function.

(c) Find the MLE of the dispersion parameter λ.

(d) Give the formula for the deviance in this case and describe what the deviance
may be used for. Can we use it as a measure of goodness of fit of the current
model?

Exercise 6.25: Verify all of the computations given in Section 6.9.

Exercise 6.26: Check the ‘Cauchy plot’ of the residual from the Cauchy-based
regression of stack loss on air flow in Section 6.9.

Exercise 6.27: Fit the regression of stack loss on air flow in Section 6.9 as-
suming the error term has a t-distribution with unknown degrees of freedom k.
The density is given in Section 4.11. Perform the likelihood computation at fixed
k, and try several values of k, so you obtain a profile likelihood of k. Report the
profile likelihood of β1 when k is fixed at the MLE.

Exercise 6.28: Perform a multiple regression analysis of the stack-loss data
with both air flow and cooling temperature as predictors in the model. Obtain
the individual profile likelihoods for the slope parameters. Check the quadratic
approximation of the profile likelihoods.
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Evidence and the likelihood
principle�

There is a strong consensus about the utility of likelihood for modelling,
but its direct use for inference is controversial. This is not surprising: most
of the consensus in statistics is associated with modelling, and most of the
controversies with inference. While we are able to specify and estimate
very complex models, statisticians still cannot agree on how to interpret
the CIs (see Section 5.10). The persistent controversies indicate that the
issues are not simple.

7.1 Ideal inference machine?
Assuming a correct model, the likelihood function L(θ) is an ‘inference ma-
chine’: every inference we need about θ can be derived from L(θ); and, in
principle, once a model is constructed, we can proceed fairly automatically.
The development of a model is the only statistical step. Finding the likeli-
hood and quantities for inference is merely computational. The advent of
computers and computational methods have allowed us (i) to concentrate
more on the modelling aspect and (ii) to compromise less on the model
complexity.

Can we rely on the likelihood alone? If yes, the likelihood forms an
ideal inference machine. Unfortunately we cannot answer it categorically.
While the likelihood is appealing as an objective quantity that is totally
determined by the observed data, are the observed data all that are relevant
from an experiment? How about the sampling scheme or the way we collect
the data?

These fundamental issues remain controversial in statistical inference,
and are related to the so-called likelihood principle. An informal statement
of the (strong) likelihood principle is that two datasets that produce equal
(proportional) likelihoods should lead to the same conclusion. The princi-
ple has far-reaching implications in statistical inference. For example, the
ubiquitous P-value violates the likelihood principle: it is possible to find
two datasets (from two experiments) producing the same likelihood, but
different P-values (see Example 7.1).

Most statisticians do not accept the seeming implication of the likeli-
hood principle that we base conclusions on the likelihood alone. There are
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serious reservations:

• It is possible to generate a biased dataset, e.g. by a sequential sampling
scheme (Section 7.5), but the likelihood function completely ignores
the sampling scheme. This can lead to spurious evidence that does
not stand up under repeated experiments.

• The computation of likelihood requires a probability model. While
the likelihood contains all the information about the parameter of the
model, we may not have full conviction in the model. The likelihood
cannot convey uncertainty about the model it is based on, while the
correctness of the conclusion might depend on the correctness of the
model.

• There is a fundamental difficulty in dealing with multi-parameter mod-
els. Without frequentist consideration a joint likelihood inference of
all parameters can have a very poor repeated sampling property (Sec-
tion 3.5). Generally, if the parameter space is ‘too large’ relative to
the available data the likelihood function can produce spurious results.
This problem can be called ‘parameter snooping’ as opposed to ‘data
snooping’. In ‘parameter snooping’ the observed data are fixed but we
keep enlarging the parameter space to find a model that best explains
the data. The result is a spurious model that overfits the data, see the
example in Section 7.7, but the likelihood on its own cannot inform us
about the problem.

7.2 Sufficiency and the likelihood principles
The so-called sufficiency principle states that

all sufficient statistics based on data x for a given model pθ(x) should
lead to the same conclusion.

This seems reasonable: since any sufficient statistic contains all of the
information about θ, different choices of statistic should carry the same
information; then, from the same information one should reach the same
conclusion. Since all sufficient statistics lead to the same likelihood func-
tion, as a consequence we have the weak likelihood principle that

any set of observations from a given model pθ(x) with the same likeli-
hood should lead to the same conclusion.

Thus the sufficiency principle is equivalent to the weak likelihood principle.
Now let us restate the idea above in terms of evidence. A sufficient

statistic summarizes all the evidence (about the parameter) from an ex-
periment. Then it seems reasonable that the likelihood principle should
say that the likelihood function contains all the evidence about θ. This feels
somewhat stronger. To state that the humble x is in a one-to-one map with
the likelihood function is fine from the frequentist point of view. However,
we still feel intuitively that the likelihood function contains more than just
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x. We know that x is not meaningful without the original sampling model
pθ(x), e.g. we cannot get a measure of uncertainty from x alone, so we
still need pθ(x). But the likelihood function contains more: it captures the
model in its computation and, seemingly, we can derive inferences from it.

If the likelihood function contains all the evidence, after obtaining the
likelihood, can we throw away the model? The strong version of the like-
lihood principle says: yes, the likelihood is it, do throw the model away,
since it is no longer relevant as evidence. It is a dramatic proposition, but
it is not as crazy as it sounds.

We have seen before that data from the binomial and negative bino-
mial experiments can produce the same likelihood. If they do produce the
same likelihood, can we say they carry the same evidence about θ, even if
sampling properties of the likelihood functions are different? The strong
likelihood principle says yes. Note the crucial difference: the weak like-
lihood principle states that different outcomes from the same experiment
having the same likelihood carry the same evidence. The strong likelihood
principle allows the outcomes to come from different experiments with dif-
ferent sampling schemes. So, according to the strong likelihood principle,
evidence about θ does not depend on the sampling scheme.

If the likelihood functions carry the same evidence, shouldn’t they lead
to the same conclusion about θ? It is difficult to say no, but unfortunately
the answer is controversial. If we think that we make conclusions based on
evidence alone, then the same likelihood should lead to the same conclusion.
But in statistics we deal with uncertainties, not just evidence, so there could
be other nondata considerations that may affect our conclusions.

Example 7.1: To see that there is a real and fundamental issue involved,
consider closely the binomial versus the negative binomial case. Suppose we
obtain x = 8 out of n = 10 trials in a binomial experiment, and x = 8 successes
in a negative binomial experiment where we had planned to stop when we get
two failures. The likelihood functions of the success probability θ from these
observations are the same

L(θ) = constant× θ8(1− θ)2,

so the strong likelihood principle would assert that the two experiments have the
same evidence about θ.

Now consider the test of hypothesis H0: θ = 0.5 versus H1: θ > 0.5. The
one-sided P-value from the first experiment is

p1 = P (X ≥ 8|θ = 0.5)

=

10∑
x=8

(
10
x

)
0.510

= 0.055,

so we commonly say ‘there is not enough evidence to reject H0 at the 5% level’.
From the second experiment we have

p2 = P (X ≥ 8|θ = 0.5)
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=

∞∑
x=8

(x+ 1)0.5x+2

= 0.020,

leading to rejection of H0 at the 5% level, i.e. ’we do have enough evidence’ to
reject H0. Hence the standard significance testing is in conflict with the strong
likelihood principle. �

The frequentists’ first reaction is to suspect and to reject the strong
likelihood principle, while Bayesians generally accept the principle, since
it is a consequence of their axiomatics. However, even the frequentists
cannot simply ignore the principle, since Birnbaum (1962) showed that
it is a consequence of the sufficiency and conditionality principles, two
seemingly reasonable principles.

7.3 Conditionality principle and ancillarity
Informally, the conditionality principle asserts that only the observed data
matter, or information about θ should only depend on the experiment
performed. To appreciate that this is sensible, consider an example which
is a variant of Cox (1958) or Berger and Wolpert (1988).

Example 7.2: A certain substance can be sent for analysis to either Lab B
or Lab C. A coin is tossed to decide the location, and suppose it is decided that
we use Lab C. Now, when we evaluate the lab result, do we account for the coin
toss? To be specific, suppose Lab B measures with normal error with variance
σ2
B = 1, and similarly Lab C has σ2

C = 4. We receive a report that x = 3 and we
want to test H0: μ = 0.

If we account for the coin toss in the overall randomness, the outcome X has
a normal mixture

0.5N(μ, 1) + 0.5N(μ, 4)

and the one-sided P-value is

p1 = 0.5P (Z > 3) + 0.5P (Z > 3/2) = 0.034,

where Z has the standard normal distribution. But, knowing that Lab C pro-
duced the actual measurement we obtain a one-sided P-value

p2 = P (Z > 3/2) = 0.067.

We say p2 is a conditional P-value, i.e. it is conditional on the result of the coin
toss, while p1 is unconditional. �

Which P-value is more meaningful? Even frequentists would be tempted
to say that p2 is more meaningful as evidence. This is the essence of the
conditionality principle. As remarked earlier the sufficiency principle is also
reasonable, so Birnbaum’s result about the likelihood principle deserves a
closer look.

The last example is not as contrived as it seems, since in practice there
are many ‘nontechnical’ contingencies in real experiments that resemble a
coin toss, for example funding, patience, industrial strikes, etc. Theoret-
ically, the same issue always arises when there is an ancillary statistic, a
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function of the data whose distribution is free of the unknown parameter.
For example, the sample size in most experiments is typically an ancil-
lary information. If x1, . . . , xn are an iid sample from N(μ, 1), then any
difference xi − xj is ancillary.

The idea of conditionality is that our inference should be made condi-
tional on the observed value of the ancillary statistic. This follows from
the likelihood principle: if our data are (x, a), where a is ancillary, then
the likelihood of the observed data is

L(θ) = pθ(x, a) = p(a)pθ(x|a).
This means the part that matters in the likelihood is only the conditional
model pθ(x|a), rather than the marginal model pθ(x).

7.4 Birnbaum’s theorem
Following Berger and Wolpert (1988) we will describe Birnbaum’s theo-
rem for the discrete case. Barnard et al. (1962) gave a very closely related
development. First recall what we mean by an experiment E as a col-
lection {X, θ, pθ(x)}. From an experiment we obtain evidence about θ;
this is a function of E and the observed data x, denoted by Ev(E, x).
This does not need to be specified exactly, in principle anything sensible
will do. For example, we may use the likelihood function itself; or, for
an iid sample x1, . . . , xn from N(μ, σ2), with σ2 known, we may define
Ev(E, x) ≡ (x, σ2/n).

We first state the sufficiency principle formally in terms of evidence.
Suppose we perform an experiment E, and T (X) is a sufficient statistic for
θ.

Definition 7.1 Sufficiency principle: If x and y are sample data from
E such that T (x) = T (y) then

Ev(E, x) = Ev(E, y).

The idea of a mixture experiment as in Example 7.2 is important in
the formal definition of the conditionality principle. Suppose there are two
experiments E1 = {X1, θ, p1,θ(x1)} and E2 = {X2, θ, p2,θ(x2)}; only the
parameter θ need to be common in the two experiments. Now consider a
mixture experiment E∗, where a random index J = 1 or 2 is first generated
with probability 0.5 each, and EJ is then performed. Formally E∗ =
{X∗, θ, p∗θ(x

∗)}, where X∗ = (J,XJ) and p∗θ(j, xj) = 0.5pj,θ(xj).

Definition 7.2 Conditionality principle: The evidence from a mix-
ture experiment is equal to the evidence from the experiment performed,
that is

Ev(E∗, x∗) = Ev(Ej , xj).
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To define the likelihood principle in terms of evidence consider two
experiments E1 and E2 again.

Definition 7.3 Strong likelihood principle: Suppose x1 and x2 are
data from E1 and E2 respectively such that the likelihood functions are
proportional, namely

L1(θ) = cL2(θ),

for some constant c, i.e. p1,θ(x1) = cp2,θ(x2) for all θ. Then the evidence
is the same:

Ev(E1, x1) = Ev(E2, x2).

Theorem 7.1 (Birnbaum’s theorem) The sufficiency and conditionality
principles together are equivalent to the strong likelihood principle.

Proof: We first show that the sufficiency and conditionality principles
together imply the strong likelihood principle. Let us start with the premise
of the strong likelihood principle that data x1 and x2 have proportional
likelihoods. Now consider the mixed experiment E∗ as defined for the
conditionality principle, and recall that on observing any (j, xj) we have

Ev{E∗, (j, xj)} = Ev(Ej , xj). (7.1)

For the mixed experiment E∗ with random outcome (J,XJ) we define

T (J,XJ) ≡
{

(1, x1) if J = 2, X2 = x2

(J,XJ ) otherwise.

Note that there is some data reduction in T (J,XJ ) since if we observe
T = t = (1, x1) we do not know if we have performed (1, x1) or (2, x2); in
fact this is the only data reduction. The essence of the proof is to show
that such a reduction does not result in any loss of information; that is to
show that T (J,XJ) is sufficient for θ. To satisfy the definition of sufficient
statistic we find the conditional probabilities

P{X∗ = (j, xj)|T = t 
= (1, x1)} =

{
1 if (j, xj) = t
0 otherwise,

and

P{X∗ = (1, x1)|T = t = (1, x1)} = 1− P (X∗ = (2, x2)|T = t = (1, x1))

=
0.5p1,θ(x1)

0.5p1,θ(x1) + 0.5p2,θ(x2)

=
c

c+ 1

and see that they are independent of θ. The sufficiency principle implies

Ev{E∗, (1, x1)} = Ev{E∗, (2, x2)}. (7.2)

Now it is clear that (7.1) and (7.2) imply Ev(E1, x1) = Ev(E2, x2). This
proves the first part of the theorem.
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To prove the converse, the likelihood of θ based on (j, xj) in experiment
E∗ is

L∗(θ) = 0.5pj,θ(xj),

so it is proportional to the likelihood of θ based on xj in experiment Ej .
The strong likelihood principle implies

Ev(E∗, (j, xj)) = Ev(Ej , xj),

which is the conditionality principle. In Section 3.2 we have shown that
if T (X) is sufficient and T (x) = T (y), then x and y have proportional
likelihood functions, so by the strong likelihood principle

Ev(E, x) = Ev(E, y),

which is the sufficiency principle. �

A simple corollary of Birnbaum’s theorem is the requirement that Ev(E, x)
depend on E and x only through the likelihood function. We can see that
by defining a new experiment EY where we only record

Y =

{
1 if X = x
0 otherwise,

then P (Y = 1) = pθ(x), so

Ev(E, x) = Ev(EY , 1),

but EY depends only on pθ(x) = L(θ).
The corollary has fundamental implications on statistical inference. For

example, the standard P-value is generally not a function of the likelihood;
hence if we adopt the strong likelihood principle, we have to admit that
P-value is not evidence from the data. The key idea in the computation of
P-value is the notion of more extreme values in the sample space other than
the observed data; such a notion is in conflict with the likelihood principle.
Recall the binomial–negative binomial experiments in Example 7.1; it is
a special case of sequential experiments, an important branch of statistics
where the likelihood and traditional frequentist inference do not match.

7.5 Sequential experiments and stopping rule
Without loss of generality, suppose independent observations are taken
one at a time, where after each new observation we make a decision about
taking another independent observation. In many sequential experiments,
the decision to carry on is typically of this form:

at time m and given x1, . . . , xm, continue to obtain xm+1 with prob-
ability hm(x1, . . . , xm); that is, the decision depends only on the past
data, but not on the unobserved xm+1.
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For example, in the negative binomial experiment, we continue a Bernoulli
trial until the current number of successes is equal to a pre-specified value
r. In this experiment xi is zero or one, and

hm(x1, . . . , xm) =

{
1 if

∑m
i=1 xi < r

0 if
∑m

i=1 xi = r.

Given a model pθ(x), and observations x1, . . . , xn, and assuming that
the decision function hi(·) does not depend on the unknown parameter, the
likelihood function is

L(θ) = P (deciding to observe x1)pθ(x1)×
P (deciding to observe x2|x1)pθ(x2)×
. . .×
P (deciding to observe xn|x1, . . . , xn−1)pθ(xn)×
P (stop at xn|x1, . . . , xn)

= h0pθ(x1)×
h1(x1)pθ(x2)×
. . .×
hn−1(x1, . . . , xn−1)pθ(xn)×
(1− hn(x1, . . . , xn))

= constant×
∏
i

pθ(xi).

So, we arrive at a remarkable conclusion that the likelihood function ignores
the stopping rule altogether. A strict adherence to the strong likelihood
principle in this case implies that the evidence from such an experiment
does not depend on the stopping rule. That is, if we want to find out
what the data say, we can ignore the stopping rule in the analysis. This is
convenient if we stop a study for some unrelated reason (e.g. a power cut),
but it is also the case even if we decide to stop because ‘we are ahead’ or
the ‘data look good’.

To see that this is not a trivial issue, consider the problem of sequential
trials from the frequentist point of view. In industrial experiments involv-
ing expensive units or destructive testing, for which sequential testing was
originally conceived (Wald 1947), it makes sense to proceed sequentially to
try to minimize cost. In clinical trials sequential testing is adopted for an
added ethical reason: if a drug or a procedure is harmful then we want to
stop a trial early to avoid harming the study subjects, while if a drug is
beneficial then it should be made readily available.

Example 7.3: Suppose we observe x1, x2, . . . sequentially and independently
from N(θ, 1), where we are interested to test H0: θ = 0 versus H1: θ > 0. (This
setup includes the group sequential testing since we can think of xi as representing
the average of, say, 100 observations.) A simple sequential procedure is to test
at each step n = 1, 2, . . .
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√
nxn > k,

where xn is the current sample mean and k is a fixed critical value, and reject H0

the first time the test is significant. There is an immediate problem: under H0

the test will be significant for some n with probability one! This is a consequence
of Kolmogorov’s law of iterated logarithm that

√
n|xn| ‘grows’ like

√
2 log log n,

so eventually it will cross any fixed boundary. This means the true type I error
probability of the test is 100%, not a very desirable property.

In practice we may not want to wait too long for a conclusion, which can
happen if the true θ is near zero. Typically we plan to have, say, a maximum
of N = 4 tests. Using the same rule above the type I error probability can be
computed as

N=4∑
n=1

pn

where pn can be interpreted as the current α-level defined as

pn = P (
√
nxn > k, and

√
n− jxn−j < k, for j = 1, . . . , n− 1).

While this looks complicated, it can be easily found using the Monte Carlo tech-
nique. For example, for N = 4 and k = 1.65 we obtain (Exercise 7.1)

p1 = 0.050

p2 = 0.033

p3 = 0.018

p4 = 0.010,

so the overall type I error probability is α =
∑

pi = 0.111. To obtain a sequential
test with 5% level we can set the critical value to k = 2.13. In sequential analysis
terminology we ‘spend’ our α-level according to a prescription of (p1, p2, p3, p4).
We can make it hard or easy to stop early by controlling the relative sizes of p1
to p4. �

The main consideration above has been the frequentist concern over the
type I error probability. That this concern is not universally accepted can
be seen from the following example (Berger and Berry 1987).

Example 7.4: A scientist has n = 100 iid observations assumed coming from
N(θ, 1) and wants to test H0: θ = 0 versus H1: θ �= 0. The observed average
is x100 = 0.2, so the standardized test statistic is z =

√
n|x100 − 0| = 2.0.

‘A careless classical statistician might simply conclude that there is significant
evidence againstH0 at the 0.05 level. But a more careful one will ask the scientist,
“Why did you cease experimentation after 100 observations?” If the scientist
replies, “I just decided to take a batch of 100 observations”, there would seem
to be no problem, and few statisticians would pursue the issue. But there is
another important question that should be asked (from the classical perspective),
namely: “What would you have done had the first 100 observations not yielded
significance?”

To see the reasons for this question, suppose the scientist replies: “I would
then have taken another batch of 100 observations.” The scientist was implicitly
considering a procedure of the form:

(a) take 100 observations

(b) if
√
100|x100| ≥ k then stop and reject H0;
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(c) if
√
100|x100| < k then take another 100 observations and reject H0 if√

200|x200| ≥ k.

For this procedure to have level α = 0.05, k must be chosen to be k = 2.18 (Ex-
ercise 7.2). For the observed z = 2.0 at step (b), the scientist could not actually
conclude significance, and hence would have to take the next 100 observations!’
What is obviously disturbing is that the ‘significance’ of an observed P-value
depends on the thoughts or intention of the scientist rather than the data alone.

This example can be elaborated to create further paradoxes. Suppose the
scientist got another 100 observations and the final z =

√
200|x200| = 2.1 < 2.18,

which is not significant at α = 0.05. The ‘proper P-value’ that takes the half-way
analysis into account is

P (
√
100|x100| > 2.18) + P (

√
100|x100| < 2.18,

√
200|x200| > 2.1) = 0.055.

If the full dataset is published and another scientist analyses it, the latter will
get a significant result, with P-value

P (
√
200|x200| > 2.1) = 0.036.

So the same data produce different ‘evidence’. �

That we can ignore the optional stopping is a liberating implication of
the likelihood principle. It simplifies our analysis and, regardless of our
intention, we would report the same evidence. Adherence to the strong
likelihood principle, however, creates a puzzle of its own: consider the
following example from Armitage (1961).

Example 7.5: Fix a value k in advance and take x1, x2, . . . randomly from
N(θ, 1) until

zn =
√
nxn ≥ k.

Think of zn as a time series with index n and the stopping rule as a boundary
crossing. Figure 7.1 shows a sample realization of zn, where the boundary of
k = 2 is crossed at n = 48. This means that only x1, . . . , x48 are available for
analysis.
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Figure 7.1: A sample realization of
√
nxn computed from x1, x2, . . . for

n = 1, . . . , 50. The boundary is crossed at n = 48.
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Since the stopping rule is a function of the observed data alone, the likelihood
of θ based on the data x1, . . . , xn is

L(θ) = constant× e−
n
2
(xn−θ)2 .

In particular θ̂ = xn as before. The likelihood of H0: θ = 0 is

L(0)

L(θ̂)
= e−nx2/2 ≤ e−k2/2.

What is puzzling here is that the evidence about H0 appears to be determined
in advance by the choice of k; for example, using k = 2, the likelihood of θ = 0 is
less than 15%. Here the data have been ‘rigged’, but the computation of evidence
via the likelihood does not take that into account. �

It must be emphasized that even if the likelihood is not affected by the
stopping rule, the likelihood principle does not say ‘so, go ahead and use the
standard frequentist-style likelihood ratio test for inference’. The principle
only states something about evidence, but not any particular course of
action.

Suppose we decide to stop if
√
nxn ≥ 2, and we observe x1 = 2.5 and

stop. What can we say about θ given that x1 is a sample from N(θ, 1)?
To illustrate frequentist calculations, suppose θ = 0; given that we stop at
n = 1, the average of X1 is

E(X1|X1 > 2) = 2.4.

This seems unacceptable: if we stop early then there is the potential of a
large positive bias. However, if θ is much larger than k = 2, then there is
very little bias; for example, if x1 = 50 then we know that there should be
very little bias due to stopping.

Stopping at a large n is evidence that θ is small. In this case the sample
mean x will be near k/

√
n, which is small if k is moderate. So the likelihood,

which is concentrated at the sample mean, is not going to be very biased.
Also, as the sample size n goes to infinity L(θ = 0) > L(θ1), meaning that
θ = 0 has better support, for any fixed θ1 > 0.

The preceding discussion suggests that the sample size n carries infor-
mation about θ: a small n is evidence of a large θ, and a large n a small θ.
This is true, but unlike in the negative binomial case, in the normal case
n is not sufficient so inference based on n alone will be inefficient.

Sequential analysis such as those in industrial quality control appli-
cations is ‘made’ for a true frequentist testing. In this case there is no
difficulty in accepting the relevance of long-term operating characteristics
such as false alarm rate, etc. Later applications such as sequential clin-
ical trials are justified more on ethical rather than on efficiency grounds;
here we find that a full-blown inference including estimation and confidence
procedure meets inherent logical difficulties.

Even a frequentist estimation procedure can lead to a logical quandary:
Exercise 8.11 shows a simple example where the best unbiased estimate
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from a two-stage experiment ignores the second-stage data. Frequentist
inference from a stopped experiment can be found, for example, in White-
head (1986), Rosner and Tsiatis (1988), or Whitehead et al. (2000). Note,
however, that any analysis that takes the sampling scheme into account
will violate the likelihood principle and, as illustrated by Example 7.4, any
such violation will make the analysis or its conclusions open to paradoxes.

A common practice in sequential clinical trials is to use a formal se-
quential testing procedure during the trial (see Example 7.3), but then to
ignore the stopping rule when analysing the data for further scientific pub-
lications. This seems a sensible compromise. Adopting a sequential testing
procedure would prevent experimenters from stopping too soon unless the
evidence is very strong. Ignoring the stopping rule when presenting the
evidence avoids having the intention of the experimenters interfere with
the interpretation of the data (Example 7.4).

Informative stopping

There is a subtle point in the analysis of a sequential trial that has a
general relevance. In the above analysis, the likelihood ignores the optional
stopping if hm(x1, . . . , xm), the probability of stopping at time m, is a
function of observed data alone. We can pretend that the values x1, x2, . . .
were already observed, but when we decide to stop at n, then we simply
drop/delete xn+1, xn+2, . . ., and keep only x1, . . . , xn.

Imagine a scheme where we take one observation at a time, note the last
value and drop/delete it if it is too large, and stop the experiment. In this
case the probability of stopping is also a function of the unknown parameter
and the likelihood will not ignore it. So, the general rule is that dropping
an observation because of its value will always affect the likelihood, but
dropping it with a probability determined by other available data does not
affect the likelihood from the available data.

For example, suppose x1, . . . , xn are an iid sample, and we drop all
values except the maximum. The likelihood based on the maximum value
is quite different from the likelihood based on a single random value xi

(Example 2.4). Similarly, other processing of the data prior to analysis
may or may not have an effect on the likelihood from the final dataset.

Thus the idea of optional stopping is also related to analysis of missing
data. If the missing mechanism is a function of available data, the likelihood
ignores it; if it is also a function of the missing data the likelihood will take
it into account.

7.6 Multiplicity
The frequentist concern in the sequential experiment example is a special
case of the problem of ‘multiplicity’, which is pervasive in applied science
or applied statistics. If we get a significant result after performing many
tests or ‘repeated looks’ at the data, how should we account for these in
our conclusion?



7.6. Multiplicity 205

In its mild form, multiplicity is known as a ‘multiple comparison prob-
lem’ (Miller 1981; Hochberg and Tamhane 1987). If we are comparing
many things, some of them are bound to be significant purely by chance:
under the null hypothesis, if each test has a 5% level then for every 20 tests
we expect one significant result, and even if such a result is unexpected it
is usually ‘easy’ to supply a ‘scientific explanation’.

The standard F -test protects the α-level against this problem, as does
the Bonferroni adjustment or Tukey’s procedure. At what point do we
stop protecting our α-level against multiplicity? Within a single analysis
of variance table? Within an experiment? Or within the lifetime of a
scientist? In addition, the use of P-value as a measure of evidence presents
problems. There will be paradoxes similar to Example 7.4: the ‘intention’ of
the experimenter in planning how many tests to perform becomes relevant
in evaluating the ‘significance’ of a revealed pattern.

In its extreme form multiplicity carries a pejorative term such as ‘data
snooping’ or ‘fishing expedition’ or ‘data dredging’, etc. The problem is
obvious: if we look long enough around a large dataset we are going to
see some statistically significant patterns, even when in truth no such pat-
tern exists; this means the true α-level of the procedure is near 100%.
The strength of evidence as reported by the likelihood or standard P-value
becomes meaningless, since it usually does not take into account the unor-
ganized nature of the data snooping.

The likelihood might not be affected by data snooping. For example,
after seeing the result of one variable, it may occur to us to test another
variable. It is obvious that the evidence about the first variable should
not be affected by our intention about the second variable. In situations
where we ignore data after seeing them (e.g. they are not ‘significant’),
data snooping can be more complicated than a sequential trial, and the
likelihood will be affected.

As with the optional stopping it is liberating not to worry about multi-
plicity or various decisions at data pre-processing. However, we learn from
the sequential trial that, even when the likelihood is not affected by the
optional stopping, inference from the final data can be elusive.

Inference after model selection
Model selection is a bread-and-butter statistical activity that is accompa-
nied by the problem of multiplicity. It can be formal as in a stepwise or
best-subset variable selection procedure. Or it can be informal and undoc-
umented, where we make decisions about inclusion/exclusion criteria for
subjects of analysis, definition of categories or groups for comparison, etc.
The formal process is clearly guided by the data to arrive at simple but
significant results, so it is well known and intuitive that model selection
can produce spurious results. The question is how to account for the selec-
tion process in the reporting of evidence in the final model. This is not a
question of model selection itself, which can be done for example using the
AIC, but of the uncertain inference associated with the parameters of the
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chosen model.
The common practice is in fact to ignore the selection process: P-values

are typically reported as if the final model is what has been contemplated
initially. While convenient, such P-values can be spurious. Moreover, gen-
erally we cannot invoke the likelihood principle to justify the evidence in
the final model.

There are general techniques we can use to measure uncertainty due
to model selection. For example, we can use the cross-validation approach
(Section 5.2): split the dataset into two parts, then use one part (‘the
training set’) to develop the best model, and the other (‘the validation set’)
to validate the model or measure its uncertainty. For example, the training
set may indicate that ‘social-economic level’ is an important predictor of
‘health status’ in the best-subset model; then we find the P-value of the
variable in the best subset model based on an analysis of the validation set.

The method is not feasible if the dataset is small. In this case it is
common practice to use the whole dataset as the training set. If a scien-
tifically interesting model is found after an extensive model selection, then
it is probably best to collect more data to get an external validation. This
is consistent with the conservative tendency in the scientific community to
believe only results that have been validated by several experiments.

7.7 Questioning the likelihood principle
It is common to hear some statisticians declare that they ‘reject’ the (strong)
likelihood principle. How can they reject a correct theorem? It is impor-
tant here to distinguish between the formal and informal statements of the
likelihood principle. The formal statement is that

two datasets (regardless of experimental source) with the same like-
lihood carry the same evidence, so that evidence is in the likelihood
alone – assuming the model is correct, of course.

The informal likelihood principle states that

two datasets (regardless of experimental source) with the same likeli-
hood should lead to the same conclusion.

These are two very different statements, with the latter being the commonly
rejected one. What we do (e.g. drawing conclusions or other actions) given
the likelihood is outside the boundary of the formal likelihood principle.

Lying in the gap between the statements is a fundamental question
whether our conclusion should depend only on the observed data. If yes,
then it should follow from the likelihood alone. Most statisticians from
all persuasions in fact reject this. Bayesians use the prior information
formally to arrive at conclusions, while frequentists care very much about
how we arrive at the data. The informal principle is also stronger than the
Fisherian view that both likelihood and probability inference are possible,
and that likelihood is weaker than probability.
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Interpretation of likelihood ratio

An important aspect of Fisherian inference is that, when needed as a mea-
sure of support, the likelihood ratio can be interpreted subjectively. For
example, when considering hypotheses A versus B, a likelihood ratio of 209
in favour of B means B is preferred over A, and 209 measures the strength
of preference. Now, if in another experiment we report a likelihood ratio
of 21 between two competing hypotheses, can we say that the first exper-
iment shows stronger evidence? This is a question of calibration: can we
interpret the likelihood ratio as is, or does it require another measure to
calibrate it?

The sequential experiment in Example 7.5 shows that the likelihood
cannot tell if a dataset has been ‘rigged’. We now come back to the exper-
iment in Section 2.4 to show that the likelihood also cannot tell that the
parameter space may be too large, or that an observed pattern is spurious,
and we have overfitted the data.

Imagine taking a card at random from a deck of N = 209 well-shuffled
cards and consider the following two hypotheses:

H0 : the deck contains N different cards labelled as 1 to N .
H2 : the deck contains N similar cards labelled as, say, 2.

Suppose card with label 2 is obtained; then the likelihood ratio of the two
hypotheses is

L(H2)

L(H0)
= N = 209,

that is, H2 is N = 209 times more likely than H0, so the evidence indicates
that H2 should be preferred over H0.

There is nothing unusual in the above interpretation that a likelihood
ratio of 209 gives strong evidence for H2. Now suppose the card experiment
is conducted without any hypothesis in mind. One card is taken at random,
and a card with label 5 is obtained; then one sets the hypothesis

H5 : the deck contains N similar cards labelled as 5.

Then L(H5)/L(H0) = N = 209, that is H5 is 209 times more likely than
H0. Some may find this disturbing: Hk for any obtained label k > 0 is
always more likely than H0.

The difference with the previous interpretation, that the hypothesis H5

is set after seeing the data (label 5), is actually not important. We may
consider N +1 hypotheses in advance: Hk for k = 0, . . . , N . Then, for any
observed label k we have L(Hk)/L(H0) = N . This is a potent reminder
that the likelihood ratio compares the relative merits of two hypotheses in
light of the data; it does not provide an absolute support for or against a
particular hypothesis on its own. That L(H5)/L(H0) = N = 209 does not
mean H5 in itself is a reasonable hypothesis.

One may find the original interpretation above more acceptable; there
is an implicit suggestion, before we collect the data (pick a card), that H0

and H2 are the only possible hypotheses because they are explicitly stated;
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hence observing label 2 ‘feels’ like evidence for H2. This ‘suggestion’ is not
based on data, but on prior information.

To make the last argument more specific and to clarify the way the data
enters our reasoning, suppose we conduct an extra layer of experiment by
first choosing H0 or H2 at random so that

P (H0) = P (H2) = 1/2.

Then, on observing a card with label 2,

P (H0|2) =
P (H0) P (2|H0)

P (2)

=
1/2× 1/N

1/2× 1/N + 1/2

= 1/(N + 1)

and P (H2|2) = N/(N + 1). Here it is true a posteriori that H2 has more
chance to be true. However, it is not the case if a priori P (H2) is tiny, e.g.
a lot smaller than 1/N . Note that the ratio of the posterior probability

P (H2|2)
P (H0|2) =

P (H2)

P (H0)
× P (2|H2)

P (2|H0)

=
P (H2)

P (H0)
× L(H2)

L(H0)
,

so the data enter the posterior comparison only through the likelihood
ratio.

Our sense of surprise in viewing an experimental result is a function
of both our prior belief and likelihood. This is how we can explain why
the interpretation of L(H5)/L(H0) = N above feels ‘surprising’: we are
mixing up evidence in the data (which is strong) with a prior belief (which
is weak).

If H5 is truly considered after seeing the data, then it is a spurious
hypothesis; including it in the list of possible hypotheses enlarges the ‘size
of the parameter space’. This example shows that some prior knowledge
can be important to avoid over-interpretation of likelihood. The knowledge
is used mainly to limit consideration of sensible hypotheses. This leans
towards the Bayesian attitude, though we may not want to invest formally
in our prior.

A Fisherian attitude here is closer to a frequentist’s: if some evidence
is not likely to be repeatable, then it is spurious and the uncertainty is not
adequately measured by the likelihood alone. What we know theoretically
is that if the parameter space is large the likelihood ratio tends to be large,
so to avoid spurious results we have to adapt our assessment of likelihood
according to the size of the parameter space (Section 3.5).



7.7. Questioning the likelihood principle 209

Empirical distribution function

The above example is not far fetched. In statistics we regularly use the
empirical distribution function (EDF), which is the (nonparametric) MLE
in the class of all possible distributions (discrete and continuous). For
example, given data x1 = 1.2, the EDF is a degenerate distribution at
x1; this has higher likelihood than any other distribution. (To avoid the
technical problem of comparing the discrete and continuous models, simply
assume that measurements have finite precision, so 1.2 means 1.2 ± ε for
a small ε.) Given n distinct sample points, the EDF puts a weight 1/n at
each point (see Section 15.1).

It is not necessary to ‘believe’ that our sample actually comes from the
EDF to accept that the EDF is a reasonable estimate of the distribution
function.

Example from Fraser et al.
Fraser et al. (1984) give an example where a pure likelihood inference
seems to be in conflict with the repeated sampling principle. Suppose
θ ∈ {1, 2, . . .} and

pθ(x) = 1/3 for x =

⎧⎨⎩ 1, 2, 3 if θ = 1
θ/2, 2θ, 2θ + 1 if θ is even
(θ − 1)/2, 2θ, 2θ + 1 if θ is odd.

This probability model is best shown in a graph: see Figure 7.2. The
nonzero probabilities, all with value 1/3, are on the circles. From the
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Figure 7.2: Probability model from Fraser et al. (1984): the probability is
1/3 on the circles and zero otherwise.

graph it is obvious that, for any observed x, the likelihood function is flat
on the three possible values of θ:

L(θ) = 1/3 for θ =

⎧⎨⎩ 1, 2, 3 if x = 1
x/2, 2x, 2x+ 1 if x is even
(x− 1)/2, 2x, 2x+ 1 if x is odd.
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So from the likelihood function alone we cannot prefer one value of θ over
the other.

Now consider using the first, middle and last values as an estimate of θ
and call them θ̂1, θ̂2 and θ̂3. Then, the probability of hitting the true value
is

Pθ(θ̂1 = θ) =

{
Pθ(X = {1, 2, 3}) = 1 if θ = 1
Pθ(X = {2θ, 2θ + 1}) = 2/3 otherwise

Pθ(θ̂2 = θ) = Pθ(X = θ/2) =

{
1/3 if θ is even
0 otherwise

Pθ(θ̂3 = θ) = Pθ(X = (θ − 1)/2) =

{
1/3 if θ is odd, but not 1
0 otherwise.

This computation suggests that we should use θ̂1.
The probability of hitting the true value is not evidence in the data, it

is a consequence of repeated sampling from the assumed probability model.
In this example evidence in the data from a single experiment cannot tell
us which choice of θ is best, but the experimental setup tells us it is better
in the long run to use θ̂1. If the experiment is to be repeated exactly, say
by different participants, where θ is fixed in advance and it is desirable to
have maximum hitting probability, then θ̂1 is better than θ̂2 or θ̂3.

Goldstein and Howard (1991) modified the example to become more
contradictory. Let θ be a nonnegative integer. Given θ, 99 balls are
marked with θ and put in a bag together with 992 balls marked with
992θ + 1, . . . , 992(θ + 1). For example, if θ = 0, 99 balls are marked with
0, and 992 balls with 1, . . . , 992. One picks a ball at random from the bag
and notes the mark. If it is X = k, then θ is either θ̂1 = [(k − 1)/992] or

θ̂2 = k. The likelihood of θ̂2 is 99 times the likelihood of θ̂1, so θ̂2 is the
MLE of θ, while the hitting probabilities are

P (θ̂1 = θ) =

{
1 if θ = 0
0.99 if θ > 0

P (θ̂2 = θ) = P (X = θ) = 0.01,

which indicates that θ̂1 is a better choice ‘in the long run’.
The long-run interpretation requires that θ is fixed, and the repeat

experiments are performed without any accumulation of data (otherwise
θ is known exactly once we observe two distinct marks). Such a model is
appropriate, for example, if the experiment is to be repeated by different
people who act independently. Without such restriction we can end up
with a paradox: on observing, say, k = 55, θ is either 0 or 55; if we restrict
θ to these two values, then the MLE has a superior long-run property.

It should be emphasized that Fraser et al.’s example is not a counterex-
ample of the likelihood principle. It only highlights the fundamental fact
that the likelihood on its own is silent regarding the long-term properties.
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Conditionality

A serious question on the formal likelihood principle is directed at the
conditionality principle: there can be more information from a mixed ex-
periment. That is, in the previous notation,

Ev{E∗, (j, xj)} ≥ Ev(Ej , xj).

Under this assumption the likelihood principle does not follow. Here is a
famous example using a finite sampling experiment (Godambe and Thomp-
son 1976; Helland 1995).

Suppose there are N units in a population each having, on a certain
measurement, values μ1, . . . , μN . We take a sample of size n without re-
placement from the population and are interested in the mean parameter

θ =
1

N

N∑
1

μi.

The full parameter space is (μ1, . . . , μN , θ). Enumerate all K possible sam-
ples of size n, i.e.

K =

(
N
n

)
and let Ek be the experiment of measuring the n units in sample k. Now
it is obvious that Ek does not contain evidence about θ. However, a mixed
experiment which chooses one sample k at random with probability 1/K
would produce the usual simple random sample and have some information
about θ.

The problem with this example is that the parameter θ is not well
defined within each experiment Ek, so the setup lies outside the formal
definition of the strong likelihood principle.

7.8 Exercises
Exercise 7.1: Verify the current α-levels shown in Example 7.3.

Exercise 7.2: Verify the critical value k = 2.18 stated in Example 7.4.
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Score function and Fisher
information

Given data x and probability model pθ(x) in Chapter 2 we have defined
the likelihood function as

L(θ) = pθ(x)

and the first derivative of the log-likelihood as

S(θ) =
∂

∂θ
logL(θ).

As a function of θ we call S(θ) the score function, while as a random
variable for fixed θ we call S(θ) the score statistic.

The score statistic turns out to have rich frequentist properties. In
likelihood theory we use the frequentist analytical tools to operate or ma-
nipulate likelihood quantities, to establish needed characteristics, and to
derive approximations.

8.1 Sampling variation of score function
The sampling distribution of the score function shows what we should ex-
pect as the data vary from sample to sample. We will study this through
a series of specific models.

Normal model

Let x1, . . . , xn be an iid sample from N(θ, σ2) with σ2 known. Then the
log-likelihood and the score functions are

logL(θ) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − θ)2

S(θ) =
∂

∂θ
logL(θ)

=
1

σ2

∑
i

(xi − θ)

=
n

σ2
(x− θ).

Figure 8.1(a) shows 20 score functions, each based on an iid sample of size
n = 10 from N(4, 1). We have noted before that the score function of the
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normal mean is exactly linear. At the true parameter θ = 4 the score varies
around zero.
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Figure 8.1: Sampling variation of score functions for different models.

Poisson model

Let x1, . . . , xn be an iid sample from Poisson(θ). The log-likelihood and
the score function are

logL(θ) = −nθ +
∑

xi log θ

S(θ) = −n+

∑
xi

θ

=
n

θ
(x− θ).

Figure 8.1(b) shows 20 score functions based on 20 independent samples of
size 10 from a Poisson distribution with mean 4. Here the score function
is only approximately linear. At the true parameter (θ = 4) the score
function also varies around zero.

Binomial model

Let x1, . . . , xn be an iid sample from binomial(N, θ). The log-likelihood
and the score functions are
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logL(θ) =
n∑

i=1

{xi log θ + (N − xi) log(1− θ)}

S(θ) =
n∑

i=1

{
xi

θ
− N − xi

1− θ

}
=

n(x−Nθ)

θ(1− θ)
.

Figure 8.1(c) shows 20 score functions based on 20 independent samples of
size n = 10 from binomial(10, 0.4).

Cauchy model

Let x1, . . . , xn be an iid sample from Cauchy(θ) with density

pθ(x) = {π(1 + (x− θ)2)}−1,

where θ is the location parameter. The log-likelihood and the score func-
tions are

L(θ) = −
∑
i

log{(1 + (xi − θ)2)}

S(θ) =
∑
i

2(xi − θ)

1 + (xi − θ)2
.

Figure 8.1(d) shows 20 score functions based on independent samples of
size 10 from Cauchy(θ = 4). The score function is quite irregular compared
with the previous three examples. The Cauchy model can be considered as
a representative of problems with complicated likelihood.

8.2 The mean of S(θ)
We have seen in all cases above that, at the true parameter the score statistic
varies around zero. For normal data

S(θ) =
n

σ2
(x− θ)

and for Poisson data
S(θ) =

n

θ
(x− θ).

In both cases EθS(θ) = 0. The subscript θ on the expected value is im-
portant: it communicates that θ is the true parameter that generates the
data. The result is true in general:

Theorem 8.1 Assuming regularity conditions so that we can take the deriva-
tive under the integral sign, we have

EθS(θ) = 0.
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Proof: Without loss of generality, we consider the continuous case:

EθS(θ) =

∫
S(θ)pθ(x)dx

=

∫ {
∂

∂θ
logL(θ)

}
pθ(x)dx

=

∫ ∂
∂θL(θ)

L(θ)
pθ(x)dx

=

∫
∂

∂θ
L(θ)dx

=
∂

∂θ

∫
pθ(x)dx = 0. �

The general conditions for taking the derivative under the integral sign
are rather technical (e.g. Apostol 1974, page 283). For example, θ cannot be
a boundary parameter, and, as a function of x in the neighbourhood of the
true parameter θ, |∂L(θ;x)/∂θ| ≤ g(x) where

∫
g(x)dx is finite. Essentially,

this requires the model pθ(x) to be ‘smooth enough’ as a function of θ. It
can be shown that the exponential family models or other models commonly
used in practice, including the Cauchy model, satisfy the conditions.

8.3 The variance of S(θ)
We have defined in Section 2.5 the observed Fisher information as minus
the second derivative of the log-likelihood function evaluated at the MLE
θ̂. Its generic form is

I(θ) = − ∂2

∂θ2
logL(θ) = − ∂

∂θ
S(θ).

This is minus the slope of the score function. This quantity varies from
sample to sample; see Figure 8.1. Now we define the average or expected
Fisher information as

I(θ) ≡ EθI(θ).

The expected value is taken at the fixed and true value of θ; ‘true’ in the
sense that the data are generated at that value of θ.

There are notable qualitative differences between the expected and the
observed Fisher information. The expected information is meaningful as a
function of θ across the admissible values of θ, but I(θ) is only meaningful

in the neighbourhood of θ̂. More importantly, as an observed likelihood
quantity the observed information applies to a single dataset; it is better
to think of it as a single value, or a single statistic, rather than as a function
of θ. In contrast, the ‘expected information’ is an average quantity over
all possible datasets generated at a true value of the parameter. It is not
immediately obvious whether I(θ) is a relevant measure of information for
a particular dataset.
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As a function of θ, the expected information tells how ‘hard’ it is to
estimate θ: parameters with greater information can be estimated more
easily, requiring less sample to achieve a required precision. It might seem
surprising then to arrive at a theorem that the expected information is
equal to the variance of the score statistic. The proof is left as an exercise.

Theorem 8.2 Assuming regularity conditions so that we can take two
derivatives under the integral sign, we have

varθS(θ) = I(θ).
Since EθS(θ) = 0, the theorem is equivalent to stating that

Eθ

{
∂

∂θ
logL(θ)

}2

= −Eθ

{
∂2

∂θ2
logL(θ)

}
.

The regularity conditions are satisfied by the exponential family or other
commonly used models. In our discussions we will assume that this theorem
holds.

Normal model

Let x1, . . . , xn be an iid sample from N(θ, σ2) with σ2 known. We have

varθS(θ) = var
{ n

σ2
(x− θ)

}
=

( n

σ2

)2 σ2

n
=

n

σ2

I(θ) = − ∂

∂θ
S(θ) =

n

σ2
,

so varθS(θ) = EθI(θ). In this case I(θ) = I(θ), a happy coincidence in any
exponential family model with canonical parameter θ (Exercise 8.3). We

have noted before that var(θ̂) = 1/I(θ̂), so larger I(θ̂) implies more precise
information about θ.

Poisson model

For x1, . . . , xn an iid sample from Poisson(θ) we have

varθS(θ) = var
{n
θ
(x− θ)

}
=

n

θ

I(θ) = − ∂

∂θ
S(θ) =

nx

θ2

I(θ) =
n

θ
.

Now I(θ) 
= I(θ), but at θ = θ̂ = x we have I(θ̂) = I(θ̂). This is true
generally for the full exponential family (Exercise 8.3). It means we can

estimate the variance of the score statistic by either I(θ̂) or I(θ̂). This

is a remarkable result, since I(θ̂) is a feature of the observed likelihood
function, while the variance of the score statistic is a frequentist quantity.
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Cauchy model

Let x1, . . . , xn be an iid sample from Cauchy(θ) with density p(x) = {π(1+
(x− θ)2)}−1. Here we have

I(θ) = −
∑
i

2{(xi − θ)2 − 1}
{(xi − θ)2 + 1}2

I(θ) = −2nEθ

{
(X1 − θ)2 − 1

{(X1 − θ)2 + 1}2
}

=
n

2

varθS(θ) = n var

{
2(X1 − θ)

(X1 − θ)2 + 1

}
=

n

2
.

So varθS(θ) = I(θ), but now I(θ̂) 
= I(θ̂), a common occurrence in complex

cases. Both quantities are related to the precision of θ̂, so when they are
different, there is a genuine question: which is a better or more relevant
measure of information? For sample size n = 20, there is 90% probability
for I(θ̂) to fall between 5.4 and 16.3, while I(θ̂) = 10. The quantity I(θ̂) is
‘closer to the data’, as it describes the curvature of the observed likelihood,
while I(θ) is an average curvature that may be quite far from the observed
data. Efron and Hinkley (1978) made this idea more rigorous; we will come
back to this isssue in Section 9.6.

Censored data example

Let t1, . . . , tn be an iid sample from the exponential distribution with mean
1/θ, which are censored at fixed time c. This means an event time is
observed only if it is less than c. So, the observed data are (yi, δi), for
i = 1, . . . , n, where

yi = ti and δi = 1, if ti ≤ c,

and
yi = c and δi = 0, if ti > c.

The variable δi is an event indicator, which is Bernoulli with probability
(1− e−θc). Using

pθ(t) = θe−θt

Pθ(t) = P (T > t) = e−θt,

the contribution of (yi, δi) to the likelihood is

Li(θ) = {pθ(yi)}δi{Pθ(yi)}1−δi .

So,

logL(θ) =
∑
i

{δi log pθ(yi) + (1− δi) logPθ(yi)}
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=
∑

δi log θ − θ
∑

yi.

S(θ) =

∑
δi
θ

−
∑

yi

I(θ) =

∑
δi

θ2

I(θ) =

∑
Eδi
θ2

=
n(1− e−θc)

θ2

and θ̂ =
∑

yi/
∑

δi. The sum
∑

δi is the number of uncensored events.

So in general I(θ̂) 
= I(θ̂), but there is a sense here that I(θ̂) is the
proper amount of information. For example, if there is no censored value

I(θ̂) = n/θ̂2,

but

I(θ̂) = n(1− e−θ̂c)/θ̂2 < I(θ̂).

The quantity n(1 − e−θc), the expected number of events, is not relevant
when the observed number is known. The dependence on c, an arbitrary
censoring parameter that depends on the study design, makes I(θ̂) unde-
sirable. The standard practice of survival analysis always uses the observed
information I(θ̂).

8.4 Properties of expected Fisher information
Additive property for independent data

Let Ix(θ) be the Fisher information on θ based on data X and Iy(θ) based
on Y . If X and Y are independent, then the total information contained
in X and Y is Ix(θ) + Iy(θ). In particular if x1, . . . , xn are an iid sample
from pθ(x), then the information contained in the sample is nIx1

(θ).

Information for location parameter

If pθ(x) = f(x− θ) for some standard density f(·), then I(θ) is a constant
free of θ. This means that any location θ can be estimated with the same
precision. To prove it:

I(θ) =

∫
S(θ)2pθ(x)dx

=

∫ {
f ′(x− θ)

f(x− θ)

}2

f(x− θ)dx

=

∫ {
f ′(u)
f(u)

}2

f(u)du.
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Information for scale parameter

We call θ a scale parameter if

pθ(x) =
1

θ
f
(x
θ

)
,

for some standard density f(·). The family pθ(x) is called a scale family;
for example, N(0, θ2) is a scale family. In this case we can show that

I(θ) = constant/θ2,

implying that it is easier to estimate a small θ than a large one. The proof
is left as an exercise.

Transformation of parameter

Let ψ = g(θ) for some function g(·). The score function of ψ is

S∗(ψ) =
∂

∂ψ
logL(θ)

=
∂θ

∂ψ

∂

∂θ
logL(θ)

=
∂θ

∂ψ
S(θ),

so the expected information on ψ is

I∗(ψ) = varS∗(ψ)

=

(
∂θ

∂ψ

)2

I(θ)

=
I(θ)

(∂ψ/∂θ)2
.

For example, based on a sample of size one from Poisson(θ) we have

I(θ) =
1

θ

I∗(log θ) =
1/θ

(1/θ)2
= θ

I∗(
√
θ) = 4.

Therefore, in the log-scale, it is easier to estimate a large parameter value
than a small one. In generalized linear modelling of Poisson data this means
that inference in the log-scale is easier if we have data with large means.
The parameter

√
θ behaves like a location parameter.
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8.5 Cramér–Rao lower bound
We estimate the normal mean μ by T (x) = x. Is this the best possible?
What do we mean by ‘best’? These are questions of optimality, which
drove much of classical estimation theory. The standard way to express
‘best’ is to say that among unbiased estimates x has the smallest variance,
implying that it is the most precise. The restriction to unbiasedness is quite
arbitrary, but it is necessary in order to develop some theory. Furthermore,
for the variance to be meaningful the sampling distribution must be normal
or close to normal.

In the normal model we know that

var(X) =
σ2

n
.

Is it possible to get another estimate with lower variance? The Cramér–
Rao lower bound theorem addresses this. It states the best we can achieve
in terms of variability in estimating a parameter g(θ). If the bound is
achieved we know that we cannot do better.

Theorem 8.3 Let EθT (X) = g(θ) and I(θ) be the Fisher information for
θ based on X. Assuming regularity conditions we have

varθ{T (X)} ≥ {g′(θ)}2
I(θ) .

In particular, if EθT = θ, then

varθ{T (X)} ≥ 1

I(θ) .

The value {g′(θ)}2/I(θ) is called the Cramér–Rao lower bound (CRLB).
The proof, to be given later, does not illuminate why such a result should
be true.

Example 8.1: Let x1, . . . , xn be an iid sample from Poisson(θ). We have
shown before that I(θ) = n/θ, so to estimate θ by an unbiased estimate T , we
must have

var(T ) ≥ 1

I(θ) =
θ

n
.

Since var(X) = θ/n we conclude that X is the best unbiased estimate. Theoret-
ically, it will be satisfying to be able to say that this is a unique best estimate,
but that would require the concept of completeness, which we defer until Sec-
tion 8.6.

Example 8.2: Let x1, . . . , xn be an iid sample from Poisson(θ) and we would
like to estimate g(θ) = P (X1 = 0) = e−θ. If T is unbiased for g(θ), then

var(T ) ≥ (−e−θ)2

n/θ
=

θe−2θ

n
.
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The theorem does not provide guidance to finding an estimate that achieves the
bound, or even to say whether such an estimate exists. If we use the MLE
T (x) = e−x, then, using the Delta method,

var
(
e−X
)
≈ θe−2θ

n
= CRLB,

so the MLE approximately achieves the CRLB. The best unbiased estimate in
this case is given by (see Example 8.9)

T (x) =
(
1− 1

n

)nx

.

To see the connection with the MLE, we know from calculus that (1−1/n)n → e−1

as n gets large. This estimate does not achieve the CRLB; from the proof of the
CRLB theorem we shall see that only T that is linearly related to the score
statistic will achieve the CRLB exactly. �

Example 8.3: Let x1, . . . , xn be an iid sample from Poisson(θ) and we would
like to estimate g(θ) = θ2. If T is unbiased for θ2, then according to the theorem

var(T ) ≥ 4θ3

n
.

What is the best unbiased T? First guess T = X
2
, which has

EX
2
= var(X) + (EX)2 =

θ

n
+ θ2,

so T = X
2 −X/n is unbiased for θ2. In fact, using the method given in the next

section, we can show that T is the best unbiased estimate for θ2, but

var(T ) = E(X
2 −X/n)2 − (θ2)2

= EX
4 − 2

n
EX

3
+

1

n2
EX

2 − θ4

=
4θ3

n
+

2θ2

n2
> CRLB.

This generally occurs in small or fixed sample cases. �

Proof of the CRLB theorem

From the covariance inequality, for any two random variables S and T we
have

var(T ) ≥ |cov(S, T )|2
var(S)

,

with equality if and only if S and T are perfectly correlated. Choose S to be
the score statistic S(θ), so we only need to show that cov{S(θ), T} = g′(θ).
We showed before that ES(θ) = 0, so

cov{S(θ), T} = E{S(θ)T (x)}
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=

∫
S(θ)T (x)pθ(x)dx

=

∫ ∂
∂θpθ(x)

pθ(x)
T (x)pθ(x)dx

=

∫
∂

∂θ
pθ(x)T (x)dx

=
∂

∂θ

∫
T (x)pθ(x)dx

= g′(θ).

Connection with the exponential family

From the proof above, the only statistics T (x) that can achieve CRLB are
those which are linearly related to the score statistic. In such cases, for
some functions u(θ) and v(θ),

∂

∂θ
log pθ(x) = u(θ)T (x) + v(θ).

This implies that, if there exists a statistic that achieves the CRLB, the
model must be in the exponential family, with log-density of the form

log pθ(x) = η(θ)T (x)−A(θ) + c(x).

This also means that, up to a linear transformation, the CRLB is only
achievable for one function g(θ).

Example 8.4: For the normal, Poisson and binomial models, the sample mean
is the natural statistic, so it achieves the CRLB for estimation of the mean. No
other statistics that are not linearly related to the sample mean can achieve the
CRLB. �

Example 8.5: Suppose x1, . . . , xn are a sample from the Cauchy distribution
with location θ. Since it is not in the exponential family there is no statistic that
can achieve the CRLB. �

8.6 Minimum variance unbiased estimation�

If the CRLB is not achieved, is there still a ‘best’ estimate? Among unbi-
ased estimates, suppose we define the best estimate as the one with min-
imum variance. Establishing such a minimum variance unbiased estimate
(MVUE) requires a new concept called completeness. (The MVUE theory
is a class of theory of statistics that investigates how much can be achieved
theoretically given a certain criterion of optimality. It is quite different
from the likelihood approach followed in this book, where data modelling
is the primary consideration.)

Definition 8.1 A sufficient statistic T is complete if, for any function
g(T ),

Eθg(T ) = 0

for all θ implies
g(t) = 0.
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Example 8.6: Suppose x is a sample from the binomial(n, θ). Then x is a
complete sufficient statistic for θ. Sufficiency is trivial, since x is the whole data.
Now, for any function g(x),

Eθg(X) =

n∑
x=0

g(x)

(
n
x

)
θx(1− θ)n−x

≡
n∑

x=0

c(x)θx,

for some function c(x) not involving θ. Hence Eθg(X) is a polynomial of maxi-
mum order n. Therefore, the condition Eθg(X) = 0 for all θ implies c(x) = 0, or
g(x) = 0 for all x. �

Example 8.7: Let x1, . . . , xn be a sample from a one-parameter exponential
family, with log-density of the form

log pθ(xi) = η(θ)t1(xi)−A(θ) + c(x).

Then T =
∑

i
t1(xi) is a complete sufficient statistic for θ. By the factorization

theorem T is clearly sufficient. The density of T is also of the exponential family
form

log pθ(t) = η(θ)t− nA(θ) + c∗(t)

so, for any function g(T ),

Eθg(T ) =

∫
g(t)eη(θ)t−nA(θ)+c∗(t)

and Eθg(T ) = 0 for all θ means∫
g(t)ec

∗(t)eη(θ)t = 0

for all η(θ). From the theory of Laplace transform,

g(t)eh
∗(t) = 0

but eh
∗(t) > 0, so g(t) = 0. �

Example 8.8: Extending the result to the p-parameter exponential family,
where θ ∈ Rp, follows the same route. Specifically, if x1, . . . , xn are an iid sample
from a distribution with log-density

log pθ(x) =

p∑
k=1

ηk(θ)tk(x)−A(θ) + c(x),

then {∑
i
t1(xi), . . . ,

∑
i
tp(xi)} is a complete sufficient statistic. The only con-

dition in the Laplace transform theory is that the set {(η1, . . . , ηp), for all θ}
contains an open set in Rp. This is exactly the requirement of a full exponential
family.

If x1, . . . , xn are an iid sample from N(μ, σ2), then (
∑

i
xi,
∑

i
x2
i ) is complete

sufficient for θ = (μ, σ2). But, if, additionally, σ = μ then the set {(η1, η2), for all θ}
is a curve in R2. In this case (

∑
i
xi,
∑

i
x2
i ) is not complete sufficient, though it

is still minimal sufficient.
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Completeness implies unique estimates

In connection with estimation, completeness implies uniqueness: if T is a
complete sufficient statistic for θ, then h(T ) is a unique unbiased estimate
of Eθ{h(T )}. To see this, suppose u(T ) is another unbiased estimate of
Eθ{h(T )}. Then,

Eθ{h(T )− u(T )} = 0

for all θ, which, by completeness of T , implies h(t) = u(t).

Completeness implies minimal sufficiency

Completeness implies minimal sufficiency, but not vice versa. Let U be the
minimal sufficient statistic and T be the complete sufficient statistic for θ.
From minimality, U is a function of T :

U = h(T )

and, since
Eθ{E(T |U)− T} = 0,

completeness of T implies

T − E(T |U) = 0

or T = g(U). This means U is a one-to-one function of T , so T is minimal
sufficient.

Construction of MVUE

Lehmann and Scheffé (1950) established that, in a model that admits a
complete sufficient statistic we can always construct the MVUE. This is
regardless of the CRLB. The construction of the estimate follows the so-
called Rao–Blackwell step:

Theorem 8.4 Suppose U(x) is any unbiased estimate of g(θ), and T (x)
is a complete sufficient statistic for θ. Then a new estimate

S(x) = E(U |T )
is the unique MVUE of g(θ).

Proof: The new estimate S(x) is a proper statistic, i.e. it does not
depend on the unknown θ, since T is sufficient. It is also unbiased, since

EθS = Eθ{E(U |T )} = EθU = g(θ).

From the variance equality

var(U) = E{var(U |T )}+ var{E(U |T )},
we immediately get

var(U) ≥ var(S).

So S has smaller variance among any unbiased estimate U . Completeness
of T implies that S is a unique function of T that is unbiased for g(θ).
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Example 8.9: Suppose x1, . . . , xn are an iid sample from the Poisson distri-
bution with mean θ and we are interested to estimate g(θ) = P (X1 = 0) = e−θ.
Since the Poisson model is in the exponential family, T =

∑
i
xi is a complete

sufficient statistic for θ. Let
U = I(x1 = 0),

so EθU = P (X1 = 0), or U is an unbiased estimate of g(θ). The MVUE of g(θ)
is

S = E(U |T )
= P (X1 = 0|

∑
i

xi)

=
(
1− 1

n

)∑
i
xi

since the conditional distribution of X1 given
∑

i
xi is binomial with n =

∑
i
xi

and p = 1/n. �

8.7 Multiparameter CRLB
In practice, we are more likely to have many parameters, some of which
may be a nuisance. Is there any effect of the extra parameters on the CRLB
of the parameter of interest? This question is meaningful since the CRLB
is usually achieved by the MLE in large samples. This section is closely
related to Section 3.3 on multiparameter (observed) Fisher information,
but for completeness we repeat some of the notations.

Let θ = (θ1, . . . , θp). The score function is now a gradient vector

S(θ) =
∂

∂θ
logL(θ) =

⎛⎜⎝
∂

∂θ1
logL(θ)
...

∂
∂θp

logL(θ)

⎞⎟⎠ .

The observed Fisher information is minus the Hessian of the log-likelihood
function

I(θ) = − ∂2

∂θ∂θ′
logL(θ).

The expected Fisher information is

I(θ) = EθI(θ).

Using similar methods as in the scalar case, assuming regularity conditions,
we can show that

EθS(θ) = 0

varθ{S(θ)} = I(θ).

The information matrix I(θ) is now a p× p variance matrix, which means
it is a nonnegative definite matrix.
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Example 8.10: Let x1, . . . , xn be an iid sample from N(μ, σ2) and let θ =
(μ, σ2). Then we have the following:

logL(θ) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − μ)2

S(θ) =

(
∂
∂μ

logL(θ)
∂

∂σ2 logL(θ)

)
=

( n
σ2 (x− μ)

− n
2σ2 +

∑
(xi−μ)2

2σ4

)
I(θ) =

( n
σ2

n
σ4 (x− μ)

n
σ4 (x− μ) − n

2σ4 +

∑
(xi−μ)2

σ6

)
I(θ) =

(
n
σ2 0
0 n

2σ4

)
. �

We now state the multiparameter version of the CRLB theorem:

Theorem 8.5 Let T (X) be a scalar function, EθT = g(θ) and I(θ) the
expected Fisher information for θ based on data X. Then

varθ(T ) ≥ α′I(θ)−1α,

where α = ∂
∂θg(θ).

Proof: The proof relies on an extension of the covariance inequality
involving a scalar random variable T and a vector of random variables S:

var(T ) ≥ cov(S, T )′{var(S)}−1cov(S, T ).

and showing that cov{S(θ), T} = ∂
∂θg(θ). The proof of these statements is

left as an exercise. �

Example 8.11: Let g(θ) = a′θ for some known vector a. Then for any
unbiased estimate T we have

var(T ) ≥ a′I(θ)−1a.

In particular, let g(θ) = θ1 (or any other θi), which is obtained using a =
(1, 0, . . . , 0), so

var(T ) ≥ [I(θ)−1]11, (8.1)

where [I(θ)−1]11 is the (1,1) element of the inverse Fisher information, which
is sometimes denoted by I11(θ). This is the bound for the variance if θ1 is the
parameter of interest, and we do not know the value of the other parameters.

For comparison, if θ1 is the only unknown parameter then any unbiased esti-
mate T of θ1 satisfies

var(T ) ≥ 1

I11(θ)
. (8.2)

To see which bound is larger, partition the information matrix I(θ) and its inverse
I(θ)−1 as

I(θ) =
(

I11 I12

I21 I22

)
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and

I(θ)−1 =

(
I11 I12

I21 I22 .

)
Using some matrix algebra we can show (Exercise 8.10)

(I11)−1 = I11 − I12I−1
22 I21. (8.3)

Since I22 is a variance matrix and I12 = I′
21, the quadratic form is nonnegative,

so
(I11)−1 ≤ I11,

and the bound in (8.2) is smaller than in (8.1). This bound is generally achieved
by the MLE in large samples, so this result has an important statistical modelling
implication: there is a cost in having to estimate extra parameters.

We can also interpret (I11)−1 as the Fisher information on θ1 when the other
parameters are unknown. It makes statistical sense that the information is less
than if other parameters are known. In modelling we consider extra parameters to
explain the data better; for example, N(θ, σ2) is likely to fit better than N(θ, 1).
The reward for better fitting is a reduced bias, but our discussion here warns
that this must be balanced against the increase in variability.

From (8.3) the cost in terms of increased variability is (asymptotically) zero if
I12 = 0. This happens in the normal example above. The ‘asymptotic’ qualifier
is ever present if we are thinking of CRLB as a variance quantity. From the
normal example we also know that the zero-cost benefit does not apply in small
samples. �

8.8 Exercises
Exercise 8.1: Prove Theorem 8.2.

Exercise 8.2: Let x1, . . . , xn be an iid sample from the following distributions.
In each case, find the score statistics and the Fisher information.

(a) Gamma with density

p(x) =
1

Γ(α)
λαxα−1e−λx, x > 0,

first assuming one parameter is known, then assuming both parameters are
unknown.

(b) Weibull with distribution function

F (x) = 1− e−(λx)α , x > 0,

first assuming one parameter is known, then assuming both parameters are
unknown. The parameter α is the shape parameter.

(c) Beta with density

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1,

first assuming one parameter is known, then assuming both parameters are
unknown.
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Exercise 8.3: Show that for the general exponential family model with log-
density of the form

log pθ(x) = t(x)η(θ)−A(θ) + c(x)

we have
I(θ̂) = I(θ̂),

where θ̂ is the MLE of θ. If θ is the canonical parameter, then I(θ) = I(θ).

Exercise 8.4: Suppose y1, . . . , yn are an iid sample from N(θ, σ2) with known
σ2. Find the CRLB for unbiased estimates of the following parameters:

(a) P (Y1 < 2).

(b) P (−2 < Y1 < 2).

(c) pθ(2), the density function at y = 2.

Exercise 8.5: Repeat the previous exercise for unknown σ2.

Exercise 8.6: Suppose y1, . . . , yn are an iid sample from N(0, σ2). Find the
CRLB for estimating σ. Is it achievable by some statistic?

Exercise 8.7: Suppose y1, . . . , yn are an iid sample from Poisson(θ). Based on
y1, . . . , yn, find the CRLB for unbiased estimates of the following parameters:

(a) P (Y1 = 1).

(b) P (Y1 ≤ 1).

Find the MLE of the parameters above, and compute the bias and variance of
the MLE. Compare the variance of the MLE with the CRLB.

Exercise 8.8: Suppose y1, . . . , yn are an iid sample from a Weibull distribution
(Exercise 8.2) with the shape parameter known. What is the CRLB for estimates
of the median? Repeat the exercise for both parameters unknown.

Exercise 8.9: If x1, . . . , xn are an iid sample from N(θ, θ2), then show that
(
∑

xi,
∑

x2
1) is minimal sufficient but not complete. (Hint: give an example of a

non-zero statistic that has mean zero.) Give another example showing a minimal
sufficient statistic that is not complete.

Exercise 8.10: Prove the matrix equality given by (8.3).

Exercise 8.11: To study the toxicity of a certain chemical a two-stage experi-
ment was conducted. In the first stage, seven rats were injected with the chemical
and monitored. If none died then another batch of seven rats was injected, oth-
erwise the experiment was stopped. Say S is the number of survivors from the
first batch, and T from the second batch. Let θ be the probability of survival, so
S is binomial(7, θ), and P (T = 0|S < 7) = 1, and T is binomial(7, θ) if S = 7.

(a) Show that the joint probability distribution of S and T is

pθ(s, t) =

(
7

s

)(
7

t

)
θs+t(1− θ)7−s−t+7I(s+t≥7)

for t = 0 if 0 ≤ s < 7, and for 0 ≤ t ≤ 7 if s = 7, and I(s + t ≥ 7) is an
indicator function.

(b) Find and interpret the maximum likelihood of θ.

(c) Show that S + T is a complete sufficient statistic.

(d) Show that S/7 is the MVUE for θ. (This means the best unbiased estimate
uses data only from the first batch!)





9

Large-sample results

While likelihood-based quantities can be computed at any sample size,
small-sample frequentist calibration depends on specific models such as
the normal, Poisson, binomial, etc. (Chapter 5). A general technique for
complex models is provided by the large-sample theory. As the price for
this generality, the theory is only approximate. The results in this chap-
ter provide theoretical justifications for the previous claims regarding the
sampling properties of likelihood ratio and the MLE. In modelling, we use
the large-sample theory to suggest approximate likelihoods.

9.1 Background results
What we need to know for our large-sample theory is mostly captured
by the behaviour of the sample mean X as the sample size gets large.
The theorems listed in this section are sufficient for most of the standard
likelihood theory. Further grounding is needed, however, if we want to
prove theoretical extensions or nonstandard results. It is important to
recognize two types of results:

• first-order results that capture the magnitude of an estimate. The
basis for these results is the law of large numbers, and in particular
we would use the concept of convergence in probability.

• second- or higher-order results that deal with the variability or the dis-
tribution of an estimate. We rely mainly on the central limit theorem
to establish them.

Law of large numbers
As a first-order behaviour, we expect intuitively that X will become close
to the true mean μ. This can be shown easily as follows. Let X1, . . . , Xn

be an iid sample from a population with mean μ and variance σ2. By
Chebyshev’s inequality, for any ε > 0,

P (|X − μ| > ε) ≤ var(X)

ε2

=
σ2

ε2n
→ 0

as n goes to infinity. (It helps to think of ε as a small but fixed positive
number.) Equivalently,
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P (|X − μ| < ε) → 1,

that is, with high probability, with large enough n, we expect X to be
within ε of μ. We say that X converges to μ in probability or

X
p→ μ.

This result is called the weak law of large numbers (WLLN). It is far
from the best result, which is known as the strong law of large numbers
(SLLN); it states

P (|X − μ| → 0) = 1

as long as μ exists. This means X is guaranteed (i.e. with probability
one) to converge to μ in the usual numerical sense; hence we are correct in
thinking that an observed x is numerically close to the true μ; this is not
guaranteed by the convergence in probability. This mode of convergence is
called almost sure convergence and we write

X
a.s.→ μ.

We may interpret the WLLN as a frequentist theorem: if we repeat
an experiment a large number of times, each time computing the sample
mean, then a large proportion of the sample means is close to the true
mean. The statement ‘the sample mean is close to the true mean’ does not
apply to a particular realization. In contrast, the SLLN deals with what
happens to the result of a single realization of the data.

The SLLN is one of Kolmogorov’s celebrated theorems, and is standard
fare in any course on advanced probability theory (e.g. Chung 1974). The
techniques needed to establish almost sure convergence are beyond the
scope of this text, so we will rely on the convergence in probability.

Central limit theorem

For statistical inference the first-order property given by the law of large
numbers is not enough. We need to know the second-order property, the
variability of X around μ. This is given by the central limit theorem (CLT):
ifX1, . . . , Xn are an iid sample from a population with mean μ and variance
σ2 then √

n(X − μ) → N(0, σ2).

It is striking that only μ and σ2 matter in the asymptotic distribution of X;
other features of the parent distribution, such as skewness or discreteness,
do not matter. These features do, however, determine how fast the true
distribution of X converges to the normal distribution. Figure 9.1 shows
the normal QQ-plots of X simulated from the standard uniform, standard
exponential and Poisson(3) distributions; note the effect of skewness and
discreteness.
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Figure 9.1: First row: the normal QQ-plots of simulated X from the stan-
dard uniform, standard exponential and Poisson(3) distributions. In each
case 400 samples of size n = 3 were generated. Second row: the corre-
sponding QQ-plots for n = 20.

The CLT is the most important example of convergence in distribu-
tion or convergence in law. Suppose Xn has distribution Fn, and X has
distribution F ; we say Xn converges to X in distribution or

Xn
d→ X

if Fn(x) → F (x) for all x such that F (x) is continuous. If X is degenerate,
convergence in distribution is equivalent to the convergence in probability.

Example 9.1: To see why we need the last condition, let Xn be a random
variate with distribution N(0, 1/n) and X is a degenerate distribution at zero.

As we expect, Xn
d→ X. In this case Fn(x) → F (x) at every x �= 0, but at x = 0

we have Fn(x) = 0.5 �= F (0) = 1. �

The CLT states that Sn =
∑

Xi is approximately normal with mean
ESn and variance var(Sn). We expect this to be true also for non-iid
observations as long as no individual Xi dominates in the summation.
There are many non-iid versions of the CLT of varying generalities (Chung
1974, Chapter 7), we will state only the one due to Liapounov. Suppose
X1, . . . , Xn are an independent sample; let μi and σ2

i be the mean and



234 9. Large-sample results

variance of Xi, and
γi = E|Xi − μi|3.

If ∑
i γi

(
∑

i σ
2
i )

3/2
→ 0

as n goes to infinity, then

Sn − ESn

{var(Sn)}1/2 =

∑
i(Xi − μi)

(
∑

i σ
2
i )

1/2

d→ N(0, 1).

The condition of the theorem guarantees that no individual Xi dominates
in the summation Sn. This is usually satisfied in statistical applications
where the observations have comparable weights or variability. It is trivially
satisfied in the iid case, since

∑
γi = nγ1 and

∑
σ2
i = nσ2

1 . More generally,
it is satisfied if γi < M < ∞ and σ2

i > m > 0, i.e. the individual third
moment is finite and the individual variance is bounded away from zero.

Other results
The following results are intuitive, although the proofs are actually quite
technical (e.g. Serfling 1980, Chapter 1).

Theorem 9.1 (Slutsky) If An
p→ a, Bn

p→ b and Xn
d→ X then

AnXn +Bn
d→ aX + b.

It is worth noting that there is no statement of dependency between An,
Bn and Xn.

In applications we often consider the transformation of parameters. If

x
p→ μ then we expect that e−x p→ e−μ. Such a result is covered under the

following ‘continuous mapping theorems’.

Theorem 9.2 If Xn
p→ X and g(x) is a continuous function then

g(Xn)
p→ g(X).

Theorem 9.3 If Xn
d→ X and g(x) is a continuous function then

g(Xn)
d→ g(X).

Using these theorems we can show that, from an iid sample,

s2 =
1

n− 1

∑
i

(xi − x)2
p→ σ2,

so the sample standard deviation s
p→ σ, and

√
n(X − μ)

s

d→ N(0, 1).

Furthermore,
n(X − μ)2

s2
d→ χ2

1.
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9.2 Distribution of the score statistic
The results in this section form the basis for most of the large-sample
likelihood theory, and for the so-called score tests or locally most powerful
tests. We will assume that our data x1, . . . , xn are an iid sample from pθ(x)
and θ is not a boundary parameter; the independent but not identical case
follows from Liapounov’s CLT. Thus,

logL(θ) =
∑
i

log pθ(xi)

S(θ) =
∑
i

∂

∂θ
log pθ(xi)

I(θ) = −
∑
i

∂2

∂θ2
log pθ(xi)

I(θ) = EθI(θ).

Let

yi ≡ ∂

∂θ
log pθ(xi),

the individual score statistic from each xi. In view of Theorems 8.1 and
8.2, y1, . . . , yn are an iid sample with mean Ey1 = 0 and variance

var(y1) ≡ I1(θ),

so immediately by the CLT we get

√
n(y − 0)

d→ N{0, I1(θ)},

or
S(θ)√

n

d→ N{0, I1(θ)}.

Since I(θ) = nI1(θ), as the sample size gets large, we have approximately

{I(θ)}−1/2S(θ) ∼ N(0, 1), (9.1)

or, informally, S(θ) ∼ N{0, I(θ)}.
These arguments work whether θ is a scalar or a vector parameter. In

the vector case S(θ) is a vector and I(θ) is a matrix.

Example 9.2: Let x1, . . . , xn be an iid sample from Poisson(θ) with n = 10
and θ = 4. Figure 9.2(a) shows the score function for a single sample, and Figure
9.2(b) shows the functions from 25 samples. Figure 9.2(c) shows the distribution
of S(θ) at the true θ = 4 over repeated Monte Carlo samples. The superimposed
normal curve is the density of N{0, I(θ)}, where I(θ) = n/θ = 2.5. Figure 9.2(d)
is shown to illustrate the variability of I(θ = 4).
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Figure 9.2: Distribution of the score statistic in the Poisson case. (a) Score
function from a single realization. (b) Score function from 25 realizations.
(c) Histogram of S(θ = 4) and its normal approximation. (d) Histogram
of I(θ = 4).

Score tests
From classical perspectives, we can immediately use the distribution theory
for testing

H0 : θ = θ0 versus H1 : θ 
= θ0.

H0 is rejected if |S(θ0)| is ‘too large’. According to the theory, we may
compute the standardized z-statistic

z =
S(θ0)√I(θ0)

and
P-value = P (|Z| > |z|),

where Z has the standard normal distribution. This test is called the score
test, or Rao’s test, or the locally most powerful test.

From Figure 9.2(a) the test is intuitively clear: a large |S(θ0)| means

θ0 is far from the MLE θ̂. The normal approximation is sensible if S(θ) is

close to linear in the neighbourhood of θ̂± 2/

√
I(θ̂). The linearity of S(θ)

is equivalent to a quadratic log-likelihood.
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Example 9.3: Let X1, . . . , Xn be an iid sample from N(θ, σ2) with σ2 known.
Then

S(θ) =
n

σ2
(x− θ)

I(θ) =
n

σ2
.

The score test rejects H0: θ = θ0 if

|z| =
∣∣∣∣∣ x− θ√

σ2/n

∣∣∣∣∣ > |zα/2|,

which is the standard z-test. �

Example 9.4: Let x1, . . . , x10 be an iid sample from Poisson(θ). Suppose we
observe x = 3.5 and we would like to test H0: θ = 5 versus H1: θ �= 5. In
Section 8.1 we obtain

S(θ) =
n

θ
(x− θ)

I(θ) =
n

θ
,

so the score test yields

z =
S(θ0)√
I(θ0)

=
3.5− 5√

5/10
= 2.12

which is significant at the 5% level. �

Using observed Fisher information

The observed information version of the previous result can be developed
easily. By the WLLN

1

n

∑
i

∂2

∂θ2
log pθ(xi)

p→ Eθ
∂2

∂θ2
log pθ(X1),

or
I(θ)

n

p→ I1(θ),
where I(θ) is the observed Fisher information. So, by Slutsky’s theorem

{I(θ)}−1/2S(θ)
d→ N(0, 1), (9.2)

which is to be compared with (9.1). Now, in most models I(θ) 
= I(θ)
and at the moment it is not clear which is better. The other option is to
use I(θ̂), with a disadvantage that we have to find the MLE θ̂. We will
compare these three quantities in Section 9.7.



238 9. Large-sample results

Example 9.4: continued. In the Poisson example above we have

z1 = {I(θ0)}−1/2S(θ0) =

√
n(x− θ0)√

θ0

I(θ0) =
nx

θ20

z2 = {I(θ0)}−1/2S(θ0) =

√
n(x− θ0)√

x

I(θ̂) =
n

x

z3 = {I(θ̂)}−1/2S(θ0) =

√
n(x− θ0)√

θ20/x

Under the null hypothesis, all these statistics are equivalent. The statistic z1 is
commonly used, but z2 and z3 are rather unusual. To put it in a slightly different
form:

z21 =
(nx− nθ0)

2

nθ0
≡ (O − E)2

E
,

where ‘O’ and ‘E’ are the usual notation for ‘observed’ and ‘expected’ frequencies,
and

z22 =
(nx− nθ0)

2

nx
≡ (O − E)2

O
. �

9.3 Consistency of MLE for scalar θ
Given an estimation procedure it is reasonable to require that it produces
a ‘good’ estimate if the experiment is large enough, and a ‘better’ estimate
as the experiment becomes larger. One simple requirement is as follows.
Suppose θ0 is the true parameter, and ε is a small positive value. For any
choice of ε, by making the experiment large enough, can we guarantee (with

large probability) that the estimate θ̂ will fall within ε of θ0? If yes, we say

that θ̂ is consistent. Put it more simply, θ̂ is consistent for θ0 if θ̂
p→ θ0.

This is a frequentist requirement: if we repeat the large experiment many
times then a large proportion of the resulting θ̂ will be within ε of θ0.

Before we state and prove the main theorem it is useful to mention
Jensen’s inequality involving convex functions. By definition g(x) is convex
on an interval (a, b) if for any two points x1, x2 in the interval, and any
0 < α < 1,

αg(x1) + (1− α)g(x2) ≥ g(αx1 + (1− α)x2).

It is strictly convex if the inequality is strict. This condition is clear graphi-
cally: g(x) lies under the line connecting points (x1, g(x1)) and (x2, g(x2)).
Statistically, the (weighted) average of the function value is greater than
the value of the function at some weighted average.

If g(x) is convex and (x0, g(x0)) is any point on the function, there
exists a straight line with some slope m:

L(x) = g(x0) +m(x− x0)
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passing through (x0, g(x0)) such that g(x) ≥ L(x). If g(x) is differentiable
we can simply choose L(x) to be the tangent line. If g(x) is twice differen-
tiable, it is convex if g′′(x) ≥ 0, and strictly convex if g′′(x) > 0.

Theorem 9.4 (Jensen’s inequality) If X has the mean EX and g(x) is
convex then

E{g(X)} ≥ g(EX),

with strict inequality if g(x) is strictly convex and X is nondegenerate.

Proof: Since g(x) is convex, there is a straight line passing through
{EX, g(EX)} such that

g(x) ≥ g(EX) +m(x− EX).

We finish the proof by taking an expected value of the inequality. �

Using Jensen’s inequality we can immediately claim the following for
nondegenerate X:

E(X2) > (EX)2,

and if additionally X > 0:

E(1/X) > 1/E(X)

E(− logX) > − logEX.

The last inequality provides a proof of the information inequality. The
term ‘information’ here refers to the so-called Kullback–Leibler information
(Section 13.2), not Fisher information.

Theorem 9.5 (Information inequality) If f(x) and g(x) are two densities,
then

Eg log
g(X)

f(X)
≥ 0,

where Eg means the expected value is taken assuming X has density g(x).
The inequality is strict unless f(x) = g(x).

One way to interpret Theorem 9.5 is that

Eg log g(X) ≥ Eg log f(X),

which means the log-likelihood of the ‘true’ model tends to be larger than
the log-likelihood of a ‘wrong’ model. This, in fact, provides an intuition
for the consistency of the MLE.

For our main theorem assume that the support of pθ(x) does not depend
on θ, and pθ1(x) 
= pθ2(x) if θ1 
= θ2. If the likelihood has several maxima,

we will call each local maximizer a potential MLE θ̂.
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Theorem 9.6 Let x1, . . . , xn be an iid sample from pθ0(x), and assume
that pθ(x) is a continuous function of θ. Then as n → ∞ there exists, with

probability tending to one, a consistent sequence of MLE θ̂.

Proof: For any fixed ε > 0 we need to show that there is a potential
MLE θ̂ in the interval (θ0 − ε, θ0 + ε). This is true if we can show that

L(θ0) > L(θ0 − ε)

L(θ0) > L(θ0 + ε),

with probability tending to one as n → ∞. The first inequality above
follows from

1

n
log

L(θ0)

L(θ0 − ε)
=

1

n

∑
i

log
pθ0(x)

pθ0−ε(x)

p→ Eθ0 log
pθ0(X1)

pθ0−ε(X1)

> 0

using the WLLN and the information inequality. The second inequality is
proved the same way. �

The essence of the proof is that, as we enlarge the sample, the true
parameter θ0 becomes more likely than any pre-specified point in its local
neighbourhood. A global result that captures this property is that, for any
θ 
= θ0 and any constant c (think of large c),

Pθ0

(
L(θ)

L(θ0)
≥ c

)
≤ 1

c
.

This means that when the likelihood function becomes concentrated, it is
unlikely that we will find an estimate far from the true value; see the proof
following equation (5.1).

The condition and the proof of the consistency result are simple, but
the conclusion is far from the best possible result. It is only an ‘existence
theorem’: if the likelihood contains several maxima the theorem does not
say which one is the consistent estimate; if we define the global maximizer
as the MLE, then the theorem does not guarantee that the MLE is consis-
tent. Conditions that guarantee the consistency of the MLE are given, for
example, in Wald (1949).

The method of proof also does not work for a vector parameter θ ∈
Rp. A lot more assumptions are required in this case, though it will not
discussed further here; see, for example, Lehmann (1983, Chapter 6).

However, Theorem 9.6 does guarantee that if the MLE is unique for all
n, or if it is unique as n → ∞, then it is consistent. As discussed in Section
4.9, this is true in the full exponential family models. Furthermore, the
proof can be modified slightly to argue that in the world of finite precision
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and finite parameter space, the MLE is consistent. This is because we can
guarantee, with probability tending to one, that θ0 becomes more likely
than any other point in a finite set.

9.4 Distribution of MLE and the Wald statistic
Consistency properties are not enough for statistical inference. The results
in this section provide methods of inference under very general conditions.
As the price for the generality, the method is only approximate. The ap-
proximation is typically accurate in large samples, but in small to medium
samples its performance varies. The difficulty in practice is in knowing
when the sample is large enough. From the previous discussions we can
check whether the log-likelihood is nearly quadratic, or the score statistic
is nearly linear.

Theorem 9.7 Let x1, . . . , xn be an iid sample from pθ0(x), and assume

that the MLE θ̂ is consistent. Then, under some regularity conditions,

√
n(θ̂ − θ0) → N(0, 1/I1(θ0)),

where I1(θ0) is the Fisher information from a single observation.

First recall the CRLB (Section 8.5): if ET = θ then

var(T ) ≥ 1

I(θ) .

The theorem states that θ̂ is approximately normal with mean θ0 and
variance

var(θ̂) =
1

nI1(θ0) =
1

I(θ0) ,

which means that asymptotically θ̂ achieves the CRLB, or it is asymptoti-
cally the best estimate.

For a complete list of standard ‘regularity conditions’ see Lehmann
(1983, Chapter 6). Essentially the conditions ensure that

• θ is not a boundary parameter (otherwise the likelihood cannot be
regular);

• the Fisher information is positive and bounded (otherwise it cannot
be a variance);

• we can take (up to third) derivatives of
∫
pθ(x)dx under the integral

sign;

• simple algebra up to a second-order expansion of the log-likelihood is
sufficient and valid.
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Proof: A linear approximation of the score function S(θ) around θ0
gives

S(θ) ≈ S(θ0)− I(θ0)(θ − θ0)

and since S(θ̂) = 0, we have

√
n(θ̂ − θ0) ≈ {I(θ0)/n}−1S(θ0)/

√
n.

The result follows using Slutsky’s theorem, since

I(θ0)/n
p→ I1(θ0)

and
S(θ0)/

√
n

d→ N{0, I1(θ0)}. �

We can then show that all of the following are true:√
I(θ0)(θ̂ − θ0) → N(0, 1)√
I(θ0)(θ̂ − θ0) → N(0, 1)√
I(θ̂)(θ̂ − θ0) → N(0, 1)√
I(θ̂)(θ̂ − θ0) → N(0, 1).

The last two forms are the most practical, and informally we say

θ̂ ∼ N(θ0, 1/I(θ̂))
θ̂ ∼ N(θ0, 1/I(θ̂)).

In the full exponential family these two versions are identical. In more
complex cases where I(θ̂) 
= I(θ̂), the use of I(θ̂) is preferable (Section
9.6).

Wald tests and intervals
We have now proved our previous claim in Section 2.7 that the approximate
standard error of the MLE in regular cases is

se(θ̂) = I−1/2(θ̂).

The MLE distribution theory can be used for testing H0: θ = θ0 versus H1:
θ 
= θ0 using the Wald statistic

z =
θ̂ − θ0

se(θ̂)

or

χ2 =
(θ̂ − θ0)

2

se2(θ̂)
,

which, under H0, are distributed as N(0, 1) and χ2
1 respectively.
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Secondly, the result can be used to get the approximate 100(1 − α)%
CI formula

θ̂ ± zα/2 se(θ̂).

This is the same as the approximate likelihood interval, based on the
quadratic approximation, at cutoff equal to

exp
{
−z2α/2/2

}
.

Example 9.5: For the aspirin data in Section 4.7 we have

logL(θ) = 139 log θ − 378 log(θ + 1)

S(θ) =
139

θ
− 378

θ + 1

I(θ) =
139

θ2
− 378

(θ + 1)2
,

so

θ̂ = 139/(378− 139) = 0.58

I(θ̂) =
139

(139/239)2
− 378

(1 + 139/239)2
= 259.8287

var(θ̂) = 1/I(θ̂) = 0.003849.

Note that var(θ̂) is equal to that found using the Delta method. So

se(θ̂) =
√
0.003849 = 0.062,

and the Wald 95% CI for θ is

0.46 < θ < 0.70. �

9.5 Distribution of likelihood ratio statistic
In the development of the distribution theory of S(θ) and θ̂ we do not refer
to the likelihood function itself. We now show that the previous results
are equivalent to a quadratic approximation of the log-likelihood function.
However, as described in Section 2.9, we do get something more from the
likelihood function. The approximate method in this section is the basis
for frequentist calibration of the likelihood function.

Using second-order expansion around θ̂

logL(θ) ≈ logL(θ̂) + S(θ̂)(θ − θ̂)− 1

2
I(θ̂)(θ − θ̂)2

= logL(θ̂)− 1

2
I(θ̂)(θ − θ̂)2. (9.3)

This means

L(θ) ≈ constant× exp

{
−1

2
I(θ̂)(θ − θ̂)2

}
,

which is the likelihood based on a single observation θ̂ taken fromN(θ, 1/I(θ̂)).
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From (9.3) we get

W ≡ 2 log
L(θ̂)

L(θ)

= I(θ̂)(θ̂ − θ)2
d→ χ2

1,

where W is Wilk’s likelihood ratio statistic. The distribution theory may
be used to get an approximate P-value for testing H0 : θ = θ0 versus H1 :
θ 
= θ0. Specifically, on observing a normalized likelihood

L(θ0)

L(θ̂)
= r

we compute w = −2 log r, and

P-value = P (W ≥ w),

where W has a χ2
1 distribution. The approximate connection between like-

lihood and P-value follows the pattern under the normal model in Example
5.6.

From the distribution theory we can also set an approximate 100(1 −
α)% CI for θ as

CI =

{
θ; 2 log

L(θ̂)

L(θ)
< χ2

1,(1−α)

}
.

For example, an approximate 95% CI is

CI =

{
θ; 2 log

L(θ̂)

L(θ)
< 3.84

}
= {θ;L(θ) > 0.15× L(θ̂)}.

This is the likelihood interval at 15% cutoff. So we have established that,
in general, the confidence level of a likelihood interval at cutoff α is ap-
proximately

P (W ≤ −2 logα).

9.6 Observed versus expected information�

According to our theory the following statistics are asymptotically equiva-
lent

W1 = I(θ̂)(θ̂ − θ)2 ∼ χ2
1

W2 = I(θ̂)(θ̂ − θ)2 ∼ χ2
1

W = 2 log
L(θ̂)

L(θ)
∼ χ2

1.

It was emphasized previously that W1 and W2 are sensible only if the
likelihood is reasonably regular. The only difference between W1 and W2
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is in the use of the observed versus expected Fisher information. In the
full exponential family I(θ̂) = I(θ̂), so W1 = W2 (see Exercise 8.3). If

I(θ̂) 
= I(θ̂), how should we choose between W1 and W2, and how do they
compare with W? Efron and Hinkley (1978) discussed these questions in

detail and showed that I(θ̂) is better than I(θ̂). Overall, W is preferred.

If θ is a location parameter then I(θ̂) does not carry information about

where the true θ0 is. However, I(θ̂) tells us something about precision,
so potentially different probability statements can be made conditional or
unconditional on I(θ̂). This means I(θ̂) is relevant information. We call
all those properties together ancillarity; for example, the sample size in
an experiment is typically ancillary information. From the discussion in
Section 5.10 it makes sense to require our inference to be conditional on the
the observed ancillary statistic. This will make the inferential statements
(such as confidence level or significance level) relevant for the data at hand.

As a specific example, we will describe the simulation study of the
Cauchy location parameter (Efron and Hinkley 1978). Let x1, . . . , xn be a
sample from the Cauchy distribution with density

pθ(x) =
1

π{1 + (x− θ)2} .

From routine calculations

S(θ) =
∑
i

2(xi − θ)

1 + (xi − θ)2

I(θ) = −
∑
i

2{(xi − θ)2 − 1}
{(xi − θ)2 + 1}2

I(θ) = EθI(θ) =
n

2
.

For n = 20, we generate x1, . . . , x20 from the Cauchy distribution with
location θ0 = 0. From each realization we estimate the MLE θ̂, and com-
pute W1, W2 and W . This is repeated 2000 times. The 2000 values of
W1 can be checked against the χ2

1 distribution. However, it is more con-
venient to compute the signed root of all of the statistics and check them
against the standard normal distribution. Thus, under H0: θ = θ0 and
asymptotically

sign(θ̂ − θ0)
√
W1 =

√
I(θ̂)(θ̂ − θ0) ∼ N(0, 1)

sign(θ̂ − θ0)
√

W2 =

√
I(θ̂)(θ̂ − θ0) ∼ N(0, 1)

sign(θ̂ − θ0)
√
W ∼ N(0, 1),

where ‘sign(·)’ is +1 if the value in the bracket is positive, and−1 otherwise.
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Figure 9.3: First row: (a) Wald statistic normalized using the expected

Fisher information I(θ̂). (b) Wald statistic normalized using I(θ̂). (c)
Likelihood ratio statistic. Second row: the corresponding estimated con-
ditional probability P{W1 > 3.84|I(θ̂)}, in solid line, and P{W1 >

6.63|I(θ̂)}, in dashed line.

The normal plots in the first row of Figure 9.3 show that these three
statistics are reasonably normal; the tail of W is slightly better behaved
than the others. These plots indicate that the problem is quite regular,
so here we are not concerned with the regularity issue. We can also check
that, conditional on I(θ̂), the distribution is also quite normal. We can do

this by grouping together realizations where I(θ̂) falls in a small interval.
The first plot in the second row of Figure 9.3 shows the estimated

conditional probability
P{W1 > 3.84|I(θ̂)}

as a function of I(θ̂). Unconditionally the probability is 0.05. We compute
the estimate using a scatterplot smoother for the paired data

{I(θ̂), Ind(W1 > 3.84)}

where Ind(W1 > 3.84) is the indicator function, taking value one if the
condition inside the bracket is true and zero otherwise. A similar curve
(dashed line) can be computed for
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P{W1 > 6.63|I(θ̂)},

which unconditionally is 0.01. The plot shows that the distribution of W1

varies with I(θ̂), so statements based on W1 are open to the criticisms
discussed in Section 5.10. For example, a reported confidence level is not
relevant for the data at hand, since it is different if we make it conditional
on an observed I(θ̂).

The other plots in the second row of Figure 9.3 show that the distri-
butions of W2 and W are relatively constant across I(θ̂), so inferential
statements based on them are safe from the previous criticisms.

9.7 Proper variance of the score statistic�

The same issue also occurs with the score test. The following score tests
for H0: θ = θ0 are asymptotically equivalent:

z1 =
S(θ0)√I(θ0)

z2 =
S(θ0)√
I(θ0)

z3 =
S(θ0)√
I(θ̂)

.

Which should be the preferred formula, especially if the denominators are
very different?

Using the same Cauchy simulation setup as in the previous section,
but increasing the sample size to 30, at each realization we can compute
z1, z2, z3 and I(θ̂). Under the null hypothesis these are all supposed to
be standard normal. The first row of Figure 9.4 shows that all three test
statistics are reasonably normal.

The second row shows the conditional probabilities of the three statistics
given I(θ̂). The score statistic z1 has the poorest conditional property,

while z2 is not as good as z3. This means I(θ̂) is actually the best variance
quantity for S(θ0). Recall the discussion in Section 8.3 that we should

think of the observed Fisher information as a single quantity I(θ̂). The
quantity I(θ0) in complicated models, as in the Cauchy example, is not
even guaranteed to be positive.

9.8 Higher-order approximation: magic formula�

What if we do not believe in the normal approximation? From the standard
theory we have, approximately,

θ̂ ∼ N{θ, I(θ̂)−1}

so the approximate density of θ̂ is
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Figure 9.4: First row: (a) Score statistic normalized using the expected
Fisher information I(θ0). (b) Score statistic normalized using I(θ0). (c)

Score statistic normalized using I(θ̂). Second row: the corresponding es-

timated conditional probability P{|Z1| > 1.96|I(θ̂)}, in solid line, and

P{|Z1| > 2.57|I(θ̂)}, in dashed line.

pθ(θ̂) ≈ (2π)−1/2|I(θ̂)|1/2 exp
{
−I(θ̂)

2
(θ̂ − θ)2

}
. (9.4)

We have also shown the quadratic approximation

log
L(θ)

L(θ̂)
≈ −I(θ̂)

2
(θ̂ − θ)2,

so we have another approximate density

pθ(θ̂) ≈ (2π)−1/2|I(θ̂)|1/2L(θ)
L(θ̂)

. (9.5)

We will refer to this as the likelihood-based p-formula, which turns out to
be much more accurate than the normal-based formula (9.4). Intuitively,

if pθ(θ̂) were available then we would obtain L(θ) from it directly, but L(θ)

is an exact likelihood, so (9.5) must be a good density for θ̂.
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Even though we are using a likelihood ratio it should be understood
that (9.5) is a formula for a sampling density: θ is fixed and θ̂ varies. The

observed likelihood function is not enough to derive pθ(θ̂) over θ̂; for such
a purpose the original model for the data is still required.

Recall that the p-formula (9.5) has been used in Section 4.9 to develop
an approximate likelihood of the exponential dispersion model.

Example 9.6: Let x1, . . . , xn be an iid sample from N(θ, σ2) with σ2 known.

Here we know that θ̂ = X is N(θ, σ2/n). To use formula (9.5) we need

logL(θ) = − 1

2σ2

{∑
i

(xi − x)2 + n(x− θ)2

}
logL(θ̂) = − 1

2σ2

∑
i

(xi − x)2

I(θ̂) = n/σ2,

so

pθ(x) ≈ (2π)−1/2|n/σ2|1/2 exp
{
− n

2σ2
(x− θ)2

}
,

exactly the density of the normal distribution N(θ, σ2/n). �

Example 9.7: Let y be Poisson with mean θ. The MLE of θ is θ̂ = y, and

the Fisher information is I(θ̂) = 1/θ̂ = 1/y. So, the p-formula (9.5) is

pθ(y) ≈ (2π)−1/2(1/y)1/2
e−θθy/y!

e−yyy/y!

=
e−θθy

(2πy)1/2e−yyy
,

so in effect we have approximated the Poisson probability by replacing y! with
its Stirling’s approximation. The approximation is excellent for y > 3, but not
so good for y ≤ 3. Nelder and Pregibon (1987) suggested a simple modification
of the denominator to

(2π(y + 1/6))1/2e−yyy,

which works remarkably well for all y ≥ 0. �

The p-formula can be improved by a generic normalizing constant to
make the density integrate to one. The formula

p∗θ(θ̂) = c(θ)(2π)−1/2|I(θ̂)|1/2L(θ)
L(θ̂)

(9.6)

is called Barndorff-Nielsen’s (1983) p∗-formula. As we would expect in
many cases c(θ) is very nearly one; in fact, c(θ) ≈ 1 +B(θ)/n, where B(θ)
is bounded over n. If difficult to derive analytically, c(θ) can be computed
numerically. In many examples the approximation is so good that the
p∗-formula is called a ‘magic formula’ (Efron 1998).
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In the exponential family formula (9.6) coincides with the so-called
saddlepoint approximation. Durbin (1980) shows that

pθ(θ̂) = c(θ)(2π)−1/2|I(θ̂)|1/2L(θ)
L(θ̂)

{1 +O(n−3/2)},

where we can think of the error term O(n−3/2) = bn−3/2 for some bounded
b. This is a highly accurate approximation; by comparison, the standard
rate of asymptotic approximation using (9.4) is only of order O(n−1/2).

In the full exponential family the MLE θ̂ is sufficient (Section 4.9), so

the likelihood ratio L(θ)/L(θ̂) depends on the data x only through θ̂. To
make it explicit, we may write

L(θ) ≡ L(θ;x) = L(θ; θ̂),

so (9.5) or (9.6) are not ambiguous.

If θ̂ is not sufficient the formulae are ambiguous. It turns out, however,
that it still provides an approximate conditional density of θ̂ given some
ancillary statistic a(x). Suppose there is a one-to-one function of the data

to {θ̂, a(x)}, so that the likelihood

L(θ) ≡ L(θ;x) = L(θ; θ̂, a(x)),

where the dependence of the likelihood on the data is made explicit. Then

pθ(θ̂|a) ≈ (2π)−1/2|I(θ̂)|1/2L(θ; θ̂, a)
L(θ̂; θ̂, a)

.

In particular, and this is its most important application, it gives an exact
conditional distribution in the location family; see the subsection below.

Exponential family models

Example 9.8: Let x1, . . . , xn be an iid sample from gamma(μ, β), where EXi =
μ and β is the shape parameter, and the density is given by

pθ(x) =
1

Γ(β)

(
β

μ

)β

xβ−1e−βx/μ.

For simplicity assume that μ is known; note, however, that formula (9.6) also
applies in multivariate settings. First we get

logL(β) = −n log Γ(β) + nβ log
β

μ
+ (β − 1)

∑
i

log xi − β

μ

∑
i

xi,

so
∂ logL(β)

∂β
= −nψ(β) + n

(
log

β

μ
+ 1

)
+
∑
i

log xi − 1

μ

∑
i

xi,
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where ψ(β) = ∂ log Γ(β)/∂β. The MLE β̂ satisfies

−nψ(β̂) + n log β̂ = −
∑
i

log xi +
1

μ

∑
i

xi + n log μ− n,

and

log
L(β)

L(β̂)
= −n log Γ(β) + n log Γ(β̂) + n

(
β log

β

μ
− β̂ log

β̂

μ

)
+(β − β̂)

∑
i

log xi − (β − β̂)
1

μ

∑
i

xi

= −n log Γ(β) + n log Γ(β̂) + n{(β − β̂)ψ(β̂)− β log β̂ + β̂}.

On taking another derivative of the log-likelihood we obtain the observed Fisher
information

I(β̂) = n{ψ′(β̂)− 1/β̂}.
The approximate density of β̂ is then given by

pβ(β̂) ≈ constant× |I(β̂)|1/2L(β)
L(β̂)

. (9.7)

To show how close the approximation is, we simulate data x1, . . . , x10 iid
from gamma(μ = 1, β = 1), which is equal to the exponential distribution. The

parameter μ is assumed known. For each dataset we compute β̂ by solving

−nψ(β̂) + n log β̂ = −
∑
i

log xi +
∑
i

xi − 10.

This is repeated 500 times, so we have a sample of size 500 from the true distri-

bution of β̂. Figure 9.5(a) shows that β̂ is far from normal. Figure 9.5(b) shows
the histogram of the 500 values and the approximate density from (9.7). �
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Figure 9.5: (a) The normal plot of β̂ from simulation. (b) The histogram

of β̂ and the approximate density using (9.7).
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Example 9.9: A key result in saddlepoint approximation theory is an improved
formula for the distribution of the sample mean. Let x1, . . . , xn be an iid sam-
ple from some distribution with density eh(x) and moment generating function
m(θ) = EeθX . Let K(θ) ≡ logm(θ), the cumulant generating function of X.
Then

pθ(x) ≡ eθx−K(θ)+h(x)

defines an exponential family with parameter θ, called the exponential tilting of

X (Section 4.9). Given x1, . . . , xn, the MLE θ̂ is the solution of the ‘saddlepoint
equation’

K′(θ̂) = x

and the Fisher information is I(θ̂) = nK ′′(θ̂). From (9.6), the approximate

density of θ̂ is

p∗(θ̂) = constant× |K′′(θ̂)|1/2 exp
[
(θ − θ̂)

∑
xi − n{K(θ)−K(θ̂)}

]
,

and

p∗(x) = p∗(θ̂)

∣∣∣∣ ∂θ̂∂x
∣∣∣∣

= constant× |K′′(θ̂)|−1/2 exp
[
(θ − θ̂)

∑
xi − n{K(θ)−K(θ̂)}

]
.

At θ = 0, we have the original distribution of the data, and the saddlepoint
formula for the distribution of the sample mean:

p∗(x) = constant× |K′′(θ̂)|−1/2 exp[n{K(θ̂)− θ̂x}]. (9.8)

If there is no explicit formula for θ̂ in terms of x, then we need to solve the

saddlepoint equation numerically at each value of x. If we approximate K(θ̂)
around zero by a quadratic function, then formula (9.8) reduces to the CLT
(Exercise 9.2). �

Location family

Let x1, . . . , xn be an iid sample from the location family with density

pθ(x) = f0(x− θ),

where f0(·) is an arbitrary but known density. Without further assumptions
on the density, the minimal sufficient statistic for θ is the whole set of order
statistics {x(1), . . . , x(n)}. That is, we need the whole set to compute the
likelihood

L(θ) =
∏
i

f0(x(i) − θ).

The distribution of (xi−θ) is free of θ, so is the distribution of (x(i)−θ)
for each i, and, consequently, that of any spacing ai = x(i) − x(i−1). The
relevant ancillary statistic a(x) in this case is the set of (n − 1) spacings
a2, . . . , an.
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Let θ̂ be the MLE of θ. There is a one-to-one map between {x(1), . . . , x(n)}
and (θ̂, a), and the Jacobian of the transformation is equal to one (Exer-
cise 9.7). The joint density of x(1), . . . , x(n) is

c
∏
i

f0(x(i) − θ).

Each x(i) − θ is expressible in terms of (a, θ̂ − θ), so the joint density of

(a, θ̂) is

c
∏
i

fi(a, θ̂ − θ),

for some functions fi(·) not depending on θ. Therefore, the conditional

distribution of θ̂ given a is in the location family

pθ(θ̂|a) = pa(θ̂ − θ),

for some (potentially complicated) function pa(·). This means the original
density of x can be decomposed as

pθ(x) = cpa(θ̂ − θ)g(a)

where g(a) is the density of a, which is free of θ. Writing pθ(x) = L(θ), we
obtain

pa(θ̂ − θ)

pa(0)
=

L(θ)

L(θ̂)

or

pθ(θ̂|a) = pa(θ̂ − θ) = c(a)
L(θ)

L(θ̂)
,

where it is understood that L(θ) = L(θ; θ̂, a), so the formula is exactly in
the form of (9.6).

If θ̂ is symmetric around θ then the estimated conditional density of θ̂
is given by the likelihood function itself (normalized to integrate to one).
This is a remarkable simplification, since the likelihood function L(θ) is
easy to compute. There is an immediate frequentist implication: likelihood
intervals have an exact coverage probability given by the area under the
likelihood curve. A simple example is given by the normal and Cauchy
models. Another way to state the result is that the confidence density of θ
matches the likelihood function; see Example 5.9 in Section 5.6.

Improved approximation of P-value

One major use of the normal approximation is to provide the P-value for
testing H0: θ = θ0. Specifically, on observing θ̂, we compute

w = 2 log
L(θ̂)

L(θ0)
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and approximate the P-value by

P-value = P (χ2
1 ≥ w).

To get a one-sided P-value we can also compute the signed root of the
likelihood ratio test

r = sign(θ̂ − θ0)
√
w

and compute the left-side P-value by

pr = P (Z < r),

where Z is the standard normal variate. Alternatively, we can compute the
Wald statistic

z = |I(θ̂)|1/2(θ̂ − θ0)

and evaluate the left-side P-value by

pz = P (Z < z).

If r and z are very different then it is an indication that the normal ap-
proximation is poor, and both P-values are inappropriate. The saddlepoint
approximation leads to an improved formula. (Note that once a P-value is
defined we can compute the associated confidence distribution for a more
complete inference; see Section 5.6).

For the exponential models of the form

pθ(x) = eθt(x)−A(θ)+h(x)

there are tail probability formulae based on (9.6). In particular, the left-
side P-value is

p∗ = P (Z < r∗) (9.9)

where

r∗ = r +
1

r
log

z

r
or, by expanding the normal probability around r, we can also use

p∗ = P (Z < r) + φ(r)

(
1

r
− 1

z

)
, (9.10)

where φ(·) is the standard normal density function. Note that the parame-
ter θ must be the canonical parameter, and the formulae are not invariant
under transformation.

Example 9.10: Let x1, . . . , xn be an iid sample from the exponential distri-
bution with mean 1/θ, so the density is

pθ(x) = θe−θx.

Routine algebra yields

logL(θ) = n log θ−θ
∑
i

xi
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θ̂ =
1

x

I(θ̂) =
n

θ̂2
,

therefore

w = 2 log
L(θ̂)

L(θ)
= 2n log

θ̂

θ
− 2(θ̂ − θ)

∑
i

xi

r = sign(θ̂ − θ)
√
w

z = |I(θ̂)|1/2(θ̂ − θ) =

√
n(θ̂ − θ)

θ̂
.

Here we actually know the exact distribution of θ̂, since
∑

i
Xi has a gamma

distribution, so the exact P-value can be compared.
To be specific, suppose we want to test H0 : θ = 1 based on a sample of size

n = 5. The computed P-values are left-side or right-side, depending on whether

θ̂ falls on the left or the right side of θ0 = 1. (In this example the saddlepoint
formula (9.6) actually gives an exact density.)

pr pz p∗ Exact

θ̂ w r (%) z (%) r∗ (%) (%)
0.35 8.07 −2.84 0.22 −4.15 0.00 −2.97 0.15 0.15
0.55 2.20 −1.48 6.89 −1.83 3.37 −1.63 5.21 5.21
2.50 3.16 1.78 3.77 1.34 8.99 1.62 5.26 5.27
4.00 6.26 2.52 0.58 1.68 4.68 0.36 0.91 0.91

Figure 9.6 shows the corresponding log-likelihood functions, and their normal

approximations, for the four values of θ̂ in the table. �

Bartlett correction

The saddlepoint improvement in the distribution of the MLE is closely
related to the Bartlett correction for the distribution of the likelihood ratio
statistic. Asymptotically, under the null hypothesis, W is χ2

1, so EW ≈ 1.
Following the general bias formula, the expected value of the statistic is of
the form

EW = 1 +
b(θ)

n
+O(n−2)

for some function b(θ). Bartlett (1953) suggested a simple correction

Wb =
W

1 + b(θ)/n

and treated Wb as a χ2
1 variate. The Bartlett correction factor 1 + b(θ)/n

is connected to the unspecified normalizing constant in (9.6). A rigorous
proof is given by Barndorff-Nielsen and Cox (1984).

We can estimate the Bartlett factor using the Delta method or, in com-
plicated cases, using the Monte Carlo technique discussed in Section 5.2.
Here we want to estimate
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Figure 9.6: The log-likelihood functions (solid curves) and normal approxi-

mations (dotted curves) associated with the four different values of θ̂ in the
table. The horizontal line is the 5% limit for the two-sided P-value based
on the likelihood ratio statistic W .

EθW = 2Eθ log
L(θ̂)

L(θ)

where θ̂ is the random estimate, and θ is fixed at the null hypothesis. So,

1. generate a new dataset x∗ from the parametric model pθ(x),

2. compute θ̂∗ and the corresponding likelihood ratio statistic w∗ from
the data x∗,

3. repeat steps 1 and 2 a large number of times and simply take the
average of w∗ as an estimate of EθW .

We can actually check from the w∗’s whether the distribution of W is well
approximated by the χ2 distribution.

9.9 Multiparameter case: θ ∈ Rp

The asymptotic theory for the multiparameter case follows the previous de-
velopment with very little change in the notation. The score statistic S(θ)



9.9. Multiparameter case: θ ∈ Rp 257

is now a vector and the Fisher information I(θ) a matrix. It is convenient
to define the so-called square root of any covariance matrix A

A1/2 ≡ ΓΛ1/2Γ′

where Γ is the matrix of eigenvectors of A and Λ is a diagonal matrix of the
corresponding eigenvalues. We shall use this concept of square-root matrix
only in an abstract way, i.e. in practice we seldom need to compute one.
It is a useful concept since the square-root matrix can be treated like the
usual square root for scalar quantities. Let us denote the identity matrix
of size p by 1p; then we can show

A1/2A1/2 = A

(A1/2)−1 = (A−1)1/2 = A−1/2

A1/2A−1/2 = 1p,

and if random vector X is multivariate N(μ,Σ) then Σ−1/2(X − μ) is
N(0, 1p).

Basic results
Let x1, . . . , xn be an iid sample from pθ(x), where θ ∈ Rp. Under simi-
lar regularity conditions, the following results are direct generalizations of
those for scalar parameters. All results can be used to test H0 : θ = θ0.
The Wald statistic is particularly convenient to test individual parameters,
while, in the current setting, the score and the likelihood ratio statistics test
all parameters jointly. The same issue of expected versus observed Fisher
information also arises with the same resolution: it is generally better to
use the observed Fisher information.

Score statistic

For the score statistic, the basis of the score test or Rao’s test, we have

n−1/2S(θ)
d→ N{0, I1(θ)}

I(θ)−1/2S(θ)
d→ N(0, 1p)

I(θ̂)−1/2S(θ)
d→ N(0, 1p)

S(θ)′I(θ̂)−1S(θ)
d→ χ2

p.

From our discussion in Section 9.7, we can informally write

S(θ) ∼ N{0, I(θ̂)}.
Wald statistic

The asymptotic distribution of the MLE θ̂ is given by the following equiv-
alent results:

√
n(θ̂ − θ)

d→ N(0, I1(θ)−1)
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I(θ)1/2(θ̂ − θ)
d→ N(0, 1p)

I(θ̂)1/2(θ̂ − θ)
d→ N(0, 1p)

(θ̂ − θ)′I(θ̂)(θ̂ − θ)
d→ χ2

p.

In practice, we would use

θ̂ ∼ N(θ, I(θ̂)−1).

The standard error of θ̂i is given by the estimated standard deviation

se(θ̂i) =
√
Iii,

where Iii is the i’th diagonal term of I(θ̂)−1. A test of an individual
parameter H0 : θi = θi0 is given by the Wald statistic

zi =
θ̂i − θi0

se(θ̂i)
,

which has approximately a standard normal distribution as its null distri-
bution.

Likelihood ratio statistic

The asymptotic behaviour of L(θ̂) is governed by Wilk’s likelihood ratio
statistic:

W = 2 log
L(θ̂)

L(θ)

≈ (θ̂ − θ)′I(θ̂)(θ̂ − θ)
d→ χ2

p.

This result gives the connection between the normalized likelihood and P-
value, as well as the confidence and likelihood intervals. For example, a
normalized likelihood

r =
L(θ)

L(θ̂)

is associated with the likelihood ratio statistic

w = −2 log r

and
P-value = P (W ≥ w),

where W is χ2
p.

The asymptotic distribution theory also gives an approximate 100(1−
α)% likelihood-based confidence region:

CR =

{
θ; 2 log

L(θ̂)

L(θ)
< χ2

p,(1−α)

}
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=

{
θ;

L(θ)

L(θ̂)
> e−

1
2χ

2
p,(1−α)

}
.

This type of region is unlikely to be useful for p > 2 because of the display
problem. The case of p = 2 is particularly simple, since 100α% likelihood
cutoff has an approximate 100(1− α)% confidence level. This is true since

exp

{
−1

2
χ2
p(1− α)

}
= α,

so the contour {θ;L(θ) = αL(θ̂)} defines an approximate 100(1 − α)%
confidence region.

9.10 Examples
Logistic regression

Recall our logistic regression example (Example 6.3) where the outcome yi
is surgical mortality and the predictor x1i is the age of the i’th patient. We
assume that yi is Bernoulli with parameter pi, where

pi =
eβ0+β1 Agei

1 + eβ0+β1 Agei

or
logit pi = β0 + β1 Agei.

Denoting β = (β0, β1)
′ and xi = (1, x1i)

′ we obtain

logL(β) =
∑
i

{yix′
iβ − log(1 + ex

′
iβ)}

S(β) =
∑
i

(yi − pi)xi

I(β) =
∑
i

pi(1− pi)xix
′
i.

Using the IWLS algorithm discussed in Section 6.7, we get β̂0 = −0.723
and β̂1 = 0.160. To get the standard errors for these estimates we can
verify that

I(β̂) =

(
7.843175 9.365821
9.365821 202.474502

)
so, the estimated covariance matrix of β̂ is

I(β̂)−1 =

(
0.3672 −0.006242531

−0.006242531 0.07232

)
and the standard errors are 0.367 and 0.072. The Wald statistic for age
effect is

z = 0.160/0.072 = 2.22.
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Poisson regression

In the Poisson regression example (Section 6.3) the outcome yi is the num-
ber of claims, and the predictor x1i is the age of client i. Assuming yi is
Poisson with mean μi and

μi = eβ0+β1 Agei ≡ ex
′
iβ ,

we can derive the following:

logL(β) =
∑
i

(−ex
′
iβ + yix

′
iβ)

S(β) =
∑
i

(yi − μi)xi

I(β) =
∑
i

μixix
′
i.

We can verify that β̂ = (0.43, 0.066) and

I(β̂) =

(
57.17 103.67

103.67 1650.75

)
so we can summarize the analysis in the following table

Effect Parameter Estimate se z
Intercept β0 0.43 0.14
Age β1 0.066 0.026 2.54

Previous likelihood analysis shows that the profile likelihood of β1 is rea-
sonably regular, so the Wald test can be used safely.

One-way random effects

Table 9.1 (from Fears et al. 1996) shows the estrone measurements from five
menopausal women, where 16 measurements were taken from each woman.
The questions of interest include the variability between the women and
reliability of the measurements. The data are plotted in Figure 9.7(a).

It is natural to model persons as random, so

yij = μ+ ai + eij

where

yij = 10× log10 of estrone measurements,

ai = person effect, for i = 1, . . . , N = 5,

eij = residual effect, for j = 1, . . . , n = 16.

We assume that ai’s are iid N(0, σ2
a), eij ’s are iid N(0, σ2) and they are

independent. The standard analysis of variance table from the dataset is
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i = 1 2 3 4 5
23 25 38 14 46
23 33 38 16 36
22 27 41 15 30
20 27 38 19 29
25 30 38 20 36
22 28 32 22 31
27 24 38 16 30
25 22 42 19 32
22 26 35 17 32
22 30 40 18 31
23 30 41 20 30
23 29 37 18 32
27 29 28 12 25
19 37 36 17 29
23 24 30 15 31
18 28 37 13 32

Table 9.1: Estrone measurements from five menopausal women; there were
16 measurements taken from each woman from Fears et al. (1996).

Source df SS MS
Person 4 SSA 28.32
Error 75 SSE 0.325

The standard F -test for H0: σ
2
a = 0 gives

F = 28.32/0.325 = 87.0,

with 4 and 75 degrees of freedom; this is highly significant as we expect
from the plot. Now we will show that the MLE of σ2

a is σ̂2
a = 1.395 with

standard error 0.895, so the Wald test gives

z = 1.395/0.895 = 1.56,

which is not at all significant. What is wrong? To get a clear explanation
we need to analyse the likelihood function.

Measurements within a person are correlated according to

cov(yij , yik) = σ2
a.

So, yi = (yi1, . . . , yin)
′ is multivariate normal with mean μ and variance

S = σ2In + σ2
aJn (9.11)

where In is an n × n identity matrix and Jn is an n × n matrix of ones.
The likelihood of θ = (μ, σ2, σ2

a) is

L(θ) = −N

2
log |S| − 1

2

∑
i

(yi − μ)′S−1(yi − μ).
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Figure 9.7: Likelihood analysis of a one-way random effects experiment.
(a) This plot shows a significant person-to-person variability. (b) Joint
likelihood of (σ2, σ2

a). (c) The profile likelihood of σ2 is well approximated
by the normal. (d) Poor normal approximation of the profile likelihood of
σ2
a.

To simplify the terms in the likelihood, we need some matrix algebra results
(Rao 1973, page 67) that

|S| = σ2(n−1)(σ2 + nσ2
a)

S−1 =
In
σ2

− σ2
a

σ2(σ2 + nσ2
a)
Jn.

We can then compute a profile likelihood of (σ2, σ2
a) found by maximizing

over μ for a fixed value of (σ2, σ2
a). We can show that

μ̂(σ2, σ2
a) =

∑
i 1

′S−1yi∑
i 1

′S−11

=
∑
ij

yij/Nn = y.

We now define the following (corrected) total, person and error sum-of-
squares
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SST =
∑
ij

(yij − y)2

SSA =
∑
i

{
∑
j

(yij − y)}2/n

SSE = SST− SSA.

Then the profile likelihood can be shown to be

logL(σ2, σ2
a) = −N

2
{(n−1) log σ2+log(σ2+nσ2

a)}−
1

2

{
SSE

σ2
+

SSA

σ2 + nσ2
a

}
.

Figure 9.7(b) shows that the contour of the profile likelihood is far from
quadratic. From the likelihood we obtain the MLEs

σ̂2 =
SSE

N(n− 1)

σ̂2
a = (SSA/N − σ̂2)/n.

From the ANOVA table we can verify σ̂2 = 0.325 and σ̂2
a = 1.395 as stated

earlier.
Taking the second derivatives produces (Exercise 9.8)

I(σ2, σ2
a) =

(
N(n−1)

2σ4 + N
2(σ2+nσ2

a)
2

Nn
2(σ2+nσ2

a)
2

Nn
2(σ2+nσ2

a)
2

Nn2

2(σ2+nσ2
a)

2

)
, (9.12)

and the observed Fisher information

I(σ̂2, σ̂2
a) =

(
354.08 0.0779
0.0779 1.2472

)
,

from which we get the asymptotic variance matrix of (σ̂2, σ̂2
a)

I(σ̂2, σ̂2
a)

−1 =

(
0.0532 0.0

0.0 0.8952

)
and standard errors se(σ̂2) = 0.053 and se(σ̂2

a) = 0.895.
Figures 9.7(c)–(d) compare the approximate normal likelihoods for σ2

and σ2
a versus the profile likelihood. The normal likelihood is based on

the asymptotic theory that, approximately, σ̂2 ∼ N(σ, 0.0532) and σ̂2
a ∼

N(σ2
a, 0.895

2). It is obvious now that the normal approximation for σ̂2
a is

inappropriate. As an exercise it can be verified that the likelihood of log σa

is reasonably regular. The likelihood-based 95% CIs are 0.24 < σ2 < 0.45
and 0.51 < σ2

a < 6.57.
The reliability of the measurement can be expressed as the correlation

of yij and yik for j 
= k, i.e. the similarity of different measurements from
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the same person. The measurement is reliable if the correlation is high.
From the model

cor(yij , yik) =
cov(yij , yik)

{var yij var yik}1/2

=
cov(μ+ ai + eij , μ+ ai + eik)

σ2 + σ2
a

=
σ2
a

σ2 + σ2
a

. (9.13)

This quantity is also called the intraclass correlation. Its estimate for the
above data is

σ̂2
a

σ̂2 + σ̂2
a

= 0.81.

Finding the profile likelihood for the intraclass correlation is left as an
exercise.

9.11 Nuisance parameters
While convenient for dealing with individual parameters in a multiparam-
eter setting, the Wald statistic has serious weaknesses. In particular, pa-
rameter transformation has a great impact on Wald-based inference, so
the choice of parameterization becomes unduly important. In contrast,
because of its invariance property, the likelihood ratio test is safer to use
(Section 2.9). We now develop a likelihood ratio theory for some parame-
ters while treating the others as nuisance parameters.

The theory we develop is also useful for situations where we want to
test a hypothesis that is not easily parameterized. For example,

• goodness-of-fit tests

• test of independence for multiway tables.

We follow the general method of profile likelihood to remove the nui-
sance parameters. Let θ = (θ1, θ2) ∈ Rp, where θ1 ∈ Rq is the parameter
of interest and θ2 ∈ Rr is the nuisance parameter, so p = q + r. Given the
likelihood L(θ1, θ2) we compute the profile likelihood as

L(θ1) ≡ max
θ2

L(θ1, θ2)

≡ L(θ1, θ̂2(θ1)),

where θ̂2(θ1) is the MLE of θ2 at a fixed value of θ1.
The theory indicates that we can treat L(θ1) as if it is a true likelihood;

in particular, the profile likelihood ratio follows the usual asymptotic the-
ory:

W = 2 log
L(θ̂1)

L(θ1)

d→ χ2
q = χ2

p−r. (9.14)
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Here is another way of looking at the profile likelihood ratio from the
point of view of testing H0: θ1 = θ10. This is useful to deal with hypotheses
that are not easily parameterized. By definition,

L(θ10) = max
θ2,θ1=θ10

L(θ1, θ2)

= max
H0

L(θ)

L(θ̂1) = max
θ1

{max
θ2

L(θ1, θ2)}
= max

θ
L(θ).

Therefore,

W = 2 log
maxL(θ), no restriction on θ

maxL(θ), θ ∈ H0
.

A large value of W means H0 has a small likelihood, or there are other
values with higher support, so we should reject H0.

How large is ‘large’ will be determined by the sampling distribution of
W . We can interpret p and r as

p = dimension of the whole parameter space θ

= the total number of free parameters

= total degrees of freedom of the parameter space

r = dimension of the parameter space under H0

= the number of free parameters under H0

= degrees of freedom of the model under H0.

Hence the degree of freedom in (9.14) is the change in the dimension of the
parameter space from the whole space to the one under H0.

Before we prove the general asymptotic result, it is important to note
that in some applications it is possible to get an exact distribution for W .
Many normal-based classical tests, such as the t-test or F -test, are exact
likelihood ratio tests.

Example 9.11: Let x1, . . . , xn be an iid sample from N(μ, σ2) with σ2 un-
known and we are interested in testing H0: μ = μ0 versus H1: μ �= μ0. Under H0

the MLE of σ2 is

σ̂2 =
1

n

∑
i

(xi − μ0)
2.

Up to a constant term,

max
H0

L(θ) =

{
1

n

∑
i

(xi − μ0)
2

}−n/2

maxL(θ) =

{
1

n

∑
i

(xi − x)2

}−n/2
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and

W = n log

∑
i
(xi − μ0)

2∑
i
(xi − x)2

= n log

∑
i
(xi − x)2 + n(x− μ0)

2∑
i
(xi − x)2

= n log

(
1 +

t2

n− 1

)
,

where t =
√
n(x − μ0)/s) and s2 is the sample variance. Now, W is monotone

increasing in t2, so we rejectH0 for large values of t2 or |t|. This is the usual t-test.
A critical value or a P-value can be determined from the tn−1-distribution. �

Having an exact distribution for a likelihood ratio statistic is a fortunate
coincidence; generally there is a reliance on a large-sample approximation
given in the following theorem. Its proof will also provide a justification of
the claim made in Section 3.4 about the curvature of the profile likelihood.

Theorem 9.8 Assuming regularity conditions, under H0: θ1 = θ10

W = 2 log
maxL(θ)

maxH0 L(θ)
→ χ2

p−r.

Proof: Let θ̂ = (θ̂1, θ̂2) be the unrestricted MLE and θ̂0 = (θ10, θ̂20) be
the MLE under H0. Let the true parameter be θ0 = (θ10, θ2). We want to
show that under H0

W = 2 log
L(θ̂)

L(θ̂0)
→ χ2

p−r.

The difficult step is to find the adjusted estimate θ̂20 in terms of θ̂. From
our basic results we have, approximately,(

θ̂1 − θ1
θ̂2 − θ2

)
∼ N

{
0, I(θ̂)−1 ≡

(
I11 I12

I21 I22

)}
.

The problem can be stated more transparently as follows. Suppose we
observe (

x
y

)
∼ N

{(
μx

μy

)
,

(
σxx σxy

σyx σyy

)}
,

where the variance matrix is assumed known. If (μx, μy) are both unknown
then we obtain the MLE μ̂y = y. But what if μx is known? Intuitively, if x
and y are correlated then x will contribute some information about μy. In
fact, from the standard normal theory we have the conditional distribution

y|x ∼ N(μy + σyxσ
−1
xx (x− μx), σyy.x ≡ σyy − σyxσ

−1
xx σxy).



9.11. Nuisance parameters 267

So, given x, y and μx, the MLE of μy is

μ̂y = y − σyxσ
−1
xx (x− μx).

So, equivalently, given θ1 = θ10, θ̂1 and θ̂2, we get

θ̂20 = θ̂2 − I21(I11)−1(θ̂1 − θ10).

A simple manipulation of the partitioned matrix gives a simpler form

θ̂20 = θ̂2 + I−1
22 I21(θ̂1 − θ10),

using the partition

I =

(
I11 I12
I21 I22

)
for the Fisher information.

Previously we have used the quadratic approximation

2 log
L(θ̂)

L(θ)
≈ (θ̂ − θ)′I(θ̂)(θ̂ − θ),

so under H0 : θ1 = θ10, and assuming I(θ̂) ≈ I(θ̂0),

2 log
L(θ̂)

L(θ̂0)
= 2 log

L(θ̂)

L(θ0)
− 2 log

L(θ̂0)

L(θ0)

≈ (θ̂ − θ0)
′I(θ̂)(θ̂ − θ0)− (θ̂0 − θ0)

′I(θ̂)(θ̂0 − θ0).

Since (θ̂0 − θ0) = (0, θ̂20 − θ2) and

θ̂20 − θ2 = θ̂2 − θ2 + I−1
22 I21(θ̂1 − θ10)

then

(θ̂0 − θ0)
′I(θ̂)(θ̂0 − θ0) = (θ̂20 − θ2)

′I22(θ̂20 − θ2)

=

(
θ̂1 − θ10
θ̂2 − θ2

)′(
I12I

−1
22 I21 I12
I21 I22

)(
θ̂1 − θ10
θ̂2 − θ2

)
.

Collecting all the terms, we get

2 log
L(θ̂)

L(θ̂0)
≈ (θ̂1 − θ10)

′(I11 − I12I
−1
22 I21)(θ̂1 − θ10)

= (θ̂1 − θ10)
′(I11)−1(θ̂1 − θ10),

so the profile likelihood ratio is again asymptotically equivalent to the Wald
test on θ1. This quadratic approximation shows that the curvature of the
profile likelihood is given by (I11)−1, the claim made in Section 3.4. From

the asymptotics of the MLE θ̂ we have

θ̂1 − θ10
d→ N(0, I11),

so we arrive at

2 log
L(θ̂)

L(θ̂0)

d→ χ2
p−r.
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9.12 χ2 goodness-of-fit tests
One major use of the likelihood ratio test is in the test of hypotheses
involving categorical data, including the goodness-of-fit tests. We will first
consider the simple case where there is no nuisance parameter.

Example 9.12: Are birthdays uniformly distributed throughout the year?
Here is the monthly breakdown of birthdays of 307 students in a first-year statis-
tics class. Almost all students have the same age. �

Month 1 2 3 4 5 6 7 8 9 10 11 12
No. 28 18 30 30 32 21 30 25 30 20 22 21

Suppose N1, . . . , NK are multinomial with total size n and probability
θ = (p1, . . . , pK), with

∑
Ni = n and

∑
pi = 1. We want to test a null

hypothesis that birthdays are uniformly distributed. There is no explicit
parameter of interest; it is a lot easier to express the problem using the
likelihood ratio test than using the Wald test. Specifically,

H0 : pi = pi0 =
No. of days in month i

365

versus H1: pi 
= pi0 for some i. If there is no restriction on the parameters,
we get the MLEs p̂i = ni/n, so the likelihood ratio test is simply

2 log
L(θ̂)

L(θ)
= 2

∑
i

ni log
ni

npi0

≡ 2
∑

O log
O

E
,

where ‘O’ stands for the observed frequencies and ‘E’ the expected frequen-
cies under H0. W is in fact numerically close to the more commonly used
Pearson’s χ2 statistic

χ2 =
∑ (O − E)2

E
.

Theorem 9.9 If the expected frequencies E are large enough in every cell
then, under H0,

2
∑

O log
O

E
≈
∑ (O − E)2

E
.

Proof: Consider a second-order expansion of log x around 1

log x ≈ (x− 1)− 1

2
(x− 1)2.

Under H0 we expect O/E ≈ 1, so we apply the second-order expansion on
logO/E and finish the algebra.

Example 9.12: continued. For the birthday data we can verify that W =
9.47 (and the corresponding Pearson’s χ2 = 9.35), which is not significant at
12 − 1 = 11 degrees of freedom. Therefore, there is no evidence of nonuniform
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birth pattern. Note, however, that a test with high degrees of freedom is not
very desirable in practice, since it has low power against specific alternatives.
In this case, grouping the months into three-month (3 degree-of-freedom test)
and six-month intervals (1 degree-of-freedom test) does not reveal any significant
nonuniformity (Exercise 9.13). �

Nuisance parameters

As usual, the more important case is when there are nuisance parameters.
For example:

• Checking the distributional assumption of the residual after model
fitting. To test if the errors are normally distributed, the regression
model parameters are treated as nuisance parameters.

• Testing the independence in a 2-way table: the marginal distributions
are nuisance parameters.

Suppose n1, . . . , nK are multinomial with parameters n and (p1, . . . , pK).
We want to test

H0 : pi = pi(θ0),

i.e. pi’s follow a parametric form with dim(θ0) = r, versus H1: pi is ar-
bitrary, satisfying only

∑
pi = 1. Here the parameter θ0 is the nuisance

parameter. The likelihood ratio test is

W = 2
∑

O log
O

E

= 2
∑

ni log
ni

npi(θ̂0)
,

where θ̂0 is the MLE of θ0 based on data n1, . . . , nK . (This point is im-
portant if the group data are based on grouping continuous data, in which
case there is a temptation to use θ̂ based on the original data.) According
to our theory, under the null hypothesis, W is χ2 with K − 1 − r degrees
of freedom.

Example 9.13: One of the most common applications of the χ2 test is in test-
ing the independence of two characteristics; for example, eye versus hair colour.
The data are usually presented in a two-way contingency table. Consider a table
with cell frequencies nij for i = 1, . . . , I and j = 1, . . . , J , and corresponding
probabilities pij , such that

∑
ij
pij = 1. The log-likelihood of the parameter

θ ≡ {pij} given the observed data nij is

L(θ) =
∑

nij log pij .

Under the null hypothesis of independence between the row and column charac-
teristics: pij = ricj , where ri is the true proportion of the i’th row characteristic
and cj is the true proportion of the j’th column characteristic. The free pa-
rameter under the null hypothesis is θ0 = (r1, . . . , rI , c1, . . . , cJ), satisfying the
constraint

∑
i
ri = 1 and

∑
j
cj = 1. Under independence we obtain
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pij(θ̂0) =
ni.n.j

n2
..

,

where the row total ni. ≡
∑

j
nij , the column total n.j ≡∑

i
nij and the grand

total n.. ≡
∑

ij
nij . The test of independence is

W = 2
∑
ij

nij log
nij

n..pij(θ̂0)

≈
∑
ij

{nij − n..pij(θ̂0)}2
n..pij(θ̂0)

.

Since dim(θ0) = I+J−2, the degrees of freedom of the test is IJ−1−I−J+2 =
(I − 1)(J − 1).

9.13 Exercises
Exercise 9.1: The noncentral hypergeometric probability is defined as

P (X = x) =

(
m
x

)(
n

t− x

)
eθx

∑t

s=0

(
m
s

)(
n

t− s

)
eθs

,

for x = 0, . . . , t, where m, n and t are known constants. At θ = 0 we have the
(central) hypergeometric model, where P (X = x) is the probability of getting x
black balls in a random sample of t balls without replacement from an urn with
m black and n white balls. Show that the score test for testing H0: θ = 0 is of
the form

z =
x− μ0

σ0

where μ0 and σ0 are the mean and variance of the (central) hypergeometric
distribution.

Exercise 9.2: As stated in Example 9.9, show that if we approximate K(θ̂)
around zero by a quadratic function

K(θ̂) ≈ K(0) +K′(0)θ̂ +
1

2
K′′(0)θ̂2

then we obtain the standard central limit theorem from the saddlepoint formula.

Exercise 9.3: The saddlepoint approximation of the distribution of the sample
mean in Example 9.9 can be used as a theoretical alternative of the bootstrap
computation. Define the empirical cumulant generating function

K(θ) = log

(
1

n

∑
i

eθxi

)
.

For the following observations

50 44 102 72 22 39 3 15 197 188 79 88
46 5 5 36 22 139 210 97 30 23 13 14
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compare the bootstrap distribution of the sample mean with the saddlepoint
approximation (9.8) based on the empirical cumulant function.

Exercise 9.4: Suppose y1, . . . , yn are an iid sample from the inverse Gaussian
distribution with density

p(y) =

(
λ

2πy3

)1/2

exp

{
− λ

2μ2

(y − μ)2

y

}
, y > 0.

(a) Assuming λ is known, find the saddlepoint approximation of the density of
the MLE of μ.

(b) Assuming μ is known find the saddlepoint approximation of the density of
the MLE of λ.

(c) For μ = 1, λ = 1, and n = 10, show how good is the approximation in (b)
by performing a Monte Carlo simulation similar to the one in Example 9.8.

Exercise 9.5: Let x1, . . . , xn be an iid sample from N(μ, σ2) with μ known.
Give the approximate density of the sample variance using formula (9.6).

Exercise 9.6: Let x1, . . . , xn be an iid sample from gamma(μ, β), with known
β. Derive the approximate density for μ using formula (9.6) and show that the
formula is exact.

Exercise 9.7: For the location family in Section 9.8 show that the Jacobian

in the transformation from x(1), . . . , x(n) to (a, θ̂) is equal to one. (Hint: first

transform the data to (x(1), a), then transform (x(1), a) to (θ̂, a), so the Jacobian

is |dx(1)/dθ̂|.)
Exercise 9.8: Verify the Fisher information (9.12) for the variance components
in one-way random effects.

Exercise 9.9: For the variance matrix (9.11) verify that its inverse is

S−1 =
In
σ2

− σ2
a

σ2(σ2 + nσ2
a)

Jn.

To find its determinant one needs to get the eigenvalues of S. Treat this as an
exercise only if you are familiar enough with matrix algebra.

Exercise 9.10: For the random effects example in Section 9.10 show that the
likelihood of log σa is reasonably regular. Find the normal approximation of the
distribution of log σ̂a.

Exercise 9.11: Compute the profile likelihood for the intraclass correlation
(9.13) based on the data in Table 9.1. Comment on the regularity of the likeli-
hood.

Exercise 9.12: Complete the detail of the proof of Theorem 9.9 that

2
∑

O log
O

E
≈
∑ (O − E)2

E
.

Exercise 9.13: Test the uniformity of the birthdays in Example 9.12 by split-
ting the data into three-month and six-month intervals. Compute both W and
Pearson’s χ2 statistics.
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Dealing with nuisance
parameters

Nuisance parameters create most of the complications in likelihood theory.
They appear on the scene as a natural consequence of our effort to use
‘bigger and better’ models: while some parameters are of interest, others
are only required to complete the model. The issue is important since
nuisance parameters can have a dramatic impact on the inference for the
parameters of interest. Even if we are interested in all of the parameters in
a model, our inability to view multidimensional likelihood forces us to see
individual parameters in isolation. While viewing one, the other parameters
are a nuisance.

We have used the idea of profile likelihood as a general method to elim-
inate nuisance parameters. The generality comes with a price, namely the
potential for bias (even in large samples) and overly optimistic precision.
For example, the MLE of the normal variance is

σ̂2 =
1

n

∑
i

(xi − x)2.

Since
∑

i(xi − x)2/σ2 is χ2
n−1,

Eσ̂2 =
n− 1

n
σ2.

For n = 2 this is a severe underestimate. Furthermore, the profile likelihood
of the variance

logL(σ2) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − x)2 (10.1)

is the same as the likelihood of σ2 if the mean μ is known at x. This
means we are not ‘paying’ the price for not knowing μ. Hence, bias is only
a symptom of a potentially more serious problem. The bias itself can be
traced from the score function

S(σ2) =
∂

∂σ2
logL(σ2) = − n

2σ2
+

∑
i(xi − x)2

2σ4
.



274 10. Dealing with nuisance parameters

This yields Eσ2S(σ2) = −1/(2σ2) 
= 0, not satisfying the usual zero-mean
property of a true score statistic. We can also show that the variance of
the score statistic does not match the expected Fisher information:

varσ2{S(σ2)} =
n− 1

2σ4

= Eσ2I(σ2) =

n− 2

2σ4
.

If there are more mean parameters to estimate, as in analysis of variance
problems, the mismatch is worse.

In regular problems, bias is small relative to standard error, and it
goes away as the sample gets large. That is typically the case when the
number of nuisance parameters is small relative to the sample size. There
is a genuine concern, however, when bias does not disappear as the sample
size gets large, or bias is large relative to standard error, resulting in an
inconsistent estimation. This usually occurs when the number of nuisance
parameters is of the same order of magnitude as the sample size, technically
known as ‘infinitely many nuisance parameters’.

The main theoretical methods to eliminate nuisance parameters are via
conditioning or marginalizing. Unlike the profile likelihood, the resulting
conditional or marginal likelihoods are a true likelihood, based on the prob-
ability of observed quantities. These methods typically correct the profile
likelihood in terms of the bias in the MLE, or the overly optimistic preci-
sion level, or both. If an exact method is not available, we use approximate
conditional or marginal likelihoods based on a modification of the profile
likelihood.

The simplest method to deal with nuisance parameters is to replace the
unknowns by their estimates. This is especially useful when other methods
are either not available or too complicated. The resulting likelihood will
be called the estimated likelihood. For example, the likelihood (10.1) is an
estimated likelihood. The main problem with the estimated likelihood is
that it does not take into account the extra uncertainty due to the unknown
nuisance parameters.

10.1 Inconsistent likelihood estimates
Neyman and Scott (1948) demonstrated that the profile likelihood can
be severely biased even as the sample size gets large. This is a common
ocurrence if there are ‘infinitely many’ nuisance parameters.

Example 10.1: Consider a highly stratified dataset below where yi1 and yi2
are an iid sample from N(μi, σ

2), for i = 1, . . . , N , and they are all independent
over index i. The parameter of interest is σ2. The total number of unknown
parameters is N+1 and the number of observations is 2N . To convince ourselves
of the bias, and appreciate the corrected procedure, we simulate data from the
model as shown in Table 10.1. The advantage of simulated data is that we know
the true σ2 = 1 and μi’s, so we can show the ‘true’ likelihood of σ2. To make the
bias visible, the number of strata N should be large enough; N = 20 is sufficient
in this case.

Letting θ = (μ1, . . . , μN , σ2), the full likelihood is
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i μi yi1 yi2 yi

1 0.88 −0.31 −0.51 −0.41
2 2.51 3.20 3.57 3.38
3 1.74 1.70 2.81 2.26
4 −6.74 −6.67 −5.37 −6.02
5 1.42 3.12 3.74 3.43
6 −3.34 −3.15 −3.27 −3.21
7 −2.72 −2.11 −3.10 −2.60
8 6.89 6.88 6.53 6.70
9 0.67 0.81 −2.70 −0.94

10 −4.18 −4.25 −3.64 −3.94
11 8.43 8.58 7.08 7.83
12 0.15 1.88 −1.15 0.36
13 3.89 5.18 4.31 4.74
14 4.52 3.81 5.86 4.84
15 −4.05 −4.68 −4.55 −4.62
16 −6.95 −6.58 −7.52 −7.05
17 −2.61 −2.16 −1.13 −1.64
18 −6.52 −7.99 −7.53 −7.76
19 −6.06 −6.48 −6.13 −6.30
20 0.92 0.89 1.33 1.11

Table 10.1: Simulated highly stratified data: yi1 and yi2 are iid N(μi, σ
2).

logL(θ) = −N log σ2 − 1

2σ2

N∑
i=1

2∑
j=1

(yij − μi)
2.

Assuming μi’s are known, the full likelihood is the ‘true’ likelihood of σ2; this
serves as the gold standard in our analysis. The true likelihood is shown as the
dotted curve in Figure 10.1.
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Figure 10.1: Simulation from highly stratified data: the profile likelihood
(solid line) is compared with the true likelihood (dotted line).

To compute the profile likelihood of σ2, at each σ2 we can show that μ̂i = yi.
We denote the residual sum of squares RSS =

∑
i

∑
j
(yij−yi)

2; hence the profile
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likelihood of σ2 is

logL(σ2) = maxμ1,...,μN logL(μ1, . . . , μN , σ2)

= −N log σ2 − RSS

2σ2

and the MLE is

σ̂2 =
RSS

2N
.

From the data we can verify that RSS = 18.086 and σ̂2 = 0.452. Figure 10.1
shows the profile likelihood function; also, using the profile likelihood, the true
value σ2 = 1 only has 0.7% likelihood, clearly unexpected in a regular problem.

Note that what we have is simply a one-way analysis of variance model, where
the residual degrees of freedom is equal to N . It is clear that the RSS is σ2χ2

N ,
so Eσ̂2 = σ2/2 for any N . Furthermore, var(σ̂2) = σ4/(2N), so

σ̂2 p→ σ2/2,

or the estimate is not consistent. �

Example 10.2: A similar problem can also occur with a regression parameter.
Suppose yij are binomial outcomes with parameters nij and pij , following a
logistic model

logit pij = β0 + Si + τj ,

where Si’s are the strata effects, for i = 1, . . . , I, and τj ’s are the treatment
effects, for j = 0, 1. For identifiability assume that τ0 = 0; the parameter of
interest is treatment contrast τ1. This model assumes that the treatment effect
is the same across strata.

If nij is small and I is large, we have highly stratified data. For example,
a stratum may represent a subject, and treatments are assigned within each
subject; or, a stratum may represent a family, and the treatments are assigned to
the specific members of the family. The standard MLE of τ1 is seriously biased,
and inference based on the ordinary profile likelihood is questionable. In the
extreme case where nij ≡ 1 (e.g. matched pairs with Bernoulli outcomes), the
MLE τ̂1 → 2τ1 (Breslow 1981).

The following yij ’s are simulated data with τ1 = 1 and some random Si’s.
The first 50 values (first two rows, representing 50 strata) come from treatment
j = 0, and the second from j = 1:

0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0
0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 1

Fitting the logistic regression, the estimated treatment effect τ̂1 = 3.05 (se=0.70)
indicates a serious bias. The solution to this problem is given in Section 10.5. �

10.2 Ideal case: orthogonal parameters
An ideal situation occurs if we have data x depending on a model pθ(x)
and y on pη(y), where x and y are independent, and there is no logical
connection between θ and η. The joint likelihood of (θ, η) is

L(θ, η) = pθ(x)pη(y)
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= L(θ;x)L(η; y).

There can be no argument that the true likelihood of θ should be

L(θ) = L(θ;x),

since y does not carry any information about θ.
Also ideal is the situation where we can factorize the likelihood

L(θ, η) = L1(θ)L2(η),

where we do not care how the data enter L1(·) and L2(·). It is clear that
the information on θ is captured by L1(θ). When such a factorization exists
θ and η are called orthogonal parameters.

Example 10.3: In the traffic deaths example in Section 4.6 we assume that
the number of deaths x and y are independent Poisson with parameters λx and
λy. The joint likelihood function is

L(λx, λy) = e−(λx+λy)λx
xλ

y
y.

Assuming the parameter of interest is θ = λy/λx, now let the nuisance parameter
be η = λx + λy. So

L(θ, η) =
(

θ

1 + θ

)y ( 1

1 + θ

)x

ηx+ye−η

≡ L1(θ)L2(η),

where

L1(θ) ≡
(

θ

1 + θ

)y ( 1

1 + θ

)x

.

As shown before L1(θ) is also the profile likelihood of θ. This is generally true:
if there exists an orthogonal parameter for θ then, without having to specify η,
the profile likelihood computation would automatically provide L1(θ). �

Often we do not achieve the ideal case, but only

L(θ, η) = L1(θ)L2(θ, η),

with the additional argument that L2(θ, η) contains little information about
θ, or L1(θ) captures most of the information about θ.

Example 10.4: Suppose x1, . . . , xn are an iid sample from N(μ, σ2) with both
parameters unknown. It is well known that the sample mean x and the sample
variance

s2 =
1

n− 1

∑
i

(xi − x)2

are independent. However, x is N(μ, σ2/n) and (n − 1)s2 is σ2χ2
n−1, so the

parameters do not separate cleanly. In likelihood terms we can write with obvious
notation

L(μ, σ2) = L(μ, σ2;x)L(σ2; s2).

If we are interested in σ2, and μ is unknown, we can ponder whether there is
information in x about σ2. In repeated sampling terms, yes there is, but it is
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intuitive that the observed x itself does not carry any information about the
variance. This means that we can ignore x, and concentrate our likelihood based
on s2

logL(σ2) = −n− 1

2
log σ2 − (n− 1)s2

2σ2
,

now free of the unknown parameter μ. Such a likelihood is called a marginal
likelihood. �

10.3 Marginal and conditional likelihoods
As a general method, consider a transformation of the data x to (v, w) such
that either the marginal distribution of v or the conditional distribution
of v given w depends only on the parameter of interest θ. Let the total
parameter be (θ, η). In the first case

L(θ, η) = pθ,η(v, w)

= pθ(v)pθ,η(w|v)
≡ L1(θ)L2(θ, η),

so the marginal likelihood of θ is defined as

L1(θ) = pθ(v).

In the second case

L(θ, η) = pθ(v|w)pθ,η(w)
≡ L1(θ)L2(θ, η),

where the conditional likelihood is defined as

L1(θ) = pθ(v|w).

The question of which one is applicable has to be decided on a case-by-case
basis. If v and w are independent the two likelihood functions coincide.

In 1922 Fisher used a two-stage maximum likelihood estimation to esti-
mate the error variance in one-way classification problems; a similar argu-
ment was used in 1915 for the correlation coefficient, but then the likelihood
terminology was not explicit. Suppose (θ̂, η̂) is the usual MLE of (θ, η). If

the distribution of θ̂ depends only on θ, then a second-stage estimation
of θ should be based on pθ(θ̂). This corresponds to a marginal likelihood
approach. To see intuitively why the second-stage estimate has less bias,
suppose θ̂ is normal with mean θ + b(θ)/n. Up to a first-order approxi-

mation, the second-stage estimate is θ̂ − b(θ̂)/n, i.e. it is a bias-corrected
estimate.

The marginal or conditional likelihoods are useful if

• pθ(v) or pθ(v|w) are simpler than the original model pθ,η(x).

• Not much information is lost by ignoring L2(θ, η).
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• The use of full likelihood is inconsistent.

The second condition is usually argued informally on an intuitive basis.
Under the last condition the use of marginal or conditional likelihood is
essential.

When available, these likelihoods are true likelihoods in the sense that
they correspond to a probability of the observed data; this is their main
advantage over profile likelihood. However, the problem is that it is not
always obvious how to transform the data to arrive at a model that is free
of the nuisance parameter.

Example 10.1: continued. To get an unbiased inference for σ2, consider
the following transformations:

vi = (yi1 − yi2)/
√
2

wi = (yi1 + yi2)/
√
2.

Clearly vi’s are iid N(0, σ2), and wi’s are iid N(μi

√
2, σ2). The likelihood of σ2

based on vi’s is a marginal likelihood, given by

Lv(σ
2) =

(
1√
2πσ2

)N

exp

(
− 1

2σ2

N∑
i=1

v2i

)
.

Since vi and wi are independent, in this case it is also a conditional likelihood.
Figure 10.2 shows that the marginal likelihood corrects both the bias and over-
precision of the profile likelihood. In fact, the MLE from the marginal likelihood
is

σ̂2 =
1

N

N∑
i=1

v2i =
RSS

N
,

the same as the unbiased estimator from the analysis of variance. �
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Figure 10.2: The marginal likelihood (dashed line) corrects the bias of the
profile likelihood (solid), with the ‘true’ likelihood (dotted) shown as com-
parison.
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Example 10.5: Conditional likelihood is generally available if both the pa-
rameter of interest and the nuisance parameter are the natural parameters of
an exponential family model. Suppose x is in the (q + r)-parameter exponential
family with log-density

log pθ,η(x) = θ′t1(x) + η′t2(x)−A(θ, η) + c(x),

where θ is a q-vector of parameters of interest, and η is an r-vector of nuisance
parameters. The marginal log-density of t1(x) is of the form

log pθ,η(t1) = θ′t1(x)−A(θ, η) + c1(t1, η),

which involves both θ and η. But the conditional density of t1 given t2 depends
only on θ, according to

log pθ(t1|t2) = θ′t1(x)−A1(θ, t2) + h1(t1, t2),

for some (potentially complicated) functions A1(·) and h1(·). A simple approxi-
mation of the conditional likelihood using the likelihood-based p-formula is given
in Section 10.6. �

Example 10.6: Let y1, . . . , yn be independent exponential outcomes with mean
μ1, . . . , μn, where

1

μi
= β0 + β1xi

and xi is a known predictor. The log-likelihood is

logL(β0, β1) = −
∑
i

(logμi + yi/μi)

=
∑
i

log(β0 + β1xi)− β0

∑
i

yi − β1

∑
i

yixi,

so we can get a conditional likelihood of β1. This result can be extended to
several predictors. �

Example 10.7: Even in the exponential family, parameters of interest can
appear in a form that cannot be isolated using conditioning or marginalizing. Let
y1 and y2 be independent exponential variates with mean η and θη respectively;
the parameter of interest θ is the mean ratio. Here

log p(y1, y2) = − log θ − 2 log η − y1/η − y2/(θη).

The parameter of interest is not a natural parameter, and the conditional distri-
bution of y2 given y1 is not free of η.

The same problem occurs in general regression with noncanonical link: let
y1, . . . , yn be independent exponential outcomes with mean μ1, . . . , μn, where

log μi = β0 + β1xi.

An approximate conditional inference using a modified profile likelihood is given
in Section 10.6. �

Information loss
In Example 10.1 it is natural to ask if we lose information by ignoring
w1, . . . , wN . Without further assumptions about μi’s, it seems intuitively
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clear that little information is lost, but it is not easy to quantify the amount
of loss. The upper bound on the information loss is reached when μi’s are
known: using the original data, the expected Fisher information on σ2 is
N/σ4, and using vi’s alone the Fisher information is N/(2σ4), so the loss is
50%. (Note, however, the quadratic approximation of the log-likelihood of
variance parameters is usually poor, except the sample is quite large. This
means a comparison based on the Fisher information is meaningful only in
large samples.)

Further analysis can be made assuming μi’s are an iid sample from
N(μ, σ2

μ), where σ2
μ is known. This is now a random effects model, where

σ2
μ is the variance component parameter for the strata variable i. One can

compare the Fisher information of σ2 under this assumption. Using the
result in Section 9.10, the expected Fisher information on σ2 is

I(σ2) =
N

2σ4
+

N

2(σ2 + 2σ2
μ)

2
.

Compared with the Fisher information we get from the marginal likelihood,
the proportion of information loss is

1

1 +
(
1 + 2

σ2
μ

σ2

)2 .
The ratio σ2

μ/σ
2 measures the variability between strata relative to within-

strata variability; if it is large the information loss is small. For example,
if σ2 = σ2

μ = 1 there is a 10% loss. If there are no strata effects (σ2
μ = 0)

we get the upper bound of 50% loss.

10.4 Comparing Poisson means
Traffic deaths example

In the traffic deaths example (Section 4.6) we assume that the number
of deaths x and y are independent Poisson with parameters λx and λy.
The conditional distribution of y given the sum x + y is binomial with
parameters n = x+ y and probability

π =
λy

λx + λy
.

Assuming the parameter of interest is θ = λy/λx we have

π =
θ

1 + θ
,

which is free of nuisance parameters. The total x + y intuitively carries
little or no information about the ratio parameter θ, so on observing y, the
conditional likelihood of θ is
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L(θ) ≡
(

θ

1 + θ

)y (
1

1 + θ

)x

as we have seen before using the orthogonal parameter or profile likelihood
arguments.

This example may be used to illustrate another fundamental difference
between the profile and the conditional/marginal likelihoods: the profile
likelihood is totally determined by the probability of the observed data,
while the latter is affected by the sampling scheme or a contrived rear-
rangement of the sample space. In the comparison of two Poisson means,
the conditional argument produces the binomial distribution as the basis
for the likelihood provided we have a standard sample. If parts of the sam-
ple space are censored, then the conditional distribution is affected, even if
the observed data are not censored.

To be specific, suppose x values greater than five cannot be observed
exactly, and in such a case only ‘x ≥ 5’ is reported; the underlying variate
X is assumed Poisson with mean λx. Suppose we observe x = 3 and y = 7,
i.e. the data are actually observed exactly; the joint likelihood of (λx, λy)
is

L(λx, λy) = e−λxλ3
xe

−λyλ7
y,

and the profile likelihood of θ is

L(θ) =

(
θ

1 + θ

)7(
1

1 + θ

)3

as before. However, the conditional likelihood is no longer available, since
the probability P (X + Y = 10) and the conditional probability P (Y =
7|X + Y = 10) cannot be computed.

Aspirin data example

Let us go back to the aspirin data example in Section 1.1. We assume that
the number of heart attacks in the aspirin group xa is binomial(na, θa) and
that in the placebo group xp is binomial(np, θp). We observed xa = 139
from a total na = 11, 037 subjects, and xp = 239 from a total of np =
11, 034. The parameter of interest is θ = θa/θp.

Consider a one-to-one transformation of the data (xa, xp) to (xa, xa+xp)
and the parameter (θa, θp) to (θ, θp). The likelihood function based on
(xa, xa + xp) is

L(θ, θp) = pθ,θp(xa, xa + xp)

= pθ(xa|xa + xp)pθ,θp(xa + xp).

Intuitively, xa+xp does not contain much information about θ, so inference
about θ can be based on the first term in the likelihood function.
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Since θa and θp are small, we consider the useful approximation that xa

and xp are Poisson with parameters naθa and npθp, respectively. Therefore,
conditionally on xa+xp = t, xa is binomial with parameters t and π, where

π =
naθa

naθa + npθp
=

naθ

naθ + np
.

So the likelihood function of θ based on Xa|Xa +Xp is

L(θ) = P (Xa = xa|Xa +Xp = xa + xp)

= constant×
(

naθ

naθ + np

)xa
(
1− naθ

naθ + np

)xp

.

This is exactly the profile likelihood of θ we derived previously. See Section
4.7 for exact numerical results and plots of the likelihood function.

10.5 Comparing proportions
Section 4.3 used the profile likelihood for the comparison of two binomial
proportions. We now show the conditional likelihood solution.

Suppose we want to compare the proportion of a certain characteristic
in two groups. Let x be the number of cases where the characteristic is
present in the first group; assume x is binomial B(m,πx); independently
we observe y as B(n, πy). We present the data as

Group 1 Group 2 total
present x y t
absent m− x n− y u
total m n m+ n

As the parameter of interest, just as before, we consider the log odds-
ratio θ defined by

θ = log
πx/(1− πx)

πy/(1− πy)
.

In terms of θ the hypothesis of interest H0: πx = πy is equivalent to H0:
θ = 0.

Now we make the following transformation: (x, y) to (x, x + y). The
conditional probability of X = x given X + Y = t is

P (X = x|X + Y = t) =
P (X = x,X + Y = t)

P (X + Y = t)
.

The numerator is equal to(
m
x

)(
n

t− x

)
πx
x(1− πx)

m−xπt−x
y (1− πy)

n−t+x

=

(
m
x

)(
n

t− x

)(
πx/(1− πx)

πy/(1− πy)

)x(
πy

1− πy

)t
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×(1− πx)
m(1− πy)

n

=

(
m
x

)(
n

t− x

)
eθx
(

πy

1− πy

)t

(1− πx)
m(1− πy)

n,

so the conditional probability is

P (X = x|X + Y = t) =

(
m
x

)(
n

t− x

)
eθx

∑t
s=0

(
m
s

)(
n

t− s

)
eθs

,

which is independent of the nuisance parameter. This conditional model
is known as the noncentral hypergeometric probability, which is in the
exponential family with θ being the canonical parameter. At θ = 0 we
obtain the standard hypergeometric probability, which forms the basis of
Fisher’s exact test (Section 4.3).

The total number of cases t = x + y intuitively does not carry much
information about the odds-ratio parameter, so we can use the conditional
distribution of X given X + Y = t as the basis for likelihood. Specifically,
on observing X = x the conditional likelihood of θ is

L(θ) =

(
m
x

)(
n

t− x

)
eθx

∑t
s=0

(
m
s

)(
n

t− s

)
eθs

. (10.2)

While the conditional and profile likelihoods are not the same, they are
numerically very close, even for small datasets. Figures 10.3(a) and (b)
compare the conditional likelihood (dotted line) based on formula (10.2)
with the profile likelihood (solid), using the genetic data in Example 4.4.

Series of 2×2 tables

Example 10.2 states the problem of bias in highly stratified binomial data.
We can think of the data as a series of 2×2 tables, where each stratum
contributes one table. There is a rich body of applications in epidemiology
associated with this data structure (see e.g. Breslow and Day 1980).

With so many nuisance parameters for strata effects, bias in the stan-
dard MLE of the common odds ratio can accumulate and dominate vari-
ability. One solution of the problem is to condition on the margin of each
table, so stratum i contributes a likelihood Li(θ) given by (10.2) with the
corresponding mi, ni, ti and xi. Conditioning eliminates the strata effects
in the original logistic model. The total log-likelihood from all the tables
is the sum of individual log-likelihoods:

logL(θ) =
∑
i

logLi(θ).
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(a) 5/15 versus 1/10
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(b) 6/15 versus 0/10

Figure 10.3: Comparing two binomial proportions: conditional likelihood
is very close to profile likelihood. (a) Profile likelihood (solid line) and
conditional likelihood (dotted) for the genetic data in Example 4.4. (b)

Same as (a) for an extreme case where θ̂ = ∞.

The score test of H0: θ = 0 derived from this conditional log-likelihood is
known as Mantel–Haenzel test. From Exercise 9.1 it is of the form

z =

∑
i(xi − μi)

{∑σ2
i }1/2

,

where μi and σ2
i are the mean and variance of the standard hypergeometric

random variable xi:

μi =
miti

mi + ni
, σ2

i =
miniti(mi + ni − ti)

(mi + ni)2(mi + ni − 1)
.

In the extreme case m = n = 1 for each table (e.g. matched-pairs with
Bernoulli outcomes), only tables with discordant entries (x = 1, y = 0) or
(x = 0, y = 1) contribute to the likelihood. We can think of each pair as
a new success–failure outcome (i.e. ‘success’ = (x = 1, y = 0), ‘failure’ =
(x = 0, y = 1)). The null hypothesis of odds ratio equal to one is simply a
test of binomial proportion equal to 0.5; this is known as McNemar’s test.

For the data in Example 10.2 there are 28 discordant pairs, of which
23 (=82%) belong to treatment j = 1. The bias-corrected estimate of the
treatment contrast parameter τ1 is

τ̂1 = log
0.82

0.18
= 1.52.

Using the formula in Example 2.18 the standard error is

se(τ̂1) =

{
1

23
+

1

5

}0.5

= 0.49.

Additionally, the likelihood function of τ1 can be computed based on the
binomial probability.
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It is difficult to analyse how much information is lost by ignoring the
marginal information. Intuitively, the loss can be substantial if there is in
fact no strata effect; in this case we should have done an unconditional
analysis. An alternative to the conditional analysis is the mixed effects
model discussed in Section 17.8.

10.6 Modified profile likelihood�

Exact marginal or conditional likelihoods are not always available. Even
when theoretically available, the exact form may be difficult to derive (Ex-
ample 10.6). An approximate marginal or conditional likelihood can be
found by modifying the ordinary profile likelihood.

First recall the likelihood-based p-formula from Section 9.8 that pro-
vides an approximate density of θ̂:

pθ(θ̂) ≈ (2π)−1/2|I(θ̂)|1/2L(θ)
L(θ̂)

.

A better approximation is possible via Barndorff-Nielsen’s p∗-formula, which
sets a normalizing constant c(θ) such that the density integrates to one.
However, it is less convenient for likelihood approximation since c(θ) is
rarely available. We will use the simpler p-formula, since the normalizing
constant is free of θ.

In a multiparameter setting let (θ̂, η̂) be the MLE of (θ, η); then we
have the approximate density

p(θ̂, η̂) ≈ c|I(θ̂, η̂)|1/2L(θ, η)
L(θ̂, η̂)

where c = (2π)p/2, and p is the dimensionality of (θ, η). Throughout this
section the constant c is free of θ.

The profile likelihood appears naturally in the approximate marginal
distribution of η̂. In fact, this is the theoretical basis of the construction
of modified profile likelihood. Let η̂θ be the MLE of η at a fixed value of
θ, and I(η̂θ) the corresponding observed Fisher information. The profile
likelihood of θ is

Lp(θ) = L(θ, η̂θ).

The marginal density of η̂ is

p(η̂) = p(η̂θ)

∣∣∣∣∂η̂θ∂η̂

∣∣∣∣
≈ c|I(η̂θ)|1/2 L(θ, η)

L(θ, η̂θ)

∣∣∣∣∂η̂θ∂η̂

∣∣∣∣ . (10.3)

The conditional distribution of θ̂ given η̂ is

p(θ̂|η̂) =
p(θ̂, η̂)

p(η̂)
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≈ c|I(η̂θ)|−1/2L(θ, η̂θ)

L(θ̂, η̂)

∣∣∣∣ ∂η̂∂η̂θ

∣∣∣∣ ,
where we have used the p-formula on both the numerator and the denom-
inator. Hence, the approximate conditional log-likelihood of θ is

logLm(θ) = logL(θ, η̂θ)− 1

2
log |I(η̂θ)|+ log

∣∣∣∣ ∂η̂∂η̂θ

∣∣∣∣
= logLp(θ)− 1

2
log |I(η̂θ)|+ log

∣∣∣∣ ∂η̂∂η̂θ

∣∣∣∣ . (10.4)

Lm(θ) is the required modified profile likelihood. We can arrive at the same

formula using a marginal distribution of θ̂.
The quantity 1

2 log |I(η̂θ)| can be interpreted as a penalty term, which
subtracts from the profile log-likelihood the ‘undeserved’ information on the
nuisance parameter η. The Jacobian term |∂η̂/∂η̂θ| works as an ‘invariance-
preserving’ quantity, which keeps the modified profile likelihood invariant
with respect to transformations of the nuisance parameter. Being a difficult
quantity to evaluate, it is a major theoretical hurdle preventing a routine
application of (10.4).

The modified profile likelihood formula (10.4) applies in the general

setting where (θ̂, η̂) is not sufficient. Suppose there is a one-to-one function

of the data x to (θ̂, η̂, a(x)), where a(x) is ancillary. To make explicit the
dependence on the data, we can write

L(θ, η) ≡ L(θ, η;x) = L(θ, η; θ̂, η̂, a).

For fixed θ, the MLE η̂θ satisfies

∂

∂η̂θ
logL(θ, η̂θ; θ̂, η̂, a) = 0.

Taking the derivative with respect to η̂θ we obtain

∂2

∂η̂2θ
logL(θ, η̂θ; θ̂, η̂, a) +

∂2

∂η̂θ∂η̂
logL(θ, η̂θ; θ̂, η̂, a)

∂η̂

∂η̂θ
= 0,

so ∣∣∣∣ ∂η̂∂η̂θ

∣∣∣∣ = |I(η̂θ)|∣∣∣ ∂2

∂η̂θ∂η̂
logL(θ, η̂θ; θ̂, η̂, a)

∣∣∣ . (10.5)

The denominator is potentially difficult to get, since we may not have an
explicit dependence of the likelihood on (θ̂, η̂).

In lucky situations we might have η̂θ = η̂, implying |∂η̂/∂η̂θ| = 1, and
the last term of (10.4) vanishes. If θ is scalar it is possible to set the
nuisance parameter η such that |∂η̂/∂η̂θ| ≈ 1 (Cox and Reid 1987). This
is achieved by choosing η so that

E
∂2

∂θ∂η
logL(θ, η) = 0. (10.6)

Such parameters are called ‘information orthogonal’.
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It is interesting to compare these results with Bayesian formulae as
it suggests how to compute modified likelihoods using Bayesian computa-
tional methods. For scalar parameters, the quadratic approximation

log
L(θ)

L(θ̂)
≈ −1

2
I(θ̂)(θ − θ̂)2

implies ∫
L(θ)dθ ≈ L(θ̂)

∫
e−

1
2 I(θ̂)(θ−θ̂)2dθ

= L(θ̂)(2π)1/2|I(θ̂)|−1/2.

This is known as Laplace’s integral approximation; it is highly accurate if
logL(θ) is well approximated by a quadratic. For a two-parameter model,
we immediately have, for fixed θ, the integrated likelihood

Lint(θ) ≡
∫

L(θ, η)dη ≈ cL(θ, η̂θ)|I(η̂θ)|−1/2,

where c is free of θ, so

logLint(θ) ≈ logLp(θ)− 1

2
log |I(η̂θ)|,

exactly the modified profile likelihood in the case of orthogonal parameters.

Example 10.8: Suppose x is in the (q+r)-parameter exponential family with
log-density

log pθ,η(x) = θ′t1(x) + η′t2(x)−A(θ, η) + c(x),

where θ is a q-vector of parameters of interest, and η is an r-vector of nuisance
parameters. We know that the conditional distribution of t1 given t2 is free of η
(Example 10.5), but the explicit form can be complicated. The modified profile
likelihood provides an explicit, but approximate, conditional likelihood.

The information term is

I(η̂θ) =
∂2

∂η̂2
θ

A(θ, η̂θ) ≡ A′′(θ, η̂θ).

To get the Jacobian term, first note that MLE (θ̂, η̂) satisfies

t1 =
∂

∂θ̂
A(θ̂, η̂)

t2 =
∂

∂η̂
A(θ̂, η̂) ≡ A′(θ̂, η̂).

At fixed value of θ we have

t2 −A′(θ, η̂θ) = 0,

so
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A′(θ̂, η̂)−A′(θ, η̂θ) = 0,

and taking the derivative with respect to η̂θ, we obtain

A′′(θ̂, η̂)
∂η̂

∂η̂θ
−A′′(θ, η̂θ) = 0

or
∂η̂

∂η̂θ
=

A′′(θ, η̂θ)

A′′(θ̂, η̂)
.

Hence, up to a constant term, the modified profile likelihood is

logLm(θ) = logL(θ, η̂θ) +
1

2
logA′′(θ, η̂θ).

Ignoring the Jacobian term would have led to a minus sign rather than the correct
plus sign on the right-hand side. �

Example 10.9: We observe the following

-5.3 -4.5 -1.0 -0.7 3.7 3.9 4.2 5.5 6.8 7.4 9.3

and assume that they are an iid sample from N(μ, σ2) with both parameters
unknown. The log-likelihood is

logL(μ, σ2) = −n

2
log σ2 − 1

2σ2

∑
i

(xi − μ)2

where n = 11.
(a) We first find the modified profile likelihood of μ. Given μ the MLE of σ2

is

σ̂2
μ =

1

n

∑
i

(xi − μ)2

=
1

n

∑
i

(xi − x)2 + (x− μ)2

= σ̂2 + (x− μ)2.

Immediately,

logL(μ, σ̂2
μ) = −n

2
log σ̂2

μ − n

2
,

and
I(σ̂2

μ) =
n

2σ̂4
μ
,

and
∂σ̂2

μ

∂σ̂2
= 1.

Up to a constant term, the modified profile likelihood is

logLm(μ) = −n

2
log σ̂2

μ − 1

2
log I(σ̂2

μ)

= −n− 2

2
log σ̂2

μ,

the same as the profile likelihood based on (n− 2) observations.
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Figure 10.4: Log-likelihoods of μ: normal approximation (solid), ordinary
profile (dashed) and modified profile (dotted).

Figure 10.4 shows the log-likelihoods of μ based on the normal approxima-
tion, profile and modified profile. The normal approximation is equivalent to the
quadratic approximation of the profile likelihood. All likelihoods are maximized
in the same location, but they have varying precision. The exact 95% CI for μ is
the t-interval

x± t10,0.025s/
√
n,

producing −0.60 < μ < 5.93. The normal-based interval −0.21 < μ < 5.54 is
too narrow; the profile and modified profile likelihood intervals at 15% cutoff are
−0.35 < μ < 5.67 and −0.73 < μ < 6.06. In this case the modified likelihood
gives the closest likelihood-based interval to the exact interval.

(b) Now suppose σ2 is the parameter of interest. At each σ2 we obtain

μ̂σ2 = x = μ̂,

so ∂μ̂/∂μ̂σ2 = 1. The Fisher information is

I(μ̂σ2) =
n

σ2
,

so the modified profile likelihood is

logLm(σ2) = −n− 1

2
log σ2 − (n− 1)s2

2σ2
,

exactly the same as the marginal likelihood based on s2 shown in Example 10.4. �

Example 10.10: With highly stratified data, a modification of the profile
likelihood will have a dramatic impact. Suppose yij ’s are independent normal
data with mean μ and variance σ2

i , where i = 1, . . . , I and j = 1, . . . , ni. Given
μ, the MLEs of the variance parameters are

σ̂2
i,μ =

1

ni

∑
j

(yij − μ)2.

The profile likelihood of μ is
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logLp(μ) = −
∑
i

ni

2
log σ̂2

i,μ.

Using the same derivations as in the previous example, the modified profile like-
lihood is

logLm(μ) = −
∑
i

ni − 2

2
log σ̂2

i,μ.

Both likelihoods will produce the same estimate of μ, but different levels of
precision. �

Example 10.11: Suppose y1, . . . , yn are independent normal outcomes with
means μ1, . . . , μn and common variance σ2, where

μi = x′
iβ,

and xi is a vector of p predictors. For fixed β the MLE of σ2 is

σ̂2
β =

1

n

∑
i

(yi − x′
iβ)

2

=
1

n

∑
i

(yi − x′
iβ̂)

2 +
1

n

∑
i

(x′
iβ̂ − x′

iβ)
2

= σ̂2 +
1

n

∑
i

(x′
iβ̂ − x′

iβ)
2,

which implies ∂σ̂2
β/∂σ̂

2 = 1. The required Fisher information is I(σ̂2
β) = n/(2σ̂4

β)
so the modified profile likelihood for β is

logLm(β) = −n− 2

2
log σ̂2

β .

There is no simple formula for the modified profile likelihood of the individual
coefficients.

Using similar derivations as in the one-sample case, the modified profile like-
lihood of σ2 is

logLm(σ2) = −n− p

2
log σ2 − 1

2σ2

∑
i

(yi − x′
iβ̂)

2.

This leads not only to the (n− p)-divisor for the estimate of σ2

s2 =
1

n− p

∑
i

(yi − x′
iβ̂)

2,

but also to a better likelihood-based inference. In Exercise 10.8 this is extended
to the general dispersion parameter. �

Example 10.12: The variance estimation in Example 10.11 is a special case
of the general variance components estimation. Suppose an array of outcomes y
is normal with mean μ and variance V , where

μ = Xβ
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for known design matrix X, and V ≡ V (θ). Let θ be the parameter of interest;
it is known as the variance component parameter. The overall likelihood is

logL(β, θ) = −1

2
log |V | − 1

2
(y −Xβ)′V −1(y −Xβ).

Given θ, the MLE of β is the usual weighted least-squares estimate

β̂θ = (X ′V −1X)−1X ′V −1y.

The profile likelihood of θ is

logLp(θ) = −1

2
log |V | − 1

2
(y −Xβ̂θ)

′V −1(y −Xβ̂θ).

The observed Fisher information is

I(β̂θ) = X ′V −1X.

There is no general formula for ∂β̂/∂β̂θ, but we can check that

E

{
∂2

∂β∂θi
logL(β, θ)

}
= E

{
X ′V −1 ∂V

∂θi
V −1(Y −Xβ)

}
= 0

for any θi, so β and θ are information orthogonal, and the Jacobian |∂β̂/∂β̂θ| ≈ 1.
Hence the modified profile likelihood is

logLm(θ) = logLp(θ)− 1

2
log |X ′V −1X|.

This matches exactly the so-called restricted maximum likelihood (REML), de-
rived by Patterson and Thompson (1971) and Harville (1974) using the marginal

distribution of the error term y −Xβ̂θ. See also Harville (1977) for further dis-
cussion on normal-based variance component estimation. �

10.7 Estimated likelihood
Suppose the total parameter space is (θ, η), where θ is the parameter of
interest. Let η̂ be an estimate of η; it can be any reasonable estimate, and
in particular it does not have to be an MLE. The estimated likelihood of θ
is

Le(θ) = L(θ, η̂).

Not to be confused with the profile likelihood L(θ, η̂θ), the estimate η̂ here
is to be estimated free from the parameter of interest θ. Some authors (e.g.
Gong and Samaniego 1981) use the term ‘pseudo’ likelihood, but we will
keep the descriptive name ‘estimated’.

Example 10.13: Suppose x1, . . . , xn are an iid sample from N(μ, σ2) with
both parameters unknown. Using the sample variance

s2 =
1

n− 1

∑
i

(xi − x)2
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as a sensible estimate of σ2, the estimated likelihood of μ is

Le(μ) = constant× exp

{
− 1

2s2

∑
i

(xi − μ)2

}
= constant× exp

{
−1

2
n(x− μ)2/s2

}
.

This is exactly the likelihood based on an iid sample from N(μ, s2), i.e. we assume
that σ2 is known at the observed value s2. �

The estimated likelihood does not account for the extra uncertainty due
to the nuisance parameter. For the normal variance parameter and the
highly stratified data in Example 10.1 the estimated and profile likelihoods
are the same. Inference from the estimated likelihood typically relies on
the asymptotic distribution of the estimate θ̂, the solution of

S(θ, η̂) =
∂

∂θ
L(θ, η̂) = 0,

accounting for the extra variability from estimating η. The following the-
orem is due to Gong and Samaniego (1981).

Theorem 10.1 Assume similar regularity conditions as stated in Section 9.4,
and let (θ0, η0) be the true parameters.

(a) If η̂ is consistent, then there exists a consistent sequence of solution

θ̂.

(b) If n−1/2S(θ0, η0) and
√
n(η̂−η0) are asymptotically normal with mean

zero and covariance matrix(
σ11 σ12

σ12 σ22

)
then

√
n(θ̂−θ0) is asymptotically normal with mean zero and variance

σ2 = I−1
11 + I−2

11 I12(σ22I12 − 2σ12).

(c) If the estimate η̂ is asymptotically equivalent to the MLE of η0, then
σ12 = 0, σ22 = (I22 − I21I−1

11 I12)−1 and σ2 = (I11 − I12I−1
22 I21)−1,

so that θ̂ is asymptotically equivalent to the MLE.

The simplest case occurs if we use the MLE η̂ and I12 = 0 (θ and η
are information orthogonal). Asymptotically we can treat L(θ, η̂) like a
standard likelihood; this is a compromise solution in more general cases.
In the normal example above, suppose we replace the unknown σ2 by its
MLE σ̂2. Then, inference on μ is the same as if σ2 is known at σ̂2. In
general, if we use an estimate other than the MLE for η̂, the covariance σ12

is the most difficult quantity to evaluate.
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10.8 Exercises
Exercise 10.1: Prove the statement in Example 10.3 that if there exists an or-
thogonal parameter for θ then, without having to specify η, the profile likelihood
computation would automatically provide the likelihood factor L1(θ).

Exercise 10.2: Verify the conditional analysis of the data in Example 10.2
as given in Section 10.5. Reanalyse the full data assuming there is no strata
effect and compare the results. Discuss the advantages and disadvantages of the
conditional analysis.

Exercise 10.3: For the stratified data in Exercise 4.9, compare the profile
likelihood of the common odds ratio with the conditional likelihood given in
Section 10.5. Report also the Mantel-Haenzel test of the odds ratio.

Exercise 10.4: Show that the modified profile likelihood (10.4) is invariant
with respect to transformation of the nuisance parameter. For example, define a
new nuisance parameter ψ = g(η) and show that the modified profile likelihood
for θ stays the same, up to a constant term. Note the role of the Jacobian term
as an invariance preserver.

Exercise 10.5: Suppose y1 and y2 are independent exponentials with mean η
and θη; the parameter of interest θ is the mean ratio.

(a) Express the likelihood L(θ, η) as a function of both the parameters and the
MLEs:

L(θ, η) ≡ L(θ, η; θ̂, η̂)

= − log θ − 2 log η − η̂(θ + θ̂)

θη
.

(b) Derive the observed Fisher information

I(η̂θ) =
8θ2

η̂2(θ + θ̂)2
.

(c) Find η̂θ in terms of η̂ and show that

∂η̂

∂η̂θ
=

2θ

θ + θ̂
.

(d) Show that the modified profile likelihood of θ is the same as the ordinary
profile likelihood.

Exercise 10.6: Suppose y1, . . . , yn are independent exponential outcomes with
mean μ1, . . . , μn, where

log μi = β0 + β1xi,

and
∑

i
xi = 0. Verify the following results:

(a) β0 and β1 are information orthogonal.

(b) The profile likelihood of β1 is

logLp(β1) = −n log(
∑
i

yie
−β1xi).
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(c) The Fisher information on β̂0,β1 is

I(β̂0,β1) = n,

so the modified profile likelihood of β1 is the same as the ordinary profile
likelihood.

Exercise 10.7: Let y1, . . . , yn be an iid sample from the gamma distribution
with mean θ and shape parameter η. The likelihood of the parameters is

logL(θ, η) = nη log
η

θ
− n log Γ(η) + η

∑
log yi − η

θ

∑
i

yi.

Let D(η) = ∂ log Γ(η)/∂η. Verify the following results:

(a) We can express the likelihood in terms of the MLEs by using∑
i

log yi = −n log
η̂

θ̂
+ nD(η̂)∑

yi = nθ̂.

(b) The required Fisher information is

I(η̂θ) = n{D′(η̂θ)− 1/η̂θ}.
(c) The Jacobian term is

∂η̂

∂η̂θ
=

I(η̂θ)

I(η̂)
,

so the modified profile likelihood of θ is

logLm(θ) = logL(θ, η̂θ) +
1

2
log I(η̂θ).

Exercise 10.8: Assuming the exponential dispersion model, the log-likelihood
contribution from a single observation yi is

logL(θi, φ; yi) = {yiθi −A(θi)}/φ+ c(yi, φ).

In Sections 4.9 and 6.6 we describe an approximation

logL(θi, φ; yi) ≈ −1

2
log{2πφv(yi)} − 1

2φ
D(yi, μi),

where

D(yi, μi) = 2 log
L(yi, φ = 1; yi)

L(μi, φ = 1; yi)
,

and L(μi, φ = 1; yi) is the likelihood of μi based on a single observation yi,
assuming φ = 1. Assuming a regression model h(μi) = x′

iβ, where β ∈ Rp, show
that the modified profile log-likelihood of φ is

logL(φ) ≈
∑
i

{
−n− p

2
log{2πφv(yi)} − 1

2φ
D(yi, μ̂i)

}
.

This justifies the (n− p) divisor for the estimate of φ.



296 10. Dealing with nuisance parameters

Exercise 10.9: Compare the profile and the estimated likelihoods in the two-
sample Poisson and binomial examples in Sections 10.4 and 10.5.

Exercise 10.10: Provide a rough proof of Theorem 10.1
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Complex data structures

The focus in this chapter is on problems with complex data structure, in
particular those involving dependence and censoring. Modelling is crucial
for simplifying and clarifying the structure. Compromises with the likeli-
hood, for example using the marginal, conditional or estimated likelihood,
also become a necessity. With some examples we discuss the simplest thing
we can do with the data, with as little modelling as possible. This will pro-
vide a safety check for results based on more complex models; similar results
would give some assurance that the complex model is not off the mark. It
is important to recognize in each application the price and the reward of
modelling.

11.1 ARMA models
So far we have considered independent observations, where we only need
to model the probability of single outcomes. From independence, the joint
probability is simply the product of individual probabilities; this is not true
with dependent data. Suppose we observe a time series x1, . . . , xn; then,
in general, their joint density can be written as

pθ(x1, . . . , xn) = pθ(x1) pθ(x2|x1) . . . pθ(xn|x1, . . . , xn−1).

Difficulty in modelling arises as the list of conditioning variables gets long.
Generally, even for simple parametric models, the likelihood of time series
models can be complicated. To make the problems tractable we need to
assume some special structures. The main objective of standard modelling
assumptions is to limit the length of the conditioning list, while capturing
the dependence in the series.

A minimal requirement for time series modelling is weak stationarity,
meaning that xt has a constant mean, and the covariance cov(xt, xt−k) is
only a function of lag k. To make this sufficient for likelihood construction,
we usually assume a Gaussian model.

A large class of time series models that leads to a tractable likelihood
is the class of autoregressive (AR) models. A time series is said to be an
AR(p) series if

xt = θ0 + φ1xt−1 + · · ·+ φpxt−p + et,

where the so-called innovation or driving noise et is assumed to be an iid
series. The stationarity and correlation structure of the time series are
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determined solely by the parameters (φ1, . . . , φp). Likelihood analysis of
AR models typically assumes et’s are iid normal.

Example 11.1: An AR(1) model specifies

xt = θ0 + φ1xt−1 + et,

where et’s are iid N(0, σ2). This is equivalent to stating the conditional distribu-
tion of xt given its past is normal with mean θ0 +φ1xt−1 and variance σ2. Given
x1, . . . , xn, the likelihood of the parameter θ = (θ0, φ1, σ

2) is

L(θ) = pθ(x1)

n∏
t=2

pθ(xt|xu, u < t)

= pθ(x1)

n∏
t=2

pθ(xt|xt−1)

= pθ(x1)

n∏
t=2

(2πσ2)−1/2 exp
{
− 1

2σ2
(xt − θ0 − φ1xt−1)

2
}

≡ L1(θ) L2(θ),

where L1(θ) = pθ(x1). The term L2(θ) is a conditional likelihood based on
the distribution of x2, . . . , xn given x1. This conditional likelihood is commonly
assumed in routine data analysis; it leads to the usual least-squares computations.

How much information is lost by ignoring x1? Assuming |φ1| < 1, so the
series is stationary with mean μ and variance σ2

x, we find

Ext = θ0 + φ1Ext−1

or μ = θ0/(1− φ1). Iterated expansion of xt−1 in terms its past values yields

xt = μ+

∞∑
i=0

φi
1et−i

so

var(xt) = σ2

∞∑
i=0

φ2i
1

or σ2
x = σ2/(1− φ2

1). Therefore the likelihood based on x1 is

L1(θ) = (2πσ2)−1/2(1− φ2
1)

1/2 exp

[
−1− φ2

1

2σ2
{x1 − θ0/(1− φ1)}2

]
.

Hence x1 creates a nonlinearity in the estimation of φ1. If φ1 is near one, which
is the boundary of nonstationarity, the effect of nonlinearity can be substantial.

Figure 11.1 shows the likelihood of φ for simulated data with n = 100. For
simplicity it is assumed θ0 = 0 and σ2 = 1, the true values used in the simulation.
For the time series in Figure 11.1(a), the full and conditional likelihoods show

little difference. But when φ̂ is near one, as shown in Figure 11.1(d), the difference
is evident. The curvatures of the likelihoods at the maximum are similar, so we
cannot measure the effect of x1 using the Fisher information. �
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(b) Likelihood of φ
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(d) Likelihood of φ

Figure 11.1: (a) Simulated AR(1) time series, where φ̂ is far from the
boundary of nonstationarity. (b) The conditional (solid line) and full like-
lihood (dotted) of φ based on the time series data in (a). (c) and (d) The

same as (a) and (b) for φ̂ near one.

A rich class of parametric time series models commonly used in practice
is the autoregressive-moving average (ARMA) models (Box et al. 1994). A
time series xt that follows an ARMA(p, q) model can be represented as

xt = θ0 + φ1xt−1 + · · ·+ φpxt−p + et − θ1et−1 − · · · − θqet−q,

where the et’s are an iid series. Modelling time series data is more difficult
than standard regression analysis, since we are not guided by any mean-
ingful relationship between variables. There are a number of descriptive
tools to help us, such as the autocorrelation and partial autocorrelation
functions. Given a particular model choice, the derivation of a full Gaus-
sian likelihood is tedious, but there are some fast algorithms based on the
so-called state-space methodology (Mélard 1984).

11.2 Markov chains
A time series xt is a first-order Markov chain if

pθ(xt|x1, . . . , xt−1) = pθ(xt|xt−1),
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i.e. xt depends on the past values only through xt−1, or, conditional on
xt−1, xt is independent of the past values. An AR(1) model is a Markov
model of order one.

The simplest but still useful model is a two-state Markov chain, where
the data are a dependent series of zeros and ones; for example, xt = 1 if
it is raining and zero otherwise. This chain is characterized by a matrix of
transition probabilities

xt

0 1
0 θ00 θ01

xt−1

1 θ10 θ11

where θij = P (Xt = j|Xt−1 = i), for i and j equal to 0 or 1. The
parameters satisfy the constraints θ00 + θ01 = 1 and θ10 + θ11 = 1, so there
are two free parameters.

On observing time series data x1, . . . , xn, the likelihood of the parameter
θ = (θ00, θ01, θ10, θ11) is

L(θ) = pθ(x1)

n∏
t=2

p(xt|xt−1)

= pθ(x1)

n∏
t=2

θ1−xt
xt−10

θxt
xt−11

= pθ(x1)
∏
ij

θ
nij

ij

≡ L1(θ)L2(θ)

≡ L1(θ)L20(θ01)L21(θ11)

where nij is the number of transitions from state i to state j. For example,
if we observe a series

0 1 1 0 0 0

then n00 = 2, n01 = 1, n10 = 1 and n11 = 1. Again, here it is simpler to
consider the conditional likelihood given x1. The first term L1(θ) = pθ(x1)
can be derived from the stationary distribution of the Markov chain, which
requires a specialized theory (Feller 1968, Chapter XV).

The likelihood term L2(θ) in effect treats all the pairs of the form
(xt−1, xt) as if they are independent. All pairs with the same xt−1 are
independent Bernoulli trials with success probability θxt−11. Conditional
on x1, the free parameters θ01 and θ11 are orthogonal parameters, allowing
separate likelihood analyses via

L20(θ01) = (1− θ01)
n00θn01

01

and
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L21(θ11) = (1− θ11)
n10θn11

11 .

We would use this, for example, in (logistic) regression modelling of a
Markov chain. In its simplest structure the conditional MLEs of the pa-
rameters are

θ̂ij =
nij

ni0 + ni1
.

Example 11.2: Figure 11.2(a) shows the plot of asthma attacks suffered by a
child during 110 winter-days. The data (read by row) are the following:

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Assuming a first-order Markov model the observed transition matrix is

xt

0 1 Total
0 82 8 90

xt−1

1 8 11 19

For example, when the child is healthy today the estimated probability of an

attack tomorrow is θ̂01 = 8/90 = 0.09 (se = 0.03); if there is an attack today, the

probability of another attack tomorrow is θ̂11 = 11/19 = 0.58 (se = 0.11).
We can check the adequacy of the first-order model by extending the model to

a second or higher order, and comparing the likelihoods of the different models;
see Section 9.11. Derivation of the likelihood based on the higher-order models
is left as an exercise. �
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Figure 11.2: A time series of asthma attacks and a related pollution series.

Regression analysis
Figure 11.2(b) shows a time series of smoke concentration zt, measured
over the same 110-day period as the asthma series. The values of time
series zt are (read by row)
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291 466 730 633 1509 831 1038 403 553 996 400 267 329
466 570 668 446 362 387 246 361 467 940 1041 871 473
732 717 294 396 443 429 336 544 760 672 555 556 298
150 192 428 517 425 1000 1135 322 228 220 360 310 294
138 425 322 512 453 352 317 430 389 357 314 544 1353
720 574 796 246 260 184 172 133 261 406 770 1310 742
976 1701 1965 646 301 295 263 261 450 657 486 333 419
600 415 380 374 370 344 418 617 749 1587 1157 297 253
601 276 380 260 256 363

The association between asthma attacks and pollution level can be inves-
tigated by first-order Markov modelling. For example, we can model

logit θ01t = β0 + β1 pollutiont,

so the pollution level modifies the transition probabilities. This model may
be analysed using standard logistic regression analysis where the outcome
data are pairs of (0,0)’s as failures and (0,1)’s as successes. A simpler model
would have been

logit P (xt = 1) = β0 + β1 pollutiont,

but in this case the dependence in the asthma series has not been modelled.
The actual estimation of the model is left as an exercise.

11.3 Replicated Markov chains
Classical applications of time series, for example in engineering, business
or economics, usually involve an analysis of one long time series. New ap-
plications in biostatistics have brought short time series data measured on
many individuals; they are called repeated measures or longitudinal data.
The questions typically focus on comparison between groups of individuals;
the dependence structure in the series is a nuisance rather than a feature of
interest, and modelling is necessary to attain efficiency or correct inference.

Example 11.3: In a clinical trial of ulcer treatment, 59 patients were random-
ized to control or treatment groups. These patients were evaluated at baseline
(week 0) and at weeks 2, 4, 6 and 8, with symptom severity coded on a six-point
scale, where higher is worse. Table 11.1 shows the outcome data. Is there any
significant benefit of the treatment? �

In real studies there are potential complications such as

• some follow-up data may be missing,

• length of follow-up differs between subjects, and

• there could be other covariates of interest such as age, sex, etc.

The proper likelihood treatment of these problems is left as Exercises 11.12,
11.13 and 11.15.

The simplest analysis can be obtained by assessing the improvement at
the last visit (w8) relative to the baseline (w0):
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Control group Treated group
No. w0 w2 w4 w6 w8 No. w0 w2 w4 w6 w8
1 3 4 4 4 4 1 4 4 3 3 3
2 5 5 5 5 5 2 4 4 3 3 3
3 2 2 2 1 1 3 6 5 5 4 3
4 6 6 5 5 5 4 3 3 3 3 2
5 4 3 3 3 3 5 6 5 5 5 5
6 5 5 5 5 5 6 3 3 3 2 2
7 3 3 3 3 3 7 5 5 6 6 6
8 3 3 3 2 2 8 3 2 2 2 2
9 4 4 4 3 2 9 4 3 2 2 2
10 5 4 4 3 4 10 5 5 5 5 5
11 4 4 4 4 4 11 3 2 2 2 2
12 4 4 4 4 4 12 3 2 2 1 1
13 5 5 5 5 5 13 6 6 6 6 5
14 5 4 4 4 4 14 2 2 1 1 2
15 5 5 5 4 3 15 4 4 4 3 2
16 3 2 2 2 2 16 3 3 3 3 3
17 5 5 6 6 6 17 2 1 1 1 2
18 6 6 6 6 6 18 4 4 4 4 4
19 3 2 2 2 2 19 4 4 4 4 3
20 5 5 5 5 5 20 4 4 3 3 3
21 4 4 4 4 3 21 4 4 4 3 3
22 2 2 2 2 2 22 4 3 2 2 2
23 4 3 3 3 3 23 3 2 2 2 2
24 3 2 2 1 1 24 3 3 3 3 3
25 4 3 3 3 3 25 3 2 2 1 1
26 4 3 3 3 3 26 4 4 3 3 3
27 5 5 5 5 5 27 2 1 1 1 1
28 3 3 3 3 3 28 3 2 3 2 1
29 3 3 3 3 2 29 2 1 1 1 1
30 6 6 6 6 6

Table 11.1: Follow-up data on treatment of ulcers.

Change Control Treated Total
Better 16(53%) 22(76%) 38
No 14 7 21

Total 30 29 59

This table indicates some positive benefit. However, the standard χ2 statis-
tic for the observed 2×2 table is

χ2 =
(16× 7− 22× 14)259

30× 29× 38× 21
= 3.29,

with 1 degree of freedom; this gives a (one-sided) P-value=0.07, which is
not quite significant.

How much has been lost by ignoring most of the data? To include
the whole dataset in the analysis we need to consider a more complicated
model. Assuming a first-order Markov model
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P (xk = j|xt, t ≤ k − 1) = P (xk = j|xk−1)

would spawn a 6×6 transition matrix with 6 × (6 − 1) = 30 independent
parameters for each group; using this most general model, it would not be
obvious how to compare the treatment versus the placebo groups.

This can be simplified by assuming a patient can only change by one
level of severity in a two-week period. The transition probability from state
i to state j is given by, for i = 2, . . . , 5,

pij =

⎧⎪⎪⎨⎪⎪⎩
p if j = i+ 1 (worse)
q if j = i− 1 (better)
1− p− q if j = i (same)
0 otherwise.

The model is completed by specifying the boundary probabilities

p1j =

⎧⎨⎩ p if j = 2
1− p if j = 1
0 otherwise.

p6j =

⎧⎨⎩ q if j = 5
1− q if j = 6
0 otherwise.

In view of the model, the data can be conveniently summarized in the
following table

Transition
Change Control Treated probability
1→ 1 2 11 1− p
1→ 2 0 2 p
6→ 6 11 5 1− q
6→ 5 1 3 q
other +1 3 2 p
other 0 84 63 1− p− q
other −1 19 30 q
Total 120 116

where ‘other +1’ means a change of +1 from the states 2, . . . , 5. The
data satisfy the assumption of no jump of more that one point; extension
that allows for a small transition probability of a larger jump is left as an
exercise. The likelihood of the parameters p and q for each group can be
computed based on the table (Exercise 11.11). The two groups can now be
compared, for example, in terms of the parameter q alone or the difference
q − p.

If we are interested in comparing the rate of improvement we can com-
pare the parameter q; for this we can reduce the data by conditioning on
starting at states 2 or worse, so we can ignore the first two lines of the table
and combine the rest into a 2×2 table
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Change Control Treated Total
Better (−1) 20(17%) 33(32%) 53
No (≥ 0) 98 70 168
Total 118 103 221

which now yields χ2 = 6.87 with P-value=0.009. The interpretation is
different from the first analysis: there is strong evidence that the treatment
has a short-term benefit in reducing symptoms.

11.4 Spatial data
Spatial data exhibit dependence like time series data, with the main differ-
ence that there is no natural direction in the dependence or time-causality.
Spatially dependent data exhibit features such as

• clustering or smooth variation: high values tend to appear near each
other; this is indicative of a local positive dependence;

• almost-regular pattern: high or low values tend to appear individually,
indicating a negative spatial dependence or a spatial inhibition;

• streaks: positive dependence occurs along particular directions. Long
streaks indicate global rather than local dependence.

We should realize, however, that a completely random pattern must show
some local clustering. This is because if there is no clustering at all we will
end up with a regular pattern. Except in extreme cases, our eyes are not
good at judging if a particular clustering is real or spurious.

In many applications it is natural to model the value at a particular
point in space in terms of the surrounding values. Modelling of spatial data
is greatly simplified if the measurements are done on a regular grid or lattice
structure, equivalent to equal-space measurement of time series. However,
even for lattice-structured data the analysis is marked by compromises.

The spatial nature of an outcome y (‘an outcome’ here is a whole im-
age) can be ignored if we model y in terms of spatially varying covariates
x. Conditional on x we might model the elements of y as being indepen-
dent; this assumes any spatial dependence in y is inherited from that in
x. For example, the yield y of a plant may be spatially dependent, but
the dependence is probably induced by fertility x. With such a model the
spatial dependence is assumed to be fully absorbed by x, and it can be
left unmodelled. So the technique we discuss in this section is useful if we
are interested in the dependence structure itself, or if there is a residual
dependence after conditioning on a covariate x.

One-dimensional Ising model
To keep the discussion simple, consider a linear lattice or grid system where
we observe an array y1, . . . , yn. What is a natural model to describe its
probabilistic behaviour? We can still decompose the joint probability as

p(y1, . . . , yn) = p(y1) p(y2|y1) . . . p(yn|yn−1, . . .),
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but such a decomposition is no longer natural, since it has an implied left-
to-right direction. There are generalizations of the ARMAmodels to spatial
processes. The key idea is that the probabilistic behaviour of the process
at a particular location is determined by the nearby values or neighbours.

For example, we might want to specify a first-order model

p(yk|y1, . . . , yk−1, yk+1, . . . , yn) = p(yk|yk−1, yk+1).

The problem is that, except for the Gaussian case, it is not obvious how to
build the likelihood from such a specification. The product of such condi-
tional probabilities for all values y1, . . . , yn is not a true likelihood. In its
simplest form, if we observe (y1, y2), the product of conditional probabili-
ties is

p(y1|y2) p(y2|y1),

while the true likelihood is

p(y1) p(y2|y1).

To simplify the problem further, suppose yi can only take 0–1 values.
The famous Ising model in statistical mechanics specifies the joint distribu-
tion of y1, . . . , yn as follows. Two locations j and k are called neighbours if
they are adjacent, i.e. |j − k| = 1; for example, the neighbours of location
k = 3 are j = 2 and j = 4. Let nk be the sum of yj ’s from neighbours of
k. The Ising model specifies that, conditional on the edges y1 and yn, the
joint probability of y2, . . . , yn−1 is

p(y2, . . . , yn−1|y1, yn) = exp

{
α

n−1∑
k=2

yk + β

n−1∑
k=2

yknk − h(α, β)

}
,

where h(α, β) is a normalizing constant. The parameter β measures the
local interaction between neighbours. If β = 0 then y2, . . . , yn−1 are iid
Bernoulli with parameter eα. Positive β implies positive dependence, so
that values of yi’s tend to cluster; this will be obvious from the conditional
probability below.

It is not easy to compute the true likelihood from the joint probability,
since the normalizing factor h(α, β) is only defined implicitly. However, we
can show (Exercise 11.16) that the conditional probability of yk given all
of the other values satisfies the logistic model

P (yk = 1|y1, . . . , yk−1, yk+1, . . . , yn) =
exp(α+ βnk)

1 + exp(α+ βnk)
,

so it is totally determined by the local neighbours. It is tempting to define
a likelihood simply as the product of the conditional probabilities. That
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is in fact the common approach for estimating the Ising model, namely we
use

L(α, β) =
n−1∏
k=2

p(yk|y1, . . . , yk−1, yk+1, . . . , yn),

known as pseudo-likelihood (Besag 1974, 1975); it is a different likelihood
from all we have defined previously, and inference from it should be viewed
with care. Besag and Clifford (1989) developed an appropriate Monte Carlo
test for the parameters. The practical advantage of the pseudo-likelihood
is obvious: parameter estimation can be performed using standard logistic
regression packages.

Example 11.4: As a simple illustration of the Ising model, consider analysing
the dependence structure in the following spatial data:

0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1

The data for the logistic regression can be set up first in terms of data pairs
(yk, nk) for k = 2, . . . , 29. There are 30 total points in the data, and we have
28 points with two neighbours. Thus (y2 = 0, n2 = 0), (y3 = 0, n3 = 1), . . . ,
(y29 = 1, n29 = 2) and we can group the data into

nk yk = 0 yk = 1 Total
0 2 2 4
1 9 9 18
2 2 4 6

Estimating the logistic regression model with nk as the predictor, the maximum
pseudo-likelihood estimates and the standard errors of the parameters (α, β) are
given in the following:

Effect Parameter Estimate se
Constant α −0.27 0.79
nk β 0.38 0.65

The analysis shows that there is no evidence of local dependence in the series. �

Two-dimensional Ising model

Extension to true spatial data with a two-dimensional grid structure (i, j)
is as follows. Suppose we observe a two-dimensional array yij of 0–1 values.
The most important step is the definition of neighbourhood structure. For
example, we may define the locations (i, j) and (k, l) as ‘primary’ neigh-
bours if |i − k| = 1 and j = l, or |j − l| = 1 and i = k; the ‘diagonal’ or
‘secondary’ neighbours are those with |i − k| = 1 and |j − l| = 1. (Draw
these neighbours to get a clear understanding.) Depending on the applica-
tions we might treat these different neighbours differently. Let nij be the
sum of yij ’s from the primary neighbours of location (i, j), and mij be the
sum from the diagonal neighbours. Then a general Ising model of the joint
distribution of yij (conditional on the edges) implies a logistic model

P (yij = 1|other yij ’s) = exp(α+ βnij + γmij)

1 + exp(α+ βnij + γmij)
.
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Estimation of the parameters based on the pseudo-likelihood can be done
using standard logistic regression packages.

Gaussian models

To describe the Gaussian spatial models it is convenient to first vectorize
the data into y = (y1, . . . , yn). The neighbourhood structure can be pre-
served in an n× n matrix W with elements wii = 0, and wij = 1 if i and j
are neighbours, and zero otherwise. The domain of y can be irregular.

The Gaussian conditional autoregressive (CAR) model specifies that the
conditional distribution of yi given the other values is normal with mean
and variance

E(yi|yj , j 
= i) = μi +
∑
j

cij(yj − μj)

var(yi|yj , j 
= i) = σ2
i .

Let C ≡ [cij ] with cii = 0 and D ≡ diag[σ2]. The likelihood can be derived
from the unconditional distribution of y, which is N(μ,Σ) with

μ = (μ1, . . . , μn)

Σ = (In − C)−1D,

provided Σ is a symmetric positive definite matrix; In is an n× n identity
matrix. The symmetry is satisfied if cijσ

2
j = cjiσ

2
i . For modelling purposes,

some simplifying assumptions are needed, such as equal variance and a
first-order model, which specifies cij = φ if i and j are neighbours and zero
otherwise. Some model fitting examples can be found in Ripley (1988).

An important application of spatial data analysis is in smoothing sparse
disease maps, where the raw data exhibit too much noise for sensible read-
ing. The input for these maps are count data, which are not covered by
the Ising model. However, the pseudo-likelihood approach can be extended
for such data (Exercise 11.20). The problem can also be approached using
mixed model in Section 18.10. For this purpose it is useful to have a non-
stationary process for the underlying smooth function. Besag et al. (1991)
suggest a nonstationary CAR model defined by the joint distribution of a
set of differences. The log-density is

log p(y) = −N

2
log(2πσ2)− 1

2σ2

∑
ij

wij(yi − yj)
2

= −N

2
log(2πσ2)− 1

2σ2
y′R−1y

where N =
∑

wij is the number of neighbour pairs and σ−2R−1 is the
inverse covariance matrix of y. It can be shown that R−1 = [rij ], where
rii =

∑
j wij and rij = −wij if i 
= j.
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11.5 Censored/survival data
In most clinical trials or reliability studies it is not possible to wait for all
experimental units to reach their ‘end-point’. An end-point in a survival
study is the time of death, or appearance of a certain condition; in general
it is the event that marks the end of follow-up for a subject. Subjects are
said to be censored if they have not reached the end-point when the study
is stopped, or are lost during follow-up. In more general settings, censored
data are obtained whenever the measurement is not precise; for example,
a binomial experiment where (i) the number of successes is known only to
be less than a number, or (ii) the data have been grouped.

Example 11.5: Two groups of rats were exposed to carcinogen DBMA, and
the number of days to death due to cancer was recorded (Kalbfleisch and Prentice
1980).

Group 1 : 143, 164, 188, 188, 190, 192, 206, 209, 213,

216, 220, 227, 230, 234, 246, 265, 304, 216+, 244+

Group 2 : 142, 156, 163, 198, 205, 232, 232, 233, 233,

233, 233, 239, 240, 261, 280, 280, 296, 296,

323, 204+, 344+

Values marked with ‘+’ are censored. Is there a significant difference between
the two groups? �

In this example four rats were ‘censored’ at times 216, 244, 204 and 344;
those rats were known not to have died of cancer by those times. Possible
reasons for censoring are

• deaths due to other causes;

• being alive when the study ends.

The group comparison problem is simple, although the censored data presents
a problem. How do we treat these cases? We can

• ignore the censoring information, i.e. we treat all the data as if they
are genuine deaths;

• drop the censored cases, so we are dealing with genuine deaths;

• model the censored data properly.

The first two methods can be very biased and misleading if the censoring
patterns in the groups differ. The second method is inefficient even if the
censoring patterns in the two groups are similar. With a correct model, the
last method is potentially the best as it would take into account whatever
information is available in the censored data.

The censored data can be written as pairs (y1, δ1), . . . , (yn, δn), where δi
is the last-known status or event indicator: δi = 1 if yi is a true event time,
and zero otherwise. If ti is the true lifetime of subject i, then δi = 0 iff
ti > yi. We would be concerned with modeling the true lifetime ti rather
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than the observed yi, since censoring is usually a nuisance process that
does not have any substantive meaning, for example it can be determined
by the study design.

Suppose t1, . . . , tn are an iid sample from pθ(t). The likelihood contri-
bution of the observation (yi, δi) is

Li(θ) = Pθ(Ti > yi) if δi = 0

or
Li(θ) = pθ(ti) if δi = 1.

The probability Pθ(Ti > yi) is called the survival function of Ti. The overall
likelihood is

L(θ) =
n∏

i=1

Li(θ)

=
n∏

i=1

{pθ(yi)}δi{Pθ(Ti > yi)}1−δi .

As an example, consider a simple exponential model, which is commonly
used in survival and reliability studies, defined by

pθ(t) =
1

θ
e−t/θ

Pθ(T > t) = e−t/θ.

In this case

L(θ) =

(
1

θ

)∑ δi

exp(−
∑

yi/θ).

Upon taking the derivative of the log-likelihood we get the score function

S(θ) = −
∑

δi
θ

+

∑
i yi
θ2

and setting it to zero, we get

θ̂ =

∑
yi∑
δi
.

Note that
∑

yi is the total observation times including both the cen-
sored and uncensored cases, while

∑
δi is the number of events. The in-

verse 1/θ̂ is an estimate of the event rate. This is a commonly used formula
in epidemiology, and known as the person-year method. For example, the
Steering Committee of the Physicians’ Health Study Research Group (1989)
reported the rate of heart attacks as 254.8 per 100,000 person-years in the
aspirin group, compared with 439.7 in the placebo group; see Section 1.1.
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With some algebra the observed Fisher information of θ is

I(θ̂) =

∑
δi

θ̂2
,

so the standard error of θ̂ is

se(θ̂) =
θ̂

(
∑

δi)1/2
.

Example 11.5: continued. Assume an exponential model for excess life-
time over 100 days (in principle we can make this cutoff value another unknown
parameter), so from Group 1 we get n = 19,

∑
yi = 2195,

∑
δi = 17 and

L(θ1) =
(

1

θ1

)17

exp(−2195/θ1),

which yields θ̂1 = 2195/17 = 129.1 (se = 31.3). The plot of the likelihood
function is given in Figure 11.3(a). Similarly, from Group 2 we have n = 21,∑

yi = 2923,
∑

δi = 19 and

L(θ2) =
(

1

θ2

)19

exp(−2923/θ2),

which yields θ̂2 = 2923/19 = 153.8 (se = 35.3). There is some indication that
rats from Group 2 live longer than those from Group 1. The standard error of

θ̂1 − θ̂2 is
se(θ̂1 − θ̂2) = {se(θ̂1)2 + se(θ̂2)

2}1/2 = 47.2.

The Wald statistic for comparing the mean of Group 1 with the mean of Group 2
is z = (129.1− 153.8)/47.2 = −0.53.

The following table compares the results of the three methods mentioned
earlier. The normal model will be described later. �

Sample mean t- or Wald
Method Group 1 Group 2 statistic
Ignore 115.5 139.2 −1.65
Drop cases 113.8 135.5 −1.49
Exp. model 129.1 153.8 −0.53
Normal model 119.1 142.6 −1.56

The result based on the exponential model is the least significant, which
of course does not mean it is the best result for this dataset. Such a result is
strongly dependent on the chosen model. Is the exponential model a good
fit for the data? Figure 11.3(b) shows the QQ-plot of the uncensored obser-
vations versus the theoretical exponential distribution, indicating that the
exponential model is doubtful. (A proper QQ-plot that takes the censored
data into account requires an estimate of the survival function, which is
given by the so-called Kaplan–Meier estimate below.)

The mean–variance relationship implied by the exponential model also
does not hold: the variance is much smaller than the square of the mean.



312 11. Complex data structures

50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

Li
ke

lih
oo

d

group2group1

(a) Exponential model
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(c) Normal model
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(d) Normality check

Figure 11.3: Analysis of the rat data: the first row assumes exponential
model and the second row assumes normal model.

For the uncensored data there is an underdispersion factor of around 0.11.
This means that the exponential-based likelihood is too wide. A proper
model that takes the dispersion factor into account is given by the general
survival regression model in the next section.

Normal model

Suppose ti’s are an iid sample from N(μ, σ2). The likelihood contribution
of an uncensored observation yi is

pθ(yi) = (2πσ2)−1/2 exp

{
− 1

2σ2
(yi − μ)2

}
and the contribution of a censored observation is

Pθ(yi) = 1− Φ

(
yi − μ

σ

)
where Φ(·) is the standard normal distribution function. The functions are
analytically more difficult than those in the exponential model, and there
are no explicit formulae.

For the rat data, the likelihood of μ based on the normal model is shown
in Figure 11.3(c). To simplify the computations it is assumed that the two
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groups have equal variance, and the variance is known at the estimated
value from the uncensored data. The QQ-plot suggests the normal model
seems to be a better fit. A formal comparison can be done using the AIC.

Kaplan–Meier estimate of the survival function

The most commonly used display of survival data is the Kaplan–Meier
estimate of the survival function. It is particularly useful for a graphical
comparison of several survival functions. Assume for the moment that
there is no censored data and no tie, and let t1 < t2 < · · · < tn be the
ordered failure times. The empirical distribution function (EDF)

Fn(t) =
number of failure times ti’s ≤ t

n

is the cumulative proportion of mortality by time t. In Section 15.1 this is
shown to the nonparametric MLE of the underlying distribution, therefore
the MLE of the survival function is

Ŝ(t) = 1− Fn(t).

The function Ŝ(t) is a step function with a drop of 1/n at each failure time,

starting at Ŝ(0) ≡ 1.

We can reexpress Ŝ(t) in a form that is extendable to censored data.
Let ni be the number ‘at risk’ (yet to fail) just prior to failure time ti. If
there is no censoring n1 = n, n2 = n − 1, and ni = n − i + 1. It is easily
seen that

Ŝ(t) =
∏
ti≤t

ni − 1

ni
.

For example, for t3 ≤ t < t4,

Ŝ(t) =
n1 − 1

n1
× n2 − 1

n2
× n3 − 1

n3

=
n− 1

n
× n− 2

n− 1
× n− 3

n− 2

=
n− 3

n
= 1− 3

n
= 1− Fn(t).

If there are ties, we only need a simple modification. Let t1, . . . , tk be
the observed failure times, and d1, . . . , dk be the corresponding number of
failures. Then

Ŝ(t) =
∏
ti≤t

ni − di
ni

.

Exactly the same formula applies for censored data, and it is called
Kaplan–Meier’s product limit estimate of the survival function. It can be
shown that the Kaplan–Meier estimate is the MLE of the survival distribu-
tion; see Kalbfleisch and Prentice (1980, page 11), and also Section 11.10.
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Information from the censored cases is used in computing the number at
risk ni’s. With uncensored data

ni = ni−1 − di−1,

i.e. the number at risk prior to time ti is the number at risk prior to the
previous failure time ti−1 minus the number that fails at time ti−1. With
censored data,

ni = ni−1 − di−1 − ci−1,

where ci−1 is the number censored between failure times ti−1 and ti. (If
there is a tie between failure and censoring times, it is usually assumed
that censoring occurs after failure.)

These ideas can be grasped easily using a toy dataset (y1, . . . , y6) =
(3, 4, 6+, 8, 8, 10). Here, we have

i ti ni di ci Ŝ(t)
0 t0 ≡ 0 6 0 0 1
1 3 6 1 0 5/6
2 4 5 1 1 5/6× 4/5 = 4/6
3 8 3 2 0 5/6× 4/5× 1/3 = 2/9
4 10 1 1 0 0

For larger datasets the computation is tedious, but there are many
available softwares. Figure 11.4 shows the Kaplan–Meier estimates of the
survival functions of the rat groups in Example 11.5. The plot indicates a
survival advantage of group 2 over group 1.
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Figure 11.4: Kaplan–Meier estimates of the survival function of group 1
(solid) and group 2 (dashed) of the rat data in Example 11.5.

11.6 Survival regression models
In the same spirit as the models we develop in Chapter 6, the previous
example can be extended to a general regression framework. Suppose we
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want to analyse the effect of some characteristics x on survival; for example,
x is a group indicator (x = 0 or 1 in the rat data example). Using an
exponential model

ti ∼ Exponential(θi),

where the mean θi is a function of the covariates xi, connected via a link
function h(·), such that

h(θi) = x′
iβ.

We might consider the identity link

θi = x′
iβ

or the log-link
log θi = x′

iβ.

The log-link function is more commonly used since θi > 0.
Based on the observed data (y1, δ1, x1), . . ., (yn, δn, xn) the likelihood

function of the regression parameter β can written immediately as

L(β) =
n∏

i=1

{pθi(yi)}δi{Pθi(Ti > yi)}1−δi ,

where θi is a function of β, and

pθi(yi) = θ−1
i e−yi/θi ,

and
Pθi(yi) = e−yi/θi .

As we have seen before the exponential model specifies a rigid rela-
tionship between the mean and the variance. An extension that allows a
flexible relationship is essential. To motivate a natural development, note
that if T is exponential with mean θ, then

log T = β0 +W

where β0 = log θ and W has the standard extreme-value distribution with
density

p(w) = ew exp(−ew)

and survival function

P (W > w) = exp(−ew).

A more flexible regression model between a covariate vector xi and outcome
Ti can be developed by assuming

log Ti = log θi + σWi

where Wi’s are iid with standard extreme-value distribution, and σ is a
scale parameter. This extension is equivalent to using the Weibull model.
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As usual, the parameter θi is related to the covariate vector xi via a
link function. For example, using the log-link

log θi = x′
iβ.

This is the so-called accelerated failure time model: the parameter eβ is
interpreted as the multiplicative effect of a unit change in x on average
lifetime.

The likelihood can be computed from the Weibull survival function

Pθi(Ti > yi) = P{log(Ti/θi) > log(yi/θi)}
= P{Wi > log(yi/θi)

1/σ}
= exp{−(yi/θi)

1/σ}
and density function

pθi(yi) = σ−1y
1/σ−1
i θ

−1/σ
i exp{−(yi/θi)

1/σ}.

Example 11.6: For the rat data in Example 11.5, suppose we model the mean
θi as

log θi = β0 + β1xi

where xi = 0 or 1, for Group 1 or 2, respectively. The following table summarizes
the analysis using the exponential model (σ = 1) and the general model by letting
σ be free.

Exponential General
Effect Parameter Estimate se Estimate se
Constant β0 4.861 0.243 4.873 0.079
Group β1 0.175 0.334 0.213 0.108
Scale σ 1 − 0.32 −

For the exponential model the estimated mean ratio of the two groups is eβ̂1 =
1.19 = 153.8/129.1 as computed before. The estimated scale σ̂ = 0.32 gives
a dispersion factor σ̂2 = 0.10, as expected from the previous discussion of this
example. Since the exponential model (σ = 1) is a special case of the general
model, we can test its adequacy by the likelihood ratio test: find the maximized
likelihood under each model, and compute the likelihood ratio statistic W = 44.8,
which is convincing evidence against the exponential model.

Under the general model, we obtain z = 0.213/0.108 = 1.98 for the observed
group difference, which is borderline significant. Checking the appropriateness of
the quadratic approximation for the profile likelihood of β1 is left as an exercise. �

11.7 Hazard regression and Cox partial likelihood
The hazard function is indispensable in the analysis of censored data. It is
defined as

λ(t) = p(t)/P (T > t),

and interpreted as the rate of dying at time t among the survivors. For
example, if T follows an exponential distribution with mean θ, the hazard
function of T is
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λ(t) = 1/θ.

This inverse relationship is sensible, since a short lifetime implies a large
hazard. Because the hazard function is constant the exponential model
may not be appropriate for living organisms, where the hazard is typically
higher at both the beginning and the end of life. Models can be naturally
put in hazard form, and the likelihood function can be computed based on
the following relationships:

λ(t) = −d logP (T > t)

dt
(11.1)

logP (T > t) = −
∫ t

0

λ(u)du (11.2)

log p(t) = log λ(t)−
∫ t

0

λ(u)du. (11.3)

Given censored data (y1, δ1, x1), . . ., (yn, δn, xn), where δi is the event
indicator, and the underlying ti has density pθi(ti), the log-likelihood func-
tion contribution of (yi, δi, xi) is

logLi = δi log pθi(yi) + (1− δi) logPθi(yi)

= δi log λi(yi)−
∫ yi

0

λi(u)du (11.4)

where the parameter θi is absorbed by the hazard function. Only uncen-
sored observations contribute to the first term.

The most commonly used model in survival analysis is the proportional
hazard model of the form

λi(t) = λ0(t)e
x′
iβ . (11.5)

In survival regression or comparison studies the baseline hazard λ0(t) is a
nuisance parameter; it must be specified for a full likelihood analysis of the
problem. Here is a remarkable property of the model that avoids the need
to specify λ0(t): if lifetimes T1 and T2 have proportional hazards

λi(t) = λ0(t)ηi

for i = 1, 2, respectively, then

P (T1 < T2) = η1/(η1 + η2)

regardless of the shape of the baseline hazard function (Exercise 11.28).
We can interpret the result this way: if η1 > η2 then it is more likely that
subject 1 will die first.

Such a probability can be used in a likelihood function based on knowing
the event [T1 < T2] alone, namely only the ranking information is used, not
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the actual values. Such a likelihood is then a marginal likelihood. If xi is
the covariate vector associated with Ti and we model

ηi = ex
′
iβ ,

then the likelihood of β based on observing the event [T1 < T2] is

L(β) =
ex

′
1β

ex
′
1β + ex

′
2β

,

which is free of any nuisance parameter.
In general, given a sample T1, . . . , Tn from a proportional hazard model

λi(t) = λ0(t)e
x′
iβ ,

the probability of a particular configuration (i1, . . . , in) of (1, . . . , n) is

P (Ti1 < Ti2 < · · · < Tin) =

n∏
j=1

e
x′
ij
β
/(
∑
k∈Rj

ex
′
kβ), (11.6)

where Rj is the list of subjects where T ≥ Tij , which is called the ‘risk
set’ at time Tij . It is easier to see this in an example for n = 3: for
(i1, i2, i3) = (2, 3, 1) we have

P (T2 < T3 < T1) =
ex

′
2β

ex
′
1β + ex

′
2β + ex

′
3β

× ex
′
3β

ex
′
1β + ex

′
3β

× ex
′
1β

ex
′
1β

.

The likelihood of the regression parameter β computed from this for-
mula is called the Cox partial likelihood (Cox 1972, 1975), the main tool
of survival analysis. With this likelihood we are only using the ranking
observed in the data. In the example with n = 3 above we only use the
information that subject 2 died before subject 3, and subject 3 died before
subject 1. If the baseline hazard can be any function, it seems reasonable
that there is very little extra information beyond the ranking information
in the data. In fact, it has been shown that, for a wide range of underlying
hazard functions, the Cox partial likelihood loses little or no information
(Efron 1977).

Extension to the censored data case is intuitively obvious by thinking of
the risk set at each time of death: a censored value only contributes to the
risk sets of the prior uncensored values, but it cannot be compared with
later values. For example, if we have three data values 1, 5+ and 7, where
5+ is censored, we only know that 1 is less than 5+ and 7, but we cannot
distinguish between 5+ and 7. In view of this, the same likelihood formula
(11.6) holds.

Example 11.7: The following toy dataset will be used to illustrate the con-
struction of the Cox likelihood for a two-group comparison.
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i xi yi δi
1 0 10 0
2 0 5 1
3 0 13 1
4 1 7 1
5 1 21 1
6 1 17 0
7 1 19 1

Assume a proportional hazard model

λi(t) = λ0(t)e
xiβ .

We first sort the data according to the observed yi.

i xi yi δi
2 x2 =0 5 1
4 x4 =1 7 1
1 x1 =0 10 0
3 x3 =0 13 1
6 x6 =1 17 0
7 x7 =1 19 1
5 x5 =1 21 1

The Cox partial likelihood of β is

L(β) =
ex2β∑7

i=1
exiβ

× ex4β

ex4β + ex1β + ex3β + ex6β + ex7β + ex5β

× ex3β

ex3β + ex6β + ex7β + ex5β

× ex7β

ex7β + ex5β
.

Note that only uncensored cases can appear in the numerator of the likelihood.
The Cox partial likelihood is generally too complicated for direct analytical work;
in practice most likelihood quantities such as MLEs and their standard errors are
computed numerically. In this example, since xi is either zero or one, it is possible
to simplify the likelihood further. �

Example 11.8: Suppose we assume the proportional hazard model for the rat
data in Example 11.5:

λ(t) = λ0(t)e
β1xi ,

where xi = 0 or 1 for Group 1 or 2, respectively. We do not need an intercept
term β0 since it is absorbed in the baseline hazard λ0(t). The estimate of β1 is

β̂1 = −0.569 (se = 0.347),

giving a Wald statistic of z = −1.64, comparable with the result based on the
normal model. The minus sign means the hazard of Group 2 is e−0.569 = 0.57
times the hazard of Group 1; recall that the rats in Group 2 live longer.

The estimated hazard ratio, however, is much smaller than what we get using
a constant hazard assumption (i.e. the exponential model); in Example 11.5 we
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obtain a ratio of 129.1/153.8 = e−0.175 = 0.84. Since the shape of the hazard
function in the Cox regression is free the result here is more plausible, although
the ratio 0.57 is no longer interpretable as a ratio of mean lifetimes. The propor-
tional hazard assumption itself can be checked; see, for example, Grambsch and
Therneau (1994). �

11.8 Poisson point processes
Many random processes are events that happen at particular points in time
(or space); for example, customer arrivals to a queue, times of equipment
failures, times of epilepsy attacks in a person, etc. Poisson point or counting
processes form a rich class of models for such processes. Let N(t) be the
number of events up to time t, dt a small time interval, and o(dt) a quantity
of much smaller magnitude than dt in the sense o(dt)/dt → 0 as dt → 0.
The function N(t) captures the point process and we say N(t) is a Poisson
point process with intensity λ(t) if

N(t+ dt)−N(t) =

⎧⎨⎩ 1 with probability λ(t)dt
0 with probability 1− λ(t)dt
> 1 with probability o(dt)

and N(t+ dt)−N(t) is independent of N(u) for u < t; the latter is called
the independent increment property, which is a continuous version of the
concept of independent trials.

It is fruitful to think of a Poisson process informally this way: N(t +
dt)−N(t), the number of events between t and t+dt, is Poisson with mean
λ(t)dt. In a regular Poisson process, as defined above, there is a maximum
of one event that can conceivably happen in an interval dt, so N(t+ dt)−
N(t) is also approximately Bernoulli with probability λ(t)dt. Immediately
identifying N(t+ dt)−N(t) as Poisson leads to simpler heuristics.

What we observe is determined stochastically by the intensity parame-
ter λ(t). Statistical questions can be expressed via λ(t). It is intuitive that
there is a close connection between this intensity function and the hazard
function considered in survival analysis. The developments here and in
the next sections are motivated by Whitehead (1983), Lawless (1987) and
Lindsey (1995).

The first problem is, given a set of observations t1, . . . tn, what is the
likelihood of λ(t)? To answer this we first need two results from the theory
of point processes. Both results are intuitively obvious; to get a formal
proof see, for example, Diggle (1983). For the first result, since the number
of events in each interval is Poisson, the sum of events on the interval (0, T )
is

N(T ) =
∑

0<t<T

{N(t+ dt)−N(t)}

∼ Poisson with mean
∑
t

λ(t)dt.

So, in the limit we have:
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Theorem 11.1 N(T ) is Poisson with mean
∫ T

0
λ(t)dt.

Furthermore, the way t1, . . . , tn are arranged will be determined by λ(t),
as shown by the following.

Theorem 11.2 Given N(T ) = n, the times t1, . . . , tn are distributed like
the order statistics of an iid sample from a distribution with density pro-
portional to λ(t).

To make it integrate to one, the exact density is given by

λ(t)∫ T

0
λ(u)du

.

Suppose we model λ(t) = λ(t, θ), where θ is an unknown parameter. For
example,

λ(t) = αeβt

with θ = (α, β). For convenience, let

Λ(T ) ≡
∫ T

0

λ(t)dt

be the cumulative intensity. Then, given the observation times 0 < t1, . . . , tn <
T , the likelihood of the parameters is

L(θ) = P{N(T ) = n)× p{t1, . . . , tn|N(t) = n}

= e−Λ(T )Λ(T )
n

n!
× n!

n∏
i=1

λ(ti)

Λ(T )

= e−Λ(T )
n∏

i=1

λ(ti).

It is instructive to follow a heuristic derivation of the likelihood, since
it applies more generally for point processes. First, partition the time axis
into tiny intervals of length dt, such that only a single event can conceivably
occur. On each interval let y(t) ≡ N(t + dt) − N(t); then the time series
y(t) is an independent Poisson series with mean λ(t)dt. Observing N(t)
for 0 < t < T is equivalent to observing the series y(t), where y(t) = 1 at
t1, . . . , tn, and zero otherwise; since we are thinking of dt as very small, the
series y(t) is mostly zero. For example, using dt as the time unit, events at
times t1 = 3 and t2 = 9 during observation period T = 10 mean the series
y(t) is (0,0,1,0,0,0,0,0,1,0).

Given the observation times 0 < t1, . . . , tn < T , we obtain the likelihood

L(θ) =
∏
t

p(yt)
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=
∏
t

exp{−λ(t)dt}λ(t)y(t)

≈ exp{−
∑
t

λ(t)dt}
n∏

i=1

λ(ti)

≈ exp{−
∫ T

0

λ(t)dt}
n∏

i=1

λ(ti),

as we have just seen.
The last heuristic can be put into more technical notation. Let dN(t) ≡

y(t) = N(t+ dt)−N(t); then the log-likelihood can be written as

logL(θ) = −
∫ T

0

λ(t) dt+

n∑
i=1

log λ(ti) (11.7)

= −
∫ T

0

λ(t) dt+

∫ T

0

log λ(t) dN(t),

where for any function h(t)∫ T

0

h(t) dN(t) ≈
∑
t

h(t) dN(t)

=
n∑

i=1

h(ti).

Note that, because of the way dN(t) is defined, the intensity function λ(t)
can include values of the process N(t), or any other data available prior to
time t, without changing the likelihood. Andersen et al. (1993) provide a
rigorous likelihood theory for counting processes.

The close connection between Poisson intensity modelling and hazard
modelling of survival data in Section 11.7 is now clear: the likelihood (11.7)
reduces to (11.4) if we limit ourselves to absorbing events (events that can
occur only once, such as deaths, or events that end the observation period).
It is also clear that the Poisson process models are more general than the
survival models as they allow multiple end-points per subject.

Example 11.9: The following data (from Musa et al. 1987) are the times of
136 failures (in CPU seconds) of computer software during a period of T = 25.4
CPU hours. At each failure the cause is removed from the system. The questions
are how fast can bugs be removed from the system, and how many bugs are still
in the system. The histogram in Figure 11.5(a) shows that the number of failures
decreases quickly over time. �

3 33 146 227 342 351 353 444 556 571 709
759 836 860 968 1056 1726 1846 1872 1986 2311 2366

2608 2676 3098 3278 3288 4434 5034 5049 5085 5089 5089
5097 5324 5389 5565 5623 6080 6380 6477 6740 7192 7447
7644 7837 7843 7922 8738 10089 10237 10258 10491 10625 10982
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Figure 11.5: (a) The vertical lines on the x-axis indicate the failure times;
the histogram simply shows the number of failures in each 2-hour interval.
(b) The likelihood of the parameters of an exponential decline model λ(t) =
αeβt. (c) The fitted intensity function compared with the histogram. (d)
The time series of scaled inter-failure times.

11175 11411 11442 11811 12559 12559 12791 13121 13486 14708 15251
15261 15277 15806 16185 16229 16358 17168 17458 17758 18287 18568
18728 19556 20567 21012 21308 23063 24127 25910 26770 27753 28460
28493 29361 30085 32408 35338 36799 37642 37654 37915 39715 40580
42015 42045 42188 42296 42296 45406 46653 47596 48296 49171 49416
50145 52042 52489 52875 53321 53443 54433 55381 56463 56485 56560
57042 62551 62651 62661 63732 64103 64893 71043 74364 75409 76057
81542 82702 84566 88682

Assume a model λ(t) = αeβt, so

Λ(T ) =

∫ T

0

αeβtdt

=
α

β
(eβT − 1)

and, defining θ = (α, β), we obtain

L(θ) = exp

{
−α

β
(eβT − 1)

} 136∏
i=1

(αeβti).
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The contours of the likelihood function are given in Figure 11.5(b); as
usual, they represent 10% to 90% confidence regions. Using a numerical
optimization routine we find α̂ = 17.79 and β̂ = −0.13, which means that
for every CPU hour of testing the rate of failures is reduced by (1−e−0.13)×
100 = 12%. In Figure 11.5(c) the fit of the parametric model is compared
with the histogram of failure times, showing a reasonable agreement. The
parametric fit is useful for providing a simple summary parameter β, and
prediction of future failures.

To check the Poisson assumption, we know theoretically that if a point
process is Poisson, then the intervals between failures are independent ex-
ponentials with mean 1/λ(t), or the scaled intervals λ(ti)(ti − ti−1) are iid
exponentials with mean one. Figure 11.5(d) shows the plot of these scaled
intervals, and Figure 11.6 shows the autocorrelation and the exponential
QQ-plot, indicating reasonable agreement with Poisson behaviour.
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Figure 11.6: Diagnostic check of the Poisson assumption: (a) autocorrela-
tion between inter-event times and (b) exponential plot of inter-event times.

11.9 Replicated Poisson processes
In biomedical applications we often deal with multiple processes, each gen-
erated by a subject under study. Since the notation can become cumber-
some we will discuss the general methodology in the context of a specific
example. Figure 11.7 shows a dataset from a study of treatment of epilepsy,
where patients were randomized to either active or placebo groups. Because
of staggered entry to the study, patients have different follow-up periods.
The patients’ families were asked to record the time of epileptic attacks
during follow-up.

We will analyse this dataset using several methods of increasing com-
plexity. Note the flexibility offered by the more complex methods in han-
dling general intensity functions and covariates. Also, we will meet the Cox
partial likelihood again.
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1
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active
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active
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placebo
placebo
placebo
placebo
placebo
placebo
placebo
placebo
placebo
placebo
placebo
placebo

xi

12
5
7
14
10
10
12
8
11
8
11
11
8
16
11
7
15
9
7
4
6
4

Ti

3
2
4
3
5
2
1
3
3
3
4
7
6
8
11
8
7
7
4
2
6
1

ni

2.6 3.3 7.2
3.5 4.4
1.5 1.6 2.2 6.1

12.1 12.4 13.4
0.7 2.6 3.9 6.9 7.8
5.3 6.3

10.2
0.2 3.2 7.7
0.1 2 3.2
0.1 3.2 3.7
2.3 7.9 8 8.8
5.1 5.2 6.1 6.5 7.9 9.9 10.9
0.5 0.8 1.9 2.7 5.4 7.2
1.4 4.3 5 6 7.8 8.4 9.2 11.2
0.3 0.3 1.9 1.9 2.7 3.1 3.9 5.3 7 8.8 10.1
1.2 2.6 3.5 4.7 5.3 5.7 5.9 6.1
0.8 1.5 4.3 4.4 5.1 12.1 14
0.1 0.1 1 3.6 5.4 6.3 8.7
0.9 2.2 5.2 6.6
2.2 3.2
0.5 1.3 1.3 1.7 2.9 5.6
1.4

Time of events

Figure 11.7: The epilepsy data example. Patient i was followed for Ti

weeks, and there were ni events during the follow-up.

Method 1
The first method will take into account the different follow-up periods
among patients, but not use the times of attacks, and it cannot be gen-
eralized if we want to consider more covariates. Assume the event times
within each patient follow a Poisson point process. Let λa and λp be the
rate of attacks in the active and the placebo groups, i.e. assume that the
rate or intensity is constant over time. Let

ni = total number of attacks patient i

ya =
∑

i∈active

ni

yp =
∑

i∈placebo

ni.

Then

ni ∼ Poisson(Tiλ)

ya ∼ Poisson(
∑

i∈active

Tiλa)

yp ∼ Poisson(
∑

i∈placebo

Tiλp),
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where λ in the first equation is either λa or λp. The parameter of interest
is

θ = λa/λp. (11.8)

We can summarize the observed data in the following table:

Active Placebo
ya or yp 29 71∑

Ti 97 109

Proceeding as in the aspirin data example in Section 4.7, conditional on
ya+yp the distribution of ya is binomial with parameter ya+yp = 100 and
probability

97λa

97λa + 109λp
=

97θ

97θ + 109
.

So, the conditional likelihood is

L(θ) =

(
97θ

97θ + 109

)29(
1− 97θ

97θ + 109

)71

,

shown in Figure 11.8(a). We can verify that the MLE of θ is

θ̂ = (29/97)/(71/109) = 0.46.

The standard error is se(θ̂) = 0.10, but the quadratic approximation is
poor; the reader can verify that log θ has a more regular likelihood. The
likelihood of the null hypothesis H0: θ = 1 is tiny (approximately e−6.9),
leading to the conclusion that the active treatment has led to fewer attacks
of epilepsy.

Method 2: Poisson regression
We now use the Poisson regression method, which could easily accommo-
date some covariates, but still does not use any information about event
times. Let xi = 1 if patient i belongs to the active group and zero other-
wise. Using the same assumptions as in Method 1, the number of attacks
ni is Poisson with mean

μi = Ti exp(β0 + β1xi)

or
log μi = log Ti + β0 + β1xi.

In generalized linear modelling log Ti is called an offset term. The likeli-
hood of (β0, β1) can be computed as before, and the reader can verify the

following summary table. Note that eβ̂1 = e−0.78 = 0.46 = θ̂ as computed
by Method 1.

Effect Parameter Estimate se
Intercept β0 −0.43 0.11
Treatment β1 −0.78 0.21
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(b) From Poisson regression
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(c) Cox likelihood
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Figure 11.8: Analysis of the epilepsy data using three methods: (a) Likeli-
hood of θ using Method 1. (b) Profile likelihood of θ from Poisson regres-
sion. (c) Approximate (dotted) and true (solid) Cox partial likelihood. (d)
All three likelihoods.

To get a comparable likelihood function for the parameter θ = eβ1 , we
can compute the profile likelihood

L(β1) = maxβ0L(β0, β1),

and then evaluate L(θ) = L(β1) at θ = eβ1 . This likelihood function is
given in Figure 11.8(b); it coincides with the likelihood given by Method 1.

Method 3
The previous methods make no use of the times of attacks, and they assume
constant intensity for the Poisson processes for each subject. Neither can be
generalized to overcome these limitations, so we will now consider a method
that will address them at the expense of more complicated modelling.

We start by assuming the attacks for a patient follow a Poisson point
process with intensity λx(t), where x is the covariate vector. A useful
general model for problems of this type is a proportional intensity model

λx(t) = λ0(t, α)g(x, β),

where λ0(t, α) is the baseline intensity function with unknown parameter α.
This is the analogue of the proportional hazard model in survival analysis.
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The effect of covariate x is to modify the baseline intensity proportionally
by a constant g(x, β). The unknown regression parameter β expresses the
effect of the covariate on the intensity level, for example using the usual
log-linear model

λx(t) = λ0(t, α)e
x′β .

The baseline intensity λ0(t, α) requires a parameter α, which is a nuisance
parameter. The proportional intensity assumption is also analogous to the
parallel regression assumption in the analysis of covariance; it may or may
not be appropriate depending on the actual intensity functions.

From our previous theory, denoting ti1, . . . , tini to be the event times
of subject i, the contribution of this subject to the likelihood is

Li(α, β) = e−Λxi
(Ti)

ni∏
j=1

λxi(tij),

where

Λxi(Ti) =

∫ Ti

0

λxi(t)dt

= g(xi, β)

∫ Ti

0

λ0(t, α)dt

= g(xi, β)Λ0(Ti, α).

So

Li(α, β) = e−g(xi,β)Λ0(Ti,α){g(xi, β)Λ0(Ti, α)}ni

ni∏
j=1

λ0(tij , α)

Λ0(Ti, α)

≡ L1i(α, β)L2i(α),

where
L1i(α, β) ≡ e−g(xi,β)Λ0(Ti,α){g(xi, β)Λ0(Ti, α)}ni .

The total likelihood from all, say m, individuals is

L(α, β) =

m∏
i=1

Li(α, β)

=
m∏
i=1

L1i(α, β)
∏
i

L2i(α)

≡ L1(α, β)L2(α).

Hence, in proportional intensity models, the information about β is con-
tained in the first term L1(α, β); this is the likelihood based on the number
of events from each individual

Ni ∼ Poisson(Λ0(Ti, α)g(xi, β)). (11.9)

If we assume constant intensity, this reduces to the first method.
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Having to model the baseline intensity λ0(t, α) is literally a nuisance,
since it is not directly relevant to the question of treatment comparisons.
The data for estimating λ0(t, α) are provided by the set of event times tij ’s.
The data structure makes it difficult to specify an appropriate model for
λ0(t, α); for example, we cannot simply plot the histogram of the event
times. Fitting a model for the current example is left as Exercise 11.33.
Given such a model, the decomposition of the likelihood above suggests the
following method of estimation. (Actual implementation of the procedure
is left as Exercise 11.34.)

1. Estimate α from L2(α), which is a conditional likelihood given ni’s.
This is fully determined by the set of event times tij ’s.

2. Use α̂ to compute Λ0(Ti, α̂).

3. Estimate β in the Poisson regression (11.9) based on the data (ni, xi)
with Λ0(Ti, α̂) as an offset term.

To get further simplification, in particular to remove the nuisance pa-
rameter α, let us assume for the moment that Ti ≡ T . We first need the
result that if Xi, for i = 1, . . . ,m, are independent Poisson(λi), then the
conditional distribution of (X1, . . . , Xm) given

∑
Xi is multinomial with

parameters (π1, . . . , πm), where πi = λi/
∑m

j=1 λj . This is applied to

Ni ∼ Poisson(Λ0(T, α)g(xi, β)).

Letting n =
∑

i ni, we now have

L1(α, β) = P (N1 = n1, . . . , Nm = nm)

= P (N1 = n1, . . . , Nm = nm|
∑

Ni = n)P (
∑

Ni = n)

=

m∏
i=1

(
g(xi, β)∑m
j=1 g(xj , β)

)ni

P (
∑

Ni = n)

≡ L10(β)L11(α, β), (11.10)

where

L10(β) =
m∏
i=1

(
g(xi, β)∑m
j=1 g(xj , β)

)ni

.

Finding the exact formula for L11(α, β) is left as Exercise 11.35. Now
L10(β) is only a function of the parameter of interest β. Intuitively, if the
baseline intensity λ0(t, α) can be of any shape, then there is little informa-
tion about β in the total number of events

∑
ni. This reasoning is similar

to conditioning on the sum in the comparison of two Poisson means.
If we use the common log-linear model

λx(t) = λ0(t, α)e
x′β ,

then
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L10(β) =

m∏
i=1

(
ex

′
iβ∑m

j=1 e
x′
j
β

)ni

,

exactly the Cox partial likelihood for this particular setup.
In general, when Ti 
= T , and assuming a Poisson process with propor-

tional intensity, the Cox partial likelihood is defined as the following. Note
that it allows the covariate to change over time. Let

tij = the j’th event of subject i,

xij = the covariate value of subject i at time tij ,

Rij = the set of subjects still at risk at time tij .

Then

L10(β) =

m∏
i=1

ni∏
j=1

(
ex

′
ijβ∑

k∈Rij
ex

′
kj

β

)
.

We can arrive at this likelihood by partitioning the time axis at Ti’s and
using, under the Poisson process, the independence of non-overlapping time
intervals. The Cox partial likelihood looks more complicated, but it does
correspond to the formula we derive before for the proportional hazard
model. The significant contribution of the current approach is that it allows
for multiple outcomes from each subject, i.e. the end-point does not have
to be death, but it can be a recurrent event such as relapse. Furthermore,
subjects can go in and out of the risk set depending whether they are being
followed (events are being recorded) or not.

To apply this approach to the epilepsy data, consider first the approx-
imate Cox partial likelihood, pretending that the follow-up period Ti’s are
the same for all subjects. Let the covariate xi = 1 if i belongs to the active
therapy group and xi = 0 otherwise. Then

L10(β) =
m∏
i=1

(
ex

′
iβ∑m

j=1 e
x′
j
β

)ni

,

where ex
′
iβ = θ if xi = 1 and ex

′
iβ = 1 otherwise; then

∑m
j=1 e

x′
jβ = 10θ+12,

so

L10(β) =

(
θ

10θ + 12

)ya
(

1

10θ + 12

)yp

,

the same as the likelihood given by Method 1 had we used Ti ≡ T . Fig-
ure 11.8(c) shows the approximate and the true Cox partial likelihood for
the dataset. Computation of the true Cox partial likelihood is left as an
exercise. As shown in Figure 11.8(d), in this case the likelihoods from all
methods virtually coincide.
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11.10 Discrete time model for Poisson processes
In this section we describe in detail the close connection between censored
survival data and the Poisson process, and the unifying technique of Pois-
son regression to handle all cases. To avoid unnecessary technicalities we
consider discrete time models. While continuous time models are more el-
egant mathematically, in real studies we measure time in a discrete way,
say hourly or daily. Hence a discrete Poisson process model is actually
quite natural, and its statistical analysis reduces to the standard Poisson
regression. Given a natural time unit dt we can model the outcomes y(t)
as a Poisson series with mean λ(t)dt. This model is valid not just as an
approximation of the continuous model; in particular, and there is no need
for special handling of ties, which are a problem under continuous time
models. The stated results here generally extend to continuous time as a
limit of discrete time as dt tends to zero.

The main advantage of the Poisson regression approach for survival-type
data is the flexibility in specifying models. Moreover, the model elements
generally have a clear interpretation. The price is that each outcome value,
a single number yi, generates a long array yi(t), so the overall size of the
problem becomes large. For a single Poisson process the observed y(t) is a
Poisson time series; if dt is small enough then y(t) takes 0-1 values, but this
is not a requirement. The log-likelihood contribution from a single series is∑

t

y(t) log λ(t)−
∑
t

λ(t)dt.

To see the generality of this setup, suppose we observe survival data
(yi, δi) as described in Section 11.5; δi is the event indicator, which is
equal to one if yi is a true event time. After partitioning time by interval
unit dt we convert each observed yi into a 0–1 series yi(t). For example,
(yi = 5, δi = 1) converts to yi(t) = (0, 0, 0, 0, 1), while (yi = 3, δi = 0)
converts to (0,0,0). Therefore, the log-likelihood contribution of (yi, δi) is

logLi = δi log λi(yi)−
yi∑
t=1

λi(t)dt.

In the limit it can be written as

logLi = δi log λi(yi)−
∫ yi

0

λi(t)dt,

exactly the log-likelihood (11.4) we derive in Section 11.7 for general sur-
vival data. Any survival regression model that can be expressed in terms
of a hazard function has a discrete version as a Poisson model.

Now for convenience we set the time unit dt ≡ 1, and let yi(t) be Poisson
with mean λi(t). To analyse the effect of covariate xi on the intensity
function λi(t) we may consider, for example, the log-link

log λi(t) = α(t) + x′
iβ,
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which implies a proportional intensity model with baseline intensity

λ0(t) = eα(t).

The nuisance parameter α(t) needs further modelling.

Example 11.10: The exponential regression model for survival data (with a
maximum of one event per subject) is equivalent to specifying a constant baseline
intensity λ0(t) ≡ λ, or

log λi(t) = α0 + x′
iβ,

with α(t) = α0 = log λ. The general extreme-value model, or the Weibull model,
is equivalent to specifying a log-linear model

log λi(t) = α0 + α1 log t+ x′
iβ

or
log λ0(t) = α(t) ≡ α0 + α1 log t.

To get a specific comparison, recall the survival regression model in Section 11.6
for the underlying survival time ti as

log ti = β0 + x′
iβw + σWi,

where Wi’s are iid with standard extreme-value distribution. Then we have the
following relationships (Exercise 11.37):

α0 = −β0/σ − log σ

α1 = 1/σ − 1

β = −βw/σ.

For multiple events, we can simply modify log t to log zt, where zt is the time
elapsed since the last event. Other models can be specified for the baseline
intensity function.

The Cox proportional hazard model is associated with nonparametric
α(t). We obtain it by setting α(t) to be a categorical parameter, with one
parameter value for each time t. This is useful for modelling, since we can
then compare the parametric versus Cox models.

The Cox partial likelihood itself can be derived as a profile likelihood.
Suppose the length of observation time is Ti and yi(t) is nonzero at event
times ti1, . . . , tini

and zero otherwise, and denote yij ≡ yi(tij). If there is no
tie, yij = 1 for all i and j. The notation will become very cumbersome here;
see the epilepsy data example to get a concrete idea. The log-likelihood
contribution of the i’th series is

logLi = −
Ti∑
t=1

λi(t) +

ni∑
j=1

yij log λi(tij)

= −
Ti∑
t=1

eα(t)+x′
itβ +

ni∑
j=1

yij{α(tij) + x′
ijβ},
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where xit is the value of the covariate xi at time t and xij is the value at
time tij . The overall log-likelihood is

logL(α, β) =
∑
i

logLi.

To get the profile likelihood of β, we need to find the MLE of α(t) at each
value β. To this end we analyse the event and nonevent times separately.
At a nonevent time t 
= tij the estimate α̂(t) satisfies

−
∑
i

eα̂(t)+x′
itβ = 0

or eα̂(t) = 0.
At an event time t = tij we need to keep track of the multiplicity of

α(tij) in the first term of the log-likelihood. This can be seen graphically by
drawing parallel lines to represent the observation intervals for the subjects.
We define the risk set Rij as the set of subjects still under observations at
time tij . We can write the total log-likelihood as

logL(α, β) = −
n∑

i=1

∑
t �=(ti1...tini

)

eα(t)+x′
itβ

−
n∑

i=1

ni∑
j=1

∑
k∈Rij

eα(tij)+x′
kjβ

+
n∑

i=1

ni∑
j=1

yij{α(tij) + x′
ijβ},

so, in this case α̂(tij) satisfies∑
k∈Rij

eα̂(tij)+x′
kjβ = yij

or
eα̂(tij) =

yij∑
k∈Rij

ex
′
kj

β
.

Substituting α̂(t) for all values of t we get the profile likelihood of β, which
is proportional to

L(β) =

n∏
i=1

ni∏
j=1

(
ex

′
ijβ∑

k∈Rij
ex

′
kj

β

)yij

.

If there is no tie, yij = 1 for all i and j, and

L(β) =
n∏

i=1

ni∏
j=1

(
ex

′
ijβ∑

k∈Rij
ex

′
kj

β

)
,
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exactly the Cox partial likelihood stated in the previous section. Cox’s
(1972) treatment of ties does not correspond to the result shown above; see
Whitehead (1980) for a discussion.

From the derivation it is clear that we can estimate the baseline intensity
or hazard function by

λ̂0(t) = eα̂(t),

which takes nonzero values only at the event times. A sensible continuous
estimate can be found by smoothing; see Chapter 18.

Example 11.11: For two-sample problems we can arrange the data to limit

the problem size. This is because there are multiples of eα(t)+xiβ according to
xi = 0 or 1. The multiplicity is simply the number of subjects at risk at each event
time; this will enter as an offset term in the Poisson regression. Furthermore,
to produce Cox regression results we should only consider the statistics at the
event times; including time points where there is no event will produce numerical

problems, since in this case eα̂(t) = 0.
For the epilepsy data example in the previous section suppose we choose the

time unit dt = 1 week. Then the data can be summarized as in Table 11.2. The
index g in the table now refers to week-by-treatment grouping, with a total of
29 groups with at least one event; Rg is the corresponding number at risk at the
beginning of the week; yg is the number of events during the week.

g xg weekg Rg yg g xg weekg Rg yg
1 1 0 10 4 15 0 0 12 9
2 1 1 10 2 16 0 1 12 11
3 1 2 10 4 17 0 2 12 7
4 1 3 10 7 18 0 3 12 5
5 1 4 10 1 19 0 4 10 4
6 1 5 9 1 20 0 5 10 12
7 1 6 9 3 21 0 6 9 6
8 1 7 8 3 22 0 7 7 5
9 1 8 6 0 23 0 8 6 5
10 1 9 6 0 24 0 9 5 2
11 1 10 4 1 25 0 10 5 2
12 1 11 3 0 26 0 11 2 1
13 1 12 1 2 27 0 12 2 1
14 1 13 1 1 28 0 13 2 0

29 0 14 2 1

Table 11.2: Data setup for Poisson regression of the epilepsy example. The
time intervals are of the form [k, k + 1); for example, an event at t = 1.0
is included in week-1, not week-0.

Now assume yg is Poisson with mean μg and use the log-link

log μg = logRg + α(weekg) + β1xg,

where logRg is an offset, and β1 is the treatment effect. The function α(weekg)
is a generic function expressing the week effect. For example,

α(weekg) ≡ α0
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Effect Parameter Estimate se
intercept α0 −0.247 0.284
treatment β1 −0.767 0.221
week-1 α1 0.000 0.392
week-2 α2 −0.167 0.410
week-3 α3 −0.080 0.400
week-4 α4 −0.828 0.526
week-5 α5 0.160 0.392
week-6 α6 −0.134 0.434
week-7 α7 −0.045 0.450
week-8 α8 −0.317 0.526
week-9 α9 −1.112 0.760
week-10 α10 −0.580 0.641
week-11 α11 −0.975 1.038
week-12 α12 0.444 0.641
week-13 α13 −0.655 1.037
week-14 α14 −0.446 1.040

Table 11.3: Estimates from Poisson regression of the epilepsy data example.

for constant intensity function, or

α(weekg) ≡ α0 + α1 × log weekg

for log-linear time effect, etc. The most general function is setting ‘week’ to be
a categorical variable, with a single parameter for each week; for convenience we
set α0 ≡ α(0), and for j > 0 define αj = α(j)−α(0) as the week-j effect relative
to week-0. These options can be compared using the AIC.

For categorical week effects the parameter estimates are given in Table 11.3.

The estimate of the treatment effect β̂1 = −0.767 (se = 0.221) is similar to the
estimates found by different methods in the previous section. Fitting various
other models for α(weekg) is left as an exercise. �

11.11 Exercises
Exercise 11.1: Simulate AR(1) processes shown in Example 11.1, and verify
the likelihoods given in Figure 11.1.

Exercise 11.2: In the previous exercise, compare the Fisher information of φ̂1

based on the full likelihood L(θ) and the conditional likelihood L2(θ).

Exercise 11.3: For the AR(2) model

xt = θ0 + φ1xt−1 + φ2xt−2 + et,

where et’s are iid N(0, σ2). Derive the full and conditional likelihood of the
parameters.

Exercise 11.4: Suppose we observe time series data x1, . . . , xn, which we iden-
tify as an MA(1) series

xt = θ0 + et − θ1et−1.

Assuming et is N(0, σ2) derive the likelihood of the parameters. Is there a form
of likelihood that is simpler to compute as in the AR models? Discuss a practical
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method to compute the likelihood. (Hint: to get the joint density of x1, . . . , xn,
first consider a transformation from e0, e1, . . . , en to e0, x1, . . . , xn, then evaluate
the marginal density of x1, . . . , xn.)

Exercise 11.5: Verify the standard errors given for the MLEs in Example 11.2.

Exercise 11.6: Use the likelihood approach to test a general hypothesis H0 :
θ01 = θ11 to the data in Example 11.2. Compare the result using the standard
error approximation. Interpret what the hypothesis means.

Exercise 11.7: A time series xt is Markov of order 2, if the conditional distri-
bution of xt given its past depends only on the last two values. That is,

p(xt|xt−1, . . .) = p(xt|xt−1, xt−2).

(a) Describe the parameters of the simplest second-order Markov chain with 0-1
outcomes.

(b) Find the likelihood of the parameters given an observed series x1, . . . , xn.
Identify the ‘easy’ part of the likelihood.

(c) Estimate the parameters for the data in Example 11.2.

(d) Using the likelihood ratio test, check whether the first-order model is ade-
quate.

Exercise 11.8: Investigate the association between the asthma episodes and
the pollution level using the data given in Section 11.2. Compare the results of
the two types of regression mentioned in the section.

Exercise 11.9: Verify the summary tables given in Section 11.3.

Exercise 11.10: Draw the profile likelihood of the odds-ratio parameters for
the data shown by the 2×2 tables in Section 11.3. Compute the approximate
95% CI for the odds ratio. Compare the χ2 tests with the Wald tests.

Exercise 11.11: For the data in Section 11.3, derive the likelihood of the
parameters p and q for both groups given the summary table (there is a total of
four parameters: p0 and q0 for the control group and p1 and q1 for the treatment
group). Use the likelihood ratio test to test the hypothesis H0: q0 = q1, and
compare with the result given in the section.

Exercise 11.12: In Example 11.3 suppose the follow-up observation of patient
2 of the control group is missing at week 6, so we observe

w0 w2 w4 w6 w8
5 5 5 – 5

Derive the likelihood contribution of this patient.

Exercise 11.13: In Example 11.3, describe a regression model to take into
account some possible baseline differences in the two groups such as in age or
prior history of other related diseases. Note that the purpose of the analysis is
still to compare the response to treatment.

Exercise 11.14: Describe ways to check whether the simplified transition prob-
ability matrix given in Section 11.3 is sensible for the data.

Exercise 11.15: The data in Figure 11.9 were collected by Dr. Rosemary Barry
in a homeophatic clinic in Dublin from patients suffering from arthritis. Baseline
information include age, sex (1= male), arthritis type (RA= rheumathoid arthri-
tis, OA= ostheo-arthritis), and the number of years with the symptom. The pain
score was assessed during a monthly followup and graded from 1 to 6 (high is
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worse) with −9 to indicate missing. All patients were under treatment, and only
those with a baseline pain score greater than 3 and a minimum of six visits are
reported here. Investigate the trend of pain score over time and the effect of the
covariates.

No Age Sex Type Years Pain scores

1 41 0 RA 10 4 4 5 3 3 5
2 34 0 RA 0 5 2 2 3 2 3 2
3 53 1 RA 1 5 4 3 2 2 2 1 2 1
4 38 0 RA 12 6 6 5 6 5 5 5 6
5 51 0 RA 2 5 5 5 5 4 4
6 70 0 RA 40 5 4 4 3 3 3 3 3
7 74 0 RA 5 4 4 5 4 4 3 5 −9 6 5 4 3
8 56 0 RA 1 5 4 −9 5 5 5 4 4 3 3 3 −9
9 57 0 RA 33 5 5 6 5 6 6 −9 6 5 5 5

10 65 1 RA 18 5 6 6 6 6 6
11 61 0 RA 12 6 3 5 2 2 2 5 5
12 64 0 RA 10 4 3 4 4 4 4 3 −9 6 6
13 47 0 RA 10 5 3 4 4 3 3
14 59 0 RA 1 6 5 5 6 4 4
15 54 1 RA 2 6 5 3 4 4 6
16 74 0 RA 14 4 4 4 4 −9 −9 −9
17 57 0 RA 2 4 3 3 2 1 2 2 2
18 86 0 RA 5 4 3 3 2 4 4 4 4 4 5 3
19 69 0 RA 39 4 2 4 4 5 2 4 6 5
20 45 0 RA 7 4 4 4 −9 4 4 4
21 45 0 RA 20 5 5 4 4 5 4 3
22 70 1 RA 6 6 6 6 6 6 6 6
23 38 0 RA 0 4 5 4 2 2 3 3 2 2 4
24 68 0 RA 16 6 −9 4 4 4 3
25 18 1 RA 1 4 4 3 1 −9 −9 −9 1 1
26 58 0 RA 1 5 4 3 4 3 3
27 62 0 RA 1 4 3 5 4 3 4 2
28 56 0 OA 6 4 5 6 3 5 4 3 3 5
29 68 0 OA 10 5 5 4 3 2 2 2 2 2 1
30 64 1 OA 5 5 4 3 5 −9 4
31 49 0 OA 8 4 4 4 3 3 3 3
32 66 0 OA 5 4 3 4 3 3 4
33 70 0 OA 7 4 2 1 1 1 1 2 1
34 61 0 OA 5 6 −9 3 3 3 5 −9
35 41 0 OA 15 5 4 3 4 3 2 1 1 2
36 57 0 OA 4 5 6 6 3 5 6 5 3 5
37 49 0 OA 4 5 2 2 3 1 2 1 1 1 1 2 1
38 57 0 OA 14 4 4 4 3 5 3 5 3 4 4 3 2
39 78 0 OA 4 5 5 3 4 −9 5
40 61 0 OA 20 4 4 3 3 3 3 2 3 3 2 2
41 82 0 OA 40 5 −9 −9 3 3 3 4 5 6 6
42 48 0 OA 1 5 3 1 1 1 1 2
43 51 0 OA 2 5 3 3 3 2 3 3
44 54 0 OA 2 4 4 4 3 2 2 2 2 2
45 54 0 OA 1 5 5 3 6 6 6
46 68 0 OA 15 6 5 5 6 3 2
47 70 1 OA 15 4 4 4 5 5 4
48 63 1 OA 1 4 4 4 3 2 2 2 1
49 56 0 OA 4 6 5 3 3 3 3 4 4
50 66 1 OA 5 4 4 3 3 2 2
51 64 1 OA 2 5 2 1 1 1 1 1 −9
52 53 1 OA 2 4 3 3 3 3 3 2 3
53 58 0 OA 5 4 4 4 4 3 3 2 2 2 2 3
54 65 1 OA 30 5 5 6 6 6 6 6 6
55 74 0 OA 40 6 3 1 1 2 1 2 1 2
56 60 0 OA 57 4 3 4 2 3 3 2 2 2 −9 −9
57 88 0 OA 10 4 5 5 5 6 4 3 3 3 5
58 66 0 OA 10 4 2 2 2 1 4 4 3 4
59 71 0 OA 20 4 4 4 3 4 3
60 66 0 OA 6 5 −9 4 5 4 3 4

Figure 11.9: Arthritis data

Exercise 11.16: Show that the Ising model in Section 11.4 does imply the
conditional probability in the logistic form in both the one-dimensional and two-
dimensional models.

Exercise 11.17: Verify the maximum pseudo-likelihood estimates and the
standard errors of the parameters (α, β) given in Example 11.4.
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Exercise 11.18: To appreciate that the product of conditional probabilities is
not really a probability specification, describe how you might simulate a realiza-
tion of an Ising model given a certain parameter (α, β). (Being able to simulate
data is important for Monte Carlo tests.)

Exercise 11.19: Bartlett (1971) reported the absence/presence of a certain
plant in a 24×24 square region, reflecting some interaction or competition among
Carex arenaria plant species.

0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0
0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0
0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1
0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

(a) Perform and interpret the logistic regression analysis of the Ising model on
the dataset.

(b) Test the randomness of the pattern by grouping the data, say into 3×3 or
4×4 squares, and test whether the number of plants on each square follows
a Poisson model. What do you expect to see if there is clustering (positive
dependence) or if there is negative dependence?

Exercise 11.20: Extend the pseudo-likelihood approach to analyse spatial
count data, i.e. yk is Poisson rather than Bernoulli as in the text. Simulate
simple one- and two-dimensional Poisson data and apply the methodology. For a
more advanced exercise, a real dataset is given in Table 6 of Breslow and Clayton
(1993).

Exercise 11.21: Find the profile likelihood of θ = θ1/θ2 for the rat data
example using the exponential model; report the approximate 95% CI for θ.

Compare the Wald statistic based on θ̂ and log θ̂; which is more appropriate?

Exercise 11.22: Perform the group comparison using the normal model as
described in Section 11.5. For simplicity, assume the two groups have common
variance σ2, and eliminate σ2 by replacing it with its estimate from uncensored
data (i.e. use the estimated likelihood). Find the profile likelihood of μ1 − μ2.

Exercise 11.23: Repeat the previous exercise, but with the unknown σ2 esti-
mated using the likelihood from all the data.
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Exercise 11.24: Verify the regression analysis performed in Example 11.6.

Exercise 11.25: Derive theoretically the Fisher information for the regres-
sion parameters (β0, β1) under the exponential and the general extreme-value
distributions in Section 11.6.

Exercise 11.26: Compute the Fisher information for the observed data, and
verify the standard errors given in Example 11.6. Check the quadratic approxi-
mation of the profile likelihood of the slope parameter β1.

Exercise 11.27: Find the profile likelihood of the scale parameter σ in Exam-
ple 11.6, and verify the likelihood ratio statistic W = 44.8. Report also the Wald
test of H0: σ = 1, and discuss whether it is appropriate.

Exercise 11.28: If independent lifetimes T1 and T2 have proportional hazards,
say λi(t) = λ0(t)ηi for i = 1, 2 respectively, then show that

P (T1 < T2) = η1/(η1 + η2)

regardless of the shape of the baseline hazard function λ0(t). Generalize the
result for P (Ti1 < Ti2 < · · · < Tin).

Exercise 11.29: To repeat the exercise given Example 11.7, suppose we observe
the following dataset:

i xi yi δi
1 0 10 1
2 0 5 1
3 0 13 0
4 1 7 1
5 1 21 1
6 1 17 1
7 1 19 0

Assume a proportional hazard model

λi(t) = λ0(t)e
xiβ .

(a) Assume the baseline hazard λ0(t) ≡ λ, i.e. a constant hazard. Compute the
profile likelihood of β.

(b) Compare the profile likelihood in part (a) with the Cox partial likelihood.

(c) Simplify the Cox partial likelihood as much as possible and try to interpret
the terms.

(d) Compute the Fisher information of β from the Cox partial likelihood and
compare with the information if there is no censoring (i.e. replace the two
censored cases with δi = 1).

Exercise 11.30: Verify the Cox regression analysis in Example 11.8. Compare
the Cox partial likelihood with the profile likelihood found using the exponential
model in Exercise 11.21. Check the quadratic approximation of the Cox partial
likelihood.

Exercise 11.31: Verify the analysis of software failure data given in Exam-

ple 11.9. Provide the standard error for β̂. Predict the number of bugs still to
be found in the system.

Exercise 11.32: Different methods to analyse the epilepsy data in Section 11.9
lead to very similar likelihoods. Provide some explanation, and think of other
situations where the three methods would give different results.



340 11. Complex data structures

Exercise 11.33: For the data in Figure 11.7 find a reasonably simple para-
metric model for the baseline intensity λ0(t, α) assuming a proportional hazard
model.

Exercise 11.34: Assume an exponential decay model as the underlying param-
eter model for the epilepsy data in Section 11.9. Apply the iterative procedure
suggested in Method 3 to estimate the regression parameter β. Compare the
likelihood with those obtained by the other methods.

Exercise 11.35: Find the exact formula for L11(α, β) in (11.10).

Exercise 11.36: Compare the three methods of analysis for the data in Fig-
ure 11.10. The structure is the same as in the previous dataset, but now there is
also an additional covariate.
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Figure 11.10: Another sample dataset from an epilepsy clinical trial.

Exercise 11.37: Prove the relationships stated in Example 11.10 between the
coefficients of the Weibull and Poisson regression models.

Exercise 11.38: Verify the relationships stated in Example 11.10 using the rat
data example given in Section 11.5.

Exercise 11.39: Verify the data setup in Table 11.2 for the Poisson regression
of the epilepsy data. Analyse the data using a constant and log-linear week effect,
and compare the different models using the AIC.



12

EM Algorithm

Finding maximum likelihood estimates usually requires a numerical method.
Classical techniques such as the Newton–Raphson and Gauss–Newton al-
gorithms have been the main tools for this purpose. The motivation for
such techniques generally comes from calculus. A statistically motivated
EM (Expectation–Maximization) algorithm appears naturally in problems
where

• some parts of the data are missing, and analysis of the incomplete data
is somewhat complicated or nonlinear;

• it is possible to ‘fill in’ the missing data, and analysis of the complete
data is relatively simple.

The notion of ‘missing data’ does not have to mean data that are actually
missing, but any incomplete information. The name ‘EM’ was coined by
Dempster et al. (1977) in a seminal paper that showed many algorithms
in use at the time were specific examples of a general scheme.

12.1 Motivation

Example 12.1: Consider a two-way table of yij for i = 1, 2 and j = 1, 2, 3
with one missing cell y23:

10 15 17
22 23 –

Suppose we consider a linear model

yij = μ+ αi + βj + eij ,

where
∑

i
αi =

∑
j
βj = 0, and the eij ’s are an iid sample from N(0, σ2). The

MLEs of μ, αi and βj are the minimizer of the sum of squares∑
ij

(yij − μ− αi − βj)
2

subject to the constraints, where the sum is over the available data y = (y11, y21,
y12, y22, y13). There is no closed form solution for the MLEs, but they can be
found using any regression package by setting the design matrix X appropriately
for the parameters μ, α1, β1 and β2:
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X =

⎛⎜⎜⎝
1 1 1 0
1 −1 1 0
1 1 0 1
1 −1 0 1
1 1 −1 −1

⎞⎟⎟⎠ .

The solution (X ′X)−1X ′y is

μ̂ = 19

α̂1 = −5

β̂1 = −3, β̂2 = 0,

and α̂2 = −α̂1, and β̂3 = −β̂1 − β̂2. If required, the MLE of σ2 is

σ̂2 =
1

5

∑
ij

(yij − μ̂− α̂i − β̂j)
2,

where the summation is over the available data. In practice the unbiased estimate
of σ2 is usually preferred; in this case we simply replace the divisor n = 5 by
n− p = 5− 4 = 1.

Had there been no missing data there is a simple closed form solution:

μ̂ = y

α̂i = yi. − y

β̂j = y.j − y.

How can we use these simple ‘complete data’ formulae to help us estimate the
parameters from the incomplete data?

One way to do that is first to ‘fill in’ the missing data y23, for example by the
average of the available data y, then compute the parameter estimates according
to the complete data formulae. This constitutes one cycle of an iteration. The
iteration continues by recomputing the missing data

ŷ23 = μ̂+ α̂2 + β̂3

and the parameter estimates until convergence. In this example, starting with
ŷ23 = 17.4 we obtain:

Iteration μ̂ α̂1 β̂1 β̂2

1 17.4 −3.4 −1.4 1.6
2 17.933 −3.933 −1.933 1.067
3 18.289 −4.289 −2.289 0.711
10 18.958 −4.958 −2.958 0.042
15 18.995 −4.995 −2.995 0.005
21 19.000 −5.000 −3.000 0.000

Thus the algorithm arrives at the solution without inverting the X ′X matrix.
Given these estimates we can compute σ̂2 similarly as before. �

12.2 General specification
The previous example has all the ingredients of an EM algorithm. The
key notions are the incomplete data y and complete data x (= (y, y23)



12.2. General specification 343

above). In general y = h(x) for some array-valued function h(·); this means
that y is completely determined by x, but not vice versa. For example, if
x = (x1, x2, x3), any of the following is a form of incomplete data:

y = (x1, x2)

y = (x1 + x2, x2 + x3)

y = (x1, x2 + 2x3).

The key idea is that some information is lost by going from x to y; this ‘loss
of information’ will be made specific later in terms of Fisher information.

In problems where EM is relevant, the available dataset will be denoted
by y. The problem is to estimate θ from the likelihood based on y:

L(θ; y) = pθ(y).

The dependence on y is made explicit, so we can distinguish it from

L(θ;x) = pθ(x),

the likelihood based on x. The EM algorithm obtains the MLE θ̂ by the
following iteration: Start with an initial value θ0, and

• E-step: compute the conditional expected value

Q(θ) = Q(θ|θ0) ≡ E{logL(θ;x)|y, θ0}
• M-step: maximize Q(θ) to give an updated value θ1, then go to the

E-step using the updated value, and iterate until convergence.

Example 12.2: The famous genetic example from Rao (1973, page 369) as-
sumes that the phenotype data

y = (y1, y2, y3, y4) = (125, 18, 20, 34)

is distributed according to the multinomial distribution with probabilities{
1

2
+

θ

4
,
(1− θ)

4
,
(1− θ)

4
,
θ

4

}
.

The log-likelihood based on y is

logL(θ; y) = y1 log(2 + θ) + (y2 + y3) log(1− θ) + y4 log θ, (12.1)

which does not yield a closed form estimate of θ.
Now we treat y as incomplete data from x = (x1, . . . , x5) with multinomial

probabilities {
1

2
,
θ

4
,
(1− θ)

4
,
(1− θ)

4
,
θ

4

}
.

Here y1 = x1 + x2, y2 = x3, y3 = x4 and y4 = x5. The log-likelihood based on x
is
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logL(θ;x) = (x2 + x5) log θ + (x3 + x4) log(1− θ), (12.2)

which readily yields

θ̂ =
x2 + x5

x2 + x3 + x4 + x5
,

so the ‘complete data’ x is simpler than y.
In this example, the E-step is to find

Q(θ) = E(x2 + x5|y, θ0) log θ + E(x3 + x4|y, θ0) log(1− θ)

= {E(x2|y, θ0) + x5} log θ + (x3 + x4) log(1− θ),

so we only need to compute

x̂2 = E(x2|y, θ0).

Since x1 + x2 = y1, the conditional distribution of x2|y1 is binomial with param-
eters y1 = 125 and probability

p0 =
θ0/4

1/2 + θ0/4

so

x̂2 = y1
θ0/4

1/2 + θ0/4
. (12.3)

The M-step yields an update

θ1 =
x̂2 + x5

x̂2 + x3 + x4 + x5
. (12.4)

The algorithm iterates between (12.3) and (12.4). From the last category of y we
may obtain a starting value: θ0/4 = 34/197 or θ0 = 0.69. The first five iterates

are 0.690, 0.635, 0.628, 0.627, 0.627, giving the MLE θ̂ = 0.627. �

There is a similarity between the Newton–Raphson and EM algorithms.
With the Newton–Raphson algorithm, we obtain a quadratic approxima-
tion of the objective function f(θ) around an initial estimate θ0:

q(θ) = f(θ0) + f ′(θ0)(θ − θ0) +
1

2
f ′′(θ0)(θ − θ0)2,

and find the update θ1 as the maximizer of q(θ). The algorithm converges
quickly if f(θ) is well approximated by q(θ). With the EM algorithm, the
objective function logL(θ; y) is approximated by Q(θ).

For the genetic data example above, Figures 12.1(a)–(c) show logL(θ; y)
and Q(θ) starting with θ0 = 0.2. Figure 12.1(d) shows the climb of the like-
lihood surface by the iterates θ0, θ1, . . .. Intuitively, a better approximation
of logL(θ; y) by Q(θ) implies faster convergence of the EM algorithm.

12.3 Exponential family model
In general, each step of the EM algorithm requires some analytical deriva-
tion, and there is no guarantee that a practical EM algorithm exists for
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Figure 12.1: (a)–(c) Log L(θ; y) (solid line) and Q(θ) (dashed line) at
successive values of θ0, θ1 and θ2. (d) The climb on logL(θ; y) by the
iterations.

a particular incomplete data problem. The algorithm is particularly sim-
ple, and theoretically illuminating, if the complete data x is in the full
exponential family:

logL(θ;x) = θ′T −A(θ),

where T ≡ T (x) is a p-vector of sufficient statistics. (Having a full expo-
nential family is not a necessary condition for the use of EM. For example,
the algorithm works well in Example 12.2, even though the model is in
a curved exponential family. However, the results in this section do not
apply to that example.)

At the n’th iteration the E-step is to find

Q(θ|θn) = E{logL(θ;x)|y, θn}
= θ′E(T |y, θn)−A(θ),

which reduces to finding (‘filling in’) the conditional expected value

T̂ = E{T |y, θn}.
For the M-step, taking the derivative of Q(θ|θn) with respect to θ, and
setting it to zero, we solve the equation
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∂

∂θ
A(θ) = T̂

to get an update θn+1.
Recall that for a full exponential family

∂

∂θ
A(θ) = E(T |θ),

so the updating equation for θ satisfies

E(T |θn+1) = E(T |y, θn), (12.5)

and at convergence we have the MLE θ̂ satisfying

E(T |θ̂) = E(T |y, θ̂). (12.6)

This means that θ = θ̂ is the value that makes T and y uncorrelated.
As suggested by Navidi (1997), we can use (12.5) for a graphical illus-

tration of the EM algorithm. Assume a scalar parameter and define

h1(θ) ≡ E(T |y, θ)
h2(θ) ≡ E(T |θ).

The EM iteration progresses towards the intersection of the two functions;
see Figure 12.2.
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Figure 12.2: A graphical illustration of the EM iterative process using h1(θ)
and h2(θ).

It is instructive to see in more detail the behaviour of these functions.
In general, the conditional density of x given y is

pθ(x|y) = pθ(x)

pθ(y)

since y is completely determined by x. So, with obvious notations,

logL(θ;x|y) = logL(θ;x)− logL(θ; y) (12.7)
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= θT −A(θ)− logL(θ; y),

which is also in the exponential family. Taking the derivative with respect
to θ, and taking conditional expectation, we obtain

E(T |y, θ)−A′(θ)− S(θ; y) = 0

so
h1(θ) = E(T |y, θ) = A′(θ) + S(θ; y)

and
h2(θ) ≡ E(T |θ) = A′(θ).

The slopes of these functions are

h′
1(θ) = A′′(θ)− I(θ; y)

h′
2(θ) = A′′(θ),

where I(θ; y) is the Fisher information based on y. Since

var(T ) = A′′(θ) > 0

var(T |y) = A′′(θ)− I(θ; y) > 0

both h1(θ) and h2(θ) are increasing functions of θ. Furthermore I(θ; y) > 0

for θ near θ̂, so h2(θ) has a steeper slope.
Taking the conditional expectation of (12.7) given y yields

E{logL(θ;x|y)|y, θ0} = Q(θ|θ0)− logL(θ; y). (12.8)

Derivatives of E{logL(θ;x|y)|y, θ0} behave like the expected score and
Fisher information (Section 8.3); for example,

I(θ;x|y) ≡ −∂2E{logL(θ;x|y)|y, θ0}/∂θ2
= −E{∂2 logL(θ;x|y)/∂θ2|y, θ0}.

Defining
I(θ;x) ≡ −∂2Q(θ|θ0)/∂θ2,

we have from (12.8)

I(θ;x|y) = I(θ;x)− I(θ; y)

or
I(θ; y) = I(θ;x)− I(θ;x|y). (12.9)

This intuitively means that the information in the incomplete data y is
equal to the information in the complete data xminus the extra information
in x which is not in y. This is a form of the so-called ‘missing information
principle’ (Orchard and Woodbury 1972).
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Near the solution θ̂ we have

E(T |θ) ≈ E(T |θ̂)− I(θ̂;x)(θ − θ̂)

E(T |y, θ) ≈ E(T |y, θ̂)− I(θ̂;x|y)(θ − θ̂).

Assuming θn → θ̂ as n → ∞, and in view of (12.5) and (12.6), we have

θn+1 − θ̂

θn − θ̂
≈ I(θ̂;x|y)

I(θ̂;x)
.

Smaller I(θ̂;x|y), meaning less missing information in y relative to x, im-
plies faster convergence. This is a more precise expression of the previous
notion that the speed of convergence is determined by how close Q(θ|θ0) is
to logL(θ; y).

12.4 General properties
One of the most important properties of the EM algorithm is that its step
always increases the likelihood:

L(θn+1; y) ≥ L(θn; y). (12.10)

This makes EM a numerically stable procedure as it climbs the likelihood
surface; in contrast, no such guarantee exists for the Newton–Raphson
algorithm. The likelihood-climbing property, however, does not guarantee
convergence.

Another practical advantage of the EM algorithm is that it usually
handles parameter constraints automatically. This is because each M-step
produces an MLE-type estimate. For example, estimates of probabilities
are naturally constrained to be between zero and one.

The main disadvantages of the EM algorithm compared with the com-
peting Newton–Raphson algorithm are

• the convergence can be very slow. As discussed above, the speed of
covergence is determined by the amount of missing information in y
relative to x. It is sometimes possible to manipulate the complete data
x to minimize the amount of missing information (Meng and van Dyk
1997), but there is no explicit general technique to achieve it. There
are other proposals to accelerate the algorithm to make it closer to the
Newton–Raphson algorithm (Lange 1995).

• there are no immediate standard errors for the estimates. If there is an
explicit log-likelihood function logL(θ; y), then one can easily find the

observed Fisher information I(θ̂; y) numerically, and find the standard

errors from the inverse of I(θ̂; y). (This assumes that the standard
errors are meaningful quantities for inference about θ, or that L(θ; y)
is regular.) In Section 12.9 we will show that it is possible to find the

Fisher information I(θ̂; y) from the complete-data function Q(θ|θ0).
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To prove (12.10), recall from (12.8) that

E{logL(θ;x|y)|y, θ0} = Q(θ|θ0)− logL(θ; y). (12.11)

Let h(θ|θ0) ≡ E{logL(θ;x|y)|y, θ0}. From the information inequality (The-
orem 9.5), for any two densities f(x) 
= g(x) we have

Eg log f(X) ≤ Eg log g(X).

Applying this to the conditional density of x|y,

h(θ|θ0) ≤ h(θ0|θ0),

and at the next iterate θ1 we have

Q(θ1|θ0)− logL(θ1; y) ≤ Q(θ0|θ0)− logL(θ0; y),

or

logL(θ1; y)− logL(θ0; y) ≥ Q(θ1|θ0)−Q(θ0|θ0) ≥ 0.

The right-hand side is positive by definition of θ1 as the maximizer of
Q(θ|θ0). In fact, the monotone likelihood-climbing property is satisfied as
long as we choose the next iterate that satisfies Q(θ1|θ0) ≥ Q(θ0|θ0).

Starting at the solution θ̂, we have

Q(θ|θ̂) = logL(θ; y) + h(θ|θ̂).

Since logL(θ; y) and h(θ|θ̂) are both maximized at θ = θ̂, so is Q(θ|θ̂).
This means θ̂ is a fixed point of the EM algorithm. Unfortunately this
argument does not guarantee the convergence of the EM algorithm. Wu
(1983) shows that for curved exponential families the limit points (where
the algorithm might converge to) are the stationary points of the likelihood
surface, including all the local maxima and saddlepoints. In particular,
this means the EM algorithm can get trapped in a local maximum. If the
likelihood surface is unimodal and Q(θ|θ0) is continuous in both θ and θ0,
then the EM algorithm is convergent. In complex cases it is important to
try several starting values, or to start with a sensible estimate.

12.5 Mixture models
Let y = (y1, . . . , yn) be an iid sample from a mixture model with density

pθ(u) =

J∑
j=1

πjpj(u|θj) (12.12)

where the πj ’s are unknown mixing probabilities, such that
∑

j πj = 1,
pj(u|θj)’s are probability models, and θj ’s are unknown parameters. Hence
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θ is the collection of πj ’s and θj ’s. The log-likelihood based on the observed
data y is

logL(θ; y) =
∑
i

log

⎧⎨⎩
J∑

j=1

πjpj(yi|θj)
⎫⎬⎭ .

Because of the constraints on πj ’s, a simplistic application of the Newton–
Raphson algorithm is prone to failure.

Mixture models are used routinely in parametric or model-based clus-
tering methodology (McLachlan and Basford 1988). The main interest is to
classify the observed data y into different clusters or subpopulations. The
EM algorithm is natural here, since one of the by-products of the algorithm
is the probability of belonging to one of the J populations.

Example 12.3: Table 12.1 gives the waiting time (in minutes) of N = 299
consecutive eruptions of the Old Faithful geyser in Yellowstone National Park.
See Azzalini and Bowman (1990) for a detailed analysis of the data. The bimodal

80 71 57 80 75 77 60 86 77 56 81 50 89 54 90 73 60 83
65 82 84 54 85 58 79 57 88 68 76 78 74 85 75 65 76 58
91 50 87 48 93 54 86 53 78 52 83 60 87 49 80 60 92 43

89 60 84 69 74 71 108 50 77 57 80 61 82 48 81 73 62 79
54 80 73 81 62 81 71 79 81 74 59 81 66 87 53 80 50 87
51 82 58 81 49 92 50 88 62 93 56 89 51 79 58 82 52 88
52 78 69 75 77 53 80 55 87 53 85 61 93 54 76 80 81 59
86 78 71 77 76 94 75 50 83 82 72 77 75 65 79 72 78 77
79 75 78 64 80 49 88 54 85 51 96 50 80 78 81 72 75 78
87 69 55 83 49 82 57 84 57 84 73 78 57 79 57 90 62 87
78 52 98 48 78 79 65 84 50 83 60 80 50 88 50 84 74 76
65 89 49 88 51 78 85 65 75 77 69 92 68 87 61 81 55 93
53 84 70 73 93 50 87 77 74 72 82 74 80 49 91 53 86 49
79 89 87 76 59 80 89 45 93 72 71 54 79 74 65 78 57 87
72 84 47 84 57 87 68 86 75 73 53 82 93 77 54 96 48 89
63 84 76 62 83 50 85 78 78 81 78 76 74 81 66 84 48 93
47 87 51 78 54 87 52 85 58 88 79

Table 12.1: The waiting time between eruptions of the Old Faithful geyser
in Yellowstone National Park.

nature of the distribution, as shown in Figure 12.3, suggests a mixture of two
processes. We model the data as coming from a normal mixture

π1N(μ1, σ
2
1) + π2N(μ2, σ

2
2).

Here π2 = 1− π1, so θ = (π1, μ1, σ1, μ2, σ2). The log-likelihood function is

logL(θ; y) =
∑
i

log{π1φ(yi, μ1, σ
2
1) + (1− π1)φ(yi, μ2, σ

2
2)},

where φ(y, μ, σ2) is the density of N(μ, σ2).
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Figure 12.3: The histogram of the geyser waiting time and the parametric
density estimate (solid line) based on the mixture of two normals.

One interpretation of the mixture model (12.12) is that yi comes from
one of the J populations, but we do not know which one. Had we observed
the indicator zi of where yi is coming from, each θj could be estimated
separately, and the estimation of θ would become trivial.

We define the ‘complete data’ x = (x1, . . . , xn), where xi = (yi, zi).
The marginal probability of Zi is P (Zi = j) = πj ; conditional on zi = j,
assume yi has density pj(u|θj). Now let

logL(θ;x) =
∑
i

logL(θ;xi)

where the contribution of xi to the log-likelihood is

logL(θ;xi) = log pzi(yi|θzi) + log πzi

=
J∑

j=1

{I(zi = j) log pj(yi|θj) + I(zi = j) log πj}(12.13)

and I(zi = j) = 1 if zi = j and zero otherwise. So, with starting value θ0,
the E-step consists of finding the conditional probabilities

p̂ij = E{I(Zi = j)|yi, θ0}
= P (Zi = j|yi, θ0)

=
π0
j pj(yi|θ0j )
pθ0(yi)

=
π0
j pj(yi|θ0j )∑

k π
0
kpk(yi|θ0k)

.

This is the estimated probability of yi coming from population j; in cluster-
ing problems it is the quantity of interest. It is immediate that

∑
j p̂ij = 1

for each i.
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From (12.13) the M-step update of each θj is based on separately max-
imizing the weighted log-likelihood∑

i

p̂ij log pj(yi|θj).

While there is no guarantee of a closed-form update, this is a major sim-
plication of the problem. Explicit formulae are available, for example, for
the normal model. We can also show the update formula

π1
j =

∑
i p̂ij
n

for the mixing probabilities.

Example 12.3: continued. For the Old Faithful data the weighted likelihood
of the j’th parameter θj = (μj , σj) is

−1

2

∑
i

p̂ij

{
log σ2

j +
(yi − μj)

2

σ2
j

}
,

which yields the following weighted averages as updates:

μ1
j =

∑
i
p̂ijyi∑
i
p̂ij

σ
2(1)
j =

∑
i
p̂ij(yi − μ1

j )
2∑

i
p̂ij

.

Starting with (π0
1 = 0.3, μ0

1 = 55, σ0
1 = 4, μ0

2 = 80, σ0
2 = 7) we obtain the following

iterations:

Iteration π1 μ1 σ1 μ2 σ2

1 0.306 54.092 4.813 80.339 7.494
2 0.306 54.136 4.891 80.317 7.542
3 0.306 54.154 4.913 80.323 7.541
5 0.307 54.175 4.930 80.338 7.528
10 0.307 54.195 4.946 80.355 7.513
15 0.308 54.201 4.951 80.359 7.509
25 0.308 54.203 4.952 80.360 7.508

Hence we obtain

(π̂1 = 0.308, μ̂1 = 54.203, σ̂1 = 4.952, μ̂2 = 80.360, σ̂2 = 7.508),

giving the density estimate

p̂(u) = π̂1φ(u, μ̂1, σ̂
2
1) + (1− π̂1)φ(u, μ̂2, σ̂

2
2).

Figure 12.3 compares this parametric density estimate with the histogram. �

12.6 Robust estimation
As described in Section 6.9 we can perform a robust regression analysis by
assuming a heavy-tailed error distribution. The EM algorithm applied to
this problem becomes an IWLS algorithm.
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Suppose y1, . . . , yn are independent with locations μ1, . . . , μn and a
common scale parameter, such that

μi = x′
iβ,

or we write it as a regression model

yi = x′
iβ + ei,

where the error ei has a tk-distribution with unknown scale σ and degrees of
freedom k. Hence the total parameter is θ = (β, σ, k). From the tk-density
function, the contribution of yi to the observed-data likelihood is

logL(θ; yi) = log Γ(k/2 + 1/2)− log Γ(k/2)− 1

2
log k − 1

2
log σ2

−k + 1

2
log

{
k +

(yi − μi)
2

σ2

}
. (12.14)

The way to proceed with the EM algorithm may not be immediately
obvious here, but recall that we may write

ei = σzi/
√
wi,

where zi is N(0, 1), and wi is χ
2
k/k independent of zi. So, if we knew wi the

regression problem would reduce to a normal-based regression problem.
Defining the ‘complete data’ as xi = (yi, wi), for i = 1, . . . , n, the

contribution of xi to the complete data likelihood is

L(θ;xi) = p(yi|wi)p(wi).

The conditional distribution yi|wi is normal with mean μi and variance
σ2/wi; the density of wi is

p(w) =
1

2k/2Γ(k/2)
wk/2−1e−kw/2.

Hence

logL(θ;xi) = v(k) +
k − 1

2
logwi − kwi

2
− 1

2
log σ2 − wi(yi − μi)

2

2σ2
,

where v(k) is a function involving k only.
The E-step consists of finding E(logwi|yi, θ0) and E(wi|yi, θ0). There

is no closed form result for the former, thus raising a question regarding the
practicality of the algorithm. Note, however, that E(logwi|yi, θ0) is only
needed for updating k, while updating β and σ2 only requires E(wi|yi, θ0).

What we can do instead is to consider the estimation of β and σ2 at
each fixed k, such that we get a profile likelihood of k from logL(θ; y) in
(12.14). The MLE of k is then readily available from the profile likelihood.
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Thus the EM algorithm can be performed at each k. The E-step reduces
to finding

ŵi ≡ E(wi|yi, β0, σ2(0)).

We can show that the conditional distribution of wi|yi is χ2
k+1/(k + d2i ),

where

d2i =
(yi − μ0

i )
2

σ2(0)
,

so

ŵi =
k + 1

k + d2i
.

For β and σ2 only, the relevant term of the E-step function is

Q = −n

2
log σ2 − 1

2σ2

∑
i

ŵi(yi − μi)
2.

This is the usual likelihood associated with weighted least squares, so the
update of β is

β1 = (X ′WX)−1X ′Wy,

where the weight matrix W is a diagonal matrix of ŵi, and the update of
σ2 is

σ2(1) =
1

n

∑
i

ŵi(yi − μ1
i )

2,

thus completing the M-step.
For one-sample problems, where y1, . . . , yn have a common location μ,

the update formula for μ is simply a weighted average

μ1 =

∑
i ŵiyi∑
i ŵi

.

The weight ŵi is small if yi is far from μ0, so outlying observations are
downweighted. This is the source of the robustness in the estimation.

12.7 Estimating infection pattern
Some diseases such as AIDS or hepatitis are transmitted by intermittent
exposures to infective agents, and a person once infected remains infected
for life. Reilly and Lawlor (1999) describe an application of the EM al-
gorithm in the identification of contaminated blood products that led to
hepatitis C among rhesus-negative women.

Suppose, at a certain point in time, the exposure history and the infec-
tion status of a person are known, but the precise time of infection (in the
person’s past) is not known. For example, the exposure history of a person
over a 10-year period might be

0 1 0 0 1 0 0 0 1 0,

meaning that this person was exposed at years 2, 5 and 9. If the final
infection status (0 or 1) is only ascertained at year 11, a dataset for eight
individuals may look like



12.7. Estimating infection pattern 355

0 1 0 0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1 1 0 0
0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0 0 0

where the last column indicates the infection status at year 11; to dis-
tinguish it from infections at various exposures, we will call it the final
status. With the real data it is not necessary for the individuals to have
the same length of exposure time, but, because of the definition of the ex-
posure variable, we can simply augment the necessary zeros where there
are no exposures. It is assumed, however, that every subject’s final status
is known at the time of analysis. What we want to estimate is the infection
rate in each year.

For individual i, let yi be the final status indicator, and zij be the
exposure indicator at time j = 1, . . . , J . We denote by pj the infection rate
at time j, and assume infections at different exposures are independent.
A person can of course be infected more than once, but there is only one
final status. Thus the full parameter set is θ = (p1, . . . , pJ), and these
probabilities do not have to add up to one.

The contribution of yi to the observed-data log-likelihood is

logL(θ; yi) = yi log πi + (1− yi) log(1− πi)

where

πi = P (yi = 1)

= P (subject i is infected at least once during the exposures)

= 1−
∏
k

(1− zijpj).

To use the EM algorithm, notice that the problem is trivial if we know
whether or not subject i is infected at each time of exposure. Let (un-
observed) xij be the infection indicator for person i at time j, and let
xi = (xi1, . . . , xiJ). If zij = 1 then xij is Bernoulli with parameter pj . Ob-
viously xij = 0 if zij = 0, so overall xij is Bernoulli with parameter zijpj .
The observed data yi = max(xi1, . . . , xiJ ); so, we define x = (x1, . . . , xn)
as the complete data. The contribution of xi to the complete-data log-
likelihood is

logL(θ;xi) =
J∑

j=1

{xij log(zijpj) + (1− xij) log(1− zijpk)}

=
J∑

j=1

{zijxij log pj + zij(1− xij) log(1− pk)}.
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The E-step consists of taking the conditional expectation E(xij |yi, θ0).
First, if yi = 0 the subject cannot have been infected in the past, so
E(xij |yi = 0, θ0) = 0 for all j. So we only need to derive the case where
yi = 1:

E(xij |yi = 1) = P (xij = 1|yi = 1)

=
P (xij = 1)

P (yi = 1)

=
zijpj

1−∏k(1− zikpk)
.

So, for the E-step we compute

x̂ij =
zijp

0
j

1−∏k(1− zikp0k)
(12.15)

if yi = 1, and x̂ij = 0 if yi = 0. The E-step function is

Q(θ|θ0) =
n∑

i=1

J∑
j=1

{zij x̂ij log pj + zij(1− x̂ij) log(1− pj)}.

Taking the derivative with respect to pj and setting it to zero, we obtain
the M-step update

p1j =

∑n
i=1 zij x̂ij∑n
i=1 zij

. (12.16)

This formula has a sensible interpretation: the numerator represents the
number of exposures at time j which resulted in infection, and the de-
nominator is the total number of exposures at time j. The EM algorithm
iterates between (12.15) and (12.16) until convergence.

12.8 Mixed model estimation�

Let an N -vector y be the outcome variate, X and Z be N × p and N × q
design matrices for the fixed effects parameter β and random effects b. The
standard linear mixed model specifies

y = Xβ + Zb+ e (12.17)

where e is N(0,Σ), b is N(0, D), and b and e are independent. The variance
matrices Σ and D are parameterized by an unknown variance parameter
θ. The full set of (fixed) parameters is (β, θ).

Estimation of those parameters would be simpler if b is observed, so the
natural complete data is x = (y, b). The likelihood of the fixed parameters
based on x = (y, b) is

L(β, θ;x) = p(y|b)p(b).
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From the mixed model specification, the conditional distribution of y given
b is normal with mean

E(y|b) = Xβ + Zb

and variance Σ. The random parameter b is normal with mean zero and
variance D, so we have

logL(β, θ;x) = −1

2
log |Σ| − 1

2
(y −Xβ − Zb)′Σ−1(y −Xβ − Zb)

−1

2
log |D| − 1

2
b′D−1b

= −1

2
log |Σ| − 1

2
e′Σ−1e− 1

2
log |D| − 1

2
b′D−1b,(12.18)

using e = y −Xβ − Zb.
The E-step of the EM algorithm consists of taking the conditional ex-

pected values

E(e′Σ−1e|y, β0, θ0) = trace Σ−1E(ee′|y, β0, θ0)

E(b′D−1b|y, β0, θ0) = trace D−1E(bb′|y, β0, θ0).

Now, for any random vector U with mean μ and variance V we have

E(UU ′) = μμ′ + V.

(The univariate version is familiar: EU2 = μ2+V.) From e = y−Xβ−Zb,
and defining

b̂ ≡ E(b|y, β0, θ0)

Vb ≡ var(b|y, β0, θ0),

we have

ê ≡ E(e|y, β0, θ0) = y −Xβ − Zb̂

Ve ≡ var(e|y, β0, θ0) = ZVbZ
′,

so

E(ee′|y, β0, θ0) = êê′ + ZVbZ
′

E(bb′|y, β0, θ0) = b̂b̂′ + Vb.

Hence the E-step reduces to finding b̂ and Vb. Some knowledge of mul-
tivariate normal theory is needed here, but mostly it involves a careful
rewriting of the univariate theory to take account of the size of the vectors
or matrices. To start,

cov(y, b) = cov(Xβ + Zb+ e, b) = Zcov(b, b) = ZD,

or cov(b, y) = DZ ′. Suppressing the parameters, the conditional expected
value E(b|y) is the usual regression estimate

E(b|y) = Eb+ cov(b, y){var(y)}−1(y − Ey)
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= DZ ′(Σ + ZDZ ′)−1(y −Xβ)

= (Z ′Σ−1Z +D−1)−1Z ′Σ−1(y −Xβ), (12.19)

where we have used Eb = 0, Ey = Xβ and var(y) = Σ + ZDZ ′. The last
step uses the following matrix identity:

DZ′(Σ + ZDZ′)−1 = (Z′Σ−1Z +D−1)−1(Z′Σ−1Z +D−1)DZ′(Σ + ZDZ′)−1

= (Z′Σ−1Z +D−1)−1Z′Σ−1(ZDZ′ +Σ)(Σ + ZDZ′)−1

= (Z′Σ−1Z +D−1)−1Z′Σ−1.

This identity will be used again to derive the variance fomula. In the E-
step, all of the unknown parameters in (12.19) are set at the current value;
that is,

b̂ = (Z ′Σ−1
0 Z +D−1

0 )−1Z ′Σ−1
0 (y −Xβ0), (12.20)

with Σ0 and D0 indicating the current values of Σ and D.
From the normal regression theory we obtain the residual variance

var(b|y) = var(b)− cov(b, y){var(y)}−1cov(y, b)

= D −DZ ′(Σ + ZDZ ′)−1ZD

= D − (Z ′Σ−1Z +D−1)−1Z ′Σ−1ZD

= {I − (Z ′Σ−1Z +D−1)−1Z ′Σ−1Z}D
= {(Z ′Σ−1Z +D−1)−1D−1}D
= (Z ′Σ−1Z +D−1)−1.

Hence at the current values we have

Vb = (Z ′Σ−1
0 Z +D−1

0 )−1. (12.21)

Combining all the components, we obtain the E-step function

Q ≡ Q(β, θ|β0, θ0) = E log(β, θ;x|y, β0, θ0)

= −1

2
log |Σ| − 1

2
ê′Σ−1ê− 1

2
log |D| − 1

2
b̂′D−1b̂

−1

2
trace{(Z ′Σ−1Z +D−1)(Z ′Σ−1

0 Z +D−1
0 )−1} (12.22)

where β enters the function through ê = y −Xβ − Zb̂.
The M-step of the EM algorithm involves maximizing Q with respect

to β and θ. Taking the derivative of Q with respect to β

∂Q

∂β
= X ′Σ−1(y −Xβ − Zb̂)

and setting it to zero, we can first update β0 by solving the weighted least-
squares equation

(X ′Σ−1X)−1β = X ′Σ−1(y − Zb̂). (12.23)

Σ is a function of the unknown θ, which is to be solved/updated jointly
with β, but we can simply set it at the current value Σ0 to solve for β, and
then use the updated β when we update the variance parameter θ.
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There is no general updating formula for the variance parameters θ,
except for specific covariance structures as given in the following example.
Because of their similarity, see the numerical examples given in Section 17.5
for further examples of the EM algorithm.

Example 12.4: Suppose we have a normal mixed model with

Σ = σ2A

D = σ2
bR,

where A and R are known matrices of rank N and q respectively, so θ = (σ2, σ2
b );

in many applications A is an identity matrix. From the properties of determinant,

|Σ| = σ2N |A|
|D| = σ2q

b |R|,
so, after dropping irrelevant constant terms,

Q = −N

2
log σ2 − 1

2σ2
ê′A−1ê− q

2
log σ2

b − 1

2σ2
b

b̂′R−1b̂

−1

2
trace{(σ−2Z′A−1Z + σ−2

b R−1)(Z′Σ−1
0 Z +D−1

0 )−1},

where Σ0 and D0 are computed using the current values σ2(0) and σ
2(0)
b . The

derivatives of Q are

∂Q

∂σ2
= − N

2σ2
+

1

2σ4
ê′A−1ê

+
1

2σ4
trace{(Z′Σ−1

0 Z +D−1
0 )−1Z′A−1Z}

∂Q

∂σ2
b

= − q

2σ2
b

+
1

2σ4
b

b̂′R−1b̂

+
1

2σ4
b

trace{(Z′Σ−1
0 Z +D−1

0 )−1R−1}.

Setting these to zero, we obtain the M-step updating formulae:

σ2(1) =
1

N
[ê′A−1ê+ trace{(Z′Σ−1

0 Z +D−1
0 )−1Z′A−1Z}] (12.24)

σ
2(1)
b =

1

q
[̂b′R−1b̂+ trace{(Z′Σ−1

0 Z +D−1
0 )−1R−1}], (12.25)

where, following the discussion after (12.23), we set ê = y−Xβ1 −Zb̂. Thus the
complete EM algorithm starts with some estimates β0 (e.g. ordinary least-squares
estimate) and θ0, and iterates through (12.20), (12.23), (12.24) and (12.25).

12.9 Standard errors
One weakness of the EM algorithm is that it does not automatically provide
standard errors for the estimates. If the observed data likelihood L(θ; y) is
available, one can find the standard errors from the observed Fisher infor-
mation I(θ̂; y) as soon as θ̂ is obtained. I(θ̂; y) can be computed analytically
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or numerically; at this stage we are not trying to solve any equation, so
this direct method is straightforward.

There have been many proposals for expressing I(θ; y) in terms of
complete-data quantities. The hope is that we obtain simpler formulae,
or quantities that can be computed as a by-product of the EM algorithm
(e.g. Louis 1982; Meng and Rubin 1991; Oakes 1999). It turns out that it
is possible to express the observed score and Fisher information in terms of
derivatives of the E-step function Q(θ|θ0), although it does not necessarily
mean that they are simpler than the derivatives of logL(θ; y).

We will follow Oakes (1999), but for simplicity only consider a scalar
parameter θ; the multiparameter case involves only a slight change of no-
tation to deal with vectors and matrices properly. Recall from (12.11) that

logL(θ; y) = Q(θ|θ0)− h(θ|θ0). (12.26)

Taking the derivatives of (12.26) with respect to θ we get

S(θ; y) =
∂Q(θ|θ0)

∂θ
− ∂h(θ|θ0)

∂θ
, (12.27)

and

I(θ; y) = −∂2Q(θ|θ0)
∂θ2

+
∂2h(θ|θ0)

∂θ2

= I(θ;x)− I(θ;x|y), (12.28)

the missing information principle we found earlier in (12.9). We might try
to use (12.28) to get I(θ; y).

Example 12.5: In the genetic data example (Example 12.2) the conditional
distribution of x given y reduces to that of (x1, x2) given y1. This is binomial
with parameters y1 and {2/(2 + θ), θ/(2 + θ)}, so

logL(θ;x|y) = x1 log
(

2

2 + θ

)
+ x2 log

(
θ

2 + θ

)
and

h(θ|θ0) = x̂1 log
(

2

2 + θ

)
+ x̂2 log

(
θ

2 + θ

)
, (12.29)

where x̂2 = y1θ
0/(2 + θ0), and x̂1 = y1 − x̂2. Deriving I(θ;x|y) from (12.29) is

not simpler than deriving I(θ; y) from logL(θ; y) shown in (12.1). �

Now ∂h(θ|θ0)/∂θ = 0 at θ = θ0, since h(θ|θ0) is maximized at θ = θ0.
So, from (12.27),

S(θ0; y) =
∂Q(θ|θ0)

∂θ

∣∣∣∣
θ=θ0

,

expressing the observed score in terms of the first derivative of Q. For
independent data y1, . . . , yn this relationship holds at each yi; hence
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S(θ0; yi) =
∂Qi(θ|θ0)

∂θ

∣∣∣∣
θ=θ0

,

with Qi = E{logL(θ;xi)|yi, θ0}. We can use this result to provide an
estimate of the observed Fisher information, since

I(θ̂; y) ≈
∑
i

S2(θ̂; yi).

Now watch carefully as we are going to treat both θ and θ0 as free
variables. Taking the derivative of (12.27) with respect to θ0 gives

0 =
∂2Q(θ|θ0)
∂θ∂θ0

− ∂2h(θ|θ0)
∂θ∂θ0

,

but, from the definition of h(θ|θ0),
∂2h(θ|θ0)
∂θ∂θ0

=
∂

∂θ0
E

{
∂

∂θ
log pθ(X|y)|y, θ0

}
=

∂

∂θ0

∫ {
∂

∂θ
log pθ(x|y)

}
pθ0(x|y)dx

= E

{
∂

∂θ
log pθ(X|y) ∂

∂θ0
log pθ0(X|y)|y, θ0

}
.

So,

∂2Q(θ|θ0)
∂θ∂θ0

∣∣∣∣
θ=θ0

= E

[{
∂

∂θ0
log pθ0(X|y)

}2

|y, θ0
]

= I(θ0;x|y). (12.30)

From (12.28) and (12.30) we have a general formula

I(θ0; y) = −
{
∂2Q(θ|θ0)

∂θ2
+

∂2Q(θ|θ0)
∂θ∂θ0

}∣∣∣∣
θ=θ0

,

expressing the observed Fisher information in terms of derivatives of Q.

Example 12.6: In the full exponential family described in Section 12.3

Q(θ|θ0) = θE(T |y, θ0)−A(θ),

so
∂2Q(θ|θ0)

∂θ2
= −A′′(θ)

and
∂2Q(θ|θ0)
∂θ∂θ0

=
∂

∂θ0
E(T |y, θ0),

so

I(θ; y) = A′′(θ)− ∂

∂θ
E(T |y, θ),

although we could have obtained this directly from the more general formula
I(θ; y) = I(θ;x)− I(θ;x|y).



362 12. EM Algorithm

Alternatively, for independent data y1, . . . , yn, we have

S(θ0; yi) =
∂Qi(θ|θ0)

∂θ

∣∣∣∣
θ=θ0

= E(Ti|yi, θ0)−A′
i(θ

0),

where Ti ≡ T (xi) and Ai(θ) is the A-function associated with xi, so

I(θ; y) ≈
∑
i

{E(Ti|yi, θ)−A′
i(θ)}2

=
∑
i

{E(Ti|yi, θ)− E(Ti|θ)}2,

to be evaluated at θ = θ̂. �

12.10 Exercises
Exercise 12.1: Verify the missing information principle

I(θ; y) = I(θ;x)− I(θ;x|y)

in the genetic model in Example 12.2.

Exercise 12.2: Recording the difference in maximal solar radiation between
two geographical regions over time produced the following (sorted) data:

-26.8 -3.5 -3.4 -1.2 0.4 1.3 2.3 2.7 3.0 3.2 3.2
3.5 3.6 3.9 4.2 4.4 5.0 6.5 6.7 7.1 8.1 10.5
10.7 24.0 32.8

Fit a t-distribution to the data, and estimate the location, scale and degrees of
freedom using the EM algorithm.

Exercise 12.3: Perform the regression analysis of the stack-loss data in Sec-
tion 6.9 using the EM algorithm developed in Section 12.6. Choose the degrees
of parameter k from the data by finding the profile likelihood.

Exercise 12.4: For the genetic data example (Example 12.2), assuming θ̂ =
0.627 is available, compute the observed Fisher information directly using the
observed-data likelihood and using the indirect formulae derived in Section 12.9.

Exercise 12.5: For the normal mixture example (Example 12.3), assuming θ̂
is available, compute the observed Fisher information directly using the observed
data likelihood and using the indirect formulae derived in Section 12.9.

Exercise 12.6: Suppose p-vectors y1, . . . , yn are an iid sample from the multi-
variate normal distribution with mean μ and variance matrix Σ. The first element
y11 of y1 is missing. Show the likelihood based on the available data, and discuss
the direct estimation of μ and Σ from it. Derive the E- and M-steps of the EM
algorithm to estimate μ and Σ.

Exercise 12.7: Refer to the problem of estimating infection pattern in Sec-
tion 12.7. The following table (read by row) shows a larger dataset of exactly
the same structure as the one described in that section. There are 100 subjects
represented in the data, each one contributed a series of length eleven. Apply the
EM algorithm for estimating the infection pattern. Compute also the standard
errors of the estimates.
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0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0
1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0

Exercise 12.8: In repeated measures experiments we typically model the vec-
tors of observations y1, . . . , yn as

yi|bi ∼ N(xiβ + zibi, σ
2
eIni).
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That is, each yi is a vector of length ni, measured from subject i; xi and zi are
known design matrices; β is a vector of p fixed parameters; and bi is a random
effect associated with individual i. Assume that bi’s are iid N(0, σ2

b ). We want
to derive the EM algorithm to estimate the unknown parameters β, σ2

e and σ2
b .

(a) What is the log-likelihood based on the observed data? (Hint: what is the
marginal distribution of yi?)

(b) Consider the collection (yi, bi) for i = 1, . . . , n as the ‘complete data’. Write
down the log-likelihood of the complete data. Hence show that the E-step

of the EM algorithm involves computing b̂i ≡ E(bi|yi) and b̂2i ≡ E(b2i |yi).
(c) Given the current values of the unknown parameters, show that

b̂i =

(
z′izi +

σ2
e

σ2
b

)−1

z′i(yi − xiβ)

b̂2i = (̂bi)
2 + σ2

e

(
z′izi +

σ2
e

σ2
b

)−1

.

(d) Show the M-step updates for the unknown parameters β, σ2
b and σ2

e .
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Robustness of likelihood
specification

In Section 9.4 we have shown that, under general conditions, the likelihood
approach leads to the best possible inference. The notion of ‘best’, e.g.
achieving the Cramér-Rao lower bound, is measured within a particular
model. The likelihood approach requires a full specification of the prob-
ability structure, and it is difficult to quantify the uncertainty associated
with model selection. The question we will address is how sensitive the
result is to the correctness of an assumed model.

The important perspective we take in this chapter is to view an assumed
model only as a working model, not as the true model that generates the
data. Akaike (1974) considers this an important extension of the ‘maximum
likelihood principle’. A recent monograph that covers this topic is Burnham
and Anderson (1998). There is a large Bayesian literature associated with
model selection quite relevant to this chapter; see, for example Kass and
Raftery (1995).

13.1 Analysis of Darwin’s data
The following table shows the outcomes of a classic experiment by Darwin
(1876), which was meant to show the virtue of cross-fertilization. The
values are the heights of paired self- and cross-fertilized plants and the
measurement of interest x is the height difference.

Cross Self x Cross Self x
23.5 17.4 6.1 18.3 16.5 1.8
12.0 20.4 −8.4 21.6 18.0 3.6
21.0 20.0 1.0 23.3 16.3 7.0
22.0 20.0 2.0 21.0 18.0 3.0
19.1 18.4 0.7 22.1 12.8 9.3
21.5 18.6 2.9 23.0 15.5 7.5
22.1 18.6 3.5 12.0 18.0 −6.0
20.4 15.3 5.1

Standard normal theory computation yields x = 2.61 with standard
error 1.22, and t = 2.14 with 14 degrees of freedom, which is borderline
significant. Assuming x1, . . . , xn are iid N(μ, σ2) the profile likelihood of
μ is
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logL(μ) = −n

2
log σ̂2

μ, (13.1)

with σ̂2
μ = 1

n

∑
i(xi−μ)2. But the data are not really normal: in particular

note two outliers on the left-tail of the distribution shown in Figure 13.1(a).
Dropping the outliers from the analysis would make the conclusion stronger,
but it would raise objections.
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(b) Lp likelihood, p=1,2,4,8

Figure 13.1: (a) There are two outliers in Darwin’s cross-fertilization data.
(b) The profile likelihood of the location μ using the Lp-model for p = 1, 2, 4
and 8 (solid, dashed, dotted, dot–dashed respectively).

To see how sensitive the likelihood is to the normality assumption, con-
sider a generalized normal model called the power exponential or Lp-model
with standard density

f0(x) =
1

Γ(1 + 1/p)21+1/p
exp

{
−1

2
|x|p
}
, −∞ < x < ∞.

If p = 2 we have the standard normal model, while p = 1 gives the double-
exponential model (long tail), and p → ∞ gives the uniform model (short
tail). The location-scale family generated by the Lp-model is

f(x) =
1

Γ(1 + 1/p)21+1/p

1

σ
exp

{
−1

2

∣∣∣∣x− μ

σ

∣∣∣∣p} .

To obtain the profile likelihood of μ and p, we first find the MLE of σp at
fixed μ:

σ̂p
μ =

p

2n

∑
|xi − μ|p

and get

logL(μ, p) = −n log Γ(1 + 1/p)− n(1 + 1/p) log 2− n log σ̂μ − n/p.

This is drawn in Figure 13.1(b) for p = 1, 2, 4 and 8. These likelihood
functions are dramatically different, indicating a sensitivity to the choice
of p.
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Which p is best? If we are not interested in p itself, it is a nuisance pa-
rameter. It can be eliminated, for example, by taking the profile likelihood
over σ2 and p simultaneously. But even with this approach there is still a
question whether the Lp-family is ‘rich enough’ for the observed data; for
example, the Cauchy distribution is not in the Lp-family.

We will consider a simpler version of the profile likelihood by first esti-
mating p from the data. The profile likelihood of p is found by maximizing
L(μ, p) above over μ:

p 1 2 3 4
− logL(p) 42.89 44.02 44.68 44.50

giving the MLE p̂ = 1. So the best we can achieve within the Lp-model is
by using p = 1, which is sensible since L1 density has the heaviest tail.

Going back to the original problem, using p = 1, the profile likelihood
of μ indicates that cross-fertilization is superior; the likelihood of H0: μ = 0
is 0.6%. This is stronger evidence than that under the normal assumption,
where the likelihood of H0 is 12%.

13.2 Distance between model and the ‘truth’
By the ‘truth’ we mean the underlying distribution or probability structure
that generates the data. We will discuss

• what we get if we assume a wrong model, and

• what we are actually doing when we maximize likelihood assuming a
wrong model.

These are important since in real data analysis whatever we assume will
always be wrong; for example, there is no such thing as exactly normal data.
Generally, we will get biased estimates. Some features of the distribution,
however, may still be consistently estimated. How wrong a model is can
be measured in terms of the Kullback–Leibler distance.

Definition 13.1 Suppose f is an assumed model density, and g is the true
density. The Kullback–Leibler distance is

D(g, f) = Eg log
g(X)

f(X)

=

∫
g(x) log

g(x)

f(x)
dx,

where the expected value assumes X is distributed with density g(x).

We have shown in Theorem 9.5 that

D(g, f) ≥ 0

with equality iff g(x) = f(x). This intuitively means that, in the average,
the log-likelihood is larger under the true model. The inequality implies
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we can use D(g, f) as a distance measure, although it is not a symmetric
distance: D(g, f) 
= D(f, g). We can make it symmetric by defining

J(f, g) = D(f, g) +D(g, f),

but there is no need for that in our applications. The quantity

−Eg log g(X) = −
∫

g(x) log g(x)dx

is called the entropy of distribution g; it is used in communication theory
as a fundamental measure of information or complexity. In this context
D(g, f) is called cross-entropy.

Example 13.1: For discrete distributions, say g(xi) = P (X = xi),

D(g, f) =
∑
i

g(xi) log
g(xi)

f(xi)
.

Given data the quantity g(xi) is associated with the observed frequencies, and
f(xi) with the model-based frequencies, so the data version of D(g, f) is associ-
ated with the likelihood ratio statistic

W = 2
∑

O log
O

E
.

We have seen this in Section 9.12 as a goodness-of-fit statistic for the model f(xi),
measuring a distance between data and model. �

Example 13.2: Suppose g(x) is the density of N(0, 1), or x ∼ N(0, 1), and
f(x) is the density of N(μ, σ2). The Kullback–Leibler distance is

D(g, f) = Eg log g(X)− Eg log f(X)

=
1

2

(
log σ2 +

1 + μ2

σ2
− 1

)
.

Figures 13.2(a)–(b) showD(g, f) as a function of μ and σ2. The distance between
N(0, 1) and N(μ, 1) gives a sense of size for D ≡ D(g, f):

μ =
√
2D,

so for example D = 2 is equivalent to the distance between N(0, 1) and N(2, 1). �

Example 13.3: Suppose the true distribution is gamma(4,1), so

g(x) =
1

6
x3e−x, x > 0,

and we model the data as N(μ, σ2). Let X ∼ gamma(4,1); then

D(g, f) = Eg log g(X)− Eg log f(X)
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Figure 13.2: (a) Kullback–Leibler distance between the true N(0, 1) and
N(μ, 1). (b) Kullback–Leibler distance between the true N(0, 1) and
N(μ, σ2), for σ = 0.1, 0.5, 1, 2 and 10.

= E(− log 6 + 3 logX −X)− 1

2
E

{
log(2πσ2) +

(X − μ)2

σ2

}
.

General analytical evaluation of D(g, f) can be complicated, but a Monte Carlo
estimate can be computed easily: generate xi ∼ gamma(4,1) and take the sample
average of log g(xi)− log f(xi).
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Figure 13.3: (a) Kullback–Leibler distance between the true gamma(4,1)
and N(μ, σ2), for σ = 1 and 2. (b) The true density (solid) and the density
of N(4, 4), the closest model.

Figure 13.3(a) shows the Kullback–Leibler distance D(g, f) as a function of
μ and σ2. The closest model N(4, 4) matches gamma(4,1) in terms of the mean
and variance, but not the higher-order moments:

Moment gamma(4,1) N(4,4)
E(X − μ)3 7.3 0
E(X − μ)4 65.5 48=3σ4
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Hence, attempts to estimate higher-order moments using the normal model will
result in biased and inconsistent estimates.

The distance of the closest model (estimated using the Monte Carlo method)
is

D(G(4, 1), N(4, 4)) = 0.08.

This is comparable with the normal mean distance of
√
2× 0.08 = 0.4 in standard

deviation units. The parameters of the closest model can also be computed using
the Monte Carlo method: generate gamma(4,1) data and then compute the MLEs
of the assumed normal model. The true and the closest densities are shown in
Figure 13.3(b).

13.3 Maximum likelihood under a wrong model
Suppose x1, . . . , xn are an iid sample from an unknown g(x) and our model
is fθ(x). Maximizing the likelihood is equivalent to

maximizing
1

n

∑
i

log fθ(xi),

which in large samples or in the average is equivalent to

minimizing {−Eg log fθ(X)}.
Since Eg log g(X) is an (unknown) constant with respect to θ, it is also
equivalent to

minimizing D(g, f) = Eg log g(X)− Eg log fθ(X).

Therefore, maximizing the likelihood is equivalent to finding the best model,
the one closest to the true distribution in the sense of the Kullback–Leibler
distance.

From the previous examples we expect the MLE θ̂ to converge to the
maximizer of Eg log fθ(X), i.e. to the parameter of the closest model. For
example, suppose x1, . . . , xn are iid from gamma(4,1) and we use the nor-
mal model N(μ, σ2). Here the closest model is N(4, 4), and we have

μ̂ → 4

σ̂2 → 4.

Thus the mean and variance of the true distribution are consistently esti-
mated. This is an example where a ‘wrong’ model would still yield consis-
tent estimates of useful population parameters. Such estimates are said to
be robust with respect to model mis-specification.

Using a wrong model, we will generally get biased or inconsistent esti-
mates, but we might also lose efficiency.

Example 13.4: Suppose x1, . . . , xn are iid gamma(α, 1) with true α = 4. If a
gamma model is assumed, we have

logL(α) = (α− 1)
∑
i

log xi −
∑

xi − n log Γ(α)
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S(α) =
∑

log xi − n
∂ log Γ(α)

∂α

I(α) = n
∂2 log Γ(α)

∂α2
.

In particular I(4) = 0.284n, so the asymptotic variance of the MLE is 1/(0.284n) =
3.52/n.

Under the normal assumption μ̂ = x is a consistent estimate of α, but

var(X) = var(X1)/n = 4/n > 3.52/n. �

Example 13.5: The problem of bias may appear even for low-order moments.
In this example we choose a seemingly reasonable model, but we get a biased
estimate of the mean parameter. Suppose the true distribution is exponential
with mean 1, and we use the log-normal model: logX is N(μ, σ2). This may be
considered reasonable since X > 0, and it is commonly used for survival data.
The best model here is log-normal with parameters

μ = −0.577

σ2 = 1.644,

achieving D(g, f) = 0.08. (We can find the closest model using a Monte Carlo
procedure: generate x1, . . . , xN from Exponential(1), then estimate μ and σ2

by the mean and variance of log xi. Theoretically, logX has the extreme-value
distribution.)

Now, suppose we have an iid sample x1, . . . , xn, and we estimate θ ≡ EX by
the estimated mean of the log-normal distribution:

θ̂ = eμ̂+σ̂2/2.

Hence θ̂ converges to

eμ+σ2/2 = e−0.577+1.644/2 = 1.278,

but using the true exponential model EX = 1. Furthermore, using the Delta
method, assuming log-normality, we can show that (Exercise 13.1)

var(θ̂) = var(eμ̂+σ̂2/2) = 4.89/n,

while if we know the true distribution

var(θ̂) = var(X) = 1/n.

In this example E logX is consistently estimated using the wrong likelihood, but
not EX since it is sensitive to the assumed model. �

We have seen that different parameters (or features) of the distribution
have different sensitivity to model mis-specification. It is desirable that
at least the inference on the parameter of interest is robust/insensitive to
wrong model assumptions.
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13.4 Large-sample properties
Consistency property

Let θ̂ be the MLE based on an assumed model fθ(x). From Section 13.3,
the parameter θ0 being estimated by the maximum likelihood procedure is
the maximizer of

λ(θ) ≡ EX log fθ(X).

We expect θ̂ to converge to θ0. The proof in the scalar case is similar to
the consistency proof we discuss in Section 9.3. If the likelihood has several
maxima, then θ̂ can be any one of the maximizers. (We will only cover the
scalar case; more conditions are needed in the multiparameter case, but we
will not cover it here.)

Theorem 13.1 Suppose θ0 is an isolated maximizer of λ(θ), and fθ(x) is
continuous in θ. Based on the iid sample x1, . . . , xn, there exists a sequence
of θ̂ that converges in probability to θ0.

Proof: Let

λn(θ) ≡ 1

n

∑
i

log fθ(xi).

For any ε > 0, using the law of large numbers, we have

λn(θ0)
p→ λ(θ0),

but
λn(θ0 − ε)

p→ λ(θ0 − ε) < λ(θ0)

and
λn(θ0 + ε)

p→ λ(θ0 + ε) < λ(θ0).

This means, if the sample size is large enough, there is a large probability
that there is a maximum in the interval (θ0 − ε, θ0 + ε). �

Note that the limit point is θ0; this may or may not be the true pa-
rameter of interest. Comments regarding the weakness of the theorem in
Section 9.3 also apply. In particular, there is no guarantee that the global
MLE is actually consistent for θ0. However, if the MLE is unique for every
n or as n tends to infinity, then it is consistent.

Distribution theory

Let θ̂ be a consistent estimate of θ0 assuming the model fθ(x) as described
above. Now allow θ to be a vector. We define

J ≡ E

(
∂ log fθ(X)

∂θ

)(
∂ log fθ(X)

∂θ′

)∣∣∣∣
θ=θ0

and
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I ≡ −E
∂2 log fθ(X)

∂θ∂θ′

∣∣∣∣
θ=θ0

.

The expected value is taken with respect to the true but unknown distri-
bution. These two matrices are the same if fθ0(x) is the true model.

Theorem 13.2 Based on an iid sample x1, . . . , xn, and assuming regular-
ity conditions stated in Section 9.4,

√
n(θ̂ − θ0)

d→ N(0, I−1J I−1).

Proof: The log-likelihood of θ is

logL(θ) =
∑
i

log fθ(xi),

so, expanding the score function around θ̂ we obtain

∂ logL(θ)

∂θ
=

∂ logL(θ)

∂θ

∣∣∣∣
θ=θ̂

+
∂2 logL(θ∗)

∂θ∂θ′
(θ − θ̂) (13.2)

=
∂2 logL(θ∗)

∂θ∂θ′
(θ − θ̂), (13.3)

where |θ∗ − θ| ≤ |θ − θ̂|. Let

yi ≡ ∂ log fθ(xi)

∂θ
,

so the left-hand side of (13.2) is a sum of an iid variate yi, with mean

EYi = E
∂ log fθ(Xi)

∂θ

=
∂E log fθ(X)

∂θ
= λ′(θ).

At θ = θ0 we have EYi = 0 and variance

var(Yi) = J = E

(
∂ log fθ(X)

∂θ

)(
∂ log fθ(X)

∂θ′

)∣∣∣∣
θ=θ0

.

By the central limit theorem, at θ = θ0 we have

1√
n

∑
i

Yi
d→ N(0,J ).

Since θ̂
p→ θ0 we have

1

n

∂2 logL(θ∗)
∂θ∂θ′

=
1

n

∑
i

∂2 log fθ∗(xi)

∂θ∂θ′
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p→ E
∂2 log fθ(X)

∂θ∂θ′

∣∣∣∣
θ=θ0

= −I.

From the Taylor series expansion (13.3)

1√
n

∂ logL(θ0)

∂θ
=

1

n

∂2 logL(θ∗)
∂θ∂θ′

×√
n(θ0 − θ̂),

so, using Slutsky’s theorem,

√
n(θ̂ − θ0)

d→ N(0, I−1J I−1).

The formula I−1J I−1 is called a robust variance formula, since it is a
correct variance regardless whether of the assumed model fθ(x) is correct
or not. Assuming the model is correct we get J = I, and the formula
reduces to the usual inverse Fisher information I−1, usually called the
‘naive’ variance formula. �

As a corollary, which we will use later,

E{n(θ̂ − θ0)
′I(θ̂ − θ0)} = trace[IE{n(θ̂ − θ0)(θ̂ − θ0)

′}]
d→ trace(II−1J I−1)

= trace(J I−1). (13.4)

Example 13.6: Let the count data x1, . . . , xn be an iid sample from some
distribution, and assume a Poisson model with mean θ. We have

log fθ(xi) = −θ + xi log θ,

so
λ(θ) = E{log fθ(X)} = −θ + E(X) log θ

and θ0 = EX maximizes λ(θ). It is also clear that θ̂ = x is a consistent estimate
of the population mean EX. The first and second derivatives of the log-likelihood
are

∂

∂θ
log fθ(xi) ≡ yi = −1 + xi/θ,

∂2

∂θ2
log fθ(xi) = −xi/θ

2

and

J = var(Yi) = var(X)/θ20

I = EX/θ20 = 1/θ0.

The robust variance formula gives

I−1JI−1 = var(X)
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as the asymptotic variance of
√
n(θ̂− θ0), which is correct regardless of what the

underlying distribution is. In contrast, the naive formula using the inverse of the
Fisher information gives

I−1 = θ0

as the asymptotic variance of
√
n(θ̂−θ0); this is generally incorrect, except if the

variance happens to match the mean. �

13.5 Comparing working models with the AIC
Specifying a correct model is important for a consistent inference and effi-
ciency. Unfortunately, in practice, it is not always easy to know if we have
a correct model. What is easier to do is to compare models, and decide
which is the best (most supported by the data) among them. This is espe-
cially simple if the models are ‘nested’, so model selection is equivalent to
parameter testing. For example,

Model 1: μ = β0 + β1x1

Model 2: μ = β0 + β1x1 + β2x2.

But what if the models are not nested, for example

Model 1: the error is normal

Model 2: the error is Cauchy?

Considering both as ‘working’ models as opposed to true models, in prin-
ciple we should choose the one closest to the true distribution; that is, we
should minimize the Kullback–Leibler distance to the true distribution. We
show earlier that minimizing the Kullback–Leibler distance is equivalent to
maximizing Eg log f(X). So based on a sample we should choose a model
that maximizes the assumed log-likelihood∑

i

log f(xi)

across possible models f .

Example 13.7: Suppose we observe an iid sample

-5.2 -1.9 -1.0 -0.7 -0.3 0.0 0.4 0.5 2.3 3.3

and consider these two models

Model 1: xi ∼ N(0, 1)

Model 2: xi ∼ Cauchy(0, 1).

The observed log-likelihoods are

Model 1:
∑
i

log f(xi) = −5 log(2π)− 1

2

∑
i

x2
i

= −33.6
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Model 2:
∑
i

log f(xi) = −10 log π −
∑
i

log(x2
i + 1)

= −22.2,

so we should choose the Cauchy model. This is sensible because of the outlying
observation (−5.2). The procedure appears equivalent to the classical likelihood
ratio procedure, but it is based on a different reasoning. Here we consider both
models on equal footing as ‘working’ models, with the true model being unknown.

It is not clear how to get a probability-based inference (i.e. P-value) for this
model comparison. The natural hypotheses are H0: normal or Cauchy models
are equally good for the data, versus H1: one model is better than the other. The
null hypothesis does not specify a distribution, so we cannot compute a P-value
for the observed likelihood ratio. From Section 2.6 the Fisherian compromise is
to base inference on the pure likelihood comparison. �

To understand why we cannot apply the usual probability-based theory,
suppose we have a model fθ(x) that is rich enough to contain the true dis-
tribution g(x) = fθ0(x). In model comparison, we compare two parameter
values θ1 versus θ2, neither of which is the true parameter. We do not have
a theory on how L(θ2)/L(θ1) behaves. (This, however, is not a realistic
analogy for model selection. If fθ(x) is available, then the best parameter

estimate is the MLE θ̂, not θ1 or θ2, so it is possible to know whether both
θ1 and θ2 have low likelihood relative to θ̂, and we have a better alternative
if the data do not support both θ1 and θ2. There is no such luxury in model
selection, we may not be able to know if our set of pre-specifed models will
contain the true model.)

Choosing between a normal versus a Cauchy model is more difficult,
since it is unclear how to parameterize the problem so that both models are
represented by two parameter values. While the two models are contained
in a tk-family, the choice of such a family is arbitrary, and there is no
guarantee that the chosen family contains the true distribution. There are
infinitely many families that can contain two specific models f1(x) and
f2(x): we can construct a mixture model

fλ(x) = λf1(x) + (1− λ)f2(x),

for 0 ≤ λ ≤ 1, or a different mixture

fλ(x) = c(λ)fλ
1 (x)f

1−λ
2 (x).

We can also add arbitrary models and define other mixtures.
The most difficult problem, yet common enough in practice, is com-

paring non-nested models with the nuisance parameters involved. The rich
family of distributions available for modelling has exaggerated the problem.
For example, to model positive outcome data we might consider:

Model 1: GLM with normal family and identity link function

with possible heteroscedastic errors.

Model 2: GLM with gamma family and log-link function.

In this case the nuisance parameters are the usual parameters in the GLM.
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We can use the general principle of profiling over the nuisance param-
eters. Specifically, suppose we want to compare K models fk(·, θk) for
k = 1, . . . ,K, given data x1, . . . , xn, where θk is the parameter associated
with model k. The parameter dimension is allowed to vary between mod-
els, and the interpretation of the parameter can be model dependent. We
then

• find the best θk in each model via the standard maximum likelihood,
i.e. by choosing

θ̂k = argmaxθ
∑
i

log fk(xi, θk).

This is the profiling step.

• choose the model k that maximizes the log-likelihood∑
i

log fk(xi, θ̂k).

As a crucial difference with the comparison of nested models, here
all the constants in the density function must be kept. This can be
problematic when we use likelihood values reported by a standard
statistical software, since it is not always clear if they are based on the
full definition of the density, including all the constant terms.

Example 13.8: Recall Darwin’s plant data in Section 13.1. The distribution
is characterized by two outliers on the left-tail. Consider the following models:

Model 1 = normal: f(x) =
1√
2πσ2

exp
{
− 1

2σ2
(x− μ)2

}
Model 2 = double exponential: f(x) =

1

2σ
exp

{
−|x− μ|

σ

}
Model 3 = Cauchy: f(x) =

1

πσ{1 + (x− μ)2/σ2} .

We know that the normal model is not plausible. All models have two parameters;
we can apply the standard maximum likelihood procedure on each model and
obtain the following table (Exercise 13.3):

Model μ̂ σ̂
∑

i
log fk(xi, θ̂k)

Normal 2.61 4.55 −44.02
D.exp. 3.00 3.21 −42.89
Cauchy 3.13 1.95 −44.10

The double-exponential model is found to be the best among the three. The
Cauchy is almost of equal distance to the true distribution as the normal model. �

The AIC
Suppose x1, . . . , xn are an iid sample from an unknown distribution g, and
θ̂k is the MLE given a model fk. From previous considerations, we want a
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model that maximizes E{log fk(Z, θk)}, where Z ∼ g. Since θk is unknown,
we will settle with one that maximizes

Qk = E{log fk(Z, θ̂k)},

where the expectation is taken over Z and θ̂k, and Z is assumed indepen-
dent of θ̂k. We cannot naively compare the maximized log-likelihood

logL(θ̂k) =
∑
i

log fk(xi, θ̂k)

since it is a biased quantity: the same data are used to compute θ̂k by
maximizing the likelihood. In particular, if two models are nested, the one
with more parameters will always yield a larger logL(θ̂k), even though it
is not necessarily a better model. This means we should not compare the
maximized likelihood if the number of parameters varies between models.

There are two better options. One is to use the jackknife or leave-one-
out cross-validation method (Stone 1974, 1977); see Section 5.2. Let θ̂ki
be the MLE of θk after removing xi from the data. Then a less biased
estimate of Qk is

ck =
1

n

∑
i

log fk(xi, θ̂ki).

The other is to correct the bias analytically. This is achieved by the
AIC formula

AIC(k) = −2
∑
i

log fk(xi, θ̂k) + 2p,

where p is the number of parameters. Under regularity conditions, we show
in the next section that AIC(k) is an approximately unbiased estimate of
−2nQk, so we select a model that minimizes AIC(k). In Section 13.6 we
will also show that the AIC is in fact equivalent to the cross-validation
method.

We can interpret the first term in AIC(k) as a measure of data fit
and the second as a penalty. If we are comparing models with the same
number of parameters then we only need to compare the profile likelihood;
for example, see the analysis of Darwin’s data above.

As in Example 13.7, in most applications of the AIC there is usually
no available P-value. Inference is taken from the perspective that we are
comparing several working models of equal footing, not necessarily con-
taining the true model. The advantage of this view is that we do not have
to limit the AIC to comparison of nested models, which makes the AIC a
general purpose model selection tool. However, as discussed in Section 3.5,
a pure AIC-based comparison is potentially weaker than probability-based
inference.
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Example 13.9: Consider a multiple regression model

yi ∼ N(x′
iβ, σ

2)

for i = 1, . . . , n, where β ∈ Rp. The MLEs are

β̂ = (X ′X)−1X ′Y

σ̂2
p =

1

n

∑
i

(yi − x′
iβ̂)

2,

so the maximized log-likelihood is

logL(β̂, σ̂2) = −n

2
log(2πσ̂2)− n

2

and
AIC(p) = n log(2πσ̂2

p) + n+ 2p,

which is usually simplified as

AIC(p) = n log(σ̂2
p) + 2p.

As we increase p (add the number of predictors) we reduce the estimated error
variance σ̂2

p, but we add a penalty. �

Using a prediction-based computation specific to regression analysis
(Exercise 13.4), we have the so-called Cp criterion, given by

Cp = nσ̂2
p + 2pσ2

0 , (13.5)

where σ2
0 is the true error variance. In practice σ2

0 is usually estimated
from the largest or the most unbiased model. Note the differences with the
AIC:

• the AIC does not require knowledge of σ2
0 , and

• Cp only applies to regression model selection.

13.6 Deriving the AIC
In Section 3.5 we discussed Lindsey’s derivation of the AIC from the prin-
ciple that inferences in different dimensions should be compatible. The
main advantage is that no asymptotic theory is needed. An alternative
derivation here shows that minimizing the AIC corresponds to minimizing
the Kullback–Leibler distance.

The purpose of the AIC is to compare different models fk(x, θk) given
data x1, . . . , xn from the unknown true model g(x). For convenience we
will assume the data are an iid sample x1, . . . , xn; the AIC formula itself
is true more generally such as for regression problems. We want to find an
estimate of

Qk = E{log fk(Z, θ̂k)},
where the expectation is taken over Z and x1, . . . , xn, and Z is assumed
independent of x1, . . . , xn.
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The log-likelihood of θk assuming a working model fk(x, θk) is

logL(θk) =
∑
i

log fk(xi, θk).

Let θk0 be the solution of λ′(θk) = 0, where λ(θk) = E{log fk(Z, θk)}.
From Theorem 13.1, θk0 is the parameter being estimated by θ̂. Let

Jk ≡ E

(
∂ log fk(Z, θk)

∂θk

)(
∂ log fk(Z, θk)

∂θ′k

)∣∣∣∣
θk=θk0

and

Ik = −E
∂2 log fk(Z, θk)

∂θk∂θ′k

∣∣∣∣
θk=θk0

.

Recall from (13.4)

E{n(θ̂k − θk0)
′Ik(θ̂k − θk0)} ≈ trace(JkI−1

k ).

Sample space formulae

A second-order Taylor expansion of the log-likelihood around θ̂ks yields

logL(θk) = logL(θ̂k) +
∂ logL(θ̂k)

∂θk
(θk − θ̂k)

+
1

2
(θk − θ̂k)

′ ∂
2 logL(θ∗k)
∂θk∂θ′k

(θk − θ̂k)

≈ logL(θ̂k)− 1

2
n(θk − θ̂k)

′Ik(θk − θ̂k),

so, at θk = θk0,

logL(θk0) ≈ logL(θ̂k)− 1

2
trace(JkI−1

k ).

Hence,

E{logL(θk0)} ≈ E{logL(θ̂k)} − 1

2
trace(JkI−1

k ),

or, in terms of λ(θk), we have

nλ(θk0) ≈ E{logL(θ̂k)} − 1

2
trace(JkI−1

k ). (13.6)

Model space formulae

Expanding λ(θk) around θk0

λ(θk) = λ(θk0) +
∂λ(θk0)

∂θk
(θk − θk0)

+
1

2
(θk − θk0)

′ ∂
2λ(θ∗k)
∂θk∂θ′k

(θk − θk0)
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≈ λ(θk0)− 1

2
(θk − θk0)

′Ik(θk − θk0).

Now, at θk = θ̂k, we have

Qk = Eλ(θ̂k) ≈ λ(θk0)− 1

2n
trace(JkI−1

k ). (13.7)

So, combining (13.6) and (13.7), we obtain

nQk ≈ E{logL(θ̂k)} − trace(JkI−1
k ),

and we establish that

logL(θ̂k)− trace(JkI−1
k )

is approximately unbiased for nQk.
The AIC formula is based on assuming Jk ≈ Ik, so trace(JkI−1

k ) ≈ p,
the number of parameters of the k’th model, and

AIC(k) = −2 logL(θ̂k) + 2p.

If the trace approximation is appropriate we can view the AIC as an un-
biased estimator of −2nQk. This is the case, for example, if the assumed
model is rich enough to contain the true model, or the best model fk(x, θk0)
is close enough to the true model. In general, however, the true value of
the trace can be far from the number of parameters, so the AIC may not be
a good estimator of −2nQk (although, from the likelihood point of view,
this does not invalidate the AIC as a model selection criterion).

Example 13.10: In Example 13.6 we use the Poisson model to model count
data. Assuming that the Poisson model is the k’th model, we can get the trace
exactly from

Jk = var(X)/θ2k0

Ik = E(X)/θ2k0,

so
trace(JkI−1

k ) = var(X)/E(X).

Hence, the trace depends on the underlying distribution, and it can be far from
the number of parameters. �

Connection with the cross-validation score

Stone (1974, 1977) proposed the cross-validation method for model selec-

tion and proved its equivalence with the AIC method. Let θ̂ki be the MLE
of θk after removing xi from the data. An approximately unbiased estimate
of Qk is

ck =
1

n

∑
i

log fk(xi, θ̂ki).
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This is obvious, since the expected value of each summand is

E{log fk(Xi, θ̂ki)} ≈ E{log fk(Z, θ̂k)}.
A direct proof is instructive, and it provides an alternative proof of the

AIC. By definition θ̂ki is the maximizer of logL(θk)− logLi(θk), where

logLi(θk) = log fk(xi, θk)

is the individual contribution to the log-likelihood. Expanding log fk(xi, θ̂ki)

around θ̂k, we get

nck =
∑
i

log fk(xi, θ̂k) +
∑
i

∂ logLi(θ
∗
k)

∂θ′k
(θ̂ki − θ̂k) (13.8)

= logL(θ̂k) +
∑
i

∂ logLi(θ
∗
k)

∂θ′k
(θ̂ki − θ̂k), (13.9)

where |θ∗k−θ̂k| ≤ |θ̂ki−θ̂k|. To express (θ̂ki−θ̂k) in terms of other quantities,

we expand the score function around θ̂k

∂ logL(θ̂ki)

∂θk
=

∂2 logL(θ̂k)

∂θk∂θ′k
(θ̂ki − θ̂k) (13.10)

and, from the definition of θ̂ki,

∂ logL(θ̂ki)

∂θk
=

∂ logLi(θ̂ki)

∂θk
. (13.11)

Recognizing

∂2 logL(θ̂k)

∂θk∂θ′k
≈ −nIk,

from (13.10) and (13.11) we get

(θ̂ki − θ̂k) ≈ − 1

n
I−1
k

∂ logLi(θ̂ki)

∂θk
.

From (13.9) we now have

nck = logL(θ̂)− 1

n

∑
i

∂ logLi(θ
∗
k)

∂θ′k
I−1
k

∂ logLi(θ̂ki)

∂θk

≈ logL(θ̂)− trace(JkI−1
k ),

since both θ̂ki and θ∗k converge to θk0. If we make the same approximation
trace(JkI−1

k ) ≈ p, we obtain

AIC(k) ≈ −2nck

and ck itself is an approximately unbiased estimate for Qk.
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13.7 Exercises
Exercise 13.1: In Example 13.5 show that the variance of θ̂ assuming the
log-normal model is 4.89/n.

Exercise 13.2: Suppose the true model is gamma(4,1), and we model the data
by N(μ, σ2). Find the bias and variance in the MLE of the following parameters;
compare also the robust and naive variance formulae.

(a) The mean of the distribution.

(b) First quartile θ = F−1(0.25) of the population.

(c) Median θ = F−1(0.5).

Exercise 13.3: Verify the likelihood comparison in Example 13.8.

Exercise 13.4: Suppose yi has mean μi and variance σ2
0 , where μi = x′

iβ and β

is of length p. The predicted value of μi is μ̂i = xiβ̂. Define the total prediction
error as

R =
∑
i

(μ̂i − μi)
2.

Show that, up to a constant term, the Cp criterion (13.5) is an unbiased estimate
of R.

Exercise 13.5: For Darwin’s data in Section 13.1 consider a contaminated
normal model

(1− π)N(μ, σ2
1) + πN(μ, σ2

2)

for the height difference, where we expect σ2
2 to be much larger than σ2

1 ; the
probability π reflects the amount of contamination. The total parameter is θ =
(π, μ, σ2

1 , σ
2
2).

(a) Write down the likelihood function based on the observed data.

(b) Find the MLEs of the parameters and their standard errors.

(c) Find the profile likelihood of μ.

(d) Using the AIC, compare the contaminated normal model with the models
in Example 13.8.

Exercise 13.6: This is a simulation study where yi, for i = 1, . . . , n, is gener-
ated according to

yi = e−xi + ei,

and xi is equispaced between −1 and 2, and ei’s are iid N(0, σ2).

(a) Simulate the data using n = 40 and σ2 = 0.25, and fit the polynomial model

Eyi =

p∑
k=0

βkx
k
i .

Use the AIC to choose an appropriate order p.

(b) For one simulated dataset, fit the model using p = 1, 2, . . . , 8. Plot the
resulting regression curves on eight separate panels. Repeat the process 50
times, starting each time with a new dataset and finishing with plotting the
curves on the panels. Compare the bias and variance characteristics of the
regression curves at different p. What value of p is chosen most often? What
is the bias and variance characteristics of the regression curves associated
with the optimal p?
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Estimating equations and
quasi-likelihood

There are many practical problems for which a complete probability mech-
anism is too complicated to specify, hence precluding a full likelihood ap-
proach. This is typically the case with non-Gaussian time series, including
repeated measures or longitudinal studies, and image analysis problems.
From our discussion in Chapter 13 we can specify convenient working mod-
els that do not necessarily match the underlying model. It makes sense,
however, to require that the model and methodology achieves a robust
inference for the parameters of interest.

The term ‘robust’ means many things in statistics. Typically we qualify
what the robustness is against: for example, the median is robust against
outliers; the sample mean is not robust against outliers, but inference for
the mean might be robust against model mis-specification. It is important
to keep in mind what we are protected against when we say something is
robust.

‘Working models’ can be specified at two levels:

• likelihood level: we treat the likelihood only as an objective function
for estimation or model comparison,

• score equation level: we specify an equation and solve it to produce
an estimate. We call the approach an estimating equation approach
or M-estimation.

The estimating equation approach allows a weaker and more general spec-
ification, since it does not have to be associated with a proper likelihood.
Rather than trying to specify the whole probability structure of the ob-
servations, in this approach we can focus on the parameter of interest.
The advantage of a likelihood-level specification is that, as described in
Section 13.5, it can be used in the AIC for model comparison.

The method of moments is an example of the estimating equation ap-
proach. The modern theory was first explored by Durbin (1960) for a
time series problem, and more generally by Godambe (1960). Given data

y1, . . . , yn, the estimating equation approach specifies that estimate θ̂ is the
solution of ∑

i

ψ(yi, θ) = 0,
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where the estimating function ψ(yi, θ) is a known function. The parameter
of interest determines the choice of ψ(yi, θ). For its closeness (in idea) with

the MLE, θ̂ is called an ‘M-estimate’.
One of the most important estimating equations is associated with

GLM: given observation yi we assume

Eyi = μi(β)

var(yi) = φvi(β)

for known functions μi(·) and vi(·) of an unknown regression parameter β.
The unknown parameter φ is a dispersion parameter. The estimate of β is
the solution of

n∑
i=1

∂μi

∂β
v−1
i (yi − μi) = 0. (14.1)

The equation applies immediately to multivariate outcomes, in which case
it is called a generalized estimating equation (GEE). The objective func-
tion associated with (14.1) is called the quasi-likelihood, with two notable
features:

• In contrast with a full likelihood, we are not specifying any probability
structure, but only the mean and variance functions. We may call
it a semi-parametric approach, where parameters other than those
of interest are left as free as possible. By only specifying the mean
and the variance we are letting the shape of the distribution remain
totally free. This is a useful strategy for dealing with non-Gaussian
multivariate data.

• With limited modelling, the range of possible inference is also limited.
In particular, the approach is geared towards producing a point esti-
mate of β. Testing and CI usually rely on the asymptotic normality
of the estimate, making it equivalent to Wald-type inference. Typ-
ically there is no exact inference, but more accurate inference may
be available via bootstrapping or empirical likelihood (Section 5.6 or
Chapter 15). Model comparison is limited to nested ones, since there
is no available AIC.

Another important class of quasi-likelihood estimation is the so-called
Gaussian estimation in time series analysis. For a time series y1, . . . , yn,
an exact likelihood computation is usually too complicated except for the
Gaussian case. Hence, given a model, for example an ARMA model (Sec-
tion 11.1), we simply use the Gaussian likelihood as a working model, even
for non-Gaussian data. Again, only the mean and (co)variance functions
are used to derive the likelihood.

Finally, the so-called ‘robust estimation’ forms another major branch of
the estimating equation approach. The main concern is the development
of procedures, or modification of classical procedures, which are resistant
to outlier or unusual observations. We will discuss this in Section 14.5.
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14.1 Examples
One-sample problems

Estimating a population mean is the simplest nontrivial statistical problem.
Given an iid sample y1, . . . , yn, assume that

E(yi) = μ

var(yi) = σ2.

From (14.1) μ̂ is the solution of

n∑
i=1

1 · σ−2 · (yi − μ) = 0,

which yields μ̂ = y.
This example shows clearly the advantages and disadvantages of the

estimating equation compared with a full likelihood approach:

• The estimate is consistent for a very wide class of underlying distri-
butions, namely any distribution with mean μ. In fact, the sample
does not even have to be independent. Compare this with the biased
likelihood-based estimate in Example 13.5 if we assume a wrong model.

• We have to base inference on asymptotic considerations, since there is
no small sample inference. One might use the bootstrap (Section 5.6)
or empirical likelihood (Chapter 15) for a reliable inference.

• There is a potential loss of efficiency compared with a full likelihood
inference under some distribution assumption; see Example 13.5.

• There is no standard prescription how to estimate the variance pa-
rameter σ2. Other principles may be needed, for example using the
method-of-moments estimate

σ̂2 =
1

n

∑
i

(xi − x)2,

still without making any distributional assumption. The estimating
equation can be extended to include the dispersion parameter.

Linear models

Given an independent sample (yi, xi) for i = 1, . . . , n, let

E(yi) = x′
iβ ≡ μi(β)

var(yi) = σ2
i ≡ vi(β).

The estimating equation for β is∑
i

xiσ
−2
i (yi − x′

iβ) = 0,

giving us the weighted least-squares estimate

β̂ = (
∑

xix
′
i/σ

2
i )

−1
∑

xiyi/σ
2
i
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= (X ′V −1X)−1X ′V −1Y,

by defining the n × p design matrix X as X = [x1 . . . xn]
′, the variance

matrix V = diag[σ2
i ], and outcome vector Y = (y1, . . . , yn)

′.

Poisson regression

For independent count data yi with predictor vector xi, suppose we assume
that

E(yi) = μi = ex
′
iβ

var(yi) = μi.

The estimating equation (14.1) for β is∑
i

ex
′
iβxie

−x′
iβ(yi − μi) = 0

or ∑
i

xi(yi − ex
′
iβ) = 0,

requiring a numerical solution (Section 14.2). The estimating equation here
is exactly the score equation under the Poisson model.

There are two ways to interpret this. Firstly, the estimate based on
Poisson likelihood is robust with respect to the distribution assumption up
to the correct specification of the mean and variance functions. Secondly,
the estimating equation method is efficient (i.e. producing an estimate that
is equal to the best estimate, which is the MLE), if the true distribution is
Poisson. This is a specific instance of the robustness and efficiency of the
quasi-likelihood method.

General quasi-likelihood models

With the general quasi-likelihood approach, for a certain outcome yi and
predictor xi, we specify using a known function f(·) and v(·)

E(yi) = μi = f(x′
iβ)

or
h(μi) = x′

iβ,

where h(μi) is the link function, and

var(yi) = φv(μi).

We can generate any standard GLM using either the estimating equa-
tion or full likelihood approach, but, as described earlier, the underlying
modelling philosophies are different. This is important to keep in mind,
though in practice the distinction tends to be blurred. One crucial distinc-
tion is that the likelihood ratio statistic, such as deviance, is not available
for the estimating equation approach.
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Likelihood-level specification
It is useful, whenever possible, to think of the previous estimating equation
approach in likelihood terms, since from Section 13.5 we can still compare
models (via the AIC) using an assumed likelihood. The likelihood connec-
tion is provided by the general exponential models described in Section 6.5;
some of the details are repeated here for completeness.

Consider a model where the i’th contribution to the log-likelihood is
assumed to be

logLi = {yiθi −A(θi)}/φ+ c(yi, φ) (14.2)

with known function A(·). The function c(yi, φ) is implicit in the definition
of A(·) since the density must integrate to one. In standard quasi-likelihood
estimation c(yi, φ) does not have to be specified; explicit formulae are avail-
able for some models, otherwise we can use the extended quasi-likelihood
below.

The score function and the Fisher information are

Si =
∂

∂θi
logLi = {yi −A′(θi)}/φ

Ii = − ∂2

∂θ2i
logLi = A′′(θi)/φ.

If A(θi) is chosen such that

E(yi) = A′(θi) ≡ μi

and
var(yi) = φA′′(θi) ≡ φvi(μi),

the likelihood satisfies the regular properties: ESi = 0 and var(Si) = E(Ii).
A regression model with link function h(·) is

h(μi) = x′
iβ.

The scale of h(·) is called the linear predictor scale, and the choice θi =
h(μi) is called the canonical-link function.

We now show that the score equation S(β) = 0 is equal to the estimating
equation (14.1):

S(β) =
∂ logL

∂β

=
∑
i

∂ logL

∂θi
× ∂θi

∂β

= φ−1
∑
i

∂θi
∂β

(yi − μi).

Since μi = A′(θi)

∂μi

∂β
= A′′(θi)

∂θi
∂β
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= vi
∂θi
∂β

.

So, we obtain

S(β) = φ−1
∑
i

∂μi

∂β
v−1
i (yi − μi),

and we are done. This means that the exponential family likelihood (14.2)
is robust, meaning consistent for a much wider class of distributions than
specified by the likelihood itself, as long as the mean and the variance
models are correctly specified.

Extended quasi-likelihood

Assuming a quasi-likelihood model, the log-likelihood contribution from a
single observation yi is

logL(θi, φ) = {yiθi −A(θi)}/φ+ c(yi, φ).

The function c(yi, φ) may not be available explicitly, so direct estimation
of φ is not possible. In Sections 4.9 and 6.6 we describe an approximation

logL(θi, φ) ≈ −1

2
log{2πφv(yi)} − 1

2φ
D(yi, μi), (14.3)

using the deviance

D(yi, μi) = 2 log
L(yi, φ = 1; yi)

L(μi, φ = 1; yi)
,

where L(μi, φ = 1; yi) is the likelihood of μi based on a single observation
yi, assuming φ = 1. In this setting the name extended quasi-likelihood is
apt (Nelder and Pregibon 1987).

14.2 Computing β̂ in nonlinear cases
The standard IWLS algorithm to solve the estimating equation can be
viewed as one of the following:

• Gauss–Newton algorithm

• Weighted least-squares

• Newton–Raphson algorithm, which coincides with the first two pro-
vided the link function is canonical. This was derived in Section 6.7.

Despite having the same formulae, these approaches are based on different
motivations. The statistical content of the last two methods immediately
suggests the variance of the estimate.
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Gauss–Newton algorithm

This is a general algorithm for solving nonlinear equations. We solve∑
i

∂μi

∂β
v−1
i (yi − μi) = 0

by first linearizing μi around an initial estimate β0 and evaluating vi at
the initial estimate. Let h(μi) = x′

iβ be the linear predictor scale. Then

∂μi

∂β
=

∂μi

∂h

∂h

∂β
=

∂μi

∂h
xi

so

μi ≈ μ0
i +

∂μi

∂β
(β − β0)

= μ0
i +

∂μi

∂h
x′
i(β − β0)

and

yi − μi = yi − μ0
i −

∂μi

∂h
x′
i(β − β0).

Putting these into the estimating equation, we obtain∑
i

∂μi

∂h
v−1
i xi{yi − μ0

i −
∂μi

∂h
x′
i(β − β0)} = 0

which we solve for β as the next iterate. Thus

β1 = β0 +A−1b,

where

A =
∑
i

(
∂μi

∂h

)2

v−1
i xix

′
i

b =
∑
i

∂μi

∂h
v−1
i xi(yi − μ0

i ).

A better way of expressing the update formula is

β1 = (X ′Σ−1X)−1X ′Σ−1Y,

where X is the design matrix of predictor variables, Σ is a diagonal matrix
with elements

Σii =

(
∂h

∂μi

)2

φvi

and Y is a ‘working vector’ of

Yi = x′
iβ

0 +
∂h

∂μi
(yi − μ0

i ).

So the Gauss–Newton iteration is the same as the IWLS algorithm in Sec-
tion 6.7.
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Weighted least-squares

The most direct way to derive the IWLS algorithm is as follows. Consider
a semi-linear model

yi = f(x′
iβ) + ei

and denote μi = f(x′
iβ) or the link function h(μi) = x′

iβ. For the variance
specification, let

var(yi) = var(ei) = φvi.

To solve for β, first linearize μi around the initial estimate β0

μi = μ0
i +

∂μi

∂h
x′
i(β − β0),

from which we get

yi = μ0
i +

∂μi

∂h
(x′

iβ − x′
iβ

0) + ei

and, upon rearrangement,

x′
iβ

0 +
∂h

∂μi
(yi − μ0

i ) = x′
iβ +

∂h

∂μi
ei.

By defining

e∗i =
∂h

∂μi
ei

and

Yi ≡ x′
iβ

0 +
∂h

∂μi
(yi − μ0

i )

we have a linear model

Yi = x′
iβ + e∗i ,

where

var(e∗i ) =
(

∂h

∂μi

)2

φvi = Σii.

The value e∗i is called the working residual and var(e∗i ) the working vari-
ance, which are quantities associated with the linear predictor scale. The
updating formula is given by the weighted least-squares

β1 = (X ′Σ−1X)−1X ′Σ−1Y,

so the algorithm also coincides with the IWLS.
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14.3 Asymptotic distribution
In the pure estimating equation approach, the inference for the parameter
of interest typically relies on the asymptotic results. We can distinguish
two approaches:

• Assuming the variance specification is correct. This is the so-called
‘naive’ approach.

• Making no assumption about the correctness of the variance specifica-
tion. This is useful for situations where even specifying the variance is
difficult (e.g. longitudinal studies, which we will discuss later). If the
variance specification is near correct then these two approaches will be
close.

First note the likelihood view of the estimating equation:

S(β) = φ−1
∑
i

∂μi

∂β
v−1
i (yi − μi)

implies EβS(β) = 0 if E(yi) = μi regardless of the variance specification.

In view of Theorem 13.1, consistency of β̂ depends only on the correctness
of this assumption.

Assuming correct variance

If var(yi) = φvi then

var{S(β)} = φ−1
∑
i

∂μi

∂β
v−1
i viv

−1
i

∂μi

∂β′

= φ−1
∑
i

∂μi

∂β
v−1
i

∂μi

∂β′ .

Using a similar derivation to that given for the Newton–Raphson algorithm
in Section 6.7, the expected Fisher information is

E

{
−∂S(β)

∂β

}
= φ−1

∑
i

∂μi

∂β
v−1
i

∂μi

∂β′ ,

= X ′Σ−1X,

using X and Σ defined previously, so the usual likelihood theory that

var{S(β)} = I(β)
holds. This is called the naive variance formula. We can expect the stan-
dard distribution theory for β̂ to hold, i.e. approximately,

β̂ ∼ N(β, (X ′Σ−1X)−1).

Example 14.1: (Poisson regression) Suppose we specify the standard Poisson
model (dispersion parameter φ = 1) with a log-link function for our outcome yi:

Eyi = μi = ex
′
iβ
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var(yi) = vi = μi.

Then the working variance is

Σii =

(
∂h

∂μi

)2

vi

= (1/μi)
2μi = 1/μi,

so approximately

β̂ ∼ N(β,
∑
i

μixix
′
i),

where observations with large means get a large weight. �

Not assuming the variance specification is correct

It is clearer to view the problem from the least-squares approach. Using
the true β as the starting value we can derive the working variate and the
working variance as

Yi = x′
iβ +

∂h

∂μi
(yi − μi)

= x′
iβ + e∗i

Σii =

(
∂h

∂μi

)2

φvi,

and, setting Σ = diag[Σii], the regression estimate is

β̂ = (X ′Σ−1X)−1X ′Σ−1Y.

But now var(Y ) = ΣY 
= Σ. Assuming regularity conditions, we expect

that β̂ is approximately normal with mean β and variance

var(β̂) = (X ′Σ−1X)−1X ′Σ−1ΣY Σ
−1X(X ′Σ−1X)−1.

This formula does not simplify any further; it is called a robust variance
formula, to indicate that it is correct even if the assumed variance of yi is
not correct. It is a special case of the robust variance formula derived in
Section 13.4.

In practice we can estimate ΣY by a diagonal matrix diag[(e∗i )
2], so the

middle term of the variance formula can be estimated by

est(X ′Σ−1ΣY Σ
−1X) =

∑
i

(e∗i )
2

Σ2
ii

xix
′
i.

This formula automatically takes care of overdispersion, so it is preferable
to the naive formula.
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14.4 Generalized estimating equation
The estimating equation we have developed so far is useful for univari-
ate outcomes. The need to consider multivariate outcomes arises in re-
peated measures or longitudinal studies, where a study subject contributes
a cluster or a series of measurements. Classical multivariate statistics has
been mostly limited to either nonparametric descriptive techniques such as
principal component analysis, or normal-based parametric models; further-
more, there is usually a rigid requirement of equal-length data vectors.

New applications, especially in medical statistics, have generated ques-
tions and datasets that cannot be addressed using classical multivariate
statistics. Extension to nonnormal models, such as the exponential fam-
ily, has been slow because of the inherent difficulty to model dependence
structure in a natural way. Full likelihood modelling of repeated measures
data can be approached using the generalized linear mixed models in Sec-
tion 17.8. Other classes of models are described for example in Lindsey
(2000).

For a less-than-full likelihood approach, Zeger and Liang (1986) pro-
posed the so-called generalized estimating equation (GEE) technique. They
recognized that the previous estimating equation∑

i

∂μi

∂β
V −1
i (yi − μi) = 0 (14.4)

is immediately applicable for multivariate outcome data, where yi and μi

are now vector valued, and Vi is a variance matrix. Most of the previ-
ous theories for the univariate outcome data apply, but obviously there is
more complexity in model specification and computation of estimates. It
is clearest to introduce the idea and notations through an example.

Example 14.2: This example is from Zeger and Liang (1986), where the
reader can also find the actual results of the analysis. A sample of N pairs of
mother and baby were followed over a period to investigate the effect of the
mother’s stress level on her baby’s health status. The outcome data yi for the
i’th baby is a time series of length ni of the health status at day t1, . . . , tni . The
covariate vector for the i’th pair at time t is xit:

1. mother’s stress level at day t− 1
2. mother’s stress level at day t− 2
3. mother’s stress level at day t− 3
4. household size
5. mother’s race
6. mother’s employment status
7. marital status.

In the study xit was recorded over time t1, . . . , tni , and put into an ni×p matrix
xi; the number of predictors p equals seven in this example. The vector size ni

and the times of follow-up do not have to be common for different subjects, nor
do the times of follow-up need to be equally spaced. �

The estimating equation approach, as before, involves a specification
of the mean and variance function. To simplify our presentation we as-
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sume that the experimental units are independent; this means we need to
be concerned only with the dependence within the units, and the overall
variance matrix is blocked diagonal. If the units are not independent, the
problem is not conceptually more difficult: dependent units simply form a
larger cluster, so the current technique applies to the larger clusters, but
the specification and practical computations do become more complicated.

Assume that the mean vector Eyi = μi satisfies

h(μi) = x′
iβ,

where β is a p×1 vector of regression parameters and the link function
h(μi) applies element by element on the vector μi. For example, if the
outcome yit is binary, then a natural model is

logit μi = x′
iβ.

Most of the usual considerations when modelling univariate outcomes ap-
ply, and the parameter estimates from the GEE are consistent as long as
the mean function is correctly specified.

To complete the model specification, we need to define an ni×ni covari-
ance matrix of yi, which in general will be a function of μi. It is doubtful
that we would be able to guess what the ‘correct’ form should be. Specify-
ing a complete distribution of yi would be even harder. This is where the
concept of specifying a ‘wrong’ but convenient variance function is useful.
The reward for specifying a correct variance is efficiency, and the price of
specifying a wrong variance is a loss of efficiency, so convenience must be
balanced against efficiency.

Specifying the variance of yit is a univariate problem we have seen
before, i.e.

var(yit) = φv(μi)

for some known function v(·); for example, if yit is binary

v(μi) = μi(1− μi).

So the covariance matrix specification is reduced to that of a correlation
structure.

In general, let us denote the ‘working’ correlation matrix of yi by

cor(yi) = Ri(α),

where α is some unknown parameter. The choice of Ri(α) is dictated by
the application or by the nature of the repeated measures. For example

1. Uncorrelated/identity structure

Ri(α) = 1ni

where 1ni
is an ni×ni identity matrix. This choice is simplest and least

efficient; it is equivalent to ignoring the repeated measures structure. It
is useful to generate a starting value for an iterative procedure, where
we try to identify the correct correlation structure from the residuals.
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2. Exchangeable structure

Ri(α) =

⎛⎜⎜⎜⎝
1 α . . . α
α 1 . . . α
...

... . . .
...

α α · · · 1

⎞⎟⎟⎟⎠ .

This is also known as the random effects structure, or split-plot struc-
ture, or compound symmetry, or spherical symmetry. This assumption
is sensible if the repeated measures are taken on similar subunits, such
as family members.

3. Stationary first-order autoregressive structure

cor(yit, yit′) = α|t−t′|

for |α| < 1, which is sensible for time series data.

4. Nonparametric structure

cor(yit, yit′) = Rtt′

for any t and t′. This choice is reasonable if there are enough individ-
uals to provide a stable estimate.

If A is the diagonal matrix of the variances, then

var(yi) = φVi = φA1/2Ri(α)A
1/2.

Given the mean and variance specification, the GEE estimate β̂ is the
solution of the multivariate version of the estimating equation:∑

i

∂μi

∂β
V −1
i (yi − μi) = 0.

Both the computation of β̂ given the variance structure parameters α (e.g.
the Gauss–Newton algorithm) and the theory given in the previous section
extend naturally here.

Computing β̂ given φ and α

We can derive the Gauss–Newton algorithm in a similar way as for the uni-
variate case; we only need to interpret the previous formulae appropriately
in terms of vectors and matrices. Starting with β0, first compute the ni×1
working vector

Yi = x′
iβ

0 +
∂h

∂μi
(yi − μ0

i ),

where the product with the derivative vector ∂h/∂μi is computed element
by element. The variance of Yi is
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Σii = φ
∂h

∂μi
Vi

∂h

∂μ′
i

.

By stacking Y1, . . . , Yn into a column vector Y , and similarly x1, . . . , xn

into X, and putting Σii into a blocked diagonal Σ, the update formula is
simply

β1 = (X ′Σ−1X)−1X ′Σ−1Y.

This formula is only nice to look at; in practice we must exploit the block
diagonal structure of Σ to compute Σ−1.

Computing φ and α

Given β̂ we can estimate α and φ using the method of moments. For
example, we can define the normalized residual

rit =
yit − μ̂it√

v̂i
,

so var(rit) = φ and

φ̂ =

∑
i

∑
t r

2
it∑

i ni − p
,

where p is the number of regression parameters. As an example of estimat-
ing α, suppose we assume an exchangeable correlation structure; then

cor(yit, yit′) ≈ cor(rit, rit′) ≈ φ−1Eritrit′ ,

so we can estimate α by

α̂ = φ̂−1

∑
i

∑
t �=t′ ritrit′∑

i ni(ni − 1)− p
.

If we assume a nonparametric structure we can use

Rtt′ =
1

φ̂(N − p)

∑
i

ritrit′ .

14.5 Robust estimation
It is well known that the sample mean is sensitive to outliers. Classical
robust estimation theory provides a way of looking at the sensitivity of the
sample mean. If we use the estimating function ψ(y, θ) = y − θ, then the
solution of the estimating equation∑

i

ψ(yi, θ) = 0

is θ̂ = y. For location parameters ψ(y, θ) is a function of (y − θ), i.e.
ψ(y, θ) ≡ ψ(y− θ). We will limit the discussions in this section to location
parameter problems.
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Figure 14.1: Some examples of ψ(·).

As a function of y we can think of ψ(y − θ) as a residual. To make∑
(yi − θ) = 0, outliers will have a large influence. The idea of robust

estimation is simple: reduce the influence of the outlying values by capping
the function ψ(·).

Figure 14.1(a) shows ψ(·) for the least-squares method, bestowing out-
lying values with unlimited influence. In contrast, Figure 14.1(b) shows the
famous Huber ψ function. Using this function, values far from the centre
of the data contribute the same error as θ± k. To solve

∑
i ψ(yi, θ) = 0 we

can use the following iterative procedure: start with θ0, then compute

y∗i =

⎧⎨⎩ yi |yi − θ0| < k
θ0 + k yi > θ0 + k
θ0 − k yi > θ0 − k

and update θ1 =
∑

i y
∗
i /n. θ̂ in this case is called the ‘Winsorized’ mean

of y. The so-called tuning parameter k determines the properties of the
procedure. As k → ∞ then θ̂ → y and as k → 0 then θ̂ goes to the median
of y. The choice of k = 1.345σ, where σ is the dispersion parameter,
corresponds to 95% efficiency if the true distribution is normal. (By the

efficiency we mean var(y)/var(θ̂) ≈ 0.95, where we know y is the best
estimate in the normal case.)

Example 14.3: For Darwin’s data in Section 13.1 we can verify that
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x = 2.61

median = 3.0

θ̂k=2 = 3.13

θ̂k=3.2 = 3.29. �

To estimate k from the data, first view the estimating equation as a
score equation. The associated likelihood is that of a normal centre plus
an exponential tail, thus

∂ logLi

∂θ
= ψ(yi, θ)

so

logLi =

∫
ψ(yi, θ)dθ

=

{ − 1
2 (yi − θ)2 |yi − θ| ≤ k

− 1
2k(2|yi − θ| − k) |yi − θ| > k

and the parameter k can be estimated by maximum likelihood.
A more dramatic modification is given by

ψ(y, θ) =

{ |y − θ| |y − θ| < k
0 otherwise

shown in Figure 14.1(c). Intuitively this forces the outlying observations
to have no influence, which can be achieved by dropping them. There is
no likelihood associated with this ψ function. Solving

n∑
i=1

ψ(yi, θ) = 0

can be done iteratively: start with θ0, then update

θ1 =
1

m

∑
i

yi

for i such that |yi − θ0| < k.
With this choice, the function

∑
ψ(yi, θ) is numerically complicated,

since it is not monotone, so it can have many solutions. For symmetric
distributions, the solution θ̂ is approximately the same as the so-called
‘trimmed’ means, which is easier to compute: for example, to get a 5%
trimmed mean we first drop the top and bottom 5% of the values before
computing the average. (Incidentally this rule is adopted in some sport
competitions, where a performance is evaluated by several judges, then the
lowest and the highest scores are dropped, and the rest added as the final
score.)
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Other variations of the ψ(·) function are the so-called ‘soft’ trimming
functions. An example is the Tukey’s bisquare function

ψ(y, θ) = (y − θ){1− (y − θ)2/R2}2+
shown in Figure 14.1(d). The choice R = 4.685σ gives 95% efficiency under
the normal distribution.

Median as a robust estimate

Consider the extreme version of Huber ψ function: ψ(y, θ) = sign(y − θ),
that is

ψ(y, θ) =

⎧⎨⎩ 1 y > θ
0 y = θ

−1 y < θ.

Intuitively all points are given equal-sized residuals: plus one or minus one.
So the solution of

∑
i ψ(yi, θ) = 0 is given by the sample median.

Quantile estimation

Now consider for a fixed and known p, where 0 < p < 1,

ψ(y, θ) =

⎧⎨⎩ p/(1− p) y > θ
0 y = θ
−1 y < θ.

The solution θ̂p of
∑

i ψ(yi, θ) = 0 is the sample 100p percentile, which is
given by the k’th order statistic y(k) with k = 
100p�.
Robust regression model and computation using IWLS
The robust approach can be extended to the regression setup to analyse a
predictor–outcome relationship. Suppose we have a model

yi = x′
iβ + ei.

The estimate β̂ is called a robust regression estimate or an M-estimate if
it solves ∑

i

xiψ(yi − x′
iβ) = 0,

for some choice of function ψ(·). In principle, we can also take into account
the variance of the outcome and nonlinear link functions by considering the
robust version of the estimating equation:

Eyi = μi = f(x′
iβ)

dispersion(yi) = φvi

where the ‘dispersion’ does not have to be a variance. Then β̂ is the solution
of ∑

i

∂μi

∂β
v−1
i ψ(yi − μi) = 0. (14.5)

Certain choices of ψ(·) will protect β̂ against outliers in the outcome vari-
able.
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Equation (14.5) provides an alternative interpretation of robust meth-
ods, and indicates that we can use the Gauss–Newton or IWLS algorithm
for routine computations. Defining

wi ≡ w(yi, μi) =
ψ(yi − μi)

yi − μi

and
V −1
i ≡ wiv

−1
i .

we can write (14.5) as ∑
i

∂μi

∂β
V −1
i (yi − μi) = 0,

the standard estimating equation.
So ψ(·) simply modifies the weight for (yi−μi) depending on how large

it is. The Gauss–Newton algorithm applies immediately with a modified
weight formula. For example, for Huber ψ function the weight is

w(y, μ) =

{
1, |y − μ| ≤ k
k/|y − μ|, |y − μ| > k,

so observations with large residuals get reduced weights.

Likelihood-based robust estimation
We now compare the ψ(·) functions implied by the likelihood models. The
previous discussion facilitates the robust interpretation of the models, and
the likelihood set-up points to an immediate inferential method and adap-
tive estimation of the tuning parameter. In the likelihood approach, a
model, hence ψ(·), is suggested by the actual data distribution. Further-
more, a model is subject to criticism or selection via the AIC.

For simplicity, we set the scale parameter to one in the following exam-
ples. Assuming y ∼ N(θ, 1), we have

logL(θ) = −1

2
(y − θ)2

ψ(y, θ) = (y − θ).

The function is shown in Figure 14.2(a), the same as the least-squares ψ(·),
illustrating the lack of robustness against outliers.

For the Cauchy model y ∼ Cauchy(θ, 1), we have

logL(θ) = − log{1 + (y − θ)2}
ψ(y, θ) =

2(y − θ)

1 + (y − θ)2
,

showing a soft trimming action on large residuals, comparable with Tukey’s
bisquare. The discussion following (14.5) also shows how to use the Gauss–
Newton or IWLS algorithm to compute Cauchy-based regression models.
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Figure 14.2: The ψ(·) functions associated with some common models.

As described in Section 6.9, the Cauchy model can be generalized to
a family of t-distribution with k degrees of freedom. This would include
both the normal (k → ∞) and the Cauchy (k = 1) models. All models with
k > 2 have heavier tails than the normal model. The degrees of freedom
parameter k is a tuning parameter to control the robust modification, and
it can be estimated from data using a maximum likelihood procedure; see
Lange et al. (1989) for further discussion and many applications.

A double-exponential model, y ∼ DE(θ), implies

logL(θ) = −|y − θ|
ψ(y, θ) = sign(y − θ).

Figure 14.2(c) shows that this model is associated with the median esti-
mation. Estimation using this model is called L1 estimation, and it can be
extended to the Lp model, with

logL(θ) = −1

2
|y − θ|p

ψ(y, θ) =

{
p
2 |y − θ|p−1 θ < y

−p
2 |y − θ|p−1 θ > y.
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This model allows distributions with either longer tail (e.g. double expo-
nential) or shorter tails (e.g. uniform) than the normal tail. Figure 14.2(d)
shows the ψ(·) function for p = 4.

14.6 Asymptotic Properties
The results in this section are parallel to those in Section 13.4 on the
asymptotic properties of MLEs under a wrong model. The reader can
consult Serfling (1980, Chapter 7) for details and further results.

Consistency

The solution of an estimating equation is consistent for the parameter that
solves the ‘true’ estimating equation. Recall that θ̂ is the solution of∑

i

ψ(yi, θ) = 0.

If y1, . . . , yn are an iid sample from some population, by the law of large
numbers

λn(θ) ≡ 1

n

∑
i

ψ(yi, θ) → λ(θ) ≡ Eψ(Y, θ).

Let θ0 be the (unique) solution of the true estimating equation

λ(θ) = 0.

Then we expect θ̂ → θ0.
For example, let ψ(y, θ) = sign(y− θ) so θ̂ is the sample median. Then

λ(θ) =

∫
ψ(y, θ)f(y)dy

= −
∫
y<θ

f(y)dy +

∫
y>θ

f(y)dy

= 1− 2F (θ).

Solving λ(θ) = 0 yields θ0 to be the true median. The sample median is
consistent for the true median in view of the following basic result.

Theorem 14.1 If ψ(y, θ) is monotone in θ, then θ̂ is consistent for θ0.

If ψ(·) is not monotone we get a weaker result, since there could be
multiple solutions. The proof of the following theorem is left as an exercise.
It is useful to recall the proof of the consistency of the MLE given in Section
9.3.

Theorem 14.2 If ψ(y, θ) is continuous and bounded in θ then there exists
a consistent solution.
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Asymptotic normality
The following result is the most important distribution theory for M-
estimation.

Theorem 14.3 Let y1, . . . , yn be an iid sample from a distribution F and
θ̂ is the solution of

∑
i ψ(yi, θ) = 0. Assume that

A1. ψ(y, θ) is monotone in θ.

A2. λ(θ) is differentiable at θ0 and λ′(θ0) 
= 0.

A3. Eψ2(Y, θ) is finite and continuous around θ0.

If θ̂ is the solution of
∑

i ψ(yi, θ) = 0 then

√
n(θ̂ − θ0) → N(0, σ2)

with

σ2 =
Eψ2(Y, θ0)

{λ′(θ0)}2 .

Assumption A1 guarantees the uniqueness of the solution of λ(θ) = 0

and consistency of θ̂; A2 and A3 are needed to guarantee σ2 is finite.

Example 14.4: We have seen that the sample quantile is an M-estimate for
the estimating function

ψ(y, θ) =

{
p/(1− p) y > θ
0 y = θ
−1 y < θ,

where p is a known value between zero and one. To get an asymptotic distribution

theory for θ̂ we need the following quantities:

1. λ(θ) = Eψ(Y, θ), where Y ∼ F .

2. λ′(θ0), where λ(θ0) = 0.

3. Eψ2(Y, θ0).

Straightforward computations give

λ(θ) =

∫
ψ(y, θ)f(y)dy

= −
∫
y<θ

f(y)dy +
p

1− p

∫
y>θ

f(y)dy

= −F (θ) +
p

1− p
(1− F (θ))

=
p− F (θ)

1− p
.

The solution of λ(θ) = 0 is θ0 = F−1(p), and we also have

λ′(θ0) = −f(θ0)

1
.
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Furthermore,

Eψ2(Y, θ0) =

∫
ψ2(y, θ0)f(y)dy

=

∫
y<θ0

f(y)dy +

(
p

1− p

)2 ∫
y>θ0

f(y)dy

= F (θ0) +

(
p

1− p

)2

(1− F (θ0))

=
p

1− p
.

So we get an important distribution theory for the p’th sample quantile:

√
n(θ̂ − θ0) → N

(
0,

p(1− p)

f(θ0)2

)
. (14.6)

In particular for median we have

√
n(θ̂ − θ0) → N

(
0,

1

4f(θ0)2

)
. (14.7)

The distribution depends on the value of the density at the true quantile; this is
a ‘local’ property as opposed to a ‘global’ one such as the variance that affects
the distribution of the sample mean. Because of its locality, the distribution of
the sample median is not affected by the tail of the distribution.

Example 14.5: For Darwin’s data (n = 15) we found the sample median

θ̂ = 3.0. The standard error is

se(θ̂) =
1√

4f̂(3)2n

=
1

2f̂(3)
√
n
.

To get f̂(3), suppose n(3, b) is the number of sample values that fall between 3−b
and 3 + b. It is clear n(3, b) is binomial with parameters n = 15 and probability

p = P (3− b < X < 3 + b) ≈ 2bf(3),

so we can estimate f(3) by f̂(3) = n(3, b)/(2nb). For a range of b we can verify

b f̂(3) se
0.2 0.33 1.5/

√
n=0.39

0.5 0.13 3.8/
√
n=0.98

1.0 0.13 3.8/
√
n=0.98

1.5 0.13 3.8/
√
n=0.98

2.0 0.10 5.0/
√
n=1.29

For a wide range of value of b between 0.5 and 1.5 the estimate f̂(3) is quite

stable, so it is reasonable to conclude that the standard error of θ̂ is 0.98.
For comparison, we have shown before that the double exponential model is

best for this dataset. Here we have the density function
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f(y) =
1

2σ
e−|y−θ|/σ.

Given the data we get the MLEs

θ̂ = 3.0

σ̂ =
1

n

∑
i

|yi − θ̂| = 3.2

so the parametric estimate f̂(θ̂) = 1/(2σ̂) and the standard error of the sample
median is

se(θ̂) = 1/

√
4f̂(θ̂)2n

= σ̂/
√
n = 3.2/

√
n = 0.83,

slightly smaller than the nonparametric estimate, which could be expected due
to the pointedness of the density function at the median. �

Sample version of the variance formula

The variance formula in the asymptotic distribution can be easily estimated
as follows. Given y1, . . . , yn let

J = Êψ2(Y, θ0)

=
1

n

∑
i

ψ2(yi, θ̂),

where in the vector case we would simply use ψ(yi, θ̂)ψ
′(yi, θ̂) in the sum-

mation, and

I = −Ê
∂

∂θ
ψ(Y, θ0)

= − 1

n

∑
i

∂

∂θ
ψ(yi, θ̂).

Then, approximately,

√
n(θ̂ − θ0) ∼ N(0, I−1JI−1),

which is also a sample version of Theorem 13.2. The sample variance
σ̂2 ≡ I−1JI−1 is the robust variance formula, also known as the ‘sandwich’
estimator, with I−1 as the bread and J the filling. In a likelihood setting I
is the usual observed Fisher information. In general, however, there is no
Fisher information interpretation of these quantities.
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Empirical likelihood

Given x1, . . . , xn from N(θ, σ2) where σ2 is unknown, we can obtain an
appropriate likelihood for θ by profiling over σ2. What if the normal as-
sumption is in doubt, and we do not want to use any specific parametric
model? Is there a way of treating the whole shape of the distribution as a
nuisance parameter, and still get a sensible likelihood for the mean? Yes,
the empirical or nonparametric likelihood is the answer. This is a signifi-
cant result: as ‘shape’ is an infinite-dimensional nuisance parameter, there
is no guarantee that it can be ‘profiled out’.

Without making any distributional assumption about the shape of the
population we know that asymptotically

√
n

s
(x− θ) → N(0, 1).

This means we can get an approximate likelihood for the mean based on
the asymptotic normal distribution:

logL(θ) = − n

2s2
(x− θ)2.

It is a ‘nonparametric’ likelihood in the sense that, up to the normal ap-
proximation, it is appropriate for a very large class of distributions specified
only by the mean. The empirical likelihood achieves the same property, but
it is based on better approximations of the distribution of the sample mean.
In general we can evaluate an empirical likelihood using

• the profile likelihood

• the bootstrap-based likelihood

• the exponential family model.

We will discuss these in detail in the following sections.

15.1 Profile likelihood
The empirical likelihood (Owen 1988) is originally defined as the profile
likelihood

L(θ) = sup
Fθ

n∏
i=1

pi(θ) (15.1)
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where the supremum is taken over all possible distributions Fθ on x1, . . . , xn,
such that the functional t(Fθ) = θ. The distribution Fθ is characterized by
a set of probabilities {pi(θ)} on x1, . . . , xn.

The term ‘functional’ t(F ) simply means a particular feature of a dis-
tribution; for example, the mean of F is a functional

t(F ) =

∫
xdF (x).

(Note: the symbol ‘dF (x)’ is shorthand for ‘f(x)dx’ in the continuous case
or the probability mass ‘p(x)’ in the discrete case.) Other functionals are,
for example, the variance, skewness and kurtosis for a univariate distribu-
tion, or the correlation coefficient for a bivariate distribution.

To motivate the term ‘empirical likelihood’, recall the empirical distri-
bution function (EDF). Given x1, . . . , xn (assuming no tie) from an un-
known distribution F , the EDF Fn is the nonparametric MLE of F as it
maximizes the likelihood

L(F ) =
n∏

i=1

P (Xi = xi)

=
n∏

i=1

pi,

subject to the conditions pi ≥ 0, for all i, and
∑

i pi = 1.
Fn is a discrete distribution that assigns probability pi = 1/n to each

data point. To show that it does maximize the likelihood, we can use the
Lagrange multiplier technique to maximize

Q =
∑
i

log pi + λ(
∑
i

pi − 1).

Taking the derivative
∂Q

∂pi
=

1

pi
+ λ

setting it to zero, we get
λpi = −1,

so λ
∑

i pi = −n or λ = −n. This immediately yields the solution pi = 1/n
for each i.

Empirical likelihood of the mean
Given an iid sample x1, . . . , xn from F , the empirical likelihood of the mean
θ is the profile likelihood

L(θ) = sup

n∏
i=1

pi(θ)

where the supremum is taken over all discrete distributions on x1, . . . , xn

with mean θ, satisfying

(i) P (X = xi) = pi(θ) ≥ 0
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(ii)
∑
i

pi(θ) = 1

(iii)
∑
i

xipi(θ) = θ.

At each fixed value of θ, finding L(θ) is a constrained optimization problem.
For simplicity we will suppress the dependence of pi on θ. Let

Q =
∑
i

log pi + ψ(
∑
i

pi − 1) + λ(
∑
i

xipi − θ),

so
∂Q

∂pi
=

1

pi
+ ψ + λxi.

Setting ∂Q/∂pi = 0 we get

pi =
−1

ψ + λxi
(15.2)

and also, after multiplying by pi,

1 + ψpi + λxipi = 0.

Summing the last equation over i, we obtain

n+ ψ
∑
i

pi + λ
∑
i

xipi = 0,

and, using
∑

i pi = 1 and
∑

i xipi = θ,

n+ ψ + λθ = 0

so
ψ = −n− λθ.

Substituting this in (15.2) yields the solution

pi =
1

n− λ(xi − θ)
,

where λ must satisfy ∑
i

xipi = θ,

or ∑
i

xi

n− λ(xi − θ)
= θ,

or, again using
∑

pi = 1,∑
i

xi − θ

n− λ(xi − θ)
=
∑
i

(xi − θ)pi = 0. (15.3)

Equation (15.3) gives a defining property of θ, and indicates how to extend
the empirical likelihood to estimating equation problems.
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Now let us define, for fixed θ,

g(λ) ≡
∑
i

xi − θ

n− λ(xi − θ)
.

So, we have

g′(λ) =
∑
i

(xi − θ)2

{n− λ(xi − θ)}2 > 0,

implying g(λ) is strictly increasing. The constraint pi ≥ 0 for all i implies
that λ must be in the interval

n

x(1) − θ
< λ <

n

x(n) − θ
,

where x(1) and x(n) are the minimum and maximum of xi’s, and it is
assumed that x(1) < θ < x(n). It can be seen that g(λ) ranges from −∞ to
∞ as λ varies in the allowed interval, so the equation g(λ) = 0 will always
produce a unique solution.

The empirical likelihood L(θ) is maximized at θ = x, implying the sam-
ple mean is the nonparametric MLE of the population mean. At θ = x
we get λ = 0 and pi = 1/n (giving the EDF). It makes sense to com-
pute the likelihood on an interval around x. Furthermore, for the purpose
of frequentist calibration, Owen (1988) showed that the usual asymptotic
distribution of the likelihood ratio statistic holds. That is,

2 log
L(θ̂)

L(θ)
→ χ2

1.

This means that the empirical likelihood can be interpreted and calibrated
like the ordinary likelihood.

Example 15.1: Suppose we observe n = 5 data points

2.3 2.4 4.5 5.4 10.1

and we are interested in the empirical likelihood for the mean. The following
table shows the various quantities at several values of θ.

θ λ pi logL(θ) =
∑

i
log pi

3 −3.85 0.43 0.37 0.09 0.07 0.03 −10.33
4 −0.85 0.28 0.27 0.18 0.16 0.10 −8.40
4.94 0 0.20 0.20 0.20 0.20 0.20 −8.05
6 0.52 0.14 0.15 0.17 0.19 0.35 −8.34
7 0.97 0.10 0.11 0.13 0.15 0.50 −9.08

At θ = x = 4.94 we have λ = 0 and pi = 0.2. We can see that a large value
of θ would yield a distribution with more weight on the right, and vice versa for
a small value of θ. Figure 15.1 shows the plot of the likelihood. Its asymmetry
is due to the skewness of the data; from the likelihood we can get a naturally
asymmetric CI around x.
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Figure 15.1: (a) At θ = 3 the equation g(λ) = 0 yields the solution λ =
−3.85. (b) Empirical likelihood of the mean θ.

15.2 Double-bootstrap likelihood
In some sense an empirical likelihood is a likelihood based on an estimate
rather than the whole data. Suppose we have a dataset x, an estimate t(x)
for a scalar parameter θ, and a nuisance parameter η such that

pθ,η(x) = pθ(t)pθ,η(x|t).

The empirical likelihood is very close to the likelihood based on pθ(t),
so it is a form of marginal likelihood. This leads to the idea of double
bootstrapping to generate the empirical likelihood (Davison et al. 1992).

The bootstrap methodology (see Sections 5.2, 5.3 and 5.6) was invented
to provide a (simple) computational-based inference in complex statistical
problems. It is an exchange between analysis and computer power as it
replaces thinking with computing (which makes economic sense since a
thinker is more expensive than a computer). The bootstrap method is
simple if all we want is a standard error, or a CI based on the percentile
method. However, in its development, more complicated schemes are neces-
sary to get a better inference than what is merely provided by the standard
error or the percentile method (Efron 1987). The ambitious goal is to im-

prove on the Wald-type CI, θ̂± 1.96se(θ), purely by computational means.
It is instructive to imagine a 3D plot of a bivariate function

h(θ, t) ≡ pθ(t).

A slice at θ = θ̂ gives a density function p
θ̂
(t) = h(θ̂, t); a slice at the

observed value t = tobs provides the likelihood L(θ) = h(θ, tobs). The
standard bootstrap procedure is:

• resample from the data x, yielding a new dataset x∗

• compute t∗ ≡ t(x∗)
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• repeat a large number of times, so we have a collection of t∗’s

The collection of t∗’s is a sample from p
θ̂
(t), so from such a collection we

can estimate p
θ̂
(t), but not the likelihood L(θ).

The following double-bootstrap procedure generates a likelihood that is
very close to the empirical likelihood. Imagine that each bootstrap sample
x∗ yields a new θ∗ ≡ t∗. Then, fixing x∗,

• resample from x∗, producing a new dataset x∗∗

• compute t∗∗ ≡ t(x∗∗)

• repeat a number of times, so we have a collection of t∗∗’s

• estimate pθ∗(t) from such a collection.

The above procedure is performed at each first-stage sample x∗. In prin-
ciple, by piecing together pθ∗(t) for different values of θ∗ we can build the
function h(θ, t), and evaluate the likelihood L(θ) = h(θ, tobs).

The double-bootstrap method is computationally intensive. If we use
B1 = 1000 bootstrap replications for the first stage and another B2 = 1000
bootstrap replications for the second stage, in total we require 1,000,000
replications. Two layers of smoothing are required: one to estimate pθ∗(t)
at t = tobs for each θ∗, and the other to smooth L(θ∗). The first smoothing
operation must always be performed, but the unsmoothed L(θ∗) might be
displayed to show the shape of the likelihood. The usual advantage of the
bootstrap is that we can consider more complicated statistics or sampling
models than achievable by analytical methods.

Example 15.2: Consider n = 24 intervals in hours between repairs and failures
of an aircraft air-conditioning equipment, given in Example T of Cox and Snell
(1981):

50 44 102 72 22 39 3 15 197 188 79 88
46 5 5 36 22 139 210 97 30 23 13 14

and assume that they are an iid sample from some distribution. Figure 15.2
shows the unsmoothed and smoothed bootstrap likelihood of the mean; in this
example we use B1 = 200 and B2 = 40. The standard empirical likelihood
tracks the bootstrap likelihood closely. Indeed, for a large class of M-estimators,
Davison et al. (1992) show that the bootstrap and empirical likelihoods agree up
to terms of order O(n−0.5). Therefore, we can think of the bootstrap likelihood
as a numerical way to produce an empirical likelihood. �

Example 15.3: The following table shows the average scholastic aptitude tests
(SAT) and the grade point average (GPA) from 15 law schools as reported in
Table 4 of Efron (1987). The data are plotted in Figure 15.3(a). We are interested
in the correlation coefficient ρ between the two scores; the observed correlation
is 0.78.

Inference for the correlation coefficient is a benchmark problem of the boot-
strap methodology; it is ‘the lightning rod’ in the sense that failures in the
methodology will hit this problem first. The standard empirical likelihood of
ρ is given in Owen (1990). Construction of the bootstrap likelihood proceeds the
same way as before. Figure 15.3(b) shows the unsmoothed and smoothed log-
likelihood of ρ. Since estimates of correlation are biased (in this case upwards),
the likelihood is not maximized at the observed correlation.
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Figure 15.2: The scattered points are the unsmoothed bootstrap log-
likelihood, the solid curve is the smoothed bootstrap log-likelihood, and the
dashed curve is the empirical likelihood.

SAT GPA SAT GPA
576 3.39 651 3.36
635 3.30 605 3.13
558 2.81 653 3.12
578 3.03 575 2.74
666 3.44 545 2.76
580 3.07 572 2.88
555 3.00 594 2.96
661 3.43
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(b) Bootstrap likelihood

Figure 15.3: (a) The scatter plot of SAT versus GPA scores. The sample
correlation is ρ̂ = 0.78. (b) The unsmoothed and smoothed log-likelihood of
the correlation coefficient.

15.3 BCa bootstrap likelihood
The BCa (bias corrected accelerated) method for setting bootstrap CIs was
introduced by Efron (1987) to overcome the weaknesses of the percentile
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method (Section 5.6). In contrast to the previous method of double boot-
strapping, the BCa method leads to a nonparametric likelihood from a
single bootstrap,

Let x ≡ (x1, . . . , xn) be a random sample from a continuous distribution

F , θ ≡ t(F ) be a real-valued parameter of interest, and θ̂ = t(x) and F̂ be
the estimates of θ and F . Then

(a) generate bootstrap data x∗ by resampling from F̂ .

(b) Compute t(x∗) and call it t∗.

(c) Repeat (a) and (b)B times. Denote byG the true distribution function

of t(x∗) and Ĝ its estimate based on t∗1, . . . , t
∗
B .

(d) Compute the bias correction term z0 by

z0 = Φ−1{Ĝ(θ̂)}

where Φ(z) is the standard normal distribution function.

(e) Compute the term a, the rate of change of the standard deviation
of the normalized parameter (see below). For the mean parameter
estimation we have

a =

∑
i(xi − x)3

6{∑i(xi − x)2}3/2 ,

which is a measure of skewness of the data. For a general parameter,
a is computed using a jackknife procedure (Section 5.2). Let x−i be

the original data with the i’th item xi removed, θ̂(i) be the estimate

of θ based on x−i, and θ̂(·) be the average of θ̂(i)’s. Then

a =

∑
i(θ̂(·) − θ̂(i))

3

6{∑i(θ̂(·) − θ̂(i))2}3/2
.

Given these quantities the 100(1− α)% BCa CI of θ is

Ĝ−1{Φ(z[α])} < θ < Ĝ−1{Φ(z[1− α])}, (15.4)

where z[α] ≡ z0 + (z0 + zα)/{1− a(z0 + zα)} and zα ≡ Φ−1(α).
For B = ∞ the interval (15.4) is exact if there exists a normalizing

transform φ = h(θ) such that

φ̂− φ

σφ
∼ N(−z0, 1), (15.5)

where σφ = 1 + aφ. Generally it is more accurate than the Wald interval,
since (15.5) involves a better approximation than the standard CLT.
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To construct a BCa likelihood, first construct the likelihood function of
φ based on model (15.5), then use the inverse-transform to compute the
likelihood of θ. Specifically, if {φ,L(φ)} is the graph of φ-likelihood, where

logL(φ) = − log σφ − (φ̂− φ+ z0σφ)
2

2σ2
φ

,

then {h−1(φ), L(φ)} is the graph of θ-likelihood. The BCa likelihood is
defined as

LB(θ) ≡ L[Φ−1{Ĝ(θ)}], (15.6)

where the observed φ̂ = Φ−1{Ĝ(θ̂)} is used in computing L(φ). This em-
ploys

φ = h(θ) = Φ−1{Ĝ(θ)}
as the normalizing transform, which can be justified as follows: if θ̂ has dis-
tribution G(·), then G(θ̂) is standard uniform and Φ−1{G(θ̂)} is standard

normal, so Φ−1{G(·)} is an exact normalizing transform for θ̂.
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Figure 15.4: BCa likelihood (solid line) and the standard empirical likeli-
hood (dashed line) of the mean of the aircraft failure data.

For the aircraft failure data in Example 15.2, Figure 15.4 shows the BCa

and the empirical likelihoods for the mean parameter θ. In this example
the number of bootstrap replications is B = 1000. In Pawitan (2000) it is
shown that, for a general class of M-estimators, the BCa likelihood is very
close to the empirical likelihood, so it can be considered as a numerical way
to produce the latter.

Even in small samples, the bootstrap distribution G may be regarded
as continuous, so generally no smoothing is needed in computing LB(θ). In
practice we only need to ensure the bootstrap replication B is large enough
for accurate CI computations; Efron (1987) indicated that B = 1000 is
adequate. Theoretically, the validity of BCa likelihood is inherited from the
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BCa method; Efron (1987) proved the validity of the BCa method for any
regular one-parameter problem, including those with nuisance parameters.

The bootstrap likelihood can also be used to approximate a paramet-
ric likelihood, especially a profile likelihood for a scalar parameter. The
computation is the same as before, but instead of using the empirical distri-
bution, we generate bootstrap data according to a parametric model. This
is convenient in multiparameter problems, since a parametric profile likeli-
hood is sometimes difficult to derive, or tedious to compute. For example,
to compute the profile likelihood of the correlation coefficient ρ in a bivari-
ate normal model, the full likelihood is a function of (μx, σ

2
x, μy, σ

2
y, ρ). To

get a profile likelihood for ρ we need to maximize over the 4D subspace of
(μx, σ

2
x, μy, σ

2
y) at each fixed value of ρ.
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Figure 15.5: Correlation of SAT and GPA: the parametric profile (solid),
parametric bootstrap (dashed), nonparametric BCa bootstrap (dotted) like-
lihoods.

For the law school data in Example 15.3, Figure 15.5 shows the exact
parametric profile, parametric bootstrap, and nonparametric BCa likeli-
hoods of the correlation coefficient. Both bootstrap-based likelihoods are
based on 4000 bootstrap samples. For the parametric likelihoods the data
are assumed to be bivariate normal. Compared with the double-bootstrap
likelihood shown in Figure 15.3, the nonparametric BCa likelihood is closer
to the parametric ones.

15.4 Exponential family model
The previous derivation of the empirical likelihood of the mean shows that
the EDF Fn is embedded in the one-parameter family of distributions of
the form

pi =
1

n− λ(xi − θ)
, (15.7)

where λ is a function of θ through
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i

xipi = θ.

Efron (1982) suggested a seemingly more natural exponential formula

pi ≡ eλxi∑
j e

λxj
(15.8)

where λ is a function of the mean θ also through∑
i

xipi = θ.

The observed EDF is a member of both families (at λ = 0).
The log-likelihood of the mean θ based on model (15.8) is

logL(θ) =
∑
i

log pi

=
∑
i

{λxi − log
∑
j

eλxj}

= nλx− n log
∑
j

eλxj ,

where θ enters through λ.

40 60 80 100

−
8

−
6

−
4

−
2

0

θ

Lo
g−

lik
el

ih
oo

d

Figure 15.6: Exponential family log-likelihood (solid) and the standard em-
pirical log-likelihood (dashed) for the mean of the aircraft failure data in
Example 15.2.

The two models are in fact quite close and would yield similar likeli-
hoods. For the aircraft failure data in Example 15.2 the two likelihoods
are shown in Figure 15.6. Davison et al. (1992) and Monti and Ronchetti
(1993) gave a comparison between the two likelihoods in terms on their
asymptotic expansion.



420 15. Empirical likelihood

15.5 General cases: M-estimation
The empirical likelihood can be extended to the estimating equation method
described in Chapter 14. Suppose an estimate t is the solution of an esti-
mating equation ∑

i

ψ(xi, t) = 0.

To cover the multiparameter problems, ψ(xi, t) is assumed to be an array-
valued function. The parameter θ being estimated is the solution of the
theoretical estimating equation

EFψ(X, θ) = 0.

As in the case of the population mean, the empirical likelihood of θ
based on data x1, . . . , xn is the profile likelihood

L(θ) = sup
∏
i

pi

where the supremum is taken over all discrete distributions on x1, . . . , xn

satisfying the requirements: pi ≥ 0 for all i,
∑

i pi = 1 and∑
i

ψ(xi, θ)pi = 0,

a generalization of equation (15.3). Using a similar Lagrange multiplier
technique as before we can show that the solution is of the form

pi =
1

n− λ′ψ(xi, θ)

where λ is a vector that satisfies∑
i

ψ(xi, θ)

n− λ′ψ(xi, θ)
= 0.

So, at each θ, we need to solve the last equation to find λ, then compute
pi and the likelihood.

In the multiparameter case, the empirical profile likelihood for individ-
ual parameters can be obtained by further optimization of the joint em-
pirical likelihood. Alternatively, one can compute the overall optimization
directly using some numerical procedure. Let θ = (θ1, θ2), where θ2 ∈ Rq

is the nuisance parameter; the empirical likelihood of θ1 is

L(θ1) = sup
∏

pi

where the supremum is taken over {p1, . . . , pn} and θ2 ∈ Rq, satisfying pi ≥
0,
∑

i pi = 1 and
∑

i ψ(xi, θ)pi = 0. A number of constrained optimization
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programs are available, for example, the FORTRAN package NPSOL from
Gill et al. (1986).

The empirical likelihood can be extended to linear and generalized
linear models (Owen 1991; Kolaczyk 1994). Similar formulae apply us-
ing a proper definition of the estimating function ψ(·). Suppose we ob-
serve (y1, x1), . . . , (yn, xn), where y1, . . . , yn are independent outcomes and
x1, . . . , xn are known predictors. Let Eyi = μi, and we have a link function

h(μi) = x′
iβ

and var(yi) = φvi. Now define

ψi = ψi(yi, β) =
∂μi

∂β

(yi − μi)

φvi
.

The estimate of β is the solution of the estimating equation∑
i

ψi(yi, β) = 0.

For example, for a Poisson regression model, suppose logμi = x′
iβ and

vi = μi (φ = 1); then

ψi = xi(yi − ex
′
iβ).

The empirical likelihood of β is the profile likelihood

L(β) = sup
∏
i

pi

where the supremum is taken over all discrete distributions satisfying pi ≥
0,
∑

i pi = 1 and ∑
i

ψi(yi, β)pi = 0.

If the dispersion parameter φ is unknown, it can be replaced by its estimate.
The empirical likelihood for individual regression parameters can be com-
puted using the same numerical technique described above, by enlarging
the parameter space for optimization.

Inference based on the empirical likelihood is valid as long as the mean
specification is correct, while the variance specification may be incorrect
(Kolaczyk 1994). In the latter case the curvature of the empirical likelihood
automatically leads to the robust variance estimate (Section 14.3).

Exponential family model

The exponential family model in Section 15.4 can also be generalized to
derive a nonparametric likelihood associated with an estimating equation.
For an iid sample x1, . . . , xn assume a probability model

P (X = xi) = pi =
eλ

′ψ(xi,t)∑
j e

λ′ψ(xj ,t)
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where for fixed θ the vector λ satisfies
∑

i ψ(xi, θ)pi = 0, or∑
i

ψ(xi, θ)e
λ′ψ(xi,θ) = 0, (15.9)

and t is the solution of an estimating equation∑
i

ψ(xi, t) = 0.

Implicitly we have assumed a model indexed by the parameter θ. The
log-likelihood of θ is

logL(θ) =
∑
i

log pi

=
∑
i

λψ(xi, t)− n log
∑
j

eλ
′ψ(xj ,t)

= −n log
∑
j

eλ
′ψ(xj ,t),

using
∑

i ψ(xi, t) = 0. The quantity

K(λ) ≡ log

⎛⎝ 1

n

∑
j

eλ
′ψ(xj ,t)

⎞⎠
is known as the empirical cumulant generating function. So, up to an
additive constant, we have an interesting relationship

logL(θ) = −nK(λ),

where λ is a function of θ through (15.9). For example, if ψ(x, t) = x − t
then

logL(θ) = nλx− n log
∑
j

eλxj

as we have seen in Section 15.4. The close relationship between the expo-
nential family likelihood and the standard empirical likelihood is explored
by Monti and Ronchetti (1993).

15.6 Parametric versus empirical likelihood
Recall that the empirical likelihood is close to a likelihood based on an
estimate rather than the whole data. If the estimate is sufficient for a
particular parametric family, then the empirical likelihood will be close to
the full parametric likelihood, otherwise there can be a large discrepancy. A
detailed theoretical comparison between the empirical and the parametric
likelihoods is given by DiCiccio et al. (1989).
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Figure 15.7: Parametric log-likelihood (solid) based on the exponential dis-
tribution and the standard empirical log-likelihood (dashed) for the mean of
the aircraft failure data in Example 15.2.

Example 15.4: For the aircraft failure data (Example 15.2), Figure 15.7
compares the empirical likelihood versus a full parametric likelihood. To compute
the latter, we assume the data are iid exponential with mean θ, so the log-
likelihood is

logL(θ) = −n log θ −
n∑

i=1

xi/θ.

The two likelihoods are maximized in the same location, and there is a reasonable
agreement around the MLE. DiCiccio et al. (1989) show that this is generally
true for exponential family models, which is expected because of the sufficiency
of estimates under such models. �

Example 15.5: We refer again to Darwin’s self- and cross-fertilized plants in
Section 13.1. The measurement of interest x is the height difference:

-8.4 -6.0 0.7 1.0 1.8 2.0 2.9 3.0
3.5 3.6 5.1 6.1 7.0 7.5 9.3

Assume that the data are an iid sample from the double-exponential distribution
with density

p(x) =
1

2σ
e−|x−θ|/σ.

The parametric MLE of θ is the sample median m = 3. For comparison, the
sample mean is x = 2.61. At fixed θ the MLE of σ is

∑
i
|xi − θ|/n, so the profile

log-likelihood for θ is

logL(θ) = −n log
∑
i

|xi − θ|.

Figure 15.8 compares the parametric likelihood with the empirical likelihood
based on the mean. The mean of the distribution is θ, but the sample mean
is not a sufficient estimate; this is the main source of the discrepancy, since
the empirical likelihood is centred at the sample mean. Even the locations of the
maxima differ. If the data are a sample from the double-exponential distribution,
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Figure 15.8: Parametric log-likelihood (solid) based on the double-
exponential distribution and the standard empirical log-likelihood (dashed)
based on the sample mean.

then the empirical likelihood based on the mean is not an efficient quantity for
inference. Computing the empirical likelihood based on the sample median is left
as an exercise. �

The last example shows that some care is needed in choosing an ap-
propriate estimate; this requires a look at the observed data, since only an
appropriate parametric model can suggest a proper estimate. Since there is
an empirical likelihood associated with an estimating equation, justifying
an empirical likelihood is the same as justifying an estimating equation.
Using empirical likelihood it is possible to provide some inference for the
model-free population parameters, but with a potential loss of efficiency if
the observed data actually allow a better parametric procedure.

15.7 Exercises
Exercise 15.1: For the law school data in Example 15.3 verify the BCa like-
lihood for the correlation coefficient. Compare this with the parametric profile
likelihood and the parametric BCa likelihood.

Exercise 15.2: For the law school data in Example 15.3 construct a bivariate
empirical likelihood of the mean parameters. Compare this with the normal-
based profile likelihood.

Exercise 15.3: For Darwin’s data on self- and cross-fertilized plants, construct
the empirical likelihood based on the sample median. (Hint: use an appropriate
ψ(·) function.) Compare it with the parametric likelihood based on the double-
exponential model. Compare it also with the BCa likelihood based on the sample
median.
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Likelihood of random
parameters

16.1 The need to extend the likelihood
The simplest random effects model is of the form

yij = μi + eij ,

where μi is the random group i effect and eij is the error term. In classical
linear models it is common to assume that μi’s are an iid sample from
N(μ, σ2

μ) and eij ’s are an iid sample from N(0, σ2). Classical analysis of
random effects models concentrates on the estimation of the variance com-
ponent parameters σ2 and σ2

μ, but in many recent applications of statistics
the main interest is estimating the random parameters μi’s. These appli-
cations are characterized by the large number of parameters.

The classical likelihood approach does not go very far. In that ap-
proach we must take the view that for the data at hand the realized μi’s
are fixed parameters, so in effect we will be analysing a fixed effects model.
This ignores the extra information that μi’s are a sample from a certain
distribution. It is now well established that treating the random param-
eters properly as random leads to better estimates than treating them as
fixed parameters; this is demonstrated especially by the examples in Chap-
ter 18. A proper likelihood treatment of random parameters necessitates
an extended definition of the likelihood function.

There could be some questions regarding what is meant by ‘the random
parameters are a sample from a certain distribution’. In practice we can
view the statement simply as a model for dealing with a large number of
parameters, hence no actual sampling needs to have taken place. What
we are modelling is that a collection of (parameter) values is distributed
according to some shape, and we use the probability model to represent
it. No such modelling is needed when we are dealing with only a few
parameters.

To strip the random effects model to the bare minimum, assume that
the only information we have is that μ is taken at random from N(0, 1).
Here is what we get if we view the likelihood simply as evidence about a
fixed parameter; i.e. after μ is generated it is considered a fixed unknown
value. Since there is no data, strictly we cannot compute a likelihood, but
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having no data is equivalent to collecting irrelevant data that do not involve
μ, so the ‘fixed-parameter-μ’ (pure) likelihood is

L(μ) = constant,

i.e. we are in a state of ignorance. But actually we are not, since we know
μ is generated according to N(0, 1); in this case this valid information
is contextual, not evidence from data. Recall that the pure likelihood
represents the current state of knowledge if we know absolutely nothing
about the parameter prior to the experiment.

In this example it seems obvious and sensible that the information about
μ is captured by the standard normal density

L(μ) =
1√
2π

e−μ2/2.

The extended definition of the likelihood should capture this uncertainty.
One may interpret the likelihood as before, which is to give us a rational
degree of belief where μ is likely to fall, but since it is also a standard density
there is an objective interpretation in terms of frequencies. This ‘no-data’
likelihood of μ may be thought of as a prior density in a Bayesian setting
(except here we do have an objective meaning to μ being a random outcome
from N(0, 1), while in a Bayesian argument such a physical model for μ is
not necessary). In this example we do not need to call the density function
a likelihood, but the need does arise in prediction problems (Section 16.2),
mixed effects models (Chapter 17) and smoothing problems (Chapter 18).

We have defined the likelihood to deal with uncertainty. Uncertainty is
simply a lack of certainty: we can be uncertain about a binomial probability
θ, about what will happen in the stock market tomorrow, or about what
the result of a coin toss will be. We will treat the uncertainty about a
fixed parameter differently from the uncertainty about a random outcome.
Traditionally, the former is expressed by the likelihood and the latter by
a density function. But modern applications suggest that the likelihood
framework should be able to deal with both uncertainties. We will make
this clear by examples. To summarize, we will distinguish two kinds of
uncertainty:

(i) uncertainty about a fixed parameter, which is due to incomplete in-
formation in the data. The uncertainty is expressed by the likelihood
function, which captures the evidence in the data about the model
parameter. Within this context the likelihood is not a density func-
tion. In particular, the rule regarding transformation of parameters is
governed by the invariance principle (Section 2.8). The traditional def-
inition of likelihood (Section 2.1) and most of the classical likelihood
theory falls in this category.

(ii) uncertainty about a random parameter. Here the likelihood should not
just express the evidence about the parameter, but may include other
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contextual information; the actual definition is given in Section 16.3.
For such a parameter the likelihood function can be interpreted as a
density, so in general the mathematical rules regarding a probability
density function apply; for example, it should integrate or sum to
one. To emphasize the difference we might call the likelihood here
an extended likelihood, while the likelihood for a fixed parameter is
a pure likelihood. But such a terminology seems unnecessary since it
is usually clear from the context whether we are dealing with fixed
or random parameters, so except for emphasis we will simply use the
term ‘likelihood’ to cover both.

16.2 Statistical prediction
Binomial prediction problem

The prototype of statistical problems in Section 1.1 involves a question of
inference for fixed parameters. In ‘The fundamental problems of practical
statistics’ Pearson (1920) wrote: ‘An “event” has occurred p times out of
p + q = n trials, where we have no a priori knowledge of the frequency of
the event in the total population of occurrences. What is the probability
of its occurring r times in a further r+ s = m trials?’ This is an extension
of Bayes’ problem in his 1763 Essay.

Though this is a prediction problem its nature is similar to our previous
prototype, which is how to extract information from the data to be able
to say something about an unobserved quantity. How we use the informa-
tion eventually, whether for prediction or estimation, for description or for
decision, is somewhat secondary.

It is interesting to see how this problem leads to a Bayesian point of
view. To state Pearson’s problem in current terminology: given θ, X and
Y independent binomial(n, θ) and binomial(m, θ) respectively, what is the
conditional distribution of Y given X = x? If we view θ as fixed, then Y
is binomial(m, θ), which is useless since θ is unknown.

The appearance that x carries no information is rather surprising, since
one should expect X to tell us about θ, so it should be informative about
Y . One way to salvage this line of reasoning is to think of θ as random,
with some probability density f(θ) on (0,1), the prior density of θ. The
conditional distribution of Y given X = x can be computed using the Bayes
theorem

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

=

∫
θ
P (X = x, Y = y|θ)f(θ)dθ∫

θ
P (X = x|θ)f(θ)dθ .

The choice of f(θ) obviously matters. For example, one might use the
uniform prior f(θ) = 1, giving
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P (Y = y|X = x) =

(
n
x

)(
m
y

)∫ 1

0
θx+y(1− θ)n+m−x−ydθ(

n
x

)∫ 1

0
θx(1− θ)n−xdθ

=

(
m
y

)
B(x+ y + 1, n+m− x− y + 1)

B(x+ 1, n− x+ 1)

=
m!(x+ y)!(n+m− x− y)!(n+ 1)!

x!(n− x)!y!(m− y)!(n+m+ 1)!
,

where B(a, b) is the beta function. For n = 10, x = 8 and m = 8 the
conditional probability P (Y = y|X = x) is plotted in Figure 16.1.
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Binomial prediction

Figure 16.1: The Bayesian(dashed line) and the plug-in solutions (dotted

line) for the distribution of Y , which is binomial(8, θ̂ = 8/10).

Here is a classical/pure likelihood solution. Imagine that the ‘future y’
is actually already known somewhere by somebody, but we do not know it.
Now treat it as an unknown fixed parameter. The conditional distribution
of X given y (and θ) is free of y, so on observing x the pure likelihood of
y is

L(y) = constant,

or there is no information about y in the data x. This is consistent with
the property of likelihood as evidence about a fixed parameter. Here it is
unfruitful since the problem is still unsolved, even though we ‘feel’ knowing
x should tell us something about θ and hence the future y. The Bayesian
solution seems a lot more natural.

An ad hoc solution is simply to specify that Y is binomial(m,x/n),
which is a short way of saying we want to estimate Pθ(Y = y) by P

θ̂
(Y = y),

using θ̂ = x/n. We may call the solution a plug-in solution, a typical
frequentist solution. The weakness of this approach is obvious: it is not
easy to account for the uncertainty of θ̂ in the prediction, which can be
substantial when n is small. In Figure 16.1 it appears that the plug-in
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solution is too optimistic (having too little variability) compared with the
Bayesian solution.

To appreciate the last point consider instead a normal prediction prob-
lem. Suppose we observe X1, . . . , Xn iid from N(μ, σ2), where μ is not
known but σ2 is, and denote the sample average by X. Then

Xn+1 −X ∼ N{0, σ2(1 + 1/n)},

from which we can get a correct 100(1− α)% prediction interval for Xn+1

as

X ± zα/2σ
√

1 + 1/n,

where zα/2 is the appropriate value from the normal table. By comparison,
the plug-in method would prescribe

X ± zα/2σ,

which would be far from the correct solution if n is small.

16.3 Defining extended likelihood
The exact prediction solution is obvious in the normal case, but the method
of deriving it does not follow from a general principle as in the Bayesian
solution. The purpose of a ‘general principle’ is to make our thinking
straightforward and transparent in complex problems. Thus the likelihood
approach to solve the prediction problem is to treat the future y as an
unknown random parameter, and to treat such a parameter differently from
a fixed parameter.

Definition 16.1 Assuming a statistical model pθ(x, y), where pθ(x, y) is
a joint density function of observed data x and unobserved y given a fixed
parameter θ, the likelihood function for θ and y is

L(θ, y) ≡ pθ(x, y).

This extended definition of likelihood agrees with Butler (1987), while
recently Bjørnstad (1996) provided the theoretical justification that such a
likelihood carries all of the information on the unknown parameters (θ, y).
We can interpret it as an augmented likelihood, since we may write

L(θ, y) = pθ(x|y)pθ(y),

where pθ(x|y) is the pure likelihood term, and pθ(y) is the contextual infor-
mation that y is random. In mixed effects modelling the extended likelihood
has been called h-likelihood (for hierarchical likelihood) by Lee and Nelder
(1996), while in smoothing literature it is known as penalized likelihood (e.g.
Green and Silverman 1993). The main advantage of this likelihood is that
it is general, and it is well known that it leads to better estimates of the
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random parameters. In the current example we shall show that it can take
into account the uncertainty of θ̂ in the prediction of y.

There is also a close connection with Bayesian modelling, though the
connection is only mathematical rather than philosophical. If θ is known,
the likelihood of y alone based on x is

L(y) = p(x, y) = p(y|x)p(x) = constant× p(y|x)
which is proportional to the posterior density of y given x. In this con-
text the density p(y) might be called the prior likelihood of y, and L(y) is
the posterior likelihood of y given x. The method is philosophically non-
Bayesian since, to be applicable, the random variable y needs to have an
observable distribution.

Example 16.1: Let us return to Pearson’s binomial prediction problem in cur-
rent terminology. Given θ, the observed x and the unobserved y are independent
binomial with parameters (n, θ) and (m, θ); hence

pθ(x, y) =

(
n
x

)(
m
y

)
θx+y(1− θ)n+m−x−y.

The likelihood for the unknown θ and y is

L(θ, y) ≡
(

m
y

)
θx+y(1− θ)n+m−x−y.

Actual prediction of y with its prediction interval from L(θ, y) requires a method
of ‘removing’ θ. �

Inference on individual parameters
In real prediction problems where θ is unknown, even for scalar y we have
to deal with a multiparameter likelihood. Recall that there is always some
complexity when dealing with such a problem (Chapter 10). The likelihood
principle does not tell us how to get a separate likelihood for y while treat-
ing the parameter θ as a nuisance parameter. In some simple prediction
problems Hinkley (1979) and Butler (1986) described specialized methods
to get a predictive likelihood of y that is free of θ.

We will take the pragmatic approach and describe a general method
that gives reasonable results in most cases. The key idea is that fixed
and random parameters should be treated differently. Thus the general
likelihood approach to remove a nuisance parameter is to compute a profile
likelihood by

(i) taking a maximum over a fixed parameter, with possible modifications
as described in Chapter 10;

(ii) integrating out a random parameter.

These conventions have a dramatic impact on the inference for individual
parameters, so for consistency we have to state explicitly that
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(iii) inference for individual parameters should, whenever possible, be based
on the profile likelihood.

Only the second convention is new. The third is implicit when we introduce
the notion of profile likelihood.

In view of the second convention the profile likelihood for θ is exactly
the same as the pure likelihood based on x alone. That is,

L(θ) =

∫
pθ(x, y)dy = pθ(x)

(or use summation for discrete y). To compute the profile likelihood for y,
we maximize L(θ, y) over θ at each value of y:

L(y) = max
θ

L(θ, y).

Since y is a random variable the profile likelihood L(y) can be interpreted
objectively like a probability density function; for example, it can be nor-
malized to sum to one, and a prediction statement or interval can be con-
structed by allocating appropriate probabilities. We will refer to profile
likelihood L(y) as the predictive likelihood of y. From the definition we can
also see that, if x and y are independent, as the information on θ becomes
more precise the (properly normalized) predictive likelihood L(y) converges
to pθ(y).

If the predictive likelihood L(y) is too difficult to compute we may

consider the estimated likelihood L(θ̂, y) for inference on y, where θ̂ is an
estimate of θ; this is the case, for example, if y is high dimensional as in
random effects models (Chapter 17).

Because of the second convention regarding treatment of random pa-
rameters, fixed-parameter ideas such as the invariance property of the MLE
no longer apply. For example:

(i) If ŷ is the MLE of y, then g(ŷ) is not necessarily the MLE of g(y); see
Exercises 16.3 and 16.4. This is not a weakness, it is a consequence
of dealing with random quantities; a similar phenomenon occurs with
expected values where, in general, Eg(X) 
= g(EX).

(ii) The MLE of θ based on the joint likelihood L(θ, y) does not have to be
the same as the MLE based on the profile likelihood L(θ); see Exercise
16.5. According to our third rule, inference on θ should be based on
L(θ), not the joint likelihood L(θ, y).

Binomial prediction example

Returning to Pearson’s prediction problem, to get the profile likelihood of
y, we first find that at each fixed y the maximizer of L(θ, y) is

θ̂(y) = (x+ y)/(n+m),
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which, as we expect intuitively, is the total number of successes divided by
the total number of trials. Substituting θ̂(y) for θ in L(θ, y) yields

L(y) = L(θ̂(y), y)

=

(
m
y

)
(x+ y)x+y(n+m− x− y)n+m−x−y

(n+m)n+m
.

For n = 10, x = 6 and m = 8, this solution is compared with the Bayesian
and the plug-in solutions, where we can see that the profile likelihood does
take into account the uncertainty in x; see Figure 16.2. In the previous nor-
mal prediction example the method produces the correct solution (Exercise
16.1).
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Figure 16.2: Likelihood-based prediction (solid line) for future Y ∼
binomial(8, θ) with unknown θ, based on observing n = 10 and x = 8;
the probabilities sum to one. Also shown are the Bayesian (dashed line)
and the plug-in (dotted line) solutions for the distribution of Y .

Example 16.2: In a certain region during the past five years, 3, 2, 5, 0 and
4 earthquakes (of at least a certain magnitude) were observed each year. We are
interested in predicting y, the number of earthquakes next year.

Assuming a Poisson model, the likelihood of θ and y based on observing the
data x is

L(θ, y) = e−(n+1)θ θ
y+
∑

xi

y!
.

For each y the MLE of θ is θ̂(y) = (y +
∑

xi)/(n + 1), so the profile likelihood
for y is

L(y) = e−(n+1)θ̂(y) θ̂(y)
y+
∑

xi

y!
.

Figure 16.3 shows this profile likelihood, which is normalized to sum to one.
Prediction intervals can be constructed from this likelihood; for example, there
is a 4.1% probability that there will be more than five earthquakes next year.
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Figure 16.3: Predictive likelihood of the number of earthquakes.

16.4 Exercises
Exercise 16.1: Suppose we observe x1, . . . , xn iid from N(μ, σ2), where μ is not
known but σ2 is. Denote the sample average by x. Find the predictive likelihood
of xn+1 and show that the 100(1− α)% prediction interval for xn+1 is

x± zα/2σ
√

1 + 1/n,

where zα/2 is the appropriate value from the normal table. Derive the prediction

interval for the case where σ2 is unknown, and identify it as a t-interval.

Exercise 16.2: Hinkley’s (1979) predictive likelihood solution of the binomial
prediction problem is

L(y) = constant×

(
n
x

)(
m
y

)
(

m+ n
x+ y

) .

In the specific example of n = 10, x = 6 and m = 8, show that this is very close
to the profile likelihood solution.

Exercise 16.3: Suppose y is a random parameter to be predicted using the
likelihood method. Explain theoretically and give a simple example that if ŷ is
the MLE of y, then g(ŷ) is not necessarily the MLE of g(y).

Exercise 16.4: Let x1, . . . , xn be an iid sample from the exponential distribu-
tion with mean θ, having density

pθ(x) = θ−1e−x/θ.

Suppose y1 and y2 are iid future values from the same distribution.

(a) Find the profile likelihood of y1 and y2, jointly and separately. Predict y1
and y2 from the joint profile and from the individual profiles.

(b) Find the profile likelihood of t = y1 + y2 and the predicted value of t.

(c) Discuss here how the invariance property of the MLE does not apply.
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(d) Let t be as in part (b) and
∑

i
xi = s. Hinkley’s (1979) predictive likelihood

of t is

L(t) = constant× sn−1t

(s+ t)n+1
.

(e) For the following dataset compare Hinkley’s likelihood with the profile like-
lihood in part (b) and the plug-in method:

1.9 2.3 5.1 2.0 12.9 0.2 6.2 6.0 3.7 2.2

Exercise 16.5: Let a scalar-valued y be a sample from the exponential distri-
bution with mean θ. Conditional on y, x is assumed exponential with mean y,
so x and y are not independent. Based on observing x:

(a) Find the MLE of θ and y from the joint likelihood L(θ, y).

(b) Find the profile likelihood and the MLE of θ and y separately. Comment on
the difference between (a) and (b). Which is more appropriate as the MLE?

Exercise 16.6: Let x1, . . . , xn, xn+1 be an iid sample from the uniform distri-
bution on (0, θ). Derive the prediction of xn+1 based on x1, . . . , xn.

Exercise 16.7: Suppose (xi, yi) for i = 1, . . . , n are a bivariate sample, where,
given xi, the outcome yi is normal with mean

E(yi|xi) = μi = β0 + β1xi

and variance σ2. Derive the predictive likelihood of yn+1 at xn+1 and find the
MLE of yn+1.

Exercise 16.8: The same setup as in the previous exercise, except the outcome
yi given xi is now Poisson with mean μi, where

log μi = β0 + β1xi.
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Random and mixed effects
models

Regression models are the work horse of statistics, but while rich classes
of models have been introduced to deal with various data types, in most
cases the underlying mean structure is still the linear model

h(μ) = Xβ,

where β is a fixed parameter of dimension p, and p is typically quite small.
Such a model is called a fixed effects model.

The need to consider random effects models arises when the number
of unknown parameters is large, while the number of observations per pa-
rameter is limited. For example, we follow 100 subjects over time, where
from each subject we obtain two to four measurements and, to account for
natural variability, we want to fit a linear growth model for each subject.
Let yij be the j’th measurement of subject i, made at time tij , and consider
the model

yij = b0i + b1itij + eij ,

where b0i and b1i are the intercept and slope parameters for the i’th sub-
ject. In effect these parameters are random variables, and the model is
called a random effects model. Since the random parameters have means
which will be treated as fixed parameters, we may also call the model a
mixed effects model. In this example we have 200 unknown parameters, but
only a maximum of 400 observations. We can, of course, try to estimate
the parameters using data from each subject separately, but if the error
variance is large the estimates will be poor. Theoretically and empirically
it has been shown that we get better estimates by treating the parameters
as random variables.

The mixed model framework allows for the most complex model struc-
ture in statistics. It is not surprising that their theory and applications,
especially in nonnormal cases, were the last to develop. Even as this is
being written there are still issues, such as variance component estimation
for nonnormal models, which are not yet resolved. We will start with an
extension of the likelihood concept that captures the information about
a random parameter, and then proceed with the relatively ‘clean’ area of
normal mixed models. We close the chapter with the generalized linear
mixed models (GLMM).



436 17. Random and mixed effects models

17.1 Simple random effects models
Theoretical analyses of random effects models very quickly become cum-
bersome, where often it is not possible to get any closed formula. This
is fine in practice, where we can rely on statistical packages to produce
numerically the results we want, but it can be a problem for those who
want or need to see everything worked out in detail. We first describe the
simplest nontrivial random effects model, where it is possible to arrive at
explicit formulae. Familiarity with matrix algebra is assumed throughout
the rest of the chapter.

Data example

Table 9.1 shows the repeated measurements of estrone level from five post-
menopausal women. Several questions may be asked from the data: (i) Is
there significant variation between women relative to within-woman vari-
ation? (ii) What is the reliability of the measurements? (iii) What is
each woman’s mean estrone concentration? The first two questions were
addressed in Section 9.10.

Let yij = 10 × log10 xij where xij is the raw estrone measurement.
Consider a random effects model

yij = μ+ bi + eij

where μ is a fixed overall mean parameter,

bi = person effect, for i = 1, . . . , q = 5

eij = residual effect, for j = 1, . . . , n = 16.

Assume that bi’s are iid N(0, σ2
b ), eij ’s are iid N(0, σ2) and they are inde-

pendent.

Likelihood function of σ2 and σ2
b

In Section 9.10 we derived the profile likelihood

logL(σ2, σ2
b ) = −q

2
{(n−1) log σ2+log(σ2+nσ2

b )}−
1

2

(
SSE

σ2
+

SSB

σ2 + nσ2
b

)
,

where the (corrected) total, person and error sum-of-squares are

SST =
∑
ij

(yij − y)2

SSB =
∑
i

{
∑
j

(yij − y)}2/n

SSE = SST− SSB,

and y is the overall mean of the data.



17.1. Simple random effects models 437

Estimating the random effects

Classical analysis of random effects models concentrates on the estimation
of the variance components σ2 and σ2

b , but recent interests are on the
estimation of the random effects parameters. (Note: we will use both
terms ‘estimation’ and ‘prediction’ for estimation of the random effects.)

For the one-way random effects model above, the full parameter space
is

(θ, b) ≡ (μ, σ2, σ2
b , b1, . . . , b5),

where the fixed parameter is θ ≡ (μ, σ2, σ2
b ). By Definition 16.1, the likeli-

hood based on dataset y is

L(θ, b) = pθ(y, b) = pθ(y|b)pθ(b).

Given b the outcomes yij ’s are independent with mean

μi = μ+ bi

and variance σ2, while bi’s are iid with mean zero and variance σ2
b . Hence

logL(θ, b) = −qn

2
log σ2 − 1

2σ2

q∑
i=1

n∑
j=1

(yij − μ− bi)
2

−q

2
log σ2

b −
1

2σ2
b

q∑
i=1

b2i . (17.1)

Deriving the joint likelihood L(θ, b) is simpler than deriving L(θ). Esti-
mates of bi can be computed by directly maximizing logL with respect to
(θ, b); this will be described below.

If we assume a fixed effects model, i.e. bi’s are fixed parameters, the
log-likelihood of the unknown parameters is

logL = −qn

2
log σ2 − 1

2σ2

q∑
i=1

n∑
j=1

(yij − μ− bi)
2,

which involves only the first two terms of (17.1). Using the constraint∑
bi = 0 we can verify that the MLE of bi is

b̂i = yi − y, (17.2)

where yi is the average of yi1, . . . , yin, the MLE of μ is y, and the MLE of
μi is yi regardless of the constraint on bi’s (Exercise 17.1). The constraint
is not needed in the random effects model, but there we do need to specify
Ebi = 0.
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Estimating bi

Assume for the moment that θ is known. The derivative of the log-
likelihood (17.1) at a fixed value of θ is

∂ logL

∂bi
=

1

σ2

n∑
j=1

(yij − μ− bi)− bi
σ2
b

and on setting it to zero we get(
n

σ2
+

1

σ2
b

)
b̂i =

1

σ2

n∑
j=1

(yij − μ),

or

b̂i =

(
n

σ2
+

1

σ2
b

)−1
n

σ2
(yi − μ). (17.3)

We can show that b̂i is also the conditional mean of the distribution of bi
given y (Exercise 17.2). There is a Bayesian interpretation for this estimate:

if bi is a fixed parameter, and we use a prior density pθ(b), then b̂i is called
a Bayesian estimate of bi.

If the fixed parameters are known, the Fisher information for bi is

I(bi) = −∂2 logL

∂b2i

=
n

σ2
+

1

σ2
b

compared with n/σ2 if bi is assumed fixed. Consequently the standard

error of b̂i under the random effects model is smaller than the standard
error under the fixed effects model.

In practice the unknown θ is replaced by its estimate. We may use the
MLE, but if the MLE is too difficult to compute other estimates may be
used. Thus

b̂i =

(
n

σ̂2
+

1

σ̂2
b

)−1
n

σ̂2
(yi − y). (17.4)

Comparing this with (17.2) it is clear that the effect of the random effects

assumption is to ‘shrink’ b̂i towards its zero mean; that is why the estimate
is also called a shrinkage estimate. The estimate of μi is

μ̂i = y + b̂i

= y +

(
n

σ̂2
+

1

σ̂2
b

)−1
n

σ̂2
(yi − y)

=

(
n

σ̂2
+

1

σ̂2
b

)−1(
n

σ̂2
yi +

1

σ̂2
b

μ̂

)
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= αyi + (1− α)y

where

α =

(
n

σ̂2
+

1

σ̂2
b

)−1
n

σ̂2
.

If n/σ2 is large relative to 1/σ2
b (i.e. there is a lot of information in the

data about μi), then α is close to one and the estimated mean is close to
the sample average. The estimate is called an empirical Bayes estimate,
as it can be thought of as implementing a Bayes estimation procedure on
the mean parameter μi, with a normal prior that has mean μ and variance
σ2
b . It is ‘empirical’ since the parameter of the prior is estimated from the

data.

Application

To apply these results to the estrone data we will use from Section 9.10:

μ̂ = y = 14.175

σ̂2 = 0.325

σ̂2
b = 1.395

and n = 16, so the shrinkage parameter is

α = 0.986.

The sample means yi’s are

13.545 14.447 15.635 12.233 15.015

and we have the following shrinkage estimates of the individual means μ̂i’s

13.554 14.443 15.614 12.261 15.003

They are very close to the sample means in this example since α is close to
one.

17.2 Normal linear mixed models
As in the standard fixed effects models, classical analyses of linear mixed
models are almost totally based on the normal model. We will study the
normal models in detail, since the results are theoretically ‘clean’ and well
understood, and the formulae extend to the nonnormal cases with little
change in notation.

Let y be an N -vector of outcome data, and X and Z be N × p and
N × q design matrices for the fixed effects parameter β and random effects
b. The standard linear model specifies

y = Xβ + Zb+ e (17.5)

where e is N(0,Σ), b is N(0, D), and b and e are independent. The variance
matrices Σ and D are parameterized by an unknown variance component
parameter θ
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Here is an equivalent formulation that allows an immediate extension
to nonnormal models: conditional on an unobserved random effects b the
outcome vector y is normal with mean

E(y|b) = Xβ + Zb

and variance Σ. The vector of random effects b is assumed normal with
mean zero and variance D. The advantage of the formulation is that we
do not specify an explicit error term e, which is not natural for nonnormal
models.

Example 17.1: The one-way random effects model

yij = μ+ bi + eij ,

for i = 1, . . . , q and j = 1, . . . , n, can be written in the general form (17.5) with
total data size N = qn and

X = 1N

β = μ

Z = a matrix of zij explained below

b = (b1, . . . , bq)
′

Σ = σ2IN

D = σ2
bIq.

1N is a column vector of N ones. The element zij of the matrix Z is equal to one
if yij comes from the i’th group, and zero otherwise. The variance parameter is
θ = (σ2, σ2

a). �

Estimation of the fixed parameters

From (17.5) the marginal distribution of y is normal with mean Xβ and
variance

V = Σ+ ZDZ ′,

so the log-likelihood of the fixed parameters (β, θ) is

logL(β, θ) = −1

2
log |V | − 1

2
(y −Xβ)′V −1(y −Xβ), (17.6)

where the parameter θ enters through the marginal variance V .
For fixed θ, taking the derivative of the log-likelihood with respect to

β, we find the estimate of β as the solution of

(X ′V −1X)β = X ′V −1y, (17.7)

the well-known generalized or weighted least-squares formula. The profile
likelihood of the variance parameter θ is

logL(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)′V −1(y −Xβ̂), (17.8)
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where β̂ is computed in (17.7). The observed Fisher information of β is

I(β̂) = X ′V −1X,

from which we can find the standard error for β̂.
In Example 10.12 we derive a modified profile likelihood

logLm(θ) = −1

2
log |V | − 1

2
log |X ′V −1X| − 1

2
(y −Xβ̂)′V −1(y −Xβ̂)

that takes into account the estimation of β. This matches the so-called
restricted maximum likelihood (REML) adjustment; see Patterson and
Thompson (1971), or Harville (1974).

An iterative procedure is needed if β̂ depends on θ. In the one-way ran-
dom effects model β̂ does not depend on the variance components, but the
analytical derivation of the (profile) likelihood of the variance component
is quite complicated. In practice, we will usually not try to get any closed
form for (17.8). Inference on θ is typically based on the MLE and its stan-
dard error, although we have seen that the standard error of a variance
component estimate can be misleading. Numerical methods to compute
the MLEs are described in Sections 17.4 and 17.5.

Estimation of the random effects
The log-likelihood of all the parameters is based on the joint density of
(y, b); thus

L(β, θ, b) = p(y|b)p(b).
From the mixed model specification, the conditional distribution of y given
b is normal with mean

E(y|b) = Xβ + Zb

and variance Σ. The random effects b is normal with mean zero and vari-
ance D, so

logL(β, θ, b) = −1

2
log |Σ| − 1

2
(y −Xβ − Zb)′Σ−1(y −Xβ − Zb)

−1

2
log |D| − 1

2
b′D−1b. (17.9)

Given the fixed parameters (β, θ), we take the derivative of the log-likelihood
with respect to b:

∂ logL

∂b
= Z ′Σ−1(y −Xβ − Zb)−D−1b.

Setting this to zero, the estimate b̂ is the solution of

(Z ′Σ−1Z +D−1)b = Z ′Σ−1(y −Xβ). (17.10)

This estimate is also known as the best linear unbiased predictor (BLUP).
In practice we replace the unknown fixed parameters by their estimates as
described above.



442 17. Random and mixed effects models

The second derivative matrix of the log-likelihood with respect to b is

∂2 logL

∂b∂b′
= −Z ′Σ−1Z −D−1,

so the observed Fisher information is equal to

I (̂b) = (Z ′Σ−1Z +D−1). (17.11)

Assuming the fixed effects are known, the standard errors of b̂ (also inter-
preted as the prediction error for a random parameter) can be computed

as the square root of the diagonal elements of I (̂b)−1. Prediction intervals
for b are usually computed element by element using

b̂i ± zα/2 se(̂bi)

where zα/2 is an appropriate value from the normal table, and se(̂bi) is the

standard error of b̂i.
Note that I (̂b) is not a function of b; this implies that the log-likelihood

of b alone, assuming β and θ are known, is quadratic around b̂. Since b is
random we can interpret the likelihood as a density function, so, thinking
of p(b) as the ‘prior’ density of b, the ‘posterior’ distribution of b is normal

with mean b̂ and variance (Z ′Σ−1Z +D−1)−1. This is the empirical Bayes
intepretation of the formulae.

17.3 Estimating genetic value from family data�

One of the largest and most successful applications of the mixed models
is in animal breeding, where the main objective is to identify animals of
high genetic merit. New applications in genetic epidemiology may involve
similar data structure, but to be specific we will use the language of animal
breeding. The genetic merit of an animal is modelled as a random param-
eter, and the identification process involves estimation of this parameter.
Some analytical complexity is introduced by the different degrees of rela-
tionship between the animals. A typical application of animal breeding, for
example to identify dairy cows that have high fertility, involves thousands
of animals with hundreds of thousands of records. We will show a very
simple example that conceptually captures this application.

Let y be the combined outcome vector of a certain performance measure
from all the animals; some animals may have repeated measures. Condi-
tional on the genetic merit b, suppose y is normal with mean

E(y|b) = Xβ + Zb,

with appropriate design matrices X and Z, and variance Σ = σ2IN . The
matrix X might capture the effects of farm, age, sex, or other predictors. Z
is typically a matrix of zeros and ones. Setting up these matrices is the same
as in a standard regression analysis. The random effects parameter b is
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assumed normal with zero mean and variance σ2
gR, whereR is a relationship

matrix induced by the familial relationship between animals. The length
of b is typically the same as the number of animals.

Relationships between animals are represented in a simple dataset called
the pedigree dataset that identifies the parents of each animal. For example,
suppose we have seven animals labelled 1, 2, . . . , 7 with the following
pedigree table:

Animal Sire Dam
1 · ·
2 · ·
3 1 2
4 1 ·
5 4 3
6 · ·
7 5 6

where ‘·’ means unknown. Animals 1, 2 and 6 have unknown parents; 3 is
the offspring of 1 and 2; 4 has a known sire 1, but no known dam; 5 has
known parents 3 and 4; 7 has known parents 5 and 6.

Let rij ’s be the elements of R; the value of rij as a function of the
pedigree data is defined by

1. For diagonal elements:

rii = 1 +
1

2
rsire,dam

where ‘sire’ and ‘dam’ are those of the i’th animal. The second term on
the right-hand side takes account of inbreeding; if there is no inbreeding
then rii = 1, and R is a correlation matrix.

2. For off-diagonal elements rij , where j is of an older generation com-
pared with i and

• both parents of i are known

rij =
1

2
(rj,sire + rj,dam)

• only one parent of i is known

rij =
1

2
rj,sire

or

rij =
1

2
rj,dam

• both parents of i are unknown

rij = 0.



444 17. Random and mixed effects models

By definition rij = rji, so R is a symmetric matrix.
For the sample pedigree data we have

r11 = 1

r12 = 0

r13 = r31 =
1

2
(r11 + r12) =

1

2

r14 = r41 =
1

2
r11 =

1

2

r15 = r51 =
1

2
(r14 + r13) =

1

2
r16 = 0

r17 = r71 =
1

2
(r15 + r16) =

1

4

etc. We can verify that R is given by

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0.5 0.5 0.5 0 0.25
1 0.5 0 0.25 0 0.125

1 0.25 0.625 0 0.3125
1 0.625 0 0.3125

1.125 0 0.5
1 0.5

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The lower half of R is computed by symmetry.
Given σ2 and σ2

g , the estimates are computed as the solution of the
mixed model equations:

(X ′V −1X)β = X ′V −1y

(Z ′Z + λR−1)b = Z ′(y −Xβ)

where V = σ2IN + σ2
gZRZ ′, and λ = σ2/σ2

g . In practice the length of
b can be of the order of several thousands to tens of thousands, so clever
numerical techniques are required (e.g. Henderson 1976).

17.4 Joint estimation of β and b
It is an interesting coincidence that the estimates of β in (17.7) and of b
in (17.10) are the joint maximizer of L(β, θ, b) at fixed θ. This provides
a useful heuristic when we deal with nonnormal cases. Specifically, the
derivative of logL(β, θ, b) with respect to β is

∂ logL

∂β
= X ′Σ−1(y −Xβ − Zb).

Combining this with the derivative with respect to b and setting them to
zero, we have
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X ′Σ−1X X ′Σ−1Z
Z ′Σ−1X Z ′Σ−1Z +D−1

)(
β
b

)
=

(
X ′Σ−1y
Z ′Σ−1y

)
. (17.12)

The estimates we get from this simultaneous equation are exactly those
we get from (17.7) and (17.10) (Exercise 17.3). The equation suggests the
possibility of estimating β and b without computing the marginal variance
V or its inverse.

This is given by the so-called Jacobi or Gauss–Seidel method in linear
algebra, also known as the iterative backfitting algorithm in statistics. In
the algorithm β and b are computed in turn as follows.

1. Start with an estimate of β, for example the ordinary least-squares
estimate

β̂ = (X ′X)−1X ′y,

then iterate between 2 and 3 below until convergence.

2. Compute a corrected outcome

yc = y −Xβ̂

and estimate b from a random effects model

yc = Zb+ e,

based on the same formula as before:

(Z ′Σ−1Z +D−1)b = Z ′Σ−1yc.

3. Recompute a corrected outcome

yc = y − Zb

and estimate β from a fixed effects model

yc = Xβ + e,

which updates β̂ from the solution of

(X ′Σ−1X)β = X ′Σ−1yc.

17.5 Computing the variance component via β̂
and b̂

The marginal likelihood formula (17.8) for the variance component param-
eter θ is not desirable due to the terms involving V or V −1. We now show
an alternative formula which may be easier to compute. First we can show
the following series of identities:

V −1 = Σ−1 − Σ−1Z(Z ′Σ−1Z +D−1)−1Z ′Σ−1
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b̂ = DZ ′V −1(y −Xβ̂)

V −1(y −Xβ̂) = Σ−1(y −Xβ̂ − Zb̂) (17.13)

(y −Xβ̂)′V −1(y −Xβ̂) = (y −Xβ̂ − Zb̂)′Σ−1(y −Xβ̂ − Zb̂) + b̂′D−1b̂

|V | = |Σ| |D| |Z ′Σ−1Z +D−1|.
The first identity can be verified by multiplying V and V −1. The next three
identities are left as exercises, while the last identity on the determinant is
based on the following partitioned matrix result (Rao 1973, page 32):∣∣∣∣ Σ Z

Z ′ −D−1

∣∣∣∣ = | −D−1| |Σ+ ZDZ ′|

= |Σ| | − Z ′Σ−1Z −D−1|.
Hence we can rewrite (17.8) as

logL(θ) = −1

2
log |Σ| − 1

2
(y −Xβ̂ − Zb̂)′Σ−1(y −Xβ̂ − Zb̂)

−1

2
log |D| − 1

2
b̂′D−1b̂− 1

2
log |Z ′Σ−1Z +D−1| (17.14)

= logL(β̂, θ, b̂)− 1

2
log |Z ′Σ−1Z +D−1| (17.15)

where θ enters the function through Σ, D, β̂ and b̂. The formulae for β̂
and b̂ as functions of θ are given by (17.7) and (17.10). In view of the joint
likelihood (17.9) it is important to note that (17.15) is a modified profile
likelihood, with the extra term

−1

2
log |Z ′Σ−1Z +D−1|,

where the matrix Z ′Σ−1Z+D−1 is the Fisher information of b from (17.9).
Formula (17.14) is simpler than (17.8), since the matrices involved are

simpler than V or V −1. The quantity (y−Xβ̂ −Zb̂) is the residual of the

model given θ. In applications where b̂ can be computed reasonably fast,
i.e. the matrix Z ′Σ−1Z +D−1 can be inverted easily, the determinant is a
usual by-product of the computation.

Iterative procedure
In practice it is convenient to use a derivative free optimization routine to
maximize (17.14), where in the process we also get the estimates β̂ and b̂.
Note that computationally we can view the whole estimation of β, b and θ
as maximizing an objective function

Q = −1

2
log |Σ| − 1

2
(y −Xβ − Zb)′Σ−1(y −Xβ − Zb)

−1

2
log |D| − 1

2
b′D−1b− 1

2
log |Z ′Σ−1Z +D−1|.

(Q is not a log-likelihood, only a device to justify the algorithm below.)

The score equations for β and b yield the usual formulae for β̂ and b̂ at
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fixed θ. Hence, we can apply an iterative algorithm as follows. Start with
an estimate of the variance parameter θ, then:

1. Compute β̂ and b̂ using (17.7) and (17.10), or using the iterative back-
fitting algorithm given in Section 17.4.

2. Fixing β and b at the values β̂ and b̂, maximize Q to get an update of
θ.

3. Iterate between 1 and 2 until convergence.

Step 2 in the algorithm is left open in general, although an explicit up-
date of the variance component is possible for specific variance structures.
In most mixed model applications it is common to assume that the variance
matrices are of the form

Σ = σ2A

D = σ2
bR,

where A and R are known matrices of rank N and q, respectively; the only
unknown variance parameters are σ2 and σ2

b . In many applications A is
simply an identity matrix. From the properties of the determinant,

|Σ| = σ2N |A|
|D| = σ2q

b |R|,

so, after dropping irrelevant constant terms,

Q = −N

2
log σ2 − 1

2σ2
e′A−1e

−q

2
log σ2

b −
1

2σ2
b

b′R−1b− 1

2
log |σ−2Z ′A−1Z + σ−2

b R−1|,

where e = y −Xβ − Zb is the error vector. The derivatives of Q are

∂Q

∂σ2
= − N

2σ2
+

1

2σ4
e′A−1e

+
1

2σ4
trace{(σ−2Z ′A−1Z + σ−2

b R−1)−1Z ′A−1Z}
∂Q

∂σ2
b

= − q

2σ2
b

+
1

2σ4
b

b′R−1b

+
1

2σ4
b

trace{(σ−2Z ′A−1Z + σ−2
b R−1)−1R−1}.

Setting these to zero, and isolating σ2 and σ2
b for a simple iteration, we

obtain updating equations for Step 2 of the algorithm:

σ2 =
1

N
[e′A−1e+ trace{(σ−2Z ′A−1Z + σ−2

b R−1)−1Z ′A−1Z}]
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σ2
b =

1

q
[b′R−1b+ trace{(σ−2Z ′A−1Z + σ−2

b R−1)−1R−1}],

where all unknown parameters on the right-hand side are evaluated at the
last available values during the iteration, and only a single iteration is
needed at Step 2. Alternatively, we may use

σ2 =
e′A−1e

N − df
,

where
df = trace{(Z ′A−1Z + λR−1)−1Z ′A−1Z}

and λ = σ2/σ2
b . The quantity ‘df’ can be thought of as the model degrees

of freedom. In practice the traces are the most difficult components to
compute, and may require some approximations. The algorithm is the
same as the EM algorithm described in Section 12.8, though the objective
function Q is different.

Computing the variance of β̂
The above formulation also suggests a practical method to compute the
variance of the fixed effects estimate

var(β̂) = (X ′V −1X)−1

without computing V −1 explicitly. Using (17.13) we have

V −1X = Σ−1{X − Z(Z ′Σ−1Z +D−1)−1Z ′Σ−1X}
= Σ−1(X − Zbx)

where the term
bx ≡ (Z ′Σ−1Z +D−1)−1Z ′Σ−1X

is the estimate obtained from the same random effects model

X = Zbx + e

using X as the outcome variable. This formula is convenient in applications
where bx can be computed easily. Since X is a matrix of p columns, we
can simply compute bx column by column according to the columns of X.

17.6 Examples
One-way random effects model
Consider the simplest random effects model in Section 17.1:

yij = μ+ bi + eij

where μ is a fixed overall mean, bi’s are iid N(0, σ2
b ) and eij ’s are iid

N(0, σ2
e). The subject index i = 1, . . . , q, the measurement index j =

1, . . . , n and the size of the outcome vector y is N = qn.
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The iterative procedure proceeds as follows. Evaluate the individual
group mean yi and variance σ̂2

i , then use the variance of yi’s as the initial
estimate of σ2

b , and the average of σ̂2
i ’s as the initial estimate of σ2

e . Start
with bi ≡ 0, then:

1. Compute λ = σ2
e/σ

2
b , and

μ =
1

N

∑
ij

(yij − bi)

bi =
n(yi − μ)

n+ λ
.

2. Update

σ2
e =

e′e
N − df

where e is the vector of eij = yij − μ− bi and

df =
qn

n+ λ
,

and

σ2
b =

1

q

q∑
i=1

b2i +

(
n

σ2
e

+
1

σ2
b

)−1

.

3. Iterate 1 and 2 until convergence.

Applying this to the data in Section 17.1, we start with σ2
b = 1.7698

and σ2
e = 0.3254 and at convergence we obtain

μ̂ = 14.1751

b̂ = (−0.6211, 0.2683, 1.4389, −1.914, 0.8279)

σ̂2
b = 1.3955

σ̂2
e = 0.3254.

The standard errors of b̂i are σ̂e/
√
n+ λ compared with σ̂e/

√
n for the

fixed effects estimate. In the estimation procedure we do not get a profile
likelihood function of σ2

b ; if such a likelihood is required we might use the
simpler version (17.15) rather than (17.8).

Factorial experiment

Johnson and Wichern (1992) reported an experiment in anaesthesiology,
where each of 19 dogs was put under four different treatments. The treat-
ments were all combinations from two factors with two levels each: CO2

pressure (high or low) and hydrogen (presence or absence). Treatment 1 is
high CO2 pressure without hydrogen, treatment 2 low CO2 pressure with-
out hydrogen, treatment 3 high CO2 pressure with hydrogen and treatment
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Treatment
Dog 1 2 3 4

1 426 609 556 600
2 253 236 392 395
3 359 433 349 357
4 432 431 522 600
5 405 426 513 513
6 324 438 507 539
7 310 312 410 456
8 326 326 350 504
9 375 447 547 548

10 286 286 403 422
11 349 382 473 497
12 429 410 488 547
13 348 377 447 514
14 412 473 472 446
15 347 326 455 468
16 434 458 637 524
17 364 367 432 469
18 420 395 508 531
19 397 556 645 625

Table 17.1: The sleeping dog experimental data from Johnson and Wichern
(1992). Each value is the mean period between heart beats (msec).

Treatment
1 2 3 4
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(b) Estimated dog effects

Figure 17.1: (a) Repeated measures data from 19 dogs under four different
treatments. The three lines are those from three dogs with the minimum,
median and maximum averages of the four measurements. (b) Estimates
of random dog effects.

4 low CO2 pressure with hydrogen. The data are given in Table 17.1 and
plotted in Figure 17.1(a).

A standard analysis of variance model for this experiment is

yij = μ+ bi + (H + C +HC)j + eij (17.16)
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where bi is the effect of dog i, (H + C + HC)j is the effect of treatment
combination j, which is decomposed into the main effects of hydrogen and
CO2 pressure and their interaction, and eij is the error term. Assuming
the dog effects are random, we can write (17.16) as a mixed model

y = Xβ + Zb+ e

with appropriate matrices X and Z, such that β is of length 4: β1 = μ is
the constant term, β2 the hydrogen effect (presence versus absence), β3 the
CO2 effect (high versus low) and β4 the interaction between hydrogen and
CO2.

Specifically, we first set y by stacking the columns of data; the first
column of X is 176, i.e. a column of ones repeated 76 times; the second
column (−0.538, 0.538); the third column (0.519,−0.519, 0.519,−0.519); and
the fourth column is the product of the second and the third columns. Z
is a 76×19 matrix obtained by stacking four identity matrices I19.

The random effects b is assumed normal with mean zero and variance
σ2
b Iq=19; the error e is normal with mean zero and variance σ2

eIN=76, inde-
pendent of b. We obtain the starting values by fitting fixed dog effects in
the model:

β = (438.75, 104.6579, −30.0263, 12.7895)

σ2
b = 4241.5903

σ2
e = 1331.1274,

where σ2
b is the variance of the fixed dog effects. At convergence of the

iterative procedure we have

β̂ = (438.75, 104.6579, −30.0263, 12.7895)

se(β̂) = (4.3482, 8.6965, 8.6965, 17.3930)

σ̂2
b = 3580.5174

σ̂2
e = 1751.4804.

The estimate β̂4 = 12.7895 (se = 17.3930) indicates that the presence
of hydrogen and CO2 pressure show no interaction. Because the design
matrix X is orthogonal we may interpret the main effects directly in this
case. Both the presence of hydrogen (β̂2 = 104.6579, se = 8.6965) and

high CO2 pressure (β̂3 = −30.0263, se = 8.6965) have significant effects on
the outcome. Figure 17.1(b) shows the random effects estimates of the 19
dogs, presented in a normal probability plot; the plot indicates which dogs
are typical, and which are extreme.

Comparisons

If we assume the dog effects are fixed we obtain the following results:

β̂2,3,4 = (104.6579, −30.0263, 12.7895)
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se(β̂2,3,4) = (9.8643, 9.8643, 19.7286),

i.e. the same estimates but slightly larger standard errors. In practice, of
course, there is very little to choose between the two approaches if the
interest is only on the treatment comparisons.

Another approach is to compute separate contrasts representing the
main and interaction effects. For example, to test for interaction, we com-
pute the contrast

(yi1 + yi4)− (yi2 + yi3),

while to test for the hydrogen effect, we compute

(yi3 + yi4)/2− (yi1 + yi2)/2.

Thus to test for interaction, which should be done first, each dog contributes
a single measurement; from 19 dogs we get

-139 20 -66 79 -21 -82 44 154 -71 19

-9 78 38 -87 34 -137 34 48 -179

yielding an average of −12.7895 (se = 19.94). The estimates for the main
effects are also the same as before: 104.6579, −30.0263, but the standard
errors are 11.14 and 8.27, respectively. This approach is the most ‘nonpara-
metric’, i.e. it makes the fewest assumptions. The random effects model
assumes, for example, that the error terms eij ’s are iid, while no such
assumption is made in the simple approach here.

17.7 Extension to several random effects
Extension of the computational procedure for more than one random factor
is as follows; for convenience consider the case of two random factors. Let
b = (b1, b2) be the vector of random effects parameters. Suppose, condi-
tional on b, the outcome y has mean

E(y|b) = Xβ + Z1b1 + Z2b2

and variance Σ. X, Z1 and Z2 are appropriate design matrices; β is the
usual fixed effects parameter. Assume b1 and b2 are independent normal
with mean zero and variance D1 and D2, respectively. The variance ma-
trices Σ, D1 and D2 are functions of the variance parameter θ. The inde-
pendence between b1 and b2 is a simplifying assumption that may not be
correct; if they are in fact dependent then it is probably easier to consider
them as a single random factor.

By defining a larger design matrix

Z = [Z1 Z2],

we can rewrite the two-component model as a one-component model

E(y|b) = Xβ + Zb,

so, conceptually, there is nothing new. The several-component model may
look more natural, however, and it would help the model specification (e.g.
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specifying matrices D1 and D2) and estimation. Logically the problem is
likely to be more complicated since now we are dealing with more variables
or factors, so the possibility of incorrect model specification is greater. The
several-component model is also computationally more difficult.

Given θ, the estimates of β, b1 and b2 are the solution of(
X ′Σ−1X X ′Σ−1Z1 X ′Σ−1Z2

Z′
1Σ

−1X Z′
1Σ

−1Z1 +D−1
1 Z′

1Σ
−1Z2

Z′
2Σ

−1X Z′
2Σ

−1Z1 Z′
2Σ

−1Z2 +D−1
2

)(
β
b1
b2

)
=

(
X ′Σ−1y
Z′

1Σ
−1y

Z′
2Σ

−1y

)
.

(17.17)

The iterative backfitting algorithm for (17.17) evaluates each parameter in
turn, while fixing the other two parameters. For example, start with an
initial estimate of β and b1, then

1. Compute a corrected data vector

yc = y −Xβ − Z1b1

and solve
(Z2Σ

−1Z2 +D−1
2 )b2 = Z ′

2Σ
−1yc (17.18)

to get an updated estimate of b2.

2. Compute
yc = y −Xβ − Z2b2

and update b1 by solving

(Z1Σ
−1Z1 +D−1

1 )b1 = Z ′
1Σ

−1yc. (17.19)

3. Compute
yc = y − Z1b1 − Z2b2

and update β from

(X ′Σ−1X)β = X ′Σ−1yc. (17.20)

4. Repeat 1 to 3 until convergence.

Estimating variance components

The marginal distribution of y is normal with mean Xβ and variance

V = Σ+ Z1D1Z
′
1 + Z2D2Z

′
2.

The profile log-likelihood of the variance parameter θ is

logL(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)′V −1(y −Xβ̂), (17.21)

where β̂ is computed above. This is similar to the previous formula (17.8)
in the case of single random effects, though now V is more complicated.
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Iterative procedure
An iterative algorithm to compute θ, β and b jointly can be derived in an
important special case where Z1 and Z2 are orthogonal in the sense that
Z ′
1Σ

−1Z2 = 0. Define the overall objective function

Q = −1

2
log |Σ| − 1

2
e′Σ−1e

−1

2
log |D1| − 1

2
b′1D

−1
1 b1 − 1

2
log |Z ′

1Σ
−1Z1 +D−1

1 |

−1

2
log |D2| − 1

2
b′2D

−1
2 b2 − 1

2
log |Z ′

2Σ
−1Z2 +D−1

2 |,
where e = y−Xβ−Z1b1−Z2b2. This can be derived from Q in Section 17.5,
using the assumption that b1 and b2 are independent, and Z1 and Z2 are
orthogonal. Now assume further that

Σ = σ2A

D1 = σ2
1R1

D2 = σ2
2R2,

where A, R1 and R2 are known matrices of rank N , q1 and q2.
We take the derivatives of Q with respect to all the parameters, then

isolate the parameters one at a time to arrive at the following algorithm.
Start with some initial estimates of the variance component parameters σ2,
σ2
1 and σ2

2 , and the mean parameters β and b1, then:

1. Update b2, b1 and β using (17.18), (17.19) and (17.20).

2. Update the variance component parameters using

σ2 =
1

N
[e′A−1e+ trace{(σ−2Z ′

1A
−1Z1 + σ−2

1 R−1
1 )−1Z ′

1A
−1Z1}

+trace{(σ−2Z ′
2A

−1Z2 + σ−2
2 R−1

2 )−1Z ′
2A

−1Z2}]
σ2
1 =

1

q1
[b′1R

−1
1 b1 + trace{(σ−2Z ′

1A
−1Z1 + σ−2

1 R−1
1 )−1R−1

1 }],

σ2
2 =

1

q2
[b′2R

−1
2 b2 + trace{(σ−2Z ′

2A
−1Z2 + σ−2

2 R−1
2 )−1R−1

2 }],

where all unknown terms on the right-hand side are evaluated at the
last available value.

2′. Alternatively we may use

σ2 =
e′A−1e

N − df1 − df2

where
dfi = trace{(Z ′

iA
−1Zi + λiR

−1
i )−1Z ′

iA
−1Zi}

and λi = σ2/σ2
i . The quantity dfi may be thought of as degrees of

freedom.

3. Iterate 1 and 2 until convergence.
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Example: growth curve analysis
Table 17.2 shows the height of the ramus (jaw) bones of 20 boys, measured
at 8, 8.5, 9 and 9.5 years of age (Elston and Grizzle 1962). The data are
plotted in Figure 17.2(a); the three lines shown are those for the three boys
with minimum, median and maximum average measurements (i.e. take the
average of four measurements from each boy, so we have 20 average values,
then find those with the minimum, median and maximum averages).

Boy Age 8 Age 8.5 Age 9 Age 9.5
1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4

10 45.0 47.0 47.3 48.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8

Table 17.2: Repeated measures of the height of the ramus (jaw) bones of 20
boys (Elston and Grizzle, 1962).

The parallel lines indicate a strong subject effect. While there is a
definite growth over time, the variability in growth rate is also of interest.
Consider a linear model

yij = β0 + β1tij + b0i + b1itij + eij , (17.22)

where yij is the ramus height of the i’th boy at follow-up time Ageij . To
reduce any correlation between the intercept and slope we centre the age
variable to

tij = Ageij − ave(Age).

In this model β0+b0i and β1+b1i are the subject-specific intercept and slope
of the i’th boy. Variability in these quantities is evident in Figure 17.2(b),
which is based on separate estimation from each boy.

Now let y be the vector of yij , b0 the vector of b0i, b1 the vector of b1i,
and β = (β0, β1). The vector y is of length N = 80, and b0 and b1 are of
length q = 20. Model (17.22) may be written in matrix form as
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(b) Separate estimation
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Figure 17.2: (a) Repeated measures data of the height of ramus bones of
20 boys. (b) Intercepts and slopes estimated from each boy separately. (c)
Intercepts and slopes estimated from the mixed effects model. (d) The slope
estimates using the two different methods.

y = Xβ + Z0b0 + Z1b1 + e

with appropriate design matrices X, Z0 and Z1. From our definition of tij
above, Z0 and Z1 are orthogonal. Assume the random effects b0 and b1 are
independent normal with mean zero and variance σ2

0Iq and σ2
1Iq, and the

independent error term e is normal with mean zero and variance σ2
eIN .

The individual estimates of the intercepts and slopes provide sensible
starting values for most of the parameters:

β̂0 = ave(intercepts) = 50.075

β̂1 = ave(slopes) = 1.866

σ̂2
0 = var(intercepts) = 6.26

σ̂2
1 = var(slopes) = 1.35.

The starting value for the residual variance σ2
e is computed from the average

of the individual residual variances, giving σ̂2
e = 0.13.

At convergence of the iterative procedure we obtain the final estimates

β̂0 = 50.075 (se = 0.55)
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β̂1 = 1.866 (se = 0.24)

σ̂2
0 = 5.90

σ̂2
1 = 0.96

σ̂2
e = 0.20.

The standard errors for β̂0 and β̂1 are computed from (X ′V −1X)−1, where

V = σ̂2
0Z0Z

′
0 + σ̂2

1Z1Z
′
1 + σ̂2

eIN ,

but the term V −1X is computed using the method given in Section 17.5.
Figure 17.2(c) shows the plot of β̂0 + b̂i0 versus β̂1 + b̂i1, which is com-

parable to Figure 17.2(b). Figure 17.2(d) shows β̂1 + b̂i1 from the separate
estimation and from the mixed model. The lower-left and upper-right end
of the plot show the shrinkage effect.

Comparisons

Let us first compare the previous results with a naive computation that
ignores the dependence of the repeated measures. We simply fit a standard
regression model

y = Xβ + e,

where e is assumed σ2
eIN . Here we obtain the ordinary least-squares (OLS)

estimate

β̂0 = 50.075 (se = 0.29)

β̂1 = 1.866 (se = 0.51).

The estimates are the same, but the standard error of β̂1 is twice that
under the mixed effects model. The mixed model takes the dependence
into account, and in this case it yields a more efficient estimate.

We can account for the dependence by computing a two-stage least-
squares estimate as follows. In the first stage, compute the OLS estimate
and the residuals e = y − Xβ̂. Let eij be the j’th error term of the i’th
subject, then estimate the 4×4 covariance matrix C of (yi1, . . . , yi4) with
the element

Ĉkl =
1

n− 1

n=20∑
i=1

eikeil.

From the data we obtain

Ĉ =

⎛⎜⎜⎝
6.3300 6.1891 5.7770 5.5482
6.1891 6.4493 6.1534 5.9234
5.7770 6.1534 6.9180 6.9463
5.5482 5.9234 6.9463 7.4647

⎞⎟⎟⎠ .

Now create a large 80×80 block diagonal matrix V with Ĉ on the diagonal.
The second-stage estimate is
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β̂ = (X ′V −1X)−1X ′V −1y

with variance matrix (X ′V −1X)−1. Since C does not have any particular
structure we cannot simplify V −1. Here we obtain

β̂0 = 50.0496 (se = 0.56)

β̂1 = 1.8616 (se = 0.21),

comparable with those obtained using the mixed effects model.
Using the mixed effects model, the covariance structure is implied by

the model
yij = β0 + β1tij + b0i + b1itij + eij .

Writing ti = (ti1, . . . , ti4)
′, we have the implied covariance matrix

Cm = σ2
0J4 + σ2

1tit
′
i + σ2

eI4,

where J4 is a matrix of ones. Using the estimated parameter values:

Ĉm =

⎛⎜⎜⎝
6.6388 6.0829 5.7225 5.3621
6.0829 6.1583 5.8426 5.7225
5.7225 5.8426 6.1583 6.0829
5.3621 5.7225 6.0829 6.6388

⎞⎟⎟⎠ .

The closeness of Ĉ and Ĉm indicates the adequacy of the mixed effects
model. The main advantage of the mixed effects model is the availability
of the individual intercepts and slopes. Also, there are applications where
the subject-level formulation is more natural.

17.8 Generalized linear mixed models
The generalized linear mixed models (GLMM) extend the classical linear
mixed models to nonnormal outcome data.

Example 17.2: The following table shows the number of seeds that germi-
nated on 10 experimental plates; n = 20 seeds were planted on each plate.

Plate 1 2 3 4 5 6 7 8 9 10
Germination 6 3 10 11 16 5 9 9 4 10

If the number that germinated yi is binomial(n, p), then the estimated mean is
np̂ = 8.3 and variance np̂(1 − p̂) = 4.9, but the observed variance is 15.1, much
larger than the binomial variance.

To account for plate-to-plate variability, it may make sense to assume that yi
is binomial(n, pi), but pi is random; we might model

logit pi = β0 + bi

where β0 is a fixed parameter and bi random. If the distribution of bi is normal,
we have a binomial–normal model. If bi has a logit–beta distribution (or ebi(1 +
ebi)−1 has a beta distribution), the outcome yi follows a beta–binomial model.
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Example 17.3: Suppose the number of children yi for family i is Poisson
with mean μi, but we expect families to vary in their mean number of children
(determined by factors such as the length of the marriage, education level of the
parents, etc.). With random μi, we may want to model

log μi = β0 + bi

where β0 is fixed, but bi is a random parameter. If we assume bi is normal the
overall model for yi is known as the Poisson–normal model. If bi has a log–gamma
distribution (or ebi has a gamma distribution), we have a Poisson–gamma model.
In Section 4.5 we showed that the marginal distribution of the Poisson–gamma
yi is the negative binomial, so it is possible to get an explicit marginal likelihood
of the fixed effects parameter. �

In Sections 4.2, 4.5 and 6.5 we have actually discussed the binomial and
Poisson models with overdispersion. The new feature in GLMM is that we
try to put more structure on the overdispersion pattern. If the random
effects parameters are of interest, the GLMM specification is essential.

The simple mean model in the previous examples can be extended to a
general regression of the form

h(μi) = x′
iβ + bi,

where h(·) is a link function. In the examples, the germination data may
come from an experiment with several treatment variables, or we may want
to associate family size with socio-demographic variables. If the interest is
on the fixed parameter β, the role of a random parameter bi is to cover for
some unmeasured variables, so that, conditional on bi, the outcome yi has
a recognized distribution with mean μi, and we get a better inference for
β.

General specification

The GLM part of GLMM specifies that conditional on b the outcome yi is
independently distributed according to an exponential family model (Sec-
tion 6.5) of the form

log p(yi|b) = yiψi −A(ψi)

φ
+ c(yi, φ).

Let μi ≡ E(yi|b) and assume that

h(μi) = x′
iβ + z′ib.

Writing μ as the vector of μi’s and thinking of h(·) as a function that
applies element by element, we can write the model more concisely as

h(μ) = Xβ + Zb.

As described in Section 6.5 this model specification is equivalent to assum-
ing particular mean and variance functions. That is, conditional on the
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random effects b, the outcome yi is independently distributed with mean
μi and variance φvi(μi).

We complete the model specification by making an assumption on the
random effects b. In general b does not have to be normally distributed,
though such a distribution usually leads to simple computational formulae.
Let θ include the dispersion parameter φ above and any other parameters
needed to specify b.

The marginal variance of yi is

var(yi) = E{var(yi|b)}+ var{E(yi|b)}
= φE{vi(μi)}+ var(μi).

Overdispersion might come from both terms on the right-hand side; the
first term accounts for the contribution of the dispersion family, and the
second term is the contribution of the random effects.

Example 17.4: Suppose, conditional on (scalar) b, the (scalar) outcome y
has mean μ and variance φμ, where

log μ = β0 + b,

and eb is gamma with mean one and variance ν. The marginal mean of y is
Ey = eβ0 , and the marginal variance of y is

var(y) = φeβ0 + νe2β0

= φEy + ν(Ey)2.

If φ = 1 we have the Poisson–gamma or negative binomial model; if ν = 0 we
have the dispersion-family Poisson model. Hence the GLMM can fit potentially
richer overdispersion patterns. In recent applications of GLMM, except in normal
models, the parameter φ is usually set to one. Lee and Nelder (2000) give some
applications that use the full model.

Example 17.5: Classical animal breeding programmes are usually limited to
continuous outcomes (such as meat or milk yields) which are assumed normal,
but there are increasingly many nonnormal characteristics that require GLMM
techniques, for example calving difficulty in cows, ability to produce twins in
sheep, disease resistance, fertility rate, performance of race horses, etc. The
model in each case is usually of the form

h(μ) = Xβ + Zb,

where the parameter of interest is the random parameter b, the vector genetic
merit of the animals under observation. The fixed parameter β accounts for
predictors such as age of animal, farm characteristics, etc. Applications in an-
imal breeding typically involve thousands of related animals (see Section 17.3),
demanding highly nontrivial computations.

17.9 Exact likelihood in GLMM
While the marginal likelihood in the normal–normal GLMM is relatively
simple (Section 17.2), the general case is notoriously difficult. The approx-
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imate computations will be described in the next section, and here we il-
lustrate the computation of the exact marginal likelihood for the binomial–
normal model. Suppose, conditional on bi, the observed yi is binomial with
mean μi = nipi, where

logit pi = x′
iβ + bi,

and bi is a random sample from N(0, σ2).
The marginal probability of yi is

P (yi = k) = E{P (yi = k|bi)}
=

∫ (
ni

k

)
pk(1− p)ni−kφ(b/σ)db/σ

≡ p(ni, k, β, σ
2),

where logit p = x′
iβ + b and φ(u) is the standard normal density. Given

the observed yi’s, the marginal log-likelihood of the fixed parameters is

logL(β, σ2) =
∑
i

log p(ni, yi, β, σ
2).

If ni ≡ n, the likelihood reduces to

logL(β, σ2) =
∑
k

mk log p(n, k, β, σ
2),

where mk is the number of yi’s equal to k.
This illustrates the computational problem of exact likelihood inference

in GLMM: in general there is no closed form solution for integrating out
the random effects b. In practice it has to be computed numerically, for
example using the Gaussian quadrature technique. This is feasible if the
random effects are independent, so we only need to evaluate single integrals.
If the random effects are correlated, the integrals become multidimensional,
and the exact approach is no longer tractable.

Example 17.6: We return to the germination data analysed in Example 6.4.
The data were from a 2×2 factorial experiment of seed variety and type of root
extract. For comparison Table 17.3 shows again the summary result using the
ordinary logistic model

logit pi = x′
iβ.

In particular the result shows a significant interaction term.
The deviance of this fixed effects model is 33.28 with 21 − 4 = 17 degrees

of freedom; for binomial data this can be interpreted as a goodness-of-fit statis-
tic, indicating overdispersion (P-value=0.01). Now consider a mixed model that
accounts for the plate variability:

logit pi = x′
iβ + bi,

where the plate effects bi’s are iid N(0, σ2
b ). The results of the numerical opti-

mization of the exact binomial–normal log-likelihood are shown in Table 17.3.
The Gaussian quadrature method is used to compute the integral. The param-
eter estimates from the two models are comparable, but, as expected from an
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Ordinary Mixed model
Effects Estimate se Estimate se
Constant −0.56 0.13 −0.55 0.17
Seed variety 0.15 0.22 0.10 0.28
Root extract 1.32 0.18 1.34 0.24
Interaction −0.78 0.31 −0.81 0.38
Plate σb 0.24 0.11

Table 17.3: Summary analysis of germination data using the ordinary lo-
gistic regression and the exact binomial–normal mixed model.

overdispersed model, all of the standard errors from the mixed model are slightly
larger.

The MLE of σ2
b is σ̂2

b = 0.056 (se = 0.052), but the standard error is not
meaningful since the likelihood is not regular. Figure 17.3 shows the exact profile
log-likelihood of σ2

b , σb and log σb with their quadratic approximations. The best
is for σb, except near zero. The exact likelihood interval for σb at 15% cutoff
covers zero; the likelihood of H: σb = 0 is around 31%, indicating that there is
no evidence against the ordinary logistic model. The Wald statistic based on σ̂b

is z = 0.24/0.11 = 2.18.
The exact likelihood result is in conflict with the earlier goodness-of-fit test

that shows evidence against the ordinary logistic regression. (An exact version
of the χ2 goodness-of-fit test is also significant; see Exercise 17.4.) In this case,
because it is slightly more conservative, we may want to keep the binomial–normal
model, although both models lead to similar conclusions. �

17.10 Approximate likelihood in GLMM
The basis of the likelihood approximation in GLMM is the extended like-
lihood that includes the random effects, plus the heuristics provided by
the normal mixed models. Given the standard setup of GLMM in the last
section, the joint likelihood of the parameters is

logL(β, θ, b) = log p(y|b) + log p(b)

where p(y|b) is the likelihood based on the conditional distibution of y
given b, and p(b) is the likelihood based on the assumed distribution of
the random effects. Lee and Nelder (1996) refer to this as the hierarchical
likelihood or h-likelihood.

Example 17.7: For the binomial–normal model, conditional on b, let yi be
binomial(ni, pi) where

logit pi = x′
iβ + z′ib.

Assume that the random effects bi’s are iid N(0, σ2); it is obvious how to modify
the likelihood if b is multivariate normal. Given the data y1, . . . , yn we obtain

logL(β, θ, b) =
∑

{yi log pi + (ni − yi) log(1− pi)} − 1

2σ2

∑
i

b2i ,

where pi is understood to be a function of β and b, and θ ≡ σ2. For a fixed value
of σ2 this likelihood is trivial to compute or optimize.



17.10. Approximate likelihood in GLMM 463

0.00 0.10 0.20 0.30

−
3.

5
−

2.
5

−
1.

5
−

0.
5

σb
2

Lo
g−

lik
el

ih
oo

d

15% cutoff

σb
2 scale

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
3.

5
−

2.
5

−
1.

5
−

0.
5

σb

Lo
g−

lik
el

ih
oo

d

σb scale

−7 −6 −5 −4 −3 −2 −1

−
3.

5
−

2.
5

−
1.

5
−

0.
5

Log σb

Lo
g−

lik
el

ih
oo

d

Log σb scale

Figure 17.3: Exact profile log-likelihoods (solid lines) of σ2
b , σb and log σb,

and their quadratic approximations.

Example 17.8: Suppose conditional on b the outcome yi is Poisson with mean
μi, where

log μi = x′
iβ + bi

and ui = ebi is iid gamma with mean 1 and shape parameter α. Given y1, . . . , yn
we have

logL(β, θ, b) =
∑
i

(−μi + yi log μi) +
∑
i

{αbi − αebi + α logα− log Γ(α)},

where θ ≡ α.

The joint likelihood L(β, θ, b) is generally much easier to evaluate and
optimize than the marginal likelihood L(β, θ). For the normal model in

Section 17.4 it is shown that, at fixed value of θ, the estimate β̂ from
L(β, θ, b) is the same as that from the marginal likelihood. The Poisson–
gamma model above is another case where the joint likelihood estimate of
β̂ is the same as the marginal likelihood estimate. Breslow and Clayton
(1993) present applications that support the practical viability of such an
approach. Lee and Nelder (1996) show that under fairly general conditions
the two estimates are asymptotically close.
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Estimating β and b given θ

Given a fixed value of θ we can use a quadratic approximation of the
likelihood to derive an IWLS algorithm; see Section 6.7. Let the outcome
vector y have mean μ and

h(μ) = Xβ + Zb.

Given initial values β0 and b0, the exponential family log-likelihood can be
approximated by

−1

2
log |Σ| − 1

2
(Y −Xβ − Zb)′Σ−1(Y −Xβ − Zb), (17.23)

where Y is a working vector with elements

Yi = x′
iβ

0 + z′ib
0 +

∂h

∂μi
(yi − μ0

i ),

and Σ is a diagonal matrix of the variance of the working vector with
elements

Σii =

(
∂h

∂μi

)2

φvi(μ
0
i ),

where φvi(μ
0
i ) is the conditional variance of yi given b. The derivative

∂h/∂μi is also evaluated at the current values of β and b.
If the random effects parameter b is assumed normal with mean zero

and variance D = D(θ), we have a familiar normal-based formula:

logL(β, θ, b) ≈ −1

2
log |Σ| − 1

2
(Y −Xβ − Zb)′Σ−1(Y −Xβ − Zb)

−1

2
log |D| − 1

2
b′D−1b. (17.24)

This yields the usual mixed model equations to update β and b:(
X ′Σ−1X X ′Σ−1Z
Z ′Σ−1X Z ′Σ−1Z +D−1

)(
β
b

)
=

(
X ′Σ−1Y
Z ′Σ−1Y

)
. (17.25)

An iterative backfitting algorithm (Section 17.4) might be used to find
the solution. The iteration continues by recomputing Y and Σ. Hence
the computation of estimates in GLMM involves repeated applications of
normal-based formulae.

Nonnormal random effects�

The estimation of nonnormal random effects is best derived on a case-
by-case basis, as different models may have different optimal algorithms.
However, as an illustration of the additional work needed, we show here a
useful general technique.
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If b is not normally distributed an extra step is needed first to approxi-
mate its log-likelihood by a quadratic form. Let bi’s be an iid sample from
p(·), and let �(bi) = log p(bi). Using initial value b0i

log p(bi) ≈ log p(bci ) +
1

2
�′′(b0i )(bi − bci )

2,

where

bci = b0i −
�′(b0i )
�′′(b0i )

.

Now let D−1 = diag[−�′′(b0i )], the Fisher information matrix of b based on
p(·), and let �′(b0) be the vector of �′(b0i ), so in vector notation

bc = b0 +D�′(b0).

We can now write

log p(b) = log p(bc)− 1

2
(b− bc)′D−1(b− bc).

In the normal case D is the covariance matrix, and bc = 0.
After combining this with the quadratic approximation of log p(y|b), we

take the derivatives with respect to β and b and find the updating equation(
X ′Σ−1X X ′Σ−1Z
Z′Σ−1X Z′Σ−1Z +D−1

)(
β
b

)
=

(
X ′Σ−1Y

Z′Σ−1Y +D−1bc

)
. (17.26)

This is similar to (17.25), except for the term D−1bc.

Example 17.9: If ebi is iid gamma with mean 1 and shape parameter α,

�(bi) = αbi − αebi + α logα− log Γ(α)

and we have

�′(bi) = α− αebi

�′′(bi) = −αebi

so, using the starting value b0, we get D−1 = diag[αeb
0

] and

bc = b0 +
α− αeb

0

αeb0

= b0 + e−b0 − 1. �

Example 17.10: Suppose bi is iid Cauchy with location 0 and scale σb, so

�(bi) = − log

(
1 +

b2i
σ2
b

)
,

and we have

�′(bi) = − 2bi
b2i + σ2

b
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�′′(bi) = −2(b2i − σ2
b )

(b2i + σ2
b )

2
,

and D−1 = diag[−�′′(b0)] and

bc = b0 − b0
(b0)2 + σ2

b

(b0)2 − σ2
b

= − 2σ2
b b

0

(b0)2 − σ2
b

.

In this Cauchy example we can derive another computational scheme. First
note that

�′(b) = −D−1b

where now D−1 ≡ diag[2/(b2+σ2
b )]. Combining this with the derivative of (17.23)

with respect to b, we can update b using

(Z′Σ−1Z +D−1)b = Z′Σ−1(Y −Xβ),

where D is computed at the starting value b0. This is simpler and probably more
stable than the general method above. �

Estimating θ
Even in the normal case, the estimate of the variance parameter cannot
be computed from the joint likelihood L(β, b, θ). Instead, we have shown
in Section 17.5 that the profile likelihood of θ is equivalent to a modified
profile from the joint likelihood:

logL(θ) = logL(β̂, θ)

= logL(β̂, θ, b̂)− 1

2
log |Z ′Σ−1Z +D−1|,

where θ enters the function through Σ, D, β̂ and b̂.
The approximate methods of variance component estimation in GLMM

have not yet settled to an agreed form, but a strong candidate is to estimate
θ by maximizing a modified profile likelihood exactly as in the normal case
(Lee and Nelder 1996):

logL(θ) = logL(β̂, θ, b̂)− 1

2
log |Z ′Σ−1Z +D−1|, (17.27)

where β̂ and b̂ are computed at fixed θ as described before. There is one
crucial difference: in the normal case Σ is typically a simple function of a
variance component, but in GLMM Σ is also a function of the unknown
mean μ, and hence of β and b. Since μ is unknown it will be convenient to
compute Σ using β̂ and b̂.

A heuristic justification in terms of Laplace’s integral approximation
(Section 10.6) is given by Breslow and Clayton (1993). It has been shown in
many examples that this method does provide solutions which are close to
the exact marginal likelihood estimates, provided the variance component
θ is not too large. The method tends to underestimate θ, and the problem
can be severe for large θ.
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Joint estimation of β, θ and b

As in the normal case, the approximate MLEs of β, θ and b are the joint
maximizers of

Q(β, θ, b) = logL(β, θ, b)− 1

2
log |Z ′Σ−1Z +D−1|.

To derive an iterative estimation procedure the first term is approximated
by a quadratic form (17.24). However, in contrast with the normal mixed
models, because of the dependence of Σ on β and b, we cannot immediately
justify this iterative algorithm:

1. Compute β̂ and b̂ given θ by solving (17.25).

2. Fixing β and b at the values β̂ and b̂, update θ by maximizing Q.

3. Iterate between 1 and 2 until convergence.

The algorithm is appropriate, for example, if Σ is a slowly varying function
of μ. This means we can ignore the derivative of the second term of Q with
respect to β and b, so the first step is justified. This is not the only way to
estimate θ; any derivative-free method can be used to optimize logL(θ) in
(17.27) directly.

In the important special case where φ = 1, and

• Σ is assumed to be a slowly varying function of the mean μ, and

• b is normal with mean zero and variance σ2
bR, where R is a known

matrix of rank q, so θ ≡ σ2
b ,

we can derive an update formula for Step 2 of the algorithm as in Section
17.5:

σ2
b =

1

q
[b′R−1b+ trace{(Z ′Σ−1Z + σ−2

b R−1)−1R−1}],

where all unknown quantities on the right-hand side are evaluated at the
last available values.

Computation in the general case φ 
= 1 can also follow the algorithm
presented in Section 17.5 if we are willing to make the quadratic approxi-
mation (17.23) around the estimates β̂ and b̂ as a profile log-likelihood for
φ. Alternatively we can use the extended quasi-likelihood approximation
(4.5) for an explicit profile likelihood of φ.

Approximate inference

The simplest inference on β and b can be provided by computing the stan-
dard errors from the Fisher information matrix. By analogy with the nor-
mal model, given variance parameter θ, the Fisher information for β is

I(β̂) = X ′V −1X

where V = Σ+ ZDZ ′, and the Fisher information for b is
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I (̂b) = (Z ′Σ−1Z +D−1).

In practice these are evaluated at the estimated value of θ. These formulae
imply (i) the inference on β̂ accounts for the fact that b, but not θ, is

unknown; (ii) inference on b̂ does not account for the fact that both β and
θ are estimated.

Standard errors of θ̂ can be computed by taking derivatives of logL(θ)
in (17.27), but bear in mind that the likelihood function may not be regular.

Example 17.11: We apply the methodology to Crowder’s data in Example
17.6. Recall that yi is binomial(ni, pi) with

logit pi = x′
iβ + bi,

so the design matrix Z is an identity matrix I21, and b is normal with mean zero
and variance σ2

bI21.
We can use the ordinary GLM estimates as the starting value for β, and set

b = 0 and σ2
b = 0.01. Then:

1. Update b by solving

(Z′Σ−1Z + σ−2
b Iq)b = Z′Σ−1(Y −Xβ).

This reduces to

bi =
Σ−1

ii (Yi − x′
iβ)

Σ−1
ii + σ−2

b

,

where Y is the working vector with elements

Yi = x′
iβ + bi +

yi − nipi
nipi(1− pi)

and pi is computed from

logit pi = x′
iβ + bi.

The matrix Σ is diagonal with elements

Σii =
1

nipi(1− pi)
.

2. Update β by solving

(X ′Σ−1X)β = X ′Σ−1(Y − b)

after recomputing Y and Σ.

3. Update σ2
b using

σ2
b =

1

21
[b′b+ trace{(Σ−1 + σ−2

b I21)
−1}].

4. Iterate 1, 2 and 3 until convergence.

The results at convergence are shown in Table 17.4 under the ‘Approxi-
mate’ columns. For comparison the ordinary logistic regression and the ‘Exact’
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Mixed models
Ordinary Exact Approximate

Effects Estimate se Estimate se Estimate se
Constant −0.56 0.13 −0.55 0.17 −0.54 0.17
Seed variety 0.15 0.22 0.10 0.28 0.10 0.27
Root extract 1.32 0.18 1.34 0.24 1.33 0.23
Interaction −0.78 0.31 −0.81 0.38 −0.80 0.38
Plate σb 0.24 0.11 0.23 0.11

Table 17.4: Summary table for logistic regression analysis of germination
data using ordinary GLM, the exact binomial–normal and approximate like-
lihood methods.

binomial–normal mixed model results from Table 17.3 are also shown. In this
example the approximate method yields results very close to the exact results.

To show the quality of the likelihood approximation, Figure 17.4 compares
the approximate profile likelihood of σb computed according to (17.27) and its
exact version computed in the previous section. �
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Figure 17.4: Exact profile log-likelihood (solid) of σb and its approximation
using (17.27).

17.11 Exercises
Exercise 17.1: As stated after equation (17.2), show that the MLE of μi is yi

regardless of any constraint on the bi’s.

Exercise 17.2: Show that b̂i in (17.3) is the conditional mean of the distribution
of bi given y.

Exercise 17.3: Show that the solution of the mixed model equation (17.12) is
exactly the same as (17.7) and (17.10).

Exercise 17.4: Compute the exact distribution of the χ2 goodness-of-fit test
for the germination data in Example 17.6. (Hint: think of the success–failure
data from each group as a k × 2 table. If the binomial model is correct, the
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distribution of the table entries conditional on the observed margins is hyperge-
ometric; recall Fisher’s exact test for the 2 × 2 table. Hence, we can generate
realizations according to the hypergeometric model, compute a χ2 statistic for
each realization, and then repeat a large number of times.)

Exercise 17.5: Figure 17.5 shows the data from a clinical trial of an epileptic
drug progabide (Thall and Vail, 1990). Patients were randomized to the active
(Tr=1) or placebo (Tr=0) drug in addition to a standard treatment. Baseline
data at entry include age and the number of seizures in the previous 8 weeks. The
follow-up data y1 to y4 are the number of seizures during the two-week period
prior to each of four visits.

ID Age Base Tr y1 y2 y3 y4

1 31 11 0 5 3 3 3
2 30 11 0 3 5 3 3
3 25 6 0 2 4 0 5
4 36 8 0 4 4 1 4
5 22 66 0 7 18 9 21
6 29 27 0 5 2 8 7
7 31 12 0 6 4 0 2
8 42 52 0 40 20 23 12
9 37 23 0 5 6 6 5

10 28 10 0 14 13 6 0
11 36 52 0 26 12 6 22
12 24 33 0 12 6 8 4
13 23 18 0 4 4 6 2
14 36 42 0 7 9 12 14
15 26 87 0 16 24 10 9
16 26 50 0 11 0 0 5
17 28 18 0 0 0 3 3
18 31 111 0 37 29 28 29
19 32 18 0 3 5 2 5
20 21 20 0 3 0 6 7
21 29 12 0 3 4 3 4
22 21 9 0 3 4 3 4
23 32 17 0 2 3 3 5
24 25 28 0 8 12 2 8
25 30 55 0 18 24 76 25
26 40 9 0 2 1 2 1
27 19 10 0 3 1 4 2
28 22 47 0 13 15 13 12
29 18 76 1 11 14 9 8
30 32 38 1 8 7 9 4
31 20 19 1 0 4 3 0
32 30 10 1 3 6 1 3
33 18 19 1 2 6 7 4
34 24 24 1 4 3 1 3
35 30 31 1 22 17 19 16
36 35 14 1 5 4 7 4
37 27 11 1 2 4 0 4
38 20 67 1 3 7 7 7
39 22 41 1 4 18 2 5
40 28 7 1 2 1 1 0
41 23 22 1 0 2 4 0
42 40 13 1 5 4 0 3
43 33 46 1 11 14 25 15
44 21 36 1 10 5 3 8
45 35 38 1 19 7 6 7
46 25 7 1 1 1 2 3
47 26 36 1 6 10 8 8
48 25 11 1 2 1 0 0
49 22 151 1 102 65 72 63
50 32 22 1 4 3 2 4
51 25 41 1 8 6 5 7
52 35 32 1 1 3 1 5
53 21 56 1 18 11 28 13
54 41 24 1 6 3 4 0
55 32 16 1 3 5 4 3
56 26 22 1 1 23 19 8
57 21 25 1 2 3 0 1
58 36 13 1 0 0 0 0
59 37 12 1 1 4 3 2

Figure 17.5: Epilepsy data from Thall and Vail (1990)
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(a) Investigate the benefit of the treatment by analysing the number of seizures
on the last visit only (y4). Is the benefit apparent on the earlier visits?

(b) Use the Poisson regression to incorporate the baseline covariates in your
analysis of the last visit. Interpret the deviance of the model.

(c) Analyse all visits together by including a fixed effect of time in the model.
Consider a linear and a categorical model for time.

(d) Show graphically that there is a significant subject effect.

(e) Suppose μit is the mean number of seizures for subject i on visit t. Fit a
GLMM where conditional on the subject effects, the outcome yit is Poisson
with mean μit satisfying

log μit = x′
iβ + bi0 + bi1t,

where xi is a vector of fixed covariates that include the treatment assign-
ment, age, baseline counts and linear time effect; bi0 and bi1 are the individ-
ual random intercepts and slopes. Assume that bi0 and bi1 are independent
normal with mean zero and variance σ2

0 and σ2
1 . Derive the iterative algo-

rithm to compute the estimates.
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Nonparametric smoothing

Nonparametric smoothing or nonparametric function estimation grew enor-
mously in the 1980s. The word ‘nonparametric’ has nothing to do with the
classical rank-based methods, such as the Wilcoxon rank test, but it is un-
derstood as follows. The simplest relationship between an outcome y and
a predictor x is given by a linear model

E(y) = β0 + β1x.

This linear model is a parametric equation with two parameters β0 and β1.
A nonparametric model would simply specify E(y) as some function of x

E(y) = f(x).

The class of all possible f(·) is ‘nonparametric’ or infinite dimensional.
The literature on nonparametric smoothing is vast, and we cannot hope

to do justice to it in a single chapter. We will focus on a general method-
ology that fits well with the likelihood-based mixed effects modelling. The
approach is practical, treating functions with discrete rather than con-
tinuous index. This means it suffices to deal with the usual vectors and
matrices, rather than function spaces and operators.

18.1 Motivation

Example 18.1: Figure 18.1 shows the scatter plot of SO2 level and indus-
trial activity; the latter is measured as the number of manufacturing enterprises
employing 20 or more workers. In Section 6.8 we have shown that it is sensible
to log-transform the data. Since our first instinct is that more industry leads to
more pollution, when faced with this dataset, we might only consider a linear
model (dotted line). A nonparametric regression estimate (solid line) suggests a
quadratic model, shown in Section 6.8 to be well supported by the data. The
nonparametric or quadratic fits are harder to interpret in this case, but in this
empirical modelling there could be other confounding factors not accounted for by
the variables. The idea is that we should let the data tell their story rather than
impose our prejudice; with this attitude a nonparametric smoothing technique is
an invaluable tool for exploratory data analysis. �

Ad hoc methods

Our general problem is as follows: given bivariate data (x1, y1), . . . , (xN , yN )
we assume that conditional on xi the outcome yi is normal with mean
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Figure 18.1: Relationship between SO2 level and industrial activity in 41
US cities. Shown are the nonparametric smooth (solid) and the linear re-
gression (dased) estimates.

E(yi) = f(xi)

and variance σ2. We want to estimate the function f(x) from the data.
The key idea of nonparametric smoothing is local averaging: f(x) at a

fixed value of x is the mean of yi at x, so if there are many yi’s observed at
x, then the estimate of f(x) is the average of those yi’s. More often than
not we have to compromise: the estimate of f(x) is the average of yi’s for
xi’s ‘near’ x. This can be implemented by partitioning the data, finding
the nearest neighbours or kernel smoothing.

Partitioning

We can partition the range of the predictor x into n small intervals or
bins, so that within an interval f(xi) is approximately constant, and yi’s
are approximately iid with mean f(xi). We can then estimate f(xi) by
the sample average of yi’s in the corresponding interval. The estimated
function can be drawn as the polygon connecting the sample means from
each interval.

As an example, Table 18.1 partitions the SO2 data into 20 equispaced
intervals (in log x). Note that some intervals are empty, but that does not
affect the method. Figure 18.2 shows the nonparametric smoothing of the
SO2 level against the industry using different numbers of bins. The amount
of smoothing is determined by the interval size, which has the following
trade-off: if the interval is too large then the estimate might smooth out
important patterns in f(x), and the estimate is biased; but if it is too
small the noise variance exaggerates the local variation and obscures the
real patterns. The purpose of smoothing is to achieve a balance between
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No. x Bin Mid-x y No. x Bin Mid-x y
1 35 1 39 31 22 361 11 383 28
2 44 2 49 46 23 368 11 383 24
3 46 2 49 11 24 379 11 383 29
4 80 4 78 36 25 381 11 383 14
5 91 5 98 13 26 391 11 383 11
6 96 5 98 31 27 412 11 383 56
7 104 5 98 17 28 434 12 482 29
8 125 6 123 8 29 453 12 482 12
9 136 6 123 14 30 454 12 482 17
10 137 6 123 28 31 462 12 482 23
11 181 8 193 14 32 569 13 605 16
12 197 8 193 26 33 625 13 605 47
13 204 8 193 9 34 641 13 605 9
14 207 8 193 10 35 699 14 760 29
15 213 8 193 10 36 721 14 760 10
16 266 9 243 26 37 775 14 760 56
17 275 10 305 18 38 1007 15 954 65
18 291 10 305 30 39 1064 15 954 35
19 337 10 305 10 40 1692 18 1891 69
20 343 11 383 94 41 3344 20 2984 110
21 347 11 383 61

Table 18.1: Partitioning the SO2 level (= y) data into 20 intervals/bins of
the predictor variable x = industrial activities. ‘Mid-x’ is the midpoint (in
log scale) of the interval. Note: throughout this section SO2 is analysed in
log scale.

local bias and variance.

Nearest neighbours

The nearest-neighbour method simply prescribes, for any x,

f̂(x) =
1

k

∑
i∈nk(x)

yi,

where nk(x) is the neighbourhood of x that includes only the k values of

xi’s nearest to x. Hence f̂(x) is a simple average of yi’s for k nearest
neighbours of x; larger values of k effect more smoothing. For example,
using k = 7, at x = 125 we obtain the following nearest neighbours of x
with the corresponding y:

x 125 136 137 104 96 91 181
y 8 14 28 17 31 13 14

giving an average log y of 2.79. The set of nearest neighbours needs to be
computed at every value of x, making this method computationally more
demanding than the partition method. For the plots in the top row of
Figure 18.3 f̂(x) is computed at the observed xi’s, but this is not neces-
sary as it can be computed at a smaller subset of values. Note that the
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Number of bins =  41

Figure 18.2: Nonparametric smoothing of the SO2 level against the indus-
trial activity using simple partitioning of the predictor variable. The dashed
line in each plot is the linear regression line.

estimate at the boundaries is biased, especially as we increase the number
of neighbours.

Kernel method

Using the kernel method one computes a weighted average

f̂(x) =

∑n
i=1 k(xi − x)yi∑n
i=1 k(xi − x)

where the kernel function k(x) is typically a symmetric density function. If
we use the normal density the method is called Gaussian smoothing. The
amount of smoothing is determined by the scale or width of the kernel; in
Gaussian smoothing it is controlled by the standard deviation. The bottom
row of Figure 18.3 shows the Gaussian smoothing of the SO2 data using a
standard deviation of 0.2 and 0.05 (note: x is also in log scale).

With the last two methods f̂(x) can be computed at any x, while with
the first method the choice of a partition or interval size determines the
values of x for which f̂(x) is available. This is a weakness of the first
method, since if we want f(x) for a lot of x values we have to make the
intervals small, which in turn makes the estimation error large. The general
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Figure 18.3: Nonparametric smoothing of the SO2 level against the indus-
trial activity using the nearest-neighbour method (top row) and the kernel
method (bottom row). The kernel method uses the normal density with the
stated standard deviation.

method in the next section overcomes this weakness. For each method the
choice of the smoothing parameter is an important issue. The next section
shows that the problem is simply a variance component estimation problem.

18.2 Linear mixed models approach
We will now put the nonparametric function estimation within the linear
mixed model framework with likelihood-based methodology. Compared to
the nearest-neighbour or the kernel method, the likelihood-based method
is easier to extend to deal with

• non-Gaussian outcome data, such as Poisson or binomial data;

• different types of functions, such as functions with jump discontinuities
or partly parametric models;

• the so-called ‘inverse problems’ (e.g. O’Sullivan 1986): the observed
data y satisfies a linear model Ey = Xβ, where β is a smooth function
and X is ill-conditioned.

• higher-dimensional smoothing problems, including image analysis and
disease mapping. The mixed model approach deals with the boundary
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estimation automatically without any special handling. This feature is
essential when we are dealing with higher-dimensional smoothing with
irregular boundaries as in a geographical map, where the application
of the kernel method is not straightforward.

While it is possible to develop the theory where xi’s are not assumed
to be equispaced (see Section 18.9), the presentation is simpler if we pre-
bin the data in terms of the x values prior to analysis. So assume the x
values form a regular grid; each xi can be associated with several y-data, or
perhaps none. This is exactly the same as partitioning the data as described
before. Rather than just presenting the simple averages, the partition will
be processed further. Pre-binning is commonly done in practice to reduce
data volume, especially as the y-data at each x value may be summarized
further into a few statistics such as the sample size, mean and variance. In
many applications, such as time series or image analysis, the data usually
come in a regular grid format.

The effect of binning is determined by the bin size: if it is too large
then we introduce bias and lose some resolution of the original data, and
in the limit as the bin size goes to zero we resolve the original data. In
practice we make the bins small enough to preserve the original data (i.e.
minimize bias and make local variation dominate), but large enough to be
practical since there is a computational price for setting too many bins.
We will not develop any theory to say how small is ‘small enough’, since
in practice it is easy to recognize a large local variation, and if we are in
doubt we can simply set it smaller. As a guideline, the degrees of freedom
of the estimate (described in Section 18.5) should be much smaller than
the number of bins.

So, after pre-binning, our problem is as follows. Given the observations
(xi, yij) for i = 1, . . . , n and j = 1, . . . , ni, where xi’s are equispaced, we
assume that yij ’s are normal with mean

E(yij) = f(xi) = fi

and variance σ2. We want to estimate f = (f1, . . . , fn). Note that some
ni’s may be zero. Smoothness or other properties of f(x) will be imposed
via some stochastic structure on fi; this is discussed in the next section.

To put this in the linear mixed model framework, first stack the data
yij ’s into a column vector y. Conditional on b, the outcome y is normal
with mean

E(y|b) = Xβ + Zb

and variance Σ = σ2IN , where N =
∑

i ni. The mixed model framework
covers the inverse problems (O’Sullivan 1986) by defining Z properly. For
our current problem we have

fi = β + bi,

and, for identifiability, assume that E(bi) = 0. Here X is simply a column
of ones of length N , and Z is an N × n design matrix of zeros and ones;
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the row of Z associated with original data (xi, yij) has value one at the
i’th location and zero otherwise. The random effects b is simply the mean-
corrected version of f . The actual estimate b̂ depends on the smoothness
assumption of the function f(x).

It is instructive to see what we get if we simply assume that b is a fixed
effect parameter. The data structure is that of a one-way model

yij = β + bi + eij ,

where, for identifiability, we typically assume
∑

i nibi = 0. In this setup
the regularity of the grid points x1, . . . , xn is not needed; in fact, we have
to drop the xi values where ni = 0, since for those values f(x) is not
estimable. For simplicity, we just relabel the points for which ni > 0 to
x1, . . . , xn, so we can use the same notation as before. The estimate of bi
is

b̂i = yi − y

where y =
∑

i yij/N is the grand mean and yi is simply the average of the
data of the i’th bin, and the estimate of fi (regardless of the constraint) is

f̂i = yi. (18.1)

The variance of this estimate is σ2/ni. If ni is small, which is likely if the
bin size is small, the statistical noise in this simple formula would be large,
obscuring the underlying patterns in the function f(x). The purpose of
smoothing is to reduce such noise and to reveal the patterns of f(x).

18.3 Imposing smoothness using random effects
model

The assumption about the random effects b depends on the nature of the
function. If f(x) is smooth, then the smoothness can be expressed by
assuming that the differences

Δbj = bj − bj−1 (18.2)

or the second differences

Δ2bj = bj − 2bj−1 + bj−2 (18.3)

are iid normal with mean zero and variance σ2
b . In general we can de-

fine differencing of order d as Δdbj , and smoothness can be imposed by
assuming that it is iid with some distribution.

For example, assuming d = 1, we have

bj = bj−1 + ej ,

where ej ’s are an iid sequence; this means b is a first-order random walk
on the grid. Figure 18.4 shows some simulated normal random walks of
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Figure 18.4: Top row: simulated random walks of the form bj = bj−1 + ej,
for j = 1, . . . , 128, where b1 ≡ 0 and ej’s are iid N(0, 1). Bottom row:
bj = 2bj−1 − bj−2 + ej, for j = 1, . . . , 128, where b1 = b2 ≡ 0 and ej’s are
the same as before.

order 1 and 2; it is clear that the trajectory of random walks of order 2
can mimic a smooth function. The first differencing might be used to allow
higher local variation in the function.

Redefining the notation Δ for the whole vector

Δb ≡

⎛⎜⎜⎜⎝
b2 − b1
b3 − b2

...
bn − bn−1

⎞⎟⎟⎟⎠
and assuming that Δb is normal with mean zero and variance σ2

b In−1, we
have the prior log-likelihood of b given by

log p(b) = −n− 1

2
log σ2

b −
1

2σ2
b

b′Δ′Δb

= −n− 1

2
log σ2

b −
1

2σ2
b

b′R−1b (18.4)

where
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R−1 ≡ Δ′Δ =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 1

⎞⎟⎟⎟⎟⎟⎠ .

Or, equivalently, we have assumed that b is normal with mean zero and
inverse covariance matrix

D−1 ≡ σ−2
b R−1.

Note that log p(b) is a conditional log-likelihood given b1; it is a con-
venient choice here, since b1 does not have a stationary distribution. We
may also view b as having a singular normal distribution, with D not of full
rank; this is a consequence of specifying the distribution for only the set of
differences. In contrast to the animal breeding application in Section 17.3,
specifying R−1 here is more natural than specifying R (which is defined as
the generalized inverse of R−1; in practice we never need to compute it). In
both applications R has a similar meaning as a scaled covariance matrix.

Using the second-order assumption that

Δ2b ≡

⎛⎜⎜⎜⎝
b3 − 2b2 + b1
b4 − 2b3 + b2

...
bn − 2bn−1 + bn−2

⎞⎟⎟⎟⎠
is normal with mean zero and variance σ2

b In−2, the prior log-likelihood is
the same as (18.4) with (n− 2) in the first term rather than (n− 1), and

R−1 ≡ (Δ2)′Δ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

0 1 −2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

18.4 Penalized likelihood approach
Combining the likelihood based on the observation vector y and the random
effects b, and dropping terms not involving the mean parameters β and b,
we obtain

logL = − 1

2σ2

∑
ij

(yij − β − bi)
2 − 1

2σ2
b

b′R−1b.

The nonnegative quadratic form b′R−1b is large if b is rough, so it is common
to call the term a roughness penalty and the joint likelihood a ‘penalized
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likelihood’ (e.g. Green and Silverman 1993). In the normal case, given σ2

and σ2
b , the estimates of β and b are the minimizers of a penalized sum of

squares ∑
ij

(yij − β − bi)
2 + λb′R−1b,

where λ = σ2/σ2
b .

There is a slight difference in the modelling philosophy between the
roughness penalty and mixed model approaches. In the former the penalty
term is usually chosen for computational convenience, and it is not open
to model criticism. The mixed model approach treats the random effects b
as parameters that require some model, and finding an appropriate model
is part of the overall modelling of the data. It is understood that a model
assumption may or may not be appropriate, and it should be checked with
the data. There are two model assumptions associated with the penalty
term:

• The order of differencing. The penalty approach usually assumes
second-order differencing. Deciding what order of differencing to use
in a particular situation is a similar problem to specifying the order
of nonstationarity of an ARIMA model in time series analysis. It can
be easily seen that under- or over-differencing can create a problem
of error misspecification. For example, suppose the true model is a
first-order random walk

Δbj = ej ,

where ej ’s are an iid sequence. The second-order difference is

Δ2bj = Δej ≡ aj ,

so aj ’s are no longer an iid sequence, but a moving average (MA) of
order one. This is a problem since, usually, the standard smoothing
model would assume aj ’s to be iid.

• Normality. A quadratic penalty term is equivalent to assuming nor-
mality. This is appropriate if f(x) varies smoothly, but not if f(x)
has jump discontinuities as it would not allow a large change in f(x),
and it would force the estimate to be smooth. This is where the linear
model setup is convenient, since it can be extended easily to deal with
this case by using nonnormal mixed models.

18.5 Estimate of f given σ2 and σ2
b

The joint log-likelihood based on the observation vector y and the random
effects b is

logL = −1

2
log |Σ| − 1

2
(y −Xβ − Zb)′Σ−1(y −Xβ − Zb)

−n− d

2
log σ2

b −
1

2σ2
b

b′R−1b
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where d is the degree of differencing. Using the assumption Σ = σ2IN ,
given σ2 and σ2

b , the estimates of β and b according to the general formula
(17.12) are the solution of(

X ′X X ′Z
Z ′X Z ′Z + λR−1

)(
β
b

)
=

(
X ′y
Z ′y

)
, (18.5)

where λ = σ2/σ2
b . We can show that the combined matrix on the left-

hand side is singular (Exercise 18.1); it is a consequence of specifying a
model only on the set of differences of b. This implies we can set the level
parameter β at an arbitrary value, but by analogy with the fixed effects
model it is meaningful to set

β̂ = y =
∑
ij

yij/N.

The estimate of b is the solution of

{Z ′Z + λR−1}b = Z ′(y −Xβ̂). (18.6)

From the definition of Z in this problem, we can simplify (18.6) to

(W + λR−1)b = W (yv − y) (18.7)

where W = Z ′Z = diag[ni] is a diagonal matrix with ni as the diagonal
element, and

yv ≡

⎛⎜⎝ y1
...
yn

⎞⎟⎠
is the ‘raw’ mean vector. If ni = 0 the weight on yi (which is not available)
is zero, so it does not contribute in the computation; we can simply set yi
to zero. (The expression ‘y− y’ means that the scalar y is subtracted from
every element of the vector y; this is a common syntax in array-processing
computer languages.)

We can also write

f̂ = y + (W + λR−1)−1W (yv − y)

= (W + λR−1)−1Wyv + (W + λR−1)−1{(W + λR−1)1ny −W1ny}
= (W + λR−1)−1Wyv + (W + λR−1)−1λR−11ny

= (W + λR−1)−1Wyv

since R−11n = 0, where 1n is a vector of ones of length n.
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For the purpose of interpretation, we define a smoother matrix Sλ as

Sλ = (W + λR−1)−1W (18.8)

so that
f̂ = Sλy

v.

We can see that

Sλ1n = (W + λR−1)−1W1n

= 1n − (W + λR−1)−1λR−11n

= 1n,

meaning each row of the matrix adds up to one. So we can interpret each
f̂i as a weighted average of the raw means yi’s, where the weights are
determined by sample size ni, the smoothing parameter λ and the choice
of R−1. If the smoothing parameter λ = 0 then there is no smoothing, and
we are back to the previous estimate (18.1) based on assuming that b is
fixed.

If the data are naturally in a regular grid format such that ni ≡ 1 for
all i, or we have pairs (xi, yi), for i = 1, . . . , n, then W = In and we get

b̂ = (In + λR−1)−1(y − y),

where y =
∑

i yi/n, and

f̂ = y + (In + λR−1)−1(y − y)

= (In + λR−1)−1y.

A particular f̂i is a weighted average of yi’s of the form

f̂i =
∑
j

kijyj

where
∑

j kij = 1 for all i. Figure 18.5 shows the shape of the weights kij ’s
for i = 1, 10 and 20, and for d = 1 and 2.

A more ‘physical’ interpretation of the amount of smoothing can be
given in terms of the model degrees of freedom or the number of parameters
associated with the function estimate. This number of parameters is also
useful to make a like-with-like comparison between different smoothers. By
analogy with the parametric regression model the degrees of freedom are
defined as

df = trace Sλ. (18.9)

This is a measure of model complexity: as λ gets larger the estimate be-
comes more smooth, the degrees of freedom drop, and the estimate gets
closer to a parametric estimate. If λ → 0 we get the number of nonempty
bins as the degrees of freedom.
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Figure 18.5: The shape of the weights kij’s as a function of index j, for
i = 1 (left edge, solid line), 10 (middle location, dashed line) and 20 (right
edge, dotted line). The smoothing parameter λ is chosen so both smoothers
for d = 1 and d = 2 have around 6 degrees of freedom.

In principle we can compute b̂ by simply solving the linear equation
(18.7), but in practice n may be large, so a simple-minded inversion of
the matrix is not efficient. In all large-scale inversion problems we have to
exploit the particular structure of the matrix:

• Note that R−1 is a band matrix (with one or two nonzero values on
each side of the diagonal). Since W is a diagonal matrix, the matrix
(W+λR−1) is also a band matrix. Finding a very fast solution for such
a matrix is a well-solved problem in numerical analysis; see Dongarra
et al. (1979, Chapter 2) for standard computer programs available
in Linpack (a collection of programs for linear/matrix computations,
such as finding solutions of linear equations).

• The Gauss–Seidel algorithm (Press et al. 1992, page 855) works well
for this problem.

• If the weights ni’s are equal, so that W is a constant times the identity
matrix, then we can use the Fourier transform method (Press et al.
1992, Chapters 12 and 13).

(The details of these algorithms are beyond the scope of this text, but seri-
ous students of statistics should at some point learn all of these methods.)

Example 18.2: We now apply the methodology to the SO2 data given in
Table 18.1 where n = 20 and N = 41. The bin statistics are given in Table 18.2,
where ‘NA’ means ‘not available’. Figure 18.6 shows the nonparametric smooth
of yv using smoothing parameters λ = 5 and λ = 0.5. �

18.6 Estimating the smoothing parameter
Estimating the smoothing parameter λ = σ2/σ2

b is equivalent to estimating
the variance components. We have described before the general problem
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Bin i 1 2 3 4 5 6 7 8 9 10
ni 1 2 0 1 3 3 0 5 1 3
yi 3.43 3.11 NA 3.58 2.94 2.68 NA 2.54 3.26 2.86

Bin i 11 12 13 14 15 16 17 18 19 20
ni 8 4 3 3 2 0 0 1 0 1
yi 3.45 2.96 2.94 3.23 3.86 NA NA 4.23 NA 4.7

Table 18.2: Bin statistics for the SO2 data
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Figure 18.6: Nonparametric smoothing of the SO2 level against the indus-
trial activity using the mixed model approach. The top row is based on the
first-difference assumption and the bottom row on the second-difference.
The dashed line on each plot is the linear fit.

of estimating the variance components θ = (σ2, σ2
b ) using the profile log-

likelihood

logL(θ) = −1

2
log |V | − 1

2
(y −Xβ̂)V −1(y −Xβ̂)

where β̂ is computed according to (17.7), and θ enters the function through

V = σ2IN + σ2
bZRZ ′,
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or using the equivalent form described in Section 17.5. In this case we want
to maximize

Q = −N

2
log σ2 − 1

2σ2
(y −Xβ − Zb)′(y −Xβ − Zb)

−n− d

2
log σ2

b −
1

2σ2
b

b′R−1b

−1

2
log |σ−2W + σ−2

b R−1|.

with respect to all the parameters.
To apply the iterative algorithm in Section 17.5: start with an estimate

of σ2 and σ2
b (note that σ2 is the error variance, so we can get a good

starting value for it), then:

1. Compute β̂ = y, and b̂ according to (18.7), and the error e = y−β̂−Zb̂.

2. Compute the degrees of freedom of the model

df = trace{(W + λR−1)−1W},
and update θ using

σ2 =
e′e

N − df

σ2
b =

1

n− d
[b′R−1b+ σ2 trace{(W + λR−1)−1R−1}],

where all unknown parameters on the right-hand side are evaluated at
the last available values during the iteration, and update λ = σ2/σ2

b .
Recall that d is the degree of differencing used for the random effects.

3. Iterate 1 and 2 until convergence.

Example 18.3: To apply the algorithm to the SO2 data we start with σ2 =
0.35 (e.g. use a coarse partition on the data and obtain the error variance) and
λ = 5 (or σ2

b = 0.35/5). For order of differencing d = 1 the algorithm converges
to

σ̂2 = 0.3679

σ̂2
b = 0.0595

with the corresponding smoothing parameter λ̂ = 6.2 and model degrees of free-

dom df = 5.35. The resulting estimate f̂ is plotted in Figure 18.7. Also shown is
the quadratic fit of the data, which has 3 degrees of freedom for the model.

For d = 2, using the same starting values as above, the algorithm converges
to

σ̂2 = 0.3775

σ̂2
b = 0.0038

with the corresponding smoothing parameter λ̂ = 99.2 and model degrees of
freedom df = 3.56, very close to the quadratic fit. The estimate using d = 2 is
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Figure 18.7: Nonparametric smoothing of the SO2 level against the indus-
trial activity using the estimated smoothing parameter, with corresponding
degrees of freedom df = 5.35 for d = 1, and df = 3.56 for d = 2. The dashed
lines are linear and quadratic fits of the data.

more ‘pleasing’, while using d = 1 the estimate appears to show some spurious
local patterns. A formal comparison between the fits can be done using the AIC;
for the current problem

AIC = N log σ̂2 + 2 df.

We obtain AIC=−30.3 for d = 1, and a preferable AIC=−32.8 for d = 2. �

Generalized cross-validation

The generalized cross-validation (GCV) score was introduced by Craven
and Wahba (1979) for estimation of the smoothing parameter λ in non-
parametric regression. In our setting the score is of the form

GCV(λ) =
e′e

(N − df)2
,

where the error e = y − β̂ − Zb̂ and degrees of freedom df are computed
at fixed λ. The estimate λ̂ is chosen as the minimizer of the GCV. The
justification of the GCV (Wahba 1990, Chapter 4) is beyond the scope of
our text.

In some sense GCV(λ) is a profile objective function for λ, which makes

the estimation of λ a simple one-dimensional problem. Given λ̂ we can
estimate the error variance as

σ̂2 =
e′e

(N − df)
(18.10)

where e and df are computed at λ̂.
Figure 18.8 shows the GCV as a function of λ for the SO2 data. The

minimum is achieved at λ̂ ≈ 135, with a corresponding degrees of freedom
df = 3.35, very close to the MLE given earlier.
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Figure 18.8: The generalized cross-validation (GCV) score as a function of

the smoothing parameter λ for the SO2 data. The minimum is at λ̂ ≈ 135.

18.7 Prediction intervals
Assuming θ is known the Fisher information for b based on the joint like-
lihood is given by (17.11). For the current problem

I (̂b) = (σ−2Z ′Z + σ−2
b R−1) = σ−2(W + λR−1),

and the standard errors of the estimates are the square roots of the diagonal
elements of

I (̂b)−1 = σ2(W + λR−1)−1.

In practice the unknown variance parameters are evaluated at the estimated
values. Since β̂ is not estimated (recall that it is constrained to the mean

value for identifiability reasons), se(f̂i) = se(̂bi) and we can contruct the
95% prediction interval

f̂i ± 1.96 se(f̂i)

for each i.
Figure 18.9 shows the prediction band for f(x) in the SO2 data. We use

the previously estimated values for σ2 and λ. The upper limit is formed
by joining the upper points of the prediction intervals, and similarly with
the lower limit.

18.8 Partial linear models
Suppose we observe independent data (xi, ui, yij), for i = 1, . . . , n, where
xi is a p-vector of predictors and ui is a scalar predictor. A general model
of the form

E(yij) = x′
iβ + f(ui)

and var(yij) = σ2 is called a partial linear model (e.g. Speckman 1988). For
example, this is used as a generalization of analysis of covariance, where β
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Figure 18.9: The prediction band for the nonparametric function f(x) based
on pointwise 95% prediction intervals.

is a measure of treatment effect, and f(ui) measures a nonlinear effect of
the covariate ui.

Assuming that ui’s are equispaced and following the previous develop-
ment, we can write the partial linear model in the form

E(y|b) = Xβ + Zb,

where X is an N × p design matrix, β is a fixed effects parameter, and b is
a random effects parameter satisfying a smoothness condition. The model
is a linear mixed model, and the estimates of β and b are the solution of

(X ′V −1X)β = X ′V −1y

(Z ′Σ−1Z +D−1)b = Z ′Σ−1y,

where V = Σ+ ZDZ ′. An iterative backfitting procedure may be used to
avoid the computation of V −1.

18.9 Smoothing nonequispaced data�

Occasionally we face an application where xi’s are not equispaced, and we
are unwilling to prebin the data into equispaced intervals. The previous
methodology still applies with little modification, but with more computa-
tions. The problem has a close connection with the general interpolation
method in numerical analysis.

It is convenient to introduce the ‘design points’ d1, . . . , dp, which do not
have to coincide with the data points x1, . . . , xn. These design points can be
chosen for computational convenience, as with regular grids, or for better
approximation, as with the so-called Chebyshev points for the Lagrange
polynomial in Example 18.5. We will consider a class of functions defined
by

f(x) =

p∑
j=1

bjKj(x),
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where Kj(x) is a known function of x and the design points, and bj ’s are
the parameter values determined by f(x) at the design points. So, in effect,
f(x) is a linear model with Kj(x)’s as the predictor variables. In function
estimation theory Kj(x) is called the basis function. The nonparametric
nature of f(x) is achieved by allowing p to be large or, equivalently, by
employing a rich set of basis functions.

Example 18.4: The simplest example is the power polynomial

f(x) =

p∑
j=1

bjx
j−1,

where we have used the basis function

Ki(x) = xj−1.

Finding bj ’s is exactly the problem of estimating the regression coefficients in
a polynomial regression model; the design points do not play any role in this
case. Extending the power polynomial to a high degree is inadvisable because of
numerical problems. �

Example 18.5: Using the Lagrange polynomial

f(x) =

p∑
j=1

f(dj)
∏
k �=j

x− dk
dj − dk

=

p∑
j=1

bjKj(x)

where bj ≡ f(dj) and

Kj(x) ≡
∏
k �=j

x− dk
dj − dk

.

EachKj(x) is a polynomial of degree (p−1). The main advantage of the Lagrange
polynomial is that the coefficients are trivially available. However, the choice of
the design points can make a great difference; in particular, the uniform design
is inferior to the Chebyshev design:

di =
a+ b

2
+

a− b

2
cos

(2i− 1)π

2p

for p points between a and b. �

Example 18.6: The B-spline basis (deBoor 1978) is widely used because of
its local properties: f(x) is determined only by values at neighbouring design
points; in contrast, the polynomial schemes are global. The j’th B-spline ba-
sis function of degree m is a piecewise polynomial of degree m in the interval
(dj , dj+m+1), and zero otherwise. The B-spline of 0 degree is simply the step
function with jumps at points (di, f(di)). The B-spline of degree 1 is the poly-
gon that connects (di, f(di)); higher-order splines are determined by assuming a
smoothness/continuity condition on the derivatives. In practice it is common to
use the cubic B-spline to approximate smooth functions (deBoor 1978; O’Sullivan
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1987); this third-order spline has a continuous second derivative. The interpolat-
ing B-spline is

f(x) =

p−k−1∑
j=1

bjKj(x)

where Kj(x)’s are computed based on the design points or ‘knots’ d1, . . . , dp. See
deBoor (1978) for the cubic B-spline formulae. �

Methodology

Given observed data (x1, y1), . . . , (xn, yn), where Eyi = f(xi), we can write
a familiar regression model

y =

p∑
j=1

bjKj(x) + e

≡ Zb+ e

where the elements of Z are

zij = Kj(xi)

for some choice of basis function Kj(x).
Since f(x) is available as a continuous function consider a smoothness

penalty of the form

λ

∫
|f (d)(x)|2dx,

where f (d)(x) is the d’th derivative of f(x). This is a continuous version
of the penalty we use in Section 18.3. In view of f(x) =

∑p
j=1 bjKj(x) the

penalty can be simplified to a familiar form

λb′Pb,

where the (i, j) element of matrix P is∫
K

(d)
i (x)K

(d)
j (x)dx.

Hence the previous formulae apply, for example

b̂ = (Z ′Z + λP )−1Z ′y.

18.10 Non-Gaussian smoothing
Using the GLMM theory in Section 17.8 we can extend nonparametric
smoothing to non-Gaussian data.

Example 18.7: Suppose we want to describe surgical mortality rate pi as a
function of patient’s age xi. If we do not believe a linear model, or we are at
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an exploratory stage in the data analysis, we may consider a model where the
outcome yi is Bernoulli with probability pi and

logit pi = f(xi),

for some function f . In this example there could be a temptation to fit a linear
model, since it allows us to state something simple about the relationship between
patient’s age and surgical mortality. There are, however, many applications where
such a statement may not be needed. For example, suppose we want to estimate
the annual rainfall pattern in a region, and daily rainfall data are available for a
5-year period. Let yi be the number of rainy days for the i’th day of the year;
we can assume that yi is binomial(5, pi), and

logit pi = f(i),

where f is some smooth function. Rather than for analysing a relationship, the
purpose of estimating f(x) in this application is more for a description or a
summary. �

As before, assume that we can arrange or pre-bin the data into regular
grids, so our problem is as follows. Given the observations (xi, yij) for i =
1, . . . , n and j = 1, . . . , ni, where xi’s are equispaced, yij ’s are independent
outcomes from the exponential family model (Section 6.5) of the form

log p(yij) =
yijθi −A(θi)

φ
+ c(yi, φ).

Let μi ≡ Eyij , and assume that for a known link function h(·) we have

h(μi) = f(xi) ≡ fi,

for some unknown smooth function f .
To put this in the GLMM framework first vectorize the data yij ’s into

an N -vector y. Conditional on b, the outcome y has mean μ and

h(μ) = Xβ + Zb, (18.11)

and b satisfies some smoothness condition stated in Section 18.3. For the
simple setup above

h(μ) = f = β + b,

so X is a column of ones of length N , and Z is an N × n design matrix
of zeros and ones; the row of Z associated with original data (xi, yij) has
value one at the i’th location and zero otherwise.

We will treat the general model (18.11) so that the inverse problems are
covered, and all of our previous theories for smoothing and GLMM apply.
The joint likelihood of β, θ and b is

logL(β, θ, b) = log p(y|b) + log p(b)

where p(y|b) is in the exponential family given above, and p(b) is the density
of b. The parameter θ includes any other parameter in the model, usually
the variance or dispersion parameters.
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Estimating f given θ

We proceed as in Section 17.10, and some results are repeated here for
completeness. Given a fixed value of θ we use a quadratic approximation
of the likelihood to derive the IWLS algorithm; see Section 6.7. Starting
with initial values for β0 and b0, the exponential family log-likelihood can
be approximated by

−1

2
log |Σ| − 1

2
(Y −Xβ − Zb)′Σ−1(Y −Xβ − Zb), (18.12)

where Y is a working vector with elements

Yi = x′
iβ

0 + z′ib
0 +

∂h

∂μi
(yi − μ0

i ),

and Σ is a diagonal matrix of the variance of the working vector with
diagonal elements

Σii =

(
∂h

∂μi

)2

φvi(μ
0
i ),

where φvi(μ
0
i ) is the conditional variance of yi given b. The derivative

∂h/∂μi is evaluated at the current values of β and b. Alternatively we
might use the term ‘weight’ wi = Σ−1

ii , and weight matrix W = Σ−1.
If the random effects parameter b is assumed normal with mean zero

and variance σ2
bR, where R is as described in Section 18.3, we have the

familiar mixed model equation(
X ′Σ−1X X ′Σ−1Z
Z ′Σ−1X Z ′Σ−1Z + σ−2

b R−1

)(
β
b

)
=

(
X ′Σ−1Y
Z ′Σ−1Y

)
(18.13)

to update β and b. Or, using the iterative backfitting algorithm, we can
solve

(Z ′Σ−1Z + σ−2
b R−1)b = Z ′Σ−1(Y − Zβ)

to update b, and similarly for β. By analogy with the standard regression
model the quantity

df = trace{(Z ′Σ−1Z + σ−2
b R−1)−1Z ′Σ−1Z}

is called the degrees of freedom associated with b. The use of nonnormal
random effects is described in Section 18.12.

Example 18.8: We will now analyse the surgical mortality data in Table
6.2, grouped into 20 bins given in Table 18.3. Let yi =

∑
j
yij be the number

of deaths in the i’th bin, and assume that yi is binomial(ni, pi) with dispersion
parameter φ = 1. We want to estimate f such that

logit pi = fi = β + bi.

To use the above methodology, start with β0 and b0 = 0 and compute the working
vector Y with element
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Bin i 1 2 3 4 5 6 7 8 9 10
Mid-xi 50.5 51.6 52.6 53.7 54.7 55.8 56.8 57.9 58.9 60.0
ni 3 0 1 3 2 2 4 1 1 2∑

j
yij 0 NA 0 0 0 0 2 0 0 1

Bin i 11 12 13 14 15 16 17 18 19 20
Mid-xi 61.0 62.1 63.1 64.2 65.2 66.3 67.3 68.4 69.4 70.5
ni 4 4 3 2 1 0 2 2 1 2∑

j
yij 2 3 1 1 0 NA 2 1 0 1

Table 18.3: Bin statistics for the surgical mortality data in Table 6.2. ‘NA’
means ‘not available’.

Yi = β0 + b0i +
yi − nip

0
i

nip0i (1− p0i )

and weight wi = Σ−1
ii = nip

0
i (1 − p0i ). The matrix X is a column of ones and Z

is an identity matrix I20. We then compute the following updates:

β =

∑
i
wi(Y − b)∑

i
wi

b = (W + σ−2
b R−1)−1W (Y − β),

where W = diag[wi]. The iteration continues after recomputing Y and Σ. So the
computation in non-Gaussian smoothing involves an iteration of the Gaussian
formula. The model degrees of freedom associated with a choice of σ2

b are

df = trace{(W + σ−2
b R−1)−1W}.

Figure 18.10 shows the nonparametric smooth of pi using smoothing param-
eter σ2

b = 0.2 and 2, with the corresponding 4.3 and 6.7 degrees of freedom. The
matrix R used is associated with d = 2; see Section 18.3. For comparison the
linear logistic regression fit is also shown. The result indicates some nonlinearity
in the relationship between age and mortality, where the effect of age appears to
flatten after age 62. �

Estimating the smoothing parameter

The discussion and method in Section 17.10 for estimating the variance
components in GLMM apply here. In general we can choose θ to maximize

logL(θ) = logL(β̂, θ, b̂)− 1

2
log |Z ′Σ−1Z +D−1|, (18.14)

where θ enters through Σ and D−1. This approximate profile likelihood
can be maximized using any derivative-free optimization routine.

In the important special case of non-Gaussian outcomes involving a
single function estimation, we typically assume φ = 1, so θ = σ2

b . Since
with smooth functions we do not expect σ2

b to be too large, we can use the
following algorithm. Start with an initial estimate of σ2

b , then:
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Figure 18.10: Nonparametric smooth (solid) of mortality as a function of
age compared with the linear logistic fit (dotted). The circles are the data
points.

1. Compute β̂ and b̂ given σ2
b according to the method in the previous

section.

2. Fixing β and b at the values β̂ and b̂, update σ2
b using

σ2
b =

1

n− d
[b′R−1b+ trace{(Z ′Σ−1Z + σ−2

b R−1)−1R−1}], (18.15)

where n is the length of b and d is the degree of differencing used to
define R (so n− d is the rank of R).

3. Iterate between 1 and 2 until convergence.

This procedure applies immediately to the mortality data example.
Figure 18.11(a) shows the mortality rate as a function of age using the
estimated σ̂2

b = 0.017, with corresponding df = 2.9.

Prediction intervals
From Section 18.7, assuming the fixed parameters are known at the esti-
mated values, the Fisher information for b is

I (̂b) = (Z ′Σ−1Z + σ−2
b R−1).

We can obtain approximate prediction intervals for pi as follows. First
obtain the prediction interval for fi in the logit scale

f̂i ± 1.96 se(̂bi),

where se(̂bi) is computed from I (̂b) above, then transform the end-points
of the intervals to the original probability scale. A prediction band is
obtained by joining the endpoints of the intervals. Figure 18.11(b) shows
the prediction band for the mortality rate using the estimated σ̂2

b = 0.017.
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Figure 18.11: (a) Nonparametric smooth (solid) of mortality rate using the
estimated σ̂2

b = 0.017, compared with the linear logistic fit (dotted). (b)
Prediction band for the nonparametric smooth.

18.11 Nonparametric density estimation
The simplest probability density estimate is the histogram, a nonparamet-
ric estimate based on simple partitioning of the data. When there is enough
data the histogram is useful to convey shapes of distributions. The weak-
ness of the histogram is that either it has too much local variability (if the
bins are too small), or it has low resolution (if the bins are too large).

The kernel density estimate is commonly used when a histogram is
considered too crude. Given data x1, . . . , xN , and kernel K(·), the estimate
of the density f(·) at a particular point x is

f(x) =
1

Nσ

∑
i

K

(
xi − x

σ

)
.

K(·) is typically a standard density such as the normal density function; the
scale parameter σ, proportional to the ‘bandwidth’ of the kernel, controls
the amount of smoothing. There is a large literature on the optimal choice
of the bandwidth; see Jones et al. (1996) for a review.

Example 18.9: Table 12.1 shows the waiting time for N = 299 consecutive
eruptions of the Old Faithful geyser in the Yellowstone National Park. The den-
sity estimate in Figure 18.12, computed using the Gaussian kernel with σ = 2.2,
shows distinct bimodality, a significant feature that indicates nonlinear dynamics
in the process that generates it. The choice σ = 2.2 is an optimal choice using
the unbiased cross-validation score from Scott and Terrell (1987). �

There are several weaknesses of the kernel density estimate: (i) it is
very inefficient computationally for large datasets, (ii) finding the optimal
bandwidth (or σ in the above formula) requires special techniques, and (iii)
there is an extra bias on the boundaries. These are overcome by the mixed
model approach.
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Figure 18.12: The histogram and kernel density estimate (solid line) of the
geyser data indicate strong bimodality.

First we pre-bin the data, so we have equispaced midpoints x1, . . . , xn

with corresponding counts y1, . . . , yn; there is a total of N =
∑

i yi data
points. The interval δ between points is assumed small enough such that
the probability of an outcome in the i’th interval is fiδ; for convenience we
set δ ≡ 1. The likelihood of f = (f1, . . . , fn) is

logL(f) =
∑
i

yi log fi,

where f satisfies fi ≥ 0 and
∑

i fi = 1. Using the Lagrange multiplier
technique we want an estimate f that maximizes

Q =
∑
i

yi log fi + ψ(
∑
i

fi − 1).

Taking the derivatives with respect to fi we obtain

∂Q

∂fi
= yi/fi + ψ.

Setting ∂Q
∂fi

= 0, so
∑

fi(∂Q/∂fi) = 0, we find ψ = −N , hence f is the
maximizer of

Q =
∑
i

yi log fi −N(
∑
i

fi − 1).

Defining λi ≡ Nfi, the expected number of points in the i’th interval,
the estimate of λ = (λ1, . . . , λN ) is the maximizer of∑

i

yi log λi −
∑
i

λi,

exactly the log-likelihood from Poisson data. We no longer have to worry
about the sum-to-one constraint. So, computationally, nonparametric den-
sity estimation is equivalent to nonparametric smoothing of Poisson data,
and the general method in the previous section applies immediately.
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To be specific, we estimate λi from, for example, the log-linear model

log λi = β + bi,

where bi’s are normal with mean zero and variance σ2
bR; the matrix R is

described in Section 18.3. The density estimate f̂i is λ̂i/N .

Computing the estimate
Given the smoothing parameter σ2

b , start with β0 and b0, and compute the
working vector Y with element

Yi = β0 + b0i +
yi − λ0

i

λ0
i

and weight wi = Σ−1
ii = λ0

i . Update these using

β =

∑
i wi(Y − b)∑

i wi

b = (W + σ−2
b R−1)−1W (Y − β),

where W = diag[wi]. In practice we can start with b = 0 and β0 = log y.
Estimation of σ2

b is the same as in the previous binomial example; the
iterative procedure and updating formula (18.15) for σ2

b also apply. As
before, it is more intuitive to express the amount of smoothing by the
model degrees of freedom associated with a choice of σ2

b :

df = trace{(W + σ−2
b R−1)−1W}.

Example 18.10: For the geyser data, first partition the range of the data
(from 43 to 108) into 40 intervals. The count data yi’s in these intervals are

1 1 2 12 17 5 16 3 11 8 6 8 2 7 2 3 5 11 6 17
18 17 24 12 14 18 5 21 9 2 11 1 2 1 0 0 0 0 0 1

Figure 18.13 shows the density estimate of the waiting time using the above
method (solid line) with d = 2 and an estimated smoothing parameter σ̂2

b = 0.042
(corresponding df = 11.1). The density estimate matches closely the kernel
density estimate using the optimal choice σ = 2.2. �

Example 18.11: This is to illustrate the problem of the standard kernel
estimate at the boundary. The data are simulated absolute values of the standard
normal; the true density is twice the standard normal density on the positive side.
The complete dataset is too long to list, but it can be reproduced reasonably using
the following information. The values range from 0 to 3.17, and on partitioning
them into 40 equispaced intervals, we obtain the following count data yi:

17 14 15 20 17 15 16 17 19 14 7 9 14 7 10 11 5 8 5 10
10 4 6 7 4 2 5 3 1 1 2 0 1 0 0 1 1 0 0 1

Figure 18.14 shows the density estimates using the mixed model approach (solid
line, based on σ̂2

b = 0.0006 or df = 4.3) and the kernel method (dotted line, with
optimal choice σ = 0.06; and dashed line, with σ = 0.175). Using smaller σ
the kernel estimate has less bias at the boundary, but the estimate is visibly too
noisy, while larger σ has the opposite problem. �
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Figure 18.13: The density estimate of the geyser waiting time using the
mixed model approach (solid) and the kernel method (dotted). The smooth-
ing parameters of both methods are estimated from the data. The scattered
points are the counts yi’s scaled so that as a step function they integrate to
one.
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Figure 18.14: The density estimates of a simulated dataset using the mixed
model approach (solid) and the kernel method with σ = 0.06 (dotted) and
σ = 0.175 (dashed). The scattered points are the scaled count data.

18.12 Nonnormal smoothness condition�

The normal smoothness assumption is convenient computationally, and it
is adequate in most applications. A nonnormal model may be required,
for example, if we suspect the underlying function is discontinuous so its
derivative might be heavy-tailed. Typically we still make an assumption
that the d’th-order difference

Δdbi = ai

is iid with some distribution with location zero and scale σb; these do not
have to be mean and standard deviation, so, for example, the assumption
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covers the Cauchy or double-exponential models.
Let �(a) be the log-likelihood contribution of a. Using starting value

b0, as in Section 17.10, we can first approximate �(a) by

�(a) ≈ �(ac)− 1

2
(a− ac)′D−1(a− ac),

where D−1 = diag[−�′′(a0)], a0 = Δdb0, and

ac = a0 +D�′(a0).

Therefore,

�(a) ≈ �(ac)− 1

2
(Δdb− ac)′D−1(Δdb− ac).

The derivative of �(a) with respect to b is

(−Δd)′D−1Δdb+ (Δd)′D−1ac.

Combining this with the quadratic approximation of log p(y|b), we ob-
tain the updating equation(

X ′Σ−1X X ′Σ−1Z
Z′Σ−1X Z′Σ−1Z + (Δd)′D−1Δd

)(
β
b

)
=

(
X ′Σ−1Y

Z′Σ−1Y + (Δd)′D−1ac

)
.

In the normal case, ac = 0, and the term (Δd)′D−1Δd reduces to σ−2
b R−1.

18.13 Exercises
Exercise 18.1: Show that the combined matrix on the left-hand side of (18.5)
is singular.

Exercise 18.2: In Example 6.5 find the nonparametric smooth of the number
of claims as a function of age. Compare it with the parametric fit. Find the
confidence band for the nonparametric fit.

Exercise 18.3: Earthquake wave signals exhibit a changing variance, indicating
the arrival of the different phases of the wave.

-0.24 -0.19 -0.43 -1.30 -0.16 -1.15 1.42 -0.46 0.85 -0.62
0.12 0.17 -0.32 0.48 -1.38 0.08 -0.22 -1.50 -0.27 2.38

-1.72 -1.14 -0.47 -0.32 2.97 -1.76 -0.36 0.47 -0.89 -5.60
9.30 -3.20 5.42 -7.51 3.44 0.02 -0.29 -9.37 -54.77 4.27

-34.94 26.26 13.51 -87.68 1.85 -13.09 -26.86 -27.29 3.26 -13.75
17.86 -11.87 -11.63 4.55 4.43 -2.22 -56.21 -32.45 12.96 9.80
-6.35 1.17 -2.49 11.47 -7.25 -7.95 -8.03 7.64 25.63 9.12
10.24 -19.08 -3.37 -13.86 7.60 -15.44 5.12 2.90 0.41 -4.92
14.30 5.72 -10.87 1.86 -1.73 -2.53 -1.43 -2.93 -1.68 -0.87
9.32 3.75 3.16 -6.34 -0.92 7.10 2.35 0.24 2.32 -2.72

-2.95 -2.57 -1.63 2.06 -1.66 4.11 0.90 -2.21 2.71 -1.08
-1.22 -0.68 -2.78 -1.91 -2.68 -0.95 1.17 -0.72

Assume the signal is observed at regular time points i = 1, . . . , N , and yi’s are
independent normal with mean zero and variance σ2

i , where σ
2
i changes smoothly

over time.
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(a) Develop a smoothing procedure, including the computational algorithm, to
estimate the variance as a function of time.

(b) Apply it to the observed data.

(c) Find the prediction band for the variance function.

Exercise 18.4: Find the nonparametric estimate of the intensity function from
the software failure data in Example 11.9, and compare it with the parametric
estimate. Discuss the advantages and disadvantages of each estimate.

Exercise 18.5: For the epilepsy data in Section 11.9 find the nonparametric
estimate of the baseline intensity function associated with the Cox model as
described in Section 11.10.

Exercise 18.6: The following time series (read by row) is computed from the
daily rainfall data in Valencia, southwest Ireland, from 1985 to 1994. There
are 365 values in the series, each representing a calendar date with the 29th of
February removed. Each value is the number of times during the ten year period
the rain exceeded the average daily amount (4 mm); for example, on January 1st
there were 5 times the rain exceeded 4 mm.

5 3 6 7 4 2 6 6 7 4 6 3 5 1 2 1 1 5 4 3 4 4 5 5 5 3 2 4 4
3 3 5 3 4 4 2 4 4 5 2 3 4 3 5 5 1 1 4 1 5 2 1 3 3 2 7 4 2
3 4 2 3 4 3 2 2 2 2 1 4 5 3 2 3 1 4 6 2 7 5 2 2 3 1 3 4 4
5 3 5 5 4 4 4 4 2 2 2 2 5 4 1 2 2 3 1 1 2 3 2 2 4 3 4 2 2
1 2 3 2 2 4 2 2 2 1 1 1 1 3 2 1 2 2 4 2 2 1 0 1 2 2 2 2 3
2 1 3 2 2 0 1 4 2 0 4 2 0 3 2 1 3 2 1 1 1 1 3 1 2 3 5 3 0
4 2 5 2 2 2 3 1 3 1 2 3 2 2 1 5 2 4 4 2 3 3 3 3 3 1 1 0 2
3 3 4 4 3 4 4 1 2 3 1 4 3 4 5 0 3 2 3 5 4 4 3 4 4 3 2 1 4
2 4 4 1 3 3 4 3 2 5 2 1 2 1 2 2 3 2 1 1 3 2 3 1 3 3 1 1 5
3 3 5 1 1 2 3 0 1 3 1 4 6 3 4 4 3 5 5 5 3 3 3 2 2 3 0 1 5
4 5 4 5 2 4 5 5 3 4 5 6 5 2 3 5 2 4 3 2 3 5 8 4 5 5 5 4 4
4 5 4 4 3 3 2 4 4 3 1 3 4 4 3 2 3 5 6 2 5 4 4 1 3 2 3 2 3
4 3 6 2 2 7 5 4 4 7 5 4 5 3 5 6 6

Assuming a binomial model for the observed data, compute the smoothed prob-
ability of exceeding the mean rainfall as a function of calendar time. Present also
the prediction band around the smoothed estimate.
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Besag, J.E., Yorke, J. and Mollié, A. (1991). Bayesian image restoration with
two applications in spatial statistics. Annals of the Institute of Statistics
and Mathematics, 43, 1–59.

Bickel, P.J. and Doksum, K.A. (1981). An analysis of transformations revisited.
Journal of the American Statistical Association, 76, 296–311.

Birnbaum, A. (1962). On the foundation of statistical inference. Journal of the
American Statistical Association, 57, 269–326.

Birnbaum, A. (1970). More on concepts of statistical evidence. Journal of the
American Statistical Association, 67, 858–861.

Bjørnstad, J.F. (1996). On the generalization of the likelihood function and
likelihood principle. Journal of the American Statistical Association, 91,
791–806.

Boole, G. (1854). The Laws of thought. Reissued as Vol. II of the Collected
Logical Works. (1952). Illinois: La Salle.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformation (with discus-
sion). Journal of the Royal Statistical Society, Series B, 26, 211–252.

Box, G.E.P. and Cox, D.R. (1982). An analysis of transformations revisited,
rebutted. Journal of the American Statistical Association, 77, 209–210.

Box, G.E.P., Jenkins G.M. and Reinsel, G.C. (1994). Time series analysis:
forecasting and control. Englewood Cliffs, N.J.: Prentice-Hall.

Box, J.F. (1978). R.A. Fisher, the life of a scientist. New York: Wiley.



Bibliography 505

Breslow, N.E. (1981). Odds ratio estimators when the data are sparse. Biometri-
ka, 68, 73–84.

Breslow, N.E. and Clayton, D. G. (1993). Approximate inference in generalized
linear mixed models. Journal of the American Statistical Association, 88,
9–25.

Breslow, N.E. and Day, N. (1980). Statistical methods in cancer research. Lyon:
IARC.

Brownlee, K.A. (1965). Statistical theory and methodology in science and engi-
neering, 2nd edn. New York: Wiley.

Buehler, R.J. and Fedderson, A.P. (1963). Note on a conditional property of
Student’s t. Annals of Mathematical Statistics, 34, 1098–1100.

Burnham, K.P. and Anderson, D.R. (1998). Model Selection and inference: a
practical information-theoretic approach. New York: Springer Verlag.

Butler, R.W. (1986). Predictive likelihood inference with applications (with
discussion). Journal of the Royal Statistical Society, Series B, 48, 1–38.

Butler, R.W. (1987). A likely answer to ‘What is the likelihood function?’. In
Statistical decision theory and related topics IV, Vol. 1, eds. S.S. Gupta and
J.O. Berger (Eds.). New York: Springer Verlag.

Campbell, R. and Sowden, L. (1985). Paradoxes of rationality and coopera-
tion: prisoner’s dilemma and Newcomb’s problem. Vancouver: University
of British Columbia Press.

Christensen, R. and Utts, J. (1992). Bayesian resolution of the ‘exchange para-
dox’. American Statistician, 46, 274–276. Correction in the same journal
in 1996, page 98.

Chung, K.L. (1974). A course in probability theory, 2nd edn. New York: Aca-
demic Press.

Clopper, C.J. and Pearson, E.S. (1934). The use of confidence or fiducial limits
illustrated in the vase of the binomial. Biometrika, 26, 404–413.

Cox, D.R. (1958). Some problems connected with statistical inference. Annals
of Mathematical Statistics, 29, 357–372.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal
of the Royal Statistical Society, Series B, 34, 187–220.

Cox, D.R. (1975). Partial likelihood. Biometrika, 62, 269–276.

Cox, D.R. (1978). Foundations of statistical inference: the case for ecclectism.
Australian Journal of Statistics, 20, 43–59.

Cox, D.R. (1990). The role of models in statistical analysis. Statistical Science,
5, 169–174.

Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate con-
ditional inference (with discussion). Journal of the Royal Statistical Society,
Series B, 49, 1–39.

Cox, D.R. and Snell, E.J. (1981). Applied statistics: principles and examples.
London: Chapman and Hall.

Cramér, H. (1955). The elements of probability theory and some of its applica-
tions. New York: Wiley.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions.
Numerische Mathematik, 31, 377–403.



506 Bibliography

Crowder, M.J. (1978). Beta-binomial Anova for proportions. Applied Statistics,
27, 34–37.

Daniel, C. and Wood, F.S. (1971). Fitting equations to data. New York: Wiley.

Darwin, C. (1876). The effect of cross- and self-fertilization in the vegetable
kingdom, 2nd edn. London: John Murray.

Davison, A.C., Hinkley, D.V. and Worton, B.J. (1992). Bootstrap likelihoods.
Biometrika, 79, 113–30.

Davison, A.C., Hinkley, D.V. and Worton, B.J. (1995). Accurate and efficient
construction of bootstrap likelihoods. Statistical Computing, 5, 257–64.

deBoor, C. (1978). A practical guide to splines. New York: Springer Verlag.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal of
the Royal Statistical Society, Series B, 39, 1–38.

Denby, L. and Mallows, C.L. (1977). Two diagnotic displays for robust regres-
sion analysis. Technometrics, 19, 1-13.

Diaconis, P. (1985). Theories of data analysis: from magical thinking through
classical statistics. In Exploring data, tables, trends and shapes, D.C. Hoaglin,
F. Mosteller and J.W. Tukey (Eds.). New York: Wiley.

DiCiccio, T.J., Hall, P. and Romano, J.P. (1989). Comparison of parametric
and empirical likelihood functions. Biometrika, 76, 465–476.

Diggle, P. (1983). Statistical analysis of spatial point patterns. London: Aca-
demic Press.

Dongarra, J.J., Bunch, J.R., Moler, C.B. and Stewart, G.W. (1979). LINPACK
Users’ Guide. Philadelphia: SIAM.

Draper, N.R. and Smith, H. (1981). Applied regression analysis, 2nd edn. New
York: Wiley.

Durbin, J. (1960). Estimation of parameters in time-series regression models.
Biometrika, 47, 139–153.

Durbin, J. (1980). Approximations for densities of sufficient estimators. Biome-
trika, 67, 311–333.

Edwards, A.W.F. (1974). The history of likelihood. International Statistical
Review, 49, 9–15.

Edwards, A.W.F. (1992). Likelihood, expanded edition. Baltimore: Johns Hop-
kins University Press.

Edwards, W., Lindman, H. and Savage, L.J. (1963). Bayesian statistical infer-
ence for psychological research. Psychological Review, 70, 193–242.

Efron, B. (1971). Does an observed sequence of numbers follow a simple rule?
(Another look at Bode’s law). Journal of the American Statistical Associa-
tion, 66, 552–559.

Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data.
Journal of the American Statistical Association, 72, 557–565.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of
Statistics, 7, 1–26.

Efron, B. (1982). The Jackknife, the bootstrap and other resampling plan. Vol. 38
of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadel-
phia: SIAM.



Bibliography 507

Efron, B. (1986a). Why isn’t everybody a Bayesian? American Statistician, 40,
1–11.

Efron, B. (1986b). Double exponential families and their use in generalized
linear regression. Journal of the American Statistical Association, 81, 709–
721.

Efron, B. (1987). Better bootstrap confidence intervals (with discussion). Jour-
nal of the American Statistical Association, 82, 171-200.

Efron, B. (1993). Bayes and likelihood calculations from confidence intervals.
Biometrika 80, 3–26.

Efron, B. (1998). R.A. Fisher in the 21st century. Statistical Science, 13, 95–
122.

Efron, B. and Hinkley, D.V. (1978). Assessing the accuracy of the maxi-
mum likelihood estimator: observed versus expected Fisher information.
Biometrika, 65, 457–482.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New
York: Chapman and Hall.

Elston, R.C. and Grizzle, J.E. (1962). Estimation of time-response curves and
their confidence bands. Biometrics, 18, 148–159.

Evans, D. (1953). Experimental evidence concerning contagious distributions
in ecology. Biometrika, 40, 186–211.

Fadeley, R.C. (1965). Oregon malignancy pattern physiographically related
to Hanford, Washington, radioisotope storage. Journal of Environmental
Health, 27, 883–897.

Fairley, W.B. (1977). Accidents on Route 2: two-way structure for data. In
Statistics and Public Policy, W.B. Fairley and F. Mosteller (Eds). Reading,
Massachusetts: Addison-Wesley.

Fears, T.R., Benichou, J. and Gail, M.H. (1996). A reminder of the fallibility of
the Wald statistic. American Statistician, 50, 226–227.

Feller, W. (1968). An introduction to probability theory and its applications, 3rd
edn. Vol. 1. New York: Wiley.

Fienberg, S.E. and Hinkley, D.V. (1980). R.A. Fisher: An appreciation. New
York: Springer Verlag

Fisher, R.A. (1912). On an absolute criterion for fitting frequency curves. Mes-
senger of Mathematics, 41, 155-160.

Fisher, R.A. (1921). On the ‘probable error’ of a coefficient of correlation de-
duced from a small sample. Metron, 1, 2–32.

Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London, Series A, 222,
309–368.

Fisher, R.A. (1925). Theory of statistical estimation. Proceedings of the Cam-
bridge Philosophical Society, 22, 700–725.

Fisher, R.A. (1930). Inverse probability. Proceedings of the Cambridge Philo-
sophical Society, 26, 528–535.

Fisher, R.A. (1933). The concepts of inverse probability and fiducial probability
referring to unknown parameters. Proceedings of the Royal Society A, 139,
343–348.



508 Bibliography

Fisher, R.A. (1934). Two new properties of mathematical likelihood. Proceed-
ings of the Royal Society A, 144, 285–307.

Fisher, R.A. (1936). Uncertain inference. Proceedings of the American Academy
of Arts and Sciences, 71, 245–258.

Fisher, R.A. (1973). Statistical methods and scientific inference, 3rd edn. New
York: Hafner.

Fraser, D.A.S., Monette, G. and Ng, K.W. (1984). Marginalization, likelihood
and structural models. In Multivariate Analysis VI, P.R. Krisnaiah (Ed.).
Amsterdam: North-Holland.

Gatsonis, C., Hodges, J.S., Kass, R.E. and McCulloch, R.E. (1997). Case studies
in Bayesian statistics, Vol. 3. New York: Springer Verlag.

Gilks, W.R., Spiegelhalter, D.J. and Richardson, S. (1995). Markov Chain
Monte Carlo in practice. London: Chapman and Hall.

Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1986). User’s guide
to NPSOL (Version 4.0): a FORTRAN package for nonlinear programming.
Technical Report SOL 86-2, Department of Operations Research, Stanford
University.

Godambe, V.P. (1960). An optimum property of a regular maximum likelihood
estimation. Annals of Mathematical Statistics, 31, 1208–1212.

Godambe, V.P. and Thompson, M.E. (1976). Philosophy of survey sampling
practice. In Foundations of Probability Theory, Statistical Inference and Sta-
tistical Theories of Science, Vol. II, W.L. Harper and C.A. Hooker (Eds.).
Dordrecht, The Netherlands: Reidel.

Goldstein, M. and Howard, J.V. (1991). A likelihood paradox (with discussion).
Journal of the Royal Statistical Society, Series B, 53, 619–628.

Gong, G. and Samaniego, F.J. (1981). Pseudo maximum likelihood estimation:
theory and applications. Annals of Statistics, 9, 861–869.

Good, I.J. (1969). A subjective evaluation of Bode’s law and an objective test
for approximate numerical rationality. Journal of the American Statistical
Association, 64, 23-66.

Grambsch, P. and Therneau, T. (1994). Proportional hazards tests and diag-
nostics based on weighted residuals. Biometrika, 81, 515–526.

Green, P.J. and Silverman, B.W. (1993). Nonparametric regression and gener-
alized linear models: a roughness penalty approach. London: Chapman and
Hall.

Greenwood, M. and Yule, G.U. (1920). An inquiry into the nature of frequency
distributions representative of multiple happenings with particular reference
to the occurrence of multiple attacks of disease or of repeated accidents.
Journal of the Royal Statistical Society, 83, 255–279.

Hacking, I. (1965). Logic of Statistical Inference. Cambridge: Cambridge Uni-
versity Press.

Hald, A. (1999). On the history of maximum likelihood in relation to inverse
probability and least squares. Statistical Science, 14, 214–222.

Harville, D. (1974). Bayesian inference for variance components using only error
contrasts. Biometrika, 61, 383–385.

Harville, D. (1977). Maximum likelihood approaches to variance component
estimation. Journal of the American Statistical Association, 72, 320–340.



Bibliography 509

Helland, I.S. (1995). Simple counterexamples against the conditionality princi-
ple. American Statistician, 49, 351–356.

Hinkley, D.V. (1979). Predictive likelihood. Annals of Statistics, 7, 718–728.

Hoaglin, D.C. (1985). Using quantiles to study shape. In Exploring data, tables,
trends and shapes, D.C. Hoaglin, F. Mosteller and J.W. Tukey (Eds.). New
York: Wiley.

Hoaglin, D.C. and Tukey, J.W. (1985). Checking the shape of discrete dis-
tributions. In Exploring data, tables, trends and shapes, D.C. Hoaglin, F.
Mosteller and J.W. Tukey (Eds.). New York: Wiley.

Hochberg, Y. and Tamhane, A.C. (1987). Multiple comparison procedures. New
York: Wiley.

Hotelling, H. (1951). The impact of R.A. Fisher on statistics. Journal of the
American Statistical Association, 46, 35–46.

Ihaka, R. and Gentleman, R. (1996). R: a language for data analysis and graph-
ics. Journal of Computational and Graphical Statistics, 5, 299-314.

Jeffreys, H. (1961). Theory of probability. 3rd ed. Oxford: Clarendon Press.

Jenkins, B.M. and Johnson, J. (1975). International terrorism: a chronology,
1968–1974. Report R-1597-DOS/ARPA, Rand Corporation.

Johnson, R. and Wichern, D. (1992): Applied Multivariate Statistical Analysis,
3rd ed. Englewood Cliffs, N.Y.: Prentice-Hall.

Jones, M.C., Marron, J.S. and Sheather, S.J. (1996). Progress in data-based
bandwidth selection for kernel density estimation. Computational Statistics,
11, 337–381.

Jørgensen, B. (1987). Exponential dispersion models (with discussion). Journal
of the Royal Statistical Society, Series B, 49, 127–162.

Kalbfleisch, J.D. and Prentice, R.L. (1980). Statistical analysis of failure time
data, New York: Wiley.

Kalbfleisch, J.D. and Sprott, D.A. (1969). Application of likelihood methods to
models involving large number parameters. Journal of the Royal Statistical
Society, Series B, 32, 125–208.

Kass, R. and Raftery, A. (1995). Bayes factors and model uncertainty. Journal
of the American Statistical Association, 91, 1343–1370.

Kendall, M.G. (1963). Ronald Aylmer Fisher, 1890–1962. Biometrika, 50, 1–15.

Kendall, M.G., Stuart, A. and Ord, J.K. (1977). Advanced theory of statistics,
4th edn. London: Griffin.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood
estimator in the presence of infinitely many incidental parameters. Annals
of Mathematical Statistics, 27, 887–906.

Kolaczyk, E.D. (1994). Empirical likelihood for generalized linear models. Sta-
tistica Sinica, 4, 199–218.

Kullback, S. and Leibler, R.A. (1951). On information and sufficiency. Annals
of Mathematical Statistics, 22, 79–86.

Lancaster, H.O. (1961). Significance tests in discrete distributions. Journal of
the American Statistical Association, 56, 223–234.

Lange, K.L. (1995). A quasi-Newton acceleration of the EM algorithm. Statis-
tica Sinica, 5, 1–18.



510 Bibliography

Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989). Robust statistical mod-
elling using the t distribution. Journal of the American Statistical Associa-
tion, 84, 881–896.

Lawless, J.F. (1987). Regression methods for Poisson process data. Journal of
the American Statistical Association, 82, 808–815.

Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with
discussion). Journal of the Royal Statistical Society, Series B, 58, 619–678.

Lee, Y. and Nelder, J. A. (2000). Two ways of modelling overdispersion in
non-normal data. Journal of the Royal Statistical Society, Series C, 58,
591–599.

Lehmann, E.L. (1983). Theory of point estimation. New York: Wiley.

Lehmann, E.L. (1986). Testing statistical hypotheses. New York: Wiley.

Lehmann, E.L. (1990). Model specification: the views of Fisher and Neyman,
and later developments. Statistical Science, 5, 160–168.

Lehmann, E.L. (1993). The Fisher, Neyman-Pearson theories of testing hypothe-
ses: one theory or two? Journal of the American Statistical Association, 88,
1242–1249.
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general specification, 459
iterative computation, 467
IWLS algorithm, 464
joint estimation, 467
joint likelihood, 462
nonnormal random effects, 464
overdispersion pattern, 460
quadratic approximation, 464
variance components, 460, 466
working vector, 464

Godambe, 211, 385
Goldstein, 210
Gong, 292, 293
Good, 5
goodness-of-fit test

as likelihood ratio test, 268
deviance, 169
nuisance parameters, 269

Grambsch, 320
Green, 429, 482
Greenwood, 84
Grizzle, 455
growth curve, ramus bone example,

455

h-likelihood, 429, 462
Hald, 19, 118
Hanford data example, 152
Harville, 292, 441
hazard model, 316

connection with Poisson point
process, 322

in terms of Poisson model, 331
likelihood, 317

heavy-tailed model, see location-scale
family

Helland, 211
hierarchical likelihood, see h-likelihood

higher-order approximation, 247
highly stratified data

logistic model, 276
marginal likelihood, 279
modified profile likelihood, 290
normal model, 274
two-by-two tables, 284

Hinkley, 19, 218, 245, 430, 433, 434
Hoaglin, 83, 91, 110
Hochberg, 205
Howard, 210
Huber ψ, 399, 402
Huygens, 8
hypergeometric model, 25

capture recapture, 25
Fisher’s exact test, 79
noncentral, 270, 284

inconsistent MLE, 274
odds-ratio parameter, 276

independence, test of, 269
inductive inference, 17
inductive process, 3, 7, 10
inductive uncertainty, 6, 14
infection pattern

estimation with EM algorithm,
354

influence
robust estimation, 398

information inequality, 239
for EM algorithm, 349
for Kullback–Leibler distance,

367
informative stopping, 204
integrated likelihood, 288
internet survey data, 172
interpolation, 490
interval data

likelihood, 26
intraclass correlation, 263
invariance principle, 43

transformation of parameters,
43

invariance property
likelihood ratio, 43
MLE, 45
random parameter, 431, 434

inverse Gaussian model, 191
inverse probability, 9, 16
inverse problems, 477

mixed model, 478
non-Gaussian, 493

Ising model, 306
logistic regression of, 307
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iterative backfitting algorithm, 445,
447, 453, 490

iterative weighted least squares, see
IWLS

IWLS, 174
canonical link, 175
derivation in GLM, 174
estimating equation, 390, 392
for GLMM, 464
Gauss–Newton algorithm, 391
noncanonical link, 177
Poisson regression, 176
quadratic approximation, 176
robust regression, 352

jackknife
bias estimation, 121
for BCa, 416

Jacobi method, 445
James Joyce, 189
Jenkins, 82
Jensen’s inequality, 238
Johnson, J., 82
Johnson, R.A., 449
Jones, 497
Jørgensen, 97

Kalbfleisch, 309, 313
Kaplan–Meier estimate, 313
Kass, 365
Kendall, 101
kernel smoothing, 476, 497

boundary problem, 499
for density estimation, 497
weaknesses, 497

Kolaczyk, 421
Kolmogorov, 232
Kullback–Leibler distance, 367

gamma and normal models, 370
Kullback–Leibler information, 239

Lagrange polynomial, 490, 491
Lancaster, 128
Lange, 181, 348, 403
Laplace, 8, 10
Laplace’s approximation, 288

in GLMM, 466
Laplacian model, 107
large-sample theory, 231
law of large numbers, 231

strong, 232
weak, 232

law school data, 414, 418
Lawless, 320
Lawlor, 354
least-squares, 8, 17, 90

regression, 151
two-stage, 457

Lee, 429, 460, 462, 463, 466
Lehmann, 5, 118, 119, 143–145, 225,

240, 241
Li, 181
Liang, 395
Liapounov, 233
likelihood

calibration, 36, 40
checking quadratic approxima-

tion, 33
combining, 27
conditional, see conditional like-

lihood
connection with P-value, 125
continuous probability, 23
definition, 22
direct inference, 35
discrete probability, 23
estimated, see estimated likeli-

hood
interpretation, 22
marginal, see marginal likelihood
minimal sufficiency, 56
multiparameter, 58
new parameterization, 45
nonregular, 35
normalized, 29
partial, see partial likelihood
penalized, see penalized likeli-

hood
prior, see prior likelihood
profile, see profile likelihood
proportional, 29
pseudo-, see pseudo-likelihood
quadratic approximation, 31, 33,

46
quasi-, see quasi-likelihood
random parameter, 425, 429
regular, 31
robustness, 365
subjective interpretation, 15, 17
sufficiency, 56

likelihood interval, 35, 37, 48
calibration, 244
exact coverage probability, 137
from profile deviance, 172
interpretation, 38
long-term properties, 37
quadratic approximation, 42
vs. Wald CI, 47

likelihood principle, 193
evidence, 199
P-value conflict, 195
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repeated sampling principle, 209
reservations, 194, 206
strong, 193, 195, 198
weak, 194

likelihood ratio
interpretation, 29, 207
invariance property, 43, 47

likelihood ratio test, 40
distribution theory, 36, 243
exact distribution, 265
multiparameter case, 258
nuisance parameters, 265
P-value, 41

Lindsey, 35, 66, 78, 320, 395
link function

canonical, 164
exponential family regression, 164
GLM, 164
list, 164

Linpack, 485
Lipton, 4
local averaging, 474
locally most powerful test, 235
location family

distribution of MLE, 252
location-scale family, 104

regression, 181
logistic model, 107
logistic regression, 154

deviance, 168, 173
goodness of fit, 170
grouped data, 156
likelihood, 155
profile likelihood, 156
seed germination data, 157
surgical mortality data, 154, 259

logit–beta model, 458
Louis, 360
Lp model, 366

M-estimation, see estimating equa-
tion

magic formula, 247
Mallows, 181
Mantel–Haenzel test, 285
marginal likelihood, 274, 278

highly stratified data, 279
Markov chain, 299

asthma data example, 301
likelihood, 300
regression analysis, 302
replicated, 302
transition probabilities, 304
two-state, 300

matched-pairs data, 276, 285

Mather, 19
maximum likelihood estimate, see MLE
McLachlan, 350
McNemar’s test, 285
mean square error, 117
median

distribution theory, 406
robust estimate, 401

Mélard, 299
Meng, 348, 360
Michelson, 90
Michelson’s speed of light experiment

full data, 90
grouped data, 60

Miller, 124, 205
minimal sufficiency, 55

exponential family, 101
likelihood, 56
normal model, 57
score statistic, 57

minimum variance unbiased estimate,
see MVUE

missing data, 341
in two-way table, 341

missing information principle, 347,
360

mixed effects model, 435
BLUP, 441
EM algorithm for, 356
for smoothing, 478
general form, 439
joint estimation, 444
joint likelihood, 441
marginal likelihood, 440
non-Gaussian smoothing, 493
nonnormal, see GLMM
random effects estimation, 441
several random components, 452

variance of β̂, 448
mixed model equations, 444

in GLMM, 464
mixture models

EM algorithm for, 349
example, 350

MLE, 31
approximate density, 248, 286
consistency, 238, 239
distribution, multiparameter case,

256
inconsistent, 274
invariance property, 45
large-sample distribution, 241
standard error, 42
under wrong model, 370, 372
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model comparison
difficulty, 376
nonnested, 376
with AIC, 375

model selection, see model compar-
ison

inference after, 205
modified profile likelihood, 286

formula, 287
highly stratified data, 290
normal mean, 290
normal variance, 290
variance components, 291, 446,

466
monotone likelihood ratio, 57
Monte Carlo test

Poisson overdispersion, 98
Monti, 419, 422
Mosteller, 110
multinomial model

EM algorithm, 343
likelihood, 60

multiparameter models, 58
multiple testing, 204
Musa, 322
MVUE, 223

construction, 225
Poisson model, 225

naive variance formula, 374, 393
Navidi, 346
nearest-neighbour method, 475
negative binomial model, 26, 75, 459

accidents among workers, 84, 86
Poisson with overdispersion, 85

Nelder, 100, 170, 249, 390, 429, 460,
462, 463

Newton–Raphson procedure, 174
Neyman, 11, 15, 274
Neyman–Scott problems, 274
non-Gaussian smoothing, 477, 492

computation, 494
data driven, 495
degrees of freedom, 494
density estimation, 497
estimation, 494
likelihood, 493, 494
non-Gaussian smoothness, 501
surgical mortality data, 494
using GLMM, 493

nonnormal data
continuous models, 93
semi-parametric approach, 386

nonparametric density estimation, see
density estimation

nonparametric function estimation,
see smoothing

nonparametric likelihood, see empir-
ical likelihood

nonparametric MLE, 412
nonparametric smoothing, see smooth-

ing
normal model, 26, 89

comparing two means, 93
Fisher information, 32
for censored data, 312
likelihood, 28
minimal sufficiency, 57
QQ-plot, 91
regression, 150
score function, 32
sufficiency, 54

NPSOL, 421
nuisance parameters, 61, 273

impact on inference, 274
in confidence procedure, 140
in model comparison, 376
in prediction, 430
infinitely many, 274
likelihood ratio test, 264
profile likelihood, see profile like-

lihood

O’Sullivan, 477, 478, 492
Oakes, 360
odds ratio

logistic regression, 155
Mantel–Haenzel test, 285
profile likelihood, 79
standard error formula, 80
stratified data, 81

offset term, 160, 171
Old Faithful geyser data, 350

mixture model, 350
smoothing, 497, 499

one-way random effects, 260, 436,
440

estimation, 437, 438
iterative computation, 448
likelihood of, 436, 437
profile likelihood, 262

Orchard, 347
order statistics

maximum, 26, 28, 32
whole set, 26

ordered categorical data, 302
orthogonal parameters

by information, 287
by likelihood, 277
Poisson means, 277
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overdispersion, see dispersion model
binomial model, 76
in GLMM, 460
Poisson model, 84

Owen, 409, 412, 414, 421

p-formula, 248
for modified profile likelihood,

286
p∗-formula, 249
P-value

advantages, 126
bootstrap computation, 134
confidence interval, 129
connection with likelihood, 125
from confidence density, 132
improved approximation, 253
likelihood principle, 195, 199
likelihood ratio, 41
mid-P-value, 128
saddlepoint approximation, 253
two-sided, 127
weakness, 126

partial likelihood, 316, 318
as profile likelihood, 332
epilepsy data example, 330
illustration, 318
Poisson point process, 330
proportional hazard model, 318
proportional intensity model, 330

partial linear models, 489
Pascal, 8
Patterson, 292, 441
Pawitan, 417
Pearson’s χ2

closeness to likelihood ratio test,
268

Pearson, E., 19
Pearson, K., 10, 16, 427
pedigree data, 443
penalized likelihood, 429, 481
person-year method, 310
pivotal quantity, 140
planetary distances

Bode’s law, 5
plant competition data, 160

exponential regression, 162
GLM, 164

Poisson model, 82
accidents among workers, 84
approximation to binomial, 82
density estimation, 498
diagnostic plot, 83
exact inference, 134
extended quasi-likelihood, 100

fatal horse kicks, 110
grouped data, 82
in GLMM, 458
mixture, 84
overdispersion, 84, 98
prediction, 432
sufficiency, 53
truncated, 95

Poisson plot, 83
Poisson point process, 320

connection with hazard models,
322

discrete time model, 331
distribution theory, 320
likelihood, 321
partial likelihood, 330
proportional intensity model, 327
replicated, 324

Poisson regression
censored data, 331
claims data example, 157, 260
deviance, 168
epilepsy data example, 326
estimating equation approach,

388
goodness of fit, 170
IWLS algorithm, 176
Poisson point process, 331
profile likelihood, 159
proportional intensity model, 332
survival regression, 332
traffic accident data, 159

Poisson–gamma model, 459
computation, 465
joint likelihood, 463

Poisson–normal model, 459
pollution data example

Box–Cox regression, 178
pooling information, 117
posterior density, 12
power exponential model, 366
pre-binning, 478

for density estimation, 497
prediction

Bayesian, 427
binomial model, 427, 430, 431
normal model, 429
plug-in method, 428
Poisson model, 432

prediction interval
non-Gaussian case, 496
of function estimate, 489
prediction band, 496

predictive likelihood, 431
binomial model, 431, 433
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preference test example, 142
Pregibon, 100, 170, 249, 390
Prentice, 309, 313
Press, 485
prior density, 12
prior likelihood, 29, 430

for smoothness, 480
probability

objective, 9
subjective, 9

probability-based inference, 35
probit regression, 155
profile likelihood, 61

curvature, 63, 267
distribution theory, 264
empirical likelihood, 409
modified, see modified profile

likelihood
random parameter, 430
regression parameters, 152
vs. conditional likelihood, 282

proportional hazard model, 317
marginal likelihood, 318
partial likelihood, 318

proportional intensity model, 327
estimating baseline intensity, 329
likelihood, 328
partial likelihood, 330
Poisson regression, 332

proportions
binomial model, 78
comparison of, 78, 283
conditional likelihood, 283
Fisher’s exact test, 79

pseudo-likelihood
Ising model, 307

pure likelihood inference, 35

QQ-plot, 91
nonnormal data, 92

quadratic approximation, 46
quantile estimation, 401

distribution theory, 405
quasi-likelihood, 385, 386

exponential family model, 389
extended, see extended quasi-

likelihood
general regression, 388

radioactive waste data, 152
Raftery, 365
ramus bone example, 455
random effects

Bayesian estimate, 438
Cauchy model, 465
Fisher information, 438

gamma model, 465
in GLMM, 460
nonnormal model, 464

random effects model, see mixed ef-
fects model

random parameter, 425
likelihood of, 429
profile likelihood, 430
uncertainty, 426

Rao, 70, 262, 343, 446
Rao’s test, see score test
Rao–Blackwell step, 225
rat data example, 309

Kaplan–Meier estimates, 314
normal model, 312
proportional hazard model, 319
testing, 311
Weibull model, 316

recognizable subsets, 143
Redelmeier, 1
regression models, 149

Box–Cox family, 178
exponential family, 163
least-squares, 151
linear, 151
location-scale family, 181
logistic regression, 154
nonlinear, normal, 153
nonnormal, 160
Poisson regression, 157
profile likelihood, 152

regular problems
likelihood of, 31

regularity conditions, 241
Reid, 145, 287
Reilly, 354
relationship matrix, 443, 481
relative risk, 2
relevant subsets, 143
REML, 441

as modified profile likelihood,
292

repeated measures
correlation structure, 396
estrone level, 436
Markov chain, 302
ordinal outcome, 302
Poisson process, 324
ramus bone example, 455
sleeping dog example, 449
using GEE, 395

repeated sampling principle, 11
robust estimation, 386, 398

Cauchy model, 105, 402
double-exponential model, 403
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likelihood based, 402
median, 401

robust regression, 181
EM algorithm, 352
estimating equation approach,

401
IWLS algorithm, 352, 402

robust variance formula, 374, 394,
407

robustness, 365, 385
against mis-specification, 370

Rohlf, 178
Ronchetti, 419, 422
Rosner, 204
roughness penalty, 481
Royall, 15, 35, 126
Rubin, 360

saddlepoint approximation
bootstrap, 271
CLT connection, 270
from p∗-formula, 250
gamma model, 250
P-value formulae, 253
sample mean, 251

Samaniego, 292, 293
sampling distribution, 124
sandwich estimator, 407
saturated model

in deviance, 166
Savage, 18, 19
Scheffé, 225
score equation, 31
score function, 213

binomial model, 214
Cauchy model, 215
definition, 31
normal model, 213
Poisson model, 214
sampling variation, 213

score statistic, 213
mean, 215
variance, 216

score test, 235
distribution theory, 235
multiparameter case, 257
normal model, 237
Poisson model, 237
proper variance, 247
using observed information, 237

Scott, 274, 497
seed germination data

binomial–normal model, 468
GLMM, 458, 461
logistic regression, 157

seed germination example
likelihood, 24
likelihood interval, 39

semi-parametric model, 386
sequential experiment, 199

frequentist inference, 203
likelihood, 200
logical paradox, 201
type I error probability, 201

Serfling, 234, 404
Shafer, 11
shrinkage, 438
Silverman, 429, 482
Slutsky’s theorem, 234
Smith, 181
smoother matrix, 483
smoothing, 473

amount of, 478, 484
basis function, 491
by B-splines, 491
by kernel method, 476
by nearest neighbours, 475
by partitioning, 474
computational algorithms, 485
data driven, 485
degrees of freedom, 478, 484,

488
density estimation, 497
exponential family model, 493
joint likelihood, 482
mixed model approach, 477, 478
mixed model estimation, 482
non-Gaussian, see non-Gaussian

smoothing
nonequispaced data, 490
polynomial basis function, 491

smoothing parameter, 477, 484
computational algorithm, 495
cross-validation, 497
estimation, 485, 487, 495
in density estimation, 499
non-Gaussian, 495
selection using GCV, 488

smoothness, 479
choosing order with AIC, 488
nonnormal model, 500
normal model, 482
order of, 479, 482
prior likelihood for, 480
random walk models, 479
second-order, 481

Snell, 414
software reliability data, 322
Sokal, 178
spatial data, 305
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first-order model, 306
Ising model, 306
one-dimensional, 305
two-dimensional, 307, 338

Speckman, 489
Sprott, 35
square-root matrix, 257
stack-loss data example, 181
standard error, 34, 41, 42

EM algorithm, 360
in nonregular problems, 43
log-odds, 46

state-space methodology, 299
Stigler, 10, 90
stochastic model, 3
stochastic uncertainty, 6
Stone, 378, 381
stopping rule, 199

likelihood, 200
stratification, risk, 81
Student, 17
sufficiency, 53

factorization theorem, 54
likelihood connection, 56
minimal, see minimal suffiency
normal model, 54
Poisson model, 53

sufficiency principle, 194
formal, 197

surgical mortality data, 154, 259
likelihood, 155
profile deviance, 171
smoothing, 494

survival data, see censored data
survival regression, 314

via Poisson regression, 332
Weibull model, 315

t-family, 106
t-test

comparing two means, 93
Tamhane, 205
Terrell, 497
terrorist data example, 82
Therneau, 320
Thompson, 211, 292, 441
Thucydides, 8
Tibshirani, 1, 122
time series, 297

AR models, 297
ARMA models, 299
Markov chain, 299
stationarity, 297

traffic accident data
deviance, 168

goodness of fit, 170
Poisson regression, 159

traffic deaths example, 1
analysis, 86
conditional likelihood, 281
controversy, 7

transformation
Box–Cox family, 178
invariance of likelihood, 43, 47
parameter vs. observation, 181

trimmed means, 400
Tsiatis, 204
Tukey, 83, 110
Tukey’s bisquare, 401
two-by-two table

conditional likelihood, 284
Fisher’s exact test, 79
gene data, 78
series of, 81, 284

ulcer data example, 302
unbiased estimate, 117

minimum variance, see MVUE
nonexistence, 118
problems, 118

uniform model
likelihood interval, 39

Utts, 14

van Dyk, 348
variability, 123
variance components, 439

computation, 445
estimation, 453
Fisher information, 263
in GLMM, 460, 466
in one-way model, 436
in smoothing, 486
iterative computation, 446, 454
modified profile likelihood, 291,

441, 446
normal mixed models, 439
one-way random effects, 262
profile likelihood, 441
REML, 291

variance estimation, 124
bootstrap method, 124

variation, 73
Venn, 8, 17

Wahba, 488
Wald, 11, 200, 240
Wald CI, 124, 242

definition, 42
vs. likelihood-based CI, 47

Wald test, 41, 242
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definition, 42
large-sample distribution, 241
multiparameter case, 257

Wallace, 110
Wallis, 18
Weibull model

survival regression, 315
weighted least-squares

for mixed model, 440
Weisberg, 150
Whitehead, 204, 320, 334
Wichern, 449
Wolpert, 38, 196, 197
Wood, 181
Woodbury, 347
working vector, 176
Wu, 349

Yates, 16, 19
Yule, 84

Zeger, 395
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