Java EE 7 Developer
Handbook

Peter A. Pilgrim [PACKT] enterprise™

IIIIIIIII

Java EE 7 Developer
Handbook

Develop professional applications in Java EE 7 with this
essential reference guide

Peter A. Pilgrim

enterprise &

professional expertise distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Java EE 7 Developer Handbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013
Production Reference: 1180913

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 9781849687942
www . packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail . com)

Credits

Author
Peter A. Pilgrim

Reviewers
Antonio Gomes Rodrigues

Manjeet Singh Sawhney

Acquisition Editor
Kevin Colaco

Lead Technical Editor
Ritika Dewani

Joel Noronha

Technical Editors
Gauri Dasgupta

Kapil Hemnani
Monica John

Sonali Verenkar

Project Coordinator
Gloria Amanna

Kranti Berde

Proofreaders
Chrystal Ding

Paul Hindle

Mario Cecere

Indexers
Hemangini Bari

Mariammal Chettiyar
Rekha Nair

Monica Ajmera Mehta

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

About the Author

Peter A. Pilgrim is the 91st Oracle Java Champion, an independent contractor, a
professional software developer and designer. Peter is an honors degree graduate of
London South Bank University in 1990. He had already secured a Master's degree
course for September 1991, but then instead elected to live and work in Germany for
a few years in order to beat off the then, economic recession. He spent productive
years at a joint-venture company developing spectroscopic scientific software in
Fortran 77, C, Solaris, and X Windows.

After four years abroad Peter returned to London and continued his career in the
industry with more C, C++, and UNIX development. He then leapt at a chance to

get into investment banking with Deutsche Bank in 1998. It was at Deutsche Bank

a week after joining them that Peter discovered Java was the next best thing since
sliced bread, when a colleague dropped out of a programming Java training course.
As the substitute person, Peter realized this peculiar Java language and platform was
the future and the answer. Peter applied his studies to his day job and learnt Java
applets, then Java Swing and switched over to the server side with Java Servlets with
web applications involving the Struts framework.

In 2004, Peter created the JAVAWUG user group in London for the burgeoning
development community who were interested in web development on the Java EE.
What started as the Struts Networking Users Group in London quickly expanded to
lot of other areas. The JAVAWUG ran for six years until 2010. He built a reputation
for travelling to Java technology conferences in the US and Europe and being heavily
involved in the wider community. He spoke at several developer conferences
including QCon London, ACCU, Devoxx, Devoxx UK, and JavaOne. In 2007, Peter
was elected to the Sun Microsystems' Java Champions program.

Today, Peter A. Pilgrim is a well-known specialist in Java Enterprise Edition (Java
EE) technology, focused on the server-side and the implementation of electronic
commerce. Peter has built professional Java EE applications for Blue-chip companies
and top-tier investment and retail banks including Lloyds Banking Group, Barclays,
UBS, Credit Suisse, Royal Bank of Scotland, and LBi. He is also a fan of Agile
practices and Test Driven Development. Peter, currently, lives in South London with
his long-term partner Terry, who is a Scottish Diva, business communication coach,
and a singer —her voice is phenomenal.

Peter writes a blog at http://www.xenonique.co.uk/blog/ and is on Twitter as
peter pilgrim.

Acknowledgment

I want to send out sincere grateful thanks to all of the reviewers of the book, who
pointed out my many egregious errors. Their dedication to the task helped produce
this high quality text that you are reading stand out. It is indeed a privilege to have
these smart people who will prevent you going out into the public technical literary
crowd with egg on your face, due to bad copy and mistaken content. I say thank you
to my external reviewers, Antonio Gomes Rodrigues and Manjeet Singh Sawhney.

I want to thank members of the Packt Publishing team including Abhishek Kori,
Kevin Colaco, Neha Mallik, Joel Noronha, Gloria Amanna, Ritika Dewani, Kranti
Berde, and Kapil Hemnani. All of these folks worked hard to get this text into your
hands. Finally, a special thank you goes to Dhwani Devater, who was the acquisition
editor that approached me with the book concept and with whom I could not turn
down such a challenging project. This book became my personal agenda known as
"the project".

During the Devoxx UK 2013 conference, I discussed several ideas about Java EE

7 and beyond with David Blewin of Red Hat. I also met Aslak Knutsen from the
Arquillian development team also from Red Hat. I want to thank those of you out
in the wider community who saw the earlier presentations about Java EE 7; your
feedback helped to derive the best quality for this book. I express gratitude to

those followers and interested parties on the social networks of Twitter, Linked-In,
Facebook, and Google+, who had kind words to say about writing a technical book.

I also want to say a big thank you to Markus Eisele for accepting my invitation to
write the foreword for this, my first book. Markus is an excellent enterprise guy
who happens to be an Oracle ACE Director and works for Msg in Germany. During
2013, I had a couple of tough months at times and Markus was there in spirit for me
valiantly and graciously.

I thank members of the extended Pilgrim family, Mum and Dad and my sister for
their support.

I wrote this book on a happenstance inquiry from Packt Publishing to help
educate software developers, designers, and interested architects in Enterprise
Java development. I gladly accepted the commission to write. I sieged this great
opportunity. The book become the goal, the goal become "the project". I knew my
life would change drastically from the regular software developer to a technical
educator. It did whilst still holding down professional Java contracting gigs. I
could not afford to let anyone down. The project became the mission, which was to
give developers quality information, demonstrating good practice, and providing
fair explanations around the concepts. I wanted to provide clear guidance in this
fascinating area of technology. I am sure you have heard the saying about putting
back good into the community. Well, this is true for me, too. Yet I wanted to give
more than a return gift. I hoped to engage the worldwide Java community with a
product, a concise and worthy Java EE 7 book. This is my first technical book.

The project was approximately 15 months in the making to get an initial schedule of
promises to the real context of programming, testing and writing content. Emotionally
and technically it was tough; I lived the rivers deep and mountains high.

Finally, I thank my wonderful Scottish lady, the love of my life, my dear partner,
Terry for putting up with me and pushing me on, especially in the early phases of
the project, saying several times in broad Glaswegian Patter, "Haud yer wheesht an'
get oan wae it!". Thank you, I have done it.

About the Reviewers

Antonio Gomes Rodrigues earned his Masters degree at the University of Paris
VII in France. Since then he has worked in various companies Java EE technologies in
with the roles of developer, technical leader, technical manager of offshore projects,
and performance expert.

He currently works on performance problems in Java EE applications.

I would like to thank my wife Aurélie for her support.

Manjeet Singh Sawhney currently works for a well-known UK insurance
company in Bromley (UK) as a Data Architect. Previously, he worked for global
organisations in various roles, including development, technical solutions consulting,
and data management consulting. Even though Manjeet has worked across a range
of programming languages, his core language is Java. During his postgraduate
studies, he also worked as a Student Tutor for one of the top 100 universities in

the world where he was teaching Java to undergraduate students and marked

exams and project assighments. Manjeet acquired his professional experience by
working on several mission-critical projects serving clients in the Financial Services,
Telecommunications, Manufacturing, Retail, and Public Sector.

I am very thankful to my parents, my wife Jaspal, and my son
Kohinoor for their encouragement and patience as reviewing this
book took some of my evenings and weekends from the family.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

To my lady Terry: Love conquers everything,

And lest we forget: Grandma Cecilia Prescod: "Them can skin them face now."

Table of Contents

Preface 1
Chapter 1: Java EE 7 HTMLS5 Productivity 9
Java EE 7 9
Enhanced HTMLS5 support 10
Java EE 7 architecture 12
Standard platform components and APls 12
New productivity themes 13
Refinements 14
Java EE Platform 15
Java EE Profiles 18
Web Profile 18
Enterprise Profile 19

A working example 21
Entities 22
Business logic 25
The service endpoints 27

A WebSocket endpoint 28

A RESTful endpoint 31

The Entity Control Boundary pattern 36
Summary 38
Chapter 2: Context and Dependency Injection 39
Software engineering definitions 39
The Context and Dependency Injection service 41
Beans and bean types 42
Basic injection 45
Field injection 45
Setter injection 46

Constructor injection

46

Table of Contents

Qualifiers 47
Built-in qualifiers 49
The CDI classpath scanning 49
Factory production 50
Generating new instances every time 52
Bean names and presentation views 53
Bean scopes 55
CDl initialization and destruction 56
The @PostConstruct annotation 57
The @PreDestroy annotation 57
Programmatic Lookup of the CDI Beans 58
Configuring a CDI application 59
Standalone CDI application 60
Building the standalone project with Gradle 63
Using the DeltaSpike CDI container tests 64
Injecting arbitrary objects using Producers 69
Advanced CDI 72
The lifecycle component example 72
Alternatives 74
The Arquillian test framework 76
A new kind of Java EE testing framework 76
Setting up of Arquillian 77
The disposable methods 79
CDI and crosscutting concerns 82
Interceptors 82
Decorators 87
Observers and events 90
Stereotypes 93
Summary 93
Chapter 3: Enterprise Java Beans 95
EJB protocols 96
Criticism of EJB 96
Simplification of EJB 97
Features of EJB components 97
Session beans 99
Stateless session beans 99
Concurrency and stateless session EJBs 102
Stateful session beans 103
Singleton session beans 111

Lii]

Table of Contents

The lifecycle of session EJBs 115
Lifecycle of stateless EJBs 115
Lifecycle of stateful session beans 116
Lifecycle of singleton session beans 118

Business interfaces 120
Local access 120
Remote access 120
Access summary 121

No interface views 121

EJB references 122

Asynchronous invocations 123

The relationship between EJB and CDI containers 124

Lightweight scope of EJBs 125

Summary 126

Chapter 4: Essential Java Persistence API 3.2 129

Entities 130
Defining Entity bean 130
An entity bean example 131

A Plain Old Java Object 131
A simple entity bean 133
Expanded entity bean definition 135
Annotating entity beans 139
Annotating entities with the instance variables 139
Annotating entities with property accessors 140
Comparing annotating styles 142

Running a simple entity bean test 143
The Gradle build file for the entity bean test 143
A stateful session bean 144
An entity bean integration test 146
A persistence context XML configuration 148
Arquillian configuration for the embedded GlassFish server 150
Running an integration test 152

The lifecycle of an entity bean 153
The new entity state 153
The managed entity state 153
The detached entity state 153
The removed entity state 154

EntityManager 154
Persistence context 154

The EntityManager methods 154
Transactional support 160

Application managed transactions 160

[iii]

Table of Contents

Retrieving an EntityManager by injection 162
Retrieving an EntityManager by factory 162
Retrieving an EntityManager by the JNDI lookup 164
Moving further along with entity beans 165
Controlling the mapping of entities to the database table 165
Expanding the @Table annotation 165
Mapping the primary keys 167
The single primary key 168
Composite primary keys 169
Using the @IdClass annotation 169
Using the @Embeddable annotation 171
Using the @Embeddedld annotation 173
JPQL 175
The dynamic queries 176
The named queries 177
The query parameters 178
The positional query arguments 179
The entity bean relationships 180
Mapping with the @OneToOne annotation 180
Mapping with the @OneToMany annotation 182
Mapping with the @ManyToOne annotation 183
Mapping with the @ManyToMany annotation 184
Configuration of persistence and the entity beans 186
The structure of the persistence unit configuration 186
The object-relational mapping files 187
Standard property configurations for the persistence units 189
Summary 190
Chapter 5: Object-Relational Mapping with JPA 191
Adding finesse to entity beans 191
Field binding 192
Binding eagerly 192
Binding lazily 192
The trade-off between eager and lazy 193
Cascades onto dependent entities 196
Cascade operations 196
Removal of orphans in relationships 197
Generated values and primary keys 198
Table auto increment 200
Sequence auto increment 202
Identity auto increment 203
Entity relationships revisited 204
One-to-one mapping 204
Persisting one-to-one unidirectional entities 208

[iv]

Table of Contents

Bidirectional one-to-one-entities
Persisting one-to-one bidirectional entities
Composite foreign keys in a one-to-one relationship
One-to-many mapping
One-to-many relationship with a join column
Bidirectional one-to-many relationship
One-to-many using an explicit join table
Many-to-one mapping
Many-to-one relationship with a join column
Bidirectional many-to-one relationship
Many-to-many mapping
Bidirectional many-to-many relationship
Unidirectional many-to-many relationship
Mapping entity inheritance hierarchy
Hierarchy in a single database table
An example user story
Benefits and drawbacks of the single table strategy
Common base table hierarchy
An example user story
Benefits and drawbacks of joined Inheritance
Table-per-class hierarchy
An example user story
Benefits and drawbacks of table-per-class hierarchy
Extended entities
Mapped super-classes
Troubleshooting entity persistence
Fetch performance
Prefer lazily binding for maximum performance
Entity Relationship
Prefer orphan removal
Excessive queries
Object corruption
Summary

208
209
209
21
213
214
216
217
218
220
220
221
224
225
226
227
230
231
231
234
235
235
237
238
238
240
241
241
241
243
243
244

244

Chapter 6: Java Servlets and Asynchronous Request-Response 247

What are Java Servlets?
Web containers

The lifecycle of Java Servlets
Loading Servlets
The Java Servlet initialization
The Java Servlet destruction
The Servlet request and response
HTTP Servlets

The deployment model

248
248

250
250
251
252

252

254

255

[v]

Table of Contents

Getting started with Java Servlets 258
A simple Servlet 258
The URL path mapping 260
The Gradle build project 262
The containerless Java web application 263
Request and response 268
The request parameters 268
Headers 269
The request attributes 269
The session attributes 271
The Servlet context attributes 271
Redirecting the response 272
The web deployment descriptor 273
Mapping Java Servlets 274
Configuring a session timeout 276
Configuring MIME types 277
Configuring the welcome page 278
Configuring the error-handler pages 278
Annotations and the web deployment descriptor 279
The Servlet filters 280
The Servlet filter annotation attributes 281
The Servlet filter XML configuration 282
The Servlet context listener 283
Pluggable Serviet fragments 286
Ordering multiple web fragments 287
Asynchronous Java Servlets 289
The asynchronous input and output 289

A synchronous reader example 290

An asynchronous reader example 291

An asynchronous writer 298
Alignment to the containers 305
Aligning Servlets to the CDI container 305
Miscellaneous features 306
Mapping the URL patterns 307
Rules for the URL path mapping 307
Single thread model 308
Summary 308
Chapter 7. Java APl for HTML5WebSocket 309
The rise of WebSockets 310
Early web technology 310

[vil

Table of Contents

Enter HTML5 and WebSockets 311
WebSocket Java definitions 312
The WebSocket protocol 313
Server-side Java WebSockets 314
@ServerEndpoint 315
@OnMessage 316
Invoking Java WebSocket 316
Running WebSocket examples 319
Java WebSocket API 319
Native formats communication 319
Annotated WebSockets on the server side 320
Lifecycle WebSocket endpoint annotations 320
WebSocket sessions 321
A Java WebSocket chat server 324
The server side 325
The web client 331
Asynchronous operations 334
Client-side Java WebSockets 335
@ClientEndpoint 336
Annotated client example 336
Remote endpoints 339
Programmatic Java WebSocket 340
Encoders and decoders 341
Summary 344
Chapter 8: RESTful Services JAX-RS 2.0 345
Representational State Transfer 345
JAX-RS 2.0 features 347
Architectural style 348
REST style for collections of entities 349
REST style for single entities 350
Servlet mapping 351
Mapping JAX-RS resources 354
Test-Driven Development with JAX-RS 354
JAX-RS server-side endpoints 357
Defining JAX-RS resources 359
Testing JAX-RS resources 365
Path URI variables 368
JAX-RS annotations for extracting field and bean properties 370
Extracting query parameters 370
Extracting matrix parameters 371
Using default values 372
Extracting form parameters 373

[vii]

Table of Contents

Field and bean properties 374
JAX-RS subresources 375
Resolution by a subresource location 375
Resolution by a subresource method 376
Generating a JAX-RS generic response 377
Response builder 377
Response status 380
Generic entities 383
Return types 384
Hypermedia linking 385
JAX-RS client API 389
Synchronous invocation 389
Asynchronous invocation 393
Asynchronous JAX-RS server side endpoints 396
JAX-RS providers 399
Filters 399
JAX-RS filters 399
Server-side filters 399
Client-side filters 401
JAX-RS interceptors 405
Binding filter and interceptors 409
Dynamic binding 411
Summary 412
Chapter 9: Java Message Service 2.0 413
What is JMS? 414
Messaging systems 416
Point-to-point messaging 416
Publish-subscribe messaging 418
JMS definitions 420
JMS classic API 420
JMS simplified API 421
JMS message types 421
A quick JMS 2.0 example 421
Establishing a JMS connection 425
Connecting to a JMS provider 425
Connection factories 425
Default connection factory 426
Message destinations 427
JMSContext 427
Retrieving a JMSContext 432

[viii]

Table of Contents

Sending JMS messages 433
Upgrading message producers from JMS 1.1 433
Sending messages synchronously 434
Sending messages asynchronously 434
JMS message headers 435

Setting message properties 436
Setting a message delivery delay 436

Receiving JMS messages 437
Upgrade from JMS 1.1 437
Receiving messages synchronously 438
Receiving messages asynchronously 439

Non-shared subscriptions 440
Shared subscriptions 441
Durable topic consumers 441
Starting and stopping connections 443
Redelivery of messages 443
Other JMS-defined properties 444

Message-driven Beans (MDBs) 444
Activation configuration property 449
Message selectors 450

JMS exception handling 451

Upgrading JMS 1.1 code 452
Establish a JMS 1.1 connection 452

JMS and dependency injection 455
Injecting CDI beans 455
Injection of JMSContext resources 456
Injecting EJB beans 457
Definition of JMS resources in Java EE 457

Summary 458

Chapter 10: Bean Validation 461

Introduction to Bean Validation 462
New features in 1.1 462
A quick example 463

Constraint declarations 466
Elements of a constraint 466
List of built-in constraints 467
Hibernate Validator built-in constraints 469
Constraint violations 470

Applying constraint definitions 471

Custom validators 472

[ix]

Table of Contents

Groups of constraints 475
Class-level constraints 475
Partial validation 478

Constraint inheritance 480
Ordering groups of constraints 481
Method-level constraints 483
Method validation rules 486
Integration with Java EE 486
Default access to validator and validator factory 487
JAX-RS 2.0 integration 487
Summary 488
Chapter 11: Advanced Topics in Persistence 491
Persistence of map collections 491
The MapKey relationship 491
The MapKey join column relationship 495
Calling stored procedures 498

Stored procedure query 499

MySQL remote server example 500

Dynamic result set retrieval 501

Retrieving outbound parameter values 503

Stored procedure query annotations 505

Understanding the criteria API 508

Criteria queries 508

CriteriaUpdate 512

CriteriaDelete 513

Entity graphs 515

Worked example of a fetch plan 518

Miscellaneous features 526

Custom JPQL functions 526

Down-casting entities 527

Synchronization of persistence contexts 528

Entity listeners with CDI 528

Native query constructor mapping 530

Summary 531
Appendix A: Java EE 7 Platform 533
Platform containers 533

Global JNDI naming 534

Packaging 534

Bean XML configuration location 537

Persistence XML configuration location 537

[x]

Table of Contents

Upgrading to Java EE 7 from J2EE versions 538
Legacy application programming interfaces 539
GlassFish 4 reference implementation 540
Installing basic GlassFish 541
Configuring MySQL database access 542
Configuring command line 543
Default resources 545
Appendix B: Java EE 7 Persistence 547
Persistence unit 547
XML schema documents for Java EE 7 549
Properties 549
XML representation of object-relational mapping 550
JPA miscellaneous features 551
Converters 551
Native constructor results 552
Transactions and concurrency 553
Entity managers 554
Transactions, entity managers, and
session EJBs 554
Stateful session beans 556
Concurrency access locks 557
Optimistic locking 557
Pessimistic locking 558
Appendix C: Java EE 7 Transactions 559
Transactions 559
Java Transaction API 560
Two-phase commit transactions 560
Heuristic failures 561
Local transactions 562
Distributed transactions 562
Transaction services 562
Container-Managed Transactions (CMT) 562
Bean-Managed Transactions (BMT) 564
Isolation levels 565
JNDI lookup 569
Appendix D: Java EE 7 Assorted Topics 571
Concurrency utilities 571
Environment reference 572
Application container context 573
Contextual tasks 573

[xi]

Table of Contents

JSON-P

Streaming
Parsing JSON with Streaming API
Generating JSON with Streaming API
Object model
Parsing JSON with the object model
Generating JSON with the object model

Recommended reading
Index

576

577
578
579

580
580
582

583
585

[xii]

Preface

Jack Dempsey said, "A champion is somebody who gets up, when he can't".

This is a book about the Java EE 7 platform and the goal is to guide the software
developers, designers, and interested architects. The book is aimed at the technical
delivery and will be of service to those who are curious about Java EE. The intention

of this book is to be a reference guide to programmers who are already building
enterprise applications at a novice level and feel that this is the time to improve their
knowledge. The book is also relevant to experienced Java developers, who need to stay
up-to-date with the seventh edition of the Java EE platform.

My aim is to take you on this stupendous journey so that eventually you will have
mastery, satisfaction, and a grand element of purpose around the Java EE 7 platform.
After reading this book, you will be able to start building the next generation Java
application for your enterprise with all the flair and confidence of a programmer
with experienced technical know-how. Mastery is the inner urge to get better at
doing stuff that you have a passion for and this book will show you how much you
can achieve. Your passion for Java EE 7 will drive your satisfaction.

Your journey will start with an introduction to the Java EE 7 platform, which
provides an overview of the initiative, mission, and the description of the umbrella
specification and the individual specifications. There you will find, brief explanations
of the highlights of the new APIs and several updated ones. In the first chapter, we
will see a sample application from the beginning. From then onwards, the book
delves straight into the Context and Dependency Injection, which is one of the most
important APIs in Java. After that, the book moves onto Enterprise Java Beans and
discussion of the server-side endpoints. Along the way, the book introduces Gradle
as a build tool and Arquillian, which is an integration-testing framework. Your
journey continues with Java Persistence and follows on with chapters dedicated to
JMS, Java Servlets, RESTful services, and WebSocket.

Preface

This is a reference book. The contents around Java EE 7 are not by any means
exhaustive. This book only serves as a start and now, it is up to you to venture forth.
Good luck!

What this book covers

Chapter 1, Java EE 7 HTML5 Productivity, introduces the developer to the new features
of the Java EE 7 platform. The reader is presented with a cursory view of WebSocket
and JAX-RS 2.0.

Chapter 2, Context and Dependency Injection, is a study in the managed beans that have
contextual scope. The chapter delves into qualifiers, providers, and Interceptors.

Chapter 3, Enterprise Java Beans, is an overview of the oldest endpoint in Enterprise
Java. After reading this chapter, the reader will be comfortable with the session
beans, asynchronous methods, and poolable instances.

Chapter 4, Essential Java Persistence API 3.2, is the first of a double that dives into
JPA from the top to the bottom. Developers will understand entities, tables, and the
primary key fields and properties.

Chapter 5, Object-Relational Mapping with JPA, follows on from the previous chapter
and engages the reader into mapping objects with JPA. We cover all of the cardinal
relationships including one-to-one and one-to-many.

Chapter 6, Java Servlets and Asynchronous Request-Response, takes a break from

the persistence modeling to focus on Java Servlets and writing Servlet filters and
context listener. The reader will learn about the asynchronous input and output
with Java Servlets.

Chapter 7, Java API for HTML5WebSocket, tackles the WebSocket technology from the
perspective of Java. The developer will learn how to build new applications using
this important API from both server and client.

Chapter 8, RESTful Services JAX-RS 2.0, is a deep dive into the Java RESTful service
standard in its second edition. The reader will learn about the client-side JAX-RS API
as well as new server-side features.

Chapter 9, Java Message Service 2.0, is a tour around the latest JMS API on the Java EE
7 platform. JMS is all about asynchronous message processing.

Chapter 10, Bean Validation, is a thorough engineering introduction into the wonderful
world of constraint validation around POJOs. You will learn how to write your own
custom constraint checks, and to group and order sets of validation constraints.

[2]

Preface

Chapter 11, Advanced Topics in Persistence, is a final dedicated chapter to persistence and
it covers recent corner cases that have been recently fixed. The reader will learn how to
invoke stored procedures and create fetch plans among other techniques.

Appendix A, Java EE 7 Platform, is a reference around the platform container
configuration. This appendix has a material about XML configuration, the JNDI name
space and packaging. It also has handy section on installing GlassFish 4.0, manually.

Appendix B, Java EE 7 Persistence, covers the configuration of JPA and most
importantly the persistence unit. It has a useful table of all the JPA 2.1 properties.
This appendix delves into miscellaneous parts of the specification including stateless
session EJB, transactions, and concurrency.

Appendix C, Java EE 7 Transactions, is dedicated completely to Java EE transactions.
The reader will find a useful overview of ACID principles, and local and distributed
transaction. There is an excellent coverage of the heuristic failures and illustrations of
the main transaction and consistency issues.

Appendix D, Java EE 7 Assorted Topics, is divided into two sections, namely:
Concurrency Utilities API and JSON-Processing API. These are two new brand
editions to the Java EE 7 specification. The reader will find these sections to be very
handy references.

Online Chapter, Moving Java EE.next to the Cloud, is an explorative chapter from the
heart that discusses the potential repercussions for the Java EE platform migrating to
the cloud-computing environment.

You can download the online chapter from http://www.packtpub.com/sites/
default/files/downloads/7942EN Chapter 12 Moving Java_ EE next to_ the

cloud.pdf.

What you need for this book

You will only need the Java SDK, an IDE, or a text editor, and the patience to
learn. Technically, you can work with Intelli], Eclipse, or NetBeans to compile the
source from the book. All of the source code examples in the book were created
with the Gradle build tool, which is an open source software. They were created
and executed against the Java EE 7 reference implementation: GlassFish Open
Source Server Version 4.0.1.

[31]

Preface

Who this book is for

This book is for experienced Java developers. This book is not for dummies. The
book is practically busting out of its seams, because there is so much information
about all of the Java EE 7 technologies; therefore, we have included only the relevant
stuff. Java EE 7 Developer Handbook covers the most crucial types of endpoints for new
enterprise. This book will help many of you that have had prior experience with the
platform. Whilst this book will not provide all the best practice and design patterns
for Java EE 7, it does teach you the basics and the insider knowledge that will help
you hunt for that information further afield.

Given there are more than 32 individual specifications involved in the umbrella
Java EE 7, unfortunately, we could not fit every single topic inside this book. So that
means coverage around Java Server Faces, Java EE Connector Architecture, and the
new Batch API fell outside the remit of this volume. Something had to give, sadly,
to ensure that we did include the most common denominator technologies that an
engineer will face. We do give full attention to brand new Java EE 7 APIs, such as
Java WebSocket, Concurrency Utilities, and JSON Processing API.

If you are unlucky (or lucky) like us, one day you arrive at your workplace, and
suddenly you are told or requested to learn a new technology in a jig time. You
already have a realization about time, which is a precious commodity and we
should not waste it. This is why we focused on using up-to-date technology and
build practices that we think are turning the world over.

Test Driven Development (TDD) has almost baked itself into the stone in the
engineering world. Who professionally nowadays can proclaim within any
organization that we do not test our software? This book reflects some of the best
practices, by illustrating the testing codes. This book is not, however, a full treatise in
testing, rather we show how Java EE 7 is more amenable than ever to write tests, if
TDD is the way you want to practice your development.

Gradle is the next-generation build system of choice for us. It is rapidly being
adopted and has won over some of the world's leading engineering teams in open
source and behind closed doors. Gradle is adopted by Google's Android, Oracle's
Open JavaFX project, and I can claim personally that a certain department in London
at the Barclays Retail bank uses it daily. Gradle can work with Maven and Apache
Ivy repositories.

Java EE 7 is the stopgap specification, we think, between the traditional client-server
model and embracing the cloud platform. So the question is, when do we want to
learn it? You will be rewarded, however, if you make the grade.

[4]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We placed ProjectWebSocketServerEndpoint and ProjectRESTServerEndpoint
in the control subpackage, because these POJOs are manipulating the entities on
behalf of the client side."

A block of code is set as follows:

package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.*;

import javax.validation.constraints.Size;

import java.util.=*;

@Entity

public class Project {
@Id @GeneratedValue (strategy = GenerationType.AUTO)
@Column (name = "PROJECT ID") private Integer id;

@NotEmpty @Size (max = 64)
private String name;

@OneToMany (cascade = CascadeType.ALL, mappedBy = "project",
fetch = FetchType.EAGER)

private List<Task> tasks = new ArrayList<>();

public Project() {/* Required for JPA */}
public Project (String name) {this.name = name;}

public Integer getId() {return id;}

public void setId(Integer id) {this.id = id;}

public String getName () {return name;}

public void setName (String name) {this.name = name;}

public List<Task> getTasks() {return tasks;}
public void setTasks (List<Task> tasks) {this.tasks = tasks;}

[51]

Preface

public boolean addTask (Task task)

if (!tasks.contains (task))
Project oldProject = task.getProject() ;
if (oldProject != null) {

removeTask (task) ;

}
tasks.add (task) ;
return true;

} else {return false;}

public boolean removeTask (Task task)
if (tasks.contains(task))
tasks.remove (task) ;
task.setProject (null) ;
return true;
} else {return false;}

// hashCode(), equals(), toString() omitted

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package je7hb.basic.arquillian;
import javax.decorator.Decorator;
import javax.decorator.Delegate;
import javax.inject.Inject;

@Decorator
@Premium
public class CreditProcessorDecorator implements CreditProcessor

@Inject SanctionService sanctionService;
@Inject @Delegate @Premium CreditProcessor processor;

@Override

public void check(String account)
sanctionService.sanction (account, "EURGBP") ;
processor.check (account) ;

[6]

Preface

Any command-line input or output is written as follows:

gradle clean
gradle eclipse
gradle idea
Gradle run
gradle build
gradle build

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Ramping
up on Java concurrency".

“ Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[71

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, you can download the code from the
author's GitHub account at https://github.com/peterpilgrim.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[8]

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Java EE 7 HTML5S
Productivity

Nile Rodgers, Le Freak said, "We called it DHM or Deep Hidden Meaning. Our
golden rule was that all our songs had to have this ingredient: understanding
the song's DNA."

This is a handbook about Java EE 7. According to the Collins English Dictionary, a
handbook is a reference book listing brief facts on a subject or place or directions for
maintenance or repair, as of a car. In this book, we will definitely not be repairing
automobiles, but instead we will point the way forward on how the developers,
designers, and architects, practicing or just interested enthusiasts, can make viable
use of Java on the standard Enterprise Platform.

Java EE 7

The Java EE 7 standard defines the following extremely important
architectural interfaces:

¢ EJB Container

* Web Container

* Context and Dependency Injection with type safety and events

* Java Servlet Specification and Configuration

* Optional application deployment descriptors

* Servlet and CDI extension points

* Support for web services RESTful and SOAP

* Better support for messaging systems

* Cache management on the enterprise

Java EE 7 HTML5 Productivity

Enhanced HTMLS support

Java EE 7 is about features that offer the developers enhanced HTMLS5 support.
HTML stands for HyperText Markup Language and is designed as a structure for
presenting and structuring content for the World Wide Web (WWW). Sir Tim Berners-
Lee invented HTML and the first web browser in 1990. At the time of writing, the fifth
revision of HTML is expected to be announced as an official standard by the end of
2014. HTMLS5 improves support for latest multimedia. The fruits of its labor have
been deliberated upon since the Web Hypertext Applications Technology Group
(WHATWG) (http://whatwg.org/html) meetings from 2004. HTMLS5 is an official
standard of the World-Wide Web Consortium (W3C) (http://www.w3c.org/TR/
htm1s), which is built on the joint venture work of the WHATWG and the W3C.

HTML5 now embraces new media types, which are one of the great highlights of it,
namely video, audio, and canvas. The canvas is a special type of drawable apparatus
in the web browser, where the web client developers can manipulate dynamic
content with the JavaScript programs.

There is a series of new tag elements to give a better structure to HTML5 documents.
New web applications are encouraged to write or generate HTML5 content with
article, section, header, footer, figure, figcaption, hgroup, nav, summary,
and detail, time, or aside tags. This is just a small sample of the new semantic and
document structure of HTMLS5 tags. There are several tag elements, such as center,
which are deprecated, because these features are better expressed with Cascading
Style Sheets (CSS) rather than markup.

HTMLS is also an aggregation term that stands for the set of emerging multimedia
technologies that are supported by the markup language. Browser support CSS 3 is
regularly expected for HTML5 compatibility. Moreover, our industry is presently
undergoing a mobile web application revolution on smartphones and, especially,
tablet computing devices. HTML5 not surprisingly also adds the geolocation
support, including the location tracking in the browser. It also covers offline

session and local storage for web applications that run on mobile devices, such as
smartphones or tablets. These applications can save state when the connection to the
Internet is lost.

[10]

Chapter 1

PERFORMANCE & pEVICE ACCESS
INTEGRATION

&

N HTML (&

Y OFFLINE &
SEMANTICS STORAGE

- Il
GRAPHICS, 3D MULTIMEDIA

& EFFECTS

m CSS 3/ STYLING

CONNECTIVITY
/ REALTIME

Some of the modern HTML5 supporting browsers actually have the 3D graphics
support through a working standard called WebGL, which impacts the amount of
data that is streamed from the server to the client. 3D graphics and high-resolution
media generally entails a larger server-side push of data compared to lesser media
websites. There is a sliding scale of capability with the current versions of Firefox,
Safari, Chrome, and Opera browsers. The outlier is typically Microsoft's web
browsers Internet Explorer 9 and 10. For those of you who want 3D effects without
the reliance of WebGL you should take a look at the CSS 3 3D transformations.

Finally, JavaScript is a single thread in the execution in a web browser. There is no
way to spawn multiple threads in modern standard W3C conforming web clients.
HTMLS also embraces two fundamental groundbreaking changes: Web Works and
WebSocket. Web Works is a JavaScript compatible API that allows web clients to run
long-running code that does not block the browser. WebSocket is a new way for a
browser and server to exchange an asynchronous communication without having to
constantly send the metadata information. WebSocket is an extension of the TCP/IP
Socket protocol specifically for HTTP communications.

[11]

Java EE 7 HTML5 Productivity

Java EE 7 architecture

Let us start by understanding the non-cloud Java EE model architecture. This is
revision material, if you already know the platform. For a beginner, reading this
section is frankly essential.

Standard platform components and APls

Java EE architecture can be thought of as four separate containers. The first one is
called the EJB container for lifecycle management of Enterprise Java Beans and
the second container is the web container for lifecycle management of Java Servlets
and managed beans. The third container is called the Application Client container,
which manages the lifecycle of the client-side components. Finally, the fourth
container is reserved for Java Applets and their lifecycle.

The Java EE containers are runtime environments that hold Java applications
deployed in the Java Archive (JAR) files. You can think of a JAR file as a bundle, but
more accurately it is a special annotated ZIP file with a manifest. The JAR files are
simply an assembly of compiled Java classes.

A fully conformant Java EE product, such as Glassfish or JBoss Application Server
has both containers. As you can see from the following diagram, there are lots of API
that these products have to implement in order to be certified as a standard product.
The most difficult of these APIs have to do transactional, resource pool connection,
and enterprise Java Beans.

Each of these standard APl is a specification in its own right, and relevant
information can be queried, downloaded, and examined from the Java Community
Process website (http://jcp.org). Each specification has a unique number, which
identifies the Java Specification Request (JSR) for the API. Indeed, the JSR for the
Java EE 7 Platform Edition, is an assembly of many specifications, and has an official
number 342.

The platform specification, such as the one that this book is written about, Java

EE, then, is an ensemble of the JSRs into a higher-level specification. The platform
specifications offer guarantees of interoperability, security, and serviceability of the
individual JSR. In other words, not just any JSR can be automatically included in the
platform specification. Each JSR fits the remit of the Enterprise Platform.

[12]

Chapter 1

Tablets

Smartphone

Servers

¢

The Client Side

Wearable
Technology

Bean
(Validation 1.1

The Infrastructure Side

and Operating Systems

I
1 e o
I _
- \-—L-‘

Relational Database Hardware, CPU Cores, Network /0 Key Value Storage

New productivity themes

The Developer productivity is a key theme for Java EE 7. There are four brand
new specifications added to Java EE 7: Batch, Concurrency Utilities, WebSocket,

and JSON-P.

Batch Processing API is introduced into Java EE 7 to reduce the dependency on the
third-party framework. Batch processing is a field of information technology that
predates Java by several decades and has its origins in the mainframe systems. Sadly,
this topic of interest is out of the scope of this book.

[13]

Java EE 7 HTML5 Productivity

Concurrency Utilities solves a long-standing issue with enterprise Java: how to
spawn Java Thread processes without knowledge and control of the application
server. The new Concurrency Utilities enhances the developers productivity with
the managed thread pool and executor resources.

Java API for WebSocket specification allows Java enterprise applications to
communicate with the new HTML5 WebSocket protocol.

Finally, JSON-P is a new specification that standardizes reading and writing the
JSON content for the platform. The additional JSON library further reduces the
reliance on the third-party libraries.

Refinements

Java EE 7 takes advantage of the New Input Output (NIO) in the Java SE edition to
allow Java Servlets 3.1 to handle an asynchronous communication.

Java EE 7 extends the Java Persistence API (JPA 2.1) abilities for the developers.
They can now invoke the stored procedures, execute bulk criteria updates and
deletes, and control exactly which entities are eagerly or lazily fetched from the
database within reason.

Expression Language (EL) 3.0 is not truly a new specification, but it is a broken-out
specification from Servlets, JavaServer Pages, and JavaServer Faces. The developers
can access the expression evaluator and invoke the processing custom expressions
on, say, their own custom tag libraries or server-side business logic.

Perhaps, the most important change in Java EE 7 is the strengthening of Context

and Dependency Injection (CDI) in order to improve type safety and the easier
development of the CDI extensions. CDI, Interceptors, and Common Annotations
improve type safe, dependency injection, and observing of the lifecycle events inside
the CDI container. These three specifications together ensure that the extensions

that address the crosscutting concerns can be written, and can be applied to any
component. The developers can now write portable CDI extensions to extend the
platform in a standard way.

Java EE 7 continues the theme that was started in the earlier editions of the platform,
improving the ease-of-development and allowing the developers to write Plain Old
Java Objects (POJO).

As if to prove a point, the new Java Transaction API (JTA) introduces a new
annotation @javax. transaction. Transactional, which allows any CDI or
managed bean to take advantage of the enterprise transactions.

[14]

Chapter 1

Java for RESTful Services (JAX-RS) has three crucial enhancements, the addition of
the client-side API to invoke a REST endpoint, an asynchronous I/O support for the
client and server endpoints, and hypermedia linking.

Bean Validation is a constraint validation solution for the domain and value object.
It now supports the method-level validation, and also has better integration with the
rest of the Java EE Platform.

Java Connector API (JCA) is improved for the Enterprise Integration Architecture
(EIA) customers in terms of asynchronous execution, processing, and resources;
enhancements in JCA affect the intersystem messaging in Message-Driven Beans in an
especially powerful way. Sadly, JCA, JSF, and EL are topics, which are out-of-scope of
this book.

Java EE Platform

The platform, then, is a balance between the three forces, namely the community of
the enterprise Java developers, the product providers, and of course the enterprise
that must uphold the business models.

The community requires standardization in order that they can easily embrace
technology without the fear of vendor lock-in. They also want to be satisfied with
a sound investment in the software development for years to come.

The vendors have an interest in selling their products, services, and support to
the community of users for years to come. They also want to have a platform that
lowers the barriers to compete against other vendors. It is helpful for them that
there is a standard to aim for, a testable certification to achieve, in which they can
brand their servers.

The specification for the Full Profile edition of Java EE 7 has the following APIs:

Name Version Description JSR Web
Profile

Batch Process 1.0 Batch Processing (NEW) 352

Bean 1.1 Bean Validation framework 349 Y

Validation

Common 1.1 Common Annotations for the 250 Y

Annotations Java EE platform

CDI 1.1 Contexts and Dependency 346 Y

Injection for Java EE

[15]

Java EE 7 HTML5 Productivity

Name Version Description JSR Web
Profile
Concurrency 1.0 Concurrency Utilities for the 236
Utilities Java EE platform (NEW)
DI 1.0 Dependency Injection for Java 330 Y
EL 3.0 Unified Expression Language 341 Y
for configuration of web
components and context
dependency injection
EJB 3.2 Enterprise Java Beans, entity 345 Y (EJB
beans and EJB QL Lite)
Interceptors 1.2 Interceptor technology (NEW) 318 Y
JACC 14 Java Authorization Contract for 115
Containers
JASPIC 1.1M/B Java Authentication Service 196
Provider Interface for
Containers
JavaMail 14 Java Mail API 919
JAXB 2.2 Java API for XML Binding 222
JAXP 14 Java API for XML Parsing 206
JAX-RS 2.0 Java API for RESTful Services 339 Y
JAX-WS 1.3 Java API for XML -based Web 224
Services including SOAP and
WSDL
JCA 1.7 Java EE Connector Architecture 322
JMS 2.0 Java Message Service 343
JPA 21 Java Persistence API 338 Y
JSF 2.2 Java Server Faces 344 Y
JSON-P 1.0 JavaScript Serialization Object 353 Y
Notation Protocol
JSP 2.3 Java Server Pages 245 Y
Debugging 1.0 Debugging Support for Other 45 Y
support Languages such as Java Server
Pages
JSTL 1.2 Java Standard Template Library 245 Y
JTA 1.2 Java Transaction API 907 Y
Managed 1.0 Managed Beans 1.1 342 Y
Beans
Servlet 3.1 Java Servlet 340 Y

[16]

Chapter 1

Name Version Description JSR Web
Profile

Web Services 1.3 Web services 224

Web Services 2.1 Web services metadata 181

Metadata

WebSocket 1.0 Java API for WebSocket (NEW) 356 Y

There is also a subset of the Java EE 7 product, known as the Web Profile that only
handles the web specific Java enterprise APIs. Examples of this sort of product

are open source Apache Tomcat from the Apache Software Foundation, Caucho's
proprietary Resin, and the ever popular open source embeddable Jetty Server. The
Java EE 7 web container products have a much smaller subset of JSRs to implement.

You might have noticed that some of the Java EE APIs were

supported already in some web containers, which existed before
"~ the profiles were standard in Java EE 6 (December 10, 2009).

Java Persistence, which maps entity beans, or persistence capable objects, to a
relational database, is one of the most crucial and important application interfaces.
JPA is a tremendous success for the portable object-relation mapping applications
that works across the databases and application servers. Your code can move

from one vendor's database connection to another. There is always a slight caveat
emptor: there is no such thing as 100 percent portability. But without the standard
framework, your developers would have to work an awful lot harder than tweaking
a few database tables and configuring a different JDBC connection resource.

Portability and the future of the Java SE and EE platforms will be very important
for moving your applications to the diverse, but unstandardized, cloud-computing
environment. Although cloud computing was dropped from Java EE 7 late in the
establishment of the specification, adopting Java EE 7 will help in the mid-term
future when there is an official Java enterprise edition for the cloud. It is rather
likely that in those modern utility computing environments, prospective business
subscribers will welcome the ability to move from one cloud PaaS (Platform as a
Service) vendor to another for a technical and/ or business reason.

Standards, then, are very important to Java. It means that we can all move along in
a positive direction with less fear of the unknown and that, ladies and gentlemen, is
good for everybody. The API that your application code depends on is critical to its
software lifecycle. Let's move on to the profiles.

[17]

Java EE 7 HTML5 Productivity

Java EE Profiles

The formal definition of a profile is a specialization of a Java Platform Edition that
includes zero or more Java Community Process (JCP) specifications (that are not
part of the Platform Edition Specification). Java Enterprise Platform Edition defines
two profiles, the Full Profile and the Web Profile product.

Java EE Web Profile, to give it its full official name, is the first profile defined by the
standards committee, the JCP. The Web Profile defines a small subset of the Java
EE components for delivering the web content. It specifically targets the Java web
developers who are responsible for delivering the Java web applications.

The Web Profile offers a degree of completeness with its set of APIs. A business
developer can write modern web applications that only access, execute, and
perform against Web Profile. Most web applications require state-management and
transactional demands. Even though a lot of Java Web Applications, written today
rely less on direct calls to the Java Servlet API, in most cases they still tend to use a
Java Web Framework.

Web Profile
The Web Profile has the following feature set of APIs:
* Java Servlet API 3.1: This framework provides handling for an HTTP request
and response synchronously and now asynchronously

* Enterprise Java Bean Lite 3.2: This is a less demanding model of service
endpoints, where the business logic of the application lives

* Context and Dependency Injection 1.1: This is a framework for the
application that transfers the lifecycle and management of the connected
objects to the container

* Java Server Faces 2.2: This is a component-based web user interface
framework

* Java Transaction API 1.2: This is a framework for two-phase commit
transactions

* Java Persistence 2.1: This is a framework for persisting POJO to a database

* Web Socket 1.0: This is a new specification for Java to engage the HTML5
WebSocket clients and servers

[18]

Chapter 1

* Bean Validation 1.1: This is an upgraded framework to constrain the fields,
properties, and methods of the value objects in an application

* JAX-RS 2.0: This is an upgraded framework for the Java Enterprise
applications to handle the RESTful communications

* JSON-P 1.0: This is a brand new framework for the Java application
read-and-write JavaScript Schema Object Notation (JSON) documents

With these small set of requirements, it is not surprising that the Java EE
implementation providers find the Web Profile easier to implement.

N

Which Web Frameworks and Java EE 7

Usually the biggest question for the Java Enterprise developers in the
past has been, what web framework to use? At the time of writing, JSF
2.2 is the only framework that is compatible. The purveyors of the other
frameworks, such as Apache Wicket, WebWork, or even Spring MVC
must update their services, especially to support the new asynchronous
abilities in Java Servlets 3.1 and JAX-RS 2.0.

The way we build web applications in 2013 is also changing, and

the author expects some new innovations here in this space. Some
applications are going straight to the RESTful applications by passing
the older Front Controller and MVC architecture of traditional web
frameworks from Java EE 6 or before. In those web applications, the
interface is simply a barrage of the AJAX call-and-response calls from
the client side, predominantly a single application communicating with a
server-side backend. -

Enterprise Profile

The Enterprise Full Profile is the complete set of API that matches the Platform
Edition specification, which compliant providers must fulfill, in order to be certified
as Java EE 7 compliant.

It's worth looking at each component of the platform and spending some time getting
acquainted with them. There are an awful lot of individual specifications here and my
advice is to use the Web Profile as a guide to getting into the Java EE 7 experience.

[19]

Java EE 7 HTML5 Productivity

The following table is a guide to the key Enterprise services:

Name

Description

JTA

EJB

Managed Beans

JDBC

JPA

IMS

JNDI

JAX-RS

JAX-WS

JavaMail

A standard API for demarcating the transactions in either the
application or container.

Enterprise Java Beans are the transactional service endpoints
that represent the interface to business logic for a client. They
can be stateless, stateful, or singleton instances.

Managed beans are endpoints with a contextual scope and
they are type safe entities. Managed beans are managed by
the Context and Dependency Injection container.

JDBC is often quoted (wrongly) as Java Database
Connectivity, a standard API for connecting to a relational
database system. This component is part of the Standard
Platform Edition.

Java Persistence API is the standard framework for the object-
relational mapping of the Java objects to a database. JPA
provides management of persistence through a persistence
context. It allows the application developers to store data as
the Java domain object rather than the relational tables. JPA is
also available in the Java SE environments.

Java Message Service is a standard API for receiving

and sending messages in a reliable transport, mostly
asynchronously. JMS is based on the point-to-point messages
and also publish-subscribe messaging. JMS is the basis for the
Enterprise application integration in Java.

Java Naming and Directory Interface is a standard API for
looking up the location of the resources by name. It is a
directory service used by the application components and the
containers.

Java API for RESTful services, a framework for processing the
HTTP Representation State Transfer (REST) style requests
and responses.

Java API for the XML-based web services, a framework
in Java to process the SOAP, WSDL documents in the
distributed systems.

JavaMail is a standard API that allows the Enterprise Java
application to send and receive e-mail. It has support for both
the MIME and plain text e-mail.

Let's dispense with the theory and look at some of the Java EE 7 code.

[20]

Chapter 1

A working example

In this section, we shall examine Java EE 7 from a sample project management
application. The name of the application is XenTracker. It is a web application with
EJB, the RESTful web services, and Persistence.

The development version of the XenTracker application, which has minimal styling
and user interface enhancement, is shown in the following screenshot:

ana
-

R TN T [N TIET O - 8 MUY TP AT I~ S Ut 5 L |

[] hiep) flacalhosy BOS0/ xentracker I_;.:-;:d-

XenTracker

Thes s a Jova wib applical v o hitlip yond
ofpanibe project groups and lasks, It is 8 demansration of thi
Java EE 7 technology featuras for JAX-RS, WabSacket and
Sarviets

Add Néw Project

Project: Important Stuff

Description

This i a fist of TODO oms that are high priority
Hom Dascription Completed| DueDate | Control
105 Organize Mew Years Event 2014 o Done | 24-0ctzora =
[3] Bary a Gilt Tor a romantic oocassion 14-Fab-2014 | &]
103 Bay a8 naw umbialia Tor the sutumnwinis J Dana | &]
105 Water the plants in the home; add fertiizer and Biogrowth Dana O8-Jan-2014 . o 8

labials

[21]

Java EE 7 HTML5 Productivity

Entities

Our web application manages a couple of entities (also known as persistence capable
objects), named Project and Task. The entities are mapped to the database table
using the JPA annotations. We start with the entities in our Java EE 7 application,
because it helps model the business requirements, and the domain of our boundaries.
A project has zero or more task entries.

The definition for the Project entity is as follows:

package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.*;

import javax.validation.constraints.Size;

import java.util.*;

@Entity

public class Project {
@Id @GeneratedValue (strategy = GenerationType.AUTO)
@Column (name = "PROJECT ID") private Integer id;

@NotEmpty @Size (max = 64)
private String name;

@OneToMany (cascade = CascadeType.ALL, mappedBy = "project",
fetch = FetchType.EAGER)

private List<Task> tasks = new ArrayList<>();

public Project() {/* Required for JPA */}
public Project (String name) {this.name = name;}

public Integer getId() {return id;}
public void setId(Integer id) {this.id
public String getName() {return name;}

id;}
public void setName (String name) {this.name = name;}

public List<Task> getTasks() {return tasks;}
public void setTasks (List<Task> tasks) {this.tasks = tasks;}

public boolean addTask (Task task)

[22]

Chapter 1

if (!tasks.contains (task)) ({
Project oldProject = task.getProject() ;
if (oldProject != null) {
removeTask (task) ;
}
tasks.add (task) ;
return true;
} else {return false;}

}

public boolean removeTask (Task task) {
if (tasks.contains(task))
tasks.remove (task) ;
task.setProject (null) ;
return true;
} else {return false;}

}

// hashCode (), equals(), toString() omitted

}

You can download the example code files for all Packt books you
\ have purchased from your account at http://www.packtpub. com.
~ If you purchased this book elsewhere, you can visit http: //www.
Q packtpub.com/support and register to have the files e-mailed
directly to you. Alternatively, you can download the code from the
author's GitHub account at https://github.com/peterpilgrim.

We observe that the class Project is declared with several annotations. @Entity
marks this type as a JPA entity object and it has a default mapping to a database
table called PROJECT. The @1d annotation designates the id field as a primary key.
The @column annotation overrides the default object-relational mapping and
changes the table column name to PROJECT ID instead of 1D. The @Generatedvalue
annotation informs JPA to automatically generate the primary key value for the
project from the database connection provider.

The @NotNull annotation and @Size are from Bean Validation and Hibernate
Validator frameworks respectively. They provide constraint checking at the source
on the Project entity bean and they validate that the project's name field is not
null and that the length of the field must be less than or equal to 64 characters.
Incidentally, the Java EE 7 application servers will automatically invoke Bean
Validation when this entity is inserted into, or updated to, the database.

[23]

Java EE 7 HTML5 Productivity

Lastly, the @oneToMany annotation declares that the project entity has a
one-to-many relationship with another entity Task. Chapter 5, Object-Relational
Mapping with JPA, is dedicated fully to the entity relationships, the database
cardinalities, and the fetch types.

The definition for the Task entity is as follows:
package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.¥*;

import javax.validation.constraints.*;

import java.util.Date;

@Entity

public class Task {
@Id @GeneratedValue (strategy = GenerationType.AUTO)
@Column (name = "TASK ID") private Integer id;

@NotEmpty @Size (max = 256)
private String name;

@Temporal (TemporalType .DATE)
@Column (name = "TARGET NAME") @Future
private Date targetDate;

private boolean completed;

@ManyToOne (cascade = CascadeType.ALL)
@JoinColumn (name = "PROJECT ID")
private Project project;

public Task() {/* Required by JPA */}

public Task(String name, Date targetDate, boolean completed) {
this.name = name;
this.targetDate = targetDate;
this.completed = completed;

}

// getters and setters omitted()

public Project getProject() {return project;}

public void setProject (Project project) {
this.project = project;

}

// hashCode (), equals(), toString() omitted

}

[24]

Chapter 1

The entity Task represents a task in the business domain. The Task entity has a
primary key too, mapped by the @Id annotation, which is also automatically generated
on a database insertion. We also override the database column name to TASK ID.

We declare Bean Validation constraints on the Task entities name field in exactly
the same way as we do on Project, except a task has a longer length of string.

The targetDate is the due date for the task, which is optional, meaning that its
value can be null. We use Bean Validation's @Future to constrain the target date to
any date in the future. Finally, JPA requires us to explicitly define the temporal type
whenever we map java.util.Date. In this case, we map targetDate to only SQL
date types with the @TemporalType annotation.

A Task entity has a reverse mapping back to project. In other words, a task is
aware of the project that it belongs to; we call this a bi-directional relationship.
We declare the project field with the annotation @ManyToOne.

Business logic

In order to be operational, we write business logic for our web application
XenTracker. We require methods to create, update, and delete Projects and for
Tasks. We also want to retrieve the list of projects and tasks for each project.

We shall use the session E]B for this purpose, because we want the lifecycle of business
logic to be available as soon as our application is deployed to a Java EE 7 application
server product or web container. EJBs support the transactions by default, they can

be pooled by the server, their methods can be declared as asynchronous, and they are
normally participants in monitoring with Java Management Extensions (JMX). E]Bs
are discussed in detail in Chapter 3, Enterprise Java Beans.

First, we add some named queries to one of the entity beans. A named query is a
way of storing a persistence query with the domain object. JPA only allows named
queries to be declared with the entities.

Let us modify the project entity as follows:

@NamedQueries ({
@NamedQuery (name = "Project.findAllProjects",
query = "select p from Project p order by p.name"),
@NamedQuery (name = "Project.findProjectById",
query = "select p from Project p where p.id = :id"),
@NamedQuery (name = "Project.findTaskById",
query = "select t from Task t where t.id = :id"),})

@Entity
public class Project {/* ... */}

[25]

Java EE 7 HTML5 Productivity

The annotation @NameQueries declares a set of @NamedQuery annotations attached
to the Project entity bean. Each named query must have a distinct name and a Java
Persistence Query Language (JPQL) statement. JPQL can have named parameters,
which are denoted with the prefix of a colon character (:id).

In order to define a stateless session E]JB, all we need to do is annotate a concrete
class with the type @javax.ejb.Stateless. Our ProjectTaskService stateless
session EJB is as follows:

package je7hb.intro.xentracker.boundary;
import je7hb.intro.xentracker.entity.*;
import javax.ejb.x*;

import javax.persistence.¥*;

import java.util.List;

@Stateless

public class ProjectTaskService {
@PersistenceContext (unitName = "XenTracker")
private EntityManager entityManager;

public void saveProject (Project project) {
entityManager.persist (project) ;

}

public void updateProject (Project project) {
Project projectToBeUpdated = entityManager.merge (project) ;
entityManager.persist (projectToBeUpdated) ;

}

public void removeProject (Project project) {
Project projectToBeRemoved = entityManager.merge (project) ;
entityManager.remove (projectToBeRemoved) ;

}

public List<Project> findAllProjects() {
Query query =
entityManager.createNamedQuery ("Project.findAllProjects") ;
return query.getResultList () ;

}

public List<Project> findProjectById(Integer id) {
Query query =
entityManager.createNamedQuery ("Project.findProjectById")
.setParameter ("id", id);

[26]

Chapter 1

return query.getResultList () ;

}

public List<Task> findTaskById(Integer id) {
Query query =
entityManager.createNamedQuery ("Project.findTaskById")
.setParameter ("id", id);

return query.getResultList () ;

}
}

Our session EJB depends upon persistence objects, so we inject an EntityManager
object into it with the special annotation @PersistenceContext. The entity manager
operation represents a resource connection to the database.

The methods saveProject (), updateProject (), and removeProject ()
respectively create, update, and delete the project entities from the database. The
entity manager operations are covered in Chapter 4, Essential Java Persistence API 3.2.
Because of the cascadeType .ALL definitions on the actual entities themselves, the
dependent detail entity Task is looked after with the changes on the project entity.
You will learn about the cascade operations in Chapter 5, Object-Relational Mapping
with JPA. So do we retrieve data back from the database?

The methods findAllProjects (), findProjectById (), and findTaskById () are
so-called finder operations, the R in the acronym CRUD (Create Retrieve Update
Delete). Each of the methods accesses a particular named query, which we attach
to the project entity. The findTaskById () method, for example, gets the JPQL
command named Project . findTaskById as a query instance. Notice that we can
invoke the methods on that instance by chaining, so that the local variable is in fact
unnecessary, and just serves as an education artifact.

The ProjectTaskService session has all of the operations to allow users to add,
edit, and remove projects, and also to add, update, and remove tasks to and from
projects. So now that we have our business logic, we can go forward and add a
controller endpoint for web clients.

The service endpoints

Let's dive straight into the Java EE 7 pool and show off a Java-based WebSocket
endpoint for our XenTrack application. We shall create a straightforward server-side
endpoint that accepts a text message, which simply is the project ID, and returns
the results as a JSON.

[27]

Java EE 7 HTML5 Productivity

A WebSocket endpoint

The definition of the class ProjectWebSocketServerEndpoint is as follows:

package je7hb.intro.xentracker.control;

import
import

import
import
import
import
import
import
import
import
import

je7hb.intro.xentracker.boundary.ProjectTaskService;
je7hb.intro.xentracker.entity.*;

javax.ejb.*;

javax.inject.Inject;

javax.json.Json;

javax.json.stream. *;
javax.websocket. *;
javax.websocket.server.ServerEndpoint;
java.io.StringWriter;
java.text.SimpleDateFormat;
java.util.*;

@ServerEndpoint ("/sockets")
@Stateless

public

class ProjectWebSocketServerEndpoint {

static SimpleDateFormat FMT = new SimpleDateFormat
("dd-MMM-yyyy") ;
@Inject ProjectTaskService service;

@OnMessage
public String retrieveProjectAndTasks (String message)

int projectId = Integer.parselnt (message.trim()) ;

List<Project> projects = service.findProjectById (projectId) ;

StringWriter swriter = new StringWriter () ;

JsonGeneratorFactory factory = Json.createGeneratorFactory

(new HashMap<String,
Object> () {{put (IJsonGenerator.PRETTY PRINTING, true);}});

JsonGenerator generator = factory.createGenerator (swriter) ;

generator.writeStartArray () ;

for (Project project: projects) {

generator.writeStartObject ()

.write("id", project.getId())
.write ("name", project.getName ())
.writeStartArray ("tasks") ;

[28]

Chapter 1

for (Task task: project.getTasks())
generator.writeStartObject ()
.write("id", task.getId())
.write ("name", task.getName())

.write ("targetDate", task.getTargetDate() == null ? ""
FMT. format (task.getTargetDate()))

.write ("completed", task.isCompleted())
.writeEnd() ;

}

generator.writeEnd () .writeEnd () ;

}

generator.writeEnd () .close() ;

return swriter.toString() ;

}
}

Although the ProjectWebSocketServerEndpoint class looks complicated,

it is actually easy to write. We declare POJO with the eServerEndpoint
annotation, which annotates it as a Java WebSocket endpoint, and it becomes
available as a server. The WebSocket clients can interact with this endpoint, by
sending text data to a web context defined URL. For example, on my test this
ishttp://localhost:8080/xentracket/sockets. The @ServerEndpoint
annotation accepts a URL pattern value.

In Java EE 7 we must also declare ProjectWebSocketServerEndpoint as a
stateless EJB with @stateless in order to inject the ProjectTasksService EJB
as a dependency. (This is a consequence of Java for WebSocket 1.0 specification.)
Note that we can use @javax.annotation. Inject from CDIL

[29]

Java EE 7 HTML5 Productivity

The unit test ProjectRESTServerEndpointTest running in the IDE is as shown in

the following screenshot:

ProjectRESTServorEnd point Test, java = [xemviracinr-basic] = sentracker-baaic = [~/ Documenis/ideafrojects flavace F=ha
e I 4 b R 43| ProjcRESTServerEndpoimTest = | B @0 B0 95 [?
[soentracker-basic | [sre Ceest - [Cijava 17 jeThb 50 intro) [kemaracker - (7] control © o ProjectRESTServerEndpaintTeat
g G Projecs G @ I PropsRESTServerEndpoimTeiLjva = a
¥ [imemtracker- bashe (-~ Documents | ideafro| BT Test
= * Marc 1] public void showldirmeakePOSTI) throws Exception { E
2] * [imain] b
P w JsonObject irgut = bf.createQbjectBuilder()
& L n Jodd[“name™, “Java Performance Tuning™} m
3 v Cijava 72 0Tk,
; ¥ [jefhb ntro wentracker ;3' DF-:I'::;?*"WNH#FU
1 bounda 4 ~
] i 4 75 BF. createoti ectBullderty ,g
o ¥ [control 75 Caddi"nese”, "Fiad the Comson
. ProjectRESTServert 77 .mdd{ “targetOate”, =Z3-July=2 =
& ProjectWebSockets | 2 «a3di “cospleted™, JsonValue.F
v I m SEaildil] ..
=l g2 e
& i persaiProjectAndT | gy bf. ¢ reatetbiectbullder() E
"5 Fiure Litils 82 a3 “nase”, “Decide on the ¥
B 8 i {-coaprated, Joimloet |
B T resources-glassfrh-emibedded s :hilﬂ:’?]" " ’ e "
*C sejbonsas-embedded | g deaiiad] g
huild gradie u 1
as (P T E ;-
Run 7 PropceRESTServerEndpoint Teat B L ‘S
b [EE g2 Dane: 3 of 3 {14x) [ERaRasassssRRRRRIRE -
¥ = ProjectRESTServerEne o bimd == [13, Talse, taskl, null, 121
& AN Tests Pasaed [EL Fime]: sql: Connection{1584938595)—SELECT PROJECT_ID, MAME FROM PROJECT QRDER %
4 ======== ProjectRESTServerfndpoint. getProjectlist () Thresd [http-listener{3],5,main o
_., =mmmmmmmse getProjectlistl] Executable Task Thread(concurrent/_defsultMansgedExe:
"+ [EL Firelz sql: Connection{1B2183103)=-SELECT PROJECT_ID, MAME FROM PROJECT DRDER |
-3 =======mae ing swriter=|
[
- Lo {
=id=:1; "
e “nase ;M xenondgoee] S8~ , E
“rasks": [
x !
gD, &
7 "hame” = LaEkI”,
"targetDate™:"",
Hepmpleted®: false
i b
& i
ST Coadok W @ Mesiages | b £ Run - ETODD ¥y Event Lag
] Teats Pasved: 3§ pavsed (17 mingtes agol A145109 CALF ¢ UTF-8 2w 0 | Z5IMof Gesm

Next, we annotate the method retrieveProjectAndTasks () with the WebSocket
annotation @onMessage, which declares this method as the reception point for

the incoming requests. There can be only one message per class per web
application deployment.

[30]

Chapter 1

Our method retrieveProjectAndTasks () accepts a text message, which we parse
into a project ID integer. We then invoke the ProjectTasksService session to
retrieve a list collection of the Project entities. Afterwards, we immediately turn
that list into a JSON array output string using a StringWriter as a text buffer, and
two new classes from the JSON-P streaming API namely: JsonGeneratorFactory
and JsonGenerator.

We instantiate a JsonGeneratorFactory class with the literal Java HashMap trick to
set up JSON output that is prettily printed. With the factory, we can write the JSON
output using the fluent API JsonGenerator. The method call writeStartArray ()
starts the output stream for a JSON array. The method call writeStartObject ()
starts the output stream for a JSON object. We just call the generator's

write (String, X) to send the JSON name and value pair. When we finish writing
the JSON object and array, we must call writeEnd () to properly close gsonvalue.

Finally, once we finish writing the JSON output, we call the generator's close ()
method. The target java.io.StringWriter now contains the JSON text value. The
Java EE 7 WebSocket provider takes the return value and sends that data, the JSON
array, to the other WebSocket peer. We shall quickly look at a JAX-RS example.

A RESTful endpoint

JAX-RS 2.0 is the RESTful standard framework for Java EE 7. We shall use JAX-RS
to create the beginnings of a web application with a POJO that serves as a RESTful
resource. In the interest of space in this book, we only consider the HTTP GET and
poST methods. The GET method accepts a project ID and returns a JSON object
that represents a project. The POST method accepts a JSON object and creates a new
Project with or without dependent Task instances. The new Project instance returns
as JSON.

The POJO class ProjectRESTServerEndpoint with a definition of a RESTful
endpoint in the class called is as follows:

package je7hb.intro.xentracker.control;
import je7hb.intro.xentracker.boundary.ProjectTaskService;
import je7hb.intro.xentracker.entity.*;

import javax.ejb.Stateless;
import javax.inject.Inject;
import javax.json.*;

import javax.json.stream.*;

import javax.ws.rs.*;

[31]

Java EE 7 HTML5 Productivity

import java.io.StringWriter;

import java.text.SimpleDateFormat;

import java.util.*;

import static javax.ws.rs.core.MediaType.*;

@Path (" /projects")
@Stateless
public class ProjectRESTServerEndpoint
static SimpleDateFormat FMT = new SimpleDateFormat
("dd-MMM-yyyy") ;
static JsonGeneratorFactory jsonGeneratorFactory =
Json.createGeneratorFactory () ;

@Inject ProjectTaskService service;

@GET @Path("/item")
@Produces (APPLICATION_ JSON)

public String retrieveProject
(@PathParam("id") @DefaultValue("0") int projectId)

List<Project> projects = service.findProjectById (projectId) ;
StringWriter swriter = new StringWriter();

JsonGenerator generator =
jsonGeneratorFactory.createGenerator (swriter) ;

generateProjectsAsJson (generator, projects) .close();
return swriter.toString() ;
/* oL %/

The ProjectRESTServerEndpoint is also a stateless session EJB and there really is
no penalty in modern Java EE 7 products for how heavy a session E]B is. In fact, they
are extremely lean; an application server for Java EE 7 can easily handle 10000 beans
or more without issues. In the not too distant future, when we have Java EE standard
for the cloud environment, the Java EE application server products will handle
millions of EJBs and CDI managed beans.

We annotate the ProjectRESTServerEndpoint type with the JAX-RS annotation
@Path, which notifies the JAX-RS provider that a POJO is an endpoint at the URL
context path of /projects. For the JAX-RS projects, normally we also define an
application path root, and it stands in front of the individual endpoints. For instance,
on my test server the full URL context is http://localhost:8080/xentracker/
rest/projects/item.

[32]

Chapter 1

You have already seen the injection of the EJB ProjectTaskService, but we now
see the @GET annotation from JAX-RS on the method retrieveProject (), which
designates the endpoint for the HTTP GET requests from the client.

The @pathParam annotation identifies a parameter in the URL; it actually extracts

a key parameter in the URL pattern. In this case, the parameter is called id in the
input URL. For example, http://localhost:8080/xentracker/rest/projects/
item/1234 maps to the JAX-RS URL pattern /projects/item/{id}. Meanwhile, the
@DefaultValue annotation defines a default string value, just in case the client did
not specify the parameter, which avoids an error inside the server.

We refactor out the JSON generator code from before and simply call a static method
in order to generate the correct output. Finally, the @Produces annotation informs
the JAX-RS provider that his RESTful resource endpoint produces JSON.

Let's examine one RESTful endpoint for the HTTP poST request, where we want
to insert a new project into the database. The definition method createProject ()
is as follows:

@POST @Path("/item")
@Consumes (APPLICATION_ JSON)
@Produces (APPLICATION_ JSON)
public String createProject (JsonObject projectObject)
throws Exception {

Project project = new Project (projectObject.getString("name")) ;

JsonArray tasksArray = projectObject.getJsonArray ("tasks") ;

if (tasksArray ! = null) {

for (int j = 0; j<tasksArray.size(); ++3) {
JsonObject taskObject = tasksArray.getdsonObject (j);

Task task = new Task (taskObject.getString("name"),
(taskObject.containsKey ("targetDate") ?

FMT.parse (taskObject.getString("targetDate")): null),
taskObject.getBoolean ("completed")) ;

project.addTask (task) ;

}

service.saveProject (project) ;
StringWriter swriter = new StringWriter();

JsonGenerator generator =
jsonGeneratorFactory.createGenerator (swriter) ;

writeProjectAsJson (generator, project) .close();
return swriter.toString() ;

}

[33]

Java EE 7 HTML5 Productivity

The method is annotated with @PosT from JAX-RS. It consumes and produces JSON,
so we annotate it with @Consumes and @Produces. JAX-RS knows about JSON-P in
the Java EE 7 edition, so our method directly accepts a JsonoObject instance. In other
words, we get the conversion from a String to a JsonObject object for free!

Unfortunately, we must retrieve individually the name, value, and array pairs from
the JSON input, and create our domain objects. There is no substitute for work.
Given gsonObject, we build a new project instance, and optionally the associated
Task objects. JsonObject has a number of convenient calls such as getString(),
getNumber (), and getBoolean (). Unfortunately, we must convert the formatted
target date string and we must deal with the optional JSON tasks array, because

it can be null. It is possible to check if the value exists in the JsonObject object by
calling containsKey (), since a JsonObject is a type of java.util.Map.

Once we have the Project instance, we save it to the database using the
ProjectTaskService boundary service. Afterwards, we use the refactored JSON
generator method to write the Project instance to the client.

To complete our brief tour of JAX-RS, we shall add another HTTP GET method

to our RESTful endpoint. This time, however, we will make it asynchronous in
operation. The home page of our web application XenTracker always executes an
AJAX request; whenever it loads in the browser, it queries all of the projects in the
database. Let's say 1000 web users are simultaneously accessing the application in a
couple of minutes and each user has say an average of 10 projects with an average of
25 tasks between them, how would we scale this query?

With a stateless session EJB such as ProjectRESTServerEndpoint, we can use the
new Concurrency Utilities API in Java EE 7 to achieve an asynchronous output. Let
us apply it to the method getProjectList () now as follows:

/* ... %/
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

VA
public class ProjectRESTServerEndpoint
VA
@Resource (name = "concurrent/LongRunningTasksExecutor")

ManagedExecutorService executor;

@GET
@Path("/list™")
@Produces (MediaType .APPLICATION JSON)

[34]

Chapter 1

public void getProjectList
(@Suspended final AsyncResponse asyncResponse) {

executor.submit (new Runnable () {
@Override
public void run()
List<Project> projects = service.findAllProjects() ;

StringWriter swriter = new StringWriter();
JsonGenerator generator = jsonGeneratorFactory
.createGenerator (swriter) ;
generateProjectsAsJson (generator, projects)
.close() ;
Response response =

Response.ok (swriter.toString()) .build() ;
asyncResponse.resume (response) ;

}
13N
}
}

In JAX RS 2.0 we must also add a special class as a method parameter. AsyncResponse
is the object context for an asynchronous response. The AsyncResponse object has all
of the server-side information to enable the JAX-RS API to send data back to the client
from another Java thread from the executor thread pool. Typically, the application
retrieves a Concurrent Utility Task (new in Java EE 7, see Appendix D, Java EE 7
Assorted Topics), which is the responding thread, and for long-running operations

it is not associated with the main JAX-RS request processing thread. The parameter
asyncResource is also annotated with @suspended in order to suspend the output

of the response, because we want to halt the response until the application invokes
the long-running task. Inside the task, given an AsyncResponse object, we call the
resume method with the JAX-RS response to send back to the client. Note that in this
example, because we are using an inner class Runnable, we must set the method
parameter's modifier to £inal.

We take advantage of the Concurrency Ultilities API; in particular, we inject a
ManagedExecutorService into the EJB with the @Resource annotation. The
@Resource annotation is from Common Annotation API such as, @Inject, but it
injects the database connection, connectors, and now managed concurrency services.
The method getProjectList () is exactly one statement long. It creates a Runnable
task, an anonymous inner class, and then submits it to the executor pool running
inside the Java EE 7 application server. At some point after the submission, the task
is invoked, and it delivers a response to the RESTful client on a separate thread.

[35]

Java EE 7 HTML5 Productivity

Ramping up on Java concurrency

Al The best book of multiple threads programming in Java with JVM
~ at the time of writing is Java Concurrency in Practice by Brian Goetz,
Q Oracle's Java language architect. The author strongly recommends
this book to learn how to use the Java concurrency features such
as synchronization primitives, executors as in Java EE 7, atomic
wrappers, futures, and scheduled services.

The Runnable task instantiates a java.ws.rs.core.Response object instance
in order to build a generic entity, which is the list of projects generated as JSON.
Our most important responsibility is to cause the output to be sent back to the
client by resuming an asynchronous response context; we invoke the method
AsyncResponse . resume () with the generic response.

This is the end of the worked example tour of some new features of Java EE 7. The
full application can be found with this book's source code. There are two variations
of the XenTracker application: an initial edition, and a completely refined and
finessed business example.

The Entity Control Boundary pattern

This worked example is based on a recent Java EE design pattern called the Entity
Control Boundary (ECB) design pattern. It identifies a component part of a system
from key perspectives: the entity, the control, and the boundary.

pkg J

I

boundary

s 5
ProjectWeb! erverEndpoint

<<Statelass>>

ProjectTaskService L-4--"7] ¢ retieveProjectAndTasksimsg - Sting) - String

+ CraataPro)

S|

ProjectRESTServerEndpoint

+ ratrigvaP) jactid . String) : String
+ createl JsonObject] Sting

+ ralrigva AlProjects() - String

entity "
: il
My wcEnlity=>

<<Erlity>> Task
Project

i Intager
- id " Intager narme - String
name - String 1 * | - targetDate - Date
completed | boolsan

[36]

Chapter 1

The boundary layer of the component represents the separation of the business

and presentation code. In our worked example, we placed the ProjectTaskService
EJB in the boundary subpackage, because effectively it is the business facade of

the application.

The control layer of the component manages the flow of data to the internal

data inside the component. We placed projectWebSocketServerEndpoint and
ProjectRESTServerEndpoint in the control subpackage because these POJOs are
manipulating the entities on behalf of the client side. Of course, it is a matter of
debate and decent architectural sense whether business logic is placed either on the
boundary or on the control layers in the application's architecture.

Finally, the entity layer of the component is reserved for the application's domain
objects. We placed the entity beans project and Task in the entity subpackage,
because they are rich domain objects managed by JPA.

Summary

Java EE 7 is a step towards moving the Enterprise platform to a cloud-computing
platform. Until we get to the next standard, Java EE 7 offers HTML5 productivity,
and it delivers new features such as WebSocket, asynchronous communications over
Servlets, RESTful endpoints, and Concurrent Utilities.

We covered in the first chapter the new features in Java EE 7 by first explaining the
HTML5 movement. HTML5, we learned, is more than just a markup language, it also
embraces semantics, a much improved document structure, APIs for mobile-device
awareness, 3D graphics, support for the Canvas drawing, offline storage, styling
content through CSS3, and exciting new APIs such as WebSocket and Web Worker.

By now we understand the overall architecture of the Java EE 7 platform. The
platform sits between the infrastructure of the hardware including the operating
system, network, filing systems, and the JVM-and the thousands of web clients and
other business-to-business consumers. All of these are boundaries and are considered
endpoints. There are two different profiles available in Java EE 7 standard: the Full
and Web Profiles. The Web Profile is a reduced set of JSRs.

We took the time to examine a worked example of Java EE 7 new features with a
web application called XxenTracker. We saw highlights such as WebSocket and an
asynchronous JAX-RS output.

[37]

Java EE 7 HTML5 Productivity

In the subsequent chapters, we will introduce Gradle as a build system. The book's
source code relies entirely on Gradle. We will learn how to write the integration tests
with Java EE 7 application by using an open source framework called Arquillian. We
use some Arquillian to clearly demonstrate the features of Java EE 7 and also rely on
the embedded application server container, the reference implementation GlassFish 4
open source application server.

The next chapter gets us further in understanding the DHM of Java EE 7, by rolling
the ball with CDL

[38]

Context and Dependency
Injection

Ray Charles said, "I am not a blues singer. I am not a jazz singer. I am not a
country singer. But I am a singer who can sing the blues, who can sing jazz, who
can sing country."

This chapter covers the important and essential framework that is the soul of Java EE
7. It is called Context and Dependency Injection. The API first made its appearance,
officially, in Java EE 6, and now in Java EE 7 is the paramount framework for binding
dependent managed beans together.

Before we get started, it may be helpful for us to revise some software
engineering definitions.

Software engineering definitions

What is a context, or rather what do we mean by a context?: In software
engineering, a context is a separation of a concern around a set of components,
objects, functions, and variables that have a determined lifecycle around the
scope. The context exists for the overall lifetime of an application and it can be
repeated. In CDI, the context is the meta-information that surrounds a POJO:
the lifecycle, the scope, the dependencies to other objects, and the interactions.

Context and Dependency Injection

What is a domain?: The domain is the purpose of the software application
and describes the business sector, market, or principal reason that requires
the software. The software architects and designers are overheard in
corridors at work and conferences discussing the business domain. After all,
the software serves some purpose and thus the domain describes the reason
for its existence, whether it is an airline reservation system, an electronic
commerce application, or the front office trading system at an investment
bank. The domain reflects the requirements for software and it is not the
same as context, because a domain is an architectural characteristic.

What is a Java interface?: A Java interface is a programming language
feature that permits unrelated object types to share behaviors (methods),
and thus provides a means of communication whilst allowing those objects
to maintain the separation of domain.

What is encapsulation?: Encapsulation is a programming language feature
of Java and other object-oriented languages that permits the bundling of data
with the operation that behaves on that data. Java supports encapsulation
through the class keyword.

What is polymorphism?: Polymorphism is the ability to create a variable,
function, or type that has more than one form. Polymorphism is exhibited in
Java with object types that share a common hierarchy sharing methods of the
same name.

What is method overloading?: Method overloading in the Java
programming language is the ability to create multiple behaviors (methods)
with the same name, where the parameter types differ.

What is a dependency?: A dependency is an association between two
different object types, where the primary type requires a reference to another
secondary object type. A dependency serves as an interaction between the
source and target types.

What is a dependency injection?: A dependency injection is the function

of an external lifecycle manager to establish the association between the
primary and secondary object types and automatically introduce the
dependency before the methods are invoked on the primary object. Usually,
this dependency injection means retrieving the object instance from a special
factory instance, rather than instantiating the objects directly. The external
lifecycle manager can be an application framework, part of a computing
platform, or even a feature of the programming language. In a Java
framework, APIs such as Java EE and Context Dependency Injection, SEAM,
Guice, and Spring Framework provide dependency injection.

Now that we have those definitions in our forebrains, let us move on to CDI properly.

[40]

Chapter 2

The Context and Dependency
Injection service

CDI stands for Context and Dependency Injection. It was originally standardized as
JSR-299. The Hibernate object relation mapper inventor and Ceylon lead developer,
Gavin King submitted the proposal called Web Beans to the Enterprise-expert group in
2006. The name of the JSR was changed in 2009 from Web Beans to CDI for the Java
EE platform. The JSR-299 specification for CDI was aligned with the specification
JSR-330, dependency injection for Java, which was jointly developed by Guice creator
"Crazy" Bob Lee and Spring Framework creator, Rod Johnson.

CDlI is upgraded to version 1.1 for Java EE 7 standard and the JSR is 346.

CDI was inspired and influenced by other existing dependency injection frameworks
including SEAM, Guice, and Spring Framework. CDI features stronger typing than
SEAM, and relies on lesser external XML configuration than Spring Framework.

The original purpose of CDI was to unify the managed bean component model in Java
Server Faces with the then EJB component model. However, CDI now far exceeds the
original remit in Java EE 7 as the universal component model for the Enterprise.

The first responsibility of CDI is the context. CDI provides the lifecycle management
of the stateful components to well-defined, but extensible lifecycle context.

The second responsibility of CDI is dependency injection. CDI provides the ability

to inject dependencies (components) into an application in a typesafe way, which
includes the configurability to decide which component implementation is injected at
the deployment stage.

e (DI is a framework available in both the client and server.

* (DI decouples the client from the server and thus supports loose coupling.
This means the target implementation can vary without affecting the client.

* (Dl is all about automatic lifecycle management with collaborating
components. CDI provides the components with contextual information.
The strong typing of the CDI model means that the errors are caught
at compilation rather than encountering a ClassCastException at the
execution time.

* The stateful components can have their dependency injected safely and can
interact with other services by simple calling methods.

* (DI also has a lifecycle event model. Interested objects can register
themselves to listen to the event notifications.

* CDI has the ability to decorate the injected components and the ability to
associate the interceptors with the components in a typesafe fashion.

[41]

Context and Dependency Injection

The following diagram illustrates the built-in contextual scopes inside the
CDI container:

I

I

|

|

i - |

ReservationAirline Eurag,la_nTeal |
Airline I

|

[. - [N

: Session Scoped Do Reguest Scoped

I [

1 [

1 : |

H hent CustomerDetail Pl : PersonalDetails-
H ginUser erDetal P ReservationForm e

! b

1 [

1 [

1 : I

| i TicketDetails- SeatSelection
: : Form -Form

| i /

S [P, frmmmmmmmmmmmmmmmm oo |

s
g
=]
)
(=
=t
=
[]
®
=]
-

Beans and bean types

A bean in CDI is a source of the contextual objects that define the application
state with or without a logic. Almost any Java object can be treated as a CDI bean.

Beans are instantiated by the CDI container and their lifecycle is determined
by the stateful context that they belong to. In other words, all CDI beans have
a stateful context.

CDI 1.1 chiefly describes the environment around the Java EE environment,
although the implementation such as JBoss Weld can execute in the Java SE
standalone application.

[42]

Chapter 2

Inside a Java EE environment there are components known as managed beans. A
CDI bean is one that is managed by the CDI container, whereas the EJB container
manages EJB, and the Servlet container manages a Java Servlet. In Java EE 7, the
CDI container is different from the other two containers, EJB and Servlet, in terms
of managing the stateful component beans by the contextual instances.

Formally, a CDI bean has the following attributes:

* One or more bean type that is not empty
* Associated with at least one qualifier
* Has a determined and well-defined CDI scope
* Has a set of interceptor bindings
* Has a bean implementation
* Optionally can have an expression language (EL) bean name
In the CDI specification, the bean type refers to the managed object inside the

container. The visibility of the bean type is defined from its scope and also lifecycle.
It is worth remarking that almost all the Java types can be CDI bean types.

The Java types that can be CDI bean types are as follows:

* A bean type may be a Java interface, a concrete class, or an abstract class,
and it may be declared final or have final methods.

* A bean type may be a generic type with the type parameters and variables.
* A bean type may be an array type.

* A bean type may be a primitive Java type, which means that the
corresponding wrapper types will be used and instantiated. The wrapper
types are defined in the package java.lang.

* A bean type may be raw type, which is a Java Collection type that is
parameterized as compilation type (Pre Java SE 5).

Given the preceding rules most non-Java EE plain old objects can be automatically
treated as CDI bean types and no special declarations are required. The CDI
container behind the scenes will proxy the bean instances and it uses the Java
Reflection API with the byte-code manipulation. Therefore, there are certain
circumstances where the container cannot create a certain bean type.

[43]

Context and Dependency Injection

The exceptions to the rules are as follows:

* The bean type does not have a public default no-argument constructor
* The bean type is an inner class that is declared not static

* The bean type is not a concrete class

* The bean type is annotated with @becorator

* The bean type is a class that declares a final or has a final method

* The bean type is annotated with the EJB component defining annotation or
declared as an EJB class in the deployment XML configuration ejb-jar.xml

* The bean type is an array or a primitive type

Let us summarize some of these definitions into a handy reference as follows:

Term Definition

Bean type The bean type is the type hierarchy that the bean provides, which
of course, is the interface or class, and ancestor types. The CDI
injection container always uses the type as the primary identifier for
determining whether a bean will provide an instance.

Qualifier A qualifier is a way to distinguish between multiple beans that
implement a desired bean type. Qualifiers are the type safe
annotations and allow a client to choose between multiple bean-type
implementations.

Scope CDI beans all have a well-defined scope, which determines the
lifecycle and the visibility of the instances. The CDI scopes are fully
extensible and the standard provides built-in scopes, which includes
the request, session, application, and conversation scope. The beans
can also be dependent and inherit the scope of their injection scope.

EL name A bean may define an EL name. The facility is provided for non-type
safe access. EL names tend to be used by the Java Server Faces views.
They can only be used by external and extension frameworks, which
are built on top of Java EE standard.

Interceptors A CDI interceptor is a feature that allows the developers to
implement crosscutting concerns, such as security or logging as a
bean's methods are invoked. Interceptors are a step up from the
classic decorator design pattern.

Implementation All CDI beans by definition provide an implementation of the types
that define them. Implementations are typically in a class.

[44]

Chapter 2

Basic injection

The key principle of dependency injection, from the definition, is that only the beans
instantiated by the CDI container are managed. The CDI container is the external
lifecycle provider and the way you behave with it is to respect the cardinal rule,
"Don't call us, we'll call you.", The Hollywood Agency principle.

Before CDI, in Java EE 5 specification there was already injection
from the EJB container objects @EJB, @PersistenceContext, @

% PersistenceUnit, and @Resource. Unfortunately only components
known to the application server could be injected in such a scheme. CDI
is a general-purpose dependency injection framework and it is type safe.

Let us assume we are able to run inside a CDI container, and we are building an
airline reservation application. We will define a couple of types defined by their
contract, such as an airline and a payment service.

Some Java interface declarations for a software domain-flight reservation system are
as follows:

interface CreditService
void check() ;

}

interface Airline {
void reserve() ;

}

The context for these bean types creditService and Airline implies a user story
about making an airline reservation. For now, we will assume that the lifetime of the
bean typed live for the duration of the application.

Field injection
For our first example, let us create an airline reservation system as a simple CDI bean.

public class ReservationService {
@Inject Airline airline;

}

This class ReservationService uses a CDI managed bean and it does not yet do
anything special. We do, however, declare a dependency on an Airline instance
though. The annotation @javax.inject.Inject declares that the field airline will
be associated with the default Airline type object. We call this field injection. Let
us proceed a bit further.

[45]

Context and Dependency Injection

Setter injection

public class ReservationService
@Inject
public void setAirline(Airline airline) {
/* Do something here */

}
}

We can attach the @Inject annotation to a setter method too.

What happens if we are in a situation where another colleague has developed
the code already and there was a method to initialize the object already there.
CDI can also help us in this situation. Look at the following declaration for a
ReservationService class:

public class ReservationService ({
@Inject
public void startVTTYConnection
(Airline airline, PaymentService ps) ({

/* %/
}
}

CDI copes with the initialization methods seamlessly. In fact, CDI allows a web bean
to have multiple injection and initialization points.

Constructor injection

CDI can also inject the dependencies into the constructors. It is all quite type safe as
follows:

public class ReservationService ({
@Inject
public ReservationService (Airline airline, PaymentService ps) {
/* ... %/

Wherever a constructor is declared with the @Inject annotation, the CDI container
injects any dependent instances that it finds in the contextual scope of the target
bean type. The CDI container also injects any necessary field instances in the bean
type by the time the constructor is called that are appropriate to the field's contextual
instance. We will talk more about scope later in this chapter.

[46]

Chapter 2

For constructor injection, a CDI bean type can only have one
s constructor with the injection points.

If the bean does not declare a constructor with a @Inject annotation, the CDI
container will call the no-arguments constructor. The default is called only if
there are no other constructors defined.

The CDI injection is type safe and exceedingly appropriate for simple POJOs.

Qualifiers

Qualifiers allow CDI to differentiate by beans with the same type. A qualifier
configures a specific bean type to be injected into the target object.

Qualifiers are defined with the Java interface annotations. They are defined as
@Target ({METHOD, FIELD, PARAMETER, and TYPE}) and @Retention (RUNTIME).
There are standard qualifiers in CDI, but you may also define your custom qualifier
for your own projects.

Let us define two more example qualifiers.

@Qualifier

@Retention (RUNTIME)

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface ShortTermCredit { }

This is for a credit service provider to annotate the short-term applications.

@Qualifier

@Retention (RUNTIME)

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface LongTermCredit { }

And this one is for the long-term applications.

Using the knowledge we now have, we can simply write a CDI implementation
for a short-term provider.

interface CreditProvider ({
double computeAPR (double criteria, double base);

}

@ShortTerm

[47]

Context and Dependency Injection

class HighStreetCreditProvider implements CreditProvider ({
double computeAPR (double criteria, double base) {
return 24.753;

}

The class HighStreetCreditProvider can be injected into a target, if the injection
point specifies the @ShortTermCredit annotation.

class CreditService ({
@Inject @ShortTerm CreditProvider shortTermProvider;

@Inject @LongTerm CreditProvider longTermProvider;

public void processCredit() {/* ... */}
/* . %/
}

Qualifiers also work with the CDI productions. The following is a long-term credit
provider that provides more reasonable annual percentage age albeit for a much

longer term:

class GuiltsCreditProvider implements CreditProvider {
double computeAPR(double criteria, double base) {
return 1.41457;

int months() {return 66;}

@Produces

@LongTerm

public CreditProvider createCreditProvider() {
return new GuiltsCreditProvider () ;

}

[48]

Chapter 2

Built-in qualifiers

Here is a table of the built-in qualifiers in Context and Dependency Injection.

Qualifier Name

Description

@javax.enterprise.

Any

@javax.enterprise.

Default

@javax.enterprise.

Named

@javax.enterprise.

New

inject.

inject.

inject.

inject.

This is the qualifier given to every bean
instantiated and managed by the CDI container.
It is also the qualifier supplied to the injection
points. The only exception is where declaration
is with the @New qualifier.

If a bean does not explicitly declare a qualifier
other than @Named, the bean has the qualifier @
Default.

This qualifier gives a CDI bean a name, which
allows the JSF view or other presentation toolkit
to refer it. Note that this access is not strongly
typed at the compilation time.

The qualifier @New annotation causes a new
instance to be created by the CDI container
instead of using the contextual instance. In CDI
1.1, the use of @New is deprecated.

The CDI classpath scanning

How does CDI know exactly what classes to find in a JAR module? CDI scans the
modules in an Enterprise application. In Java EE 6, the CDI container scans the Java
archive files and searches for a beans .xml XML-deployment descriptor. For a simple
JAR or an EJB module, it expects to find META- INF/beans.xml. In a WAR file, this
file should be in the location WEB-INF/beans.xml. The beans.xml file is not meant
for declaring the CDI beans, unlike Spring Framework.

The beans . xml file can be empty and its presence serves to trigger the CDI container
to scan the archive. In Java EE 7 and in particular CDI 1.1, the presence of beans . xml is
mandatory. Specifying a bean discovery mode in the XML file can control scanning,.

<beans xmlns = "http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation = "http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans 1 1.xsd"

version = "1.1" bean-discovery-mode = "all">

</beanss>

[49]

Context and Dependency Injection

The attribute bean-discovery-mode can have the following values: none,
annotated, and all. The default value is annotated, which informs the CDI
constructor to scan for all the annotated beans and dependencies; a11 means
consider every object as a possible bean type, and none means do not scan this
archive for the CDI bean types.

The beans . xm1 file determines Alternatives, Interceptors, and Decorators,
about which we will learn later.

Factory production

How does CDI handle the situation, where your dependency instance does not have
an arguments constructor? Sometimes we want to allow the application control to
how and when to instantiate a bean type

CDI deals with factory creation with a feature called producers, which
unsurprisingly involves the @Produces annotation. The fully qualified package
annotation is called @javax.enterprise.inject.Produces, which informs the
CDI container to create an instance of a bean type using the recipient method
instead of instantiating the dependency by invoking its no-argument constructor.

Let's look at an example of a factory class as follows:

class EurasianTealAirline implements Airline ({
/* .. %/

public class AirlineProducer {
@Produces @Premium
public Airline connectAirline() {

return new EurasianAirline() ;

}
}

The class AirlineProducer acts as a factory for the Airline components,
which actually are the EurasianAirline types, and notice, it is also a premium
business connection.

Traditionally, a factory is used to demarcate different type a of bean types in order
to delay until runtime the type of object created because the calling code does not
know the exact type of dependency. Usually, an enumerated value is passed to the
factory in code or during external configuration. With CDI, we use special custom
annotation for this.

[50]

Chapter 2

It is instructional to see the qualifier annotation for the @Premium as follows:

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention (RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Premium

We define a custom annotation with a runtime retention policy, which can be
declared on the class, at a method call, before a type field, and in the method
argument positions.

Given these definitions, we can use CDI to inject a specific dependency in a bean
and/or service that we are using. If we have a Java-standalone application, a web
frontend specifically for customers that only fly with the premium airline services,
we would write something like the following;:

public class FrontEndPremiumUI extends WebFrontController {
@Inject @Premium private Airline luxuryService;

public void handleForm
(HttpRequest request, HttpResponse response, FormModel form) {
luxuryService.reserve ()

/* .. %/

renderView (request, response) ;

/* .. %/

[51]

Context and Dependency Injection

The key line of this user interface code is as the following:

@Inject @Premium private Airline luxuryService;

The line instructs the CDI container to inject a dependency of the Airline bean

type that is specifically qualified as a @Premium into the bean Front EndPremiumuI.
The CDI container searches for a matching bean type and finds the factory
AirlineProducer. It then invokes the method connectairline (), which returns an
instance of EurasianTealAirline.

There is an alternative to define a producer using the initialization method to
construct an accessible field. The producer field is the value that will be injected into
the targets.

public class AirlineProducerAlternative
@Produces @Premium Airline airline;

@Inject
public void initialize (SpecialContext ctx) {
airline = new EurasianTealAirline (ctx) ;

}
}

Inside the class AirlineProducerAlternative, we inform the CDI container that
the field airline is initialized by the factory. In our application, we call the method
initialize () in order to create a EurasianTealAirline component with a
component SpecialContext that is also injected in.

The CDI container manages the lifecycle of the beans and adds contextual
information to it. This means that the instances will be shared by other threads and
components managed by the same CDI container.

We do not have to create and use qualifier for simple POJOs that have no
discriminating bean types. The CDI container has a default qualifier for bean types.
The annotation is called @javax.enterprise.inject.Default.

Generating new instances every time

Sometimes injecting a shared instance from the CDI container is not the behavior that
your target bean requires. There are sometimes security issues, concurrency behaviors,
and other object safety reasons where a new instance is required.

[52]

Chapter 2

A new instance can be forced from CDI by using the eNew annotation in a producer.

public class AirlineProducer {
@Produces
public Airline connectAirline(@New Airline airline) {
return new EurasianAirline(airline) ;

}
}

This eNew annotation is very much like the prototype scope behavior as seen in
Spring Framework.

Bean names and presentation views

There is another way to distinguish the CDI beans and that is to optionally give a
bean a name. The main reason you would want to do this is to permit a bean to be
referenced from the presentation view framework such as JSF. (A full chapter on JSF
is out of scope for this book.)

To make a bean accessible through EL, use the @Named built-in qualifier.

@Inject @Named ("longTermProvider") @LongTermCredit
CreditProvider guiltsProvider;

If you do not provide the name of the bean, then the @Named qualifier allows you to
access the bean by using the name, with the first letter in lowercase. The following
two injection points are equivalent in terms of referencing the same CDI bean by name.

class Donkey { }

class DonkeyRider ({
@Inject @Named donkey donkeyl;
@Inject @Named ('donkey') donkey2;

}

Both field variables donkey1 and donkey2 will reference the same CDI bean,
provided that the CDI bean is not annotated with eNew, of course.

To access the long-term credit bean through JSF, we would write something like
the following inside a JSF Facelet view:

<div id = "promoArea"s>
<hl>Amazing Credit Offer!</h2>
<p>0Only available to 30th September 2014</p>
<h:form>

[53]

Context and Dependency Injection

<h:inputText value = "#{applyForm.gquote}"
title = "quotation value"/>
<h:inputText value = "#{applyForm.term}"
title = "length of text"/»>
<h:commandButton value = "Apply Now!"
id = "offerSubmitButton"
action = "#{longTermProvider.applyForCredit}"/>

</h:form>
</div>

This extraction of complicated JSF Facelet illustrates how a named CDI bean type is
accessed in the <h:commandButtons> tag. A customer clicking on the button invokes
the method applyForcredit () on the CDI bean type.

Let's move onwards to the built-in CDI scopes. Illustration of the airline reservation
system with several bean types' associated scopes is shown in the following screenshot:

Personal Details- PaymeniDetails-
SearchForm ReservationForm Form Form
. ¢ 9 l
Request [Request l [Request l [Request
Reservation-
WizardForm

Conversation Scope

CustomerDB

Transaction Scope
Reservation Initialized Reservation Begins Reservation Committed
LoginUser
Session Scope
Customer Login Reservaticofiirlioe Customer Finished

Application Scope

Application Startup Application Shutdown
T 13:00:00 T 13:27:45

[54]

Chapter 2

Bean scopes

In the CDI container there are five predefined scopes, and all of them apart from
@Dependent are associated with a bean to provide contextual information. The
scopes have different lifetimes and thus different durations.

Scope Annotation Duration

Request @RequestScoped The beans declared against
the request scope live only
in existence for the lifetime
of HTTP Servlet Request,
invocation of remote EJB,
a delivery of message to a
Message Driven Bean, or a web
service endpoint. After the
request has been serviced, the
bean is destroyed.

Session @SessionScoped The beans declared against
the session scope live for the
lifetime of HTTP session,
which is a user's interaction
with a web application across
multiple HTTP requests. The
session scoped beans are only
destroyed when the same
HTTP session associated with
them is destroyed.

Application @ApplicationScoped The beans declared against the
application scope live for the
lifetime of all users' interactions
with a web application. In
other words, the beans live as
long as the web application
executes in the managed web
container and therefore, the
CDI container. Only when the
application is destroyed (or
undeployed) are the associated
application scope beans
destroyed.

[55]

Context and Dependency Injection

Scope Annotation Duration

Dependent @Dependent The beans declared against
the dependent scope are never
shared between the injection
points. The injection of a
dependent bean lives as long as
the lifecycle of the target object
to which they are bound. In
other words, the CDI container
does not manage the dependent
beans.

Conversation @ConversationScoped The beans declared against the
conversation scope are shared
across multiple requests in the
same HTTP session as long as
they associate with the active
conversation state. Once the
beans fall out of the active
connection state (workflow)
they are primed for destruction
by the CDI container.

For the historical record, the first three scopes are defined by JSR-299 CDI and the JSF
APIL The last two scopes are only defined by JSR-299.

Advanced Java EE developers can also extend and implement the custom scopes. In
order to do so, new scope must declare with the @javax. inject.Scope annotation
Or @javax.enterprise.context.NormalScope meta-annotation. Beginners in CDI
should stay clear of the extensions until they have gained suitable experience.

It is recommended that the developers use @javax.inject.
Inject annotation as much as possible, especially for EJB
’ references, over @javax.ejb.EJB. Try it!

CDI initialization and destruction

The applications can register the post-construction and pre-destruction callbacks on
the CDI bean types.

[56]

Chapter 2

The @PostConstruct annotation

When the CDI bean is created, it is associated with a scope. It is possible to register
a lifecycle callback method that the CDI framework should call after dependency
injection, but also before the class is put into the service.

First, in the managed bean or in any of its superclasses, you define a callback
method, which performs the custom initialization. Second, annotate the method with
the @javax.annotation.PostConstruct annotation.

class DVLA
static String generateKey() {/* ... */}
static void clearAndReset (String key) {/* ... */}

}

class VehicleRegistration ({
private String dvlaKey;
private String registration;

@PostConstruct
public void resetValues()
registration = "";
dvlaKey = DVLA.generateKey ("SWANSEA")
}
}

The CDI container will call the resetvalues () method in this bean type
VehicleRegistration after all the injections have occurred; therefore, the bean
has been fully wired after all the other initializers have been invoked. Sometimes an
application wants to apply a look-up dependency to a third-party library as a late
binding, and associating the component in the constructor is not appropriate.

The @PreDestroy annotation

When the CDI bean is created, it is associated with a scope. It is possible to register
a lifecycle callback method that the CDI framework should call after dependency
injection, but before the class is put into the service.

First, in the managed bean or in any of its superclasses, you define a callback
method, which performs the custom initialization. Second, annotate the method
with the @javax.annotation.PreDestroy annotation.

class DVLA {/* ... */}

class VehicleRegistration {

[57]

Context and Dependency Injection

private String dvlaKey;
private String registration;

@PreDestroy
public void releaseCache() {
DVLA.clearAndReset (registration) ;

}
}

The CDI framework will invoke the @pPreDestroy method before the bean type goes
out of the contextual scope.

Programmatic Lookup of the CDI Beans

Although the CDI container follows the Hollywood Agency Principle, there is a way
to retrieve a bean instance directly. The developers can programmatically ask for an
instance of the bean type, to deal with special cases.

public class DVLARegistrationCentre {
@Inject Instance<DVLA> dvla;
public DVLA getDVLA()
return dvla.get () ;

}
}

The @javax.enterprise.inject.Instance annotation allows the application
to dynamically obtain the instances of the beans with a specified combination
of qualifiers.

The class DVLARegistrationCenter has a method to retrieve the DvLA instance and
the instance that is returned is decided by the designation. The get () method of the
instance produces a contextual instance of the bean.

Qualifiers can be specified at the injection point with annotations.

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface Police { }

@Target ({METHOD, FIELD, PARAMETER, TYPE})
public @interface Secure { }

public class DVLARegistrationCentre
@Inject @Police @Secure Instance<DVLA> dvla;
public DVLA getDVLA() {
return dvla.get () ;
}

[58]

Chapter 2

In this case, we obtain a different Driver Vehicle Licensing Authority type specific to
the UK civil government service and hopefully it is secure.

Advanced readers will notice that this looks extremely similar to the Spring
Framework retrieval of the Spring bean from that dependency injection framework.
The difference here is that the lookup is provided by the annotations, and therefore is
strong typed, not by the name of the bean.

What types of special cases could there be?

* Instance lookup is useful if the qualifiers can vary dynamically at runtime
* We want to iterate over all the beans of a certain type

* We want to provide a fallback method, where there is no bean that satisfies
the type and the set of qualifiers

The following is an example to iterate all the beans in the CDI container of
a specified type:

class DVLA
public void init() {/*...*/}
VA

}

@Inject
void initRegistries (@Any Instance<DVLA> registries) {
for (DVLA registry: registries)
registry.init () ;
}
}

We use the @aAny qualifier to override the @Default annotation in order to remove
the restriction of the bean type suitable for injection. Remember, the @Any qualifier
says that you are declaring an injection point, where you do care about contextual
information of the CDI bean.

Configuring a CDI application

It is very easy to configure a CDI application. All you need to do is provide a file
called beans . xml, which must be found on the classpath. The file can be completely
empty. For web applications, the standard dictates that the beans . xml file must live
in the weB- INF directory. For the EJB modules or the JAR files must live in the
META-INF directory.

[59]

Context and Dependency Injection

Standalone CDI application

We have had enough theory. Let us now visit a sample application. This example
will use the Java EE reference implementation project for CDI, which is called Weld.
The Weld project is available on Red Hat JBoss website at http://seamframework.
org/Weld.

In this example, we are using CDI 1.1, which is sufficient for the example. The project
uses Gradle, the build system written in the Groovy programming language. Because
we use Gradle in the book's source code, we present in this chapter only a very small
guide to this build tool, which is gaining popularity among the leading developers.

The build.gradle file is as follows:

apply plugin: 'java'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

// Define equivalent Maven GAV coordinates.

group = 'com.javaeehandbook.bookl'
archivesBaseName = 'ch02-cdi-standalone'
version = '1.0'

repositories ({
mavenCentral ()

dependencies {
compile 'org.jboss.weld.se:weld-se-core:1.1.9.Final’
compile 'org.slf4j:slf4j-simple:1.6.1"
testCompile 'junit:junit:4.11"'

}

task wrapper (type: Wrapper) {
gradleVersion = '1.7"'

}

// Override Gradle defaults - a force an exploded JAR view
sourceSets {

main {
output.resourcesDir = 'build/classes/main'
output.classesDir = 'build/classes/main’

}

[60]

Chapter 2

test {
output.resourcesDir = 'build/classes/test’
output.classesDir = 'build/classes/test’

task (run, dependsOn: 'classes',6 type: JavaExec) {
main = 'je7hb.standalone.HelloWorld'
classpath = sourceSets.main.runtimeClasspath
args 'Mary', 'Peter',6 'Jane'

}

The source code sample in project is organized in a directory structure exactly the same
as an Apache Maven 3 project. The source code lives under the folder paths src/main/
java and src/main/resources, and the test code lives under src/test/java and
src/test/resources. These folder paths are relative to the root of the project.

The entire code to the main program that we execute in the standalone Weld
container is as follows:

package je7hb.standalone;

import org.jboss.weld.environment.se.Weld;

import org.jboss.weld.environment.se.WeldContainer;
import org.jboss.weld.environment.se.bindings.Parameters;
import org.jboss.weld.environment.se.events.*;

import javax.enterprise.event.Observes;
import javax.inject.Singleton;
import java.util.List;

@Singleton
public class HelloWorld {

public void initialMe (@Observes ContainerInitialized event,
@Parameters List<String> parameters)

System.out.println("Initialization from CDI");
for (int j = 0; j<parameters.size(); ++j) {
String param = parameters.get (j);
System.out.printf ("parameters([%$d] = %s\n", j, param);

}

System.out.println ("Complete.") ;

[61]

Context and Dependency Injection

public void greet (String[] names)
System.out.print ("Hello ") ;

for (int j = 0; j<names.length; ++j) {
System.out.printf ("%$s%s", (j > 0 ? (j == names.length-1 ?
n and n . n , u) . n u) , names []]) ;

}

System.out.println() ;

}

public static void main(String[] args) {
Weld weld = new Weld() ;
WeldContainer container = weld.initialize() ;

HelloWorld helloBean = container.instance ()
.select (HelloWorld.class) .get () ;
helloBean.greet (args) ;

weld.shutdown () ;

}

Here are some remarks about the HelloWorld example. The Java EE 7 does not
define a standard standalone API for CDI yet, so we have to import in the classes
directly from the reference implementation Weld SE.

In the main program, we programmatically bootstrap the CDI container. Once the
WeldContainer is initialized, we can obtain the bean instances quite easily. The
HelloWorld instance is a @ingleton object and is retrieved from the container. The
code is exhibit type safety and there is no casting required to get the object instance.
Once we have the instance, we invoke the methods on it just like any another object.

Finally, in order to complete this example, we need an empty beans .xml file. This
file is stored under the folder path src/main/resources/META- INF.

[62]

Chapter 2

Building the standalone project
with Gradle

In order to build the project, you need Gradle installed on your system
workstation. You can download the latest distribution from the Gradle official
website: http://www.gradle.org/downloads

In order to build the example, just execute the following command line:
gradle build

If you need a loadable project for Eclipse, execute the following command line:
gradle eclipse

If you need a loadable project for JetBrains' IDEA, execute the following
command instead:

gradle idea

Any of the preceding Gradle commands will generate the project files that will
import the files into your favorite Integrated Developer Environment (IDE).
Once you have the project in the IDE, running the HelloWorld program with the
arguments Jane, Peter, Mary, produces the output:

Initialization from CDI framework
Complete.
Hello Jane, Peter and Mary

Procegs finished with exit code 0

You can also execute the example from the command line, with the Gradle custom
command from the script.

Gradle run

To build a project with Gradle, one executes the following command:
gradle build

To reset the project to clean state, one executes the following command:

gradle clean

[63]

Context and Dependency Injection

Of course Gradle is a fully featured build environment with scores of additional
tasks and commands. I recommend you visit the Gradle website (http://gradle.
org) to learn more about Gradle. Packt Publishing also has a recent book: Gradle
Effective Implementation Guide by Hubert Klein Ikkink. You will also find out about the
build environment and tools in the appendices at the end of this book.

Using the DeltaSpike CDI container tests

Let us take a different tack. Although there is no standard API for using CDI outside
of a Java EE environment such as standalone Java SE, there is a project called
DeltaSpike. This is an open source project that defines a wrapper API around two
common CDI implementations JBoss Weld and Apache Open Web Beans. The URL
ishttp://deltaspike.apache.org/.

Let us modify the Gradle build script to add dependencies for the Weld container
as follows:

// Define equivalent Maven GAV coordinates.
group = 'com.Jjavaeehandbook.bookl'
archivesBaseName = 'ch02-cdi-standalone'
version = '1.0'

ext.deltaspikeVersion = '0.3-incubating'

dependencies {
compile 'org.jboss.weld.se:weld-se-core:1.1.9.Final’
compile 'org.slf4j:slf4j-simple:1.6.1"
compile "org.apache.deltaspike.cdictrl:deltaspike-cdictrl-api:
${deltaspikeversion}"

compile "org.apache.deltaspike.cdictrl:deltaspike-cdictrl-weld:
${deltaspikeversion}"

testCompile 'junit:junit:4.11"'

}

This is almost the same definition as before, except for the dynamic property
deltaspikeVersion, which allows the version number of the dependency to be
configured to be changed. Incidentally, you can switch to the other DeltasSpike
implementation, Apache Open Web Beans, by changing the dependency to:

dependencies {
compile 'org.apache.openwebbeans:openwebbeans-impl:1.1.6'"'
compile 'org.apache.openwebbeans:openwebbeans-ee:1.1.6'"'
compile "org.apache.deltaspike.cdictrl:
deltaspike-cdictrl-api: ${deltaspikeVersion}"

[64]

Chapter 2

compile "org.apache.deltaspike.cdictrl:
deltaspike-cdictrl-owb: ${deltaspikeVersion}"

/* o %/
}

Let us create a couple of qualifier annotations. We create one to represent a premium
and expensive service, and a second to represent a budget service.

// Economy.java

@Qualifier

@Retention (RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Economy { }

// Premium.java

@Qualifier

@Retention (RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Premium { }

The preceding annotation must exist in separate Java class files. Next, we will create
a traveler service for airlines. The service is not at all useful, but it will demonstrate
the testing, the qualifiers, and the dependency injection. It will simply allow us to
retrieve a random flight given an airline code.

public interface TravelService {
FlightSet findRandomByAirline (String airline) ;

}

The simplified definition of the budget travel service, unsurprisingly, called
BudgetTravelServiceImpl is as follows:

@Economy
public class BudgetTravelServiceImpl implements TravelService
@Override
public FlightSet findRandomByAirline (String airline) {
Airline airlineBudget = new Airline ("CHP", "Cheap Budget") ;
return new FlightSet (Arrays.asList (new AirlineRoute (
"LGW", "DUB", parseDate("20131110-12:30:00 GMT"),
parseDate ("20131110-14:00:00 GMT"),
airlineBudget, 69.0), new AirlineRoute ("LHW", "PAR",
parseDate ("20131110-16:45:00 -0500 GMT"),
parseDate ("20131110-20:00:00 -0700 +0100"),
airlineBudget, 79.0)));

[65]

Context and Dependency Injection

We can also define an expensive service called TravelFunkServiceImpl as follows:

@Premium

public class TravelFunkServiceImpl implements TravelService
@Override
public FlightSet findRandomByAirline (String airline) {
Airline airlineBrit = new Airline("BRS","British Stars");
return new FlightSet (Arrays.asList (new AirlineRoute (
"NYC", "SFO", parseDate("20131110-16:45:00 -0500"),

parseDate("20131110-20:00:00 -0700"),
airlineBrit, 250.0)));

}

So now, we write an elegant and a simple unit test with the Deltaspike library to
verify the CDI container (either JBoss Weld or Apache Open Web Beans) injects the
correct travel service according to the qualifier annotation.

package je7hb.travelfunk;

import je7hb.standalone.*;

import org.junit.Test;

import javax.inject.Inject;

import static org.junit.Assert.assertNotNull;

public class TravelServiceTest extends AbstractCdiContainerTest {
@Inject @Premium TravelService premiumTravelService;
@Inject @Economy TravelService economyTravelService;

@Test
public void shouldInjectPremiumService() {
System.out.printf ("premiumTravelService=%s\n",
premiumTravelService) ;
assertNotNull (premiumTravelService) ;
FlightSet flight =
premiumTravelService.findRandomByAirline ("BRS") ;
assertNotNull (flight);

}

@Test
public void shouldInjectEconomyService() {
System.out.printf ("economy=%s\n", economyTravelService) ;
assertNotNull (economyTravelService) ;
FlightSet flight =
economyTravelService.findRandomByAirline ("BRS") ;
assertNotNull (flight) ;

}

[66]

Chapter 2

The distilled magic of the Deltaspike library lies within the
AbstractCdiContainerTest implementation, which is part of this book's source
code project. For JUnit testing, we need to make sure that we have a brand new CDI
container for the invocation of the test methods. There is a restriction for the CDI
container, in that they do not play very well in parallel executions from the same
Java classLoader; therefore, before each test method is invoked, we first have to
make sure that the container is initialized appropriately and also the conversation
context is cleared. The following source code is targeted for JUnit; you will need to
modify it accordingly for another testing framework such as TestNG.

First, the CDI container is created with the static method of cdicontainerLoader,
which will retrieve a JBoss Weld or Apache Open Web Beans. The container is
instantiated in the static helper method startUpContainer (), because we want only
to initialize the test container when the test class is loaded, and before test methods
are invoked on it. Once we have the cdicontainer type, we boot up, and then start
all of the conversational contexts in it.

import org.apache.deltaspike.cdise.api.*;

import org.junit.*;

import javax.enterprise.context.RequestScoped;

import javax.enterprise.context.spi.CreationalContext;
import javax.enterprise.inject.spi.*;

public abstract class AbstractCdiContainerTest {
protected static CdiContainer cdiContainer;

@Before

public final void setUp() throws Exception {
cdiContainer.getContextControl ()
.stopContext (RequestScoped.class) ;
cdiContainer.getContextControl ()
.startContext (RequestScoped.class) ;

BeanManager beanManager = cdiContainer.getBeanManager () ;
CreationalContext creationalContext =
beanManager.createCreationalContext (null) ;

AnnotatedType annotatedType =
beanManager.createAnnotatedType (this.getClass()) ;

InjectionTarget injectionTarget =
beanManager.createInjectionTarget (annotatedType) ;

injectionTarget.inject (this, creationalContext) ;

[67]

Context and Dependency Injection

@After
public final void tearDown() throws Exception
if (cdiContainer ! = null) {
cdiContainer.getContextControl ()
.stopContext (RequestScoped.class) ;
cdiContainer.getContextControl ()
.startContext (RequestScoped.class) ;

@BeforeClass

public final synchronized static void startUpContainer ()

throws Exception {
cdiContainer = CdiContainerLoader.getCdiContainer () ;
cdiContainer.boot () ;
cdiContainer.getContextControl () .startContexts () ;

}

@AfterClass
public final synchronized static void shutdownContainer ()
throws Exception {
if (cdiContainer ! = null) {
cdiContainer.shutdown () ;
cdiContainer = null;

}

After JUnit invokes the test methods of the class, we ask the CDI container to shut
down. This procedure is illustrated in the method shutdownContainer ().

The other two methods, setUp () and tearDown (), are designed to start and stop
conversational context before and after a test method is invoked. In the setUp ()
method, we make sure that the qualifier annotations are injected into the test

class instance before the test method is invoked. In the previous unit test, the CDI
container will look up the travel service TravelService and find the correct type of
service according to qualifier, for example, @Premium or @Economy.

Typically, to simulate the request arriving from a web service client, the request
scope context should be restarted for each test. Therefore, in the tearDown () method,
we explicitly stop and restart the request conversational scope context.

[68]

Chapter 2

To complete the example, here is the utility class, util, which contains a static
method to parse the formatted date, time, and time zone.

import java.text.SimpleDateFormat;
import java.util.Date;

public final class Utils {
private final static SimpleDateFormat FORMATTER =
new SimpleDateFormat ("yyyyMMdd-hh:mm:ss z") ;
public final static Date parseDate(String s)
try {
Date date = FORMATTER.parse(s) ;
return date;
}
catch (Exception e) {
throw new RuntimeException
("unable parse date time from string ["+s+"]",e);

private Utils() { }

}

Now that we understand the CDI qualifiers, let's move forward.

Injecting arbitrary objects using
Producers

What happens if we want to inject an object or type at runtime, dynamically? CDI
allows us to do this with the concept of productions. Producer methods are the
way to inject arbitrary objects into the container, which are not registered as beans
through the annotations. Typically, this is the way to get dynamic behavior.

Let us suppose we have a payment system for checking credit worthiness with
some financial service legal entity. It is a very simple credit model-you only need an
account number - and we can define a contract for this service as a Java interface.

public interface CreditProcessor {
public void check (String account) ;

}

[69]

Context and Dependency Injection

We will reuse the annotations from the standalone travel service example,
@Premium and @Economy. We are given the business requirement for the economy
as a high volume and high turnover, and the model leverages lots of promotional
workers who act on behalf of the businesses to find and locate customers. There
are a lot of dynamics and so it can be modeled as a production using the following
HouseholdCredit class:

public class HouseholdCredit
private static AtomicInteger counter = new AtomicInteger (1000) ;

@Produces
@Economy
public CreditProcessor createCreditProcessor() {

return new StreetCreditProcessor
("promoter"+counter.getAndIncrement ()) ;

}

public static class StreetCreditProcessor
implements CreditProcessor {
private final String workerId;

public StreetCreditProcessor (String workerId)
this.workerId = workerId;

}

@Override
public void check(String account) {/*...*/}

@Override
public String toString() {
return "StreetCreditProcessor{" +

"workerId='" + workerId + '\'' +

1 1.
I

}

The key annotation is @javax.enterprise.inject. Produces, which informs the
CDI container that the application is responsible for creating a particular bean type.
The eProduces annotation designates a POJO application bean as producer of a CDI
managed beans.

M Do not confuse CDI's @Produces with another Java EE 7 annotation
Q @javax.ws.rs.Produces, which is part of JAX-RS. See Chapter 8,
RESTful Services JAX-RS 2.0.

[70]

Chapter 2

The class Householdcredit declares to CDI that it can generate a CreditProcessor
with the qualifier @Economy. It does this by instantiating a static inner class called
StreetCreditProcessor, but also notice that this type is not annotated explicitly.

The CDI container will locate this particular bean type and create it by instantiating a
Household object for the lifetime of the container, and then invoking the production
method, when required by the injection point. The conversation context of the supplied
bean is decided at the injection point, as you can see in the following unit test:

package je7hb.standalone;

import je7hb.travelfunk.AbstractCdiContainerTest;
import org.junit.Test;

import javax.inject.Inject;

import static org.junit.Assert.*;

public class CreditProcessorTest extends AbstractCdiContainerTest
private @Inject @Economy CreditProcessor agent;

@Test

public void shouldInjectStreetCredit () {
assertNotNull (agent) ;
agent.check("12354678") ;
System.out.printf ("agent=%s\n", agent);

}

It is instructive to examine the following output from the program with the CDI
container test debugging switched on.

The output from the program is as follows:

AbstractCdiContainerTest#startUpContainer () cdiContainer=null

29 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)

117 [main] INFO org.jboss.weld.Bootstrap - WELD-000101

Initialization from CDI

Complete.

AbstractCdiContainerTest#setUp () containerRefCount=1,
cdiContainer=org.apache.deltaspike.cdise.weld.

WeldContainerControl@49b35574

agent = StreetCreditProcessor{workerId = 'promoterl000'}

AbstractCdiContainerTest#tearDown () containerRefCount = 1,
cdiContainer = org.apache.deltaspike.cdise.weld.

WeldContainerControl@49b35574

AbstractCdiContainerTest#shutdownContainer () cdiContainer =
org.apache.deltaspike.cdise.weld.WeldContainerControl@49b35574

Procesgss finished with exit code 0

[71]

Context and Dependency Injection

Advanced CDI

In this section, we will advance the context and dependency injection to listening
and acting on the lifecycle events, and choose between alternative implementations
through configuration.

The lifecycle component example

In the section, CDI initialization and destruction, we discussed the lifecycle methods
for the CDI managed beans. Let us look at a unit test example that demonstrates the
concepts. We will build the other side of the CreditProcessor example, which is the
premium rate version.

package je7hb.standalone;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;

@Premium
public class PremiumCreditProcessor implements CreditProcessor

@Override
public void check(String account)

if (laccount.trim().startsWith("1234"))

throw new RuntimeException ("account: ["+account+"] is not
valid!");

}
}
@PostConstruct

public void acquireResource() {
System.out.println(this.getClass ()
.getSimpleName () +"#acquireResource () ") ;

@PreDestroy
public void releaseResource() {

System.out.println(this.getClass/()
.getSimpleName () +"#releaseResource () ") ;

}

The class PremiumCreditProcessor is a CDI managed bean, which is associated
with the @Premium qualifier. It has two lifecycle methods acquireResource () and
releaseResource ().

[72]

Chapter 2

The CDI container invokes @PostConstruct annotated methods after the bean
type has been constructed. By the time the @PostConstruct method is called the
CDI container has already initialized any instance field properties in the bean type
and the super classes, which are managed by the CDI container. This lifecycle
method is designed for all managed beans to initialize the additional resources,
such as lazy-loadable and/ or expensive resources, which need to be allocated.

The CDI container on managed beans invokes the @Prebestroy method, when
the context with which they are associated is about to be destroyed. This lifecycle
method is designed for the CDI managed beans to release any resources and/or
de-allocate expensive resources, for example, freeing up data handles or memory.

Let us look at the following unit test:

package je7hb.standalone;

import je7hb.travelfunk.AbstractCdiContainerTest;
import org.junit.Test;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import static org.junit.Assert.assertNotNull;

public class ExpensiveCreditProcessorTest extends
AbstractCdiContainerTest {

@Inject @Premium @RequestScoped
private CreditProcessor agent;

@Test
public void shouldInjectExpensiveCredit ()
assertNotNull (agent) ;
agent .check ("12345678") ;
System.out.printf ("agent=%s\n", agent) ;
}
}

For the first time, in this unit test, we are making use of a specific scope, the
request-scope, which is designed for the web servlet containers. Essentially, the
request-scope is a collection of short-lived managed objects in a map collection. The
request scope only exists for the duration of a single incoming HTTP web request
that reaches the application server. As soon as the web request is consumed and a
response is sent back to the client by a Java Servlet or something else, the objects in
the Request scope should be garbage collected because the CDI container (and the
web container) will destroy it.

[73]

Context and Dependency Injection

The trick to the unit test lies within super class, the AbstractCdiContainerTest,
specifically the tearDown() method where the Request scope is stopped and then
restarted order to ensure the current instance is destroyed. Obviously, running in
Weld Standalone SE and not inside an application server makes this code interesting.

Let us now turn our attention to getting configuration of beans when we want to
deliver a special type of instance to a client, when we have a choice of alternatives.

Alternatives

CDI supports the concepts of alternatives, for situations where you have more than
one implementation of an interface or plain object class. For example, you could
have more than one type of food processor, which may be supplied by third parties
and might be outside of our control. Your application may have a requirement that
dictates only a certain processor that can be active at any time in the program.

Let us illustrate alternatives with an interface called FoodProcessor, which simply
communicates the product's brand to the caller.

// FoodProcessor.java
public interface FoodProcessor
public String sayBrand() ;

}
Now let us define the implementations of our suppliers with just two classes like so:

// NouveauFoodProcessor.java
public class NouveauFoodProcessor implements FoodProcessor {
@Override public String sayBrand()

return "Nouveau'";

}

// XenoniqueFoodProcessor.java
import javax.enterprise.inject.Alternative;

@Alternative
public class XenonigueFoodProcessor implements FoodProcessor {
@Override public String sayBrand() {

return "Xenonique";

}

[74]

Chapter 2

In one of those brands of food processor, XenoniqueFoodProcessor, we designate
at least one to be an alternative with the @Alternative annotation. There must

be one implementation that is the default, which in this case is the class called
NouveauFoodProcessor. How does the CDI container know which instance to
plug into the application?

By default, if there is no configuration, then the CDI container will inject the
NouveauFoodProcessor in to the type that requires it. If we want to specify the
alternative, then we need to configure that in an XML configuration file, which is
the bean container file META-INF /beans.xml the content looks like as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans 1 1.xsd">
<alternatives>
<class>je7hb.standalone.alternatives
.XenoniqueFoodProcessor</class>
</alternatives>
</beans>

The alternative class is specified in the absolute XPath of /beans/alternative/
class. The text of this element is the fully qualified name of the concrete class.

Alternatives can be useful for injecting a separate test service. Perhaps it could be a mock
object or a prototype implementation that another developer team in the investment bank
will fulfill at some later stage in the grand development phase.

So let us provide, now, a customary unit test to prove this fact:

import javax.inject.Inject;
public class AlternativesFoodProcessorTest
extends AbstractCdiContainerTest {

private @Inject FoodProcessor foodProcessor;

@Test
public void shouldInjectAlternative () {
assertNotNull (foodProcessor) ;
assertEquals ("Xenonique",
foodProcessor.sayBrand()) ;

[75]

Context and Dependency Injection

The unit test is based on our DeltaSpike standalone abstract container. We
simply instantiate the FoodProcessor type and verify that the instance is, indeed,
a XenoniqueFoodProcessor, which of course it is.

Perhaps, you will have noticed that even though the DeltaSpike container is a step
up from the standalone JBoss Weld SE examples; in fact it gives more portability
to another CDI Container, namely Apache Open Web Beans; however it is still not
enough for wide portability.

There are many more Java EE 6 products and, since the formal release, Java EE 7
products on the market that are fully certified and standardized implementations

of the specification, and some are pending reaching that condition. Although
DeltaSpike is a great solution, it does not cover all of them. We need something

that is a testing framework, makes use of the CDI scope exactly the same as inside
an application server and fully reproduces the conversational scope. This framework
is called Arquillian and now we will study the essentials in the next section.

The Arquillian test framework

Arquillian is a new approach for writing Java EE testing. In the past developers and
engineers have been used to writing mock objects and unit tests that run outside of
the application container for sheer productivity, efficiency, and speed.

A new kind of Java EE testing framework

Arquillian is a framework that merges the functional and integration testing. It takes
control of the lifecycle of the application server container so that it can provide a test
execution in an easier manner to developers.

* Arquillian manages the lifecycle of the target container, which can be a CDI
or EE container.

* It bundles the test case, dependencies, and resources into a much smaller
distribution than usual, which it calls the ShrinkWrap archives.

* Arquillian deploys the said ShrinkWrap archives to the runtime target
container, and then proceeds to enrich the test case with dependency
injection and other runtime declarative resources.

* The unit test cases are executed inside the target container. The results of
the unit tests are made available to the test runner.

* After executing the test cases, Arquillian shuts down the target container;
meanwhile, the unit test results are available for reporting.

[76]

Chapter 2

Arquillian bundles up the unit test and dependencies into clever assemblies of
class and deploys them to a CDI or Java EE container, and thus developers know
that their code actually runs well inside the product, instead of guessing at the
accuracy of mock implementation.

You can get more information about Arquillian from the the JBoss website
http://www.jboss.org/arquillian.html. Most of the time, you probably

do not want to manually download the Arquillian framework, instead you will
probably integrate into a Maven build or for this written book, add it as the build
dependencies for Gradle.

Setting up of Arquillian
Arquillian works with popular testing frameworks JUnit and TestNG out-of-the-box,
and it also integrates into IDE such as Intelli] IDEA, NetBeans, and Eclipse.

In this section, we will set up an Arquillian with the Gradle build tool. The
following is the new build.gradle file with new dependencies on Gradle:

apply plugin: 'java'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

group = 'com.javaeehandbook.bookl'
archivesBaseName = 'ch02-cdi-arquillian'
version = '1.0"'

repositories {
mavenCentral ()
maven {
url 'http://repository.jboss.org/nexus/content/groups/public'’

dependencies {
compile 'org.jboss.spec:jboss-javaee-6.0:1.0.0.Final’
compile 'org.jboss.arquillian:arquillian-bom:1.0.3.Final’

testCompile 'org.jboss.weld.se:weld-se-core:1.1.9.Final'

testCompile 'org.slf4j:slf4j-simple:1.6.4"

testCompile 'org.jboss.arquillian.container:
arquillian-weld-ee-embedded-1.1:1.0.0.CR3"

[77]

Context and Dependency Injection

testCompile 'org.jboss.arquillian.junit:
arquillian-junit-container:1.0.2.Final’
testCompile 'junit:junit:4.11"'

}

task wrapper (type: Wrapper) {

gradleVersion = '1.7"'
}
// Override Gradle defaults - a force an exploded JAR view
sourceSets {
main {
output.resourcesDir = 'build/classes/main’
output.classesDir = 'build/classes/main'
}
test {
output.resourcesDir = 'build/classes/test’
output.classesDir = 'build/classes/test'

}
}

The URL http://repository.jboss.org/nexus/content/groups/public is
introduced as a second repository, in order to retrieve the correct dependencies
from the JBoss Red Hat servers. Apart from this change and the extra dependencies,
it looks very much the same.

Arquillian has two parts: core and the embedded container adaptors. There is core
of the framework, the support classes, and one runner from JUnit or TestNG;

and then there is the adaptor. In order to run successfully, at least one embedded
container must be specified. In the unit test, here we are using the Weld Java EE
embedded container, namely arquillian-weld-ee-embedded-1.1. However, you
are free to choose another container adaptor, of which there are several, such as the
JBoss application or the GlassFish servers.

Arquillian even allows developers to test their execution against
_ multiple containers, but only one can be selected for the runtime. The
% way to do test across many application servers is through configuring
e the Maven profiles or the Gradle setting properties. This is an advanced
topic and details can be found online at http://gradle.org/docs/
current/userguide/working with files.html.s

[78]

Chapter 2

The disposable methods

Let us revisit the classes that we created with the @Produces annotation. Remember
the annotation @Produces informs the CDI container to instantiate a bean type
dynamically through an application client factory. Having created a bean type,

we should consider end of life of factory bean types. What if the bean was expensive
to create or if the bean had held on to the resource handle? How could we safely
release such a resource to the operating system via the JVM, naturally? This is the
purpose of the @Dispose annotation.

When a contextual bean goes out of scope, it is destroyed. To destroy a bean,
the CDI container calls any @PreDestroy callbacks for the bean and destroys
any @Dependent objects before disposing of the object.

An application can perform custom cleanup of the created objects by using a dispose
method. Marking the parameter with the annotation @javax.enterprise.inject.
Disposes designates it as a disposal method.

The revised code for the class HouseholdCredit is as follows:

public class HouseholdCredit {
private static AtomicInteger counter = new AtomicInteger (1000) ;

@Produces
@Economy
public CreditProcessor createCreditProcessor() {
CreditProcessor proc = new StreetCreditProcessor
("promoter"+counter.getAndIncrement ()) ;
System.out.printf ("#createCreditProcessor () "+ "creates proc =
$s\n", proc);
return proc;

}

public void releaseCreditProcessor
(@Disposes @Economy CreditProcessor proc) {
System.out.printf ("#releaseCreditProcessor() "+
"dispose proc = %$s\n", proc);
}

public static class StreetCreditProcessor
implements CreditProcessor {
private final String workerId;
public StreetCreditProcessor (String workerId)
this.workerId = workerId;

}

/*... same as before ... */

[79]

Context and Dependency Injection

Note that the disposal method accepts the same qualifier annotation as the
production factory method. This is important; the CDI container should
complain at runtime if the qualifiers and the conversational scope, if any,
between the production and disposal methods do not match.

The modified unit test with the Arquillian framework to verify the operation of
the HouseholdCredit bean is as follows:

package je7hb.basic.arquillian;

import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.asset.EmptyAsset;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Test;

import org.junit.runner.RunWith;

import javax.inject.Inject;

import static org.junit.Assert.assertNotNull;

@RunWith (Arquillian.class)
public class EconomyCreditProcessorTest {
@Deployment
public static JavaArchive createDeployment () {
JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
.addClasses (Economy.class, Premium.class,
CreditProcessor.class, HouseholdCredit.class,
PremiumCreditProcessor.class)

.addAsManifestResource (EmptyAsset . INSTANCE, "beans.xml");
System.out.println(jar.toString(true)) ;

return jar;

private @Inject @Economy CreditProcessor processor;

@Test

public void should create greeting() {
System.out.printf ("processor = %s\n", processor) ;
assertNotNull (processor) ;
processor.check ("1234") ;

[80]

Chapter 2

An Arquillian JUnit test case requires three important items: the @Runwith
annotation with the Arquillian class reference, the deployment static method,
which is annotated, and at least one method annotated with the @eTest method.

The deployment method is annotated with @beployment, which is part of the
Arquillian testing framework, and is responsible for creating, the ShrinkWrap
bundle. The shrinkWrap APl is very similar to the static builder factory. The object
is instantiated and then properties are set on the builder through the add method.
The classes to be deployed are explicitly added, and adding a blank CDI bean
configuration file follows it. (Java Packages can also be specifically deployed.)

The output of running this unit test is as follows:

3d3e541b-c6b9-4e58-918d-febael05ead20.jar:

/je7hb/

/je7hb/basic/

/je7hb/basic/arquillian/

/je7hb/basic/arquillian/HouseholdCredit.class

/je7hb/basic/arquillian/PremiumCreditProcessor.class

/je7hb/basic/arquillian/
HouseholdCredit$StreetCreditProcessor.class

/je7hb/basic/arquillian/Economy.class

/je7hb/basic/arquillian/CreditProcessor.class

/je7hb/basic/arquillian/Premium.class

/META- INF/

/META-INF/beans.xml

21 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)

Household#ficreateCreditProcessor () creates proc =
StreetCreditProcessor{workerId="'promoter1000"'}

processor = StreetCreditProcessor{workerId = 'promoterl000'}
check for account [1234]

Household#freleaseCreditProcessor () dispose proc =
StreetCreditProcessor{workerId="'promoter1000"'}

The println() statement in the deployment static method is actually dumping the
contents of the ShrinkWrap bundle. It can be useful to see this debuggable output
in some certain situations, but for normal development work it will be annoying for
other staff. So, I recommend that you don't forget to remove that debug line.

From the preceding screen output, we can see the Arquillian framework bundles up
the classes into a bundle, performs the dependency execution, and executes the test.
Most importantly, it handles the lifecycle of the container beans.

[81]

Context and Dependency Injection

Moreover, because the test works in Weld, in the CDI container as it truly runs,
there is really good confidence to assume that it work, as expected in the GlassFish
and JBoss application server. After all, this is exactly all about the standards and
portability of the code.

Let us move to the penultimate area of CDI for this overly long tutorial. How can
the CDI container manage crosscutting concerns for managed beans?

CDI and crosscutting concerns

CDI helps us with writing type safe and portable crosscutting concerns, where a
technical component spans across different areas of application. If these concerns were
implemented as a traditional code they would be scattered across the entire application
through duplicated code, moreover entangled with the core business logic.

Interceptors

CDI supports two ways of extending the functionality of the bean managed by the
container, namely: Interceptors and Decorators.

Interceptors are the way to add crosscutting concerns to several managed beans. A
classic example of a crosscutting concern is logging, because it is a feature that is a
part of multiple domains. Practically any software system may require the logging
ability. The issue is how to specify this in a clean way, which does not interfere with
the application business logic of the class; it should not break encapsulation and
provide flexibility.

An Interceptor is a bean declared with the @javax. interceptor. Interceptor
annotation. The method Interceptor should have call @javax.interceptor.
AroundInvoke that takes the javax.interceptor.InvocationContext as

a parameter.

Let us look at an example of this Interceptor, but first we need an additional user
defined annotation as follows:

package je7hb.basic.arquillian;

import javax.interceptor.InterceptorBinding;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import static java.lang.annotation.ElementType.METHOD;

[82]

Chapter 2

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Inherited

@Target ({TYPE, METHOD})

@Retention (RUNTIME)

@InterceptorBinding

public @interface TransactionalBound { }
We define @TransactionalBound custom annotation, which is a type of @
InterceptorBinding. This annotation declares that wherever we declare a class or
method with this annotation, we denote a join-point, which is a specific location in
our code, to inject a CDI Interceptor.

Let us now define the custom Interceptor for our annotation now as follows:

package je7hb.basic.arquillian;

import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;

@Interceptor
@TransactionalBound
public class TransactionalBoundInterceptor
@AroundInvoke
public Object handleTransaction(InvocationContext ctx)
throws Exception ({
System.out.println ("#handleTransaction *before* "+
"invocation") ;
Object value = ctx.proceed();
System.out.println ("#handleTransaction *after* "+
"invocation") ;

return value;

}

The class TransactionalBoundInterceptor is declared as an Interceptor,
bindable with the @Interceptor annotation; it has a @aroundInvoke method. The
handleTransaction method accepts an invocation context object, and simply does
nothing special, it executes the invocation context's target method. The point is that
the interception method can manage the transaction in a real application, it can deal
with exceptional conditions or in this case log to the console.

[83]

Context and Dependency Injection

All we need now is the managed bean and it is as follows:

package je7hb.basic.arquillian;
import javax.annotation.*;
import javax.enterprise.inject.Default;

@Default
public class TransactionalCreditProcessor
implements CreditProcessor {

@Override

@TransactionalBound

public void check(String account) {

if (laccount.trim().startsWith("1234"))
throw new RuntimeException
("account: ["+account+"] is not wvalid!");

}

System.out.printf ("Inside Transactional Account [%$s]"
+ "is Okay\n", account) ;

}

@PostConstruct
public void acquireResource() {

System.out.println(this.getClass()
.getSimpleName () +"#acquireResource () ") ;

}

@PreDestroy
public void releaseResource() {

System.out.println(this.getClass()
.getSimpleName () +"#releaseResource ()") ;

}

The TransactionalCreditProcessor class is another type of the credit

processor that makes use of transaction. We apply our custom annotation
@TransactionalBound to the check () method in order to add transaction behavior
injected around the invocation of the method. The check () method is the target
join-point of the @TransactionalBound annotation. Any such join-points are the
target of the invocation context in the TransactionalInterceptor.

[84]

Chapter 2

Finally, this bean is declared as @Default, which is the default qualifier. In order to
enable the Interceptors, we need to add a CDI beans configuration file as follows:

<?xml version = "1.0"?>
<beans
xmlns = "http://java.sun.com/xml/ns/javaee"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalLocation = "
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans 1 1.xsd">
<interceptors>
<class>je7hb.basic.arquillian
.TransactionalBoundInterceptor</class>
</interceptors>
</beanss>

The beans . xm1 file simply declares the Interceptors for the application. We can have
more than one Interceptor, but you always have to declare it.

Let us finish up the example with the unit test based on the Arquillian framework
as follows:

package je7hb.basic.arquillian;
/* ... as before ... */

@RunWith (Arquillian.class)
public class TransactionalCreditProcessorTest
@Deployment
public static JavaArchive createDeployment () {
JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
.addClasses (Economy.class, Premium.class,
CreditProcessor.class, Transactional.class,
TransactionalCreditProcessor.class,
TransactionalInterceptor.class)
.addAsManifestResource (
"je7hb/basic/arquillian/interceptors/beans.xml",
ArchivePaths.create ("beans.xml")) ;
return jar;

private @Inject CreditProcessor processor;

@Test

[85]

Context and Dependency Injection

public void shouldProcessTransactionalCredit() {
System.out.printf ("processor = %s\n", processor);
assertNotNull (processor) ;
processor.check ("1234") ;

}
}

The ShrinkWrap bundle requires the location path of the custom beans . xml file,
which configures the transactional interpreter. The rest of the cost is largely the
same as before and you already understand it, so let us go straight to the output.

b73cfbef-ad2f-4165-blcf-f8fffad507eb.jar:
/je7hb/
/je7hb/basic/
/je7hb/basic/arquillian/
/je7hb/basic/arquillian/TransactionalInterceptor.class
/je7hb/basic/arquillian/TransactionalCreditProcessor.class
/je7hb/basic/arquillian/Transactional.class
/je7hb/basic/arquillian/Economy.class
/je7hb/basic/arquillian/CreditProcessor.class
/je7hb/basic/arquillian/Premium.class
/META-INF/
/META-INF/beans.xml
23 [main] INFO org.]jboss.weld.Version - WELD-000900 1.1.9 (Final)
TransactionalCreditProcessor

$Proxy$ $$ WeldSubclass#facquireResource ()
processor = je7hb.basic.arquillian.TransactionalCreditProcessor

S$Proxy$ $$ WeldSubclass@73aldd83
TransactionalInterceptor#handleTransaction *before* invocation
Inside Transactional Account [1234] is Okay
TransactionalInterceptor#handleTransaction *after* invocation

TransactionalCreditProcessor
$Proxy$_ $$_WeldSubclass#ireleaseResource ()

Process finished with exit code 0

From examining the output of this unit test, we can see that the transactional
Interceptor is fired as on the call to the creditProcessor.check () method, which
is actually the dynamic proxy subclass of TransactionCreditProcessor, which has
had the Interceptor logic interwoven into it.

Also, we can also say that CDI still manages the lifecycle of the bean in the correct
fashion, the so-called expensive resource is acquired and released in the right order.

[86]

Chapter 2

Decorators

Another way to extend the bean functionality is to create a Decorator for a managed
bean. An Interceptor allows the bean behavior to modify through a crosscutting
concern. A Decorator only allows a bean's contractual interface to be modified. In
CD], Decorators are created dynamically. A Decorator only decorates the interfaces
that it implements.

A CDI Decorator is a Java class that is annotated with the @becorator annotation
and it is also configured as a registered Decorator in the configuration file beans.
xml. A CDI Decorator bean class must also have a delegate injection join-point,
which is declared with the @Delegate annotation. Both @becorator and @belegate
are found in the Java package javax.decorator.

Let us look at Decorator for a credit-processing example. Suppose we had a unique
requirement for only premier-care customers, who require a call to the sanctioning
service before the business can supply any credit. Let us hypothesize that the
sanctioning service is a placeholder for legal regulations in the financial services.
First we need to define the service as follows:

package je7hb.basic.arquillian;

public class SanctionService
public void sanction(String account, String ccyPair) {
System.out.printf ("SanctionService#sanction
(" +"account = %s, other = %s)\n", account, ccyPair);

}

SanctionService is very simple, because it prints the arguments to the console. We
will move on to the CDI Decorator bean.

package je7hb.basic.arquillian;
import javax.decorator.Decorator;
import javax.decorator.Delegate;
import javax.inject.Inject;

@Decorator
@Premium
public class CreditProcessorDecorator implements CreditProcessor {

@Inject SanctionService sanctionService;
@Inject @Delegate @Premium CreditProcessor processor;

[87]

Context and Dependency Injection

@Override

public void check(String account)
sanctionService.sanction (account, "EURGBP") ;
processor.check (account) ;

}
}

First we annotate the class with @Decorator, but also notice we are denoting this
type with the @Premium annotation, which if you remember is a custom qualifier for
our tests.

The field processor is denoted as an injection point with the @Delegate annotation,
and again it matches the type of credit processor we want to inject in this bean,
which is for premier-care customers.

Incidentally, the delegate injection point may be stationed in front of a field, a
constructor parameter, or an initializer method parameter of the Decorator class.

SanctionService is injected into this bean and in the check () method, we actually
call the method sanction () with the account code and the currency pair, foreign
exchange standard to represent monetary transfer from Euros to British Pounds
before we invoke the check () method of credit processor.

We need to add the beans .xml file configuration in order to declare the Decorator
to CDI.

During initialization, the CDI Container injects the SanctionService in to the

bean type CreditProcessorDecorator. When we call the check () method with
this bean type, our decorator invokes the sanction () method with the account code
and the foreign exchange currency pair EURGBP. If the real time sanction () method
returns normally then the decorator invokes the check () method of the delegate
credit processor.

Decorators must be declared inside the beans.xml file configuration in order to be
active in the application:

<?xml version = "1.0"?>
<beans
xmlns = "http://java.sun.com/xml/ns/javaee"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation = "

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans 1 1.xsd">

<decorators>

<class>je7hb.basic.arquillian
.CreditProcessorDecorator</class>

</decorators>

</beans>

[88]

Chapter 2

We can have more than one Decorator and we an have multiple Decorators and
Interceptors in the configuration file.

Our test case is as follows:

package je7hb.basic.arquillian;
/* ...as before... */

@RunWith (Arquillian.class)
public class CreditProcessorDecoratorTest
@Deployment
public static JavaArchive createDeployment () {
JavaArchive jar = ShrinkWrap.create (JavaArchive.class)
.addClasses (Economy.class, Premium.class,
CreditProcessor.class, CreditProcessorDecorator.class,
PremiumCreditProcessor.class, SanctionService.class)
.addAsManifestResource
("je7hb/basic/arquillian/decorators/beans.xml",
ArchivePaths.create ("beans.xml")) ;

System.out.println(jar.toString(true)) ;
return jar;

@Inject @Premium CreditProcessor processor;

@Test

public void shouldProcessTransactionalCredit () {
System.out.printf ("processor = %s\n", processor) ;
assertNotNull (processor) ;
processor.check ("1234") ;

}
}

In the unit test, we only have to define the injection point that is required. It is a credit
processor that is qualified as premium. CDI will take care of the rest, the exact type of
bean to be injected, and in this case the decorated bean CreditProcessorDecorator,
the lifecycle management of the beans, and other dependencies.

The output of running this unit case is as follows:

93327296-d137-45a2-adll-fec5fa7d7b2a.jar:
/je7hb/

/je7hb/basic/

/je7hb/basic/arquillian/
/je7hb/basic/arquillian/SanctionService.class

[89]

Context and Dependency Injection

/je7hb/basic/arquillian/CreditProcessorDecorator.class
/je7hb/basic/arquillian/PremiumCreditProcessor.class
/je7hb/basic/arquillian/Economy.class
/je7hb/basic/arquillian/CreditProcessor.class
/je7hb/basic/arquillian/Premium.class

/META-INF/

/META-INF/beans.xml

22 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
PremiumCreditProcessor$Proxy$ $$ WeldSubclass#acquireResource ()

processor = je7hb.basic.arquillian.PremiumCreditProcessor
$Proxy$ $$ WeldSubclass@9a68065

Inside the CreditProcessorDecorator#check ()
SanctionService#sanction (account = 1234, other = EURGBP)
Account [1234] is Okay

End of the CreditProcessorDecorator#check ()
PremiumCreditProcessor$Proxy$ $$ WeldSubclass#releaseResource ()

Procesgs finished with exit code 0

As you can clearly see, the embedded Weld container creates a proxy of the
premium credit processor bean. The CDI container also instantiates the bean
CreditProcessorDecorator and injects the dependencies. Eventually, the bean's
check () method is called, and we can see the sanction service being called first,
before the delegate proxy bean is called.

Observers and events

CDI allows decoupling of the consumer and a target dependency through the
custom application events. The CDI event is a type safe replacement for the
Observer Design Pattern (ODP). It works through the type safe annotations and
generics to completely decouple the subject of action (event producers) from the
observers (event consumers). The CDI events and observers can be fine-tuned
through the qualifiers in this model.

Applications create a POJO event class to serve as the payload. An event that
represents when a create application has been approved is as follows:

package je7hb.standalone.events;
public class ApplicationApproved {
private final String message;

public ApplicationApproved (String message) {
this.message = message;

}

public String getMessage() {return message;}

}

[90]

Chapter 2

Next, we need an event producer. Let us create one with field with the type javax.
enterprise.event.Event in order to fire events to interested parties. This is the
class ApprovalNotifier as follows:

package je7hb.standalone.events;
import javax.enterprise.event.Event;
import javax.inject.Inject;

public class ApprovalNotifier {
@Inject Event<ApplicationApproveds> eventSource;

public void fireEvents (String msg)
eventSource.fire (new ApplicationApproved (msg)) ;

}

The CDI container injects an instance of the parameterized type
Event<ApplicationApproveds. In order to notify observers for this type of event,
we simply invoke the fire () method.

Third and lastly, we need an observer. With the CDI events, we can write a simple
POJO to receive notifications. The class CreditApproval PostProcess is as follows:

package je7hb.standalone.events;
import javax.enterprise.event.Observes;
import javax.inject.Inject;

public class CreditApprovalPostProcess
@Inject ExternalServices externalServices;

public void postApproval
(@0bserves ApplicationApproved application) {
externalServices.process (application) ;

}

The purpose of this class is to listen to credit approvals and communicate them to
the external service. We add the annotation @javax.enterprise.event.Observes
to the event type. CDI does not require us to register with an event source. The
container takes care of all of the details and the wiring of consumer to producer.

It really is rather simple.

The type-safe manner, indeed, comes into its own when we apply the CDI qualifiers
with events and observers. Let's take the example further. Suppose we want a
separate notification for premium customers who take long-term credit.

[91]

Context and Dependency Injection

First, we modify the ApprovalNotifier POJO, add another event source, which is
qualified as @LongTerm. An abridged version of this class is as follows:

public class ApprovalNotifier
/* .. %/
@Inject @LongTerm
Event<ApplicationApproveds> longTermEventSource;

public void firelLongTermEvents(String msg)
longTermEventSource.fire (new ApplicationApproved (msg)) ;

}

Adding the @LongTerm qualifier to the event source strongly associates the event
source with only those observers. We only add an extra method to the POJO class
CreditApprovalPostProcess as follows:

public class CreditApprovalPostProcess
@Inject ExternalServices externalServices;

/* ... %/
public void postLongTermApproval
(@LongTerm @Observes ApplicationApproved app) {

externalServices.process (app) ;

}

The method postLongTermApproval() takes a type with the qualifier @ LongTerm,
and the CDI container only invokes this method with bean type associated with
the qualifier. Interestingly enough, the original postApproval() in the event
consumer is equivalent to the qualifier of @Any. In other words, both of these
declarations are the same:

void postApproval (@Observes ApplicationApproved app)
void postApproval (@Observes @Any ApplicationApproved app)

And this implies the event sources definitions too:

@Inject ExternalServices externalServices;
@Inject @Any ExternalServices externalServices;

[92]

Chapter 2

Stereotypes

Stereotypes are a way of combining a single CDI scope and other annotations in a
useful group. The CDI stereotypes are themselves annotations, which are declared
with the annotation @javax.enterprise.inject.Stereotype.

The CDI stereotypes can be thought of as macros for the annotations and thus can
reduce the verbosity of several qualifiers and scoped annotations. A stereotype for
a premium credit check and long-term interest customer is as follows:

@Stereotype

@Retention (RUNTIME) @Target (TYPE)

@Secure @Premium @LongTerm @Transactional
public @interface HighValue {}

This CDI stereotype Highvalue custom annotation binds together three other
qualifiers and a transactional scope. In this way, we are modeling some common
purpose. If the stereotype does not declare a scope, it is assumed to be @befault.
A stereotype may also bind other CDI stereotypes.

Summary

In this chapter, we looked at CD]I, the standard API for managed beans with
conversational scope in Java EE 7.

* Context: The ability to bind lifecycle and interactions to stateful components
together in a semantic encapsulated boundary, which is type safe and
extensible

* Dependency Injection: The ability to inject a dependent component into
an object in a type safe manner and includes the capability to decide on the
implementation of those dependent components at runtime

We saw that CDl is a very elegant solution and straightforward method for
dependency injection. CDI managed beans can practically be a plain old Java object
(POJO). Most of the time, CDI managed beans are concrete classes, which may or
may not implement one or more Java interfaces, or extend a single abstract class. A
CDI bean may be declared £inal or have £inal methods, and they can be generic
parameterized types. CDI supports application factories that produce managed bean
types. If required, an application can also use a disposal factory in order to clean up
resources. CDI support producer methods that allow the application to overcome
limitations in the container. The application can supply a custom factory that creates
bean types for the container. CDI also support disposal methods, which may be
associated with the same factory class.

[93]

Context and Dependency Injection

CDI managed beans can be differentiated by qualifiers, which are custom Java
annotations. It is also possible to programmatically look up a bean by type and
qualifier. Moreover, most applications will make use of the @Inject annotation for
dependency injection.

The CDI container supports five default scopes for managed beans, namely
@RequestScoped, @SessionScoped, @ApplicationScoped, @ConversationScoped,
and @eDependent. It is possible to define further custom scopes. The CDI beans

are automatically associated with associated contextual scope, which defines their
lifecycle. In other words, CDI managed beans live their lives in a well-defined
scope. However, if the bean is declared @Dependent scope then the lifecycle is
managed by the JVM.

At the end of an HTTP session any associated CDI managed beans with
@SessionScoped are destroyed, and then they can be garbage collected by the JVM.

At the end of an HTTP request any associated CDI managed beans with
@RequestScoped are destroyed, and then they can be garbage collected by the JVM.

We learnt how to develop a standalone CDI application for Java SE using JBoss. We
wrote some basic unit tests with Gradle as the build tool. Next, we moved on to the
open source project DeltaSpike, which is an open source framework for a standalone
CDI container with semi-portable code, and we developed test cases around more
features of CDI. We increased our learning about writing abstract test case to handle
the startup and shutdown of the CDI container. We saw there were limitations with
such tools, and we understood them.

Finally, we moved to the Arquillian framework, which was an integration unit
test framework that assembled tight bundles and deployed them to an embedded
application server seamlessly. We also saw how to extend our Gradle build,

and wrote more involved unit tests to see the lifecycle operations, namely post
construction and pre-destruction, and how to extend CDI managed beans with
Decorators and Interceptors.

In the next chapter, we will move to the EJB container, which has a different
behavior to CDI and where E]Bs do not have contextual scope generally.

[94]

Enterprise Java Beans

The Reverend, Jesse Jackson said, "I am not a perfect servant. I am a public servant. In
1999, Enterprise Java Beans (E]Bs) first appeared in the J2EE 1.0 specification. There
were these heavyweight EJB components that ran inside an EJB container. E]Bs were
the original endpoints of the Java enterprise platform. The basic idea was that a
client application would remotely make calls to a remote EJB endpoint in order to do
some unit of work. The architecture was decidedly pre-cloud computing and client
server.]2EE EJBs were either stateless or stateful; they could also be entity beans;
and finally there was a concept of endpoints designed for sending and receiving data
inside message-oriented systems, which are called Message Driven Beans (MDBs).
MDBs were also part of the J2EE ecosystem. MDBs are covered in Chapter 9, Java
Message Service 2.0.

In Chapter 2, Context and Dependency Injection we talked about Context and
Dependency Injection and managed beans that are tied to a contextual scope. The
CDI container managed CDI beans. EJBs are managed by an EJB container, and
unlike CDI managed beans there is no contextual scope associated with them at all.
EJBs have their own lifecycle that is tied to the deployment of the application inside
the server. EJB, CDI, and the JPA specifications rely heavily on annotations for strong
type checking with the Java compiler.

EJB are endpoints for an invocation call from an E]JB client. The communication
between the EJB client and server takes place on a defined protocol; it can be local
calls between components running inside the same Java Virtual Machine (JVM), or
it can be distributed remote calls across to another JVM over the network.

Enterprise Java Beans

EJB protocols

The local protocol is equivalent to calling a function on the JVM call frame stack. So it
is just like invoking a function and therefore it is the fastest.

The network protocol is called RMI-IIOP and originally it was designed for
distributed communication between Java EJB applications and other non-Java
systems. IIOP stands for Internet Inter-ORB Protocol, which is a protocol that
delivers Common Object Request Broker Architecture (CORBA)to the Java
platform. IIOP is a much older technology sanctioned for distributed communication
of software that supports cross platform systems. RMI stands for Remote Method
Invocation, and this is the standard Java technology to send messages, serializable
Java objects from one JVM to another, across a network. Therefore the term
RMI-IIOP stands for RMI over IIOP.

Criticism of EJB

CORBA is a much earlier communication and object data specification created by
the Object Management Group (OMG) in the late 1990's, which was originally
designed to allow software components written in different languages and running
on different platforms to work together. Actually, CORBA was superseded in the
twenty first century by the popularity of Service Oriented Architecture (SOA). The
idea of using XML Web Services and invocation remote service function by sending
and receiving data using SOAP and other protocols.

The point of this preamble is the EJB ,which in the beginning of the twenty first century
was based on some fairly old standards. There are not many businesses that develop
with CORBA nowadays, because of the poor implementations of the standard which
could be incompatible yet were deemed certifiable; the standard process was mired

in politics and different ulterior business motives. By the time CORBA and OMG
organizations got their act together, the world had moved on to Representational
State Transfer (REST) systems and orchestration through Web Services.

Business users of the earlier J2EE specification found that RMI-IIOP, historically, was
painfully slow and there was a performance penalty; this was because the early EJB
specifications only allowed RMI-IIOP. In J2EE 1.2 release, the idea of local interface
was created to address this penalty. A local interface is close in performance to a
method call. Behind the scenes a call to E]B is happening through a proxy.

With all this legacy technology, no wonder developers and architects were put off
EJB for building agile enterprise applications. Eventually the expert group did realize
there were issues with J2EE.

[96]

Chapter 3

Simplification of EJB

The breakthrough for Enterprise Java Beans came in EJB 3.0 (JSR-220), which was a
radical departure from the J2EE specification and was delivered in Java EE 5. The
EJB specification was simplified substantially; the focus was on the idea of ease-of-
development, which was achieved through the heavy reliance on annotations. The use
of annotations brought much sought after affordance to the programming of Java
EE applications. The influence of the movement and worldwide interest in Ruby on
Rails was also felt through the idea of convention over configuration that practiced a
less verbose code, and lesser dependence on XML configuration files.

Gavin King, the creator of Hibernate, was a firm believer in the EJB 3.0 specification.
Many features of Hibernate found their way into the EJB entity bean specification as
the Java Persistence API. Entity beans and JPA are covered in a subsequent chapter.

o You only learn one thing about EJBs in Java EE 7: that they are
~ lightweight POJO, which can come and go. Stateless EJBs are the
Q simplest endpoints that you can reach in Java EE. Stateful E]Bs have a
higher price because of the their implicit connection with the client.

Features of EJB components
There are three types of EJB:

Bean Type Description

Session Executes a useful activity of work for client; it can also
be a web service endpoint. The term session implies that
there is a hidden handle that is the reference between a
client and the server endpoint.

Message An asynchronous endpoint that consumes, reads a
message object from a message queue, and performs
some unit of work.

Entity Represents an entity from a database or other
persistence store, especially in the older J2EE
specifications. Entity EJB are not endpoints for client
invocations, and have been usurped by Java Persistence
APL

This chapter covers the session EJB. The other bean types have chapters specifically
dedicated to them.

[97]

Enterprise Java Beans

EJB have a list of standard features:

EJB feature

Description

Remote invocation

Local invocation
Web service invocation

Transactions

Asynchronous method
invocation

Deployment

Dependency Injection

Security

Naming Directory

Job Scheduling

EJB component declared as remote beans can
be called over a network connection using the
RMI-IIOP.

EJB component declared as a local bean can
only be called by reference in the same JVM.

EJB component declared as web service can be
called using web service invocation.

EJB components can participate in transactions
that are managed by the application server,
the EJB container, or they can create their

own transaction context and manage the
transaction themselves.

The EJB container and the application server
will invoke the EJB component endpoint on
a particular thread. The writer does not have
to concern themselves with multiple thread
programming.

EJB components are deployed and managed
by an EJB container, which manages their
lifecycle. Unfortunately EJB components do
not have contextual scope in the way CDI
managed beans do.

Other components and resources can be
injected to an EJB component.

EJB component may have role based Java EE
security applied at the invocation call site or
on the entire type itself.

EJB component may be given a specific name
from JNDI in order to allow EJB clients to look
it up by reference name.

An EJB component endpoint method may be
declared as a scheduled call, a method that
is executed in the background by the EJC
container at least once in the future or more
than once periodically.

[98]

Chapter 3

Session beans

A session EJB is a component that encapsulates specific behavior to process the
business logic of an application. Session EJBs have no concept of persistence.

There are three types of session bean available in the EJB specification. They are
stateless, stateful, and singleton beans.

Stateless session beans

A stateless session bean is an EJB component that does not maintain state
information between client invocations. If you need conversational state and
contextual awareness you look to CDI.

Stateless session beans, then, are reserved by design to serve EJB clients that have no
requirement to have a conversation. The client just wants to invoke a function on the
endpoint and do some useful work on the server, and then carry on with the rest of
instructional life.

In EJB 3.x denoting a stateless enterprise bean is very easy. You simply use the @
javax.ejb.Stateless annotation on the class. The class can be a Plain Old Java
Object (POJO). Let us simply define one now:

Some people believe that stateless session EJB should have been

really called Poolable Beans, because these types of EJB are usually
"~ allocated from a resource inside the application server.

To declare a stateless session EJB, you add the annotation @estateless to the class.
Here is an example of a customer service E]B:

package je7hb.basic.ejb;
import javax.ejb.Stateless;
import java.util.x*;

@Stateless
public class SupportHelpDesk {

private List<String> agents = Arrays.asList(
"Agnes", "Brian", "Harry","Sally", "Tom", "Pamela",
"Mark", "Wendy", "Marcia", "Graeme", "Pravztik",
"Hadeep", "Florence", "Robert", "Zoe", "Frank");

[99]

Enterprise Java Beans

public String getNextAgentName () {
return agents.get ((int) (Math.random() *
agents.size()));

}

It does not get easier than this. Annotate the POJO with the stateless annotation on
the type. When this E]B is deployed in the application server, it will be assigned an
allocation pool size, which can be configured by the system administrator; the Java
EE product vendor determines the actual connection pool size. The application server
instantiates SupportHelpDesk as a stateless session EJB, and most implementations
will wrap a hidden proxy object around the instance. This proxy delegate has opaque
container methods and it has a delegation method that invokes one public method
getNextAgentName (), which in turn returns a random name of agent.

Let us look at the Gradle build file for this project:

// Same Plug-in imports as before

group = 'com.javaeehandbook.bookl'
archivesBaseName = 'ch03-ejb'
version = '1.0'

repositories {
mavenLocal ()
mavenCentral ()
maven {
url 'https://maven.java.net/
content/groups/promoted’
}
maven {
url 'http://repository.jboss.org/
nexus/content/groups/public’

}

dependencies {
compile 'org.glassfish.main.extras:\
glassfish-embedded-all:4.0.1-b01"
compile 'javax:javaee-api:7.0'

testCompile 'junit:junit:4.11'
testCompile 'org.jboss.arquillian.junit:\
arquillian-junit-container:1.0.3.Final’
testCompile 'org.jboss.arquillian.container:\
arquillian-glassfish-embedded-3.1:1.0.0.Final-SNAPSHOT'

}

// Typical Gradle Project - Same as before

[100]

Chapter 3

Only the dependency management is important as shown in the preceding build
file. We are using the Arquillian test framework again, and we explicitly add a
dependency on a real application server, GlassFish.

Let's move on to the unit test, which is an Arquillian integration test:

package je7hb.basic.ejb;

/* Other imports omitted */

import javax.ejb.EJB;

import static org.junit.Assert.assertNotNull;

@RunWith (Arquillian.class)
public class SupportHelpDeskTest
@Deployment
public static JavaArchive createDeployment () {
JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
.addClasses (SupportHelpDesk.class)
.addAsManifestResource (
EmptyAsset . INSTANCE,
ArchivePaths.create ("beans.xml")) ;

return jar;

@EJB SupportHelpDesk desk;

@Test
public void shouldRetrieveDifferentAgents()
System.out.printf ("Support help desk = %s\n", desk);
for (int j=0; j<5; ++j) {
String agent = desk.getNextAgentName () ;
System.out.printf ("The next agent = %s\n",agent) ;
assertNotNull (agent) ;

}

In order to reference the stateless EJB inside the same JVM, and in the same EJB
container, we explicitly obtain a reference to the bean using the @egs. This is similar
to the CDI injection, but not quite the same; this injection of a local reference takes
place without contextual scope, and the EJB container provides it whenever the EJB
bean is created.

[101]

Enterprise Java Beans

The test method shouldRetrieveDifferentAgents () in this unit test executes a
simple for-do loop that invokes the EJB service method. The test result prints random
agent names to its users. Here is the abbreviated output of the test for study:

INFO: Created virtual server server

Aug 27, 2013 3:53:40 PM org.apache.catalina.realm.JAASRealm
setContainer

INFO: Setting JAAS app name glassfish-web

Aug 27, 2013 3:53:40 PM com.sun.enterprise.web.WebContainer
loadSystemDefaultWebModules

INFO: Loading application [test] at [/test]

Aug 27, 2013 3:53:41 PM org.glassfish.deployment.admin.
DeployCommand execute

INFO: test was successfully deployed in 2,658 milliseconds.

Support help desk = je7hb.basic.ejb.SupportHelpDesk@790ffdé6

Sally

The next agent = Graeme

The next agent

The next agent = Pravztik
The next agent = Pamela
The next agent = Florence

PlainTextActionReporterSUCCESS
No monitoring data to report.

Aug 27, 2013 3:53:41 PM com.sun.enterprise.v3.server.AppServerStartup
stop

INFO: Shutdown procedure finished
Procesgss finished with exit code 0

We will cover referencing of session EJB by clients and the lifecycle later on. Let us
move onto the second type of session EJB, the stateful ones.

Concurrency and stateless session EJBs

We have seen how to create a stateless session EJB. The developer may be tempted to
think these beans can easily handle concurrency. However, act with extreme caution.
An EJB property field will share state Java threads that are passing the component,
whereas local variables that are declared inside the method are shared only by the
thread context. There are no guarantees on concurrency for a stateless session EJB.
This is important to understand, especially when E]Bs are instantiated from a fixed
size pool of E]Bs inside an application server.

[102]

Chapter 3

A stateless session bean has a lifecycle. The E]JB container has the responsibility to
allocate a bean to a particular client. By marking a bean as stateless, we humbly
declare this bean can be associated with any EJB client. In the end, the code inside
method may alter fields of the bean, but we cannot guarantee that the values of those
fields will remain the same in the next invocation of the same bean and possibly on a
different Java thread.

If you are thinking about concurrency and Java EE then read ahead to Appendix D,
Java EE 7 Assorted Topics.

Stateful session beans

A stateful session bean is a session E]B that keeps track of handle to the client caller.
In other words, a session EJB maintains state that preserves for each request from a
user. Unlike a stateless session bean, a stateful session bean is not shared. The state
is only removed once the client terminates. It cannot be reclaimed. The state only
remains for the duration of the client-service communication.

One way to think of this idea is that the user has a conversation with the stateful
session EJB until it ends or the handle is explicitly released.

We will use an e-commerce shopping cart to demonstrate stateful session EJB.
Let us introduce the concept of business interfaces, but first we need an entity to
pass between the client and E]B session bean, which we call a customer. Here is a
customer POJO shown in the following section:

package je7hb.basic.ejb;
import java.io.Serializable;

public final class Customer implements Serializable {
private final String firstName;
private final String lastName;

public Customer (String firstName, String lastName)

this.firstName = firstName;

this.lastName = lastName;
public String getFirstName() { return firstName;}
public String getLastName() { return lastName;}
@Override

[103]

Enterprise Java Beans

public String toString() {
return "Customer{" +
"firstName='" + firstName + '\'' +
", lastName='" + lastName + '\'' +

|}|’.

// equals () and hashCode() methods omitted

}

The customer value object is serializable in order to support remoting, marshalling,
and unmarshalling using RMI-IIOP especially across different JVMs. Marshalling is
the process of serializing a Java object to an output stream to create data that obeys

a predefined protocol. Unmarshalling is the process of reading information from an
input stream with data in the predefined protocol and recreating an active Java object.

There were two types of interfaces for session EJBs: local and remote interfaces. Local
interfaces are great for speed, reduced latency, and co-location of server. Remote
interfaces are great for network distributions call across two different JVMs.

In Java EE 7, business interfaces can use annotations: @javax.ejb.Remote, which is
reserved for session E]B that require a remote call interface, and @java.ejb.Local,
which is