

Java EE 7 Developer
Handbook

Develop professional applications in Java EE 7 with this
essential reference guide

Peter A. Pilgrim

BIRMINGHAM - MUMBAI

Java EE 7 Developer Handbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1180913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 9781849687942

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Peter A. Pilgrim

Reviewers
Antonio Gomes Rodrigues

Manjeet Singh Sawhney

Acquisition Editor
Kevin Colaco

Lead Technical Editor
Ritika Dewani

Joel Noronha

Technical Editors
Gauri Dasgupta

Kapil Hemnani

Monica John

Sonali Verenkar

Project Coordinator
Gloria Amanna

Kranti Berde

Proofreaders
Chrystal Ding

Paul Hindle

Mario Cecere

Indexers
Hemangini Bari

Mariammal Chettiyar

Rekha Nair

Monica Ajmera Mehta

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

About the Author

Peter A. Pilgrim is the 91st Oracle Java Champion, an independent contractor, a
professional software developer and designer. Peter is an honors degree graduate of
London South Bank University in 1990. He had already secured a Master's degree
course for September 1991, but then instead elected to live and work in Germany for
a few years in order to beat off the then, economic recession. He spent productive
years at a joint-venture company developing spectroscopic scientific software in
Fortran 77, C, Solaris, and X Windows.

After four years abroad Peter returned to London and continued his career in the
industry with more C, C++, and UNIX development. He then leapt at a chance to
get into investment banking with Deutsche Bank in 1998. It was at Deutsche Bank
a week after joining them that Peter discovered Java was the next best thing since
sliced bread, when a colleague dropped out of a programming Java training course.
As the substitute person, Peter realized this peculiar Java language and platform was
the future and the answer. Peter applied his studies to his day job and learnt Java
applets, then Java Swing and switched over to the server side with Java Servlets with
web applications involving the Struts framework.

In 2004, Peter created the JAVAWUG user group in London for the burgeoning
development community who were interested in web development on the Java EE.
What started as the Struts Networking Users Group in London quickly expanded to
lot of other areas. The JAVAWUG ran for six years until 2010. He built a reputation
for travelling to Java technology conferences in the US and Europe and being heavily
involved in the wider community. He spoke at several developer conferences
including QCon London, ACCU, Devoxx, Devoxx UK, and JavaOne. In 2007, Peter
was elected to the Sun Microsystems' Java Champions program.

Today, Peter A. Pilgrim is a well-known specialist in Java Enterprise Edition (Java
EE) technology, focused on the server-side and the implementation of electronic
commerce. Peter has built professional Java EE applications for Blue-chip companies
and top-tier investment and retail banks including Lloyds Banking Group, Barclays,
UBS, Credit Suisse, Royal Bank of Scotland, and LBi. He is also a fan of Agile
practices and Test Driven Development. Peter, currently, lives in South London with
his long-term partner Terry, who is a Scottish Diva, business communication coach,
and a singer—her voice is phenomenal.

Peter writes a blog at http://www.xenonique.co.uk/blog/ and is on Twitter as
peter_pilgrim.

Acknowledgment

I want to send out sincere grateful thanks to all of the reviewers of the book, who
pointed out my many egregious errors. Their dedication to the task helped produce
this high quality text that you are reading stand out. It is indeed a privilege to have
these smart people who will prevent you going out into the public technical literary
crowd with egg on your face, due to bad copy and mistaken content. I say thank you
to my external reviewers, Antonio Gomes Rodrigues and Manjeet Singh Sawhney.

I want to thank members of the Packt Publishing team including Abhishek Kori,
Kevin Colaco, Neha Mallik, Joel Noronha, Gloria Amanna, Ritika Dewani, Kranti
Berde, and Kapil Hemnani. All of these folks worked hard to get this text into your
hands. Finally, a special thank you goes to Dhwani Devater, who was the acquisition
editor that approached me with the book concept and with whom I could not turn
down such a challenging project. This book became my personal agenda known as
"the project".

During the Devoxx UK 2013 conference, I discussed several ideas about Java EE
7 and beyond with David Blewin of Red Hat. I also met Aslak Knutsen from the
Arquillian development team also from Red Hat. I want to thank those of you out
in the wider community who saw the earlier presentations about Java EE 7; your
feedback helped to derive the best quality for this book. I express gratitude to
those followers and interested parties on the social networks of Twitter, Linked-In,
Facebook, and Google+, who had kind words to say about writing a technical book.

I also want to say a big thank you to Markus Eisele for accepting my invitation to
write the foreword for this, my first book. Markus is an excellent enterprise guy
who happens to be an Oracle ACE Director and works for Msg in Germany. During
2013, I had a couple of tough months at times and Markus was there in spirit for me
valiantly and graciously.

I thank members of the extended Pilgrim family, Mum and Dad and my sister for
their support.

I wrote this book on a happenstance inquiry from Packt Publishing to help
educate software developers, designers, and interested architects in Enterprise
Java development. I gladly accepted the commission to write. I sieged this great
opportunity. The book become the goal, the goal become "the project". I knew my
life would change drastically from the regular software developer to a technical
educator. It did whilst still holding down professional Java contracting gigs. I
could not afford to let anyone down. The project became the mission, which was to
give developers quality information, demonstrating good practice, and providing
fair explanations around the concepts. I wanted to provide clear guidance in this
fascinating area of technology. I am sure you have heard the saying about putting
back good into the community. Well, this is true for me, too. Yet I wanted to give
more than a return gift. I hoped to engage the worldwide Java community with a
product, a concise and worthy Java EE 7 book. This is my first technical book.

The project was approximately 15 months in the making to get an initial schedule of
promises to the real context of programming, testing and writing content. Emotionally
and technically it was tough; I lived the rivers deep and mountains high.

Finally, I thank my wonderful Scottish lady, the love of my life, my dear partner,
Terry for putting up with me and pushing me on, especially in the early phases of
the project, saying several times in broad Glaswegian Patter, "Haud yer wheesht an'
get oan wae it!". Thank you, I have done it.

About the Reviewers

Antonio Gomes Rodrigues earned his Masters degree at the University of Paris
VII in France. Since then he has worked in various companies Java EE technologies in
with the roles of developer, technical leader, technical manager of offshore projects,
and performance expert.

He currently works on performance problems in Java EE applications.

I would like to thank my wife Aurélie for her support.

Manjeet Singh Sawhney currently works for a well-known UK insurance
company in Bromley (UK) as a Data Architect. Previously, he worked for global
organisations in various roles, including development, technical solutions consulting,
and data management consulting. Even though Manjeet has worked across a range
of programming languages, his core language is Java. During his postgraduate
studies, he also worked as a Student Tutor for one of the top 100 universities in
the world where he was teaching Java to undergraduate students and marked
exams and project assignments. Manjeet acquired his professional experience by
working on several mission-critical projects serving clients in the Financial Services,
Telecommunications, Manufacturing, Retail, and Public Sector.

I am very thankful to my parents, my wife Jaspal, and my son
Kohinoor for their encouragement and patience as reviewing this
book took some of my evenings and weekends from the family.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

To my lady Terry: Love conquers everything,

And lest we forget: Grandma Cecilia Prescod: "Them can skin them face now."

Table of Contents
Preface	 1
Chapter 1: Java EE 7 HTML5 Productivity	 9

Java EE 7	 9
Enhanced HTML5 support	 10
Java EE 7 architecture	 12

Standard platform components and APIs	 12
New productivity themes	 13
Refinements	 14

Java EE Platform	 15
Java EE Profiles	 18
Web Profile	 18
Enterprise Profile	 19

A working example	 21
Entities	 22
Business logic	 25
The service endpoints	 27
A WebSocket endpoint	 28
A RESTful endpoint	 31
The Entity Control Boundary pattern	 36

Summary	 38
Chapter 2: Context and Dependency Injection	 39

Software engineering definitions	 39
The Context and Dependency Injection service	 41
Beans and bean types	 42
Basic injection	 45
Field injection	 45
Setter injection	 46
Constructor injection	 46

Table of Contents

[ii]

Qualifiers	 47
Built-in qualifiers	 49

The CDI classpath scanning	 49
Factory production	 50
Generating new instances every time	 52
Bean names and presentation views	 53
Bean scopes	 55
CDI initialization and destruction	 56

The @PostConstruct annotation	 57
The @PreDestroy annotation	 57

Programmatic Lookup of the CDI Beans	 58
Configuring a CDI application	 59

Standalone CDI application	 60
Building the standalone project with Gradle	 63
Using the DeltaSpike CDI container tests	 64
Injecting arbitrary objects using Producers	 69
Advanced CDI	 72

The lifecycle component example	 72
Alternatives	 74

The Arquillian test framework	 76
A new kind of Java EE testing framework	 76
Setting up of Arquillian	 77
The disposable methods	 79

CDI and crosscutting concerns	 82
Interceptors	 82
Decorators	 87
Observers and events	 90
Stereotypes	 93

Summary	 93
Chapter 3: Enterprise Java Beans	 95

EJB protocols	 96
Criticism of EJB	 96
Simplification of EJB	 97

Features of EJB components	 97
Session beans	 99
Stateless session beans	 99

Concurrency and stateless session EJBs	 102
Stateful session beans	 103
Singleton session beans	 111

Table of Contents

[iii]

The lifecycle of session EJBs	 115
Lifecycle of stateless EJBs	 115
Lifecycle of stateful session beans	 116
Lifecycle of singleton session beans	 118

Business interfaces	 120
Local access	 120
Remote access	 120
Access summary	 121

No interface views	 121
EJB references	 122
Asynchronous invocations	 123
The relationship between EJB and CDI containers	 124
Lightweight scope of EJBs	 125
Summary	 126

Chapter 4: Essential Java Persistence API 3.2	 129
Entities	 130
Defining Entity bean	 130
An entity bean example	 131

A Plain Old Java Object	 131
A simple entity bean	 133
Expanded entity bean definition	 135

Annotating entity beans	 139
Annotating entities with the instance variables	 139
Annotating entities with property accessors	 140
Comparing annotating styles	 142

Running a simple entity bean test	 143
The Gradle build file for the entity bean test	 143
A stateful session bean	 144
An entity bean integration test	 146
A persistence context XML configuration	 148
Arquillian configuration for the embedded GlassFish server	 150
Running an integration test	 152

The lifecycle of an entity bean	 153
The new entity state	 153
The managed entity state	 153
The detached entity state	 153
The removed entity state	 154

EntityManager	 154
Persistence context	 154
The EntityManager methods	 154

Transactional support	 160
Application managed transactions	 160

Table of Contents

[iv]

Retrieving an EntityManager by injection	 162
Retrieving an EntityManager by factory	 162
Retrieving an EntityManager by the JNDI lookup	 164

Moving further along with entity beans	 165
Controlling the mapping of entities to the database table	 165
Expanding the @Table annotation	 165

Mapping the primary keys	 167
The single primary key	 168
Composite primary keys	 169
Using the @IdClass annotation	 169
Using the @Embeddable annotation	 171
Using the @EmbeddedId annotation	 173

JPQL	 175
The dynamic queries	 176
The named queries	 177
The query parameters	 178
The positional query arguments	 179

The entity bean relationships	 180
Mapping with the @OneToOne annotation	 180
Mapping with the @OneToMany annotation	 182
Mapping with the @ManyToOne annotation	 183
Mapping with the @ManyToMany annotation	 184

Configuration of persistence and the entity beans	 186
The structure of the persistence unit configuration	 186
The object-relational mapping files	 187
Standard property configurations for the persistence units	 189

Summary	 190
Chapter 5: Object-Relational Mapping with JPA	 191

Adding finesse to entity beans	 191
Field binding	 192
Binding eagerly	 192
Binding lazily	 192
The trade-off between eager and lazy	 193

Cascades onto dependent entities	 196
Cascade operations	 196
Removal of orphans in relationships	 197

Generated values and primary keys	 198
Table auto increment	 200
Sequence auto increment	 202
Identity auto increment	 203

Entity relationships revisited	 204
One-to-one mapping	 204
Persisting one-to-one unidirectional entities	 208

Table of Contents

[v]

Bidirectional one-to-one-entities	 208
Persisting one-to-one bidirectional entities	 209
Composite foreign keys in a one-to-one relationship	 209

One-to-many mapping	 211
One-to-many relationship with a join column	 213
Bidirectional one-to-many relationship	 214
One-to-many using an explicit join table	 216

Many-to-one mapping	 217
Many-to-one relationship with a join column	 218
Bidirectional many-to-one relationship	 220

Many-to-many mapping	 220
Bidirectional many-to-many relationship	 221
Unidirectional many-to-many relationship	 224

Mapping entity inheritance hierarchy	 225
Hierarchy in a single database table	 226

An example user story	 227
Benefits and drawbacks of the single table strategy	 230

Common base table hierarchy	 231
An example user story	 231
Benefits and drawbacks of joined Inheritance	 234

Table-per-class hierarchy	 235
An example user story	 235
Benefits and drawbacks of table-per-class hierarchy	 237

Extended entities	 238
Mapped super-classes	 238

Troubleshooting entity persistence	 240
Fetch performance	 241
Prefer lazily binding for maximum performance	 241

Entity Relationship	 241
Prefer orphan removal	 243
Excessive queries	 243

Object corruption	 244
Summary	 244

Chapter 6: Java Servlets and Asynchronous Request-Response	 247
What are Java Servlets?	 248
Web containers	 248
The lifecycle of Java Servlets	 250

Loading Servlets	 250
The Java Servlet initialization	 251
The Java Servlet destruction	 252

The Servlet request and response	 252
HTTP Servlets	 254
The deployment model	 255

Table of Contents

[vi]

Getting started with Java Servlets	 258
A simple Servlet	 258

The URL path mapping	 260
The Gradle build project	 262
The containerless Java web application	 263

Request and response	 268
The request parameters	 268
Headers	 269
The request attributes	 269
The session attributes	 271
The Servlet context attributes	 271
Redirecting the response	 272

The web deployment descriptor	 273
Mapping Java Servlets	 274
Configuring a session timeout	 276
Configuring MIME types	 277
Configuring the welcome page	 278
Configuring the error-handler pages	 278
Annotations and the web deployment descriptor	 279

The Servlet filters	 280
The Servlet filter annotation attributes	 281
The Servlet filter XML configuration	 282

The Servlet context listener	 283
Pluggable Servlet fragments	 286
Ordering multiple web fragments	 287

Asynchronous Java Servlets	 289
The asynchronous input and output	 289
A synchronous reader example	 290
An asynchronous reader example	 291
An asynchronous writer	 298

Alignment to the containers	 305
Aligning Servlets to the CDI container	 305

Miscellaneous features	 306
Mapping the URL patterns	 307
Rules for the URL path mapping	 307
Single thread model	 308

Summary	 308
Chapter 7: Java API for HTML5WebSocket	 309

The rise of WebSockets	 310
Early web technology	 310

Table of Contents

[vii]

Enter HTML5 and WebSockets	 311
WebSocket Java definitions	 312
The WebSocket protocol	 313

Server-side Java WebSockets	 314
@ServerEndpoint	 315
@OnMessage	 316

Invoking Java WebSocket	 316
Running WebSocket examples	 319

Java WebSocket API	 319
Native formats communication	 319
Annotated WebSockets on the server side	 320

Lifecycle WebSocket endpoint annotations	 320
WebSocket sessions	 321

A Java WebSocket chat server 	 324
The server side	 325
The web client	 331
Asynchronous operations	 334

Client-side Java WebSockets	 335
@ClientEndpoint	 336
Annotated client example	 336
Remote endpoints	 339

Programmatic Java WebSocket	 340
Encoders and decoders	 341
Summary	 344

Chapter 8: RESTful Services JAX-RS 2.0	 345
Representational State Transfer	 345
JAX-RS 2.0 features	 347

Architectural style	 348
REST style for collections of entities	 349
REST style for single entities	 350

Servlet mapping	 351
Mapping JAX-RS resources	 354
Test-Driven Development with JAX-RS	 354

JAX-RS server-side endpoints	 357
Defining JAX-RS resources	 359
Testing JAX-RS resources	 365
Path URI variables	 368
JAX-RS annotations for extracting field and bean properties	 370

Extracting query parameters	 370
Extracting matrix parameters	 371
Using default values	 372
Extracting form parameters	 373

Table of Contents

[viii]

Field and bean properties	 374
JAX-RS subresources	 375

Resolution by a subresource location	 375
Resolution by a subresource method	 376

Generating a JAX-RS generic response	 377
Response builder	 377
Response status	 380
Generic entities	 383
Return types	 384
Hypermedia linking	 385

JAX-RS client API	 389
Synchronous invocation	 389
Asynchronous invocation	 393

Asynchronous JAX-RS server side endpoints	 396
JAX-RS providers	 399
Filters	 399
JAX-RS filters	 399
Server-side filters	 399
Client-side filters	 401

JAX-RS interceptors	 405
Binding filter and interceptors	 409
Dynamic binding	 411

Summary	 412
Chapter 9: Java Message Service 2.0	 413

What is JMS?	 414
Messaging systems	 416
Point-to-point messaging	 416
Publish-subscribe messaging	 418

JMS definitions	 420
JMS classic API	 420
JMS simplified API	 421
JMS message types	 421

A quick JMS 2.0 example	 421
Establishing a JMS connection	 425
Connecting to a JMS provider	 425
Connection factories	 425
Default connection factory	 426

Message destinations	 427
JMSContext	 427
Retrieving a JMSContext	 432

Table of Contents

[ix]

Sending JMS messages	 433
Upgrading message producers from JMS 1.1	 433
Sending messages synchronously	 434
Sending messages asynchronously	 434
JMS message headers	 435
Setting message properties	 436
Setting a message delivery delay 	 436

Receiving JMS messages	 437
Upgrade from JMS 1.1	 437
Receiving messages synchronously	 438
Receiving messages asynchronously	 439
Non-shared subscriptions	 440
Shared subscriptions	 441
Durable topic consumers	 441

Starting and stopping connections	 443
Redelivery of messages	 443
Other JMS-defined properties	 444

Message-driven Beans (MDBs)	 444
Activation configuration property	 449
Message selectors	 450

JMS exception handling	 451
Upgrading JMS 1.1 code	 452
Establish a JMS 1.1 connection	 452

JMS and dependency injection	 455
Injecting CDI beans	 455
Injection of JMSContext resources	 456
Injecting EJB beans	 457
Definition of JMS resources in Java EE	 457

Summary	 458
Chapter 10: Bean Validation	 461

Introduction to Bean Validation	 462
New features in 1.1	 462
A quick example	 463

Constraint declarations	 466
Elements of a constraint 	 466
List of built-in constraints	 467
Hibernate Validator built-in constraints	 469
Constraint violations	 470

Applying constraint definitions	 471
Custom validators	 472

Table of Contents

[x]

Groups of constraints	 475
Class-level constraints	 475
Partial validation	 478

Constraint inheritance	 480
Ordering groups of constraints	 481
Method-level constraints	 483
Method validation rules	 486

Integration with Java EE	 486
Default access to validator and validator factory	 487
JAX-RS 2.0 integration	 487

Summary	 488
Chapter 11: Advanced Topics in Persistence 	 491

Persistence of map collections	 491
The MapKey relationship	 491
The MapKey join column relationship	 495

Calling stored procedures	 498
Stored procedure query 	 499
MySQL remote server example	 500
Dynamic result set retrieval 	 501
Retrieving outbound parameter values	 503
Stored procedure query annotations	 505

Understanding the criteria API	 508
Criteria queries	 508
CriteriaUpdate	 512
CriteriaDelete	 513

Entity graphs	 515
Worked example of a fetch plan	 518

Miscellaneous features	 526
Custom JPQL functions	 526
Down-casting entities	 527
Synchronization of persistence contexts 	 528
Entity listeners with CDI	 528
Native query constructor mapping	 530

Summary	 531
Appendix A: Java EE 7 Platform	 533

Platform containers	 533
Global JNDI naming	 534
Packaging	 534
Bean XML configuration location	 537
Persistence XML configuration location	 537

Table of Contents

[xi]

Upgrading to Java EE 7 from J2EE versions	 538
Legacy application programming interfaces	 539

GlassFish 4 reference implementation	 540
Installing basic GlassFish	 541
Configuring MySQL database access	 542
Configuring command line	 543
Default resources	 545

Appendix B: Java EE 7 Persistence	 547
Persistence unit	 547
XML schema documents for Java EE 7	 549
Properties	 549
XML representation of object-relational mapping	 550

JPA miscellaneous features	 551
Converters	 551
Native constructor results	 552

Transactions and concurrency	 553
Entity managers	 554
Transactions, entity managers, and
session EJBs	 554

Stateful session beans	 556
Concurrency access locks	 557

Optimistic locking	 557
Pessimistic locking	 558

Appendix C: Java EE 7 Transactions	 559
Transactions	 559

Java Transaction API	 560
Two-phase commit transactions	 560

Heuristic failures	 561
Local transactions	 562
Distributed transactions	 562

Transaction services	 562
Container-Managed Transactions (CMT)	 562
Bean-Managed Transactions (BMT)	 564
Isolation levels	 565
JNDI lookup	 569

Appendix D: Java EE 7 Assorted Topics	 571
Concurrency utilities	 571

Environment reference	 572
Application container context	 573
Contextual tasks	 573

Table of Contents

[xii]

JSON-P	 576
Streaming	 577
Parsing JSON with Streaming API	 578
Generating JSON with Streaming API	 579

Object model	 580
Parsing JSON with the object model	 580
Generating JSON with the object model	 582

Recommended reading	 583
Index	 585

Preface
Jack Dempsey said, "A champion is somebody who gets up, when he can't".

This is a book about the Java EE 7 platform and the goal is to guide the software
developers, designers, and interested architects. The book is aimed at the technical
delivery and will be of service to those who are curious about Java EE. The intention
of this book is to be a reference guide to programmers who are already building
enterprise applications at a novice level and feel that this is the time to improve their
knowledge. The book is also relevant to experienced Java developers, who need to stay
up-to-date with the seventh edition of the Java EE platform.

My aim is to take you on this stupendous journey so that eventually you will have
mastery, satisfaction, and a grand element of purpose around the Java EE 7 platform.
After reading this book, you will be able to start building the next generation Java
application for your enterprise with all the flair and confidence of a programmer
with experienced technical know-how. Mastery is the inner urge to get better at
doing stuff that you have a passion for and this book will show you how much you
can achieve. Your passion for Java EE 7 will drive your satisfaction.

Your journey will start with an introduction to the Java EE 7 platform, which
provides an overview of the initiative, mission, and the description of the umbrella
specification and the individual specifications. There you will find, brief explanations
of the highlights of the new APIs and several updated ones. In the first chapter, we
will see a sample application from the beginning. From then onwards, the book
delves straight into the Context and Dependency Injection, which is one of the most
important APIs in Java. After that, the book moves onto Enterprise Java Beans and
discussion of the server-side endpoints. Along the way, the book introduces Gradle
as a build tool and Arquillian, which is an integration-testing framework. Your
journey continues with Java Persistence and follows on with chapters dedicated to
JMS, Java Servlets, RESTful services, and WebSocket.

Preface

[2]

This is a reference book. The contents around Java EE 7 are not by any means
exhaustive. This book only serves as a start and now, it is up to you to venture forth.
Good luck!

What this book covers
Chapter 1, Java EE 7 HTML5 Productivity, introduces the developer to the new features
of the Java EE 7 platform. The reader is presented with a cursory view of WebSocket
and JAX-RS 2.0.

Chapter 2, Context and Dependency Injection, is a study in the managed beans that have
contextual scope. The chapter delves into qualifiers, providers, and Interceptors.

Chapter 3, Enterprise Java Beans, is an overview of the oldest endpoint in Enterprise
Java. After reading this chapter, the reader will be comfortable with the session
beans, asynchronous methods, and poolable instances.

Chapter 4, Essential Java Persistence API 3.2, is the first of a double that dives into
JPA from the top to the bottom. Developers will understand entities, tables, and the
primary key fields and properties.

Chapter 5, Object-Relational Mapping with JPA, follows on from the previous chapter
and engages the reader into mapping objects with JPA. We cover all of the cardinal
relationships including one-to-one and one-to-many.

Chapter 6, Java Servlets and Asynchronous Request-Response, takes a break from
the persistence modeling to focus on Java Servlets and writing Servlet filters and
context listener. The reader will learn about the asynchronous input and output
with Java Servlets.

Chapter 7, Java API for HTML5WebSocket, tackles the WebSocket technology from the
perspective of Java. The developer will learn how to build new applications using
this important API from both server and client.

Chapter 8, RESTful Services JAX-RS 2.0, is a deep dive into the Java RESTful service
standard in its second edition. The reader will learn about the client-side JAX-RS API
as well as new server-side features.

Chapter 9, Java Message Service 2.0, is a tour around the latest JMS API on the Java EE
7 platform. JMS is all about asynchronous message processing.

Chapter 10, Bean Validation, is a thorough engineering introduction into the wonderful
world of constraint validation around POJOs. You will learn how to write your own
custom constraint checks, and to group and order sets of validation constraints.

Preface

[3]

Chapter 11, Advanced Topics in Persistence, is a final dedicated chapter to persistence and
it covers recent corner cases that have been recently fixed. The reader will learn how to
invoke stored procedures and create fetch plans among other techniques.

Appendix A, Java EE 7 Platform, is a reference around the platform container
configuration. This appendix has a material about XML configuration, the JNDI name
space and packaging. It also has handy section on installing GlassFish 4.0, manually.

Appendix B, Java EE 7 Persistence, covers the configuration of JPA and most
importantly the persistence unit. It has a useful table of all the JPA 2.1 properties.
This appendix delves into miscellaneous parts of the specification including stateless
session EJB, transactions, and concurrency.

Appendix C, Java EE 7 Transactions, is dedicated completely to Java EE transactions.
The reader will find a useful overview of ACID principles, and local and distributed
transaction. There is an excellent coverage of the heuristic failures and illustrations of
the main transaction and consistency issues.

Appendix D, Java EE 7 Assorted Topics, is divided into two sections, namely:
Concurrency Utilities API and JSON-Processing API. These are two new brand
editions to the Java EE 7 specification. The reader will find these sections to be very
handy references.

Online Chapter, Moving Java EE.next to the Cloud, is an explorative chapter from the
heart that discusses the potential repercussions for the Java EE platform migrating to
the cloud-computing environment.

You can download the online chapter from http://www.packtpub.com/sites/
default/files/downloads/7942EN_Chapter_12_Moving_Java_EE_next_to_the_
cloud.pdf.

What you need for this book
You will only need the Java SDK, an IDE, or a text editor, and the patience to
learn. Technically, you can work with IntelliJ, Eclipse, or NetBeans to compile the
source from the book. All of the source code examples in the book were created
with the Gradle build tool, which is an open source software. They were created
and executed against the Java EE 7 reference implementation: GlassFish Open
Source Server Version 4.0.1.

Preface

[4]

Who this book is for
This book is for experienced Java developers. This book is not for dummies. The
book is practically busting out of its seams, because there is so much information
about all of the Java EE 7 technologies; therefore, we have included only the relevant
stuff. Java EE 7 Developer Handbook covers the most crucial types of endpoints for new
enterprise. This book will help many of you that have had prior experience with the
platform. Whilst this book will not provide all the best practice and design patterns
for Java EE 7, it does teach you the basics and the insider knowledge that will help
you hunt for that information further afield.

Given there are more than 32 individual specifications involved in the umbrella
Java EE 7, unfortunately, we could not fit every single topic inside this book. So that
means coverage around Java Server Faces, Java EE Connector Architecture, and the
new Batch API fell outside the remit of this volume. Something had to give, sadly,
to ensure that we did include the most common denominator technologies that an
engineer will face. We do give full attention to brand new Java EE 7 APIs, such as
Java WebSocket, Concurrency Utilities, and JSON Processing API.

If you are unlucky (or lucky) like us, one day you arrive at your workplace, and
suddenly you are told or requested to learn a new technology in a jig time. You
already have a realization about time, which is a precious commodity and we
should not waste it. This is why we focused on using up-to-date technology and
build practices that we think are turning the world over.

Test Driven Development (TDD) has almost baked itself into the stone in the
engineering world. Who professionally nowadays can proclaim within any
organization that we do not test our software? This book reflects some of the best
practices, by illustrating the testing codes. This book is not, however, a full treatise in
testing, rather we show how Java EE 7 is more amenable than ever to write tests, if
TDD is the way you want to practice your development.

Gradle is the next-generation build system of choice for us. It is rapidly being
adopted and has won over some of the world's leading engineering teams in open
source and behind closed doors. Gradle is adopted by Google's Android, Oracle's
Open JavaFX project, and I can claim personally that a certain department in London
at the Barclays Retail bank uses it daily. Gradle can work with Maven and Apache
Ivy repositories.

Java EE 7 is the stopgap specification, we think, between the traditional client-server
model and embracing the cloud platform. So the question is, when do we want to
learn it? You will be rewarded, however, if you make the grade.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We placed ProjectWebSocketServerEndpoint and ProjectRESTServerEndpoint
in the control subpackage, because these POJOs are manipulating the entities on
behalf of the client side."

A block of code is set as follows:

package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.*;
import javax.validation.constraints.Size;
import java.util.*;

@Entity
public class Project {
 @Id @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "PROJECT_ID") private Integer id;

 @NotEmpty @Size(max = 64)
 private String name;

 @OneToMany(cascade = CascadeType.ALL, mappedBy = "project",
 fetch = FetchType.EAGER)
 private List<Task> tasks = new ArrayList<>();

 public Project() {/* Required for JPA */}
 public Project(String name) {this.name = name;}

 public Integer getId() {return id;}
 public void setId(Integer id) {this.id = id;}
 public String getName() {return name;}
 public void setName(String name) {this.name = name;}

 public List<Task> getTasks() {return tasks;}
 public void setTasks(List<Task> tasks) {this.tasks = tasks;}

Preface

[6]

 public boolean addTask(Task task) {
 if (!tasks.contains(task)) {
 Project oldProject = task.getProject();
 if (oldProject != null) {
 removeTask(task);
 }
 tasks.add(task);
 return true;
 } else {return false;}
 }

 public boolean removeTask(Task task) {
 if (tasks.contains(task)) {
 tasks.remove(task);
 task.setProject(null);
 return true;
 } else {return false;}
 }

 // hashCode(), equals(), toString() omitted
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package je7hb.basic.arquillian;
import javax.decorator.Decorator;
import javax.decorator.Delegate;
import javax.inject.Inject;

@Decorator
@Premium
public class CreditProcessorDecorator implements CreditProcessor {

 @Inject SanctionService sanctionService;
 @Inject @Delegate @Premium CreditProcessor processor;

 @Override
 public void check(String account) {
 sanctionService.sanction(account, "EURGBP");
 processor.check(account);
 }
}

Preface

[7]

Any command-line input or output is written as follows:

gradle clean

gradle eclipse

gradle idea

Gradle run

gradle build

gradle build

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Ramping
up on Java concurrency".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[8]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, you can download the code from the
author's GitHub account at https://github.com/peterpilgrim.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Java EE 7 HTML5
Productivity

Nile Rodgers, Le Freak said, "We called it DHM or Deep Hidden Meaning. Our
golden rule was that all our songs had to have this ingredient: understanding
the song's DNA."

This is a handbook about Java EE 7. According to the Collins English Dictionary, a
handbook is a reference book listing brief facts on a subject or place or directions for
maintenance or repair, as of a car. In this book, we will definitely not be repairing
automobiles, but instead we will point the way forward on how the developers,
designers, and architects, practicing or just interested enthusiasts, can make viable
use of Java on the standard Enterprise Platform.

Java EE 7
The Java EE 7 standard defines the following extremely important
architectural interfaces:

•	 EJB Container
•	 Web Container
•	 Context and Dependency Injection with type safety and events
•	 Java Servlet Specification and Configuration
•	 Optional application deployment descriptors
•	 Servlet and CDI extension points
•	 Support for web services RESTful and SOAP
•	 Better support for messaging systems
•	 Cache management on the enterprise

Java EE 7 HTML5 Productivity

[10]

Enhanced HTML5 support
Java EE 7 is about features that offer the developers enhanced HTML5 support.
HTML stands for HyperText Markup Language and is designed as a structure for
presenting and structuring content for the World Wide Web (WWW). Sir Tim Berners-
Lee invented HTML and the first web browser in 1990. At the time of writing, the fifth
revision of HTML is expected to be announced as an official standard by the end of
2014. HTML5 improves support for latest multimedia. The fruits of its labor have
been deliberated upon since the Web Hypertext Applications Technology Group
(WHATWG) (http://whatwg.org/html) meetings from 2004. HTML5 is an official
standard of the World-Wide Web Consortium (W3C) (http://www.w3c.org/TR/
html5), which is built on the joint venture work of the WHATWG and the W3C.

HTML5 now embraces new media types, which are one of the great highlights of it,
namely video, audio, and canvas. The canvas is a special type of drawable apparatus
in the web browser, where the web client developers can manipulate dynamic
content with the JavaScript programs.

There is a series of new tag elements to give a better structure to HTML5 documents.
New web applications are encouraged to write or generate HTML5 content with
article, section, header, footer, figure, figcaption, hgroup, nav, summary,
and detail, time, or aside tags. This is just a small sample of the new semantic and
document structure of HTML5 tags. There are several tag elements, such as center,
which are deprecated, because these features are better expressed with Cascading
Style Sheets (CSS) rather than markup.

HTML5 is also an aggregation term that stands for the set of emerging multimedia
technologies that are supported by the markup language. Browser support CSS 3 is
regularly expected for HTML5 compatibility. Moreover, our industry is presently
undergoing a mobile web application revolution on smartphones and, especially,
tablet computing devices. HTML5 not surprisingly also adds the geolocation
support, including the location tracking in the browser. It also covers offline
session and local storage for web applications that run on mobile devices, such as
smartphones or tablets. These applications can save state when the connection to the
Internet is lost.

Chapter 1

[11]

Some of the modern HTML5 supporting browsers actually have the 3D graphics
support through a working standard called WebGL, which impacts the amount of
data that is streamed from the server to the client. 3D graphics and high-resolution
media generally entails a larger server-side push of data compared to lesser media
websites. There is a sliding scale of capability with the current versions of Firefox,
Safari, Chrome, and Opera browsers. The outlier is typically Microsoft's web
browsers Internet Explorer 9 and 10. For those of you who want 3D effects without
the reliance of WebGL you should take a look at the CSS 3 3D transformations.

Finally, JavaScript is a single thread in the execution in a web browser. There is no
way to spawn multiple threads in modern standard W3C conforming web clients.
HTML5 also embraces two fundamental groundbreaking changes: Web Works and
WebSocket. Web Works is a JavaScript compatible API that allows web clients to run
long-running code that does not block the browser. WebSocket is a new way for a
browser and server to exchange an asynchronous communication without having to
constantly send the metadata information. WebSocket is an extension of the TCP/IP
Socket protocol specifically for HTTP communications.

Java EE 7 HTML5 Productivity

[12]

Java EE 7 architecture
Let us start by understanding the non-cloud Java EE model architecture. This is
revision material, if you already know the platform. For a beginner, reading this
section is frankly essential.

Standard platform components and APIs
Java EE architecture can be thought of as four separate containers. The first one is
called the EJB container for lifecycle management of Enterprise Java Beans and
the second container is the web container for lifecycle management of Java Servlets
and managed beans. The third container is called the Application Client container,
which manages the lifecycle of the client-side components. Finally, the fourth
container is reserved for Java Applets and their lifecycle.

The Java EE containers are runtime environments that hold Java applications
deployed in the Java Archive (JAR) files. You can think of a JAR file as a bundle, but
more accurately it is a special annotated ZIP file with a manifest. The JAR files are
simply an assembly of compiled Java classes.

A fully conformant Java EE product, such as Glassfish or JBoss Application Server
has both containers. As you can see from the following diagram, there are lots of API
that these products have to implement in order to be certified as a standard product.
The most difficult of these APIs have to do transactional, resource pool connection,
and enterprise Java Beans.

Each of these standard API is a specification in its own right, and relevant
information can be queried, downloaded, and examined from the Java Community
Process website (http://jcp.org). Each specification has a unique number, which
identifies the Java Specification Request (JSR) for the API. Indeed, the JSR for the
Java EE 7 Platform Edition, is an assembly of many specifications, and has an official
number 342.

The platform specification, such as the one that this book is written about, Java
EE, then, is an ensemble of the JSRs into a higher-level specification. The platform
specifications offer guarantees of interoperability, security, and serviceability of the
individual JSR. In other words, not just any JSR can be automatically included in the
platform specification. Each JSR fits the remit of the Enterprise Platform.

Chapter 1

[13]

New productivity themes
The Developer productivity is a key theme for Java EE 7. There are four brand
new specifications added to Java EE 7: Batch, Concurrency Utilities, WebSocket,
and JSON-P.

Batch Processing API is introduced into Java EE 7 to reduce the dependency on the
third-party framework. Batch processing is a field of information technology that
predates Java by several decades and has its origins in the mainframe systems. Sadly,
this topic of interest is out of the scope of this book.

Java EE 7 HTML5 Productivity

[14]

Concurrency Utilities solves a long-standing issue with enterprise Java: how to
spawn Java Thread processes without knowledge and control of the application
server. The new Concurrency Utilities enhances the developers productivity with
the managed thread pool and executor resources.

Java API for WebSocket specification allows Java enterprise applications to
communicate with the new HTML5 WebSocket protocol.

Finally, JSON-P is a new specification that standardizes reading and writing the
JSON content for the platform. The additional JSON library further reduces the
reliance on the third-party libraries.

Refinements
Java EE 7 takes advantage of the New Input Output (NIO) in the Java SE edition to
allow Java Servlets 3.1 to handle an asynchronous communication.

Java EE 7 extends the Java Persistence API (JPA 2.1) abilities for the developers.
They can now invoke the stored procedures, execute bulk criteria updates and
deletes, and control exactly which entities are eagerly or lazily fetched from the
database within reason.

Expression Language (EL) 3.0 is not truly a new specification, but it is a broken-out
specification from Servlets, JavaServer Pages, and JavaServer Faces. The developers
can access the expression evaluator and invoke the processing custom expressions
on, say, their own custom tag libraries or server-side business logic.

Perhaps, the most important change in Java EE 7 is the strengthening of Context
and Dependency Injection (CDI) in order to improve type safety and the easier
development of the CDI extensions. CDI, Interceptors, and Common Annotations
improve type safe, dependency injection, and observing of the lifecycle events inside
the CDI container. These three specifications together ensure that the extensions
that address the crosscutting concerns can be written, and can be applied to any
component. The developers can now write portable CDI extensions to extend the
platform in a standard way.

Java EE 7 continues the theme that was started in the earlier editions of the platform,
improving the ease-of-development and allowing the developers to write Plain Old
Java Objects (POJO).

As if to prove a point, the new Java Transaction API (JTA) introduces a new
annotation @javax.transaction.Transactional, which allows any CDI or
managed bean to take advantage of the enterprise transactions.

Chapter 1

[15]

Java for RESTful Services (JAX-RS) has three crucial enhancements, the addition of
the client-side API to invoke a REST endpoint, an asynchronous I/O support for the
client and server endpoints, and hypermedia linking.

Bean Validation is a constraint validation solution for the domain and value object.
It now supports the method-level validation, and also has better integration with the
rest of the Java EE Platform.

Java Connector API (JCA) is improved for the Enterprise Integration Architecture
(EIA) customers in terms of asynchronous execution, processing, and resources;
enhancements in JCA affect the intersystem messaging in Message-Driven Beans in an
especially powerful way. Sadly, JCA, JSF, and EL are topics, which are out-of-scope of
this book.

Java EE Platform
The platform, then, is a balance between the three forces, namely the community of
the enterprise Java developers, the product providers, and of course the enterprise
that must uphold the business models.

The community requires standardization in order that they can easily embrace
technology without the fear of vendor lock-in. They also want to be satisfied with
a sound investment in the software development for years to come.

The vendors have an interest in selling their products, services, and support to
the community of users for years to come. They also want to have a platform that
lowers the barriers to compete against other vendors. It is helpful for them that
there is a standard to aim for, a testable certification to achieve, in which they can
brand their servers.

The specification for the Full Profile edition of Java EE 7 has the following APIs:

Name Version Description JSR Web

Profile
Batch Process 1.0 Batch Processing (NEW) 352
Bean
Validation

1.1 Bean Validation framework 349 Y

Common
Annotations

1.1 Common Annotations for the
Java EE platform

250 Y

CDI 1.1 Contexts and Dependency
Injection for Java EE

346 Y

Java EE 7 HTML5 Productivity

[16]

Name Version Description JSR Web

Profile
Concurrency
Utilities

1.0 Concurrency Utilities for the
Java EE platform (NEW)

236

DI 1.0 Dependency Injection for Java 330 Y
EL 3.0 Unified Expression Language

for configuration of web
components and context
dependency injection

341 Y

EJB 3.2 Enterprise Java Beans, entity
beans and EJB QL

345 Y (EJB
Lite)

Interceptors 1.2 Interceptor technology (NEW) 318 Y
JACC 1.4 Java Authorization Contract for

Containers
115

JASPIC 1.1 M/B Java Authentication Service
Provider Interface for
Containers

196

JavaMail 1.4 Java Mail API 919
JAXB 2.2 Java API for XML Binding 222
JAXP 1.4 Java API for XML Parsing 206
JAX-RS 2.0 Java API for RESTful Services 339 Y
JAX-WS 1.3 Java API for XML –based Web

Services including SOAP and
WSDL

224

JCA 1.7 Java EE Connector Architecture 322
JMS 2.0 Java Message Service 343
JPA 2.1 Java Persistence API 338 Y
JSF 2.2 Java Server Faces 344 Y
JSON-P 1.0 JavaScript Serialization Object

Notation Protocol
353 Y

JSP 2.3 Java Server Pages 245 Y
Debugging
support

1.0 Debugging Support for Other
Languages such as Java Server
Pages

45 Y

JSTL 1.2 Java Standard Template Library 245 Y
JTA 1.2 Java Transaction API 907 Y
Managed
Beans

1.0 Managed Beans 1.1 342 Y

Servlet 3.1 Java Servlet 340 Y

Chapter 1

[17]

Name Version Description JSR Web

Profile
Web Services 1.3 Web services 224
Web Services
Metadata

2.1 Web services metadata 181

WebSocket 1.0 Java API for WebSocket (NEW) 356 Y

There is also a subset of the Java EE 7 product, known as the Web Profile that only
handles the web specific Java enterprise APIs. Examples of this sort of product
are open source Apache Tomcat from the Apache Software Foundation, Caucho's
proprietary Resin, and the ever popular open source embeddable Jetty Server. The
Java EE 7 web container products have a much smaller subset of JSRs to implement.

You might have noticed that some of the Java EE APIs were
supported already in some web containers, which existed before
the profiles were standard in Java EE 6 (December 10, 2009).

Java Persistence, which maps entity beans, or persistence capable objects, to a
relational database, is one of the most crucial and important application interfaces.
JPA is a tremendous success for the portable object-relation mapping applications
that works across the databases and application servers. Your code can move
from one vendor's database connection to another. There is always a slight caveat
emptor: there is no such thing as 100 percent portability. But without the standard
framework, your developers would have to work an awful lot harder than tweaking
a few database tables and configuring a different JDBC connection resource.

Portability and the future of the Java SE and EE platforms will be very important
for moving your applications to the diverse, but unstandardized, cloud-computing
environment. Although cloud computing was dropped from Java EE 7 late in the
establishment of the specification, adopting Java EE 7 will help in the mid-term
future when there is an official Java enterprise edition for the cloud. It is rather
likely that in those modern utility computing environments, prospective business
subscribers will welcome the ability to move from one cloud PaaS (Platform as a
Service) vendor to another for a technical and/or business reason.

Standards, then, are very important to Java. It means that we can all move along in
a positive direction with less fear of the unknown and that, ladies and gentlemen, is
good for everybody. The API that your application code depends on is critical to its
software lifecycle. Let's move on to the profiles.

Java EE 7 HTML5 Productivity

[18]

Java EE Profiles
The formal definition of a profile is a specialization of a Java Platform Edition that
includes zero or more Java Community Process (JCP) specifications (that are not
part of the Platform Edition Specification). Java Enterprise Platform Edition defines
two profiles, the Full Profile and the Web Profile product.

Java EE Web Profile, to give it its full official name, is the first profile defined by the
standards committee, the JCP. The Web Profile defines a small subset of the Java
EE components for delivering the web content. It specifically targets the Java web
developers who are responsible for delivering the Java web applications.

The Web Profile offers a degree of completeness with its set of APIs. A business
developer can write modern web applications that only access, execute, and
perform against Web Profile. Most web applications require state-management and
transactional demands. Even though a lot of Java Web Applications, written today
rely less on direct calls to the Java Servlet API, in most cases they still tend to use a
Java Web Framework.

Web Profile
The Web Profile has the following feature set of APIs:

•	 Java Servlet API 3.1: This framework provides handling for an HTTP request
and response synchronously and now asynchronously

•	 Enterprise Java Bean Lite 3.2: This is a less demanding model of service
endpoints, where the business logic of the application lives

•	 Context and Dependency Injection 1.1: This is a framework for the
application that transfers the lifecycle and management of the connected
objects to the container

•	 Java Server Faces 2.2: This is a component-based web user interface
framework

•	 Java Transaction API 1.2: This is a framework for two-phase commit
transactions

•	 Java Persistence 2.1: This is a framework for persisting POJO to a database
•	 Web Socket 1.0: This is a new specification for Java to engage the HTML5

WebSocket clients and servers

Chapter 1

[19]

•	 Bean Validation 1.1: This is an upgraded framework to constrain the fields,
properties, and methods of the value objects in an application

•	 JAX-RS 2.0: This is an upgraded framework for the Java Enterprise
applications to handle the RESTful communications

•	 JSON-P 1.0: This is a brand new framework for the Java application
read-and-write JavaScript Schema Object Notation (JSON) documents

With these small set of requirements, it is not surprising that the Java EE
implementation providers find the Web Profile easier to implement.

Which Web Frameworks and Java EE 7

Usually the biggest question for the Java Enterprise developers in the
past has been, what web framework to use? At the time of writing, JSF
2.2 is the only framework that is compatible. The purveyors of the other
frameworks, such as Apache Wicket, WebWork, or even Spring MVC
must update their services, especially to support the new asynchronous
abilities in Java Servlets 3.1 and JAX-RS 2.0.

The way we build web applications in 2013 is also changing, and
the author expects some new innovations here in this space. Some
applications are going straight to the RESTful applications by passing
the older Front Controller and MVC architecture of traditional web
frameworks from Java EE 6 or before. In those web applications, the
interface is simply a barrage of the AJAX call-and-response calls from
the client side, predominantly a single application communicating with a
server-side backend.

Enterprise Profile
The Enterprise Full Profile is the complete set of API that matches the Platform
Edition specification, which compliant providers must fulfill, in order to be certified
as Java EE 7 compliant.

It's worth looking at each component of the platform and spending some time getting
acquainted with them. There are an awful lot of individual specifications here and my
advice is to use the Web Profile as a guide to getting into the Java EE 7 experience.

Java EE 7 HTML5 Productivity

[20]

The following table is a guide to the key Enterprise services:

Name Description

JTA A standard API for demarcating the transactions in either the
application or container.

EJB Enterprise Java Beans are the transactional service endpoints
that represent the interface to business logic for a client. They
can be stateless, stateful, or singleton instances.

Managed Beans Managed beans are endpoints with a contextual scope and
they are type safe entities. Managed beans are managed by
the Context and Dependency Injection container.

JDBC JDBC is often quoted (wrongly) as Java Database
Connectivity, a standard API for connecting to a relational
database system. This component is part of the Standard
Platform Edition.

JPA Java Persistence API is the standard framework for the object-
relational mapping of the Java objects to a database. JPA
provides management of persistence through a persistence
context. It allows the application developers to store data as
the Java domain object rather than the relational tables. JPA is
also available in the Java SE environments.

JMS Java Message Service is a standard API for receiving
and sending messages in a reliable transport, mostly
asynchronously. JMS is based on the point-to-point messages
and also publish-subscribe messaging. JMS is the basis for the
Enterprise application integration in Java.

JNDI Java Naming and Directory Interface is a standard API for
looking up the location of the resources by name. It is a
directory service used by the application components and the
containers.

JAX-RS Java API for RESTful services, a framework for processing the
HTTP Representation State Transfer (REST) style requests
and responses.

JAX-WS Java API for the XML-based web services, a framework
in Java to process the SOAP, WSDL documents in the
distributed systems.

JavaMail JavaMail is a standard API that allows the Enterprise Java
application to send and receive e-mail. It has support for both
the MIME and plain text e-mail.

Let's dispense with the theory and look at some of the Java EE 7 code.

Chapter 1

[21]

A working example
In this section, we shall examine Java EE 7 from a sample project management
application. The name of the application is XenTracker. It is a web application with
EJB, the RESTful web services, and Persistence.

The development version of the XenTracker application, which has minimal styling
and user interface enhancement, is shown in the following screenshot:

Java EE 7 HTML5 Productivity

[22]

Entities
Our web application manages a couple of entities (also known as persistence capable
objects), named Project and Task. The entities are mapped to the database table
using the JPA annotations. We start with the entities in our Java EE 7 application,
because it helps model the business requirements, and the domain of our boundaries.
A project has zero or more task entries.

The definition for the Project entity is as follows:

package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.*;
import javax.validation.constraints.Size;
import java.util.*;

@Entity
public class Project {
 @Id @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "PROJECT_ID") private Integer id;

 @NotEmpty @Size(max = 64)
 private String name;

 @OneToMany(cascade = CascadeType.ALL, mappedBy = "project",
 fetch = FetchType.EAGER)
 private List<Task> tasks = new ArrayList<>();

 public Project() {/* Required for JPA */}
 public Project(String name) {this.name = name;}

 public Integer getId() {return id;}
 public void setId(Integer id) {this.id = id;}
 public String getName() {return name;}
 public void setName(String name) {this.name = name;}

 public List<Task> getTasks() {return tasks;}
 public void setTasks(List<Task> tasks) {this.tasks = tasks;}

 public boolean addTask(Task task) {

Chapter 1

[23]

 if (!tasks.contains(task)) {
 Project oldProject = task.getProject();
 if (oldProject != null) {
 removeTask(task);
 }
 tasks.add(task);
 return true;
 } else {return false;}
 }

 public boolean removeTask(Task task) {
 if (tasks.contains(task)) {
 tasks.remove(task);
 task.setProject(null);
 return true;
 } else {return false;}
 }

 // hashCode(), equals(), toString() omitted
 }

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you. Alternatively, you can download the code from the
author's GitHub account at https://github.com/peterpilgrim.

We observe that the class Project is declared with several annotations. @Entity
marks this type as a JPA entity object and it has a default mapping to a database
table called PROJECT. The @Id annotation designates the id field as a primary key.
The @Column annotation overrides the default object-relational mapping and
changes the table column name to PROJECT_ID instead of ID. The @GeneratedValue
annotation informs JPA to automatically generate the primary key value for the
project from the database connection provider.

The @NotNull annotation and @Size are from Bean Validation and Hibernate
Validator frameworks respectively. They provide constraint checking at the source
on the Project entity bean and they validate that the project's name field is not
null and that the length of the field must be less than or equal to 64 characters.
Incidentally, the Java EE 7 application servers will automatically invoke Bean
Validation when this entity is inserted into, or updated to, the database.

Java EE 7 HTML5 Productivity

[24]

Lastly, the @OneToMany annotation declares that the Project entity has a
one-to-many relationship with another entity Task. Chapter 5, Object-Relational
Mapping with JPA, is dedicated fully to the entity relationships, the database
cardinalities, and the fetch types.

The definition for the Task entity is as follows:

package je7hb.intro.xentracker.entity;

import org.hibernate.validator.constraints.NotEmpty;
import javax.persistence.*;
import javax.validation.constraints.*;
import java.util.Date;

@Entity
public class Task {
 @Id @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "TASK_ID") private Integer id;

 @NotEmpty @Size(max = 256)
 private String name;

 @Temporal(TemporalType.DATE)
 @Column(name = "TARGET_NAME") @Future
 private Date targetDate;

 private boolean completed;

 @ManyToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "PROJECT_ID")
 private Project project;

 public Task() {/* Required by JPA */}
 public Task(String name, Date targetDate, boolean completed) {
 this.name = name;
 this.targetDate = targetDate;
 this.completed = completed;
 }

 // getters and setters omitted()
 public Project getProject() {return project;}
 public void setProject(Project project) {
 this.project = project;
 }

 // hashCode(), equals(), toString() omitted
 }

Chapter 1

[25]

The entity Task represents a task in the business domain. The Task entity has a
primary key too, mapped by the @Id annotation, which is also automatically generated
on a database insertion. We also override the database column name to TASK_ID.

We declare Bean Validation constraints on the Task entities name field in exactly
the same way as we do on Project, except a task has a longer length of string.

The targetDate is the due date for the task, which is optional, meaning that its
value can be null. We use Bean Validation's @Future to constrain the target date to
any date in the future. Finally, JPA requires us to explicitly define the temporal type
whenever we map java.util.Date. In this case, we map targetDate to only SQL
date types with the @TemporalType annotation.

A Task entity has a reverse mapping back to Project. In other words, a task is
aware of the project that it belongs to; we call this a bi-directional relationship.
We declare the project field with the annotation @ManyToOne.

Business logic
In order to be operational, we write business logic for our web application
XenTracker. We require methods to create, update, and delete Projects and for
Tasks. We also want to retrieve the list of projects and tasks for each project.

We shall use the session EJB for this purpose, because we want the lifecycle of business
logic to be available as soon as our application is deployed to a Java EE 7 application
server product or web container. EJBs support the transactions by default, they can
be pooled by the server, their methods can be declared as asynchronous, and they are
normally participants in monitoring with Java Management Extensions (JMX). EJBs
are discussed in detail in Chapter 3, Enterprise Java Beans.

First, we add some named queries to one of the entity beans. A named query is a
way of storing a persistence query with the domain object. JPA only allows named
queries to be declared with the entities.

Let us modify the Project entity as follows:

@NamedQueries({
 @NamedQuery(name = "Project.findAllProjects",
 query = "select p from Project p order by p.name"),
 @NamedQuery(name = "Project.findProjectById",
 query = "select p from Project p where p.id = :id"),
 @NamedQuery(name = "Project.findTaskById",
 query = "select t from Task t where t.id = :id"),})
@Entity
public class Project {/* ... */}

Java EE 7 HTML5 Productivity

[26]

The annotation @NameQueries declares a set of @NamedQuery annotations attached
to the Project entity bean. Each named query must have a distinct name and a Java
Persistence Query Language (JPQL) statement. JPQL can have named parameters,
which are denoted with the prefix of a colon character (:id).

In order to define a stateless session EJB, all we need to do is annotate a concrete
class with the type @javax.ejb.Stateless. Our ProjectTaskService stateless
session EJB is as follows:

package je7hb.intro.xentracker.boundary;
import je7hb.intro.xentracker.entity.*;
import javax.ejb.*;
import javax.persistence.*;
import java.util.List;

@Stateless
public class ProjectTaskService {
 @PersistenceContext(unitName = "XenTracker")
 private EntityManager entityManager;

 public void saveProject(Project project) {
 entityManager.persist(project);
 }

 public void updateProject(Project project) {
 Project projectToBeUpdated = entityManager.merge(project);
 entityManager.persist(projectToBeUpdated);
 }

 public void removeProject(Project project) {
 Project projectToBeRemoved = entityManager.merge(project);
 entityManager.remove(projectToBeRemoved);
 }

 public List<Project> findAllProjects() {
 Query query =
 entityManager.createNamedQuery("Project.findAllProjects");
 return query.getResultList();
 }

 public List<Project> findProjectById(Integer id) {
 Query query =
 entityManager.createNamedQuery("Project.findProjectById")
 .setParameter("id", id);

Chapter 1

[27]

 return query.getResultList();
 }

 public List<Task> findTaskById(Integer id) {
 Query query =
 entityManager.createNamedQuery("Project.findTaskById")
 .setParameter("id", id);
 return query.getResultList();
 }
 }

Our session EJB depends upon persistence objects, so we inject an EntityManager
object into it with the special annotation @PersistenceContext. The entity manager
operation represents a resource connection to the database.

The methods saveProject(), updateProject(), and removeProject()
respectively create, update, and delete the project entities from the database. The
entity manager operations are covered in Chapter 4, Essential Java Persistence API 3.2.
Because of the CascadeType.ALL definitions on the actual entities themselves, the
dependent detail entity Task is looked after with the changes on the Project entity.
You will learn about the cascade operations in Chapter 5, Object-Relational Mapping
with JPA. So do we retrieve data back from the database?

The methods findAllProjects(), findProjectById(), and findTaskById() are
so-called finder operations, the R in the acronym CRUD (Create Retrieve Update
Delete). Each of the methods accesses a particular named query, which we attach
to the Project entity. The findTaskById() method, for example, gets the JPQL
command named Project.findTaskById as a query instance. Notice that we can
invoke the methods on that instance by chaining, so that the local variable is in fact
unnecessary, and just serves as an education artifact.

The ProjectTaskService session has all of the operations to allow users to add,
edit, and remove projects, and also to add, update, and remove tasks to and from
projects. So now that we have our business logic, we can go forward and add a
controller endpoint for web clients.

The service endpoints
Let's dive straight into the Java EE 7 pool and show off a Java-based WebSocket
endpoint for our XenTrack application. We shall create a straightforward server-side
endpoint that accepts a text message, which simply is the project ID, and returns
the results as a JSON.

Java EE 7 HTML5 Productivity

[28]

A WebSocket endpoint
The definition of the class ProjectWebSocketServerEndpoint is as follows:

package je7hb.intro.xentracker.control;
import je7hb.intro.xentracker.boundary.ProjectTaskService;
import je7hb.intro.xentracker.entity.*;

import javax.ejb.*;
import javax.inject.Inject;
import javax.json.Json;
import javax.json.stream.*;
import javax.websocket.*;
import javax.websocket.server.ServerEndpoint;
import java.io.StringWriter;
import java.text.SimpleDateFormat;
import java.util.*;

@ServerEndpoint("/sockets")
@Stateless
public class ProjectWebSocketServerEndpoint {
 static SimpleDateFormat FMT = new SimpleDateFormat
 ("dd-MMM-yyyy");
 @Inject ProjectTaskService service;

 @OnMessage
 public String retrieveProjectAndTasks(String message) {
 int projectId = Integer.parseInt(message.trim());
 List<Project> projects = service.findProjectById(projectId);
 StringWriter swriter = new StringWriter();

 JsonGeneratorFactory factory = Json.createGeneratorFactory
 (new HashMap<String,
 Object>(){{put(JsonGenerator.PRETTY_PRINTING, true);}});
 JsonGenerator generator = factory.createGenerator(swriter);

 generator.writeStartArray();
 for (Project project: projects) {
 generator.writeStartObject()
 .write("id", project.getId())
 .write("name", project.getName())
 .writeStartArray("tasks");

Chapter 1

[29]

 for (Task task: project.getTasks()) {
 generator.writeStartObject()
 .write("id", task.getId())
 .write("name", task.getName())
 .write("targetDate", task.getTargetDate() == null ? "" :
 FMT.format(task.getTargetDate()))
 .write("completed", task.isCompleted())
 .writeEnd();
 }
 generator.writeEnd().writeEnd();
 }
 generator.writeEnd().close();

 return swriter.toString();
 }
 }

Although the ProjectWebSocketServerEndpoint class looks complicated,
it is actually easy to write. We declare POJO with the @ServerEndpoint
annotation, which annotates it as a Java WebSocket endpoint, and it becomes
available as a server. The WebSocket clients can interact with this endpoint, by
sending text data to a web context defined URL. For example, on my test this
is http://localhost:8080/xentracket/sockets. The @ServerEndpoint
annotation accepts a URL pattern value.

In Java EE 7 we must also declare ProjectWebSocketServerEndpoint as a
stateless EJB with @Stateless in order to inject the ProjectTasksService EJB
as a dependency. (This is a consequence of Java for WebSocket 1.0 specification.)
Note that we can use @javax.annotation.Inject from CDI.

Java EE 7 HTML5 Productivity

[30]

The unit test ProjectRESTServerEndpointTest running in the IDE is as shown in
the following screenshot:

Next, we annotate the method retrieveProjectAndTasks() with the WebSocket
annotation @OnMessage, which declares this method as the reception point for
the incoming requests. There can be only one message per class per web
application deployment.

Chapter 1

[31]

Our method retrieveProjectAndTasks() accepts a text message, which we parse
into a project ID integer. We then invoke the ProjectTasksService session to
retrieve a list collection of the Project entities. Afterwards, we immediately turn
that list into a JSON array output string using a StringWriter as a text buffer, and
two new classes from the JSON-P streaming API namely: JsonGeneratorFactory
and JsonGenerator.

We instantiate a JsonGeneratorFactory class with the literal Java HashMap trick to
set up JSON output that is prettily printed. With the factory, we can write the JSON
output using the fluent API JsonGenerator. The method call writeStartArray()
starts the output stream for a JSON array. The method call writeStartObject()
starts the output stream for a JSON object. We just call the generator's
write(String, X) to send the JSON name and value pair. When we finish writing
the JSON object and array, we must call writeEnd() to properly close JsonValue.

Finally, once we finish writing the JSON output, we call the generator's close()
method. The target java.io.StringWriter now contains the JSON text value. The
Java EE 7 WebSocket provider takes the return value and sends that data, the JSON
array, to the other WebSocket peer. We shall quickly look at a JAX-RS example.

A RESTful endpoint
JAX-RS 2.0 is the RESTful standard framework for Java EE 7. We shall use JAX-RS
to create the beginnings of a web application with a POJO that serves as a RESTful
resource. In the interest of space in this book, we only consider the HTTP GET and
POST methods. The GET method accepts a project ID and returns a JSON object
that represents a project. The POST method accepts a JSON object and creates a new
Project with or without dependent Task instances. The new Project instance returns
as JSON.

The POJO class ProjectRESTServerEndpoint with a definition of a RESTful
endpoint in the class called is as follows:

package je7hb.intro.xentracker.control;
import je7hb.intro.xentracker.boundary.ProjectTaskService;
import je7hb.intro.xentracker.entity.*;

import javax.ejb.Stateless;
import javax.inject.Inject;
import javax.json.*;
import javax.json.stream.*;
import javax.ws.rs.*;

Java EE 7 HTML5 Productivity

[32]

import java.io.StringWriter;
import java.text.SimpleDateFormat;
import java.util.*;
import static javax.ws.rs.core.MediaType.*;

@Path("/projects")
@Stateless
public class ProjectRESTServerEndpoint {
 static SimpleDateFormat FMT = new SimpleDateFormat
 ("dd-MMM-yyyy");
 static JsonGeneratorFactory jsonGeneratorFactory =
 Json.createGeneratorFactory();

 @Inject ProjectTaskService service;

 @GET @Path("/item")
 @Produces(APPLICATION_JSON)
 public String retrieveProject
 (@PathParam("id") @DefaultValue("0") int projectId) {
 List<Project> projects = service.findProjectById(projectId);
 StringWriter swriter = new StringWriter();
 JsonGenerator generator =
 jsonGeneratorFactory.createGenerator(swriter);
 generateProjectsAsJson(generator, projects).close();
 return swriter.toString();
 }
 /* ... */
 }

The ProjectRESTServerEndpoint is also a stateless session EJB and there really is
no penalty in modern Java EE 7 products for how heavy a session EJB is. In fact, they
are extremely lean; an application server for Java EE 7 can easily handle 10000 beans
or more without issues. In the not too distant future, when we have Java EE standard
for the cloud environment, the Java EE application server products will handle
millions of EJBs and CDI managed beans.

We annotate the ProjectRESTServerEndpoint type with the JAX-RS annotation
@Path, which notifies the JAX-RS provider that a POJO is an endpoint at the URL
context path of /projects. For the JAX-RS projects, normally we also define an
application path root, and it stands in front of the individual endpoints. For instance,
on my test server the full URL context is http://localhost:8080/xentracker/
rest/projects/item.

Chapter 1

[33]

You have already seen the injection of the EJB ProjectTaskService, but we now
see the @GET annotation from JAX-RS on the method retrieveProject(), which
designates the endpoint for the HTTP GET requests from the client.

The @PathParam annotation identifies a parameter in the URL; it actually extracts
a key parameter in the URL pattern. In this case, the parameter is called id in the
input URL. For example, http://localhost:8080/xentracker/rest/projects/
item/1234 maps to the JAX-RS URL pattern /projects/item/{id}. Meanwhile, the
@DefaultValue annotation defines a default String value, just in case the client did
not specify the parameter, which avoids an error inside the server.

We refactor out the JSON generator code from before and simply call a static method
in order to generate the correct output. Finally, the @Produces annotation informs
the JAX-RS provider that his RESTful resource endpoint produces JSON.

Let's examine one RESTful endpoint for the HTTP POST request, where we want
to insert a new project into the database. The definition method createProject()
is as follows:

@POST @Path("/item")
@Consumes(APPLICATION_JSON)
@Produces(APPLICATION_JSON)
public String createProject(JsonObject projectObject)
throws Exception {
 Project project = new Project(projectObject.getString("name"));
 JsonArray tasksArray = projectObject.getJsonArray("tasks");
 if (tasksArray ! = null) {
 for (int j = 0; j<tasksArray.size(); ++j) {
 JsonObject taskObject = tasksArray.getJsonObject(j);
 Task task = new Task(taskObject.getString("name"),
 (taskObject.containsKey("targetDate") ?
 FMT.parse(taskObject.getString("targetDate")): null),
 taskObject.getBoolean("completed"));
 project.addTask(task);
 }
 }

 service.saveProject(project);
 StringWriter swriter = new StringWriter();
 JsonGenerator generator =
 jsonGeneratorFactory.createGenerator(swriter);
 writeProjectAsJson(generator, project).close();
 return swriter.toString();
 }

Java EE 7 HTML5 Productivity

[34]

The method is annotated with @POST from JAX-RS. It consumes and produces JSON,
so we annotate it with @Consumes and @Produces. JAX-RS knows about JSON-P in
the Java EE 7 edition, so our method directly accepts a JsonObject instance. In other
words, we get the conversion from a String to a JsonObject object for free!

Unfortunately, we must retrieve individually the name, value, and array pairs from
the JSON input, and create our domain objects. There is no substitute for work.
Given JsonObject, we build a new Project instance, and optionally the associated
Task objects. JsonObject has a number of convenient calls such as getString(),
getNumber(), and getBoolean(). Unfortunately, we must convert the formatted
target date string and we must deal with the optional JSON tasks array, because
it can be null. It is possible to check if the value exists in the JsonObject object by
calling containsKey(), since a JsonObject is a type of java.util.Map.

Once we have the Project instance, we save it to the database using the
ProjectTaskService boundary service. Afterwards, we use the refactored JSON
generator method to write the Project instance to the client.

To complete our brief tour of JAX-RS, we shall add another HTTP GET method
to our RESTful endpoint. This time, however, we will make it asynchronous in
operation. The home page of our web application XenTracker always executes an
AJAX request; whenever it loads in the browser, it queries all of the projects in the
database. Let's say 1000 web users are simultaneously accessing the application in a
couple of minutes and each user has say an average of 10 projects with an average of
25 tasks between them, how would we scale this query?

With a stateless session EJB such as ProjectRESTServerEndpoint, we can use the
new Concurrency Utilities API in Java EE 7 to achieve an asynchronous output. Let
us apply it to the method getProjectList() now as follows:

/* ... */
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

/* ... */
public class ProjectRESTServerEndpoint {
 /* ... */
 @Resource(name = "concurrent/LongRunningTasksExecutor")
 ManagedExecutorService executor;

 @GET
 @Path("/list")
 @Produces(MediaType.APPLICATION_JSON)

Chapter 1

[35]

 public void getProjectList
 (@Suspended final AsyncResponse asyncResponse) {
 executor.submit(new Runnable() {
 @Override
 public void run() {
 List<Project> projects = service.findAllProjects();
 StringWriter swriter = new StringWriter();
 JsonGenerator generator = jsonGeneratorFactory
 .createGenerator(swriter);
 generateProjectsAsJson(generator, projects)
 .close();
 Response response =
 Response.ok(swriter.toString()).build();
 asyncResponse.resume(response);
 }
 });
 }
 }

In JAX RS 2.0 we must also add a special class as a method parameter. AsyncResponse
is the object context for an asynchronous response. The AsyncResponse object has all
of the server-side information to enable the JAX-RS API to send data back to the client
from another Java thread from the executor thread pool. Typically, the application
retrieves a Concurrent Utility Task (new in Java EE 7, see Appendix D, Java EE 7
Assorted Topics), which is the responding thread, and for long-running operations
it is not associated with the main JAX-RS request processing thread. The parameter
asyncResource is also annotated with @Suspended in order to suspend the output
of the response, because we want to halt the response until the application invokes
the long-running task. Inside the task, given an AsyncResponse object, we call the
resume method with the JAX-RS response to send back to the client. Note that in this
example, because we are using an inner class Runnable, we must set the method
parameter's modifier to final.

We take advantage of the Concurrency Utilities API; in particular, we inject a
ManagedExecutorService into the EJB with the @Resource annotation. The
@Resource annotation is from Common Annotation API such as, @Inject, but it
injects the database connection, connectors, and now managed concurrency services.
The method getProjectList() is exactly one statement long. It creates a Runnable
task, an anonymous inner class, and then submits it to the executor pool running
inside the Java EE 7 application server. At some point after the submission, the task
is invoked, and it delivers a response to the RESTful client on a separate thread.

Java EE 7 HTML5 Productivity

[36]

Ramping up on Java concurrency

The best book of multiple threads programming in Java with JVM
at the time of writing is Java Concurrency in Practice by Brian Goetz,
Oracle's Java language architect. The author strongly recommends
this book to learn how to use the Java concurrency features such
as synchronization primitives, executors as in Java EE 7, atomic
wrappers, futures, and scheduled services.

The Runnable task instantiates a java.ws.rs.core.Response object instance
in order to build a generic entity, which is the list of projects generated as JSON.
Our most important responsibility is to cause the output to be sent back to the
client by resuming an asynchronous response context; we invoke the method
AsyncResponse.resume() with the generic response.

This is the end of the worked example tour of some new features of Java EE 7. The
full application can be found with this book's source code. There are two variations
of the XenTracker application: an initial edition, and a completely refined and
finessed business example.

The Entity Control Boundary pattern
This worked example is based on a recent Java EE design pattern called the Entity
Control Boundary (ECB) design pattern. It identifies a component part of a system
from key perspectives: the entity, the control, and the boundary.

Chapter 1

[37]

The boundary layer of the component represents the separation of the business
and presentation code. In our worked example, we placed the ProjectTaskService
EJB in the boundary subpackage, because effectively it is the business façade of
the application.

The control layer of the component manages the flow of data to the internal
data inside the component. We placed ProjectWebSocketServerEndpoint and
ProjectRESTServerEndpoint in the control subpackage because these POJOs are
manipulating the entities on behalf of the client side. Of course, it is a matter of
debate and decent architectural sense whether business logic is placed either on the
boundary or on the control layers in the application's architecture.

Finally, the entity layer of the component is reserved for the application's domain
objects. We placed the entity beans Project and Task in the entity subpackage,
because they are rich domain objects managed by JPA.

Summary
Java EE 7 is a step towards moving the Enterprise platform to a cloud-computing
platform. Until we get to the next standard, Java EE 7 offers HTML5 productivity,
and it delivers new features such as WebSocket, asynchronous communications over
Servlets, RESTful endpoints, and Concurrent Utilities.

We covered in the first chapter the new features in Java EE 7 by first explaining the
HTML5 movement. HTML5, we learned, is more than just a markup language, it also
embraces semantics, a much improved document structure, APIs for mobile-device
awareness, 3D graphics, support for the Canvas drawing, offline storage, styling
content through CSS3, and exciting new APIs such as WebSocket and Web Worker.

By now we understand the overall architecture of the Java EE 7 platform. The
platform sits between the infrastructure of the hardware including the operating
system, network, filing systems, and the JVM-and the thousands of web clients and
other business-to-business consumers. All of these are boundaries and are considered
endpoints. There are two different profiles available in Java EE 7 standard: the Full
and Web Profiles. The Web Profile is a reduced set of JSRs.

We took the time to examine a worked example of Java EE 7 new features with a
web application called XenTracker. We saw highlights such as WebSocket and an
asynchronous JAX-RS output.

Java EE 7 HTML5 Productivity

[38]

In the subsequent chapters, we will introduce Gradle as a build system. The book's
source code relies entirely on Gradle. We will learn how to write the integration tests
with Java EE 7 application by using an open source framework called Arquillian. We
use some Arquillian to clearly demonstrate the features of Java EE 7 and also rely on
the embedded application server container, the reference implementation GlassFish 4
open source application server.

The next chapter gets us further in understanding the DHM of Java EE 7, by rolling
the ball with CDI.

Context and Dependency
Injection

Ray Charles said, "I am not a blues singer. I am not a jazz singer. I am not a
country singer. But I am a singer who can sing the blues, who can sing jazz, who
can sing country."

This chapter covers the important and essential framework that is the soul of Java EE
7. It is called Context and Dependency Injection. The API first made its appearance,
officially, in Java EE 6, and now in Java EE 7 is the paramount framework for binding
dependent managed beans together.

Before we get started, it may be helpful for us to revise some software
engineering definitions.

Software engineering definitions
•	 What is a context, or rather what do we mean by a context?: In software

engineering, a context is a separation of a concern around a set of components,
objects, functions, and variables that have a determined lifecycle around the
scope. The context exists for the overall lifetime of an application and it can be
repeated. In CDI, the context is the meta-information that surrounds a POJO:
the lifecycle, the scope, the dependencies to other objects, and the interactions.

Context and Dependency Injection

[40]

•	 What is a domain?: The domain is the purpose of the software application
and describes the business sector, market, or principal reason that requires
the software. The software architects and designers are overheard in
corridors at work and conferences discussing the business domain. After all,
the software serves some purpose and thus the domain describes the reason
for its existence, whether it is an airline reservation system, an electronic
commerce application, or the front office trading system at an investment
bank. The domain reflects the requirements for software and it is not the
same as context, because a domain is an architectural characteristic.

•	 What is a Java interface?: A Java interface is a programming language
feature that permits unrelated object types to share behaviors (methods),
and thus provides a means of communication whilst allowing those objects
to maintain the separation of domain.

•	 What is encapsulation?: Encapsulation is a programming language feature
of Java and other object-oriented languages that permits the bundling of data
with the operation that behaves on that data. Java supports encapsulation
through the class keyword.

•	 What is polymorphism?: Polymorphism is the ability to create a variable,
function, or type that has more than one form. Polymorphism is exhibited in
Java with object types that share a common hierarchy sharing methods of the
same name.

•	 What is method overloading?: Method overloading in the Java
programming language is the ability to create multiple behaviors (methods)
with the same name, where the parameter types differ.

•	 What is a dependency?: A dependency is an association between two
different object types, where the primary type requires a reference to another
secondary object type. A dependency serves as an interaction between the
source and target types.

•	 What is a dependency injection?: A dependency injection is the function
of an external lifecycle manager to establish the association between the
primary and secondary object types and automatically introduce the
dependency before the methods are invoked on the primary object. Usually,
this dependency injection means retrieving the object instance from a special
factory instance, rather than instantiating the objects directly. The external
lifecycle manager can be an application framework, part of a computing
platform, or even a feature of the programming language. In a Java
framework, APIs such as Java EE and Context Dependency Injection, SEAM,
Guice, and Spring Framework provide dependency injection.

Now that we have those definitions in our forebrains, let us move on to CDI properly.

Chapter 2

[41]

The Context and Dependency
Injection service
CDI stands for Context and Dependency Injection. It was originally standardized as
JSR-299. The Hibernate object relation mapper inventor and Ceylon lead developer,
Gavin King submitted the proposal called Web Beans to the Enterprise-expert group in
2006. The name of the JSR was changed in 2009 from Web Beans to CDI for the Java
EE platform. The JSR-299 specification for CDI was aligned with the specification
JSR-330, dependency injection for Java, which was jointly developed by Guice creator
"Crazy" Bob Lee and Spring Framework creator, Rod Johnson.

CDI is upgraded to version 1.1 for Java EE 7 standard and the JSR is 346.

CDI was inspired and influenced by other existing dependency injection frameworks
including SEAM, Guice, and Spring Framework. CDI features stronger typing than
SEAM, and relies on lesser external XML configuration than Spring Framework.

The original purpose of CDI was to unify the managed bean component model in Java
Server Faces with the then EJB component model. However, CDI now far exceeds the
original remit in Java EE 7 as the universal component model for the Enterprise.

The first responsibility of CDI is the context. CDI provides the lifecycle management
of the stateful components to well-defined, but extensible lifecycle context.

The second responsibility of CDI is dependency injection. CDI provides the ability
to inject dependencies (components) into an application in a typesafe way, which
includes the configurability to decide which component implementation is injected at
the deployment stage.

•	 CDI is a framework available in both the client and server.
•	 CDI decouples the client from the server and thus supports loose coupling.

This means the target implementation can vary without affecting the client.
•	 CDI is all about automatic lifecycle management with collaborating

components. CDI provides the components with contextual information.
The strong typing of the CDI model means that the errors are caught
at compilation rather than encountering a ClassCastException at the
execution time.

•	 The stateful components can have their dependency injected safely and can
interact with other services by simple calling methods.

•	 CDI also has a lifecycle event model. Interested objects can register
themselves to listen to the event notifications.

•	 CDI has the ability to decorate the injected components and the ability to
associate the interceptors with the components in a typesafe fashion.

Context and Dependency Injection

[42]

The following diagram illustrates the built-in contextual scopes inside the
CDI container:

Beans and bean types
A bean in CDI is a source of the contextual objects that define the application
state with or without a logic. Almost any Java object can be treated as a CDI bean.

Beans are instantiated by the CDI container and their lifecycle is determined
by the stateful context that they belong to. In other words, all CDI beans have
a stateful context.

CDI 1.1 chiefly describes the environment around the Java EE environment,
although the implementation such as JBoss Weld can execute in the Java SE
standalone application.

Chapter 2

[43]

Inside a Java EE environment there are components known as managed beans. A
CDI bean is one that is managed by the CDI container, whereas the EJB container
manages EJB, and the Servlet container manages a Java Servlet. In Java EE 7, the
CDI container is different from the other two containers, EJB and Servlet, in terms
of managing the stateful component beans by the contextual instances.

Formally, a CDI bean has the following attributes:

•	 One or more bean type that is not empty
•	 Associated with at least one qualifier
•	 Has a determined and well-defined CDI scope
•	 Has a set of interceptor bindings
•	 Has a bean implementation
•	 Optionally can have an expression language (EL) bean name

In the CDI specification, the bean type refers to the managed object inside the
container. The visibility of the bean type is defined from its scope and also lifecycle.
It is worth remarking that almost all the Java types can be CDI bean types.

The Java types that can be CDI bean types are as follows:

•	 A bean type may be a Java interface, a concrete class, or an abstract class,
and it may be declared final or have final methods.

•	 A bean type may be a generic type with the type parameters and variables.
•	 A bean type may be an array type.
•	 A bean type may be a primitive Java type, which means that the

corresponding wrapper types will be used and instantiated. The wrapper
types are defined in the package java.lang.

•	 A bean type may be raw type, which is a Java Collection type that is
parameterized as compilation type (Pre Java SE 5).

Given the preceding rules most non-Java EE plain old objects can be automatically
treated as CDI bean types and no special declarations are required. The CDI
container behind the scenes will proxy the bean instances and it uses the Java
Reflection API with the byte-code manipulation. Therefore, there are certain
circumstances where the container cannot create a certain bean type.

Context and Dependency Injection

[44]

The exceptions to the rules are as follows:

•	 The bean type does not have a public default no-argument constructor
•	 The bean type is an inner class that is declared not static
•	 The bean type is not a concrete class
•	 The bean type is annotated with @Decorator
•	 The bean type is a class that declares a final or has a final method
•	 The bean type is annotated with the EJB component defining annotation or

declared as an EJB class in the deployment XML configuration ejb-jar.xml
•	 The bean type is an array or a primitive type

Let us summarize some of these definitions into a handy reference as follows:

Term Definition
Bean type The bean type is the type hierarchy that the bean provides, which

of course, is the interface or class, and ancestor types. The CDI
injection container always uses the type as the primary identifier for
determining whether a bean will provide an instance.

Qualifier A qualifier is a way to distinguish between multiple beans that
implement a desired bean type. Qualifiers are the type safe
annotations and allow a client to choose between multiple bean-type
implementations.

Scope CDI beans all have a well-defined scope, which determines the
lifecycle and the visibility of the instances. The CDI scopes are fully
extensible and the standard provides built-in scopes, which includes
the request, session, application, and conversation scope. The beans
can also be dependent and inherit the scope of their injection scope.

EL name A bean may define an EL name. The facility is provided for non-type
safe access. EL names tend to be used by the Java Server Faces views.
They can only be used by external and extension frameworks, which
are built on top of Java EE standard.

Interceptors A CDI interceptor is a feature that allows the developers to
implement crosscutting concerns, such as security or logging as a
bean's methods are invoked. Interceptors are a step up from the
classic decorator design pattern.

Implementation All CDI beans by definition provide an implementation of the types
that define them. Implementations are typically in a class.

Chapter 2

[45]

Basic injection
The key principle of dependency injection, from the definition, is that only the beans
instantiated by the CDI container are managed. The CDI container is the external
lifecycle provider and the way you behave with it is to respect the cardinal rule,
"Don't call us, we'll call you.", The Hollywood Agency principle.

Before CDI, in Java EE 5 specification there was already injection
from the EJB container objects @EJB, @PersistenceContext, @
PersistenceUnit, and @Resource. Unfortunately only components
known to the application server could be injected in such a scheme. CDI
is a general-purpose dependency injection framework and it is type safe.

Let us assume we are able to run inside a CDI container, and we are building an
airline reservation application. We will define a couple of types defined by their
contract, such as an airline and a payment service.

Some Java interface declarations for a software domain-flight reservation system are
as follows:

interface CreditService {
 void check();
 }

interface Airline {
 void reserve();
 }

The context for these bean types CreditService and Airline implies a user story
about making an airline reservation. For now, we will assume that the lifetime of the
bean typed live for the duration of the application.

Field injection
For our first example, let us create an airline reservation system as a simple CDI bean.

public class ReservationService {
 @Inject Airline airline;
 }

This class ReservationService uses a CDI managed bean and it does not yet do
anything special. We do, however, declare a dependency on an Airline instance
though. The annotation @javax.inject.Inject declares that the field airline will
be associated with the default Airline type object. We call this field injection. Let
us proceed a bit further.

Context and Dependency Injection

[46]

Setter injection
public class ReservationService {
 @Inject
 public void setAirline(Airline airline) {
 /* Do something here */
 }
}

We can attach the @Inject annotation to a setter method too.

What happens if we are in a situation where another colleague has developed
the code already and there was a method to initialize the object already there.
CDI can also help us in this situation. Look at the following declaration for a
ReservationService class:

public class ReservationService {
 @Inject
 public void startVTTYConnection
 (Airline airline, PaymentService ps) {
 /* ... */
 }
}

CDI copes with the initialization methods seamlessly. In fact, CDI allows a web bean
to have multiple injection and initialization points.

Constructor injection
CDI can also inject the dependencies into the constructors. It is all quite type safe as
follows:

public class ReservationService {
 @Inject
 public ReservationService(Airline airline, PaymentService ps) {
 /* ... */
 }
}

Wherever a constructor is declared with the @Inject annotation, the CDI container
injects any dependent instances that it finds in the contextual scope of the target
bean type. The CDI container also injects any necessary field instances in the bean
type by the time the constructor is called that are appropriate to the field's contextual
instance. We will talk more about scope later in this chapter.

Chapter 2

[47]

For constructor injection, a CDI bean type can only have one
constructor with the injection points.

If the bean does not declare a constructor with a @Inject annotation, the CDI
container will call the no-arguments constructor. The default is called only if
there are no other constructors defined.

The CDI injection is type safe and exceedingly appropriate for simple POJOs.

Qualifiers
Qualifiers allow CDI to differentiate by beans with the same type. A qualifier
configures a specific bean type to be injected into the target object.

Qualifiers are defined with the Java interface annotations. They are defined as
@Target({METHOD, FIELD, PARAMETER, and TYPE}) and @Retention(RUNTIME).
There are standard qualifiers in CDI, but you may also define your custom qualifier
for your own projects.

Let us define two more example qualifiers.

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface ShortTermCredit { }

This is for a credit service provider to annotate the short-term applications.

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface LongTermCredit { }

And this one is for the long-term applications.

Using the knowledge we now have, we can simply write a CDI implementation
for a short-term provider.

interface CreditProvider {
 double computeAPR(double criteria, double base);
}

@ShortTerm

Context and Dependency Injection

[48]

class HighStreetCreditProvider implements CreditProvider {
 double computeAPR(double criteria, double base) {
 return 24.753;
 }
}

The class HighStreetCreditProvider can be injected into a target, if the injection
point specifies the @ShortTermCredit annotation.

class CreditService {
 @Inject @ShortTerm CreditProvider shortTermProvider;
 @Inject @LongTerm CreditProvider longTermProvider;

 public void processCredit() {/* ... */}
 /* ... */
}

Qualifiers also work with the CDI productions. The following is a long-term credit
provider that provides more reasonable annual percentage age albeit for a much
longer term:

class GuiltsCreditProvider implements CreditProvider {
 double computeAPR(double criteria, double base) {
 return 1.41457;
 }

 int months() {return 66;}

 @Produces
 @LongTerm
 public CreditProvider createCreditProvider() {
 return new GuiltsCreditProvider();
 }
}

Chapter 2

[49]

Built-in qualifiers
Here is a table of the built-in qualifiers in Context and Dependency Injection.

Qualifier Name Description
@javax.enterprise.inject.
Any

This is the qualifier given to every bean
instantiated and managed by the CDI container.
It is also the qualifier supplied to the injection
points. The only exception is where declaration
is with the @New qualifier.

@javax.enterprise.inject.
Default

If a bean does not explicitly declare a qualifier
other than @Named, the bean has the qualifier @
Default.

@javax.enterprise.inject.
Named

This qualifier gives a CDI bean a name, which
allows the JSF view or other presentation toolkit
to refer it. Note that this access is not strongly
typed at the compilation time.

@javax.enterprise.inject.
New

The qualifier @New annotation causes a new
instance to be created by the CDI container
instead of using the contextual instance. In CDI
1.1, the use of @New is deprecated.

The CDI classpath scanning
How does CDI know exactly what classes to find in a JAR module? CDI scans the
modules in an Enterprise application. In Java EE 6, the CDI container scans the Java
archive files and searches for a beans.xml XML-deployment descriptor. For a simple
JAR or an EJB module, it expects to find META-INF/beans.xml. In a WAR file, this
file should be in the location WEB-INF/beans.xml. The beans.xml file is not meant
for declaring the CDI beans, unlike Spring Framework.

The beans.xml file can be empty and its presence serves to trigger the CDI container
to scan the archive. In Java EE 7 and in particular CDI 1.1, the presence of beans.xml is
mandatory. Specifying a bean discovery mode in the XML file can control scanning.

<beans xmlns = "http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 version = "1.1" bean-discovery-mode = "all">
</beans>

Context and Dependency Injection

[50]

The attribute bean-discovery-mode can have the following values: none,
annotated, and all. The default value is annotated, which informs the CDI
constructor to scan for all the annotated beans and dependencies; all means
consider every object as a possible bean type, and none means do not scan this
archive for the CDI bean types.

The beans.xml file determines Alternatives, Interceptors, and Decorators,
about which we will learn later.

Factory production
How does CDI handle the situation, where your dependency instance does not have
an arguments constructor? Sometimes we want to allow the application control to
how and when to instantiate a bean type

CDI deals with factory creation with a feature called producers, which
unsurprisingly involves the @Produces annotation. The fully qualified package
annotation is called @javax.enterprise.inject.Produces, which informs the
CDI container to create an instance of a bean type using the recipient method
instead of instantiating the dependency by invoking its no-argument constructor.

Let's look at an example of a factory class as follows:

class EurasianTealAirline implements Airline {
 /* ... */
}

public class AirlineProducer {
 @Produces @Premium
 public Airline connectAirline() {
 return new EurasianAirline();
 }
}

The class AirlineProducer acts as a factory for the Airline components,
which actually are the EurasianAirline types, and notice, it is also a premium
business connection.

Traditionally, a factory is used to demarcate different type a of bean types in order
to delay until runtime the type of object created because the calling code does not
know the exact type of dependency. Usually, an enumerated value is passed to the
factory in code or during external configuration. With CDI, we use special custom
annotation for this.

Chapter 2

[51]

It is instructional to see the qualifier annotation for the @Premium as follows:

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Premium

We define a custom annotation with a runtime retention policy, which can be
declared on the class, at a method call, before a type field, and in the method
argument positions.

Given these definitions, we can use CDI to inject a specific dependency in a bean
and/or service that we are using. If we have a Java-standalone application, a web
frontend specifically for customers that only fly with the premium airline services,
we would write something like the following:

public class FrontEndPremiumUI extends WebFrontController {
 @Inject @Premium private Airline luxuryService;

 public void handleForm
 (HttpRequest request, HttpResponse response, FormModel form) {
 luxuryService.reserve()

 /* ... */

 renderView(request, response);
 }

 /* ... */
}

Context and Dependency Injection

[52]

The key line of this user interface code is as the following:

@Inject @Premium private Airline luxuryService;

The line instructs the CDI container to inject a dependency of the Airline bean
type that is specifically qualified as a @Premium into the bean FrontEndPremiumUI.
The CDI container searches for a matching bean type and finds the factory
AirlineProducer. It then invokes the method connectAirline(), which returns an
instance of EurasianTealAirline.

There is an alternative to define a producer using the initialization method to
construct an accessible field. The producer field is the value that will be injected into
the targets.

public class AirlineProducerAlternative {
 @Produces @Premium Airline airline;

 @Inject
 public void initialize(SpecialContext ctx) {
 airline = new EurasianTealAirline(ctx);
 }
}

Inside the class AirlineProducerAlternative, we inform the CDI container that
the field airline is initialized by the factory. In our application, we call the method
initialize() in order to create a EurasianTealAirline component with a
component SpecialContext that is also injected in.

The CDI container manages the lifecycle of the beans and adds contextual
information to it. This means that the instances will be shared by other threads and
components managed by the same CDI container.

We do not have to create and use qualifier for simple POJOs that have no
discriminating bean types. The CDI container has a default qualifier for bean types.
The annotation is called @javax.enterprise.inject.Default.

Generating new instances every time
Sometimes injecting a shared instance from the CDI container is not the behavior that
your target bean requires. There are sometimes security issues, concurrency behaviors,
and other object safety reasons where a new instance is required.

Chapter 2

[53]

A new instance can be forced from CDI by using the @New annotation in a producer.

public class AirlineProducer {
 @Produces
 public Airline connectAirline(@New Airline airline) {
 return new EurasianAirline(airline);
 }
}

This @New annotation is very much like the prototype scope behavior as seen in
Spring Framework.

Bean names and presentation views
There is another way to distinguish the CDI beans and that is to optionally give a
bean a name. The main reason you would want to do this is to permit a bean to be
referenced from the presentation view framework such as JSF. (A full chapter on JSF
is out of scope for this book.)

To make a bean accessible through EL, use the @Named built-in qualifier.

@Inject @Named("longTermProvider") @LongTermCredit
CreditProvider guiltsProvider;

If you do not provide the name of the bean, then the @Named qualifier allows you to
access the bean by using the name, with the first letter in lowercase. The following
two injection points are equivalent in terms of referencing the same CDI bean by name.

class Donkey { }

class DonkeyRider {
 @Inject @Named donkey donkey1;
 @Inject @Named('donkey') donkey2;
}

Both field variables donkey1 and donkey2 will reference the same CDI bean,
provided that the CDI bean is not annotated with @New, of course.

To access the long-term credit bean through JSF, we would write something like
the following inside a JSF Facelet view:

<div id = "promoArea">
 <h1>Amazing Credit Offer!</h2>
 <p>Only available to 30th September 2014</p>
 <h:form>

Context and Dependency Injection

[54]

 <h:inputText value = "#{applyForm.quote}"
 title = "quotation value"/>
 <h:inputText value = "#{applyForm.term}"
 title = "length of text"/>
 <h:commandButton value = "Apply Now!"
 id = "offerSubmitButton"
 action = "#{longTermProvider.applyForCredit}"/>
 </h:form>
</div>

This extraction of complicated JSF Facelet illustrates how a named CDI bean type is
accessed in the <h:commandButton> tag. A customer clicking on the button invokes
the method applyForCredit() on the CDI bean type.

Let's move onwards to the built-in CDI scopes. Illustration of the airline reservation
system with several bean types' associated scopes is shown in the following screenshot:

Chapter 2

[55]

Bean scopes
In the CDI container there are five predefined scopes, and all of them apart from
@Dependent are associated with a bean to provide contextual information. The
scopes have different lifetimes and thus different durations.

Scope Annotation Duration
Request @RequestScoped The beans declared against

the request scope live only
in existence for the lifetime
of HTTP Servlet Request,
invocation of remote EJB,
a delivery of message to a
Message Driven Bean, or a web
service endpoint. After the
request has been serviced, the
bean is destroyed.

Session @SessionScoped The beans declared against
the session scope live for the
lifetime of HTTP session,
which is a user's interaction
with a web application across
multiple HTTP requests. The
session scoped beans are only
destroyed when the same
HTTP session associated with
them is destroyed.

Application @ApplicationScoped The beans declared against the
application scope live for the
lifetime of all users' interactions
with a web application. In
other words, the beans live as
long as the web application
executes in the managed web
container and therefore, the
CDI container. Only when the
application is destroyed (or
undeployed) are the associated
application scope beans
destroyed.

Context and Dependency Injection

[56]

Scope Annotation Duration
Dependent @Dependent The beans declared against

the dependent scope are never
shared between the injection
points. The injection of a
dependent bean lives as long as
the lifecycle of the target object
to which they are bound. In
other words, the CDI container
does not manage the dependent
beans.

Conversation @ConversationScoped The beans declared against the
conversation scope are shared
across multiple requests in the
same HTTP session as long as
they associate with the active
conversation state. Once the
beans fall out of the active
connection state (workflow)
they are primed for destruction
by the CDI container.

For the historical record, the first three scopes are defined by JSR-299 CDI and the JSF
API. The last two scopes are only defined by JSR-299.

Advanced Java EE developers can also extend and implement the custom scopes. In
order to do so, new scope must declare with the @javax.inject.Scope annotation
or @javax.enterprise.context.NormalScope meta-annotation. Beginners in CDI
should stay clear of the extensions until they have gained suitable experience.

It is recommended that the developers use @javax.inject.
Inject annotation as much as possible, especially for EJB
references, over @javax.ejb.EJB. Try it!

CDI initialization and destruction
The applications can register the post-construction and pre-destruction callbacks on
the CDI bean types.

Chapter 2

[57]

The @PostConstruct annotation
When the CDI bean is created, it is associated with a scope. It is possible to register
a lifecycle callback method that the CDI framework should call after dependency
injection, but also before the class is put into the service.

First, in the managed bean or in any of its superclasses, you define a callback
method, which performs the custom initialization. Second, annotate the method with
the @javax.annotation.PostConstruct annotation.

class DVLA {
 static String generateKey() {/* ... */}
 static void clearAndReset(String key) {/* ... */}
}

class VehicleRegistration {
 private String dvlaKey;
 private String registration;

 @PostConstruct
 public void resetValues() {
 registration = "";
 dvlaKey = DVLA.generateKey("SWANSEA")
 }
}

The CDI container will call the resetValues() method in this bean type
VehicleRegistration after all the injections have occurred; therefore, the bean
has been fully wired after all the other initializers have been invoked. Sometimes an
application wants to apply a look-up dependency to a third-party library as a late
binding, and associating the component in the constructor is not appropriate.

The @PreDestroy annotation
When the CDI bean is created, it is associated with a scope. It is possible to register
a lifecycle callback method that the CDI framework should call after dependency
injection, but before the class is put into the service.

First, in the managed bean or in any of its superclasses, you define a callback
method, which performs the custom initialization. Second, annotate the method
with the @javax.annotation.PreDestroy annotation.

class DVLA {/* ... */}

class VehicleRegistration {

Context and Dependency Injection

[58]

 private String dvlaKey;
 private String registration;
..
 @PreDestroy
 public void releaseCache() {
 DVLA.clearAndReset(registration);
 }
}

The CDI framework will invoke the @PreDestroy method before the bean type goes
out of the contextual scope.

Programmatic Lookup of the CDI Beans
Although the CDI container follows the Hollywood Agency Principle, there is a way
to retrieve a bean instance directly. The developers can programmatically ask for an
instance of the bean type, to deal with special cases.

public class DVLARegistrationCentre {
 @Inject Instance<DVLA> dvla;
 public DVLA getDVLA() {
 return dvla.get();
 }
}

The @javax.enterprise.inject.Instance annotation allows the application
to dynamically obtain the instances of the beans with a specified combination
of qualifiers.

The class DVLARegistrationCenter has a method to retrieve the DVLA instance and
the instance that is returned is decided by the designation. The get() method of the
instance produces a contextual instance of the bean.

Qualifiers can be specified at the injection point with annotations.

@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Police { }

@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Secure { }

public class DVLARegistrationCentre {
 @Inject @Police @Secure Instance<DVLA> dvla;
 public DVLA getDVLA() {
 return dvla.get();
 }
}

Chapter 2

[59]

In this case, we obtain a different Driver Vehicle Licensing Authority type specific to
the UK civil government service and hopefully it is secure.

Advanced readers will notice that this looks extremely similar to the Spring
Framework retrieval of the Spring bean from that dependency injection framework.
The difference here is that the lookup is provided by the annotations, and therefore is
strong typed, not by the name of the bean.

What types of special cases could there be?

•	 Instance lookup is useful if the qualifiers can vary dynamically at runtime
•	 We want to iterate over all the beans of a certain type
•	 We want to provide a fallback method, where there is no bean that satisfies

the type and the set of qualifiers

The following is an example to iterate all the beans in the CDI container of
a specified type:

class DVLA {
 public void init() {/*...*/}
 /* ... */
}

@Inject
void initRegistries(@Any Instance<DVLA> registries) {
 for (DVLA registry: registries) {
 registry.init();
 }
}

We use the @Any qualifier to override the @Default annotation in order to remove
the restriction of the bean type suitable for injection. Remember, the @Any qualifier
says that you are declaring an injection point, where you do care about contextual
information of the CDI bean.

Configuring a CDI application
It is very easy to configure a CDI application. All you need to do is provide a file
called beans.xml, which must be found on the classpath. The file can be completely
empty. For web applications, the standard dictates that the beans.xml file must live
in the WEB-INF directory. For the EJB modules or the JAR files must live in the
META-INF directory.

Context and Dependency Injection

[60]

Standalone CDI application
We have had enough theory. Let us now visit a sample application. This example
will use the Java EE reference implementation project for CDI, which is called Weld.
The Weld project is available on Red Hat JBoss website at http://seamframework.
org/Weld.

In this example, we are using CDI 1.1, which is sufficient for the example. The project
uses Gradle, the build system written in the Groovy programming language. Because
we use Gradle in the book's source code, we present in this chapter only a very small
guide to this build tool, which is gaining popularity among the leading developers.

The build.gradle file is as follows:

apply plugin: 'java'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

// Define equivalent Maven GAV coordinates.
group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch02-cdi-standalone'
version = '1.0'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.jboss.weld.se:weld-se-core:1.1.9.Final'
 compile 'org.slf4j:slf4j-simple:1.6.1'
 testCompile 'junit:junit:4.11'
}

task wrapper(type: Wrapper) {
 gradleVersion = '1.7'
}

// Override Gradle defaults - a force an exploded JAR view
sourceSets {
 main {
 output.resourcesDir = 'build/classes/main'
 output.classesDir = 'build/classes/main'
 }

Chapter 2

[61]

 test {
 output.resourcesDir = 'build/classes/test'
 output.classesDir = 'build/classes/test'
 }
}

task(run, dependsOn: 'classes', type: JavaExec) {
 main = 'je7hb.standalone.HelloWorld'
 classpath = sourceSets.main.runtimeClasspath
 args 'Mary', 'Peter', 'Jane'
}

The source code sample in project is organized in a directory structure exactly the same
as an Apache Maven 3 project. The source code lives under the folder paths src/main/
java and src/main/resources, and the test code lives under src/test/java and
src/test/resources. These folder paths are relative to the root of the project.

The entire code to the main program that we execute in the standalone Weld
container is as follows:

package je7hb.standalone;

import org.jboss.weld.environment.se.Weld;
import org.jboss.weld.environment.se.WeldContainer;
import org.jboss.weld.environment.se.bindings.Parameters;
import org.jboss.weld.environment.se.events.*;

import javax.enterprise.event.Observes;
import javax.inject.Singleton;
import java.util.List;

@Singleton
public class HelloWorld {
 public void initialMe(@Observes ContainerInitialized event,
 @Parameters List<String> parameters) {
 System.out.println("Initialization from CDI");
 for (int j = 0; j<parameters.size(); ++j) {
 String param = parameters.get(j);
 System.out.printf("parameters[%d] = %s\n", j, param);
 }
 System.out.println("Complete.");
 }

Context and Dependency Injection

[62]

 public void greet(String[] names) {
 System.out.print("Hello ");
 for (int j = 0; j<names.length; ++j) {
 System.out.printf("%s%s",(j > 0 ? (j == names.length-1 ?
 " and " : ", ") : ""), names[j]);
 }
 System.out.println();
 }

 public static void main(String[] args) {
 Weld weld = new Weld();
 WeldContainer container = weld.initialize();

 HelloWorld helloBean = container.instance()
 .select(HelloWorld.class).get();
 helloBean.greet(args);

 weld.shutdown();
 }
}

Here are some remarks about the HelloWorld example. The Java EE 7 does not
define a standard standalone API for CDI yet, so we have to import in the classes
directly from the reference implementation Weld SE.

In the main program, we programmatically bootstrap the CDI container. Once the
WeldContainer is initialized, we can obtain the bean instances quite easily. The
HelloWorld instance is a @Singleton object and is retrieved from the container. The
code is exhibit type safety and there is no casting required to get the object instance.
Once we have the instance, we invoke the methods on it just like any another object.

Finally, in order to complete this example, we need an empty beans.xml file. This
file is stored under the folder path src/main/resources/META-INF.

Chapter 2

[63]

Building the standalone project
with Gradle
In order to build the project, you need Gradle installed on your system
workstation. You can download the latest distribution from the Gradle official
website: http://www.gradle.org/downloads

In order to build the example, just execute the following command line:

gradle build

If you need a loadable project for Eclipse, execute the following command line:

gradle eclipse

If you need a loadable project for JetBrains' IDEA, execute the following
command instead:

gradle idea

Any of the preceding Gradle commands will generate the project files that will
import the files into your favorite Integrated Developer Environment (IDE).
Once you have the project in the IDE, running the HelloWorld program with the
arguments Jane, Peter, Mary, produces the output:

Initialization from CDI framework
Complete.
Hello Jane, Peter and Mary

Process finished with exit code 0

You can also execute the example from the command line, with the Gradle custom
command from the script.

Gradle run

To build a project with Gradle, one executes the following command:

gradle build

To reset the project to clean state, one executes the following command:

gradle clean

Context and Dependency Injection

[64]

Of course Gradle is a fully featured build environment with scores of additional
tasks and commands. I recommend you visit the Gradle website (http://gradle.
org) to learn more about Gradle. Packt Publishing also has a recent book: Gradle
Effective Implementation Guide by Hubert Klein Ikkink. You will also find out about the
build environment and tools in the appendices at the end of this book.

Using the DeltaSpike CDI container tests
Let us take a different tack. Although there is no standard API for using CDI outside
of a Java EE environment such as standalone Java SE, there is a project called
DeltaSpike. This is an open source project that defines a wrapper API around two
common CDI implementations JBoss Weld and Apache Open Web Beans. The URL
is http://deltaspike.apache.org/.

Let us modify the Gradle build script to add dependencies for the Weld container
as follows:

// Define equivalent Maven GAV coordinates.
group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch02-cdi-standalone'
version = '1.0'
ext.deltaspikeVersion = '0.3-incubating'

dependencies {
 compile 'org.jboss.weld.se:weld-se-core:1.1.9.Final'
 compile 'org.slf4j:slf4j-simple:1.6.1'
 compile "org.apache.deltaspike.cdictrl:deltaspike-cdictrl-api:
 ${deltaspikeVersion}"
 compile "org.apache.deltaspike.cdictrl:deltaspike-cdictrl-weld:
 ${deltaspikeVersion}"

 testCompile 'junit:junit:4.11'
 }

This is almost the same definition as before, except for the dynamic property
deltaspikeVersion, which allows the version number of the dependency to be
configured to be changed. Incidentally, you can switch to the other DeltaSpike
implementation, Apache Open Web Beans, by changing the dependency to:

dependencies {
 compile 'org.apache.openwebbeans:openwebbeans-impl:1.1.6'	
 compile 'org.apache.openwebbeans:openwebbeans-ee:1.1.6'
 compile "org.apache.deltaspike.cdictrl:
 deltaspike-cdictrl-api: ${deltaspikeVersion}"

Chapter 2

[65]

 compile "org.apache.deltaspike.cdictrl:
 deltaspike-cdictrl-owb: ${deltaspikeVersion}"
 /* ... */
 }

Let us create a couple of qualifier annotations. We create one to represent a premium
and expensive service, and a second to represent a budget service.

// Economy.java
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Economy { }

// Premium.java
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Premium { }

The preceding annotation must exist in separate Java class files. Next, we will create
a traveler service for airlines. The service is not at all useful, but it will demonstrate
the testing, the qualifiers, and the dependency injection. It will simply allow us to
retrieve a random flight given an airline code.

public interface TravelService {
 FlightSet findRandomByAirline(String airline);
}

The simplified definition of the budget travel service, unsurprisingly, called
BudgetTravelServiceImpl is as follows:

@Economy
public class BudgetTravelServiceImpl implements TravelService {
 @Override
 public FlightSet findRandomByAirline(String airline) {
 Airline airlineBudget = new Airline("CHP","Cheap Budget");
 return new FlightSet(Arrays.asList(new AirlineRoute(
 "LGW", "DUB", parseDate("20131110-12:30:00 GMT"),
 parseDate("20131110-14:00:00 GMT"),
 airlineBudget, 69.0), new AirlineRoute("LHW", "PAR",
 parseDate("20131110-16:45:00 -0500 GMT"),
 parseDate("20131110-20:00:00 -0700 +0100"),
 airlineBudget, 79.0)));
 }
}

Context and Dependency Injection

[66]

We can also define an expensive service called TravelFunkServiceImpl as follows:

@Premium
public class TravelFunkServiceImpl implements TravelService {
 @Override
 public FlightSet findRandomByAirline(String airline) {
 Airline airlineBrit = new Airline("BRS","British Stars");
 return new FlightSet(Arrays.asList(new AirlineRoute(
 "NYC", "SFO", parseDate("20131110-16:45:00 -0500"),
 parseDate("20131110-20:00:00 -0700"),
 airlineBrit, 250.0)));
 }
}

So now, we write an elegant and a simple unit test with the DeltaSpike library to
verify the CDI container (either JBoss Weld or Apache Open Web Beans) injects the
correct travel service according to the qualifier annotation.

package je7hb.travelfunk;
import je7hb.standalone.*;
import org.junit.Test;
import javax.inject.Inject;
import static org.junit.Assert.assertNotNull;

public class TravelServiceTest extends AbstractCdiContainerTest {
 @Inject @Premium TravelService premiumTravelService;
 @Inject @Economy TravelService economyTravelService;

 @Test
 public void shouldInjectPremiumService() {
 System.out.printf("premiumTravelService=%s\n",
 premiumTravelService);
 assertNotNull(premiumTravelService);
 FlightSet flight =
 premiumTravelService.findRandomByAirline("BRS");
 assertNotNull(flight);
 }

 @Test
 public void shouldInjectEconomyService() {
 System.out.printf("economy=%s\n", economyTravelService);
 assertNotNull(economyTravelService);
 FlightSet flight =
 economyTravelService.findRandomByAirline("BRS");
 assertNotNull(flight);
 }
}

Chapter 2

[67]

The distilled magic of the DeltaSpike library lies within the
AbstractCdiContainerTest implementation, which is part of this book's source
code project. For JUnit testing, we need to make sure that we have a brand new CDI
container for the invocation of the test methods. There is a restriction for the CDI
container, in that they do not play very well in parallel executions from the same
Java ClassLoader; therefore, before each test method is invoked, we first have to
make sure that the container is initialized appropriately and also the conversation
context is cleared. The following source code is targeted for JUnit; you will need to
modify it accordingly for another testing framework such as TestNG.

First, the CDI container is created with the static method of CdiContainerLoader,
which will retrieve a JBoss Weld or Apache Open Web Beans. The container is
instantiated in the static helper method startUpContainer(), because we want only
to initialize the test container when the test class is loaded, and before test methods
are invoked on it. Once we have the CdiContainer type, we boot up, and then start
all of the conversational contexts in it.

import org.apache.deltaspike.cdise.api.*;
import org.junit.*;
import javax.enterprise.context.RequestScoped;
import javax.enterprise.context.spi.CreationalContext;
import javax.enterprise.inject.spi.*;

public abstract class AbstractCdiContainerTest {
 protected static CdiContainer cdiContainer;

 @Before
 public final void setUp() throws Exception {
 cdiContainer.getContextControl()
 .stopContext(RequestScoped.class);
 cdiContainer.getContextControl()
 .startContext(RequestScoped.class);

 BeanManager beanManager = cdiContainer.getBeanManager();
 CreationalContext creationalContext =
 beanManager.createCreationalContext(null);

 AnnotatedType annotatedType =
 beanManager.createAnnotatedType(this.getClass());
 InjectionTarget injectionTarget =
 beanManager.createInjectionTarget(annotatedType);
 injectionTarget.inject(this, creationalContext);
 }

Context and Dependency Injection

[68]

 @After
 public final void tearDown() throws Exception {
 if (cdiContainer ! = null) {
 cdiContainer.getContextControl()
 .stopContext(RequestScoped.class);
 cdiContainer.getContextControl()
 .startContext(RequestScoped.class);
 }
 }

 @BeforeClass
 public final synchronized static void startUpContainer()
 throws Exception {
 cdiContainer = CdiContainerLoader.getCdiContainer();
 cdiContainer.boot();
 cdiContainer.getContextControl().startContexts();
 }

 @AfterClass
 public final synchronized static void shutdownContainer()
 throws Exception {
 if (cdiContainer ! = null) {
 cdiContainer.shutdown();
 cdiContainer = null;
 }
 }
}

After JUnit invokes the test methods of the class, we ask the CDI container to shut
down. This procedure is illustrated in the method shutdownContainer().

The other two methods, setUp() and tearDown(), are designed to start and stop
conversational context before and after a test method is invoked. In the setUp()
method, we make sure that the qualifier annotations are injected into the test
class instance before the test method is invoked. In the previous unit test, the CDI
container will look up the travel service TravelService and find the correct type of
service according to qualifier, for example, @Premium or @Economy.

Typically, to simulate the request arriving from a web service client, the request
scope context should be restarted for each test. Therefore, in the tearDown() method,
we explicitly stop and restart the request conversational scope context.

Chapter 2

[69]

To complete the example, here is the utility class, Util, which contains a static
method to parse the formatted date, time, and time zone.

import java.text.SimpleDateFormat;
import java.util.Date;

public final class Utils {
 private final static SimpleDateFormat FORMATTER =
 new SimpleDateFormat("yyyyMMdd-hh:mm:ss Z");
 public final static Date parseDate(String s) {
 try {
 Date date = FORMATTER.parse(s);
 return date;
 }
 catch (Exception e) {
 throw new RuntimeException
 ("unable parse date time from string ["+s+"]",e);
 }
 }

 private Utils() { }
}

Now that we understand the CDI qualifiers, let's move forward.

Injecting arbitrary objects using
Producers
What happens if we want to inject an object or type at runtime, dynamically? CDI
allows us to do this with the concept of productions. Producer methods are the
way to inject arbitrary objects into the container, which are not registered as beans
through the annotations. Typically, this is the way to get dynamic behavior.

Let us suppose we have a payment system for checking credit worthiness with
some financial service legal entity. It is a very simple credit model-you only need an
account number - and we can define a contract for this service as a Java interface.

public interface CreditProcessor {
 public void check(String account);
}

Context and Dependency Injection

[70]

We will reuse the annotations from the standalone travel service example,
@Premium and @Economy. We are given the business requirement for the economy
as a high volume and high turnover, and the model leverages lots of promotional
workers who act on behalf of the businesses to find and locate customers. There
are a lot of dynamics and so it can be modeled as a production using the following
HouseholdCredit class:

public class HouseholdCredit {
 private static AtomicInteger counter = new AtomicInteger(1000);

 @Produces
 @Economy
 public CreditProcessor createCreditProcessor() {
 return new StreetCreditProcessor
 ("promoter"+counter.getAndIncrement());
 }

 public static class StreetCreditProcessor
 implements CreditProcessor {
 private final String workerId;

 public StreetCreditProcessor(String workerId) {
 this.workerId = workerId;
 }

 @Override
 public void check(String account) {/*...*/}

 @Override
 public String toString() {
 return "StreetCreditProcessor{" +
 "workerId='" + workerId + '\'' +
 '}';
 }
 }
}

The key annotation is @javax.enterprise.inject. Produces, which informs the
CDI container that the application is responsible for creating a particular bean type.
The @Produces annotation designates a POJO application bean as producer of a CDI
managed beans.

Do not confuse CDI's @Produces with another Java EE 7 annotation
@javax.ws.rs.Produces, which is part of JAX-RS. See Chapter 8,
RESTful Services JAX-RS 2.0.

Chapter 2

[71]

The class HouseholdCredit declares to CDI that it can generate a CreditProcessor
with the qualifier @Economy. It does this by instantiating a static inner class called
StreetCreditProcessor, but also notice that this type is not annotated explicitly.
The CDI container will locate this particular bean type and create it by instantiating a
Household object for the lifetime of the container, and then invoking the production
method, when required by the injection point. The conversation context of the supplied
bean is decided at the injection point, as you can see in the following unit test:

package je7hb.standalone;

import je7hb.travelfunk.AbstractCdiContainerTest;
import org.junit.Test;
import javax.inject.Inject;
import static org.junit.Assert.*;

public class CreditProcessorTest extends AbstractCdiContainerTest {
 private @Inject @Economy CreditProcessor agent;

 @Test
 public void shouldInjectStreetCredit() {
 assertNotNull(agent);
 agent.check("12354678");
 System.out.printf("agent=%s\n", agent);
 }
}

It is instructive to examine the following output from the program with the CDI
container test debugging switched on.

The output from the program is as follows:

AbstractCdiContainerTest#startUpContainer() cdiContainer=null
29 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
117 [main] INFO org.jboss.weld.Bootstrap - WELD-000101 ...
Initialization from CDI
Complete.
AbstractCdiContainerTest#setUp() containerRefCount=1,
 cdiContainer=org.apache.deltaspike.cdise.weld.
WeldContainerControl@49b35574
agent = StreetCreditProcessor{workerId = 'promoter1000'}
AbstractCdiContainerTest#tearDown() containerRefCount = 1,
 cdiContainer = org.apache.deltaspike.cdise.weld.
WeldContainerControl@49b35574
AbstractCdiContainerTest#shutdownContainer() cdiContainer =
 org.apache.deltaspike.cdise.weld.WeldContainerControl@49b35574

Process finished with exit code 0

Context and Dependency Injection

[72]

Advanced CDI
In this section, we will advance the context and dependency injection to listening
and acting on the lifecycle events, and choose between alternative implementations
through configuration.

The lifecycle component example
In the section, CDI initialization and destruction, we discussed the lifecycle methods
for the CDI managed beans. Let us look at a unit test example that demonstrates the
concepts. We will build the other side of the CreditProcessor example, which is the
premium rate version.

package je7hb.standalone;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;

@Premium
public class PremiumCreditProcessor implements CreditProcessor {
 @Override
 public void check(String account) {
 if (!account.trim().startsWith("1234")) {
 throw new RuntimeException("account:["+account+"] is not
 valid!");
 }
 }

 @PostConstruct
 public void acquireResource() {
 System.out.println(this.getClass()
 .getSimpleName()+"#acquireResource()");
 }

 @PreDestroy
 public void releaseResource() {
 System.out.println(this.getClass()
 .getSimpleName()+"#releaseResource()");
 }
}

The class PremiumCreditProcessor is a CDI managed bean, which is associated
with the @Premium qualifier. It has two lifecycle methods acquireResource() and
releaseResource().

Chapter 2

[73]

The CDI container invokes @PostConstruct annotated methods after the bean
type has been constructed. By the time the @PostConstruct method is called the
CDI container has already initialized any instance field properties in the bean type
and the super classes, which are managed by the CDI container. This lifecycle
method is designed for all managed beans to initialize the additional resources,
such as lazy-loadable and/or expensive resources, which need to be allocated.

The CDI container on managed beans invokes the @PreDestroy method, when
the context with which they are associated is about to be destroyed. This lifecycle
method is designed for the CDI managed beans to release any resources and/or
de-allocate expensive resources, for example, freeing up data handles or memory.

Let us look at the following unit test:

package je7hb.standalone;
import je7hb.travelfunk.AbstractCdiContainerTest;
import org.junit.Test;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import static org.junit.Assert.assertNotNull;

public class ExpensiveCreditProcessorTest extends
AbstractCdiContainerTest {
 @Inject @Premium @RequestScoped
 private CreditProcessor agent;

 @Test
 public void shouldInjectExpensiveCredit() {
 assertNotNull(agent);
 agent.check("12345678");
 System.out.printf("agent=%s\n", agent);
 }
}

For the first time, in this unit test, we are making use of a specific scope, the
request-scope, which is designed for the web servlet containers. Essentially, the
request-scope is a collection of short-lived managed objects in a map collection. The
request scope only exists for the duration of a single incoming HTTP web request
that reaches the application server. As soon as the web request is consumed and a
response is sent back to the client by a Java Servlet or something else, the objects in
the Request scope should be garbage collected because the CDI container (and the
web container) will destroy it.

Context and Dependency Injection

[74]

The trick to the unit test lies within super class, the AbstractCdiContainerTest,
specifically the tearDown() method where the Request scope is stopped and then
restarted order to ensure the current instance is destroyed. Obviously, running in
Weld Standalone SE and not inside an application server makes this code interesting.

Let us now turn our attention to getting configuration of beans when we want to
deliver a special type of instance to a client, when we have a choice of alternatives.

Alternatives
CDI supports the concepts of alternatives, for situations where you have more than
one implementation of an interface or plain object class. For example, you could
have more than one type of food processor, which may be supplied by third parties
and might be outside of our control. Your application may have a requirement that
dictates only a certain processor that can be active at any time in the program.

Let us illustrate alternatives with an interface called FoodProcessor, which simply
communicates the product's brand to the caller.

// FoodProcessor.java
public interface FoodProcessor {
 public String sayBrand();
}

Now let us define the implementations of our suppliers with just two classes like so:

// NouveauFoodProcessor.java
public class NouveauFoodProcessor implements FoodProcessor {
 @Override public String sayBrand() {
 return "Nouveau";
 }
}

// XenoniqueFoodProcessor.java
import javax.enterprise.inject.Alternative;

@Alternative
public class XenoniqueFoodProcessor implements FoodProcessor {
 @Override public String sayBrand() {
 return "Xenonique";
 }
}

Chapter 2

[75]

In one of those brands of food processor, XenoniqueFoodProcessor, we designate
at least one to be an alternative with the @Alternative annotation. There must
be one implementation that is the default, which in this case is the class called
NouveauFoodProcessor. How does the CDI container know which instance to
plug into the application?

By default, if there is no configuration, then the CDI container will inject the
NouveauFoodProcessor in to the type that requires it. If we want to specify the
alternative, then we need to configure that in an XML configuration file, which is
the bean container file META-INF/beans.xml the content looks like as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
			 http://java.sun.com/xml/ns/javaee/beans_1_1.xsd">
 <alternatives>
 <class>je7hb.standalone.alternatives
 .XenoniqueFoodProcessor</class>
 </alternatives>
</beans>

The alternative class is specified in the absolute XPath of /beans/alternative/
class. The text of this element is the fully qualified name of the concrete class.

Alternatives can be useful for injecting a separate test service. Perhaps it could be a mock
object or a prototype implementation that another developer team in the investment bank
will fulfill at some later stage in the grand development phase.

So let us provide, now, a customary unit test to prove this fact:

import javax.inject.Inject;
public class AlternativesFoodProcessorTest
extends AbstractCdiContainerTest {
 private @Inject FoodProcessor foodProcessor;

 @Test
 public void shouldInjectAlternative() {
 assertNotNull(foodProcessor);
 assertEquals("Xenonique",
 foodProcessor.sayBrand());
 }
}

Context and Dependency Injection

[76]

The unit test is based on our DeltaSpike standalone abstract container. We
simply instantiate the FoodProcessor type and verify that the instance is, indeed,
a XenoniqueFoodProcessor, which of course it is.

Perhaps, you will have noticed that even though the DeltaSpike container is a step
up from the standalone JBoss Weld SE examples; in fact it gives more portability
to another CDI Container, namely Apache Open Web Beans; however it is still not
enough for wide portability.

There are many more Java EE 6 products and, since the formal release, Java EE 7
products on the market that are fully certified and standardized implementations
of the specification, and some are pending reaching that condition. Although
DeltaSpike is a great solution, it does not cover all of them. We need something
that is a testing framework, makes use of the CDI scope exactly the same as inside
an application server and fully reproduces the conversational scope. This framework
is called Arquillian and now we will study the essentials in the next section.

The Arquillian test framework
Arquillian is a new approach for writing Java EE testing. In the past developers and
engineers have been used to writing mock objects and unit tests that run outside of
the application container for sheer productivity, efficiency, and speed.

A new kind of Java EE testing framework
Arquillian is a framework that merges the functional and integration testing. It takes
control of the lifecycle of the application server container so that it can provide a test
execution in an easier manner to developers.

•	 Arquillian manages the lifecycle of the target container, which can be a CDI
or EE container.

•	 It bundles the test case, dependencies, and resources into a much smaller
distribution than usual, which it calls the ShrinkWrap archives.

•	 Arquillian deploys the said ShrinkWrap archives to the runtime target
container, and then proceeds to enrich the test case with dependency
injection and other runtime declarative resources.

•	 The unit test cases are executed inside the target container. The results of
the unit tests are made available to the test runner.

•	 After executing the test cases, Arquillian shuts down the target container;
meanwhile, the unit test results are available for reporting.

Chapter 2

[77]

Arquillian bundles up the unit test and dependencies into clever assemblies of
class and deploys them to a CDI or Java EE container, and thus developers know
that their code actually runs well inside the product, instead of guessing at the
accuracy of mock implementation.

You can get more information about Arquillian from the the JBoss website
http://www.jboss.org/arquillian.html. Most of the time, you probably
do not want to manually download the Arquillian framework, instead you will
probably integrate into a Maven build or for this written book, add it as the build
dependencies for Gradle.

Setting up of Arquillian
Arquillian works with popular testing frameworks JUnit and TestNG out-of-the-box,
and it also integrates into IDE such as IntelliJ IDEA, NetBeans, and Eclipse.

In this section, we will set up an Arquillian with the Gradle build tool. The
following is the new build.gradle file with new dependencies on Gradle:

apply plugin: 'java'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch02-cdi-arquillian'
version = '1.0'

repositories {
 mavenCentral()
 maven {
 url 'http://repository.jboss.org/nexus/content/groups/public''
 }
}

dependencies {
 compile 'org.jboss.spec:jboss-javaee-6.0:1.0.0.Final'
 compile 'org.jboss.arquillian:arquillian-bom:1.0.3.Final'

 testCompile 'org.jboss.weld.se:weld-se-core:1.1.9.Final'
 testCompile 'org.slf4j:slf4j-simple:1.6.4'
 testCompile 'org.jboss.arquillian.container:
 arquillian-weld-ee-embedded-1.1:1.0.0.CR3'

Context and Dependency Injection

[78]

 testCompile 'org.jboss.arquillian.junit:
 arquillian-junit-container:1.0.2.Final'
 testCompile 'junit:junit:4.11'
}

task wrapper(type: Wrapper) {
 gradleVersion = '1.7'
}

// Override Gradle defaults - a force an exploded JAR view
sourceSets {
 main {
 output.resourcesDir = 'build/classes/main'
 output.classesDir = 'build/classes/main'
 }
 test {
 output.resourcesDir = 'build/classes/test'
 output.classesDir = 'build/classes/test'
 }
}

The URL http://repository.jboss.org/nexus/content/groups/public is
introduced as a second repository, in order to retrieve the correct dependencies
from the JBoss Red Hat servers. Apart from this change and the extra dependencies,
it looks very much the same.

Arquillian has two parts: core and the embedded container adaptors. There is core
of the framework, the support classes, and one runner from JUnit or TestNG;
and then there is the adaptor. In order to run successfully, at least one embedded
container must be specified. In the unit test, here we are using the Weld Java EE
embedded container, namely arquillian-weld-ee-embedded-1.1. However, you
are free to choose another container adaptor, of which there are several, such as the
JBoss application or the GlassFish servers.

Arquillian even allows developers to test their execution against
multiple containers, but only one can be selected for the runtime. The
way to do test across many application servers is through configuring
the Maven profiles or the Gradle setting properties. This is an advanced
topic and details can be found online at http://gradle.org/docs/
current/userguide/working_with_files.html.s

Chapter 2

[79]

The disposable methods
Let us revisit the classes that we created with the @Produces annotation. Remember
the annotation @Produces informs the CDI container to instantiate a bean type
dynamically through an application client factory. Having created a bean type,
we should consider end of life of factory bean types. What if the bean was expensive
to create or if the bean had held on to the resource handle? How could we safely
release such a resource to the operating system via the JVM, naturally? This is the
purpose of the @Dispose annotation.

When a contextual bean goes out of scope, it is destroyed. To destroy a bean,
the CDI container calls any @PreDestroy callbacks for the bean and destroys
any @Dependent objects before disposing of the object.

An application can perform custom cleanup of the created objects by using a dispose
method. Marking the parameter with the annotation @javax.enterprise.inject.
Disposes designates it as a disposal method.

The revised code for the class HouseholdCredit is as follows:

public class HouseholdCredit {
 private static AtomicInteger counter = new AtomicInteger(1000);

 @Produces
 @Economy
 public CreditProcessor createCreditProcessor() {
 CreditProcessor proc = new StreetCreditProcessor
 ("promoter"+counter.getAndIncrement());
 System.out.printf("#createCreditProcessor() "+ "creates proc =
 %s\n", proc);
 return proc;
 }

 public void releaseCreditProcessor
 (@Disposes @Economy CreditProcessor proc) {
 System.out.printf("#releaseCreditProcessor() "+
 "dispose proc = %s\n", proc);
 }

 public static class StreetCreditProcessor
 implements CreditProcessor {
 private final String workerId;
 public StreetCreditProcessor(String workerId) {
 this.workerId = workerId;
 }
 /*... same as before ... */
 }
}

Context and Dependency Injection

[80]

Note that the disposal method accepts the same qualifier annotation as the
production factory method. This is important; the CDI container should
complain at runtime if the qualifiers and the conversational scope, if any,
between the production and disposal methods do not match.

The modified unit test with the Arquillian framework to verify the operation of
the HouseholdCredit bean is as follows:

package je7hb.basic.arquillian;
import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.asset.EmptyAsset;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Test;
import org.junit.runner.RunWith;
import javax.inject.Inject;
import static org.junit.Assert.assertNotNull;

@RunWith(Arquillian.class)
public class EconomyCreditProcessorTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(Economy.class, Premium.class,
 CreditProcessor.class, HouseholdCredit.class,
 PremiumCreditProcessor.class)
 .addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml");
 System.out.println(jar.toString(true));
 return jar;
 }

 private @Inject @Economy CreditProcessor processor;

 @Test
 public void should_create_greeting() {
 System.out.printf("processor = %s\n", processor);
 assertNotNull(processor);
 processor.check("1234");
 }
}

Chapter 2

[81]

An Arquillian JUnit test case requires three important items: the @RunWith
annotation with the Arquillian class reference, the deployment static method,
which is annotated, and at least one method annotated with the @Test method.

The deployment method is annotated with @Deployment, which is part of the
Arquillian testing framework, and is responsible for creating, the ShrinkWrap
bundle. The ShrinkWrap API is very similar to the static builder factory. The object
is instantiated and then properties are set on the builder through the add method.
The classes to be deployed are explicitly added, and adding a blank CDI bean
configuration file follows it. (Java Packages can also be specifically deployed.)

The output of running this unit test is as follows:

3d3e541b-c6b9-4e58-918d-febae05ead20.jar:
/je7hb/
/je7hb/basic/
/je7hb/basic/arquillian/
/je7hb/basic/arquillian/HouseholdCredit.class
/je7hb/basic/arquillian/PremiumCreditProcessor.class
/je7hb/basic/arquillian/
 HouseholdCredit$StreetCreditProcessor.class
/je7hb/basic/arquillian/Economy.class
/je7hb/basic/arquillian/CreditProcessor.class
/je7hb/basic/arquillian/Premium.class
/META-INF/
/META-INF/beans.xml
21 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
Household#createCreditProcessor() creates proc =
 StreetCreditProcessor{workerId='promoter1000'}
processor = StreetCreditProcessor{workerId = 'promoter1000'}
check for account [1234]
Household#releaseCreditProcessor() dispose proc =
 StreetCreditProcessor{workerId='promoter1000'}

The println() statement in the deployment static method is actually dumping the
contents of the ShrinkWrap bundle. It can be useful to see this debuggable output
in some certain situations, but for normal development work it will be annoying for
other staff. So, I recommend that you don't forget to remove that debug line.

From the preceding screen output, we can see the Arquillian framework bundles up
the classes into a bundle, performs the dependency execution, and executes the test.
Most importantly, it handles the lifecycle of the container beans.

Context and Dependency Injection

[82]

Moreover, because the test works in Weld, in the CDI container as it truly runs,
there is really good confidence to assume that it work, as expected in the GlassFish
and JBoss application server. After all, this is exactly all about the standards and
portability of the code.

Let us move to the penultimate area of CDI for this overly long tutorial. How can
the CDI container manage crosscutting concerns for managed beans?

CDI and crosscutting concerns
CDI helps us with writing type safe and portable crosscutting concerns, where a
technical component spans across different areas of application. If these concerns were
implemented as a traditional code they would be scattered across the entire application
through duplicated code, moreover entangled with the core business logic.

Interceptors
CDI supports two ways of extending the functionality of the bean managed by the
container, namely: Interceptors and Decorators.

Interceptors are the way to add crosscutting concerns to several managed beans. A
classic example of a crosscutting concern is logging, because it is a feature that is a
part of multiple domains. Practically any software system may require the logging
ability. The issue is how to specify this in a clean way, which does not interfere with
the application business logic of the class; it should not break encapsulation and
provide flexibility.

An Interceptor is a bean declared with the @javax.interceptor.Interceptor
annotation. The method Interceptor should have call @javax.interceptor.
AroundInvoke that takes the javax.interceptor.InvocationContext as
a parameter.

Let us look at an example of this Interceptor, but first we need an additional user
defined annotation as follows:

package je7hb.basic.arquillian;
import javax.interceptor.InterceptorBinding;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import static java.lang.annotation.ElementType.METHOD;

Chapter 2

[83]

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Inherited
@Target({TYPE, METHOD})
@Retention(RUNTIME)
@InterceptorBinding
public @interface TransactionalBound { }

We define @TransactionalBound custom annotation, which is a type of @
InterceptorBinding. This annotation declares that wherever we declare a class or
method with this annotation, we denote a join-point, which is a specific location in
our code, to inject a CDI Interceptor.

Let us now define the custom Interceptor for our annotation now as follows:

package je7hb.basic.arquillian;
import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;

@Interceptor
@TransactionalBound
public class TransactionalBoundInterceptor {
 @AroundInvoke
 public Object handleTransaction(InvocationContext ctx)
 throws Exception {
 System.out.println("#handleTransaction *before* "+
 "invocation");
 Object value = ctx.proceed();
 System.out.println("#handleTransaction *after* "+
 "invocation");
 return value;
 }
}

The class TransactionalBoundInterceptor is declared as an Interceptor,
bindable with the @Interceptor annotation; it has a @AroundInvoke method. The
handleTransaction method accepts an invocation context object, and simply does
nothing special, it executes the invocation context's target method. The point is that
the interception method can manage the transaction in a real application, it can deal
with exceptional conditions or in this case log to the console.

Context and Dependency Injection

[84]

All we need now is the managed bean and it is as follows:

package je7hb.basic.arquillian;
import javax.annotation.*;
import javax.enterprise.inject.Default;

@Default
public class TransactionalCreditProcessor
implements CreditProcessor {
 @Override
 @TransactionalBound
 public void check(String account) {
 if (!account.trim().startsWith("1234")) {
 throw new RuntimeException
 ("account:["+account+"] is not valid!");
 }
 System.out.printf("Inside Transactional Account [%s]"
 + "is Okay\n", account);
 }

 @PostConstruct
 public void acquireResource() {
 System.out.println(this.getClass()
 .getSimpleName()+"#acquireResource()");
 }

 @PreDestroy
 public void releaseResource() {
 System.out.println(this.getClass()
 .getSimpleName()+"#releaseResource()");
 }
}

The TransactionalCreditProcessor class is another type of the credit
processor that makes use of transaction. We apply our custom annotation
@TransactionalBound to the check() method in order to add transaction behavior
injected around the invocation of the method. The check() method is the target
join-point of the @TransactionalBound annotation. Any such join-points are the
target of the invocation context in the TransactionalInterceptor.

Chapter 2

[85]

Finally, this bean is declared as @Default, which is the default qualifier. In order to
enable the Interceptors, we need to add a CDI beans configuration file as follows:

<?xml version = "1.0"?>
<beans
 xmlns = "http://java.sun.com/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_1.xsd">
 <interceptors>
 <class>je7hb.basic.arquillian
 .TransactionalBoundInterceptor</class>
 </interceptors>
</beans>

The beans.xml file simply declares the Interceptors for the application. We can have
more than one Interceptor, but you always have to declare it.

Let us finish up the example with the unit test based on the Arquillian framework
as follows:

package je7hb.basic.arquillian;
/* ... as before ... */

@RunWith(Arquillian.class)
public class TransactionalCreditProcessorTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(Economy.class, Premium.class,
 CreditProcessor.class, Transactional.class,
 TransactionalCreditProcessor.class,
 TransactionalInterceptor.class)
 .addAsManifestResource(
 "je7hb/basic/arquillian/interceptors/beans.xml",
 ArchivePaths.create("beans.xml"));
 return jar;
 }

 private @Inject CreditProcessor processor;

 @Test

Context and Dependency Injection

[86]

 public void shouldProcessTransactionalCredit() {
 System.out.printf("processor = %s\n", processor);
 assertNotNull(processor);
 processor.check("1234");
 }
}

The ShrinkWrap bundle requires the location path of the custom beans.xml file,
which configures the transactional interpreter. The rest of the cost is largely the
same as before and you already understand it, so let us go straight to the output.

b73cfb6f-ad2f-4165-b1cf-f8fffad507eb.jar:
/je7hb/
/je7hb/basic/
/je7hb/basic/arquillian/
/je7hb/basic/arquillian/TransactionalInterceptor.class
/je7hb/basic/arquillian/TransactionalCreditProcessor.class
/je7hb/basic/arquillian/Transactional.class
/je7hb/basic/arquillian/Economy.class
/je7hb/basic/arquillian/CreditProcessor.class
/je7hb/basic/arquillian/Premium.class
/META-INF/
/META-INF/beans.xml
23 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
TransactionalCreditProcessor
 $Proxy$_$$_WeldSubclass#acquireResource()
processor = je7hb.basic.arquillian.TransactionalCreditProcessor
 $Proxy$_$$_WeldSubclass@73a1dd83
TransactionalInterceptor#handleTransaction *before* invocation
Inside Transactional Account [1234] is Okay
TransactionalInterceptor#handleTransaction *after* invocation
TransactionalCreditProcessor
 $Proxy$_$$_WeldSubclass#releaseResource()

Process finished with exit code 0

From examining the output of this unit test, we can see that the transactional
Interceptor is fired as on the call to the CreditProcessor.check() method, which
is actually the dynamic proxy subclass of TransactionCreditProcessor, which has
had the Interceptor logic interwoven into it.

Also, we can also say that CDI still manages the lifecycle of the bean in the correct
fashion, the so-called expensive resource is acquired and released in the right order.

Chapter 2

[87]

Decorators
Another way to extend the bean functionality is to create a Decorator for a managed
bean. An Interceptor allows the bean behavior to modify through a crosscutting
concern. A Decorator only allows a bean's contractual interface to be modified. In
CDI, Decorators are created dynamically. A Decorator only decorates the interfaces
that it implements.

A CDI Decorator is a Java class that is annotated with the @Decorator annotation
and it is also configured as a registered Decorator in the configuration file beans.
xml. A CDI Decorator bean class must also have a delegate injection join-point,
which is declared with the @Delegate annotation. Both @Decorator and @Delegate
are found in the Java package javax.decorator.

Let us look at Decorator for a credit-processing example. Suppose we had a unique
requirement for only premier-care customers, who require a call to the sanctioning
service before the business can supply any credit. Let us hypothesize that the
sanctioning service is a placeholder for legal regulations in the financial services.
First we need to define the service as follows:

package je7hb.basic.arquillian;

public class SanctionService {
 public void sanction(String account, String ccyPair) {
 System.out.printf("SanctionService#sanction
 (" +"account = %s, other = %s)\n", account, ccyPair);
 }
}

SanctionService is very simple, because it prints the arguments to the console. We
will move on to the CDI Decorator bean.

package je7hb.basic.arquillian;
import javax.decorator.Decorator;
import javax.decorator.Delegate;
import javax.inject.Inject;

@Decorator
@Premium
public class CreditProcessorDecorator implements CreditProcessor {

 @Inject SanctionService sanctionService;
 @Inject @Delegate @Premium CreditProcessor processor;

Context and Dependency Injection

[88]

 @Override
 public void check(String account) {
 sanctionService.sanction(account, "EURGBP");
 processor.check(account);
 }
}

First we annotate the class with @Decorator, but also notice we are denoting this
type with the @Premium annotation, which if you remember is a custom qualifier for
our tests.

The field processor is denoted as an injection point with the @Delegate annotation,
and again it matches the type of credit processor we want to inject in this bean,
which is for premier-care customers.

Incidentally, the delegate injection point may be stationed in front of a field, a
constructor parameter, or an initializer method parameter of the Decorator class.

SanctionService is injected into this bean and in the check() method, we actually
call the method sanction() with the account code and the currency pair, foreign
exchange standard to represent monetary transfer from Euros to British Pounds
before we invoke the check() method of credit processor.

We need to add the beans.xml file configuration in order to declare the Decorator
to CDI.

During initialization, the CDI Container injects the SanctionService in to the
bean type CreditProcessorDecorator. When we call the check() method with
this bean type, our decorator invokes the sanction() method with the account code
and the foreign exchange currency pair EURGBP. If the real time sanction() method
returns normally then the decorator invokes the check() method of the delegate
credit processor.

Decorators must be declared inside the beans.xml file configuration in order to be
active in the application:

<?xml version = "1.0"?>
<beans
 xmlns = "http://java.sun.com/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/beans_1_1.xsd">
 <decorators>
 <class>je7hb.basic.arquillian
 .CreditProcessorDecorator</class>
 </decorators>
</beans>

Chapter 2

[89]

We can have more than one Decorator and we an have multiple Decorators and
Interceptors in the configuration file.

Our test case is as follows:

package je7hb.basic.arquillian;
/* ...as before... */

@RunWith(Arquillian.class)
public class CreditProcessorDecoratorTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(Economy.class, Premium.class,
 CreditProcessor.class, CreditProcessorDecorator.class,
 PremiumCreditProcessor.class, SanctionService.class)
 .addAsManifestResource
 ("je7hb/basic/arquillian/decorators/beans.xml",
 ArchivePaths.create("beans.xml"));
 System.out.println(jar.toString(true));
 return jar;
}

 @Inject @Premium CreditProcessor processor;

 @Test
 public void shouldProcessTransactionalCredit() {
 System.out.printf("processor = %s\n", processor);
 assertNotNull(processor);
 processor.check("1234");
 }
}

In the unit test, we only have to define the injection point that is required. It is a credit
processor that is qualified as premium. CDI will take care of the rest, the exact type of
bean to be injected, and in this case the decorated bean CreditProcessorDecorator,
the lifecycle management of the beans, and other dependencies.

The output of running this unit case is as follows:

93327296-d137-45a2-ad11-fec5fa7d7b2a.jar:
/je7hb/
/je7hb/basic/
/je7hb/basic/arquillian/
/je7hb/basic/arquillian/SanctionService.class

Context and Dependency Injection

[90]

/je7hb/basic/arquillian/CreditProcessorDecorator.class
/je7hb/basic/arquillian/PremiumCreditProcessor.class
/je7hb/basic/arquillian/Economy.class
/je7hb/basic/arquillian/CreditProcessor.class
/je7hb/basic/arquillian/Premium.class
/META-INF/
/META-INF/beans.xml
22 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
PremiumCreditProcessor$Proxy$_$$_WeldSubclass#acquireResource()
processor = je7hb.basic.arquillian.PremiumCreditProcessor
 $Proxy$_$$_WeldSubclass@9a68065
Inside the CreditProcessorDecorator#check()
SanctionService#sanction(account = 1234, other = EURGBP)
Account [1234] is Okay
End of the CreditProcessorDecorator#check()
PremiumCreditProcessor$Proxy$_$$_WeldSubclass#releaseResource()

Process finished with exit code 0

As you can clearly see, the embedded Weld container creates a proxy of the
premium credit processor bean. The CDI container also instantiates the bean
CreditProcessorDecorator and injects the dependencies. Eventually, the bean's
check() method is called, and we can see the sanction service being called first,
before the delegate proxy bean is called.

Observers and events
CDI allows decoupling of the consumer and a target dependency through the
custom application events. The CDI event is a type safe replacement for the
Observer Design Pattern (ODP). It works through the type safe annotations and
generics to completely decouple the subject of action (event producers) from the
observers (event consumers). The CDI events and observers can be fine-tuned
through the qualifiers in this model.

Applications create a POJO event class to serve as the payload. An event that
represents when a create application has been approved is as follows:

package je7hb.standalone.events;
public class ApplicationApproved {
 private final String message;

 public ApplicationApproved(String message) {
 this.message = message;
 }
 public String getMessage() {return message;}
}

Chapter 2

[91]

Next, we need an event producer. Let us create one with field with the type javax.
enterprise.event.Event in order to fire events to interested parties. This is the
class ApprovalNotifier as follows:

package je7hb.standalone.events;
import javax.enterprise.event.Event;
import javax.inject.Inject;

public class ApprovalNotifier {
 @Inject Event<ApplicationApproved> eventSource;

 public void fireEvents(String msg) {
 eventSource.fire(new ApplicationApproved(msg));
 }
}

The CDI container injects an instance of the parameterized type
Event<ApplicationApproved>. In order to notify observers for this type of event,
we simply invoke the fire() method.

Third and lastly, we need an observer. With the CDI events, we can write a simple
POJO to receive notifications. The class CreditApprovalPostProcess is as follows:

package je7hb.standalone.events;
import javax.enterprise.event.Observes;
import javax.inject.Inject;

public class CreditApprovalPostProcess {
 @Inject ExternalServices externalServices;

 public void postApproval
 (@Observes ApplicationApproved application) {
 externalServices.process(application);
 }
}

The purpose of this class is to listen to credit approvals and communicate them to
the external service. We add the annotation @javax.enterprise.event.Observes
to the event type. CDI does not require us to register with an event source. The
container takes care of all of the details and the wiring of consumer to producer.
It really is rather simple.

The type-safe manner, indeed, comes into its own when we apply the CDI qualifiers
with events and observers. Let's take the example further. Suppose we want a
separate notification for premium customers who take long-term credit.

Context and Dependency Injection

[92]

First, we modify the ApprovalNotifier POJO, add another event source, which is
qualified as @LongTerm. An abridged version of this class is as follows:

public class ApprovalNotifier {
 /* ... */
 @Inject @LongTerm
 Event<ApplicationApproved> longTermEventSource;

 public void fireLongTermEvents(String msg) {
 longTermEventSource.fire(new ApplicationApproved(msg));
 }
}

Adding the @LongTerm qualifier to the event source strongly associates the event
source with only those observers. We only add an extra method to the POJO class
CreditApprovalPostProcess as follows:

public class CreditApprovalPostProcess {
 @Inject ExternalServices externalServices;

 /* ... */
 public void postLongTermApproval
 (@LongTerm @Observes ApplicationApproved app) {
 externalServices.process(app);
 }
}

The method postLongTermApproval() takes a type with the qualifier @LongTerm,
and the CDI container only invokes this method with bean type associated with
the qualifier. Interestingly enough, the original postApproval() in the event
consumer is equivalent to the qualifier of @Any. In other words, both of these
declarations are the same:

void postApproval(@Observes ApplicationApproved app)
void postApproval(@Observes @Any ApplicationApproved app)

And this implies the event sources definitions too:

@Inject ExternalServices externalServices;
@Inject @Any ExternalServices externalServices;

Chapter 2

[93]

Stereotypes
Stereotypes are a way of combining a single CDI scope and other annotations in a
useful group. The CDI stereotypes are themselves annotations, which are declared
with the annotation @javax.enterprise.inject.Stereotype.

The CDI stereotypes can be thought of as macros for the annotations and thus can
reduce the verbosity of several qualifiers and scoped annotations. A stereotype for
a premium credit check and long-term interest customer is as follows:

@Stereotype
@Retention(RUNTIME) @Target(TYPE)
@Secure @Premium @LongTerm @Transactional
public @interface HighValue {}

This CDI stereotype HighValue custom annotation binds together three other
qualifiers and a transactional scope. In this way, we are modeling some common
purpose. If the stereotype does not declare a scope, it is assumed to be @Default.
A stereotype may also bind other CDI stereotypes.

Summary
In this chapter, we looked at CDI, the standard API for managed beans with
conversational scope in Java EE 7.

•	 Context: The ability to bind lifecycle and interactions to stateful components
together in a semantic encapsulated boundary, which is type safe and
extensible

•	 Dependency Injection: The ability to inject a dependent component into
an object in a type safe manner and includes the capability to decide on the
implementation of those dependent components at runtime

We saw that CDI is a very elegant solution and straightforward method for
dependency injection. CDI managed beans can practically be a plain old Java object
(POJO). Most of the time, CDI managed beans are concrete classes, which may or
may not implement one or more Java interfaces, or extend a single abstract class. A
CDI bean may be declared final or have final methods, and they can be generic
parameterized types. CDI supports application factories that produce managed bean
types. If required, an application can also use a disposal factory in order to clean up
resources. CDI support producer methods that allow the application to overcome
limitations in the container. The application can supply a custom factory that creates
bean types for the container. CDI also support disposal methods, which may be
associated with the same factory class.

Context and Dependency Injection

[94]

CDI managed beans can be differentiated by qualifiers, which are custom Java
annotations. It is also possible to programmatically look up a bean by type and
qualifier. Moreover, most applications will make use of the @Inject annotation for
dependency injection.

The CDI container supports five default scopes for managed beans, namely
@RequestScoped, @SessionScoped, @ApplicationScoped, @ConversationScoped,
and @Dependent. It is possible to define further custom scopes. The CDI beans
are automatically associated with associated contextual scope, which defines their
lifecycle. In other words, CDI managed beans live their lives in a well-defined
scope. However, if the bean is declared @Dependent scope then the lifecycle is
managed by the JVM.

At the end of an HTTP session any associated CDI managed beans with
@SessionScoped are destroyed, and then they can be garbage collected by the JVM.

At the end of an HTTP request any associated CDI managed beans with
@RequestScoped are destroyed, and then they can be garbage collected by the JVM.

We learnt how to develop a standalone CDI application for Java SE using JBoss. We
wrote some basic unit tests with Gradle as the build tool. Next, we moved on to the
open source project DeltaSpike, which is an open source framework for a standalone
CDI container with semi-portable code, and we developed test cases around more
features of CDI. We increased our learning about writing abstract test case to handle
the startup and shutdown of the CDI container. We saw there were limitations with
such tools, and we understood them.

Finally, we moved to the Arquillian framework, which was an integration unit
test framework that assembled tight bundles and deployed them to an embedded
application server seamlessly. We also saw how to extend our Gradle build,
and wrote more involved unit tests to see the lifecycle operations, namely post
construction and pre-destruction, and how to extend CDI managed beans with
Decorators and Interceptors.

In the next chapter, we will move to the EJB container, which has a different
behavior to CDI and where EJBs do not have contextual scope generally.

Enterprise Java Beans
The Reverend, Jesse Jackson said, "I am not a perfect servant. I am a public servant. In
1999, Enterprise Java Beans (EJBs) first appeared in the J2EE 1.0 specification. There
were these heavyweight EJB components that ran inside an EJB container. EJBs were
the original endpoints of the Java enterprise platform. The basic idea was that a
client application would remotely make calls to a remote EJB endpoint in order to do
some unit of work. The architecture was decidedly pre-cloud computing and client
server. J2EE EJBs were either stateless or stateful; they could also be entity beans;
and finally there was a concept of endpoints designed for sending and receiving data
inside message-oriented systems, which are called Message Driven Beans (MDBs).
MDBs were also part of the J2EE ecosystem. MDBs are covered in Chapter 9, Java
Message Service 2.0.

In Chapter 2, Context and Dependency Injection we talked about Context and
Dependency Injection and managed beans that are tied to a contextual scope. The
CDI container managed CDI beans. EJBs are managed by an EJB container, and
unlike CDI managed beans there is no contextual scope associated with them at all.
EJBs have their own lifecycle that is tied to the deployment of the application inside
the server. EJB, CDI, and the JPA specifications rely heavily on annotations for strong
type checking with the Java compiler.

EJB are endpoints for an invocation call from an EJB client. The communication
between the EJB client and server takes place on a defined protocol; it can be local
calls between components running inside the same Java Virtual Machine (JVM), or
it can be distributed remote calls across to another JVM over the network.

Enterprise Java Beans

[96]

EJB protocols
The local protocol is equivalent to calling a function on the JVM call frame stack. So it
is just like invoking a function and therefore it is the fastest.

The network protocol is called RMI-IIOP and originally it was designed for
distributed communication between Java EJB applications and other non-Java
systems. IIOP stands for Internet Inter-ORB Protocol, which is a protocol that
delivers Common Object Request Broker Architecture (CORBA)to the Java
platform. IIOP is a much older technology sanctioned for distributed communication
of software that supports cross platform systems. RMI stands for Remote Method
Invocation, and this is the standard Java technology to send messages, serializable
Java objects from one JVM to another, across a network. Therefore the term
RMI-IIOP stands for RMI over IIOP.

Criticism of EJB
CORBA is a much earlier communication and object data specification created by
the Object Management Group (OMG) in the late 1990's, which was originally
designed to allow software components written in different languages and running
on different platforms to work together. Actually, CORBA was superseded in the
twenty first century by the popularity of Service Oriented Architecture (SOA). The
idea of using XML Web Services and invocation remote service function by sending
and receiving data using SOAP and other protocols.

The point of this preamble is the EJB ,which in the beginning of the twenty first century
was based on some fairly old standards. There are not many businesses that develop
with CORBA nowadays, because of the poor implementations of the standard which
could be incompatible yet were deemed certifiable; the standard process was mired
in politics and different ulterior business motives. By the time CORBA and OMG
organizations got their act together, the world had moved on to Representational
State Transfer (REST) systems and orchestration through Web Services.

Business users of the earlier J2EE specification found that RMI-IIOP, historically, was
painfully slow and there was a performance penalty; this was because the early EJB
specifications only allowed RMI-IIOP. In J2EE 1.2 release, the idea of local interface
was created to address this penalty. A local interface is close in performance to a
method call. Behind the scenes a call to EJB is happening through a proxy.

With all this legacy technology, no wonder developers and architects were put off
EJB for building agile enterprise applications. Eventually the expert group did realize
there were issues with J2EE.

Chapter 3

[97]

Simplification of EJB
The breakthrough for Enterprise Java Beans came in EJB 3.0 (JSR-220), which was a
radical departure from the J2EE specification and was delivered in Java EE 5. The
EJB specification was simplified substantially; the focus was on the idea of ease-of-
development, which was achieved through the heavy reliance on annotations. The use
of annotations brought much sought after affordance to the programming of Java
EE applications. The influence of the movement and worldwide interest in Ruby on
Rails was also felt through the idea of convention over configuration that practiced a
less verbose code, and lesser dependence on XML configuration files.

Gavin King, the creator of Hibernate, was a firm believer in the EJB 3.0 specification.
Many features of Hibernate found their way into the EJB entity bean specification as
the Java Persistence API. Entity beans and JPA are covered in a subsequent chapter.

You only learn one thing about EJBs in Java EE 7: that they are
lightweight POJO, which can come and go. Stateless EJBs are the
simplest endpoints that you can reach in Java EE. Stateful EJBs have a
higher price because of the their implicit connection with the client.

Features of EJB components
There are three types of EJB:

Bean Type Description
Session Executes a useful activity of work for client; it can also

be a web service endpoint. The term session implies that
there is a hidden handle that is the reference between a
client and the server endpoint.

Message An asynchronous endpoint that consumes, reads a
message object from a message queue, and performs
some unit of work.

Entity Represents an entity from a database or other
persistence store, especially in the older J2EE
specifications. Entity EJB are not endpoints for client
invocations, and have been usurped by Java Persistence
API.

This chapter covers the session EJB. The other bean types have chapters specifically
dedicated to them.

Enterprise Java Beans

[98]

EJB have a list of standard features:

EJB feature Description
Remote invocation EJB component declared as remote beans can

be called over a network connection using the
RMI-IIOP.

Local invocation EJB component declared as a local bean can
only be called by reference in the same JVM.

Web service invocation EJB component declared as web service can be
called using web service invocation.

Transactions EJB components can participate in transactions
that are managed by the application server,
the EJB container, or they can create their
own transaction context and manage the
transaction themselves.

Asynchronous method
invocation

The EJB container and the application server
will invoke the EJB component endpoint on
a particular thread. The writer does not have
to concern themselves with multiple thread
programming.

Deployment EJB components are deployed and managed
by an EJB container, which manages their
lifecycle. Unfortunately EJB components do
not have contextual scope in the way CDI
managed beans do.

Dependency Injection Other components and resources can be
injected to an EJB component.

Security EJB component may have role based Java EE
security applied at the invocation call site or
on the entire type itself.

Naming Directory EJB component may be given a specific name
from JNDI in order to allow EJB clients to look
it up by reference name.

Job Scheduling An EJB component endpoint method may be
declared as a scheduled call, a method that
is executed in the background by the EJC
container at least once in the future or more
than once periodically.

Chapter 3

[99]

Session beans
A session EJB is a component that encapsulates specific behavior to process the
business logic of an application. Session EJBs have no concept of persistence.

There are three types of session bean available in the EJB specification. They are
stateless, stateful, and singleton beans.

Stateless session beans
A stateless session bean is an EJB component that does not maintain state
information between client invocations. If you need conversational state and
contextual awareness you look to CDI.

Stateless session beans, then, are reserved by design to serve EJB clients that have no
requirement to have a conversation. The client just wants to invoke a function on the
endpoint and do some useful work on the server, and then carry on with the rest of
instructional life.

In EJB 3.x denoting a stateless enterprise bean is very easy. You simply use the @
javax.ejb.Stateless annotation on the class. The class can be a Plain Old Java
Object (POJO). Let us simply define one now:

Some people believe that stateless session EJB should have been
really called Poolable Beans, because these types of EJB are usually
allocated from a resource inside the application server.

To declare a stateless session EJB, you add the annotation @Stateless to the class.
Here is an example of a customer service EJB:

package je7hb.basic.ejb;
import javax.ejb.Stateless;
import java.util.*;

@Stateless
public class SupportHelpDesk {

 private List<String> agents = Arrays.asList(
 "Agnes","Brian","Harry","Sally","Tom","Pamela",
 "Mark","Wendy","Marcia","Graeme","Pravztik",
 "Hadeep", "Florence", "Robert", "Zoe", "Frank");

Enterprise Java Beans

[100]

 public String getNextAgentName() {
 return agents.get((int)(Math.random() *
 agents.size()));
 }
}

It does not get easier than this. Annotate the POJO with the stateless annotation on
the type. When this EJB is deployed in the application server, it will be assigned an
allocation pool size, which can be configured by the system administrator; the Java
EE product vendor determines the actual connection pool size. The application server
instantiates SupportHelpDesk as a stateless session EJB, and most implementations
will wrap a hidden proxy object around the instance. This proxy delegate has opaque
container methods and it has a delegation method that invokes one public method
getNextAgentName(), which in turn returns a random name of agent.

Let us look at the Gradle build file for this project:

// Same Plug-in imports as before
group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch03-ejb'
version = '1.0'

repositories {
 mavenLocal()
 mavenCentral()
 maven {
 url 'https://maven.java.net/
 content/groups/promoted'
 }
 maven {
 url 'http://repository.jboss.org/
 nexus/content/groups/public'
 }
}

dependencies {
 compile 'org.glassfish.main.extras:\
 glassfish-embedded-all:4.0.1-b01'
 compile 'javax:javaee-api:7.0'

 testCompile 'junit:junit:4.11'
 testCompile 'org.jboss.arquillian.junit:\
 arquillian-junit-container:1.0.3.Final'
 testCompile 'org.jboss.arquillian.container:\
 arquillian-glassfish-embedded-3.1:1.0.0.Final-SNAPSHOT'
}
// Typical Gradle Project - Same as before

Chapter 3

[101]

Only the dependency management is important as shown in the preceding build
file. We are using the Arquillian test framework again, and we explicitly add a
dependency on a real application server, GlassFish.

Let's move on to the unit test, which is an Arquillian integration test:

package je7hb.basic.ejb;
/* Other imports omitted */
import javax.ejb.EJB;
import static org.junit.Assert.assertNotNull;

@RunWith(Arquillian.class)
public class SupportHelpDeskTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(SupportHelpDesk.class)
 .addAsManifestResource(
 EmptyAsset.INSTANCE,
 ArchivePaths.create("beans.xml"));
 return jar;
 }

 @EJB SupportHelpDesk desk;

 @Test
 public void shouldRetrieveDifferentAgents() {
 System.out.printf("Support help desk = %s\n", desk);
 for (int j=0; j<5; ++j) {
 String agent = desk.getNextAgentName();
 System.out.printf("The next agent = %s\n",agent);
 assertNotNull(agent);
 }
 }
}

In order to reference the stateless EJB inside the same JVM, and in the same EJB
container, we explicitly obtain a reference to the bean using the @EJB. This is similar
to the CDI injection, but not quite the same; this injection of a local reference takes
place without contextual scope, and the EJB container provides it whenever the EJB
bean is created.

Enterprise Java Beans

[102]

The test method shouldRetrieveDifferentAgents() in this unit test executes a
simple for-do loop that invokes the EJB service method. The test result prints random
agent names to its users. Here is the abbreviated output of the test for study:

 INFO: Created virtual server server
Aug 27, 2013 3:53:40 PM org.apache.catalina.realm.JAASRealm
 setContainer
INFO: Setting JAAS app name glassfish-web
Aug 27, 2013 3:53:40 PM com.sun.enterprise.web.WebContainer
 loadSystemDefaultWebModules
...
INFO: Loading application [test] at [/test]
Aug 27, 2013 3:53:41 PM org.glassfish.deployment.admin.
 DeployCommand execute
INFO: test was successfully deployed in 2,658 milliseconds.
Support help desk = je7hb.basic.ejb.SupportHelpDesk@790ffd6
The next agent = Sally
The next agent = Graeme
The next agent = Pravztik
The next agent = Pamela
The next agent = Florence
PlainTextActionReporterSUCCESS
No monitoring data to report.
...
Aug 27, 2013 3:53:41 PM com.sun.enterprise.v3.server.AppServerStartup
stop
INFO: Shutdown procedure finished
Process finished with exit code 0

We will cover referencing of session EJB by clients and the lifecycle later on. Let us
move onto the second type of session EJB, the stateful ones.

Concurrency and stateless session EJBs
We have seen how to create a stateless session EJB. The developer may be tempted to
think these beans can easily handle concurrency. However, act with extreme caution.
An EJB property field will share state Java threads that are passing the component,
whereas local variables that are declared inside the method are shared only by the
thread context. There are no guarantees on concurrency for a stateless session EJB.
This is important to understand, especially when EJBs are instantiated from a fixed
size pool of EJBs inside an application server.

Chapter 3

[103]

A stateless session bean has a lifecycle. The EJB container has the responsibility to
allocate a bean to a particular client. By marking a bean as stateless, we humbly
declare this bean can be associated with any EJB client. In the end, the code inside
method may alter fields of the bean, but we cannot guarantee that the values of those
fields will remain the same in the next invocation of the same bean and possibly on a
different Java thread.

If you are thinking about concurrency and Java EE then read ahead to Appendix D,
Java EE 7 Assorted Topics.

Stateful session beans
A stateful session bean is a session EJB that keeps track of handle to the client caller.
In other words, a session EJB maintains state that preserves for each request from a
user. Unlike a stateless session bean, a stateful session bean is not shared. The state
is only removed once the client terminates. It cannot be reclaimed. The state only
remains for the duration of the client-service communication.

One way to think of this idea is that the user has a conversation with the stateful
session EJB until it ends or the handle is explicitly released.

We will use an e-commerce shopping cart to demonstrate stateful session EJB.
Let us introduce the concept of business interfaces, but first we need an entity to
pass between the client and EJB session bean, which we call a customer. Here is a
customer POJO shown in the following section:

package je7hb.basic.ejb;
import java.io.Serializable;

public final class Customer implements Serializable {
 private final String firstName;
 private final String lastName;

 public Customer(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() { return firstName;}
 public String getLastName() { return lastName;}

 @Override

Enterprise Java Beans

[104]

 public String toString() {
 return "Customer{" +
 "firstName='" + firstName + '\'' +
 ", lastName='" + lastName + '\'' +
 '}';
 }

 // equals() and hashCode() methods omitted
}

The Customer value object is serializable in order to support remoting, marshalling,
and unmarshalling using RMI-IIOP especially across different JVMs. Marshalling is
the process of serializing a Java object to an output stream to create data that obeys
a predefined protocol. Unmarshalling is the process of reading information from an
input stream with data in the predefined protocol and recreating an active Java object.

There were two types of interfaces for session EJBs: local and remote interfaces. Local
interfaces are great for speed, reduced latency, and co-location of server. Remote
interfaces are great for network distributions call across two different JVMs.

In Java EE 7, business interfaces can use annotations: @javax.ejb.Remote, which is
reserved for session EJB that require a remote call interface, and @java.ejb.Local,
which is reserved for session EJB that requires local references.

Let us look at these interfaces, starting with the remote business interface:

package je7hb.basic.ejb;
import javax.ejb.Remote;
import java.util.List;

@Remote
public interface ShoppingCart {
 void initialize(Customer customer);
 void addOrderItem(OrderItem item);
 void removeOrderItem(OrderItem item);
 List<OrderItem> getOrderItems();
 void release();
}

Chapter 3

[105]

Now, let us look at the local business interface:

package je7hb.basic.ejb;
import javax.ejb.Local;
import java.util.List;

@Local
public interface ShoppingCartLocal {
 void initialize(Customer customer);
 void addOrderItem(OrderItem item);
 void removeOrderItem(OrderItem item);
 List<OrderItem> getOrderItems();
 void release();
}

Both interfaces are fairly straightforward. For this purpose, notice that the contracts
are the same for both the remote and local business interface. Note the naming
convention for these interfaces, the remote is simply named as a typical class name,
say ShoppingCart, whereas the local interface has the suffix Local appended to the
class name, say ShoppingCartLocal.

Now let us create the bean implementation of both interfaces in one class:

package je7hb.basic.ejb;

import javax.ejb.Remove;
import javax.ejb.Stateful;
import java.util.ArrayList;
import java.util.List;

@Stateful
public class ShoppingCartBean
implements ShoppingCart, ShoppingCartLocal {
 private List<OrderItem> orderItems =
 new ArrayList<OrderItem>();
 private Customer customer = null;
 private boolean initialized = false;

 @Override
 public void initialize(Customer customer) {
 System.out.printf(
 "SCB#initialize() called%s\n", this);
 this.customer = customer;
 initialised = true;
 }

Enterprise Java Beans

[106]

 protected void check() {
 if (!initialised) {
 throw new RuntimeException(
 "This shopping cart is not initialised");
 }
 }

 @Override
 public void addOrderItem(OrderItem item) {
 System.out.printf("SCB#addOrderItem() called%s\n", is);
 check();
 orderItems.add(item);
 }

 @Override
 public void removeOrderItem(OrderItem item) {
 System.out.printf("removeOrderItem() called%s\n", this);
 check();
 orderItems.remove(item);
 }

 @Override
 public List<OrderItem> getOrderItems() {
 check();
 return orderItems;
 }

 @Remove
 public void release() {
 System.out.printf("SCB#release() called%s\n", this);
 orderItems.clear();
 customer = null;
 }
}

The ShoppingCartBean bean is annotated with @javax.ejb.Stateful, which
denotes it as a stateful session bean. It also extends both business interfaces, namely:
ShoppingCart and ShoppingCartLocal.

There is an initialize() method, which is the entry point for starting a shopping
cart with empty content. It is the method that would be called from a native client, an
EJB client or other way into this session bean. The method accepts a customer object,
and stores it in the EJB.

Chapter 3

[107]

The check() method performs a sanity check and verifies that the stateful EJB was
associated with a customer.

The addOrderItem() and removeOrderItem() methods append an order item or
remove an order from the collection of order items, respectively.

The method getOrderItems() returns the list collection of order items to the caller.

Finally, the method release() clears the list collection of order items, sets the
internal customer of the stateful EJB to null. This method is also annotated with @
javax.ejb.Remove that also makes sure the customer resource is released. If the EJB
container detects that the stateful EJB is not being used anymore after a reasonable
time period, say the user goes off to lunch without completing the task, the
associated HTTP Session, if any, expires.

There is another way to write ShoppingCartBean that helps to simplify the POJO:

@Stateful
@Remote({ShoppingCartLocal.class}
@Local({ShoppingCartLocal.class}
public class ShoppingCartBean { /* ... */ }

The @Remote and @Local annotations both accept class parameters for situations
where the bean does not implement its business interfaces.

For completeness, let us see the definitions of the OrderItem class:

package je7hb.basic.ejb;
import java.io.Serializable;

public final class OrderItem implements Serializable {
 private final int quantity;
 private final Product product;

 public OrderItem(int quantity, Product product) {
 this.quantity = quantity;
 this.product = product;
 }

 public int getQuantity() { return quantity; }
 public Product getProduct() { return product;}
 // equals(), hashCode() and toString() ommitted
}

Enterprise Java Beans

[108]

And also the Product class:

package je7hb.basic.ejb;
import java.io.Serializable;
import java.math.BigDecimal;

public final class Product implements Serializable {
 private final int id;
 private final String name,description;
 private final BigDecimal price;

 public Product(int id, String name,
 String description, BigDecimal price) {
 this.id = id;
 this.name = name;
 this.description = description;
 this.price = price;
 }

 public int getId() {return id; }
 public String getName() { return name; }
 public String getDescription() {
 return description; }
 public BigDecimal getPrice() {
 return new BigDecimal(price.doubleValue());
 }

 // equals(), hashCode() and toString() ommitted
}

As usual, let us see all of this code in action with another Arquillian integration test.
Here is the code:

package je7hb.basic.ejb;
// imports omitted
@RunWith(Arquillian.class)
public class ShoppingCartBeanTest {
 @Deployment
 public static JavaArchive createDeployment() {
 /* ... */
 return jar;
 }

Chapter 3

[109]

 Product p1 = new Product(
 1000, "IWG", "Iron Widget Grayson",
 new BigDecimal("4.99"));
 Product p2 = new Product(
 1002, "MSB", "Miller Steel Bolt",
 new BigDecimal("8.99"));
 Product p3 = new Product(
 1004, "ASCC", "Alphason Carbonite",
 new BigDecimal("15.99"));
 Customer customer = new Customer("Fred","Other");

 @EJB ShoppingCartLocal cart;
 void dumpCart(List<OrderItem> items) { /* ... */ }

 @Test
 public void shouldAddItemsToCart() {
 System.out.printf("cart = %s\n", cart);
 assertNotNull(cart);

 cart.initialize(customer);

 System.out.printf("Initial state of the cart\n");
 dumpCart(cart.getOrderItems());

 OrderItem item1 = new OrderItem(4, p1);
 cart.addOrderItem(item1);
 assertEquals(1, cart.getOrderItems().size());

 System.out.printf("After adding one item\n");
 dumpCart(cart.getOrderItems());

 OrderItem item2 = new OrderItem(7, p2);
 cart.addOrderItem(item2);
 assertEquals(2, cart.getOrderItems().size());

 System.out.printf("After adding two items");
 dumpCart(cart.getOrderItems());

 OrderItem item3 = new OrderItem(10, p3);
 cart.addOrderItem(item3);
 assertEquals(3, cart.getOrderItems().size());

 System.out.printf("After adding three items\n");
 dumpCart(cart.getOrderItems());
 cart.release();
 }
}

Enterprise Java Beans

[110]

The EJB Container injects the ShoppingCart session stateful bean into the test, or
rather the Arquillian performs this task. Simply declaring the annotation @EJB in the
client causes the EJB Container to inject a reference to the dependency.

The test defines a set of products and a customer as properties, and in the test
method shouldAddItemsToCart() we exercise the stateful bean. First, we reset
the shopping cart bean with a customer by calling the method initialize(), and
proceed to add order items to the cart. We assert on each addition the correct size of
the order item collection.

Finally, to simulate the finishing of the cart by the user, we call the bean's release()
method. In a true application, this method would be precipitated in a checkout or
reset-cart-empty-status function.

There is a method dumpCart(), which iterates over the order items and calculates
the total price of the content, whilst at the same time printing the contents to the
standard output.

We could have been more pedantic in the unit test and verified the sum total of the cart
for each addition of an order item. This is left as an exercise to the order; more relevant
would be to rewrite the test so far into proper behaviorally driven design tests.

Here is a screenshot of the test:

Chapter 3

[111]

Singleton session beans
Java EE 6 introduced the notion of Singleton session beans into the specification.
A singleton is an object that is only instantiated once per application. A purpose of
a singleton usually is a global reference point that connects other dependencies. A
singleton bean exists for the entire lifetime of the application. As the EJB container,
which presumably lives inside a Java EE product, starts the application, singleton
session beans are also started. The clients that concurrently access the instance
share a singleton bean. When the EJB container removes the application, singleton
enterprise bean instances are released.

A singleton session bean instance exists for the entire lifecycle of the enterprise
application and there is only one instance per application. They are useful for start-
up business logic. If there is a particular connection resource that needs to be shared
by other enterprise java beans in the application, and usually those resources need to
be the first items that exist in an application, singleton bean instances are designed
for these requirements.

An EJB singleton session bean is declared with the annotation @javax.ejb.
Singleton on a concrete class. The singleton may extend business interfaces or
extend a super class.

Let us declare a business interface for a singleton EJB session bean. Suppose we have
a business requirement for a conductor component that orchestrates the work of other
components in an application. We can write a remote interface for our EJB like this:

package je7hb.basic.ejb;
import javax.ejb.Remote;

@Remote
public interface Conductor {
 public void orchestrate(String data);
}

The Conductor interface defines the remote access contract for our EJB. We already
know how to write the local business interface, so we do not repeat this code here.
Here is the session EJB singleton class, ConductorBean:

package je7hb.basic.ejb;
import javax.annotation.*;
import javax.ejb.Singleton;
import java.util.Properties;

@Singleton

Enterprise Java Beans

[112]

public class ConductorBean implements Conductor {
 private final Properties properties = new Properties();

 @Override
 public void orchestrate(String data) {
 System.out.printf("ConductorBean#orchestrate(%s) %s\n",
 data, this);
 }

 @PostConstruct
 public void appStartUp() {
 properties.putAll(System.getProperties());
 System.out.printf("ConductorBean#init() %s\n" +
 "java.version=%s\n", this,
 properties.get("java.version"));
 }

 @PreDestroy
 public void appShutDown() {
 System.out.printf("ConductorBean#shutdown() %s\n", this);
 properties.clear();
 }
}

We annotate ConductorBean with @Singleton and notice that we also added
lifecycle hook methods so that we can find out exactly when this EJB component is
initialized by the EJB container and also when it is about to be destroyed.

The singleton bean simply stores a properties object, which is initialized with
the system properties in the appStartUp() method and cleared inside the
appShutDown() method.

Here is another Arquillian integration test that demonstrates how our EJB
component works:

package je7hb.basic.ejb;

// imports omitted
import javax.ejb.EJB;
import static org.junit.Assert.assertEquals;

@RunWith(Arquillian.class)
public class ConductorBeanTest {

Chapter 3

[113]

 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 /* ... */;
 return jar;
 }

 @EJB Conductor conductor1;
 @EJB Conductor conductor2;
 @EJB Conductor conductor3;

 @Test
 public void shouldInjectSingletonEJB() {
 System.out.printf("conductor1 = %s\n", conductor1);
 conductor1.orchestrate("conductor1");
 System.out.printf("conductor2 = %s\n", conductor2);
 conductor1.orchestrate("conductor2");
 System.out.printf("conductor3 = %s\n", conductor3);
 conductor1.orchestrate("conductor3");
 assertEquals(conductor2, conductor1);
 assertEquals(conductor2, conductor3);
 assertEquals(conductor1, conductor3);
 }
}

There are three separate references to the ConductorBean in the unit test. Because
they are references to a singleton session EJB component, all of the instances should
be exactly the same object, a single instance in the EJB component. The is purpose of
the unit test is to validate this assertion. We expect the value of the object reference
conductor1 to be equal to conductor2, which in turn is equal to conductor3,
otherwise we do not have a singleton instance, but a serious problem!

Enterprise Java Beans

[114]

This test does pass with flying colors, let's look at its screenshot:

The output clearly illustrates that the singleton instance is just that one single
instance shared by EJB client references. It also shows the container calling the
initialization and the predestruction methods.

Chapter 3

[115]

The lifecycle of session EJBs
The EJB container is responsible for instantiating session EJB and removing them
when the application starts and eventually is destroyed.

Lifecycle of stateless EJBs
The lifecycle for a stateless session EJB is fairly straightforward. We really can think
of them as poolable beans, that is, components that are instantiated by the EJB
container from collection of EJB instances. A system administrator can configure the
size of the preallocation of each type of EJB in an application.

This is completely an anathema to the current cloud provider
configuration. Read more at cloud providers, auto scaling, and
roles in Online Chapter, Moving Java EE.next to the Cloud.

A stateless session EJB has two states. The first state is the non-existence and
therefore there is no possible action on the bean. The EJB container has the
responsibility to instantiate the EJB at startup time, and if the EJB container supports
dynamic allocation of resources, it instantiates the stateless session bean when a
request must be served.

In order to initialize the component, the container will invoke the newInstance()
method of the class to create an object bean instance, thereby invoking the default
constructor. The container will then inject dependencies into the bean if there are any
such dependencies, and afterwards it will call the methods that have been annotated
with @PostConstruct.

Once these action have been completed, the stateless session bean is ready for the
application, and can serve the incoming requests.

Enterprise Java Beans

[116]

Deallocation of the stateless session bean occurs during the application shutdown,
and the EJB container is responsible for management of the procedure of destruction.
If there are methods that have been annotated with @PreDestroy then those methods
are invoked. Afterwards, the EJB container releases the EJB to the internal resource
pool, and it may also simply discard the object instance, after some cleaning up, to
the garbage collector.

Lifecycle of stateful session beans
A stateful session bean has a slightly different lifecycle to the stateless bean, because
it has to preserve state potentially between different requests from the associated EJB
client. The EJB container manages the lifecycle of these poolable beans in different
way in order to conserve resources. A stateful session bean has three possible states.

A stateful session bean starts in the non-existence state; the EJB container will bring
it to life by following the same procedure as the stateless session bean. The container
will call the newInstance() method to create an object instance, perform the
dependency injection of field properties, if required, and it will invoke the methods
that are annotated with @PostConstruct, if any are defined. Finally, the container
will call the ejbCreate() method for backwards compatibility with the earlier J2EE
specifications, should such a method be defined.

Chapter 3

[117]

Because the state must be preserved and also the ratio between users of the system
usually far exceeds the poolable supply of stateful beans, the EJB container is
designed to swap out state and save the information associated with the bean. The
bean may have to be deallocated by the Java EE product in order to give another
urgent part of the system more resources. So the EJB container can passivate a
stateful session bean; in this the bean writer has a chance to save important states of
the bean into persistent storage, for example, a relation database or key-value store.
The EJB container will call methods annotated with @PrePassivate:

In order to regenerate the state of the stateful session bean, the EJB container will
allow the bean to activate and restore its private state before the bean is functionally
ready. The EJB container will call any methods on the bean that are annotated with @
PostActivate. During activation (or reactivation) of the bean, the EJB container will
not have to perform dependency injection on the bean. Activation will usually occur
if there is an incoming request or method invocation from the EJB client and the bean
has already been passivated.

One can think of the activation-passivation procedure, perhaps, with the notion of
the real user starting a shopping cart experience but leaving the cart and website
open whilst going off for lunch with a colleague. They will expect to come back to
their computers, log back on, continue with the same web application, and then
expect to see a responsive website with the contents of the cart still preserved as
before the meal.

Enterprise Java Beans

[118]

Taking the earlier example of ShoppingCartBean, using the stateful session bean, we
could preserve the shopping cart of the user when ever the EJB container wanted to
save the state, passivate the bean. We could save the customer and the shopping cart
together using an annotated @PrePassivate method, and perhaps we could use the
Java Persistence API and an injected persistence context. In the @PostActivate()
method, the customer and the shopping cart could be restored by reading the data
from the same persistence storage.

Lifecycle of singleton session beans
The lifetime of a singleton session bean is almost the same as that of a stateless
session bean. There are only two states: the non-existent state and the ready state.

The first state is the non-existence and therefore there is no possible action
on the bean. In order to transit to the ready state, the EJB container instantiates
the bean, performs dependency injection, and call any methods annotated with
@PostConstruct.

Singleton session beans can also be annotated @javax.ejb.StartUp, which signals
to the EJB container and application server to initiate the object instance as soon as
the application is deployed successfully.

Chapter 3

[119]

The singleton bean instance is only destroyed before the application is undeployed
and as the application is halted. If there are methods annotated with @PreDestroy
on the instance, then those methods will be called in order to give the application a
chance to release important resources and save status to the database.

Of course during an application server crash, there can hardly be a chance that @
PreDestroy will be called, although some application server Java EE providers
might offer some extra solution to help with these types of situations.

You might be wondering that if you have more than one singleton bean instance,
and they have dependencies between themselves, how to configure the order of
initialization? The answer is to use annotation called @javax.ejb.DependsOn.

Let us see an example in code of two singleton bean instances with startup and
dependency annotations:

@Startup
@Singleton
public class ConductorBean implements Conductor {
 private Properties properties;
 @PostConstruct
 void appStartUp() {
 // initialize properties ...
 }
 // ...
}

@Startup
@Singleton
@DependsOn("ConductorBean")
public class FacilitatorBean implements Facilitator {
 @EJB private Conductor conductor;
 private WorkState state;
 @PostConstruct
 void init() {
 // initialize work state ...
 }
 // ...
}

The FacilitatorBean and the ConductorBean are singleton bean instances, which
are initialized as soon as the application that they contained is deployed to the
application server. The FacilitatorBean is a singleton instance that depends on the
existence of ConductorBean being the first constructed. It uses the conductor, an EJB
client reference, in order to initialize its own state WorkState.

Enterprise Java Beans

[120]

Business interfaces
We will now examine the two types of business interface access in more detail.

Local access
As we have seen already, every session bean must have a business interface that
enables a client to invoke methods on it. Session beans can have no Java interface and
the EJB container will generate one dynamically as a hidden proxy.

The @javax.ejb.Local annotation denotes the local business interface. It is the
default if the session bean does not specify an interface. A local business interface
can only be invoked if the EJB component runs on the same JVM. If your architecture
is different then you should favor creating a remote business interface instead of
adding to the local one.

A local business interface is certainly comparable to a direct invocation call and
depending on the Java EE product and its implementation it will translate to
dynamic invocation across a proxy to the singleton bean instance. It will certainly be
faster than the equivalent network call. Therefore, the arguments and results of the
local access are passed by reference. There is no marshaling or serialization of the
arguments or return types to be expected here.

Local access is location dependent for obvious reasons.

Remote access
The remote business interface is purely for a remote invocation from one JVM
to another JVM, therefore these calls travel across the network, even if they are
co-located on the same physical server.

In order to enable remote access, the session bean requires an annotation called
@javax.ejb.Remote declared on the implementing class or the Java interface.

Remote access is more expansive than local access because the parameters, the
arguments, and return type must be marshaled and serialized, if only for byte-order
encoding. The arguments and the return type are passed by value.

Remote access is location independent.

Chapter 3

[121]

Access summary
Here is a table summarizing the two types of business interface:

Local Remote
Location dependent Location independent
Object are passed by value Objects are passed by reference
Object serialization is not required Objects must be serializable
Almost direct coupling between the
target and client components

Proxy and loose coupling between the
target and client components

Invocations are cheap – 2 step JVM
dispatch calls

Invocations are expensive across the
network

No network error costs Adds the extra cost of supporting
remote access to handle communication
error

No interface views
The annotation @javax.ejb.LocalBean is designed for session beans that do not
expose a business interface to clients. By default any session bean that does not
declare an implementing interface representing a local or remote view is taken by the
specification as a no-interface view. EJB specification allows local business interfaces
to be optional. This means the developer does not have to define a local interface.

Here is an example of a no-interface stateless session EJB:

package je7hb.basic.ejb;
import je7hb.basic.ejb.examples.*;
import javax.ejb.*;
import javax.inject.Inject;

@Stateless
@LocalBean
public class PostTradeProcessor {

 @EJB DataRepository dataRepository;
 @EJB EnrichmentManager enrichmentManager;
 @Inject MatchingEngine matchingEngine;

 public void preProcess(Product product) { /* ... */ }
 public void process(Product product) { /* ... */ }
 public void postProcess(Product product) { /* ... */ }
}

Enterprise Java Beans

[122]

In this class PostTradeProcessor there is no business interface defined as a local
view. The annotation @LocalBean informs the EJB container that the business
interface locally is derived from all of the public methods called inside the EJB. In the
example, the methods preProcess(), process(), and postProcess() are exposed
as the client view.

As you witnessed in the previous example, PostTradeProcessor actually relies on
dependency injection of references through the annotations @Inject and @EJB.

EJB references
The EJB container is able to inject references of session beans into an application.
It turns out that the CDI container can achieve the same effect. Most of the time,
developers can rely on @Inject from CDI to add a dependency, since this
annotation is designed to work with managed beans, and the fact is an EJB is
a type of managed beans.

First inject EJB references with @javax.inject.Inject to
ensure your application's longevity and if that fails to work
because of, say, a circular reference or strange behavior, revert
to @javax.ejb.EJB.

CDI managed beans may be injected into an EJB. However, there are restrictions on
the scope. A stateless session or singleton EJB normally is injectable into a CDI bean,
because the lifetime of EJB generally exceeds the CDI managed bean.

There is one other tried and tested way to get a reference to an EJB, and that is to use
the JNDI. But going down this track leads you to dependency lookup and far away
from dependency injection.

This is the JNDI way:

public void someWorkMustBeDone() {
 PostTradeProcessor processor = null;
 try {
 Context context = (Context)
 new InitialContext();
 processor = (PostTradeProcessor)
 context.lookup(
 "java:comp/PostTradeProcessor");

Chapter 3

[123]

 } catch (NamingException e) {
 throw new RuntimeException(e);
 }

 hangTen(processor); // ...
}

This code is only useful in tight corners of development.

Asynchronous invocations
EJB methods may be marked as annotation @javax.ejb.Asynchronous to inform
the EJB container that they invoke tasks separate to the container invocation Java
thread. An asynchronous method returns a void element or it is Future<V>, where V
is the value type that is being returned.

Here is an example of a session bean using asynchronous invocation:

@Singleton
public class AsyncWebpageDownloader {
 @Asynchronous
 @Lock(LockType.READ)
 public Future<String> fetchWebPage(String url)
 throws IOException {
 String data = createReport(url);
 return new AsyncResult<String>(data);
 }

 private String createReport(String url) throws IOException {
 URLConnection http = new URL("url")
 .openConnection();
 InputStream in = http.getInputStream();
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 baos.write((url+":\n").getBytes());
 try {
 byte[] buf = new byte[8192];
 int len;
 while ((len = in.read(buf)) > 0) {
 baos.write(buf, 0, len);
 nap();
 }
 baos.close();

Enterprise Java Beans

[124]

 } finally {
 in.close();
 }

 return baos.toString();
 }

 private void nap() {
 try {
 Thread.sleep(200);
 } catch (InterruptedException ignored) {
 }
 }
}

The EJB AsyncWebpageDownloader has a single method called fetchWebPage() that
is annotated with @Asynchronous. We also add a concurrency hint to the container
with an annotation @javax.ejb.Lock, to configure this call point with a reader's
lock. The method accepts a URL and downloads a web page from the internet into
memory. In order to simulate a long running operation, we add some time delays
to the file download inside the I/O loop. At the end of the process, the downloaded
content is returned to the caller as Future<String> instance. The result is stored in a
special type javax.ejb.AsyncResult.

The relationship between EJB and CDI
containers
In Java EE 7, EJB container has this sole responsibility and it is worth remarking that
the EJB container is not the same as the CDI container. Although in some internal
implementations of the Java EE 7 standard there may be subtle differences between
each bean type. Indeed, in the JSR-342 specification document, there is no mention
at all of CDI. It is theoretically possible to rewrite all types of EJBs as CDI managed
beans. In future Java EE platform editions, the relationship between the EJB and CDI
container should be more clearly defined.

Chapter 3

[125]

Lightweight scope of EJBs
EJB in Java EE 7 are lightweight. In fact the discussion and debate about heavyweight
versus lightweight misses the point. Every software system that we now employ
in our application will be almost certainly managed by a container. Whether that
container is a CPU on a chip or a Java EE application server really is neither here nor
there. What matters to most technicians and definitely to business is the ability for the
components to be on scale on demand. Does the container infrastructure simplify the
architecture? Does the container infrastructure overlap or conflict with another type
of containerization? Think about it this way. How many layers of ingredients are you
going to put on that pizza base? You and I would just like to enjoy a nice tasting pizza
at the end of the day. It is this ability to mix and match that serves EJB in Java EE 7.

Lastly, to emphasize the point, observe the demand for poolable session EJB in
application servers over time from 2002 to 2013:

Application servers in the cloud computing environment will be expected to
pool over one million EJB instances and auto scale all of them. Now if that is not
considered lightweight, I really do not know what is.

Enterprise Java Beans

[126]

An EJB can serve as JAX-RS 2.0 endpoint (See Chapter 8, RESTful Services JAX-RS 2.0):

@Path("/projects")
@Stateless
public class ProjectRESTServerEndpoint { /* ... */ }

An EJB can be WebSocket server-side endpoint (See Chapter 7, Java API for
HTML5WebSocket):

@ServerEndpoint("/sockets")

@Stateless

public class ProjectWebSocketEndpoint { /* ... */ }

An EJB can even be Java Servlet (See Chapter 6, Java Servlets and Asynchronous
Request-Response):

@WebServlet("/browse")

@Stateless

public class ProjectBrowse extends HttpServlet { /* ... */ }

Nonetheless, I strongly recommend that you continue to separate your concerns,
your view from model-control logic. Please do not follow the previous example
as good practice.

Summary
In this chapter on EJB session bean instance, we have seen how POJOs can easily be
annotated to be either stateful, stateless, or singleton EJB components. A session EJB
is essentially the Java component at the other end of the telephone line; they are the
end points that perform some useful action of work.

A session bean, is simply the foundation layer to writing business server objects
inside a Java EE application server. Session beans are called by EJB client
applications. An EJB can be the client of another EJB. EJB are endpoints of invocation.
An EJB container manages all EJBs.

Chapter 3

[127]

There are two ways an EJB client can fundamentally invoke a method in a session
bean. The implementation bean may define a remote business interface and annotate
it with @javax.ejb.Remote; and/or it may also define a local business interface and
annotate it @javax.ejb.Local.

The EJB container determines the lifecycles of the three types of session beans.
Stateful session beans are the only type that supports activation and passivation.
Java EE is about adding metadata to a simple Java class and then letting the container
manage its lifecycle.

In the next two chapters, Chapter 4, Essential Java Persistence API 3.2 and Chapter 5,
Object-Relational Mapping with JPA we will go head-first into Java Persistence. The
ability to save user content into a database or backing store using object-relational
mapping techniques is a crucially important feature.

Essential Java Persistence
API 3.2

Alice Walker said, "In search of my mother's garden, I found my own."

In the last chapter, we introduced the session beans, which are the business service
endpoints for your Java EE application. In this chapter, we are changing over to
persistence, in what used to be called entity EJBs in the older J2EE specifications, but
are now simply called Persistence Capable Objects (PCO).

The Java Persistence API (JPA), JSR 338, Version 3.2 is the specification that
mandates how persistence can be applied to the objects in the Java EE product.
One solution is storing data and a standard. Other solutions do exist, which also
handle the problem of accessing and reading data into different types of long-term
storage products. JPA 3.2 adds advanced features, such as ability to work with stored
procedures, mapped entities, and fetch plans. You can read about these features in
Chapter 11, Advanced Topics in Persistence.

Entities and the Java Persistence API first appeared in Java EE 5 as EJB 3.0 open
source frameworks, such as Red Hat's Hibernate and Spring Framework, and
proprietary solutions such as Oracle's TopLink also heavily influenced them.

The Java Persistence API is the standard object relation mapping API for both Java
SE and Java EE. It means that you can use JPA inside the container and outside of
it in a standalone program. JPA is based on POJO that are denoted, annotated, or
configured in XML, to be persisted somewhere. In other words, JPA does not care or
dictate exactly where your data is stored, it simply helps to map data from the Java
objects to the underlying data storage and vice versa. The data store can be a relation
database for maximum effectiveness, and it can also be a document database with
limited functionality. The only limits are the type of Object/Relational Mapping
(ORM) implementation and the complexity of the data model.

Essential Java Persistence API 3.2

[130]

JPA is a specification and there are several implementations, which include,
unsurprisingly, Hibernate, Apache OpenJPA, and also EclipseLink. The EclipseLink
is a product that serves as the reference implementation of JPA, which was denoted
to Eclipse Foundation by Oracle, and in a previous life, EclipseLink was offered
under a different guise as TopLink Essentials. OpenJPA is an open source alternative
for the JPA implementation.

As this is supposed to be a reference handbook, we will only see the essential
cookbook features of JPA. It is not a substitute for the JPA official specification,
which is quite extensive. Nor does it compete with other writings, articles, and tomes
that are purely aimed at Java Persistence and data storage. Rather, this chapter is the
foundation description, it will get you started writing the entity classes for your next
business Java EE application. Chapter 5, Object-Relational Mapping with JPA, advances
this knowledge into more intermediate-level problems of persistence.

Entities
An entity is a persistence capable object. For the Java platform and in the language
of Java, it is a plain and simply object instance that has been specially marked (or in
the vernacular of the older object relational mapper product, enhanced) in a way that
means that it can be persisted to long-term storage, which, for most of us souls, is a
relational database.

An entity for the cloud-enabled Java EE products can also be persisted to a cloud
database with usually some tighter restrictions on what you can do with those types
of objects.

JPA entities are mapped to the database tables or views. Going forward with this
chapter, we are going to consider only relational databases.

Defining Entity bean
What is an entity bean? The answer is almost any class can be declared as an
entity bean.

•	 An entity bean is an object that has been annotated with @javax.
persistence.Entity

•	 An entity bean must have a public accessible no-arguments constructor
•	 An entity bean cannot be declared final and nor can any methods or

instance methods inside of it be declared final

Chapter 4

[131]

•	 An entity bean must be a top-level class, it cannot be an inner class for example
•	 An entity bean cannot be a Java interface nor can it be a Java enum
•	 An entity bean can be a concrete class or an abstract class, because entity

beans support object-oriented inheritance and polymorphism through
associations and types

Persistence of entity beans is extended to special cases: if an entity bean inherits from
a non-entity bean and also if a non-entity bean inherits from an entity bean, only the
persistent entity beans parts will be guaranteed to be stored.

For entity beans that need to be transferred over a network, for example in a
remote connection, we recommend that the entity bean implement the javax.
io.Serializable marker interface. In fact, we strongly recommend this for all of
your entity beans, in order to allow them to be detached from and reattached to the
persistence context session. We will discuss more on this notion of attachment to
persistence contexts in later sections.

There is one more way to denote an object as an entity bean, which is not by using
the @Entity annotation, but by declaring it inside an XML configuration file.

Therefore, the process to make an ordinary Java class be persisted to long-term
storage is to add metadata to the class, which can be applied through the annotations
or an XML configuration file. It is the sole responsibility of the JPA provider to
perform the correct database operations in order to save the entity to storage (and
load it back again of course).

An entity bean example
Let's review an example of a JPA entity bean, in which we will see two versions of
this class is as follows:

A Plain Old Java Object
The following class is a data object, a POJO, which represents a record of a particular
genre of fictional books that have been popular for over 100 years. Some books from
this particular genre about spying, intergovernmental agencies, and other forms
of esoteric investigations, have been turned into motion-picture and television
productions. The class SpyThriller, which contains an identity number, the writer
of the book, the year it was published, and of course the title, is as follows:

package je7hb.basic.jpa;

public class SpyThriller {

Essential Java Persistence API 3.2

[132]

 private long id;
 private String writer;
 private int year;
 private String title;

 public SpyThriller() {}

 public SpyThriller(String writer, int year, String title) {
 this.writer = writer;
 this.year = year;
 this.title = title;
 }

 public long getId() {return id;}
 public void setId(long id) {this.id = id;}

 public String getWriter() {return writer;}
 public void setWriter(String writer) {this.writer = writer;}

 public int getYear() {return year;}
 public void setYear(int year) {this.year = year;}

 public String getTitle() {return title;}
 public void setTitle(String title) {this.title = title;}

 // toString() method omitted
 }

So far there is nothing special to see here in the SpyThriller bean. These are the
usual pair methods for fulfilling the constraints of a valid JavaBean object that has
properties. It is important to note that we can access each property of this Java bean
through the getter and setter methods.

Note that we have the constructor that can populate all of the fields of the bean,
except for the identity property, which is called id. We will see in this section, why
this was written this way.

Let us now transform this bean into a JPA entity bean with some annotations. The
second version of our bean is as follows:

Chapter 4

[133]

A simple entity bean
The SpyThriller bean with some annotations that transforms it into a working
entity bean is as follows:

package je7hb.basic.jpa;
import javax.persistence.*;

@Entity
public class SpyThriller {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long id;
 private String writer;
 private int year;
 private String title;

 public SpyThriller() {}

 // Full constructor omitted

 public long getId() {return id;}
 public void setId(long id) {this.id = id;}

 public String getWriter() {return writer;}
 public void setWriter(String writer) {this.writer = writer;}

 public int getYear() {return year;}
 public void setYear(int year) {this.year = year;}

 public String getTitle() {return title;}
 public void setTitle(String title) {this.title = title;}

 // toString() method omitted
 }

First, we applied the annotation @javax.entity.Entity to the class itself, which
denotes that the bean is a persistent capable object suitable for enhancement.

Second, we also make sure that this POJO is serializable and it can be detached from
the persistent session by extending the java.io.Serializable marker interface.
This means that the SpyThriller entity bean can also be sent across a network, for
example, using a session bean with a remote business interface.

Essential Java Persistence API 3.2

[134]

Third, we applied the id property with two new annotations: @javax.entity.Id
and @javax.entity.GeneratedValue.

The annotation @Id denotes a Java property to be the primary key of the entity bean.
In particular, every entity must have a primary key. The primary key of the entity is
the unique identifier for the bean inside the database.

The annotation @GeneratedValue denotes the entity has a unique value that is
generated by the database. There are different strategies for creating the database
unique identifier, and in the preceding example, strategy=AUTO means that we are
relying on the database to explicitly generate this identifier for our SpyThriller bean.

So, when we first insert a SpyThriller bean into the database, the identifier id will
be automatically generated for us by the underlying database, and the bean's id
property will be populated with this value by the JPA provider. This is the reason
why the identifier id was not specified as part of the bean's constructor arguments.

In SpyThriller, all of the properties, the fields of the bean, are by default persistent
capable, and they will be stored inside the database. What happens if we do not
want this persistence for a particular field? We can apply to the field an annotation @
javax.entity.Transient. Another version of our entity bean so far is as follows:

@Entity
public class SpyThriller extends java.io.Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long id;
 private String writer;
 private int year;
 private String title;

 @Transient
 private String secretCode;

 public SpyThriller() {}
 // Same code as before
 }

In the preceding code fragment, the field secretCode is not persistent capable, and it
will never be stored inside the database because it is annotated with @Transient.

Chapter 4

[135]

Let us summarize the annotations so far as follows:

Annotation Description
@Entity Specifies the bean as persistence capable
@Id Specifies the primary key of the entity bean
@GeneratedValue Specifies the value of the property generated using a strategy

in the underlying database or custom implementation
@Transient Specifies the property is not being persisted inside the

database

Expanded entity bean definition
The JPA specification is designed to allow programming by convention-over-
configuration in order to ease software development. This means there are
reasonable defaults; it follows the principle of least astonishment.

There are more annotations that the last example code hid from the naked eye. Let us
look at an expanded definition of entity bean as follows:

import javax.persistence.*;

@Entity(name = "SpyThriller")
@Table(name = "SPY_THRILLER_BOOK")
public class SpyThriller extends Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "BOOK_ID", table = "THRILLER_BOOK",
 unique = true, nullable = false,
 insertable = true, updatable = true)
 private long id;
 @Basic(fetch = FetchType.EAGER)
 @Column(name = "AUTHORS", nullable = false)
 private String writer;
 @Column(name = "BOOK_YEAR", nullable = false)
 private int year;
 @Column(name = "TITLE", nullable = false)
 private String title;

 public SpyThriller() {}
 }

Essential Java Persistence API 3.2

[136]

The @Table annotation
The @javax.entity.Table annotation specifies the target name of the database
table, and applying the annotation to the code allows us to override the default.
Every entity bean typically represents a single row in a database table, and each
database table has a set of table columns. In order for the JPA provider to map
the entity to the database, it needs to know the database table name. If the @Table
annotation is not provided, then the name of the entity bean is used. Because
the database systems support only certain character cases, be it only uppercase,
lowercase, or mixed case, with or without some underscore characters, there has
to be a way out for the software developer to explicitly override the sensible
convention on their chosen system.

In most cases, the database table name will default to the uppercase of the entity
bean's class name with underscores in between the camel case. For example,
SpyThriller is mapped to SPY_THRILLER. If you need a specific datable table name
then use the @Table annotation.

The @Entity annotation
For the purpose of the Java Persistence Query Language (JPQL), @javax.entity.
Entity allows the entity query name to be overridden. Please note that the query
name is not necessarily the same as the target database name. The annotation
@Table sets the database table name. @Entity specifies that the Java class is
persistence capable under a JPA provider, and is suitable for enhancement and
mapping to a database.

The @Basic annotation
The @javax.entity.Basic annotation defines the simple enhancement possible in
JPA. It maps a field or persistent property to a database column. It maps the Java
primitive types, the primitive wrapper types, the serializable types, the user-defined
serializable types, and certain standard class types from SDK and certain array types.
See the following table for the full list.

The main use of @Basic defines how the JPA provider actually retrieves dependent
columns and links to the associated records from the database. There are two forms
of access: LAZY and EAGER.

publicenumFetchType {LAZY, EAGER};
@Target({METHOD, FIELD}) @Retention(RUNTIME)

The EAGER strategy informs the JPA provider that the data must be readily fetched.
In other words, it should be fetched eagerly. The LAZY strategy informs the JPA
provider that it permits it to fetch the data, only when the property or field is about
to be accessed. The default mode is EAGER.

Chapter 4

[137]

A list of valid mappings for @Basic field/properties is shown in the following table:

Class and types Remarks
Java primitive types boolean, byte, char, short, int, long,

float, double

Java wrapper types java.lang.Boolean, java.lang.Byte, java.
lang.Character, java.lang.Short, java.
lang.Integer, java.lang.Long, java.lang.
Float, java.lang.Double

Serializable type Standard Java serialized types and user-defined types
implementing the java.io.Serializable marker
interface

Enums Standard Java enumerations
String The standard java.lang.String implementation
Math java.math.BigInteger and java.math.

BigDecimal

Database JDBC
temporal types

java.sql.Date, java.sql.Time, and java.
lang.DateTime

Array primitives byte[] and char[]
Wrapper Primitives java.lang.Byte[] and java.lang.Character[]

The JPA specification, as you can see yourself, allows most types to be mapped by
default to the database. The extra wrapper array primitives and array primitives are
quite useful for the binary object (BLOB) mapping.

The @Column annotation
As each entity bean maps to a single database table row, there is another annotation
that corresponds to @Table. The annotation @javax.entity.Column specifies how a
field or persistent property maps to a database table column.

The @Column annotation allows the configuration of the database table name, whether
it can be a null column, whether a new record with that column can be inserted, and/
or whether an existing record with that particular column can be updated.

Most of the time developers will just want to override the column name, and see if
the column can contain the NULL values or not.

In the preceding example code there are two examples where we override the
configuration. We override the field year to the target database column name
BOOK_YEAR because in the Apache Derby database, year is a reserved keyword!
Also, we override the writer field to map explicitly the target database column
name AUTHORS.

Essential Java Persistence API 3.2

[138]

A table of the @javax.entity.Column annotation arguments is as follows:

Name Type Description Default Value
name String The name of the column. The name of the

field or property
unique Boolean Defines if this column is

unique in the database
table.

false

nullable Boolean Defines if this column
accepts the NULL values.

false

insertable Boolean Defines whether this
column is included in the
SQL INSERT command
generated by the JPA
provider.

true

updatable Boolean Defines whether this
column is included in the
SQL UPDATE commands
that are generated by the
JPA provider.

true

columnDefinition Boolean Defines SQL fragment that
is used when generating
the database description
language for the column,
for example, CLOB NOT
NULL.

Generated SQL
from the JPA
provider, which
creates the
database table
column

table String Defines the database table
that contains the column.
This argument is used to
override the primary table
from the entity.

Column is in the
primary table of
the entity bean

length int The column length. This
argument is only applicable
for a String value column.

255

precision int The precision for a decimal
type column. This is
typically for real number
database columns.

0

scale int The scale for a decimal
column. This is typically
configured only for real
number database columns.

0

Chapter 4

[139]

All the @Column annotation arguments are optional, but at least one argument must
be defined for sensible operation.

Annotating entity beans
As a developer, you can annotate the field variables of an entity bean in order to
inform the JPA provider how to enhance the object-relation mapping to the target
database table. You have seen how this works previously, but there is a second way
to annotate entity beans. Alternatively, you can also annotate the getter and setter
methods on entity beans.

The decision to annotate on the field variables or the getter properties is down to
personal preference. After all is considered, you in the role as the bean provider
make this decision. Let us look at the case of the getter and setter annotations.

Annotating entities with the instance variables
Here is an entity bean class for a train system, Train, which is a very simple data
object. It has three field variables standing for the source and target locations, and a
time that is formatted as a long primitive with the pattern: yyyyMMdd.

package je7hb.basic.jpa;
import javax.persistence.*;
import java.io.Serializable;

@Entity
public class Train implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long id;

 @Column(name = "FROM_LOC", nullable = false)
 private String from;

 @Column(name = "TO_LOC", nullable = false)
 private String to;

 /** Pattern format yyyyMMdd */
 @Column(name = "TRAIN_DATE")
 private int trainDate;

 public Train() {this(null,null,0);}

Essential Java Persistence API 3.2

[140]

 public Train(String from, String to, int trainDate) {
 this.from = from;
 this.to = to;
 this.trainDate = trainDate;
 }

 public long getId() {return id;}
 public void setId(long id) {this.id = id;}

 public String getFrom() {return from;}
 public void setFrom(String fromLoc) {
 this.from = fromLoc;
 }

 public String getTo() {return to;}
 public void setTo(String toLoc) {this.to = toLoc;}

 public int getTrainDate() {return trainDate;}
 public void setTrainDate(int trainDate) {
 this.trainDate = trainDate;
 }
 // toString() method omitted
 }

The Train entity class is annotated on the field variables: id, from, to, and
trainDate. We have used the @Column annotation to explicitly specify the target
database column names, because the field variables named are mostly reserved
keywords in the underlying database.

Annotating entities with property accessors
The same entity class annotated on the getter and setter methods is as follows:

package je7hb.basic.jpa;

import javax.persistence.*;
import java.io.Serializable;

@Entity
public class Train implements Serializable {
 private long id;
 private String from;
 private String to;
 private int trainDate;

Chapter 4

[141]

 public Train2() {this(null,null,0);}

 public Train(String from, String to, int trainDate) {
 this.from = from;
 this.to = to;
 this.trainDate = trainDate;
 }

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public long getId() {return id;}
 public void setId(long id) {this.id = id;}

 @Column(name = "FROM_LOC", nullable = false)
 public String getFrom() {return from;}
 public void setFrom(String fromLoc) {
 this.from = fromLoc;
 }

 @Column(name = "TO_LOC", nullable = false)
 public String getTo() {return to;}
 public void setTo(String toLoc) {this.to = toLoc;}

 /** Pattern format yyyyMMdd */
 @Column(name = "TRAIN_DATE")
 public int getTrainDate() {return trainDate;}
 public void setTrainDate(int trainDate) {
 this.trainDate = trainDate;
 }

 // toString() method omitted
 }

Moving the annotations to the getter and setter methods has one advantage in that it
allows the LAZY instantiation of the property. Let us suppose the Train entity had an
expensive or large-dependent entity bean that implied significant performance cost,
then annotating the getter and setter properties may be useful.

Developer, the bean provider, must ensure that there is no public access to the fields
of the instance variables. In particular, the clients of entity bean and related entity
beans must always call the getter methods in to access an entity's properties.

Essential Java Persistence API 3.2

[142]

For entity beans that are standalone, the decision to annotate the field variables
versus the accessor methods can be trivial. When entity bean is part of the object
hierarchy, then choosing one style or the other is very important. If you choose the
field instance for the root class of the hierarchy, you are advised to follow it for all
the subentity bean classes. Do not mix the two styles.

Comparing annotating styles
A table of cost and benefits of annotating the instance variables versus the property
accessor methods is as follows:

Benefits Costs
Instance Variable •	 Fastest performance,

avoids the overhead
of the method calls

•	 The JPA provider
persistence manager
has direct access in
order to read and
write from and to
the DB

•	 Less lines of code

•	 Not possible to achieve
the LAZY initialization

•	 Can be expensive for
the property objects
that really require the
LAZY initialization

Property Accessor •	 The LAZY
initialization of the
property

•	 Creation of the
values on demand

•	 Provides a simple
way to add an extra
behavior during the
initialization

•	 Performance loss with
extra method calls

•	 Impact on properties,
if entity bean is
involved in a query

•	 More lines of code

There are two styles to annotate JPA and entity beans. Injecting into the bean
getter and setter methods, obviously, provides a way of intercepting the incoming
argument, and also computing a result or triggering some other action. On the other
hand, we recommend that entities should be kept relatively simple, and serious
business logic should go into either Bean Validation or service endpoints.

Choose one style of annotating entity beans at the beginning of
your software development team's project and stay with it for the
duration. Remember not to mix the annotation styles in the entity
bean hierarchies, especially.

Chapter 4

[143]

Running a simple entity bean test
In this section, we will run a simple entity bean test with the Arquillian framework.

The Gradle build file for the entity bean test
We are using the setup of Gradle, Arquillian test framework, Apache Derby,
and embedded Glassfish server. The project's Gradle build filebuild.gradle
is as follows:

apply plugin: 'java'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

// Define equivalent Maven GAV coordinates.
group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch04-jpa-simple'
version = '1.0'

repositories {
 mavenLocal()
 mavenCentral()
 maven {
 url 'https://maven.java.net/content/groups/
 promoted'
 }
 maven {
 url 'http://repository.jboss.org/nexus/content/
 groups/public'
 }
 }

dependencies {
 compile 'javax:javaee-api:7.0'
 runtime 'javax:javaee-api:7.0'

 testCompile 'junit:junit:4.11'
 testCompile 'org.jboss.arquillian.junit:
 arquillian-junit-container:1.0.3.Final'
 testCompile 'org.jboss.arquillian.container:
 arquillian-glassfish-embedded-3.1:1.0.0.CR4'

Essential Java Persistence API 3.2

[144]

 runtime 'org.glassfish.main.extras:
 glassfish-embedded-all:4.0.1-b01'
 }

task wrapper(type: Wrapper) {
 gradleVersion = '1.6'
 }

// Override Gradle defaults - a force an exploded JAR view
sourceSets {
 main {
 output.resourcesDir = 'build/classes/main'
 output.classesDir = 'build/classes/main'
 }
 test {
 resources {
 srcDir 'src/test/resources'
 }
 resources {
 srcDir 'src/test/resources-glassfish-embedded'
 }

 output.resourcesDir = 'build/classes/test'
 output.classesDir = 'build/classes/test'
 }
 }

We included a couple of extra dependencies in order to run the unit tests, which are
the GlassFish embedded container and the Java EE 7 API. We also have two separate
resource folders under the test tree src/test/resources and src/test/resources-
glassfish-embedded. The reason why we have done this will become apparent.

A stateful session bean
First, we will define a session bean to act as a mediator to the database as follows:

packageje7hb.basic.jpa;

import javax.ejb.Stateful;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;
import javax.persistence.Query;
import java.util.List;

Chapter 4

[145]

@Stateful
public class SpyThrillerBookBean {
 @PersistenceContext(unitName = "testDatabase",
 type = PersistenceContextType.EXTENDED)
 private EntityManager entityManager;

 public void addBook(SpyThriller movie) throws Exception {
 entityManager.persist(movie);
 }

 public void deleteBook(SpyThriller movie) throws Exception {
 entityManager.remove(movie);
 }

 public List<SpyThriller> getBooks() throws Exception {
 Query query = entityManager.createQuery
 ("SELECT m from SpyThriller as m");
 return query.getResultList();
 }
 }

The code shows a session EJB named SpyThrillerBookBean of the stateful type,
which we have already seen in Chapter 3, Enterprise Java Beans. The stateful session
bean requires a javax.persistence.PersistenceContext object that is injected
into the service by the EJB container. The SpyThrillerBookBean acts as the central
processor for the SpyThriller entity beans.

PersistenceContext is annotated with an extended conversation scope, which
allows the transaction context to live through multiple method requests. This is
useful to support work flow in a web application. We also have to explicitly name
the persistence unit, with which the persistence context used in this stateful EJB is
associated. In this case, the persistent context refers to a unit named testDatabase.

It is entirely possible to have multiple persistence contexts injected into a session bean.

There are methods on the stateful bean to add a book, addBook(), remove a book,
deleteBook(), and retrieve a list of the books from the database, getBook().

In the listing method getBook(), we make use of the JPA query facility from the
entity manager. We create a query object that uses the Java Persistence API Query
Language (JPQL), which looks like native SQL, but it is different.

Essential Java Persistence API 3.2

[146]

JPQL is the query language for EJB and is designed to support portable entity
bean with retrieving data, updating data, and insertion of new data, and JPQL also
supports bulk update and delete operations. In the example code, we are using JPQL
with a static String statement. There are other ways to define the JPQL statements
with the annotations, and we will come to them in a later section of this chapter.

An entity bean integration test
Let us now examine the unit test for this stateful EJB with the entity bean
with Arquillian.

packageje7hb.basic.jpa;
// other imports omitted
import javax.ejb.EJB;
import java.util.List;
import static org.junit.Assert.*;

@RunWith(Arquillian.class)
public class SpyThrillerBookBeanTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addPackage(SpyThrillerBookBean.class.getPackage())
 .addAsResource("test-persistence.xml",
 "META-INF/persistence.xml")
 .addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml");
 return jar;
 }

 @EJBSpyThrillerBookBeanbookService;

 @Test
 public void shouldPersistEntities() throws Exception {
 assertEquals(0, bookService.getBooks().size());
 bookService.addBook(new SpyThriller
 ("The Spy Who Came in from the Cold", 1963,
 "John Le Carre"));
 bookService.addBook(new SpyThriller
 ("Casino Royale", 1953, "Ian Fleming"));
 bookService.addBook(new SpyThriller
 ("The Hunt for Red October ", 1984, "Tom Clancy"));
 bookService.addBook(new SpyThriller
 ("Bravo Two Zero", 1993, "Andy McNab"));

Chapter 4

[147]

 bookService.addBook(new SpyThriller
 ("On Her Majesty's Secret Service", 1963, "Ian Fleming"));

 List<SpyThriller> list = bookService.getBooks();
 assertEquals(5, list.size());

 for (SpyThriller movie : list) {
 System.out.printf("movie = %s\n", movie);
 bookService.deleteBook(movie);
 }

 assertEquals(0, bookService.getBooks().size());
 }
 }

The first difference between this test class, SpyThrillerBookBeanTest, and the
previous integration tests is the method named addPackage(), which is part of the
ShrinkWrap builder. AddPackage() registers all of the classes in the supplied Java
package for deployment.

The second difference is that we supplied an additional XML configuration for
deployment, which is named test-persistence.xml in the source code. In
the build tree, the file becomes the persistence context configuration META-INF/
persistence.xml. We will see this XML configuration in a bit.

The EJB container injects a reference to the stateful bean SpyThrillerBookBean for the
purpose of testing. We could also use @javax.inject.Inject for future proofing.

In the actual test method, we invoke all the service methods of the stateful bean. First,
we assert that the database table should be empty; there should be no SpyThriller
entities in it. Next, we insert a number of entities. We assert again the number of
entities that should be stored in the database. After that, we retrieve a list collection of
the entities, we iterate over this list in order to delete individual entities. Finally, we
assert the database is empty, and if all things are right and good, then the test should
pass. However, we need to set up and configure the persistence context.

Essential Java Persistence API 3.2

[148]

A persistence context XML configuration
Let us look at the persistence context file for the unit test as follows:

<persistence version = "2.1"
 xmlns = "http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation =
 "http://xmlns.jcp.org/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence
 /persistence_2_1.xsd">

<persistence-unit name = "testDatabase" transaction-type = "JTA">
<provider>
org.eclipse.persistence.jpa.PersistenceProvider
</provider>
<jta-data-source>jdbc/arquillian</jta-data-source>
<properties>
<property name = "eclipselink.ddl-generation"
 value = "drop-and-create-tables"/>
<property name = "eclipselink.ddl-generation.output-mode"
 value = "both"/>
<property name = "eclipselink.logging.level.sql"
 value = "FINE"/>
<property name = "eclipselink.logging.parameters"
 value = "true"/>
<property name = "eclipselink.create-ddl-jdbc-file-name"
 value = "createDDL.jdbc"/>
</properties>
</persistence-unit>
</persistence>

The persistence configuration defines one persistence-unit XML element and
that is the session context, if you will, mapping EntityManager to the database.
It is possible to have more than one persistence-unit inside the persistence
configuration file.

There are two transaction types of persistence units: JTA and RESOURCE_LOCAL.

The JTA variety is the type that can only run inside a Java EE application server; JTA
stands for Java Transaction API. These persistence unit types have transactional
support by default. The application server, via the EJB and JPA container, will
provide a JTA data source to the entity manager.

Chapter 4

[149]

The RESOURCE_LOCAL variety is for standalone Java SE applications, and therefore
allows JPA to be used outside of a Java EE application server. It is also possible
to specify a non-JTA data source inside a Java EE application. In this case, using
RESOURCE_LOCAL in such an application means the data source is not going to be a
JTA data source, and therefore will not have transactions.

When we declare a persistence unit with a JTA data source, then we also need
to specify the name of the data source, which in this configuration is named
jdbc/arquillian.

A table of the EclipseLink configuration properties is as follows:

Property Description
eclipselink.ddl-generation Specifies how EclipseLink can

automatically generate the table and
database for a persistence unit. The values
can be either create-table or drop-
and-create-tables.

eclipselink.ddl-generation.
output-mode

Specifies how Eclipse can execute the
DDL schema. The valid values can be set
to either sql-script, database, or
both.

eclipselink.logging.level.
sql

Specifies the JDK logging level for
EclipseLink. The valid values are OFF,
SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, ALL.

eclipselink.logging.
parameters

Specifies if the SQL parameters should
be logged or not. This is useful for
debugging the native SQL the JPA
provider generates.

eclipselink.create-ddl-
jdbc-file-name

Specifies the name of the DDL created
tables and schema script that is generated
when the output-mode is set to both or
sql-script.

eclipselink.drop-ddl-jdbc-
file-name

Specifies the name of the DDL drop tables
and schema script that is generated when
the output-mode is set to both or sql-
script.

eclipselink.jdbc.driver Specifies the JDBC database driver class
name for the Java SE deployment.

eclipselink.jdbc.url Specifies the JDBC database URL class
name for the Java SE deployment.

Essential Java Persistence API 3.2

[150]

Property Description
eclipselink.jdbc.user Specifies the JDBC database login

username for the Java SE deployment.
eclipselink.jdbc.password Specifies the JDBC database login

password for the Java SE deployment.

Since JPA 2.0, these EclipseLink JDBC configuration properties have been
superseded by standard additional properties for the JPA providers.

Appendix B, Java EE 7 Persistence, has a full description of the standard JPA properties.

Arquillian configuration for the embedded
GlassFish server
We configure specific properties for the JPA provider in order to allow it to connect
to the database. In this case, we are using the embedded GlassFish server. We
need to tell Arquillian how to set up the data source. We set this up in another
configuration file named src/test/resources/arquillian.xml.

<?xml version = "1.0" encoding = "UTF-8"?>
<arquillian xmlns = "http://jboss.org/schema/arquillian"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://jboss.org/schema/arquillian
 http://jboss.org/schema/arquillian/arquillian_1_0.xsd">
<container qualifier = "glassfish-embedded" default = "true">
<configuration>
<property name = "resourcesXml">
src/test/resources-glassfish-embedded/
glassfish-resources.xml
</property>
</configuration>
</container>
</arquillian>

Since our example is using Apache Derby, we tell Arquillian where to find the
additional setup of the GlassFish resources.

I know it looks a little complicated, this indirection, but it is useful when switching
between different application servers in order to make a separate integration test.

Chapter 4

[151]

Suppose next week, Monday, there was suddenly a requirement to make a test with
the JBoss application server, then we would simply make a change, and add in extra
configurations in a new folder, presumably named src/test/resources-jboss-as-
embedded. (Of course we would modify SourceSet accordingly in the build.gradle
file and make sure we create the profile configuration, in order to anticipate every new
application server request that arrives in the product backlog, going forward.)

The GlassFish resource configuration file, src/test/resources-glassfish-
embedded/glassfish-resources.xml, is as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<!DOCTYPE resources PUBLIC"-//GlassFish.org//
 DTD GlassFish Application Server 3.1 Resource Definitions//EN"
 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">
<resources>
<jdbc-resource pool-name = "ArquillianEmbeddedDerbyPool"
 jndi-name = "jdbc/arquillian"/>
<jdbc-connection-pool name = "ArquillianEmbeddedDerbyPool"
 res-type = "javax.sql.DataSource" datasource-classname =
 "org.apache.derby.jdbc.EmbeddedDataSource"
 is-isolation-level-guaranteed = "false">
<property name = "databaseName" value = "build/databases/derby"/>
<property name = "createDatabase" value = "create"/>
</jdbc-connection-pool>
</resources>

The XML schema for this file is specific to the GlassFish application server. It
configures a JDBC connection pool, and thus the JTA enabled data source. Notice
how the Derby database is stored in the build folder, and is compatible with the
Gradle build infrastructure build/databases/derby.

Finally, we throw in a log configuration file so that developers can see the console
output. The file, which is specific only to the GlassFish application server, and is
named src/test/resources-glassfish-embedded/glassfish-resources.xml is
as follows:

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.formatter =
 java.util.logging.SimpleFormatter
java.util.logging.SimpleFormatter.format = %4$s: %5$s%n
java.util.logging.ConsoleHandler.level = FINEST

As we can see, GlassFish makes use of the standard JDK logging facility.

Essential Java Persistence API 3.2

[152]

Running an integration test
The output running the Arquillian integration unit test is as follows:

JUnitStarter -ideVersion5 je7hb.basic.jpa.SpyThrillerBookBeanTest
sql: --SELECT BOOK_ID, TITLE, AUTHORS, BOOK_YEAR FROM SPY_THRILLER
sql: --UPDATE SEQUENCE SET SEQ_COUNT = SEQ_COUNT + ? WHERE
 SEQ_NAME = ?
 bind => [50, SEQ_GEN]
sql: --SELECT SEQ_COUNT FROM SEQUENCE WHERE SEQ_NAME = ?
 bind => [SEQ_GEN]
sql: --INSERT INTO SPY_THRILLER
 (BOOK_ID, TITLE, AUTHORS, BOOK_YEAR) VALUES (?, ?, ?, ?)
bind => [1, John Le Carre, The Spy Who Came in from the Cold,
 1963]

movie = SpyThriller{id = 1, writer =
 'The Spy Who Came in from the Cold', title = 'John Le Carre',
 year = 1963, secretCode = '823056538'}
movie = SpyThriller{id = 2, writer = 'Casino Royale', title =
 'Ian Fleming', year = 1953, secretCode = '416058911'}
sql: --DELETE FROM SPY_THRILLER WHERE (BOOK_ID = ?)
bind => [2]
movie = SpyThriller{id = 3, writer =
 'The Hunt for Red October ', title = 'Tom Clancy', year =
 1984, secretCode = '825011405'}
movie = SpyThriller{id = 4, writer = 'Bravo Two Zero',
 title = 'Andy McNab', year = 1993, secretCode = '831259338'}
movie = SpyThriller{id = 5, writer =
 'On Her Majesty's Secret Service', title = 'Ian Fleming',
 year = 1963, secretCode = '56561882'}

INFO: HV000001: Hibernate Validator 5.0.0.Final

PlainTextActionReporterSUCCESSDescription:
 add-resources AdminCommandnull
JDBC connection pool ArquillianEmbeddedDerbyPool created
 successfully.
JDBC resource jdbc/arquillian created successfully.

--Connected: jdbc:derby:build/databases/derby
 User: APP
 Database: Apache Derby Version: 10.9.1.0 - (1344872)
 Driver: Apache Derby Embedded JDBC Driver Version: 10.9.1.0 -
 (1344872)
Aug 03, 2013 11:42:36 AM com.sun.enterprise.v3.server.AppServerStartup
stop

INFO: Shutdown procedure finished
Process finished with exit code 0

Chapter 4

[153]

The lifecycle of an entity bean
Entities are managed by the instances of javax.entity.EntityManager in the
Java application. Entities have a lifecycle of four states: new, managed, detached,
and removed.

The new entity state
An entity bean is in the new state when it is instantiated with the Java new operator,
or serialized from the object stream. In the new state, entity bean is not associated with
any EntityManager instance whatsoever. An alternative way to specify this is to say
that the entity bean has no persistence context, and therefore, no persistence identity.

The managed entity state
An entity bean is in the managed state when it is associated with an EntityManager
instance and that instance is still valid in terms of the JVM. A managed entity bean
has a definite persistence context and identity.

The detached entity state
An entity bean is in the detached state when it is no longer associated with an
EntityManager. A detached entity can be found if the entity bean is serialized into
an object stream so that it is transferred across the network from one JVM to another.
A detached entity can be found if its associated EntityManager goes out of scope.

Fig: Diagram of entity Lifecycle states

A detached entity bean can be reattached with EntityManager during a merge
operation, as we will see later in the discussion around management.

Essential Java Persistence API 3.2

[154]

The removed entity state
An entity bean is in the removed state when it has been flagged for removal from
the database. The entity bean is deleted from the database, and the mapped row is
deleted from the table row when the enclosing transaction successfully commits.

EntityManager
EntityManager in the JPA provider maintains a cache of the entity instances. It is
solely responsible for mapping the Java entity bean to and from the database, using
the JPA provider solution.

Persistence context
Persistence context is associated with an entity manager. Its job is to allow the entity
manager to reference entity beans that are created, updated, retrieved, and deleted.
It also has another job, and that is to merge entity beans that are detached with the
current instance from the underlying database.

The EntityManager methods
EntityManager has several methods to handle persistence of entity beans. The entity
manager in JPA is always associated with one single persistence context. Inside the
persistence context, there are zero or more entity bean instances, which must be
unique in terms of storage to a database.

Developers program against the EntityManager API in order to create and remove
the persistent entity instances, to find entities by their primary key, and to query
over entities.

A simplified view of the EntityManager interface is as follows:

packagejavax.persistence;
import java.util.Map;
import javax.persistence.metamodel.Metamodel;
import javax.persistence.criteria.*;

public interface EntityManager {
 void persist(Object entity);
 <T> T merge(T entity);
 void refresh(Object entity);
 void remove(Object entity);

Chapter 4

[155]

 void clear();
 void detach(Object entity);
 boolean contains(Object entity);

 void flush();
 void setFlushMode(FlushModeType flushMode);
 FlushModeType getFlushMode();

 <T> T find(Class<T> entityClass, Object primaryKey);
 <T> T find(Class<T> entityClass, Object primaryKey,
 Map<String, Object> properties);
 <T>T find(Class<T> entityClass, Object primaryKey,
 LockModeType lockMode);
 <T> T find(Class<T> entityClass, Object primaryKey,
 LockModeType lockMode, Map<String, Object> properties);
 <T> T getReference(Class<T> entityClass, Object primaryKey);

 void lock(Object entity, LockModeType lockMode);
 void lock(Object entity, LockModeType lockMode,
 Map<String, Object> properties);

 void refresh(Object entity, Map<String, Object> properties);
 void refresh(Object entity, LockModeTypelockMode);
 void refresh(Object entity, LockModeType lockMode,
 Map<String, Object> properties);

 LockModeType getLockMode(Object entity);

 void setProperty(String propertyName, Object value);

 Map<String, Object>getProperties();

 Query createQuery(String qlString);
 Query createNamedQuery(String name);

 <T> TypedQuery<T>createQuery(CriteriaQuery<T>criteriaQuery);
 <T> TypedQuery<T>createQuery(String qlString,
 Class<T>resultClass);
 <T> TypedQuery<T>createNamedQuery(String name,
 Class<T> resultClass);

 Query createNativeQuery(String sqlString);
 Query createNativeQuery(String sqlString, Class resultClass);

Essential Java Persistence API 3.2

[156]

 Query createNativeQuery(String sqlString,
 String resultSetMapping);

 voidjoinTransaction();
 void close();
 boolean isOpen();

 EntityTransactiongetTransaction();
 EntityManagerFactory getEntityManagerFactory();

 CriteriaBuildergetCriteriaBuilder();
 Metamodel getMetamodel();
 }

When you first look at this interface, you are probably thinking that this is a lot to
take in. The truth is, you only need to know a dozen method calls, and the rest of the
API will sink in as you start to make advanced applications, because you will start to
ask more questions about how to write stuff to solve a business problem.

Persisting new instances
The EntityManager.persist() method is the most important, it calls the JPA
provider to manage the current entity bean. If the current entity is unmanaged, it
becomes managed. The entity P is saved into the database, or before a transaction
commit, or as a result of the flush operation.

Given the entity bean P, the semantics of the save or insert operation are as follows:

•	 If the entity bean P is managed, then the state is unchanged; it will
still be managed. If those relationships are configured to cascade
(cascade=PERSIST or cascade=ALL), then the persist operation will
cause other beans relevant and referenced by the input bean to become
managed by the persistence context.

•	 If the entity bean P is removed, then the bean becomes managed again.
•	 If the entity bean P is detached, then the bean can throw an

EntityExistsException exception. The result appears because the client
has not called merge on the current entity instance in a cache, or it can be that
the cache is stale and out of the date, or similarly the entity already has a row
with the primary or foreign key constraint violation.

Chapter 4

[157]

The reader should particularly note that the method named EntityManager.
persist() will not guarantee the immediate execution of an SQL INSERT
instruction. The JPA provider and its persistence manager implementation
decide exactly when saving to the database is carried out. Hence the reasoning
behind waiting until just before the enclosing transaction commits, or flushing the
persistence context cache directly through the call.

It is possible to find out if a particular entity bean is managed or not with the method
EntityManager.contains().

Removing the existing instances
The EntityManager.remove() method is a signal to the persistence entity manager
to evict the entity bean from its cache, and also to eventually delete the entity from
the underlying database. The removal occurs immediately, before the transaction
commits, or as a result of the flush operation.

Given an entity bean P, the removal operation semantics are as follows:

•	 If the entity P is a new instance, then it is ignored by the remove operation.
However, if P has references to other entities that are managed by the entity
manager, and if those relationships are set to cascade (cascade=REMOVE or
cascade=ALL), then those dependent elements are also set to be removed.

Essential Java Persistence API 3.2

[158]

•	 If the entity P is a managed instance, then it is switched to the remove state,
a signal for the eventual deletion from the persistence storage. If P has
references to other entities that are managed by the entity manager, and if
those relationships are set to cascade (cascade=REMOVE or cascade=ALL),
then those dependent elements are set as pending removal.

•	 If the entity P is detached from a persistence context, then the JPA provider
will raise an IllegalArgumentException exception.

•	 If the entity P is already set for removal, then nothing happens, the
behavior is a no-operation (no-op). The dependencies of P, if any, are
considered for removal.

Refreshing the entity bean instances
The EntityManager.refresh() method causes an entity bean to be refreshed
from the database. For a managed entity bean, calling this method causes data
to be overridden from the table columns in the current database. The refresh
operation can also cascade to other instances, if those instances are annotated with
cascade=REFRESH or cascade=ALL.

If the entity bean is in the new, detached, or removed states, then the JPA provider
will raise an IllegalArgumentException exception.

Detaching the entity bean instances
The entity bean is detached if and when the instance is disassociated from its
corresponding persistence unit. Detachment can occur, if the entity bean is part of
transaction, which is rolled back. The reference to the entity bean will no longer
valid. Application call themselves invoking EntityTransaction.rollback(). The
application can detach entity from the persistent unit by calling EntityManager.
detach(). Finally, an entity becomes detached if it is serialized over the network
from the server to the client, or simply removed from the entity manager
EntityManager.remove().

Once the entity bean becomes detached, it will not track persistence context and the
entity manager. Nor will there be any additional proxy operations applied to it. This
means when accessing the detached bean with a dependent field or properties that
reference other entities-especially if they are designated as LAZY-those references
may be out-of-date or may even be null, that is they are simply not accessible.
Rephrased in another way, the JPA provider is not able to lazily bind fields or
accessor properties that were not bound before the entity detachment.

Chapter 4

[159]

In this situation, if you want to reassociate a detached entity bean with a persistence
context, then you must call the method EntityManager.merge(). The merge
operation propagates the state of the detached entities into the persistent entities
managed by the entity manager. It is important to note that the changes in the
detached entity are not propagated immediately to the persistent storage. The
changes are reflected in the entity instance in memory. The changes are saved to the
database by calling EntityManager.persist() separately.

Given the entity bean P, the semantics of the merge operation are as follows:

•	 If P is a detached bean, the state of P is copied onto a pre-existing managed
instance P'.

•	 If P is a new instance, the state of P is copied onto a new managed instance
P'.

•	 If P is a removed instance, the JPA provider will raise an
IllegalArgumentException exception.

•	 If P is a managed instance, JPA will ignore the merge operation. However, it
will cascade the merge operation to any dependent entity beans, if they are
annotated with cascade=MERGE or cascade=ALL.

The JPA provider does not merge the fields that have been marked Eager.LAZY,
especially those fields that have not been fetched at the time of the call.

Merging between the JPA provider implementations is certainly
not guaranteed in the specification. If you truly want such a feature,
then it might be best to look at marshaling the entity bean into the
XML configuration or the JSON dump.

We will deal with several of the other important methods on the EntityManager
interface in Chapter 5, Object-Relational Mapping with JPA.

Flushing the pending instances to the database
EntityManager.flush() causes the JPA provider and persistence context to attempt
to save the current changing instances to the database. This call is useful for long
transactions and when you would like to ensure that some SQL operations actually
hit the database store. However, until the transaction commits (or rolls back), if
the underlying database follows the ACID (Atomicity, Consistency, Isolation,
and Durability) standards, then no other database sessions will be able to see the
updated changes to the affected database tables and rows.

Essential Java Persistence API 3.2

[160]

The standard does not mandate what and when the entity beans should be flushed
to the database. Calling EntityManager.flush() is a hint to the JPA provider to
initiate writing the SQL INSERT and SQL UPDATE statements to the database driver
as soon as possible. It is certainly not an immediate call to action.

Transactional support
For the Java EE applications that execute inside a Java EE 7 application server
product, the container provides transactions. This is known as container manager
entity management. The instance of EntityManager and the associated persistence
context is available to all the application components that either inject it or
programmatically look it up and use the manager. The entity manager is associated
with a single JTA transaction for the lifetime of the service request.

As we have already seen in the stateful bean example, SpyThrillerBean, we can
rely on an upstream component to demarcate the boundaries of a transaction. The
upstream component may be Servlet, another session bean, or even a web service, or
a RESTful service endpoint.

Application managed transactions
It is useful to know how JPA transactions work in a standalone Java SE application.
Custom transaction management is also useful in certain Java EE applications, where
there is a business requirement to roll your own transaction.

The application is responsible for creating and destroying an EntityManager
and associated persistence context. In order to create a new entity manager, the
application retrieves a reference to the factory class of the JPA provider in a portable
fashion. An application can inject javax.persistence.EntityManagerFactory into
the component.

@PesistentUnit EntityManagerFactory emf;
EntityManager em;

public void createEntityManager() {
 em = emf.createEntityManager();
 }

Once we have a new entity manager in the bean, then we need an instance of the
Java Transaction API user transaction instance. We can inject the instance of javax.
transaction.UserTransaction in the application component, then we associate it
to the entity manager in the business logic method.

Chapter 4

[161]

An example source code fragment, which shows how to begin and end a user-defined
transaction, using an injected JTA instance is as follows:

@PesistentUnit EntityManagerFactory emf;
EntityManager em;

@Resource UserTransaction utx;

public void createEntityManager() {
 em = emf.createEntityManager();
 }

public void performSomeWork() {
 em = emf.createEntityManager();
 try {
 utx.begin(); // Start TX

 em.persist(payrollEntity);
 em.merge(customerEntity);
 em.remove(trackingEntity);

 utx.commit(); // End TX
 } catch (Exception e) {
 utx.rollbaback(); // End TX
 }
 }

Because UserTransaction is a system wide component in that it is supplied by the
application server, we inject it as a dependency using @javax.annotation.Resource.

The definition of UserTransaction for reference is as follows:

package javax.transaction;

public interface UserTransaction {
 void begin() throws NotSupportedException, SystemException;
 void commit() throws RollbackException,
 HeuristicMixedException, HeuristicRollbackException,
 SecurityException, IllegalStateException,
 SystemException;
 void rollback() throws IllegalStateException,
 SecurityException, SystemException;
 void setRollbackOnly() throws IllegalStateException,
 SystemException;
 int getStatus() throws SystemException;
 void setTransactionTimeout(int i) throws SystemException;
 }

You can find out more about transactions in Appendix C, Java EE 7 Transactions.

Essential Java Persistence API 3.2

[162]

Retrieving an EntityManager by injection
We have already seen how a stateful session bean can obtain an EntityManager.
We used the EJB container injection mechanism to do this as follows:

@Stateless
public class DepositAccountManager {
 @PersistenceContext("retail-north-west")
 private EntityManager em;

 /* ... */
 public void switchDepositToSaving(Sting acc) {
 Account account = em.createQuery
 ("select d from Account d "+ "where d.account = :account");
 .setParameter("account", acc)
 .getResultList().get(0)
 account .setAccountType(AccountType.SAVING)
 em.persist(account);
 }
 }

Here we have a fictional stateless session bean DepositAccountManager
with a transaction local persistence context injected into it. The method
switchDepositToSaving() executes a JPQL query that retrieves one record
from the database. We switch record to a saving account, and then save the
record back to the store.

Notice how we are able to parameterize the account by supplying it as an
argument to the query, and also the syntax for the tokenized arguments in
the dynamic JPQL string.

Retrieving an EntityManager by factory
It is also possible to retrieve an EntityManager from EntityManagerFactory inside
an application that runs inside an application server. Here is a new version of the spy
thriller book stateful session bean that illustrates the technique of using a persistence
unit factory in order to acquire the entity manager. The session bean named
SpyThrillerBookWithFactoryCreationBean is as follows:

packageje7hb.basic.jpa;
import javax.annotation.*;
import javax.ejb.*;
import javax.persistence.*;
import java.util.List;

Chapter 4

[163]

@Stateful
public class SpyThrillerBookWithFactoryCreationBean {
 @PersistenceUnit(unitName = "testDatabase")
 privateEntityManagerFactory factory;
 private EntityManager em;

 @PostConstruct
 public void init() {
 em = factory.createEntityManager();
 }

 @PreDestroy
 @Remove
 public void destroy() {
 em.close();
 }

 public void addBook(SpyThriller movie) throws Exception {
 em.persist(movie);
 em.flush();
 }

 public void deleteBook(SpyThriller movie)
 throws Exception {
 em.remove(movie);
 em.flush();
 }

 public List<SpyThriller> getBooks() throws Exception {
 Query query = em.createQuery
 ("SELECT m from SpyThriller as m");
 return query.getResultList();
 }
 }

The annotation @javax.persistence.PersistenceUnit injects a reference to the
persistence unit in the session bean.

We also add the lifecycle handle methods with annotations @PostConstruct,
@PreDestroy, and @Remove to respectively create the entity manager, and close it
after the user has finished with the bean.

Essential Java Persistence API 3.2

[164]

In the preceding code, we compensated for the lack of a way to programmatically
instantiate an EntityManager with an explicit extended transaction persistence
context. Hence, we have extra calls to Entity.flush(), immediately after the save
and delete operations.

Retrieving an EntityManager by the
JNDI lookup
The final way of obtaining an EntityManager is programmatic. We can acquire an
entity manager instance by using the JNDI lookup.

An example of using the JNDI lookup in a session bean, which is a rewrite of
SpyThrillerBook from earlier, is as follows:

package je7hb.basic.jpa;
import javax.annotation.Resource;
import javax.ejb.*;
import javax.persistence.*;
import java.util.List;

@Stateful
@PersistenceContext(unitName = "testDatabase",
 name = "myLookupName",
 type = PersistenceContextType.EXTENDED)
public class SpyThrillerBookWithJNIDILookupBean {

 @Resource private SessionContext ctx;

 public EntityManager getEntityManager() {
 return (EntityManager)ctx.lookup("myLookupName");
 }
 public void addBook(SpyThriller movie) throws Exception {
 getEntityManager().persist(movie);
 }

 public void deleteBook(SpyThriller movie)
 throws Exception {
 getEntityManager().remove(movie);
 }

 public List<SpyThriller> getBooks() throws Exception {
 Query query = getEntityManager().createQuery
 ("SELECT m from SpyThriller as m");
 return query.getResultList();
 }
 }

Chapter 4

[165]

We apply the @PersistenceContext annotation of the type of the session bean; here
the class is named SpyThrillerBookWithJNIDILookupBean. This annotation takes
three arguments: the name of the persistence unit, testDatabase, the JNDI name
that is exported, myLookupBean, and the persistent unit type, EXTENDED.

We also inject the javax.ejb.SessionContext object into the bean from the EJB
container. It is this object that provides a method to look up the persistence unit.
The entity manager is programmatically found by the exported JNDI name in the @
PersistenceContext annotation.

Moving further along with entity beans
Java Persistence API is quite a specification in that it provides seamless persistence
in an easy way, and is also configurable. Writing an object-relational mapping
framework is not for the faint-hearted, and takes a lot of time and supreme amount
of energy to get the correct operation, let alone standardize how different solutions
can work together.

We shall delve deeper into building the metadata for the entity beans in order to
get the best out of JPA for our professional project requirements, starting with the
mapping of entities to the database table.

Controlling the mapping of entities to the
database table
We learnt that by simply applying the @Entity annotation to a POJO, we could
turn it into a persistence capable object, an entity bean. We also learnt earlier in this
chapter that we control how the fields and the property accessors can be mapped
explicitly to a database column.

Through the use of metadata, most of the time using the annotation, we build a
picture of the fields for the benefit of the object-relation mapping. The JPA provider
takes this information and works on our behalf to transparently manage the
persistence entities.

Expanding the @Table annotation
The @javax.persistence.Table annotation specifies more control in how an entity
bean is mapped to the underlying database. It allows developers to define the best
database table that an entity is mapped to.

Essential Java Persistence API 3.2

[166]

A table of the @Table parameters is as follows:

Name Type Description Default
Value

Name String Specifies the
name of the target
database table.

Derived
by the JPA
provider
from the
entity bean
class name

Catalog String Specifies the
database catalog
for the target
table.

The default
database
catalog

Schema String Specifies the
database schema
for the target
table.

The default
database
schema
for the
application

uniqueConstraints UniqueConstraint[] Specifies
additional SQL
constraints to be
applied on the
SQL CREATE
of the table.
These are only
applied if the
table generation is
enabled.

No
additional
constraints

Indexes Index[] Specifies
additional indexes
for the table.
These are only
applied if table
generation is
enabled.

No
additional
indexes

Chapter 4

[167]

An example of all of the table specific annotations used to add metadata for a fictional
Payroll entity bean, which is compatible with the JPA 2.1 specification, is as follows:

@Entity
@Table(name = "PAYROLL_EZ", schema = "HUMAN_RESOURCES",
 catalog = "EUROPE", uniqueConstraints = @Unique
 (columnNames = "PAYROLL_PRINT_SER"), indexes = {
 @Index(name = "index1", columnNames = {
 "firstName", "lastName"}))
public class Payroll implements java.io.Serializable {
 /*...*/

 @Id
 long payrollId;
 String firstName;
 String lastName;
 @Column(name = "PAYROLL_PRINT_SER")
 String payrollSerial;
 /*...*/
 }

The entity Payroll is mapped to the target database table named PAYROLL_EZ, the
schema HUMAN_RESOURCES, and the catalog EUROPE.

We create a unique constraint for this table; we do not want to payroll the print
rolls to have the same ID for two or more different employees or state members! We
create a specific database index for this payroll database table such that searching for
staff with their first and last names will perform faster than normal. (Ideally, in our
fictional organization, no two employees will ever have the same first and last name,
no matter how it grows in future years.)

Mapping the primary keys
All entity beans must have a primary key to ensure that they can be persisted to
the database. An entity is a lightweight persistence capable domain object, and
the primary key is the reference to locating the row in the database table of the
underlying database.

JPA is not designed for entities that do not have any representation of a primary key.
For such functional requirements then, you probably have to think about a specific
document database solution outside of the Java EE 7 standard.

Essential Java Persistence API 3.2

[168]

The single primary key
We have seen how to map an entity to a database with one column representing the
primary key.

Recap of the entity named ContactConsumer1, with a single field named contactId,
representing the single primary key column CONTACT_ID, in the database table
CONTACT_CONSUMER_1 is as follows:

packageje7hb.basic2.jpa;
import javax.persistence.*;
import java.io.Serializable;

@Entity
public class ContactConsumer1 implements Serializable {
 @Id
 private long contactId;

 @Column(name = "FIRST_NAME", nullable = false)
 private String firstname;

 @Column(name = "LAST_NAME", nullable = false)
 private String lastname;

 public long getContactId() {return contactId;}
 public void setContactId(long contactId) {
 this.contactId = contactId;
 }

 public String getFirstname() {return firstname;}
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {return lastname;}
 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

 // toString() method and constructors omitted
 }

This is the simplest way of mapping an entity with a single primary key.

Chapter 4

[169]

Composite primary keys
JPA can also be an entity map with more than one primary key to multiple database
columns. There are two ways to create composite primary keys with JPA.

Using the @IdClass annotation
The first way maps a POJO with a separate class that contains a set of primitive
fields, and the getter and setter methods. The annotation @javax.persistence.
IdClass specifies a composite primary key class on the target entity.

A class designated as a separate identity composite key must follow these rules:

•	 An IdClass, a composite key class, must have the following features:
°° It must implement the marker interface java.io.serializable
°° It must be public with a no-arguments default constructor
°° It must have valid hashCode() and equals() methods

•	 The fields in the composite key class must correspond with exactly the same
as the fields or property accessor in the entity

•	 The matching entity bean can be found with an instance of the composite key
class (@IdClass) by calling EntityManager.find()

The consumer rewritten to support a composite primary key class is as follows:

@Entity
@IdClass(Contact2PK.class)
public class ContactConsumer2 implements Serializable {
 @Id
 private long contactId;

 @Id
 @Column(name = "FIRST_NAME", nullable = false)
 private String firstname;

 @Id
 @Column(name = "LAST_NAME", nullable = false)
 private String lastname;

 // Constructors omitted

 public long getContactId() {return contactId;}

Essential Java Persistence API 3.2

[170]

 public void setContactId(long contactId) {
 this.contactId = contactId;
 }

 public String getFirstname() {return firstname;}
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {return lastname;}
 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

 // toString() method omitted
 }

In the class ContactConsumer1, there are three fields that constitute the composite
primary key: contactId, firstname, and lastname. Entity uses the field annotations
with @Id. The class is annotated @IdClass, which takes the single argument, the
reference to the composite key class.

The composite key classContact2PK is as follows:

package je7hb.basic2.jpa;
import java.io.Serializable;

public class Contact2PK implements Serializable {
 private long contactId;
 private String firstname;
 private String lastname;

 public long getContactId() {return contactId;}
 public void setContactId(long contactId) {
 this.contactId = contactId;
 }

 public String getFirstname() {return firstname;}
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {return lastname;}
 public void setLastname(String lastname) {

Chapter 4

[171]

 this.lastname = lastname;
 }

 // hashCode(), equals() method omitted
 // toString() method omitted
 }

Notice how, in the composite key class, the names and types of the fields as well as
the property accessor match the same in the entity bean.

The hashCode() and equals() methods are omitted in the example, but they can be
generated by any of the popular IDEs.

How are composite primary key classes used? The answer is that we can use the
EntityManager.find() method, which takes two arguments: the class of the entity
that will be returned, and an instance of the composite key class.

An extract of a unit test method that illustrates the use case is as follows:

@PersistenctContext EntityManager em;

public void shouldRetrieveByCompositeKey() {
 ContactConsumer2 consumer =
 new ContactConsumer2(100, "Annabel", "Smith")
 em.persist(consumer)

 ContactConsumer2 consumerCopy = em.find
 (ContactConsumer2.class, new Contact2PK
 (consumer.getContactId(), consumer.getFirstname(),
 consumer.getLastname()));
 assertEquals(consumer, consumerCopy)
 }

We create an entity bean, then we save it to the database using the entity manager.
We search for the entity using a composite primary key instance. Finally, we check if
the two entities are the same.

Using the @Embeddable annotation
This second way of creating the composite primary keys relies on the embedded object
instances into the entity bean. In this way, the fields and properties are delegated to the
separate primary key object class. In order to delegate the primary key to a delegate
class instance, use the annotation @javax.persistence.Embeddable.

Essential Java Persistence API 3.2

[172]

A class that is designated as embeddable must follow these rules:

•	 The embeddable entity beans are annotated with @Embeddable instead
of @Entity

•	 The embeddable entities must implement the marker interface java.
io.Serializable

•	 It must have valid hashCode() and equals() methods
•	 The embeddable classes are special entities that only exist as part of another

entity
•	 An embeddable class may have the single value attributes or collection of

the values, each of which must be following the general rules of the JPA
specification

•	 An embeddable entity can also contain other embeddable classes to represent
their state

•	 An embeddable entity may contain the relationships to other entities,
including other embeddable entities

The contact primary key record is transformed into an embeddable entity as follows:

@Embeddable
public class Contact3PK implements Serializable {
 private long contactId;
 @Column(name = "FIRSTNAME")
 private String firstname;
 @Column(name = "LASTNAME")
 private String lastname;

 public long getContactId() {return contactId;}
 public void setContactId(long contactId) {
 this.contactId = contactId;
 }

 public String getFirstname() {return firstname;}
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {return lastname;}
 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

Chapter 4

[173]

 public Contact3PK() {
 this(0,null,null);
 }

 public Contact3PK(long contactId, String firstname,
 String lastname) {
 this.contactId = contactId;
 this.firstname = firstname;
 this.lastname = lastname;
 }

 // A copy constructor
 public Contact3PK(Contact3PK ref) {
 this.contactId = ref.contactId;
 this.firstname = ref.firstname;
 this.lastname = ref.lastname;
 }

 // equals() and hashCode() methods omitted
 // toString() method omitted
 }

We first annotate the Contact3PK class with @Embeddable, which denotes to the JPA
provider that this class is embeddable, a composite primary key instance.

It has exactly the same primary key columns as fields: contactId, firstname,
and lastname. We have also placed the @Column metadata into the class now. We
do not have to place the @Id annotations on this type, because we made the class
embeddable, and therefore this information is now implied.

Finally, embeddable must have correct and valid hashCode() and equals()
methods in order for persistence to function successfully.

To conclude, we added a copy constructor to this composite key class, to make it
easier for other developers to create copies of this entity in a test and production
development work.

Using the @EmbeddedId annotation
In order to make use of the embeddable class in an entity, the enclosing entity simply
declares a reference field or the accessor property of the embeddable class, and
annotates it with @javax.persistence.EmbeddedId.

Essential Java Persistence API 3.2

[174]

The contact consumer class is refactored to make use of the embeddable entity
instance as follows:

packageje7hb.basic2.jpa;
import javax.persistence.*;
import java.io.Serializable;

@Entity
public class ContactConsumer3 implements Serializable {
 @EmbeddedId
 private Contact3PK contact;
 private String location;

 public ContactConsumer3() {
 this(new Contact3PK(), null);
 }

 public ContactConsumer3(Contact3PK contact, String location) {
 this.contact = contact;
 this.location = location;
 }

 public Contact3PK getContact() {return contact;}
 public void setContact(Contact3PK contact) {
 this.contact = contact;
 }

 public String getLocation() {return location;}
 public void setLocation(String location) {
 this.location = location;
 }

 // equals() and hashCode() methods omitted
 // toString() method omitted
 }

The entity bean, ContactConsumer3, no longer defines separate primary key
metadata. Instead, it delegates to Contact3PK, the embeddable entity with the
annotation @EmbeddedId. Every annotation of @EmbeddedId must reference a class
that is marked up with @Embeddable (or the corresponding ORM XML syntax).

We also threw in the additional field location to demonstrate that the entity bean can
also still define additional columns of its own.

Chapter 4

[175]

An extract of a unit test to demonstrate the principle of the embeddable entity objects
is as follows:

@PersistenctContext EntityManager em;

public void shouldRetrieveByEmbeddableKey() {
 ContactConsumer consumer = new ContactConsumer3
 (new Contact3PK(200, "Benjamin", "Ferguson"), "Glasgow"));
 em.persist(consumer)

 ContactConsumer3 consumerCopy = em.find(ContactConsumer3.class,
 new Contact3PK(consumer.getContact()));
 assertEquals(consumer, consumerCopy)
 }

We construct the embeddable Contact3PK entity bean before we construct the entity
bean ContactConsumer3. We save it to the database using the entity manager. Next,
we retrieve the same entity that was just saved with a new copy of the composite key
object. This is exactly where a copy constructor is useful.

JPQL
The JPA standard specification has a description of JPQL, which allows developers
to write queries for entities and their persistent state. JPQL is designed to be portable
from one JPA provider to another. These JPQL are guaranteed to work regardless of
the underlying database.

As with many technologies, especially when the Java EE platform is moving to the
cloud, some features of JPQL are achievable and others are not. This might sound
like a contradiction in terms, but it is very important when your business is deciding
whether to invest in the cloud computing vendor. One of the most important facets of
information technology is storing large and exceptionally huge quantities in multiple
stores. The next part is deciding how to access and then analyze it for the results.

So JPQL is a large specification in itself, and this chapter only gives the essentials of
how to get started. For JPQL, see the JPA specification for the query language syntax.
JPQL is very similar to the native SQL language by design.

There are two forms of the JPQL queries, namely dynamic and named.

Essential Java Persistence API 3.2

[176]

The dynamic queries
A dynamic query JPQL is a query that is generated from java.lang.String. We
have already seen this example earlier in the chapter.

A dynamic JPQL example from the earlier discussion on composite keys is as follows:

@PersistenceContext entityManager;

public List<ContactConsumer1> findContactConsumers(long id)
throws Exception {
 Query query = entityManager.createQuery
 ("SELECT c from "+ ContactConsumer1.class.getSimpleName()+
 " as c where c.contactId = :contactId");
 query.setParameter("contactId", id);
 return query.getResultList();
 }

We create javax.persistence.Query from the entity manager with the JPQL
syntax. To achieve better portability, we take the simple class name of the entity. The
String also defines a JPQL WHERE clause to filter out the record with the matching
contact ID, and return the list collection as a result to the caller.

JPQL for this business method looks like the following code:

SELECT c FROM ContactConsumer1 as c
WHERE c.contactId = :contactId

We can refer to the entity name by its class name, ContactConsumer1. If there is an
ambiguity, we could use the fully qualified class name with the package name too.

The parameters in JPQL are prefixed with a colon (:) character as we can see with the
token, :contactId. This is an example of a named parameter.

If there are no matching records in the database, we get an empty; otherwise, the caller
will get one entity. We assume the contact record is unique in the database table.

Chapter 4

[177]

The named queries
In the JPA programming, the named JPQL queries are annotated on the entity
bean itself. This is called creating static queries on an entity bean. We define static
queries using the annotation @javax.persistence.NamedQuery on the entity bean
concerned. Most of the time you define more than one named static query on an
entity, and therefore you use @javax.persistence.NamedQueries, which takes one
argument: an array of the NamedQuery annotations.

It is best to illustrate this with an example code. The context is that we have a
requirement to create the entity bean for running a Java user group for our location
and territory, and we need to define some portable queries to find the members
quickly, concisely, and efficiently.

We can use a single NamedQueries annotation with an array of the NameQuery
annotations for this purpose. Here is the simplified code to a JUGMember entity bean.
We have removed the cruft methods to make it easier to understand.

@Entity
@NamedQueries({
 @NamedQuery(name = "JUGMember-findAllMembers",
 query = "select object(m) from JUGMember m"),
 @NamedQuery(name = "JUGMember-findByFirstAndLastName",
 query = "select object(m) from JUGMember m " +
 "where m.firstname = :firstname and " +
 "m.lastname = :lastname"),
 @NamedQuery(name = "JUGMember-findByLanguage",
 query = "select object(m) from JUGMember m "+
 "where m.language = :language")})
public class JUGMember implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private long memberId;
 private String firstname;
 private String lastname;
 private String language;
 private String country;
 private int experience;

 // The usual JPA cruft methods omitted
 }

Essential Java Persistence API 3.2

[178]

Here we have a JUGMember entity bean with three static named queries:
JUGMember-findAllMembers, JUGMember-findByFirstAndLastName, and
JUGMember-findByLanguage.

Inside the @NamedQuery annotations, an entity may declare as many JPQL
statements as required. There is one important restriction: the names must be
unique across the entire persistence unit, hence the long names, in our opinion, will
be pragmatic and descriptive.

The query parameters
The named queries are great and would be useless if we could not use them in a
program. In order to use a defined static query, we only require the entity manager.
The entity manager has a special method named createNamedQuery that allows the
session bean to reference a static named query defined in the persistence unit.

The restriction is that the code injecting EntityManager must be defined with the
actual entity beans so that the queries can be located inside the persistence context.

A sample extract of a stateful session bean that illustrates how to access the named
queries is as follows:

@Stateful
public class JUGMemberServiceBean {
 @PersistenceContext(unitName = "testDatabase",
 type = PersistenceContextType.EXTENDED)
 private EntityManager entityManager;
 // save() and delete() omitted

 public List<JUGMember> findAllMembers() {
 return entityManager.createNamedQuery
 ("JUGMember-findAllMembers")
 .getResultList();
 }

 public List<JUGMember> findByFirstAndLastName
 (String firstname, String lastname) {
 return entityManager.createNamedQuery
 ("JUGMember-findByFirstAndLastName")
 .setParameter("firstname", firstname)
 .setParameter("lastname",lastname)
 .getResultList();
 }

Chapter 4

[179]

 public List<JUGMember> findByLanguage(String language) {
 return entityManager.createNamedQuery
 ("JUGMember-findByLanguage")
 .setParameter("language", language)
 .getResultList();
 }
 }

The so-called finder methods of the session bean each reference the static query by
name. For instance, the method findByLanguage() invokes the entity manager to
create the static query named JUG-findByLanguage, which creates a query instance.
Next, it sets the named parameter language to the method's only argument. It then
executes the query with an invocation of getResultList().

The positional query arguments
JPQL also supports the positional arguments, which are probably very familiar to
those of you who invested in Java before the turn of the century, in particular JDBC
1.0 had these too.

The positional arguments are identified by the (?) question mark followed by
an index number. Let's look at the entity bean JUGMember class again with one
additional name query with the positional argument:

@Entity
@NamedQueries({
 /* ... as before ... */, @NamedQuery
 (name = "JUGMember-findByExperience",
 query = "select object(m) from JUGMember m "+
 "where m.experience = ?1")
 })
public class JUGMember implements Serializable {
 /* ... as before ... */,
 }

There is an additional name query named JUG-findByExperience that uses a
positional argument ?1. This query allows us to search each JUG member for the
number of years of professional IT experience. The positional arguments start with
the index of 1 just like in JDBC.

Essential Java Persistence API 3.2

[180]

The corresponding implementation method in the session bean for the additional
named query is as follows:

@Stateful
public class JUGMemberServiceBean {
 /* ... as before ... */,
 public List<JUGMember> findByExperience(int experience) {
 return entityManager.createNamedQuery
 ("JUGMember-findByExperience")
 .setParameter(1, experience)
 .getResultList();
 }
 }

The only difference in this code and the previous is in the Query.setParameter call,
which takes an integer parameter indicating the position in the JPQL statement.

The entity bean relationships
To close out this chapter, this section discusses the entity bean relationships. The
entity beans are allowed to link to other entities through a single value or collection
references. The relationships can be bidirectional or unidirectional.

We will cover the more advanced examples of the entity relationship, including the
differences between unidirectional and bidirectional, in the next chapter.

Mapping with the @OneToOne annotation
The @javax.persistence.OneToOne relationship is a direct association between
one entity bean and another. The relationship can be expressed at either one or
both entities. If each of the entities can refer to the other, then the relationship is
bidirectional, otherwise, it is a unidirectional relationship.

By default all the relationships in the Java programming language are unidirectional.
In order to establish bidirectional annotations, metadata must also apply to the other
entity in order to create an inverse relationship.

In the relational databases, the inverse relationship always exists, and can be inferred
through the relational data model.

Chapter 4

[181]

A simple example of the use of the @OneToOne annotation with entities is as follows:

@Entity
public class Address implements java.io.Serializable {
 @Id
 @Column("ADDRESS_ID")
 private int addressId;
 /* ... */	
 }

@Entity
public class Employee implements java.io.Serializable {
 @Id
 @Column(name = "EMP_ID")
 private int employeeId;

 @OneToOne
 @JoinColumn(name = "EMPLOYEE_ADDRESS_FK",
 referencedColumnName = "ADDRESS_ID")
 private Address address;
 /* ... */
 }

Here we have two entities, Employee and Address, and we defined a unidirectional
association, a one-to-one relationship, between an Employee instance and an
Address instance expressed in the Java programming language. Employee has
a reference to Address, but the Address instance has no information about the
Employee instance.

In order to define an entity relationship more succinctly, we introduce a new
annotation @javax.persistence.JoinColumn. This annotation specifies the target
database column for joining an entity association to another, or it specifies the
persistence collection.

In the resultant employee database table EMPLOYEE, there is a foreign key column
named EMPLOYEE_ADDRESS_FK that contains the values from the database table
column ADDRESS.ADDRESS_ID.

Essential Java Persistence API 3.2

[182]

Mapping with the @OneToMany annotation
The @javax.persistence.OneToMany annotation expresses an entity that can be
related to multiple instances of another entity type. The @OneToMany relationship is
added to a java.util.Collection field variable.

In a unidirectional relationship, the target entity of the one-to-many relationship
does not maintain a single value reference back to the source entity.

In a bidirectional relationship, the target entity of the one-to-many relationship does
maintain a single value reference pointing back to the source entity.

Let us look at an example of a @OneToMany entity relationship. The following code
defines a project entity that owns a collection of the task entities:

@Entity
public class Project implements java.io.Serializable {
 /* ... */

 @OneToMany
 private Collection<Task> tasks;

 public Collection<Task> getTasks() {return tasks;}

 public void setTasks(Collection<Task> tasks) {
 this.tasks = tasks;
 }
 /* ... */
 }

@Entity
public class Task implements java.io.Serializable {
 @Id @Column(name = "TASK_ID")
 private int id

 private int length;
 private String title;
 private Description;
 /* ... */
 }

The preceding code shows that the entity Project references a collection of the entity
Task. There is no inverse relationship, because the entity Task does not reference the
entity Project. The entity Project is the owner of the one-to-many relationship.

Chapter 4

[183]

The ORM provider, following the rules of the JPA specification, applies the mapping
so that the entity Project is mapped to the target database table named PROJECT.
The entity Task is mapped to the database table named TASK. The provider maps the
association to a join table named PROJECT_TASK, which has two foreign key columns:
a foreign key that maps to the unique rows in the table PROJECT and the other
foreign key column that maps to the unique rows in the table TASK. The foreign key
columns are the same type as the reference source and target entities, respectively.

Mapping with the @ManyToOne annotation
The @javax.persistence.ManyToOne annotation expresses the entity relationship
of multiple instances of entities being associated to one entity. This relationship is the
polar opposite of the @OneToMany relationship.

In a unidirectional relationship, the target entity of a many-to-one relationship does
not have a collection of references pointing back to the source entities.

In a bidirectional relationship, the target entity of a many-to-one relationship does
maintain a collection of references pointing back to the source entities.

Let us look at an example of a @ManyToOne entity relationship. The following code
defines the relationship where multiple employee entities share a security clearance
entity instance.

@Entity
public class Employee implements java.io.Serializable {
 /* ... */

 @ManyToOne
 private Clearance clearance;

 public Clearance getClearance() {return clearance;}
 public void setClearance(Clearance clearance) {
 this.clearance = clearance;
 }
 }

@Entity
public class Clearance implements java.io.Serializable {
 @Id private int securityId;
 private String securityLevel;
 /* ... */
 }

Essential Java Persistence API 3.2

[184]

Here we have two entities Employee and Clearance, and we defined a
unidirectional many-to-one association between multiple Employee instances and
a Clearance instance expressed in the Java programming language. Zero or more
Employee instances defines a reference to a shared Clearance instance, but the
Clearance instance has no information about any of the Employee instances.

Under the rules of the JPA specification, the entity Employee is mapped to the
target database table named EMPLOYEE. The entity Clearance is mapped to a table
named CLEARANCE. The table EMPLOYEE contains a foreign key column to the table
CLEARANCE. The JPA provider will create a foreign column named CLEARANCE_
SECURITY_ID, because SECURITY_ID is the mapped primary key column of the target
entity, which in this case is the entity Clearance. The foreign key column is the same
type as the primary key column in the target entity.

Mapping with the @ManyToMany annotation
The @javax.persistence.ManyToMany annotation expresses the entity relationship
of multiple instances of entities being associated to multiple instances of the other
entity type. The annotation @ManyToMany is placed on a java.util.Collection
field value or the property accessor of the source entity bean.

In a unidirectional relationship, the target entities of a many-to-many relationship
do not have a collection of references pointing back to the source entities.

In a bidirectional relationship, the target entities of a many-to-many relationship do
maintain a collection of references pointing back to the source entities.

The many-to-many relationships can be split into two relationships usually, the
one-to-many and many-to-one relationship between the two entities. This procedure
typically applies to the logical and physical data modeling in the database, and also
at the conceptual level.

Here is an example of the many-to-many relationship that associates many products
to the invoices. A product can be a part of an invoice; many products go to make one
invoice. An invoice usually has products that a customer has ordered; an invoice has
many products.

@Entity
public class Product implements java.io.Serializable {
 @Id
 @Column("PROD_ID")
 private int id;
 @Column("PROD_NAME")

Chapter 4

[185]

 private String name;
 @ManyToMany
 private Collection<Invoice> invoices;
 public Collection<Invoice> getInvoices() {
 return invoices;
 }
 public void setInvoices(Collection<Invoice> invoices) {
 this.invoices = invoices;
 }
 /* ... */	
 }

@Entity
public class Invoice implements java.io.Serializable {
 @Id
 @Column("INV_ID")
 private int id;
 @Column("INV_NAME")
 @Temporal(Temporal.DATE)
 private Date name;
 @ManyToMany(mappedBy = "invoices")
 private Collection<Product> product;
 public Collection<Product> getProducts() {
 return product;
 }
 public void setProducts(Collection<Product> product) {
 this.product = product;
 }
 /* ... */
 }

This code represents a bidirectional many-to-many relationship. We have two
entities, Product and Invoice. The entity Product references a collection of entities
type Invoice. The entity Invoice references a collection of entities Product.

Each entity defines an annotation of the collection. The many-to-many annotation of
the products inside the Invoice entity uses the mappedBy argument to establish the
owner of the relationship. The owner of the relationship is Product. By specifying
the mappedBy attribute, we allow the mapping information to be shared in both
directions for the relationship.

Given this example, the JPA provider maps the source entity Product to the database
table named PRODUCT. It maps the target entity Invoice to the database table named
INVOICE. It creates a join table with the conjugation named PRODUCT_INVOICE. It will
have two foreign key columns.

Essential Java Persistence API 3.2

[186]

The JPA provider will create a foreign column in the join table named INVOICE_
PROD_ID, because PROD_ID is the mapped primary key column of the target entity,
which in this case is the entity INVOICE. The foreign key column is the same type as
the primary key column in the target entity.

The JPA provider will create a foreign column in the join table named PRODUCT_INV_
ID, because INV_ID is the mapped primary key column of the target entity, which in
this case is the entity named PRODUCT. The foreign key column is the same type as the
primary key column in the target entity.

It is possible to create a unidirectional many-to-many relationship too, but in this
case we need to explicitly define a join table.

Configuration of persistence and the
entity beans
In order to use JPA in a Java application, the entity beans require configuration for
the data source and the persistence context. The persistence context is a file named
persistence.xml, and it is found in the META-INF/ folder of Java Archive.

The structure of the persistence unit
configuration
A persistence configuration XML file defines a collection of the persistence units.
There must be at least one persistence unit in the file for it to be useful. A persistence
unit represents a persistence context in the application, and it has a name. The name
is used in an application to link EntityManager with the persistence unit. The
linkage is defined with the @PersistenceContext annotation.

A persistence unit has two types of transactions: JTA and RESOURCE_LOCAL.

<persistence version = "1.0"
 xmlns = "http://java.sun.com/xml/ns/persistence"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/
 persistence_1_0.xsd">

 <persistence-unit name = "{NAME}"
 transaction-type = "{TX-TYPE}">
 <provider>{PersistenceProvider}</provider>

Chapter 4

[187]

 <!-- By default your mappings defined in orm.xml -->
 <!—- file, which is discovered automatically. -->
 <mapping-file>META-INF/my-mappings.xml</mapping-file>
 ...
 <jar-file>my-additional-jar.jar</jar-file>
 ...
 <!-- Enables auto discovery of persistent classes, -->
 <!-- otherwise they must be listed using <class>-->
 <exclude-unlisted-classes>false</exclude-unlisted-classes>

 <properties>
 ...
 </properties>
 </persistence-unit>
</persistence>

The transaction type JTA is normally configured inside a Java EE application,
because the data source is usually configured with a transaction manager inside the
product provider, such as the GlassFish or WebLogic servers.

It is possible to use the default JPA provider, provided by the Java EE product
provider, or to supply your own provider implementation. Configuration for the JPA
provider is in the <provider> XML element.

Inside the persistence.xml file again, a persistence unit can include an additional
JAR file to load, in order to provide extra support to the application at deployment.
The <jar-file> XML element declares the persistence entity beans. The persistence
unit can rely on auto discovery of the entity beans or it can explicitly declare the
classes that will be loaded by the <class/> XML element.

The <exclude-unlisted-classes/> stanza is specific for the Java EE environments
only. It is a Boolean value that determines if the JPA provider scans for the annotated
entity beans in the top level of the persistence unit. If this is not the case, then set this
value to false in order to allow the JPA provider to find the annotated entity bean
not in the top level. The <exclude-unlisted-classes/> XML element is helpful in
certain situations for the embeddable, mapped super-classes, and converter classes.

The object-relational mapping files
There is an alternative way to specify the object-relational mapping, using a mapping
file, which is particularly interesting if you do not have access to the source of the
persist entities for a business reason. To specify a mapping file, use the <mapping-
file> XML element. The object-relation mapping file contains the mapping
information for the classes listed in it.

Essential Java Persistence API 3.2

[188]

Here is a portable JPA 2.0 object-relational mapping file of the earlier SpyThriller
entity bean. This file is named sample-orm.xml in the source code.

<?xml version = "1.0" encoding = "UTF-8"?>
<entity-mappings version = "2.0"
 xmlns = "http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation =
 "http://java.sun.com/xml/ns/persistence/orm_2_0.xsd">
<description>Mapping persistent entity in XML.</description>
<entity name = "SpyThriller" class = "SpyThriller"
 access = "FIELD">
<table name = "SPY_THRILLER_BOOK"/>
<attributes>
<id name = "id">
<generated-value strategy = "AUTO"/>
<column name = "BOOK_ID" nullable = "false"
 unique = "true" insertable = "true" updatable = "true"
 table = "THRILLER_BOOK"/>
</id>
<basic name = "writer">
<column name = "AUTHORS" nullable = "false"/>
</basic>
<basic name = "year">
<column name = "BOOK_YEAR" nullable = "false"/>
</basic>
<basic name = "title">
<column name = "TITLE" nullable = "false"/>
</basic>
<transient name = "secretCode"/>
</attributes>
</entity>
</entity-mappings>

The ORM mapping file is largely similar to the annotation version, although in
my opinion a little verbose compared to the annotated source code. Most software
development will, I think, tend to prefer the annotations. On the other hand, the XML
mapping file is a standard option that permits migration and upgrade. There is a route
for pre-JPA solutions and older J2EE classes to enter the modern age of persistence.

An object-relational file mapping may be specified in the META-INF/ directory of the
root of the persistence unit, or the META-INF/ directory of any JAR file referenced by
the persistence unit. It will then be loaded by the JPA provider at deployment.

Chapter 4

[189]

Standard property configurations for the
persistence units
In JPA 2.1, there are additional properties that can be used to configure the database
connection. In most cases inside the Java EE application, the database connection
is configured inside the Java EE product, and provided as a data source to the
application.

For the benefit of writing the standalone Java SE applications and unit tests, perhaps
to support other forms of integration tests, you can supply additional properties in a
persistence unit configuration.

Property Description
javax.persistence.
transactionType

Specifies the JPA
PersistenceUnitTransactionType
enumeration property JTA or RESOURCE_
LOCAL

javax.persistence.jtaDataSource Specifies the transactional JPA javax.
sql.DataSource

javax.persistence.
nonJtaDataSource

Specifies the non-transaction JPA javax.
sql.DataSource

javax.persistence.jdbc.driver Specifies the JDBC driver class name for
the Java SE deployments (since JPA 2.0)

javax.persistence.url Specifies the JDBC driver URL for the Java
SE deployments (since JPA 2.0)

javax.persistence.user Specifies the JDBC database username for
the Java SE deployments (since JPA 2.0)

javax.persistence.password Specifies the JDBC database password for
the Java SE deployments (since JPA 2.0)

Essential Java Persistence API 3.2

[190]

Summary
The Java Persistence API is a large endeavor to learn and represent lots of lasting
evidence of a breakthrough of thought and achievement by the Java community.
Standardizing how a Java application can seamlessly save and retrieve the objects
to and from a relational database is no mean feat. Consequently, JPA is extremely
powerful for both the Java SE and Java EE engineers.

We touched on the fundamentals of JPA in this chapter. We saw how a simple POJO
can be transformed into a persistence capable object, an entity bean, with some
annotations. We learnt how to save an entity to the database, how to remove it from
the database, and how to retrieve all the instances.

We added the @Entity, @Id, @GeneratedValue, @Column, and @Table annotations to
an example bean.

You now understand how to write an integration unit test with Gradle, the
Arquillian framework, embedded GlassFish, and the EclipseLink JPA provider.

We discussed the lifecycle of the entity manager, and the four different states of an
entity bean. We touched on the transactional support. We saw how to create the
composite primary keys in the entity beans with either @IdClass or the embeddable
class styles. We built some queries using JPQL. We advanced our understanding of
JPA by retrieving the entities using the composite key records.

Closing out the chapter, we made a short detour to the entity relationships and
the four fundamental multiplicities: @OneToOne, @OneToMany, @ManyToOne, and
 @ManyToMany.

Finally, we looked at the configuration of the persistence unit, and that was just the
start. In the next chapter, we will extend our knowledge on the entity relationships
in depth.

Object-Relational Mapping
with JPA

Michael McDonald, five-time Grammy award winner, singer said, "I realized early on
that I wouldn't sing for very long if I kept trying to sound like James Brown!". In the
previous chapter, we covered the fundamentals of entity beans, the Plain Old Java
Objects (POJOs) that are enhanced through metadata so that they can be persisted to
a relational database or other long-term storage.

The Java Persistence API is a very involved specification and supports the flexibility
and features of relational databases and the mapping of Java objects to database
tables and columns. In this chapter, we venture much deeper in the JPA specification
so that we further configure how JPA persistence provider maps persistence
objects—entities—to a database.

We shall start by adding some finesse to entity beans.

Adding finesse to entity beans
As our first port of call, let us revisit how to configure field mappings and property
accessors in the entity beans.

Object-Relational Mapping with JPA

[192]

Field binding
There are two forms of binding in JPA: lazy and eager. The binding is controlled by
the enumeration javax.persistence.FetchType. Binding determines when the
persistence provider loads state into an entity. The process of loading state from
the database is called fetching. In order to preserve performance, for simple entities
the JPA provider will load state eagerly (FetchType.EAGER), especially for simple
primitive type fields. This also applies to state load for fields implicitly annotated
as @Basic. For collections of objects, the JPA provider will load the state lazily
(FetchType.LAZY) in order to avoid the possibly of loading a deeply nested object
graph, which inevitably would kill your application's performance.

Software engineers generally make a decision on the part of the entity object graph
that is set to EAGER or LAZY. It depends on the query, and naïve consideration can lead
to the infamous N+1 query problem. Later in this chapter, we cover the issues around
excessive queries. Java EE 7 and JPA 2.1 introduce the idea fetch plan that can help
balance the performance of queries. See Chapter 11, Advanced Topics in Persistence.

Binding eagerly
In JPA 2.1, the value of FetchType.EAGER is the fetch attribute default for many
annotations including @Basic, @ManyToOne and @OneToOne. The EAGER value is a
specification requirement on the JPA provider to eagerly fetch data relevant to the
field or property accessor of the entity.

For direct reference the default value in the specification helps the persistence
provider, the JPA vendor, write viable implementation that performs as expected.
The idea is borrowed from the principle of least astonishment.

Binding lazily
The enumeration value FetchType.LAZY is the default value for the fetch
attribute in most of the JPA annotations: @ElementCollection, @ManyToMany,
and @OneToMany.

When an entity can load multiple dependent entities, the default value in specification
does help persistence providers to treat collections as lazily loaded entities.

You should always treat the FetchType.LAZY value as a hint to the JPA provider
to do the right thing. There is no guarantee that it will obey the advice, and the
provider is allowed to analyze the persistence context and only then decide to honor
the hint if it is possible, and of course, makes sense.

Chapter 5

[193]

Let us suppose we have a smart implementation of the JPA specification and we have
two entities, the master and the detail. The master is associated with the detail in a
one-to-many relationship. By default this would be lazy fetch. What if our smart JPA
provider recognizes at runtime that a set of master entities only ever has one detail? In
other words, a smart JPA provider may choose to eagerly load the master and detail in
one operation because of some internal secret-sauce optimization algorithm.

The trade-off between eager and lazy
Here is some code to illustrate the trade-off between the eager and lazy
loading definitions.

The entity Customer has a name and address and a set of invoices. For the purposes
of the discussion we do not see the source code for the Address and Invoice entities.

The code now follows:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @Column(name="CUST_ID")
 private int id;

 @OneToOne
 @JoinColumn(name="CUSTOMER_ADDRESS_REF",
 referencedColumnName="ADDRESS_ID")
 private Address address;
 /* ... */

 @OneToMany
 private List<Invoice> invoices;

 public List<Invoice> getInvoices() { return invoices; }
 public void setInvoices(List<Invoice> invoices) {
 this.invoices = invoices; }
}

The Customer entity has a one-to-one relationship with an Address entity, which is
another way of saying every customer has an address. The Customer entity has a list
collection of Invoice entities, which represents a one-to-many relationship. A single
customer may have ten, a thousand and one, or zero invoices.

Object-Relational Mapping with JPA

[194]

Without any further annotations, when a JPA provider loads the state of the
Customer entity from the database, it will also load the Address entity eagerly,
because there is a direct reference to the other entity. The JPA Provider will also
eagerly load the state for Customer for properties that are primitive and basic JDBC
database types.

For the collection properties, when a JPA provider loads the state of the Customer,
it will lazily load the associated Invoice entities from the database. This is the
default behavior to achieve common-sense performance. The JPA provider will
only load states for the dependent records in the customer record if the method
getInvoices() is invoked in an external call.

It is probably not efficient to load a customer with a huge collection of invoices
and such a penalty of time and loading may not make sense for all applications,
because retrieving entire setS of records may be unnecessary if the end client is only
interested in a few. Specifying the attribute FetchType.LAZY infers the loading of
state is on-demand.

The EAGER strategy is a requirement on the persistence provider
runtime that data be eagerly fetched. The LAZY strategy is a hint
(not a requirement) to the persistence provider runtime that data
should be loaded lazily when it is first accessed.

Let's revisit the example code and reverse the fetch style for both properties in the
customer entity:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @Column(name="CUST_ID")
 private int id;

 @OneToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="CUSTOMER_ADDRESS_REF",
 referencedColumnName="ADDRESS_ID")
 private Address address;
 /* ... */

 @OneToMany(fetch=FetchType.EAGER)
 private List<Invoice> invoices;

Chapter 5

[195]

 public Address getAddress();
 public void setAddress(Address address) {
 this.address = address; }

 public List<Invoice> getInvoices() { return invoices; }
 public void setInvoices(List<Invoice> invoices) {
 this.invoices = invoices; }
}

Here in this version of Customer entity, the Address entity is loaded on demand, at
the behest of the persistence provider. The full list of invoices associated with the
Customer record is loaded eagerly whenever the JPA Provider decides to load the
master entity. The invoices are already loaded for this version of the customer by the
time getInvoices() method is called.

Many engineers tackle the issue of dependency and responsibility by
splitting the association into an idiom called master and detail. The
master usually is the owner of the detail. If the master record does not
exists and the child detail does exist, then it makes no semantic sense.
A child detail record with no parent master is considered orphaned or
a free record. There are some synonyms of the master-detail, namely:
parent-child, master, and slave.

If we intend to have a customer entity that is instantiated, persisted, and then
detached from the persistence context, then a detached customer entity will
have a full set of customer invoices to hand, but will not have ready access to the
address entity. Potentially, having the full invoices could be architecturally useful
for an application that sends data back to a remote client, like a web client. In this
circumstance, there is a clear advantage in pre-binding some associations like we
have done with the invoices.

Overriding the invoices' collection association to be eagerly loaded (FetchType.
EAGER) could have a consequence: what if the Invoice entity actually contains
other associations? If the invoice entity also contains more unseen entities that are
eagerly bound and therefore fetched from the database, our little application could
see possible performance degradation, because the persistence context is loading
unnecessary entities.

Deciding if and when to override the default fetching strategy for entities is a delicate
matter of application design. As software designers and architects, we certainly have
to think rather carefully about how to improve the efficiency of the JPA applications
and we have to avoid creating JPA cascades, a snow storm of load states between
eagerly loaded entities, which appear to be out-of-control.

Object-Relational Mapping with JPA

[196]

Cascades onto dependent entities
JPA allows related entities to cascade life-cycle operations across references. We
have seen to override the fetching of load state for entities. Fetching, however, is
nothing to do with lifecycle management. JPA allows the developer to control how
a dependent entity is saved or updated, merged, deleted, refreshed, and detached to
and from the database with the parent [master] entity. The cascade behavior can be
precisely controlled by configuring the cascade attribute on the entity relationship
annotations: @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany.

Cascade operations
The enumeration javax.persistence.CascadeType defines the different level of
cascade operations. Here is the source code for it:

public enum CascadeType {
 ALL,
 PERSIST,
 MERGE,
 REMOVE,
 REFRESH,
 DETACH
}

To define all cascade operations for the customer entity we should also propagate on
the address record. Then we configure the @OneToOne annotation as follows:

@Entity
public class Customer implements java.io.Serializable {
 /* ... */

 @OneToOne(cascade=CascadeType.ALL)
 @JoinColumn(name="CUSTOMER_ADDRESS_REF",
 referencedColumnName="ADDRESS_ID")
 private Address address;
 /* ... */
}

Let's understand the meaning of the cascade operation:

Given a Customer entity, when the EntityManager is called with persist() with
this object, this operation will also be invoked on the Address object referenced by
the field.

Chapter 5

[197]

The cascade repeats for other EntityManager operations: remove(), merge(),
refresh(), and detach(), because the address is annotated with CascadeType.ALL.

The follow table describes the cascade operation enumerations in detail.

Operation Description
ALL This equivalent to the following

cascade={PERSIST, MERGE, REMOVE, REFRESH,
DETACH}

PERSIST Specifies that the entity manager saves or updates the dependent
entity to the database when the master entity is also persisted.

MERGE Specifies that the entity manager merges the dependent entity
with the existing copy in the database when the master entity is
also merged.

REMOVE Specifies that the entity manager removes the dependent entity
from the database when the master entity is also removed.

REFRESH Specifies that the entity manager refreshes the dependent entity
from the database when the master entity is also refreshed.

DETACH Specifies that the entity manager detaches the dependent entity
when the master entity is also detached. (Since JPA 2.1)

The cascade annotation attribute provides the engineer a flexible way to configure
the lifecycle of dependent entities. The control provided can save the developer's
time and avoid engineers having to write boilerplate code themselves that cascades
database operations.

Removal of orphans in relationships
JPA allows the engineers to configure the behavior of orphans in a one-to-one or
many-to-one relationship. An orphan is an entity instance that is already set pending
to be removed because it was removed from the relationship (the collection), or
because it was replaced by a new entity (in the collection). The issue, here, is that
when we remove an entity from a collection, we have a dependent detail entity that
is no longer referenced by the master. This is reflected inside the target database with
a record that is no longer being used. Hence the database row becomes orphaned.

For example, if we have a customer record already persisted to the database with
our address. If we replace the reference in the Customer entity with a null pointer,
what do we want to have happened in the database? Clearly we want to remove the
ADDRESS row from the database table record.

Object-Relational Mapping with JPA

[198]

Likewise, as we continue the example, if one of the Invoice entities is removed from
the list collection of invoices in the Customer entity, then the Invoice is no longer
referenced from the master Customer record. We possibly have an INVOICE row in
the database table that is orphaned and no longer used by the application.

JPA allows the orphans to be removed only on @OneToOne and @OneToMany
relationships. This attribute is called orphanRemoval and it expects a Boolean value,
which by default is set to false.

Here is an example of the use of orphan removal applied only to the invoices in the
customer entity:

@Entity
public class Customer implements java.io.Serializable {	
 /* ... */	
 @OneToMany(orphanRemoval=true)
 private List<Invoice> invoices;
 public List<Invoice> getInvoices() { return invoices; }
 public void setInvoices(List<Invoice> invoices) {
 this.invoices = invoices; }
}

We apply the orphan removal operation in the Invoice dependent entity in the
Customer entity code example. JPA provider will act should one or more of the
Customer instances be removed from the collection of Invoice objects. The orphan
removal operations take place when the EntityManager flushes the persistence
context with the master Customer entity; it will then automatically remove the
orphaned invoice records from the database table.

Finally, the removal of orphans is entirely separate to the Cascade.REMOVE
operations. It happens independently of the cascade operations, if set.

Let us now look at the last method of finessing entity beans under JPA—how to
configure automatic generation of primary key values for entities.

Generated values and primary keys
Many relational databases support the automatic generation of primary keys, which
can be extremely useful when inserting new records into a database table. However,
the database vendors traditionally provide non-portable ways to achieve auto
incrementing integers. Some databases support the creation of database sequence
types, some databases have a master incremental table value or view, and some
databases have some completely novel schemes to generate unique identifiers.

Chapter 5

[199]

The JPA specification allows the Java developer to use a strategy into order to
create primary keys automatically. The key to defining strategy is in the annotation,
which we have already seen, called @javax.persistence.GeneratedValue. This
annotation only supports simple primary keys. The strategy attribution has the
following definition:

public enum GenerationType {TABLE, SEQUENCE, IDENTITY, AUTO };

The enumeration @javax.persistence.GeneratedType has four values and they
are described in the following table:

Value Description
TABLE Specifies that the persistence provider generates

primary keys for the entity from the supplied
database table, which is defined by the additional
generator attribute.

SEQUENCE Specifies that the persistence provider generates
primary keys for the entity from the supplied
database sequence, which is defined by the additional
generator attribute.

WARNING: Sequence strategy is not portable across
database vendors.

IDENTITY Specifies that the persistence provider generates
primary keys for the entity from the special database
identity column, which is defined by the additional
generator attribute.

WARNING: Identity strategy is not portable across
database vendors.

AUTO Specifies that the persistence provider picks a strategy
for the entity that is appropriate to the database
vendor in order to generate primary keys. The AUTO
strategy may expect a particular sequence, table, or
identity or it may generate one of them.

This is the most portable of the strategies.

Object-Relational Mapping with JPA

[200]

Table auto increment
The GeneratedType.TABLE enumeration is the most portable of the settings. A
database table is created or updated by the persistence provider with two columns.
The first column is the sequence name that requires the increment and the second
column is the current value.

Let us modify the earlier customer entity to use a table identity for its customer ID:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @GeneratedValue(value=GeneratedType.TABLE,
 generator="CUSTOMER_SEQ")	
 @Column(name="CUST_ID")
 private int id;

 /* ... */
}

The Customer entity now uses the auto increment through a database table strategy
and it declares a sequence name called CUSTOMER_SEQ. The persistence context
may create a table called SEQUENCE_TABLE with the columns SEQUENCE_NAME and
SEQUENCE_VALUE.

Here is what this table will look like:

SEQUENCE_NAME SEQUENCE_VALUE
CUSTOMER_SEQ 146273
INVOICE_SEQ 23941580
EMPLOYEE_SEQ 2081

There is a row for each sequence in the table, and every time the persistence provider
requires a primary key for a new entity, it will read the current value and then
increment value and store it back into the SEQUENCE_TABLE. The new current value,
which was just incremented, is the one supplied to the entity as a new primary key.

The database table is most likely shared with other entities in the same persistence
context, and therefore the database schema.

Chapter 5

[201]

The TABLE strategy is portable across different database vendors, because it is
simply a regular database table generated by the persistence provider, and gives the
engineer control of how sequences are created for the application. The table and how
the table is incremented can be configured with, say, pre-allocation, which might be
important for data population insertion performance. Pre-allocation is very useful in
situations when there are lots of insertions are happening.

There are issues with the TABLE strategy, namely to do with concurrency access. If
the database table is shared between two or more JVMs in a clustered environment
without some synchronization of access to the underlying database table, an
application could cause inconsistency issues and of course failure to insert records
with the others.

JPA also provides a special annotation called @javax.persistence.TableGenerator,
which can further configure generation of primary keys from the table strategy. This
annotation requires a reference name, the sequence name, which is provided by the @
GeneratedValue annotation. Using the @TableGenerator annotation, a developer can
set the initial value, the pre-allocation size, optionally the database table, catalogue, or
schema, and also set the column name of the entity primary key.

Here is a revised example of the customer entity that now uses the
@TableGenerator annotation:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @GeneratedValue(strategy=GeneratedType.TABLE,
 generator="CustomerSeq")
 @TableGenerator(
 name="CustomerSeq",
 catalog="APP_KEYS",
 table="APP_IDS_TABLE",
 pkColumnName="SEQ_KEY",
 valueColumnName="SEQ_VALUE",
 pkColumnValue="CUSTOMER_ID",
 initialValue=1000000,
 allocationSize=25)
 private int id;
	
 /* ... */
}

Object-Relational Mapping with JPA

[202]

This example specifies that the primary key id of the entity Customer is generated
with the table strategy. The name of the sequence generator is called CustomerSeq,
and we specify an explicit database schema called APP_KEYS, which is an optional
attribute. The actual database table is called APP_IDS_TABLE with the primary
column name called SEQ_KEY and the value column name called SEQ_VALUE. The
database column name for the primary key of the entity is called CUSTOMER_ID;
hence we do not require an additional @Column annotation just to override the
column name. The @TableGenerator specifies an initial value of 100000 and we have
a pre-allocation size of 25 (the default value is 50).

Overall, the @TableGenerator annotation allows developers to have more control
of the auto-generation of primary keys for this strategy, rather than just declaring an
identity with the @GeneratedValue.

Sequence auto increment
The GeneratedType.SEQUENCE enumeration specifies that the primary key of the
entity is populated according to a database sequence. Database sequences are only
implemented by database vendors such as Oracle, DB2, Postgres and Apache Derby.
Therefore using SEQUENCE strategy is an implementation concern, if you choose this
strategy for an application.

The JPA provides an additional annotation @javax.persistence.
SequenceGenerator that can give more precise control of how the sequence is
generated. The annotation allows the allocation size to be defined, as well as the
name of the sequence itself.

Let us modify the earlier customer entity to use a sequence identity for its customer ID:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @GeneratedValue(value=GeneratedType.TABLE,
 generator="CUSTOMER_SEQ")	
@SequenceGenerator(name="CUSTOMER_SEQ",
 sequenceName="CUSTOMER_SEQ",
 initialValue=3000000, allocationSize=50)
 @Column(name="CUST_ID")
 private int id;

 /* ... */
}

Chapter 5

[203]

The Customer entity now uses the auto increment through sequence strategy and it
declares a sequence name called CUSTOMER_SEQ. The persistence context may create
a database vendor specific sequence object called CUSTOMER SEQUENCE and with only
one integral column, say NEXT_VAL.

The sequence object will have an INCREMENT size value, and starting value, and
allocation size value. Some database providers that support sequence objects allow
them to cycle around, although this feature is not supported by the current JPA 2.1
specification.

Every time the persistence provider requires a new value for the entity, it will create
the sequence object for the next value. The database will take off automatically
incrementing the value itself.

Although the sequence strategy is least portable, it has the benefit of being the best
able to support concurrency across JVMs; and sequence objects are efficient in pre-
allocation of primary key identities.

Identity auto increment
The GeneratedType.IDENTITY enumeration specifies that the primary key of the
entity is populated according to a database specific identity column. Database
identity columns are only implemented by some database vendors such as MySQL,
SQL Server, Sybase, and Apache Derby.

An identity column is a column that stores numbers that increment by one with each
insertion. Identity columns are sometimes called auto-increment columns.

Let us modify the earlier customer entity to use an identity column for its customer ID:

@Entity
public class Customer implements java.io.Serializable {
 @Id
 @GeneratedValue(value=GeneratedType.IDENTITY,
 generator="CUSTOMER_SEQ")	
 @Column(name="CUST_ID")
 private int id;

 /* ... */
}

It is very easy to create an identity with the annotation @GeneratedValue. JPA
provides no other special annotation for identity columns.

Object-Relational Mapping with JPA

[204]

There are drawbacks for identity columns. The first concern is the fact that the next
primary key is only available after the record has been inserted into the database.
The second concern is that it is not possible to have a pre-allocation of primary key
identities, and it could be a performance problem when and if your application
produces proportionally more insertions than reads on certain entity beans.

Entity relationships revisited
In the previous chapter, we saw that an entity can be associated with another
through a relationship, which can be one-to-one, one-to-many, many-to-one, or
many-to-many. Relationships under JPA are polymorphic, which means you can
take advantage of object oriented inheritance, if required.

JPA requires for all relationship mapping that there is one side that is identified as
the target and therefore the opposite side is the owner. The primary key of the target
entity is always referenced in the mapping of entity relationships.

In Java and JPA, entity relationships are by default unidirectional, which means that
it is straightforward to traverse from the master-the owning entity-to the detail-the
target entity. The Java developer must explicitly supply the inverse direction in order
to facilitate bidirectional entity relationships.

Relationships are defined by association of primary keys in database tables (and views)
to foreign keys in other tables (and views) inside a relational database. In the owning
database table, the master, there is a database column containing the foreign keys of
the target database table, the detail, which defines the primary keys. Associations are
defined by the possibility to traverse to individual rows of the target database table
from the source database table using the foreign key to primary mapping.

The source and target entity in the relationship model how the engineer can navigate
from one entity to the other.

One-to-one mapping
The one-to-one mapping relationship maps one entity directly to another entity. The
annotation is @javax.persistence.OneToOne.

The property or accessor method may be further annotated with the @javax.
persistence.JoinColumn to further identify the target database column that
contains the primary key in the target entity.

Chapter 5

[205]

Let us look at the full attributes of the @OneToOne annotation:

Attribute Type Description Default
Value

targetEntity String The attribute represents the
entity class that is the target
of the relationship. For 99%
of cases, you will not have
to specify this relationship
explicitly, since the persistence
provider should be able to find
the relationship.

Implied
by the
declaration
point on
the field or
property
accessor

cascade String This attribute specifies how
and when the lifecycle of the
dependent entity is included
in any cascade operations
(CascadeType.ALL,
CascadeType.PERSIST etc.)

No
operations
are cascaded

fetch String This attribute specifies how the
dependent entity is retrieved in
a relationship. The valid values
are FetchType.EAGER and
FetchType.LAZY.

FetchType.
EAGER

optional Boolean This attribute specifies if the
relationship can be null or not.
The default value is true; and
by setting this to false a non-
null relationship must exist
between the entities.

true

mappedBy String This attribute specifies the field
or accessible property accessor
for the source owning entity for
bidirectional relationships.

None

orphanRemoval Boolean This attribute specifies how
removal operation takes
place when the target entity
is removed from the source
owning entity. If the value is set
to true, then the deletion of the
target from the source entity will
be cascaded to the target itself.

false

We already saw some examples of one-to-one mapping in the previous chapter.

Object-Relational Mapping with JPA

[206]

Let us examine in detail the relationship between the employee and the address:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn(name="EMPLOYEE_ADDRESS_FK",
 referencedColumnName="ADDRESS_ID")
 private Address address;

 public Address getAddress() { return address; }
 public void setAddress(Address address) {
 this.address = address; }

 /*...*/
}

We have established a one-to-one unidirectional relationship between the Employee
entity and the Address entity. The owner of the relationship is Employee and this
determines the navigability.

Here, we configure the relationship with the @JoinColumn annotation in order to
customize the database column name EMPLOYEE_ADDRESS_FK and also to specify the
reference database column name in the target entity ADDRESS_ID.

Here is a table that describes the attributes for @JoinColumn annotation.

Attribute Type Description Default
Value

name String This attribute
specifies the name
of the foreign key
that associates to the
target entity. The
foreign key is in the
table of the source,
the owner entity.

Implied
by the
declaration
point on
the field or
property
accessor

referencedColumn-Name String This attribute
specifies the name of
the primary key in
the target entity. The
reference column is in
the table of the target
entity.

The same
name as
the target
database
column

Chapter 5

[207]

Attribute Type Description Default
Value

unique Boolean This attribute
specifies whether
the column is
unique. It is also a
short cut for the @
UniqueConstraint
annotation for a
single field.

false

nullable Boolean This attribute
specifies if the
foreign key column is
nullable or not.

true

insertable Boolean This attribute
specifies if this
foreign key is
included in SQL
INSERT operations
by the persistence
provider.

true

updatable Boolean This attribute
specifies if this
foreign key is
included in SQL
UPDATE operations
by the persistence
provider.

true

columnDefinition String Defines an additional
SQL fragment that
is used in the DDL
generated by the
persistence provider.

None

table String Specifies the name of
the table that contains
the column.

Implied
by the
containing
entity

foreignKey ForeignKey Specifies the foreign
constraint for the join
column.

Default
constraints
generated
by the
persistence
provider

Object-Relational Mapping with JPA

[208]

Persisting one-to-one unidirectional entities
It is easy to save one-to-one related entities using JPA. All you need are the
entity beans themselves and then use a method to create the dependency, and
thus the association.

Here is an example that creates and saves both Employee and Address:

@PersistenceContext EntityManager em;

public void create() {
 Employee employee = new Employee();
 Address address = new Address();
 employee.setAddress(address);
 em.persist(employee);
}

This will work because we have chosen CascadeType.ALL and thus saving the
Employee entity, cascades the operation from the owning entity to the dependent
entity, which is the Address.

We have chosen to allow nullable references in the relationship, and therefore we
can adopt a method that removes the address from the employee record, shown
as follows:

@PersistenceContext EntityManager em;
public void clearAddress(int empId) {
 Employee employee = em.find(Employee.class, id);
 employee.setAddress(null);
 em.persist(employee);
}

Now, let us move on to the bidirectional relationship.

Bidirectional one-to-one-entities
Now let us make this one-to-one relationship between an employee and an address
bidirectional. In order to achieve this, we still have to inform JPA which one of these
entities is the owner of the relationship. In this case, we still want the employee
entity to be owner of the address.

Here is the code to achieve a bidirectional relationship:

@Entity
public class Address implements java.io.Serializable {
 /*...*/

Chapter 5

[209]

 @OneToOne(mappedBy="address")
 private Employee employee

 public Employee getEmployee() { return employee; }
 public void setEmployee(Employee employee) {
 this.employee = employee; }
 /*...*/
}

In the Address entity, we add a brand new field employee and annotate it with
@OneToOne. Here, we supplied the inverse property mappedBy="address" in order
to complete the inverse relationship.

Persisting one-to-one bidirectional entities
In Java code, persisting the bidirectional entities must always be built from both
sides of the relationship. Entities in Java behave like any other Java object that
has a relationship. As a developer, you are required to configure both sides of the
relationship in memory.

Here is a code that creates the Employee and Address records for a
bidirectional association:

@PersistenceContext EntityManager em;
public void create() {
 Employee employee = new Employee();
 Address address = new Address();
 employee.setAddress(address);
 em.persist(employee);
}

Failure to configure both sides of the relationship in bidirectional mappings can
result in peculiar data management errors.

Let's move on to mapping composite foreign keys.

Composite foreign keys in a one-to-one relationship
JPA can map entities with composite keys into one-to-one relationships. For this
task, we need to annotate the field or property accessor with @javax.persistence.
JoinColumns, which accepts an array of @JoinColumn declarations.

Object-Relational Mapping with JPA

[210]

Here is an example of a record, a shipping record, with a set of properties:

@Entity
public class Shipping implements Serializable{
 private long id;
 private String delivery;
 private String carrier;
 private String costCenter;
 /*...*/
}

Let's suppose we are only interested in the one-to-one relationship between the
Invoice and the Shipping entities, except we only want to associate across
id and costCenter.

Here is some example code, which demonstrates what we can achieve with a
composite key:

@Entity
public class Invoice implements java.io.Serializable {
 /*...*/
 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="SHIPPING_ID",
 referencedColumnName="ID"),
 @JoinColumn(name="COST_CENTER_REF",
 referencedColumnName="COST_CENTER") })
 private Shipping shipping;

 public Shipping getShipping() { return shipping; }
 public void setShipping(Shipping shipping) {
 this.shipping = shipping; }

}

The code in the Invoice class creates a one-to-one relationship, which may be a null
reference, meaning an invoice can have no shipping record at all.

JPA maps the entity Invoice into the database table called INVOICE and with the
additional database columns, which are the foreign key for referencing the shipping
entity, namely SHIPPING_ID and COST_CENTER.

Chapter 5

[211]

One-to-many mapping
The one-to-many mapping relationship maps one entity directly to multiple entitles.
The annotation is @javax.persistence.OneToMany. The source entity is owner of a
collection of target entities.

The inverse relationship of a one-to-many is a many-to-one. By contrast to either to
one-to-many or many-to-one relationships, the inverse of many-to-many relationship
is itself.

Let us look at the full attributes of the @OneToMany annotation:

Attribute Type Description Default Value
targetEntity String This optional attribute

represents the entity class that
is the target of the relationship.
If the property is used as a raw
type then the attribute must be
specified.

The
parameterized
type of the
collection
when defined
using Java
generics

cascade String This attribute specifies how
and when the lifecycle of the
dependent entity is included
in any cascade operations
(CascadeType.ALL,
CascadeType.PERSIST etc.)

No operations
are cascaded

fetch String This attribute specifies how the
dependent entity is retrieved in
a relationship. The valid values
are FetchType.EAGER and
FetchType.LAZY.

FetchType.
LAZY

mappedBy String This attribute specifies the field
or accessible property accessor
for the source owning entity for
bidirectional relationships.

None

orphanRemoval Boolean This attribute specifies how
a removal operation takes
place when the target entity
is removed from the source
owning entity. If the value is
set to true, then the deletion
of the target from the source
entity will be cascaded to the
target itself.

false

Object-Relational Mapping with JPA

[212]

Let's see an example of a one-to-many in action. Employee records can have multiple
telephone numbers for work, home, fax, mobile, and so on. Here is a simple phone
entity bean.

@Entity
public class Phone implements java.io.Serializable {
 @Id @Column(name="PHONE_ID")
 private int id;
 private String type; // home,work,main,fax
 private String interCode; // international prefix
 private String areaCode;
 private String localCode;
}

The Phone entity has a primary id, a phone type, and international, area, and
local dialing codes. We assume that the application has an automatic parser for
deciphering a full telephone number into its constituent dialing code parts.

Here is the Employee modified to accept a list collection of telephone entities:

@Entity
public class Employee implements java.io.Serializable {
 @Id @Column(name="EMP_ID")
 private long id;
 /*...*/

 @OneToMany(cascade = CascadeType.ALL)
 private List<Phone> phones;

 public List<Phone> getPhones() { return phones; }
 public void setPhones(List<Phone> phone) {
 this.phones = phones; }
}

In this example, the JPA provider creates a join table linking the Employee to Phone
entities, which by default is EMPLOYEE_PHONE. The table has two database columns: the
first is the primary key of the Employee entity, which is called Employee_EMP_ID, and
the second is the foreign key of the Phone entity, which is called Phone_PHONE_ID.

Chapter 5

[213]

Let us see this in tabular form, as shown next:.

The table EMPLOYEE:

EMP_ID EMP_TYPE FIRST_NAME LAST_NAME
32368 Perm Vernon Reid
40201 Contractor Paul Gilbert

The table PHONE

PHONE_ID TYPE INTER_CODE AREA_CODE LOCAL_CODE
1002 Work +44 207 5459923
1004 Work Fax +44 207 5451234
1006 Home +1 812 1237884

The table EMPLOYEE_PHONE

Employee_EMP_ID Phone_PHONE_ID
32668 1002
32368 1004
40201 1008

Of course, we assume that the underlying database allows lower and upper case
names for its entities.

One-to-many relationship with a join column
A @OneToMany can be defined with either a join table, or foreign key in the target
object's table referencing the source object table's primary key. If we choose the second
option, with the foreign key in the target entity then to uphold the relationship, we
need to add a @JoinColumn annotation to the list collection field or property accessor.

Let's add a join column to the employee entity:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @OneToMany(cascade = CascadeType.ALL)
 @JoinColumn(name="EMP_FK_ID",
 referencedColumnName="EMP_ID")
 private List<Phone> phones;
}

Object-Relational Mapping with JPA

[214]

Here the join column is actually created as part of the dependent entity Phone. In
other words, the extra column is a foreign key in the target entity, which the entity
directly has no responsibility to take care of and there is no equivalent in Java!

Consequently, a unidirectional one-to-many mapping is only officially supported in
JPA 2.0 or better. Such a standard conforming persistence provider creates a database
table PHONE with an additional foreign key column EMPLOYEE_FK_ID. The join table is
unnecessary in this relationship type.

The table PHONE looks like the following:

PHONE_ID TYPE INTER_CODE AREA_CODE LOCAL_CODE EMP_
FK_ID

1002 Work +44 207 5459923 32368
1004 Work

Fax
+44 207 5451234 32368

1006 Home +1 812 1237884 40201

The solution to the update problem for an unknown foreign key, which has existed
since JPA 1.0, is to make the one-to-many relationship bidirectional, or use an explicit
join table with an explicit foreign constraint that always enforces a one-to-many
relationship in the database.

Let's look at the bidirectional form first.

Bidirectional one-to-many relationship
The target entity requires a many-to-one mapping.

The Phone entity takes a new property, the employee, and references to the
owning entity.

@Entity
public class Phone implements java.io.Serializable {
 /* ... as before ... */
 @ManyToOne
 @JoinColumn(name="EMP_ID_FK")
 private Employee employee;
}

Chapter 5

[215]

Now the Phone entity knows about the database column as a foreign key.
We can certainly access the employee in Java programming.

In order to be bidirectional the owning entity must be configured with an inverse
mapping. It needs to know what the field is or the property accessor that provides
the inverse reference back to the source entity.

For the Employee entity, we provide this information with the mappedBy attribute.

@Entity
public class Employee implements java.io.Serializable {
 /*... */

 @OneToMany(cascade=CascadeType.ALL, mappedBy="employee")
 private List<Phone> phones;

 /*...*/
}

The @OneToMany signifies that the list collection of Phone entities is managed and
owned by the Employee and there is an inverse relationship through the method call
chain Employee.getPhones().get(N).getEmployee(), where N is some primitive
integer type.

Therefore to add a new Phone and to remove a Phone entity record, we can have
methods in the Employee entity like the following:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/
 public boolean addPhone(Phone phone) {
 if (! phones.contains(phone)) {
 Employee oldEmployee = old.getEmployee();
 if (oldEmployee != null) {
 removePhone(oldEmployee)
 }
 phones.add(phone);
 return true;
 }
 else { return false; }
 }

 public boolean removePhone(Phone phone) {
 if (phones.contains(phone)) {
 phones.remove(phone);

Object-Relational Mapping with JPA

[216]

 phone.setEmployee(null);
 return true;
 }
 else { return false; }
 }
}

It is very important to ensure that in the Java application both references link
to each other.

The removePhone() safely demonstrates how to delete the Phone entity from the
employee entity and sets the reference to null; there is a check that the record is part
of the collection beforehand.

The addPhone() adds a new phone entity to the employee's list collection provided it
is not already contained. We sanity check the method by removing the Phone entity
from the old Employee record, if any, and check if it was managed beforehand by
reusing the removePhone() method. The new phone entity is added to the employee's
current list collection, and the inverse relationship is also set in the phone entity.

One-to-many using an explicit join table
JPA allows developers to explicitly define a join table with the candidate keys from
the respective database tables. The @javax.persistence.JoinTable annotation
configures join table for all of the types of relationship: @OneToOne, @OneToMany, @
ManyToOne, and @ManyToMany. The @JoinTable annotation specifies the owning
side of the relationship in Java. It requires an array of join columns and for inverse
relationship an array of inverse join columns.

In the following code,, we have our two entities Employee and Phone. The Employee
entity-side is annotated explicitly as a join table:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @OneToMany(cascade = CascadeType.ALL)
 @JoinTable(name="EMP_PHONE_LINK",
 joinColumns=
 @JoinColumn(name="EMP_FK",
 referencedColumnName="EMP_ID"),
 inverseJoinColumns=
 @JoinColumn(name="PHONE_FK",

Chapter 5

[217]

 referencedColumnName="PHONE_ID",
 unique=true)
)
 private List<Phone> phones;
}

The phone list collection field is annotated with @JoinTable, with a single join
column and a single inverse join column. Of course, we could have additional
columns in a combination of primary and foreign keys for advanced situations.

With the code above, the JPA provider creates a database join table called EMP_
PHONE_LINK with two foreign columns, namely EMP_FK and PHONE_FK. Excuse the
badly named database column, but I think it illustrates the point—the reference
column names points back to the constituent entities and therefore database tables:
EMP_ID and PHONE_ID.

In order to enforce the constraint of the one-to-many relationship, we set the unique
attribute, which is on the @JoinColumn, to true on the inverse part of the relationship.

If you choose not to specify a table explicitly, then the default join table name of
the join table is a concatenation of the owning entity and the dependent names,
delimited with an underscore.

This concludes the section on one-to-many relationship in JPA. We will now move
on to the inverse mapping.

Many-to-one mapping
The many-to-one mapping relationship associates a collection of multiple entities
directly to one single entity. The annotation is @javax.persistence.ManyToOne.
The source entities collectively share ownership of a single entity.

The inverse relationship of a many-to-one is a one-to-many. In comparison to a
many-to-many relationship, remember that inverse of a many-to-many relationship
is itself.

Object-Relational Mapping with JPA

[218]

Let us look at the full attributes of the @ManyToOne annotation:

Attribute Type Description Default Value
targetEntity String This optional attribute

represents the entity class
that is the target of the
relationship. If the property
is used as a raw type then
the attribute must be
specified.

The
parameterized
type of the
collection when
defined using
Java generics

cascade String This attribute specifies how
and when the lifecycle of the
dependent entity is included
in any cascade operations
(CascadeType.ALL,
CascadeType.PERSIST
etc.)

No operations are
cascaded

fetch String This attribute specifies how
the dependent entity is
retrieved in a relationship.
The valid values are
FetchType.EAGER and
FetchType.LAZY.

FetchType.
EAGER

optional Boolean This attribute specifies if
the relationship can be null
or not. The default value is
true; and by setting this
to false then a non-null
relationship must exist
between the entities.

true

Many-to-one relationship with a join column
Let us take two different entities for this example: many projects have an association
to a particular project type, or expressed in the reverse: for a given type there can be
zero or more projects.

Here is the ProjectType entity:

@Entity
public class ProjectType implements java.io.Serializable {
 @Id private int id;

Chapter 5

[219]

 private String name;
 private String description;
 /* ... */
}

Here is the Project entity, which is the owner of the relationship:

@Entity
public class Project implements java.io.Serializable {
 @Id private int id;
 private String name;
 private String description;

 @ManyToOne(cascade=CascadeType.ALL)
 @JoinColumn(name="PROJ_TYPE_FK")
 private ProjectType type;

 public ProjectType getType() { return type; }
 public void setType(ProjectType type) {
 this.type = type; }
 /* ... */
}

In the above class Project, the @JoinColumn annotation configures the additional
database column with a name PROJ_TYPE_FK. By default, the persistence provider
will concatenate the entity name with the foreign key name delimited with an
underscore character (the database table column PROJECT_TYPE_ID).

Most applications will use @ManyToOne with the @JoinColumn in order to configure
an alternative database column name.

The relationship between the Project and ProjectType is unidirectional in the
example and here are the possible states of the database tables:

PROJECT_TYPE (table):

ID Name Description
579 FXTRADING FX Trading
404 MARKETING Trading Sales and Marketing

Object-Relational Mapping with JPA

[220]

PROJECT (table):

ID Name Description PROJ_TYPE_FK
1 FXDAILYREP FX daily trading

report
579

2 ONBOARD New customer
onboarding project

404

3 FXFIXINCOME FX Fix Income
Upgrade

579

Bidirectional many-to-one relationship
The bidirectional many-to-one relationship is the exact mirror on the one-to-many
relationship. The only difference is that the entity is ultimately the owner of the
relationship in terms of a Java programming. See the section One-to-many mapping.

Be careful with cascade operations in a many-to-one mapping, especially in
circumstances where the single entity is used like a database enumeration type.
Removing an entire collection of project records could delete the project type too.
You probably want to manage the cascade types with a set of defined operations.

Many-to-many mapping
The many-to-many mapping relationship associates a collection of multiple entities
to another collection of multiple entities. In the Java Persistence, this annotation is
called @javax.persistence.ManyToMany. The Java developer must define which
side of the relationship is the owner regardless of whether the true association is
unidirectional or bidirectional. In database terms, all many-to-many associations are
by definition bidirectional.

The inverse relationship of a many-to-many is a many-to-many, which is different to
the associations of one-to-many and many-to-one.

All @ManyToMany associations require a @JoinTable as this is the practical way to
represent this relationship in a relational database.

Chapter 5

[221]

Let us look at the full attributes of the @ManyToMany annotation:

Attribute Type Description Default value
targetEntity String This optional attribute

represents the entity
class that is the target
of the relationship. If
the property is used
as a raw type then
the attribute must be
specified.

The parameterized
type of the
collection when
defined using Java
generics

cascade String This attribute specifies
how and when
the lifecycle of the
dependent entity
is included in any
cascade operations
(CascadeType.
ALL, CascadeType.
PERSIST etc.)

No operations are
cascaded

fetch String This attribute specifies
how the dependent
entity is retrieved
in a relationship.
The valid values are
FetchType.EAGER
and FetchType.LAZY.

FetchType.LAZY

mappedBy String This attribute specifies
the field or accessible
property accessor for
the source owning
entity for bidirectional
relationships.

None

Bidirectional many-to-many relationship
In the example code, we extend the Project entities with a many-to-many
association of Employee entities. That is, multiple projects have zero or one employee
and zero or one project have multiple employees.

Object-Relational Mapping with JPA

[222]

Here is the revised class for Project:

@Entity
public class Project implements java.io.Serializable {
 @Id private int id;
 /*...*/

 @ManyToMany(cascade={CascadeType.PERSIST,
 CascadeType.MERGE,CascadeType.DETACH)}
 @JoinTable(name="PROJECT_EMPLOYEE",
 joinColumns={ @JoinColumn(name="PROJ_ID_FK",
 referencedColumnName="ID") },
 inverseJoinColumns={
 @JoinColumn(name="EMPL_ID_FK",
 referencedColumnName="EMP_ID") }
 private List<Employee> employees;

 public List<Employee> getEmployees() { return employees; }
 public void setEmployees(List<Employee> employees) {
 this.employees = employees; }

 /* ... */
}

Because this class Project declared the list of employees with a join table, it is
the owner of the relationship. The database table is explicitly defined as PROJECT_
EMPLOYEE; the join columns are appropriately named as PROJ_ID_FK and EMP_ID_FK,
which are foreign keys to their respective tables.

Project configures a limited set of cascade operations from the Project to the
Employee. By default, the case operations do not take place, but we allow general
persistence, merging, and detaching of entities.

Let us tie the other side of the relationship into the Employee entity.

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @ManyToMany(mappedBy="employees")
 private List<Project> projects;

 public List<Project> getProjects() { return projects; }
 public void setProjects(List<Project> projects) {
 this.projects = projects; }
}

Chapter 5

[223]

An employee has a set of projects or not, and we complete the definition of
bidirectional relationship by declaring projects are owned by the Employee entity.
We do this with the mappedBy attribute. It is important to define the mappedBy
attribute in order to prevent duplicate join table being added to the database.

The JPA provider assumes that there are actually two separate relationships: a one-
to-many and many-to-one, when the mappedBy attribute is not used. This could
actually be the requirement for your business application, but it might be better to
annotate the entities as properly separate @OneToMany and @ManyToOne with defined
@JoinTable to avoid confusion.

Here are the sample database tables for the previous code:

PROJECT (table)

ID Name Description
1 FXDAILYREP FX daily trading report
2 ONBOARD New customer onboarding project
3 FXFIXINCOME FX Fix Income Upgrade

EMPLOYEE (table)

EMP_ID FIRST_NAME LAST_NAME
32368 Vernon Reid
40201 Paul Gilbert
50203 Jennifer Batten
60205 Joe Satriani

PROJECT_EMPLOYEE

EMP_ID_FK PROJ_ID_FK
32368 3
40201 2
50203 1
50203 3
40201 2
60205 3

Object-Relational Mapping with JPA

[224]

Unidirectional many-to-many relationship
Mapping a unidirectional many-to-many relationship is fairly straightforward. The
association has to be declared on the owner side with a @ManyToMany. The target
association has no direct relationship to the owner: no @ManyToMany is required.

Let's take another example with the project entity. Every project has zero or more
milestones, and some milestones are shared between projects.

Here is the Project code with a new field, a list collection of Milestone entities:

@Entity
public class Project implements java.io.Serializable {
 @Id private int id;
 /*...*/

 @ManyToMany(cascade=CascadeType.ALL, fetch=LAZY)
 @JoinTable(name="PROJECT_HAS_MILESTONE",
 joinColumns={ @JoinColumn(name="PROJ_ID_FK",
 referencedColumnName="ID") },
 inverseJoinColumns={
 @JoinColumn(name="MILESTONE_ID_FK",
 referencedColumnName="ID") }
 private List<Milestone> milestones;

 public List<Milestone> getMilestones() { return milestones; }
 public void setMilestones(List<Milestones> milestones) {
 this.milestones = milestones; }

 /* ... */
}

We use a join table as always for many-to-many association. The @JoinTable
annotation declares the table name as PROJECT_HAS_MILESTONE, and the join columns
at PROJ_ID_FK and MILESTONE_ID_FK respectively. So this code is semantically the
same as the previous bidirectional example between projects and types.

Here is the code for the Milestone entity bean:

@Entity
public class Milestone implements java.io.Serializable {
 @Id private int id;
 @Column(nullable=false)
 private String name;
 private float tolerance;
 @Column(nullable=false)

Chapter 5

[225]

 private String requirements;
 @Temporal(TIMESTAMP) private Date startDate;
 @Temporal(TIMESTAMP) private Date finishDate;
 /* ... */
}

In a unidirectional @ManyToMany association we do not declare the target side of the
relationship and therefore there is no need for the annotation in the Milestone object.

As with all bidirectional relationships, Java Persistence requires the developer to
connect object instances with each other. There is no secret sauce in the current JPA
2.1 specification that automates these connections.

Finally, we switch the cascade operation on the owner side of the many-to-many
relationship back to CascadeType.ALL. So persistence will perform operations such
as CascadeType.PERSIST and CascadeType.REMOVE on the dependent Milestone
records, if the master Project entity is affected. As with all performance questions,
always take measurements before and after, multiple times within a micro-
benchmark—don't guess! Use the measurements to reason about the bottlenecks
before modifying application code.

This concludes the entire section on entity relationship mapping.

Mapping entity inheritance hierarchy
Relational database management systems are programs that enable, extract, modify,
and store information data in the relational model. The relational model is a structure
of storage, which is a two dimensional table of rows and columns and is based on the
relationship between a set of items in a table column for one entity and another of set
of table columns, such that they form a intersection set. Consequently, the database
of fixed entities is flat and monomorphic. However it is a structure that is easy to
understand and allows businesses to view their data as tabular information.

On the other hand, Java, as an Object-Oriented Programming language, supports
inheritance. Apart from encapsulation, inheritance is an essential concept of Java,
the mother programming language, and many other alternative JVM programming
languages. Unfortunately supporting object inheritance is something that relational
databases were not designed to do. Before standardization with JPA, many
independent projects such as Hibernate and TopLink supported different strategies
that mapped object class hierarchies to database tables.

Object-Relational Mapping with JPA

[226]

The JPA specification defines three inheritance mechanisms, which are defined
as follows:

package javax.persistence;

public enum InheritanceType {
 SINGLE_TABLE, TABLE_PER_CLASS, JOINED }

The mechanism is brought into play by taking one of the previous
enumerations InheritanceType and applying it with annotation
@javax.persistence.Inheritance.

The default strategy for JPA is the Single Table, while the Table per Class is an
optional feature for the persistence provider to provide; in other words, not all JPA
vendors may support the strategy.

Hierarchy in a single database table
Single table inheritance SINGLE_TABLE is the easiest strategy to understand. A single
database table stores all the object instances in the entire inheritance strategy. The
table has database columns for every attribute for every class in the hierarchy. The
way the extraction, modification, and storage works is through a special designated
column, which is called a discriminator column.

As usual, we take a sample user story to work through as an example.

A business requires a marketing entity that takes a campaign name, a concept of
promoting the campaign, a set of one or more products involved, and it is has to
maintain versions. Different departments inside the business will be writing and
modifying the campaign and it is a user requirement that different versions of the
campaign are maintained for senior executives to be able to review and sign off
different marketing promotions.

The formal approach to this marketing is called solution, information value, and
access, and is normally written as the Four Ps renamed and reworked to provide a
customer orientation focus: Product, Promotion, Price, and Place of distribution.

Chapter 5

[227]

An example user story
Here is a first stab at implementing this marketing entity using the single database
table strategy:

@Entity
@Table(name="MARKETING_HIERARCHY")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="MARKET")
@NamedQueries({
 @NamedQuery(name="Marketing.findAll",
 query="SELECT m FROM Marketing m"),
 @NamedQuery(name="Marketing.findByCampaign",
 query="SELECT m FROM Marketing m WHERE m.campaign =
:campaign"),
})
public class Marketing implements java.io.Serializable {

 @Id @GeneratedValue
 private int id;
 @Column(unique=true)	
 private String campaign;
 private String promotion;
 private BigBecimal budget;

 @OneToMany(cascade=Cascade.ALL)
 @JoinColumn(name="PRODUCT_ID", referencedColumnName="ID")
 private List<Product> products;

 @Version
 private int version;

 public Marketing() { }
 /* ... */
}

The @javax.persistence.Table annotation is optional, we use @Table in the
Marketing entity to explicitly configure the database table, namely MARKETING_
HIERARCHY. The @Inheritance is declared at the root entity of the hierarchy.

There are a couple of new annotations in the above. The discriminator column is
declared with the @javax.persistence.DiscriminatorColumn and it specifies
 the name of the column that acts as the differentiator between the object types.

Object-Relational Mapping with JPA

[228]

The @javax.persistence.Version annotation is a new one that we have not yet
covered before. It specifies the version field or property accessor of the entity that
serves as its optimistic lock value. There can only be one @Version property for a
class, and configuring here in the root entity of the hierarchy means the subclass
entities do not have to declare it.

The @NameQuery annotations define JPQL queries for the root entity. The Marketing.
findAll retrieves all Marketing entities including subclass entities. The Marketing.
findByCampaign retrieves a Marketing entity or subclass by its campaign name.
Note that the campaign property is set as a unique database table column. The
named queries are polymorphic.

Finally, we have a one-to-many association between Marketing and a list
column of Product entities. For the purposes of this direction, let us assume
that it is unidirectional.

With the root entity defined, we can define sub class entities. The business is happy
with the first cut and now they come with a request for more marketing types,
which are namely agency and direct. Moreover, the business wants the technology
department to focus on giving the place of distribution more impetus.

The agency type is one where the business contracts a digital media agency to handle
marketing of products online. The direct type is one where the business takes care
of the marketing straight to the customer internally, perhaps through a letter, paper,
and/or telephone campaigns.

Here is the agency marketing entity:

@Entity
@DiscriminatorValue("AGENCY")
@NamedQueries({
 @NamedQuery(name="AgencyMarketing.findAll",
 query="SELECT m FROM AgencyMarketing m"),
 @NamedQuery(name="AgencyMarketing.findByCampaign",
 query="SELECT m FROM AgencyMarketing m WHERE
c.campaign = :campaign"),
})

public class AgencyMarketing extends Marketing {
 private String agency;
 private BigDecimal agencyBudget;

 public AgencyMarketing() { }
 /* ... */
}

Chapter 5

[229]

Here is the direct marketing entity:

@Entity
@DiscriminatorValue("DIRECT")
@NamedQueries({
 @NamedQuery(name="DirectMarketing.findAll",
 query="SELECT m FROM DirectMarketing m"),
 @NamedQuery(name="DirectMarketing.findByCampaign",
 query="SELECT m FROM DirectMarketing m WHERE
m.campaign = :campaign"),
})
public class DirectMarketing extends Marketing {
 private String customerOrientation;

 @OneToMany(cascade=Cascade.ALL)
 @JoinColumn(name="DEPT_ID", referencedColumnName="ID")
 private List<Department> departments;

 public DirectMarketing() { }
 /* ... */
}

For both entities AgencyMarketing and DirectMarketing, notice we make use
of the annotation @javax.persistence.DiscrimatorValue. The discriminator
value specifies the value of the discriminator column for entities of the given
type. DirectMarketing entities have the discriminator value DIRECT and the
AgencyMarketing entities have the value AGENCY.

It was not supplied, but by default the Marketing entities will have a JPA vendor
supplied value. So maybe we should apply @DiscriminatorValue(name="MARK
ET") to those root entities.

The named queries for each of these sub entities operate differently: they
are constrained to the entity type and sub classes thereof. For example,
AgencyMarketing.findAll retrieves all the entities that are a type of
AgencyMarketing and respectively DirectMarketing.findAll retrieves all the
entities that are a type of DirectMarketing.

There is only one database table for this strategy, so let's see some example data.
Because of electronic page constraints, I have split the table into left and right-hand
side views; the left most column is the primary key.

Object-Relational Mapping with JPA

[230]

Here is the single table MARKETING_HIERARCHY (left):

ID M'_TYPE CAMPAIGN PROMOTION BUDGET VERSION
1 MARKET Food Plaza Supermarkets 23500750 64
2 AGENCY Green Sustainable 1000000 12
3 DIRECT National Railways 9500300 7
4 AGENCY Metro Bank 1500000 10

MARKETING_HIERARCHY (right):

ID AGENCY AGENCY_BUDGET CUSTOMER_ORIENTATION
1 NULL NULL NULL
2 Top 500000 NULL
3 NULL NULL Television Adverts
4 Star 250000 NULL

Notice how the table is filled with NULL values in the database columns,
the representations of field and property accessors that are not mapped by
the entity class.

Benefits and drawbacks of the single table strategy
The single table strategy has the benefit of fastest performance, because it is efficient to
retrieve and store the data. There is one place to go. There are no database table joins
to apply when the JPA provider performs the object-relational mapping. The provider
only requires a discriminator WHERE clause that lists the object type identities.

So if the number of entity types is low and also the object hierarchy is fairly flat, then
the efficiency of queries is fast. The persistence provider probably has to write a lot
of UNION SQL clauses in order to retrieve all the data for an entity class and its sub
types. It is the multitude of union queries that will most likely affect performance
with this strategy given a wide or deep object hierarchy.

If the object hierarchy is generally stable from change and is mostly fixed, or even
sealed, then the single table strategy is a great option to choose. The obvious
drawbacks are when your object hierarchy is changing a lot or when a new entity has
to be added. This could impact the database administration and the existing rows in
the table, which will have to be refactored in order to include more extra columns.
You also have to think carefully about removing any database columns that then
become unnecessary in the long run.

Chapter 5

[231]

The other drawback is about object entity size. If and when the object has too
many properties and fields to store, for example an extensive XML document record
for a particular domain such as Financial Product Mark-up XML Language (FPML)
that has the potential for more than 256 different properties, then the single strategy
table is not, perhaps, an optimal solution. The limit is the number of database
columns that can be stored in a table and all database servers impose different
restrictions; therefore, having entities with abnormally large numbers of properties
reduces your portability.

Your mileage will also vary if there are specific database columns in the entire entity
hierarchy that cannot be set to NULL. The single table strategy may not be appropriate
for such a circumstance.

Common base table hierarchy
The joined or multiple table inheritance is another strategy for persistence in
JPA. It is also called a logical inheritance solution for the reasons that properties
that are part off entities are mapped almost into the same database table. The
InheritanceType.JOINED is object-relational mapping strategy in which fields that
are specific to an entity subclass are mapped to a separate table from the fields that
are common to the parent class, and a join is performed to instantiate the subclass.

An example user story
Let's rework the previous user story about business marketing into the joined/
multiple inheritance strategy. Here is the code for the Marketing entity:

@Entity
@Table(name="MARKETING")
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="MARKETING_TYPE")
@DiscriminatorValue("M")
@NamedQueries({
 @NamedQuery(name="Marketing.findAll",
 query="SELECT o FROM Marketing m"),
 @NamedQuery(name="Marketing.findByCampaign",
 query="SELECT o FROM Marketing m WHERE "+
 "c.campaign = :campaign"),
})

Object-Relational Mapping with JPA

[232]

public class Marketing implements java.io.Serializable {

 @Id @GeneratedValue
 private int id;

 @Column(unique=true)
 private String campaign;
 private String promotion;
 private BigBecimal budget;

 @OneToMany(cascade=Cascade.ALL)
 @JoinColumn(name="PRODUCT_ID", referencedColumnName="ID")
 private List<Product> products;

 @Version
 private int version;

 public Marketing() { }
 /* ... */
}

The only difference is the new value for the @Inheritance annotation, which is
InheritanceType.JOINED. The root database table of the entity changes from
MARKETING_HIERARCHY to MARKETING in order to reflect that the table stores only this
exact entity class. The name queries are also the same as in the single database table
strategy. There is also a @DiscrimininatorValue annotation applied to this class to
differentiate Marketing instances from the other types in the hierarchy.

Here is the code for the sub entity class AgencyMarketing:

@Entity
@Table(name="AGENCY_MARKETING")
@DiscriminatorValue("A")
@NamedQueries({
 @NamedQuery(name="AgencyMarketing.findAll",
 query="SELECT m FROM AgencyMarketing m"),
 @NamedQuery(name="AgencyMarketing.findByCampaign",
 query="SELECT m FROM AgencyMarketing m "+
 "WHERE m.campaign = :campaign"),
})
public class AgencyMarketing extends Marketing {
 private String agency;
 private BigDecimal agencyBudget;

 public AgencyMarketing() { }
 /* ... */
}

Chapter 5

[233]

And here is the code for the sub entity class DirectMarketing:

@Entity
@Table(name="DIRECT_MARKETING")
@DiscriminatorValue("D")
@NamedQueries({
 @NamedQuery(name="DirectMarketing.findAll",
 query="SELECT m FROM DirectMarketing m"),
 @NamedQuery(name="DirectMarketing.findByCampaign",
 query="SELECT m FROM DirectMarketing m "+
 "WHERE m.campaign = :campaign"),
})
public class DirectMarketing extends Marketing {
 private String customerOrientation;

 @OneToMany(cascade=Cascade.ALL)
 @JoinColumn(name="DEPT_ID", referencedColumnName="ID")
 private List<Department> departments;

 public DirectMarketing() { }
 /* ... */
}

In the joined/multiple-inheritance strategy, both sub entities have separate database
tables assigned: AGENCY_MARKETING and DIRECT_MARKETING, respectively. The
name queries are unchanged. The discriminator values have been abbreviated, but
semantically they remain unchanged.

It is helpful to look at tabular output of sample database table in order to reason
about the persistence strategy.

Table MARKETING:

ID M'_TYPE CAMPAIGN PROMOTION BUDGET VERSION
1 M Food Plaza Supermarkets 23500750 64
2 A Green Sustainable 1000000 12
3 D National Railways 9500300 7
4 A Metro Bank 1500000 10

Object-Relational Mapping with JPA

[234]

Table AGENCY_MARKETING:

ID AGENCY AGENCY_BUDGET
2 Top 500000
4 Star 250000

Table DIRECT_MARKETING:

ID CUSTOMER_ORIENTATION
3 Television Adverts

The entity with primary key ID=1 is a Marketing instance. Entities with ID matching
2 and 4 are AgentMarketing instances and finally the entity with ID matching 3 is a
DirectMarketing instance. Examine the discriminator column, which is abbreviated
to M'_TYPE in the above table MARKETING.

Benefits and drawbacks of joined Inheritance
The largest benefit of the joined strategy is that the data is spread over the separate
tables that mirror the object class instance. This ensures great comprehensibility
when only certain properties and attributes are selected, and they are restricted to a
specific entity type.

Another benefit of this strategy is that certain database columns can be constrained to
non-NULL, because each table manages a particular entity field or property accessor.

Introducing a new type in the hierarchy is relatively straightforward. Only the
properties declared in the entity class are mapped to a new database table, therefore
there is no interference in the super entity classes and other sibling entity classes.

Also, changing around the fields and the property classes in the declared entity class
does not interfere with the super entity classes and other siblings. There is great
benefit from the joined strategy in the field of prototyping a system for a business.

The obvious drawback with the joined table strategy is the combination of separate
JOIN SQL clauses, which the persistence provider has to apply to in order to retrieve
the combined object instance. The higher up in the entity class hierarchy, the more
ancestral the target type, the more the join clauses are required across the known
database tables. The discriminator column in each entity can alleviate these symptoms
when the persistence provider, internally, implements a lazy-loading design.

Chapter 5

[235]

In general, the poorest performance will be those queries that require root entities,
because they will retrieve all the types in all of the multiple tables.

There is also the issue of software engineering practice, or rather agile development,
where it is common nowadays to refactor member instance and property accessor
on the fly. Developers can pull-up or push-down instance members to ancestors
or subclasses with the delicate touch and selection of menu-bar actions in an IDE.
With entities backed by a real database, this may be problematic for less Greenfield
environments; a data migration plan may be necessary for hierarchical changes
aimed at postproduction environments.

Table-per-class hierarchy
The table-per-class inheritance is the final strategy for persistence in JPA, which
is an optional part of specification for the persistence provider. In order to keep
your application, you may choose to avoid this strategy. The InheritanceType.
TABLE_PER_CLASS is object-relational mapping strategy in which only the outermost
concrete entity classes in an object hierarchy are mapped to a separate and dedicated
database table. There are no shared database tables, and there are no shared columns.
However, there are one or more primary key columns in each of the dedicated tables;
the primary key structure is shared around the database tables.

An example user story
Let's rework the previous user story about business marketing into the table-per-
class inheritance strategy. In this example, we now make the root entity an abstract
class, so that there can be never any Java instances of this direct type.

Here is the code for the Marketing entity:

@Entity
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
@NamedQueries({
 @NamedQuery(name="Marketing.findAll",
 query="SELECT o FROM Marketing m"),
 @NamedQuery(name="Marketing.findByCampaign",
 query="SELECT o FROM Marketing m WHERE c.campaign =
:campaign"),
})
public abstract class Marketing implements java.io.Serializable {
 @Id @GeneratedValue
 private int id;

Object-Relational Mapping with JPA

[236]

 @Column(unique=true)
 /* As before in the single table strategy... */

 public Marketing() { }
 /* ... */
}

In the previous code, we apply the strategy InheritanceType.TABLE_PER_CLASS to
the entity. We no longer require the discriminator column and so that annotation has
been removed.

Even though there can be no entity instance of the abstract type Marketing, we can
still keep and write named queries that reference it.

Here is the code for the sub entity class AgencyMarketing:

@Entity
@Table(name="AGENCY_MARKETING")
@NamedQueries({
 @NamedQuery(name="AgencyMarketing.findAll",
 query="SELECT m FROM AgencyMarketing m"),
 @NamedQuery(name="AgencyMarketing.findByCampaign",
 query="SELECT m FROM AgencyMarketing m WHERE
m.campaign = :campaign"),
})
public class AgencyMarketing extends Marketing {
 private String agency;
 private BigDecimal agencyBudget;

 public AgencyMarketing() { }
 /* ... */
}

Here is the code for the sub entity class DirectMarketing:

@Entity
@Table(name="DIRECT_MARKETING")
@NamedQueries({
 @NamedQuery(name="DirectMarketing.findAll",
 query="SELECT m FROM DirectMarketing m"),
 @NamedQuery(name="DirectMarketing.findByCampaign",
 query="SELECT m FROM DirectMarketing m WHERE
m.campaign = :campaign"),
})

Chapter 5

[237]

public class DirectMarketing extends Marketing {
 private String customerOrientation;

 @OneToMany(cascade=Cascade.ALL)
 @JoinColumn(name="DEPT_ID", referencedColumnName="ID")
 private List<Department> departments;

 public DirectMarketing() { }
 /* ... */
}

It is not necessary to have a discriminator column or value for both AgencyMarketing
and DirectMarketing entities when using the table-per-class strategy.

It is instructive to look at the result database table.

Table AGENCY_MARKETING:

ID CAMPAIGN PROMOTION BUDGET VERSION AGENCY AGENCY_
BUDGET

2 Green Sustainable 1000000 12 Top 500000
4 Metro Bank 1500000 10 Star 250000

Table DIRECT_MARKETING:

ID CAMPAIGN PROMOTION BUDGET VERSION CUST'_ORIENTATION
3 National Railways 9500300 7 Television Adverts

As you can see only concrete entity classes are mapped to the database using
TABLE_PER_CLASS.

Benefits and drawbacks of table-per-class hierarchy
The largest benefit of the table-per-concrete class strategy is shared with the joined
strategy. When a new branch entity subclass is added to the application then only
one other new corresponding database table is required, which of course is great
for designing prototype and introducing hierarchy changes at the beginning of a
software application.

Introducing a new field or property accessor in a super class (or for that matter
removing one) means the change must percolate through the subclasses in that
affected node in the hierarchy. It means modifying the database tables for all the
affected subclass entities.

Object-Relational Mapping with JPA

[238]

If there is a need to have database columns that are non-NULL, then the strategy
allows for non-nullable columns.

There is also a performance impact for the table-per-concrete class strategy. The
persistence provider has to generate UNION SQL select statement to retrieve an
entity and its sub-type in combination. On the other hand, if only a single entity
type is mostly required, then this strategy can be efficient, because only a query that
retrieves one database table is required. Because of the generation of UNION SQL
statement, this strategy also shares the drawback with the joined strategy, if mostly
ancestor entities are queried and modified.

Table-per-class inheritance may not be appropriate if the entity queries are supposed
to be ordered or joined in a query. The JPA persistence provider will first order any
queries by class then by other user defined ordering.

Having seen the JPA handle entity inheritance in this section, we shall look at the
situation where the mappings can be shared across super classes.

Extended entities
JPA supports the ability to map entities that share a super class. The object's
inheritance is not mapped, but the mapping of the superclass is shared and therefore
reused. This is in contrast to the entity inheritance modeling in the previous section.

Mapped super-classes
A mapped superclass is a non-entity class that contains metadata information: a
class that has persistence annotations, which is quite similar to the table-per-class
inheritance, but has no support or ability to be queried, stored, and modified into
the database. A mapped superclass is not an entity and therefore has no equivalent
database table (or view) applied.

The entity subclasses of the mapped superclass contain the necessary persistence
capable information in order to map the object instance into a database table.

The annotation @javax.persistence.MappedSuperclass declares an object class an
extended persistence capable object, but it is not an entity. A mapped super class can
declare persistent fields and accessor properties. It is non-entity and therefore cannot
be part of queries, JPQL, or other entity relationships.

Chapter 5

[239]

Here is an example of the Marketing class as a mapped superclass:

@MappedSuperclass
public abstract class Marketing implements java.io.Serializable {
 @Id @GeneratedValue
 private int id;

 private BigBecimal budget;
 /* As before in the single table strategy... */

 public Marketing() { }
 /* ... */
}

This version of Marketing is not an entity and therefore cannot be queried. Hence
there are named queries applied to this class; they have been removed.

Here is the AgencyMarketing entity using the mapped superclass:

@Entity
@Table(name="AGENCY_MARKETING")
@NamedQueries({
 @NamedQuery(name="AgencyMarketing.findAll",
 query="SELECT m FROM AgencyMarketing m"),
 @NamedQuery(name="AgencyMarketing.findByCampaign",
 query="SELECT m FROM AgencyMarketing m WHERE
m.campaign = :campaign"),
})
public class AgencyMarketing extends Marketing {
 private String agency;
 private BigDecimal agencyBudget;

 public AgencyMarketing() { }
 /* ... */
}

The entity AgencyMarketing is mapped to a single database table AGENCY_
MARKETING. It has all of the columns defined in the Marketing superclass and its own
class. This entity can have named queries, which only retrieve the instances of the
AgencyMarketing, since this class is not taking part in entity inheritance strategy.

The @MappedSuperclass is very useful for applications that share a set of common
persistence fields across entities. Developers can provide persistent properties across
a whole domain, for example an auditing mapped superclass is easily written.

Object-Relational Mapping with JPA

[240]

JPA provides another annotation @javax.persistence.AttributeOverride. This
is useful to override the mapping in a super class. It requires the name of the field or
the property accessor and then the configuration for the new database column.

Here is an example of its use in the DirectMarketing entity:

@Entity
@Table(name="DIRECT_MARKETING")
@AttributeOverride(name="budget",
 column=@Column(name="FIELD_BUDGET"))
@NamedQueries({
 @NamedQuery(name="DirectMarketing.findAll",
 query="SELECT m FROM DirectMarketing m"),
 @NamedQuery(name="DirectMarketing.findByCampaign",
 query="SELECT m FROM DirectMarketing m WHERE
m.campaign = :campaign"),
})
public class DirectMarketing extends Marketing {
 private String customerOrientation;
 /* ... */

 public DirectMarketing() { }
 /* ... */
}

The application of @AttributeOverride to DirectMarketing entity overrides the
budget field of the Marketing mapped super class into the database column name
called FIELD_BUDGET for the database table DIRECT_MARKETING.

Troubleshooting entity persistence
It is very thorough and clean specification that allows the skilled developer to
write persistence code as Java object with meta data. The meta data allows the
JPA provider to store data into a relational database. The technical content of JPA
specification is of such a high level that cloud computing providers are already
attempting to adapt it to their specialist environments, which have included key-
value No-SQL database, albeit with limitations.

Nevertheless, if your development is targeted at relational databases then JPA can
help your application evolve at fast agile pace without having to handcode native
SQL statements.

Chapter 5

[241]

Fetch performance
In the earlier part of the chapter, we introduced the topic of fetching and
accessing information from database tables into entity object instances. A huge
factor that influences the performance of JPA application is the object model: how
an entity is associated with an other dependent entity. The more dependent entities
there are in a master entity, the more work the persistence provider must do. The
object model and how these entities are mapped to the database tables influence the
persistence provider.

It is useful to remember that FetchType.LAZY is the default for @OneToMany and
@ManyToMany associations; FetchType.EAGER is the default for @OneToOne and
@ManyToOne association.

For certain situations, provided you always follow the golden rule: measure before
and rule, then you override the FetchType.EAGER for the one-to-one and many-to-
one associations. If you switch to lazily binding dependent object, be prepared to
factor in detachment from the entity manager and reattachment.

Prefer lazily binding for maximum performance
If you are sending a master entity with a lazily bounded dependent entity across a
JVM boundary across the network, and if the client suddenly expects to access the
dependency, then there will be a problem on the client side application. One way to
get out of this fix to have an aggregated view, a so-called projection view object.

Finally, binding affects query performance. The way the persistence provider
eventually optimizes query could vary between lazily and eagerly bounded
dependent entities.

Entity Relationship
The entity relationship and object-relational mapping can be problematic. Choosing
the correct java.util.Collection interface obviously early in the development
goes a long way to good design. Some persistence providers extend the JPA
specification by allowing ordered collections. On the other hand, for true application
portability across a number of database vendors it may be best to take control of
this in your application. An ordered collection can be achieved with an artificial
positioning field and it can, of course, be completed with a JPQL query with a
particular ORDER BY clause. There are also a couple of further annotations to look
for in the JPA specification that can be applied to entity relationships: they are called
@javax.persistence.OrderBy and @javax.persistence.OrderColumn.

Object-Relational Mapping with JPA

[242]

Here is an example of @OrderColumn in use with our employee entity, once again,
on one-to-many association with phone records:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @OneToMany(cascade = CascadeType.ALL)
 @OrderColumn(name="PHONE_ORDER")
 private List<Phone> phones;

 public List<Phone> getPhones() { return phones; }
 public void setPhones(List<Phone> phone) {
 this.phones = phones; }
}

The @OrderColumn may only be specified on a one-to-many or a many-to-many
association. This annotation specifies that the persistence provider order the list
collection of Phone entities using the field or property accessor called PHONE_ORDER,
which must exist on the Phone entity.

The @OrderBy annotation specifies the ordering of a collection of dependent entities
when the persistence provider retrieves those entities. Thus @OrderBy has subtly
different behavior from the @OrderColumn; the latter implies a modification of the
database schema.

Let's rework the employee entity with the @OrderBy annotation:

@Entity
public class Employee implements java.io.Serializable {
 /*...*/

 @OneToMany(cascade = CascadeType.ALL)
 @OrderBy("interCode ASC, areaCode ASC")
 private List<Phone> phones;
 /*...*/
}

In the previous code, the collection of Phone entities are ordered by the international
code and then by area code; both orders are ascending. It is possible to reverse the
order, make the ordering descend with DESC. If no order is supplied, then the
default is ASC. As you can see, you delimit separate different orders by using a
comma as a delimiter.

Chapter 5

[243]

In terms of efficiency, when you have full administrative control of the database,
then use @OrderColumn, because the order is then persistent inside the database. If
you have no control because the database is owned by a different division, team, or
even is a third-party, then you may prefer to use @OrderBy.

Prefer orphan removal
In JPA 2.0 and better you are advised to think about the orphanRemoval attribute in
the entity relationship. This flag handles the situation when you remove an entity
from a collection of entities, for example in @OneToMany association. In JPA 1.0, the
developer had to invoke EntityManager.remove(). In JPA 2.0, the entity itself
will handle removal automatically with orphanRemoval=true even if the cascade
operation CascadeType.REMOVE is omitted.

Excessive queries
It is quite easy to get into trouble with one-to-many relationships with queries on the
master object. Object-relational mapping providers have denoted this issue as the
N+1 problem (or more accurately M(1+[N of R(M)])).

Suppose we have Project and Task entities in a one-to-many relationship. We
have M projects and each project entity stores N project tasks and if we also say the
binding is FetchType.EAGER, then for every Project query the persistence provider
has to make N additional queries to retrieve the Task information.

The problem exacerbates itself in search listing. Display a list of projects to the user
with their tasks. It is retrieving the list of projects and dependent task entities that
causes excessive queries.

From the point-of-view of the persistence provider, the simplest native SQL queries
would look exactly like the following:

-- One operation to retrieve
SELECT * FROM PROJECT

-- For each row from EMPLOYEE then execute
SELECT * FROM TASK WHERE PROJECT_ID = ?

The solution is to use a technique called Joined Fetching, which results in both
Project and Tasks data being retrieved in a single query.

SELECT p FROM Project p JOIN FETCH p.tasks

Object-Relational Mapping with JPA

[244]

Object corruption
JPA specification supports bidirectional relationships and the persistence providers
do a fantastic job to allow these entity associations to be mapped to a database.
A Java developer has to ensure that the application updates both sides of the
relationship. If the entity is added to one side of the relationship, the inverse
relationship must be also taken care of, otherwise object corruption will take place at
some stage during persistence.

Summary
In this chapter, we have seen how to improve the efficiency of entity beans in
relationships. You are now in a position to add finesse to our your JPA code. We
can bind entity object eagerly as well as lazily and learned about the trade-off in the
fetching strategy.

There was a section on auto-generation of primary key columns and now we can
use different strategies for @GeneratedValue. These include table, sequence, and
identity generators.

We cover the JPA cascade operations and how they allow us to propagate important
lifecycle events to dependent entities. We saw how these cascade events can be fairly
useful to update and manage dependent entities.

We revisited entity relationships and covered them in depth for both unidirectional
and bidirectional associations. We explored in full the four relationships: @OneToOne,
@OneToMany, @ManyToOne, and @ManyToMany.

We delved into entity inheritance and three strategies that JPA supports. We
examined in depth the InheritanceType.SINGLE_TABLE, InheritanceType.
JOINED and InheritanceType.TABLE_PER_CLASS; and discussed the advantages
and disadvantages of all of them. Finally, we covered mapped super classes, where
a common ancestor non-persistence capable class can be shared by many entities. To
close off, we looked at some of the common performance issues that can occur when
developing with JPA, especially with queries.

Chapter 5

[245]

This chapter and the previous one in beginning Java Persistence should now empower
you, the humble Java EE developer, to write persistence services for enterprise
session bean, those endpoints that are the starting block for any compliant enterprise
application. All you now have to do is starting coding. The book and this chapter have
full source code available with working examples of all the entity associations, entity
inheritance, and fetch strategies for reference.

Chapter 11, Advanced Topics in Persistence, covers more advanced topics and new
features in JPA 2.1, which discusses queries and EJB QL, Criteria queries, and object
relational mapping using java.util.Map collections and persistence with database
stored procedures.

For the next chapter, we move away from persistence and delve into Java Servlet
programming with a slant to asynchronous input and output. Servlets are the
foundation for web application in Java EE, and asynchronous I/O allows the servers
and endpoints to scale.

Java Servlets
and Asynchronous

Request-Response
Oprah Winfrey said, "I'm black, I don't feel burdened by it, and I don't think it's a
huge responsibility. It's part of who I am. It does not define me."

Java Servlet is perhaps one of the oldest application programming interfaces
for running Java on a web application server. It is the conceptual mirror of the
original Java Applet, the sandbox environment that allowed byte codes to be run
in a JVM, embedded into a web browser. Java Servlet is a remote endpoint for an
HTTP communication also, in a sort of sandbox environment, but now we call it a
web container.

From Java Servlets, in the late 1990's, there came a flurry of technologies to do
with the World Wide Web and the exponential growth of the Internet, which saw
the ushering of the contemporary digital age in fast communication. Java Servlets
expanded and were supported by Java Server Pages (JSP), Java Server Page Tag
Libraries (JSTL), and then Java Server Faces (JSF).

Java Servlets are the foundation of understanding how Java works in a web
environment using the Java EE 7 specification and the Standard. Although the
humble Servlet is not the only way to generate dynamic web content for today's
digital media, social networking, and cloud computing requirements for a scalable
and sustainable business, it is so well known by the Enterprise Java professionals, it
is worth your while getting to know how it operates.

Java Servlets and Asynchronous Request-Response

[248]

In this chapter, we will cover only the essential features of the traditional Java
Servlet model. There are lots of tutorials, online descriptions, and, of course, books
that describe how Java Servlets handle the requests and responses in a synchronous
fashion. The aim of the chapter is to review the new features of Java Servlet 3.1
including the improvements in the API to handle asynchronous input and output.
But first, let us understand exactly what Java Servlets are. Why do we need them and
how do we use them?

What are Java Servlets?
A Java Servlet is a web component managed container. Java Servlets are based on
the Java technology, they generate dynamic content, and hence the container that
manages them is capable of delivering dynamic content to the web client. Because
Java Servlets are built, most of the time, in the Java language, they are executed in
a Java Virtual Machine (JVM), and the container that manages them controls their
entire lifecycle and is responsible for starting and stopping them. Servlets interact
with the world through a protocol called request-response.

A web client sends a request to the container that dispatches the request to a specific
Java Servlet, which in turn processes the request, and then generates a response. The
web client receives the response of the Servlet and can take further action accordingly.

Web containers
In the business, we normally call these containers web containers, because they not
only manage the dynamic content components, such as Java Servlets, but also JSP
and JSF, and deliver static content, such as HTML, images, and other MIME content.

Web containers communicate with the outside world, the web client with the HTTP
and HTTPS protocols. These specifications are the foundation of the World Wide
Web, and allow the Java components to communicate over the Internet's hypermedia
platform. The standard and certified web containers for Java all implement
HTTP/1.1, which are the HTTP protocols, governed by the Request For Comments
(RFC) standards, namely RFC 2619 (June 1999), which defines the standard.

The Java Servlets specification talks about the container as a Servlet container.
For the most part, this is an artifact of history of the Enterprise platform; Servlets
were one of the earliest Java Enterprise Editions standards to be delivered along
with Enterprise Java beans. For all intents and purposes, the Servlet containers are
practically web containers in the open source and business worlds. There was a time
in the beginning, in the first implementations of Enterprise Java, where only Servlets
existed. There was no JSP or JSF, and hence the name, Servlet container, stuck
around and continues to this day.

Chapter 6

[249]

A web container can be a separate entity of a web server, as Apache Tomcat is
separate to the Apache HTTP Server. A web container can also be part of a full
application server, such as the GlassFish server. A web browser client communicates
with the web applications inside a web container using the Java Servlet API, which is
the standard library for the HTTP communications.

The Servlet container (or web container) manages the lifecycle of the web
applications, which are deployed to it (or undeployed from it). Each web application
is separated from the other, because they are associated with their own ClassLoader,
so effectively no instances of the class context are visible to any of the parallel contexts.
All web applications in the container will share the boot classpath and the web
container's common ClassLoader. Each web application has a combination of Java
Servlet, filter, context listeners, and dynamic content, JSP or JSF. Many traditional
business applications employed a web framework in order to add the robust
application architecture, and to avoid dealing with the low-level Java Servlet API.

Java Servlets and Asynchronous Request-Response

[250]

The lifecycle of Java Servlets
Java Servlets are governed by a web container (a Servlet container). The specification
describes a full lifecycle of events for a Servlet. In particular, web container is
responsible for loading and instantiating Servlets. The container then dispatches the
requests to Servlets. Finally, when web container shuts down, it will give a chance to
Servlets to close down appropriately. This is the basic model of operation.

Web container has one other important responsibility. It can host different web
applications all at the same time in order to share the web server or the application
server. The container must protect the web applications from interfering with each
other. Therefore, Java Servlets in one web application are limited from deliberately
and directly invoking, through a Java invocation, another Servlet in another web
application, shared inside the same web container. It is an early form of multi-
tenancy in the Java EE specification.

The package name for Servlets is called javax.servlet, and for the HTTP Servlets it
is javax.servlet.http.

Java Servlets are defined by interface, namely javax.servlet.Servlet, which
defines the methods that all Servlets must implement.

Loading Servlets
Java Servlets are loaded when a web application is started. The Standard defines the
loading time as a choice between when the web container starts or is delayed until
the container determines the Servlet is needed to service a request. In other words, it
is a choice for the web container implementers to make. Developer does not have any
say in exactly how a Java Servlet is loaded.

For a standalone container such as Tomcat, it makes perfect sense to load the web
application with its Java Servlets as soon as possible.

For a cloud computing provider, now or in the future, it may only make sense
to lazily load the web application and only deliver those system resources as the
circumstance-permitting may be.

Chapter 6

[251]

The Java Servlet initialization
The web container initiates Servlet before it can start servicing the requests from the
HTTP clients. After loading a Java Servlet, the container makes a call to the init()
method. The initialization call allows a Java Servlet to acquire generic resources from
other Enterprise components such as Java data persistence providers, transaction
services, and other resources. The initialization call only happens once per Servlet,
and the init() method must complete successfully in order for Servlet to participate
in further requests.

Web container also supplies the init() method with a javax.servlet.
ServletConfig object. In this way, a system specific configuration can be passed
to Servlet at the initialization time. Servlet can read the initialization parameters as
the name and value parameters, and act upon them. A collection of the initialization
parameters could be the details to connect to a database, for example the hostname,
port, user credentials, and database schema name.

Java Servlets and Asynchronous Request-Response

[252]

The Java Servlet destruction
Web container gives a chance for a Servlet to know when it is being released from
service. This is the time for a Java Servlet to release any expensive resources,
connections, and other handlers, and perform clean up, as needed. The container
calls the destroy() method on Servlet.

The Servlet request and response
Web container dispatches the incoming requests to a particular web application,
which it configures by the URL routing information. Once the container identifies
the application, it dispatches the request to a Servlet. The container invokes the
service() method on Servlet with the following two arguments: javax.servlet.
ServletRequest and javax.servlet.Response.

ServletRequest contains all the information about the incoming request. In
particular, it has the details of the Servlet request parameters, name and value pairs,
the MIME content and length, if any, and the remote host and port of the web client.

ServletResponse contains all the information for Servlet to generate the
response. The response assists Servlet in sending back a suitable response.
ServletResponse has java.io.OutputStream, in which a Servlet can write a
dynamic response. It can also set the MIME type and length of the response with
the appropriate character encoding.

It is important to understand that the Servlet model was abstracted at the very
beginning to allow Servlets to serve inputs other than the HTTP requests.

Most of the time, as a developer, you would see the javax.servlet.
HttpServletRequest and javax.servlet.HttpServletResponse objects, as it is
far easier to write Servlets that inherit from the abstract base class javax.servlet.
HttpServlet.

Chapter 6

[253]

The following table summarizes the javax.servlet.Servlet calls:

Method Name Return Type Description
init(ServletConfig
config)

void Web container invokes this method
to allow a Servlet to know that it has
been loaded and is about to be put
into service.
The Servlet instance can throw
an UnavailableException or
ServletException exception to
denote when the initialization has
failed. If this happens, then the web
container does not put the Servlet
instance into service.

getServletConfig() ServletConfig Returns the ServletConfig object,
which contains the initialization and
startup parameters for this Servlet.
Developers do not normally override
this method.

getServletInfo() String Returns the Servlet information as
plain text only: the author, version,
and production details.

service(
ServletRequest
request,
ServletResponse
response)

void It is called by web container in order
to allow Servlet to process a request
and send a response.
Servlet may throw an
UnavailableException or
ServletException exception
for an incoming request. If
ServletException is thrown, web
container takes an action, and cleans
up the request.
During processing, Servlet may
throw a java.io.IOException
exception, if an input or output
exception occurs.

destroy() void Web container calls this method just
before Servlet is taken out of service.
Web container does not call the
destroy method, if the Servlet
instance fails to be initialized.

Java Servlets and Asynchronous Request-Response

[254]

A Servlet can throw two types of exceptions, namely javax.servlet.
UnavailableException and javax.servlet.ServletException.

ServletException defines a general class of exception thrown by all the Servlet
types. There is really no difference between it and the standard checked exception. It
can record an error message and an optional root cause.

UnavailableException is a subclass of ServletException and the unavailable
exception signifies that Servlet cannot be initialized or it can immediately service
the incoming request. The UnavailableException class has a method
isPermanent() that the framework can query to find out, if Servlet is permanently
or temporarily disabled.

For the permanent situation, web container removes the Servlet instance from the
in-active-service collection. For the temporary situation, web container will remove
Servlet from service for N number of seconds, which can be established from a call to
getUnavailableSeconds(). The only difference between permanent and temporary
is the call to the UnavailableException constructor.

HTTP Servlets
The abstract base class javax.servlet.http.HttpServlet is a subclass of javax.
servlet.GenericServlet, and implements the Servlet and ServletConfig
interfaces. As mentioned before, it is far easier to write Java Servlets that extend this
abstract class, because it has facilities to support the HTTP protocol.

The HttpServlet class takes care of decoding the HTTP method, by delegating to
the following methods:

HTTP
METHOD

Method Description

GET doGet This Servlet method is reserved for the HTTP GET
requests, which retrieve information that is determined
by the request URI.

POST doPost This method is reserved for the POST requests, which
deliver to Servlet the content to store and/or update
related to the request URI. The Post requests are usually
blocks of data, form submissions, and extending a
database with extra information.

PUT doPut This method is reserved for the PUT requests, which
are similar to the POST request, but insert a brand new
entity related to the request URI. The equivalent request
would insert a new row into a database table.

Chapter 6

[255]

HTTP
METHOD

Method Description

DELETE doDelete This method is reserved for the DELETE requests, which
are actions to remove information, the entity related to
the request URI.

HEAD doHead This method is reserved for the HEAD requests, which
are actions to return only the HTTP header information
related to the request URI. Web container does not
return a message body to the client in this protocol.

OPTIONS doOptions This method is reserved for the OPTIONS requests,
which are details about the request-response choices
available for a particular URI.

TRACE doTrace This method is reserved for the TRACE requests, which
are actions to send back only a reflection of the incoming
message related to the web request. Servlet should
perform no irreversible and critical business processing
with the application data in this protocol. A trace allows
a web client the product of what has been received at the
Servlet end.

Developers who subclass the HttpServlet class rarely have to override the
service() method, because this Servlet adds additional methods that map the
HTTP request into one of the preceding methods.

The deployment model
Servlets are deployed to a web container using a specialized form of Java Archive
(JAR), it is called a Web Archive (WAR), otherwise known as a WAR file. The WAR
file is a deployment of a single web application that is deployed by a web container.
The WAR file contains dynamic elements, such as Java classes organized in packages.
It can also contain JSP, tag libraries, third-party libraries, and also static content.

Java Servlets and Asynchronous Request-Response

[256]

The structure of a WAR is standard in Java EE and is based on a special directory or
folder name that is reserved for the metadata content called /WEB-INF. This is similar
to /META-INF in JAR in that the directory is hidden from view; the web container
does not serve any content underneath the directory. Any other folder or files other
than these two are servable by the web container.

Folder or File Description
/ The root directory of the web archive and

also the web application
/WEB-INF The root directory for the web application

metadata that is hidden from view
/WEB-INF/web.xml The web application deployment descriptor

file (optional in the Java EE 7 application
server and the web profile conformant
container)

/WEB-INF/classes A subdirectory reserved for the compiled
Java classes in an exploded view

/WEB-INF/lib A subdirectory reserved for the third-party
libraries distributed with the web application

/WEB-INF/tld A subdirectory specially reserved for the tag
library definitions (circa J2EE 1.4)

/WEB-INF/tags A subdirectory specially reserved for the tag
library definitions

Under the root folder, developers can organize the structure of the web application
however feels right. A sample web application with some content, which is
organized in a meaningful and modern way is as follows:

/index.jsp
/pages/header.jsp
/pages/footer.jsp
/content/
/content/application.jsp
/content/app/sales/
/content/app/marketing/
/content/app/humanresources/
/images/icon.png
/javascript/jquery.js
/javascript/modernizer.js
/styles/

Chapter 6

[257]

/styles/main.css
/styles/desktop/ie9.css
/styles/tablet/ios.css
/styles/tablet/android.css
/styles/mobile/
/WEB-INF/web.xml
/WEB-INF/classes/
/WEB-INF/lib/
/WEB-INF/tags/

The root of the JAR file is the root directory for the web application. Web containers
deploy a WAR file to a web context usually by the base name of the filename, which
usually derives the default name of the web application. For example, given a WAR
file named seaside.war, the default web context will be named seaside. To reach
the PNG file from a locally installed web container, we might have a URL reference,
such as http://localhost:8080/seaside/images/icon.png.

To summarize the point for the WAR file, the compiled Java classes (or from any
other alternative JVM programming language) are dumped in the /WEB-INF/
classes directory. The /WEB-INF/lib directory is where all the third-party or
internal JAR libraries are copied to.

The web deployment file web.xml, which is covered later, configures Java Servlets,
the Servlet filters, and listeners for your application. It is always found in the /
WEB-INF subdirectory. Finally, your web application, if it makes use of the JSP, JSF
technology, may require the tag libraries and/or define its own custom set of tag
libraries and fragments for rendering the definitions of extra tag libraries. lives in the
folder /WEB-INF/tags.

Finally, your application can place static resources and dynamic pages in structure
that makes sense to your organization and, of course, to your architecture.

A WAR file is a Zip file of all of the entire web applications with metadata.
Deployment to web container is usually performed through a build system, such
as Apache Ant, Maven, or Gradle. Some web containers provide specialist tools
to deploy the WAR files, which can be standalone plugin programs for IDE, or be
operated through the administration web pages inside an application server.

Java Servlets and Asynchronous Request-Response

[258]

Getting started with Java Servlets
There is a reason why we have not examined a web deployment context file up
until now. With Java Servlet 3.1, you do not have to define a context file, because
developers can choose to write Servlets using the annotations, and web container
can work out how to build the metadata for the Servlet at the deployment time.

A simple Servlet
It is time to examine a sample Java Servlet and we will introduce the annotations.
The code for SimpleServlet is as follows:

package je7hb.servlets.simple;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;

@WebServlet("/simple")
public class SimpleServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 PrintWriter pwriter = resp.getWriter();
 pwriter.printf("This is the class `%s'\n"+
 "The date time is %s\n", this.getClass().getName(),
 new Date());
 }
 }

The preceding code is perhaps the easiest Servlet that you can develop and deploy
to an application server or web container.

Chapter 6

[259]

The SimpleServlet subclasses the abstract base class HttpServlet, and chooses to
override the doGet() method, which handles the HTTP GET protocol request. The
Servlet class is also annotated with @javax.servlet.annotation.WebServlet. This
is one of many new annotations since Servlet 3.0 and the Java EE 7 specifications.

The doGet() method takes two parameters, namely HttpServletRequest and
HttpServletResponse. With the response object, Servlets sets the content type of the
response to text/plain. This should only be set once per response for a given request.
The method retrieves a PrintWriter instance for the response. The getWriter()
method is one of the many convenient methods in HttpServletReponse. Servlet
generates the output of the Servlet's full class name, and the current data and time.

By the way the HttpServletResponse interface also has a getOutputStream()
method that returns java.io.OutputStream. This is useful for streaming the output
applications. Let me warn you to decide on using either OutputStream or Writer.
Once the output has been pushed to the HTTP response then the Servlet framework
prevents the application from changing the content type mid-flow.

Annotating a class with @WebServlet, unfortunately, is not a free-for-all. A Java class
annotated with @WebServlet must be a subclass of HttpServlet. The annotation
serves to purely define a Servlet component in a web application. In particular, a
Servlet can have a unique name and can respond to a set of URL patterns. In the
SimpleServlet code, we are declaring Servlet with the name as simple.

In order to access this Servlet on a web container, for example, we would specify a
URL like the following URL:

http://<host>[:<port>]/<web-app>/simple

Where host is the hostname of the server, port is the port number, and web-app
specifies the name of the web application.

Java Servlets and Asynchronous Request-Response

[260]

A table of the attribute definitions for the @WebServlet annotation is as follows:

Attribute Type Description Default
Value

name String Defines the name of
Servlet.

Empty

value String [] Defines the URL patterns
of Servlet.

None

urlPatterns String [] Defines the URL patterns
of Servlet.

loadOnStartup Int Specifies the load-on-
startup order of Servlet.

-1

initParams WebInitParam
[]

The initial parameters of
Servlet.

None

asyncSupported Boolean Specifies if Servlet
supports asynchronous
operations and processing
or not.
See also the
ServletRequest.
startAsync() methods.

false

displayName String The display name of
Servlet

Empty string

description String The description for a
Servlet

Empty string

smallIcon String Specifies a path to a small
icon

None

largeIcon String Specifies a path to a large
icon

None

The URL path mapping
According to the preceding information, we could have annotated Servlet with
specific URL patterns and given it internally, a different name. Some additional
usages of the @WebServlet annotations with the same Servlet are as follows:

@WebServlet(urlPatterns = {"/simple"}, name = "simple")
public class SimpleServlet extends HttpServlet {/*... */}
// For example, http://localhost:8080/mywebapp/simple

Chapter 6

[261]

This annotation declares the exact same Servlet configuration as the previous
example code. SimpleServlet will be invoked by web container with any URL
pattern matching /simple. The URL patterns are exact and therefore, the preceding
pattern does not match the URL /simple/1, which presumably would be useless in
a RESTful application. If you want to match anything after the forward slash (/) then
you must use something like the following code:

@WebServlet(urlPatterns = {"/simple/*"}, name = "simple")
public class SimpleServlet extends HttpServlet {/*... */}
// For example, http://localhost:8080/mywebapp/simple/1
// For example, http://localhost:8080/mywebapp/simple/glasgow

What if we wanted to configure Servlet to respond to certain names? We can achieve
this requirement with two URL patterns like the following:

@WebServlet(urlPatterns = {"/sarah","/paul"}, name = "simple")
public class SimpleServlet extends HttpServlet {/*... */}
// For example, http://localhost:8080/mywebapp/sarah
// or http://localhost:8080/mywebapp/paul

Web container only invokes SimpleServlet when the incoming URL request
matches the pattern. The forward slash characters (/) at the beginning of the patterns
are significant. They serve to demarcate the URL paths.

See the Miscellaneous features section of this chapter, for further information on the
URL patterns.

Now we have a Java Servlet, so what do we need to install it onto a web container?
The answer is that we have to assemble it as a compiled Java class into a WAR file,
a web application archive. So let's use Gradle to do it, and we are going to deploy
it onto a GlassFish application server, but in this chapter, we make use of building
a so-called container-less web application. This is just a fancy name for running an
embedded web container or application server from the standard entry into a Java
application, the JVM invokes main(String args[]).

Java Servlets and Asynchronous Request-Response

[262]

The Gradle build project
The Gradle build for the SimpleServlet example is as follows:

apply plugin: 'java'
apply plugin: 'war'
apply plugin: 'maven'
apply plugin: 'eclipse'
apply plugin: 'idea'

group = 'com.javaeehandbook.book1'
archivesBaseName = 'ch06-servlets-basic'
version = '1.0'

repositories {
 mavenCentral()
 maven {
 url 'https://maven.java.net/content/groups/promoted'
 }
 maven {
 url 'http://repository.jboss.org/nexus/content/groups/public'
 }
 }

dependencies {
 providedCompile 'org.glassfish.main.extras:
 glassfish-embedded-all: 4.0.1-b01'
 compile 'org.glassfish.main.extras:
 glassfish-embedded-all: 4.0.1-b01'
 compile 'javax: javaee-api: 7.0'

 testCompile 'junit: junit: 4.11'
 }

war {
 // webXml = file("src/main/webapp/WEB-INF/web.xml")
 }

// Override Gradle defaults - a force an exploded JAR view
sourceSets {
 main {
 output.resourcesDir = 'build/classes/main'
 output.classesDir = 'build/classes/main'
 }

Chapter 6

[263]

 test {
 output.resourcesDir = 'build/classes/test'
 output.classesDir = 'build/classes/test'
 }
 }

task(run, dependsOn: 'classes', type: JavaExec) {
 description = 'Runs the main application'
 main =
 'je7hb.common.webcontainer.embedded.glassfish.EmbeddedRunner'
 classpath = sourceSets.main.runtimeClasspath
 args 'Mary', 'Peter', 'Jane'
 standardInput = System.in
 }

In the build file, the most crucial dependency is glassfish-embedded-all; it has
to be the very first dependency, otherwise the execution of the embedded runner
fails with a ValidationException exception. The exception happens because
the GlassFish application serve, uses the Hibernate Validator as the default Bean
Validation component. Luckily, Gradle does pay attention to the order of the
dependencies, because the embedded runner works from the command line and also
from an IDE.

The build file adds some additional repositories, the Maven GlassFish Promoted and
the JBoss Public sites.

Because we have a Servlet in the application, Gradle applies the War plugin, which
generates a WAR file for ourselves in the folder build/libs. The extra configuration
of the project dependencies named as providedCompile ensures that the embedded
glassfish dependency is not included into the WAR file.

Finally, in the Gradle task named run, that is a type of the Java execution task, we
override the standard input to System.in, because we want the embedded runner,
which we will see shortly, to respond to the console input.

Let us move on to the GlassFish embedded runner.

The containerless Java web application
In order to go and demonstrate the container-less application, the following example
uses the GlassFish embedded API, at the time of writing. Since GlassFish is the
reference implementation to Java EE 7, we should see how to invoke it, start the
server, stop the server, and most importantly deploy a web application to the server.

Java Servlets and Asynchronous Request-Response

[264]

It is possible to go container-less with other servers, such as Apache Tomcat, Jetty,
and Caucho Resin. The book does not cover those approaches, however, and there
is sure to documentation online that explains how to configure those containers for
Java EE 7 and Servlets 3.1.

GlassFish has well documented embedded document online since Version 3.1.2
and this is the information we have used in the code. Fortunately, the API is still
compatible with GlassFish 4.0.1 at the time of writing, which means we can use it.

The code for EmbeddedRunner is as follows:

package je7hb.common.webcontainer.embedded.glassfish;

import org.glassfish.embeddable.*;
import java.io.File;
import java.util.Scanner;
import java.util.concurrent.atomic.AtomicBoolean;

public class EmbeddedRunner {
 private int port;
 private AtomicBoolean initialized = new AtomicBoolean();
 private GlassFish glassfish;

 public EmbeddedRunner(int port) {
 this.port = port;
 }

 public EmbeddedRunner init() throws Exception{
 if (initialized.get()) {
 throw new RuntimeException
 ("runner was already initialized");
 }

 BootstrapProperties bootstrapProperties =
 new BootstrapProperties();
 GlassFishRuntime glassfishRuntime =
 GlassFishRuntime.bootstrap(bootstrapProperties);

 GlassFishProperties glassfishProperties =
 new GlassFishProperties();
 glassfishProperties.setPort("http-listener", port);
 glassfish =
 glassfishRuntime.newGlassFish(glassfishProperties);
 initialized.set(true);

Chapter 6

[265]

 return this;
 }

 private void check() {
 if (!initialized.get()) {
 throw new RuntimeException("runner was not initialised");
 }
 }

 public EmbeddedRunner start() throws Exception {
 check();
 glassfish.start();
 return this;
 }

 public EmbeddedRunner stop() throws Exception {
 check();
 glassfish.stop();
 return this;
 }

 public EmbeddedRunner deployWithRename
 (String war, String newContext) throws Exception {
 Deployer deployer = glassfish.getDeployer();
 deployer.deploy(new File(war), "--name="+newContext,
 "--contextroot = "+newContext, "--force=true");
 return this;
 }

 public static void main(String args[]) throws Exception {
 EmbeddedRunner runner =
 new EmbeddedRunner(8080).init().start();
 runner.deployWithRename
 ("build/libs/ch06-servlets-basic-1.0.war", "mywebapp");
 Thread.sleep(1000);
 System.out.printf
 ("**** Press the ENTER key to stop "+"the server ****");
 Scanner sc = new Scanner(System.in);
 while(!sc.nextLine().equals(""));
 runner.stop();
 }
 }

Java Servlets and Asynchronous Request-Response

[266]

As you can see in the program, EmbeddedRunner looks like a barrel and stock Java
application. In the main() program, we instantiate the object with a port number 8080,
initialize the runner, and start the server. The program then proceeds to deploy a WAR
file from the build, it delays for one second, and then waits for the user to type ENTER.
As soon as the user does it, the program stops the server, and exits normally.

The GlassFish server is launched by initializing an instance with two types of
properties, namely bootstrap and standard. These properties help developers to
configure special GlassFish-only features. The bootstrap properties can be used
to configure an installation root, if the server or launch space already has a version
of GlassFish installed. For this example, we do not use this feature. The standard
properties can configure the instance root, the configuration file locally of a particular
domain area, and also services and port numbers.

In EmbeddedRunner, we configure only the HTTP listener for the embedded
server, which is passed into the init() method as 8080. Having created a
GlassfishRuntime instance, the runner invokes a new Glassfish object instance,
which represents the application server.

The methods start() and stop(), start and stop the application server respectively.

The deployWithRename() method is a convenient method that deploys the simple
Servlet WAR file to the server, and it does a unique rename of the web context from the
clumsy ch06-servlets-basic-1.0, which by default is the base name of the WAR
file without the suffix. In this case, the web application context is renamed mywebapp.

Now that we have a Java Servlet, a Gradle build file, and an embedded runner
application, we can invoke it, and run the program. Here is how, with the following
Gradle commands:

$ Gradle clean
$ Gradle war
$ Gradle run

Enter in your favorite web browser URL http://localhost:8080/mywebapp/
simple. The output on the page should be something like the following:

This is the class `je7hb.servlets.simple.SimpleServlet'
The date time is Sat Feb 02 16:45:52 GMT 2013

Chapter 6

[267]

To complete this section, here is a different version of the same Servlet, but this time
we configure the initialization parameters through the annotations. This Servlet is
called SimpleServletWithInitParams.

package je7hb.servlets.simple;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;
// Additional imports from before are omitted

@WebServlet(name = "servletWithInitParams", urlPatterns =
 {"/initparams"}, initParams =
 {@WebInitParam(name = "source", value = "East Croydon"),
 @WebInitParam(name = "target", value = "London Bridge"),
 @WebInitParam(name = "time", value = "11:57:00")})
public class SimpleServletWithInitParams extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 PrintWriter pwriter = resp.getWriter();
 pwriter.printf("This is the class `%s'\nThe date "+
 "time is %s\n", this.getClass().getName(), new Date());
 for (String name: Collections.list
 (this.getServletConfig().getInitParameterNames())) {
 pwriter.printf("init parameter: %s = %s\n", name,
 getServletConfig().getInitParameter(name));
 }
 }
 }

The extra bit of code in this example retrieves java.util.Enumeration of the Servlet
initialization parameters. In the Servlet method, we call the utility static list()
method of java.util.Collections to turn the Enumeration into java.util.
Iterator<String>. (This is an artifact from Java's history when the Servlet API, which
was created in 1999, existed long before the release of Java SE 5, generic types, and
annotations in 2005!) We then iterate through the parameters and dump their values to
the Servlet's response, the output buffer, using the PrintWriter instance.

Java Servlets and Asynchronous Request-Response

[268]

When running the embedded runner, if you invoke this Servlet with the quasi URL
http://localhost:8080/mywebapp/initparams, you should see the output like
the following:

This is the class
 `je7hb.servlets.simple.SimpleServletWithInitParams'
The date time is Mon Feb 04 20:04:58 GMT 2013
init parameter: time = 11:57:00
init parameter: source = East Croydon
init parameter: target = London Bridge

The @WebInitParam annotation accepts three attributes: name, value, and
description. The name attribute specifies the Servlet's initialization parameter
name, value is the associated value, and description is self-explanatory.

Congratulations, this is your first Java Servlet! Best of all, you did not have to specify
a web XML deployment context, better known as a web.xml file.

Request and response
For Servlets to be useful, we need to read the HTTP request, and then generate a
response. HTTP Servlets provide two types of instances: HttpServletRequest and
HttpServletResponse.

The request parameters
The Servlet framework decodes the HTTP protocol parameters sent by the client
into a specific map of key and values. The methods on HttpServletRequest
to access these parameters are getParameter(), getParameterNames(), and
getParameterMap(). The getParameter() method returns the first value in an
array of the query string data values. This is because the HTTP standard allows an
HTTP request to be formed with multiple parameter associations.

To retrieve a CGI query data in a URI, such as /fooAction?name=Mary&bus=249, we
can write a code like the following:

HttpServletRequest request = ...
String name = request.getParameter("name");
int busNumber = Integer.parseInt(request.getParameter("bus"));

The Servlet framework does not allow setting of the parameters.

Chapter 6

[269]

Headers
Every HTTP request usually has header information, which describes the client-side
information relevant to the user: the invocation method, date and time, the acceptable
content types, cache-control, the user agent, zero or more cookies, an optional
authorization, and a whole lot more. The Servlet framework exposes through the
HttpServletRequest interface with the methods: getHeader(), getHeaders(), and
getHeaderName().

Let's inspect a Servlet that demonstrates reading all the HTTP header information
as follows:

@WebServlet(name = "reportHeader", urlPatterns =
 {"/reportHeaders"},
public class ReportHeaders extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 PrintWriter pwriter = resp.getWriter();
 pwriter.printf("Header information:\n");
 for (String name: Collections.list
 (req.getHeaderNames())) {
 pwriter.printf("%s = %s\n", name,req.getHeader(name));
 }
 }
 }

The ReportHeader servlet iterates through all of the headers with getHeaders(),
which returns Enumeration<String>, and then we use the Java Collection
framework to manipulate this type into List<String>. For each key in the
collection, we dump the header to the Servlet's response writer.

The request attributes
The request attributes are objects that are associated with the HTTP request, hence
they are scoped. The request attributes only live for the lifetime of processing
a request through the Servlet framework. The attributes are removed after the
response has been sent back to the client. If you remember from Chapter 2,
Context and Dependency Injection, this request scope is the reason why there is a
@RequestScoped annotation for the bean types.

Java Servlets and Asynchronous Request-Response

[270]

The request attributes are available on HttpServletRequest with the methods
getAttribute(), getAttributeNames(), and setAttribute(). The attributes are
useful for passing the attributes from one Servlet instance. The Servlet framework
provides a RequestDispatcher instance to forward a request on to another or
include the content from another Servlet.

The following is an example of a Servlet that geolocates a city to a dealer. This use
case is a car manufacturer's business:

@WebServlet(name = "carProduct", urlPatterns = {"/carProduct"},
public class CarProduct extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 String city = req.getParameter("city")
 req.setAttribute("dealerId", findNearestDealerFromCity(city));
 RequestDispatcher rd = req.getDispatcher("/viewDealer")
 rd.forward(req,resp);
 }
 }

The CarProduct Servlet sets a request scope attribute dealerId with the
value obtained from the CGI query parameter city. There is a method
findNearestDealerFromCity(), we assume, that handles the geolocation
search for us. The doGet() method obtains a RequestDispatcher instance from
HttpServletRequest, and forwards it to the next Servlet named viewDealer.

Let's review the code for the ViewDealer Servlet as follows:

@WebServlet(name = "viewDealer", urlPatterns = {"/viewDealer"},
public class ViewDealer extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 String dealerId = (String)req.getAttribute("dealerId");
 /* ... */
 generateContent(req, resp, dealerId);
 }
 }

The subsequent Servlet is able to retrieve the request scope attribute dealerId, and
generate the content around this information.

Chapter 6

[271]

The session attributes
The Servlet framework provides a means to track the requests that emanate from
the same device that is operated by a user. Because of the stateless nature of HTTP,
the framework associates similar request from the same client and user in either an
HTTP cookie or through URL rewriting. For Servlet containers that support HTTPS
protocol connections, the Servlet framework will use standard SSL handshake with
encrypted key exchange.

A Servlet session has a lifecycle, which is unique to an HTTP client device, and it is
a means for data to survive multiple requests to the Servlet container. A session is a
scope and a collection name and value attributes. The Servlet sessions can optionally
time out with expiration, and if the session does expire, then the servlet container
will remove the information.

The session attributes are available in the HttpSession instance with the methods
getAttribute(), setAttribute(), and getAttributeNames(). The HttpSession
instance acquired from the HttpServletRequest object is like the following code:

HttpServletRequest request = ...
HttpSession session = request.getSession();
CustomerData custData = (CustomerData)
session.getAttribute("customerData");
session.setAttribute("checkoutInfo", "PRIVILEGED");

As with the request scope attribute, we have to cast to a String on the
getAttribute() method, because this call returns an Object. The session scope is
closely aligned with the CDI @SessionScoped annotation.

The Servlet context attributes
Every Java Servlet has an association to ServletContext, which is shared between
all Servlets in the web application. The specification declares a rule: there is one
context per web application per JVM. ServletContext is an ideal place to share a
cache of read-only values that are used for the entire lifecycle of the application.

In the JSF, JSP, and CDI specifications, ServletContext is known as the application
scope. The CDI @ApplicationScoped corresponds with this unique instance.
The key methods for the ServletContext interfaces are getAttribute(),
setAttribute(), and getAttributeNames().

Java Servlets and Asynchronous Request-Response

[272]

Here is a small illustration of the application-wide Servlet loading static data, which
is supposed to be read-only. ServletContextDemo is as follows:

@WebServlet(name = "servletContextDemo",
 urlPatterns = {"/servletContextDemo"},
public class ServletContextDemo extends HttpServlet {
 @Override
 public void init(ServletConfig config) {
 config.getServletContext()
 .setAttribute("dataValues",
 Arrays.asList(1,2,3,5,8,13,21,34,55,89));
 }

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 PrintWriter pwriter = resp.getWriter();
 List<Integer> series =
 (List<Integer>)getServletContext()
 .getAttribute("dataValues");
 pwriter.printf("series=%s\n", series);
 }
 }

During initialization of ServletContextDemo, we store the Fibonacci series as
an integer collection inside ServletContext, which we can access from the
ServletConfig instance. When the user invokes HTTP GET on this Servlet, we
retrieve the data series from ServletContext, and send its contents as the response.
Inside the doGet() method, we access ServletContext from HttpServletRequest.

Redirecting the response
There are occasions in a web application where the response must be redirected to
another location. The Servlet framework sends an HTTP URL redirection to the client
(web browser) with a URL that informs where to get the content. We can write the
Servlet code to do that as follows:

HttpServletResponse httpServletResponse =
 httpServletResponse.sendRedirect
 (httpServletResponse.encodeRedirectURL
 (httpServletRequest.getContextPath()+
 "/carProduct"));

Chapter 6

[273]

This code extraction redirects the client to the earlier CarProduct Servlet. Because
URL redirects can go to any site on the Internet, for example, http://www.bbc.
co.uk/news, we must add the web application context path to the URI. After
issuing a redirect, the HttpServletResponse instance will be in an undefined
state. It is a good practice to encode the URL path with the convenience call
encodeRedirectURL().

Many developers apply the technique of POST-REDIRECT-GET. This design pattern
effectively avoids returning a rendered web page directly for an incoming request and
instead instructs the web browser to load a different the page with a follow up HTTP
GET request.. This is an advanced technique out-of-scope for discussion in this book.

The web deployment descriptor
The web deployment descriptor XML file is the traditional method for Java web
developers to configure Servlets, filters, and listeners in a Java EE application. The
file must be named web.xml, and the specification mandates that it will be found in
the WAR file under the folder WEB-INF/.

The web deployment descriptor describes the Servlet classes, filters, and listeners, the
environment and resources, and other configurations of a web application. Putting
the information all together, inform the web container how to serve the content from
the incoming web requests.

The simplest possible deployment descriptor for Servlet 3.1 and beyond looks just
like the following code:

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<web-app xmlns = "http://java.sun.com/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_1.xsd"
 version = "3.1">
</web-app>

XML has a well-defined schema definition that can be found on Oracle's public
website at http://java.sun.com/xml/ns/javaee/web-app_3_1.xsd. The root
XML element must be <web-app>.

Java Servlets and Asynchronous Request-Response

[274]

Mapping Java Servlets
An expanded deployment descriptor maps the annotated Servlets from earlier,
SimpleServlet and SimpleServletWithInitParams, into the equivalent XML file
as follows:

<?xml version = "1.0" encoding = "UTF-8"?>
<web-app xmlns = "http://java.sun.com/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_1.xsd"
 version = "3.1">
<display-name>A Simple Application</display-name>
 <servlet>
 <servlet-name>simple</servlet-name>
 <servlet-class>
 je7hb.servlets.simple.SimpleServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>simple</servlet-name>
 <url-pattern>/simple</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>initparams</servlet-name>
 <servlet-class>
 je7hb.servlets.simple.SimpleServletWithInitParams
 </servlet-class>
 <init-param>
 <param-name>source</param-name>
 <param-value>Liverpool Central</param-value>
 </init-param>
 <init-param>
 <param-name>target</param-name>
 <param-value>London Euston</param-value>
 </init-param>
 <init-param>
 <param-name>time</param-name>
 <param-value>17:45:00</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

Chapter 6

[275]

 <servlet-mapping>
 <servlet-name>initparams</servlet-name>
 <url-pattern>/initparams</url-pattern>
 </servlet-mapping>
</web-app>

The first thing to notice is the greater verbosity of the XML configuration compared
to the annotations on the Servlet classes. On the other hand, auto-completion XML is
an essential feature of all of the best IDEs nowadays. The root element of this XML
document is <web-app>. According to the Servlet specification, the subelements can
be arranged in an arbitrary order. Hence, for better readability, we arranged the
grouping of the <servlet> element next to the corresponding mapping element
<servlet-mapping>.

The <servlet> element defines a Java Servlet with the name and the fully qualified
class name. The tag allows multiple instances of the Servlet class to be used, but
mapped by different class names. The name for each Servlet is unique across the
deployment descriptor. The <servlet> element can also optionally accept the
initialization parameters.

The <servlet-mapping> elements configure how the web container maps a
Servlet or associates it with an incoming web request. It takes Servlet and at least
one URL pattern.

The <load-on-startup> element allows developers to configure the initialization
order for Servlets. The configuration is an integer value starting from zero; the
lower the number, the higher the priority. It comes in useful when your application
has a Servlet that must be started before an other Servlet. A reasonable situation is
initializing a database connection, reading data from static files, or setting up a cache
of application-wide constant values.

Two servlets mapping can share a Servlet class. An example of a Servlet for a retail
superstore business model that has two operational divisions, namely home and
garden, and food store market, is as follows:

<servlet>
 <servlet-name>homegarden</servlet-name>
 <servlet-class>superstore.ProductListing</servlet-class>
 <init-param>
 <param-name>operations</param-name>
 <param-value>home_and_garden</param-value>
 </init-param>
</servlet>

<servlet>

Java Servlets and Asynchronous Request-Response

[276]

 <servlet-name>foodstore</servlet-name>
 <servlet-class>superstore.ProductListing</servlet-class>
 <init-param>
 <param-name>operations</param-name>
 <param-value>food_store</param-value>
 </init-param>
</servlet>

<servlet-mapping>
 <servlet-name>homegarden</servlet-name>
 <url-pattern>/garden/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>foodstore</servlet-name>
 <url-pattern>/food/*</url-pattern>
</servlet-mapping>

The ProductListing Servlet is shared between two URL patterns, because the
Servlet class is given two different names homegarden and foodstore. The Servlet
names are then mapped to separate URL patterns.

A URL pattern can begin with the wildcard character (*), in which case it is really an
extension, or it is placed at the end of the string after a forward slash character (/).

Suppose there is a fictional website named www.hype7.co.uk and assume there is
an appropriate URL rewriting going on behind the scene, then the food items are
accessible through an example, such as http://www.hype7.co.uk/food/fish/
seabass/recipe/101. The same processing takes for the gardening section of the
e-commerce store: http://www.hype7.co.uk/garden/sheds/wooden/list.

Execution of the code inside Servlet can distinguish between the operations by
inspecting the Servlet initialization parameters. You have already seen how to do this.

Configuring a session timeout
Web container provides a javax.servlet.http.HttpSession object instance
for each unique web client that connects to the web application. HttpSession is
designed for saving and retrieving the content that survives from the Servlet request.
The session can be approximated to the user's session, it does not maintain the
conversational state, however.

The configurator can control how long HttpSession will stay alive for a web client
through web.xml.

Chapter 6

[277]

The developer can configure how long HttpSession will stay alive for an idle web
client through web.xml. Inside the deployment descriptor, the <session-config>
element is a child <web-app> element, we can set the value of the idle time of 10
minutes as follows:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

<session-config> is a subelement of the web-app root element. The <session-
timeout> element specifies the time in minutes.

Configuring MIME types
In order to support Multipurpose Internet Mail Extensions (MIME) types in the
web application, developers can specify the types and their association file suffixes.
Web container uses a mapping of suffixes to MIME type when it is asked to serve the
static content. The mapping is defined by the <mime-mapping> element, which has
two subelements, namely <extension> and <mime-type>, in order respectively.

An example of these MIME settings is as follows:

<mime-mapping>
 <extension>csv</extension>
 <mime-type>application/csv</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>pdf</extension>
 <mime-type>application/pdf</mime-type>
</mime-mapping>

The <mime-mapping> element is a direct child of the <web-app> root
document element.

Given a fictional two URLs that represent a static resource URL, if the preceding
MIME mapping is applied in the web application, then http://localhost:8080/
mywebapp/datasheet/whitepaper.csv and http://localhost:8080/mywebapp/
datasheet/whitepaper.pdf serve as the comma-separated value and the PDF
files respectively.

Dynamic resources such as a Servlet, JSP, or JSF must set their respective content
type by calling the ServletResponse.setContentType() method with the standard
MIME type string accordingly.

Java Servlets and Asynchronous Request-Response

[278]

Configuring the welcome page
A web application can configure its own welcome page, which serves as the default,
when the URL is just referenced by the directory. By default, the welcome page is
index.jsp and then index.html. The welcome pages are useful when the web
request is referencing just the path and not a resource. They specify the files that the
containers are searching in the path directory in order to serve the client. The element
<welcome-file-list> is a child of <web-app>, and configures these settings.

An example of the configuration in the web deployment descriptor is as follows:

<welcome-file-list>
 <welcome-file>index.xhtml</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
</welcome-file-list>

Web container will search for index.jsp; if it is there on the path, the container
serves it. Otherwise, the container looks for the next file on the list, and it then
attempts to find the static resource index.html in order to serve that.

Configuring the error-handler pages
The container can only configure to serve error pages if a Java Servlet generates an
error code in order to signify an abnormal request. The web deployment descriptor
allows developers to direct HTTP errors to a specific page, which is useful for
providing an application error page.

The <error-page> element configures error handling for a specific HTTP error
code, such as 404, the resource does not exist, or 500, the resource is forbidden from
access. This element is a child of the <web-app> element and it has two children. The
<error-code> tag specifies the HTTP error code and the <location> tag specifies a
resource to serve as the error-handling page, which can be a dynamic resource.

An example of the error-handling XML is as follows:

<error-page>
 <error-code>404</error-code>
 <location>/errors/404.html</location>
</error-page>

In the previous example, the XML maps the HTTP Error 404 to the specific error
page as a static HTML file.

Chapter 6

[279]

In order to send an error in a Servlet, you can invoke the method sendError() on
the HttpServletResponse object as the following code demonstrates:

resp.sendError(HttpServletResponse.SC_NOT_FOUND);

SC_NOT_FOUND is a static constant, which is final and a primitive integer with the
value of 404.

Annotations and the web deployment
descriptor
Annotations and the web deployment descriptor can be freely mixed. Developer has
control of whether the configuration in WEB-INF/web.xml overrides the annotations.
Web container will ignore Servlet 3.0 and better annotations on any defined classes,
if the <web-app/> element is supplied with an attribute metadata-complete, and is
set to true.

A web container with a deployment descriptor is as follows:

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<web-app xmlns = "http://java.sun.com/xml/ns/javaee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version = "3.0" metadata-complete = "true">
<!-- . . . -->
</web-app>

Applying metadata-complete = "true" causes the Servlet container to ignore the
annotations on any Java Servlets, filters, and listeners. Setting metadata-complete
to true, effectively says that the web deployment descriptor is the configuration, and
replicates the behavior of the Servlet web container before Version 3.0.

The order of priority for a web container is to load and process the annotations, if they
are present. Web container will search for the annotations in two locations: compiled
classes under the folder /WEB-INF/classes and also the libraries in JARs under /WEB-
INF/lib. It will apply the configuration to create internal metadata. Only afterwards
will web container examine /WEB-INF/web.xml for the metadata configuration. The
reason for this behavior is that there may not be any web deployment descriptor
available, as you have already seen in the first Servlet example.

Java Servlets and Asynchronous Request-Response

[280]

The Servlet filters
The Servlet filters are components that can intercept an incoming request and
outgoing response before it gets to a Java Servlet. The filters can be chained together
through the configuration of the web deployment descriptor or through the
annotations. Filters do not normally generate the content, rather they are designed to
transform, modify, or adapt a request around a resource. The filters can be used for
logging, security, and performance monitoring.

A Servlet filter implements the javax.servlet.Filter interface. A Servlet
filter implements the doFilter() method, which takes three arguments:
ServletRequest, ServletResponse, and javax.servlet.FilterChain.

FilterChain is a simple interface with one method doFilter(), which is the way to
transfer the control to the next filter in the chain.

Let's review, together, a working example as follows:

package je7hb.servlets.simple;
import javax.servlet.*;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.http.*;
import java.io.IOException;
import java.util.Date;

@WebFilter(filterName = "MySimpleFilterLogger", urlPatterns =
 {"/*"}, initParams = {@WebInitParam(name = "fruit",
 value = "Pear"),})
public class SimpleLoggingFilter implements Filter {
 private FilterConfig filterConfig;

 public void init(FilterConfig filterConfig) {
 System.out.printf("init() on %s\n"+
 "Metadata filter name=%s\n", getClass().getSimpleName(),
 filterConfig.getFilterName());
 this.filterConfig = filterConfig;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain filterChain)
 throws IOException, ServletException {
 System.out.printf("doFilter() on %s at %s\n",
 this.getClass().getSimpleName(), new Date());

Chapter 6

[281]

 System.out.printf("init parameter on 'fruit' is %s\n",
 filterConfig.getInitParameter("fruit"));
 filterChain.doFilter(request, response);
 }

 public void destroy() {
 System.out.printf("destroy() on %s\n",
 getClass().getSimpleName());
 }
 }

This filter SimpleLoggingFilter is annotated by the name MySimpleFilterLogger
with the URL patterns (/*) such that it intercepts all the requests. The class dumps the
output to the console output. A filter has initialization and destruction methods, which
web container invokes as the web application starts up or shuts down accordingly.

Inside the doFilter() method, executing the filterChain.doFilter() method is
the critical part, because that call passes the control back to web container, and then
it causes the execution of the next filter in line or the actual resource.

The Servlet filter annotation attributes
A table of the @WebFilter attributes is as follows:

Attribute Type Description Default
Value

filterName String Defines the name of the
filter.

Empty

Value String [] Defines the URL patterns of
the filter.

None

urlPatterns String [] Defines the URL patterns of
the filter.

None

initParams WebInitParam [] The initial parameters of the
filter.

None

servletNames String [] Specifies names of Servlets
to which the web container
applies the filter.

None

dispatcherTypes DispatcherTypes
[]

Specifies the dispatcher
types that the filter applies.
A filter can intercept requests
to {FORWARD, INCLUDE,
REQUEST, ASYNC, ERROR}
dispatchers.

REQUEST

Java Servlets and Asynchronous Request-Response

[282]

Attribute Type Description Default
Value

displayName String The display name of the
filter.

None

description String The description for a filter. Empty
string

smallIcon String Specifies a path to a small
icon.

None

largeIcon String Specifies a path to a large
icon.

None

The Servlet filter XML configuration
If you prefer not to declare the annotations, then the filter must be declared in a
deployment descriptor, the web.xml file. An XML fragment that configures the filter
is as follows:

<filter>
 <filter-name>MySimpleFilterLogger</filter-name>
 <filter-class>
 je7hb.servlets.simple.SimpleLoggingFilter
 </filter-class>
 <init-param>
 <param-name>fruit</param-name>
 <param-value>strawberry</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>MySimpleFilterLogger</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<filter> and <filter-mapping> are direct subelements of the <web-app> element,
and they are visually similar to the Servlet mappings.

Chapter 6

[283]

The <filter> element declares the filter name, fully qualified class name, and
optionally the initialization parameters. The <filter-mapping> element associates a
filter name with a set of the URL patterns.

To implement a security servlet filter, the logic of the doFilter() method would
change to only execute the next filter on completion of a check.

The following code is an example of securing a resource with a Servlet filter:

public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain filterChain)
throws IOException, ServletException {
 HttpServletRequest req2 = (HttpServletRequest)req;
 HttpServletResponse res2 = (HttpServletResponse)res;
 if (req2.getUserPrincipal().getName() .equals("admin")) {
 filterChain.doFilter(req, res);
 }
 else {
 res2.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 }
 }

The previous filter code allows the requests to propagate to the next filter or
resource, only if the incoming request has the JavaEE user principal authorization.
If the request is unauthorized, the filter sends the client to the error page, if defined.
Notice how we recast the Servlet and response objects to HttpServletRequest and
HttpServletResponse.

Obviously the Java EE web container will need to have security principals and
realms defined externally to the web application in order for this filter to work.

The Servlet context listener
The Servlet context listener are classes that allow a web application to listen to the
lifecycle events. In the world of Java Servlets, there are four types of contexts, namely
page, request, session, and application. Each of these contexts represents lifetimes of
the objects, when they got associated with those contexts. The page context is found
in JSP, while the remaining ones are available to Java Servlets.

Java Servlets and Asynchronous Request-Response

[284]

The following table lists the context and the scope with the available events
associated with the appropriate listener:

Context Event Description Java Interface
Application The Servlet context starts

when the first request is
pushed to the web application

javax.servlet

ServletContextListener

The Servlet context stops just
before the web application
shuts down
The Servlet context attribute
is added

javax.servlet

ServletContextAttributeListener
The Servlet context attribute is
removed
The Servlet context attribute is
replaced

Session Session creation javax.servlet.http

HttpSessionListenerSession invalidation
Session destruction
The Session attribute added javax.servlet.http

HttpSessionAttributeListenerThe Session attribute removed
The Session attribute replaced
Session is activated or
passivized

javax.servle.http

HttpSessionActivationListener

An object has been bound to
or unbound from the session

javax.servlet.http

HttpSessionBindingListener

Request The Servlet request creation javax.servlet

ServletRequestListenerThe Servlet request
destruction
The Servlet attribute added javax.servlet

ServletRequestAttributeListenerThe Servlet attribute removed
The Servlet attribute replaced

Asynchronous
Events

A timeout occurred,
termination or completion of
an asynchronous event

javax.servlet

AsyncListener

The listener interfaces are found in javax.servlet and javax.servlet.http
respectively. Concrete implementation of these listener interfaces can be annotated
with @javax.servlet.annotation.WebListener, and then web container picks up
the metadata.

Chapter 6

[285]

An example of the Servlet session context listener for a web application is as follows:

@WebListener
public class AppServletContextListener implements
 ServletContextListener {
 @Override
 public void contextInitialized(ServletContextEvent sce) {
 System.out.printf("contextInitialized() on %s\n"+
 "source = %s\n", getClass().getSimpleName(),
 sce.getSource());
 }

 @Override
 public void contextDestroyed(ServletContextEvent sce) {
 System.out.printf("contextDestroyed() on %s \n"+
 "source = %s\n", getClass().getSimpleName(),
 sce.getSource());
 }
 }

If you choose not to annotate the listener classes, then the web container requires you
to write the metadata information in WEB-INF/web.xml.

<web-app>
 <display-name>ExampleApplication</display-name>
 <listener>
 <listener-class>
 je7hb.servlets.simple.AppServletContextListener
 </listenerclass>
 </listener>
<!-- ... -->
</web-app>

The XML element <listener> specifies a context listener and it takes a child element
<listener-class>, which specifies the fully qualified class name.

The Servlet specification says that the order of the listener declarations in which they
appear in the web deployment descriptor file determines initialization order during
start up of the application. In other words, the first context listener in the registration
means the first to the initialized. Web container will sort the listeners into types first,
for example it will collect all the Servlet context listeners, and then instantiate them.
Web container will invoke the listeners in the order of their registration.

On the shutdown of the web application, the Servlet context, the listeners are
invoked, and the shutdown occurs in reverse order of their registration.

Java Servlets and Asynchronous Request-Response

[286]

There is a problem, therefore, with only annotated event listeners, in that there is
no current specification way to order them through the @WebListener annotation.
The only way to order the registration of the event listener is through the
deployment descriptor.

Pluggable Servlet fragments
Web container allows the web applications to contain both the annotations and
metadata in the XML files named web fragments. If there is no web deployment
descriptor file web.xml or the meta-complete attribute is set to false, then web
container is obliged to search the plain old JAR files placed in the WEB-INF/lib
directory for the pluggable Servlet annotations. The container is also obliged to
search the JAR special named files named web fragments in the folder META-INF/,
which match web-fragment.xml. The contents of web.xml and web-fragment.xml
are almost the same.

Web fragments are descriptors that introduce pluggability into the Servlet
specification. It can be seen as a weak form of modularity without enforcement of
the class boundaries. Fragments allow different JAR files from other projects, which
maybe separate, to be brought together, and assemble into a WAR file, and hence a
web application.

Let's suppose we have a fictional example of an integrated library implemented as
web fragment. We have an ACME electronic commerce, and the web development
team in the organization packaged a library as a two event listener, namely an HTTP
session listener and a Servlet context listener. They have also given us a Servlet filter
to handle user security.

A possible web-fragment.xml file for this situation is as follows:

<web-fragment>
 <listener>
 <listener-class>
 acme.LoginUserServletContextListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 acme.LoginUserSessionContextListener
 </listener-class>
 </listener>

Chapter 6

[287]

 <filter>
 <filter-name>userSecurityFilter</filter-name>
 <filter-class>acme.UserSecurityFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>userSecurityFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
<web-fragment>

This file could be part of an acme-user-security.jar file and placed in the
WEB-INF/lib directory.

Ordering multiple web fragments
You may be wondering what can happen if I have more than one web fragment
inside an application. How do we go about establishing an order of registration?

There are two ways to achieve the ordering in the modular web fragments. In the
deployment descriptor file web.xml, we can use a special XML element named
<absolute-ordering>. In any web fragment file web-fragment.xml, we can use
another XML element named <ordering>.

Let's see an example:

<web-app>
 ...
 <absolute-ordering>
 <name>Fragment1</name>
 <others/>
 <name>Fragment2</name>
 <absolute-ordering>
</web-app>

The XML element <absolute-ordering> lists other web fragments by the name
from the subelement <name> and the order is the first listed, the first initialized.
Note the special <others> XML element in there, which is a placeholder for all other
web fragments that may or may not exist in the web application. The reading of this
ordering, then, is Fragment1, any other web fragments, and then Fragment2.

Java Servlets and Asynchronous Request-Response

[288]

Web fragments can also contain ordering themselves. An example of this ordering
named Fragment3 is as follows:

<web-fragment>
 <name>Fragment3</name>
 ...
 <ordering>
 <before>
 <others/>
 </before>
 <after>
 <name>SalesFragement</name>
 <name>Fragment2</name>
 </after>
 </ordering>
</web-fragment>

First of all, a web fragment can have given a name. The child of the root element
named <name> specifies the name of the preceding web fragment.

In a web fragment, the XML element <ordering> defines the order. A web fragment
can specify the registration to appear before or after other fragments, as you saw
in the previous example. There, Fragment3 is initialized before other fragments,
and also after particular fragments SalesFragment and Fragment2 have been
successfully initialized. So we see that these orderings are metadata and declarative
instructions for the Servlet 3.0 or better container to observe in a web application.

It is instructive to inspect the reverse of this ordering as follows:

<web-fragment>
 <name>Fragment4</name>
 ...
 <ordering>
 <before>
 <name>SalesFragement</name>
 <name>Fragment3</name>
 </before>
 <after>
 <others/>
 </after>
 </ordering>
</web-fragment>

In the previous example, Fragment4 is initialized after all other web fragments, but
before SalesFragment and the previous Fragment3.

Chapter 6

[289]

Ordering cannot be achieved currently with the annotations at least with the Java
Servlet 3.1 specification, so they must be applied with the XML configuration files.
However, as we have seen before, these XML deployment descriptors, and the
fragment files can be more or less empty save the ordering, and still the annotations
on the Java classes will work.

Of course, the Servlet web container will disable scanning for and processing the
annotations when the attribute metadata-complete is set to true in either <web-
fragment> or a <webapp> root XML element.

Asynchronous Java Servlets
The advancement of the web technology since 2005 has been about attaining
asynchronous communications. The first breakthrough with these techniques came
through the AJAX frameworks, which exploited a little used client-side API in the
Internet Explorer web browser and then the subsequent web browsers to send a
request asynchronously to a server, and then wait for a response in a non-blocking
fashion. The key AJAX was the evolution of JavaScript as an accepted programming
language in the browser and non-blocking input and output.

The technology then moved to COMET, which is a neo-logistic term (coined by
Alex Russell) for a collection of techniques for streaming data from the server to the
multiple clients without these clients then requesting data. Finally, we have HTML 5
WebSockets as an up and coming standard.

Java API for WebSockets is covered in Chapter 7, Java API for HTML5WebSocket, of
this book. Both the AJAX and COMET terms are a play on words; both are common
household cleaning agents in USA and perhaps in Europe. As a side note in history,
it was possible to have asynchronous communications since the very first Java
Applets, as they could create and open TCP/IP sockets for long periods of time,
provided the web page remained opened in the browser.

This section reviews the asynchronous requests and responses with Java Servlets.

The asynchronous input and output
In the earliest days of the Java SDK, all the inputs and outputs were synchronous; by
this term, we mean the inputs and outputs were blocking. A Java thread would block
on data push to the output or a data read, if the resource was not available. So the
Java SDK engineers fixed this issue with a new API named New Input and Output
(NIO), in the Java SDK 1.4. The non-blocking input and output operations are the
basis of building the scalable server-side applications.

Java Servlets and Asynchronous Request-Response

[290]

NIO is a non-blocking API based on Channels, Buffers, and Selectors. Since Java SE
7, in 2012, Java NIO has been upgraded to NIO2, which supports the portable file
system operations such as symbolic links, polling directory and the file notifications,
and the file attribute information.

Non-blocking I/O is only available for Java Servlets and filters, and only for
asynchronous requests. In order to process a web request in an asynchronous
fashion, another thread will be activated to process the request, and generate the
response. The idea is not to block the dispatching threads that the container actually
uses itself.

A synchronous reader example
It is instructive to review the code for blocking I/O in order to obtain an appreciation
of the asynchronous operations. Suppose our task was to write a Servlet that would
process large volumes of data. We are instructed to write a Servlet component
that analyses volumes of text and the web client will push data as an HTTP POST
request. This data could arrive from an AJAX style HTTP POST form request, which
is a typical modern web application that performs user-friendly file upload, and
provide a visual update to the user.

A first cut at this code in a class named DataBlockingIOServlet is as follows:

@WebServlet(urlPatterns = {"/reader/*"}
public class DataBlockingIOServlet extends HttpServlet {
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 ServletInputStream input = request.getInputStream();
 byte[] buffer = new byte[2048];
 int len = -1;
 while ((len = input.read(buffer)) ! = -1) {
 String data = new String(buffer, 0, len);
 System.out.printf("data=[%s]\n", data);
 }
 }
 }

The essential method doPost() obtains ServletInputStream from the Servlet
request instance. We use traditional Java I/O methods from package java.io to
read data from the stream into a buffer of 2048 bytes in size. We simply dump the
input data into the standard console.

Chapter 6

[291]

This code is fine from the standpoint of a single web client using the server.
Our problems will arise from scalability when lots of web clients start to access
DataBlockingIOServlet. When the file sizes exceed our 2048 buffer, or when they
exceed the internal buffers of web container, or when they exceed the size of the
network operating system, we will find the JVM blocks on ServletInputStream. If
the web client starts sending data to Servlet, and then for some strange reason pauses
for a long time, then Servlet and the associated container thread will be blocked. The
point is, any sort of blocking on a web container thread (or the application server
thread) is bad. It is bad for other resources also, including other web applications
that also share the facilities of the container. For these reasons alone, blocking the
inputs and outputs puts severe restrictions on the ability of a container to scale and
meet the demands of multiple consumers.

The blocking of input and output will also occur on ServletOutputStream,
although we have not shown it in the code example. For instance, if we wrote a
similar Servlet to the stream investment data to a consuming web client.

An asynchronous reader example
Clearly the solution is to use the non-blocking input and output. Servlet 3.1
provides a way out and allows the web container to transfer responsibility to Servlet
developer to just read and write data to and from consumer, but still enforce the
control of the Servlet container threads.

The Servlet 3.1 specification adds event listeners javax.servlet.ReadListener and
javax.servlet.WriteListener.

The interface declaration for ReadListener is as follows:

public interface ReadListener extends java.util.EventListener {
 public void onDataAvailable();
 public void onAllDataRead();
 public void onError(Throwable t);
 }

ReadListener is an event listener, which is invoked by web container on notification
of an available asynchronous input. The methods on this class are invoked when the
HTTP request data is guaranteed to be readable without non-blocking.

Java Servlets and Asynchronous Request-Response

[292]

After an asynchronous context has been obtained and started, then a
ReadListener implementation is registered with a call to ServletInputStream.
setReadListener().

Method Descriptor
onDataAvailable Provided an instance of ReadListener is registered with

ServletInputStream, this method is only invoked by
the container the first time, when it is possible to read
data. Subsequently, the container will invoke this method,
if and only if the ServletInputStream.isReady()
method has been called and has returned false. This
method is one to retrieve data from the stream and then
for the implementation to process it.

onAllDataRead The container invokes this method when all of the data
has been read from the input. In reality, this means the
web client has closed the connection after sending all of
the data.

onError The container invokes this method when something
has gone wrong and there is a plausible error. Here, the
implementation can take action on the error. The exception
is passed to the method.

There are two other methods in ServletInputStream, which can be of use. These
were added in Servlet 3.1. The isReady() method returns a boolean, and it specifies
when data can be read from the stream without blocking. The isFinished() method
also returns a boolean, and it specifies when all data for this particular request has
been read.

With this information, we can write an asynchronous Servlet. The implementation
code is as follows:

package je7hb.servlets.simple;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import java.io.IOException;

@WebServlet(name = "AsyncReaderServlet",
 urlPatterns = {"/reader"}, asyncSupported = true)
public class AsyncReaderServlet extends HttpServlet {
 @Override
 public void init(ServletConfig config)
 throws ServletException {

Chapter 6

[293]

 super.init(config);
 System.out.printf("init() called on %s\n",
 getClass().getSimpleName());
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 System.out.printf("doGet() called on %s\n",
 getClass().getSimpleName());
 processRequest(request);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 System.out.printf("doPost() called on %s\n",
 getClass().getSimpleName());
 processRequest(request);
 }

 private void processRequest(HttpServletRequest request)
 throws IOException {
 System.out.printf("processRequest() called %s" +
 " on thread [%s]\n", getClass().getSimpleName(),
 Thread.currentThread().getName());
 AsyncContext context = request.startAsync();
 ServletInputStream input = request.getInputStream();
 input.setReadListener(new AsyncReadListener(input, context));
 }

 private class AsyncReadListener implements ReadListener {
 private ServletInputStream input;
 private AsyncContext context;

 private AsyncReadListener(ServletInputStream input,
 AsyncContext context) {
 this.input = input;
 this.context = context;
 }

 @Override
 public void onDataAvailable() {
 try {

Java Servlets and Asynchronous Request-Response

[294]

 StringBuilder sb = new StringBuilder();
 int len = -1;
 byte buffer[] = new byte[2048];
 while (input.isReady() && (len = input.read(buffer))
 ! = -1) {
 String data = new String(buffer, 0, len);
 System.out.printf("thread [%s] data: %s\n",
 Thread.currentThread().getName(), data);
 }
 } catch (IOException ex) {
 ex.printStackTrace(System.err);
 }
 }

 @Override
 public void onAllDataRead() {
 System.out.printf("thread [%s] onAllDataRead()\n",
 Thread.currentThread().getName());
 context.complete();
 }

 @Override
 public void onError(Throwable t) {
 System.out.printf("thread [%s] Error occurred=%s\n",
 Thread.currentThread().getName(), t.getMessage());
 context.complete();
 }
 }
 }

In order to be recognized by web container as an asynchronous Servlet, it must be
annotated with @WebServlet and the asyncSupport attribute set to true.

Although this example Servlet AsyncReaderServlet is long, there is really nothing
to it. The most important method is the refactored method processRequest(),
which starts the asynchronous communication. The processRequest()
method is shared between the doGet() and doPost() methods. Inside the
method, Servlet retrieves the javax.servlet.AsyncContext instance from the
HttpServletRequest instance and starts the process. The AsyncContext class
represents the execution context for an asynchronous operation. The method, then,
retrieves ServletInputStream, and then creates an inner class, an event listener,
AsyncReadListener, and registers it with the stream.

Chapter 6

[295]

AsyncReadListener is the event listener that reads data asynchronously from the
web client. Inside the method onDataAvailable(), the event listener only dumps
data to the standard output. In a business application, you will store data or act on it.
The inner class also prints out the current thread by the name for analysis.

If there is an error in processing, then the container will invoke the onError()
method. It is important to close the asynchronous context, and this is exactly what
this method does.

Similarly, once all the data has been read, the container will invoke the
onAllDataRead() method, and the asynchronous context is also closed with a call to
complete(). In both of these callbacks, the application can take action.

In order to test this asynchronous Servlet, we need a test client. Since we can execute
a container-less embedded GlassFish server application, we can write a modified and
refactored example.

The code for this new test client is as follows:

package je7hb.common.webcontainer.embedded.glassfish;

import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Scanner;
import java.util.StringTokenizer;

public class EmbeddedAsyncReaderRunner extends
 AbstractEmbeddedRunner {
 private static final String LOREM_IPSUM =
 "Lorem ipsum dolor sit amet, consectetur adipisicing " +
 "elit, sed do eiusmod tempor incididunt ut labore et " +
 "dolore magna aliqua. Ut enim ad minim veniam, quis " +
 /* ... */ est laborum.";

 public EmbeddedAsyncReaderRunner(int port) {
 super(port);
 }

 public static void main(String args[]) throws Exception {
 EmbeddedAsyncReaderRunner runner = (EmbeddedAsyncReaderRunner)
 new EmbeddedAsyncReaderRunner(8080).init().start();
 runner.deployWithRename
 ("build/libs/ch06-servlets-basic-1.0.war", "mywebapp");

Java Servlets and Asynchronous Request-Response

[296]

 Thread.sleep(1000);
 String path = String.format
 ("http://localhost:%d/%s/%s", 8080, "mywebapp", "reader");

 URL url = new URL(path);
 System.out.printf
 ("Client connecting to server on path %s\n", path);
 HttpURLConnection conn =
 (HttpURLConnection) url.openConnection();
 conn.setChunkedStreamingMode(2);
 conn.setDoOutput(true);
 conn.connect();
 try (BufferedWriter output = new BufferedWriter
 (new OutputStreamWriter(conn.getOutputStream()))) {
 System.out.println("Sending data ...");
 output.write("Beginning Text");
 output.flush();
 System.out.println("Sleeping ...");
 Thread.sleep(3000);
 System.out.println("Sending more data ...");
 StringTokenizer stk =
 new StringTokenizer(LOREM_IPSUM," \t,.");
 while (stk.hasMoreTokens()) {
 output.write(stk.nextToken());
 output.flush();
 Thread.sleep(200);
 }
 System.out.println("Finishing client");
 output.write("Ending Text");
 output.flush();
 output.close();
 }
 System.out.println("Check standard console ");
 Thread.sleep(1000);
 System.out.println("Disconnecting and shutdown");
 conn.disconnect();
 runner.stop();

 System.exit(0);
 }
}

Chapter 6

[297]

The EmbeddedAsyncReaderRunner class is a main application and starts an
embedded GlassFish server instance; it deploys the WAR file as a web application
as we saw earlier in the chapter.

Instead of waiting for a console input to terminate the application, the program
creates a URL connection to the asynchronous Java Servlet, and then invokes an
HTTP POST request to it. The text of the Lorem Ipsum is fed one word at a time to
Java Servlet using the HTTP URL connection. The words are pushed at the rate of
one every 200 milliseconds. Notice how the client flushes the buffer to ensure the
data is sent over the network.

After all of the words of the text are fed in, the connection is disconnected, and the
embedded runner is halted. We have to call System.exit in order to halt the Java
threads in the container-less application.

The output of the application-and it is instructive to review the thread names-is
as follows:

INFO: Loading application [mywebapp] at [/mywebapp]
Feb 11, 2013 11:24:40 AM org.glassfish.deployment.admin.DeployCommand
execute
INFO: mywebapp was successfully deployed in 2,452 milliseconds.
Client connecting to server on path http://localhost:8080/mywebapp/
reader
Sending data ...
Sleeping ...
init() called on AsyncReaderServlet
doPost() called on AsyncReaderServlet
processRequest() called AsyncReaderServlet on thread
 [http-listener(2)]
thread [http-listener(2)] data: Beginning Text
Sending more data ...
thread [http-listener(4)] data: Lorem
thread [http-listener(3)] data: ipsum
thread [http-listener(1)] data: dolor
thread [http-listener(5)] data: sit
thread [http-listener(2)] data: amet
thread [http-listener(4)] data: consectetur

thread [http-listener(5)] data: laborum
Finishing client
Check standard console

Java Servlets and Asynchronous Request-Response

[298]

thread [http-listener(2)] data: Ending Text
thread [glassfish-web-async-thread-1] onAllDataRead()
Disconnecting and shutdown
Feb 11, 2013 11:24:59 AM
 org.glassfish.admin.mbeanserver.JMXStartupService shutdown
FileMonitoring shutdown
INFO: JMXStartupService and JMXConnectors have been shut down.
contextDestroyed() on AppServletContextListener

The threads' names http-listener(1) to http-listener(5) demonstrate that the
GlassFish server allocates a thread pool to serve each HTTP push from the test client.
Clearly, flushing the output buffer in the test buffer causes data to be sent across the
network and then the asynchronous servlet, and its AysncReadListener retrieves
the data from the web client. This is seen by the output of one word of the Lorem
Ipsum text to the console at a time. Once the stream has finished, the test application
closes the HTTP URL connection, which causes the Servlet container to invoke the
onAllDataRead() method; notice how the thread is named glassfish-web-async-
thread-1.

The actual Java thread will be different with another application server or web
container. It is therefore recommended not to rely on specific server semantics.

An asynchronous writer
The Servlet 3.1 specification adds the event listeners for the production of
asynchronous output javax.servlet.WriteListener.

The interface declaration for WriteListener is as follows:

package javax.servlet;
public interface WriteListener extends java.util.EventListener {
 public void onWritePossible();
 public void onError(final Throwable t);
 }

Chapter 6

[299]

After an asynchronous context has been obtained and started, then a
WriteListener implementation is registered with a call to the instance method
ServletOutputStream.setWriteListener().

Method Descriptor
onWritePossible Provided an instance of WriteListener is registered with

ServletOutputStream, this method will be invoked by
the container the first time, when it is possible to write data.
Subsequently, the container will invoke this method if and
only if the ServletOutputStream.isReady() method
has been called and has returned false. This method is one
to write data that pushes data down the stream to the client.

onError The container invokes this method when something
has gone wrong and there is a plausible error. Here, the
implementation can take action on the error. The exception
is passed to the method.

To illustrate the asynchronous output, we can write a Servlet that streams the
Lorem Ipsum text to a web client. The code for the Servlet AsyncWriterServlet
is as follows:

package je7hb.servlets.simple;
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import java.io.IOException;
import java.io.PrintStream;
import java.util.StringTokenizer;

@WebServlet(name = "AsyncWriterServlet",
 urlPatterns = {"/writer"}, asyncSupported = true)
public class AsyncWriterServlet extends HttpServlet {

 private static final String LOREM_IPSUM =
 "Lorem ipsum dolor sit amet, consectetur adipisicing " +
 "elit, sed do eiusmod tempor incididunt ut labore et " +
 "dolore magna aliqua. Ut enim ad minim veniam, quis " +
 "nostrud exercitation ullamco laboris nisi ut " +
 "aliquip ex ea commodo consequat. Duis aute irure " +
 "dolor in reprehenderit in voluptate velit esse " +
 "cillum dolore eu fugiat nulla pariatur.
 Excepteur " + "sint occaecat cupidatat non
 proident, sunt in " + "culpa qui officia
 deserunt mollit anim id " + "est laborum.";

Java Servlets and Asynchronous Request-Response

[300]

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 System.out.printf("init() called on %s\n",
 getClass().getSimpleName());
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 System.out.printf("doGet() called on %s\n",
 getClass().getSimpleName());
 processResponse(request, response);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 System.out.printf("doPost() called on %s\n",
 getClass().getSimpleName());
 processResponse(request, response);
 }

 private void processResponse(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 System.out.printf("processRequest() called %s" +
 " on thread [%s]\n", getClass().getSimpleName(),
 Thread.currentThread().getName());
 AsyncContext context = request.startAsync();
 ServletOutputStream output = response.getOutputStream();
 output.setWriteListener
 (new AsyncWriteListener(output, context));
 }
 /*... inner class ... */
 }

This AsyncWriterServlet Servlet is the opposite of the reader Servlet, in that
it creates WriterListener as an event listener. This servlet is annotated with @
WebServlet, and it has an attribute asyncSupported set to true. The refactored
method processRequest() is the key, in that it creates an asynchronous context.
The context is started, and AsyncWriterListener is created and registered on
ServletOutputStream.

Chapter 6

[301]

AsyncWriterServlet utilizes an inner class AsyncWriteListener in order to push
data asynchronously to the client endpoint. The listing for this class-and note that it
is a type of WriteListener-is as follows:

private class AsyncWriteListener implements WriteListener {
 private ServletOutputStream output;
 private AsyncContext context;

 private static final String LOREM_IPSUM =
 "Lorem ipsum dolor sit amet, consectetur adipisicing " +
 "elit, sed do eiusmod tempor incididunt ut labore et " +
 /* ... */ est laborum.";

 private AsyncWriteListener(ServletOutputStream output,
 AsyncContext context) {
 this.output = output;
 this.context = context;
 System.out.printf("thread [%s] AsyncWriteListener()\n ",
 Thread.currentThread().getName());
 }

 @Override
 public void onWritePossible() {
 System.out.printf("thread [%s] onWritePossible() " +
 "Sending data ...\n", Thread.currentThread().getName());
 StringTokenizer stk =
 new StringTokenizer(LOREM_IPSUM," \t,.");
 PrintStream ps = new PrintStream(output);
 try {
 while (output.isReady() && stk.hasMoreTokens()) {
 if (stk.hasMoreTokens()) {
 ps.println(stk.nextToken());
 ps.flush();
 Thread.sleep(200);
 }
 }
 ps.println("End of server *push*");
 ps.flush();
 ps.close();
 System.out.printf("thread [%s] Finished sending ...\n",
 Thread.currentThread().getName());
 }
 catch (Exception e) {
 e.printStackTrace(System.err);
 }

Java Servlets and Asynchronous Request-Response

[302]

 finally {context.complete();}
 }

 @Override
 public void onError(Throwable t) {
 System.out.printf("thread [%s] Error occurred=%s\n",
 Thread.currentThread().getName(), t.getMessage());
 context.complete();
 }
 }

In order to generate an asynchronous response, web container invokes the
WriterListener instance with calls to the onWritePossible() method. It is likely
the method call is invoked on a separate worker thread. The difference between
WriterListener and ReaderListener is that the whole thread is responsible for
pushing the entire data set asynchronously. AsyncWriteListener sends the data as
a word of the Lorem Ipsum at time every 200 milliseconds and flushes the output
buffer in order to push the data across the network.

The Servlet container only ever invokes the onError() method if something goes
wrong with the server push. The disadvantage of WriteListener seems to be that
the entire Java thread is held onto by the whole dataset, because we have to push
it fully to the web client. Perhaps it is best to save the pointers on how much of the
dataset is written in an instance variable in a business application.

Let's look at the test application that will invoke this Servlet. It is another embedded
GlassFish runner application. However, this program will wait for the streamed
responses from AsyncWriterServlet.

The code in its entirety is as follows:

package je7hb.common.webcontainer.embedded.glassfish;
import java.io.*;
import java.net.HttpURLConnection;
import java.net.URL;

public class EmbeddedAsyncWriterRunner extends
 AbstractEmbeddedRunner {
 public EmbeddedAsyncWriterRunner(int port) {
 super(port);
 }

 public static void main(String args[]) throws Exception {
 EmbeddedAsyncWriterRunner runner =
 (EmbeddedAsyncWriterRunner)

Chapter 6

[303]

 new EmbeddedAsyncWriterRunner(8080).init().start();
 runner.deployWithRename
 ("build/libs/ch06-servlets-basic-1.0.war", "mywebapp");
 Thread.sleep(1000);
 String path = String.format
 ("http://localhost:%d/%s/%s", 8080, "mywebapp", "writer");
 URL url = new URL(path);
 System.out.printf
 ("Client connecting to server on path %s\n", path);
 HttpURLConnection conn = (HttpURLConnection)
 url.openConnection();
 conn.setChunkedStreamingMode(2);
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.connect();
 try (BufferedReader input = new BufferedReader
 (new InputStreamReader(conn.getInputStream()))) {
 System.out.println("Client receiving data ...");
 int len = -1;
 char buffer[] = new char[2048];
 while ((len = input.read(buffer)) != -1) {
 String data = new String(buffer,0,len).trim();
 System.out.printf
 ("--> client received data: %s\n", data);
 }
 System.out.println
 ("Client finished with receiving data ...");
 }
 System.out.println("Check standard console ");
 Thread.sleep(3000);
 System.out.println("Client disconnecting and shutdown");
 conn.disconnect();
 runner.stop();

 System.exit(0);
 }
 }

Java Servlets and Asynchronous Request-Response

[304]

EmbeddedAsyncWriterRunner is another container-less application that executes an
embedded GlassFish server, and deploys a WAR file to it. The program makes an
HTTP URL connection to the deployed Servlet and sends a request to it. The program
waits on the connection for Servlet to respond. It dumps each successful read of the
input stream, which is a word from the Lorem Ipsum text, to the standard output.
After the input stream is closed, because AsysncWriteServlet closes the connection,
the application will shut down the embedded runner, and then terminate itself.

The output of executing this program is as follows:

INFO: mywebapp was successfully deployed in 2,587 milliseconds.
Client connecting to server on path
 http://localhost:8080/mywebapp/writer
init() called on AsyncWriterServlet
doPost() called on AsyncWriterServlet
processRequest() called AsyncWriterServlet on thread
 [http-listener(2)]
thread [http-listener(2)] AsyncWriteListener()
thread [http-listener(2)] onWritePossible() Sending data ...
Client receiving data ...
--> client received data: Lorem
--> client received data: ipsum
--> client received data: dolor
--> client received data: sit
--> client received data: amet
--> client received data: consectetur

--> client received data: laborum
--> client received data: End of server *push*
thread [http-listener(2)] Finished sending ...
Client finished with receiving data ...
Check standard console
Client disconnecting and shutdown
Feb 11, 2013 9:08:36 PM
 org.glassfish.admin.mbeanserver.JMXStartupService shutdown
FileMonitoring shutdown
INFO: JMXStartupService and JMXConnectors have been shut down.
contextDestroyed() on AppServletContextListener

INFO: Shutdown procedure finished

Chapter 6

[305]

In the GlassFish server implementation, a Java thread http-listener(2) is used to
push the data entirely to the web client. However, because the application uses the
standard API, this will be hidden from developers. The Servlet container providers
are free to develop implementations that will execute from the thread pool services
that give the best performance.

Alignment to the containers
The Servlet specification is one of the oldest in the Java EE platform. Over a period
of time, it has been updated to allow Servlets to integrate with newer parts of the
platform, such as CDI, EJB, JAX-RS, and WebSocket.

Aligning Servlets to the CDI container
The Java Servlet 3.1 specification mentions that the resources can be injected into a
Servlet. If the web container provider has support for CDI, then the CDI container
can inject the contextual objects into a web application using the @javax.inject.
Inject annotation.

CDI is available on web containers and the application servers that implement the
Java EE 7 Web Profile and Full Profile. The CDI components can just be injected into
Servlet on those environments.

An example of the CDI services injected into Servlet is as follows:

@WebServlet(urlPatterns = {"/randomword"})
public class CDIServlet extends HttpServlet {
 @Inject private RandomWordService service;

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 PrintWriter pwriter = resp.getWriter();
 pwriter.printf("This is the class `%s'\n" +
 "The date time is %s\n" + "random word = %d\n",
 getClass().getName(), new Date(), service.getNextWord());
 }
 }

Java Servlets and Asynchronous Request-Response

[306]

Since Servlet 3.1 is part of Java EE 7, there is no need to bootstrap the CDI
container as a separate service. The CDI container is available in conforming web
containers as can be seen in the preceding example, CDIServlet, which injects a
RandomWordService.Alignment Servlet to the EJB container.

References to stateful and stateless EJB can also be injected into Servlets and filters,
if they meet either conformance with the Web Profile or Full Profile. The annotation @
javax.ejb.EJB can be used in a Java Servlet component to reference an external EJB.

@WebServlet(urlPatterns = {"/cart/*"})
public class ShoppingCartServlet extends HttpServlet {
 @EJB private ShoppingCartServiceBean cartBean;

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 processRequest(req, res);
 }
 //
 }

In this example code for ShoppingCartServlet, the Servlet container on behalf
of the EJB container injects an EJB reference into Servlet during the initialization
phase. The internal logic of the application server processes the injection point with
the correct representation, which is either a local or remote EJB proxy instance. The
result is transparent to developer.

If the web application is running in the same JVM as the EJB implementation, then
in order to use such EJB references in a Servlet, the web application must have
references to the home and local interfaces in an accompanying JAR file, which is
deployed in the WEB-INF/lib directory. These interfaces are usually Java interfaces,
and not normally the implementations themselves.

If the web application uses an EJB that is remote, it does not run inside the same JVM,
then a JAR file with the necessary home and remote interfaces must be prepared. This
JAR file is also placed in the WEB-INF/lib directory of the web application.

Miscellaneous features
This section covers useful features of the Java Servlet specification.

Chapter 6

[307]

Mapping the URL patterns
The URL pattern determines how the web container maps a HTTP Request to a
Servlet resource. A URL pattern can map to a specific Servlet, an extension mapping,
or be treated as the default processor.

Given an URL pattern as a string, then the following logic applies:

•	 If the URL pattern begins with a forward slash character (/) and ends with
(/*) character, then this sequence is valid for the path mapping. We saw
some examples of the URL patterns in SimpleServlet, earlier in this chapter.

•	 For web container to interpret an URL path as an extension mapping, the
pattern must be stringed with the prefix (*.). Some examples of extension
mapping are *.jsp, *.jsf, and *.facelet.

•	 A URL pattern containing only the forward slash (/) character indicates to
web container the associated or referenced Servlet is the default Servlet of the
web application. The default Servlet can be either denoted by annotation or
specified in the web deployment descriptor.

If none of the preceding logic applies, then the URL pattern is used for exact
matches only.

Rules for the URL path mapping
Web container maps the incoming request to a particular Servlet using rules according
to the specification. The algorithm stop-at-the-first successful true condition implies
that the search and mapping exercise is complete, and no further action is required.

The rules are as follows:

1.	 Web container will attempt to find an exact match of the path of the request
to the Servlet's path. A successful match selects the Servlet.

2.	 Web container will recursively try to match the path of the Servlet using the
longest path first, by stepping down the path tree a directory at a time, using
the path separator (/). The longest match determines the Servlet selected.

3.	 If the last segment in the URL path contains an extension (for example, .jsp),
web container will attempt to match a Servlet that handles the requests for
the extension. An extension is defined as part of the last segment after the last
full stop (.) character.

4.	 If neither of the previous rules works in selecting an appropriate Servlet, web
container will attempt to serve the content that is appropriate for the resource
requested. If the web application defines a default Servlet, then it is selected
and used.

Java Servlets and Asynchronous Request-Response

[308]

Single thread model
javax.servlet.SingleThreadModel is a Java interface instructed to the Servlet
container to only allow a single web request to invoke on a Java Servlet. This
interface is now deprecated in Servlet 3.1. Originally, this feature was designed in
the specification to contain the thread management on a single resource. Nowadays,
SingleThreadModel is a bottleneck and a severe throttle for the scalable web
applications, especially now that we have the asynchronous input and output in
Java Servlets 3.1.

Summary
Java Servlet is a fundamental specification of the Java EE platform, it is the basis
of the web applications and support. We have seen that Servlets can provide the
synchronous input and output to the web clients over HTTP. Servlets have different
scopes: request, session, and servlet context.

In this chapter, we learnt about how Servlets are initialized and destroyed, how
they can retrieve the initialization parameters. Servlets are configurable through
the annotations and there is no need to write a single web deployment descriptor
WEB-INF/web.xml in order to deploy a web application.

The web applications are deployed to a web container using a WAR file. The
Servlet 3.1 specification allows a web application to be built from web fragments.
If the JAR files are distributed in a WAR file and the correct information is set in
the deployment descriptor, then those JAR files will be searched for the annotated
Servlet, filter, and listener classes.

The Java Servlet 3.1 specification introduces the asynchronous input and output for
the first time. Java Servlet and filter can be written to take advantage of the NIO of
the Java platform. Asynchronous I/O is one way to build scalable web components
on the server.

Finally, CDI and EJB references can be injected into the Servlet web components.
In the next chapter, we will explore Java WebSocket API, a brand new edition to
the Enterprise platform. We have seen that Java Servlet can handle asynchronous
communications, but HTML5 WebSocket is the exciting challenge, and it is ideally
suited for scalable end-to-end messaging.

Java API for
HTML5WebSocket

Jon Bon Jovi, singer and songwriter said, "Don't get too comfortable with who you are
at any given time—you may miss the opportunity to become who you want to be."

This chapter is about Java HTML5WebSocket in the Java EE 7 edition, which
is Java's standard application programming interface to the exciting new
communication feature in the HTML5 specification. The HTML5 specification defines
a WebSocket as a communication channel that operates over the World Wide Web
in a full-duplex mode: it affords HTML and web applications, for the very first time,
a standard for building real-time and event-driven architectures. This definition can
be confusing terminology for a beginner. Fortunately, the new WebSocket features in
Java EE are an improvement and a higher abstraction over general networking.

An endpoint is an application or program that sits on one end of a communication.
Obviously, we need two endpoints in order to communicate any data. An endpoint
can receive data or it can send data to and across the network.

The term full duplex means that communication can be started from either end-point.
Both endpoints can send and receive data simultaneously: it is bi-directional.

The term half-duplex describes the other side of the coin, where only one endpoint
can send data and the other receives it. The endpoint is the producer and the
other end-point is the consumer. These terms are derived etymologically from the
telephony industry and earlier forms of computer networking.

Java API for HTML5WebSocket

[310]

The HTML5WebSocket has the following affordances:

•	 A much smaller payload of header data in comparison to standard HTTP
requests-response

•	 Bi-directional communication stream using just one connection
•	 A lower latency stream in comparison to HTTP request-response

There is already a wide set of applications using WebSockets even before the W3C
standard committee has fully resolved and reached version 1.0 release.

The rise of WebSockets
The WebSocket standard is overseen by the Web Hypertext Application Technology
Working Group (WHATWG) and is the culmination of many earlier attempts to
provide asynchronous HTTP communication in a scalable.
(See http://www.whatwg.org/).

Early web technology
The core of the web is the underlying protocol for communication, the
Hypertext Transfer Protocol (HTTP). A web client submits an HTTP request to a
remote server over the Internet, and then waits for the server to respond. The user
experiences this behavior as a delay for the web page to load, however briefly. The
User Experience (UX) can attempt to design a work-around as much as possible, but
eventually if the latency and the network is long enough then this sequence of events
become interminable.

The earliest technologies attempted to avoid delay in the HTTP request and
response. They provided more immediate responses to the web client by building on
HTTP technologies using plug-ins and proprietary features inside web browsers. As
options, they were clever, but non standard and non portable.

The first technique may surprise some people. Since 1995, Java has been executable
in the web browser; the Java Applet permitted access to the richer networking API
of the JVM platform and it also provided multithread programming

The second technique was through a discovery of the XML HTTP Request library,
which Microsoft implemented in the Internet Explorer web browser. Web engineers
found out Asynchronous JavaScript and XML Request and Response (AJAX).Other
web browser providers such as Mozilla Firefox, Opera, and Apple Safari quickly
copied the AJAX API. The AJAX phenomenon took off with websites such as Google
Maps and Google Mail that provided a partial page request and demonstrate partial
page response rendering.

Chapter 7

[311]

Let's step back a little bit. HTTP 1.0 permits a client to open a connection to a web
server. The client would send a request with HTTP headers, the server would
respond in due course with a content response, a MIME type, and then the content.
Afterwards, the connection would be severed. There is a large eyesore problem with
such a protocol: it does not scale upwards. The server has to acquire and release a
relatively expensive resource, an HTTP connection, which is essentially a TCP/IP
socket as far as the operating system is concerned. A program that continuously opens
and closes socket will perform worse than one that maintains one open socket for the
conversation. In HTTP 1.1, there is an opportunity to hold on to a socket connection
with the special request header: Keep-Alive. Unfortunately this is not an answer either,
because holding onto a socket means that it is not shared by another web client, and
thus this solution also fails to scale to big data users with a single JVM. Nevertheless
this is ultimately the secret behind the technique known as Long Polling.

The Long Polling technique is a favorite technique of COMET or Push servers.
COMET and AJAX are plays on words for common household cleaning products
found in USA and Europe. In COMET, the web client makes a request to the web
server. The web server sends a response but never actually closes the connection;
it tricks the browser into holding onto the connection, and every so often the client
initiates a request to the server. These infrequent requests effectively poll the
connection and the web server can push data to the client. As long as the connection
is not broken then the illusion is held and to the user it looks like the server is
pushing data to the client.

There are more exotic techniques, which use the existing HTTP / 1.1 communication
standards, and many projects have found success in the open with them.
Unfortunately they all suffer the ignominy of sending the HTTP request headers
with every request. The older techniques may mean the latency is just not low
enough for a very high interactive online game or a business that need very fast
speed real-time data.

Enter HTML5 and WebSockets
HTML5 is a set of standards and working group defined by the WHATWG. One of
the standards is called WebSockets. The purpose of the WebSockets is to define a
standard that permits web clients and server to initiate a persistent connection that
will allow asynchronous requests and responses. Both sides of the communication
channel can send data to the other end of the channel.

WebSockets are an example of peer-to-peer communications. A P2P network is one
where any endpoint can act as a client or a server for other connections on the network.

Java API for HTML5WebSocket

[312]

WebSocket Java definitions
The following are the definitions of WebSocket Java.

•	 The WebSocket Endpoint is the component that enables the peers to send
data and receive data to and from the connection. In JSR 356 the Java Web
Socket endpoint is the component that represents one side of the sequence of
interactions between connected peers. A Web Socket endpoint has two states:
connected or disconnected.

•	 The WebSocket Connection is a completed route of communication between
peers that have agreed beforehand on a protocol handshake. The connection is
maintained as a network between two WebSocket endpoints until one of them
is closed or forcefully severed by the application or web browser runtime.

•	 A WebSocket Peer represents an application that is participating in
communications over a WebSocket endpoint.

•	 A WebSocket Session, in the WebSocket parlance, is the representative set
of data communications, over time, shared by two peers across two separate
endpoints. A session is the conduit for identifying the sequence of these
communications across two peers.

•	 A Server WebSocket Endpoint is a peer that accepts initiation requests from
clients-remote endpoints-to connect to its WebSocket. The implementation
will provide a WebSocket or create one when there is a connection request.
The server aids in the handshake protocol and activates a session between
the client and the server endpoints, establishing a connection. The server
endpoint does not initiate other connections or act as a client.

•	 A Client WebSocket Endpoint is the peer that creates a WebSocket (or
retrieves a pooled WebSocket from the implementation) and invokes a
connection request on a remote endpoint in order to start a WebSocket
session. When the remote endpoint accepts the connection request then
the client is bound into the WebSocket session. The client does not accept
connections from other remote endpoints or act as a server.

Chapter 7

[313]

The WebSocket protocol
The client and server must negotiate a handshake in order to establish a WebSocket
connection. A client initiates an HTTP Request to the server first of all, then server
and client upgrade from the HTTP protocol to the WebSocket protocol.

After the completion of a successful handshake, the client and server can send
messages at any time. The messages that appear in the connection channel follow the
WebSocket protocol.

Java API for HTML5WebSocket

[314]

Server-side Java WebSockets
In Java EE 7, the Java package javax.websocket is the root for WebSockets. There is
one package underneath this one for server endpoints: javax.websocket.server.

The server-side endpoint in Java represents one end of the peers. Java applications
with WebSocket endpoints are created through programming directly against
the library. Otherwise, the endpoints are determined by annotations in the
JSR 356 specification.

The annotation javax.websocket.server.ServerEndpoint is applied to classes
that execute an endpoint on the server. The annotation requires a URL pattern
fragment similar to the Servlet 3.1 annotation @javax.servlet.WebServlet, which
determines how the implementation provider routes an incoming WebSockets
request to the endpoint.

We can annotate a POJO so that it will be registered as a server-side WebSocket
endpoint, but how can we receive messages from the client? The answer is
annotation: @javax.websocket.OnMessage. This annotation declares a particular
method to receive messages that arrive on the WebSocket connection.

Let's take a look at a simple echo server example:

package je7hb.websocket.basic;
import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/echo")
public class EchoWebSocketServer {

 @OnMessage
 public String doListen(String message) {
 return "Echo: Got your message (" + message +
 "). Thanks";
 }
}

This is, perhaps, the simplest Java WebSocket server that one can write.
The @ServerEndpoint annotation declares the class EchoWebSocketServer as
a server-side endpoint in that it is capable of receiving connection requests from
clients. The URL pattern "/echo" declares how the WebSocket implementation
routes the request to the endpoint.

Chapter 7

[315]

The method doListen() is annotated with @OnMessage and declares to the
implementation what method to invoke when a message has been received on the
connection. Note that the return type of the method doListen() is String. It is
possible to return a message to the client directly, which is of course exactly the
function of the method.

@ServerEndpoint
Let's look at the annotations in detail; here is the table of attributes for the
annotations for @javax.websocket.server.ServerEndpoint:

Attribute Type Description Default Value
value String Defines the URI or

URI template where
the endpoint will
be deployed. The
URI must begin
with a character
""""/". Trailing
""""/" characters are
ignored.

None

subProtocols String [] Defines an ordered
array of WebSocket
protocols that this
endpoint supports.

None

decoders Decoder[] Specifies an
ordered array of
encoder classes this
endpoint will use.

None

decoders Encoder[] Specifies an ordered
array of encoder
classes that the
endpoint will use.

None

configurator Class<? Extends
ServerEndPoint-
Configurator>

Defines a custom
configurator that
the developer
would like to use to
configure a logical
endpoint instance.

ServerEndpoint-
Configuration.
class

Java API for HTML5WebSocket

[316]

@OnMessage
Here is the table of attributes for the @javax.websocket.OnMessage:

Attribute Type Description Default
Value

maxMessageSize long Specifies the maximum size
in bytes for the incoming
message.

None

There is only one attribute allowed. The maxMessageType attribute sets the maximum
size of the message following the successful completion of the initial handshake.

Invoking Java WebSocket
We can define a Java WebSocket endpoint on the server side. There would be no
point in defining the WebSocket unless there was a way of calling it. We only require
a simple HTML5 and JavaScript web page to do this. WebSockets are supported by
most of the modern web browsers: Mozilla Firefox, Google Chrome, Apple Safari,
and Microsoft Internet Explorer.

The page that invokes the EchoWebSocketServer looks like the following:

<!DOCTYPE html>
<head>
<meta charset="utf-8"/>
<title>Echo Server Side WebSocket Test</title>
<script language="javascript" type="text/javascript">
 var wsUri = "ws://localhost:8080/mywebapp/echo";
 var output;

 function init() {
 output = document.getElementById("output");
 testWebSocket();
 }

 function testWebSocket() {
 websocket = new WebSocket(wsUri);
 websocket.onopen = function (evt) {
 onOpen(evt)
 };

Chapter 7

[317]

 websocket.onclose = function (evt) {
 onClose(evt)
 };
 websocket.onmessage = function (evt) {
 onMessage(evt)
 };
 websocket.onerror = function (evt) {
 onError(evt)
 };
 }

 function onOpen(evt) {
 writeToScreen("CONNECTED");
 doSend("HTML5 Java WebSockets Rocks!");
 }

 function onClose(evt) {
 writeToScreen("DISCONNECTED");
 }

 function onMessage(evt) {
 writeToScreen('RESPONSE:'
 + evt.data + '');
 websocket.close();
 }

 function onError(evt) {
 writeToScreen('ERROR:'
 + evt.data);
 }

 function doSend(message) {
 writeToScreen("SENT: " + message);
 websocket.send(message);
 }

 function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;
 output.appendChild(pre);
 }

Java API for HTML5WebSocket

[318]

 window.addEventListener("load", init, false);
</script>
<head>
<body>
<h2>WebSocket Test</h2>
<div id="output"></div>
</body>
</html>

This is mostly an adaption of the code that exists on the HTML5 community
website: http://websocket.org/. It is about as simple as it can get for a
Hello World example for WebSockets.

The page is mostly JavaScript. There is one h2 header and a div layer element
with an id of "output". An event handler init() is registered on the page, as
soon as it is loaded with the browser. The first action of the function init()
finds the output div layer in the Document Object Model. The second invokes
the testWebSocket() function.

The function testWebSocket() creates a WebSocket and then registers callback
functions on it on various events. On the JavaScript side, one listens for when the
web sockets are opened or closed, or when a message is received, and if there is an
error on the channel.

The function onOpen() is a callback function in JavaScript, which is invoked when
the WebSocket successfully makes a connection to the remote endpoint, which is in
our case the EchoWebSocketServer. The function sends a message down the channel
to the server by calling the helper function doSend().

Upon reception of the message on the WebSocket, the JavaScript function
onMessage() is invoked. This function appends a new text element with the message
to the output div layer by calling the helper function writeToScreen().

Chapter 7

[319]

Running WebSocket examples
The code that deploys the WebSocket is exactly the same as the EmbeddedRunner
in the Servlet chapter. The only difference is the name of the WAR file. We use an
embedded GlassFish server instance and deploy a WAR file to it with the
WebSockets endpoint. The open source project Tyrus (on Java .Nethttps://java.
net/projects/tyrus) is the reference implementation of the Java WebSockets
specification inside the GlassFish project. Tyrus is responsible for creating WebSocket
endpoints by scanning the WAR file for the appropriate @ServerEndpoint
annotations. Once it finds them, the implementation validates the class and then
generates configuration around each endpoint, which intercepts the URI template,
and then activates the WebSocket for service.

Java WebSocket API
The WebSocket API expresses a view of the HTML5 standard for WebSocket, which
defines the model inside a web browser and the protocol for communication. In terms
of the Java API, a WebSocket endpoint is a Java object that represents a terminated
socket connection between two peers. If two different Java applications have a Web
Socket connection, then each one will have an instance of a Java WebSocket.

There are two ways to create a Java WebSocket. The easiest way is to develop
endpoints using the Java annotations. The less travelled road is to develop endpoints
against the WebSocket API programmatically. The developer writes classes and
implements the classes required by the WebSocket API. The second way means
the developer writes behavior for a WebSocket to produce and consume messages,
publish itself as a configured endpoint, and write code to register itself for client
connections and/or connect to remote endpoints.

Native formats communication
The HTML5 standard for WebSocket defines three native formats for
communication: text, binary, and pong.

The native format Text is the java.lang.String in Java and for JavaScript
programming language corresponds to the type String. So we have a
one-to-one association.

Binary format is java.nio.ByteBuffer in Java and the type ArrayBuffer
in JavaScript. (Some web browsers may also permit the DOM type Blob in
JavaScript; since the standard is not completely ratified, you would be very
wise to check your integration!)

Java API for HTML5WebSocket

[320]

The Pong format is also java.nio.ByteBuffer in Java and the type ArrayBuffer
in JavaScript. The Ping and Pong format is a special format for checking the
connectivity between two WebSockets. In the networking parlance, these types of
messages are often called heartbeats. In the current WebSocket standard, please note
there is no defined API to send either a Ping or Pong message using JavaScript.

Let's continue with the annotated WebSocket endpoints.

Annotated WebSockets on the server side
Developers have access to the lifecycle of the WebSocket through annotations, which
unsurprisingly are very similar to the JavaScript implementation. The annotations
are @javax.websocket.OnMessage, which you have already seen @javax.
websocket.OnOpen, @javax.websocket.OnClose, and @javax.websocket.
OnError. These annotations, apart from @OnMessage, do not accept any attributes.
All of the annotations are only applied to instance methods in a Java class.

Lifecycle WebSocket endpoint annotations
Here is a table of these annotations:

Lifecycle Annotation Description
@OnOpen This annotation decorates a Java method that wishes to be

called when a new WebSocket session is open.
@OnMessage This annotation decorates a Java method to receive incoming

WebSocket messages. Each WebSocket endpoint may only
have one message handling method for each of the native
WebSocket message formats: text, binary, and pong.

@OnClose This annotation decorates a Java method that wishes to be
called when an existing WebSocket session is closed.

@OnError This annotation decorates a Java method that wishes to be
called when an existing WebSocket session has an error. The
application method can thus handle the error and perform
further tasks.

This method-level annotation can be used to make a Java method receive incoming
WebSocket messages. Each WebSocket endpoint may only have one message handling
method for each of the native WebSocket message formats: text, binary, and pong.

Chapter 7

[321]

WebSocket sessions
The Java WebSocket API defines a session object that represents a conversation
between two peers. The javax.websocket.Session is an interface, which defines
a number of methods that a developer may invoke to get extra information about
the connection, session data, the lifecycle, and also perform the close action on the
connection. Moreover, the Session object is the way to associate the conversation
with the peer into a semantic context in terms of a business application.

Each WebSocket session has a unique session ID, which is associated with one
and only one session instance. An implementation may choose to implement a
WebSocket connection pool and therefore an instance may be appropriately reused.
In such cases, the specification stipulates that a reused session instance must have a
new unique session ID.

The session instance in a distributed Java EE container can also be passivated
on managed server node instance and therefore migrated to another node.
Implementations of the Java WebSocket API are permitted to migrate the WebSocket
session instances from one node to another for the purposes of load balancing and
failover. The only rule is that the provider must preserve the WebSocket session of
any connected peers seamlessly and transparently. This is particularly interesting
from the point of view of a cloud-computing platform. This, probably, will be a
common question for application architects. How do WebSocket connections, nodes,
and servers scale? The simplest answer, perhaps, is to choose a provider that reliably
has the non-functional requirements that your business needs.

Methods annotated with lifecycle events@OnOpen, @OnClose, @OnMessage, and
@OnError annotation are permitted to accept a javax.websocket.Session object as
an argument. The implementation will inject the session instance into the method call.

Methods annotated with@OnMessage annotation additionally can also declare
a @javax.websocket.PathParam argument in order to accept WebSocket
connection arguments.

Here is a table for the methods of javax.websocket.Session:

Method Return Type Description
getContainer() WebSocketContainer Gets the container of which

this session is a part.
addMessageHandler(
MessageHandler
handler)

void Registers a handler to
receive incoming messages
in the session conversation
(text, binary or pong).

Java API for HTML5WebSocket

[322]

Method Return Type Description
getMessageHandlers() Set<MessageHandler> Retrieves an immutable

copy of the set of
MessageHandler
associated with the session.

removeMessageHandler(
MessageHandler handler
)

void Removes the supplied
MessageHandler
from the set of handlers
associated with this session.
If the message handler is in
use then invoking this call
may block the caller.

getProtocolVersion() String Gets the version of the
WebSocket protocol
currently being used.

getNegotiated-
Subprotocol()

String Gets the sub protocol
agreed after the WebSocket
handshake for this
conversation.

getNegotiated-
Extensions()

List<Extension> Retrieves a list of
extensions that have been
agreed for use in the
session conversation.

isSecure() boolean Returns a Boolean flag
about the underlying
socket connection. If a
secure transport is being
used (https) then this
method returns true.

isOpen() Boolean Returns a Boolean flag, if
the socket connection is
open or closed.

getMaxIdleTime() Long Specifies the number of
milliseconds allowed
before the container closes
a WebSocket channel.

setMaxIdleTime(long
millisecond)

void Sets the number of
milliseconds before the
conversation is ended,
because of inactivity, which
means no data is sent or
received over a period of
time.

Chapter 7

[323]

Method Return Type Description
setMaxBinaryMessage-
BufferSize(int
length)

void Sets the maximum length
of incoming binary
messages.

getMaxBinaryMessage-
BufferSize()

int Gets the maximum
length of incoming binary
messages.

setMaxTextMessage-
BufferSize(int
length)

void Sets the maximum length
of incoming text messages.

getMaxTextMessage-
BufferSize()

int Gets the maximum length
of incoming text messages.

getAsyncRemote() RemoteEndpoint.Async Returns a reference to a
RemoteEndpoint object,
which represents the peer
of the conversation that
is able to send messages
asynchronously to the peer.

getBasicRemote() RemoteEndpoint.Basic Returns a reference to a
RemoteEndpoint object,
which represents the peer
of the conversation that
is able to send messages
synchronously to the peer.

getId() String Gets the unique identifier
for this session instance.

close() void Closes the current
conversation with a normal
status code and no reason
text.

close(CloseReason
reason)

void Closes the current
conversation with a specific
reason for ending the
session.

getRequestURI() URI Retrieves the URI under
which this session was
opened including the full
query string.

getRequestParameter-
Map()

Map<String,
<List<String>>

Retrieves a map collection
of the request parameters
associated with the request
and also the underlying
session.

Java API for HTML5WebSocket

[324]

Method Return Type Description
getQueryString() String Returns the query string

associated with the request
for this session at opening
time.

getPathParameters() Map<String, String> Retrieves a map collection
of the path parameters and
values associated with the
request for this session at
opening time.

getUserProperties() Map<String, Object> Retrieves a map collection
of user-defined properties.
This map is valid when
the connection is open and
therefore any information
is at risk as soon as the
connection session is closed.

getUserPrincipal() Principal Gets the authenticated user
for this WebSocket session
object or null if there is no
authenticated user.

getOpenSessions() Set<Session> Returns a copy of the set
collection of all the open
WebSocket sessions that
represent connections
to the same endpoint,
to which this session
represents a connection.

Although there are lots of methods in javax.websocket.Session, the most
important methods are: getId(); getRemoteBasic() and getRemoteAsync();
isOpen(), close(), and getRequestParameterMap().

Now let us see a more capable server-side WebSocket application.

A Java WebSocket chat server
In this section, we will examine the code for a chat server, a rudimentary version
that demonstrates the features of Java WebSocket. The chat server allows users with
WebSocket enabled web browser to chat online. This chat server has only one room,
which is a severe restriction for a business application. On the other hand, there is
no form of authentication, and anyone with a browser can join in the chat room. The
example also features context and dependency injection.

Chapter 7

[325]

The server side
Perhaps, the easiest way to start the code review is to look at the endpoint. So we
will look at this now:

package je7hb.websocket.basic;

import javax.annotation.*;
import javax.enterprise.context.ApplicationScoped;
import javax.inject.Inject;
import javax.websocket.*;
import javax.websocket.server.ServerEndpoint;

import static je7hb.websocket.basic.ChatUtils.*;

@ServerEndpoint("/chat")
public class ChatServerEndPoint {
 @Inject @ApplicationScoped
 private ChatRoom chatRoom;

 @PostConstruct
 public void acquire() {
 System.out.printf("%s.acquire() called in thread: [%s]\n",
 getClass().getSimpleName(),
 Thread.currentThread().getName());
 }

 @PreDestroy
 public void release() {
 System.out.printf("%s.release() called\n",
 getClass().getSimpleName());
 }

 @OnOpen
 public void open(Session session) {
 System.out.printf("%s.open() called session=%s\n",
 getClass().getSimpleName(), session);
 }

 @OnClose
 public void close(Session session) {
 System.out.printf("%s.close() called
 session=%s\n", getClass().getSimpleName(), session);
 }

Java API for HTML5WebSocket

[326]

 @OnMessage
 public void receiveMessage(
String message, Session session) {
 System.out.printf("%s.receiveMessage() called
 with message=`%s', session %s, thread [%s]\n",
 getClass().getSimpleName(), message, session,
 Thread.currentThread().getName());

 String tokens[] = message.split(DELIMITER);
 String command = tokens[0];
 String username = (tokens.length > 1 ? tokens[1] : "");
 String text = (tokens.length > 2 ? tokens[2] : "");

 ChatUser user = new ChatUser(session,username);
 if (LOGIN_REQUEST.equals(command)) {
 chatRoom.addChatUser(user);
 }
 else if (LOGOUT_REQUEST.equals(command)) {
 chatRoom.removeChatUser(user);
 }
 else if (SEND_MSG_REQUEST.equals(command)) {
 chatRoom.broadcastMessage(username,text);
 }
 else {
 encodeErrorReply(session,username,
 String.format("unknown command: %s", command));
 }
 }
}

This class ChatServerEndpoint is annotated as a WebSocket server endpoint and
any requests with the URL fragment "/chat" are directed to it.

Notice, there is CDI application scoped bean ChatRoom injected into the endpoint. In
this way, we are able to converse with users of the chat room feature. Although not
really necessary for the function, we also add the CDI lifecycle events to the endpoint.

Next, we have specific life cycle methods open(), close(), and receiveMessage()
that are annotated with @OnOpen, @OnClose and @OnMessage to respond to WebSocket
connection events. In these methods we dump to the standard console the name of the
current thread and session object solely for the purpose of debugging.

Chapter 7

[327]

The method receiveMessage() does the real work of deciphering the incoming
message from the chat client application, which is implemented in HTML5 and
JavaScript. The method creates a ChatUser object and executes an action in the
ChatRoom application scoped bean. Otherwise it will send a reply text as an error
message back to the chat client.

Let us look at the other classes in the application, starting with the ChatUser class:

package je7hb.websocket.basic;
import javax.websocket.Session;

public class ChatUser {
 private final Session session;
 private final String username;

 public ChatUser(Session session, String username) {
 this.session = session;
 this.username = username;
 }

 public Session getSession() { return session; }
 public String getUsername() { return username; }

 @Override
 public String toString() {
 return "ChatUser{" +
 "session=" + session +
 ", username='" + username + '\'' +
 '}';
 }
}

The class ChatUser is an immutable Java object, which associates the chat username
with a WebSocket session instance. The methods hashCode() and equals()
methods are omitted, but are included in the source code for the book.

Java API for HTML5WebSocket

[328]

We will move on the handy utility class for the chat server, which is the
class ChatUtils:

package je7hb.websocket.basic;
import javax.websocket.*;
import java.io.IOException;

public class ChatUtils {
 public final static String SYSTEM_USER = "*SYSTEM*";
 public final static String DELIMITER = "::::";
 public final static String LOGIN_REQUEST = "LOGIN";
 public final static String LOGOUT_REQUEST = "LOGOUT";
 public final static String SEND_MSG_REQUEST= "SENDMSG";
 public final static String MESSAGE_REPLY="MESSAGE_REPLY";
 public final static String ERROR_REPLY="ERROR_REPLY";

 private ChatUtils() { }

 public static void encodeMessageReply(
Session session, String username, String text) {
 encodeCommonReply(session, MESSAGE_REPLY, username, text);
 }

 public static void encodeErrorReply(
Session session, String username, String text) {
 encodeCommonReply(session, ERROR_REPLY, username, text);
 }

 public static void encodeCommonReply(Session session,
String token, String username, String text) {
 if (session.isOpen()) {
 try {
 session.getBasicRemote().sendText(
token + DELIMITER + username + DELIMITER + text);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 7

[329]

The utility class has a generic method encodeCommonReply(), which generates an
appropriate response, an encoded text string, and sends it to the remote endpoint.
The method uses a DELIMITER string and a reply token with a supplied text
message from the caller. In particular, note how the method retrieves the reference
to the synchronous endpoint handler in order to send a message back to the peer. Of
course, it would be easier to change this to the asynchronous version by invoking
the alternative function session.getBasicAsync() instead. The method also checks
if the WebSocket peers are active by calling isOpen() on the session instance; and
hence avoid sending a text message to a dead connection.

There are two helper methods encodeMessageReply() and encodeErrorReply()
that invoke the generic method. The encodeMessageReply() sends a normal text
message to the connected peer of the session and the other method encodes an error
reply text.

The constant strings are also copied to the JavaScript implementation of the client. Of
course, we could have been pedantic and made all of them Java enumerations if we
wanted to.

These methods are statically imported in the ChatServerEndpoint and the
ChatRoom class, which will we now study:

package je7hb.websocket.basic;
import javax.annotation.*;
import javax.annotation.PreDestroy;
import javax.enterprise.context.ApplicationScoped;
import java.util.*;
import java.util.concurrent.*;

import static je7hb.websocket.basic.ChatUtils.*;

@ApplicationScoped
public class ChatRoom {
 private ConcurrentMap<String,ChatUser> peers
 = new ConcurrentHashMap<>();

 @PostConstruct
 public void init() {
 System.out.printf(">>>> %s.init() called\n",
 getClass().getSimpleName());
 }

Java API for HTML5WebSocket

[330]

 @PreDestroy
 public void destroy() {
 System.out.printf(">>>> %s.destroy() called\n",
 getClass().getSimpleName());
 }

 public void addChatUser(ChatUser user) {
 peers.putIfAbsent(user.getUsername(), user);
 broadcastMessage(SYSTEM_USER,
 String.format("user: %s has joined the chat room.",
 user.getUsername()));

 List<String> peerUsers = new ArrayList<>();
 for (String peerUsername: peers.keySet()) {
 if (!peerUsername.equals(user.getUsername())) {
 peerUsers.add(peerUsername);
 }
 }
 StringBuilder membersList = new StringBuilder();
 for (int j=0; j<peerUsers.size(); ++j) {
 if (j != 0) membersList.append(", ");
 membersList.append(peerUsers.get(j));
 }
 encodeMessageReply(user.getSession(), SYSTEM_USER,
 String.format("The chatroom has members: [%s]",
 membersList.toString()));
 }

 public void removeChatUser(ChatUser user) {
 peers.remove(user.getUsername()) ;
 broadcastMessage(SYSTEM_USER,
 String.format("user: %s has left the chat room.",
 user.getUsername()));
 }

 public void broadcastMessage(
String targetUsername, String message)
 {
 for (ChatUser peerUser: peers.values()) {
 if (peerUser.getSession().isOpen()) {
 encodeMessageReply(
 peerUser.getSession(),
 targetUsername, message);
 }
 }
 }
}

Chapter 7

[331]

The ChatRoom class makes use of a ConcurrentMap collection to associate username
to ChatUser instances. Remember the ChatUser associates a username to a
WebSocket session instance. The class itself is annotated as CDI application scope
bean so that as soon as the web application is deployed and after the first web
request, a ChatRoom instance will be created in the ServletContext.

We demonstrate that CDI injection does work with the bean by annotating lifecycle
methods init() and destroy().

The method addChatUser() registers a new peer connection to the map of chat user
connections. The hardest thing for this method to process would be extremely easy
in functional language or JDK 8 with Lambdas. We have to iterate through the peers
and filter out the current peer, which is the new peer. With the result set, we send a
message back to the new peer revealing how many people are in the chat room now.

The method removeChatUser() removes an existing peer connection from the map
of chat user connections.

The brunt of the work is handled by the broadcastMessage(), which sends the
supplied message to the connected peers. Again, we check that the session instance for
each remote peer instance is alive before sending a text message down the connection.

The web client
The web client is based on single-page application, which means that it has no
navigation to separate pages; all of the user interaction takes place on loading a
single web page. There is a single JSP called chat.jsp that represents the web client,
and it uses the popular JQuery Framework (http://jquery.org/) to help with the
JavaScript manipulation of the HTML elements.

The full version of the web client contains the JavaScript calls that are derived from
the WHATWG demonstration. Please refer to the book's source code for details.

The simplified HTML5 code for the file chat.jsp looks like the following:

<!DOCTYPE html>
<head>
<title>WebSocket Chat Server Example</title>
<link rel="stylesheet" media="all" href="styles/chat.css" />
<script src="scripts/jquery-1.9.1.js" ></script>

Java API for HTML5WebSocket

[332]

<script language="javascript" type="text/javascript">
 var DELIMITER = "::::"
 var LOGIN_REQUEST = "LOGIN"
 var LOGOUT_REQUEST = "LOGOUT"
 var SEND_MSG_REQUEST = "SENDMSG"
 var MESSAGE_REPLY = "MESSAGE_REPLY";
 var ERROR_REPLY = "ERROR_REPLY";
 var wsUri = "ws://localhost:8080/mywebapp/chat";
 var websocket;
 var outputDiv;
 var messagesDiv
 var username = "(none)"

 function init() {
 outputDiv = $("#output");
 messagesDiv = $("#messages");
 openWebSocket();
 }

 function openWebSocket() {
 websocket = new WebSocket(wsUri);
 /* ... */
}

 function onOpen(evt) { writeToScreen("CONNECTED");}
 function onClose(evt) { writeToScreen("DISCONNECTED");}
function onMessage(evt) { /* ... */ }
 function onError(evt) { /* ... */ }

 function sendMessage(message) {
 var msg = SEND_MSG_REQUEST +
 DELIMITER + username +
 DELIMITER + message
 protocolMessage("Sending Message: " + msg);
 websocket.send(msg);
 }

 function logout() { /* ... */ }
 function login() {
 var msg = LOGIN_REQUEST +
 DELIMITER + username
 protocolMessage("Sending Message: " + msg);
 websocket.send(msg);
 }

Chapter 7

[333]

function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;

 outputDiv.append(pre)
 outputDiv.animate({
 scrollTop: outputDiv[0].scrollHeight
 }, 1000)
 }

 function protocolMessage(message) { /* ... */ }
 $(document).ready(function() { /* ... */ });
</script>
</head>
<body>
<h2>Java EE 7 WebSocket Chat Server Example</h2>
<div id="login">
 Username: <input type="text" id="username" />

<input type="button" value="Login" name="action" id="loginButton" />
<input type="button" value="Logout" name="action" id="logoutButton" />
</div>
<div id="control">
 Enter your message:

<input type="text" id="messageText" name="messageText" />
</div>
<div id="messages">
PROTOCOL MESSAGES:

</div>
<div id="output"></div>
</body>
</html>

In this JSP page, we have four div layers: login, control, messages and output.
A lot of the code looks similar to the previous example, the EchoWebSocketServer.
There are differences, however. At the beginning of the page, we include a style
sheet and the JQuery library.

The JQuery library invokes the method function init()when the page is loaded
into the browser. The method saves the reference of two div layers into a couple
of variables: messagesDiv and outputDiv. It then proceeds to invoke the
openWebSocket() function.

Java API for HTML5WebSocket

[334]

The function openWebSocket() creates a brand new WebSocket in JavaScript, and
registers a set of event handler methods.

The workhorse of the application is the onMessage() function, which breaks up the
text string from the remote chat server application. The function calls the JavaScript
String.split() function to tokenize the incoming text string. The function writes
the text to the messagesDiv using the helper function writeToScreen(). The style
of message is controlled by the reply code received from the server; the function
expects a MESSAGE_REPLY or an ERROR_REPLY.

JQuery applications are wired initially through the ready() closure function.

The chat web application has an HTML text field and two buttons for the user to
enter a username and then join the chat room and also to leave it. The page uses
JQuery to bind the button press event to methods login() and logout(). These
methods create the encoded text messages with the values from the elements on the
page and then send a text message down the open WebSocket.

If the user joins the chat room successfully, we disable the username text field. If the
user leaves the chat room, then we enable the username text field again. This logic
prevents the user changing the login username inside the web application.

In order to participate in a chat room, the web application has another text field
and a dedicated div layer messages for the broadcasts. The text field with the ID
messageText is bound to a key press event handler, which is a JavaScript closure.
Only when the key press is the return key (the key code 13), will a message from the
user be sent to the chat server.

JQuery has nice animation features and particularly the functions writeToScreen()
and protocolMessage() make use of the automatic scrolling to the end of the
content for each of the respective div layers.

This completes the chat server description and example. The file for the cascading
style sheet can be found in the book's accompanying source code bundle.

Asynchronous operations
There is a big problem with chat room examples, which we have seen. It does not
scale completely for a large number of users. The issues are on the server side.

The broadcast part of the ChatRoom currently uses synchronous response. In order
to truly scale, we should make use of the javax.websocket.RemoteEndpoint.
Async. Implementing the logic for the Async interface and the javax.websocket.
SendHandler provides better asynchronous behaviour.

Chapter 7

[335]

There is also an issue of ordering of messages in asynchronous communications.
Robbie Williams, the northern Englishman, pop singer summarizes this superbly
with lyrics such as "Before I arrive, I can see myself leaving". For a chat application, it
is very important that any user's messages are broadcast to other users in order that
they are sent.

Java has multiple threads and normally invoking separate unmanaged threads in a
Java EE application is anti-pattern, because the application server (or web container)
has no means of controlling such threads. A managed server is not responsible for
threads that it did not directly create.

Client-side Java WebSockets
The Java WebSocket API also allows developers to write client endpoints. They
can be easily defined with annotation and of course with more difficulty by
programming against the configuration API.

The annotation @javax.websock.ClientEndpoint denotes a client specific
WebSocket endpoint.

Here is the code for a sample client WebSocket:

package je7hb.websocket.basic;
import javax.websocket.ClientEndpoint;
import javax.websocket.OnMessage;
import javax.websocket.Session;

@ClientEndpoint
public class ClientEchoEndpoint {

 @OnMessage
 public void messageReceived(Session session, String text) {
 System.out.printf("Message server text: %s\n", text);
 }
}

The client ClientEchoEndpoint is defined as an annotated WebSocket endpoint.
The implementation will register this class as a WebSocket event handler and when
messages are sent to this connection the implementation will invoke the life-cycle
event handler messageReceived(). The method messageReceived() is annotated
with @OnMessage.

Java API for HTML5WebSocket

[336]

@ClientEndpoint
Let's look at the annotations in detail; here is the table of attributes for the annotation
@javax.websocket.ClientEndpoint.

Attribute Type Description Default Value
subProtocols String [] Defines an ordered

array of WebSocket
protocols that this
client supports.

None

decoders Decoder[] Specifies an
ordered array of
encoder classes
this client will use.

None

decoders Encoder[] Specifies an
ordered array of
encoder classes
that the client will
use.

None

configurator Class<? Extends
ClientEndPoint-
Configurator>

Defines a custom
configurator that
the developer
would like to
use to configure
a logical client
endpoint instance.

ClientEndpoint-
Configurator.class

Annotated client example
A WebSocket client is useful for publish and subscribe clients, where the client
makes a connection to the server and then changes its mode of operation to that of
mostly reading data from the server endpoint. Real-time data can be information
about products, inventory updates, any row change in a database, or any data that
requires notification.

We will use a streaming service that wraps a single price as an example. We will
create an annotated @ClientEndpoint.

@ClientEndpoint
public class ClientPriceReaderEndpoint {

 @OnOpen
 public void openRemoteConnection(Session session) {
 System.out.printf(

Chapter 7

[337]

 "%s.openRemoteConnection(session = [%s], ",
 getClass().getSimpleName(), session);
 }

 @OnMessage
 public void messageReceived(Session session, String text) {
 System.out.printf(">>>> RECEIVED text : %s\n", text);
 }

 @OnClose
 public void closeRemote(CloseReason reason, Session session) {
 System.out.printf(
 "%s.closeRemote() session = [%s], reason=%s",
 getClass().getSimpleName(), session, reason);
 }

}

We annotate this type ClientPriceReaderEndpoint as @ClientEndPoint, which
means it is able to receive messages. This endpoint has similar life-cycle methods
@OnMessage, for a message that is received and @OnOpen for when a remote
connection is established. With @OnClose annotated method, in particular, note that
you can find out why the connection was closed with the CloseReason parameter.

You may wonder what is the difference between a @ClientEndPoint and a
@ServerEndPoint, especially since we have been told that HTML5 WebSocket is the
peer-to-peer connections? A client-side connection is not made available to the URI
space of the web server. In other words, this is a Java implementation design feature
in that client-side WebSockets do not have URIs.

A client needs a WebSocket server endpoint to connect to, so let's examine a server-
side one that continuously updates a single price:

package je7hb.websocket.basic;
import javax.enterprise.concurrent.*;
import javax.enterprise.context.ApplicationScoped;
import javax.websocket.*;
import javax.websocket.server.ServerEndpoint;
/* ... */

@ApplicationScoped
@ServerEndpoint("/streamingPrice")

Java API for HTML5WebSocket

[338]

public class StreamingPriceWebSocketServer {
 @Resource(name = "concurrent/ScheduledTasksExecutor")
 ManagedScheduledExecutorService executorService;
private Object lock = new Object();
 private BigDecimal price = new BigDecimal("1000.0");
 private BigDecimal unitPrice = new BigDecimal("0.01");

 @OnOpen
 public void openRemoteConnection(final Session session) {
 executorService.scheduleAtFixedRate(new Runnable() {
 @Override
 public void run() {
 try {
 session.getBasicRemote()
 .sendText("PRICE = " + price);
 synchronized (lock) {
 if (Math.random() < 0.5) {
 price = price.subtract(unitPrice);
 } else {
 price = price.add(unitPrice);
 }
 }
 } catch (IOException e) {
 e.printStackTrace(System.err);
 }
 }
 }, 500, 500, MILLISECONDS);
 }
}

This type StreamingPriceWebSocketServer is a server-side endpoint,
because it is annotated with @ServerEndpoint and it occupies the URI space
of /streamingPrice after the web context path. For demonstration purposes only,
we cheat here by taking advantage of the @OnOpen lifecycle to create a scheduled
managed task. You can read about Managed Executors in Appendix D, Java EE 7
Assorted Topics. Essentially, the managed task, the anonymous inner class Runnable
is executed every 500 milliseconds with an initial delay of 500 milliseconds.

The managed task has a reference to the incoming Session instance. It
retrieves a BasicRemote in order to send update text messages about the price.
We use a random generator to move the price up or down by a unit, which
happens inside a synchronization block. The managed task sends the latest
price update to the peer remote WebSocket. The task ends afterwards and the
ManagedScheduledExecutorService will invoke a new task at the next period.

Chapter 7

[339]

Advanced readers will know that there are a couple of issues with this
demonstration code. What happens to the concurrent managed task when the peer
WebSocket closes or the network is broken? How does this implementation scale
with multiple peers?

Whenever you acquire a resource, ensure that you release it.
Whenever you spawn a managed task, also code the means
to halt it gracefully. Failure to enforce this advice could be
ruinous in the long-term running of your application.

In the book's source code, there is an embedded runner that demonstrates Java client-
side WebSocket. A standalone application needs to tell the WebSocket framework
that a client endpoint has a connection to a remote server. Here is how this is done:

WebSocketContainer container =
 ContainerProvider.getWebSocketContainer();
container.connectToServer(ClientPriceReaderEndpoint.class,
new URI("ws://localhost:8080/mywebapp/streamingPrice"));

We retrieve a javax.websocket.WebSocketContainer from the ContainerProvider.
The container is the application view of the Java WebSocket implementation. This
service provider interface has a key method connectToServer, which registers an
Endpoint with the container. The client endpoint is associated with the remote URI.

The book's source code also deploys an example JSP page. Point your browser
to http://localhost:8080/mywebapp/index.jsp after launching the
embedded runner.

Remote endpoints
Any Java WebSocket can send a message to the peer by taking a Session instance
and retrieving a RemoteEndpoint reference.

RemoteEndpoint.Basic remote = session.getBasicRemote();
remote.sendText("This is it!");

This code is valid for client and server-side web sockets. The RemoteEndpoint.
Basic is a representation of the peer. The RemoteEndpoint.Async is the interface for
asynchronous communications. The developer cannot only send text messages, but
they can also write binary messages and for the more advanced Ping and
Pong messages.

Java API for HTML5WebSocket

[340]

Programmatic Java WebSocket
The Java WebSocket specification also defines a programmatic Java interface for
connections. Without annotation, a POJO has to extend the abstract class javax.
websocket.Endpoint and write the implementation methods: onOpen(), onClose()
and onError().

Here is an implementation of the echo WebSocket from earlier:

public class EchoProgramServerEndpoint extends Endpoint {
 public void onOpen(final Session session,
 EndpointConfig config) {

 session.addMessageHandler(
 new MessageHandler.Whole<String>() {
 @Override
 public void onMessage(String message) {
 System.out.printf(
 "Received message=%s\n", message);
 try {
 session.getRemoteBasic()
 .sendText("ECHO "+message);
 }
 catch (Exception e) { }
 }
 });

 }

 public void onClose(Session session,
 CloseReason closeReason) {
 /* ... */
 }

 public void onError(Session session,
 Throwable throwable) {
 /* ... */
 }
}

Chapter 7

[341]

In the onOpen() method inside the EchoProgramServerEndpoint, we
register a MessageHandler in order to receive messages from remote peers. A
MessageHandler has two sub interfaces: Whole or Partial. The Whole interface is
designed for applications that want to consume entire messages as they arrive. The
Partial interface is designed for applications that consume partial messages.

The anonymous message handler in EchoProgramServerEndpoint accepts a String
text message from the remote peer. It then sends the echo message back to the peer
with the captured Session instance from the onOpen method parameter.

Encoders and decoders
Java WebSocket has the capability to interpret message types beyond the standard
java.lang.String. The way it works is through the registration of encoders and
decoders on the endpoint.

Let's review our chat server application again. Instead of using hard corded String on
the Java, for the actual commands we can elect to use Java enumerations. This is the
replacement code:

public enum ChatCommand {
 LOGIN("Login"), LOGOUT("Logout"), SEND("Send"),
 RECEIVE("Receive"), UPDATE("Update");

 private String text;

 ChatCommand(String text) { this.text = text; }

 public static ChatCommand convert(String str) {
 if (str != null) {
 for (ChatCommand item: values()) {
 if (item.text.equalsIgnoreCase(str)) {
 return item;
 }
 }
 }
 return null;
 }

public String asText() { return text; }
}

Java API for HTML5WebSocket

[342]

The ChatCommand is a Java enum that accepts a text parameter that corresponds to
the JavaScript/HTML5 front end. The method convert() attempts to parse a case
insensitive string in a ChatCommand. The method asText() returns the text. We use
both of these methods in the encoder and decoder types.

We now require a new server endpoint with the registration of encoders and decoders:

@ServerEndpoint(value="/chatserver",
 encoders = ChatCommandEncoder.class,
 decoders = ChatCommandDecoder.class)
public class ChatServerEndpoint {
 /* ... */
}

The new ChatServerEndpoint now informs the WebSocket container so that it
accepts two types: ChatCommandEncoder and ChatCommandDecoder. What do
these types actually look like? Actually they are sub interface implementations
of the javax.websocket.Encoder and javax.websocket.Decoder. The sub
interface Encoder.Text is used for String text representations. Here is the starting
implementation for an encoder:

import javax.websocket.*;

public class ChatCommandEncoder
implements Encoder.Text<ChatCommand> {
 @Override
 public String encode(ChatCommand cmd) {
 return cmd.asText();
 }

 @Override
 public void init(EndpointConfig config) { }

 @Override
 public void destroy() { }
}

The ChatCommandEncoder is a generic sub type of Encoder.Text interface and the
most important method is encode(), which simply encodes the Java enumeration
as a text String. The function for the encoder is to translate the Java type to the
WebSocket message type.

Chapter 7

[343]

An encoder init()is called from the WebSocket container when the web
application starts up. The EndpointConfig allows advanced developer to
customize the encoder's behavior around the configuration. The container will
also call the encoder's destroy() method when the web application gracefully
shuts down.

Let's inspect the decoder implementation, which is relatively straightforward too:

import javax.websocket.*;

public class ChatCommandDecoder
 implements Decoder.Text<ChatCommand> {
 @Override
 public ChatCommand decode(String s) throws DecodeException {
 ChatCommand value = ChatCommand.convert(s);
 if (value == null)
 throw new DecodeException(s, "Cannot decode text");
 return value;
 }

 @Override
 public boolean willDecode(String s) {
 return ChatCommand.convert(s) != null;
 }

 @Override
 public void init(EndpointConfig config) { }

 @Override
 public void destroy() { }
}

The ChatCommandDecoder is a type of generic sub interface of Decoder.Text. The
method willDecode() allows the Java WebSocket container to find out if String can
be converted. Here we make use the ChatCommand.convert() method from earlier.
The decode() method performs the parsing of the input text. If the String cannot be
converted, we throw a DecodeException, rather than just returning a null reference
pointer. Finally, the Decoder types have the same life-cycle methods.

Java API for HTML5WebSocket

[344]

So far we have seen text message based encoders and decoders. There are other types
available in Java WebSocket:

•	 The sub interfaces Encoder.TextStream and Decoder.TextStream are
designed for sending and receiving Java objects to a character stream.

•	 The sub interfaces Encoder.Binary and Decoder.Binary are designed for
serializing and de-serializing Java objects to and from binary messages.

•	 The sub interfaces Encoder.BinaryStream and Decoder.BinaryStream are
designed for writing and reading Java objects to a binary stream.

Summary
We have seen that WebSocket can dramatically reduce unnecessary network traffic
and save on latency, and we know that WebSocket can scale to higher in comparison
to previous solutions such as long-polling AJAX requests and COMET.

The Java WebSocket API is a new powerful technical enabler for building scalable
web applications, especially on the JVM. This new standard, delivered as part of the
Java EE 7 platform, allows simple POJOs to be annotated as a server endpoint with
@ServerEndpoint, or as a client endpoint with @ClientEndpoint.

The API has event handling in Java that mirrors the actual design in JavaScript.
A WebSocket can fire an open, close, message received, and error event. These
can be intercepted with annotations, namely @OnOpen, @OnClose, @OnMessage,
and @OnError.

Java WebSocket endpoints can participate in Context and Dependency Injection
(CDI) and EJB containers. A WebSocket conversation is sustained by recording the
session instance in a dependency bean.

When we retrieve the remote endpoint WebSocket, we can write a synchronous
message back to the client or we can elect to write an asynchronous message. The
key to this important decision lies squarely in the developer, writing code to the sub
interfaces RemoteEndpoint.Basic and RemoteEndpoint.Async.

We learned that the endpoints could have encoder and decoders to handle messages
as Java objects. There is also a programmatic equivalent API that complements
declarative WebSocket annotations.

In the next chapter, we will rummage around Java RESTful services, including the
all-new powerful client-side API.

RESTful Services
JAX-RS 2.0

Roy T. Fielding, Creator of REST Style Architecture said "When I say hypertext,
I mean the simultaneous presentation of information and controls such that the
information becomes the affordance through which the user (or automation) obtains
choices and selects actions."

This chapter covers the Java API for RESTful services otherwise abbreviated to
JAX-RS. It was the year, 2000, when Roy Fielding published his PhD thesis entitled
Representational State Transfer: an Architecture Style. Since its publication
over the past decade there has been a rapid growth of interest, applications, and
implementations of REST style interfaces and application.

Representational State Transfer
Representational State Transfer (REST) is a style of information application
architecture that aligns the distributed applications to the HTTP request and
response protocols, in particular matching Hypermedia to the HTTP request
methods and Uniform Resource Identifiers (URI).

Hypermedia is the term that describes the ability of a system to deliver self-
referential content, where related contextual links point to downloadable or stream-
able digital media, such as photographs, movies, documents, and other data. Modern
systems, especially web applications, demonstrate through display of text that a
certain fragment of text is a link to the media.

RESTful Services JAX-RS 2.0

[346]

Hypermedia is the logical extension of the term hypertext, which is a text that
contains embedded references to other text. These embedded references are called
links, and they immediately transfer the user to the other text when they are invoked.
Hypermedia is a property of media, including hypertext, to immediately link other
media and text.

In HTML, the anchor tag <a> accepts a href attribute, the so-called
hyperlink parameter.

The World Wide Web is built on the HTTP standards, Versions 1.0 and 1.1, which
define specific enumerations to retrieve data from a web resource. These operations,
sometimes called Web Methods, are GET, POST, PUT, and DELETE. Representational
State Transfer also reuses these operations to form semantic interface to a URI.

Representational State Transfer, then, is both a style and architecture for building
network enabled distributed applications. It is governed by the following constraints:

•	 Client/Server: A REST application encourages the architectural robust
principle of separation of concerns by dividing the solution into clients
and servers. A standalone, therefore, cannot be a RESTful application.
This constraint ensures the distributed nature of RESTful applications
over the network.

•	 Stateless: A REST application exhibits stateless communication. Clients
cannot and should not take advantage of any stored context information
in the server and therefore the full data of each request must be sent to the
server for processing.

•	 Cache: A REST application is able to declare which data is cacheable or
not cacheable. This constraint allows the architect to set the performance
level for the solution, in other words, a trade-off. Caching data to the web
resource, allows the business to achieve a sense of latency, scalability, and
availability. The counter point to improved performance through caching
data is the issue of expiration of the cache at the correct time and sequence,
when do we delete stale data? The cache constraint also permits successful
implementation providers to develop optimal frameworks and servers.

•	 Uniform Interface: A REST application emphasizes and maintains a unique
identifier for each component and there are a set of protocols for accessing
data. The constraint allows general interaction to any REST component and
therefore anyone or anything can manipulate a REST component to access
data. The drawback is the Uniform Interface may be suboptimal in ease-
of-use and cognitive load to directly provide a data structure and remote
procedure function call.

Chapter 8

[347]

•	 Layered Style: A REST application can be composed of functional processing
layers in order to simplify complex flows of data between clients and servers.
Layered style constraint permits modularization of function with the data
and in itself is another sufficient example of separation of concerns. The
layered style is an approach that benefits load-balancing servers, caching
content, and scalability.

•	 Code-on-Demand: A REST application can optimally supply downloadable
code on demand for the client to execute. The code could be the byte-codes
from the JVM, such as a Java Applet, or JavaFX WebStart application, or
it could be a JavaScript code with say JSON data. Downloadable code is
definitely a clear security risk that means that the solution architect must
assume responsibility of sandboxing Java classes, profiling data, and
applying certificate signing in all instances. Therefore, code-on-demand,
is a disadvantage in a public domain service, and this constraint in REST
application is only seen inside the firewalls of corporations.

In terms of the Java platform, the Java EE standard covers REST applications through
the specification JAX-RS and this chapter covers Version 2.0.

JAX-RS 2.0 features
For Java EE 7, the JAX-RS 2.0 specification has the following new features:

•	 Client-side API for invoking RESTful server-side remote endpoint
•	 Support for Hypermedia linkage
•	 Tighter integration with the Bean Validation framework (See Chapter 10,

Bean Validation)
•	 Asynchronous API for both server and client-side invocations
•	 Container filters on the server side for processing incoming requests

and outbound responses
•	 Client filter on the client side for processing outgoing request and

incoming responses
•	 Reader and writer interceptors to handle specific content types

RESTful Services JAX-RS 2.0

[348]

Architectural style
The REST style is simply a Uniform Resource Identifier and the application of the
HTTP request methods, which invokes resources that generate a HTTP response.
Although Fielding, himself, says that REST does not necessarily require the HTTP
communication as a networker layer, and the style of architecture can be built on any
other network protocol.

Let's look at those methods again with a fictional URL (http://fizzbuzz.com/)

Method Description
POST A REST style application creates or inserts an entity

with the supplied data. The client can assume new
data has been inserted into the underlying backend
database and the server returns a new URI to
reference the data.

PUT A REST style application replaces the entity into the
database with the supplied data.

GET A REST style application retrieves the entity
associated with the URI, and it can be a collection
of URI representing entities or it can be the actual
properties of the entity

DELETE A REST style application deletes the entity associated
with the URI from the backend database.

The user should note that PUT and DELETE are idempotent operations, meaning they
can be repeated endlessly and the result is the same in steady state conditions.

The GET operation is a safe operation; it has no side effects to the server-side data.

Chapter 8

[349]

REST style for collections of entities
Let's take a real example with the URL http://fizzbuzz.com/resources/, which
represents the URI of a collection of resources. Resources could be anything, such as
books, products, or cast iron widgets.

Method Description
GET Retrieves the collection entities by URI under the

link http://fizzbuzz.com/resources and
they may include other more data.

POST Creates a new entity in the collection under the
URI http://fizzbuzz.com/resources.
The URI is automatically assigned and returned
by this service call, which could be something
like http://fizzbuzz.com/resources/
WKT54321.

PUT Replaces the entire collection of entities under the
URI http://fizzbuzz.com/resources.

DELETE Deletes the entire collection of entities under the
URI http://fizzbuzz.com/resources.

As a reminder, a URI is a series of characters that identifies a particular resource
on the World Wide Web. A URI, then, allows different clients to uniquely identify
a resource on the web, or a representation. A URI is combination of a Uniform
Resource Name (URN) and a Uniform Resource Locator (URL). You can think of a
URN like a person's name, as way of naming an individual and a URL is similar to a
person's home address, which is the way to go and visit them sometime.

RESTful Services JAX-RS 2.0

[350]

In the modern world, non-technical people are accustomed to desktop web browsing
as URL. However, the web URL is a special case of a generalized URI.

A diagram that illustrates HTML5 RESTful communication between a JAX RS 2.0
client and server, is as follows:

REST style for single entities
Assuming we have a URI reference to a single entity like http://fizzbuzz.com/
resources/WKT54321.

Method Description
GET Retrieves the entity with reference to URI under the link

http://fizzbuzz.com/resources/WKT54321.
POST Creates a new sub entity under the URI http://fizzbuzz.

com/resources/WKT54321. There is a subtle difference here,
as this call does something else. It is not often used, except
to create Master-Detail records. The URI of the subentity
is automatically assigned and returned by this service call,
which could be something like http://fizzbuzz.com/
resources/WKT54321/D1023

PUT Replaces the referenced entity's entire collection with the URI
http://fizzbuzz.com/resources/WKT54321. If the entity
does not exist then the service creates it.

DELETE Deletes the entity under the URI references http://
fizzbuzz.com/resources/WKT54321.

Chapter 8

[351]

Now that we understand the REST style we can move on to the JAX-RS API properly.

Consider carefully your REST hierarchy of resources

The key to build a REST application is to target the users of the
application instead of blindly converting the business domain
into an exposed middleware. Does the user need the whole
detail of every object and responsibility in the application? On
the other hand is the design not spreading enough information
for the intended audience to do their work?

Servlet mapping
In order to enable JAX-RS in a Java EE application the developer must set up the
configuration in the web deployment descriptor file. JAX-RS requires a specific servlet
mapping to be enabled, which triggers the provider to search for annotated classes.

The standard API for JAX-RS lies in the Java package javax.ws.rs and in its
subpackages. Interestingly, the Java API for REST style interfaces sits underneath the
Java Web Services package javax.ws.

For your web applications, you must configure a Java servlet with just fully qualified
name of the class javax.ws.rs.core.Application. The Servlet must be mapped to
a root URL pattern in order to intercept REST style requests.

The following is an example code of such a configuration:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1"
 metadata-complete="false">
 <display-name>JavaEE Handbook 7 JAX RS Basic
 </display-name>
 <servlet>
 <servlet-name>javax.ws.rs.core.Application
 </servlet-name>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>javax.ws.rs.core.Application
 </servlet-name>

RESTful Services JAX-RS 2.0

[352]

 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
</web-app>

In the web deployment descriptor we just saw, only the servlet name is defined,
javax.ws.rs.core.Application. Do not define the servlet class. The second
step maps the URL pattern to the REST endpoint path. In this example, any URL
that matches the simplified Glob pattern /rest/* is mapped. This is known as the
application path.

A JAX-RS application is normally packaged up as a WAR file and deployed to a
Java EE application server or a servlet container that conforms to the Web Profile.
The application classes are stored in the /WEB-INF/classes and required libraries
are found under /WEB-INF/lib folder. Therefore, JAX-RS applications share the
consistency of configurations as servlet applications.

The JAX-RS specification does recommend, but does not enforce, that conformant
providers follow the general principles of Servlet 3.0 plug-ability and discoverability of
REST style endpoints. Discoverability is achieved in the recommendation through class
scanning of the WAR file, and it is up to the provider to make this feature available.

An application can create a subclass of the javax.ws.rs.core.Application class.
The Application class is a concrete class and looks like the following code:

public class Application {
 public Application() { /* ... */ }
 public java.util.Set<Class<?>> getClasses() {
 /* ... */ }
 public java.util.Set<Object> getSingletons() {
 /* ... */ }
 public java.util.Map<String,Object> getProperties() {
 /* ... */ }
}

Implementing a custom Application subclass is a special case of providing
maximum control of RESTful services for your business application. The developer
must provide a set collection of classes that represent JAX-RS end points. The
engineer must supply a list of Singleton object, if any, and do something useful with
the properties.

Chapter 8

[353]

The default implementation of javax.ws.rs.core.Application and the methods
getClasses() and getSingletons() return empty sets. The getProperties()
method returns an empty map collection. By returning empty sets, the provider
assumes that all relevant JAX-RS resource and provider classes that are scanned and
found will be added to the JAX-RS application.

Majority of the time, I suspect, you, the developer will want to rely on annotations
to specify the REST end points and there are Servlet Context listeners and Servlet
Filters to configure application wide behavior, for example the startup sequence of
a web application.

So how can we register our own custom Application subclass? The answer is just
subclass the core class with your own class.

The following code explains what we just read:

package com.fizbuzz.services;

@javax.ws.rs.ApplicationPath("rest")
public class GreatApp extends javax.ws.rs.core.Application {
 // Do your custom thing here
}

In the custom GreatApp class, you can now configure logic for initialization. Note the
use of @ApplicationPath annotation to configure the REST style URL. You still have
to associate your custom Application subclass into the web deployment descriptor
with a XML Servlet name definition.

Remember the Application Configuration

A very common error for first time JAX-RS developers is to
forget that the web deployment descriptor really requires a
servlet mapping to a javax.ws.js.core.Application type.

Now that we know how to initialize a JAX-RS application, let us dig deeper and look
at the defining REST style endpoints.

RESTful Services JAX-RS 2.0

[354]

Mapping JAX-RS resources
JAX-RS resources are configured through the resource path, which suffixes the
application path. Here is the constitution of the URL.

http://<hostname>:<port>/<web_context>/<application_path>/<resource_
path>

The <hostname> is the host name of the server. The <port> refers to the port
number, which is optional and the default port is 80. The <web_context> is
the Servlet context, which is the context for the deployed web application.
The <application_path> is the configuration URI pattern as specified in the
web deployment descriptor @ApplicationPath or the Servlet configuration of
Application type. The <resource_path> is the resource path to REST style resource.

The final fragment <resource_path> defines the URL pattern that maps a REST
style resource. The resource path is configured by annotation javax.ws.rs.Path.

Test-Driven Development with JAX-RS
Let us write a unit test to verify the simplest JAX-RS service. It follows a REST style
resource around a list of books. There are only four books in this endpoint and the
only thing the user/client can do at the start is to access the list of books by author
and title. The client invokes the REST style endpoint, otherwise known as a resource
with an HTTP GET request.

The following is the code for the class RestfulBookService:

package je7hb.jaxrs.basic;
import javax.annotation.*;
import javax.ws.rs.*;
import java.util.*;

@Path("/books")
public class RestfulBookService {
 private List<Book> products = Arrays.asList(
 new Book("Sir Arthur Dolan Coyle",
 "Sherlock Holmes and the Hounds of the Baskervilles"),
 new Book("Dan Brown", "Da Vinci Code"),
 new Book("Charles Dickens", "Great Expectations"),
 new Book("Robert Louis Stevenson", "Treasure Island"));

 @GET
 @Produces("text/plain")

Chapter 8

[355]

 public String getList() {
 StringBuffer buf = new StringBuffer();
 for (Book b: products) {
 buf.append(b.title); buf.append('\n'); }
 return buf.toString();
 }

@PostConstruct
public void acquireResource() { /* ... */ }
@PreDestroy
public void releaseResource() { /* ... */ }

static class Book {
 public final String author;
 public final String title;
 Book(String author, String title) {
 this.author = author;
 this.title = title;
 }
 }
}

The annotation @javax.ws.rs.Path declares the class as a REST style end-point for
a resource. The @Path annotation is assigned to the class itself. The path argument
defines the relative URL pattern for this resource, namely/books.

The method getList() is the interesting one. It is annotated with both @javax.
ws.rs.GET and @javax.ws.rs.Produces.

The @GET is one of the six annotations that conform to the HTTP web request
methods. It indicates that the method is associated with HTTP GET protocol request.

The @Produces annotation indicates the MIME content that this resource will
generate. In this example, the MIME content is text/plain.

The other methods on the resource bring CDI into the picture. In the example, we are
injecting post construction and pre destruction methods into the bean.

This is the only class that we require for a simple REST style application from the
server side. With an invoking of the web resource with a HTTP GET Request like
http://localhost:8080/mywebapp/rest/books we should get a plain text output
with list of titles like the following:

Sherlock Holmes and the Hounds of the Baskervilles
Da Vinci Code
Great Expectations
Treasure Island

RESTful Services JAX-RS 2.0

[356]

So do we test this REST style interface then? We could use Arquillian Framework
directly, but this means our tests have to be built specifically in a project and it
complicates the build process. Arquillian uses another open source project in the
JBoss repository called ShrinkWrap. The framework allows the construction of
various types of virtual Java archives in a programmatic fashion. We use ShrinkWrap
just to build a Web Archive, and the code is really quite straightforward, because we
have already seen it in previous chapters.

Let's look at the unit test class RestfulBookServiceTest in the following code:

package je7hb.jaxrs.basic;
// import omitted

public class RestfulBookServiceTest {
 @Test
 public void shouldAssembleAndRetrieveBookList()
 throws Exception {
 WebArchive webArchive =
 ShrinkWrap.create(WebArchive.class, "test.war")
 .addClasses(RestfulBookService.class)
 .setWebXML(
 new File("src/main/webapp/WEB-INF/web.xml"))
 .addAsWebInfResource(
 EmptyAsset.INSTANCE, "beans.xml");
 File warFile = new File(webArchive.getName());
 new ZipExporterImpl(webArchive)
 .exportTo(warFile, true);
 SimpleEmbeddedRunner runner =
 SimpleEmbeddedRunner.launchDeployWarFile(
 warFile, "mywebapp", 8080);
 try {
 URL url = new URL(
 "http://localhost:8080/mywebapp/rest/books");
 InputStream inputStream = url.openStream();
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(inputStream));
 List<String> lines = new ArrayList<>();
 String text = null;
 int count=0;
 while ((text = reader.readLine()) != null) {
 lines.add(text);
 ++count;
 System.out.printf("**** OUTPUT ****
 text[%d] = %s\n", count, text);
 }

Chapter 8

[357]

 assertFalse(lines.isEmpty());
 assertEquals("Sherlock Holmes and the Hounds
 of the Baskervilles", lines.get(0));
 assertEquals("Da Vinci Code", lines.get(1));
 assertEquals("Great Expectations", lines.get(2));
 assertEquals("Treasure Island", lines.get(3));
 }
 finally {
 runner.stop();
 }
 }
}

In the unit test method, shouldAssembleAndRetrieveBookList(), we first assemble
a virtual web archive with an explicit name test.war. The WAR file contains the
RestfulBookService services, the Web deployment descriptor file web.xml and
an empty beans.xml file, which if you remember is only there to trigger the CDI
container into life for this web application.

With the virtual web archive, we export the WAR as a physical file with the utility
ZipExporterImpl class from ShinkWrap library, which creates the file test.war in
the project root folder.

Next, we fire up the SimpleEmbeddedRunner utility that is part of the book's
appendix. It deploys the web archive to an embedded GlassFish container.
Essentially, this is the boilerplate to get to deliver a test result.

We, then, get to the heart of the test itself; we construct a URL to invoke the REST
style endpoint, which is http://localhost:8080/mywebapp/rest/books. We
read the output from the service endpoint with Java standard I/O line by line into a
list collection of Strings. Once we have a list of collections, then we assert each line
against the expected output from the rest style service.

Because we acquired an expensive resource, like an embedded Glassfish container,
we are careful to release it, which is the reason, why we surround critical code with
a try-finally block statement. When the execution comes to end of test method, we
ensure the embedded GlassFish container is shut down.

JAX-RS server-side endpoints
We have looked at a simple GET request on a JAX-RS simple resource. In order to
create a useful business application, we need the other web request methods, namely
POST, PUT, and DELETE.

RESTful Services JAX-RS 2.0

[358]

JAX-RS common server annotation
JAX-RS defines annotations for defining server side REST style endpoint, which are
found in the Java package javax.ws.rs.

The following is a table of these annotations:

Annotation Description
@Path Defines the relative URI path for the REST style Java class

and configures where it is installed and mapped.
@GET Defines a method on the Java class REST style resource to

accept HTTP GET requests.
@POST Defines a method on the Java class REST style resource to

accept HTTP POST requests.
@PUT Defines a method on the Java class REST style resource to

accept HTTP PUT requests.
@DELETE Defines a method on the Java class REST style resource to

accept HTTP DELETE requests.
@HEAD Defines a method on the Java class REST style resource to

accept HTTP HEAD requests.
@TRACE Defines a method on the Java class REST style resource to

accept HTTP TRACE requests.
@PathParam Defines a URI fragment parameter that permits the

developer to extract from the REST request into the resource
class. URI path parameters are extracted from the request
URI, and the parameter name must match information
found in the URI path template variables specified in the @
Path class-level annotation.

@QueryParam Defines a (CGI-style) query parameter that permits the
developer to extract from the REST request.

@Consumes Specifies MIME media representations that the REST style
consumes from the client. Typically, this is useful for a REST
style uploading application, which only accepts a certain
media type of document.

@Produces Specifies the MIME media representation that the REST style
endpoint produces for the client.

@Provider Specifies extra resource information that is useful for
extending the capabilities of the JAX-RS runtime with
custom features for your application. This annotation can
be seen as a sort of factory object or virtual constructor for
building filters, interceptors, and dynamic features.

Chapter 8

[359]

Obviously, a Java method can only accept one of the HTTP request annotations. It is
illegal, for instance, to annotate a single method with @GET and @POST; and the JAX-
RS provider will generate an error.

Defining JAX-RS resources
Let's look at a more realistic example of JAX-RS service endpoint. We will develop
a REST style endpoint that can accept a registered set of users. The service allows
a client to register a user with a log-in name, first and last name, and a secret code.
Admittedly, this service is contrived, however this shows how to implement a JAX-
RS service completely and we will see how to test it thoroughly. The following table
shows the REST style URI for the service:

URI Purpose
<mywebapp>/rest/users Refers to list of registered users
<mywebapp>/rest/users/pilgrimp Refers to a specific user
<mywebapp>/rest/users/goslingj Refers to another specific user

Where <mywebapp> is the placeholder for URL http://localhost/mywebapp/

The following code shows our data value class, User:

package je7hb.jaxrs.basic;

public final class User implements Comparable<User> {
 private final String loginName, firstName, lastName,
 secretName;

 public User(String loginName, String firstName,
 String lastName, int secretCode) {
 this.loginName = loginName;
 this.firstName = firstName;
 this.lastName = lastName;
 this.secretCode = secretCode;
 }

 public String getLoginName() { return loginName; }
 public String getFirstName() { return firstName; }
 public String getLastName() { return lastName; }
 public int getSecretCode() { return secretCode; }

RESTful Services JAX-RS 2.0

[360]

 @Override
 public int compareTo(User ref) {
 return loginName.compareTo(ref.loginName);
 }

 // hashcode(), equals(), toString() methods omitted
}

For storage of the user, we will rely on Singleton EJB, which is called UserRegistry.
The following code explains it:

package je7hb.jaxrs.basic;
/* ... imports omitted */

@Singleton
@Startup
public class UserRegistry {
 private ConcurrentMap<String,User> registeredUsers
 = new ConcurrentHashMap<>();

 public void addUser(User user) {
 registeredUsers.put(user.getLoginName(), user);
 }

 public void removeUser(User user) {
 registeredUsers.remove(user.getLoginName());
 }

 public User findUser(String loginName) {
 return registeredUsers.get(loginName);
 }

 public List<User> getUsers() {
 List<User> users =
 new ArrayList<>(registeredUsers.values());
 Collections.sort(users);
 return users;
 }

 @PostConstruct
 public void postConstruct() { /* ... */ }
 @PreDestroy
 public void preDestroy() { /* ... */ }
}

Chapter 8

[361]

As a reminder, this is a stateless session EJB, which is annotated with @Startup,
because we want the bean instance to be immediately available as soon as the web
application is deployed. We also annotate the class with @Singleton to ensure only
the EJB instance is available for the entire application.

Now let's look at the following code of the REST style resource, which is
implemented by the class called RegisteredUserResource:

package je7hb.jaxrs.basic;
import javax.ejb.*;
import javax.ws.rs.*;

@Path("/users")
@Stateless
public class RegisteredUserResource {
 @EJB
 private UserRegistry userRegistry;

 @GET
 @Produces("text/csv")
 public String listUsers() {
 StringBuilder buf = new StringBuilder();
 for (User user : userRegistry.getUsers()) {
 buf.append(user.getLoginName()
 +","+user.getFirstName()+",");
 buf.append(user.getLastName()
 +","+user.getSecretCode()+"\n");
 }
 return buf.toString();
 }

 @GET
 @Path("{id}")
 @Produces("text/csv")
 public String getUser(@PathParam("id") String loginName) {
 User user = userRegistry.findUser(loginName);
 if (user == null) {
 return "";
 }
 StringBuilder buf = new StringBuilder();
 buf.append(user.getLoginName()
 +","+user.getFirstName()+",");

RESTful Services JAX-RS 2.0

[362]

 buf.append(user.getLastName()
 +","+user.getSecretCode()+"\n");
 return buf.toString();
 }

 @POST
 @Path("{id}")
 public void addUser(@PathParam("id") String loginName,
 @FormParam("firstName") String fname,
 @FormParam("lastName") String lname,
 @FormParam("secretCode") int code)
 {
 User user = new User(loginName,fname,lname,code);
 userRegistry.addUser(user);
 }

 @PUT
 @Path("{id}")
 public void amendUser(@PathParam("id") String loginName,
 @FormParam("firstName") String fname,
 @FormParam("lastName") String lname,
 @FormParam("secretCode") int code)
 {
 User user = userRegistry.findUser(loginName);
 if (user == null) {
 throw new UnknownUserException(
 "unknown login name: ["+loginName+"]");
 }
 else {
 User user2 = new User(
 user.getLoginName(), fname, lname, code);
 userRegistry.addUser(user2);
 }
 }

 @DELETE
 @Path("{id}")
 public void deleteUser(
 @PathParam("id") String loginName) {
 User user = userRegistry.findUser(loginName);
 if (user == null) {
 throw new UnknownUserException(
 "unknown login name: ["+loginName+"]");
 }

Chapter 8

[363]

 else {
 userRegistry.removeUser(user);
 }
 }
}

The class implements all of the four HTTP web request methods. It is surprising
that the JAX-RS resource, RegisteredUserResource, itself is written as a Stateless
session EJB. The reason for this is to do with the progression of the initial JAX-RS
specification 1.0 predated the Context and Dependency Inject and EJB instance
facilities and at the time of writing was not clear JAX-RS 2.0 will work. Nonetheless,
the procedure is solid and it is the intention of the standard JavaEE 7 to support JAX-
RS, CDI and EJB injection.

The class RegisteredUserResource injects the singleton EJB UserRegistry and
therefore can make use of the store. The class is annotated with the relative REST
style URI path/users.

The listUsers() method has @Produces annotation that is different, text/csv
stands for comma-separated values, which is a file format supported by popular
spreadsheet programs such Microsoft Excel and Libre Office. Hence, this method
generates comma-delimited output for each user in the registry.

The method getUser() introduces us to URI path variables. Variables are denoted
with the braces ({ }). The annotation @PathParam("{id}") adds a variable to the
current path and permits a method to be extracted from the URL template. This is
the way to process a REST style by identifier and the annotation is applied to the
method argument. This method attempts to find the User record by log-in name. If
it can retrieve the object getUser(), it returns a CSV representation otherwise the
output is empty text. This method is important for testing the REST resource as we
shall see later.

In order to add a new user to the registry, there is @POST annotation on the
addUser() method. Here is a new annotation @javax.ws.rs.FormParam, which
specifically retrieves HTTP form parameters from the incoming request. They
correspond directly with HTML Form submissions. The @FormParam requires the
name of the form request parameter and we apply them to the method arguments.
The JAX-RS implementation injects the form parameters and the identifier variable
during invocation of the method. The addUser() method simply constructs a new
User record and adds it to the registry. There is no side effect and output response
rendered for a POST. The JAX-RS implementation will respond with a HTTP
Response Code 200 on successful execution of the method.

RESTful Services JAX-RS 2.0

[364]

The method amendUser() is almost the same as the addUser(), because it uses the
same parameters with @PathParam and @FormParm annotations. The difference is the
amendment assuming that a User record already exists in the registry. It saves a new
version of the User record into the registry. The amendment is associated with the @
PUT annotation and associated HTTP PUT requests.

The method deleteUser() is the last method and this annotated with the @Delete
annotation and associated HTTP DELETE requests. This method only requires the
path parameter to identifier the specify user to delete.

Prefer to specify the MIME type

You should seriously consider specifying the media type with
@Produces for all methods of the REST resource, especially
if you are passing multiple MIME types. If you write a custom
resource method that can return more than one MIME content
type with ResponseBuilder, then it is definitely helpful to
the client to set media type.

You may be wondering about the custom exception UnknownUserException. If an
arbitrary exception is raised during the JAX-RS request on the server side, then the
client (or user) sees a HTTP Response 500 code (Forbidden). This is probably not the
error you want users or developers to see.

The following is the code for the exception class:

package je7hb.jaxrs.basic;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.*;

public class UnknownUserException
extends WebApplicationException {
 public UnknownUserException(String message) {
 super(Response.status(
 Response.Status.NOT_FOUND).
 entity(message).type(
 MediaType.TEXT_PLAIN_TYPE).build());
 }
}

This custom exception extends the WebApplicationException exception. In the
constructor, we make use of the JAX-RS Response builder object to generate a HTTP
404 error (NOT_FOUND), add our message string as the entity and set the media type
to text/plain MIME content. This is the key to building custom JAX-RS messages, and I
hope you will not see many of these error message in your applications.

Chapter 8

[365]

Testing JAX-RS resources
The obvious way to test a JAX-RS resource, in a clean, concise, and solid way, is
to deploy the resource to a container and then have a test harness that invokes
each of the endpoints. By running inside a container we can have a high degree of
confidence that the final code will run in a production environment.

Let us now look at how to write a test for all of these processes. The following is
the code for the unit test RegisteredUserResourceTest. Be warned, it is fairly
big for now:

package je7hb.jaxrs.basic;
/* ... imports omitted */

public class RegisteredUserResourceTest {
 public static final String ROOT_RES_PATH =
 "http://localhost:8080/mywebapp/rest/users";
 public static final String USER_RES_PATH =
 ROOT_RES_PATH+"/pilgrimp";
 private static SimpleEmbeddedRunner runner;

 @BeforeClass
 public static void beforeAllTests() throws Exception {
 WebArchive webArchive =
 ShrinkWrap.create(WebArchive.class, "testusers.war")
 .addClasses(RegisteredUserResource.class,
 /* . . . */ }

 /* ... */

 @Test
 public void shouldAddOneUser() throws Exception {
 Map<String,String> params =
 new HashMap<String,String>() {
 {
 put("firstName", "Peter");
 put("lastName", "Pilgrim");
 put("secretCode", "19802014");
 }
 };

 List<String> output = makePostRequest(
 new URL(USER_RES_PATH), params);
 assertTrue(output.isEmpty());

RESTful Services JAX-RS 2.0

[366]

 List<String> lines = makeGetRequest(
 new URL(USER_RES_PATH));
 assertFalse(lines.isEmpty());
 assertEquals("pilgrimp,Peter,Pilgrim,19802014",
 lines.get(0));
 }

 /* ... */
}

The class RegisteredUserResourceTest is fairly involved and more than that code
is devoted to creating the environment for the test. Having said all of that, the test
does work.

The first part of the call is the refactoring of the ShrinkWrap packaging and
the embedded container launch to the JUnit methods beforeAllTests() and
afterAllTests(). These are static methods so that they are only invoked when the
class is loaded, just before the series unit test method is executed and after the test
has run in the class.

The unit test makes use of a utility class WebMethodUtils, which has a series of
static methods to make HTTP request method calls to a remote server. The utility
class uses the JDK classes, javax.net.URL, javax.net.HttpURLConnection also
standard I/O. (In order to save space, the WebMethodUtils class is not shown, but
you can access it from the book's website.)

The first test, the method shouldAddOneUser(), creates a HTTP POST request of a
user with form data. A literal hash map collection is created with name and value
pairs to simulate form request data. A HTTP POST request is made to the JAX RS
Resource with the form parameters. This is the responsibility of the static call to
makePostRequest() with the URL http://localhost:8080/mywebapp/rest/
users/pilgrimp. There should be no output and there is an assertion for empty text.
Next, the unit test method makes a call to makeGetRequest() with the same URL.
We should expect the output from the REST style to be comma delimited as "pilgri
m,Peter,Pilgrim,19802014", which of course the actual output matches to. In this
way, we validate that information was stored by the JAX-RS service. The following
code shows the validation:

Chapter 8

[367]

@Test
public void shouldAmendOneUser() throws Exception {
 shouldAddOneUser();

 Map<String,String> params2 = new HashMap<String,String>(){
 {
 put("firstName", "Pierre");
 put("lastName", "Pilgrim");
 put("secretCode", "87654321");
 }
 };

 List<String> output = makePutRequest(
 new URL(USER_RES_PATH), params2);
 assertTrue(output.isEmpty());
 List<String> lines = makeGetRequest(
 new URL(USER_RES_PATH));
 assertFalse(lines.isEmpty());
 assertEquals("pilgrimp,Pierre,Pilgrim,87654321",
 lines.get(0));
}

The second test method shouldAmendOneUser() follows a similar principle and it
executes HTTP POST to insert the record followed by a HTTP PUT and then a HTTP
GET. The test validates the operation of the PUT method by editing the user record
from the client side. In this case, the first name is changed to Pierre and the secret
code to a different number. The GET request validates the data has been changed by
the endpoint. The following code shows what we just read:

@Test
public void shouldDeleteOneUser() throws Exception {
 shouldAddOneUser();

 List<String> output = makeDeleteRequest(
 new URL(USER_RES_PATH));
 assertTrue(output.isEmpty());
 List<String> lines = makeGetRequest(
 new URL(USER_RES_PATH));
 assertTrue(lines.isEmpty());
}

The third test method shouldDeleteOneUser() creates a HTTP POST method with a
user and invokes the HTTP DELETE method. The GET request validates the data has
been removed. The output text should be blank.

RESTful Services JAX-RS 2.0

[368]

In the book's source code, you will see the fourth and final test method
shouldAddTwoUsers()should verify that the JAX-RS Resource can maintain more
than one User record. There, we create two different User records with HTTP POST
web request. In this test method, we invoke the HTTP GET with the parent URL
http://localhost:8080/mywebapp/rest/users and we validate the CSV output.
The list of users is sorted by the login name, which you can see in the UserRegistry
class, namely the getUsers() method.

Here is a little to the wise, the unit test, although it follows a Behavioral-Driven
Design pattern, which is nice, is not the best way to achieve the result. We will see
later how to achieve better testing with the JAX-RS Client API.

Path URI variables
As we have seen in the previous section, path variables are placeholders inside a
URL template that represent a value that changes on the request. Path variables are
denoted within brace characters for example, "/users/{id}". A Path variable can be
a simple name or it can be a regular expression.

The Path variable as a simple name is defined by combination of alphabetic and
numerical characters. In fact, the path variable can be any character apart from spaces,
backslash and special terminal characters. The URI variable must match the regular
"[^/]+?". For best practice, it is probably best to stick to the Java identifier syntax.

The following is an example of simple variable conventions:

@Path("/users/{username47}")
public class ACMEUserResource {
 @GET
 @Products("text/xml")
 public String getUserList() {
 // username is null, so return a list collection
 /* ... */
 }

 @GET
 @Products("text/xml")
 public String getUser (
 @PathParam("username47") String username) {
 /* ... */
 }
}

Chapter 8

[369]

In the example class we just saw, ACMEUserResource is annotated with a path
URI template with one variable, which is called username47. There are two
methods, namely, getUser() and getUserList(). The getUser() method accepts
a single argument, a named path parameter /users/{username47}. JAX-RS will
invoke this method if there is a matching URL request such as /users/jamesdean.
On the other hand, if the incoming URL request was just defined as /users then
JAX-RS, instead, will choose the getUserList() method, because the method does
not require a path parameter.

Path variable can also be defined with custom regular expressions to further restrict
the characters that can be matched. The following is an example of the same JAX-RS
resource, where we restrict the match to lowercase and uppercase alphanumeric and
underscore characters.

@Path("/users/{username47: [a-zA-Z_][a-zA-Z_0-9]*}")
public class ACMEUserResource { /* ... */ }

A @Path value can have leading or trailing slash character (/). Given the regular
expression, the JAX-RS runtime parses the template for matching URI path elements.
In this case, username47 accepts a path element that can start with an underscore
character. A path name can start with a leading or trailing slash character.

It is possible to have a URI path template with more than one variable. Each variable
name must be surrounded with braces. The following is an example of a widget
REST style resource for a warehouse business.

@Path("/widgets/{range}/{manufacturer}/{productId}")
public class ACMEInventoryResource {
 @PathParam("range")
 private String range;
 @PathParam("manufacturer")
 private String manufacturer;
 @PathParam("productId")
 private String productId;

 /* ... */
}

This class ACMEInventoryResource accepts a resource with three variables and the
JAX-RS provider will attempt to activate it on matching URL requests. The developer
of this resource must take into account that perhaps one, two, or three of the
parameters may or may not be selected.

RESTful Services JAX-RS 2.0

[370]

JAX-RS annotations for extracting field and
bean properties
JAX-RS has several annotations for extracting field and bean properties from in the
incoming HTTP request. We have already seen some of them such as @PathParam,
which extracts data from the URI template path and @FormParam, which extracts
data from form request parameters.

JAX-RS has some additional annotations to extract further data from the HTTP request.

Annotation Description
@Context Injects JAX-RS context information into the class field and

bean property of method parameter.
@CookieParam Extracts data from cookies declared in the request header.
@FormParam Extracts data from form request data in a POST and PUT

request and where the content type is encoded with
application/x-www-form-urlencoded.

@HeaderParam Extracts the data value from a HTTP header parameter.
@MatrixParam Extracts the data value from a URI matrix parameter.
@PathParam Extracts the data value from a URI template parameter.r
@QueryParam Extracts the data value from a URI query parameter, which

is the same as the old fashion CGI query parameter.
@DefaultValue Injects a default value into the class field and bean property

of method parameter when the JAX-RS runtime cannot find
an appropriate value.

Extracting query parameters
The annotation @javax.ws.js.QueryParam allows data values to be extracted from
the query component of the incoming request URI, the web request.

Let us look at a JAX-RS resource that demonstrates the use of @QueryParam. The
business case is a website that delivers job search for contractors and permanent
staff. For this example, we show only the contract search for candidate. We allow
contractors to search for jobs by minimum and maximum rate, the currency, and
also allow the unit rate to be set. For example, contract can be set by hours per day,
a daily rate, or sometimes a weekly rate.

Chapter 8

[371]

The following is the code for the JobSearchService REST style resource:

@Path("/contracts")
public class JobSearchService {
 @GET
 public String getJobs(
 @QueryParam("ccy") String ccy,
 @QueryParam("unitrate") String unitrate,
 @QueryParam("minrate") int minrate,
 @QueryParam("maxprice") int maxrate)
 {
 /*...*/
 }
}

The resource is invoked by a URI template matching the /contracts. The JAX-RS
runtime calls the method getJobs() with a HTTP GET request. In order to fulfill the
request the URI must be supplied with all of the expected query parameters.

The following URIs match this resource.

/contracts?ccy=GBP&unitrate=PER_DAY&minrate=250&maxrate=750
/contracts?maxrate=470&minrate=325&ccy=GBP&unitrate=PER_DAY
/contracts?&unitrate=PER_HOUR&ccy=EUR&minrate=30&maxrate=90

It is an interesting note and a nice technique that query parameters can be combined
with @DefaultValue annotations.

Extracting matrix parameters
Matrix parameters are a form of URI pattern that contains name and value pairs. The
form of the URI is as follows "/something;param1=value1;param2=value2". The
URI pattern contains name and value pair separated with an equal character (:) and
the pairs delimited by the semi-colon character (;).

The following is an example of JAX-RS resource that makes use of @javax.ws.js.
MatrixParam annotation:

@Path("/admin")
public class ValuationService {
 @GET
 @Path("{customer}")
 public String getValue(
 @MatrixParam(«price») String price,
 @MatrixParam(«quantity») int quantity)

RESTful Services JAX-RS 2.0

[372]

 {
 return String.format(
 "Customer [%s] want price [%s] at quantity: [%d]"
 customer, price, quantity);
 }
}

This class ValuationService responds to the URL pattern such as /admin/janet_
fripps. The JAX-RS runtime provider will invoke this class given the matching URI
and the method getValue().

For the URI pattern /admin/janet_fripps, the method generates the following text:

Customer janet_fripps wants price null at quantity null.

For the URI pattern /admin/janet_fripps;price=24.99, the method generates the
following text:

Customer janet_fripps wants price 24.99 at quantity null.

For the URI pattern /admin/janet_fripps;price=24.99;quantity=12, the
method generates the following text:

Customer janet_fripps wants price 24.99 at quantity 12.

For the alternative URI pattern: /admin/mark_webber;quantity=7;price=39.99,
the method generates the following text:

Customer mark_webber wants price 39.99 at quantity 7.

Using default values
JAX-RS permits default values to be defined for path variable on the class field and
bean property or method argument. The @javax.ws.rs.DefaultValue annotation
specifies a default value, if the metadata is not present in the request.

The following is an example of the annotation in action:

@Path("/aston/{year}/{model}/{engine}")
public class CarProductResource {
 @DefaultValue("2014") @PathParam("year")
 private String range;
 @DefaultValue("Solar") @PathParam("model")
 private String model;
 @DefaultValue("2155") @PathParam("engine")
 private int engineCc;

 /* ... */
}

Chapter 8

[373]

This CarProductResource class is a fictional example resource for a British car
manufacturer and it caters for the firm's idea of organizing their business of selling
cars around the combination of year, model, and an engine size. Here, we have gone
through the trouble of ensuring that all three parameters are always set to a value,
even if one or more parameters are missing from the web request to the resource.

Extracting form parameters
JAX-RS extracts form parameters with the annotation @javax.ws.rs.FormParam.
Form parameters are submitted from a web client and encoded by the browser in
standard format. They are normally sent with a HTTP POST or PUT request.

We already have seen how to extract form parameters in the UserRegistry example
earlier in this chapter. The following is this code again for perusal.

@Path("/users")
@Stateless
public class RegisteredUserResource {
 @POST @Path("{id}")
 @Consumes("application/x-www-form-urlencoded")
 public void addUser(@PathParam("id") String loginName,
 @FormParam("firstName") String fname,
 @FormParam("lastName") String lname,
 @FormParam("secretCode") int code)
 {
 User user = new User(loginName,fname,lname,code);
 userRegistry.addUser(user);
 }

 /* ... */
}

The @Consumes annotation on the resource method, directly stipulates how this
method will behave, the MIME content, it will only be triggered by the JAX-RS
runtime to act on HTML form requests.

There is an alternative way to access form parameters generically. In this case, we
do need the @Consumes annotation and must use the JAX-RS specific javax.ws.js.
core.MultivaluedMap collection. The multi-value map is a map collection of keys
to a list of values. Each dictionary key can map to more than one value, which is an
allowed feature of the HTTP specification.

RESTful Services JAX-RS 2.0

[374]

Here is an alternative implementation of the addUser() method that demonstrates
the generic form parameter logic:

@Path("/users")
@Stateless
public class RegisteredUserResource {
 /* ... */
 @POST
 @Path("{id}")
 @Consumes("application/x-www-form-urlencoded")
 public void addUser(@PathParam("id") String loginName,
 MultivaluedMap<String,String> formParams)
 {
 User user = new User(
 formParams.getFirst("firstName"),
 formParams.getFirst("lastName"),
 formParams.getFirst("secretCode"));
 userRegistry.addUser(user);
 }

 /* ... */
}

It is interesting to note, we call getFirst() to retrieve the value of the key from the
multi-value map.

Field and bean properties
When the JAX-RS runtime instantiates a resource at runtime, it will also inject
values into the fields of the resource and JavaBeans. It will inject values into method
parameter before invocation of the matched resource method after URI path
matching. The runtime will pay attention particularly to the following annotations: @
CookieParam, @Context, @FormParam, @HeaderParam, @MatrixParam, @PathParam,
@QueryParam.

The JAX-RS runtime perform injection at object creation time and therefore the
annotations are checked for incompatible contextual scope, but the standard does not
enforce the restriction, instead it recommends that the runtime warn the developer
when the annotation is used in a problematic scope.

Chapter 8

[375]

The following are the rules for the injection of parameter values:

•	 The runtime will apply conversion for an object type V for which javax.
ws.js.ext.ParamConverter is available via registered javax.ws.js.ext.
ParamConverterProvider.

•	 Injection applies automatically to primitive types.
•	 Types that have a constructor with a single String argument.
•	 Types that have a static method named valueOf() or fromString() with

a single String argument and also return an instance of the type. If both
methods are available, then for a non-enumerated type the runtime must
choose valueOf(), otherwise for an enumerated type the runtime chooses
fromString().

•	 The type is a specific Java collection and a generic type List<T>, Set<T>, or
SortedSet<T>.

•	 For any of these injection values, the developer can choose to annotate the
injection point with a @DefaultValue.

JAX-RS subresources
The JAX resource can delegate to subresource and this feature allows developers,
designers, and architects to build modular REST style applications with better
separation of concerns, higher cohesion, and reduced coupling.

A JAX-RS subresource is a class method annotated with @Path, which indicates that
the method is a subresource method or a subresource locator. Resource classes are
able to partially process a request and provide another subresource, which processes
the remainder of the request. In short, this is all about delegation.

JAX-RS permits subresource to be fulfilled by location, where another delegate class
fulfills the URI template match.

Resolution by a subresource location
Take for example, a fashion store business that maintains a number of key accounts,
the designer houses. The main entry point into the REST style interface could be
separated out into constituent parts. The following code shows two JAX-RS resource
classes FashionStore and DesignerHouse:

@Path("/")
public class FashionStore {
 @Path("/designers/{id}")

RESTful Services JAX-RS 2.0

[376]

 public DesignerHouse getDesigner(@PathParam("id") int id)
 {
 DesignerHouse house = houseData.findById(id)
 return house;
 }
}

public class DesignerHouse {
 @GET
 public String getDetails() { /*...*/ }

 @Path("/principal")
 public String getPrincipal() { /*...*/ }
}

The root URI pattern @Path("/") matches the class FashionStore, and therefore
this master resource behaves like the root of the entire REST style interface. This class
may well have other responsibilities in true business applications.

Given an incoming request for a listed designer HTTP GET request, the
FashionStore delegates to a subresource through the method getDesigner(). The
method is annotated with @Path("/designers/{id}") and it returns a subresource
object DesignerHouse.

JAX-RS runtime provider will see the DesignerHouse object that was returned and
then proceed to process the remaining parts of incoming URI with that object. In
the specification, this is called Subresource Resolution by Location. JAX-RS then
proceeds to process HTTP GET request and invokes the getDetails() method and
after this call completes, the process is complete.

Resolution by a subresource method
The alternative subresource resolution strategy makes the code part of the parent
resource. The JAX-RS resource processes the HTTP request directly. This is known as
the Subresource Resolution by Direct Method.

Let's add one more method to our fashion store example that will clarify resolution
by direct method. There is a requirement for certain staff to get cashier information
in order to deal with specific customer requests such returns of garment, collection,
alterations, and other usual requests. All such staff must work with an authorized
cashier information stamp for these daily tasks and audit.

Chapter 8

[377]

The following code shows the additional subresource method:

@Path("/")
public class FashionStore {
 @GET
 @Path("/staff/{domain}/{staffCode}")
 public String getCashierInfo(
 @PathParam("staffCode") String staffCode,
 @PathParam("domain") String domain) {
 return cashierManagerService.findByCodeAndDomain(
 staffCode,domain)
 }
}

The HTTP GET request /staff/2042/summerbys will cause the JAX-RS runtime to
activate the method getCashierInfo().

Path resources and responses

Path URI and response are two sides of the same coin in the pure
REST style. The REST style should ideally look like hypertext.
Every addressable bit of information contains an address either
explicitly through links and ID, or implicitly through the media
type and its representation.

Generating a JAX-RS generic response
JAX-RS provides means to generate response generically. The abstract class javax.
ws.js.core.Response is a contract object, which the developer uses to produce a
generic response with metadata for the JAX-RS runtime provider. An application
can extend this class directly or it can create an instance of Response object with
the nested inner class javax.ws.js.core.Response.ResponseBuilder. Most
applications tend to use the ResponseBuilder.

We have already seen an illustration of Response and ResponseBuilder in the
custom UnknownUserException exception class. Go back and revisit the user registry
example in Defining JAX-RS Resources, if you need to study.

Response builder
The Response class has several static methods that create and return a
ResponseBuilder object.

RESTful Services JAX-RS 2.0

[378]

To create an OK response, with HTTP Response code of 200, we can invoke the ok()
method. We can also supply an entity of the response with the entity() method,
which specifies the payload to send back to the client. We can set the MIME content
of the entity too.

After configuring the ResponseBuilder, we then need to actually construct a
response, which is sent to the client, by calling the build() method.

The following code shows a sample class that demonstrates some of the ways to
build generic response outputs programmatically:

package je7hb.jaxrs.basic;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

public class SampleResponse {
 public Response generateSimpleOk() {
 return Response.ok().build();
 }

 public Response generateSimpleOkWithEntity() {
 return Response.ok().entity("This is message")
 .type(MediaType.TEXT_PLAIN_TYPE).build();
 }

 public Response generateSimpleOkWithEntityXml() {
 return Response.ok().entity("<msg>This is
 message</msg>")
 .type(MediaType.TEXT_XML_TYPE).build();
 }

 public Response generateSimpleOkWithGermanyLang() {
 return Response.ok()
 .language(„de_de")
 .entity(„<msg>Einfaches boetschaft</msg>")
 .type(MediaType.TEXT_XML_TYPE).build();
 }

 public Response generateUnauthorisedError() {
 return Response.status(Response.Status.UNAUTHORIZED)
 .build();
 }

Chapter 8

[379]

 public Response generateUnauthorisedWithEntityXml() {
 return Response.status(Response.Status.UNAUTHORIZED)
 .entity("<msg>Unauthorised</msg>")
 .type(MediaType.TEXT_XML_TYPE).build();
 }
}

In the SampleResponse class, we just saw, to avoid subtle literal string errors, note
how we make use of the javax.ws.rs.core.MediaType. Static definitions of this
class are used to set the MIME content as an argument to the response builder's
type() method.

It is also possible to set the language and the character encoding of the response with
methods language() and encoding(). Although not shown here, ResponseBuilder
does have more additional methods in order to configure response headers, last
modification date, expiration date and time, new cookies, and links for purpose of
URI redirection.

MediaType class defines static constants, such as APPLICATION_JSON_TYPE, TEXT_
PLAIN_TYPE, and TEXT_HTMLTYPE. The class also defines String equivalents of these,
such as APPLICATION_JSON ("application/json"), TEXT_PLAIN ("text/plain"),
and TEXT_HTML ("text/html").

This, then, is useful for setting the value @Produces and @Consumes in JAX-RS
resource methods. For instance, we can write the code in the following way:

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String getList() { /* ...*/
 return buf.toString();
}

RESTful Services JAX-RS 2.0

[380]

Response status
The class javax.ws.js.core.Response.Status defines a set of enumeration values
that correspond to the response code in the HTTP 1.1 communication standard. Refer
to the following table:

Enumerated Constant Code Description
ACCEPTED 202 Request has been accepted, but the

processing has not been completed.
BAD_GATEWAY 503 The server, while acting as a gateway

or proxy, received an invalid response
from the upstream server whilst
attempting to fulfill the client's request
(Since JAX-RS 2.0).

BAD_REQUEST 400 The server due to malformed syntax
cannot understand the request. The
client should not repeat the request.

CONFLICT 409 The request could not be completed due
to a conflict with the current state of
the resource. This is a useful state when
two REST requests attempt to update
the resource at the same time on a user
defined transaction.

CREATED 201 The request was successful and the new
resource was created.

FORBIDDEN 403 The server understood the request, but it
is refusing to fulfill it. This response can
be reported to the client to hint that the
request is not secure without making it
public why the request was denied.

GONE 410 The request resource is no longer
available at the server and no
forwarding address is known. Perhaps,
REST style for deleting of the resource
has already arrived in the inbox and the
server knows somehow that resource
has flag set: pending for deletion in the
next 24 hours or so.

HTTP_VERSION_NOT_
SUPPORTED

505 The server does not support, or refuses
to support, the HTTP protocol that was
used in the request message. (Since JAX-
RS 2.0.)

Chapter 8

[381]

Enumerated Constant Code Description
INTERNAL_SERVER_ERROR 500 The server encountered an expected

condition, which prevented it from
fulfilling the request. A useful case for
this system might be JAX-RS that cannot
connect to external dependent service,
for example, credit brokerage or order
warehouse system.

LENGTH_REQUIRED 411 The server refuses to accept the request
without a defined Content-Length
value in the HTTP headers. (Since JAX-
RS 2.0.)

METHOD_NOT_ALLOWED 405 The method in the Request-URI is not
allowed for the resource identified by
the Request-URI (Since JAX-RS 2.0)—an
example of this might be an immutable
resource of secure, static, or reputable
constant source of information.

MOVED_PERMANENTLY 301 The requested resource has been
assigned a new permanent URI and any
other references to this resource should
use the new URI.

NO_CONTENT 204 The server fulfilled the request, but does
not need to return an entity body.

NOT_ACCEPTABLE 406 The resource identified by the
request is only capable of generating
response entities, which have content
characteristics that are not acceptable
with the headers sent in the request.

NOT_FOUND 404 The server has not found anything
matching the Request URI. (Since JAX-
RS 2.0.)

NOT_IMPLEMENTED 501 The server does not support the
functionality required to complete the
request. (Since JAX-RS 2.0.)

NOT_MODIFIED 304 If the client performs a conditional GET
request and access is allowed, but the
document has not been modified, the
server should return this error. It is very
rare that a REST application will make a
conditional GET request.

OK 200 The request was successful.

RESTful Services JAX-RS 2.0

[382]

Enumerated Constant Code Description
PAYMENT_REQUIRED 402 The server blocked this request, because

commercial payment is required (JAX-
RS 2.0.)

PRECONDITION_FAILED 412 The precondition given in one or more
of the request-header fields evaluated to
be false when it was tested on the server.
(Since JAX-RS 2.0.)

PROXY_AUTHENTICATION_
REQUIRED

407 The client did not first authenticate itself
with the proxy (JAX-RS 2.0.)

REQUEST_TIMEOUT 408 The client did not produce a request
within the time that the server was
prepared to wait. (JAX-RS 2.0.)—An
easy example is a ticket reservation on
an airplane.

REQUEST_URI_TOO_LONG 414 The server refuses to service request,
because the Request-URI is longer than
the server is willing to interpret (JAX-RS
2.0.)

REQUEST_RANGE_NOT_
SATISFIABLE

416 The server refuses to process a request,
if the value in the Range request-header
exceeds the constraints of the selected
resource (JAX-RS 2.0.)

SEE_OTHER 303 This is HTTP redirection that informs
the client to make an alternative GET
method on an alternative URI.

SERVICE_UNAVAILABLE 503 The server is currently unable to
handle the request due to temporary
overloading or maintenance of the
server. The status implies that the
temporary condition will be alleviated
after some delay.

TEMPORARY_REDIRECT 307 The requested resource resides
temporarily under a different URI.

UNAUTHORIZED 401 The requested resource requires user
authorization.

UNSUPPORTED_MEDIA_TYPE 415 The server refuses to service the request,
because the entity of the request is in a
format not supported by the endpoint.

Chapter 8

[383]

ResponseBuilder has several helpful functions to build a response. The Response
object is supported in both server and client JAX-RS APIs. Users are encouraged to
take advantage of the strong type safety by referencing static constants in Java class
rather than loose literal strings.

Generic entities
Since Java has generics, how does JAX-RS take care of parameterized collection
types? The answer is the runtime requires some help, because of type erasure.

In order to inform the runtime about a generic collection, there is a class, which
developers can use, called javax.ws.rs.core.GenericEntity.

The following code shows a REST style planning resource that illustrates how to
return a generic collection to the client.

@Plan("plans")
public PlanningResource {
 @Path("{id}")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Response getPlanList(@PathParam("id") String id) {
 List<Plan> plans = findPlanCollectionById(id);
 Collections.sort(plans
 new AscendingDateOrderComparator());
 GenericEntity entity =
 new GenericEntity<List<Plan>>(plans);
 return Response.ok(entity).build();
 }
}

The PlanningResource class has a resource method getPlanList(), which
retrieves a list of business plans from a persistence store in the application. It sorts
these Plan objects into ascending order and then wraps the list collections of plans in
a GenericEntity. The method returns a response with the generic entity.

After the resource method returns the entity, the JAX-RS runtime will then take
care of the rest of the response processing. The runtime applies a converter, if
it was registered, to map each Plan entity object into the required media type
"application/json" and the assembled response is sent over the wire to the client.

RESTful Services JAX-RS 2.0

[384]

Return types
Resource methods are allowed to return void, Response, GenericEntity, or another
Java type. These return types are mapped to the response sent to the client.

•	 A void results in an entity body with a (NO_CONTENT) 204 status code.
•	 A Response results in entity body mapped from the entity property inside. If

the entity property is null then this generates a (NO_CONTENT) 204 status code.
If the status property of the Response is not set, the runtime generates a (OK)
200 status code for the non-null entity code.

•	 A GenericEntity results in an entity body mapped from the Entity
property. If the return value of the Entity property is not null then the
runtime generates a 200 status code. A null value for the Entity properties
causes the runtime to generate a 204 status code.

•	 For all other Java types, the runtime generates a status code if it is possible to
map the result to a known MessageBodyWriter or default converter. If the
runtime identifies this result, which is not-null, it returns a 200 status code
otherwise it will generate a 204 status code. For an object instance that is an
anonymous inner class, the JAX-RS runtime will, instead, use the superclass.

It is the responsibility of the developer to supply additional converters beyond the
JAX-RS standard. They may do so through the @Provider annotation in order to
register custom filters and entity interceptors.

Converting Entities to JSON

Java EE 7 provides the Java API for JSON Processing (JSON-P) to
define a standard library to parse, generate, and query JSON. Out of
the box this library does not supply readymade providers to JAX-
RS. In the reference implementation under GlassFish, there does
appear to be two classes called JsonStructureBodyReader and
JsonStructureBodyWriter, which act as JAX-RS providers. If you
are stuck for choice, alternatively, you can use GSON, which is a JSON
library that many developers have had some success with. You will
need to write a custom ReadInterceptor and WriteInterceptor
implementation in order to integrate it into your application.

Chapter 8

[385]

Hypermedia linking
Hypermedia linking is the ability for REST services to explicitly reference other
endpoints in order to allow a client to navigate information. This capability is
actually a constraint of fully REST application architecture and the term for it is
Hypermedia as the Engine of Application State (HATEOS). The design of HATEOS
system implies that a REST client requires only basic knowledge to interact with an
application. The best way to understand this is to think of hyperlinks in HTML. A
web browser knows that an HTML anchor element is a navigation point to another
HTTP resource. If a user clicks on an anchor, this is instruction to surf to the next
web page. The engine of application state for a web browser is the uniform access
rule to a spider web of Internet HTTP servers. No special protocols are required
beyond the norm.

JAX-RS 2.0 supports Hypermedia by allowing a RESTful server endpoint to add
special linkage information to the headers of a HTTP Response. The information in
the HTTP header is separate to the actual content. So the response can be anything
such as JSON or XML or byte stream and the developer can add linkage information
to it.

The class javax.ws.rs.core.Response.ResponseBuilder has a couple of methods
link() and links(). These methods create instances of javax.ws.rs.core.Link,
which is the class that encapsulates hypermedia links. A link() accepts a URI that
references the target resource and parameter. A parameter is a relative name for the
navigation link called rel or it can be code.

Link relations are descriptive attributes that associated with hyperlink and define
the semantic meaning of the relationship between the source and destination
resources. Link relations are used in HTML5 as the common cascading style sheet.
The following line of code shows the same:

<link href="stylesheets/bootstrap.css" rel="stylesheet" />

In REST and JAX-RS 2.0 the rel parameter is retained in a hypermedia link. The
Link class adds a title, type, and optional of map of key-value parameters.

To understand better, let's adapt the book RESTful endpoint with hypermedia links.
We will start with a refactored class as shown in the following code:

@Path("/hyperbooks")
public class RestfulBookServiceWithHypermedia {
 private List<HyperBook> products = Arrays.asList(

RESTful Services JAX-RS 2.0

[386]

 new HyperBook(101,"Sir Arthur Dolan Coyle",
 "Sherlock Holmes and the Hounds of the Baskervilles"),
 new HyperBook(102,"Dan Brown",
 "Da Vinci Code"),
 new HyperBook(103,"Charles Dickens",
 "Great Expectations"),
 new HyperBook(104,"Robert Louis Stevenson",
 "Treasure Island"));
 private final JsonBuilderFactory factory;

 public RestfulBookServiceWithHypermedia() {
 factory = Json.createBuilderFactory(null);
 }

 @GET
 @Path("{id}")
 @Produces({"application/json"})
 public Response getProduct(@PathParam("id")int id) {
 HyperBook product = null;
 for (HyperBook book: products) {
 if (book.id == id) {
 product = book; break;
 }
 }
 if (product == null)
 throw new RuntimeException("book not found");
 return Response.ok(product.asJsonObject())
 .link("http://localhost:8080/order/"+
 id+"/warehouse", "stock")
 .build();
 }
 // ...
}

In this endpoint RestfulBookServiceWithHypermedia, we changed the URI from
/books to /hypermedia for the type in order to avoid a conflict between resources.
This class creates JsonBuilderFactory that we use later. We have given all the
hypermedia books a new Java type HyperBook and they have a unique ID.

The method getProduct() maps to HTTP GET request and accepts a REST path
parameter ID, which references the bookID. The code attempts to look up the
product by the ID. If the product does exists, we convert the Hyperbook instance to a
JSON representation with call to asJsonObject(). We use the JSON-P API from Java
EE 7 (See Appendix D, Java EE 7 Assorted Topics for more details).

Chapter 8

[387]

If it is not found in the list, then a RuntimeException exception is thrown. The key
to the method is link() call that accepts an URI for the link header and a value
for the rel parameter. The method generates a response header that looks like the
following code:

header[Link] = <http://localhost:8080/order/101/warehouse>;
 rel="stock"
header[Date] = Sun, 18 Aug 2013 17:38:33 GMT
header[Content-Length] = 105
header[Content-Type] = application/json

The link relation is a navigation to a warehouse note on a particular order that has a
rel name stock and the URI http://localhost:8080/order/101/warehouse. It is
also possible to generate a collection of link headers for a given response. In order to
achieve this aim, we need to invoke indirectly Link.Builder class.

Let's add one method to retrieve all the hypermedia books in our endpoint, the
following code will explain how to do just that:

@GET
@Produces({"application/json"})
public Response getProductList() {
 JsonObjectBuilder builder =
 factory.createObjectBuilder();
 JsonArrayBuilder arrayBuilder =
 factory.createArrayBuilder();

 List<Link> links = new ArrayList<>();
 for (HyperBook book: products) {
 arrayBuilder.add(book.asJsonObject());
 links.add(
 Link.fromPath("http://localhost:8080/order/" +
 book.id + "/warehouse")
 .rel("stock")
 .build());
 }
 builder.add("products", arrayBuilder.build());

 return Response.ok(builder.build())
 .links(links.toArray(new Link[]{}))
 build();
}

The method getProducts() maps also HTTP GET request, but without any
parameter and returns a JSON array of all products, the hypermedia books. In order
to create a collection of link relations, we use ArrayList<Link>.

RESTful Services JAX-RS 2.0

[388]

For each hypermedia product, we iterate over all of them, we need a link relation
builder. The static call Link.fromPath() instantiates a Link.Builder instance from
a String. From there, we set rel parameter name using the rel() method and then
obtain a Link instance by calling build().

At the same time when we are creating link relations, we create a JsonArray
object. We obtain the JSON representation of the Hyperbook instance and add
it to the JsonArray. The final part of the puzzle is, while building the response,
the conversion of the ArrayList<List> to the Link[] primitive array for the
links(Links…) call.

The output for the HTTP Response headers looks something like this:

header[Link] =
 <http://localhost:8080/ordering/104/shipment>; rel="ship",
 <http://localhost:8080/ordering/103/shipment>; rel="ship",
 <http://localhost:8080/ordering/102/shipment>; rel="ship",
 <http://localhost:8080/ordering/101/shipment>; rel="ship"
 header[Date] = Mon, 19 Aug 2013 08:26:01 GMT
 header[Content-Length] = 314
 header[Content-Type] = application/json

As you can observe the Links HTTP response is actually comma-delimited. The
client-side JAX-RS 2.0 delivers this view resembles the following code extract:

@Test
public void shouldRetrieveHyperbooks() throws Exception {
 WebTarget target = ClientBuilder.newClient()
 .target(
 "http://localhost:8080/mywebapp/rest/hyperbooks");
 Response response = target.request().get();
 // ...
 Set<Link> links = response.getLinks();
 assertFalse(links.isEmpty());
 for (Link link: links) {
 System.out.printf(
 "link relation uri=%s, rel=%s \n",
 link.getUri(), link.getRel());
 }
 assertEquals(200, response.getStatus());
}

Chapter 8

[389]

From the unit test method shouldRetrieveHyperbooks(), we are using the JAX-RS
2.0 client side API that we will discuss, very soon, in the section. The important point
in the code is retrieval of Link in a Set collection from the response. The client side
can conveniently parse that set of link relations in the instance, which is very useful.
From there, we can get access to the URI, parameter rel name, the type, and other
parameters.

The output should appear as the following:

link relation uri=http://localhost:8080/ordering/103/shipment,
 rel=ship
link relation uri=http://localhost:8080/ordering/102/shipment,
 rel=ship

This covers building a response. Let's now move to the client side.

JAX-RS client API
JAX-RS 2.0 introduces the client framework for the first time, which also supports
callbacks and asynchronous request and response. The really nice feature of this API,
improves on the writing invocations of the JAX-RS servers by hand. As you saw in
the section called Test-Driven Development with JAX-RS, writing URL code and the
I/O in standard Java can be, how can I say, laborious?

Synchronous invocation
The client API lies in the javax.ws.js.client package, which contains useful classes
such as AsyncInvoker, Client, ClientBuilder, Entity, SyncInvoker and WebTarget.

The following table outlines the responsibilities of these classes.

Class Description
AsyncInvoker This is a Java interface that defines a uniform

contract interface for asynchronous invocation.
Client This is a Java interface that represents the

contract of all clients, which are the main entry
points to the client side API. The client defines a
builder pattern for flexibility.

ClientBuilder This is the abstract class for the Client API,
which the developer configures in order to
connect the request URI on the server side. The
developer can optionally configure a client with
SSL, security key store, and a hostname verifier.

RESTful Services JAX-RS 2.0

[390]

Class Description
ClientRequestContext An interface that defines the contract for

context data for the purpose of processing the
client request.

ClientRequestFilter An interface that defines the contract for a
custom request filter. Implementations of this
interface must be annotated with @javax.
ws.rs.ext.Provider.

ClientResponseContext An interface that defines the contract for
context data for the purpose of processing the
client response.

ClientResponseFilter An interface that defines the contract for a
custom response filter. Implementations of this
interface must be annotated with @javax.
ws.rs.ext.Provider.

Entity A final class that encapsulates the message
entity including the associate variant.

FactoryFinder A final class for the JAX-RS time to find the
implementation of the client framework.

Invocation An interface that defines the contract for a client
request invocation.

InvocationCallback An interface that defines the contract callback
that the client code implements to respond to
events from processing the response.

ResponseProcessingException An exception thrown if the JAX-RS runtime
finds there is a problem in processing the
response from the resource, which could be in
an error in deserialization or failure to filter the
entity.

SyncInvoker The uniform interface to synchronous
invocation.

WebTarget Represents the resource target URI on the
server side.

It is very straight forward to connect to resource URI using the JAX-RS Client API.
The first class to examine is the javax.ws.js.client.ClientBuilder, which has a
static method called newBuilder(). This method returns a ClientBuilder that the
developer can configure independently with javax.net.ssl.SSLContext and also
supply java.security.KeyStore for encryption. The overloaded methods on the
client builder keyStore() and SSLContext() provide the configuration.

Chapter 8

[391]

If your application is not using security at the moment through SSL, then you can
invoke the static method newClient() and obtain a javax.ws.js.client.Client
instance. With this object, you can configure the target, the resource URI that will
be called with the method target(), which returns a javax.ws.js.client.
WebTargetinstance.

With WebTarget, you configure additional path, query parameters, and matrix
parameters. Invoking the method request() on the web target returns a javax.
ws.js.client.Invocation.Builder instance.

Finally, as the developer, you get to invoke the request to the server, the remote
resource URI with the call to get(), put(), post(), or delete().

On the face of it, going through this chain of object classes, might appear to be
confusing and complicated, but actually it is quite an elegant design and a clear
definition of separation of concerns. By the way, the Invocation.Builder interface
is an extension of the javax.ws.js.client.SyncInvoker interface.

Let us rewrite the first unit test client that we saw for the book list to
use this new JAX-RS client side API. The following is the new class
RestfulBookServiceClientTest in its entirety:

package je7hb.jaxrs.basic;
/* imports ommitted */

import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;

public class RestfulBookServiceClientTest {
 private static SimpleEmbeddedRunner runner;
 private static WebArchive webArchive;

 @BeforeClass
 public static void assembleDeployAndStartServer()
 throws Exception {
 /* See the book's source code .. */
 }

 /* ... */

 @Test

RESTful Services JAX-RS 2.0

[392]

 public void shouldRetrieveBookList() {
 WebTarget target =
 ClientBuilder.newClient()
 .target(
 "http://localhost:8080/mywebapp/rest/books");
 Response response = target.request().get();
 assertNotNull(response);
 String text = response.readEntity(String.class);
 String arr[] = text.split("\n");
 assertEquals("Sherlock Holmes and the Hounds of
 the Baskervilles", arr[0]);
 assertEquals("Da Vinci Code", arr[1]);
 assertEquals("Great Expectations", arr[2]);
 assertEquals("Treasure Island", arr[3]);
 }
}

In this integration test RestfulBookServiceClientTest, we make use of ShinkWrap
in order to create a virtual WAR file. We then launch an embedded GlassFish
instance and deploy the WAR file to it. The new code is the ClientBuilder
invocation, which creates a Client instance and then the WebTarget instance. The
unit test invokes the request URI on the server and it retrieves a javax.ws.js.
coreResponse object.

All we need to do with the response is retrieve the content and we do that by reading
the entity as a String. Behind the scenes the method readEntity() opens java.
io.InputStream and performs more or less the same code in the older unit test,
except since the JAX-RS 2.0 does this, means that our code is much cleaner.

With the content as a Java String, we just split it to an array by the delimited new line
characters and run the assertions to complete the test.

What happens if there is an issue with the server? The target resource at the
URI fails to generate an OK response, HTTP Response Code 200. If there is an
error the JAX-RS runtime will do its best to map the error code to an exception
under the package javax.ws.js.ext. This package defines exceptions that
correspond to the HTTP response error codes and the classes are named like
BadRequestException, ForbiddenException, InternalServerErrorException
and ServiceUnavailableException to name a few.

Chapter 8

[393]

Asynchronous invocation
The client JAX-RS also has a means for generating an asynchronous request.
Now this is potentially useful for building a type of non-blocking request and
response architecture. The design of the JAX-RS API, again, makes this avenue
remarkably simple.

Asynchronous client request can rely on a java.util.concurrent.Future or an
Invocation callback method that the developer provides. Let's look at the Future
option first.

The following is a new unit test RestfulBookServiceAsyncClientTest:

public class RestfulBookServiceAsyncClientTest {
 /* ... as before ... */

 @Test
 public void shouldRetrieveBookListAsynchronously()
 throws Exception {
 WebTarget target =
 ClientBuilder.newClient()
 .target(
 "http://localhost:8080/mywebapp/rest/books");
 Future<Response> future =
 target.request().async().get();

 Response response = future.get(3, TimeUnit.SECONDS);
 String text = response.readEntity(String.class);
 String arr[] = text.split("\n");
 assertEquals("Sherlock Holmes and the Hounds of
 the Baskervilles", arr[0]);
 assertEquals("Da Vinci Code", arr[1]);
 assertEquals("Great Expectations", arr[2]);
 assertEquals("Treasure Island", arr[3]);
 }
}

The essential difference in the asynchronous version compared to the synchronous
one is the addition of the async() method call after the request() method. This
method call returns an instance of javax.ws.js.client.AsyncInvoker. The
difference with this type is all of the overloaded method calls on it such as get(),
put(), post(), and delete() return Future objects, which means the request to the
remote server does not block the calling Java thread.

RESTful Services JAX-RS 2.0

[394]

In order to retrieve the response from the server wrap in the Future object, we invoke
the get() method and in the unit test example we supply a timeout value. Of course,
this call will block the calling Java thread during that duration, and then there is
the possibility of the value being ready or not. Still, the call duration is useful for
situations where you require some execution time limit, and once the Future has
been retrieved it becomes immutable, you cannot reuse it. Instead, you must make
another invocation of the web service.

The JAX-RS Client API provides another way to find out the response of an
asynchronous invocation. The programmer, in this case, creates and supplies a
callback object of the type InvocationCallback<Response>.

The following is a further example in the asynchronous unit test class:

public class RestfulBookServiceAsyncClientTest {
 /* ... as before ... */
 private static class MyCallback
 implements InvocationCallback<Response> {
 public CountDownLatch ready = new CountDownLatch(1);
 public volatile String text = "";
 public volatile Throwable failure = null;

 @Override
 public void completed(Response response) {
 text = response.readEntity(String.class);
 ready.countDown();
 }

 @Override
 public void failed(Throwable throwable) {
 failure = throwable;
 ready.countDown();
 }
 }
 @Test
 public void shouldRetrieveBookListAsyncWithCallback() {
 WebTarget target =
 ClientBuilder.newClient()
 .target(
 "http://localhost:8080/mywebapp/rest/books");

 MyCallback callback = new MyCallback();
 Future<Response> future =
 target.request().async().get(callback);

Chapter 8

[395]

 try {
 callback.ready.await(3, TimeUnit.SECONDS);
 if (callback.failure != null)
 callback.failure.printStackTrace(System.err);
 assertNull(callback.failure);
 String arr[] = callback.text.split("\n");
 assertEquals("Sherlock Holmes and the Hounds of "+
 "the Baskervilles", arr[0]);
 assertEquals("Da Vinci Code", arr[1]);
 assertEquals("Great Expectations", arr[2]);
 assertEquals("Treasure Island", arr[3]);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException(e);
 }
 }
}

The class MyCallback implements the javax.ws.js.client.InvocationCallback
interface. We use a java.util.concurrency.CountDownLatch so that we can
ensure that this class is actually invoked by the JAX-RS run time in either the
success or failure capacity. JAX-RS invokes the completed() method if the data is
fully available. On an error, JAX-RS invokes the failed() method. In either case,
we count down the latch to zero and record the salient information for later. It is
important to note, that the callback executes on a different thread to the unit test
method, which is why we must be careful in our concurrency synchronization. It is
so very easy to get multi-threading badly wrong in Java.

The method shouldRetrieveBookListAsyncWithCallback() is largely the same
as before. Instead, we invoke the invocation builder with get() call and pass an
instance of our callback MyCallback to it. Incidentally, this call returns a future
object, however we are not using it in this unit test method.

We await the countdown latch to hit zero inside the unit test method. When it does,
we know that the callback has been invoked. If the callback was invoked because of
failure, we print the stack trace to the standard error channel. On normal execution in
the unit test method thread, we can retrieve the text string and perform the assertions.

This example does illustrate that may be a developer should separate the business
model logic of validating data from the infrastructure of JAX-RS request and response.

RESTful Services JAX-RS 2.0

[396]

Asynchronous JAX-RS server side
endpoints
JAX-RS 2.0 permits asynchronous generation of the output response in a manner that
is similar to the Servlet 3.0 standard, in particular javax.servlet.AsyncContext.
In order to achieve this in a REST style resource, somehow the JAX-RS must be
informed that the resource method can be executed in another thread internally to
the provider. The client does not need to know the exact details of where the method
is invoked under the hood.

In order to inform the JAX-RS runtime, that a resource method generates
asynchronous output, supply the annotation @javax.ws.rs.container.Suspended
and also a new argument @javax.ws.rs.container.AsyncResponse. Yes, there
is another JAX-RS sub-package called javax.ws.rs.container with classes and
interfaces specifically for server-side containers.

In order to set a JAX-RS to fully asynchronous, the user must annotate the method
with @javax.ejb.Asynchronous. Therefore, the JAX-RS resource has to be defined
as a session EJB in Java EE 7, it can be either a stateless bean or a singleton.

The following is an example of another book REST style resource, but delivered as an
asynchronous EJB:

package je7hb.jaxrs.basic;
import javax.ejb.*;
import javax.ws.rs.*;
import javax.ws.rs.container.*;
import javax.ws.rs.core.*;
import java.util.*;

@Path(«/async/books»)
@Stateless
public class RestfulBookAsyncService {

 private List<Book> products = Arrays.asList(
 new Book("Miguel De Cervantes", "Don Quixote"),
 new Book("Daniel Defoe", "Robinson Crusoe"),
 new Book("Jonathan Swift", "Gulliver's Travels"),
 new Book("Mary Shelley", "Frankenstein"),
 new Book("Charlotte Bronte", "Jane Eyre"));

Chapter 8

[397]

 @GET
 @Asynchronous
 @Produces(MediaType.TEXT_PLAIN)
 public void getList(
 @Suspended AsyncResponse asyncResponse) {
 final long SLEEP=500;
 final int N=10;
 try {
 for (int j=0; j<N; ++j) {
 System.out.print(".");
 System.out.flush();
 Thread.sleep(SLEEP);
 }
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(".\n");
 StringBuffer buf = new StringBuffer();
 for (Book b: products) { buf.append(b.title);
 buf.append('\n'); }
 Response response =
 Response.ok(buf.toString()).build();
 asyncResponse.resume(response);
 }

 static class Book {
 public final String author;
 public final String title;

 Book(String author, String title) {
 this.author = author;
 this.title = title;
 }
 }
}

Inside the RestfulBookAsyncService class, the getList() resource method is
triggered on a HTTP GET request on the URI. We contrived in this method to
delay the generation of the output with a thread sleep call, so that it is easy to
study the output. As soon as the JAX-RS implementation detects the @Suspended
invocation; it will pause the output of the response to client on AsyncResponse. It is
the combination of the EJB @Asynchronous and @Suspended AsyncResponse that
causes the fire-and-forget behavior on the server side.

RESTful Services JAX-RS 2.0

[398]

After the deliberate delay, the getList() method builds the generic response and
then passes it to the AsyncResponse instance with a call to resume(). This call
signals to the runtime that the asynchronous response will be resumed.

If the method is not annotated with @Asynchronous, then the JAX-RS runtime
executes in a synchronous fashion, but the AsyncResponse will be still suspended.

The output from the unit test produces the following result:

RestfulBookAsyncService#acquireResource()
RestfulBookAsyncService.getList() thread: [Thread[http-
listener(1),5,main]]
retrieve list asynchronously

sending data back now on thread: [Thread[http-listener(1),5,main]]
**** response=org.glassfish.jersey.client.ScopedJaxrsResponse@3ae4568d
**** text=Don Quixote
Robinson Crusoe
Gulliver's Travels
Frankenstein
Jane Eyre

The extract sample of the output shows the invocation of the REST endpoint in the
class RestfulBookAsyncService. In the working code, which you find in the source
code and the website, we added @PostConstruct and @PreDestroy annotation
methods. We also make use of the JAX-RS Client asynchronous API to invoke the
resource in a unit test.

Let's move on to the filtering and interception of the resource and how the JAX-RS
can do more advanced processing for your enterprise applications.

Why must I turn to EJB for full asynchronous operations?
At first glance, it does appear strange that for full asynchronous
operation, a resource must be annotated as a session EJB (@Stateless
or @Singleton) and the resource method requires a @javax.ejb.
Asynchronous. Luckily, for us developers, Java EE containers treat EJB
in a much smarter way than they did J2EE. A session EJB is no longer a
monolithic behemoth of burden that it was once, modern Java EE servers
are perfectly capable of creating thousands of EJB instances on the fly.
There is no longer a need to even pool EJB instances as we once did! I do
think, personally, that the EJB and CDI expert group missed a trick by not
having an annotation for CDI @javax.annotation.Asynchronous.

If you prefer not use to EJB then you may want to investigate
the Concurrency API. You can find out more about Java EE 7
ManagedExecutorService in Appendix D, Java EE 7 Assorted Topics.

Chapter 8

[399]

JAX-RS providers
The JAX-RS 2.0 specification now standardizes extensions to the runtime that allow
developers to write portable authentication, encoding and decoding, and logging
without the vendor lock-in of proprietary code. JAX-RS provides an interceptor
framework to handle advanced situations. The specification describes two styles of
intercepted JAX-RS communication, namely, filtering and entity interceptors.

Filters are strikingly similar in concept to Java Servlet filters, especially in the way
they can modify or process the incoming REST request and the response. Filters
predominantly take care of HTTP Header information and they execute before and
after request and response resource processing.

On the other hand, Entity Interceptors are designed for the manipulation of the
payload data. They can be written to encrypt and decrypt the message body of a
JAX-RS REST message. (If you have an Enterprise Messaging background, then the
penny has already started to drop.)

Filters
JAX-RS filters are available on the client and the container APIs, the packages javax.
ws.js.client and javax.ws.js.container.

JAX-RS filters
On the client side, there are two types of filter, namely the Java interface
ClientRequestFilter and ClientResponseFilter. For each direction,
there is a corresponding context interface ClientRequestContext and
ClientResponseContext.

On the server side, there are two types of filter, namely the Java interface
ContainerRequestFilter and ContainerResponseFilter. For each direction,
there is a corresponding context interface ContainerRequestContext and
ContainerResponseContext.

Let us look at the server side filter as a start.

Server-side filters
JAX-RS executes the ContainerRequestFilter filter before invoking the wrapped
target resource. JAX-RS executes ContainerResponseFilter after invoking the
wrapped target resource.

RESTful Services JAX-RS 2.0

[400]

The category of ContainerRequestFilter is divided into two more filter styles.
A filter can be pre-matching or post-matching. The default is the post-matching.
Pre-matching filters are designed to modify request attributes and header attributes
before the JAX-RS runtime perform path pattern matching on the URI resource.

In order to designate a ContainerRequestFilter is a pre-matching filter, the class
must be annotated with @javax.ws.js.container.PreMatching.

If we wanted to copy the HTTP Header parameter User Agent and shadow it for a
processing pipeline, we could write a filter in the following way:

package je7hb.jaxrs.basic;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.PreMatching;
import javax.ws.rs.ext.Provider;
import java.io.IOException;

@Provider
@PreMatching
public class AddExtraUserAgentFilter implements
 ContainerRequestFilter {
 @Override
 public void filter(ContainerRequestContext context)
 throws IOException {
 String userAgent =
 context.getHeaderString("User-Agent");
 if (userAgent != null) {
 context.getHeaders().putSingle(
 "X-User-Agent-Copy", userAgent);
 }
 }
}

The filter AddExtraUserAgentFilter is annotated as @javax.ws.js.ext.Provider.
The class implements ContainerRequestFilter and the method filter(). We look
up the header parameter by name from the supplied context. Since this agent usually
is supplied by the client, we can make a copy of the parameter into a new header key
and value pair called X-User-Agent-Copy.

If we wanted to, the flexibility of the JAX-RS API, allows us to change the User-
Agent string. Since this filter is annotated with @PreMatching then the runtime will
invoke this filter before proceeding with the URI path pattern matching phase and
before the target resource is invoked.

Chapter 8

[401]

Suppose we wanted to have a filter that automatically added an expiration time to
the HTTP Response header for any JAX-RS Resource. We could write a container
response filter like the following code:

package je7hb.jaxrs.basic;
import javax.ws.rs.container.*;
import javax.ws.rs.ext.Provider;
/* ... imports omitted */

@Provider
public class AutoExpirationDateFilter implements
ContainerResponseFilter{
 private static SimpleDateFormat formatter =
 new SimpleDateFormat("EEE, dd MMM yyyy HH:mm:ss Z");
 @Override
 public void filter(ContainerRequestContext reqCtx,
 ContainerResponseContext resCtx)
 throws IOException {
 if (reqCtx.getMethod().equals("GET")) {
 Date oneHour = new Date(
 System.currentTimeMillis() + 60* 1000);
 resCtx.getHeaders().add("Expires",
 formatter.format(oneHour));
 }
 }
}

In the class AutoExpirationDateFilter which implements the contract
from ContainerResponseFilter, the filter() method accepts two context
parameters and it is extremely useful to have access to both the request and
response context objects.

We only add the expiration response header field for HTTP GET request, so in the
method we can check this situation. With the response context, we add the expiration
header with a properly formatted date and timestamp.

Client-side filters
Writing JAX-RS filters for the client side is a one step filter, because there is no URI
path pattern matching occurring. The developer has a choice of two filter types,
namely, ClientRequestFilter and ClientResponseFilter. The JAX-RS filter will
invoke ClientRequestFilter just before the HTTP request is sent to the remote URI
resource. Similarly, after the remote URI resource processes the data and sends back
a response, then the JAX-RS runtime invokes ClientResponseFilter instance.

RESTful Services JAX-RS 2.0

[402]

We shall now inspect the code for a useful bit of kit in our toolkit. What happens
if we have problem with some production code involving JAX-RS? Would it not
be nice to debug to a standard console (and perhaps later to a logging facility) the
requests going from the client to the remote URI resource and reading the server
response? It would be nice to have a master client that we can travel around the
business and validate the communication is functioning correctly between the client
and server.

So the following is the basis of a debuggable logger for JAX-RS client,
albeit incomplete:

package je7hb.jaxrs.basic;
import javax.ws.rs.client.*;
import javax.ws.rs.ext.Provider;
/* ... imports omitted */

@Provider
public class DebugClientLoggingFilter
implements ClientRequestFilter, ClientResponseFilter {

 @Override
 public void filter(ClientRequestContext reqCtx)
 throws IOException {
 System.out.printf("**** DEBUG CLIENT REQUEST ****\n");
 System.out.printf("uri: %s\n", reqCtx.getUri());
 if (reqCtx.getEntity() != null) {
 System.out.printf("entity: %s\n",
 reqCtx.getEntity().getClass().getName() + "@" +
 Integer.toHexString(
 System.identityHashCode(reqCtx.getEntity())));
 }
 System.out.printf("method: %s\n", reqCtx.getMethod());
 System.out.printf("mediaType: %s\n",
 reqCtx.getMediaType());
 System.out.printf("date: %s\n", reqCtx.getDate());
 System.out.printf("language: %s\n",
 reqCtx.getLanguage());
 for (String name: reqCtx.getHeaders().keySet()) {
 System.out.printf("header[%s] => %s\n",
 name, reqCtx.getHeaderString(name));
 }
 for (String name: reqCtx.getCookies().keySet()) {

Chapter 8

[403]

 System.out.printf("cookie[%s] => %s\n",
 name, reqCtx.getHeaderString(name));
 }
 System.out.printf("**** END CLIENT REQUEST ****\n\n");
 }
 // ... incoming filter method }

This class DebugClientLoggingFilter implements both the client
request and response filters. As you can see the two different context
objects ClientRequestContext and ClientResponseContext provide a
wealth of information.

From the client, we are able to find out the request URI, the entity, the method,
media type, language, headers, and cookies. Similarly, from the server we can debug
the status, status code, response length, the date, headers, and cookies.

Once the remote endpoint has serviced the request, we expect a response, which can
also be filtered. The following is the other incoming implementation filter method:

@Override
public void filter(ClientRequestContext reqCtx,
 ClientResponseContext resCtx)
throws IOException {
 System.out.printf("**** DEBUG CLIENT RESPONSE ****\n");
 System.out.printf("status: %s\n", resCtx.getStatus());
 System.out.printf("status info: %s\n",
 resCtx.getStatusInfo());
 System.out.printf("length: %s\n", resCtx.getLength());
 System.out.printf("mediaType: %s\n",
 resCtx.getMediaType());
 System.out.printf("date: %s\n", resCtx.getDate());
 System.out.printf("language: %s\n", resCtx.getLanguage());
 for (String name: resCtx.getHeaders().keySet()) {
 System.out.printf("header[%s] => %s\n",
 name, resCtx.getHeaderString(name));
 }
 for (String name: resCtx.getCookies().keySet()) {
 System.out.printf("cookie[%s] => %s\n",
 name, resCtx.getHeaderString(name));
 }
 System.out.printf("**** END CLIENT RESPONSE ****\n\n");
}

We have access to the response header, content type, length, data, and also cookies.
To find out more information, it is worth your while examining the API in detail for
both ClientRequestContext and ClientResponseContext.

RESTful Services JAX-RS 2.0

[404]

To configure the filter from the unit test, we set up the ClientBuilder in the
following way:

@Test
public void shouldRetrieveBookList() throws Exception {
 WebTarget target = ClientBuilder.newClient()
 .register(new DebugClientLoggingFilter())
 .target(
 "http://localhost:8080/mywebapp/rest/async/books");
 Future<Response> future =
 target.request().async().get();
 /* ... */
}

DebugClientLoggingFilter is registered on the builder object.

The following is a screenshot of the unit test in action:

Chapter 8

[405]

If you are going to unit test the server response in an application, why would you
not choose the JAX-RS client side library? It is a no brainer.

We shall move on to entity interceptors.

JAX-RS interceptors
Inceptors handle message bodies, the actual payload of the request and response to
the remote JAX-RS resource. Entity interceptors are executed in the call stack frame
as their corresponding reader or writer, which means there are involved in the same
Java thread.

There are two types of interceptors, namely, javax.ws.rs.ext.ReaderInterceptor
and javax.ws.rs.ext.WriterInterceptor. The reader interceptor is designed to
wrap around the execution of the javax.ws.rs.ext.MessageBodyReader types. The
writer interceptor is designed to wrap around the execution of javax.ws.rs.ext.
MessageBodyWriter.

Why would developers want to create an interceptor? One circumstance may be
to provide encryption and destruction around a particular resource type of data.
Another idea would be generate secure digital signatures for any type of output.

Here is an example of both ReaderInterceptor and WriterInterceptor that
performs AES encryption and decryption:

package je7hb.jaxrs.basic;
import javax.crypto.*;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.*;
import java.io.*;

@Provider
public class AESCipherInterceptor
implements ReaderInterceptor, WriterInterceptor{
 private final AESCipher cipher;

 public AESCipherInterceptor() throws Exception {
 final byte[] salt =
 { 1,2,4,8,16,32,64,-64,-32,-16,-8,-4,-2,-1};
 final String password = «java1995»;
 cipher = new AESCipher(password, salt);
 }

RESTful Services JAX-RS 2.0

[406]

 @Override
 public Object aroundReadFrom(
 ReaderInterceptorContext context)
 throws IOException, WebApplicationException {
 InputStream old = context.getInputStream();
 context.setInputStream(new CipherInputStream(
 old, cipher.getDecryptCipher()));
 try {
 return context.proceed();
 }
 finally {
 context.setInputStream(old);
 }
 }

 @Override
 public void aroundWriteTo(
 WriterInterceptorContext context)
 throws IOException, WebApplicationException {
 OutputStream old = context.getOutputStream();
 context.setOutputStream(new CipherOutputStream(
 old, cipher.getEncryptCipher()));
 try {
 context.proceed();
 context.getHeaders().add("X-Encryption", "AES");
 }
 finally {
 context.setOutputStream(old);
 }
 }
}

I should say immediately as a professional developer you never expose the security
credentials to hacking in source code. The password and salt would be securely
obtained by proper means through a secure channel.

In order to be truly secure in the communication, first, you could
make the connection protocol SSL. Second, ensure the plain text of
the password is never passed in the stream and share the password
verbally, orally in a face-to-face meeting. Third, generate the salt
using javax.security.SecureRandom. Share the salt in an out-
of-band communication between the server and the client in an initial
hand shaking mechanism.

Chapter 8

[407]

The annotation @Provider is applied to the interceptor class AESCipherInterceptor
and therefore JAX-RS server side runtime becomes aware of its existence.

The class AESCipherInterceptor uses a helper class AESCipher to delegate
the business of configuration key generator, cipher streams and the business of
configuring AES in secure Java. This leaves the two implementation methods
aroundReadFrom() and aroundWriteTo() relatively free of clutter.

The style of programming for both of these methods follows that of Aspect Oriented
Programming (AOP). We temporarily replace the input or output stream, before
invoking the target in the context. After the invoked method returns we restore
the previous stream. We must surround the invocation with a try-finally block
to ensure the restoration always happens regardless of the normal or abnormal
termination of the target method.

We add an additional header to the response output in the aroundWriteTo() method.

The following is the code for the delegate class, AESCipher:

package je7hb.jaxrs.basic;
/* ... imports omitted */

public class AESCipher {
 private final KeyGenerator keyGen;
 private final Cipher encryptCipher, decryptChipher;

 public Cipher getEncryptCipher() { return encryptCipher;}
 public Cipher getDecryptCipher() { return decryptCipher;}

 public AESCipher(String passwordText, final byte[] salt)
 throws Exception {
 keyGen = KeyGenerator.getInstance("AES");
 final char[] password = passwordText.toCharArray();
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
 KeySpec spec = new PBEKeySpec(
 password, salt, 65536, 128);
 SecretKey tmp = factory.generateSecret(spec);
 SecretKey aesKey = new SecretKeySpec(
 tmp.getEncoded(), "AES");

 encryptCipher = Cipher.getInstance(
 "AES/CBC/PKCS5Padding");

RESTful Services JAX-RS 2.0

[408]

 IvParameterSpec ivParameterSpec =
 new IvParameterSpec(aesKey.getEncoded());
 encryptCipher.init(Cipher.ENCRYPT_MODE,
 aesKey, ivParameterSpec);

 decryptCipher = Cipher.getInstance(
 "AES/CBC/PKCS5Padding");
 decryptCipher.init(Cipher.DECRYPT_MODE,
 aesKey, ivParameterSpec);
 }

 public byte[] encrypt(String plainText) {
 ByteArrayOutputStream outputStream =
 new ByteArrayOutputStream();
 CipherOutputStream cipherOutputStream =
 new CipherOutputStream(outputStream,
 encryptCipher);
 try {
 cipherOutputStream.write(plainText.getBytes());
 cipherOutputStream.flush();
 cipherOutputStream.close();
 return outputStream.toByteArray();
 }
 catch (Exception e) {
 e.printStackTrace(System.err);
 return null;
 }
 }

 public String decrypt(byte[] cipherText) {
 ByteArrayOutputStream output =
 new ByteArrayOutputStream();
 ByteArrayInputStream inputStream =
 new ByteArrayInputStream(cipherText);
 CipherInputStream cipherInputStream = null;
 try {
 cipherInputStream = new CipherInputStream(
 inputStream, decryptCipher);
 byte[] buf = new byte[1024];
 int bytesRead;
 while ((bytesRead =
 cipherInputStream.read(buf)) >= 0) {
 output.write(buf, 0, bytesRead);
 }

Chapter 8

[409]

 cipherInputStream.close();
 return new String(output.toByteArray());
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
}

The AESCipher utilizes the Java Cryptography Extension (JCE) API in order to
security encrypt and decode an array of bytes to and from a String. The details
of these API calls are out-of-scope for this book. Oracle has a good site to find out
more information http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136007.html. I recommend the following book Beginning Java Security
by David Hook.

We shall move on to binding filter and interceptors and how a developer can control
which JAX-RS resources are matched to these types.

Binding filter and interceptors
As it stands, the AESCipherInterceptor class from previous section has a global
binding. This means it will be invoked for all JAX-RS Resources in the application!
We most likely do not want to encryption and decryption for all of the REST style
resources in our application.

A filter or entity interceptor can be associated with a resource class or method by
declaring a new binding annotation in the spirit of the Context and Dependency
Injection (CDI). Annotations for association are declared with the JAX-RS meta-
annotation @javax.ws.js.NameBinding.

We can create a custom annotation for denoting resources that need secure
encryption. The following code is a new annotation called @Encrypt:

@NameBinding
@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface Encrypt { }

This is a runtime annotation and it can only be applied to class types or methods.

RESTful Services JAX-RS 2.0

[410]

Now we can bind this annotation to the interceptor by applying to the class in the
following way:

@Encrypt
@Provider
public class AESCipherInterceptor
implements ReaderInterceptor, WriterInterceptor {
 /* ... as before as */ }

To complete the puzzle, we only need to apply the custom annotation to methods in
a REST style resource that we want to protect. Following is a particular class, called
SensitiveResource, which demonstrates the principle:

@Path("/docs")
public class SensitiveResource {
 @Encrypt
 @GET
 @Path("{id}")
 @Produces("text/plain")
 public SensitiveDocument retrieve(
 @PathParam("id") String file)
 {
 /*...*/
 }

 @Encipher
 @POST
 @Path("{id}")
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 public SensitiveDocument store(
 @PathParam("id") String file,
 @FormParam("file") InputStream inputStream)
 {
 /*...*/
 }
}

The method retrieve() in this REST style endpoint is annotated with @Encrypt.
The JAX-RS provider will work out that this particular HTTP GET request on this
resource is bound to the AESCipherInterceptor. The write interceptor will be
invoked after the resource generates the response, which causes the response to be
encrypting before the JAX runtime sends the result back to the client.

Chapter 8

[411]

The resource method store() is triggered on HTTP POST request and also
annotated with the @Encrypt method. This informs the runtime to bind an instance
of the AESCipherInterceptor to the resource method. The read interceptor will
be invoked first to decrypt the input stream before invoking the resource method,
which results in the HTML Form encoded to be decrypted. Note that we must also
annotate the resource method with @Consume tag, which stipulates the single HTML
form parameter is a MIME multipart form upload.

Dynamic binding
There is still one other way to configure binding to a resource. Whereas the @
NameBinding annotation means the configuration is a static means for a dynamic or
runtime application of behavior that we cannot use this feature. Luckily, JAX-RS 2.0
provides an additional interface javax.ws.js.container.DynamicInterface.

The dynamic interface is designed for the registration of post-matching providers
during a JAX-RS application initialization at the time of deployment. There is one
single interface to implement called configure() and it takes two arguments,
namely javax.ws.js.container.ResourceInfo and javax.ws.js.core.
FeatureContext.

Let us write a new configuration feature class AESCipherDynamicFeature, which
supports dynamic binding. Following is the new code snippet:

@Provider
public class AESCipherDynamicFeature
implements DynamicFeature
@Override
public void configure(ResourceInfo resourceInfo,
 FeatureContext config) {
 if (SensitiveResource.class.isAssignableFrom(
 resourceInfo.getResourceClass() &&
 resourceInfo.getResourceMethod()
 .isAnnotationPresent(
 GET.class)) {
 config.register(
 new AESCipherInterceptor());
 }
 }
}

RESTful Services JAX-RS 2.0

[412]

The class must be annotated with the @Provider in order to be successfully scanned
by the JAX-RS runtime. Once the runtime discovers the new feature and it can see
that the class is a type of DynamicFeature then the runtime invokes configure()
method. We verify the resource that we want to protect is the target, and we also
check the REST style resource method is the correct one to apply this interceptor.
Is this resource method the HTTP GET request method? When these conditions
are true, then we use the FeatureContext instance to configure and associate an
instance of the interceptor with the resource.

Summary
The REST style API is improved in Version 2.0 for Java EE 7. In this chapter, we
covered the essentials of Representational State Transfer, the architectural style of
the application.

We saw how to write REST style endpoints for collections of entities and how that
progresses to single entities. REST is about the design of URI patterns and templates.
We learnt how to configure the servlet mapping for JAX-RS applications.

We built a sample JAX resource endpoint with the HTTP request protocols GET,
PUT, POST, and DELETE. We applied the corresponding annotations: @GET, @PUT,
@POST, and @DELETE. We mapped URL fragments to JAX-RS server side resources
and subresources with the @Path annotation. We configure dynamic behavior
through path variable and we are able to extract values from the URI template; and
now we can also extract data using the various annotations, such as @QueryParam,
and @FormParam.

JAX-RS sub-resources can be configured by location or directly in the same resource.
We saw that architecting resources into sub-resources is preferred as best practice,
because it separates concerns and leads to better modularity in the code base for the
long term; therefore reducing the technical debt and high maintenance.

We explored the new Client API in JAX-RS 2.0 and witnessed how it can help unit
test to RESTful endpoints. We understood how to write asynchronous input and
output application to leverage another JAX-RS 2.0 feature.

JAX-RS resources have the option to generate custom response using the
ResponseBuilder and Response classes. We revealed that JAX-RS Provider
instances are the key to extending the runtime and the door to writing custom
functionality through server or client side filter, or the entity interceptors.

The next chapter Java Message Service investigates Java EE 7's latest support for
sending and receiving data through a messaging system.

Java Message Service 2.0
Federick D. Gregor, the first African-American to pilot and command a NASA Space
Shuttle mission said, "When I arrived back at Aircraft Ops [Operations], in my little
bin that I put my helmet in, there was a little message that said, "Call Don [Donald
R.] Puddy".

The Java Message Service (JMS) API predates Java EE (or J2EE 1.2 released on
December 12, 1999) and has only had one specification update since its inception.
The JMS 2.0 specification is the long overdue update for Java EE 7. Java Message
Service standardizes a common messaging layer for enterprise Java applications.

JMS is based on an interesting field of endeavor for business IT communication
which is called Message Oriented Middleware. These enterprise message
products allow different components distributed on different servers and a lot
of time-distributed applications across separate companies to communicate
with each other by sending messages from one system to another. The field of
messaging permits enterprise architects to design systems that flow business data
asynchronously out of one system into another.

The developer should be warned that JMS is a low-level Java library that permits
these types of systems to be written. It is low-level because there is an entire
abstraction of messaging above JMS, which is Enterprise Information Architecture
(EIA). EIA is concerned with architectural design patterns surrounding messaging
systems, channels, and their respective components. It has abstractions and
descriptions around routing, data transformation, aggregation, filtering, and channels.

If you are interested in EIA and higher level abstraction, please
refer to Gregor Hophe and Bobby Woolf's classic book—Enterprise
Integration Patterns.

Java Message Service 2.0

[414]

What is JMS?
Java Message Service is an API that applications can utilize to create, send, receive,
and read messages mostly asynchronously and reliably over a messaging system in
order to build systems that are loosely coupled.

Enterprises are heavily dependent on messaging systems for their daily operations.
It does not matter whether they are a large Fortune 500 company or small medium
businesses. Here is a very high-level example of an architecture that the majority of
investment banking IT businesses typically have in their global operations. Let's say
that we are a fictional institution called Simple Bank PLC, a private limited company
in the United Kingdom. Simple Bank relies on a division of labor, sometimes called
silos, to separate the work of the trading desks from the work back office: the
front office makes the deals on the trades and the back office validates records and
manages the post-processing of the deal after the trades have been agreed.

In this simplified bank architecture, technically, Simple Bank has two systems: one for
the front office and the other for the back office. How do these systems communicate
over the entire life cycle of software enterprise applications that are installed in a bank
and still have a long-term view of maintainability? The answer is that this simple bank
installed a proprietary messaging system to act as a conduit between the two system
and this systems allows asynchronous, reliable, and robust communication.

Here is the story: a long time ago, Simple Bank invested in enterprise Java in order to
integrate their many bespoke systems with the JV and future-proof their architecture
and strengthen their software development lifecycle. The bank started to use the JMS
API as part of Java EE to write its own internal processes and applications around
the message system.

Like similar investment banks, Simple Bank has several different components. In
the front office, there is Exposure and Limits, which is an enterprise component to
perform credit checking on trades. It has a Portfolio Management component that
allows traders, sales, and marketing staff to manage accounts directly and indirectly
for counterparties and private investment customers. After the year 2012, because
Simple Bank now operates and trades also in the United States of America and it
is listed as a legal entity on the stock market in New York, Simple Bank is required
to comply with the Dodd-Frank (Reform and Consumer Protection Act: http://
en.wikipedia.org/wiki/Dodd%E2%80%93Frank_Wall_Street_Reform_and_
Consumer_Protection_Act). There is a huge signification investment in a recent
Regulatory Reporting component that takes care of sending XML data to the US
regulatory government bodies.

Chapter 9

[415]

Moving to the back office, there is a component for an Electronic Management
Information System, which is supposedly a very crucial component for the bank's
board. The top senior executives require this component to find out about the
bank's key market data, the business of running a bank, and the overall balance
sheet: day-to-day, week-to-week, and month-to-month. There is a Profit and Loss
center component in the back office system which typically is part of the proprietary
electronic trading system (which is not illustrated) that Simple Bank relies on to create
end-of-day reports. In the global operation of most investment banks, which are now
24-hour trading, the act of computing real-time profit and loss and trading days are
complicated by time zones, local business holidays, and big data. And this brings up
Batch Operations, which are key essential tasks such as calculating the entire trade
volume at the end of the day and computing expensive derivative risk operations and
trade rate curves that are essential long running operations.

Java Message Service 2.0

[416]

All of these enterprise components need a way to communicate with each other.
The old fashion way was to make Remote Procedure Calls, which is very low-level
and imperative way of communication and requires knowledge about networking.
The modern way is to allow each component to send messages to each other over a
guaranteed delivery system. XML is the message content type of choice for a lot of
investment banks. Today, many of them use a popular variant that falls under the
guise of Financial Product Mark-up Language (FPML) to another. In our Simple
Bank example, there are two of them: one dedicated system by IBM WebSphere MQ
installed in the front office and the other is a Tibco Enterprise Messaging System
middleware in the back office. There is an internal network; also an intranet that
bridges the two message systems.

Why are there two different vendor systems? To add more salt to the wound, let's
just say that Simple Bank was a result of a recent merger and acquisition situation.
Simple Bank is a long term IBM customer and was taken over by Bigger and Better
Bank, which is a long time Tibco customer. This sort of enterprise asset inconsistency
is not untypical in a technology-driven business operation. Messaging systems are
tied up with requirements, profitable business reasons, and real-world application of
technology. They are an interesting mixture.

Messaging systems
There are two types of messaging, namely point-to-point (P2P) and publish-
subscribe (Pub-Sub).

Point-to-point messaging
In point-to-point messaging, a producer sends a message over a queue channel and
exactly one consumer receives it and processes it. A channel is a reliable conduit for
a producer and consumer to communicate by messages. Once the message in the
channel is delivered to the consumer, then it is no longer available in the channel.

In normal practice, production and consumption of messages takes place
asynchronously. In other words, the producer does not have to block and wait whilst
the message is being sent and the messaging system that delivers the message to the
consumer is also not blocked on a Java thread. However, JMS 2.0 does allow you to
synchronously publish messages. It is also possible within JMS 2.0 for a point-to-
point consumer to receive messages both asynchronously and synchronously.

Chapter 9

[417]

Point-to-point (P2P) model

Do not confuse this with another concept in distributed networking
software that also shares the abbreviation (peer-to-peer) in message-
oriented middleware. The P2P model is designed for messaging
communication where there is one and only one component for each
message.

The P2P model can be used in an e-commerce application that processes
a customer order. A customer entry component sends an XML order
to a warehouse system which will then process the order and update
the business internal and external inventory. The warehouse system is
responsible for reducing the stock count of products and therefore the
e-commerce front end system at a later time shows a reduced stock frame.

Here is an illustration of a point-to-point model for a typical e-commerce application:

The message queues loosely couple the enterprise components to each other.

Java Message Service 2.0

[418]

Publish-subscribe messaging
In publish-subscribe messaging, a producer sends a message over a topic channel
and multiple consumers who have already subscribed to the same channel will
receive the same message and therefore process it accordingly. If a consumer is not
registered to the channel at the point when the channel is delivering the message,
the consumer is not subscribed and will miss the message. Other consumers who are
subscribed to the channel will receive the message.

You can think of the pub-sub model as a sort of TV broadcasting, although this
similarity is allegoric. The viewer or digital tuner has to be tuned to the TV channel
in order to receive the content.

The producer does not have to register with the topic channel in order to send
a message, but they do need to know the topic name and how to find the topic
channel. Consumers just have to subscribe to the topic channel and they can
unsubscribe at any time. The topic channel is also a reliable conduit of messages.
Each message supplied to the topic channel will be delivered to registered
consumers. If there are no consumers on the topic channel, then the message will be
lost at the point of delivery.

The pub-sub messaging model is inherently asynchronous in nature, since it delivers
one message to probably hundreds or possibly thousands of consumers. In JMS, it is
possible to block and wait on sending a message to a topic channel, but most of time
applications do not do this. It is also possible for subscribers to receive messages both
asynchronously and synchronously.

Pub-sub model

The pub-sub model makes use of topic channels, where the channel name
is the destination address of the message. Multiple recipients can retrieve
each message on the channel because the messaging system will handle
the responsibility of delivering the message to consumers.

The biggest benefit of the pub-sub model is that the message producer
(the publisher) does not need to be aware of the consumers (the
subscribers) and therefore the model is amenable to the broadcasting
of data. An application that sends financial stock, derivative prices, or
market data benefits from the pub-sub model.

Following is an illustration of a pub-sub model for an investment bank. It shows
only a very small subset of the physical topic channels for the front-office operations.
There are a number of publishers on the left-hand side of the diagram which send
XML message data to registered subscribers on the right-hand side.

Chapter 9

[419]

The USD GBP and the EUR USD publishers are message producers in the Foreign
Exchange (FOREX) domain. The USD GBP publisher updates on the movement of
the US Dollar and British Pounds currencies and likewise the EUR USD publisher
updates on USD Dollar and Euro movements.

External customers who use the bank's online e-commerce trading solution tend
to trade only in response to the value of a single currency: "When the British
Pound rises to £1.45 against the Dollar, perform this action." A consumer may be
interested in Euros and not at all interested in Japanese Yen. Therefore, JMS message
consumers are subscribed to a particular currency in order to receive real-time
currency updates. (It is up to the applications to feed these updates to the external
customer and these components, are not shown in the diagram.)

The Stock Loan and the Government Bond publishers are message producers in the
Money Market (MM) domain. The message consumers registered for the Money
Market topic will process updates to any external customers.

This pub-sub model is very appropriate for loosely-coupled producers and
consumers that require a broadcast-style conduit of communication.

Java Message Service 2.0

[420]

JMS definitions
JMS is a specification API that abstracts out communication through messaging
systems into a portable framework. Programming against JMS permits the
application to be portable to many messaging systems, proprietary, and open source
support. There are several vendors of enterprise messaging systems such as Apache
ActiveMQ, IBM WebSphereMQ, JBoss Messaging, Oracle AQ, and Progress Software
SonicMQ. JMS allows the developer to connect to different vendor products in a
similar fashion to JDBC (Java Database Connectivity).

The JMS specification has some terminology and definitions of its components and
describes each component's role and responsibility. The following table outlines the
components and responsibilities in a JMS application:

Term Definition

JMS Provider Specifies the conduit message system that makes JMS API available.
The provider has the responsibility to route and deliver messages

JMS Client Specifies any Java or Java EE application that makes use of the JMS
API

JMS Consumer Specifies the JMS client that consumes JMS messages

JMS Producer Specifies the JMS client that produces JMS messages

JMS Message Specifies the message abstraction that flows through the conduit. A
message consists of a header, properties, and payload (also known as
the body)

We should point out that JMS is not just a messaging system API for two or more
Java or Java EE applications to communicate with. JMS can also allow Java systems
to communicate data to other systems which are not written in Java and/or the
JVM. There are several JMS providers that have extensive support of alternative
operating systems, vertical stacks, and architectures such as Microsoft .Net and other
proprietary technologies.

JMS 2.0 introduces a simplified API that makes the developer's programming life far
easier in comparison to a traditional API. The classic API, which last updated with
JMS 1.1, unified the concepts of point-to-point (queues) and publish-subscribe (topic)
into a concise whole.

JMS classic API
The JMS 1.1 API has been referred to as the classic API since Java EE 7 was released.
The classic API married together two previously incompatible library framework
calls: queues and topics. The standard package for JMS classic is javax.jms.

Chapter 9

[421]

JMS simplified API
The JMS 2.0 API is simplified and offers all of the features of the classic API yet
requires fewer Java interfaces. Moreover, JMS 2.0 introduces flexible annotations for
maximum developer affordance. The standard package for the JMS simplified API is
defined as javax.jms, and it contains main interfaces and annotations.

JMS message types
JMS 2.0 supports a set of message types. The most common type that developers will
encounter, especially in a professional environment, are text type messages, namely
javax.jms.TextMessage, since an awful lot of enterprise applications send and
receive XML data across disparate systems.

Here is a list of the common JMS message types:

JMS Message Type Description
ByteMessage This message type represents a series of bytes
MapMessage This type represents a set of name and value pairs
ObjectMessage This type represents a serialized Java object
StreamMessage This type represents a sequence of primitive data types
TextMessage This type represents a set of java.lang.String objects

A quick JMS 2.0 example
There is an awful lot of theory for messaging systems, especially if you have never
encountered such architecture before. In this section, we are going to send a simple
text message to a queue using JMS 2.0.

We will start with a stateless EJB session, because we need an endpoint to receive a
client request. Here is the code for PayloadCheck:

package je7hb.jms.essentials;
import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.inject.Inject;
import javax.jms.JMSConnectionFactory;
import javax.jms.JMSContext;
import javax.jms.Queue;
import java.util.*;

Java Message Service 2.0

[422]

@Stateless
public class PayloadCheck {
 @Inject
 @JMSConnectionFactory("jms/demoConnectionFactory")
 JMSContext context;

 @Resource(mappedName = "jms/demoQueue")
 private Queue inboundQueue;

 List<String> messages = new ArrayList<>();

 public void sendPayloadMessage(String payload) {
 System.out.printf(
 "%s.sendPayloadMessage(%s) Thread: %s\n",
 getClass().getSimpleName(), payload,
 Thread.currentThread());
 context.createProducer().send(inboundQueue, payload);
 messages.add(payload);
 }

 public List<String> getMessages() {
 return messages;
 }
}

In later sections of this chapter, we cover and explain the full details of the JMS
2.0 API. All you need to know for now is that the javax.jms.JMSContext object
is the new way of accessing the JMS provider and the messaging system. The
Java EE application server, in this case GlassFish Embedded Container 4, injects
the JMSContext instance into the EJB PayloadCheck with javax.jms.Queue.
The sendPayloadMessage() method stores each successful text message in a list
collection which is accessible by the client through the getMessages() method.

We need a unit test for this code, so we will rely on the Arquillian Framework to
help us to do the verification. The unit test looks like this:

package je7hb.jms.essentials;
import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ArchivePaths;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.asset.EmptyAsset;
import org.jboss.shrinkwrap.api.spec.JavaArchive;

Chapter 9

[423]

import org.junit.Test;
import org.junit.runner.RunWith;
import javax.ejb.EJB;
import static org.junit.Assert.*;

@RunWith(Arquillian.class)
public class PayloadCheckTest {
 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(PayloadCheck.class)
 .addAsManifestResource(
 EmptyAsset.INSTANCE,
 ArchivePaths.create("beans.xml"));
 return jar;
 }

 @EJB PayloadCheck service;

 @Test
 public void shouldFireMessage() {
 service.sendPayloadMessage("hello");
 service.sendPayloadMessage("world");
 assertEquals("hello", service.getMessages().get(0));
 assertEquals("world", service.getMessages().get(1));
 }
}

This simple test verifies the message based purely on the order of the statements
in sendPayloadMessage(). If there was an exception raised when sending the text
message to the queue, then the payload text will not be recorded, which satisfies the
condition of the test.

With Arquillian and embedded GlassFish, we need to configure extra resources.
The first is the Arquillian file that directs the framework to load an additional
server configuration.

Here is the said file, aquillian.xml, which is found under the src/main/resources
folder:

<?xml version="1.0" encoding="UTF-8"?>
<arquillian xmlns="http://jboss.org/schema/arquillian"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="

Java Message Service 2.0

[424]

 http://jboss.org/schema/arquillian
 http://jboss.org/schema/arquillian/arquillian_1_0.xsd">
 <container qualifier="glassfish-embedded" default="true">
 <configuration>
 <property name="resourcesXml">
 src/test/resources-glassfish-embedded
 /glassfish-resources.xml
 </property>
 </configuration>
 </container>
</arquillian>

When the Arquillian file starts up the embedded GlassFish server, we have to
configure administrative objects for our unit test. We configure the message queue,
the connection factory, and the JNDI names. These administrative objects are
configured in the glass-resources.xml file, which is found in a separate source
folder tree, namely src/test/resources-glassfish-embedded.

This is the next resource file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resources PUBLIC
 "-//GlassFish.org//DTD GlassFish Application Server 3.1
 Resource Definitions//EN"
 "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">
<resources>
 <admin-object-resource enabled="true"
 jndi-name="jms/demoQueue"
 res-type="javax.jms.Queue" res-adapter="jmsra">
 <property name="Name" value="PhysicalQueue"/>
 </admin-object-resource>
 <connector-connection-pool
 name="jms/demoDestinationFactoryPool"
 connection-definition-name=
 "javax.jms.QueueConnectionFactory"
 resource-adapter-name="jmsra"/>
 <connector-resource enabled="true" jndi-name=
 "jms/demoConnectionFactory"
 pool-name="jms/demoDestinationFactoryPool" />
</resources>

Running the full application provides the expected test results: a green bar.

Chapter 9

[425]

Establishing a JMS connection
In order to send and receive any messages in JMS, an application requires a handle to
a JMS provider.

Connecting to a JMS provider
A JMS client connects to a JMS provider through administrative objects. These
administrative objects can be injected into the application if the developer uses
annotations or they can be retrieved by navigating to the Java Native Directory
Interface in a Java EE application server or by directly looking up the name and
programming in the JMS API.

Inside a Java EE application server, the connection details of the administrative
objects are established through external configuration. The JMS specification does
not explicitly define how the administration objects are set up. Java EE application
servers allow applications to set up administrative objects through XML files. Most
products, including GlassFish, have a separate web-based administration console
where operations can set up connection factories and connection pools.. In the
Java EE specification, this is the role of the Deployer and Administrator (see Online
Chapter, Moving Java EE.next to the Cloud).

JMS defines two administrative objects: javax.jms.ConnectionFactory and
javax.jms.Destination.

Connection factories
The connection factory is the provider object that creates a connection to the JMS
provider and a destination address in order to send a message. The interface
responsible for supplying connections is called javax.jms.ConnectionFactory.
The connection factory is rather similar to javax.sql.DataSource in the JDBC
specification. DataSource provides a database connection to a relational database.
ConnectionFactory provides a connection to the messaging system conduit.

Here is the interface definition:

package javax.jms;
public interface ConnectionFactory {
 Connection createConnection()
 throws JMSException;

 Connection createConnection(

Java Message Service 2.0

[426]

 String userName, String password)
 throws JMSException;

 /* Since JMS 2.0 */
 JMSContext createContext();

 JMSContext createContext(
 String userName, String password);

 JMSContext createContext(
 String userName, String password, int sessionMode);

 JMSContext createContext(int sessionMode);
}

In the JMS 1.1 standard, the connection factory provides access to the javax.jms.
Connection object, which is the connection that represents either a queue (P2P) or
topic (pub-sub).

Since Java EE 7 and JMS 2.0, connections to the messaging systems are now
preferred through the new overloaded methods on createContext(), which
returns javax.jms.JMSContext. The other methods are overloaded variations of
them. The createContext(method creates or retrieves a default JMS connection
for the application server, which is really only useful for testing. The other take a
combination of the login credentials and optionally accept a connection mode. See
the later section on JMSContexts for the modes.

It is worth noting that javax.jms.Connection are now compatible with Java SE 7
try-resource syntax as they extend java.lang.AutoCloseable.

Default connection factory
JMS 2.0 defines a default connection factory for Java EE full-provide application
servers which your application can use, which means all Java EE 7 applications
have definite access to a JMS connection. The object is called JNDI (java:comp/
jmsDefaultConnectionFactory). Your application can always assume the default
connection factory is there and use it. Retrieving the default connection factory is as
simple as injecting the @Inject annotation on the JMSContext object.

This is a code snippet that injects JMSConnectionFactory into a bean:

@Inject
@JMSConnectionFactory("java:comp/defaultJMSConnectionFactory")
private JMSContext context;

Chapter 9

[427]

Message destinations
The message destination is the abstraction over the conduit that connect the Java
application to the messaging system. A message destination has provider address to
identify its location in the messaging system. The address allows other endpoint to
send message over the channel. A JMS destination is called a queue for point-to-point
communications, otherwise it is called topic for the pub-sub model.

In JMS, this representation is the marker interface javax.jms.Destination, which
happens to be a super interface of javax.jms.Queue and javax.jms.Topic.

Here is a condensed definition of these interfaces:

package javax.jms;

public interface Destination { }

public interface Queue extends Destination {
 String getQueueName() throws JMSException;
 String toString();
}

public interface Topic extends Destination {
 String getTopicName() throws JMSException;
 String toString();
}

Message destinations were introduced in JMS 1.1 in order to unify the two
messaging models.

JMSContext
javax.jms.JMSContext is the main interface in the simplified JMS 2.0
specification. The intention of this new interface was to merge the two different
ways of configuring and administrating JMS clients in the previous specifications.

In the earlier specification, there were a lot of different objects involved in order
to make a connection to the JMS provider, create a message destination, create a
message, and send the message on the connection.

For new applications with JMS 2.0, a developer simply injects JMSContext into their
code, especially if it runs inside a supporting Java EE 7 application server.

Java Message Service 2.0

[428]

The Java interface JMSContext defines a number of important methods:

Method Description
createContext(int deliveryMode
): JMSContext

Creates a new JMSContext using the
same connection as this one and creates
a new JMS session with the requested
session mode.
In a Java EE application server
environment, and where JMSContext
is injected into the application class,
this call is prohibited and results in
IllegalStateRuntimeException.

createProducer(): JMSProducer Creates a new JMSProducer, which can
be used to configure and send messages.

getClientID() Gets the client identifier for
JMSContext connection.

setClientID() Sets the client identifier for
JMSContext connection. Calling this
method is prohibited inside a Java
EE or EJB application server. If the
application invokes this message in
such an environment, javax.jms.
InvalidClientIDEXception results.

start() Starts (or restarts) the delivery of
incoming messages by the JMS
connection. A call to start on a
connection that has already started is
ignored.
In a Java EE application server
environment, and where JMSContext
is injected into the application class,
this call is prohibited and results in
IllegalStateRuntimeException.

stop() Temporarily stops the delivery
of incoming messages by the JMS
connection.
In a Java EE application server
environment, and where JMSContext
is injected into the application class,
this call is prohibited and results in
IllegalStateRuntimeException.

Chapter 9

[429]

Method Description
close() Closes the JMSContext and the

underlying producers and consumers.
Temporary destinations are also deleted.
This method may well block the calling
application until any incomplete
asynchronous send operations are
completed.

createBytesMessage():
BytesMessage

Creates a BytesMessage object in
order to send a message containing a
stream of uninterrupted bytes.

createMapMessage(): MapMessage Creates a MapMessage object in order
to send a message containing name-
value pairs.

createMessage(): Message Creates a Message object in order to
send only header information.

createObjectMessage():
ObjectMessage

Creates an ObjectMessage in order to
send a serializable Java object.

createStreamMessage():
StreamMessage

Creates a StreamMesage in order to
send a message defining a stream of
primitive values.

createTextMessage():
TextMessage

Creates a TextMessage in order to
send java.lang.String messages.

createTextMessage(String text):
TextMessage

Creates a TextMessage in order to
send java.lang.String messages.

getTransacted(): boolean Gets the Boolean flag if this
JMSContext is transacted or not.

getSessionMode(): int Gets the session mode constant for this
JMSContext.

commit() Commits all messages done in this
transaction and releases any locks
currently held.
This call is prohibited
for container-managed
connections. Doing so will cause
IllegalStateRuntimeException to
be raised.

Java Message Service 2.0

[430]

Method Description
rollback() Rolls back any messages done in this

transaction and releases any locks
currently held by this JMSContext.
This call is prohibited
for container-managed
connections. Doing so will cause
IllegalStateRuntimeException to
be raised.

recover() Stops message delivery in JMSContext
session and restarts message delivery
with the oldest unacknowledged
message. The delivery will then
continue in serial order.
This call is prohibited
for container-managed
connections. Doing so will cause
IllegalStateRuntimeException to
be raised.

createConsumer(Destination
destination): JMSConsumer

Creates a JMSConsumer for the
specified destination using the supplied
message selector.

createDurableConsumer(Topic
topic, String topicName):
JMSConsumer

Creates an unshared durable
subscription on the specified topic and
creates a consumer in that durable
subscription.

createSharedDurableConsumer(
Topic topic, String topicName
): JMSConsumer

Creates a shared durable subscription
on the specified topic and creates a
consumer in that durable subscription.

createSharedDurableConsumer(
Topic topic, String topicName
): JMSConsumer

Creates a shared non-durable
subscription on the specified topic and
creates a consumer in that non-durable
subscription.

createBrowser(Queue queueName):
QueueBrowser

Creates a QueueBrowser object in
order to peek at the messages on the
specified queue.

createTemporaryQueue():
QueueBrowser

Creates a TemporaryQueue object
that will only live for the lifetime of the
JMSContext.

createTemporaryTopic():
TemporaryTopic

Creates a TemporaryTopic object
that will only live for the lifetime of the
JMSContext.

Chapter 9

[431]

Method Description
unsubscribe(String topicName) Unsubscribes a durable subscription

that has been created by a client.
acknowledge() Acknowledges all messages consumed

by JMSContext session.

The JMSContext interface also declares static constants, which are useful for
controlling message acknowledgement behavior in the downstream system. These
are called delivery modes:

Constant Name Description
AUTO_ACKNOWLEDGE Specifies the session and automatically acknowledges

a client's receipt of a message either when the session
has returned from an invocation of a call or when the
message listener has been invoked and the handler
successfully returns.
An alias of the Session.AUTO_KNOWLEDGE.

CLIENT_ACKNOWLEDGE Specifies session that the client controls when messages
have been acknowledged. This session mode is designed
for a message listener that reads lots of messages in a
batch mode (unacknowledged) and then later returns the
acknowledgement for each processed message.
An alias of Session.CLIENT_KNOWLEDGE.

DUPS_OK_ACKNOWLEDGE Specifies the session to lazily acknowledge the delivery
of messages, which might result in the delivery of
duplicate message, especially if the JMS provider fails
(crashes or is forcefully shutdown). The consumer
must be aware of the possibility of incoming duplicate
messages. This mode affords lower overheads by
minimizing the requirement for eager automatic
acknowledgements.
An alias of Session.DUP_OKS_ACKNOWLEDGE.

SESSION_TRANSACTED Specifies the session to deliver and consume messages
in a local transaction, which will subsequently either
be committed or rolled back by the message listener
explicitly.
An alias of Session.SESSION_TRANSACTED.

Java Message Service 2.0

[432]

The JMSContext is a very useful instance in a server-side application because it
allows the developer to rely on annotations. The best way to get a JMSContext is to
inject it into the application logic. Inside a Java EE environment, there are restrictions
on calling certain methods that would interfere with the application server that can
cause undefined behavior. An exception is thrown if you attempt to call commit(),
rollback(), or recover() on a message destination. If these calls were allowed,
then they could be detrimental to the operation of the Java EE server, because
suddenly the application could take ownership over internal managed resources
when it is not supposed to.

On the client side, the developer must create or retrieve a JMSContext manually.
Java EE 7 does not define standalone behavior. Perhaps this is a weakness of the
current JMS 2.0 specification. It should be possible to inject a JMSContext in a Java
SE application by using a standalone CDI container such as JBoss Weld.

JMSContext in a Java EE server

JMSContext behaves differently inside an application running on a
Java EE server in comparison to a Java SE environment. Inside a Java
EE application server or EJB server, the JMSContext can be injected
into the application. For an application running under the web profile
server with a JMS provider extension, the JMSContext can also be
injected into the application. The benefit of having only one object is
obviously beneficial to dependency injection. The application server
takes care of creating, opening or closing the context.

Retrieving a JMSContext
There are two ways to retrieve a JMSContext:

•	 A developer can create a JMSContext from ConnectionFactory by simply
calling the createContext() method. This allows a Java SE application to
only have one object to get a JMS connection. Once the application is finished
with the context, simply call close().

•	 The second way requires a Java EE application server or container, and the
developer uses the CDI annotation @javax.annotation.Inject to inject the
JMSContext into the class.

Chapter 9

[433]

Sending JMS messages
An application sends a message to the JMS provider using a javax.jms.
JMSProducer producer. This producer can be obtained from a JMSContext in the
simplified API in JMS 2.0 by calling the createProducer() method.

Upgrading message producers from JMS 1.1
In JMS 1.1, creating a javax.jms.MessageProducer object sends the messages.
Developers who are fortunate enough to experience this API will see code that looks
similar to this:

// JMS 1.1
Connection conx =
 queueConnectionFactory.createConnection();
Session session = conx.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer()
producer.setDeliverDelay(10*1000)
producer.setPriority(7)
producer.setTimeToLive(1000)
producer.setDeliverMode(DeliveryMode.NON_PERSISTENT)
producer.send(destination, message);

The older API only provides bean setter methods in order to configure destination
parameters. JMSProducer is the preferred way for JMS 2.0 because it always
supports the fluent-style of interface; it has method chaining:

// JMS 2.0
JMSContext context = /* Injected */
JMSProducer producer = context.createProducer()
producer.setDeliverDelay(10*1000)
 .setTimeToLive(1000)
 .setPriority(7)
 .setDeliverMode(DeliveryMode.NON_PERSISTENT)
 .send(destination, message);

The method chaining is clearer, eminently readable, and affords declarative code.

Java Message Service 2.0

[434]

Sending messages synchronously
Synchronous sending occurs when the JMS client sends a message to the channel and
the provider does not return the thread of control to the sender until it knows that
the consumer endpoint has received and acknowledged that successful consumption
of the message. This is an example of block-and-wait.

The JMSProducer defines these methods as synchronous operations in the
simplified API:

send(Destination destination, Message message)
send(Destination destination, String body)
send(Destination destination, Map<String,Object> body)
send(Destination destination, byte[] body)
send(Destination destination, Serializable body)
send(Destination destination, String body)	

Note that there is no need to create the intermediate Message type object.
Incidentally, the developer can set custom key value and pair properties on the
JMSProducer instance using the method setStringProperty().

Sending messages asynchronously
A JMSProducer can also send messages asynchronously so the caller does not block-
and-wait on the consumer to successfully acknowledge the message on the channel.
This is a performance feature that is intended for unmanaged environment Java SE
applications rather than inside an application server.

The JMSProducer defines a setAsync() method in the simplified API and it
takes a single argument: an implementation of the Java interface class javax.jms.
CompletionListener.

The definition of CompletionListener is as follows:

package javax.jms;
public interface CompletionListener {
 void onCompletion(Message message);
 void onException(Message message, Exception exception);
}

A completion listener must be registered prior to calling any of the send()
overloaded methods on JMSPublisher. The JMS provider invokes the callback
onCompletion() method when the consumer successfully consumes the message.
It will invoke the callback method onException() instead when a failure occurs
delivering the message to the consumer.

Chapter 9

[435]

setAsync() on a JMSProducer may not be called inside a Java EE
web or EJB container. Asynchronous sending is designed for standard
JMS applications running on Java SE. There is another way, and that is
to write a concurrent worker, java.lang.Runnable or java.util.
concurrency.Callable, that creates and sends messages on a
destination object, JMSProducer. Concurrent tasks are made available
in Java EE 7 Concurrency Utilities (JSR 236) through the new service
ManagedExecutorService. Read more in Appendix D, Java EE 7
Assorted Topics.

JMS message headers
Every JMS message has a map collection of header fields which are name and value
pairs. The message header is sent to all the JMS clients and they are able to read the
complete message with the headers on the consumer side.

The names of the header fields begin with the prefix 'JMS' string; here is a table of the
headers and their descriptions:

Header Field Side Description
JMSDestination Provider Contains the destination for the message.
JMSDeliverMode Provider Specifies the delivery mode when the message

was sent.
JMSMessageID Provider Specifies the value that uniquely identifies each

message sent by the JMS provider. The JMS
provider always assigns the value and starts with
the prefix 'ID:' string

JMSTimestamp Provider This field contains the time that the message was
sent from the JMS client and accepted by the
provider.

JMSCorrelationID Provider This field links one message with another in
order to group together messages. This is a
field that the client application can customize
whilst sending the message. The correlation field
typically associates a request message with a
reply message.

JMSReplyTo Client Specifies a Destination supplied by a client
when the message is sent. The consumer then
sends the response to the target channel.

Java Message Service 2.0

[436]

Header Field Side Description
JMSRedelivered Provider This field informs the consumer that a message

was delivered but not acknowledged in the past.
It is a strong hint to check for a duplicate message
with the same ID in the backend database.

JMSType Client Specifies the message type identifier supplied by
the client.

JMSExpiration Provider Specifies the expiration time whenever a message
producer sends a message with which the JMS
provider calculates an expiration time by adding
the time-to-live values on the context. The value
is measured in milliseconds since midnight, 1st
January, 1970.

JMSPriority Client Specifies the priority of the message. The value
of 0 is the lowest priority and the value of 9 is the
highest. The range 0-4 gradations are defined as
normal priority and the range 5-9 gradations are
defined as expedited in the standard.

Most of these properties are set on the javax.jms.Message type, but they can be set
on the JMSProducer type directly in a fluent API style.

The standard reserves the JMSX property prefix for JMSdefined properties.
These are defined as key and value pairs on the message header and are important
for message consumers.

Setting message properties
An application can also set additional properties on JMS messages just before it
is sent to the provider. There is a complete set of overloaded setProperty()
methods for every Java primitive except char. The method setProperty(String,
Object) allows a Java primitive wrapper to be passed such as java.lang.Long.
Calling setProperty with the same key and a different value overwrites the
previous key-value association.

Setting a message delivery delay
In JMS 2.0, it is also possible to set a delivery delay on messages in which the
case JMS provider understands that the message must be delayed on the message
destination and not delivered until the delay period expires.

An application can call the method setDeliveryDelay(long) on the JMSProducer
instance, which accepts a single argument: the delay period in milliseconds.

Chapter 9

[437]

Delivery delay of bank trade messages

Why is this feature so useful? Imagine a bank that trades on the stock
market in two geographic locations. One location for the bank is in
London, Great Britain, and the other in New York, United States. The
financial centers are only open for certain trading hours during the day.
Let us say that both are open from 08:00 to 16:00. Let's also say we have a
trader called Brian in London who agrees a new deal with a counterparty
and then creates a new trade at exactly 09:00. This trade is dependent
on a derivative data that is derived from information effective in the
USA. The full execution of the trade cannot take place until the market
in New York opens in four hours time at 01:00 London time because the
time zone difference between London and New York is five hours (GMT
-5:00). The London trading system can still post a trade message to the
downstream system for further execution because it can add a special
message property to delay delivery of the message for 4 hours. The
downstream will only receive the trade message once the delay expires.

Receiving JMS messages
An application can receive a JMS message by creating a consumer from a destination.
In the JMS 2.0 simplified API, an application can create a javax.jms.JMSConsumer
object from the JMSContext. The method createConsumer() generates the
consumer instance.

Upgrade from JMS 1.1
A JMS 1.1. application explicitly creates a javax.jms.MessageConsumer object from
a connection factory and session. With this message destination object, it reads the
messages from the destination.The traditional code looks similar to this example:

// JMS 1.1
Connection conx =
 queueConnectionFactory.createConnection();
Session session = conx.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
MessageConsumer consumer = session.createConsumer(queue)
TextMessage textMessage =
 (TextMessage)messageConsumer.receive(1000);
System.out.printf("Message received was %s\n",
 textMessage.getText());

Java Message Service 2.0

[438]

In JMS 2.0, writing code with JMSConsumer is preferred. Here is the rewritten
example using this object instance:

// JMS 2.0
JMSContext context = /* Injected */
JMSConsumer consumer = context.createConsumer(queue)
String text = consumer.receiveBody(String.class, 1000);

With the receiveBody() method on the JMSConsumer instance, there is no
need to cast the receive message to a TextMessage explicitly to get the body of
the message, because the call will return the type of object required directly. If
there is an error on conversion, then the JMS provider will raise a javax.jms.
JmsRuntimeException exception.

Receiving messages synchronously
Synchronous reception of messages occurs when the JMS client makes an invocation
to read a message on the channel and the JMS provider does not return the thread of
control to the sender, until it has a message on the channel that can be retrieved. This
is an example of blocking-and-waiting.

Here is a condensed definition of the JMSConsumer interface:

package javax.jms;

public interface JMSConsumer extends AutoCloseable {
 String getMessageSelector();

 MessageListener getMessageListener()
 throws JMSRuntimeException;

 void setMessageListener(MessageListener listener)
 throws JMSRuntimeException;

 Message receive();
 Message receive(long timeout);
 Message receiveNoWait();

 void close();

 <T> T receiveBody(Class<T> c);
 <T> T receiveBody(Class<T> c, long timeout);
 <T> T receiveBodyNoWait(Class<T> c);
}

Chapter 9

[439]

The methods receive(), receive(long timeout), or receiveNoWait() allow
a client application to request the next message on the channel, which will be an
abstract Message object. Unfortunately, the developer has to cast the object to the
correct type.

The two receiveBody() methods return the payload of the message and have
better affordance because they allow the JMS provider to cast the object to the
request object, which is especially useful if the client is not interested in the header
of the JMS message. However, if the application requires the header information
such as the correlation ID of the message, these calls are not appropriate. If the
message is not a supported type, or the payload of the message is not assignable
to the supplied class type argument, then the provider raises a javax.jms.
MessageFormatRuntimeException exception.

These receive*() methods operate synchronously and will block-and-wait until a
message is put on the channel if it is empty at the time of the call.

The close() method will terminate the delivery of messages to the consumer. The
close() method is the only method on the consumer which can be invoked from
a separate thread, which is useful for managed concurrency services in a Java EE
environment. Closing a consumer will block the calling thread if the JMS Consumer
is in the middle of at least one receive() call.

Receiving messages asynchronously
In order to receive JMS messages asynchronously, the application registers javax.
jms.MessageListener on the JMSConsumer object instance.

The Java interface for the message listener is really straightforward:

public interface MessageListener {
 void onMessage(Message message);
}

It is considered bad practice for a MessageListener to throw a RuntimeException.
Instead, application code should trap fatal errors and log them somewhere or push
these failures to a central monitoring server. During the asynchronous delivery
of a message, a RuntimeException could cause the JMS provider to continuously
redeliver a message forever, especially if the session is set to AUTO_ACKNOWLEDGE or
DUPS_OK_ACKNOWLEDGE.

Java Message Service 2.0

[440]

There is an exception to the rule where the MessageListener is part of the session
that is set to TRANSACTED, so the session will be committed or rolled back. However,
even then the application can explicitly perform the duty and also log the failure for
the business of maintenance and operational support. Let's change gears and move
from publication to consumption of messages. There are two fundamental ways to
consume methods: shareable and non-shareable. These two categories can be further
divided into durable or non-durable.

Non-shared subscriptions
In the simplified JMS 2.0, API there is no distinction in the way a developer creates
a consumer reading from a queue from that of topic destination. The various
overloaded methods, createConsumer() on JMSContext, will create JMSConsumer
that is not sharable and not durable.

Every call to createConsumer() (and in JMS 1.1, createSubscriber() on
the traditional javax.jms.TopicSession) will create a new non-shareable and
non-durable subscription without a name. The subscriber will live for the duration
of the JMSConsumer object.

The createConsumer() method always takes a Destination, which can be a Queue or
Topic. Remember there is no distinction in the simplified API. The messageSelector
argument in the overloaded variants specifies a filter for messages in the topic channel.
If messageSelector is set to null, then all messages are received.

These are the API definitions:

 JMSConsumer createDurableConsumer(Topic topic,
 String name);
 JMSConsumer createDurableConsumer(Topic topic,
 String name, String messageSelector,
 boolean noLocal);

 JMSConsumer createSharedDurableConsumer(Topic topic,
 String name);
 JMSConsumer createSharedDurableConsumer(Topic topic,
 String name, String messageSelector);

The third variant of createConsumer() accepts a noLocal Boolean parameter
that specifies that messages published to a topic by their own connection must
not be added to the subscription. This flag is designed for JMS consumers that
publish new messages to the same connection. Set this flag to true if you are
executing this behavior.

Once the JMSConsumer object is closed, the subscribers are terminated.

Chapter 9

[441]

Shared subscriptions
JMS 2.0 introduces consumers that can be shared between different Java threads.
This feature is particularly aimed at JMS clients running in Java SE environments
and fixes a known issue with subscriptions on topic destinations. Messages from a
topic are consumed from a subscription, and a subscription receives every message
sent to the topic.

The issue with JMS 1.1 was that only one subscription on a topic could have only
one consumer at a time. This was a limitation that severely limited the scalability of
subscription: an application could not share the subscription topic between two Java
threads for processing, or multiple JVM, or even multiple machines.

In JMS 2.0, there is a new type of topic-only subscription called shared subscriptions,
and they can be durable or non-durable. Shared-subscriptions can have any number
of consumers either in the same JVM or between two or more JVMs or multiple
server machines. This makes shared subscriptions eminently scalable for those
environments that prefer to only rely on Java SE and a JMS provider.

To create a sharable consumer, there are various createSharedDestination()
methods on the JMSContext class in JMS 2.0.

The shareable consumer API is rather plain:

 JMSConsumer createSharedConsumer(Topic topic,
 String sharedSubscriptionName);

 JMSConsumer createSharedConsumer(Topic topic,
 String sharedSubscriptionName, String messageSelector);

Here, the developer must supply a Topic destination and, obviously, the common
name of the subscription channel between the threads, JVMs, or machines.

Durable topic consumers
The durable consumers on a topic are extremely useful in e-commerce applications
where every subscriber reliably receives all the messages in the channel. This
translates to not losing a customer's orders in a large warehouse enterprise or a new
or amended trade coming into the bank's straight-through-processing system.

Java Message Service 2.0

[442]

The standard defines a durable subscription as the mode of communication where
an application needs to receive all the messages published on a topic, including the
messages published when there is no consumer associated with it. The JMS provider
has the responsibility to retain a record of the durable subscription and to deliver
messages from the topic channel to the consumer. The provider ensures messages are
saved until they are delivered and acknowledged by a durable consumer. If a JMS
message expires, then the provider is allowed to purge the message from the topic or
save it somewhere else for operational support, if any.

In the simplified JMS 2.0, API durable consumers can be created with
a variety of overloaded methods (createDurableConsumer() and
createSharedDurableConsumer()) on the JMSContext instance. Durable
consumers can be shared or non-shared on a connection.

The API for creating durable subscriptions looks like this:

 JMSConsumer createDurableConsumer(Topic topic,
 String name);
 JMSConsumer createDurableConsumer(Topic topic,
 String name, String messageSelector,
 boolean noLocal);
		
 JMSConsumer createSharedDurableConsumer(Topic topic,
 String name);
 JMSConsumer createSharedDurableConsumer(Topic topic,
 String name, String messageSelector);

The durable consumer requires a subscription channel name in which the
application must be specified. The name is an identifier of the client.

The JMS provider persists the durable subscriptions and therefore this fact
immediately creates a trade-off between throughput and storage space. Messages
will accumulate in the channel until they are deleted because the application calls
the unsubscribe() method on the JMSContext.

So, inside your order processing subscriber for the warehouse enterprise, you are
required to unsubscribe for a durable subscription.

Chapter 9

[443]

Starting and stopping connections
In a Java SE environment, in order to receive messages from the JMS, the actual
JMSContext must be started. This is of less importance when an application runs
inside an EJB container or a server environment.

For a standalone application, it is important to invoke the JMSContext.start()
method to set off the connection for the publication of messages and also to
receive messages.

Conversely, calling the JMSContext.stop() methods begins the process of
terminating the JMS connection to the provider. This call will block, of course, if
there are active threads actually pushing messages or delivery messages in the
provider's implementation.

A Java EE application with the inject JMS connection is prohibited from calling these
methods. See the section on CDI injection for further information.

Redelivery of messages
Since JMS 2.0, providers are now required to provide a new JMS message header
property called JMSXDeliveryCount. This value is set to the number of delivery
attempts, and it now allows an application to portably know across vendors when
a message has been resent.

The delivery count helps in situations where an incoming message such as an XML
message has a syntactical or semantic failure which causes the processing to fail.
The consumer throws a runtime exception and the stack frame unwinds all the
way down to the JMS providers, which then thinks the message has failed to be
delivered and therefore connects to the channel again for redelivery. This situation
is essentially an infinite loop. Before JMS 2.0, there was no standard means to
know how to handle repeated failed messages. With the new mandatory property
JMSXDeliveryCount, an application can take evasive action.

Given a Message instance, call getIntProperty("JMSXDeliveryCount") to get the
delivery count. A value of two or more means the message has been redelivered to
the consumer.

Java Message Service 2.0

[444]

Other JMS-defined properties
Incidentally, there are other optional standard JMS defined properties that can be
useful. Here are some of them:

Name Type Set By Description
JMSXUserID String Provider on

Send
Defines the identity of the user
sending the message

JMSXAppID String Provider on
Send

Defines the application identity
sending the message

JMSXDeliveryCount int Provider on
Receive

The number of message
delivery attempts on receiving
consumers (mandatory for JMS
2.0 providers)

JMSXRcvTimestamp Long Provider on
Receive

The receive time that the
provider delivers the message to
the consumer

JMSXGroupID String Client Defines the identity group that
the message belongs to

JMSXGroupSeq Int Client Defines the sequence number
for the message that belongs to a
group of messages

This concludes the section on publishing messages to JMS and receiving messages.
Let us move on to message-driven beans.

Message-driven Beans (MDBs)
A Message -driven Bean (MDB) is a stateless, transaction-aware component (service
end-point) that consumes JMS messages asynchronously, and they are managed by
a Java EE application server and EJB container. MDBs are similar to EJBs because
they are complete enterprise beans, similar to stateless session beans. The EJB
container is responsible for managing the lifecycle of the endpoint. MDB live inside
the EJB container and the container looks after the environment, the security, and the
resources, including transactions and concurrency. Most importantly, the container
will also handle message acknowledgement and concurrency.

MDBs process messages concurrently and have a thread safety designed by
default. There are no remote or local bean interfaces for MDBs, which means the
application does not invoke methods on MDB directly, because they respond
only to asynchronous messages. MDBs are scalable to hundreds and thousands of
asynchronous JMS messages.

Chapter 9

[445]

In Java EE 7, a message-driven bean is declared with an annotation: @javax.ejb.
MessageDriven. This annotation accepts an array of annotations for a configuration
called @javax.ejb.ActivationConfigProperty.

Here is an example of a MDB:

package je7hb.jms.essentials;
import javax.ejb.*;
import javax.jms.*;

@MessageDriven(
 mappedName = "jms/demoQueue",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName="acknowledgeMode",
 propertyValue = "Auto-acknowledge"
),
 @ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue = "SpecialCode = 'Barbados'"
),
 }
)
public class PayloadCheckMDB implements MessageListener {
 @EJB
 private PayloadCheckReceiverBean receiver;

 public void onMessage(Message message) {
 try {
 TextMessage textMsg = (TextMessage)message;
 String text = textMsg.getText();
 receiver.addMessage(text);
 }
 catch (Exception e) {
 e.printStackTrace(System.err);
 }
 }
}

Java Message Service 2.0

[446]

The class PayloadCheckMDB is annotated with @MessageDriven and it extends the
MessageListener JMS interface. PayloadCheckReceiverBean, which is an EJB, is
injected into the MDB. We do this because MDBs are asynchronous by default, and
therefore we want to avoid recording the state in the message bean.

The @MessageDriven annotation accepts a mappedName parameter which identifies
the connection; the MessageDestination that this MDB connects to. The
activation configuration key-value pairs define the acknowledgment mode for the
JMS session. There is also a messageSelector which filters the JMS messages that
this MDB will receive.

Please note the different package name for @javax.ejb.
MessageDriven, which is a big clue that message-driven beans are
truly enterprise beans!

Inside the onMessage() method, we retrieve the text of the Message instance and
save it into the receiver bean.

Here is the code for the receiver bean:

public class PayloadCheckReceiverBean {
 private CopyOnWriteArrayList<String> messages =
 new CopyOnWriteArrayList<>();

 public void addMessage(String text) {
 messages.add(text);
 }

 public List<String> getMessages() {
 return messages;
 }
}

The PayloadCheckReceiverBean is a singleton and a stateless session EJB which
uses a concurrent collection to store messages. It is a singleton because we want to
preserve its state for the duration of the unit test that follows.

Chapter 9

[447]

To complete the picture, we need a revised version of the earlier JMS sender EJB.
Here is the code snippet for that bean:

package je7hb.jms.essentials;

/* ... similar to the previous ... */

@Stateless
public class PayloadCheckSenderBean {
 @Inject
 @JMSConnectionFactory("jms/demoConnectionFactory")
 JMSContext context;

 @Resource(mappedName = "jms/demoQueue")
 private Queue inboundQueue;

 List<String> messages = new ArrayList<>();

 public void sendPayloadMessage(String payload) {
 sendPayloadMessage(payload,null); }

 public void sendPayloadMessage(
 String payload, String code) {
 JMSProducer producer =
 context.createProducer();
 if (code != null) {
 producer.setProperty("SpecialCode", code);
 }
 producer.send(inboundQueue, payload);
 messages.add(payload);
 }
 public List<String> getMessages() {
 return messages;
 }
}

The other EJB, PayloadCheckSenderBean, now has a refactored overloaded
method, sendPayloadMessage(), which sends a message with a JMS header
property or not. Choosing the two argument version of the method adds a
property to the outgoing message with the key SpecialCode. This is the form
for the message selector in the MDB.

Java Message Service 2.0

[448]

Here is the full unit to exercise PayloadCheckMDB:

package je7hb.jms.essentials;

/* ... similar to the previous ... */

@RunWith(Arquillian.class)
public class PayloadCheckMDBTest {

 @Deployment
 public static JavaArchive createDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(
 PayloadCheckMDB.class,
 PayloadCheckSenderBean.class,
 PayloadCheckReceiverBean.class)
 .addAsManifestResource(
 EmptyAsset.INSTANCE,
 ArchivePaths.create("beans.xml"));
 return jar;
 }

 @EJBPayloadCheckSenderBean sender;
 @EJBPayloadCheckReceiverBean receiver;

 @Test
 public void shouldFireMessageAtMDB() throws Exception {
 sender.sendPayloadMessage("hello");
 sender.sendPayloadMessage("Wanda", "Barbados");
 sender.sendPayloadMessage("world");
 sender.sendPayloadMessage("Fish", "Barbados");
 Thread.sleep(1000);
 List<String> messages = receiver.getMessages();
 assertEquals(2, messages.size());
 assertTrue(messages.contains("Wanda"));
 assertTrue(messages.contains("Fish"));
 }
}

In this Arquillian integration test, we inject two EJBs, PayloadCheckSenderBean
and PayloadCheckReceiverBean, into the class. We do this to get around the fact
that it is not possible to inject the MDB directly into a test because the CDI (and EJB)
container prohibits this dependency on an asynchronous entity.

Chapter 9

[449]

Inside the test method shouldFireMessageAtMDB(), we send four messages
to the MDB. Two messages have the special property and the others have not.
We deliberately delay for a bit because we are dealing with asynchronous
behaviors, network I/O, and an embedded server. The singleton EJB
PayloadCheckReceiverBean should have two messages in its store. We also
use the assertTrue() call instead of the assertEquals() because we can
never be sure of order of the messages because of Java concurrency and
multiple threads. The list collection could be [Wanda,Fish] or [Fish,Wanda].
We only care about the message delivery.

The order of messages

Messaging systems are more flexible and serve better throughput if
they can cope with out-of-order messages. The JMS standard does not
guarantee the order of the messages and how they will be delivered. The
order of messages is completely at the discretion of the JMS provider
implementation. Some providers like IBM MQ Series and Oracle
WebLogic JMS have a feature that allows administrators to define the
order of the messages. The OpenMQ product inside of the GlassFish
server delivers messages in FIFO order, but then again, when it is tied
to asynchronous MDBs inside a server with Java threads, your results
will vary. Typically, the message payload itself will have an order ID or
candidate keys of columns that the application can use to re-order the
message itself in a group of messages.

JMS 2.0 adds the standard configuration of JMS connections for MDBs. It is now
possible to configure the JNDI name of the message destination through annotations.
The developer can also configure the connection factory, client ID, and the name of
the durable subscription through annotations.

Activation configuration property
As we have seen, MDBs are asynchronous and are bound to a JMS connection.
The connection can be local to the application server, and most implementations
are external. In other words, an application can use another message queue
implementation, and it will normally be a remote service. MDBs are allowed
to be binded to different JMS providers, both local and remote. This is where
the activation configuration properties and the corresponding annotation @
ActivationConfigProperty help out.

Java Message Service 2.0

[450]

Here is a table of the important key names for the @ActivationConfigProperty
annotation:

Configuration Name Description
destinationLookup New in JMS 2.0, this property specifies the lookup

name for an MDB of Queue or Topic defined by
an administrator that messages will be read from.
The setting can also be set in an ejb-jar.xml file.

destinationFactoryLookup New in JMS 2.0, this property specifies the lookup
name for an MDB of ConnectionFactory
defined by an administrator that messages will be
read from.
The setting can also be set in an ejb-jar.xml file.

acknowledgeMode Specifies the session acknowledgement for
an MDB. The allowed values are Auto-
acknowledge and Dups-ok-acknowledge. The
default is AUTO_ACKNOWLEDGE.

messageSelector Specifies the conditional expression that allows an
MDB to select specific JMS messages. The default
is to allow all messages through for reception.

destinationType Specifies whether the destination is a queue or a
topic. The valid values are javax.jms.Queue or
javax.jms.Topic.

subscriptionDurability Specifies if the MDB is part of a durable
subscription or not. The valid values are Durable
or NonDurable. The default value is the non-
durable variety.

clientId New in JMS 2.0, this optional property sets the
client identifier for connecting to the JMS provider.

subscriptionName New in JMS 2.0, this optional property sets the
name of the durable or non-durable subscription.

Message selectors
The message selector is an important facility for MDB to receive only messages that
are interesting from the JMS queue or topic. Message selectors use javax.jms.
Message header properties in conditional expressions.

The expressions are based on a subset of the SQL-92 conditional expression syntax
that is used in the WHERE clauses of database SQL statements. Hence, they are very
familiar to database administrators. Message selectors are allowed to use Boolean
expressions, unary operators, and literal values. They can be become quite complex.

Chapter 9

[451]

Here is an example of a more advanced message selector:

@ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue =
 "(SpecialCode = 'Barbados' AND VerNum > 2)" +
 "OR (WorkRole='Admin')"
),

Obviously, a JMS message header would have one or two of these additional
properties defined in order for this MDB to receive the data.

JMS exception handling
Since JMS 2.0, many of the methods in the simplified API now prefer to throw types
based on javax.jms.RuntimeException, which is an unchecked exception. If you
have already existing code from the earlier Java EE specification and it is compatible
with JMS 1.1, then they will continue to throw the checked exceptions derived from
the base class javax.jms.JMSException. The following table is an overview of the
possible JMS exception types:

JMS Exception Description
IllegalStateRuntimeException The JMS provider throws an illegal state

exception if there is a call that would put
the provider in an inconsistent state or is a
prohibited operation.

JMSSecurityRuntimeException The JMS provider throws this exception
when it rejects the user name / password
credential submitted by the JMS client in
order to achieve a connection.

InvalidClientIDRuntimeException The provider throws this exception when
the client ID is rejected or unrecognized
according to the configuration of the
administrative objects.

InvalidSelectorRuntimeException The provider throws this exception if it
fails to parse and understand a message
selector.

MessageEOFException A checked exception that the JMS
provider throws when a client attempts to
read a StreamMessage beyond the end
of its input stream.

Java Message Service 2.0

[452]

JMS Exception Description
MessageFormatRuntimeException This exception is thrown by the provider

when the client attempts to use a data
type not support by the message.

MessageNotWritableRuntime-
Exception

The client has attempted to write to a
read-only message.

ResourceAllocationRuntime-
Exception

The JMS provider cannot fulfill the
request to create a topic subscription
or temporary queue due to the lack of
operating system or provider-specific
resources.

TransactionInProgressRuntime-
Exception

This is caused by a JMS client calling a
Session.commit() or JMSContext.
commit() when the session is already
part of a distributed Java transaction.

TransactionRolledBackRuntime-
Exception

This is caused by a JMS client calling a
Session.commit() or JMSContext.
commit() when the session has already
been set to be rolled back.

Upgrading JMS 1.1 code
There is a lot of code out there in business that simply cannot be rewritten from
scratch. Some of it will almost certainly be using JMS 1.1 from the J2EE. If we cannot
chuck it away, then how do we upgrade to JMS 2.0?

Establish a JMS 1.1 connection
It is worth learning about the traditional way of building a JMS connection to the
provider in order to upgrade legacy code bases to Java EE 7.

In Java EE 5, which was the first enterprise standard to support Java annotations,
you might see code that looks like this:

// JMS 1.1
import javax.jms.*;
import javax.annotation.*;

public SomeMessagingClient {
 @Resource(mappedName="myQueueConnectionFactoryName")
 ConnectionFactory queueConnectionFactory;

 @Resource(mappedName="myQueue")

Chapter 9

[453]

 Queue queue;

 @Resource(mappedName="myTopicConnectionFactoryName")
 ConnectionFactory topicConnectionFactory;

 @Resource(mappedName="myTopic")
 Topic topic;

 /* ... */

 public void processWithQueue(String text)
 throws Exception {
 Connection conx =
 queueConnectionFactory.createConnection();

 Session session = conx.createSession(true, 0);
 try {
 TextMessage msg = session.createTextMessage();
 msg.setText(text);
 session.createProducer(queue).send(msg);
 }
 finally {
 conx.close();
 }
 }
 /* ... */
}

In such source code from Java EE 5 and Java EE 6, the annotation @javax.
annotation.Resource injects the JMS connection factory and the message
destination into the application client, assuming the code runs inside an application
server. The connection factory is used in the client code to create a connection.

Here is an example of code that sends a message on the preceding queue:

 public void processWithQueue(String text)
 throws Exception {
 Connection conx =
 queueConnectionFactory.createConnection();
 Session session = conx.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
 try {
 TextMessage msg = session.createTextMessage();

Java Message Service 2.0

[454]

 msg.setText(text);
 session.createProducer(queue).send(msg);
 }
 finally {
 conx.close();
 }
 }

The preceding code looks very verbose, and you as a developer have to
deal with checked exceptions and the possibility of interpreting the outcomes
around a JMSException.

The new JMSContext object now provides the same behavior, and therefore
the developer can replace @Resource injections with one @Inject and one
@JMSContextConnectionFactory annotation:

// JMS 2.0
public SomeMessagingClient {
 @Inject
 @JMSContextConnectionFactory(
 "jms/myQueueConnectionFactoryName")
 JMSContext queueContext

 @Resource(mappedName="myQueue")
 Queue queue;

 @Inject
 @JMSContextConnectionFactory(
 "jms/myTopicConnectionFactoryName")
 JMSContext queueContext

 @Resource(mappedName="myTopic")
 Topic topic;

 /* ... */

 public void processWithQueue(String text)
 throws Exception {
 queueContext.createProducer().send(queue, text);
 }

 public void processWithTopic(String text)
 throws Exception {
 topicContext.createProducer().send(topic, text);
 }
	 /* ... */
}

Chapter 9

[455]

This previous code is the form of dependency injection that is typical for Java EE 7
applications, especially those that run inside an application server or EJB container.
In the next section, we will dig deeper into dependency injection.

JMS and dependency injection
JMS 2.0 is a major improvement because the specification leverages Java annotations.
The standard also recognizes the advanced features of the Java EE 7 platform. In
particular, JMS is designed to integrate with CDI, EJB, and other new endpoints.

Injecting CDI beans
JMS 2.0 supports context and dependency injection through injection of the
JMSContext. We have already seen examples. It is also possible to inject the
connection factory and then create a context.

Here is a code snippet that demonstrates this technique:

class XMLPublisher {
 @Resource(mappedName="xmlQueueConnectionFactory")
 ConnectionFactory queueConnectionFactory;

 @Resource(mappedName="xmlQueue")
 Queue queue;

 private static Logger logger =
 Logger.getLogger(XMLPublisher.class)

 public void sendXML(XMLDocument doc) {
 try (JMSContext context =
 queueConnectionFactory.createContext();) {
 context.send(queue, doc.getText());
 }
 catch(JMSRuntimeException e) {
 logger.error(
 "unable to sent message doc: "+
 doc.getId(), e);
 }
 }
}

Java Message Service 2.0

[456]

In the sendXML() method of this XMLPublisher class, we take full advantage of the
recent try-acquire-release statement and the AutoClosable type of the JMSContext
to ensure that we always close the context. We also trap any unchecked exception to
record to a log system that exists somewhere in the application.

The CDI container is used to inject into the connection factory object and also the
destination with @Resource.

Injection of JMSContext resources
The injection of JMSContext objects can also be customized more precisely. It
is possible to configure the connection factory name, but we can also control the
session mode and also the login security credentials.

Here is a code snippet that applies a session mode and login to the connection:

@Inject
@JMSConnectionFactory("jms/fastQConnectionFactory")
@JMSSessionMode(JMSContext.DUPS_OK_ACKNOWLEDGE)
@JMSPasswordCredential(userName="admin",password="sinc3r3")
private JMSContext context;

The annotation @javax.jms.JMSSessionMode specifies the session connection mode
for the channel. The default value is JMSContext.AUTO_ACKNOWLEDGE, and hence this
annotation is only applied to connections that do not acknowledge automatically.

The annotation @javax.jms.JMSPasswordCredential specifies user login
credentials for a secure connection.

The injected JMSContext has a scope when the application runs inside a Java EE
application server or EJB container:

•	 If the injected JMSContext instance is a part of a JTA transaction, then the
scope will be transactional

•	 If the injected JMSContext instance is not part of a JTA transaction, then the
scope is a request

The application server also automatically manages the lifetime of the JMSContext;
it has the responsibility for closing the context. The server will also inject a shared
JMSContext instance if it knows that the connection factory, session mode, and also
the security credentials are the same.

Chapter 9

[457]

A Java EE application using an injected JMSContext from the CDI container is
prohibited from calling certain methods on this object instance. These methods may
cause undesired behavior, and they are start(), stop(), commit(), rollback(),
recover(), acknowledge(), and setExceptionListener().

Injecting EJB beans
The JMS client has full access to enterprise beans if it is run inside a Java EE
application server or EJB container. Many Java EE applications already make
use of message-driven beans and call other EJBs.

In the web profile, using JMS and EJB are considered extensions, and therefore your
application is more responsible for configuration of the infrastructure. Therefore,
from an architectural point-of-view, your application might be more at risk from
vendor lock-in, especially if you lean on proprietary and non-open source features.
However, usually a very good architect and lead designer can abstract certain
features away into a critical corner of the application architecture.

Sometimes you have no choice in this matter because the business wants a specific
profile and the Java EE standard does not support the functionality that the
requirements need.

Definition of JMS resources in Java EE
In JMS 2.0, supporting providers are allowed to optionally implement the JMS
Resource by definition annotations. Much of this work was left over from the aborted
attempt to move Java EE 7 to the cloud-computing platform, and these existing
annotations remain implemented in the reference implementation GlassFish 4.0.

There are two annotations: @javax.jms.JMSConnectionFactoryDefinition and
@JMSDestinationDefinition. They define inside an application source code the
connection factory and message destination respectively.

Here is a code snippet of the two annotations:

@JMSConnectionFactoryDefinition(
 name="java:global/jms/demoConnectionFactory",
 interfaceName="javax.jms.ConnectionFactory",
 description="Demo connection factory",
 user="admin",
 password="sinc3r3",
 transaction=true,
 maxPoolSize=25, minPoolSize=1)

Java Message Service 2.0

[458]

 public class WebEndpoint { /* ... */ }

@JMSDestinationDefinition(
 name="java:global/jms/demoQueue",
 interfaceName="javax.jms.Queue",
 description="Demo connection factory",
 destinationName="demoQueue")
public class DataEndpoint { /* ... */ }

The properties name, interfaceName, description, and destinationName
are relatively comprehensible and are equivalent to the configuration for
administrative objects.

Some of the properties are optional or default such as clientId, resourceAdaptor,
user, password, and transaction.

Some of the properties such as maxPoolSize and minPoolSize are vendor specific.

The original idea for these two annotations was to automatically provision a Java
Servlet and an EJB with a connection without requiring information to be set in an
XML descriptor file. The provisioning of the resource would have taken place in a
PaaS environment.

Incidentally, you can make use of the @javax.jmx.
JMSDestinationDefinitions for annotating an array of
definitions on a Servlet, EJB, or any other Java EE managed object.

Summary
This chapter covered the Java Message System, which sounds like a process, but
is actually a long standing API that pre-dates even the first edition of the Java EE
platform. Indeed, the history of messaging systems stretches all the way back to
the 1960's and batch processing architecture, where messages were sent by database
and backend storage.

You were educated on messaging systems, why they exist, and what they were
designed to do. We now know that there are essentially two kinds of messaging:
point-to-point and publish-and-subscribe.

JMS supports both models. Moreover, in the 2.0 edition of the specification,
JMS has a simplified API which lends itself to dependency injection.
The JMSContext is the entry into JMS. From there, we can find
ConnectionFactory and MessageDestination types, of which
there are two implementations: Queues and Topics.

Chapter 9

[459]

A JMS message has two components: the header properties and the payload.
The payload is one of these types: BytesMessage, MapMessage, ObjectMessage,
StreamMessage, or a TextMessage. They all can be sent by a JMSProducer and
received by a JMSReceiver.

Messages can be sent both synchronously and asynchronously. Messages can also be
received synchronously or asynchronously. However, if your application runs inside
an application server or EJB container, there are limitations.

Finally, we arrived at a discussion of message-driven beans, which are managed
by the EJB container and come by default with asynchronous invocations, support
for container managed transactions, thread-safe concurrency, security, and
scalability.

In the next chapter on bean validation, we will look at ways of validating the value
objects before they hit your business logic, persistent database, or backing store.

Bean Validation
Barbara Liskov and Stephen Zilles (Abstract Data Types, 1974) said, "Some of the
operations in the cluster for that "type" are polymorphic; the operations mays be
defined over many type domains, subject to the constraint that the types of any given
argument set are type-consistent."

In object oriented programming, we are mostly familiar with value objects, which
are types that have encapsulation of data and accessibility operators. Value objects
generally do not have business rules, or e-commerce entity complex behavior, and
thus they are represented as Plain-Old-Java-Objects (POJOs). The way developers
write JavaBeans now means value objects in Java are basic Java Beans.

So why is there all the fuss over these value objects? Values objects are often validated
in the application. In our business applications, we developers habitually write lots
of boilerplate code that sanity checks the properties of value objects. We check if
a particular field or property is null or not null, if the property is the correct type,
whether it can be an empty string or not, if the property is a decimal, floating-point
or an integer, or even whether a property's value fits in a bounded range of values.
To add insult to injury, we then also write more of the same user-defined validation
checking code in our web applications and in the presentation tier. Our lack of reuse
and regretful duplication of code is complete in this challenge when our value objects
are marshaled as persistence capable objects, because we repeat ourselves with the
similar validation code before saving or updating it to the database.

Unfortunately this validation code is repeated in different tiers of the application; the
code is not universal or shared or specific to the application, and more often than not
mistakes will exist in the checking. This leads to inconsistencies of validation within an
application. Well, Java EE 7 has a standard solution, which is called Bean Validation.

Bean Validation

[462]

Introduction to Bean Validation
The focus of Bean Validation API 1.1 is ease-of-use. The expert group designed the
update so that developers can apply a single constraint for multiple layers of their
applications. These constraints can be applied at the presentation layer on web
frameworks such as JavaServer Faces and Apache WebWork, at the business layer
where your logic works, and of course the data storage layer. With Bean Validation,
developers need to define the constraints only once, and then inside the application
you invoke the validation anywhere you want to check.

For Java EE 7 application servers, Bean Validation can be automatically applied to
persistence capable object, which means JPA gets constraint validation for free. For
web frameworks running under the Java EE 7 Web Profile, Bean Validation can also
be automatically applied to JSF when there is an HTTP request sent to the web layer
as the request is mapped to Managed Beans.

The Bean Validation framework is usable outside of Java EE standard as well.
The reference implementation to the Bean Validation has integration with other
frameworks such as GWT, Wicket, and Tapestry. The Spring Framework, since
version 3.1, also has an integration module to the previous Bean Validation
implementation, version 1.0.

New features in 1.1
Bean Validation 1.1 specification introduces several new features:

•	 It provides better integration with CDI, which has a few components to all
injections of custom validators into your application.

•	 It adds new kinds of factories—providers and resolvers—to allow the
developer to customize the validation.

•	 Developers can write constraints on parameters and return values of
arbitrary methods and constructors. This feature is called method
validation, and it permits the declarative validation of methods with pre
and post-conditions.

•	 Constraint validation messages can now be properly internationalized for
other languages and locale with string formatting.

•	 Bean Validation 1.1 now integrates and uses the EL 3.0, the standard
Expression Language JSR 341 standard.

The expert group has really attempted to make our engineering working lives
much better.

Chapter 10

[463]

XSS Cross-Site Scripting

Cross-Site Scripting (XSS) is the term for client-side hacking of web
applications to exploit flaws in the implementation logic where there is
lack of validation, weak security, and advantage to be gained, including
manipulating system credentials in to order to become an authorized
administrator or super user. XSS enables attackers to inject unauthorized
observer scripts into the application and thereby gain administrative
privileges in web pages viewed by other legitimate users. Fortunately,
Java is static compiled, but direct SQL and dynamic languages such as
PHP, Ruby and Groovy are prone to scripting attacks, if they are not
protected from malicious evolutions.

Bean Validation 1.1 can help with a standard validation on value objects
and persistence capable objects. It is worth following the advice of the
XSS Prevent Cheat Sheet https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheetand
also using an additional Java prevention framework such as Coverity
Security Library https://github.com/coverity/coverity-
security-library.

Let's move on to a simple example of Bean Validation.

A quick example
Bean Validation takes advantage of annotations, which specify how to verify the
constraints on a value object. The constraints can be found under the Java package
name javax.validation.constraints.

The reference implementation for Bean Validator 1.1 is the open source framework
Hibernate Validator, which is the reference implementation of the specification.
The website http://beanvalidation.org is the standard location for the current
and previous specifications.

An example of value object that is annotated with constraints is as follows:

public final class Person {
 @NotNull
 private final String firstName;
 @NotNull
 private final String lastName;

 @Min(18) @Max(65)
 private int age;

 public Person(final String firstName,

Bean Validation

[464]

 final String lastName, final int age) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }

public String getFirstName() {return firstName; }
public String getLastName() {return lastName; }
 public int getAge() { return age; }
}

The Person class is an immutable value object. It is thread-safe because the
state cannot be altered, this reference does not escape the constructor, and all
properties are marked as final and are fully initialized in the constructor, but
that is beside the point.

Chapter 10

[465]

The properties firstName and lastName are marked with the @NotNull, which
declares a constraint to the class member to ensure that the value is not null.

The property age is marked with the two annotations @Min and @Max, which declares
two constraints for a numeric field with the value. In UK English, this says the
person's age must be an adult and not retired (the male pension age is currently still
65 years in Great Britain in 2013).

Let's write a simple unit test to verify these constraints with Hibernate
Validator framework:

package je7hb.beanvalidation.essentials;
import static org.junit.Assert.*;
import org.junit.*;
import javax.validation.*
import java.util.Set;

public class PersonValidatorTest {
 private static Validator validator;

 @BeforeClass
 public static void setUp() {
 ValidatorFactory factory =
Validation.buildDefaultValidatorFactory();
 validator = factory.getValidator();
 }

 @Test
 public void validatePerson() {
 Person person = new Person("Sazanne", "Abdiman", 34);
 Set<ConstraintViolation<Person>> constraintViolations
 = validator.validate(person);
 assertEquals(0, constraintViolations.size());
 }

 @Test
 public void validatePersonMissingFirstName() {
 Person person = new Person(null, "Abdiman", 34);
 Set<ConstraintViolation<Person>> constraintViolations
 = validator.validate(person);
 assertEquals(1, constraintViolations.size());
 }

Bean Validation

[466]

 @Test
 public void validatePersonMissingWrongAge() {
 Person person = new Person("Kieran", "Abdiman", 16);
 Set<ConstraintViolation<Person>> constraintViolations
 = validator.validate(person);
 assertEquals(1, constraintViolations.size());
 }
}

This unit test PersonValidatorTest verifies the constraints applied to the value
object. In the @BeforeClass static method setUp(), we create a bean validator
using a factory. The class javax.validation.ValidatorFactory in the API
allows an application to retrieve the default validator, which is a type of javax.
validation.Validator.

Once we have the validator in a static member of the test, we write the test methods.
We first create a value object in each test, and then invoke the validator's validate()
method, which returns a set collection of javax.validation.ConstraintViolation
objects. We check the size of the set collection to verify the tests. (Obviously for full
acceptance criteria and pedantic behavioral-driven Design we would write more
tests for full compliance.) If the set collection is empty and the size of violations is
zero then the object is valid and has passed the validator.

Constraint declarations
The bean validation specification has built-in constraints that cover the common
constraints that a developer will encounter, albeit for basic validation.

Elements of a constraint
An annotated constraint in bean validation is declared through the key annotation
@javax.validation.contraints.Constraint and three other properties.

Message property
The message property specifies the text and/or the Expression Language statement
that the validation engine will use or evaluate when the constraint is violated.

String message() default "{je7hb.beanvalidation.essentials.
PostalCode.message}";

Chapter 10

[467]

The annotation property message defines a default resource in order to look up
the validation error message. For internationalization purposes, validation error
messages are read by the class java.util.ResourceBundle through language
specific property files.

Groups property
The groups property specifies the group of violation that this constraint belongs to.
This is set by the developer, to control and configure partial validations and groups
of validations, applied to value objects.

Class<?>[] groups() default {};

Groups are defined by Java class references and the default value is an empty array.
This annotation property group allows validation constraints to be collected together
in a named association. In this case, there is no group specified.

Payload property
The payload property defines the object instances, which are associated with the
constraint. The payload is an advanced concept, which allows the validation client
to associate metadata information with the constraint declaration. Payloads are not
portable to different validators, usually.

Class<? extends Payload>[] payload() default {};

The default value is an empty array. The Payload instance is an empty marker
interface to some custom opaque object instance and thus illustrates perfectly the
non-portability of this annotation property.

List of built-in constraints
Let us look now at the default built-in constraints for Bean Validation 1.1:

Constraint name Description Allowed types
@Null Specifies the element must be a null

reference pointer.
Any

@NotNull Specifies the element must not be a null
reference pointer.

Any

@AssertTrue Specifies the element must be true Boolean and
boolean

@AssertFalse Specifies the element must be false Boolean and
boolean

Bean Validation

[468]

Constraint name Description Allowed types
@Min Specifies the element must be a number value

that is greater than or equal to the minimum
value supplied. Because of floating arithmetic
rounding errors float and double are not
supported.

BigDecimal,
BigInteger,
byte, short, int,
and long

@Max Specifies the element must be a number value
that is less than or equal to the minimum
value supplied. Because of floating arithmetic
rounding errors float and double are not
supported.

BigDecimal,
BigInteger,
byte, short, int,
and long

@DecimalMin Similar to @Min but adds the ability to set the
value as String parameter. The number value
must be greater than or equal to the supplied
value. FP restriction also applies here.

BigDecimal,
BigInteger,
CharSequence,
byte, short, int,
and long

@DecimalMax Similar to @Max but adds the ability to set the
value as String parameter. The number value
must be less than or equal to the supplied
value. FP restriction also applies here.

BigDecimal,
BigInteger,
CharSequence,
byte, short, int,
and long

@Size The element's size must be inside the supplied
inclusive boundary limits.

CharSequence,
Collection,
Map and primitive
array

@Digits The element is a number within an accepted
range that defines the maximum digits for
the integer portion of the number and the
maximum digits for the fraction portion of the
number.

BigDecimal,
BigInteger,
CharSequence,
byte, short, int,
and long

@Past The element must be dated in the past
according to the current time of the Java
Virtual Machine.

java.util.Date
and java.util.
Calendar

@Future The element must be dated in the future
according to the current time of the Java
Virtual Machine.

java.util.Date
and java.util.
Calendar

@Pattern The element must match against a supplied
regular expression pattern that conforms to
the Java convention.

CharSequence

Chapter 10

[469]

The annotations @DecimalMin and @DecimalMax both have an inclusive parameter
that is by default set to true.

Many constraint annotations now also accept a CharSequence instance and therefore
an application can also validate on StringBuilder.

In the quick example, we already saw some of these constraints @NotNull, @Min
and @Max in action. All of the default constraints are runtime annotations. They
can be applied to Java constructors, fields, methods, method parameters, and other
annotation types.

Hibernate Validator built-in constraints
The reference implementation, Hibernate Validator, also has built-in constraints that
are part of the specification 1.1.

Constraint Name Description Allowed Types
@
CreditCardNumber

Specifies the element must be a match
for standard credit card account
number.

CharSequence

@Email Specifies the element must be a valid
well-formed email address.

CharSequence

@Length Specifies the string length is between a
minimum and maximum inclusive.

CharSequence

@NotBlank Specifies the string is not blank or null. CharSequence

@NotEmpty Specifies the element collection or string
is not empty.

CharSequence,
Collection, Map
and primitive array

@Range Specifies the element must be the range
between minimum and maximum
inclusive values.

BigDecimal,
BigInteger,
CharSequence,
byte, short, int,
and long

@SafeHtml Specifies the element text is an HTML
without script elements or malicious
code.

CharSequence

@URL Specifies the element test is a valid well-
formed URL.

CharSequence

These annotations are found under the Java package org.hibernate.validator.
constraints.

Bean Validation

[470]

Constraint violations
The method validate() on the Validator class returns a set collection of
ConstraintViolation instances. Constraints are designed to be declared just
once and allow the client to execute them anywhere in the application code.

The standardized ConstraintViolation looks like this:

package javax.validation;
import javax.validation.metadata.ConstraintDescriptor;

public interface ConstraintViolation<T> {
 String getMessage();
 String getMessageTemplate();
 T getRootBean();
 Class<T> getRootBeanClass();
 Object getLeafBean();

 // Since 1.1
 Object[] getExecutableParameters();
 // Since 1.1
 Object getExecutableReturnValue();

 Path getPropertyPath();
 Object getInvalidValue();
 ConstraintDescriptor<?> getConstraintDescriptor();

 // Since 1.1
 <U> U unwrap(Class<U> type);
}

The violation can be interrogated for the tokenized message getMessage() and the
raw text getMessageTemplate() before post processing for internationalization
and formatting. The method getRootBean() informs the application which bean
is ultimately the container or common master of the violation. The getLeafBean()
returns the bean that contains the failure.

The application can retrieve the actual value that caused the violation with
getInvalidValue(). The getPropertyPath() method retrieves the node path of
the navigation properties to get from the root bean (value object) to the leaf bean
(dependent value object). The Path is a Java interface that represents the navigation
path from one object to another in an object graph. The data structure is based on the
chain of individual node elements.

Chapter 10

[471]

As Bean Validation 1.1, it is possible to retrieve the execution parameters and return
through the calls getExecutableParameter() and getExecutableReturnValue().
These calls were introduced to support method validation.

There is a special method called unwrap() that allows applications to gain access to
opaque specific provider data and additional proprietary API. Of course, the use of
this means that your resultant code is not portable from, say, Hibernate Validator to
another implementation. On the other hand, the specification permits providers to
add custom behavior.

Finally, it is possible to retrieve the meta-data around the constraint descriptor
associated with this constraint with a call to getConstraintDescriptor(). This
call is designed to help the developer write custom validator annotations.

Applying constraint definitions
As we have seen, applying built-in constraints to value objects is almost painless.
What happens if you want a constraint that is not covered by the built-in types?
Bean Validation allows the developer to write custom constraints.

Let's review a value object that has an entity relationship with another one. Here is
the code for the Country object:

package je7hb.beanvalidation.essentials;
import org.hibernate.validator.constraints.NotEmpty;

public class Country {
 private String isoName;
 @NotEmpty
 public String getISOName() { return isoName; }
 public Country() { }
}

This is the Address object, the master of the detail:

package je7hb.beanvalidation.essentials;
import javax.validation.Valid;
import javax.validation.constraints.*;

public class Address {
 private String flatNo;
 private String street1;
 private String street2;

Bean Validation

[472]

 private String city;
 private String postalCode;
 private Country country;

 @NotNull @Size(max=50)
 public String getStreet1() { return street1; }
 @NotNull @Size(max=50)
 public String getStreet2() { return street2; }

 @PostalCode(
 message="Wrong postal code")
 public String getPostalCode() { return postalCode; }

 @NotNull @Valid
 public Country getString() { return country; }

 // Constructor & setter methods ommitted
}

The value object for class Address has field members: flatNo, street1, street2,
city, postalCode and country in order to represent a person's living or home
address. We have applied constraint annotations applied to the getter methods.
The @Size and @NotNull constraints are applied to street1 and street2 respectively,
to ensure that the backing store field sizes are checked.

The getCountry() method is an example of declaring a delegating constraint
on a dependent object. The annotation @javax.annotation.Valid cascades the
validation checking to the dependent object property on the instance. We can also
supply the @Valid constraint to method calls to a method parameter or the instance
returned from a method call. We shall learn how to apply method validation later in
this chapter.

The @PostalCode validation and annotation is an example of a custom constraint.

Custom validators
Writing a custom validator is fairly straightforward. The first step is to write an
annotation that depends on the @javax.validation.Constraint.

Here is the @PostCode constraint annotation:

package je7hb.beanvalidation.essentials;
import javax.validation.*;
import java.lang.annotation.*;

Chapter 10

[473]

import static java.lang.annotation.RetentionPolicy.*;
import static java.lang.annotation.ElementType.*;

@Documented
@Constraint(validatedBy = PostCodeValidator.class)
@Target({
 METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR,
 PARAMETER })
@Retention(RUNTIME)
public @interface PostalCode {
 String message() default
 "{je7hb.beanvalidation.essentials.PostalCode.message}";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
 String country() default "gb";
}

The @Constraint refers to the class that provides the custom validator, in this case
PostCodeValidator. The annotation is declared as runtime-type retention with
injection points for constructors, fields, methods, parameters, and other constraint
annotations. The message declaration refers to a key inside a resource bundle to look
up an internationalized text.

Your custom annotation can define extra parameters and in the @PostalCode we
define a country parameter to define the locale for validating the postal code.

The custom constraint PostCodeValidator extends a parameterized type interface
javax.validation.ConstraintValidator:

package je7hb.beanvalidation.essentials;
import javax.validation.*;
import java.util.regex.*;

public class PostCodeValidator
implements ConstraintValidator<PostalCode,String> {
private String country;
 private Pattern pattern =
 Pattern.compile(
"[A-Z][A-Z]\\d{1,2}[\t]*\\d{1,2}[A-Z][A-Z]");

 @Override

Bean Validation

[474]

 public void initialize(PostalCode postalCode) {
this.country = postalCode.country();}

 @Override
 public boolean isValid(String value,
 ConstraintValidatorContext context) {
 if (value == null) {
 return true;
 }
 Matcher m = pattern.matcher(value.toUpperCase());
 return m.matches();
 }
}

The parameterized interface ConstraintValidator<U extends Annotation,
V> defines the logic for a generic type that validates an input generic type V.
The generic type must be a Java annotation type A.

There are two methods to implement: initialize() and isValid(). The provider
calls the initialize() method with the instance of the annotation. We can access
extra annotation parameter values and we save the value as a field in this instance
for future use in the next method. Actually, we are not using the extra parameter in
the validation in this demonstration.

The provider calls isValid() method with a String value and the
javax.validation.ConstraintValidatorContext instance. We always
validate null reference pointer values as successful, because we do not want
to interfere with @NotNull being applied by the user. The PostCodeValidator
class uses a regular pattern to match British postal codes. So we validate the
input value against the pattern using a matcher. If the regex matches true, then
it must be good.

Custom validators and null

Most custom validations ignore the case, when the element value
is a. If the value is null then the validation returns true. If the
element value is not null then an attempt is made to validate the
element. This is helpful for situations in web application where
the user may not yet define the field.

Chapter 10

[475]

Groups of constraints
We have seen that constraints are grouped together and validated on a value object.
The constraints validate on the property or field member of an object instance. Whilst
this is good enough for basic properties, we often need flexibility in our applications.
Bean Validation, however, provides additional validation for class instances and
partial validation for groups of constraints.

Class-level constraints
A constraint can also be applied to the class itself, and then it is called a class-level
constraint. The class-level constraints permit the ability to inspect more than one
single property of the class. Therefore, they provide a means to validate associated
fields or properties. In order to apply a class-level constraint annotation, you declare
it on the class itself.

We shall write a new class-level constraint to validate only UK post codes for an
address value object.

Bean Validation

[476]

First we need a different value type, AddressGroup:

@ISOPostalCode(message="ISO uk or gb only")
public class AddressGroup {
 private String flatNo;
 private String street1;
 private String street2;
 private String city;
 private String postalCode;
 private Country country;

 @NotNull @Size(max=50)
 public String getStreet1() { return street1; }

 @NotNull @Size(max=50)
 public String getStreet2() { return street2; }

 public String getPostalCode() { return postalCode; }

 @NotNull @Valid
 public Country getCountry() { return country; }

 /* ... */
}

This value object makes use of the custom constraint annotation @ISOPostalCode.
Notice that the property postCode no longer has the single property constraint
any more.

Let's define our annotation @ISOPostalCode now:

@Documented
@Constraint(validatedBy = ISOPostCodeValidator.class)
@Target(TYPE)
@Retention(RUNTIME)
public @interface ISOPostalCode {
 String message() default
"{je7hb.beanvalidation.essentials.ISOPostalCode.message}";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

We also restrict the use of this annotation to only classes with the @Target(TYPE)
definition. This is a design choice, naturally. The annotation refers to the class type
that performs the checking: ISOPostCodeValidator.

Chapter 10

[477]

This is the code for the validator:

package je7hb.beanvalidation.essentials;
import javax.validation.*;
import java.util.regex.*;

public class ISOPostCodeValidator
implements ConstraintValidator<ISOPostalCode,AddressGroup> {
 private Pattern pattern =
 Pattern.compile(
"[A-Z][A-Z]\\d{1,2}[\t]*\\d{1,2}[A-Z][A-Z]");

 @Override
 public void initialize(ISOPostalCode annotation) { }

 @Override
 public boolean isValid(AddressGroup value,
 ConstraintValidatorContext context) {
 if (value == null) { return true; }
 String isoName = "";
 if (value.getCountry() != null) {
 isoName =
 value.getCountry().getISOName().toUpperCase();
 }
 if (isoName.equals("UK") || isoName.equals("GB")) {
 Matcher m = pattern.matcher(
 value.getPostalCode());
 return m.matches();
 }
 else return false;
 }
}

The class ISOPostCodeValidator is a type of constraint parameterized with the type
ConstraintValidator<ISOPostalCode,AddressGroup>. In short, this constraint
validates two dependent properties: the post code and the IOS country name.

The method isValid() already accepts an AddressGroup instance. We verify that
the correct international country has been set, and retrieve the ISO name from
the dependent Country instance and its country property. If the ISO name is
appropriately valid then we can apply the regular expression and attempt to validate
the postcode property. If the ISO name is set neither to UK or GB, then the class-level
constraint fails validation.

Bean validation can also validate groups of constraints and we will look into this
feature next.

Bean Validation

[478]

Partial validation
Constraints belong to a default group interface javax.validation.groups.
Default, when the developer does supply groups annotation parameter. The type
Default is actually an empty Java interface. Hence the Bean Validation provider will
invoke the constraints attached to all constructors, fields, properties, and methods for
a value object. Applications can create partial validation rules by creating separate
empty Java interfaces, which denote custom groups.

 Suppose we want to validate a car value object from the automotive industry with
different validators: one to completely verify the properties and the other to just
check some of the details.

We can write a new Car entity like the following:

package je7hb.beanvalidation.cars;
import javax.validation.constraints.*;

public class Car {
 @NotNull(groups=BasicCheck.class)
 private final String carMaker;

 @Min(value=2, groups={BasicCheck.class,
 CompleteCheck.class})
 private int seats;

 @Size(min=4, max=8, groups=BasicCheck.class)
 private String licensePlate;

 @Min(value=500, groups={BasicCheck.class,
 CompleteCheck.class})
 private int engineSize;

 public Car(String carMaker, int seats,
 String licensePlate) {
 this(carMaker, seats, licensePlate, 0);
 }

 public Car(final String carMaker,
 final int seats,
 final String licensePlate,
 final int engineSize) {
 this.carMaker = carMaker;

Chapter 10

[479]

 this.seats = seats;
 this.licensePlate = licensePlate;
 this.engineSize = engineSize;
 }

 /* ... */
}

The only addition to value type Car is the group parameter on the constraint
annotations, which specifies the interface to associate each constraint with a group.
The actual parameter is a variable-length argument and therefore a constraint can be
associated with multiple groups.

The Java interfaces representing the groups are extremely simple:

public interface BasicCheck { }
public interface CompleteCheck { }

So a unit to verify these checks to Car instances supplies the references to the group
classes for the validation. Here is the unit test code snippet:

package je7hb.beanvalidation.cars;

/* ... omitted imports ... */
public class CarValidatorTest {
 private static Validator validator;

 @BeforeClass
 public static void setUp() { /* ... */ }

 @Test
 public void shouldBasicValidateCar() {
 Car car = new Car("Austin Martin", 0, "AM12457", 0);
 Set<ConstraintViolation<Car>> constraintViolations
 = validator.validate(car, BasicCheck.class);
 assertEquals(0, constraintViolations.size());
 }

 @Test
 public void shouldCompletelyValidateCar() {
 Car car = new Car("Bentley", 4, "BY4823", 2560);

Bean Validation

[480]

 Set<ConstraintViolation<Car>> constraintViolations
 = validator.validate(car, BasicCheck.class,
 CompleteCheck.class);
 assertEquals(0, constraintViolations.size());
 }

 @Test
 public void shouldNotCompletelyValidateCar() {
 Car car = new Car("Sedaca", 0, "XYZ1234", 0);
 Set<ConstraintViolation<Car>> constraintViolations
 = validator.validate(car, BasicCheck.class,
 CompleteCheck.class);
 assertEquals(2, constraintViolations.size());
 }
}

The differences between the unit test methods shouldBasicValidateCar()
and shouldCompletelyValidateCar() for the test CarValidatorTest are the
group interface classes BasicCheck and Complete respectively. We only partially
populate properties of the Car instance inside shouldBasicValidateCar(). We
also call the validator's validate() method with the group interfaces, which is
also a variable-length argument.

The method shouldNotCompletelyValidateCar() verifies the constraints with the
group CompleteCheck, which should fail the validation because the Car instance is
not correctly constructed. A car cannot have zero seats nor can it have zero engine size.

Constraint inheritance
Another way of achieving partial constraints is to organize value objects in
object class hierarchies. If we have different extension types of Car such as
ElectricPoweredCar or HybridPoweredCar then each sub-type could have more
additional constraints. The specification mandates that the provider executes all
constraint annotations on implemented interfaces and the parent class.

Here is an example of inheritance of constraints with an electric powered vehicle.

public class ElectricPoweredCar extends Car {
 @DecimalMin(value="25.0",
 groups={BasicCheck.class, CompleteCheck.class})
 private final double powerKiloWatts;
 @DecimalMin(value="100.0",

Chapter 10

[481]

 groups={BasicCheck.class, CompleteCheck.class})
 private final double rangeInMiles;

 public ElectricPoweredCar(
 String carMaker, int seats, String licensePlate,
 int engineSize, double powerKiloWatts,
 double rangeInMiles) {
 super(carMaker, seats, licensePlate, engineSize);
 this.powerKiloWatts = powerKiloWatts;
 this.rangeInMiles = rangeInMiles;
 }
 /* ... */
}

Group constraints can also inherit from other groups. An example of hierarchy
of Java interfaces is as follows:

interface BasicCheck extends Default { }
interface CompleteCheck { }
interface PayableCheck extends CompleteCheck, BasicCheck { }

The PayableCheck inherits both from the Basic and Complete constraints, but
notice that the basic constraints are subtypes of Default. This means that the
Bean Validator provider will run BasicCheck group constraints at the same time
and level as the default group. The CompleteCheck group constraint will be explicit
and specific to those constraints. The Bean Validator provider will run all of the
constraints against PayableCheck group constraint if individual constraints are
associated with it.

Ordering groups of constraints
Constraints can be ordered in groups so that the application can control how value
objects are validated. The Bean Validation provider is at liberty to evaluate constraints
in any order that it pleases, regardless of which groups they belong to. In order to
enforce control, the specification supplies the @javax.validation.GroupSequence
annotation. The @GroupSequenceannotation defines the order of groups and informs
the Bean Validation provider how to apply the constraints on a given group.

Let us look at an example of group sequence on another version of the address
value object:

package je7hb.beanvalidation.cargroups;
import je7hb.beanvalidation.essentials.PostalCode;

Bean Validation

[482]

import javax.validation.GroupSequence;
import javax.validation.constraints.*;
import javax.validation.groups.Default;

@PostalCodeSensitiveChecker(groups =
Address.AreaSensitive.class)
public class Address {
 @NotNull @Size(max = 50) private String street1;
 @Size(max = 50) private String street2;
 @NotNull @PostalCode private String postCode;
 @NotNull @Size(max = 30) private String city;

 public interface AreaSensitive {}

 @GroupSequence({AreaSensitive.class, Default.class})
 public interface Complete {}

 /* ... getters and setters ... */
}

The Address class defines two empty interfaces AreaSensitive and Complete.
There is also a class-level constraint validator @PostalCodeSensitiveChecker,
which verifies that the postal code property matches a specific location.

The group sequence on the nested interface Complete changes the order of
validation to evaluate the AreaSensitive group before the Default group.

It is possible to refine the validation with the following unit test:

@Test
public void shouldValidateWithSpecificAreaOnly() {
Address addr = new Address();
addr.setPostCode("SW1 AA");
Set<ConstraintViolation<Address>> constraintViolations
= validator.validate(addr,
Address.AreaSensitive.class);
 assertEquals(0, constraintViolations.size());
}

Chapter 10

[483]

The test method shouldValidateWithSpecificAreaOnly()evaluates against only
the sensitive area by passing the interface group constraint class AreaSensitive.
We pass the group constraint class to the validator's validate() method. We can
evaluate the value object against the complete checker:

 @Test
 public void shouldValidateWithComplete() {
 Address addr = new Address();
 addr.setStreet1("1 Granger Avenue");
 addr.setCity("London");
 addr.setPostCode("SW1 3KG");
 Set<ConstraintViolation<Address>> constraintViolations
 = validator.validate(addr, Address.Complete.class);
 assertEquals(0, constraintViolations.size());
 }

The annotation @PostalCodeSensitiveChecker only permits postcodes starting
with SW1. The Bean Validator provider, first, invokes constraints for the Complete
group, which are then applied, and then it invokes the Default constraints. The
provider will stop the evaluation chain of groups on the first constraint of a group
that fails. This algorithm helps us to order a sequence of group validations based
on how expensive the constraint verification is to run. We can, therefore, inform the
Bean Validation provider to evaluate cheap constraint checks before the expensive
ones like those that would make an imaginary relational database query.

Let's move on to how Bean Validation can help us check inputs and outputs of
business service layer interfaces.

Method-level constraints
It is standard industry practice for good architects to design enterprise applications
in sets of tiers with many modules containing public interfaces around opaque
implementations. These interfaces are often critical to servicing requests from a client
endpoint such as dependent EJB call, web service, or web request. Bean Validation
1.1 allows us to write constraints around these endpoints with a new feature called
Method-level constraints.

Method-level validation can only be applied to non-static methods and also
constructors. The provider will ignore method-level constraints on static methods.

Method-level constraints require interception technology through the integration
with CDI, Spring Framework, or Guice. It works for constructors as well as methods
and the validation is implemented as a crosscutting concern.

Bean Validation

[484]

Bean Validation 1.1 is available for both Java EE 7 Full and Web profile application
servers. For earlier Java EE editions, in particular the Web profiles Java EE 5 and 6,
the administrator must configure the validator to a CDI container in a proprietary
configuration. Note that GlassFish 4 contains the reference implementation
Hibernate Validator 5.

Let us start with a stateless session EJB that will stand in a business service that we
want to constrain. It is a payment service that takes an account and returns a ticket
acknowledging payment and a new account value.

Here is the definition of the PaymentServiceImpl:

package je7hb.beanvalidation.payments;
import javax.ejb.Stateless;
import javax.validation.Valid;
import javax.validation.constraints.*;
import java.math.BigDecimal;
import java.util.Date;

@Stateless
public class PaymentServiceImpl {
 @NotNull
 @SecureReceipt @Valid
 public Receipt payEntity(
 @NotNull @Valid Account account,
 @NotNull @Size(min = 5, max = 32) String counterparty,
 @NotNull @DecimalMin("0.0") BigDecimal amount)
 {
 String msg;
 if (counterparty.contains("Bridgetown"))
 msg = "SEC123";
 else
 msg = "Boo! Hoo!";
 Account acct2 = new Account(
 account.getAccount(),
 account.getAmount().subtract(amount));
 return new Receipt(msg,counterparty,acct2,
 new Date());
 }
}

Chapter 10

[485]

The method payEntity() has constraints applied on the arguments for the account,
the counterparty, and the monetary value. It also has a custom constraint
@SecureReceipt applied on the return value and also a @NotNull constraint. The
Bean Validation provider through the interception technology is able to check the
input arguments and also the return value. The @Valid constraint informs the Bean
Validation provider to recursively apply the constraints to the dependent object.
So in this example, we check the input Account value object and also the returned
Receipt object instance.

The code snippet for SecureReceipt annotation looks like this:

@Documented
@Constraint(validatedBy = SecureReceiptValidator.class)
@Target({ METHOD })
@Retention(RetentionPolicy.RUNTIME)
public @interface SecureReceipt {
 String message() default
"{je7hb.beanvalidation.payment.SecureReceipt.message}";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

The class-level constraint implementation SecureReceiptValidator object looks
like this:

public class SecureReceiptValidator
 implements ConstraintValidator<SecureReceipt,Receipt> {
 @Override
 public void initialize(SecureReceipt annotation) { }

 @Override
 public boolean isValid(Receipt value,
 ConstraintValidatorContext context) {
if (value == null) return true;
 return value.getMessage().trim().startsWith("SEC");
 }
L}

The isValid() method in SecureReceiptValidator verifies the return object
SecureType and has a message that starts with a string SEC. This is a perfect
example of how an application can ensure that a business layer has not been
compromised and actually provides the correct result to a web client—a RESTful
client endpoint or an EJB endpoint.

See the book's source code for the Arquillian unit test class and the value objects
Account and Receipt.

Bean Validation

[486]

Method validation rules
•	 Given a method M that is a member of class type T and is passed a value

object A, its preconditions may not be strengthened in subtypes of T and A.
•	 Given a method M, which is a member of class type T and returns a value

object R, its post-conditions may not be weakened in subtypes of T and R.

These rules are imposed by the Bean Validation specification in order to preserve the
Barbara Liskov Substitution Principle, which governs the behavior of subtyping. An
object is open for extension but closed for modification, and as such if there is a value
type of A that extends S then I can replace it with another type B that extends S.

Integration with Java EE
Bean Validation has an abstract configuration component called a Service Provider
Interface (SPI), which allows it to integrate with Spring Framework and Guice.
Any custom constraint validator implementation can inject any dependency. Any
dependency injection container that integrates with Bean Validation framework has
the responsibility to instantiate a ValidatorFactory instance.

Bean Validation delegates the management of the lifecycle to the various
supported containers, including CDI. Any type of MessageInterpolator,
TraversableResolver, ConstraintValidatorFactory instances are also managed
from a dependency injection framework.

In environments where there is no default integration or a standalone Java SE
runtime, the application is required to configure ValidatorFactory and a custom
ConstraintValidatorFactory instance. The application may choose to use a
dependency injection framework such as JBoss Weld, Guice, or the Spring Framework.

Bean Validation 1.1 integrates with the JPA 2.0 or better and developers get this
support for free as it is defined by the Java EE 7 specification. Again there is a choice
if the integration is part of CDI container and it is provided as an entity injection
mechanism that is hidden from the application or part of the JPA provider itself
before objects are flushed to the database through the persistence session.

Chapter 10

[487]

Default access to validator and validator
factory
In Java EE 7, the Bean Validator must make available the JNDI paths: java:comp/
ValidatorFactory for the default ValidatorFactory, and java:comp/Validator
for the Validator instance.

Similar to JNDI injection, any CDI container operating under Java EE 7 must allow
injection of the default ValidatorFactory instance. So the following code snippet
is completely legal in both the Full and Web profiles:

@Inject private ValidatorFactory validatorFactory;
@Inject private Validator validator;

Java EE 7, however, does cater for alternative Bean Validation providers with
the @Qualifier annotation assuming that there is an instance of a factory located
somewhere else in the system. The developer would ensure there is an obvious
@Producer CDI managed bean in their application.

JAX-RS 2.0 integration
Bean Validation 1.1 has integration with JAX-RS 2.0 in the Java EE 7 specification.
It also integrates with Java Server Faces. Incidentally, JAX-RS support is a special
application of Method-level constraint validation. A provider method-level
constraint intercepts JAX-RS request and responses.

The Bean Validator specification has some rules on this standard implementation
and how it responds to validation failures. The following are the rules:

•	 Violations on constraints on parameters to a RESTful endpoint generate a
HTTP error response code in the 400 – 499 range

•	 Violations on constraints on the return value to a RESTful endpoint generate
a HTTP error response code in the 500 – 599 range

The following is an example of JAX-RS planning resource from Chapter 8, RESTful
Services JAX-RS 2.0, with constraints applied to the request and response:

@Path("plans")
public PlanningResource {
 @Path("{id}")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 @NotNull

Bean Validation

[488]

 public Response getPlanList(
 @PathParam("id")
 @Size(min=8, max=12)
 @SecureIdChecker String id) {
 List<Plan> plans = findPlanCollectionById(id);
 Collections.sort(plans
 new AscendingDateOrderComparator());
 GenericEntity entity =
 new GenericEntity<List<Plan>>(plans);
 return Response.ok(entity).build();
 }
}

This concludes the chapter on Bean Validation. For more details, please inspect
this handbook's source code and read the specification for clarity.

Summary
Bean Validation is a crucial part of the Java EE 7 platform. It does small things
and it does them very well as we learnt in this chapter. Bean Validation allows
the developer to extend the Java type system in a programmatic fashion through
design-by-contract at runtime albeit not at static compilation time. Bean Validation is
governed by constraints, which are defined by annotations.

A constraint has an interpreted message property, a group set, and a payload.
Constraints can be grouped together in order to perform full or partial validation or
specific order evaluation.

In order to execute value object checking with annotated constraints, the application
must gain access to the Bean Validation ValidatorFactory instance and then obtain
a Validator instance. The advantage of this model means evaluation of constraints
is mostly in the control of incumbent applications.

The specification has a set of standard constraints such as @NotNull, @Max and
@DecimalMin. The reference implementation Hibernate Validator has the standard
set of constraints from the specification, and it supplies additional useful constraints
such as @NotEmpty, @Range, and @Email.

Chapter 10

[489]

Groups of constraints can be ordered. A class-level constraint allows checking of
interdependent properties in a value object. Method-level constraint in conjunction
with a suitable interception technology allows non-static methods to be evaluated
for correctness through their method parameters and associated return values.

Finally, Bean Validation has considerable integration features for CDI, JPA, and
JAX-RS technologies and even other containers outside of the Java EE 7 environment.

In the next chapter, we will advance much further into Java Persistence.

Advanced Topics
in Persistence

E. F. Codd, 1970 said, "Future users of large databanks must be protected from having
to know how the data is organized in the machine (the internal representation)".
In this chapter, we will look at the advanced topics for Java Persistence that builds
on the knowledge we cemented in Chapter 4, Essential Java Persistence and Chapter 5,
Object-Relational Mapping with JPA.

Persistence of map collections
The ability to manage persistence capable objects with java.util.Map type
collections has been around since JPA 2.0, so this is not strictly a Java EE 7 feature.
Map collections are extremely useful for Java applications, where data can be
accessed in data types that are organized into key-and-value pairs. This structure
of data is redundant from the point of view of a relational database of joined tables.
Therefore, the key of a map with a target object is not persisted.

The MapKey relationship
The annotation @javax.persistence.MapKey associates an owning entity with the
target entity when data type of the collection is a type of java.util.Map. The key
into the map collection is the target primary key of the target entity or the persistent
field or property that uniquely identifies the target entity as the value.

Advanced Topics in Persistence

[492]

There is only one attribute for @MapKey:

Attribute Type Description Default Value
Name String This optional attribute specifies

the property in the source entity
that serves as a key.

N/A – the
provider to use the
primary key of the
associated entity

Let's look an example of map collection associations that relates a table of recording
artists to their albums.

This is the code for Artist, which is cut down to save space.

packageje7hb.jpa.advanced.maps;
/* ... omitted ... */

@Entity
public class Artist {
 @Id @Column(name="ARTIST_ID")
privateintartistId;

 @NotEmpty

Chapter 11

[493]

@Column(nullable = false, name="ARTIST_NAME")
private String artistName;

@OneToMany(mappedBy="artist", cascade = CascadeType.ALL)
@MapKey()
private Map<Integer,Album> albums = new HashMap<>();

public Artist() { }

 /* ... */
}

The relationship between an Artist and their Album instances is one-to-many,
usually. The obvious exception to this rule is the compilation album, but this
is neither here nor there. Therefore we annotate the bi-directional relationship
accordingly with @OneToMany. The @MapKey annotation associates a map collection
relationship and by default it configures the key of the collection as the primary key
of the target entity, which in this case is the Album entity.

Here is the target entity, Album:

packageje7hb.jpa.advanced.maps;
/* ... omitted ... */

@Entity
public class Album {
 @Id @Column(name="ALBUM_ID")
privateintalbumId;

@Column(nullable = false, name = "ALBUM_TITLE")
 @NotEmpty
private String title;

@ManyToOne(cascade = CascadeType.ALL)
@JoinColumn(name="ALBUM_ARTIST")
private Artist artist;

@Column(nullable = false, name="RELEASE_DATE")
 @Past @Temporal(TemporalType.DATE)
private Date date;

 /* ... omitted ... */
}

Advanced Topics in Persistence

[494]

For the Album entity, the @ManyToOne reverses the owning association back to the
Artist entity. This is already familiar to you from Chapter 5, Object-Relational Mapping
with JPA on entity relationships. We have sprinkled a few of the Bean Validation
annotations such as @Past and @NotEmpty in the entities.

Let's look at the integration test for these persistence entities.

@RunWith(Arquillian.class)
public class MapCollectionPersistenceTest {
 @Deployment
public static JavaArchivecreateDeployment() {
		 /* ... omitted ... */
 }

 @PersistenceContextEntityManagerem;
 @Resource UserTransactionutx;

 @Test
public void shouldSaveArtistWithAlbum() throws Exception {
 Artist artist1 = new Artist(1002, "Joni Mitchell");
 Album album = new Album();
album.setAlbumId(8002);
album.setArtist(artist1);
album.setTitle("Blue");
album.setDate(new DateTime(1971, 6, 22,
 0, 0, 0).toDate());
artist1.getAlbums().put(album.getAlbumId(), album);

utx.begin();
em.persist(artist1);
utx.commit();

 Artist artist2 = em.find(Artist.class, 1002);
assertEquals(artist1.getArtistName(),
artist2.getArtistName());
assertEqualMaps(artist1.getAlbums(),
artist2.getAlbums());
 }

static<K,V> void assertEqualMaps(Map<K,V>m1, Map<K,V>m2)
 {	 /* ... */ }
}

Chapter 11

[495]

The test method shouldSaveArtistWithAlbum() exercises two entities, Artist
and Album. As with all entity relationships on the Java side of JPA, the developer is
responsible to ensure association is completely defined between the owner and target
entities from both directions.

The static method assertEqualsMap() is a custom assertion method that verifies
two map collections are the same.

JPA provider creates or expects a database table called ARTIST and ALBUM. There is
an extra column called ALBUM_ARTIST that associates the target entity to the source. It
is instructive to examine the console debug output for this unit test:

[EL Fine]: sql: -- INSERT INTO ARTIST (ARTIST_ID, ARTIST_NAME) VALUES
(?, ?)
 bind => [1002, Joni Mitchell]
[EL Fine]: sql: -- INSERT INTO ALBUM (ALBUM_ID, RELEASE_DATE, ALBUM_
TITLE,
ALBUM_ARTIST) VALUES (?, ?, ?, ?)
 bind => [8002, 1971-06-22, Blue, 1002]

The MapKey join column relationship
So far we saw an association with a map collection using a primary key of the target
entity. It is possible to go further with a different key for associated entities such that
the JPA provider creates or relies upon a database join table. It is also possible to
extend a basic join table with additional properties, such that it has the appearance of
a fully independent entity bean.

The annotation @MapKeyColumn specifies the mapping for the key column of a
map whose key is a basic JPA type. The annotation @MapKeyClass specifies the
type of a map key for association, which can be a basic type, an embedded class
or another entity.

Applying a @OneToMany annotation with @MapKeyColumn on a field or property
informs the JPA provider to create a join table between source and target entities.
The developer can configure the name, null-ability, and cascade operations of the
join table with @JoinColumn and @JoinColumns annotations.

The annotation @MapKeyJoinColumn specifies the column mapping of the entity
that is used as the key. The key join column for the map can be another reference
database table, part of a join table, or field referenced in the map collection table.

Advanced Topics in Persistence

[496]

Developers can create quite sophisticated associations to two or more database tables
with the @MapKeyJoinColumn annotation. We will look at an example of code that
associates the recording artist to live events and a type of event. An artist is usually
involved in a tour, and for the active lifetime of the artist, they will have several
tours, and each tour is a type. A tour can be a global()one, spanning multiple cities
on many continents, or it can be exclusive to a set town, television production, a
collaborative group effort, or sometimes charitable to a good cause.

How can we represent this business requirement in JPA using map collections?

Let's start with a new version of the Artist entity:

@Entity
public class Artist {
 @Id @Column(name="ARTIST_ID") private long id;
@Column(nullable=false, name="ARTIST_NAME")
private String name;

@OneToMany(mappedBy="artist",cascade = CascadeType.ALL)
@MapKeyJoinColumn(name="EVENT_TYPE_ID")
private Map<EventType, LiveEvent> events
 = new HashMap<>();
public Artist() {} /*...*/
}

The biggest change is the parameterized type for the map collection, which is
Map<EventType, LiveEvent>, where we apply the @MapKeyJoinColumn.
The key column is a part of an entity, EventType, and has the database column
name EVENT_TYPE_ID.

Here is the persistence entity EventType; it only has two properties, the primary key
and the name:

@Entity @Table(name="EVENT_TYPE")
public class EventType {
 @Id @Column(name="EVENT_TYPE_ID") private long id;
 @Basic @Column(name="EVENT_TYPE_NAME")
private String type;
publicEventType() {} /*...*/
}

Because we overrode the default column name in JPA for the primary key to EVENT_
TYPE_ID, we must also configure the @MapKeyJoinColumn with the same target
database column name.

Chapter 11

[497]

Finally, we have the entity for storing data about events called LiveEvent:

@Entity @Table(name="LIVE_EVENT")
public class LiveEvent {
 @Id @Column(name="LIVE_EVENT_ID") private long id;
@Column(nullable=false, name="ARTIST_NAME")
private String name;
@OneToOne(cascade = CascadeType.ALL)
privateEventTypeeventType;

@ManyToOne(cascade = CascadeType.ALL)
private Artist artist;

publicLiveEvent() {} 		 /*...*/
}

We declare a @OneToOne unidirectional association for the join table between the
entities: LiveEvent and EventType. If we preferred to share event types among live
events, we could change to the association to @OneToMany. We declare a bidirectional
reverse association @ManyToOne from LiveEvent to Artist.

Running the actual unit test from the book's source code creates three database
tables: ARTIST, EVENT_TYPE and LIVE_EVENT. The JPA provider adds an additional
column, EVENTTYPE_EVENT_TYPE_ID, to the LIVE_EVENT table.

Again, it is helpful to examine the JPA console output:

[EL Fine]: sql: -- INSERT INTO ARTIST (ARTIST_ID, ARTIST_NAME) VALUES
(?, ?)
 bind => [1002, Lady Gaga]
[EL Fine]: sql: -- INSERT INTO EVENT_TYPE (EVENT_TYPE_ID,
EVENT_TYPE_NAME) VALUES (?, ?)
 bind => [808, WORLD TOUR]
[EL Fine]: sql: -- INSERT INTO LIVE_EVENT (LIVE_EVENT_ID, ARTIST_NAME,
ARTIST_ARTIST_ID, EVENTTYPE_EVENT_TYPE_ID) VALUES (?, ?, ?, ?)
 bind => [97502, The Monster Ball Tour, 1002, 808]
[EL Fine]: -- UPDATE LIVE_EVENT SET EVENT_TYPE_ID= ? WHERE
 (LIVE_EVENT_ID= ?)
 bind => [808, 97502]

Let's now move on to stored procedures.

Advanced Topics in Persistence

[498]

Calling stored procedures
Many relational databases have a concept of executable SQL routines, which is a
function or procedure that is called from SQL. These functions or procedures are
stored sets of predefined SQL statements that are written to perform an action in
the database, and they are typically stored and accessed by the database server.
Executable SQL routines support parameters, which can be of three types: inbound,
outbound, and a reference cursor to a result set.

Relational database providers supply a degree of executable SQL routine in their
products. Stored procedures is the common name for SQL invoked routines that
accept zero or more inbound parameters and return zero or more result sets, or set
values on outbound parameters. SQL-invoked routines that just perform immutable
calculations which do not modify the database and return a single value or a table
are known as user-defined functions.

Many businesses have written stored procedures to encapsulate complex business
logic that runs directly on the database. They see a huge advantage in using a specific
SQL provider's database feature to provide security and audits, or the interception of
access of critical information in order to enrich or restrict views of data.

Businesses also write custom stored procedures to compute complex queries and
values close to the database data. Stored procedures generally reduce the traffic
between the application and database server, because instead of sending multiple
raw SQL statements that have to be deciphered and compiled into statements, the
application merely sends the invoked procedure's name, executes the procedure, and
retrieves the result. Stored procedures and functions are transparent and reusable
across applications.

The downsides to stored procedures are that they are not easily debugged from
the application and they also incur a high load cost on top of the database. The
maintenance of business logic written stored procedures over the long term becomes
increasingly complex and that is yet another criticism. Because stored procedures are
not usually portable between database products, businesses find themselves locked
into mission critical operational rules deep inside a particular vendor's product.

Chapter 11

[499]

Stored procedure query
JPA 2.1 now provides a standard method of calling stored procedures from the
EntityManager instance, which is createStoredProcedureQuery(). This method
accepts a single String that represents the name of the stored procedure inside the
database. The call returns a javax.persistence.StoredProcedureQuery instance.

The most important methods of StoredProcedureQuery are outlined in the
following table:

Method Description
StoreProcedureQueryregisterStore
ProcedureParameter(String paramName,
Class<?> type, ParameterMode mode)

Sets the parameter name and
type for the stored procedure
with the mode parameter type.

StoreProcedureQuerysetParameter
(String paramName, Object value)

Associates the named parameter
for the stored procedure with a
value.

boolean execute() Executes the stored procedure
that should return one or more
result sets.

intexecuteUpdate() Executes the stored procedure
that should only perform an
update of rows.

List getResultSet() Retrieves the current result set.
Object getSingleResult() Retrieves a value from the

current result set, which has
only one row and one value.

Boolean hasMoreResults() Returns true if there is another
result set to retrieve from the
stored procedure.

intgetUpdateCount() Returns the rows affected count
from the last execution of a
stored procedure.

StoredProcedureQuery readily supports named parameters for those database
servers that support this feature. There are also integer positional parameter variants
of the setParameter() and registerStoreParameter() calls. For time specific
properties with java.util.Date, the developer must use the overloaded methods
that accept a TemporalType.

Advanced Topics in Persistence

[500]

The javax.persistence.ParameterMode is a Java enumerated type, which has the
following values: IN, OUT, INOUT, and REF_CURSOR. A stored procedure can be both
an input and output parameter, and INOUT caters to those parameters. Some database
servers such as Oracle DB return reference cursors instead of the result set directly.
The REF_CURSOR implies that the result set is retrieved from the Cursor type.

MySQL remote server example
MySQL is a popular open source database server that supports stored procedures.

Here is a simple stored procedure definition, which creates the procedure called
READ_TAX_SP:

CREATE PROCEDURE READ_TAX_SP (IN param1INT)
 BEGIN
 SELECT * FROM TAX_CODE WHERE TAX_CODE_ID = param1;
 END

The procedure has one inbound parameter param1 and returns only one dynamic
result set. In MySQL and many other databases, a stored procedure can return more
than one result set or none at all. This procedure, READ_TAX_SP, makes a simple
query in a database table, TAX_CODE, which retrieves the tax code and tax name.

Here is the definition of the TAX_CODE database table:

CREATE TABLE TAX_CODE(TAX_CODE_IDBIGINT,
 NAME VARCHAR(16), PRIMARY KEY(TAX_CODE_ID));
INSERT INTO TAX_CODE VALUES (101, 'FULL_TIME');
INSERT INTO TAX_CODE VALUES (102, 'CHARITY');
INSERT INTO TAX_CODE VALUES (103, 'TEMPORARY');
INSERT INTO TAX_CODE VALUES (104, 'EMPLOYED');
INSERT INTO TAX_CODE VALUES (105, 'EMPLOYED');

We create the database table and pre-fill it with sample data. The semicolon character
at the end of each line separates different SQL statements in the script.

Chapter 11

[501]

Dynamic result set retrieval
So how do we invoke this method in JPA 2.1? We simply acquire an EntityManager
instance and make the necessary calls. Here is a sample of an Arquillian integration
test that performs this query.

package je7hb.jpa.advanced.storedproc1;
/* ... omitted imports ... */
@RunWith(Arquillian.class)
@CreateSchema({"scripts/create-schema.sql"})
public class StoredProcedureJPATest {
 @Deployment
 public static JavaArchivecreateDeployment() {
 JavaArchive jar = ShrinkWrap.create(JavaArchive.class)
 .addClasses(Utils.class)
 .addAsResource(
 "test-persistence.xml",
 "META-INF/persistence.xml")
 .addAsManifestResource(
 EmptyAsset.INSTANCE,
 ArchivePaths.create("beans.xml"));
 return jar;
 }

 @PersistenceContextEntityManager em;
 @Resource UserTransaction utx;

 @Test
 public void shouldInvokeStoredProcedure()
 throws Exception {
 StoredProcedureQuery query =
 em.createStoredProcedureQuery("READ_TAX_SP")
 .registerStoredProcedureParameter(
 "TAX_CODE_ID", Integer.class, ParameterMode.IN)
 .setParameter("TAX_CODE_ID", 101);
 boolean status = query.execute();
 List rs= query.getResultList();
 System.out.printf("**** rs=%s\n", rs);
 assetNotNull(rs);
 Object row[] = (Object[])rs.get(0);
 for (int col=0; col<row.length; ++col) {
 System.out.printf("row[%d]=%s\n", col, row[col]);
 }
 }
}

Advanced Topics in Persistence

[502]

The annotation @CreateSchema applied to the class StoredProcedureJPATest. It
actually is part of the Arquillian Persistence extension and it executes a SQL script
before the tests are run. In this case, we execute the database creation script, which
also includes the necessary DROP TABLE IF EXISTS and DROP PROCEDURE IF
EXISTS statements.

In the method shouldInvokeStoredProcedure(), we create
StoredProcedureQuery from the entity manager given the stored procedure
to execute. The JPA provider does not know how to invoke the procedure
automatically, therefore, we must register the parameter name, type, and
parameter mode type. Developers should also note the method chaining ability of
StoredProcedureQuery during configuration of the stored procedure parameters.

A screenshot of the program's output running against GlassFish 4 managed server,
is as follows:

Also note that we then register a parameter by a specific name, and then we also use
that same name to set the inbound value (and also the output bound value; see the
next section). In setting the parameter name, we do not have to match the parameter
inside the stored procedure, because we are building the metadata dynamically,
outside of the database in Java.

Chapter 11

[503]

Calling the getResultList() method on the query instance retrieves the first result
set in this query. We expect only one of them. The raw list collection is actually a
collection of primitive object arrays. We should see one row with an object array of
an Integer and String instance to represent the primary key and the name from the
TAX_CODE table.

The unit test in this project, StoredProcedureJPATest, runs the Arquillian
container framework as a remote GlassFish server instance. In other words,
GlassFish and the MySQL servers must already be configured and running on your
development in order for the test to succeed.

Retrieving outbound parameter values
As described earlier, stored procedure parameters can also be outbound or input and
output bound. Retrieving the values of outbound parameters is the reverse of setting
the input parameters, as long as the parameters mode is registered.

Let's create a more complicated stored procedure that gives us an output bound
parameter. This procedure is called COMPOUND_INTEREST_SP and it calculates the
compound interest rate formula:

CREATE PROCEDURE COMPOUND_INTEREST_SP(
 IN P FLOAT, IN r FLOAT, IN n FLOAT,
 IN t FLOAT, OUT A FLOAT)
 BEGIN
 DECLARE X INT;
 DECLARE nt, power, total FLOAT;
 SET nt = n * t;
 SET X = nt;
 SET total = 1;
 SET power = 1 + R / N;
 WHILE X> 0 DO
 SET total = total * power;
 SET X = X - 1;
 END WHILE;
 SET A = P * total;
 END

This MySQL specific procedure accepts several parameters: four are inbound and the
last one is outbound and serves the return value. P is the initial amount, also known
as the principal value, r is the annual nominal interest rate, n is the number of times
the interest is compounded per year, and t is the number of years of the loan. The
specifics of the rate calculation can be found at http://en.wikipedia.org/wiki/
Compound_interest.Here is a new unit test class to verify the operation of calling

Advanced Topics in Persistence

[504]

the stored procedure:

package je7hb.jpa.advanced.storedproc1;
/* ... omitted imports ... */

@RunWith(Arquillian.class)
@CreateSchema({"scripts/create-schema.sql"})
public class CompoundInterestRateStoredProcJPATest {
 // omitted code similar to the previous

 @Test
 public void shouldInvokeStoredProcedureWithOutbound()
 throws Exception {
 StoredProcedureQuery query =
 em.createStoredProcedureQuery(
 "COMPOUND_INTEREST_SP")
 .registerStoredProcedureParameter(
 "P", Float.class, ParameterMode.IN)
 .registerStoredProcedureParameter(
 "r", Float.class, ParameterMode.IN)
 .registerStoredProcedureParameter(
 "n", Integer.class, ParameterMode.IN)
 .registerStoredProcedureParameter(
 "t", Integer.class, ParameterMode.IN)
 .registerStoredProcedureParameter(
 "A", Float.class, ParameterMode.OUT)
 .setParameter("P", new Float(1500))
 .setParameter("r", new Float(0.043))
 .setParameter("n", new Integer(4))
 .setParameter("t", new Integer(6));
 boolean status = query.execute();
 assertFalse(query.hasMoreResults());
 Double A = (Double)
 query.getOutputParameterValue("A");
 assertEquals(1938.84, A, 0.005);
 }
}

The big difference in CompoundInterestRateStoredProcJPATest is the registration
of the second parameter as a parameter, A, with ParameterMode.OUT. After
creating the StoreProcedureQuery instance and configuring it using the method
chaining style, we just invoke executeUpdate() as we are not expecting any
dynamic result sets. Retrieving the output of the stored procedure is simply calling
getOutputParameterValue() and casting to the return value at the correct time.

Chapter 11

[505]

Creating dynamic queries with a stored procedure in JPA 2.1 is relatively easy; we
can also take advantage of the new features with service endpoints such as session
EJBs. We shall look into this in more detail in the next section.

Stored procedure query annotations
JPA 2.1 introduces named stored procedure queries that can be attached to
entity objects and mapped super classes, which allows developers to retrieve
entities remove it in a standard way. The annotation @javax.persistence.
NamedStoredProcedureQuery is the basis for sophisticated mapping of a procedure
to an entity, which is rather flexible and supportive of legacy databases.

Here is a table of the key attributes of @NamedStoredProcedureQuery:

Attribute name Type Description Default
name String Specifies the name of the

stored procedure query in
Java

Required

procedureName String Specifies the name of the
stored procedure in the
relational database

Required

procedures StoredProcedure-
Parameter[]

Defines an array list
of stored procedure
parameters

Empty
array

resultClasses Class[] Specifies an array list
of entity types that the
dynamic result sets will
map to

Empty
array

resultSetMappings String[] Informs the JPA to map
the result sets' metadata to
@SQLResultSetMapping

Empty
array

hints QueryHint[] A set of vendor-specific,
non-portable settings

Empty
array

Let's look at an example of using this annotation in an application that could use
a stored procedure to retrieve employee records by some specific region. We shall
assume that the database table is owned and administered by another department
and we do not have access to the tables in our team. However, the administrators
kindly gave us a schema.

Advanced Topics in Persistence

[506]

From the schema, here are the database table definitions:

CREATE TABLE EMPLOYEE (EMPLOYEE_IDBIGINT,
FIRST_NAMEVARCHAR(32), LAST_NAMEVARCHAR(32),
REGION_IDBIGINT, PRIMARY KEY(EMPLOYEE_ID));
CREATE TABLE REGION (REGION_IDBIGINT, NAME VARCHAR(16),
 PRIMARY KEY(REGION_ID));

The employee entity is linked to the region entity by a foreign key; each employee
has a region. Remember, the administrators have locked direct access to these tables.

The details of the stored procedure are as follows:

CREATE PROCEDURE EMP_READ_BY_REGION_SP(IN region INT)
 BEGIN
 SELECT e.EMPLOYEE_ID, e.FIRST_NAME, e.LAST_NAME, r.NAME
 FROM EMPLOYEE e, REGION r
 WHERE e.REGION_ID = r.REGION_ID;
 END

The procedure EMP_READ_BY_REGION_SP is open and accessible to the internal staff.
It retrieves all the employees that match the supplied region ID.

This example is highly contrived, but this could be a situation that you, the
developer, might face in your business tomorrow. So how do we retrieve the
employees from the stored procedure using JPA?

We define the Employee entity in Java with the following properties:

package je7hb.jpa.advanced.storedproc1;
/* ... omitted imports ... */

@NamedStoredProcedureQuery(
 name = "Employee.findByRegion",
 procedureName = "EMP_READ_BY_REGION_SP",
 resultClasses = Employee.class,
 parameters = {
 @StoredProcedureParameter(
 mode=IN, name="REGION_ID",
 type=Integer.class)
 }
)
@Entity
@Table(name="EMPLOYEE")
@SecondaryTable(
 name="REGION",

Chapter 11

[507]

 pkJoinColumns = {
 @PrimaryKeyJoinColumn(name = "REGION_ID")}
)
public class Employee {
 @Id @Column(name="EMPLOYEE_ID")
 String id;
 @Column(name="FIRST_NAME")
 String firstName;
 @Column(name="LAST_NAME")
 String lastName;
 @Column(name="NAME",table="REGION")
 String region;

 public Employee() { }
 // omitted getters, setters and toString()
}

We annotate the entity with @NamedStoredProcedureQuery and specify the name
Region.findByRegion, the stored procedure name EMP_READ_BY_REGION_SP, and
the parameters. Of particular note is the resultClasses attribute that is set to the
Employee entity class, and it informs the JPA provider to map result() sets to this
object instance.

The entity Employee is annotated with @Table to specify the database table
explicitly. We declare the relationship between the employee and the region with
the annotation @SecondaryTable, which defines the target table and its primary
key column. To complete the mapping, we annotate the region field with the
secondary table, REGION. JPA, surprisingly, will process this relationship with only
the Employee class to hand.

It is important to note() that we disable automatic generation of the database tables
for this entity. Here is Arquillian EmployeeEntityStoredProcTest to verify the
operation of calling the stored procedure:

package je7hb.jpa.advanced.storedproc1;
/* ... omitted imports ... */

@RunWith(Arquillian.class)
@CreateSchema({"scripts/create-schema.sql"})
public class EmployeeEntityStoredProcTest
 // ... similar to previous

 @Test
 public void shouldComputeCompoundInterestRate()
 throws Exception {

Advanced Topics in Persistence

[508]

 StoredProcedureQuery query =
 em.createNamedStoredProcedureQuery(
 "Employee.findByRegion")
 .setParameter("REGION_ID", 83001);
 query.execute();
 List list = query.getResultList();
 assertNotNull(list);
 List<Employee> employees = (List<Employee>)list;
 assertTrue(employees.size() > 0);
 }
}

This test demonstrates calling the named stored procedure query with parameters.
The JPA provider does the work of invoking the database procedure and converting
the result set to a list collection of Employee instances.

Now, let's move on to criteria query features in JPA 2.1.

Understanding the criteria API
The Java Persistence Criteria API allows the developer to create dynamic JPQL
queries in the Java programming language. In JPA 2.1, it is now possible to execute
bulk criteria statements. The Criteria query API defines an abstract expression tree
that is generally optimal and compatible with the JPA provider to turn it into a
database query or execution update statement: data manipulation language. The
abstract expression tree is designed to be similar to the JPQL in terms of semantics
and operation. We can think of the Criteria API as a facility to build a meta-model
of statements that consist of entities, mapped super classes, and embedded classes
inside a persistence unit.

Criteria queries
Criteria queries rely on an annotation processor to generate the metadata for
persistence-capable objects. It is possible to build the meta-model manually
for relatively simple classes.

Chapter 11

[509]

The javax.persistence.criteria package contains the main elements of the
Criteria API including CriteriaBuilder, CriteriaQuery, Expression, From, Root,
and Join.

The package javax.persistence.metamodel contains interfaces and one annotation
that defines a meta-model for a persistence capable object. You will find interfaces
such as Attribute, BasicType, and EntityType, and there is one annotation,
StaticMetamodel. Most of the time you will use the JPA provider's annotation
processor to build these meta-models. It is rare to write meta-models by hand.

Let's revisit another version of the Employee entity class. Here is the definition for it:

@Entity
public class Employee {
 @Id @Column(name = "EMP_ID") private int id;
 @Column(name = "FIRST_NAME") private String firstName;
 @Column(name = "LAST_NAME") private String lastName;
 privateBigDecimal salary;
 @Column(name = "DAILY_RATE")
 privateBigDecimaldailyRate;

 @ManyToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "TAX_CODE_ID")
 privateTaxCodetaxCode;

 @ManyToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "REGION_ID")
 private Region region;
 // ... omitted
}

We added the following fields: the daily pay rate for contractors, and the annual
salary for an employee, director, or other staff member.

The TaxCode and Region entities are very straightforward entities with just a
primary key column with a nomination: TAX_CODE_ID or REGION_ID with NAME. A
tax code has many employees and zero or more employees share a region too.

If we wanted to find all of the employees who earned greater than or equal to a
certain high salary, we could write the following JPQL:

SELECT e FROM Employee e WHERE e.salary>= 50000

Advanced Topics in Persistence

[510]

On the other hand we can write a criteria API statement to build the query
dynamically in Java. Here is a code snippet of a test that highlights the task:

@RunWith(Arquillian.class)
public class EmployeeCriteriaQueryTest {
 /* ... omitted imports ... */
 @PersistenceContext em;

 @Test
 public void shouldExecuteCriteriaQuery() {
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaQuery<Employee> c =
 builder.createQuery(Employee.class);
 Root<Employee> p = c.from(Employee.class);
 Predicate condition = builder.ge(
 p.get(Employee_.salary), new BigDecimal("50000"));
 c.where(condition);
 TypedQuery<Employee> q = em.createQuery(c);
 List<Employee> result = q.getResultList();
 assertEquals(NUM_DIRECTORS, result.size());
 }
}

First, we retrieve a CriteriaBuilder from the entity manger. Next, we build a
parameterized CriteriaQuery instance, which is the entry point in the meta-model
of the query. Every criteria query requires a root object instance that represents the
result set class, which is the meaning of from() call on the builder. At this juncture,
we have semantically built the equivalent of the JPQL statement SELECT e FROM
Employee e.

We then create a Predicate object to serve as a condition to the CriteriaQuery
instance. The predicate is built from javax.persistence.Path references to either a
single attribute or another compound path. These Path references are associated with
a literal value, the BigDecimal, or combined together in either a unary or binary
expression operation. See the CriteriaBuilder.ge() method, which is the greater
than or equal to operator. Remember, we build the expression equivalent in Java.

It certainly helps to see the manually built static meta-model class Employee_. Yes,
that is the class name with the appended underscore character.

@StaticMetamodel(Employee.class)
public class Employee_ {
 static SingularAttribute<Employee, Integer> employeeId;
 static SingularAttribute<Employee, String> firstName;
 static SingularAttribute<Employee, String> lastName;

Chapter 11

[511]

 static SingularAttribute<Employee, BigDecimal> salary;
 static SingularAttribute<Employee, BigDecimal> dailyRate;
 static SingularAttribute<Employee, TaxCode> taxCode;
 static SingularAttribute<Employee, Region> region;
}

We annotate the Employee_ entity with @StaticMetamodel in order to define the
static meta-model for the corresponding Employee entity. We do this for the benefit of
Criteria API queries. The doubly parameterized type SingularAttribute represents
a single value field or properties of the entity, mapped super-class, or embedded class
javax.persistence.metamodel package. The attribute is a Path element.

There are other classes (CollectionAttribute, ListAttribute, SetAttribute, and
MapAttribute and associated Java collection instances) that stand for one-to-many
and many-to-many relationships on fields and properties. These attributes are types
of PluralAttribute also in the same package. It is now clear how an annotation
processor handles most of this boiler code for us with tens and perhaps hundreds of
Java Persistence entities!

The biggest benefit of the Criteria API is that we can dynamically build our filters in
Java programming depending on the user input. We can add additional predicates
or remove them. We can combine them in additional ways. JPA thus allows the
application developer to write dynamic search operations in the natural language of
the user. These operators hide the technical detail of piecing together a set of functions.

This final piece of code depicts the combinatorial search for the optional the first and
last names.

public void advancedSearch(
 String firstName, String lastName)
{
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaQuery<Employee> c =
 builder.createQuery(Employee.class);
 Root<Employee> p = c.from(Employee.class);
 List<Predicate> predicates = new ArrayList<>();
 if (firstName != null) {
 predicates.add(
 builder.like(p.get(Employee_.firstName),
 firstName));
 }
 if (lastName != null) {

Advanced Topics in Persistence

[512]

 predicates.add(
 builder.like(p.get(Employee_.lastName),
 lastName));
 }
 c.where(predicates.toArray(new Predicate[]{}));
 TypedQuery<Employee> q = em.createQuery(c);
 List<Employee> result = q.getResultList();
 // Do some real work here!
}

In the advancedSearch() method, we create a list collection of predicate elements.
Depending on the count of method parameters, it accept 0, 1, or 2 predicates that are
the equivalent of WHERE firstNameLIKE :f or WHERE lastNAME LIKE :n. We bind
these sub filters together with the where() method on the CriteriaQuery method,
which effectively performs the same as the AND operator.

We've covered JPA 2.0, so and now we shall look at the new bulk update and delete
features in JPA 2.1.

CriteriaUpdate
JPA now supports bulk updates in the Criteria API. There is a new interface,
CriteriaUpdate, that is obtainable from the entity manager. This interface has
a number of overloaded set() methods, which accept the SingularAttribute
or Path instance. In other words, CriteriaUpdate is almost the same as a
CriteriaQuery, but with the ability to update the entity, mapped supper-classes, or
embedded classes; and it does so through the static meta-model.

With our employee record examples, suppose we want to change all the tax codes for
all staff that earn greater than or equal to 50,000 dollars per year; we can write this
JPQL statement:

UPDATE Employee e
 SET e.taxCode = TaxCode(504, 'Director')
 WHERE e.salary>= 50000

With the new CriteriaUpdate instance, we can write a unit test with a method that
performs the equivalent operation. Here is the test code:

public class EmployeeCriteriaUpdateTest
extends AbstractEmployeeCriteriaTest {
 /* ... */

 @Test
 public void shouldExecuteCriteriaUpdate() throws Exception {

Chapter 11

[513]

 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaUpdate<Employee> c =
 builder.createCriteriaUpdate(Employee.class);
 Root<Employee> p = c.from(Employee.class);
 Predicate condition = builder.ge(
 p.get(Employee_.salary), new BigDecimal("50000"));
 c.where(condition);
 TaxCode taxCode = new TaxCode(504, "Director");
 c.set(p.get(Employee_.taxCode), taxCode);
 utx.begin();
 Query query = em.createQuery(c);
 int rowsAffected = query.executeUpdate();
 assertTrue(rowsAffected> 0);
 utx.commit();
 }
}

Let's examine the Arquillian test EmployeeCriteriaDeleteTest in detail. In the
method shouldExecuteCriteriaUpdate(), we build the expression graph as
before with Predicate and then configure the filter of CriteriaUpdate by calling
the where() method with the Predicate instance. We then configure the meta-model
with the update expressions by invoking the CriteriaUpdate set() method. There
can be more than one update expression and therefore we can change multiple
properties in the entity at a single time.

As with all JPA updates that change the persistence unit, we retrieve the server
UserTransaction instance and join an existing transaction boundary or start one.
We create a JPA query from the CriteriaUpdate instance and then execute it. The
affected row's return value tells us if the JPA update was successful or not; at least
one row should have been updated for this test.

CriteriaDelete
Similarly to update entities in bulk, there are times when an application wants to
remove a collection of entities that fulfill a set of conditions. This is the purpose of
the CriteriaDelete interface, which is a new interface in JPA 2.1.

Incidentally, both CriteriaUpdate and CriteriaDelegate interfaces are direct
subclasses of a new JPA 2.1 interface, CommonAbstractCriteria. Incidentally,
the CriteriaQuery and Subquery interfaces have a common parent interface
AbstractQuery.

Advanced Topics in Persistence

[514]

Now let's suppose we want to remove all staff from the employee records, who earn
50,000 dollars per year or more. We can write a JPQL statement as follows:

DELETE FROM Employee e
 WHERE e.salary>= 50000
 AND e.taxCode = TaxCode(504, 'Director')

The CriteriaDelete interface only allows the target entity to be configured
with from() methods and defines a set of Predicate instances with overloaded
where() methods.

The equivalent code in Java to remove the entities is illustrated in the Arquillian test,
EmployeeCriteriaDeleteTest. Here is the code:

@RunWith(Arquillian.class)
public class EmployeeCriteriaDeleteTest
extends AbstractEmployeeCriteriaTest {
 /* ... */

 @Test
 public void shouldExecuteCriteriaDelete()
 throws Exception {
 assertNotNull(em);
 CriteriaBuilder builder = em.getCriteriaBuilder();
 CriteriaDelete<Employee> c =
 builder.createCriteriaDelete(Employee.class);
 Root<Employee> p = c.from(Employee.class);
 Predicate condition1 = builder.ge(
 p.get(Employee_.salary),
 new BigDecimal("50000"));
 Predicate condition2 = builder.equal(
 p.get(Employee_.taxCode),
 new TaxCode(504, "Director"));
 c.where(condition1, condition2);
 utx.begin();
 Query query = em.createQuery(c);
 int rowsAffected = query.executeUpdate();
 assertTrue(rowsAffected> 0);
 utx.commit();
 }
}

Chapter 11

[515]

As usual we obtain a CriteriaBuilder instance from the entity manager, but this
time we ask for a CriteriaDelete instance. We define the target entity by calling
from(). We create two conditions and apply these Predicate instances to the
CriteriaDelete instance. The where() method accepts a variable length number of
arguments, which is the AND operation in JPQL. This completes building the abstract
expression tree for the delete statement.

Since removal of entities effectively changes rows inside target database, we must
begin a transaction boundary before we execute the query using the entity manager.
Once again, we read the update count from the executeUpdate() call. There should
be at least one affected row in the test.

The Criteria API is a very useful part of Java Persistence for building dynamic
queries, and now it is possible write bulk updates and removals too.

Entity graphs
JPA fundamentally permits field and properties for persistence capable objects,
mapped superclasses and embedded classes, to be retrieved as FetchType.EAGER
or FetchType.LAZY. Just for the purposes of revision we shall note that FetchType.
LAZY is the default for @OneToMany and @ManyToMany associations; FetchType.EAGER
is the default for @OneToOne and @ManyToOne associations.

An entity graph is a template that is defined in the form of metadata or an object
created by the dynamic Entity Graph API, which captures the path and boundaries
for a query or operation. Another way of stating the definition is that an entity graph
is an application configurable fetch plan that instructs the JPA provider on how to
retrieve entities from the database server.

In computer science terms, a graph is a collection of nodes connected by
edges. Nodes are JPA entities and edges are the relationships between
entities. A sub graph is a smaller representation of connected nodes
derived from a graph. A sub graph is a set of nodes and partial edges
taken from the master graph.

JPA 2.1 introduces the notion of an entity graphs object, which can be an annotation
or programmatically created. Entity graphs can only be applied to a JPA query or
entity manager find() operations.

Advanced Topics in Persistence

[516]

There are three low-level classes to be aware of: EntityGraph, AttributeNode, and
Subgraph, which are found in the package javax.persistence.

Interface Description
Subgraph<T> Represents a sub graph of entities that are managed by

association. A sub-graph can contain further attributes and
sub-graphs.

EntityGraph<T> Holds the meta model of the fetch plan for an entity and the
attributes that will be retrieved eagerly, which can include
sub-graphs of further dependent entities.

AttributeNode<T> Represents the attribute of the entity graph, which may also
hold the map collection of sub-graph of entities.

An entity graph, however, can be defined with annotations: @NamedEntityGraph, @
NamedAttributeNode, and @NamedSubgraph. These correspond to the Java interfaces.

The following diagram illustrates the relationship between a graph and a subgraph:

A graph and a related sub-graph

Here are the key attributes for @NamedEntityGraph:

Attribute name Type Description Default
name String Specifies the name of

the entity graph
Empty

attributeNodes NamedAttribute-
Node []

Specifies an optional
list of attributes that
will be eagerly fetched
as part of this plan

Empty

Chapter 11

[517]

Attribute name Type Description Default
includeAllAttributes boolean If true then includes

all of the attributes of
the entity class without
explicitly listing them

false

subgraphs NamedSubgraph[] A list of sub-graphs
included in this fetch
plan

Empty

Here are the key attributes for @NamedEntityGraph:

Attribute name Type Description Default
value String Specifies the name of the

attribute that is eagerly
fetched

Required

subgraph String A reference to another
managed type (sub-
graph) which has its own
fetch plan definition

Empty

keySubgraph String For sub-graphs that
reference an association
java.util.Map type,
this attribute configures
the key into a collection

Empty

Here are the key attributes for @NamedSubgraph:

Attribute name Type Description Default
name String Specifies the name of

the sub-graph
Required

type Class The sub-graph type void.
class

attributeNodes NamedAttribute-
Node[]

Attributes of the sub-
graph

Empty

Advanced Topics in Persistence

[518]

Worked example of a fetch plan
We shall revisit the recording music business as our domain. The important entities,
as we have already seen, are the artist, concert event, and album. Suppose we throw
another domain object such as legally binding contracts into this mix. If every entity
was fetched eagerly then we could face the possibility of retrieving row upon row
from joined database tables in our little database. This would probably not be great
for efficiency in our web application, so I think that calls for a fetch plan!

Let's present our dependent entities first starting with the refactoring of the artist's
music event:

@Entity
@Table(name = "CONCERT_EVENT")
public class ConcertEvent {
 @Id @Column(name="CONCERT_EVENT_ID")
 protected long id;
 @Column(nullable=false, name="ARTIST_NAME")
 protected String name;
 @OneToOne(cascade = CascadeType.ALL)
 protectedEventTypeeventType;

 @ManyToOne(cascade = CascadeType.ALL)
 protected Artist artist;

 @OneToMany(cascade=CascadeType.ALL,
 fetch = FetchType.LAZY)
 protected List<Contract> contracts = new ArrayList<>();

 public ConcertEvent() {} /* ... */
}

The ConcertEvent entity is the top class in a hierarchy of different recording events
including theatre, revenue, and charity. This entity has a primary key id and a basic
name field. It has a many-to-one relationship to the artist. We add a new relation;
a concert can have many legal contracts. We explicitly hint to the JPA Provider to
retrieve contracts lazily with FetchType.LAZY.

For now, we only require one subclass of the concert event, namely:

@Entity
@Table(name="LIVE_EVENT")
@Inheritance
public class LiveEvent extends ConcertEvent{

Chapter 11

[519]

 @Size(min=3) protected String stadium;
 @Min(10) protected int capacity;

 publicLiveEvent() {} /* ... */
}

The LiveEvent entity is a direct sub class of ConcertEvent; note that we are using
the default mode of InheritanceType.SINGLE_TABLE. A live event, we assume,
takes place at a stadium and has a maximum capacity. Essentially, we refactored
this previous version of the LiveEvent entity by pulling up the members into the new
super class. It doesn't matter about the accuracy and precision of the domain model.

Let's define the Contract entity to associate with ConcertEvent:

@Entity
public class Contract {
 @Id @Column(name="CONTRACT_ID")
 private long id;
 private String title;
 @Lob private String document;

 @ManyToOne(cascade = CascadeType.ALL)
 @JoinColumn(nullable = false)
 privateConcertEventconcertEvent;

 public Contract() {} /* ... */
}

The field document is annotated with @Lob to denote it as capable of storing long-
binary objects. Since document is a String, then the database type is a CLOB for
storing character data.

We will create two fetch plans for retrieving the Artist and its dependent entities.
There are two situations; sometimes it is useful to retrieve just the essential basic
properties of artist with the event dependency and sometimes it is useful to retrieve
the Artist and ConcertEvent entities.

Here is a definition of Artist with the entity graph as annotations:

@NamedEntityGraphs(value = {
 @NamedEntityGraph(
 name="Artist.NoConcerts",
 attributeNodes={
 @NamedAttributeNode("name") }
),

Advanced Topics in Persistence

[520]

 @NamedEntityGraph(
 name="Artist.WithConcerts",
 attributeNodes={
 @NamedAttributeNode("name"),
 @NamedAttributeNode("events") }
),
})
@Entity
public class Artist {
 @Id @Column(name="ARTIST_ID")
 private long id;
 @Column(nullable=false, name="ARTIST_NAME")
 private String name;
 @OneToMany(mappedBy="artist",cascade = CascadeType.ALL)
 @MapKeyJoinColumn(name="EVENT_TYPE_ID")
 private Map<EventType, ConcertEvent> events = new HashMap<>();

 public Artist() {} /* ... */
}

The entity Artist is annotated with @NamedEntityGraphs. We declare two @
NamedEntityGraph annotations in an array. Each entity graph represents a fetch plan
for the JPA provider and must have a unique name across the persistence unit. The
fetch plan is attached to the entity that is being annotated and its dependent object
if a sub-graph is used. Each entity graph has an option set of @NamedAttributeNode
that identifies the field or properties of the entity that should be eagerly loaded by
the JPA provider.

In summary, the named entity graph Artist.NoConcert loads the artist without
retrieving the concert information. or in other words, the map collection of
ConcertEvent elements is lazily loaded. The named entity graph Artist.
WithConcerts informs the JPA provider to load the Artist and the collection of
ConvertEvent entities.

Fetch plans, therefore, allow the application to control the performance of querying
deeply dependent objects. Loading the concert data eagerly also entails loading the
sub types, which could also have other eagerly loaded dependent entities. However,
because the Contract association is FetchType.LAZY then it is not loaded by the first
query with the Artist.WithConcerts fetch plan. Here I am using a fetch plan and
entity graph synonymously.

Chapter 11

[521]

As usual, let's look at an Arquillian test that demonstrates the entity graph feature.
Here is the cut-down code for the class ArtistEntityGraphRetrievalTest:

@RunWith(Arquillian.class)
public class ArtistEntityGraphRetrievalTest {
 // ... code omitted
 @PersistenceContextEntityManager em;
 @Resource UserTransaction utx;

 @Test @InSequence(1)
 public void shouldSaveArtistWithAlbum() throws Exception{
 StringBuilder text = new StringBuilder();
 for (int j=0; j<256; ++j) {
 text.append((char)(65 + Math.random() * 26)); }
 Contract contract =
 new Contract(5150, "M and Ms", text.toString());
 EventType eventType =
 New EventType(808, "WORLD TOUR");
 Artist artist = new Artist(1002, "Lady Gaga");
 LiveEvent event = new LiveEvent(97502,
 "The Monster Ball Tour",
 eventType, artist, "Tokyo Dome", 55000);
 event.getContracts().add(contract);
 contract.setConcertEvent(event);
 artist.getEvents().put(eventType, event);

 utx.begin();
 em.persist(artist);
 utx.commit();

 Artist art2 = em.find(Artist.class, artist.getId());
 Utils.assertEqualMaps(
 art2.getEvents(), art2.getEvents());
 }

 // ...
}

Advanced Topics in Persistence

[522]

We create sample data with a recording artist and the dependent entities in the first
test method, shouldSaveArtistWithAlbum(). We take full advantage of Arquillian's
ability to execute test methods in a defined order with the annotation @InSequence,
which takes a single value to indicate the execution order; higher numbers are lower
priority. It allows us to write a test method that executes before the others for the
purpose of populating the database. This test, of course, runs against a real database.
I used MySQL.

We construct the Construct entity with a document that contains 256 random
characters. Imagine if this entity had a large dataset; retrieving every document for
each row in the database, indeed, would be suboptimal-I think you get the picture.
The remaining part of set up, builds the entities and connects them together. We
must ensure the relationships are correctly defined on the Java side for bidirectional
associations so that correspond to the entity relationships between the physical
database tables (or views).

Let's verify the operation of the first fetch graph with a test method:

private Artist getArtistWithEntityGraph(String entityGraph) {
 EntityGraph artistGraph = em.getEntityGraph(entityGraph);
 return (Artist) em.createQuery("Select a from Artist a")
 .setHint("javax.persistence.fetchgraph", artistGraph)
 .getResultList()
 .get(0);
}

@Test @InSequence(2)
public void shouldLoadArtistWithoutConcerts() throws Exception{
 Artist artist = getArtistWithEntityGraph(
 "Artist.NoConcerts");
 PersistenceUnitUtil util =
 em.getEntityManagerFactory()
 .getPersistenceUnitUtil();
 assertTrue(util.isLoaded(artist, "id"));
 assertTrue(util.isLoaded(artist, "name"));
 assertFalse(util.isLoaded(artist, "events"));
}

Chapter 11

[523]

The method getArtistWithEntityGraph() is a helper function to set the fetch
plan for the current entity manager. We ask the entity manager for a named
EntityGraph instance. At the same time, when we make a JPA query, we set a
hint on the Query instance with the javax.persistence.fetchgraph key special
and the EntityGraph value. The method chaining on the query makes this ever so
convenient; we execute it and retrieve a single result, which is the artist from the
earlier test method shouldSaveArtistWithAlbum().

The test method shouldLoadArtistWithoutConcerts() is also annotated
with @InSequence with a higher value. We make use of the refactored method
getArtistWithEntityGraph() in order to retrieve the Artist entity with a
known fetch plan. We retrieve the internal fetch plan of the entity manager from the
factory instance. There is a special utility class PersistenceUnitUtil, which has
some useful methods. The isLoaded() method checks if the entity has an attribute
fetched by the persistence context. The attribute is available to the application for
use, if this method returns true.

The entity graph Artist.NoConcerts applied to a query hints to the JPA provider to
load the artist and retrieve the id and name, but the events collection is not fetched.
This is the purpose of the test.

Let's look at the third test shouldLoadArtistWithConcerts(), which should be
straightforward to understand now:

@Test @InSequence(3)
public void shouldLoadArtistWithConcerts() throws Exception{
 PersistenceUnitUtil util =
 em.getEntityManagerFactory().getPersistenceUnitUtil();
 Artist artist =
 getArtistWithEntityGraph("Artist.WithConcerts");
 assertTrue(util.isLoaded(artist, "id"));
 assertTrue(util.isLoaded(artist, "name"));
 assertTrue(util.isLoaded(artist, "events"));
}

Advanced Topics in Persistence

[524]

The only difference between this test and the last one is the named entity graph and
the assertion. We shall do something very useful with sub-graphs or dependent
collection entities associated with the root entity.

The output of running entity graph Arquillian test

Let's expand our set of fetch plans, which are annotated to the Artist entity, by one
more method, @NamedEntityGraph.

@NamedEntityGraphs(value = {
 /* ... see previous ... */ ,
 @NamedEntityGraph(
 name="Artist.WithConcertsAndContracts",
 attributeNodes={
 @NamedAttributeNode("name"),
 @NamedAttributeNode(
 value = "events",
 subgraph = "specialEvents"),
 },

Chapter 11

[525]

 subgraphs = {
 @NamedSubgraph(
 name="specialEvents",
 attributeNodes={
 @NamedAttributeNode("name"),
 @NamedAttributeNode("contracts"),
 }
),
 }
),
})

Here in this entity graph, named Artist.WithConcertsAndContracts, we want
to eagerly retrieve the concert events and also the contracts. If you remember, the
contracts field was annotated as FetchType.LAZY, so we strongly hint the JPA
provider to override the default fetch plan to this association between a ConcertType
and Contract entities. In the fetch plan for the Artist entity, we associate a named
sub-graph called specialEvents with the named attribute node, events. This
ensures that the JPA provider eagerly fetches the ConcertType map collection.

We define a @NameSubgraph called specialEvents, which configures the eager
loading of node attributes in the ConcertType entity. The named sub-graph eagerly
retrieves the name field and the contracts association.

Let's prove this fetch plan with a final Arquillian unit test.

@Test @InSequence(5)
public void shouldLoadArtistWithLiveConcertsAndContracts()
 throws Exception{
 PersistenceUnitUtilutil =
 em.getEntityManagerFactory().getPersistenceUnitUtil();
 Artist artist = getArtistWithEntityGraph(
 "Artist.WithConcertsAndContracts");
 ConcertEvent event = artist.getEvents()
 .values().iterator().next();
 assertTrue(util.isLoaded(event, "id"));
 assertTrue(util.isLoaded(event, "name"));
 assertTrue(util.isLoaded(event, "eventType"));
 assertTrue(util.isLoaded(event, "contracts"));
}

Advanced Topics in Persistence

[526]

In the test method shouldLoadArtistWithLiveConcertsAndContracts(),
we retrieve the recording artist with the entity graph Artist.
WithConcertsAndContracts. This time around, we retrieve the first concert event
from the collection, because we know it should be there. With the ConcertEvent
instance, we test that specific named attributes have been loaded. We expect the
contracts map collection to have been fetched.

Entity graph attribute versus the default fetch plan

Does the entity or sub graph attribute override an explicitly
coded lazy attribute? Yes, mappings for attributes of the
related entity can be overridden through a sub-graph. If the
attribute node is not supplied in the entity graph, then the
default or explicit setting for that attribute takes effect.

Fetch graphs are useful for merging an entity in the detached state with an incoming
persistence context. This concludes the subsection on the entity graphs.

Miscellaneous features
JPA 2.1 and Java EE 7 are such huge topics that it is impossible to give full credence
to every item in the specification, however here are some miscellaneous features,
which I think are well worth the pursuit. Let's start with custom JPQL functions.

Custom JPQL functions
Business applications that use a relational database have custom predefined SQL
functions, which are beyond the JPA standard. In JPA 2.1, the query language has
been extended to support invoking these custom functions, albeit your application is
locked to a database vendor's server and schema.

SELECT a FROM Artist a, Lawyer m
WHERE FUNCTION("ContractSignedOff", a.events, m.id)

Here is the JPQL example for the custom SQL function ContractSignedOff, which
is predefined, say in MySQL, and returns a result set of the Artist entities.

Chapter 11

[527]

Down-casting entities
This feature concerns inheritance hierarchies. If the JPA provider is asked to retrieve
a list of entities that are typed by a superclass U, then JPA will retrieve all entities
that are subclasses of U including any that match the type U. These are the twin
benefits of object class hierarchies and polymorphic queries. This is a very useful
feature of object-relational mapping, except for situations where you want to filter
conspicuously on attributes for certain sub-class entities.

Polymorphism is the ability, in a computer programming
language, to create a variable, function, or type that has more than
one form.

JPA 2.1 allows filtering on a specific subclass and the specific properties of the
subentity by downcasting to the subentity type. There is a new function in JPQL
called TREAT() that takes a class type.

Here is an example with the recording artist entities:

SELECT a.name, e.id, e.name
 FROM Artist a, ConcertEvent e
 JOIN TREAT(e AS LiveEvent) k
 WHERE k.capacity>= 10000 AND e.artist = a

The downcast allows us to access the subclass state of the ConcertEvent entity in
the FROM and WHERE clauses. The query searches for recording artists associated with
live concert events LiveEvent, which have a venue capacity greater than or equal to
10000 people.

We can filter or restrict based on multiple classes in the hierarchy. Here is an
example based on the business marketing user story from Chapter 5, Object Relational
Mapping with JPA:

SELECT m FROM Marketing m

WHERE
 (TREAT(m AS DirectMarketing).customerOrientation
 = "Television Adverts") OR
 (TREAT(m AS AgencyMarketing).agencyBudget > 250000)

This example retrieves data filter explicitly to the different sub-entity types of the
Marketing entity.

Advanced Topics in Persistence

[528]

Synchronization of persistence contexts
Applications written for JPA 2.1 can now create persistence contexts that are not
synchronized with an active JTA transaction. In the earlier specifications, the entity
managers and the persistence context were always automatically synchronized with
the transaction. After a transaction was committed, the persistence context would
write the affected entities to the database during the flush operation.

Sometimes in applications there were areas and situations where a JTA transaction
is neither required nor necessary. This would be the case in a web application with a
business function with a lot of operations going and where we want to delay the final
commit until we are ready. We have multiple transactions going in parallel elsewhere,
but this particular operation is unaffected until it joins the current transaction.

The annotation @PersistenceContext has a new attribute called synchronization.
Setting its value to SynchronizationType.UNSYNCHRONIZED gives us an
unsynchronized persistence context. The context will share the active JTA
transaction, but it will not be synchronized to it. The changes are only applied when
there is a call to EntityManager.joinTransaction().

Unsynchronized persistence context limits

There are limitations to unsynchronized persistence contexts. It is
definitely possible to invoke the usual entity manager calls persist(),
merge(), refresh(), and remove() calls in the thread context, but
other calls that depend on a current transaction will fail immediately.
The key to the unsynchronized persistence context is that an application
can make changes to the entities however it wants; all you do is call
joinTransaction(). By the way, a rollback() method causes all
the entities associated with the persistence context to be detached.

Entity listeners with CDI
Entity listeners are POJO associated with JPA entity that allows JPA provider lifecycle
events to be monitored on the target entity bean. Entity listeners have been around
since JPA 1.0. The annotation @EntityListeners registered a variable argument set
of POJOs against an entity. Life cycle events can be detected by adding an annotation
to the method in the listener. These life cycle annotations are @PrePersist, @
PostPersist, @PreUpdate, @PostUpdate, @PreRemove, and @PostRemove.

Chapter 11

[529]

In JPA 2.1, entity listeners are now compatible with Context Dependency and
Injection for the first time. So if your listeners also use CDI to inject other dependent
objects, then you are in business, as this example of logging services depicts:

public class EmployeeWatchDataLogger {
 @Inject CloudServiceBean logger;

 @PrePersist
 public void prePersist(Object object) {
 logger.log("prePersist", object);
 }

 @PostPersist
 public void postPersist(Object object){
 logger.log("postPersist", object);
 }

 @PostLoad void onPostLoad() { /* ... */ }
 @PreUpdate void onPreUpdate() { /* ... */ }
 @PostUpdate void onPostUpdate() { /* ... */ }
 @PreRemove void onPreRemove() { /* ... */ }
 @PostRemove void onPostRemove() { /* ... */ }

 // JPA 2.1
 @PostConstruct
 public void postConstruct(){
 logger.connect();
 }

 @PreDestroy
 public void preDestroy(){
 logger.disconnect();
 }
}

The entity listener EmployeeWatchDataLogger can be associated with the
appropriate entity Employee. Here is the code for that:

@Entity
@EntityListeners(value={EmployeeWatchDataLogger.class})
public class Employee { /* ... */ }

Advanced Topics in Persistence

[530]

Native query constructor mapping
There is another new annotation called @ConstructorResult in JPA 2.1 that maps
results to detached entities or non-entities. We can define a native query, which
performs a SQL statement and specifies an additional argument of the SQL Result
Set Mapping that is able to transform the result set into an object.

Let's suppose we want to find the association between employees and departments.
Here is the code snippet that creates a native SQL to retrieve those results:

Query q = em.createNativeQuery(
"SELECT e.id, e.lastName, e.firstName, d.name as dept" +
"FROM Employee e, Department d " +
"WHERE e.department = d",
 "EmployeeDeptProjection");

In order to be of use, we define a named @SQLResultSetMapping as
EmployeeDeptProjection, which instructs the JPA provider to make association
between to relevant detached entity or non-entity.

@SqlResultSetMapping(
name="EmpoyeeDeptProjection",
 classes={
 @ConstructorResult(
 targetClass=EmployeeDepartProjection.class,
 columns={
 @ColumnResult(name="id"),
 @ColumnResult(name="lastName"),
 @ColumnResult(name="firstName"),
 @ColumnResult(name="dept")
 }
)
 }
)
class EmployeeDepartProjection {
 public void EmployeeDepartProjection(String id,
 String lm, String fm, String d) { /*... */ }
 /* ... */
}

Chapter 11

[531]

JPA 2.1 provides a new @ConstructorResult annotation, which defines the target
class for the entity and constructor argument. The @ColumnResult annotations map
the result set columns to the constructor arguments, which must be in the order that
they are specified in the Java code. The target class for @ConstructorResult for this
example is a non-entity, but it can be an entity class too, in which the JPA provider
creates a detached instance.

It is interesting to note that @SQLResultSetMapping accepts classes of
@ConstructorResult. Also SQLResultSetMapping references can also be
utilized in JPA stored procedure queries.

This is as far as we will go with JPA advanced topics for this book. Let's conclude
what we have learnt in this chapter.

Summary
In this chapter, we covered the advanced areas of JPA, which are usually a necessity
in professional software development. Certainly, there are many institutions that rely
on stored procedures, and so we learnt how JPA 2.1 could invoke those predefined
functions and retrieve a result set as an entity or non-entity. We saw how to supply
Parameter.Mode for those procedure parameters , which have input and output
modes: IN, OUT, INOUT, or REF_CURSOR.

We can now write entity associations that are a type of java.util.Map. The
annotation that helps us is @MapKey. There are variants such as @MayKeyColumn
and @MapKeyJoinColumn that gives us, the application developer, more control of
object-relational mapping.

We journeyed onwards to Criteria API and bulk updates and deletes. This is a new
feature of JPA 2.1. On this path of performance efficiency, we saw how entity graphs
allow us to control entities and how their dependent sub-graphs of entities can be
fetched. Finally, we reviewed miscellaneous updates to the specification including
the downcasting of super entities to sub-entities in inheritance relationships.

The final chapter of this book will look to the future: Java EE 8 and cloud computing.
I encourage you to go online, download the Online Chapter, Moving Java EE.next
to the Cloud from the link http://www.packtpub.com/sites/default/files/
downloads/7942EN_Chapter_12_Moving_Java_EE_next_to_the_cloud.pdf.

Java EE 7 Platform
This appendix covers the Java EE 7 platform, which was released to the world on
Wednesday, June 12, 2013. In Chapter 1, Java EE 7 HTML5 Productivity, you will find
an introduction to the overall architecture.

Platform containers
Fundamentally, the Java EE 7 platform contains three containers: Enterprise Java
Beans (EJB) in Chapter 3, Enterprise Java Beans, Context and Dependency Injection
(CDI) in Chapter 2, Context and Dependency Injection and Servlet in Chapter 6, Java
Servlets and Asynchronous Request-Response.

The EJB container manages endpoints, EJBs, which by default support transactions,
concurrency, and remoting. EJBs do not have a contextual scope. Stateful EJBs
share a one-to-one relationship with the EJB client. Stateless EJBs may be shared by
magnitude orders of clients simultaneously in a pool of instances.

The CDI container manages the POJOs with a contextual scope; these managed beans
have a scoped life cycle and may or may not be communication service endpoints.
CDI managed beans can be conversational. They can be made transactional with
the JTA 1.2 @Transactional annotation. They can also have concurrency and
asynchronous behavior through careful application of the Concurrency Utilities API.

The Servlet container manages the lifecycle of specific types of beans: Servlet,
ServletFilter, ContextListener, HttpSessionListener, and other web
container listeners. The servlet container is also responsible for dynamic content such
as JSP, JSF, and other types of templates.

Java EE 7 Platform

[534]

Dependency Injection (DI) is type safe, because the information is available
on the Java interface or object is available to the Java compiler. DI is available
across the Java EE 7 containers. In fact, all specifications are explicitly updated
to rely on annotations and dependency injection, and a developer should rely on
Configuration over Configuration as the preferred method to build applications.

Resource Injection (RI) is not type safe because databases, messaging endpoints,
and managed executors are injected by name. In Java EE 7, these resources must
be administratively created. Because the type information is unavailable, there
is no way for the Java compiler to create and verify references by name through
annotations (or XML descriptors).

Let's summarize this advice on dependency injection:

•	 Use @Inject annotation to inject local session beans and beans with
contextual scope from the CDI container.

•	 Use @EJB annotation for injecting references to remote session EJBs.

Global JNDI naming
Sometimes there really is no other choice but to rely on Java Naming and Directory
Interface (JNDI) to access a resource, bean, or connector through dependency
lookup. The Java EE 7 container generates a global JNDI name for enterprise
endpoints such as stateless and singleton session beans. The standard enforces the
following scheme:

java:global[/<app-name>]/<module-name>/<bean-name>#<fully-qualified-
interface-name>

We can, therefore, reliably access every deployed session bean portably across
application servers.

Packaging
Java EE 7 application servers expect user software to be packed into a JAR, WAR,
EAR, or RAR file. These are all fundamentally ZIP archives.

Java Archive (JAR) files contain EJB modules and CDI Managed Beans with
optional class path resources. The JAR file is the standard packaging of Java classes.
EJB modules may optionally have an associated XML deployment descriptor
(/META-INF/ejb-jar.xml).

Appendix A

[535]

Web Archive (WAR) files contain web applications. A WAR file contains special
markup language HTML files, dynamic content files in the JSP or JSF form or other
presentation templates, a web XML deployment descriptor (/WEB-INF/web.xml),
Java classes with optional resources. The web deployment descriptor configures the
context root of the application, servlets, filters, listeners, and resources such as JMS
destinations, managed executors, and database connections. Library archive files are
stored in the specific folder (WEB-INF/lib). Compiled Java classes have their own
reserved folder (/WEB-INF/classes).

Resource Adapter Archive (RAR) files are descriptors of XML files, Java classes, and
other objects specifically aimed for Java EE Connector Architecture applications. A
RAR file has a XML deployment descriptor (/META-INF/ra.xml).

Here is an example of a RAR file for JCA that stores data to the container's file system:

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/connector
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/connector_1_6.xsd"
 version="1.6">
 <display-name>File System Adapter</display-name>
 <vendor-name>JBoss</vendor-name>
 <eis-type>FileSystem</eis-type>
 <resourceadapter-version>1.0</resourceadapter-version>
 <resourceadapter>
 <resourceadapter-class>
 je7hb.jca.basic.DummyResourceAdapter
 </resourceadapter-class>
 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>
 je7hb.jca.basic.FSManagedConnectionFactory
 </managedconnectionfactory-class>
 <config-property>
 <config-property-name>
 FSRootFolder
 </config-property-name>
 <config-property-type>
 java.lang.String
 </config-property-type>

Java EE 7 Platform

[536]

 <config-property-value>
 /tmp/fstore
 </config-property-value>
 </config-property>
 <connectionfactory-interface>
 je7hb.jca.basic.FolderContextFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 je7hb.jca.basic.FolderContextFactoryImpl
 </connectionfactory-impl-class>
 <connection-interface>
 javax.naming.directory.DirContext
 </connection-interface>
 <connection-impl-class>
 je7hb.jca.basic.FSDirContext
 </connection-impl-class>
 </connection-definition>
 <transaction-support>NoTransaction
 </transaction-support>
 </outbound-resourceadapter>
 </resourceadapter>

Enterprise Archive (EAR) files contain one or more Java EE components, which can
be EJB or Web modules. They can also contain RAR modules. An EAR file typically
also has an associated XML deployment descriptor (/META-INF/application.xml).

Here is an example of an EAR file:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/application_6.xsd"
 version="7" >
 <application-name>post-trade-services</application-name>
 <initialize-in-order>true</initialize-in-order>
 <module>
 <web>
 <web-uri>ptsp-portal-web-2.1.0.war</web-uri>
 <context-root>ptsp-portal</context-root>
 </web>
 </module>
 <module>
 <ejb>ptsp-core-2.1.0.jar</ejb>
 <ejb>ptsp-services-2.1.4.jar</ejb>

Appendix A

[537]

 <ejb>ptsp-container-2.3.7.jar</ejb>
 <ejb>ptsp-valuations-2.1.2.jar</ejb>
 </module>
 <library-directory>lib</library-directory>
</application>

Bean XML configuration location
The file beans.xml configures CDI. An empty file is required in Java EE 6 in order
to trigger the CDI container to start scanning and processing annotations. In Java EE
7, CDI is on by default and you no longer need this explicit file, if you don't want
it. However, we recommend its usefulness for portability with older Java EE 6 and
third-party frameworks.

Developers should understand where to save the beans.xml file:

•	 Locate the file beans.xml in the /META-INF folder for EJB module, a library
jar, EJB jar, an application client jar, or RAR archive.

•	 Locate the file beans.xml in the /WEB-INF/classes folder for a web
application archive.

•	 Locate the file beans.xml on the JVM's class path if there is no obvious
file named beans.xml in the META-INF directory of any component.
(Unsurprisingly, we strongly recommend against choosing this option in a
Java EE application! For Java SE, though, this is perfectly fine.)

Persistence XML configuration location
The file persistence.xml defines the persistence unit for a Java EE application to
connect to a relational database. Normally, you find one file, which contains one
or two connectors to databases. Sometimes, however, there may be two or three
different persistent.xml files aimed at tackling complicated requirements in a
business enterprise with several persistence database choices (separate trade, order
management, and audit databases spring to our minds).

It is important for developers, to know exactly where to place the
persistent.xml file:

•	 Locate the persistence.xml in the /META-INF/ folder for an EJB jar,
a library jar or RAR file.

•	 Locate the persistence.xml in the /WEB-INF/classes/META-INF folder
for a web application.

Java EE 7 Platform

[538]

Upgrading to Java EE 7 from
J2EE versions
Java EE 7 is now an immense step up in productivity from the J2EE 1.4 specification,
yet there are many businesses out there still reliant on source code with legacy
practices. Java EE 7 strongly leans on the annotations, therefore we recommend your
business upgrades their Java SE environment to at least JDK 7. In February 2013,
Oracle Java SE 6 declared End-of-Life of public releases (http://www.oracle.com/
technetwork/java/eol-135779.html).

The serious actual effort of upgrading J2EE to Java EE is proportional to the number
of lines in your application, whether it is based at all Java SE 5 or better, using
generics, enumerations, and annotations. It depends on the interaction complexity in
your existing software. The task can be straightforward, lasting several careful, agile
development iterations, but it equally can be very tough to upgrade your software.
Upgrading from J2EE in the future is set to get even harder, especially when the next
standard, which is aimed at Moving to the Cloud, comes aboard. Our advice is simply
to upgrade sooner rather than later.

Here are a few tips to help the architectural team along with this upgrade:

•	 Please test and test continuously: Write lots of full encompassing unit and
integration test suites, if you do not have them. Ensure your application is
running against a continuous integration server like Jenkins, Hudson, or
Atlassian's Bamboo.

•	 Prefer annotations to XML configuration: Refactor your old stateless and
stateful session EJB to annotated @java.ejb.Stateless and @java.ejb.
Stateful. Replace singleton beans that utilize proprietary application server
APIs with the standard @java.ejb.Singleton beans.

•	 Prefer DI: Use the full power of strongly typed dependency injection. Prefer
to inject dependencies in EJB with CDI @javax.annotation.Inject and
replace those older JNDI lookup service codes. Prefer Resource Injection for
database connections, JMS destinations, and concurrency executors with
@Resource injection.

•	 Simplify transaction declarations: Replace and remove declarations for
container manager transactions, because they are implied in EJBs.

•	 Remove older EJB Remote and Home Java interfaces: Do this because they
are no longer required in Java EE 7. We assume that you have tests!

Appendix A

[539]

•	 Take care of J2EE Entity Beans: Examine cases where J2EE entity beans
are being used very carefully. Refactor them into JPA entity beans in the
Entity Control Boundary (see Chapter 1, Java EE 7 HTML5 Productivity)
pattern. Move the business logic surrounding the older entity beans into the
appropriate architectural layers.

•	 Clean up XML deployment descriptors: Prefer the recent Java EE
ease-of-development feature: Convention-Over-Configuration. Delete
extraneous and unnecessary XML configuration where appropriate.

•	 Upgrade messaging: Upgrade your Message Driven Beans with annotations
to use JMS 2.0. Many enterprises send messages asynchronously; upgrade
those senders to annotations around JMS 2.0.

•	 Review the upgrade: Review the lifecycle of endpoints, consider the
impact of management for session beans, remoting, transaction handling,
concurrency, and state management.

•	 Prefer Java EE 7 asynchronous feature: Upgrade the application parts that
rely on proprietary application server's asynchronous and concurrency
features; see if you can replace them with the Java EE 7 platform standard.
Pour over the Concurrency Utilities and @Asynchronous methods in EJB.

These tips should help you get over the curve to a fully working, tested, and
ingrained Java EE 7 application. Only then should your architects decide on
approaching new features: CDI, JAX-RS, and WebSocket.

Golden rule of performance and migration: Test before, test
afterwards, and measure the difference between the results.

Legacy application programming interfaces
CORBA and Object Request Broker is a technology designed in the late 1990s into the
millennium, which provided inter process communication over distributed systems.
This standard of communication is still maintained by the Object Management
Group. IIOP systems can be implemented in any language such as Java, C++, or C#.
RMI is the Java implementation over this protocol.

The full specification of Java EE 7 permits the removal requirement for supporting
EJB. CMP (Container Managed Persistence), BMP (Bean Managed Persistence),
JAX-RPC, deployment API instead are made optional. Support, therefore, for
CORBA, is now optional for application server products.

Java EE 7 Platform

[540]

The following table lists the other older technologies that are supported or are
optional in the Java EE 7 standard:

Name Description
RMI-IIOP Remote Method Invocation over Internet Inter-ORB protocol is a

framework designed to support interaction of abstract protocols of object
request brokers, specifically with legal CORBA services.

Java IDL Java Interface Definition Language is a component service and tooling
that permits Java EE application components to invoke CORBA objects.
The functionality is closely associated with RMI-IIOP. Java applications,
therefore, can act as bonafide clients of CORBA services. Only legacy
Java EE application may require this service.

JAF JavaBean Activation Framework is an extension support framework. It is
designed to allow developers to write code that handles data in different
MIME types. JAF is extensively used by the JavaMail API

JAAS Java Authentication and Authorization Service is part of the Java SE;
some Java EE 7 application server products may elect to use it as a
security feature.

JAXP Java API for XML Parsing, a framework for using SAX and DOM XML
parsers in Java.

STAX Streaming API for XML, a framework for processing and parsing XML
documents using a stream pipeline of input to output, which can be very
efficient for large data sets.

GlassFish 4 reference implementation
GlassFish 4 is the reference implementation of the Java EE 7 specification and as such
has fully working implementations of the individual standards. It contains an EJB
and Servlet container. GlassFish utilizes the JBoss Weld container for CDI bean types.
At the time of writing, the newly revamped website http://glassfish.java.net/
contains many resources for Java EE 7 developers including documentation, PDF
files, videos from the Developer Days conferences, and mailing list links.

In the next section we will set up the GlassFish for MySQL on a local workstation.

Appendix A

[541]

Installing basic GlassFish
Download the latest version from the website as a ZIP archive. Unzip into a folder
of your choice. You will see the following structure, depending on your Windows or
Mac or UNIX preference:

drwxr-xr-x 8 tomanderson wheel 272 31 May 02:47 bin/
drwxr-xr-x 11 tomanderson wheel 374 31 May 02:47 glassfish/
drwxr-xr-x 9 tomanderson wheel 306 31 May 03:38 javadb/
drwxr-xr-x 5 tomanderson wheel 170 31 May 03:39 mq/
drwxr-xr-x 4 tomanderson wheel 136 31 May 03:38 pkg/

The bin folder contains the important utility command asadmin (or asadmin.bat).
You can start GlassFish by executing the following command:

asadmin start-domain --verbose

This launches GlassFish with a default server in a non-clustered environment with
an initial domain (glassfish/domains/domain1). Domains are a way to cluster
servers in a managed configuration and further information about them can be found
in the GlassFish resources, outside of this book. The --verbose argument is useful
for watching debuggable output from the standard output.

You can stop the server at any time with Control-C shortcut in the terminal
window. A more elegant approach would be to stop the server from another
terminal window. Here is the syntax of this:

asadmin stop-domain

Stop and start the server and with your favorite web browser surf to your machine's
http://localhost:8080/, which is the default port number for GlassFish. There is
an administration console that allows configuration at http://localhost:4848/.
The default username is admin and there is no default password.

It is possible to secure the server by changing the default password with the
following administration command. Here it is:

asadmin change-admin-password

Enter the default password, which is empty, and type the brand new one.
For secure access outside of the local machine, you will also need to allow
secure administration. Here is that command:

asadmin enable-secure-admin

Java EE 7 Platform

[542]

Configuring MySQL database access
Installing MySQL access in GlassFish first requires the JDBC driver
mysql-connector-java-5.1.25-bin.jar being copied to the glassfish/lib
folder. Restart the GlassFish server.

Afterwards, configure MySQL access through the administration console. The next
part assumes that you have already created a database schema in MySQL, set up the
login user, and applied privileges.

In the administration console, locate the JDBC resource on the left hand side pane
of the display page by navigating to Resources | JDBC | JDBC Connection Pool.
Create a brand new connection pool.

Enter the Pool Name as ArquillianPool (this field is required). Set the Resource
Type to javax.sql.DataSource, which is the non-distributed transactional local
resource. Set the Database Driver Vendor to MySQL. Click on the Next button to
continue to the next screen.

Apply the following setting in the Additional Properties page:

DatabaseName = arquillian
Password = arquillian
URL = jdbc:mysql://localhost:3306/Arquillian
User = arquillian

There are about 177 different database properties for MySQL driver, so take your
time to get the details correct.

Locate the JDBC resource on the left hand side pane of the display page:
Resources | JDBC | JDBC Resource. Create a brand new resource. Set the
Name as the JNDI lookup destination: jdbc/arquillian. This name is very
important because it must be the same as the Resource Injection reference in your
code: @Resource("/jdbc/Arquillian").

Appendix A

[543]

From the drop-down list for Pool Name, associate the resource with the JDBC
Connection Pool: ArquillianPool. Test your connection in the administration
console; it should be valid, and therefore usable.

Configuring command line
The same tasks can be completed at the command line using the administration
utility. It is also applicable to a shell script for automation. Here is the equivalent
command to create the JDBC Connection pool:

asadmin create-jdbc-connection-pool\

 --datasourceclassname \

Java EE 7 Platform

[544]

 com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource \

 --restype javax.sql.DataSource \

 --property User=arquillian:\

 Password=arquillian:\

 URL=jdbc:mysql://localhost:3306/arquillian

 ArquillianPool

Here is the equivalent command line to create the JDBC Resource:

asadmin create-jdbc-resource \

 --connectionpoolid ArquillianPool \

 jdbc/arquillian

Appendix A

[545]

Default resources
In line with the Java EE 7 specification, GlassFish defines a couple of default resources.
For database connectivity, there is a default Apache Derby database under the JNDI
name jdbc/__default. Developers can simply access this as a @PersistenceContext
for a JPA entity manager or a @DataSource JDBC reference in the code.

There is also a JMS 2.0 default connection factory under the JNDI name
jms/__defaultConnectionFactory. Applications can pull in this resource
with a simple @JMSContext annotation.

In should be noted that these default resources are simply for basic enterprise
applications, tutorials, and examples. They should not ever be used in a production
environment. No doubt serious enterprise applications will require more substantial
configurations beyond these couple of default resources.

Java EE 7 Persistence
This appendix covers miscellaneous topics on Java Persistence.

Persistence unit
The persistence.xml file is a simple XML deployment descriptor file that defines
a persistence unit. This file configures the name of the EntityManager service,
which manages a set of entity instances. The XML configuration also defines how
each EntityManager connects to the database. A persistence unit may declare one
or more uniquely named EntityManager instances.

The root element of the persistence.xml file is the persistence XML element and
it contains a set of persistence-unit XML complex elements.

Here is a simple declaration of persistence.xml for JPA 2.1:

<persistence version=""2.1""
 xmlns=""http://xmlns.jcp.org/xml/ns/persistence""
 xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""
 xsi:schemaLocation=""http://xmlns.jcp.org/xml/ns/persistence
 http://www.oracle.com/webfolder/technetwork/
 jsc/xml/ns/persistence/persistence_2_1.xsd"">

 <persistence-unit name=""trading""
 transaction-type=""JTA"">
 <jta-data-source>jdbc/trading</jta-data-source>
 </persistence-unit>	
 <persistence-unit name=""audit""
 transaction-type=""JTA"">
 <jta-data-source>jdbc/audit</jta-data-source>
 </persistence-unit>
</persistence>

Java EE 7 Persistence

[548]

The transaction-type XML element for a persistence unit can be either JTA or
RESOURCE_LOCAL. Specifying the values, JTA indicates that the entity manager
partakes in distributed transactions, whereas RESOURCE_LOCAL indicates that the
database transactions are just local to the particular application running in that
Java EE application server on this JVM.

The element jta-data-source defines a JTA data source configured in the application
server. The element non-data-source defines a non-JTA data source.

The element provider defines a particular persistence provider. Of course,
the necessary configuration must be applied to the application server, or it
should be supplied already by the product.

Here is an example of a persistence unit with both JPA properties and
vendor properties:

<persistence version=""2.1"" ...>
 <persistence-unit name=""ratings""
 transaction-type=""JTA"">
 <provider>org.hibernate.ejb.HibernatePersistence
 </provider>
 <non-jta-data-source>jdbc/rating</non-jta-data-source>
 <properties>
 <property name=""javax.persistence.schema-generation.
 database.action"" value=""create""/>
 <property name=""javax.persistence.schema-generation.
 scripts.action"" value=""drop-and-create""/>
 <property name=""javax.persistence.schema-generation.
 scripts.create-target"" value=""/tmp/create-sql.ddl""/>
 <property name=""javax.persistence.schema-generation.
 scripts.drop-target"" value=""/tests/drop-sql.ddl""/>
 <property name=""hibernate.flushMode""
 value=""FLUSH_AUTO"" />
 <property name=""hibernate.hbm2ddl.auto""
 value=""none"" />
 </properties>
 </persistence-unit>
</persistence>

The <properties> element is a container of <property> elements that configure a
name and value pair. In the preceding example, the standard properties are prefixed
with javax.persistence. The persistence provider is set to Hibernate JPA and
there are a couple of properties defined that are only relevant to that ORM solution,
namely hibernate.flushmode and hibernate.hbm2ddl.auto.

Appendic B

[549]

XML schema documents for Java EE 7
Oracle has reorganized the location of XML Schema Definitions for Java EE 7. All of
the schemas are in present in the link http://xmlns.jcp.org/xml/ns/javaee and
effectively they are under the auspices of the Java Community Process. For XML
validation of resources like persistence.xml, you can find more information on
exact XSD locations at http://www.oracle.com/webfolder/technetwork/jsc/
xml/ns/javaee/index.html.

Properties
JPA 2.1 specification defines a set of standard properties that allows the application
to optionally generate schemas or execute scripts in connection to the data source.
The <properties> element in the persistence.xml file specifies both standard
and vendor specific properties.

Here is a table of the JPA 2.1 properties; the property must be prefixed with javax.
persistence to complete the correct name:

Property Name Description
schema-generation.create-
script-source

Specifies the name of a pre-packaged application
script or a file that creates tables, views, or user
SQL functions.

schema-generation.drop-
script-source

Specifies the name of a pre-packaged application
script or a file that drops tables, views, or user
SQL functions.

schema-generation.sql-
load-script-source

Specifies the name of a pre-packaged application
script or a file that loads data into database tables.

schema-generation.
database.action

Informs the persistence provider how to generate
the schema for the persistence unit. The valid
values are none, create, drop-and-create,
and drop.

schema-generation.
scripts.action

Informs the persistence provider how to generate
scripts with Database Definition Language (DDL)
for the persistence unit. The valid values are none,
create, drop-and-create, and drop.

schema-generation.create-
source

Informs the persistence provider about the
ordering of processing during the startup of the
persistence unit regarding object-relational mapping
metadata, DDL script, or both. The valid values are
metadata, script, metadata-then-script,
or script-then-metadata.

Java EE 7 Persistence

[550]

Property Name Description
schema-generation.drop-
source

Informs the persistence provider about the
ordering of processing during the shutdown of
the persistence unit regarding object-relational
mapping metadata, DDL script, or both. The valid
values are metadata, script, metadata-then-
script, or script-then-metadata.

jdbc.driver Fully qualified name of the driver class
(Java SE only).

jdbc.url Driver specific URL (Java SE only).
jdbc.user Database connection username (Java SE only).
jdbc.password Database connection password (Java SE only).
lock.timeout Specifies a hint for pessimistic lock timeout

in milliseconds.
query.timeout Specifies a hint for query timeout in milliseconds.
validation.group.pre-
persist

Defines groups of entities that are targeted for
validation upon the pre-persist event.

validation.group.pre-
update

Defines groups of entities that are targeted for
validation upon the pre-update event.

validation.group.pre-
remove

Defines groups of entities that are targeted for
validation upon the pre-remove event.

XML representation of object-relational
mapping
As an alternative to annotations on entities, JPA supports object-relational mapping
from an XML. The file is called orm.xml that is located in the /META-INF folder of
the persistence unit. Developers can also explicitly name the XML mapping file
using the mapping-file element. The XML representation can be useful for third-
party library entities that predate annotation capabilities in Java SE 5 and where the
business has no control of the source code access.

Here is a persistence unit that illustrates the concept:

<persistence version=""2.1"" ... >
 <persistence-unit name=""legacyTrading""
 transaction-type=""JTA"">
 <jta-data-source>jdbc/legacyDB</jta-data-source>
 <mapping-file>my-orm.xml</mapping-file>
 <jar-file>LegacyTradeEntities.jar</jar-file>
 <class>com.fxtradelib.Trade.class</class>
 <class>com.fxtradelib.Order.class</class>
 <class>com.txtradelib.Counterpart.class</class>

Appendic B

[551]

 </persistence-unit>
</persistence>

The jar-file element indicates that the persistence provider also searches the
additional JAR file for managed persistence entities. The class element explicitly
identifies provider Java types that are entity classes, embeddable classes,
and mapped super classes.

JPA miscellaneous features
This section covers some advanced JPA 2.1 mapping features.

Converters
JPA 2.1 defines converters for translating data values from Java to database specific
values. Converters make it easy to write Java interpreters for special monetary values,
enumerated text values, and Boolean values. It is very common in business to have
different designations for Boolean in a production database. Some tables may have
text columns, say T, F or Y, N and others have integers 0 and 1.

Here is a converter that translates trade data in a database in order to determine if
the bank is buying or selling to and from a counterparty.

enum Direction { BUY, SELL }

@Converter
public class TradeDirectionConverter
 implements AttributeConverter<Direction,String>
{
 @Override
 public String convertToDatabaseColumn(Direction attribute) {
 switch (attribute) {
 case BUY: return ""P"";
 default: return ""S"";
 }
 }

 @Override
 public Direction convertToEntityAttribute(String dbData) {
 dbData = dbData.trim().toLowerCase();
 if (dbData.equals(""P""))
 return Direction.BUY;
 else
 return Direction.SELL;
 }
}

Java EE 7 Persistence

[552]

The convertor class TradeDirectionConverter extends the AttributeConverter
Java generic interface, new in JPA 2.1. The developer simply implements two methods
convertToEntityAttribute() and convertToDatabaseColumn() as the conversion
process is bidirectional.

We can apply this converter to the entities with the Direction type. Here is an
example of the converter in a foreign-exchange bank trade entity.

@Entity @Table(name = ""FXTRADE"")
public class ForexTrade {
 /* ... */
 @Convert(converter=TradeDirectionConverter.class)
 Direction direction;
 /* ... */
}

We explicitly declare the convertor with the @Convert annotation that references
the conversion class.

JPA 2.1 also allows converters to be applied globally across the entire domain.
To allow this, the converter must be annotated as @Converter(autoApply = true).
Global convertors do not require an entity to be explicitly annotated with @Convert
on the field or properties. These definitions, therefore, can be removed for
global converters.

A word of caution about JPA conversions: be careful with your JPQL
statements such that they reflect the Java side of the conversion. Take care
with native SQL query statements and mixing Java queries so that they
reflect the end result of data that is actually stored inside the database.

Native constructor results
It is possible to build a projection, which is a partial view of an entity having a
narrower collection of columns, with a JPQL statement using the syntax: SELECT
NEW. Unfortunately, in the previous specification, it was not possible to write
native SQL using JPA to build entities and non-entities.

Here is a JPQL query to view a financial banking trade as a non-entity:

SELECT NEW TradeView(t.id, t.book, t.tradeDate,
 t.settlementDate, t.amount, t.ccy)
FROM Counterparty c JOIN c.trades t
WHERE t.amount >= 250000 AND
 t.book = ""Exchange West"" AND t.ccy = ""USD""

Appendic B

[553]

In JPA 2.1 the new annotation @ConstructorResult is designed for native SQL
queries to build an entity or non-entity. The @ConstructorResult is combined
with the @ColumnResult to build a dynamic constructor argument list by type.

Here is an example of a native SQL query that creates a bond trade:

@NamedNativeQuery(
 name=""BondTradeView.findByAccountId"",
 query=""SELECT B.TRADE_ID, B.NOTIONAL, A.ACC_NAME, ""+
 ""A.CPTY_NAME FROM TRADE B, ACCOUNT A ""+
 ""WHERE B.TYPE=''BOND'' ""+
 ""AND B.ACC_ID = A.ACC_ID AND A.ACC = :ID "",
 resultSetMapping=""bondtradeview""
)
@SqlResultSetMapping(name=""bondtradeview"",
 classes={
 @ConstructorResult(targetClass=BondTradeView.class, columns={
 @ColumnResult(name=""TRADE_ID"", type=Integer.class),
 @ColumnResult(name=""NOTIONAL"", type=BigDecimal.class),
 @ColumnResult(name=""ACC_NAME"", type=String.class),
 @ColumnResult(name=""CPTY_NAME"", type=String.class)
 })
 }
)
public class BondTradeView {
 /* ... */
}

In order to use @ConstructorResult correctly, we must apply it to a SQL result set
mapping and also the named native query.

Transactions and concurrency
Persistence units encapsulate the object-relational mapping to the database.
This section is about how they encounter transactions, concurrency,
and multiple requests.

Java EE 7 Persistence

[554]

Entity managers
Here are some helpful rules about javax.ejb.EntityManager:

•	 Prefer to inject EntityManager as a dependency in a Java EE application.
Therefore, the application server takes care of its lifecycle and the
responsibility to close the persistence unit. Use @PersistenceContext.

•	 Do not cache or store in between requests: The EntityManager instance is
not thread-safe.

•	 The EntityManager instance manually retrieved from
EntityManagerFactory must be closed in a retrieval method
request for that particular state lest it goes out of scope, escapes,
and potentially becomes a memory leak.

•	 An EntityManager that represents a JTA data source must be associated
with a transaction by calling the joinTransaction() method. This is
particularly true in a Java EE 6 web container.

•	 Obtain UserTransaction through dependency injection and remember to
call begin() and end() to demarcate the transaction boundaries. The only
exceptions to this rule are persistence units that are explicitly bound with
Synchronization.UNSYNCHRONIZED.

•	 Do use EntityManagerFactory to look up the persistence context in a Java
SE application. The factory, definitely, is thread-safe.

•	 Do close the EntityManager instance with a final clause in Java SE application.
Sadly the interface cannot yet be made both AutoClosable with Java SE 7 and
also retrospectively compatible with Java SE 5 or 6.

Transactions, entity managers, and
session EJBs
Inside a Java EE environment, EntityManager is configured with a transaction
by default. It can either be PersistenceContextType.TRANSACTION or
PersistenceContextType.EXTENDED. The extended variety can only be
injected into stateful session EJBs.

Transactions are demarcated on session EJB methods, which by default are set for
TransactionAttribute.REQUIRED. Developers can explicitly annotate methods
with TranactionAttribute.SUPPORTS or TranactionAttribute.MANDATORY,
but this is normally unnecessary. In a Java EE application, a transaction-able
method in a session EJB will be associated with the EntityManager object
instance by default.

Appendic B

[555]

During operations in TRANSACTION mode, the application server will take
responsibility for transactions in this scenario. The entities attached to the
persistence unit are alive for the entire duration of the transaction. Once the
method ends normally (or abnormally) the transaction is completed. The entities
are detached from the persistence unit. When the entities are detached, then any
changes to them are not synchronized to a database.

Transactions associated with entity managers can survive through nested invocations
of other reference EJB calls, assuming that they permit and support transactions.
This is called Transaction Propagation. All JPA entities remain intact and attached
to the current entity manager.

Here is the table that summarizes the different cases of EntityManager for manual
operation, in a stateless and stateful session bean.

Modus Operandi Manual Creation Stateless Session
Bean

Stateful Session
Bean

EntityManager Thread-unsafe Thread-unsafe Thread-unsafe
EntityManagerFactory Thread-safe N/A N/A
Responsibility for releasing Developer must

close in a
final block

N/A N/A

Multiple thread capabilities
(concurrency access)

Developer takes
responsibility

EJB container and
application server
take control

EJB container is
in control

UserTransaction
association

Developer must
demarcate
manually and
also use @Inject
UserTransaction

Automatic with
dependency
injection (DI)

Automatic with
dependency
injection (DI)

What happens to
EntityManager after
the end of the current
transaction call?

Developer
must guarantee
EntityManager
is closed

Automatically
call close()
after the end
of transaction
method call

Automatic
closure for
TRANSACTION
mode or
continuation
of lifetime
EXTENDED
transaction mode

Lifetime of entities in the
current EntityManager

Developer decides
when to commit()
or rollback()

Entities are
detached after
the transaction
method call
completes

Remain attached
to the manager
until the EJB is
removed by caller

Java EE 7 Persistence

[556]

Modus Operandi Manual Creation Stateless Session
Bean

Stateful Session
Bean

Cascade of transaction
through EJB reference
(Transaction propagation)

N/A Yes (with internal
cache of entities)

Yes (with client
specific cache of
entities)

Domain objects or
detached entities serialized
from an EJB client

Entities must
be manually
merged with
EntityManager

Entities must
be manually
merged with
EntityManager

For EXTENDED
transaction mode,
entities are
never detached

The abbreviation N/A stands for Not Applicable.

EntityManager has methods that require an active transaction: persist(), merge(),
remove(), refresh(), and flush(). If there is no associated current transaction then
these methods will raise a TransactionRequiredException.

Stateful session beans
Stateful session beans are a special case of EntityManager when they are used in
the extended persistence unit situation PersistenceContextType.EXTENDED.
Entities remain attached and synchronized with the entity manager during
interactions between the caller and the EJB.

In a web application this 1:1 relationship requires some thought and logic as the
long-lived entities will stick around in a client specific cache of instances. In a long
conversation, this behavior may be problematic, because the managed entities are
not visible out of the transaction. The changes to the database are buffered inside
the entity manager. In order to get the changes reflected in the database, it may
be necessary to invoke the EntityManager.flush() method at certain intervals.
Of course, this will affect the ability to roll back to the beginning of the conversation
and could be the bane of Java database development: lost updates seen by
another user.

Because of the client specific cache of stateful session bean, we strongly recommend
avoiding concurrency access with the same caller.

The managed entities will be attached until the caller invokes the stateful session
bean's removal operation, which causes its dissociation from the caller and only
then will the entity manager synchronize instance with the database and then
detach the entities.

Appendic B

[557]

Concurrency access locks
JPA supports both optimistic and pessimistic locking facilities. By default, JPA
updates rows in a database table using optimistic locking.

Optimistic locking
Optimistic locking is a lenient strategy for dealing with concurrency access to shared
entities held by EntityManager. With this strategy, which tends to scale better than
pessimistic locking, the application can retrieve the data, make some changes to it,
and write it to the database. Data version validation is performed during the write
phase to the database.

To provide optimistic locking of entity in JPA, annotate a field or property with the @
Version constraint. Preferably use an integer field. Here is an example:

@Entity
@Inheritance
@DiscriminatorColumn(name=""TRADE_TYPE"")
@Table(name=""TRADE"")
public abstract class Trade {
 @Id private long id;
 @Version private long version;
 // ...
}

The persistence provider performs optimistic locking by comparing the value
of the @Version field in the entity instance with the VERSION column from the
database. Initially the provider reads the entity from the database and has a
record of the current version. Therefore, the provider knows that another
concurrent operation has successfully updated the entity when the values are
different. If there is a difference in value during the write phase, EntityManager
will raise an OptimisticLockException.

Adding this annotation on an integer value allows the provider to make a faster
check on an entity's version without having to check every single field or property
for equivalence. The persistence provider updates the @Version field or property
automatically. User code should not interfere with this arrangement.

Java EE 7 Persistence

[558]

Pessimistic locking
Sometimes there is a strong business requirement for strict locking of database rows.
JPA has support for pessimistic locking. An entity can be locked with a call to the
EntityManager.lock(), refresh(), or find() methods. There are different types
of locks available through the enumeration LockModeType including the default
optimistic. The enumerations are: NONE, OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT,
PESSIMISTIC_FORCE_INCREMENT, PESSIMISTIC_READ, PESSIMISTIC_WRITE, READ,
WRITE, and OPTIMISTIC_FORCE_INCREMENT.

The underlying database itself must support pessimistic locking. In order to achieve
pessimistic locking, the JPA providers take advantage of the database server features,
such as database row locks and sometimes extended native SQL language statements:
SELECT … FOR UPDATE.

Each of the LockModeType enumerations has a trade-off. It is interesting that there
are two types of pessimistic modes: reading and writing. Locking an entity with
a pessimistic query could lead to performance bottlenecks as it prevents other
concurrency operations from reading the particular row from the database.

Here is an example of a pessimistic write operation for a trade confirmation
operation:

@Stateless
public class TradeConfirmService {
 //...
 void confirmTrade(String tradeIdRef, String ref) {
 Query query = entityManager.createNamedQuery(
 ""Trade.findTradeByIdRef"")
 .setParameter(""id"", tradeIdRef);
 List<Trade> trades = query.getResultList();
 Trade trade = trades.get(0);
 em.refresh(trade, PESSIMISTIC_WRITE);
 trade.setConfirmFlag(true);
 trade.setTraderConfirmRef(ref);
 em.flush(); // optional
 }
}

A trade is retrieved optimistically using a named query. It is pessimistically locked
for the write operation with the refresh() call on the entity manager. New values
are set on the trade instance and EntityManager is flushed to update the database.

Java EE 7 Transactions
This appendix covers miscellaneous topics on Java EE 7 transactions.

Transactions
Java EE 7 supports transactions, which are a group of important operations,
commands, or behaviors that are executed as a unit of work. A true transaction must
follow the ACID principles: Atomic, Consistent, Isolated, and Durable. In Java EE 7,
behaviors involved in a transaction may be synchronous or asynchronous, and they
involve persisting entities to a database with JPA, sending or receiving messages
using JMS, sending content over the network, invoking EJBs, and can even include
other external systems.

These are the ACID principles of transactions:

Term Description
Atomicity Atomicity declares a unit of work in a transaction with a set of

sequential or parallel operations. It stipulates that either all operations
are successfully performed or none of them. A transaction can commit
or roll back. (do all or nothing)

Consistency Consistency states that at the conclusion of the transaction, the data is
left in an expected and required state. The database is not broken
or invalidated with false constraints or half-baked information.
(integrity of data and system)

Isolation Isolation states that changes in the processing of the current transaction
are not visible to the outside environment, processes, or another
concurrent transaction running. (lack of interference)

Durable A transaction is durable when it completes through a commit action
that makes the change completely visible to other applications and the
outside world. (physical write of data to storage)

Java EE 7 Transactions

[560]

Java EE 7 meets the requirements for ACID transactions. Enterprise Java Beans are
transactional by default. CDI managed beans can be uplifted into ACID transactions
with the application of the annotation @javax.transaction.Transactional.

Java Transaction API
Java Transaction API (JTA) is the cornerstone of all Java EE transactions. JTA
looks after local and distributed transactions. Non-JTA transactions are a matter for
standalone Java SE applications. The popular confusion abounds when developers
are configuring persistence unit facilities for the first time (the persistence.xml
files). The XML element jta-data-source is used in Java EE and non-jta-data-
source for Java SE.

Two-phase commit transactions
Relational databases generally have an internal component called a Two-Phase
Commit Transaction Manager (2PC) to ensure ACID principles. The two-phase
commit is a protocol, which is based on resource managers, veto authorities,
and acknowledgements, and takes place at the end of a transaction. The JTA
specification refers to a XA (Extended Architecture) transaction manager and
its participant resources.

The first phase in 2PC is called the prepare command. It consists of a transaction
manager communicating with resources through the protocol with the notification
that a commit is about to be issued. A resource has a chance to declare whether it
can fulfill committing the transaction or not. If it can, the resource prepares the
work to save the data and acknowledges with a prepared response, otherwise it
vetoes the protocol, which effectively rolls the entire transaction back.

The second phase in 2PC only proceeds once all resources have given their unanimous
consent. The transaction manager then sends a commit command to the resources.
Each resource applies the changes to the database. This is usually a short error-free
operation and afterwards the resource acknowledges with a final commit-done
command to the transaction manager.

Appendix C

[561]

Heuristic failures
Sometimes issues will occur in 2PC transactions, and usually they occur in the
second phase of commit. One or more resources will actually fail to save the data
changes to the database leaving it in an inconsistent state. Heuristic failures are
the result of network outages, power failures, hardware failures such as disk I/O
error, or other extremes that sometimes go wrong in any data center anywhere
in the world. The JTA manager will raise an unwelcome javax.transaction.
HeuristicMixedException. At the worst case scenario, you might even achieve a
HeuristicRolledBackException. Heuristics are not recovered automatically and
sadly they necessitate a replay of a database server's transaction log if and when
these vendor features are enabled on production! The following diagram gives an
example of the sequence of actions taking place in the transaction activity:

Java EE 7 Transactions

[562]

Local transactions
A transaction is deemed local when it is working with resources, which are co-
located within a running JVM and the application server. A local transaction involves
no distributed resources.

A local transaction can be either non-XA or XA transaction on the Java EE 7 platform.
A non-XA local transaction takes place with standard JDBC or JPA environment
without involvement of a 2PC XA transaction manager. A XA local transaction is one
that takes place within the remit of a 2PC XA transaction manager.

Some application servers such as JBoss WildFly are able to optimize a single non-XA
local transaction so that they participate in a set of XA resources in a 2PC transaction.
The optimization is called last non-XA resource commit.

Distributed transactions
A transaction is deemed distributed when it is executed across different JVMs and
operating system process boundaries, and across the network. Because of the JTA
specification, the EJB and CDI containers can participate in distributed transaction
with other containers and third-party XA resources like database servers. A
distributed transaction can span a cluster of application servers running on JVMs
that may or may not be on the same machine or co-located across hardware racks in
a remote data center.

Transaction services
JTA provides transaction support to EJB and now in Java EE 7 to CDI managed beans
annotated with @Transactional. The EJB specification provides declarative services
to session and singleton beans. In the EJB container, the transactions are either
Container-Managed Transactions (CMT) or Bean-Managed Transactions (BMT).

Container-Managed Transactions (CMT)
Container-Managed Transactions are normally annotated on EJBs with
the declaration @javax.ejb.TransactionAttribute. This annotation can
be applied to the type or to individual methods. It accepts a @javax.ejb.
TransactionAttributeType enumeration value.

For CDI managed beans the JTA 1.2 specification provides a brand new annotation
@javax.transactional.Transactional, to elevate ordinary POJOs into the
transactional instances. The annotation accepts a nested enumerated class @javax.
transactional.Transactional.TxType as a value.

Appendix C

[563]

Transaction demarcation in the older J2EE specification was outlined in an XML
deployment descriptor (/META-INF/ejb-jar.xml) as part of the EJB module. It is
still possible to override annotated EJBs with customized transaction service and
using XML.

We now outline the CMT services available in Java EE 7 in the following table:

TransactionAttribute or TxType Description
REQUIRED The container or interceptor creates a new transaction

upon entering the target method, if there is no
existing transaction already. Upon completion of the
target method, it commits the transaction. This is the
default transaction attribute value.

REQUIRES_NEW The container or interceptor always creates a
new transaction before entering the target method.
Upon completion it commits the transaction.

MANDATORY The container or interceptor expects an
existing transaction to be already in effect
before entering the method. If this is not the
case, the EJB container raises an exception
EJBTransactionRequired or CDI interceptor
throws a TransactionalException exception
with nested TransactionRequiredException.

SUPPORTS The container or interceptor effectively performs
no special operations because the target method is
invariant to the existence of a current transaction. If a
transaction exists, then the target method is invoked
in a transactional scope. Otherwise it is invoked
without a transaction context. On return from the
target method, any preceding transaction context
will remain in effect.

NOT_SUPPORTED The container or interceptor disassociates any
transaction context, if it exists, before calling
the target method. Upon return from the target
method, any proceeding transaction context is
re-associated with the thread context,
which preserves consistency to those operations.

NEVER The container or interceptor will only execute
the target if there is no associated and existing
transaction context. If there is a transaction
context, then the EJB container will raise
EJBException or the CDI interceptor throws
a TransactionalException with nested
InvalidTransactionException.

Java EE 7 Transactions

[564]

CDI managed beans that take part in CMT rely on the existence of a
dedicated interceptor that lies behind the scenes handling the transactional
services and communicates with JTA and Java Transaction Services (JTS).
This implementation-defined interceptor is provided by Java EE 7 product.

Container-managed EntityManager instances must be JTA types so that they can
join transactions.

Bean-Managed Transactions (BMT)
Bean-managed transactions are types of transactions where the application EJB
or CDI managed bean takes control of transaction management itself. First of all,
UserTransaction is injected into the bean or it is retrieved by dependency lookup
through JNDI.

For EJB that are using legacy J2EE constraint that you are upgrading to Java EE 7,
it may help to inject javax.ejb.EJBContext as a resource. Working with the BMT
is a matter of working with the UserTransaction object. Ensure that you demarcate
the transaction boundaries accordingly with the begin() call. At the end of the
transaction, either you call commit() for normal termination or call rollback() for
abnormal circumstances.

Here is a stateless session bean that demonstrates how to apply the
transaction services:

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class InvoiceServiceBMT {
 @Resource EJBContext context;

 public Invoice saveInvoice(Invoice invoice)
 throws Exception {
 UserTransaction tx = context.getUserTransaction();
 try {
 tx.begin();
 em.persist(invoice);
 tx.commit();
 } catch (Exception e) {
 tx.rollback();
 }
 return invoice;
 }
 /* ... */
}

Appendix C

[565]

To achieve BMT, we declare the EJB InvoiceServiceBMT with the
@TransactionManagement annotation with the value BEAN to override
the default value CONTAINER. Inside the method, we explicitly create a
new transaction context and execute the necessary business logic.

We can also achieve a halfway house solution, where the EJB is still known
to the container, but it creates its own transaction context. Here is an
alternative implementation:

@Stateless
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public class InvoiceServiceBMTAlt {
 @Resource EJBContext context;

 public Invoice saveInvoice(Invoice invoice)
 throws Exception { /* same impl */ }
 /* ... */
}

We set transaction context to SUPPORTS, because it is immaterial whether
this InvoiceServiceBMTAlt has an existing transaction context or not before
the saveInvoice() target method is called. Inside the method, we create a
new transaction context. So effectively this BMT bean is creating its own
REQUIRES_NEW feature.

The same technique can be achieved with CDI managed beans by injecting the
@UserTransaction object instance. CDI managed beans, by default, do not take
part in EJB transactions, and therefore @TransactionManagement does not apply
to them.

Bean-managed EntityManager instances must be either JTA or non-JTA types.
If they are of the latter type then they cannot participate in JTA transactions.

Isolation levels
Isolation levels are an important part of transaction management, because they
allows administrators to configure interference between concurrency operations in
the enterprise application. Transaction isolation affects the overall consistency. There
are different levels of isolation, namely: dirty reads, non-repeatable reads, phantom
reads, and serializable. To understand these levels, one needs at least two concurrent
transactions: TX1 and TX2.

A dirty read occurs when a transaction TX1 reads uncommitted changes made by
another concurrency transaction TX2. The situation is especially unpalatable when
TX2 roll backs it transaction, which means that TX1 reads something it shouldn't have.

Java EE 7 Transactions

[566]

A non-repeatable read occurs when a transaction TX1 reads shared data, at least
twice, in order of sequence for time intervals: t1 and t3. Where t1 happens before t2,
which happens before t3. The other concurrent transaction TX2 meanwhile updates
shared data at time interval t2 and then commits, thereby invalidating TX1 second
read at time interval t3.

A phantom read occurs when a transaction TX1 reads shared data at least
twice in order of sequence time intervals t1 and t3 just like an unrepeatable
read. Except this time, the number of rows read by TX at t1 is [A1] and at t3
they are [A1, A2]. Meanwhile, the other concurrent transaction TX2 inserts
a new row of data [A2] at time interval t2 and commits, which causes the
ghostly apparition: a phantom record.

When two transactions like TX1 and TX2 are sequentially processed, one after
the other, such that there is no such of interference, their concurrency operations
are then serializable.

JDBC provides four transaction isolation levels: Read Uncommited, Read Committed,
Repeatable Read, and Serializable. Depending on the level chosen they will eliminate
the issues around dirty reads, non-repeatable reads, and phantom reads.

Appendix C

[567]

The following diagram describes the various isolation levels:

Java EE 7 Transactions

[568]

JDBC allows a Java application to query the isolation level of the database through
the java.sql.Connection and the getTransactionIsolation() method.
An application can also call setTransactionIsolation() to set up a new isolation,
say from TRANSACTION_READ_COMMITTED to TRANSACTION_SERIALIZABLE as long
as the database server and the JDBC driver can support it.

For a Java SE application this is acceptable, however, for Java EE application the
data sources and entity manager configurations are generally shared across EJB and
web modules. Changing the resource dependencies programmatically can lead to
trouble for shared applications and modules. Java EE 7 products typically furnish an
administration console, which allow a data source's isolation levels to be configured
at deployment.

Here is a summary of the isolation levels and their impact on consistency:

Isolation Level Dirty Reads Non-Repeatable
Reads

Phantom Reads

READ_UNCOMMITED Can occur Can occur Can occur
READ_COMMITED Prevented Can occur Can occur
REPEATABLE_READ Prevented Prevented Can occur
SERIALIZABLE Prevented Prevented Prevented

Generally, for Java EE 7 applications that inject EntityManagers and DataSource
instance, it may be unwise to configure isolation level programmatically.

Nevertheless, there are some techniques to show and here is one that unwraps the
JDBC connection behind EntityManager:

@Stateless
public class ReceiptGenerator {
 @PersistenceContext("mastersAtWorkDB")
 EntityManager em;

 public void generateReceipt() {
 em.flush();
 Connection conx = em.unwrap(Connection.class);
 int savedLevel = conx.getTransactionLevel();
 conx.setTransactionLevel(
 Connection.TRANSACTION_SERIALIZABLE);
 doMoreWork();
 em.flush();
 conx.setTransactionLevel(savedLevel);
 /* ... */
 }
 /* ... */
}

Appendix C

[569]

The entity manager's unwrap method allows the application to gain access to the
vendor provider classes for the JPA implementation. In the example, we only want
access to the JDBC connection. Given vendor provider like Hibernate JPA,
we could reveal EntityManager and retrieve Hibernate's session object instance
using the unwrap facility. There are inherent dangers to changing isolation levels
in mid flow with concurrency transaction operations, because we are reliant on
the JPA provider's synchronization pending instances to the database at the time
of the flush() calls.

In summary, JPA in the form of Java EE 7 does not support custom isolation levels.
However, different vendors of JPA providers and Java EE 7 products do provide
extensions, which may be configured through an additional XML deployment
descriptor and annotations. The buck stops with the underlying database server
and isolation levels that they actually do support. For example, if you use Oracle
and attempt to configure REPEATABLE_READ, it will downgrade the isolation level to
READ_COMMITTED instead (http://docs.oracle.com/cd/B12037_01/server.101/
b10743/consist.htm#i5702).

JNDI lookup
Developers can always perform a dependency lookup of the current transaction
context. The UserTransaction instance inside a Java EE application is as follows:

InitialContext jndiContext = new InitialContext();
UserTransaction tx = jndiContext.lookup(
 "java:comp/UserTransaction")

The preceding example of code is found commonly in legacy J2EE applications
based on JDK 1.4 and predates Java annotations.

This concludes the section on Java EE 7 transactions.

Java EE 7 Assorted Topics
This appendix elucidates briefly the key features of the concurrency utilities and the
JSON-P APIs.

Concurrency utilities
JSR 236, the concurrency utilities API, is a new edition to the Java EE 7 platform
that provides asynchronous processing to applications using container-managed
threads. In Java EE standards prior to 7, it was expressly forbidden or undefined for
service endpoints, like servlets or EJBs, to spawn their own threads, because those
Java threads were outside the control of the container. Although it was not portable,
many applications broke this rule and found ways for the application to manage
threads for the lifecycle of its deployment, sometimes using vendor specific APIs.

In Java EE 7, concurrency utilities provide managed versions of the Java SE
concurrency facilities. The new concurrency utilities facilities live inside the
Java package javax.enterprise.concurrent. The following table describes
the interfaces:

Interface Name Description
ManagedExecutorService A container-managed implementation of the Java

SE ExecutorService. This type of executor
asynchronously invokes tasks that are submitted to
it by the application.

ManagedScheduled-
ExecutorService

A container-managed implementation of the Java
SE ScheduledExecutorService. This type of
executor invokes submitted tasks at a set future
time and tasks can be invoked periodically.

Java EE 7 Assorted Topics

[572]

Interface Name Description
ContextService This provider component allows an application

to create contextual tasks. A context here means
an application context containing concurrent
encapsulation of the Java EE environment
including transactions.

ManagedThreadFactory A container-managed implementation of the Java
SE ThreadFactory. A thread factory is a facility
for Java threads mostly from a pool.

Environment reference
In Chapter 1, Java EE 7 HTML 5 Productivity, we briefly showed some code
for ManagedExecutorService. It was injected into the component with
the following code:

 @Resource(name="concurrent/LongRunningTasksExecutor")
 ManagedExecutorService executor;

The application server does not automatically provision the ManagedExecutorService
instances. Unfortunately, they must be configured in an XML deployment descriptor.
Here is a web.xml file that illustrates the additional configuration:

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 <display-name>Xen Tracker</display-name>
 <!-- ... -->
 <resource-env-ref>
 <description>
 A Executor for RESTful operations.
 </description>
 <resource-env-ref-name>
 concurrent/LongRunningTasksExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
 </resource-env-ref>
</web-app>

Appendix D

[573]

A similar configuration is required for the other two types: ManagedThreadFactory
and ManagerScheduledExectorService. All Java EE 7 products are required to
supply a default ManagedThreadFactory under the JNDI lookup name java:comp/
DefaultManagedThreadFactory. The resource-env-ref-name reference specifies
the reference name of the environment resource and the resource-env-ref-type
reference specifies the Java data type of the resource.

Application container context
The application server is responsible for transferring a context, an application
container context, to the non-container thread of context. This allows the
application thread to interact with the application server in a responsible way.
However, the container must manage the application thread from its internal
thread pool: it is the most important stipulation. In particular, the application
server does the following:

•	 Saves the existing context of the current application thread
•	 Identifies the correct application container context
•	 Applies the identified application container context to the application

thread and then allows the task to proceed
•	 After the task completes it restores the previous context to the thread

The application server will apply an application container context to the following
tasks: java.lang.Runnable and java.util.concurrent.Callable. This procedure
is known as applying contextual services to tasks.

The concurrency utilities specification describes optional contextual support for the
following classes: ManagedTaskListener and Trigger.

Contextual tasks
A contextual task is essentially the bundling of a concurrent task (runnable and
callable) with the application context container. A task becomes a contextual task
whenever it is submitted to a managed execution service or thread factory.

In order to access additional information, a contextual task can optionally
implement the Java interface javax.enterprise.concurrency.ManagedTask.
The task can invoke getExecutionProperties(), which returns a map of
properties. The execution properties permit the task to set an identity with
the property name IDENTITY_NAME.

Java EE 7 Assorted Topics

[574]

The task can communicate hints back to the container. For example, property
LONGRUNNING_HINT (or javax.enterprise.concurrent.LONGRUNNING_HINT
can be set to true or false, which informs the container that this task is going to
be long running or not. The other execution property TRANSACTION may be set to
SUSPEND or USE_TRANSACTION_OF_EXECUTION_THREAD in order to communicate
a hint about the transaction context in the contextual task.

In 2005 whilst working for an investment banking client in the city of London, I
developed an asynchronous task with a proprietary J2EE asynchronous API. It
was part of the CommonJ IBM/BEA specification. The project was to read client
valuation data from an external system by FTP, parse these valuation files into
domain object, and store them inside the bank's client trading portal. Given that we
now have Java EE 7 technology, how would I have refactored my 2005 code into
modern use?

Here is my initial stab at the code:

public class ClientValuationsProcessTask
implements Callable<ClientValuation>, ManagedTask {
 Map<String,String> properties = new HashMap<>();
 TaskListener listener = new TaskListener();

 public ClientValuationProcessTask(
 String fileId) {
 properties = new HashMap<>();
 properties.put(ManagedTask.IDENTITY_NAME,
 "ClientValuationsProcessTask_"+fileId);
 properties.put(ManagedTask.LONGRUNNING_HINT,"true");
 }

 public ClientValuation call() {
 // Parse the XML file referenced from id
 // Create a value object
 ClientValuation valuation = foo();
 return valuation;
 }

 public Map<String, String> getExecutionProperties() {
 return properties;
 }

 public ManagedTaskListener getManagedTaskListener() {
 return listener;
 }

 class TaskListener implements ManagedTaskListener { ... }
}

Appendix D

[575]

Because I can work with Java SE 7 now rather than J2EE 1.4, the first refactoring is to
use Callable to return the domain object, ClientValuation. This allows another
contextual task to reclaim the domain object in reduce operation (or fold) the
results. I could have several ClientValuationProcessTask instances all running
concurrently in a map operation. Furthermore, I can hint to the application server
that, actually, my ClientValuationProcessTask is going to take a long time,
since this task will parse a XML file and create some value object, by supplying
LONGRUNNING_HINT key setting the value to true.

ManagedTask must also implement the getManagedTaskListener() call, which can
return a null or an instance ManagedTaskListener. The ManagedTaskListener
allows the task to listen to life cycle events about the associated contextual task.

Here is the exposition of the TaskListener inner class:

 class TaskListener implements ManagedTaskListener {
 public void taskSubmitted(Future<?> future,
 ManagedExecutorService executor, Object task) {
 /* ... */ }

 public void taskAborted(Future<?> future,
 ManagedExecutorService executor, Object task,
 Throwable exception) {
 /* ... */ }

 public void taskDone(Future<?> future,
 ManagedExecutorService executor, Object task,
 Throwable exception) {
 /* ... */ }

 public void taskStarting(Future<?> future,
 ManagedExecutorService executor, Object task) {
 /* ... */ }
 }

The ManagedTaskListener provides a way to take some action when the contextual
task is aborted. For example, the ManagedExecutorService is about to shut down
when the Future is cancelled from the user side.

ContextService is a way for a Java EE application to create contextual tasks
without using the standard ManagedExecutor facilities. This is an advanced facility
for developers and designers who know concurrency programming very well. Teams
who provide libraries in enterprise integration and workflow management and open
source frameworks should get involved here and take advantage of porting their
products over to standard Java EE 7.

Java EE 7 Assorted Topics

[576]

Here is some sample code of a singleton EJB that encapsulates ExecutorService
with ContextService:

@Singleton
ClientValuationTaskManager {
 @Resource(name="concurrent/ThreadFactory")
 ThreadFactory threadFactory;
 @Resource(name="concurrent/ContextService")
 ContextService contextService;

 ExecutorService executor;

 @PostConstruct
 public void setup() {
 executor =
 Executors.newThreadPool(10, threadFactory);
 }

 public Future submitTask(
 ClientValuationProcessTask callable) {
 Runnable proxyRunnber =
 contextService.createContextualProxy(
 callable, Callable.class);
 Future future = executor.submit(proxyRunner);
 return future;
 }

 /* ... */
}

This completes the short discussion on concurrency utilities.

JSON-P
JSR-353 JSON Processing (JSON-P) is the major addition to the Java EE 7 specification,
because today's online businesses and institutions rely on this protocol for multiple
channel architecture. It has the ability to service many media types such as web,
e-mail, voice, data communication, and others, with a single source of business truth:
the data service interface. Moreover, these services tend to be RESTful architectural
endpoints rather than the Web-Services SOAP variety that drove the industry a decade
earlier (circa 2003).

JSON-P is actually made up of two parts: a memory efficient streaming and an object
model API.

Appendix D

[577]

Streaming
The streaming part of the JSON-P API is very useful for picking out bits and pieces of
JSON from a large document without consuming a vast amount of memory. This is
quite a boon if your application handles multitude RESTful over HTTP requests and
the volume and size is big. The parsing side with streaming, then, is good.

Of course, applications also want to send JSON documents out to the clients and
the output world. For those circumstances where the applications are volume
broadcasting JSON documents to a swarm of waiting consumers, then a memory
efficient way of sending data is also rather useful for server-side endpoints that must
handle scale and unpredictability. The following screenshot shows the streaming
part of the JSON-P API:

Java EE 7 Assorted Topics

[578]

Parsing JSON with Streaming API
Parsing JSON begins with the Java package javax.json.stream and the classes
JsonParser and JsonParserFactory. The utility class javax.json.Json has a few
methods to create a JsonParser from a java.io.InputStream or java.io.Reader.
The parser reads JSON as a stream and returns a set of read-only events. This manner
is very memory efficient for consuming JSON, because the data structures are only
briefly kept during the parsing phrase. The feel of the API is similar to JAXP (Java for
XML Processing).

Here is an Arquillian integration test that demonstrates parsing from JSON
documented on the Wikipedia on JSON page:

@RunWith(Arquillian.class)
public class JSONPStreamingAPITest {
 @Deployment
 public static JavaArchive createDeployment() { /*...*/ }

 static String TEST_JSON =
 "{\n" +
 " \"firstName\": \"John\",\n" +
 " \"lastName\": \"Smith\",\n" +
 " \"age\": 25,\n" +
 " \"address\": {\n" +
 " \"streetAddress\": \"21 2nd Street\",\n" +
 " \"city\": \"New York\",\n" +
 " \"state\": \"NY\",\n" +
 " \"postalCode\": 10021\n" +
 " }\n" +
 "}"
 ;

 @Test
 public void shouldParseJSONSchema() {
 StringReader sreader = new StringReader(TEST_JSON);
 JsonParser parser = Json.createParser(sreader);
 JsonParser.Event event = parser.next();
 assertEquals(START_OBJECT, event);
 while (parser.hasNext()) {
 event = parser.next();
 if (event == KEY_NAME) {
 switch (parser.getString()) {
 case "firstName":
 parser.next();
 assertThat(parser.getString(), is("John"));

Appendix D

[579]

 break;
 case "lastName":
 parser.next();
 assertThat(parser.getString(), is("Smith"));
 break;
 case "age":
 parser.next();
 assertThat(parser.getInt(), is(25));
 break;
 }
 }
 }
 }
}

In order to determine the location of the parser as it processes each part of the
JSON stream, we must inspect JsonParser.Event, which is actually an
enumeration. This enum has the following values: START_ARRAY, END_ARRAY,
START_OBJECT, END_OBJECT, VALUE_FALSE, VALUE_NULL, VALUE_TRUE, KEY_NAME,
VALUE_STRING, and VALUE_NUMBER. Each value represents the parser's marker.

Generating JSON with Streaming API
The JSON-P can also generate JSON in memory efficient fashion. Java interfaces are
JsonGenerator and JsonGeneratorFactory, and they are also part of the package
javax.json.stream.

Writing JSON output with the Streaming API is much easier than the parsing.
Developers should reach for one of the Json.createGenerator() methods that
accepts either a java.io.OutputStream or a java.io.Writer.

Here is a unit test method to demonstrate writing JSON using streaming mode:

 @Test
 public void shouldGenerateJSON() {
 StringWriter swriter = new StringWriter();
 try (JsonGenerator generator =
 Json.createGenerator(swriter)) {
 generator
 .writeStartObject()
 .write("artist", "Daft Punk")
 .write("album", "Random Access Memories")
 .write("year", 2013)
 .writeStartArray("collaborators")
 .writeStartObject()

Java EE 7 Assorted Topics

[580]

 .write("firstName", "Nile")
 .write("lastName", "Rodgers")
 .writeEnd()
 .writeStartObject()
 .write("firstName", "Giorgio")
 .write("lastName", "Moroder")
 .writeEnd()
 .writeEnd()
 .writeEnd();
 }

 String expected = "{\"artist\":\"Daft Punk\"," +
 "\"album\":\"Random Access Memories\",\"year\":2013,\"" +
 "collaborators\":[{\"firstName\":\"Nile\"," +
 "\"lastName\":\"Rodgers\"},{\"firstName\":" +
 "\"Giorgio\",\"lastName\":\"Moroder\"}]}";
 assertThat(swriter.toString().length(), is(not(0)));
 assertThat(swriter.toString(), is(expected));
 }

The key methods on the JsonGenerator are writeStartObject(),
writeStartArray(), and the overloaded variations of write().
Each JSON object or array must be terminated with a writeEnd()
call. Of course the API ensures that the JSON schema is followed exactly.

Object model
The JSON-P has a second form that reads and writes JSON documents wholly in
memory. The larger your JSON document, the greater the amount of memory
that is consumed.

Parsing JSON with the object model
Parsing JSON from a string representation is relatively straightforward. Your
application requires a javax.json.JsonReader instance, which can be created
from the Json static utility class. From there, it is just a case of building a JSON
schema as an internal tree data structure.

The object model is very convenient to build structures. It can also be useful
to aggregate responses together from separate JSON documents into another
larger structure. When Java SE 8 arrives with the Lambdas then we could see
certain applications take advantage of parallel JSON document generation
with the fork-join model.

Appendix D

[581]

This is a unit test that illustrates how to parse JSON with the Object Model:

@RunWith(Arquillian.class)
public class JSONPObjectAPITest {
 @Deployment
 public static JavaArchive createDeployment() { /*...*/ }

 static String TEST_JSON =
 "{\n" +
 " \"firstName\": \"John\",\n" +
 " \"lastName\": \"Smith\",\n" +
 " \"age\": 25,\n" +
 /*... */ + "}"
 ;

 @Test
 public void shouldParseJSONSchema() {
 StringReader sreader = new StringReader(TEST_JSON);
 JsonReader reader = Json.createReader(sreader);
 JsonObject obj = reader.readObject();
 assertThat(obj.getString("firstName"), is("John"));
 assertThat(obj.getString("lastName"), is("Smith"));
 assertThat(obj.getInt("age"), is(25));
 JsonObject address = obj.getJsonObject("address");
 assertNotNull(address);
 assertThat(address.getString("streetAddress"),
 is("21 2nd Street"));
 assertThat(address.getString("city"), is("New York"));
 assertThat(address.getString("state"), is("NY"));
 assertThat(address.getInt("postalCode"), is(10021));
 }

}

The JsonReader has two principal methods: readObject(), which you call when the
application expects a JSON object, and the alternative readArray(), which handles
JSON arrays. Assuming there are no exceptions and the input JSON is expected, then
your application reads the attribute key and values. JsonObject has several methods
such as getString(), getInt(), and getBoolean() and there are default value
variants of these methods too. JsonArray has more or less the same methods except
they take an index argument for convenience.

Incidentally, JsonObject is a type of Map<String,JsonValue> and that means we
can query the existence of JSONP attribute keys. The super class of JsonObject and
JsonArray is the JsonValue and their direct ancestor type is a JsonStructure.

Java EE 7 Assorted Topics

[582]

Generating JSON with the object model
Generating JSON with the object model API is a piece of cake too. It closely
resembles the Streaming API in concept. The key types are javax.json.JsonWriter,
JsonBuilderFactory, and JsonObjectBuilder.

Here is a final unit test that demonstrates writing JSON with the object model:

@Test
public void shouldWriteJSON() {
 JsonBuilderFactory factory = Json.createBuilderFactory(null);
 JsonObjectBuilder builder = factory.createObjectBuilder();
 JsonObject obj =

 builder.add("artist", "Daft Punk")
 .add("album", "Random Access Memories")
 .add("year", 2013)
 .add("collaborators",
 factory.createArrayBuilder()
 .add(factory.createObjectBuilder()
 .add("firstName", "Nile")
 .add("lastName", "Rodgers")
 .build())
 .add(factory.createObjectBuilder()
 .add("firstName", "Giorgio")
 .add("lastName", "Moroder")
 .build())
 .build()
)
 .build();

 StringWriter swriter = new StringWriter();
 try (JsonWriter writer =
 Json.createWriter(swriter)) {
 writer.writeObject(obj);
 }
 String expected = "{\"artist\":\"Daft Punk\"," +
 "\"album\":\"Random Access Memories\",\"year\":2013,\"" +
 "collaborators\":[{\"firstName\":\"Nile\"," +
 "\"lastName\":\"Rodgers\"},{\"firstName\":" +
 "\"Giorgio\",\"lastName\":\"Moroder\"}]}";
 assertThat(swriter.toString(), is(expected));
}

Appendix D

[583]

First, we create a JsonBuilderFactory from the Json static utility class.
We can optionally pass in a property map. For example, if we wanted to
print the JSON output prettily, we could pass in a map collection to control
the configuration like this:

JsonBuilderFactory factory = Json.createBuilderFactory(
 new HashMap<String, Object>() {{
 put(JsonGenerator.PRETTY_PRINTING, true);
 }});

We create a JsonObjectBuilder instance from the factory. The JsonObjectBuilder
follows the builder pattern style. For each JSON object created as an intermediate
instance, it has to be completed with the call to build(), which changes the
internal mode of instance to be read-only, thereby freezing the state of JsonValue.
Each attribute is added to the JSON object and arrays are added by creating another
JSON instance, either a JsonArray or a JsonObject, which are created from
the factory.

The javax.json.JsonWriter is the type responsible for writing the JSON internal
instances into either a java.io.OutputStream or java.io.Writer.

In short, the static utility class Json is the main entry point to JSON-P.
Beneath the infrastructure lies another type javax.json.spi.JsonProvider
that controls the implementation loaded at a runtime. At the time of writing,
only GlassFish has a JSON-P provider, but because the JsonProvider follows the
java.util.ServiceLoader mechanism, this means that an alternative one can be
defined at deployment. If the application supplies a META-INF/services/javax.
json.spi.JsonProvider file with a single line that states the fully qualified class
name of the new provider, then it will be used instead. Bean validation follows the
same mechanism.

Recommended reading
So now I assume that you have read this book. I hope you enjoyed it and explored
Java EE 7. Where to go next? This is my recommended reading list.

•	 Arquillian Testing Guide by John D Ament, Packt Publishing, 2013: This is a
nice book that goes far more into the details of the open source tool
Arquillian, which I used throughout the development of code and also write
about in my book. It covers Arquillian Extensions such as Persistence and
Transactions. I recommend Ament's book particularly if you want to
pursue the topic further.

Java EE 7 Assorted Topics

[584]

•	 Gradle Effective Implementation Guide by Hubert Klein Ikkink, Packt Publishing:
Gradle has made sufficient advances in the Java world and wider community,
in particular Google's Android platform is standardizing on this build
framework and tool. I recommend Ikkink's book for learning Gradle; it was
one of the first books that I read that covered areas such as WAR, EAR, and
configuration very well.

•	 Real World Java EE Patterns - Rethinking Best Practices by Adam Bien, who is
a fellow Java Champion, Adam Bien Press, 2012: This is a great book for
advanced J2EE and intermediate Java EE developers who face the prospect
of upgrading legacy systems and want a refresher in the more recent way of
developing Java Enterprise applications.

•	 Responsive Web Design with HTML 5 and CSS 3 by Ben Fria, Packt Publishing,
2012: I recommend this book for those Java developers who need to brush
up on the latest adaptive and response web design, especially for those
people who work extensively with content management, creative, and
adaptive teams. This book is a companion to the Java development on
the server side and is more about the User Interface Engineering.

Index
Symbols
2PC

about 560
heuristic failures 561

. AddPackage() 147
@ApplicationPath annotation 353
@ApplicationScoped 271
@AroundInvoke method 83
@AssertFalse constraint 467
@AssertTrue constraint 467
@Basic Annotation 136
@BeforeClass static method 466
@ClientEndpoint 336
@Column annotation 23, 137-140
@ColumnResult 553
@Constraint 473
@ConstructorResult 553
@Convert annotation 552
@CreditCardNumber constraint 469
@DecimalMax constraint 468
@DecimalMin constraint 468
@Digits constraint 468
@EJB annotation 534
@Email constraint 469
@Encrypt annotation 409
@Entity annotation 131, 135, 136
<filter> element 283
<filter-mapping> element 282
@FormParm annotation 364
@Future constraint 468
@GeneratedValue annotation 134, 201
@GeneratedValue Annotation 135
@GET annotation 355
@GroupSequence annotation 481
@Id annotation 23, 25, 135

@Inject annotation 534
@ISOPostalCode 476
@javax.ejb.Asynchronous annotation 123
@javax.ejb.LocalBean 121
@javax.ejb.Stateless annotation 99
@javax.enterprise.inject.Any 49
@javax.enterprise.inject.Default 49
@javax.enterprise.inject.Named 49
@javax.enterprise.inject.New 49
@javax.entity.Basic annotation 136
@javax.entity.Column annotation 138
@javax.persistence.Entity 130
@javax.persistence.GeneratedType, values

AUTO value 199
IDENTITY value 199
SEQUENCE value 199
TABLE value 199

@javax.persistence.GeneratedValue 199
@javax.persistence.SequenceGenerator 202
@javax.servlet.WebServlet 314
@javax.transactional.Transactional.TxType

562
@javax.validation.GroupSequence

annotation 481
@javax.websocket.ClientEndpoint

annotation 336
@javax.websocket.OnMessage annotation

316
@javax.websocket.server.ServerEndpoint

annotation 315
@JMSContextConnectionFactory annotation

454
@JoinColumn annotation, attributes

columnDefinition attribute 207
foreignKey attribute 207
insertable attribute 207

[586]

name attribute 206
nullable attribute 207
referencedColumn-Name attribute 206
table attribute 207
unique attribute 207
updatable attribute 207

@Length constraint 469
<load-on-startup> element 275
@ManyToMany annotation

mapping with 184, 185
@ManyToMany annotation, attributes

cascade attribute 221
fetch attribute 221
mappedBy attribute 221
targetEntity attribute 221

@ManyToOne annotation
mapping with 183, 184

@ManyToOne annotation, attributes
cascade attribute 218
fetch attribute 218
optional attribute 218
targetEntity attribute 218

<mapping-file> XML element 187
@Max constraint 468
@MessageDriven 445
@Min constraint 468
@NameBinding annotation 411
@NamedStoredProcedureQuery

attributes 505
@NotBlank constraint 469
@NotEmpty constraint 469
@NotNull annotation 23
@NotNull constraint 467
@Null constraint 467
@OnClose 320
@OnError 320
@OneToMany annotation

about 24
mapping with 182, 183

@OneToMany annotation, attributes
fetch attribute 211
mappedBy attribute 211
orphanRemoval attribute 211
targetEntity attribute 211

@OneToOne annotation
about 205
mapping with 180, 181

@OnMessage 316, 320
@OnOpen 320
@Past constraint 468
@PathParam annotation 33, 364
@Pattern constraint 468
@PersistenceContext annotation 186
@PostActivate() method 118
@PostalCodeSensitiveChecker annotation

483
@PostalCode validation 472
@PostCode constraint 472
@PostConstruct annotation 57, 398
@PreDestroy annotation 57, 116, 398
@PrePassivate method 118
@Produces annotation 355
<properties> element 548
@PUT annotation 364
@Range constraint 469
@SafeHtml constraint 469
@ServerEndpoint annotation 314, 315
<servlet> element 275
<servlet-mapping> element 275
@Size constraint 468
@Table annotation 136, 165
@TableGenerator annotation 201, 202
@Transactional annotation 533
@TransactionManagement annotation 565
@Transient Annotation 135
@URL constraint 469
@UserTransaction object instance 565
@Valid constraint 485
--verbose argument 541
@Version field 557
@WebServlet annotation

attributes 260

A
AbstractQuery class 514
ACID (Atomicity, Consistency, Isolation,

and Durability) 159
ACID principles, transactions

atomicity 559
consistency 559
durable 559
isolation 559

[587]

activation configuration properties, MDB
about 449
acknowledgeMode 450
clientId 450
destinationFactoryLookup 450
destinationLookup 450
destinationType 450
messageSelector 450
subscriptionDurability 450
subscriptionName 450

addChatUser() method 331
addMessageHandler(MessageHandler han-

dler) method 321
Address class 482
addUser() method 363
advanced CDI

alternatives 74-76
lifecycle component example 72- 74

advancedSearch() method 512
AESCipherInterceptor class 407, 409
afterAllTests() method 366
ALL operation 197
annotation, stored procedure query 505-508
API 12
API, Enterprise Full Profile

EJB 20
JavaMail 20
JAX-RS 20
JAX-WS 20
JDBC 20
JMS 20
JNDI 20
JPA 20
JTA 20
Managed Beans 20

API, Java EE 7 15, 17
API, Web Profile

Bean Validation 1.1 19
Context and Dependency Injection 1.1 18
Enterprise Java Bean Lite 3.2 18
Java Persistence 2.1 18
Java Server Faces 2.2 18
Java Servlet API 3.1 18
Java Transaction API 1.2 18
JAX-RS 2.0 19
JSON-P 1.0 19
Web Socket 1.0 18

Application Client container 12
application container context 284, 573
appStartUp() method 112
arbitrary objects

injecting, Producers used 69-71
architectural style, REST

about 348
for collections of entities 349
for single entities 350, 351

architecture, Java EE 7
application Client container 12
EJB container 12
Java Applets container 12
web container 12

aroundReadFrom() method 407
aroundWriteTo() method 407
Arquillian

about 76, 356
disposable methods 79-81
features 76, 77
setup 77, 78

Arquillian configuration
for embedded GlassFish server 150, 151
integration test, running 152

asJsonObject() method 386
Aspect Oriented Programming (AOP) 407
assertEqualsMap() method 495
assertEquals() method 449
assertTrue() method 449
asText() method 342
AsyncContext class 294
asynchronous context 284
asynchronous invocation 123, 124, 393, 395
Asynchronous JavaScript and XML Request

and Response (AJAX) 310
Asynchronous Java Servlets 289
asynchronous JAX-RS server side endpoints

396-398
asynchronous method invocation 98
asynchronous reader

example 291-294
asynchronous writer 298
AsyncInvoker class 389
async() method 393
AsyncReadListener 295
AsyncResponse object 35
asyncSupport attribute 294

[588]

AsyncWriterServlet 300, 304
atomicity 559
AttributeNode interface 516
AUTO value 199

B
Barbara Liskov Substitution Principle 486
base table, hierarchy

about 231
benefits 234
drawback 234
user story, example 231-234

basic injection
about 45
constructor injection 46, 47
field injection 45
setter injection 46

Batch Processing API 13
Bean-Managed Transactions. See BMT
Bean scopes, CDI

Application 55
Conversation 56
Dependent 56
Request 55
Session 55

beans.xml file 537
Bean type 44
Bean Validation

about 15, 461, 462
Bean Validation 1.1 462
example 463-466

Bean Validation 1.1
about 19
features 462

Bean XML configuration
location 537

beforeAllTests() method 366
begin() call 564
Behavioral-Driven Design pattern 368
binary format 319
binary object (BLOB) mapping 137
bin folder 541
BMP (Bean Managed Persistence) 539
BMT 562-565
boolean execute() method 499
Boolean hasMoreResults() method 499

boundary layer 37
built-in constraints

@AssertFalse 467
@AssertTrue 467
@DecimalMax 468
@DecimalMin 468
@Digits 468
@Future 468
@Max 468
@Min 468
@NotNull 467
@Null 467
@Past 468
@Pattern 468
@Size 468

built-In qualifiers
@javax.enterprise.inject.Any 49
@javax.enterprise.inject.Default 49
@javax.enterprise.inject.Named 49
@javax.enterprise.inject.New 49

business interfaces
local access 120
no interface, views 121, 122
remote access 120
types, summarizing 121

business logic, XenTracker application 25,
27

C
CarProductResource class 373
CarProduct Servlet 270
cascade attribute 205, 218, 221
Cascade.REMOVE operations 198
cascades

ALL operation 197
DETACH operation 197
MERGE operation 197
onto dependent entities 196
operations 196, 197
operations, enumerations 197
orphans in relationships, removing 197, 198
PERSIST operation 197
REFRESH operation 197
REMOVE operation 197

Cascading Style Sheets. See CSS

[589]

CDI
@PostConstruct annotation 57
@PreDestroy annotation 57
about 14, 41, 533
basic injection 45
Bean names 53
beans 42
beans, attributes 43
Bean scopes 55
bean types 42
bean types, as Java types 43, 44
built-in contextual container scopes 42
classpath scanning 49
container 533
crosscutting concerns 82
initializing 56
new instances, generating 52
presentation views 53
qualifiers 47

CDI Beans
CDI application, configuring 59
injecting 455
programmatic lookup 58, 59

CDI classpath scanning 49
CDI container

and EJB container 124
Servlets, aligning to 305, 306

ChatCommand 342
ChatCommand.convert() method 343
ChatCommandDecoder 343
ChatCommandEncoder 342
ChatRoom class 331
ChatServerEndpoint class 326
check() method 84, 88, 107
class-level constraint 475, 476
ClientBuilder class 389
Client class 389
ClientEchoEndpoint 335
ClientRequestContext class 390
ClientRequestFilter class 390
ClientResponseContext class 390
ClientResponseFilter class 390
client side filters

about 401
ClientRequestFilter 401
ClientResponseFilter 401

Client Web Socket Endpoint 312

close(CloseReason reason) method 323
close() method 31, 323
CloseReason parameter 337
CMP (Container Managed Persistence) 539
CMT 562
CMT services

MANDATORY 563
NEVER 563
NOT_SUPPORTED 563
REQUIRED 563
REQUIRES_NEW 563
SUPPORTS 563

columnDefinition attribute 207
COMET 289, 311
commit() 564
Common Object Request Broker Architec-

ture. See CORBA
completed() method 395
component, XenTrack application

boundary layer 37
control layer 37
entity layer 37

composite primary keys
@EmbeddableAnnotation, using 171-173
@EmbeddedId Annotation, using 173-175
@IdClass annotation 169-171
about 169

ConcertEvent entity 518-520
ConcertType entity 525
concurrency access locks 557
concurrency utilities

about 571
application container context 573
ContextService interface 572
contextual tasks 573
environment reference 572
ManagedExecutorService interface 571
ManagedScheduled-ExecutorService

 interface 571
ManagedThreadFactory interface 572

Concurrency Utilities 14
ConductorBean 119
Configuration over Configuration 534
configurator attribute 315, 336
connection factory, JMS

about 425
default connection factory 426

[590]

consistency 559
constraint

built-In constraints 467, 468
class-level constraint 475, 477
definitions, applying 471, 472
elements 466
groups 475
groups, ordering 481-483
Hibernate validator, built-In constraints

469
inheritance 480, 481
inheritance, example 480, 481
method-level constraints 483-485
violations 470, 471

constraint, elements
groups property 467
message property 466
payload property 467

ConstraintValidatorFactory 486
ConstraintViolation 470
Construct entity 522
constructor injection 46, 47
container-less Java web application 263-268
Container-Managed Transactions. See CMT
ContainerRequestFilter 399
ContainerResponseFilter 399
containers

alignment to 305
containsKey() method 34
context 39
Context and Dependency Injection. See CDI
Context and Dependency Injection 1.1 18
context listener 283
ContextService interface 572, 575
contextual tasks 573-576
control layer 37
converters 551
convert() method 342
convertToDatabaseColumn() method 552
convertToEntityAttribute() method 552
CORBA 96
Coverity Security Library

URL 463
createConsumer() method 437
createContext() method 432
createProducer() method 433
createProject() method 33

CreditProcessor.check() method 86
Criteria API

about 508
benefits 511
Criteria delete 513, 515
Criteria queries 508-512
Criteria update 512, 513

CriteriaBuilder.ge() method 510
Criteria delete 513, 515
Criteria queries 508-512
CriteriaQuery method 512
Criteria update 512, 513
crosscutting concerns, CDI

interceptors 82, 83, 86
Cross-Site Scripting. See XSS
CSS 10
custom JPQL function 526
custom validator

and null 474
writing 472-474

D
database sequence types 198
Decoder.BinaryStream 344
decoders attribute 315, 336
Decoder.TextStream 344
decorators 87, 89, 90
DELETE method 255
deleteUser() method 364
delivery modes, JMSContext

about 431
AUTO_ACKNOWLEDGE 431
CLIENT_ACKNOWLEDGE 431
DUPS_OK_ACKNOWLEDGE 431
SESSION_TRANSACTED 431

DeltaSpike CDI container tests
using 64-68

Dependency Injection (DI) 40, 98, 534
deployment, EJB 98
deployWithRename() method 266
description attribute 282
destroy() method 252, 253
DETACH operation 197
Developer productivity theme

about 13
specification 13

[591]

Developer productivity theme, specification
Batch Processing API 13
Concurrency Utilities 14
JSON-P 14
WebSocket 14

dispatcherTypes attribute 281
displayName attribute 282
distributed transactions 562
doFilter() method 283
doGet() method 259, 270
doListen() method 315
domain 40
doSend() function 318
down-casting entities 527
dumpCart() method 110
durable 559
durable consumers, JMS messages 441
dynamic binding, JAX-RS

filters, with interceptors 411
dynamic queries, JPQL 176
dynamic result set

retrieving 501-503

E
eagerly binding

and lazily binding, trade-off 193-195
EAGER value 192
EchoWebSocketServer class 314
eclipselink.create-ddl-jdbc-file-name

property 149
eclipselink.ddl-generation.output-mode

property 149
eclipselink.ddl-generation property 149
eclipselink.drop-ddl-jdbc-file-name

property 149
eclipselink.jdbc.driver property 149
eclipselink.jdbc.password property 150
eclipselink.jdbc.url property 149
eclipselink.jdbc.user property 150
eclipselink.logging.level.sql property 149
eclipselink.logging.parameters property 149
EIA 15, 413
EJB

about 12, 20, 95, 533
criticism 96
entity bean type 97

features 98
lightweight scope 125, 126
message bean type 97
protocols 96
references 122, 123
session bean type 97
simplification 97
types 97

EJB beans
injecting 457

EJB container
about 12, 533
and CDI container 124

ejbCreate() method 116
EJBs. See EJB
EL 3.0 462
EL name 44
EmbeddedAsyncReaderRunner class 297
EmbeddedAsyncWriterRunner 304
EmbeddedRunner

code 264, 266
Employee entity class 509
encapsulation 40
encodeCommonReply() method 329
encodeMessageReply() method 329
Encoder.BinaryStream 344
Encoder.TextStream 344
Endpoint 309
EndpointConfig 343
Enterprise Archive (EAR) file 536
Enterprise Full Profile

about 19, 20
API 20

Enterprise Information Architecture. See
EIA

Enterprise Java Bean Lite 3.2 18
Enterprise Java Beans. See EJB
entities, XenTracker application 22-25

Project entity 22-25
Task entity 22-25

entity 130
entity bean

about 130, 131, 165
example 131
finesse, adding 191

entity bean, definition
@Basic Annotation 136, 137

[592]

@Column Annotation 137, 138
@Entity Annotation 136
@Table Annotation 136
about 135

entity bean, example
Plain Old Java Object 131, 132
simple entity bean 133, 134

entity bean, lifecycle
about 153
entity state, detached 153
entity state, managed 153
entity state, new 153
entity state, removed 154

entity bean, relationships
@ManyToMany annotation, mapping with

184, 185
@ManyToOne annotation, mapping with

183
@OneToMany annotation, mapping with

182, 183
@OneToOne annotation, mapping with

180, 181
entity beans, annotating

about 139
with instance variables 139, 140
with property accessors 140, 142

entity bean, test
Arquillian configuration, for embedded

GlassFish server 150, 151
Gradle build file 143, 144
integration test 146, 147
persistence context XML configuration 148-

150
running 143
stateful session bean 144, 145

entity bean type 97
Entity class 390
Entity Control Boundary (ECB) design

pattern 36, 37
entity graph

about 515-517
example 518-526

EntityGraph interface 516
entity inheritance hierarchy, mapping

about 225, 226
base table, hierarchy 231
single database table, hierarchy 226

table-per-class, hierarchy 235
entity layer 37
entity listeners 529
EntityManager

about 154, 554
cases 555
methods 556
persistence context 154
retrieving, by factory 162, 164
retrieving, by injection 162
retrieving, by JNDI lookup 164, 165
transactional support 160
UserTransaction association 555

EntityManagerFactory 554
EntityManager.flush() method 556
EntityManager instance 554
EntityManager.lock() method 558
EntityManager methods, persistence context

about 154, 156
entity bean instances, detaching 159
entity bean instances, refreshing 158
existing instances, persisting 157, 158
new instances, persisting 156, 157
pending instances, flushing to database 159

EntityManager.persist() method 156
EntityManager.refresh() method 158
EntityManager.remove() method 157
entity managers 554
entity persistence, troubleshooting

entity relationship 241, 243
fetch, performance 241
lazily binding 241
object corruption 244
orphan, removal 243
queries 243

entity relationships
about 204
many-to-many mapping 220
many-to-one mapping 217-219
one-to-many mapping 211, 212
one-to-one Mapping 204, 206

equals() method 327
error-handler pages

configuring 278
example, JMS 414
example, MDB 444
executeUpdate() method 515

[593]

Expression Language (EL) 14, 43
Extended Architecture. See XA

F
FacilitatorBean 119
FactoryFinder class 390
factory production 50-52
failed() method 395
fetch attribute 205, 211, 218, 221
fetching 192
FetchType.EAGER 192
FetchType.LAZY 192, 194
field binding

about 192
eagerly binding 192
lazily binding 192

field injection 45
filter() method 401
filterName attribute 281
filters, JAX-RS. See JAX-RS filters
findAllProjects() method 27
find() method 558
find() operation 515
findProjectById() method 27
findTaskById() method 27
finesse

adding, to entity beans 191
fire() method 91
foreignKey attribute 207
form parameters

extracting 373
from() method 514
full duplex 309
Full Profile. See Enterprise Full Profile

G
GeneratedType.IDENTITY enumeration

203, 204
GeneratedType.SEQUENCE enumeration

 202, 203
GeneratedType.TABLE enumeration

 200, 201
generic entities

 383
getArtistWithEntityGraph() method 522,

523

getAsyncRemote() method 323
getBasicRemote() method 323
getBoolean() method 34
getClasses() method 353
getConstraintDescriptor() 471
getContainer() method 321
getCountry() method 472
getExecutableParameter() 471
getExecutableReturnValue() 471
getExecutionProperties() 573
getId() method 323
getInvalidValue() method 470
getInvoices() method 195
getLeafBean() method 470
getList() resource method 397
getManagedTaskListener() call 575
getMaxBinaryMessage-BufferSize() method

323
getMaxIdleTime() method 322
getMaxTextMessage-BufferSize() method

323
getMessageHandlers() method 322
getMessage() method 470
getMessageTemplate() method 470
get() method 58
GET method 31, 254
getNegotiated-Extensions() method 322
getNegotiated-Subprotocol() method 322
getNextAgentName() method 100
getNumber() method 34
getOpenSessions() method 324
getOrderItems() method 107
getOutputParameterValue() method 504
getParameter() method 268
getPathParameters() method 324
getProduct() method 386
getProducts() method 387
getProjectList() method 34, 35
getProperties() method 353
getPropertyPath() method 470
getProtocolVersion() method 322
getQueryString() method 324
getRequestParameter-Map() method 323
getRequestURI() method 323
getResultList() method 503
getRootBean() method 470
getServletConfig() method 253

[594]

getServletInfo() method 253
getSingletons() method 353
getString() method 34
getTransactionIsolation() method 568
getUnavailableSeconds() 254
getUser() method 363
getUserPrincipal() method 324
getUserProperties() method 324
GlassFish

command line configuration 543, 544
default resources 545
installation 541
MySQL database access, configuring 542,

543
GlassFish 4

about 540
reference implementation 540

Gradle
standalone project, building 63

Gradle build file
for entity bean test 143, 144

Gradle build project 262, 263
groups annotation parameter 478
groups property 467

H
half-duplex 309
handleTransaction method 83
hashCode() method 327
header fields, JMS message

JMSCorrelationID 435
JMSDeliverMode 435
JMSDestination 435
JMSExpiration 436
JMSMessageID 435
JMSPriority 436
JMSRedelivered 436
JMSReplyTo 435
JMSTimestamp 435
JMSType 436

headers 269
HEAD method 255
HeuristicRolledBackException 561
hibernate.flushmode 548
hibernate.hbm2ddl.auto 548
Hibernate validator

@CreditCardNumber constraint 469
@Email constraint 469
@Length constraint 469
@NotBlank constraint 469
@NotEmpty constraint 469
@Range constraint 469
@SafeHtml constraint 469
@URL constraint 469
about 463
built-In constraints 469

hints attribute 505
HouseholdCredit class 70
HTML 10
HTML5 10, 11, 311
HTML5WebSocket 309
HTTP 310
HttpServlet class

methods 254
HttpServletRequest instance 268
HttpServletRequest interface 269
HttpServletResponse instance 268, 273
HTTP Servlets

about 254, 255
container-less Java web application 263,

266, 267
deployment model 255-257
Gradle build project 262, 263
simple Servlet 258, 259
URL path mapping 260, 261

HttpSession instance 271
Hypermedia 345
Hypermedia as the Engine of Application

State (HATEOS) 385
Hypermedia linking

performing 385-388
Hyper-Text Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
IDENTITY value 199
IIOP 96
Implementation 44
initialize() method 106, 474
init() method 251, 266
initParams attribute 281
init(ServletConfig config) method 253

[595]

insertable attribute 207
instance variables

used, for annotating entity beans 139, 140
versus property accessors 142

Integrated Developer Environment (IDE) 63
interceptors 14, 44, 82, 83
Internet Inter-ORB Protocol. See IIOP
intexecuteUpdate() method 499
intgetUpdateCount() method 499
InvocationCallback class 390
Invocation class 390
isFinished() method 292
isLoaded() method 523
isolation 559
isolation levels

about 565-569
READ_COMMITED 568
READ_UNCOMMITED 568
REPEATABLE_READ 568
SERIALIZABLE 568

isOpen() method 322
ISOPostCodeValidator class 477
isSecure() method 322
isValid() method 474, 485

J
J2EE versions

Java EE 7, upgrading to 538, 539
JAAS 540
JAF 540
Java API for XML Parsing. See JAXP
Java Applets container 12
Java Archive (JAR) files 12, 255, 534
Java Authentication and Authorization

Service. See JAAS
JavaBean Activation Framework. See JAF
Java Community Process

about 12
URL 12

Java Community Process (JCP) 18
Java Connector API (JCA) 15
Java Cryptography Extension (JCE) API 409
Java EE

Full Profile edition, API 15
integration with 486
platform 15, 17

profile 18
Java EE 7

about 9
API 12, 15, 17
architectural interfaces 9
architecture 12
Developer productivity theme 13
persistence unit 547
refinements 14
standard platform component 12
transactions 559
upgrading to, from J2EE versions 538, 539
XenTracker application 21
XML schema documents 549

Java EE 7 Platform Edition 12
Java for RESTful Services (JAX-RS) 15
Java IDL 540
Java interface 40
Java Interface Definition Language. See Java

IDL
java.lang.String 319
JavaMail 20
Java Management Extensions (JMX) 25
Java Message Service. See JMS
Java Naming and Directory Interface (JNDI)

naming 534
java.nio.ByteBuffer 319
Java Persistence 17
Java Persistence 2.1 18
Java Persistence API. See JPA
Java Persistence API (JPA 2.1) 14
Java Persistence Query Language. See JPQL
JavaScript Schema Object Notation (JSON)

19
Java SE 6

URL 538
Java SE edition 14
Java Server Faces 2.2 18
Java Servlet API 3.1 18
Java Servlets

about 248
destruction 252
initialization 251
lifecycle 250
loading 250
mapping 274, 275
request and response 252, 254

[596]

Java Servlets 3.1 14
Java Servlet specification

features 306
single thread model 308
URL path mapping, rules for 307

Java Specification Request (JSR) 12
Java Transaction API See JTA
Java Transaction API 1.2 18
Java Virtual Machine. See JVM
Java Web Socket

about 341
invoking 316

Java WebSocket API
@ClientEndpoint 336
about 319, 335, 340

Java WebSocket chat server
about 324
asynchronous operations 334
server side 325-331
web client 331-334

Java Web Sockets
server-side 314, 315

javax.enterprise.concurrency.ManagedTask
573

javax.io.Serializable marker interface 131
javax.json.JsonReader instance 580
javax.json.JsonWriter 583
javax.json.spi.JsonProvider 583
javax.persistence.CascadeType 196
javax.persistence.jdbc.driver property 189
javax.persistence.jtaDataSource property

189
javax.persistence.nonJtaDataSource prop-

erty 189
javax.persistence.password property 189
javax.persistence.transactionType property

189
javax.persistence.url property 189
javax.persistence.user property 189
javax.servlet.Filter interface 280
javax.servlet.ServletConfig object 251, 253
javax.transaction.HeuristicMixedException

561
javax.websocket.Endpoint 340
javax.websocket.server.ServerEndpoint an-

notation 314
javax.websocket.Session interface 321

javax.ws.js.client package
AsyncInvoker class 389
Client 389
ClientBuilder class 389
Entity class 389
SyncInvoker class 389
WebTarget class 389

JAXP 540
JAX-RPC 539
JAX-RS 20
JAX-RS 2.0

about 19, 31
features 347
integration 487

JAX-RS annotations
@Context 370
@CookieParam 370
@DefaultValue 370
@FormParam 370
@HeaderParam 370
@MatrixParam 370
@PathParam 370
@QueryParam 370
default values, using 372
form parameters, extracting 373, 374
matrix parameters, extracting 371, 372
query parameters, extracting 370, 371

JAX-RS client API
about 389
asynchronous invocation 393, 395
synchronous invocation 389, 391, 392

JAX-RS common server annotation
@Consumes 358
@DELETE 358
@GET 358
@HEAD 358
@Path 358
@PathParam 358
@POST 358
@Produces 358
@Provider 358
@PUT 358
@QueryParam 358
@TRACE 358
about 358

JAX-RS filters
about 399

[597]

binding, with interceptors 409, 411
ClientRequestFilter 399
ClientResponseFilter 399
client side filters 401-405
dynamic binding 411, 412
server side filters 399-401

JAX-RS generic response
generating 377
generic entities 383
Hypermedia linking 385, 386
Response builder 377-379
Response status 380, 383
return types 384

JAX-RS interceptors
about 405
ReaderInterceptor 405
WriterInterceptor 405

JAX-RS providers 399
JAX-RS resources

defining 359-364
mapping 354
testing 365-367

JAX-RS server-side endpoints
about 357
field and bean properties 374
JAX-RS annotations 370
JAX-RS common server annotation 358
JAX-RS resources, defining 359-364
JAX-RS resources, testing 365-368
Path URI variables 368, 369

JAX-RS subresources
about 375
resolution, by subresource location 375, 376
resolution, by subresource method 376

JAX-WS 20
JDBC 20
JDBC Connection pool 543
jdbc.driver property 550
jdbc.password property 550
jdbc.url property 550
jdbc.user property 550
Jetty Server 17
JMS

about 20, 413, 414
example 414-416
JMS Client 420
JMS Consumer 420

JMS Message 420
JMS Producer 420
JMS Provider 420
messaging systems 416

JMS 1.1 API 420
JMS 1.1 code

upgrading 452
JMS 1.1 connection

establishing 452-455
JMS 2.0 API 421
JMS 2.0 example 421-424
JMS-CDI integration

about 455
CDI beans, injecting 455, 456
EJB beans, injecting 457
JMSContext resources, injecting 456
JMS resources, defining in Java EE 457, 458

JMS Classic API 420
JMS Client 420
JMS connection

connection factories 425, 426
default connection factory 426
establishing 425
JMSContext 427
JMSContext, retrieving 432
JMS provider, connecting to 425
message destinations 427

JMS Consumer 420
JMSContext

about 427, 432
delivery modes 431
in Java EE server 432
methods 428
retrieving 432
static constants 431

JMSContext resources
injecting 456

JMSContext.start() method 443
JMSContext.stop() method 443
JMS defined properties

JMSXAppID 444
JMSXDeliveryCount 444
JMSXGroupID 444
JMSXGroupSeq 444
JMSXRcvTimestamp 444
JMSXUserID 444

JMS definitions 420

[598]

JMS exception handing
about 451
IllegalStateRuntimeException 451
InvalidClientIDRuntimeException 451
InvalidSelectorRuntimeException 451
JMSSecurityRuntimeException 451
MessageEOFException 451
MessageFormatRuntimeException 452
MessageNotWritableRuntime 452
ResourceAllocationRuntime-Exception 452
TransactionInProgressRuntime-Exception

452
TransactionRolledBackRuntime-Exception

452
JMS Message 420
JMS messages, receiving

connections, starting 443
connections, stopping 443
durable consumers 441, 442
JMS defined properties 444
messages, receiving asynchronously 439
messages, receiving synchronously 438, 439
message, upgrading from JMS 1.1 437, 438
non-shared subscriptions 440
redelivery 443
shared subscriptions 441

JMS messages, sending
headers 435
message delivery delay, setting 436
message producers, upgrading from JMS

1.1 433
message properties, setting 436
messages, sending asynchronously 434
messages, sending synchronously 434

JMS message types
about 421
ByteMessage 421
MapMessage 421
ObjectMessage 421
StreamMessage 421
TextMessage 421

JMS Producer 420
JMS provider

about 420
connecting to 425

JMS simplified API 421

JNDI
about 20
lookup 569

job scheduling 98
joinTransaction() function 528
JPA

about 20, 129, 191
converters 551, 552
Criteria API 508
features 551
map collection 491
native constructor, results 552, 553

JPA 2.1
miscellaneous features 526

JPA 2.1 properties
jdbc.driver 550
jdbc.password 550
jdbc.url 550
jdbc.user 550
lock.timeout 550
query.timeout 550
schema-generation.create-script-source 549
schema-generation.create-source 549
schema-generation. database.action 549
schema-generation.drop-script-source 549
schema-generation.drop-source 550
schema-generation. scripts.action 549
schema-generation.sql-load-script-source

549
validation.group.pre-persist 550
validation.group.pre-remove 550
validation.group.pre-update 550

JPQL
about 26, 136, 175
dynamic queries 176
named queries 177, 178
positional query arguments 179, 180
query parameters 178, 179

JSON
generating, with object model 582, 583
generating, with streaming API 579, 580
parsing, with object model 580, 581
parsing, with streaming API 578, 579

Json.createGenerator() method 579
JsonGenerator 579
JsonGeneratorFactory class 31, 579
JsonObject 581

[599]

JsonObjectBuilder instance 583
JSON-P

about 14, 576
JSON, generating with object model 582,

583
JSON, generating with streaming API 579,

580
JSON, parsing with object model 580, 581
JSON, parsing with streaming API 578, 579
object model 580
streaming 577

JSON-P 1.0 19
JsonParser.Event 579
JSON Processing. See JSON-P
JsonReader 581
JsonValue 581
JTA 14, 20, 148, 560
jta-data-source element 548
JVM 95, 248

K
keyStore() method 390

L
largeIcon attribute 282
lazily binding

about 192, 193
and eagerly binding, trade-off 193-195

link() method 385
links() method 385
List getResultSet() method 499
list() method 267
listUsers() method 363
LiveEvent entity 519
local access, business interfaces 120
Local invocation 98
local transactions 562
locking

optimistic locking 557
pessimistic locking 558

LockModeType enumeration 558
lock.timeout property 550
Long Polling 311
LONGRUNNING_HINT property 574

M
makeGetRequest() method 366
Managed Beans 20
ManagedExecutorService 575
ManagedExecutorService instance 572
ManagedExecutorService interface 571
ManagedScheduled-ExecutorService

interface 571
ManagedTaskListener 575
ManagedThreadFactory 573
ManagedThreadFactory interface 572
ManagerScheduledExectorService 573
MANDATORY 563
many-to-many mapping

about 220
bidirectional 221-223
unidirectional 224, 225

many-to-one mapping
about 217
bidirectional 220
with join column 218, 219

map collection
about 491
map key join column relationship 495-497
map key relationship 491-495

map key join column relationship 495-497
map key relationship 491-495
mappedBy attribute 205, 211, 221
mapped superclass 238, 240
matrix parameters

about 371
extracting 371

maxMessageSize attribute 316
MDB

about 444
activation configuration property 449
example 445-449
message selector 450
messages, processing 444

merge() function 528
MERGE operation 197
message bean type 97
message destinations, JMS 427
Message-Driven Bean. See MDB
Message Driven Beans. See MDB
MessageHandler 341

[600]

MessageInterpolator 486
Message Oriented Middleware 413
message property 466
messageReceived() method 335
message selector, MDB 450
messaging systems

about 416
point-to-point messaging 416
publish-subscribe messaging 418

method-level constraints 483, 485
method overloading 40
methods, JMSContext

acknowledge() 431
close() 429
commit() 429
createBrowser(): QueueBrowser 430
createBytesMessage(): BytesMessage 429
createConsumer(): JMSConsumer 430
createContext() 428
createDurableConsumer(): JMSConsumer

430
createMapMessage(): MapMessage 429
createMessage(): Message 429
createObjectMessage(): ObjectMessage 429
createProducer(): JMSProducer 428
createSharedDurableConsumer(): JMSCon-

sumer 430
createStreamMessage(): StreamMessage

429
createTemporaryQueue(): QueueBrowser

430
createTemporaryTopic(): TemporaryTopic

430
createTextMessage(): TextMessage 429
getClientID() 428
getSessionMode(): int 429
getTransacted(): boolean 429
recover() 430
rollback() 430
setClientID() 428
start() 428
stop() 428
unsubscribe(String topicName) 431

method validation 462
method validation rules 486
MIME types

configuring 277

miscellaneous features
about 526
custom JPQL function 526
down-casting entities 527
entity listeners 528, 529
native query constructor, mapping 530, 531
persistence context, synchronizing 528

Multipurpose Internet Mail Extensions. See
MIME types

MySQL database access
configuring 542, 543

MySQL remote server 500

N
name attribute 206, 505
named queries, JPQL 177, 178
naming directory 98
native format 319
native query constructor

mapping 530, 531
NEVER 563
newBuilder() method 390
New Input Output (NIO) 14, 289
newInstance() method 116
non-XA local transaction 562
NOT_SUPPORTED 563
nullable attribute 207

O
Object getSingleResult() method 499
Object Management Group. See OMG
object model

JSON, creating with 582, 583
JSON, parsing with 580, 581

object-relational mapping files 187, 188
Object/Relational Mapping (ORM) 129
Observer Design Pattern (ODP) 90
ODP 90
OMG 96
onAllDataRead method 292
onAllDataRead() method 295, 298
onDataAvailable method 292
onError method 292, 299
onError() method 302
one-to-many mapping

about 211

[601]

bidirectional 214, 215
using, as explicit join table 216, 217
with join column 213, 214

one-to-one mapping
about 204
cascade attribute 205
fetch attribute 205
foreign keys, composite 209, 210
mappedBy attribute 205
optional attribute 205
orphanRemoval attribute 205
one-to-one bidirectional entities, persisting

to 209
one-to-one-entities, bidirectional 208, 209
one-to-one unidirectional entities, persist-

ing to 208
onException() method 434
onMessage() function 334
onMessage() method 446
onOpen() function 318
onOpen() method 341
onWritePossible method 299
onWritePossible() method 302
OpenJPA 130
openWebSocket() function 333, 334
OptimisticLockException 557
optimistic locking 557
optional attribute 205, 218
OPTIONS method 255
orm.xml file 550
orphanRemoval attribute 198, 205, 211
orphans

in relationships, removing 197, 198
outbound parameter values

retrieving 503, 504

P
P2P model

about 417
e-Commerce typical application 417

PaaS (Platform as a Service) 17
Path URI variables 368, 369
payEntity() method 485
PayloadCheckMDB 448
Payload instance 467
payload property 467

Persistence Capable Objects (PCO) 129
persistence context

about 186
synchronizing 528

PersistenceContext 145
PersistenceContextType.EXTENDED 556
persistence context XML configuration

for entity bean test 148-150
persistence unit

about 547
example 548
object-relational mapping, XML representa-

tion 550
standard property configuration 189
XML schema documents, for Java EE 7 549

persistence unit configuration
structure 186, 187

Persistence XML configuration
location 537

persistent.xml file 537
persist() function 528
PERSIST operation 197
pessimistic locking 558
Ping and Pong format 320
Plain Old Java Object. See POJO
Plain-Old-Java-Objects. See POJOs
PlanningResource class

about 383
getPlanList() method 383

platform, Java EE 15, 17
point-to-point messaging 416
POJO 14, 99
POJOs 131, 132, 191, 461
polymorphism 40
pong format 320
POST method 31, 254
PostTradeProcessor class 122
procedureName attribute 505
procedures attribute 505
processRequest() method 294, 300
Producers

used, for arbitrary objects injecting 69
ProductListing Servlet 276
profile, Java EE

Enterprise Full Profile 18-20
Web Profile 18, 19

Project entity 22-25

[602]

ProjectRESTServerEndpoint 32
properties object 112
property accessors

used, for annotating entity beans 140, 141
versus instance variables 142

publish-subscribe messaging 418
Pub-Sub model

about 418
investment bank example 418, 419

PUT method 254

Q
qualifiers

about 44, 47, 48
built-in qualifiers 49

query parameters
extracting 370

query parameters, JPQL
about 178, 179
positional query arguments 179, 180

query.timeout property 550

R
READ_COMMITED 568
readEntity() method 392
ReadListener 291
readObject() method 581
READ_UNCOMMITED 568
receiveBody() method 438
receiveMessage() method 327
referencedColumn-Name attribute 206
refresh() call 558
refresh() function 528
refresh() method 558
REFRESH operation 197
release() method 110
rel() method 388
remote access, business interfaces 120
RemoteEndpoint.Async 339
RemoteEndpoint.Basic 339
Remote invocation 98
Remote Method Invocation. See RMI
Remote Method Invocation over Internet

Inter-ORB protocol. See RMI-IIOP
removeChatUser() method 331
remove() function 528

removeMessageHandler(MessageHandler
handler) method 322

REMOVE operation 197
removeOrderItem() method 107
removeProject() method 27
REPEATABLE_READ 568, 569
ReportHeader servlet 269
Representational State Transfer. See REST
request attributes 269, 270
request context 284
Request For Comments (RFC) 248
request() method 393
request parameters 268
request-response 248
REQUIRED 563
REQUIRES_NEW 563
resetValues() method 57
Resource Adapter Archive (RAR) file 535
Resource Injection (RI) 534
RESOURCE_LOCAL 149, 548
response

redirecting 272
Response class

build() method 378
entity() method 378
ok() method 378
type() method 379

ResponseProcessingException class 390
REST

about 96, 345
architectural style 348

REST constraints
cache 346
client/server 346
code-on-demand 347
layered style 347
stateless 346
uniform interface 346

RESTful endpoint 31-36
resultClasses attribute 505
resultSetMappings attribute 505
retrieve() method 410
retrieveProjectAndTasks() method 30, 31
return types 384
RMI 96
RMI-IIOP 96, 540
rollback() function 528, 564

[603]

S
saveInvoice() target method 565
saveProject() method 27
schema-generation.create-script-source

property 549
schema-generation.create-source property

549
schema-generation. database.action

property 549
schema-generation.drop-script-source

property 549
schema-generation.drop-source property

550
schema-generation. scripts.action property

549
schema-generation.sql-load-script-source

property 549
Scope 44
SecureReceipt annotation

code snippet 485
SecureReceiptValidator object 485
security 98
sendPayloadMessage() method 447
sendXML() method 456
SensitiveResource class 410
SEQUENCE value 199
SEQ_VALUE 202
SERIALIZABLE 568
server side filters

about 399
ContainerRequestFilter 399
ContainerResponseFilter 399

Server Web Socket Endpoint 312
service endpoint, XenTrack application

about 27
RESTful endpoint 31-36
WebSocket endpoint 28-31

service() method 252
Service Oriented Architecture. See SOA
Service Provider Interface (SPI) 486
service(ServletRequest request, Servlet

Response response) method 253
Servlet

aligning, to CDI container 305, 306
context attributes 271, 272

servlet container 533

ServletContext 271
ServletContextDemo 272
ServletException exception 253, 254
Servlet filters

about 280, 281
annotation attributes 281
XML configuration 282, 283

ServletInputStream.isReady() method 292
ServletInputStream method 292
servlet mapping

JAX-RS resources, mapping 354
performing 351, 352, 353
Test-Driven Development, with JAX-RS

354, 355, 357
servletNames attribute 281
ServletRequest 252
session attributes 271
session beans

about 99
lifecycle 115
singleton session beans 111-114
stateful session beans 103-110
stateless session beans 99-102

session bean type 97
session context 284
session timeout

configuring 276, 277
setAsync() method 434
setMaxBinaryMessage-BufferSize(int

length) method 323
setMaxIdleTime(long millisecond) method

322
setMaxTextMessage-BufferSize(int length)

method 323
set() method 512
setStringProperty() method 434
setter injection 46
setTransactionIsolation() method 568
ShoppingCartBean bean 106
shouldAddOneUser() method 366
shouldAddTwoUsers() method 368
shouldAmendOneUser() method 367
shouldAssembleAndRetrieveBookList()

method 357
shouldBasicValidateCar() method 480
shouldCompletelyValidateCar() method

480

[604]

shouldExecuteCriteriaUpdate() method 513
shouldFireMessageAtMDB() method 449
shouldInvokeStoredProcedure() method

502
shouldLoadArtistWithoutConcerts() method

523
shouldRetrieveDifferentAgents() method

102
shouldRetrieveHyperbooks() method 389
shouldSaveArtistWithAlbum() method 522
ShrinkWrap 356
ShrinkWrap archives 76
SimpleLoggingFilter 281
SimpleServlet subclasses 259
single database table, hierarchy

single table strategy, benefits 230
single table strategy, drawbacks 231
user story, example 227-230

SingleThreadModel 308
singleton session beans

about 111-114
lifecycle 118, 119

smallIcon attribute 282
SOA 96
software engineering

context 39
dependency 40
dependency injection 40
domain 40
encapsulation 40
Java interface 40
method overloading 40
polymorphism 40

SpyThriller bean 132
SpyThriller class 131
SSLContext() method 390
Standalone CDI application 60-62
standalone project

building, Gradle used 63
standard platform component 12
Stateful EJBs 533
stateful session beans

about 103-110, 556
lifecycle 116-118

Stateless EJBs 533
stateless session beans

about 99-102

concurrency and stateless session EJB 102,
103

lifecycle 115
STAX 540
stereotypes 93
stored procedure query

about 499, 500
annotation 505-508
methods 499

stored procedures
about 498
calling 498
dynamic result set, retrieving 501-503
MySQL remote server 500
outbound parameter values, retrieving 503,

504
stored procedure query 499, 500
stored procedure query, annotation 505-508

StoreProcedureQueryregisterStore
ProcedureParameter() method 499

StoreProcedureQuerysetParameter() method
499

streaming API
JSON-P 577
JSON, generating with 579, 580
JSON, parsing with 578, 579

Streaming API for XML. See STAX
StreamingPriceWebSocketServer 338
String.split() function 334
sub graph 515
Subgraph interface 516
subProtocols attribute 315, 336
SUPPORTS 563
synchronous invocation 389
synchronous reader

example 290, 291
SyncInvoker class 390
System.exit 297

T
table attribute 207
table-per-class, hierarchy

about 235
benefits 237
drawbacks 238
user story, example 235-237

[605]

TABLE value 199
targetEntity attribute 205, 211, 218, 221
Task entity 24, 25
tearDown() method 68
testWebSocket() function 318
TRACE method 255
TradeDirectionConverter class 552
Train entity class 140
TranactionAttribute.MANDATORY 554
TransactionalCreditProcessor class 84
transactional support

about 160
application managed transactions 160, 161

TransactionAttribute.REQUIRED 554
transactions

about 98, 554, 559
distributed transactions 562
local transactions 562
non-XA local transaction 562

transaction, services 562
transaction-type XML element 548
TraversableResolver 486
Two-Phase Commit Transaction Manager.

See 2PC
Tyrus 319

U
UnavailableException class 254
UnavailableException exception 253
Uniform Resource Identifiers (URI) 345
Uniform Resource Locator (URL) 349
Uniform Resource Name (URN) 349
unique attribute 207
unsubscribe() method 442
unsynchronized persistence context

limitations 528
unwrap() method 471
updatable attribute 207
updateProject() method 27
URL path mapping

about 260, 261
rules for 307

URL patterns
mapping 307

urlPatterns attribute 281
user-defined function 498

User Experience (UX) 310
UserTransaction instance 569

V
validate() method 480
validation.group.pre-persist property 550
validation.group.pre-remove property 550
validation.group.pre-update property 550
validator

default access 487
validator factory

default access 487
value attribute 281, 315
ViewDealer Servlet 270

W
W3C

about 10
URL 10

Web Archive (WAR) 255
Web Archive (WAR) file 535
web client 331, 334
web container 12, 248
web deployment descriptor

about 273
and annotations 279
error-handler pages, configuring 278
Java Servlets, mapping 274-276
MIME types, configuring 277
session timeout, configuring 276
welcome page, configuring 278

WebFilter attributes 281
web fragments

about 286
multiple web fragments 287-289

WebGL 11
Web Hypertext Application Technology

Working Group. See WHATWG
WebMethodUtils utility class 366
Web Profile

about 17-19
API 18

Web service invocation 98
WebSocket

about 14, 311
examples 319

[606]

on server side 320
Web Socket 1.0 18
WebSocket API. See Java WebSocket API
Web Socket Connection 312
WebSocket endpoint

about 28-31, 312
URL 29

WebSocket Endpoint annotations
lifecycle 320

Web Socket Peer 312
Web Socket protocol 313
Web Socket Sessions 312, 321, 324
WebTarget class 390
Weld 60
WHATWG

about 10
URL 10, 310

WHERE clause 176
where() method 512, 513, 515
Whole interface 341
World-Wide Web Consortium. See W3C

World Wide Web (WWW) 10
writeEnd() method 31
writeStartArray() method 31, 580
writeStartObject() method 31, 580

X
XA 560
XenTrack application

component 36
Entity Control Boundary (ECB) design

pattern 36, 37
service endpoint 27

XenTracker application
about 21
business logic 25, 27
entities 22-25

XSD locations
URL 549

XSS 463
XSS Prevent Cheat Sheet

URL 463

Thank you for buying
Java EE 7 Developer Handbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Java EE 6 with GlassFish 3
Application Server
ISBN: 978-1-84951-036-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java 6
applications to be deployed to this server

1.	 Install and configure the GlassFish 3
Application Server and develop Java EE 6
applications to be deployed to this server

2.	 Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI
and JAX-RS

3.	 Use GlassFish v3 application server and gain
enterprise reliability and performance with less
complexity

Java EE 6 Cookbook for
Securing, Tuning, and Extending
Enterprise Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1.	 Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework

2.	 Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services

3.	 Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks

Please check www.PacktPub.com for information on our titles

Java EE 6 Development with
NetBeans 7
ISBN: 978-1-84951-270-1 Paperback: 392 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1.	 Use features of the popular NetBeans IDE to
accelerate development of Java EE applications

2.	 Develop JavaServer Pages (JSPs) to display both
static and dynamic content in a web browser

3.	 Covers the latest versions of major Java EE APIs
such as JSF 2.0, EJB 3.1, and JPA 2.0, and new
additions to Java EE such as CDI and JAX-RS

Java EE Development with
Eclipse
ISBN: 978-1-78216-096-0 Paperback: 426 pages

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

1.	 Each chapter includes an end-to-end sample
application

2.	 Develop applications with some of the
commonly used technologies using the project
facets in Eclipse 3.7.

3.	 Clear explanations enriched with the necessary
screenshots

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Java EE 7 HTML5 Productivity
	Java EE 7
	Enhanced HTML5 support
	Java EE 7 architecture
	Standard platform components and API
	New productivity themes
	Refinements

	Java EE Platform
	Java EE Profiles
	Web Profile
	Enterprise Profile

	A working example
	Entities
	Business logic
	The service endpoints
	A WebSocket endpoint
	A RESTful endpoint
	The Entity Control Boundary pattern

	Summary

	Chapter 2: Context and Dependency Injection
	Software engineering definitions
	The Context and Dependency
Injection service
	Beans and bean types
	Basic injection
	Field injection
	Setter injection
	Constructor injection

	Qualifiers
	Built-in qualifiers

	The CDI classpath scanning
	Factory production
	Generating new instances every time
	The Bean names and the presentation views
	The bean scopes
	CDI initialization and destruction
	The @PostConstruct annotation
	The @PreDestroy annotation

	Programmatic Lookup of the CDI Beans
	Configuring a CDI application

	Standalone CDI application
	Building the standalone project
with Gradle
	Using the DeltaSpike CDI container tests
	Injecting arbitrary objects using Producers
	Advanced CDI
	The lifecycle component example
	Alternatives

	Arquillian test framework
	A new kind of Java EE testing framework
	Setup of Arquillian
	The disposable methods

	CDI and crosscutting concerns
	Interceptors
	Decorators
	Observers and events
	Stereotypes

	Summary

	Chapter 3: Enterprise Java Beans
	EJB protocols
	Criticism of EJB
	Simplification of EJB

	Features of EJB components
	Session beans
	Stateless session beans
	Concurrency and stateless session EJB

	Stateful session beans
	Singleton session beans

	The lifecycle of session EJBs
	Lifecycle of stateless EJBs
	Lifecycle of stateful session beans
	Lifecycle of singleton session beans

	Business interfaces
	Local access
	Remote access
	Access summary
	No interface views

	EJB references
	Asynchronous invocations
	The relationship between EJB and CDI containers
	Lightweight scope of EJB
	Summary

	Chapter 4: Essential Java Persistence API 3.2
	Entities
	Entity bean definition
	An entity bean example
	A Plain Old Java Object
	A simple entity bean
	Expanded entity bean definition

	Annotating entity beans
	Annotating entities with the instance variables
	Annotating entities with property accessors
	Comparing annotating styles

	Running a simple entity bean test
	The Gradle build file for the entity bean test
	A stateful session bean
	An entity bean integration test
	A persistence context XML configuration
	Arquillian configuration for the embedded GlassFish server
	Running the integration test

	The lifecycle of entity bean
	The new entity state
	The managed entity state
	The detached entity state
	The removed entity state

	EntityManager
	Persistence context
	The EntityManager methods

	Transactional support
	Application managed transactions

	Retrieving an EntityManager by injection
	Retrieving an EntityManager by factory
	Retrieving an EntityManager by the
JNDI lookup

	Moving further along with the entity beans
	Controlling the mapping of entities to the database table
	Expanding the @Table annotation
	Mapping the primary keys

	Simple primary key
	Composite primary keys
	Using the @IdClass annotation
	Using the @Embeddable annotation
	Using the @EmbeddedId annotation

	JPQL
	The dynamic queries
	The named queries
	The query parameters
	The positional query arguments

	The entity bean relationships
	Mapping with the @OneToOne annotation
	Mapping with the @OneToMany annotation
	Mapping with the @ManyToOne annotation
	Mapping with the @ManyToMany annotation

	Configuration of persistence and the entity beans
	The structure of the persistence unit configuration
	The object-relational mapping files
	Standard property configuration for the persistence units

	Summary

	Chapter 5: Object-Relational Mapping with JPA
	Adding finesse to entity beans
	Field binding
	Binding eagerly
	Binding lazily
	The trade-off between eager and lazy

	Cascades onto dependent entities
	Cascade operations
	Removal of orphans in relationships

	Generated values and primary keys
	Table auto increment
	Sequence auto increment
	Identity auto increment

	Entity relationships revisited
	One-to-one mapping
	Persisting one-to-one unidirectional entities
	Bidirectional one-to-one-entities
	Persisting one-to-one bidirectional entities
	Composite foreign keys in a one-to-one relationship

	One-to-many mapping
	One-to-many with join column
	Bidirectional one-to-many relationship
	One-to-many using an explicit join table

	Many-to-one mapping
	Many-to-one relationship with join column
	Bidirectional many-to-one relationship

	Many-to-many mapping
	Bidirectional many-to-many relationship
	Unidirectional many-to-many relationship

	Mapping entity inheritance hierarchy
	Hierarchy in a single database table
	An example user story
	Benefits and drawbacks to the single table strategy

	Common base table hierarchy
	An example user story
	Benefits and drawbacks to joined Inheritance

	Table-per-class hierarchy
	An example user story
	Benefits and drawbacks to table-per-class hierarchy

	Extended entities
	Mapped super-classes

	Troubleshooting entity persistence
	Fetch performance
	Prefer lazily binding for maximum performance

	Entity Relationship
	Prefer orphan removal
	Excessive queries

	Object corruption

	Summary

	Chapter 6: Java Servlets
and Asynchronous
Request-Response
	What are Java Servlets?
	Web containers
	The lifecycle of Java Servlets
	Loading Servlets
	The Java Servlet initialization
	The Java Servlet destruction

	The Servlet request and response
	HTTP Servlets
	The deployment model

	Getting started with Java Servlets
	A simple Servlet
	The URL path mapping

	The Gradle build project
	The container-less Java web application

	Request and response
	The request parameters
	Headers
	The request attributes
	The session attributes
	The Servlet context attributes
	Redirecting the response

	The web deployment descriptor
	Mapping Java Servlets
	Configuring a session timeout
	Configuring MIME types
	Configuring the welcome page
	Configuring the error-handler pages
	Annotations and the web deployment descriptor

	The Servlet filters
	The Servlet filter annotation attributes
	The Servlet filter XML configuration

	The Servlet context listener
	Pluggable Servlet fragments
	Ordering multiple web fragments

	Asynchronous Java Servlets
	The asynchronous input and output
	A synchronous reader example
	An asynchronous reader example
	An asynchronous writer

	Alignment to the containers
	Aligning Servlets to the CDI container

	Miscellaneous features
	Mapping the URL patterns
	Rules for the URL path mapping
	Single thread model

	Summary

	Chapter 7: Java API for HTML5WebSocket
	The rise of WebSockets
	Early web technology
	Enter HTML5 and WebSockets
	WebSocket Java definitions
	The WebSocket protocol

	Server-side Java WebSockets
	@ServerEndpoint
	@OnMessage

	Invoking Java WebSocket
	Running WebSocket examples

	Java WebSocket API
	Native formats communication
	Annotated WebSockets on server side
	Lifecycle WebSocket endpoint annotations

	WebSocket sessions

	A Java WebSocket chat server
	The server side
	The web client
	Asynchronous operations

	Client-side Java WebSockets
	@ClientEndpoint
	Annotated client example
	Remote endpoints

	Programmatic Java WebSocket
	Encoders and decoders
	Summary

	Chapter 8: RESTful Services
JAX-RS 2.0
	Representational State Transfer
	JAX-RS 2.0 features

	Architectural style
	REST style for collections of entities
	REST style for single entities

	Servlet mapping
	Mapping JAX-RS resources
	Test-Driven Development with JAX-RS

	JAX-RS server-side endpoints
	Defining JAX-RS resources
	Testing JAX-RS resources
	Path URI variables
	JAX-RS annotations for extracting field and bean properties
	Extracting query parameters
	Extracting matrix parameters
	Using default values
	Extracting form parameters

	Field and bean properties

	JAX-RS subresources
	Resolution by subresource location
	Resolution by subresource method

	Generating a JAX-RS generic response
	Response builder
	Response status
	Generic entities
	Return types
	Hypermedia linking

	JAX-RS client API
	Synchronous invocation
	Asynchronous invocation

	Asynchronous JAX-RS server side endpoints
	JAX-RS providers
	Filters
	JAX-RS filters
	Server side filters
	Client side filters

	JAX-RS interceptors
	Binding filter and interceptors
	Dynamic binding

	Summary

	Chapter 9: Java Message Service 2.0
	What is JMS?
	Messaging systems
	Point-to-point messaging
	Publish-subscribe messaging

	JMS definitions
	JMS classic API
	JMS simplified API
	JMS message types

	A quick JMS 2.0 example
	Establishing a JMS connection
	Connecting to a JMS provider
	Connection factories
	Default connection factory

	Message destinations
	JMS context
	Retrieving a JMSContext

	Sending JMS messages
	Upgrading message producers from JMS 1.1
	Sending messages synchronously
	Sending messages asynchronously
	JMS message headers
	Setting message properties
	Setting message delivery delay

	Receiving JMS messages
	Upgrade from JMS 1.1
	Receiving messages synchronously
	Receiving messages asynchronously
	Non-shared subscriptions
	Shared subscriptions
	Durable topic consumers

	Starting and stopping connections
	Redelivery of messages
	Other JMS defined properties

	Message-driven Beans (MDBs)
	Activation configuration property
	Message selectors

	JMS exception handling
	Upgrading JMS 1.1 code
	Establish a JMS 1.1 connection

	JMS and dependency injection
	Injecting CDI beans
	Injection of JMS context resources
	Injecting EJB beans
	Definition of JMS resources in Java EE

	Summary

	Chapter 10: Bean Validation
	Introduction to Bean Validation
	New features in 1.1
	Quick example

	Constraint declarations
	Elements of a constraint
	List of built-in constraints
	Hibernate Validator built-in constraints
	Constraint violations

	Applying constraint definitions
	Custom validators
	Groups of constraints
	Class-level constraint
	Partial validation

	Constraint inheritance
	Ordering groups of constraints
	Method-level constraints
	Method validation rules

	Integration with Java EE
	Default access to validator and validator factory
	JAX-RS 2.0 integration

	Summary

	Chapter 11: Advanced Topics
in Persistence
	Persistence of map collections
	The MapKey relationship
	The MapKey join column relationship

	Calling stored procedures
	Stored procedure query
	MySQL remote server example
	Dynamic result set retrieval
	Retrieving outbound parameter values
	Stored procedure query annotations

	Understanding the criteria API
	Criteria queries
	Criteria update
	Criteria delete

	Entity graphs
	Worked example of a fetch plan

	Miscellaneous features
	Custom JPQL functions
	Down-casting entities
	Synchronization of persistence contexts
	Entity listeners with CDI
	Native query constructor mapping

	Summary

	Appendix A: Java EE 7 Platform
	Platform containers
	Global JNDI naming
	Packaging
	Bean XML configuration location
	Persistence XML configuration location

	Upgrading to Java EE 7 from
J2EE versions
	Legacy application programming interfaces

	GlassFish 4 reference implementation
	Basic GlassFish installation
	Configure MySQL database access
	Command line configuration
	Default resources

	Appendix B: Java EE 7 Persistence
	Persistence unit
	XML schema documents for Java EE 7
	Properties
	XML representation of object-relational mapping

	JPA miscellaneous features
	Converters
	Native constructor results

	Transactions and concurrency
	Entity managers
	Transactions, entity managers, and
session EJBs
	Stateful session beans

	Concurrency access locks
	Optimistic locking
	Pessimistic locking

	Appendix C: Java EE 7 Transactions
	Transactions
	Java Transaction API
	Two-phase commit transactions
	Heuristic failures

	Local transactions
	Distributed transactions

	Transaction services
	Container-Managed Transactions (CMT)
	Bean-Managed Transactions (BMT)
	Isolation levels
	JNDI lookup

	Appendix D: Java EE 7 Assorted Topics
	Concurrency utilities
	Environment reference
	Application container context
	Contextual tasks

	JSON-P
	Streaming
	Parsing JSON with Streaming API
	Generating JSON with Streaming API

	Object model
	Parsing JSON with the object model
	Generating JSON with the object model

	Recommended reading

	Index

