
<Insert Picture Here>

JPA Best Practices
Lee Chuk Munn
chuk-munn.lee@oracle.com

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated
into any contract. It is not a commitment to
deliver any material, code, or functionality, and
should not be relied upon in making purchasing
decisions.

The development, release, and timing of any
features or functionality described for Oracle's
products remains at the sole discretion of
Oracle.

<Insert Picture Here>

Agenda

• Entities
• EntityManager
• Persistence Context
• Queries
• Transactions

Very Brief Overview of JPA
• Introduced as part of JavaEE 5
• POJO based persistence

– No interface, convention over configuration, annotation based

• Support rich domain modelling
– Inheritance and polymorphism

• Query language
• Standardize object/relationship mapping
• Usable in JavaEE and/or JavaSE

– Unified persistence model across the Java platform

<Insert Picture Here>

EntitiesEntities

About Entities
• Are not EntityBeans !!!

– Not threadsafe – not a problem if in JavaEE container

• Are POJOs
– No remote calls involved, methods are executed locally

• Have states
– New, managed, detached, removed

• Entities are detached (value objects) outside of
transaction context
– Must merge to update data

Example of an Entity

@Entity(access=FIELD)
@Table(name = “customer”)
public class Customer {

@Id public int id;
...
public String name;
@Column(name=”CREDIT”) public int c_rating;

@LOB public Image photo;
...

}

Annotated as “Entity” Data are accessed as fields

@Id denotes primary key

Maps to “customer” table

Specify the table
column to map to

Primary Keys
• Annotated with @Id
• Simple use case @Id can be generated

– TABLE – most portable
– SEQUENCE, IDENTITY

• Use database's sequence and/or identity column
• May not be portable

– AUTO – let persistence manager pick the best strategy

@TableGenerator(name=”mygen”, table=”ID_TABLE”
, pkColumnName=”GEN_KEY”, pkColumnValue=”EMP_ID”
, valueColumnName=”GEN_VALUE”)

@Id @GenerateValue(strategy=TABLE, generator=”mygen”)
long id;

ID_TABLE
GEN_KEY GEN_VALUE

EMP_ID Last generated value

Example – Domain Model
@Entity public class Employee {

@Id private int id;
private String firstName;
private String lastName;
@ManyToOne(fetch=LAZY)
private Department dept;

 ...
}
@Entity public class Department {

@Id private int id;
private String name;
@OneToMany(mappedBy="dept", fetch=LAZY)
private Collection<Employee> emps = new ...;
 ...

}

Example – Managing Relationship

public int addNewEmployee(...) {
Employee e = new Employee(...);
Department d = new Department(1, ...);

e.setDepartment(d);
//Reverse relationship is not set
em.persist(e);
em.persist(d);

return d.getEmployees().size();

}

INCORRECT

Example – Managing Relationship
CORRECT

public int addNewEmployee(...) {
Employee e = new Employee(...);
Department d = new Department(1, ...);

e.setDepartment(d);
d.getEmployees().add(e);
em.persist(e);
em.persist(d);

return d.getEmployees().size();

}

Navigating Relationships
• Data fetching strategy

– EAGER – immediate
– LAZY – load only when needed

• Lazy is good for large objects with deep relationship
hierarchies

• Eager is automatic when operation is performed
outside of a transaction
– Entities are detached immediately

• Cascade specifies operations on relations
– ALL, PERSIST, MERGE, REMOVE, REFRESH
– Default is to do nothing

• Avoid MERGE with deep hierarchies
– Or limit the scope of merge

Choosing Between EAGER and LAZY
• EAGER – too many joins

• LAZY – N + 1

SELECT d.id, ... FROM Department d // 1 time
SELECT e.id, ... FROM Employee e

WHERE e.deptId = ? // N times

SELECT d.id, ..., e.id, ...
FROM Department d left join fetch Employee e

on e.deptid = d.id

Lazy Loading
• Lazy load fields and relationships that are not used

frequently
• One-many/many-may relationships are lazy loaded by

default
• Lazy load CLOB/BLOB if possible

LAZY Loading and Value Objects
• Accessing a LAZY relationship from a detached entity

– May get a null
– May get a previously cached value
– May get an exception

• Use JOIN FETCH for such objects
– Specifying which field to pre-fetch – fetcy is like EAGER
– Returns only Employees that matches WHERE

• Access the collection before entity is detached
• Like a sync

//Forces all employees to be loaded
d.getEmployees().size();

SELECT d FROM Department d
JOIN FETCH d.employees WHERE ...

Using Cascade

cascade=ALL

Customer

Order

LineItem

X

public class Customer {
@OneToMany(cascase=ALL,

mappedby=”customer”)
Set<Order> orders;

public class Order {
@ManyToOne
Customer customer;
@OneToMany(mappedBy=”order”)
List<LineItem> lineItems;

public class LineItem {
@OneToMany
Order order

Cascade in Model or Schema
• Much faster as foreign key constraint but less

apparent to developer

In Oracle PL/SQL

create table employee (
...
constraint fk_dept_id

foreign key (dept_id)
references department(dept_id)
on delete cascade

...
}

Mapping Inheritance

Employee

 int id
 String firstName
 String lastName
 Department dept

PartTimeEmployee

 int rate

FullTimeEmployee

 double salary

Single Table Per Class
• Benefits

– Simple
– No joins

• Drawbacks
– Not normalized
– Requires a discriminator

field for subclass
– Table may have too many

columns

EMPLOYEE

 ID Int PK,
 FIRSTNAME varchar(255),
 LASTNAME varchar(255),
 DEPT_ID int FK,
 RATE int NULL,
 SALARY double NULL,
 DISCRIM varchar(30)

@Inheritance(strategy=SINGLE_TABLE)

Joined Subclass
• Benefits

– Normalized database
– Database view same as

domain model
– Easy to evolve domain

model

• Drawbacks
– Poor performance in deep

hierarchies
– Poor performance for

polymorphic queries and
relationships

 ID int PK,
 FIRSTNAME varchar(255),
 LASTNAME varchar(255),
 DEPT_ID int FK,
 DISCRIM varchar(30)

 ID int PK FK,
RATE int NULL

 ID int PK FK,
 SALARY
double NULL

EMPLOYEE

PARTTIMEEMPLOYEE

FULLTIMEEMPLOYEE

@Inheritance(strategy=JOINED)

Table Per Class
• Benefits

– No need for joins if only
leaf class are entities

• Drawbacks
– Not normalized
– Poor performance when

querying non-leaf entities-
union

– Poor support for
polymorphic relationships

• This is not mandatory in
the specs

@Inheritance(strategy=TABLE_PER_CLASS)

 ID int PK,
 FIRSTNAME varchar(255),
 LASTNAME varchar(255),
 DEPT_ID int FK

 ID int PK,
 FIRSTNAME varchar(255),
 LASTNAME varchar(255),
 DEPT_ID int FK,
 SALARY double NULL

 ID int PK,
 FIRSTNAME varchar(255),
 LASTNAME varchar(255),
 DEPT_ID int FK,
 RATE int NULL

EMPLOYEE

PARTTIMEEMPLOYEE

FULLTIMEEMPLOYEE

<Insert Picture Here>

Entity ManagerEntity Manager

Container vs Application
• Container managed entity manager

– Injected into application
– Automatically closed
– JTA transaction – propagated

• Application managed entity managers
– Used outside of the JavaEE 5 platform
– Need to be explicitly created

• Persistence.createEntityManagerFactory()
– RESOURCE_LOCAL transactions

• Not propagated
– Need to explicitly close

Threading Model and Injections
• JPA components

– EntityManager is not threadsafe
– EntityManagerFactory is threadsafe

• Field injection is only supported for instance variable
– Not threadsafe

• Dangerous to inject non threadsafe objects into
stateless components
– Inconsistent data
– Data viewable by other threads

Injecting EntityManagers
public class ShoppingCartServlet extends HttpServlet {

@PersistenceContext EntityManager em;
protected void doPost(HttpServlet req, ...) {

Order order order = ...;
em.persist(order);

}

public class ShoppingCartServlet extends HttpServlet {
@PersistenceUnit EntityManagerFactory factory;
protected void doPost(HttpServlet req, ...) {

EntityManager em = factory.createEntityManager();
Order order order = ...;
em.persist(order);

}

WRONG

CORRECT

<Insert Picture Here>

PersistencePersistence

ContextContext

Persistence Context
• Acts like a cache for entities
• Two types of persistence context
• Transaction scoped

– Used in stateless components
– Typically begins/ends at method entry/exit points

• Extended scoped persistence context
– Used with business transactions spans multiple request
– Ideal place is to create extended PC at the beginning of

business process or session
– Supported in

• StatefulSessionBean
• Application managed EntityManager

Persistence Context and Caching
String empId = “12345”;
. . .

//Query the data
Query query = em.createQuery(“SELECT e FROM Employee e “

+ “WHERE e.ID = :ID”).setParameter(“ID”, empId);
employee = (Employee)query.getSingleResult();

Meanwhile empId 12345 have been
changed in another thread

Will I get the new data for employee?

Persistence Context as Cache
• It depends
• Entities managed by persistence context

– Are not refreshed from database until
EntityManager.refresh() is invoked

– Are not synchronized with database until
EntityManager.flush() is explicitly invoked or implicitly
when PC closes

• Entities remains managed by PC until
– EntityManager.clear() is invoked
– Transaction commits

Flush Mode
• Controls whether the state of managed entities are

synchronized before a query
• Types of flush mode

– AUTO – immediate, default
– COMMIT – flush only when a transaction commits
– NEVER – need to invoke EntityManager.flush() to flush

• Querying data you know that has not change or don't
care if result includes changes, set flush to COMMIT

Query q = em.createNamedQuery(“findAllOrders”);
q.setParameter(“id”, orderNumber);
q.setFlushMode(FlushModeType.AUTO);
//Ensure that the query gets the latest results
List list = q.getResultList();

Stale Data and Parallel Updates
• JPA simplifies persistence but does not guard against

parallelism
• Introduce @Version for optimistic locking

– Can be int, Integer, short, Short, long, Long,
Timestamp

– Not used by application
– Updated when transaction commits, merged or acquiring a

write lock

public class Employee {
@ID int id;
@Version Timestamp timestamp;
...

Preventing Parallel Updates – 1
tx1.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);

//Current rate is $9
e1.raiseByTwoDollar();
//Current rate is $11

tx1.commit();
//e1.version == 2 in db

tx2.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);
//Series of expensive

//to follow

//e1.version == 1 in db?
tx2.commit();
//Joe's rate will be $14
//OptimisticLockException

T
im

e

Preventing Parallel Updates – 2
tx1.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);

//Current rate is $9
e1.raiseByTwoDollar();
//Current rate is $11

tx1.commit();
//e1.version == 2 in db

tx2.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);

em.lock(d1, WRITE);

//version++ for d1
em.flush();
//Series of expensive

//to follow

//e1.version == 1 in db?
tx2.commit();
//Joe's rate will be $14
//OptimisticLockException

T
im

e

Lock Modes
• Five lock modes

– OPTIMISTIC – provides repeatable read isolation
– OPTIMISTIC_FORCE_INCREMENT – repeatable read but

updates version field
– PESSIMISTIC_READ – pessimistic repeatable read
– PESSIMISTIC_WRITE – serialized access
– PESSIMISTIC_FORCE_INCREMENT – pessimistic but also

updates version field, optional

• OPTIMISTIC and
OPTIMISTIC_FORCE_INCREMENT are the new
names for READ and WRITE respectively

Bulk Updates
• Update directly against the database

– By passes EntityManager
– @Version will not be updated
– Entities in persistence context may be outdated

• Avoid updating individual entities
– Use bulk updates

//Terminate all contract employees
List<Employee> empList = query.getResultList();
for (Employee e: empList)

e.status(“ContractEnd”);

//Terminate all contract employees
TypedQuery<Employee> query = em.createQuery(

“UPDATE Employee e SET i.status = 'ContractEnd'
+ “WHERE ...”);

query.executeQuery();

SLOW

FAST

Generate lots of SQL

<Insert Picture Here>

QueriesQueries

Queries
• Prefix query names with class being returned (JPA 1)

• Dynamic query
– Beware of SQL injection, better to use with named

parameters
– Use named query instead of dynamic query where possible –

enforce parametrized query

q = em.createQuery(“select e from Employee e WHERE ”
+ “e.empId LIKE '” + id + “'”);

q = em.createQuery(“select e from Employee e WHERE ”
+ “e.empId LIKE ':id'”);

q.setParameter(“id”, id);

NOT GOOD

GOOD

@NamedQuery(name=”Employee.findByName”, ...)

Typed Queries
• Specify the type that the query will return

– Works with named, native and dynamic queries

• Alternatively, use criteria – same effect

TypedQuery<Employee> q = em.createQuery(
“select e from Employee e WHERE ”
+ “e.empId LIKE ':id'”, Employee.class);

q.setParameter(“id”, id);

List<Employee> list = q.getResultList();

Polymorphic Queries
• May return too many results

– Eg. Employee → PartTime, FullTime, Intern – return 2 of 3

• Use type expression to restrict query polymorphism

select e from Employee e
where type(e) in (PartTime, Intern)

Criteria API
• Currently JPQLs are string based

– Easier to use but not cannot perform compile time checking
on query and entity attribute name typos

• Dynamically creates query without out string
manipulation
– Parity with string based query

• Strongly type, compiler validation during development
• Optionally can generate metamodel over entities

– Provided by ORM tools

JPA Queries
“SELECT o FROM ORDER o WHERE o.total > 100”

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Order> o = cb.createQuery(Order.class);
Root<Order> ord = o.from(Order.class);
Predicate cond = cb.gt(ord.get(“total”), 100);
o.select(ord).where(cond);
TypeQuery<Order.class> q = en.createQuery(o);
List<Person> result = q.getResultList();

CriteriaQuery<Order> o = cb.createQuery(Order.class);
Root<Order> ord = o.from(Order.class);
o.select(ord).where(cb.gt(ord.get(Order_.total), 100));
TypeQuery<Order.class> q = en.createQuery(o);
List<Person> result = q.getResultList();

OK

BETTER

BEST

Generated
metamodel

<Insert Picture Here>

TransactionsTransactions

Transactions
• Do not perform expensive and unnecessary

operations that are not part of a transaction
– Hurt performance, eg. logging

• Keep the code in the transaction to a minimum and
close it when not needed

• Eliminate transaction for “read-only” data
– Eg. Department names

@Stateless public ... {
@TransactionAttribute(NOT_SUPPORTED)
public List<Deparment> getAllDepartments() {
return (em.createQuery(

“SELECT e FROM Department e”)
.getResultList());

}

Transaction Type
• Container managed EntityManager can be JTA or
RESOURCE_LOCAL
– RESOURCE_LOCAL is non JTA

• RESOURCE_LOCAL EntityManager are created from
EntityManagerFactory

JTA From Non JTA EntityManager
• Create EntityManager inside a JTA transaction

– Get an injected instance of JTA from container or client
container (for JavaSE)

• Join a JTA transaction

@Resource UserTransaction utx;
. . .
utx.begin();
EntityManager em = emf.createEntityManager();
//em is now JTA

@Resource UserTransaction utx;
. . .
EntityManager em = emf.createEntityManager();
//em is is RESOURCE_LOCAL
utx.begin();
em.joinTransaction();

We encourage you to use the newly minted corporate tagline
“Software. Hardware. Complete.” at the end of all your presentations.
This message should replace any reference to our previous corporate
tagline “Oracle Is the Information Company.”

For More Information

search.oracle.com

or

oracle.com

Using Cascade
@Entity public class Employee {

@Id private int id;
private String firstName;
private String lastName;
@ManyToOne(cascade=MERGE, fetch=LAZY)
private Department dept;

 ...
}
@Entity public class Department {

@Id private int id;
private String name;
@OneToMany(mappedBy = "dept"

cascade=MERGE, fetch=LAZY)
private Collection<Employee> emps = new ...;
@OneToMany
private Collection<DepartmentCode> codes;
 ...

 }

Employee

Department

DepartmentCode

cascade=ALL

X

Transient Fields
• Used on fields that are not persisted

– Eg. computed fields, temporary values, cached values

@Entity public class Employee {
@Id private int id;
private String firstName;
private String lastName;
@ManyToOne(fetch=LAZY)
private Department dept;
@Transient float yearEndBonus = 0f;

 ...
}

Preventing Stale Data
tx1.begin();
d1 = findDepartment(dId);

//d1's original name is
//”Engrg”
d1.setName(“MarketEngrg”);

tx1.commit();

tx2.begin();

e1 = findEmp(eId);
d1 = e1.getDepartment();
em.lock(d1, READ);
if(d1's name is “Engrg”)

e1.raiseByTenPercent();

//Check d1.version in db
tx2.commit();
//e1 gets the raise he does
//not deserve
//Transaction rolls back

T
im

e

Pessimistic Locks on Update

T
im

e

tx1.begin();
e1 = findDepartment(dId);

em.lock(e1, PESSIMISTIC_WRITE);

//d1's original name is
//”Engrg”
d1.setName(“MarketEngrg”);

tx1.commit();

tx2.begin();
props.put(“javax.persistance

.lock.timeout”, 5000);
e1 = findEmp(eId);

//Continue or timeout
em.lock(e1

, PESSIMISTIC_WRITE, props);

	Title of Presentation
	Slide 2
	Program Agenda Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	PowerPoint Presentation
	For More Information
	Slide 49
	Slide 50
	Slide 51
	Slide 52

