[image: First Edition]
Java 8 Lambdas

Richard Warburton

Preface

For years, functional programming has been considered the realm of a small
band of specialists who consistently claimed superiority to the masses
while being unable to spread the wisdom of their approach. The main
reason I’ve written this book is to challenge both the idea that
there’s an innate superiority in the functional style and the belief that its approach
should be relegated to a small band of specialists!
For the last two years in the London Java Community, I’ve been getting
developers to try out Java 8 in some form or another. I’ve found that many of our
members enjoy the new idioms and libraries that it makes available to them. They
may reel at the terminology and elitism, but they love the benefits that a bit
of simple functional programming provides to them. A common thread is how
much easier it is to read code using the new Streams API to manipulate objects
and collections, such as filtering out albums that were made in the UK from a
List of all albums.
What I’ve learned when running these kinds of events is that examples matter.
People learn by repeatedly digesting simple examples and developing an
understanding of patterns out of them. I’ve also noticed that terminology can
be very off-putting, so anytime there’s a hard-sounding concept, I give an
easy-to-read explanation.
For many people, what Java 8 offers by way of functional programming
is incredibly limited: no monads,[1] no language-level lazy evaluation, no additional support for
immutability. As pragmatic programmers, this is fine; what we want is the
ability to write library-level abstractions so we can write simple, clean code
that solves business problems. We’re even happier if someone else has written
these libraries for us and we can just focus on doing our daily jobs.
Why Should I Read This Book?

In this book we’ll explore:
	
How to write simpler, cleaner, and easier-to-read code—especially around collections

	
How to easily use parallelism to improve performance

	
How to model your domain more accurately and build better DSLs

	
How to write less error-prone and simpler concurrent code

	
How to test and debug your lambda expressions

Developer productivity isn’t the only reason why lambda expressions have been added to
Java; there are fundamental forces in our industry at work here as well.

Who Should Read This Book?

This book is aimed squarely at Java developers who already have core Java SE
skills and want to get up to speed on the big changes in Java 8.
If you’re interested in reading about lambda expressions and how they
can improve your lot as a professional developer, read on! I don’t
assume you know about lambda expressions themselves, or any of the core
library changes; instead, I introduce concepts, libraries, and techniques
from scratch.
Although I would love for every developer who has ever lived to go and buy this
book, realistically, it’s not appropriate for everyone. If you don’t know any
Java at all, this isn’t the book for you. At the same time, though lambda
expressions in Java are very well covered here, I don’t explain how
they are used in any other languages.
I don’t provide a basic introduction to the use of several facets of the
Java SE, such as collections, anonymous inner classes, or the event handling
mechanism in Swing. I assume that you already know about all of these elements.

How to Read This Book

This book is written in an example-driven style: very soon after a concept is
introduced, you’ll see some code. Occasionally you might
see something in the code that you’re not 100% familar with. Don’t worry—it’ll be explained very soon afterward, frequently in the next paragraph.
This approach also lets you try out the ideas as you go along. In fact, at the end of
most chapters there are further examples for you to practice on your own. I
highly recommend that you try doing these katas as you get to the end of the
chapter. Practice makes perfect, and—as every pragmatic
programmer knows—it’s really easy to fool yourself into thinking that you
understand some code when in reality you’ve missed a detail.
Because the use of lambda expressions is all about abstracting complexity away
into libraries, I introduce a bunch of common library niceties as I go along.
Chapters 2 through 6 cover the core language changes and also the improved
libraries that JDK 8 brings.
The final three chapters are about applying functional programming in the wild.
I’ll talk about a few tricks that make testing and debugging code a bit
easier in Chapter 7. Chapter 8 explains how existing principles of
good software design also apply to lambda expressions. Then I talk about
concurrency and how to use lambda expressions to write concurrent code
that’s easy to understand and maintain in Chapter 9. These chapters
also introduce third-party libraries, where relevant.
It’s probably worth thinking of the opening four chapters as the
introductory material—things that everyone will need to know to
use Java 8 properly. The latter chapters are more complex, but they also
teach you how to be a more complete programmer who can confidently use lambda
expressions in your own designs. There are also exercises as you go along, and
the answers to these can be found on GitHub. If you
practice the exercises as you go along, you’ll soon master lambda expressions.

Conventions Used in This Book

The following typographical conventions are used in this book:
	
Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	
Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	
Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	
Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip
This element signifies a tip or suggestion.

Note
This element signifies a general note.

Warning
This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/RichardWarburton/java-8-lambdas-exercises.
This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Java 8 Lambdas by Richard Warburton (O’Reilly). Copyright 2014 Richard Warburton, 978-1-449-37077-0.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/java_8_lambdas.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

While the name on the cover of this book is mine, many other people have been
influential and helpful in its publication.
Thanks should go firstly to my editor, Meghan, and the team at O’Reilly for
making this process a pleasurable experience and accelerating their deadlines
where appropriate. It was great to be introduced to Meghan by Martijn and Ben
to begin with; this book would never have happened without that meeting.
The review process was a huge step in improving the overall quality of the book,
and my heartfelt appreciation goes out to those who have helped as part of the
formal and informal review process, including Martijn Verburg, Jim Gough, John
Oliver, Edward Wong, Brian Goetz, Daniel Bryant, Fred Rosenberger, Jaikiran Pai,
and Mani Sarkar. Martijn in particular has been hugely helpful with his
battle-won advice on writing a technical book.
It would also be remiss of me to ignore the Project Lambda development team at
Oracle. Updating an established language is a big challenge, and they’ve done a
great job in Java 8 of giving me something fun to write about and support. The
London Java Community also deserves its share of praise for being so actively
involved and supportive when helping to test out the early Java release and making
it so easy to see what kinds of mistakes developers make and what can be fixed.
A lot of people have been incredibly supportive and helpful while I was
going through the effort of writing a book. I’d like to specifically call out
my parents, who have always been there whenever they were needed. It has also
been great to have encouragement and positive comments from friends such as old
compsoc members, especially Sadiq Jaffer and the Boys Brigade.

[1] This is the only mention of this word in this book.

Chapter 1. Introduction

Before we begin our exploration of what lambda expressions are and how we can
use them, you should at least understand why they exist to begin with.
In this chapter, I’ll cover that and also explain the structure and motivation
of this book.
Why Did They Need to Change Java Again?

Java 1.0 was released in January 1996, and the world of programming has changed
quite a bit since then. Businesses are requiring ever more complex
applications, and most programs are executed on machines with powerful
multicore CPUs. The rise of Java Virtual Machines (JVM), with efficient runtime
compilers has meant that programmers can focus more on writing clean,
maintainable code, rather than on code that’s efficiently using every CPU clock
cycle and every byte of memory.
The elephant in the room is the rise of multicore CPUs. Programming
algorithms involving locks is error-prone and time-consuming. The
java.util.concurrent package and the wealth of external libraries have
developed a variety of concurrency abstractions that begin to help programmers
write code that performs well on multicore CPUs. Unfortunately, we haven’t gone
far enough—until now.
There are limits to the level of abstractions that library writers
can use in Java today. A good example of this is the lack of efficient
parallel operations over large collections of data. Java 8 allows you to write complex collection-processing algorithms, and simply by changing a single
method call you can efficiently execute this code on multicore CPUs. In order
to enable writing of these kinds of bulk data parallel libraries, however, Java needed a new language
change: lambda expressions.
Of course there’s a cost, in that you must learn to write and read lambda-enabled code, but it’s a good trade-off. It’s easier for programmers to learn a small amount of new syntax and a few new idioms than to have to handwrite a large quantity of complex thread-safe code. Good libraries and frameworks
have significantly reduced the cost and time associated with developing
enterprise business applications, and any barrier to developing easy-to-use and
efficient libraries should be removed.
Abstraction is a concept that is familiar to us all from object-oriented programming. The difference is that object-oriented programming is mostly about abstracting over data, while functional programming is mostly
about abstracting over behavior. The real world has both of these things, and
so do our programs, so we can and should learn from both influences.
There are other benefits to this new abstraction as well. For many of us who
aren’t writing performance-critical code all the time, these are more important
wins. You can write easier-to-read code—code that spends time expressing the
intent of its business logic rather than the mechanics of how it’s achieved.
Easier-to-read code is also easier to maintain, more reliable, and less
error-prone.
You don’t need to deal with the verbosity and readbility issues surrounding
anonymous inner classes when writing callbacks and event handlers. This approach allows
programmers to work on event processing systems more easily. Being able
to pass functions around easily also makes it easier to write lazy code that initializes values only when necessary.
In addition, the language changes that enable the additional collection
methods, default methods, can be used by everyday programmers who are
maintaining their own libraries.
It’s not your grandfather’s Java any longer, and that’s a good thing.

What Is Functional Programming?

Functional programming is a term that means different things to different
people. At the heart of functional programming is thinking about your problem
domain in terms of immutable values and functions that translate between them.
The communities that have developed around different programming languages each tend
to think that the set of features that have been incorporated into their
language are the key ones. At this stage, it’s a bit too early to tell how
Java programmers will define functional programming. In a sense, it’s
unimportant; what we really care about is writing good code rather than
functional code.
In this book, I focus on pragmatic functional programming, including techniques that
can be used and understood by most developers and that help them write
programs that are easier to read and maintain.

Example Domain

Throughout the book, examples are structured around a common problem domain:
music. Specifically, the examples represent the kind of information you might see on
albums. Here’s a brief summary of the terms:
	
Artist

	
An individual or group who creates music

	
name: The name of the artist (e.g., “The Beatles”)

	
members: A set of other artists who comprise this group (e.g., “John Lennon”); this field might be empty

	
origin: The primary location of origin of the group (e.g., “Liverpool”).

	
Track

	
A single piece of music

	
name: The name of the track (e.g., “Yellow Submarine”)

	
Album

	
A single release of music, comprising several tracks

	
name: The name of the album (e.g., “Revolver”)

	
tracks: A list of tracks

	
musicians: A list of artists who helped create the music on this album

This domain is used to illustrate how to use functional programming
techniques within a normal business domain or Java application. You may not
consider it the perfect example subject, but it’s simple, and many of the code
examples in this book will bear similarity to those that you may see in your
business domain.

Chapter 2. Lambda Expressions

The biggest language change in Java 8 is the introduction of lambda expressions—a compact way of passing around behavior. They are also a pretty fundamental building block that the rest of this book depends upon, so let’s get into what they’re all about.
Your First Lambda Expression

Swing is a platform-agnostic Java library for writing graphical user interfaces (GUIs). It has a fairly common idiom in which, in order to find out what your user did, you register an event listener. The event listener can then perform some action in response to the user input (see Example 2-1).
Example 2-1. Using an anonymous inner class to associate behavior with a button click
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("button clicked");
 }
});

In this example, we’re creating a new object that provides an implementation
of the ActionListener class. This interface has a single method,
actionPerformed, which is called by the button instance when a user actually
clicks the on-screen button. The anonymous inner class provides the
implementation of this method. In Example 2-1, all it does is print
out a message to say that the button has been clicked.
Note
This is actually an example of using code as data—we’re giving the button
an object that represents an action.

Anonymous inner classes were designed to make it easier for Java programmers to pass around code as data. Unfortunately, they don’t make it easy enough. There are still four lines of boilerplate code required in order to call the single line of important logic. Look how much gray we get if we color out the boilerplate:
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("button clicked");
 }
});
Boilerplate isn’t the only issue, though: this code is fairly hard to read
because it obscures the programmer’s intent. We don’t want to pass in an
object; what we really want to do is pass in some behavior. In Java 8, we would
write this code example as a lambda expression, as shown in
Example 2-2.
Example 2-2. Using a lambda expression to associate behavior with a button click
button.addActionListener(event -> System.out.println("button clicked"));

Instead of passing in an object that implements an interface, we’re passing in
a block of code—a function without a name. event is the name of a
parameter, the same parameter as in the anonymous inner class example. ->
separates the parameter from the body of the lambda expression, which is just
some code that is run when a user clicks our button.
Another difference between this example and the anonymous inner class is how we
declare the variable event. Previously, we needed to explicitly provide its
type—ActionEvent event. In this example, we haven’t provided the type at
all, yet this example still compiles. What is happening under the hood is
that javac is inferring the type of the variable event from its context—here, from the signature of addActionListener. What this means is that you don’t need to explicitly write out the type when it’s obvious. We’ll cover this inference in more detail soon, but first let’s take a look at the different ways we can write lambda expressions.
Note
Although lambda method parameters require less boilerplate code than was needed previously,
they are still statically typed. For the sake of readability and familiarity, you
have the option to include the type declarations, and sometimes the
compiler just can’t work it out!

How to Spot a Lambda in a Haystack

There are a number of variations of the basic format for writing
lambda expressions, which are listed in Example 2-3.
Example 2-3. Some different ways of writing lambda expressions
 Runnable noArguments = () -> System.out.println("Hello World"); [image: 1]

 ActionListener oneArgument = event -> System.out.println("button clicked"); [image: 2]

 Runnable multiStatement = () -> { [image: 3]
 System.out.print("Hello");
 System.out.println(" World");
 };

 BinaryOperator<Long> add = (x, y) -> x + y; [image: 4]

 BinaryOperator<Long> addExplicit = (Long x, Long y) -> x + y; [image: 5]

[image: 1] shows how it’s possible to have a lambda expression with no arguments at
all. You can use an empty pair of parentheses, (), to signify that there are no
arguments. This is a lambda expression implementing Runnable, whose only method,
run, takes no arguments and is a void return type.
[image: 2] we have only one argument to the lambda expression, which lets us leave out the
parentheses around the arguments. This is actually the same form that we used in
Example 2-2.
Instead of the body of the lambda expression being just an expression, in [image: 3]
it’s a full block of code, bookended by curly braces ({}). These code blocks follow
the usual rules that you would expect from a method. For example, you can return
or throw exceptions to exit them. It’s also possible to use braces with a single-line
lambda, for example to clarify where it begins and ends.
Lambda expressions can also be used to represent methods that take more than
one argument, as in [image: 4]. At this juncture, it’s worth reflecting on
how to read this lambda expression. This line of code doesn’t add up two
numbers; it creates a function that adds together two numbers. The variable called
add that’s a BinaryOperator<Long> isn’t the result of adding up two numbers;
it is code that adds together two numbers.
So far, all the types for lambda expression parameters have been inferred for us
by the compiler. This is great, but it’s sometimes good to have the option of
explicitly writing the type, and when you do that you need to surround the
arguments to the lambda expression with parentheses. The parentheses are also
necessary if you’ve got multiple arguments. This approach is demonstrated in
[image: 5].
Note
The target type of a lambda expression is the type of the context in which the
lambda expression appears—for example, a local variable that it’s assigned to or
a method parameter that it gets passed into.

What is implicit in all these examples is that a lambda expression’s type is
context dependent. It gets inferred by the compiler. This target typing isn’t
entirely new, either. As shown in Example 2-4, the types of array
initializers in Java have always been inferred from their contexts. Another
familiar example is null. You can know what the type of null is only once
you actually assign it to something.
Example 2-4. The righthand side doesn’t specify its type; it is inferred from the context
 final String[] array = { "hello", "world" };

Using Values

When you’ve used anonymous inner classes in the past, you’ve probably
encountered a situation in which you wanted to use a variable from the surrounding
method. In order to do so, you had to make the variable final, as demonstrated
in Example 2-5. Making a variable final means that you can’t
reassign to that variable. It also means that whenever you’re using a final
variable, you know you’re using a specific value that has been assigned to the
variable.
Example 2-5. A final local variable being captured by an anonymous inner class
final String name = getUserName();
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.out.println("hi " + name);
 }
});

This restriction is relaxed a bit in Java 8. It’s
possible to refer to variables that aren’t final; however, they still have to
be effectively final. Although you haven’t declared the variable(s) as
final, you still cannot use them as nonfinal variable(s) if they are to be
used in lambda expressions. If you do use them as nonfinal variables, then the
compiler will show an error.
The implication of being effectively final is that you can assign to the variable
only once. Another way to understand this distinction is that lambda expressions
capture values, not variables. In Example 2-6, name is an
effectively final variable.
Example 2-6. An effectively final variable being captured by an anonymous inner class
String name = getUserName();
button.addActionListener(event -> System.out.println("hi " + name));

I often find it easier to read code like this when the final is left out, because it can be just line noise. Of course, there are situations where it can be easier to understand code with an explicit final. Whether to use the effectively final feature comes down to personal choice.
If you assign to the variable multiple times and then try to use it in a lambda expression, you’ll get a compile error. For example,
Example 2-7 will fail to compile with the error message: local variables referenced from a lambda expression must be final or effectively final.
Example 2-7. Fails to compile due to the use of a not effectively final variable
String name = getUserName();
name = formatUserName(name);
button.addActionListener(event -> System.out.println("hi " + name));

This behavior also helps explain one of the reasons some people refer to lambda expressions as “closures.” The variables that aren’t assigned to are closed over the surrounding state in order to bind them to a value. Among the chattering classes of the programming
language world, there has been much debate over whether Java really has closures, because you can refer to only effectively final variables. To paraphrase Shakespeare: A closure by any other name will function all the same. In an effort to avoid such pointless debate, I’ll be referring to them as “lambda expressions” throughout this book. Regardless of what we call them, I’ve already mentioned that lambda
expressions are statically typed, so let’s investigate the types of lambda expressions themselves: these types are called functional interfaces.

Functional Interfaces

Note
A functional interface is an interface with a single abstract method that is used as the type of a lambda expression.

In Java, all method parameters have types; if we were passing 3 as an
argument to a method, the parameter would be an int. So what’s the
type of a lambda expression?
There is a really old idiom of using an interface with a single method to
represent a method and reusing it. It’s something we’re all familiar with from
programming in Swing, and it is exactly what was going on in
Example 2-2. There’s no need for new magic to be employed here.
The exact same idiom is used for lambda expressions, and we call this kind of
interface a functional interface. Example 2-8 shows the functional interface from the previous
example.
Example 2-8. The ActionListener interface: from an ActionEvent to nothing
public interface ActionListener extends EventListener {
 public void actionPerformed(ActionEvent event);
}

ActionListener has only one abstract method, actionPerformed, and we use it
to represent an action that takes one argument and produces no result.
Remember, because actionPerformed is defined in an interface, it doesn’t
actually need the abstract keyword in order to be abstract. It also has a
parent interface, EventListener, with no methods at all.
So it’s a functional interface. It doesn’t matter what the single method on
the interface is called—it’ll get matched up to your lambda expression as long
as it has a compatible method signature. Functional interfaces also let us give
a useful name to the type of the parameter—something that can help us
understand what it’s used for and aid readability.
The functional interface here takes one ActionEvent parameter and doesn’t
return anything (void), but functional interfaces can come in many kinds. For
example, they may take two parameters and return a value. They can also use
generics; it just depends upon what you want to use them for.
From now on, I’ll use diagrams to represent the different kinds of
functional interfaces you’re encountering. The arrows going into the function
represent arguments, and if there’s an arrow coming out, it represents the
return type. For example, an ActionListener would look like
Figure 2-1.
[image: the ActionListener interface]

Figure 2-1. The ActionListener interface showing an ActionEvent going in and nothing (void) coming out

Over time you’ll encounter many functional interfaces, but there is a core
group in the Java Development Kit (JDK) that you will see time and time again. I’ve listed some of the
most important functional interfaces in Table 2-1.
Table 2-1. Important functional interfaces in Java
	Interface name 	Arguments	Returns 	 Example
	Predicate<T>
	T
	boolean
	Has this album been released yet?

	Consumer<T>
	T
	void
	Printing out a value

	Function<T,R>
	T
	R
	Get the name from an Artist object

	Supplier<T>
	None
	T
	A factory method

	UnaryOperator<T>
	T
	T
	Logical not (!)

	BinaryOperator<T>
	(T, T)
	T
	Multiplying two numbers (*)

I’ve talked about what types functional interfaces take and mentioned that
javac can automatically infer the types of parameters and that you can
manually provide them, but when do you know whether to provide them?
Let’s look a bit more at the details of type inference.

Type Inference

There are certain circumstances in which you need to manually provide type
hints, and my advice is to do what you and your team find easiest to read.
Sometimes leaving out the types removes line noise and makes it easier to see
what is going on. Sometimes leaving them in can make it clearer what is going
on. I’ve found that at first they can sometimes be helpful, but over time
you’ll switch to adding them in only when they are actually needed. You can
figure out whether they are needed from a few simple rules that I’ll introduce in this chapter.
The type inference used in lambdas is actually an extension of the target type
inference introduced in Java 7. You might be familiar with Java 7 allowing you
to use a diamond operator that asks javac to infer the generic arguments
for you. You can see this in Example 2-9.
Example 2-9. Diamond inference for variables
Map<String, Integer> oldWordCounts = new HashMap<String, Integer>(); [image: 1]
Map<String, Integer> diamondWordCounts = new HashMap<>(); [image: 2]

For the variable oldWordCounts [image: 1] we have explicitly added the generic
types, but diamondWordCounts [image: 2] uses the diamond operator. The generic
types aren’t written out—the compiler just figures out what you want
to do by itself. Magic!
It’s not really magic, of course. Here, the generic types to HashMap can be
inferred from the type of diamondWordCounts [image: 2] . You still need to provide
generic types on the variable that is being assigned to, though.
If you’re passing the
constructor straight into a method, it’s also possible to infer the generic
types from that method. In Example 2-10, we pass a HashMap as
an argument that already has the generic types on it.
Example 2-10. Diamond inference for methods
useHashmap(new HashMap<>());

...

private void useHashmap(Map<String, String> values);

In the same way that Java 7 allowed you to leave out the generic types for a
constructor, Java 8 allows you to leave out the types for whole parameters of
lambda expressions. Again, it’s not magic: javac looks for information close
to your lambda expression and uses this information to figure out what the
correct type should be. It’s still type checked and provides all the safety
that you’re used to, but you don’t have to state the types explicitly. This is
what we mean by type inference.
Note
It’s also worth noting that in Java 8 the type inference has been improved. The
earlier example of passing new HashMap<>() into a useHashmap method actually
wouldn’t have compiled in Java 7, even though the compiler had all the information
it needed to figure things out.

Let’s go into a little more detail on this point with some examples.
In both of these cases we’re assigning the variables to a functional interface,
so it’s easier to see what’s going on. The first example (Example 2-11) is a lambda that
tells you whether an Integer is greater than 5. This is actually a
Predicate—a functional interface that checks whether something is true or
false.
Example 2-11. Type inference
Predicate<Integer> atLeast5 = x -> x > 5;

A Predicate is also a lambda expression that returns a value, unlike the previous
ActionListener examples. In this case we’ve used an expression, x >
5, as the body of the lambda expression. When that happens, the return value
of the lambda expression is the value its body evaluates to.
You can see from Example 2-12 that Predicate has a single generic
type; here we’ve used an Integer. The only argument of the lambda expression
implementing Predicate is therefore inferred as an Integer. javac can
also check whether the return value is a boolean, as that is the return type
of the Predicate method (see Figure 2-2).
Example 2-12. The predicate interface in code, generating a boolean from an Object
public interface Predicate<T> {
 boolean test(T t);
}

[image: the Predicate interface]

Figure 2-2. The Predicate interface diagram, generating a boolean from an Object

Let’s look at another, slightly more complex functional interface example: the
BinaryOperator interface, which is shown in Example 2-13.
This interface takes two arguments and returns a value, all of which
are the same type. In the code example we’ve used, this type is Long.
Example 2-13. A more complex type inference example
BinaryOperator<Long> addLongs = (x, y) -> x + y;

The inference is smart, but if it doesn’t have enough
information, it won’t be able to make the right decision. In these cases, instead
of making a wild guess it’ll just stop what it’s doing and ask for help in the form of a compile error. For example, if we remove
some of the type information from the previous example, we get the code in
Example 2-14.
Example 2-14. Code doesn’t compile due to missing generics
BinaryOperator add = (x, y) -> x + y;

This code results in the following error message:
Operator '+' cannot be applied to java.lang.Object, java.lang.Object.
That looks messy: what is going on here? Remember that
BinaryOperator was a functional interface that had a generic argument. The
argument is used as the type of both arguments, x and y, and also for its
return type. In our code example, we didn’t give any generics to our add
variable. It’s the very definition of a raw type. Consequently, our
compiler thinks that its arguments and return values are all instances of
java.lang.Object.
We will return to the topic of type inference and its interaction with method
overloading in Overload Resolution, but there’s no need to understand
more detail until then.

Key Points

	
A lambda expression is a method without a name that is used to pass around behavior
as if it were data.

	
Lambda expressions look like this: BinaryOperator<Integer> add = (x, y) → x + y.

	
A functional interface is an interface with a single abstract method that is
used as the type of a lambda expression.

Exercises

At the end of each chapter is a series of exercises to
give you an opportunity to practice what you’ve learned during the chapter and help you learn the new concepts. The answers to these exercises can be
found on GitHub.
	
Questions about the Function functional interface (Example 2-15).

Example 2-15. The function functional interface
public interface Function<T, R> {
 R apply(T t);
}

	
Can you draw this functional interface diagrammatically?

	
What kind of lambda expressions might you use this functional interface for if you were writing a software calculator?

	
Which of these lambda expressions are valid Function<Long,Long> implementations?

x -> x + 1;
(x, y) -> x + 1;
x -> x == 1;

	
ThreadLocal lambda expressions. Java has a class called ThreadLocal that acts as a container for a value that’s local to your current thread. In Java 8 there is a new factory method for ThreadLocal that takes a lambda expression, letting you create a new ThreadLocal without the syntactic burden of subclassing.

	
Find the method in Javadoc or using your IDE.

	
The Java DateFormatter class isn’t thread-safe. Use the constructor to create a thread-safe DateFormatter instance that prints dates like this: “01-Jan-1970”.

	
Type inference rules. Here are a few examples of passing lambda expressions into functions. Can javac infer correct argument types for the lambda expressions? In other words, will they compile?

	
Runnable helloWorld = () -> System.out.println("hello world");

	
The lambda expression being used as an ActionListener:

JButton button = new JButton();
button.addActionListener(event ->
 System.out.println(event.getActionCommand()));

	
Would check(x -> x > 5) be inferred, given the following overloads for check?

interface IntPred {
 boolean test(Integer value);
}

boolean check(Predicate<Integer> predicate);

boolean check(IntPred predicate);

Tip
You might want to look up the method argument types in Javadoc or in your
IDE in order to determine whether there are multiple valid overloads.

Chapter 3. Streams

The language changes introduced in Java 8 are intended to help us write better code. New core libraries are a key part of that, so in this chapter we start to look at them. The most important core library changes are focused around the Collections API and its new addition: streams. Streams allow us to write collections-processing code at a higher level of abstraction.
The Stream interface contains a series of functions that we’ll explore throughout this chapter, each of which corresponds to a common operation that you might perform on a Collection.
From External Iteration to Internal Iteration

Tip
A lot of the examples in this chapter and the rest of the book refer to
domain classes, which were introduced in Example Domain.

A common pattern for Java developers when working with collections is to iterate over a collection, operating on each element in turn. For example, if we wanted to add up the number of musicians who are from London, we would write the code in Example 3-1.
Example 3-1. Counting London-based artists using a for loop
int count = 0;
for (Artist artist : allArtists) {
 if (artist.isFrom("London")) {
 count++;
 }
}

There are several problems with this approach, though. It involves a lot of boilerplate code that needs to be written every time you want to iterate over the collection. It’s also hard to write a parallel version of this for loop. You would need to rewrite every for loop individually in order to make them operate in parallel.
Finally, the code here doesn’t fluently convey the intent of the programmer. The boilerplate for loop structure obscures meaning; to understand anything we must read though the body of the loop. For a single for loop, doing this isn’t too bad, but when you have a large code base full of them it becomes a burden (especially with nested loops).
Looking under the covers a little bit, the for loop is actually syntactic sugar that wraps up the iteration and hides it. It’s worth taking a moment to look at what’s going on under the hood here. The first step in this process is a call to the iterator method, which creates a new Iterator object in order to control the iteration process. We call this external iteration. The iteration then proceeds by explicitly calling the hasNext and next methods on this Iterator. Example 3-2 demonstrates the expanded code in full, and Figure 3-1 shows the pattern of method calls that happen.
Example 3-2. Counting London-based artists using an iterator
int count = 0;
Iterator<Artist> iterator = allArtists.iterator();
while(iterator.hasNext()) {
 Artist artist = iterator.next();
 if (artist.isFrom("London")) {
 count++;
 }
}

[image: .External Iteration]

Figure 3-1. External iteration

External iteration has some negative issues associated with it, too. First, it becomes hard to abstract away the different behavioral operations that we’ll encounter later in this chapter. It is also an approach that is inherently serial in nature. The big-picture issue here is that using a for loop conflates what you are doing with how you are doing it.
An alternative approach, internal iteration, is shown in
Example 3-3. The first thing to notice is the call to
stream(), which performs a similar role to the call to iterator() in the
previous example. Instead of returning an Iterator to control the iteration,
it returns the equivalent interface in the internal iteration world: Stream.
Example 3-3. Counting London-based artists using internal iteration
long count = allArtists.stream()
 .filter(artist -> artist.isFrom("London"))
 .count();

Figure 3-2 depicts the flow of method calls with respect to the library; compare it with Figure 3-1.
[image: .Internal Iteration]

Figure 3-2. Internal iteration

Note
A Stream is a tool for building up complex operations on collections using a functional approach.

We can actually break this example into two simpler operations:
	
Finding all the artists from London

	
Counting a list of artists

Both of these operations correspond to a method on the Stream interface. In order to
find artists from London, we filter the Stream. Filtering in this case means
“keep only objects that pass a test.” The test is defined by a function,
which returns either true or false depending on whether the artist is from
London. Because we’re practicing functional programming when using the
Streams API, we aren’t changing the contents of the Collection; we’re just declaring
what the contents of the Stream will be. The count() method counts how many
objects are in a given Stream.

What’s Actually Going On

When I wrote the previous example, I broke it up into two simpler operations: filtering and counting. You may think that this is pretty wasteful—when I wrote the for loop in Example 3-1, there was only one loop. It looks like you would need two here, as there are two operations. In fact, the library has been cleverly designed so that it iterates over the list of artists only once.
In Java, when you call a method it traditionally corresponds to the computer actually doing something; for example, System.out.println("Hello World"); prints output to your terminal. Some of the methods on Stream work a little bit differently. They are normal Java methods, but the Stream object returned isn’t a new collection—it’s a recipe for creating a new collection. So just think for a second about what the code in Example 3-4 does. Don’t worry if you get stuck—I’ll explain in a bit!
Example 3-4. Just the filter, no collect step
allArtists.stream()
 .filter(artist -> artist.isFrom("London"));

It actually doesn’t do very much at all—the call to filter builds up a
Stream recipe, but there’s nothing to force this recipe to be used.
Methods such as filter that build up the Stream recipe but don’t force
a new value to be generated at the end are referred to as lazy.
Methods such as count that generate a final value out of the Stream sequence
are called eager.
The easiest way of seeing that is if we add in a println statement as part of
the filter in order to print out the artists’ names. Example 3-5
is a modified version of Example 3-4 with such a printout. If we run
this code, the program doesn’t print anything when it’s executed.
Example 3-5. Not printing out artist names due to lazy evaluation
allArtists.stream()
 .filter(artist -> {
 System.out.println(artist.getName());
 return artist.isFrom("London");
 });

If we add the same printout to a stream that has a terminal step,
such as the counting operation from Example 3-3, then
we will see the names of our artists printed out (Example 3-6).
Example 3-6. Printing out artist names
long count = allArtists.stream()
 .filter(artist -> {
 System.out.println(artist.getName());
 return artist.isFrom("London");
 })
 .count();

So, if you ran Example 3-6 with the members of The Beatles as your list of artists, then you would see Example 3-7 printed out on your command line.
Example 3-7. Sample output showing the members of The Beatles being printed
John Lennon
Paul McCartney
George Harrison
Ringo Starr

It’s very easy to figure out whether an operation is eager or lazy: look at what it returns. If it gives you back a Stream, it’s lazy; if it gives you back another value or void, then it’s eager. This makes sense because the preferred way of using these methods is to form a sequence of lazy operations chained together and then to have a single eager operation at the end that generates your result. This is how our counting example operates, but it’s the simplest case: only two operations.
This whole approach is somewhat similar to the familiar builder pattern. In
the builder pattern, there are a sequence of calls that set up properties or
configuration, followed by a single call to a build method. The object being
created isn’t created until the call to build occurs.
I’m sure you’re asking, “Why would we want to have the
differentiator between lazy and eager options?” By waiting until we know more
about what result and operations are needed, we can perform the
computations more efficiently. A good example is finding the first
number that is > 10. We don’t need to evaluate all the elements to figure
this out—only enough to find our first match. It also means that
we can string together lots of different operations over our collection
and iterate over the collection only once.

Common Stream Operations

At this point, it’s worth just having a look back at some common Stream
operations in order to get more of a feel of what’s available in the API. As
we will cover only a few important examples, I recommend looking at the Javadoc
for the new API to see what else is available.
collect(toList())

Note
collect(toList()) is an eager operation that generates a list from the values in a Stream.

The values in the Stream that are operated on are derived from the initial
values and the recipe produced by the sequence of Stream calls. In fact,
collect is a very general and powerful construct, and we’ll look into its
other uses in more detail in Chapter 5. Here’s an example of this operation:
List<String> collected = Stream.of("a", "b", "c") [image: 1]
 .collect(Collectors.toList()); [image: 2]

assertEquals(Arrays.asList("a", "b", "c"), collected); [image: 3]
This example shows how collect(toList()) can be used to build a
result list out of a Stream. It’s important to remember, as discussed in
the previous section, that because many Stream functions are lazy, you do need
to use an eager operation such as collect at the end of a sequence of
chained method calls.
This example also shows the general format for all the examples in this
section. It starts by taking a Stream from a List [image: 1]. There is some
operation, followed by collecting into a list [image: 2]. Finally, we perform an assert
to show you what the results are equal to [image: 3].
You can think of the opening call to stream and the closing call to a
collect or other terminal method as bun methods. They aren’t the
actual filling of our stream burger, but they do help us see where the
operations begin and end.

map

Note
If you’ve got a function that converts a value of one type into another, map lets you
apply this function to a stream of values, producing another stream of the new values.

You’ll probably notice fairly soon that you’ve been doing some kind
of map operations for years already. Say you are writing Java code that
takes a list of strings and converts them to their uppercase equivalents.
You would loop over all the values in the list and call toUppercase on
each element. You would then add each of the resulting values into a new List.
Example 3-8 is code written in this style.
Example 3-8. Converting strings to uppercase equivalents using a for loop
List<String> collected = new ArrayList<>();
for (String string : asList("a", "b", "hello")) {
 String uppercaseString = string.toUpperCase();
 collected.add(uppercaseString);
}

assertEquals(asList("A", "B", "HELLO"), collected);

map is one of the most commonly used Stream operations (see Figure 3-3). You could probably
have guessed this, given how frequently you have implemented something similar to
the aforementioned for loop. Example 3-9 is the same example of turning a
list of strings into their uppercase equivalents using the stream framework.
[image: the map operation]

Figure 3-3. The map operation

Example 3-9. Converting strings to uppercase equivalents using map
List<String> collected = Stream.of("a", "b", "hello")
 .map(string -> string.toUpperCase()) [image: 1]
 .collect(toList());

assertEquals(asList("A", "B", "HELLO"), collected);

The lambda expression passed into map [image: 1] both takes a String as its only
argument and returns a String. It isn’t necessary for both the argument
and the result to be the same type, but the lambda expression passed in must be
an instance of Function (Figure 3-4). This is a generic functional interface with
only one argument.
[image: the Function interface]

Figure 3-4. The Function interface

filter

Note
Any time you’re looping over some data and checking each element, you might want to think about using the new filter method on Stream (see Figure 3-5).

[image: the filter operation]

Figure 3-5. The filter operation

We’ve already looked at a filter example, so you may want to skip this
section if you feel familiar with the concept. Still here? Good! Suppose
we’ve got a list of strings and we want to find all the strings that start
with a digit. So, "1abc" would be accepted and "abc" wouldn’t. We might
write some code that loops over a list and uses an if statement to see what
the first character is, something like the code in Example 3-10.
Example 3-10. Looping over a list and using an if statement
List<String> beginningWithNumbers = new ArrayList<>();
for(String value : asList("a", "1abc", "abc1")) {
 if (isDigit(value.charAt(0))) {
 beginningWithNumbers.add(value);
 }
}

assertEquals(asList("1abc"), beginningWithNumbers);

I’m sure you’ve written some code that looks like this: it’s called the
filter pattern. The central idea of filter is to retain some elements of
the Stream, while throwing others out. Example 3-11 shows how you would write the same
code in a functional style.
Example 3-11. Functional style
List<String> beginningWithNumbers
 = Stream.of("a", "1abc", "abc1")
 .filter(value -> isDigit(value.charAt(0)))
 .collect(toList());

assertEquals(asList("1abc"), beginningWithNumbers);

Much like map, filter is a method that takes just a single function as an
argument—here we’re using a lambda expression. This function does the same
job that the expression in the if statement did earlier. Here, it
returns true if the String starts with a digit. If you’re refactoring
legacy code, the presence of an if statement in the middle of a for
loop is a pretty strong indicator that you really want to use filter.
Because this function is doing the same job as the if statement, it must return
either true or false for a given value. The Stream after the filter has
the elements of the Stream beforehand, which evaluated to true. The
functional interface for this type of function is our old friend from the
previous chapter, the Predicate (shown in Figure 3-6).
[image: the Predicate interface]

Figure 3-6. The Predicate interface

flatMap

Note
flatMap (see Figure 3-7) lets you replace a value with a Stream and concatenates all the streams together.

[image: the flatMap operation]

Figure 3-7. The flatMap operation

You’ve already seen the map operation, which replaces a value in a Stream
with a new value. Sometimes you want a variant of map in which you produce a new
Stream object as the replacement. Frequently you don’t want to end up
with a stream of streams, though, and this is where flatMap comes in handy.
Let’s look at a simple example. We’ve got a Stream of lists of numbers, and we want
all the numbers from these in sequences. We can solve this problem using an approach
like the one in Example 3-12.
Example 3-12. Stream list
List<Integer> together = Stream.of(asList(1, 2), asList(3, 4))
 .flatMap(numbers -> numbers.stream())
 .collect(toList());

assertEquals(asList(1, 2, 3, 4), together);

In each case, we replace the List with a Stream using the stream method,
and flatMap does the rest. Its associated functional interface is the same
as map’s—the Function—but its return type is restricted to streams
and not any value.

max and min

A pretty common operation that we might want to perform on streams is finding
the maximum or minimum element. Fortunately, this case is very well covered by
the max and min operations that are provided by the Streams API. As a
demonstration of these operations, Example 3-13 provides some code that
finds the shortest track on an album. In order to make it easier to see that
we’ve got the right result, I’ve explicitly listed the tracks on this album in
the code snippet; I’ll admit that it’s not the best-known album.
Example 3-13. Finding the shortest track with streams
List<Track> tracks = asList(new Track("Bakai", 524),
 new Track("Violets for Your Furs", 378),
 new Track("Time Was", 451));

Track shortestTrack = tracks.stream()
 .min(Comparator.comparing(track -> track.getLength()))
 .get();

assertEquals(tracks.get(1), shortestTrack);

When we think about maximum and minimum elements, the first thing we need to
think about is the ordering that we’re going to be using. When it comes
to finding the shortest track, the ordering is provided by the length of
the tracks.
In order to inform the Stream that we’re using the length of the track, we
give it a Comparator. Conveniently, Java 8 has added a static method called
comparing that lets us build a comparator using keys. Previously, we always
encountered an ugly pattern in which we had to write code that got a field out of
both the objects being compared, then compare these field values. Now,
to get the same element out of both elements being compared, we just provide a
getter function for the value. In this case we’ll use length, which is a
getter function in disguise.
It’s worth reflecting on the comparing method for a moment. This is actually a
function that takes a function and returns a function. Pretty meta, I know, but
also incredibly useful. At any point in the past, this method could have
been added to the Java standard library, but the poor readability and verbosity
issues surrounding anonymous inner classes would have made it impractical. Now,
with lambda expressions, it’s convenient and concise.
It’s now possible for max to be called on an empty Stream so that it returns
what’s known as an Optional value. An Optional value is a bit like an
alien: it represents a value that may exist, or may not. If our Stream is
empty, then it won’t exist; if it’s not empty, then it will. Let’s not worry
about the details of Optional for the moment, since we’ll be discussing it in
detail in Optional. The only thing to remember is that we can pull
out the value by calling the get method.

A Common Pattern Appears

max and min are both forms of a more general pattern of coding. The
easiest way to see this is by taking our code from Example 3-13 and
rewriting it into a for loop: we’ll then extract the general pattern.
Example 3-14 performs the same role as Example 3-13: it
finds the shortest track on an album, but using a for loop.
Example 3-14. Finding the shortest track with a for loop
List<Track> tracks = asList(new Track("Bakai", 524),
 new Track("Violets for Your Furs", 378),
 new Track("Time Was", 451));

Track shortestTrack = tracks.get(0);
for (Track track : tracks) {
 if (track.getLength() < shortestTrack.getLength()) {
 shortestTrack = track;
 }
}

assertEquals(tracks.get(1), shortestTrack);

The code starts by initializing our shortestTrack variable with the
first element of the list. Then it goes through the tracks. If there’s a
shorter track, it replaces the shortestTrack. At the end, our shortestTrack
variable contains its namesake. Doubtless you’ve written thousands of for
loops in your coding career, and many of them follow this pattern. The
pseudocode in Example 3-15 characterizes the general form.
Example 3-15. The reduce pattern
Object accumulator = initialValue;
for(Object element : collection) {
 accumulator = combine(accumulator, element);
}

An accumulator gets pushed through the body of the loop, with the final
value of the accumulator being the value that we were trying to compute.
The accumulator starts with an initialValue and then gets folded together
with each element of the list by calling combine.
The things that differ between implementations of this pattern are
the initialValue and the combine function. In the original example, we
used the first element in the list as our initialValue, but it doesn’t have
to be. In order to find the shortest value, our combine returned the shorter
track of out of the current element and the accumulator.
We’ll now take a look at how this general pattern can be codified by an
operation in the Streams API itself.

reduce

Use the reduce operation when you’ve got a collection of values and you
want to generate a single result. In earlier examples, we used the count,
min, and max methods, which are all in the standard library because they
are common use cases. All of these are forms of reduction.
Let’s demonstrate the reduce operation by adding up streams of numbers. The
overall pattern is demonstrated in Figure 3-8. We start with
a count of 0—the count of an empty Stream—and fold together each element
with an accumulator, adding the element to the accumulator at every step. When
we reach the final Stream element, our accumulator has the sum of all the
elements.
[image: Implementing addition using the reduce operation]

Figure 3-8. Implementing addition using the reduce operation

Example 3-16 shows what is going on in code. The lambda expression,
known as a reducer, performs the summing and takes two arguments. acc is the
accumulator and holds the current sum. It is also passed in the current element in the Stream.
Example 3-16. Implementing sum using reduce
int count = Stream.of(1, 2, 3)
 .reduce(0, (acc, element) -> acc + element);

assertEquals(6, count);

The lambda
expression returns the new acc value, which is the previous acc added to
the current element. The type of the reducer is a BinaryOperator, which we
encountered in Chapter 2.
Note
Primitives also refers to an implementation of sum within the
standard library, which is recommended instead of the approach shown in this example in real code.

Table 3-1 shows the intermediate values for these variables for
each element in the Stream. In fact, we could expand all the function
applications that reduce to produce the code in Example 3-17.
Example 3-17. Expanding the application of reduce
 BinaryOperator<Integer> accumulator = (acc, element) -> acc + element;
 int count = accumulator.apply(
 accumulator.apply(
 accumulator.apply(0, 1),
 2),
 3);

Table 3-1. Evaluating a sum reduce
	element	acc	Result
	N/A
	N/A
	0

	1
	0
	1

	2
	1
	3

	3
	3
	6

Let’s look at the equivalent imperative Java code, written in
Example 3-18, so we can see how the functional and imperative versions
match up.
Example 3-18. Imperative implementation of summing
int acc = 0;
for (Integer element : asList(1, 2, 3)) {
 acc = acc + element;
}
assertEquals(6, acc);

In the imperative version, we can see that the accumulator is a variable we update on
every loop iteration. We also update it by adding the element. The loop is
external to the collection and all updates to the variable are managed
manually.

Putting Operations Together

With so many different operations related to the Stream interface, it can
sometimes seem like you’re wandering around a labyrinth looking for what you
want. So let’s work through a problem and see how it breaks down into simple
Stream operations.
Our first problem to solve is, for a given album, to find the nationality of every
band playing on that album. The artists who play each track can be solo
artists or they can be in a band. We’re going to use domain knowledge and
artistic license to pretend that a band is really an artist whose name begins
with The. This isn’t exactly right, but it’s pretty close!
The first thing to recognize is that the solution isn’t just the simple application
of any individual API call. It’s not transforming the values like a map, it’s
not filtering, and it’s not just getting a single value out of a Stream at the end.
We can break the problem down into parts:
	
Get all the artists for an album.

	
Figure out which artists are bands.

	
Find the nationalities of each band.

	
Put together a set of these values.

Now it’s easier to see how these steps fit into the API:
	
There’s a nice getMusicians method on our Album class that returns a Stream.

	
We use filter to trim down the artists to include only bands.

	
We use map to turn the band into its nationality.

	
We use collect(toList()) to put together a list of these nationalities.

When we put everything together, it ends up like this:
Set<String> origins = album.getMusicians()
 .filter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(toSet());

This example shows the idiom of chaining operations a bit more clearly. The
calls to musicians, filter, and map all return Stream objects, so they
are lazy, while the collect method is eager. The map method is another
function that takes just a lambda and whose purpose is to apply the function to
every element in the Stream, returning a new Stream.
Our domain class here is actually quite convenient for us, in that it returns a Stream
when we want to get a list of the musicians on our album. In your existing
domain classes, you probably don’t have a method that returns streams—you return
existing collection classes such as List or Set. This is OK; all you need to
do is call the stream method on your List or Set.
Now is probably a good time to think about whether you really want to expose
List and Set objects in your domain model, though. Perhaps a Stream factory
would be a better choice. The big win of only exposing collections via
Stream is that it better encapsulates your domain model’s data structure.
It’s impossible for any use of your domain classes to affect the inner workings
of your List or Set simply by exposing a Stream.
It also encourages users of your domain class to write code in a more modern
Java 8 style. It’s possible to incrementally refactor to this style by keeping
your existing getters and adding new Stream-returning getters. Over time, you
can rewrite your legacy code until you’ve finally deleted all getters that return
a List or Set. This kind of refactoring feels really good once you’ve
cleared out all the legacy code!

Refactoring Legacy Code

Having talked a bit about refactoring already, let’s look at an example
of some legacy collections code that uses loops to perform a task and
iteratively refactor it into a stream-based implementation. At each
step of the refactor, the code continues to pass its tests, though you’ll
either have to trust me on that one or test it yourself!
This example finds the names of all tracks that are over a minute in length,
given some albums. Our legacy code is shown in Example 3-19. We start
off by initializing a Set that we’ll store all the track names in. The code
then iterates, using a for loop, over all the albums, then iterates again
over all the tracks in an album. Once we’ve found a track, we check whether
the length is over 60 seconds, and if it is the name gets added to
a Set of names.
Example 3-19. Legacy code finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 for(Album album : albums) {
 for (Track track : album.getTrackList()) {
 if (track.getLength() > 60) {
 String name = track.getName();
 trackNames.add(name);
 }
 }
 }
 return trackNames;
}

We’ve stumbled across this code in our code base and noticed that it has a couple
of nested loops. It’s not quite clear what the purpose of this code is just from
looking at it, so we decide to undertake our refactor. (There are lots of
different approaches to refactoring legacy code for using streams—this is
just one. In fact, once you are more familiar with the API itself, it’s
pretty likely that you won’t need to proceed in such small steps. It serves
educational purposes here to go a bit slower than you would in your professional job.)
The first thing that we’re going to change is the for loops. We’ll keep their
bodies in the existing Java coding style for now and move to using the
forEach method on Stream. This can be a pretty handy trick for intermediate
refactoring steps. Let’s use the stream method on our album list in order to
get the first stream. It’s also good to remember from the previous section that
our domain already has the getTracks method on the album, which provides us a
Stream of tracks. The code after we’ve completed step 1 is listed in
Example 3-20.
Example 3-20. Refactor step 1: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 albums.stream()
 .forEach(album -> {
 album.getTracks()
 .forEach(track -> {
 if (track.getLength() > 60) {
 String name = track.getName();
 trackNames.add(name);
 }
 });
 });
 return trackNames;
}

In step 1, we moved to using streams, but we didn’t really get their full potential.
In fact, if anything the code is even less pretty than it was to begin with—d’oh!
So, it’s high time we introduced a bit more stream style into our coding. The inner
forEach call looks like a prime target for refinement.
We’re really doing three things here: finding only tracks over a minute in length,
getting their names, and adding their names into our name Set. That means we
need to call three Stream operations in order to get the job done. Finding tracks
that meet a criterion sounds like a job for filter. Transforming tracks into their names
is a good use of map. For the moment we’re still going to add the tracks
to our Set, so our terminal operation will still be a forEach. If we split
out the inner forEach block, we end up with Example 3-21.
Example 3-21. Refactor step 2: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();
 albums.stream()
 .forEach(album -> {
 album.getTracks()
 .filter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .forEach(name -> trackNames.add(name));
 });
 return trackNames;
}

Now we’ve replaced our inner loop with something a bit more streamy, but we still
have this pyramid of doom in our code. We don’t really want to have nested
stream operations; we want one simple and clean sequence of method calls.
What we really want to do is find a way of transforming our album into a
stream of tracks. We know that whenever we want to transform or replace
code, the operation to use is map. This is the more complex case of map,
flatMap, for which the output value is also a Stream and we want them merged
together. So, if we replace that forEach block with a flatMap call,
we end up at Example 3-22.
Example 3-22. Refactor step 3: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
 Set<String> trackNames = new HashSet<>();

 albums.stream()
 .flatMap(album -> album.getTracks())
 .filter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .forEach(name -> trackNames.add(name));

 return trackNames;
}

That looks a lot better, doesn’t it? Instead of two nested for loops, we’ve got
a single clean sequence of method calls performing the entire operation. It’s
not quite there yet, though. We’re still creating a Set by hand and adding
every element in at the end. We really want the entire computation to just
be a chain of Stream calls.
I haven’t yet shown you the recipe for this transformation, but you’ve met one of its
friends. Just as you can use collect(toList()) to build up a List of
values at the end, you can also use collect(toSet()) to build up a Set
of values. So, we replace our final forEach call with this collect call, and
we can now delete the trackNames variable, arriving at Example 3-23.
Example 3-23. Refactor step 4: finding names of tracks over a minute in length
public Set<String> findLongTracks(List<Album> albums) {
 return albums.stream()
 .flatMap(album -> album.getTracks())
 .filter(track -> track.getLength() > 60)
 .map(track -> track.getName())
 .collect(toSet());
}

In summary, we’ve taken a snippet of legacy code and refactored it to use
idiomatic streams. At first we just converted to introduce streams and didn’t
introduce any of the useful operations on streams. At each subsequent step, we moved to a
more idiomatic coding style. One thing that I haven’t mentioned thus far but
that was very helpful when actually writing the code samples is that at each
step of the way I continued to run unit tests in order to make sure the code
worked. Doing so is very helpful when refactoring legacy code.

Multiple Stream Calls

Rather than chaining the method calls, you could force the evaluation of each
function individually following a sequence of steps. Please don’t do this.
Example 3-24 shows our earlier origins of bands example written in
that style. The original example is shown in Example 3-25 in order to
make the comparison easier.
Example 3-24. Stream misuse
List<Artist> musicians = album.getMusicians()
 .collect(toList());

List<Artist> bands = musicians.stream()
 .filter(artist -> artist.getName().startsWith("The"))
 .collect(toList());

Set<String> origins = bands.stream()
 .map(artist -> artist.getNationality())
 .collect(toSet());

Example 3-25. Idiomatically chained stream calls
Set<String> origins = album.getMusicians()
 .filter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(toSet());

There are several reasons why the version in Example 3-24 is worse than the idiomatic, chained version:
	
It’s harder to read what’s going on because the ratio of boilerplate code to actual business logic is worse.

	
It’s less efficient because it requires eagerly creating new collection objects at each intermediate step.

	
It clutters your method with meaningless garbage variables that are needed only as intermediate results.

	
It makes operations harder to automatically parallelize.

Of course, if you’re writing your first few Stream-based examples, it’s
perfectly normal to write code that’s a little bit like this. But if you
find yourself writing blocks of operations like this often, you should stand back
and see whether you can refactor them into a more concise and readable form.
Note
If at this stage you feel uncomfortable with the amount of method chaining in the
API, that’s entirely natural. With more experience and more time these concepts will begin
to feel quite natural, and it’s not a reason to write Java code that splits up chains
of operations as in Example 3-24. Ensuring that you format the code line by line,
as you would when using the builder pattern, will boost your comfort level as well.

Higher-Order Functions

What we’ve repeatedly encountered throughout this chapter are what functional
programmers call higher-order functions. A higher-order function is a
function that either takes another function as an argument or returns a
function as its result. It’s very easy to spot a higher-order function: just
look at its signature. If a functional interface is used as a parameter or
return type, you have a higher-order function.
map is a higher-order function because its mapper argument is a
function. In fact, nearly all the functions that we’ve encountered on the
Stream interface are higher-order functions. In our earlier sorting example,
we also used the comparing function. comparing not only took another
function in order to extract an index value, but also returns a new
Comparator. You might think of a Comparator as an object, but it has only
a single abstract method, so it’s a functional interface.
In fact, we can make a stronger statement than that. Comparator was invented
when a function was needed, but all Java had at the time was objects, so we made
a type of class—an anonymous class—that we could treat like a function. Being
an object was always accidental. Functional interfaces are a step in the
direction that we actually want.

Good Use of Lambda Expressions

When I first introduced lambda expressions, I gave the example of a callback
that printed something out. That’s a perfectly valid lambda expression, but it’s
not really helping us write simpler and more abstract code because it’s still
telling the computer to perform an operation. Removing the boilerplate was
nice, but it’s not the only improvement we get with lambda expressions in Java
8.
The concepts introduced in this chapter let us write simpler code,
in the sense that they describe operations on data by saying what
transformation is made rather than how the transformation occurs. This gives
us code that has less potential for bugs and expresses the programmer’s intent
directly.
Another aspect of getting to the what and not the how is the idea of a side effect–free function. These are important because we can understand the full
implications of what the functions are doing just by looking at what values they
return.
Functions with no side effects don’t change the state of anything else in the
program or the outside world. The first lambda expression in this book had
side effects because it printed some output on the console—an observable
side effect of the function. What about the following example?
 private ActionEvent lastEvent;

 private void registerHandler() {
 button.addActionListener((ActionEvent event) -> {
 this.lastEvent = event;
 });
 }
Here we save away the event parameter into a field. This is a more subtle
way of generating a side effect: assigning to variables. You may not
see it directly in the output of your program, but it does change the program’s
state. There are limits to what Java lets you do in this regard. Take a look
at the assignment to localEvent in this code snippet:
ActionEvent localEvent = null;
button.addActionListener(event -> {
 localEvent = event;
});
This example tries to assign the same event parameter into a local variable.
There’s no need to send me errata emails—I know this won’t actually compile!
That’s actually a deliberate choice on behalf of the designers: an attempt to
encourage people to use lambda expressions to capture values rather than
capturing variables. Capturing values encourages people to write code that is
free from side effects by making it harder to do so. As mentioned in Chapter 2, even
though local variables don’t need the final keyword in order to be used in
lambda expressions, they still need to be effectively final.
Whenever you pass lambda expressions into the higher-order functions on the Stream interface, you should seek to avoid side effects. The only exception to this is the forEach method, which is a terminal operation.

Key Points

	
Internal iteration is a way of iterating over a collection that delegates
more control over the iteration to the collection.

	
A Stream is the internal iteration analogue of an Iterator.

	
Many common operations on collections can be performed by combining methods on
Stream with lambda expressions.

Exercises

Note
You can find the answers to these exercises on GitHub.

	
Common Stream operations. Implement the following:

	
A function that adds up numbers, i.e., int addUp(Stream<Integer> numbers)

	
A function that takes in artists and returns a list of strings with their names and places of origin

	
A function that takes in albums and returns a list of albums with at most three tracks

	
Iteration. Convert this code sample from using external iteration to internal iteration:

 int totalMembers = 0;
 for (Artist artist : artists) {
 Stream<Artist> members = artist.getMembers();
 totalMembers += members.count();
 }

	
Evaluation. Take a look at the signatures of these Stream methods. Are they eager or lazy?

	
boolean anyMatch(Predicate<? super T> predicate);

	
Stream<T> limit(long maxSize);

	
Higher-order functions. Are these Stream functions higher order, and why?

	
boolean anyMatch(Predicate<? super T> predicate);

	
Stream<T> limit(long maxSize);

	
Pure functions. Are these lambda expressions side effect-free, or do they mutate state?

x -> x + 1
Here’s the example code:
AtomicInteger count = new AtomicInteger(0);
List<String> origins = album.musicians()
 .forEach(musician -> count.incAndGet();)
	
The lambda expression passed into forEach in the example.

	
Count the number of lowercase letters in a String (hint: look at the chars method on String).

	
Find the String with the largest number of lowercase letters from a List<String>. You can return an Optional<String> to account for the empty list case.

Advanced Exercises

	
Write an implementation of the Stream function map using only reduce and lambda expressions. You can return a List instead of a Stream if you want.

	
Write an implementation of the Stream function filter using only reduce and lambda expressions. Again, you can return a List instead of a Stream if you want.

Chapter 4. Libraries

I’ve talked about how to write lambda expressions but so far haven’t
covered the other side of the fence: how to use them. This lesson is important even
if you’re not writing a heavily functional library like streams. Even the
simplest application is still likely to have application code that could
benefit from code as data.
Another Java 8 change that has altered the way that we need to think about
libraries is the introduction of default methods and static methods on
interfaces. This change means that methods on interfaces can now have bodies
and contain code.
I’ll also fill in some gaps in this chapter, covering
topics such as what happens when you overload methods with lambda expressions
and how to use primitives. These are important things to be aware of when
you’re writing lambda-enabled code.
Using Lambda Expressions in Code

In Chapter 2, I described how a lambda expression is given the type of a
functional interface and how this type is inferred. From the point of
view of code calling the lambda expression, you can treat it identically
to calling a method on an interface.
Let’s look at a concrete example framed in terms of logging frameworks. Several
commonly used Java logging frameworks, including slf4j and log4j, have methods
that log output only when their logging level is set to a certain level or higher. So, they
will have a method like void debug(String message) that will log message
if the level is at debug.
Unfortunately, calculating the message to log frequently has a performance cost associated with it. Consequently, you end up with a situation in which people start explicitly calling the Boolean isDebugEnabled method in order to optimize this performance cost. A code sample is shown in Example 4-1. Even though a direct call to debug would have avoided logging the text, it still would had to call the expensiveOperation method and also concatenate its output to the message String, so the explicit if check still ends up being faster.
Example 4-1. A logger using isDebugEnabled to avoid performance overhead
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
 logger.debug("Look at this: " + expensiveOperation());
}

What we actually want to be able to do is pass in a lambda expression that
generates a String to be used as the message. This expression would be called only if
the Logger was actually at debug level or above. This approach would allow us to
rewrite the previous code example to look like the code in Example 4-2.
Example 4-2. Using lambda expressions to simplify logging code
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

So how do we implement this method from within our Logger class? From the
library point of view, we can just use the builtin Supplier functional
interface, which has a single get method. We can then call
isDebugEnabled in order to find out whether to call this method and pass the result
into our debug method if it is enabled. The resulting code is shown in
Example 4-3.
Example 4-3. The implementation of a lambda-enabled logger
 public void debug(Supplier<String> message) {
 if (isDebugEnabled()) {
 debug(message.get());
 }
 }

Calling the get() method in this example corresponds to calling the
lambda expression that was passed into the method to be called. This approach
also conveniently works with anonymous inner classes, which allows you maintain
a backward-compatible API if you have consumers of your code who can’t upgrade
to Java 8 yet.
It’s important to remember that each of the different functional interfaces
can have a different name for its actual method. So, if we were using
a Predicate, we would have to call test, or if we were using Function,
we would have to call apply.

Primitives

You might have noticed in the previous section that we skimmed over
the use of primitive types. In Java we have a set of
parallel types—for example, int and Integer—where one is a primitive
type and the other a boxed type. Primitive types are built into the language
and runtime environment as fundamental building blocks; boxed types
are just normal Java classes that wrap up the primitives.
Because Java generics are based around erasing a generic parameter—in
other words, pretending it’s an instance of Object—only the boxed types
can be used as generic arguments. This is why if you want a list of integer
values in Java it will always be List<Integer> and not List<int>.
Unfortunately, because boxed types are objects, there is a memory overhead to
them. For example, although an int takes 4 bytes of memory, an Integer takes
16 bytes. This gets even worse when you start to look at arrays of numbers,
as each element of a primitive array is just the size of the primitive,
while each element of a boxed array is actually an in-memory pointer to another
object on the Java heap. In the worst case, this might make an Integer[] take
up nearly six times more memory than an int[] of the same size.
There is also a computational overhead when converting from a
primitive type to a boxed type, called boxing, and vice versa, called
unboxing. For algorithms that perform lots of numerical operations, the cost of boxing and unboxing combined with the
additional memory bandwidth used by allocated boxed objects can make the
code significantly slower.
As a consequence of these performance overheads, the streams library
differentiates between the primitive and boxed versions of some library
functions. The mapToLong higher-order function and ToLongFunction, shown in
Figure 4-1, are examples of this effort.
Only the int, long, and double types have been chosen as the focus of the primitive specialization implementation in Java 8 because the impact is most noticeable in
numerical algorithms.
[image: ToLongFunction]

Figure 4-1. ToLongFunction

The primitive specializations have a very clear-cut naming convention. If the
return type is a primitive, the interface is prefixed with To and the
primitive type, as in ToLongFunction (shown in Figure 4-1).
If the argument type is a primitive type, the name prefix is just the type
name, as in LongFunction (Figure 4-2). If the higher-order function uses a
primitive type, it is suffixed with To and the primitive type, as in mapToLong.
[image: LongFunction]

Figure 4-2. LongFunction

There are also specialized versions of Stream for these primitive types that
prefix the type name, such as LongStream. In fact, methods like
mapToLong don’t return a Stream; they return these specialized streams. On
the specialized streams, the map implementation is also specialized: it takes a
function called LongUnaryOperator, visible in Figure 4-3,
which maps a long to a long. It’s also possible to get back from a
primitive stream to a boxed stream through higher-order function variations such
as mapToObj and the boxed method, which returns a stream of boxed objects
such as Stream<Long>.
[image: LongUnaryOperator]

Figure 4-3. LongUnaryOperator

It’s a good idea to use the primitive specialized functions wherever possible
because of the performance benefits. You also get additional functionality
available on the specialized streams. This allows you to avoid having
to implement common functionality and to use code that better conveys the intent
of numerical operations. You can see an example of how to use this functionality in
Example 4-4.
Example 4-4. Using summaryStatistics to understand track length data
public static void printTrackLengthStatistics(Album album) {
 IntSummaryStatistics trackLengthStats
 = album.getTracks()
 .mapToInt(track -> track.getLength())
 .summaryStatistics();

 System.out.printf("Max: %d, Min: %d, Ave: %f, Sum: %d",
 trackLengthStats.getMax(),
 trackLengthStats.getMin(),
 trackLengthStats.getAverage(),
 trackLengthStats.getSum());
}

Example 4-4 prints out a summary of track length information
to the console. Instead of calculating that information ourselves, we map each
track to its length, using the primitive specialized mapToInt method. Because this method returns an IntStream, we can call summaryStatistics, which calculates statistics such as the minimum, maximum, average, and sum values on the IntStream.
These values are available on all the specialized streams, such as
DoubleStream and LongStream. It’s also possible to calculate the individual
summary statistics if you don’t need all of them through the min, max,
average, and sum methods, which are all also available on all three
primitive specialized Stream variants.

Overload Resolution

It’s possible in Java to overload methods, so you have multiple methods with
the same name but different signatures. This approach poses a problem for parameter-type inference because it means that there are several types that could be
inferred. In these situations javac will pick the most specific type for
you. For example, the method call in Example 4-5, when
choosing between the two methods in Example 4-6, prints out
String, not Object.
Example 4-5. A method that could be dispatched to one of two methods
overloadedMethod("abc");

Example 4-6. Two methods that are overloaded
private void overloadedMethod(Object o) {
 System.out.print("Object");
}

private void overloadedMethod(String s) {
 System.out.print("String");
}

A BinaryOperator is special type of BiFunction for which the arguments
and the return type are all the same. For example, adding two integers would
be a BinaryOperator.
Because lambda expressions have the types of their functional interfaces, the same
rules apply when passing them as arguments. We can overload a method with the
BinaryOperator and an interface that extends it. When calling these methods, Java will infer the
type of your lambda to be the most specific functional interface. For example,
the code in Example 4-7 prints out IntegerBinaryOperator when
choosing between the two methods in Example 4-8.
Example 4-7. Another overloaded method call
overloadedMethod((x, y) -> x + y);

Example 4-8. A choice between two overloaded methods
private interface IntegerBiFunction extends BinaryOperator<Integer> {

}

private void overloadedMethod(BinaryOperator<Integer> lambda) {
 System.out.print("BinaryOperator");
}

private void overloadedMethod(IntegerBiFunction lambda) {
 System.out.print("IntegerBinaryOperator");
}

Of course, when there are multiple method overloads, there isn’t always a clear “most
specific type.” Take a look at Example 4-9.
Example 4-9. A compile failure due to overloaded methods
overloadedMethod((x) -> true);

private interface IntPredicate {
 public boolean test(int value);
}

private void overloadedMethod(Predicate<Integer> predicate) {
 System.out.print("Predicate");
}

private void overloadedMethod(IntPredicate predicate) {
 System.out.print("IntPredicate");
}

The lambda expression passed into overloadedMethod is compatible with both a normal Predicate and the IntPredicate. There are method overloads for each of these options defined within this code block. In this case, javac will fail to compile the example, complaining that the lambda expression is an ambiguous method call: IntPredicate doesn’t extend any Predicate, so the compiler isn’t able to infer that it’s more specific.
The way to fix these situations is to cast the lambda expression to either
IntPredicate or Predicate<Integer>, depending upon which behavior you want
to call. Of course, if you’ve designed the library yourself, you might conclude that
this is a code smell and you should start renaming your overloaded
methods.
In summary, the parameter types of a lambda are inferred from the target type, and the inference follows these rules:
	
If there is a single possible target type, the lambda expression infers the type from the corresponding argument on the functional interface.

	
If there are several possible target types, the most specific type is inferred.

	
If there are several possible target types and there is no most specific type, you must manually provide a type.

@FunctionalInterface

Although I talked about the criteria for what a functional interface actually is
back in Chapter 2, I haven’t yet mentioned the
@FunctionalInterface annotation. This is an annotation that should be
applied to any interface that is intended to be used as a functional interface.
What does that really mean? Well, there are some interfaces in Java that have only a single method but aren’t normally meant to be implemented by lambda expressions. For example, they might assume that the object has internal state and be interfaces with a single method only coincidentally. A couple of good examples are java.lang.Comparable and java.io.Closeable.
If a class is Comparable, it means there is a defined order between
instances, such as alphabetical order for strings. You don’t normally
think about functions themselves as being comparable objects because they lack
fields and state, and if there are no fields and no state, what is there to
sensibly compare?
For an object to be Closeable it must hold an open
resource, such as a file handle that needs to be closed at some point in
time. Again, the interface being called cannot be a pure function because
closing a resource is really another example of mutating state.
In contrast to Closeable and Comparable, all the new interfaces introduced
in order to provide Stream interoperability are expected to be implemented by
lambda expressions. They are really there to bundle up blocks of code as data.
Consequently, they have the @FunctionalInterface annotation applied.
Using the annotation compels javac to actually check whether the interface meets
the criteria for being a functional interface. If the annotation is applied to
an enum, class, or annotation, or if the type is an interface with more
than one single abstract method, then javac will generate an error message.
This is quite helpful for being able to catch errors easily when refactoring
your code.

Binary Interface Compatibility

As you saw in Chapter 3, one of the biggest API changes in Java 8 is to the collections library. As Java has evolved, it has maintained backward binary compatibility. In practical terms, this means that if you compiled a library or application with Java 1 through 7, it’ll run out of the box in Java 8.
Of course, there are still bugs from time to time, but compared to many other
programming platforms, binary compatibility has been viewed as a key Java
strength. Barring the introduction of a new keyword, such as enum, there has
also been an effort to maintain backward source compatibility. Here
the guarantee is that if you’ve got source code in Java 1-7, it’ll compile in Java 8.
These guarantees are really hard to maintain when you’re changing such a core
library component as the collections library. As a thought exercise,
consider a concrete example. The stream method was added to the
Collection interface in Java 8, which means that any class that implements
Collection must also have this method on it. For core
library classes, this problem can easily be solved by implementing that method (e.g., adding a stream method to
ArrayList).
Unfortunately, this change still breaks binary compatibility because it means
that any class outside of the JDK that implements Collection—say,
MyCustomList—must also have implemented the stream method. In Java 8
MyCustomList would no longer compile, and even if you had a compiled version
when you tried to load MyCustomList into a JVM, it would result in an
exception being thrown by your ClassLoader.
This nightmare scenario of all third-party collections libraries being broken
has been averted, but it did require the introduction of a new language
concept: default methods.

Default Methods

So you’ve got your new stream method on Collection; how do you allow
MyCustomList to compile without ever having to know about its existence?
The Java 8 approach to solving the problem is to allow Collection to say, “If
any of my children don’t have a stream method, they can use this one.” These
methods on an interface are called default methods. They can be
used on any interface, functional or not.
Another default method that has been added is the forEach method on Iterable,
which provides similar functionality to the for loop but lets you use a lambda
expression as the body of the loop. Example 4-10 shows how this could be
implemented in the JDK.
Example 4-10. An example default method, showing how forEach might be implemented
default void forEach(Consumer<? super T> action) {
 for (T t : this) {
 action.accept(t);
 }
}

Now that you’re familiar with the idea that you can use lambda expressions by just calling methods on interfaces, this example should look pretty simple. It uses a regular for loop to iterate over the underlying Iterable, calling the accept method with each value.
If it’s so simple, why mention it? The important thing is that new default
keyword right at the beginning of the code snippet. That tells javac that
you really want to add a method to an interface. Other than the addition of
a new keyword, default methods also have slightly different inheritance rules
to regular methods.
The other big difference is that, unlike classes, interfaces don’t have
instance fields, so default methods can modify their child classes only by
calling methods on them. This helps you avoid making assumptions about the
implementation of their children.
Default Methods and Subclassing

There are some subtleties about the way that default methods override and
can be overridden by other methods. Let’s look the simplest case to begin with:
no overriding. In Example 4-11, our Parent interface defines a
welcome method that sends a message when called. The ParentImpl class
doesn’t provide an implementation of welcome, so it inherits the default
method.
Example 4-11. The Parent interface; the welcome method is a default
public interface Parent {

 public void message(String body);

 public default void welcome() {
 message("Parent: Hi!");
 }

 public String getLastMessage();

}

When we come to call this code, in Example 4-12, the default method
is called and our assertion passes.
Example 4-12. Using the default method from client code
@Test
public void parentDefaultUsed() {
 Parent parent = new ParentImpl();
 parent.welcome();
 assertEquals("Parent: Hi!", parent.getLastMessage());
}

Now we can extend Parent with a Child interface, whose code is listed in
Example 4-13. Child implements its own default welcome method.
As you would intuitively expect, the default method on Child overrides the
default method on Parent. In this example, again, the ChildImpl class
doesn’t provide an implementation of welcome, so it inherits the default
method.
Example 4-13. Child interface that extends Parent
public interface Child extends Parent {

 @Override
 public default void welcome() {
 message("Child: Hi!");
 }

}

You can see the class hierarchy at this point in Figure 4-4.
[image: A diagram showing the inheritance hierachy at this point]

Figure 4-4. A diagram showing the inheritance hierarchy at this point

Example 4-14 calls this interface and consequently ends up
sending the string "Child: Hi!".
Example 4-14. Client code that calls our Child interface
@Test
public void childOverrideDefault() {
 Child child = new ChildImpl();
 child.welcome();
 assertEquals("Child: Hi!", child.getLastMessage());
}

Now the default method is a virtual method—that is, the opposite of a static
method. What this means is that whenever it comes up against competition from
a class method, the logic for determining which override to pick always chooses
the class. A simple example of this is shown in Examples 4-15 and 4-16, where the welcome method of OverridingParent
is chosen over that of Parent.
Example 4-15. A parent class that overrides the default implementation of welcome
public class OverridingParent extends ParentImpl {

 @Override
 public void welcome() {
 message("Class Parent: Hi!");
 }

}

Example 4-16. An example of a concrete method beating a default method
@Test
public void concreteBeatsDefault() {
 Parent parent = new OverridingParent();
 parent.welcome();
 assertEquals("Class Parent: Hi!", parent.getLastMessage());
}

Here’s a situation, presented in Example 4-18, in which
you might not expect the concrete class to override the default method.
OverridingChild inherits both the welcome method from Child and the welcome method from OverridingParent and doesn’t do anything itself.
OverridingParent is chosen despite OverridingChild (the code in
Example 4-17), being a more specific type because it’s a concrete method
from a class rather than a default method (see Figure 4-5).
Example 4-17. Again, our child interface overrides the default welcome method
public class OverridingChild extends OverridingParent implements Child {

}

Example 4-18. An example of a concrete method beating a default method that is more specific
@Test
public void concreteBeatsCloserDefault() {
 Child child = new OverridingChild();
 child.welcome();
 assertEquals("Class Parent: Hi!", child.getLastMessage());
}

[image: A diagram showing the complete inheritance hierachy]

Figure 4-5. A diagram showing the complete inheritance hierarchy

Put simply: class wins. The motivation for this decision is that default
methods are designed primarily to allow binary compatible API evolution.
Allowing classes to win over any default methods simplifies a lot of
inheritance scenarios.
Suppose we had a custom list implementation called
MyCustomList and had implemented a custom addAll method, and the new
List interface provided a default addAll that delegated to the add
method. If the default method wasn’t guaranteed to be overridden by this
addAll method, we could break the existing implementation.

Multiple Inheritance

Because interfaces are subject to multiple inheritance, it’s possible to get
into situations where two interfaces both provide default methods with
the same signature. Here’s an example in which both a Carriage and a
Jukebox provide a method to rock—in each case, for different
purposes. We also have a MusicalCarriage, which is both a Jukebox (Example 4-19)
and a Carriage (Example 4-20) and tries to inherit the rock method.
Example 4-19. Jukebox
public interface Jukebox {

 public default String rock() {
 return "... all over the world!";
 }

}

Example 4-20. Carriage
public interface Carriage {

 public default String rock() {
 return "... from side to side";
 }

}

public class MusicalCarriage implements Carriage, Jukebox {
}
Because it’s not clear to javac which method it should inherit, this will just result in the compile error class MusicalCarriage inherits unrelated defaults for rock() from types Carriage and Jukebox. Of course, it’s possible to resolve this by implementing the rock method, shown in Example 4-21.
Example 4-21. Implementing the rock method
public class MusicalCarriage
 implements Carriage, Jukebox {

 @Override
 public String rock() {
 return Carriage.super.rock();
 }

}

This example uses the enhanced super syntax in order to pick Carriage as its preferred rock implementation. Previously, super acted as a reference to the parent class, but by using the InterfaceName.super variant it’s possible to specify a method from an inherited interface.
The Three Rules

If you’re ever unsure of what will happen with default methods or with multiple inheritance of behavior, there are three simple rules for handling conflicts:
	
Any class wins over any interface. So if there’s a method with a body, or an abstract declaration,
in the superclass chain, we can ignore the interfaces completely.

	
Subtype wins over supertype. If we have a situation in which two interfaces
are competing to provide a default method and one interface extends the
other, the subclass wins.

	
No rule 3. If the previous two rules don’t give us the answer, the
subclass must either implement the method or declare it abstract.

Rule 1 is what brings us compatibility with old code.

Tradeoffs

These changes raise a bunch of issues regarding what an interface
really is in Java 8, as you can define methods with code bodies on them. This means that interfaces now provide a form of multiple inheritance that has
previously been frowned upon and whose removal has been considered a usability advantage
of Java over C++.
No language feature is always good or always bad. Many would argue that the
real issue is multiple inheritance of state rather than just blocks of code,
and as default methods avoid multiple inheritance of state, they avoid the
worst pitfalls of multiple inheritance in C++.
It can also be very tempting to try and work around these limitations. Blog posts have already cropped up trying to implement full-on traits with multiple inheritance of state as well as default methods. Trying to hack around the deliberate restrictions of Java 8 puts us back into the old pitfalls of C++.
It’s also pretty clear that there’s still a distinction between interfaces and
abstract classes. Interfaces give you multiple inheritance but no fields,
while abstract classes let you inherit fields but you don’t get multiple
inheritance. When modeling your problem domain, you need to
think about this tradeoff, which wasn’t necessary in previous versions of Java.

Static Methods on Interfaces

We’ve seen a lot of calling of Stream.of but haven’t gotten into its details yet. You may recall that Stream is an interface, but this is a static method on an interface. This is another new language change that has made its way into Java 8, primarily in order to help library developers, but with benefits for day-to-day application developers as well.
An idiom that has accidentally developed over time is ending up with classes
full of static methods. Sometimes a class can be an appropriate location for
utility code, such as the Objects class introduced in Java 7 that
contained functionality that wasn’t specific to any particular class.
Of course, when there’s a good semantic reason for a method to
relate to a concept, it should always be put in the same class or interface
rather than hidden in a utility class to the side. This helps structure your
code in a way that’s easier for someone reading it to find the relevant method.
For example, if you want to create a simple Stream of values, you would expect
the method to be located on Stream. Previously, this was impossible, and the
addition of a very interface-heavy API in terms of Stream finally motivated
the addition of static methods on interfaces.
Note
There are other methods on Stream and its primitive specialized variants. Specifically, range and iterate give us other ways of generating our own streams.

Optional

Something I’ve glossed over so far is that reduce can come in a couple of forms:
the one we’ve seen, which takes an initial value, and another variant, which
doesn’t. When the initial value is left out, the first call to the reducer uses
the first two elements of the Stream. This is useful if there’s no sensible
initial value for a reduce operation and will return an instance of Optional.
Optional is a new core library data type that is designed to provide a better
alternative to null. There’s quite a lot of hatred for the old null value.
Even the man who invented the concept, Tony Hoare, described it as “my
billion-dollar mistake.” That’s the trouble with being an influential computer
scientist—you can make a billion-dollar mistake without even seeing the
billion dollars yourself!
null is often used to represent the absence of a value, and this is the use case that Optional is replacing. The problem with using null in order to represent absence is the dreaded NullPointerException. If you refer to a variable that is null, your code blows up. The goal of Optional is twofold. First, it encourages the coder to make appropriate checks as to whether a variable is null in order to avoid bugs. Second, it documents values that are expected to be absent in a class’s API. This makes it easier to see where the bodies are buried.
Let’s take a look at the API for Optional in order to get a feel for how to use it. If you want to create an Optional instance from a value, there is a factory method called of. The Optional is now a container for this value, which can be pulled out with get, as shown in Example 4-22.
Example 4-22. Creating an Optional from a value
Optional<String> a = Optional.of("a");
assertEquals("a", a.get());

Because an Optional may also represent an absent value, there’s also a factory method called empty, and you can convert a nullable value into an Optional using the ofNullable method. Both of these are shown in Example 4-23, along with the use of the isPresent method (which indicates whether the Optional is holding a value).
Example 4-23. Creating an empty Optional and checking whether it contains a value
Optional emptyOptional = Optional.empty();
Optional alsoEmpty = Optional.ofNullable(null);

assertFalse(emptyOptional.isPresent());

// a is defined above
assertTrue(a.isPresent());

One approach to using Optional is to guard any call to get() by checking
isPresent(). A neater approach is to call the orElse method, which
provides an alternative value in case the Optional is empty. If creating an
alternative value is computationally expensive, the orElseGet method
should be used. This allows you to pass in a Supplier that is called only if
the Optional is genuinely empty. Both of these methods are demonstrated in
Example 4-24.
Example 4-24. Using orElse and orElseGet
assertEquals("b", emptyOptional.orElse("b"));
assertEquals("c", emptyOptional.orElseGet(() -> "c"));

Not only is Optional used in new Java 8 APIs, but it’s also just a regular class
that you can use yourself when writing domain classes. This is definitely
something to think about when trying to avoid nullness-related bugs such
as uncaught exceptions.

Key Points

	
A significant performance advantage can be had by using primitive specialized
lambda expressions and streams such as IntStream.

	
Default methods are methods with bodies on interfaces prefixed
with the keyword default.

	
The Optional class lets you avoid using null by modeling situations
where a value may not be present.

Exercises

	
Given the Performance interface in Example 4-25, add a method called
getAllMusicians that returns a Stream of the artists performing and, in the case of groups, any musicians who are members of those groups. For example, if getMusicians returns The Beatles, then you should return The Beatles along with Lennon, McCartney, and so on.

Example 4-25. An interface denoting the concept of a musical performance
/** A Performance by some musicians - e.g., an Album or Gig. */
public interface Performance {

 public String getName();

 public Stream<Artist> getMusicians();

}

	
Based on the resolution rules described earlier, can you ever override equals or hashCode in a default method?

	
Take a look at the Artists domain class in Example 4-26, which represents a group of artists. Your
assignment is to refactor the getArtist method in order to return an Optional<Artist>. It contains an element
if the index is within range and is an empty Optional otherwise. Remember that you also need to refactor
the getArtistName method, and it should retain the same behavior.

Example 4-26. The Artists domain class, which represents more than one Artist
public class Artists {

 private List<Artist> artists;

 public Artists(List<Artist> artists) {
 this.artists = artists;
 }

 public Artist getArtist(int index) {
 if (index < 0 || index >= artists.size()) {
 indexException(index);
 }
 return artists.get(index);
 }

 private void indexException(int index) {
 throw new IllegalArgumentException(index +
 " doesn't correspond to an Artist");
 }

 public String getArtistName(int index) {
 try {
 Artist artist = getArtist(index);
 return artist.getName();
 } catch (IllegalArgumentException e) {
 return "unknown";
 }
 }

}

Open Exercises

	
Look through your work code base or an open source project you’re
familiar with and try to identify classes that have just static methods
that could be moved to static methods on interfaces. It might be worth
discussing with your colleagues whether they agree or disagree with you.

Chapter 5. Advanced Collections and Collectors

There’s a lot more to the collections library changes than I covered in Chapter 3. It’s time to cover some of the more advanced collections
changes, including the new Collector abstraction. I’ll also introduce method
references, which are a way of using existing code in lambda expressions with
little to no ceremony. They pay huge dividends when it comes to writing
Collection-heavy code. More advanced topics within the collections library
will also be covered, such as element ordering within streams and other useful API
changes.
Method References

A common idiom you may have noticed is the creation of a lambda expression that calls a method on its parameter.
If we want a lambda expression that gets the name of an artist, we would write the following:
artist -> artist.getName()
This is such a common idiom that there’s actually an abbreviated syntax
for this that lets you reuse an existing method, called a method
reference. If we were to write the previous lambda expression using a
method reference, it would look like this:
Artist::getName
The standard form is Classname::methodName. Remember that even though it’s a
method, you don’t need to use brackets because you’re not actually calling the
method. You’re providing the equivalent of a lambda expression that can be
called in order to call the method. You can use method references in the same
places as lambda expressions.
You can also call constructors using the same abbreviated syntax.
If you were to use a lambda expression to create an Artist, you might write:
(name, nationality) -> new Artist(name, nationality)
We can also write this using method references:
Artist::new
This code is not only shorter but also a lot easier to read. Artist::new
immediately tells you that you’re creating a new Artist without your having to scan
the whole line of code. Another thing to notice here is that method references
automatically support multiple parameters, as long as you have the right
functional interface.
It’s also possible to create arrays using this method. Here is how you would
create a String array:
String[]::new
We’ll be using method references from this point onward where appropriate,
so you’ll be seeing a lot more examples very soon. When we were first exploring
the Java 8 changes, a friend of mine said that method references “feel like cheating.”
What he meant was that, having looked at how we can use lambda expressions to pass
code around as if it were data, it felt like cheating to be able to
reference a method directly.
It’s OK—it’s not cheating! You have to bear in mind that every time you write a
lambda expression that looks like x -> foo(x), it’s really doing the same thing
as just the method foo on its own. All method references do is provide a
simpler syntax that takes advantage of this fact.

Element Ordering

One topic I haven’t discussed so far that pertains to collections is how
elements are ordered in streams. You might be familiar with the concept that
some types of Collection, such as List, have a defined order, and collections
like HashSet don’t. The situation with ordering becomes a little more
complex with Stream operations.
A Stream intuitively presents an order because each element is operated upon,
or encountered, in turn. We call this the encounter order. How the
encounter order is defined depends on both the source of the data and the
operations performed on the Stream.
When you create a Stream from a collection with a defined order, the Stream
has a defined encounter order. As a consequence, Example 5-1 will always
pass.
Example 5-1. The ordering assumption in this test will always work
 List<Integer> numbers = asList(1, 2, 3, 4);

 List<Integer> sameOrder = numbers.stream()
 .collect(toList());
 assertEquals(numbers, sameOrder);

If there’s no defined order to begin, the Stream produced by that
source doesn’t have a defined order. A HashSet is an example of a collection
without a defined ordering, and because of that Example 5-2 isn’t
guaranteed to pass.
Example 5-2. The ordering assumption here isn’t guaranteed
 Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

 List<Integer> sameOrder = numbers.stream()
 .collect(toList());

 // This may not pass
 assertEquals(asList(4, 3, 2, 1), sameOrder);

The purpose of streams isn’t just to convert from one collection to
another; it’s to be able to provide a common set of operations over data. These
operations may create an encounter order where there wasn’t one to begin with.
Consider the code presented in Example 5-3.
Example 5-3. Creating an encounter order
 Set<Integer> numbers = new HashSet<>(asList(4, 3, 2, 1));

 List<Integer> sameOrder = numbers.stream()
 .sorted()
 .collect(toList());

 assertEquals(asList(1, 2, 3, 4), sameOrder);

The encounter order is propagated across intermediate operations if it exists;
for example, if we try to map values and there’s a defined encounter order, then
that encounter order will be preserved. If there’s no encounter order on
the input Stream, there’s no encounter order on the output Stream.
Consider the two snippets of code in Example 5-4. We can only make
the weaker hasItem assertions on the HashSet example because the lack
of a defined encounter order from HashSet continues through the map.
Example 5-4. The ordering assumption in this test will always work
 List<Integer> numbers = asList(1, 2, 3, 4);

 List<Integer> stillOrdered = numbers.stream()
 .map(x -> x + 1)
 .collect(toList());

 // Reliable encounter ordering
 assertEquals(asList(2, 3, 4, 5), stillOrdered);

 Set<Integer> unordered = new HashSet<>(numbers);

 List<Integer> stillUnordered = unordered.stream()
 .map(x -> x + 1)
 .collect(toList());

 // Can't assume encounter ordering
 assertThat(stillUnordered, hasItem(2));
 assertThat(stillUnordered, hasItem(3));
 assertThat(stillUnordered, hasItem(4));
 assertThat(stillUnordered, hasItem(5));

Some operations are more expensive on ordered streams. This problem can be solved
by eliminating ordering. To do so, call the stream’s unordered
method. Most operations, however, such as filter, map, and reduce, can operate very
efficiently on ordered streams.
This can cause unexpected behavior, for example, forEach provides no guarantees as to encounter order if you’re using parallel streams. (This will be discussed in more detail in Chapter 6.) If you require an ordering guarantee in these situations, then forEachOrdered is your friend!

Enter the Collector

Earlier, we used the collect(toList()) idiom in order to produce lists out of
streams. Obviously, a List is a very natural value to want to produce from a
Stream, but it’s not the only value that you might want to compute. Perhaps you
want to generate a Map or a Set. Maybe you think it’s worth having a domain
class that abstracts the concept you want?
You’ve already learned that you can tell just from the signature of a Stream
method whether it’s an eagerly evaluated terminal operation that can be used to
produce a value. A reduce operation can be very suitable for this purpose.
Sometimes you want to go further than reduce allows, though.
Enter the collector, a general-purpose construct for producing complex
values from streams. These can be used with any Stream by passing
them into the collect method.
The standard library provides a bunch of useful collectors out of the box, so
let’s look at those first. In the code examples throughout this chapter
the collectors are statically imported from the java.util.stream.Collectors
class.
Into Other Collections

Some collectors just build up other collections. You’ve already seen the toList
collector, which produces java.util.List instances. There’s also a toSet
collector and a toCollection collector, which produce instances of Set and
Collection. I’ve talked a lot so far about chaining Stream operations, but
there are still times when you’ll want to produce a Collection as a final value—for
example:
	
When passing your collection to existing code that is written to use collections

	
When creating a final value at the end of a chain of collections

	
When writing test case asserts that operate on a concrete collection

Normally when we create a collection, we specify the concrete type of the collection
by calling the appropriate constructor:
List<Artist> artists = new ArrayList<>();
But when you’re calling toList or toSet, you don’t get to specify the concrete
implementation of the List or Set. Under the hood, the streams library is picking
an appropriate implementation for you. Later in this book I’ll talk about how you
can use the streams library to perform data parallel operations; collecting the
results of parallel operations can require a different type of Set to be produced
than if there were no requirement for thread safety.
It might be the case that you wish to collect your values into a Collection of
a specific type if you require that type later. For example, perhaps you want
to use a TreeSet instead of allowing the framework to determine what type of
Set implementation you get. You can do that using the toCollection collector,
which takes a function to build the collection as its argument (see Example 5-5).
Example 5-5. Collecting into a custom collection using toCollection
stream.collect(toCollection(TreeSet::new));

To Values

It’s also possible to collect into a single value using a collector. There are
maxBy and minBy collectors that let you obtain a single value according to
some ordering. Example 5-6 shows how to find the band with the most
members. It defines a lambda expression that can map an artist to the number
of members. This is then used to define a comparator that is passed into the
maxBy collector.
Example 5-6. Finding the band with the most members
public Optional<Artist> biggestGroup(Stream<Artist> artists) {
 Function<Artist,Long> getCount = artist -> artist.getMembers().count();
 return artists.collect(maxBy(comparing(getCount)));
}

There’s also a minBy, which does what it says on the tin.
There are also collectors that implement common numerical operations.
Let’s take a look at these by writing a collector to find the average
number of tracks on an album, as in Example 5-7.
Example 5-7. Finding the average number of tracks for a list of albums
public double averageNumberOfTracks(List<Album> albums) {
 return albums.stream()
 .collect(averagingInt(album -> album.getTrackList().size()));
}

As usual, we kick off our pipeline with the stream method and collect
the results. We then call the averagingInt method, which takes a lambda
expression in order to convert each element in the Stream into an int
before averaging the values. There are also overloaded operations for the
double and long types, which let you convert your element into these type
of values.
Back in Primitives, we talked about how the primitive specialized
variants of streams, such as IntStream, had additional functionality for
numerical operations. In fact, there are also a group of collectors that offer
similar functionality, in the vein of averagingInt. You can add up the values
using summingInt and friends. SummaryStatistics is collectible using summarizingInt and its combinations.

Partitioning the Data

Another common operation that you might want to do with a Stream is
partition it into two collections of values. For example, if you’ve got a
Stream of artists, then you might wish to get all the artists who are solo
artists—that is, who have no fellow band members—and all the artists who are bands. One
approach to doing this is to perform two different filters, one looking for
solo artists and the other for bands.
This approach has a couple of downsides, though. First, you’ll need two streams in
order to perform these two stream operations. Second, if you’ve got a long
sequence of operations leading up to your filters, these will need to be
performed twice over each stream. This also doesn’t result in clean code.
Consequently, there is a collector, partitioningBy, that takes a stream and partitions its
contents into two groups (see Figure 5-1). It uses a Predicate to determine whether an element
should be part of the true group or the false group and returns a Map from
Boolean to a List of values. So, the Predicate returns true for all
the values in the true List and false for the other List.
[image: .The partitioningBy Collector]

Figure 5-1. The partitioningBy collector

We can use these features to split out bands (artists with more than one
member) from solo artists. In this case, our partitioning function tells us
whether the artist is a solo act. Example 5-8 provides an
implementation.
Example 5-8. Partitioning a stream of artists into bands and solo artists
public Map<Boolean, List<Artist>> bandsAndSolo(Stream<Artist> artists) {
 return artists.collect(partitioningBy(artist -> artist.isSolo()));
}

We can also write this using method references, as demonstrated in Example 5-9.
Example 5-9. Partitioning up a stream of artists into bands and solo artists using a method reference
public Map<Boolean, List<Artist>> bandsAndSoloRef(Stream<Artist> artists) {
 return artists.collect(partitioningBy(Artist::isSolo));
}

Grouping the Data

There’s a natural way to generalize partitioning through altering the grouping
operation. It’s more general in the sense that instead of splitting up your
data into true and false groups, you can use whatever values you want.
Perhaps some code has given you a Stream of albums and you want to group them
by the name of their main musician. You might write some code like Example 5-10.
Example 5-10. Grouping albums by their main artist
public Map<Artist, List<Album>> albumsByArtist(Stream<Album> albums) {
 return albums.collect(groupingBy(album -> album.getMainMusician()));
}

As with the other examples, we’re calling collect on the Stream and passing
in a Collector. Our groupingBy collector (Figure 5-2) takes a classifier function in
order to partition the data, just like the partitioningBy collector took a
Predicate to split it up into true and false values. Our classifier is a
Function—the same type that we use for the common map operation.
[image: .The groupingBy Collector]

Figure 5-2. The groupingBy collector

Note
You might be familiar with group by from using SQL; here we have a method
with a similar concept, but implemented in the idioms of the streams library.

Strings

A very common reason for collecting streams of data is to generate strings at the
end. Let’s suppose that we want to put together a formatted list of
names of the artists involved in an album. So, for example, if our input album
is Let It Be, then we’re expecting our output to look like "[George Harrison,
John Lennon, Paul McCartney, Ringo Starr, The Beatles]".
If we were to implement this before Java 8, we might have come up with
something like Example 5-11. Here, we use a StringBuilder to
accumulate the values, iterating over the list. At each step, we pull out the
names of the artists and add them to the StringBuilder.
Example 5-11. Formatting artist names using a for loop
StringBuilder builder = new StringBuilder("[");
for (Artist artist : artists) {
 if (builder.length() > 1)
 builder.append(", ");

 String name = artist.getName();
 builder.append(name);
}
builder.append("]");
String result = builder.toString();

Of course, this isn’t particularly great code. It’s pretty hard to see what it’s
doing without walking through it step by step. With Java 8 we can write
Example 5-12, which makes our intent much clearer using
streams and collectors.
Example 5-12. Formatting artist names using streams and collectors
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(Collectors.joining(", ", "[", "]"));

Here, we use a map to extract the artists’ names and then collect the Stream
using Collectors.joining. This method is a convenience for building up
strings from streams. It lets us provide a delimiter (which goes between
elements), a prefix for our result, and a suffix for the result.

Composing Collectors

Although the collectors we’ve seen so far are quite powerful, they become
significantly more so when composed with other collectors.
Previously we grouped albums by their main artist; now let’s consider the problem
of counting the number of albums for each artist. A simple approach would be
to apply the previous grouping and then count the values. You can see how that
works out in Example 5-13.
Example 5-13. A naive approach to counting the number of albums for each artist
Map<Artist, List<Album>> albumsByArtist
 = albums.collect(groupingBy(album -> album.getMainMusician()));

Map<Artist, Integer> numberOfAlbums = new HashMap<>();
for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 numberOfAlbums.put(entry.getKey(), entry.getValue().size());
}

Hmm, it might have sounded like a simple approach, but it got a bit messy.
This code is also imperative and doesn’t automatically parallelize.
What we want here is actually another collector that tells groupingBy that
instead of building up a List of albums for each artist, it should just count them.
Conveniently, this is already in the core library and is called counting. So,
we can rewrite the example into Example 5-14.
Example 5-14. Using collectors to count the number of albums for each artist
public Map<Artist, Long> numberOfAlbums(Stream<Album> albums) {
 return albums.collect(groupingBy(album -> album.getMainMusician(),
 counting()));
}

This form of groupingBy divides elements into buckets. Each bucket gets associated with the key provided by the classifier function: getMainMusician. The groupingBy operation then uses the downstream collector to collect each bucket and makes a map of the results.
Let’s consider another example, in which instead of building up a grouping of
albums, we just want their names. Again, one approach is to take our original
collector and then fix up the resulting values in the Map. Example 5-15
shows how we might do that.
Example 5-15. A naive approach to finding the names of every album that an artist has produced
public Map<Artist, List<String>> nameOfAlbumsDumb(Stream<Album> albums) {
 Map<Artist, List<Album>> albumsByArtist =
 albums.collect(groupingBy(album ->album.getMainMusician()));

 Map<Artist, List<String>> nameOfAlbums = new HashMap<>();
 for(Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 nameOfAlbums.put(entry.getKey(), entry.getValue()
 .stream()
 .map(Album::getName)
 .collect(toList()));
 }
 return nameOfAlbums;
}

Again, we can produce nicer, faster, and easier-to-parallelize code using another collector. We already know that we can group our albums by the main artist using the groupingBy collector, but that would output a Map<Artist, List<Album>>. Instead of associating a list of albums with each Artist, we want to associate a list of strings, each of which is the name of an album.
In this case, what we’re really trying to do is perform a map operation on
the list from the Artist to the album name. We can’t just use the map method
on streams because this list is created by the groupingBy collector. We
need a way of telling the groupingBy collector to map its list values
as it’s building up the result.
Each collector is a recipe for building a final value. What we really want is a
recipe to give to our recipe—another collector. Thankfully, the boffins at
Oracle have thought of this use case and provided a collector called mapping.
The mapping collector allows you to perform a map-like operation over your
collector’s container. You also need to tell your mapping collector what
collection it needs to store the results in, which you can do with the toList
collector. It’s turtles, I mean collectors, all the way down!
Just like map, this takes an implementation of Function. If we refactor
our code to use a second collector, we end up with Example 5-16.
Example 5-16. Using collectors to find the names of every album that an artist has produced
public Map<Artist, List<String>> nameOfAlbums(Stream<Album> albums) {
 return albums.collect(groupingBy(Album::getMainMusician,
 mapping(Album::getName, toList())));
}

In both of these cases, we’ve used a second collector in order to collect a subpart of the final result. These collectors are called downstream collectors. In the same way that a collector is a recipe for building a final value, a downstream collector is a recipe for building a part of that value, which is then used by the main collector. The way you can compose collectors like this makes them an even more powerful component in the streams library.
The primitive specialized functions, such as averagingInt or summarizingLong, are actually duplicate functionality over calling the method on the specialized stream themselves. The real motivation for them to exist is to be used as downstream collectors.

Refactoring and Custom Collectors

Although the built-in Java collectors are good building blocks for common operations around streams, the collector framework is very generic. There is nothing special or magic about the ones that ship with the JDK, and you can build your own collectors very simply. That’s what we’ll look at now.
You may recall when we looked at strings that we could write our example in Java 7, albeit inelegantly. Let’s take this example and slowly refactor it into a proper String-joining collector. There’s no need for you to use this code—the JDK provides a perfectly good joining collector—but it is quite an instructive example both of how custom collectors work and of how to refactor legacy code into Java 8.
Example 5-17 is a reminder of our Java 7 String-joining example.
Example 5-17. Using a for loop and a StringBuilder to pretty-print the names of artists
StringBuilder builder = new StringBuilder("[");
for (Artist artist : artists) {
 if (builder.length() > 1)
 builder.append(", ");

 String name = artist.getName();
 builder.append(name);
}
builder.append("]");
String result = builder.toString();

It’s pretty obvious that we can use the map operation to transform
the Stream of artists into a Stream of String names. Example 5-18
is a refactoring of this code to use streams and map.
Example 5-18. Using a forEach and a StringBuilder to pretty-print the names of artists
StringBuilder builder = new StringBuilder("[");
artists.stream()
 .map(Artist::getName)
 .forEach(name -> {
 if (builder.length() > 1)
 builder.append(", ");

 builder.append(name);
 });
builder.append("]");
String result = builder.toString();

This has made things a bit clearer in the sense that the mapping to names shows
us what has been built up a bit more quickly. Unfortunately, there’s still this
very large forEach block that doesn’t fit into our goal of writing code that
is easy to understand by composing high-level operations.
Let’s put aside our goal of building a custom collector for a moment and just
think in terms of the existing operations that we have on streams. The
operation that most closely matches what we’re doing in terms of building up a
String is the reduce operation. Refactoring Example 5-18 to use that
results in Example 5-19.
Example 5-19. Using a reduce and a StringBuilder to pretty-print the names of artists
StringBuilder reduced =
 artists.stream()
 .map(Artist::getName)
 .reduce(new StringBuilder(), (builder, name) -> {
 if (builder.length() > 0)
 builder.append(", ");

 builder.append(name);
 return builder;
 }, (left, right) -> left.append(right));

reduced.insert(0, "[");
reduced.append("]");
String result = reduced.toString();

I had hoped that last refactor would help us make the code clearer. Unfortunately, it seems to be just as bad as before. Still, let’s see what’s going on. The stream and map calls are the same as in the previous example. Our reduce operation builds up the artist names, combined with ", " delimiters. We start with an empty StringBuilder—the identity of the reduce. Our next lambda expression combines a name with a builder. The third argument to reduce takes two StringBuilder instances and combines them. Our final step is to add the prefix at the beginning and the suffix at the end.
For our next refactoring attempt, let’s try and stick with reduction but hide the mess—I mean, abstract away the details—behind a class that we’ll call a StringCombiner. Implementing this results in Example 5-20.
Example 5-20. Using a reduce and a custom StringCombiner to pretty-print the names of artists
StringCombiner combined =
 artists.stream()
 .map(Artist::getName)
 .reduce(new StringCombiner(", ", "[", "]"),
 StringCombiner::add,
 StringCombiner::merge);

String result = combined.toString();

Even though this looks quite different from the previous code example, it’s actually doing the exact same thing under the hood. We’re using reduce in order to combine names and delimiters into a StringBuilder. This time, though, the logic of adding elements is being delegated to the StringCombiner.add method and the logic of combining two different combiners is delegated to StringCombiner.merge. Let’s take a look at these methods now, beginning with the add method in Example 5-21.
Example 5-21. The add method of a StringCombiner returns itself with a new element appended
public StringCombiner add(String element) {
 if (areAtStart()) {
 builder.append(prefix);
 } else {
 builder.append(delim);
 }
 builder.append(element);
 return this;
}

add is implemented by delegating operations to an underlying StringBuilder instance. If we’re at the start of the combining operations, then we append our prefix; otherwise, we append the string that fits between our elements (the delimiter). We follow this up by appending the element. We return the StringCombiner object because this is the value that we’re pushing through our reduce operation. The merging code, provided in Example 5-22, delegates to appending operations on the StringBuilder.
Example 5-22. The merge method of a StringCombiner combines the results of both StringCombiners
public StringCombiner merge(StringCombiner other) {
 builder.append(other.builder);
 return this;
}

We’re nearly done with the reduce phase of refactoring, but there’s one small step remaining. We’re going to inline the toString to the end of the method call chain so that our entire sequence is method-chained. This is simply a matter of lining up the reduce code so that it’s ready to be converted into the Collector API (see Example 5-23).
Example 5-23. Using a reduce and delegating to our custom StringCombiner
String result =
 artists.stream()
 .map(Artist::getName)
 .reduce(new StringCombiner(", ", "[", "]"),
 StringCombiner::add,
 StringCombiner::merge)
 .toString();

At this stage, we have some code that looks vaguely sane, but it’s quite hard to
reuse this same combining operation in different parts of our code base. So
we’re going to refactor our reduce operation into a Collector, which
we can use anywhere in our application. I’ve called our Collector
the StringCollector. Let’s refactor our code to use it in Example 5-24.
Example 5-24. Collecting strings using a custom StringCollector
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(new StringCollector(", ", "[", "]"));

Now that we’re delegating the whole of the String-joining behavior to a
custom collector, our application code doesn’t need to understand anything
about the internals of StringCollector. It’s just another Collector
like any in the core framework.
We begin by implementing the Collector interface (Example 5-25). Collector is generic, so we need to determine a few types to interact with:
	
The type of the element that we’ll be collecting, a String

	
Our accumulator type, StringCombiner, which you’ve already seen

	
The result type, also a String

Example 5-25. How to define a collector over strings
public class StringCollector implements Collector<String, StringCombiner, String> {

A Collector is composed of four different components. First we have a supplier, which is a factory for making our container—in this case, a StringCombiner. The analogue to this is the first argument provided to the reduce operation, which was the initial value of the reduce (see Example 5-26).
Example 5-26. A supplier is a factory for making our container
public Supplier<StringCombiner> supplier() {
 return () -> new StringCombiner(delim, prefix, suffix);
}

Let’s step through this in diagram form while we’re walking through the
code so that we can see how things fit together. Because collectors can be
collected in parallel, we will show a collecting operation where two container
objects (e.g., StringCombiners) are used in parallel.
Each of the four components of our Collector are functions, so we’ll
represent them as arrows. The values in our Stream are circles, and the final
value we’re producing will be an oval. At the start of the collect operation
our supplier is used to create new container objects (see Figure 5-3).
[image: .Supplier]

Figure 5-3. Supplier

Our collector’s accumulator performs the same job as the second argument to
reduce. It takes the current element and the result of the preceding
operation and returns a new value. We’ve already implemented this logic in the
add method of our StringCombiner, so we just refer to that (see Example 5-27).
Example 5-27. An accumulator is a function to fold the current element into the collector
 public BiConsumer<StringCombiner, String> accumulator() {
 return StringCombiner::add;
 }

Our accumulator is used to fold the stream’s values into the container objects (Figure 5-4).
[image: .Accumulator]

Figure 5-4. Accumulator

The combine method is an analogue of the third method of our reduce
operation. If we have two containers, then we need to be able to merge them
together. Again, we’ve already implemented this in a previous refactor step,
so we just use the StringCombiner.merge method (Example 5-28).
Example 5-28. A combiner merges together two containers
 public BinaryOperator<StringCombiner> combiner() {
 return StringCombiner::merge;
 }

During the collect operation, our container objects are pairwise merged using the defined combiner until we have only one container at the end (Figure 5-5).
[image: .Combiner]

Figure 5-5. Combiner

You might remember that the last step in our refactoring process, before we got
to collectors, was to put the toString method inline at the end of the
method chain. This converted our StringCombiner into the String that we
really wanted (Figure 5-6).
[image: .Finisher]

Figure 5-6. Finisher

Our collector’s finisher method performs the same purpose. We’ve already
folded our mutable container over a Stream of values, but it’s not quite the
final value that we want. The finisher gets called here, once, in order to
make that conversion. This is especially useful if we want to create an
immutable final value, such as a String, but our container is mutable.
In order to implement the finisher for this operation, we just delegate to the
toString method that we’ve already written (Example 5-29).
Example 5-29. A finisher produces the final value returned by the collect operation
 public Function<StringCombiner, String> finisher() {
 return StringCombiner::toString;
 }

We create our final value from the one remaining container.
There’s one aspect of collectors that I haven’t described so far: characteristics. A characteristic is a Set of objects that describes the Collector, allowing the framework to perform certain optimizations. It’s defined through a characteristics method.
At this juncture, it’s worth reminding ourselves that this code has been written as an educational exercise and differs a little bit from the internal implementation of the joining collector. You may also be thinking that the StringCombiner class is looking quite useful. Don’t worry—you don’t need to write that either! Java 8 contains a java.util.StringJoiner class that performs a similar role and has a similar API.
The main goals of going through this exercise are not only to show how custom collectors work, but also to allow you to write your own collector. This is especially useful if you have a domain class that you want to build up from an operation on a collection and none of the standard collectors will build it for you.
In the case of our StringCollector, the container that we were using to collect values was different from the final value that we were trying to create (a String). This is especially common if you’re trying to collect immutable values rather than mutable ones, because otherwise each step of the collection operation would have to create a new value.
It’s entirely possible for the final value that you’re collecting to be the
same as the container you’ve been folding your values into all along. In fact,
this is what happens when the final value that you’re collecting is a
Collection, such as with the toList collector.
In this case, your finisher method needs to do nothing to its container object. More formally, we can say that the finisher method is the identity function: it returns the value passed as an argument. If this is the case, then your Collector will exhibit the IDENTITY_FINISH characteristic and should declare it using the characteristics method.

Reduction as a Collector

As you’ve just seen, custom collectors aren’t that hard to write, but if you’re thinking about writing one in order to collect into a domain class it is worth examining the alternatives. The most obvious is to build one or more collection objects and then pass them into the constructor of your domain class. This is really simple and suitable if your domain class is a composite containing different collections.
Of course, if your domain class isn’t just a composite and needs to perform some calculation based on the existing data, then that isn’t a suitable route. Even in this situation, though, you don’t necessarily need to build up a custom collector. You can use the reducing collector, which gives us a generic implementation of the reduction operation over streams. Example 5-30 shows how we might write our String-processing example using the reducing collector.
Example 5-30. Reducing is a convenient way of making custom collectors
String result =
 artists.stream()
 .map(Artist::getName)
 .collect(Collectors.reducing(
 new StringCombiner(", ", "[", "]"),
 name -> new StringCombiner(", ", "[", "]").add(name),
 StringCombiner::merge))
 .toString();

This is very similar to the reduce-based implementation I covered in
Example 5-20, which is what you might expect given the name. The key
difference is the second argument to Collectors.reducing; we are creating a
dedicated StringCombiner for each element in the stream. If you are shocked
or disgusted at this, you should be! This is highly inefficient and one of the
reasons why I chose to write a custom collector.

Collection Niceties

The introduction of lambda expressions has also enabled other collection
methods to be introduced. Let’s have a look at some useful changes that have
been made to Map.
A common requirement when building up a Map is to compute a value
for a given key. A classic example of this is when implementing a
cache. The traditional idiom is to try and retrieve a value from
the Map and then create it, if it’s not already there.
If we defined our cache as Map<String, Artist> artistCache and were wanting to look up artists using an expensive database operation, we might write something like Example 5-31.
Example 5-31. Caching a value using an explicit null check
public Artist getArtist(String name) {
 Artist artist = artistCache.get(name);
 if (artist == null) {
 artist = readArtistFromDB(name);
 artistCache.put(name, artist);
 }
 return artist;
}

Java 8 introduces a new computeIfAbsent method that takes a lambda to
compute the new value if it doesn’t already exist. So, we can rewrite
the previous block of code into Example 5-32.
Example 5-32. Caching a value using computeIfAbsent
public Artist getArtist(String name) {
 return artistCache.computeIfAbsent(name, this::readArtistFromDB);
}

You may want variants of this code that don’t perform computation only if the value is absent; the new compute and computeIfPresent methods on the Map interface are useful for these cases.
At some point in your career, you might have tried to iterate over a Map. Historically, the approach was to use the values method to get a Set of entries and then iterate over them. This tended to result in fairly hard-to-read code. Example 5-33 shows an approach from earlier in the chapter of creating a new Map counting the number of albums associated with each artist.
Example 5-33. An ugly way to iterate over all entries of a Map
Map<Artist, Integer> countOfAlbums = new HashMap<>();
for(Map.Entry<Artist, List<Album>> entry : albumsByArtist.entrySet()) {
 Artist artist = entry.getKey();
 List<Album> albums = entry.getValue();
 countOfAlbums.put(artist, albums.size());
}

Thankfully, a new forEach method has been introduced that takes a BiConsumer (two values enter, nothing leaves) and produces easier-to-read code through internal iteration, which I introduced in From External Iteration to Internal Iteration. An equivalent code sample is shown in Example 5-34.
Example 5-34. Using internal iteration over all entries of a Map
Map<Artist, Integer> countOfAlbums = new HashMap<>();
albumsByArtist.forEach((artist, albums) -> {
 countOfAlbums.put(artist, albums.size());
});

Key Points

	
Method references are a lightweight syntax for referring to methods and look like this: ClassName::methodName.

	
Collectors let us compute the final values of streams and are the mutable analogue of the reduce method.

	
Java 8 provides out-of-the-box support for collecting into many collection types and the ability to build custom collectors.

Exercises

	
Method references. Take a look back at the examples in Chapter 3 and try rewriting the following using method references:

	
The map to uppercase

	
The implementation of count using reduce

	
The flatMap approach to concatenating lists

	
Collectors.

	
Find the artist with the longest name. You should implement this using a Collector and the reduce higher-order function from Chapter 3. Then compare the differences in your implementation: which was easier to write and which was easier to read? The following example should return "Stuart Sutcliffe":

Stream<String> names = Stream.of("John Lennon", "Paul McCartney",
 "George Harrison", "Ringo Starr", "Pete Best", "Stuart Sutcliffe");

	
Given a Stream where each element is a word, count the number of times each word appears. So, if you were given the following input, you would return a Map of [John → 3, Paul → 2, George → 1]:

Stream<String> names = Stream.of("John", "Paul", "George", "John",
 "Paul", "John");

	
Implement Collectors.groupingBy as a custom collector. You don’t need to provide a downstream collector, so just implementing the simplest variant is fine. If you look at the JDK source code, you’re cheating! Hint: you might want to start with public class GroupingBy<T, K> implements Collector<T, Map<K, List<T>>, Map<K, List<T>>>. This is an advanced exercise, so you might want to attempt it last.

	
Map enhancements.

Efficiently calculate a Fibonacci sequence using just the computeIfAbsent method on a Map. By “efficiently,” I mean that you don’t repeatedly recalculate the Fibonacci sequence of smaller numbers.

Chapter 6. Data Parallelism

I’ve previously made a lot of references to the idea that it’s easier to write parallel code in Java 8. This is because we can use lambda expressions in combination with the streams library, introduced in Chapter 3, to say what we want our program to do, regardless of whether it’s sequential or parallel. I know that sounds a lot like what you’ve been doing in Java for years, but there’s a difference between saying what you want to compute and saying how to compute it.
The big shift between external and internal iteration (also discussed in Chapter 3) did make it easier to write simple and clean code, but here’s the other big benefit: now we don’t have to manually control the iteration. It doesn’t need to be performed sequentially. We express the what and, by changing a single method call, we can get a library to figure out the how.
The changes to your code are surprisingly unobtrusive, so the majority of this chapter won’t be talking about how your code changes. Instead, I’ll explain why you might want to go parallel and when you’ll get performance improvements. It’s also worth noting that this chapter isn’t a general text on performance in Java; we’ll just be looking at the easy wins provided in Java 8.
Parallelism Versus Concurrency

After a quick scan over the table of contents of this book, you might have noticed this chapter with the word parallelism in the title and also Chapter 9, which has concurrency in the title. Don’t worry—I haven’t repeated the same material in an attempt to justify charging you more for this book! Concurrency and parallelism are different things that can be leveraged to achieve different aims.
Concurrency arises when two tasks are making progress at overlapping time
periods. Parallelism arises when two tasks are happening at literally the same
time, such as on a multicore CPU. If a program is undertaking two tasks and
they are being given small slices of a single CPU core’s time, then it is
exhibiting concurrency but not parallelism. This difference is shown in
Figure 6-1.
[image: .Comparison of Concurrency and Parallelism]

Figure 6-1. Comparison of concurrency and parallelism

The goal of parallelism is to reduce the runtime of a specific task by breaking
it down into smaller components and performing them in parallel. This doesn’t
mean that you won’t do as much work as you would if you were running them
sequentially—you are just getting more horses to pull the same cart for a
shorter time period. In fact, it’s usually the case that running a task in
parallel requires more work to be done by the CPU than running it sequentially
would.
In this chapter, we’re looking at a very specific form of parallelism called
data parallelism. In data parallelism, we achieve parallelism by splitting up
the data to be operated on and assigning a single processing unit to each chunk of
data. If we’re to extend our horses-pulling-carts analogy, it would be like
taking half of the goods inside our cart and putting them into another cart for
another horse to pull, with both horses taking an identical route to the
destination.
Data parallelism works really well when you want to perform the same operation
on a lot of data. The problem needs be decomposed in a way that will work on
subsections of the data, and then the answers from each subsection can be
composed at the end.
Data parallelism is often contrasted with task parallelism, in which each
individual thread of execution can be doing a totally different task. Probably
the most commonly encountered task parallelism is a Java EE application
container. Each thread not only can be dealing with processing a different user,
but also could be performing different tasks for a user, such as logging in or
adding an item to a shopping cart.

Why Is Parallelism Important?

Historically, we could all rely on the clock frequency of a CPU getting faster
over time. Intel’s 8086 processor, introduced in 1979, started at a 5 MHz
clock rate, and by the time the Pentium chip was introduced in 1993 speeds had
reached 60 MHz. Improved sequential performance continued through the
early 2000s.
Over the last decade, however, mainstream chip manufacturers have been moving increasingly toward heavily multicore processors. At the time of writing, it’s not uncommon for servers to be shipping with 32 or 64 cores spread over several physical processing units. This trend shows no sign of abating soon.
This influences the design of software. Instead of being able to rely on
improved CPU clock speeds to increase the computational capacity of existing
code, we need to be able to take advantage of modern CPU architectures. The
only way to do this is by writing parallel programs.
I appreciate you’ve probably heard this message before. In fact, it’s one that’s been blasted out by many conference speakers, book authors, and consultants over the years. The implications of Amdahl’s Law were what really made me take note of the importance of parallelism.
Amdahl’s Law is a simple rule that predicts the theoretical maximum speedup
of a program on a machine with multiple cores. If we take a program that is
entirely serial and parallelize only half of it, then the maximum speedup
possible, regardless of how many cores we throw at the problem, is 2×. Given a
large number of cores—and we’re already into that territory—the execution time of
a problem is going to be dominated by the serial part of that problem.
When you start to think of performance in these terms, optimizing any job
that is bound by computational work rapidly becomes a matter of ensuring that
it effectively utilizes the available hardware. Of course, not every job is
bound by computational work, but in this chapter we’ll be focusing on that
kind of problem.

Parallel Stream Operations

Making an operation execute in parallel using the streams library is a
matter of changing a single method call. If you already have a Stream object,
then you can call its parallel method in order to make it parallel. If
you’re creating a Stream from a Collection, you can call the
parallelStream method in order to create a parallel stream from the get-go.
Let’s look at a simple example in order to make things concrete.
Example 6-1 calculates the total length of a sequence of albums. It
transforms each album into its component tracks, then gets into the length of each
track, and then sums them.
Example 6-1. Serial summing of album track lengths
public int serialArraySum() {
 return albums.stream()
 .flatMap(Album::getTracks)
 .mapToInt(Track::getLength)
 .sum();
}

We go parallel by making the call to parallelStream, as shown in Example 6-2; all the rest of the code is identical. Going parallel just works.
Example 6-2. Parallel summing of album track lengths
public int parallelArraySum() {
 return albums.parallelStream()
 .flatMap(Album::getTracks)
 .mapToInt(Track::getLength)
 .sum();
}

I know the immediate instinct upon hearing this is to go out and
replace every call to stream with a call to parallelStream because it’s so
easy. Hold your horses for a moment! Obviously it’s important to make good
use of parallelism in order to get the most from your hardware, but the kind of
data parallelism we get from the streams library is only one form.
The question we really want to ask ourselves is whether it’s faster to run our
Stream-based code sequentially or in parallel, and that’s not a question
with an easy answer. If we look back at the previous example, where we
figure out the total running time of a list of albums, depending upon the
circumstances we can make the sequential or parallel versions faster.
When benchmarking the code in Examples 6-1 and 6-2 on a 4-core machine with 10 albums, the sequential code was 8× faster. Upon expanding the number of albums to 100, they were both equally fast, and by the time we hit 10,000 albums, the parallel code was 2.5× faster.
Note
Any specific benchmark figures in this chapter are listed only to make a
point. If you try to replicate these results on your hardware, you may get drastically
different outcomes.

The size of the input stream isn’t the only factor to think about when deciding
whether there’s a parallel speedup. It’s possible to get varying performance
numbers based upon how you wrote your code and how many cores are available.
We’ll look at this in a bit more detail in Performance,
but first let’s look at a more complex example.

Simulations

The kinds of problems that parallel stream libraries excel at are those that
involve simple operations processing a lot of data, such as simulations. In this
section, we’ll be building a simple simulation to understand dice throws, but
the same ideas and approach can be used on larger and more realistic problems.
The kind of simulation we’ll be looking at here is a Monte Carlo simulation.
Monte Carlo simulations work by running the same simulation many times over
with different random seeds on every run. The results of each run are recorded
and aggregated in order to build up a comprehensive simulation. They have many
uses in engineering, finance, and scientific computing.
If we throw a fair die twice and add up the number of dots on the winning side,
we’ll get a number between 2 and 12. This must be at least 2 because the fewest
number of dots on each side is 1 and there are two dice. The maximum score is
12, as the highest number you can score on each die is 6. We want to try and
figure out what the probability of each number between 2 and 12 is.
One approach to solving this problem is to add up all the different
combinations of dice rolls that can get us each value. For example, the only way
we can get 2 is by rolling 1 and then 1 again. There are 36 different possible
combinations, so the probability of the two sides adding up to 2 is 1 in 36, or 1/36.
Another way of working it out is to simulate rolling two dice using random numbers between 1 and 6, adding up the number of times that each result was picked, and dividing by the number of rolls. This is actually a really simple Monte Carlo simulation. The more times we simulate rolling the dice, the more closely we approximate the actual result—so we really want to do it a lot.
Example 6-3 shows how we can implement the Monte Carlo approach using the streams library. N represents the number of simulations we’ll be running, and at [image: 1] we use the IntStream range function to create a stream of size N. At [image: 2] we call the parallel method in order to use the parallel version of the streams framework. The twoDiceThrows function simulates throwing two dice and returns the sum of their results. We use the mapToObj method in [image: 3] in order to use this function on our data stream.
Example 6-3. Parallel Monte Carlo simulation of dice rolling
public Map<Integer, Double> parallelDiceRolls() {
 double fraction = 1.0 / N;
 return IntStream.range(0, N) [image: 1]
 .parallel() [image: 2]
 .mapToObj(twoDiceThrows()) [image: 3]
 .collect(groupingBy(side -> side, [image: 4]
 summingDouble(n -> fraction))); [image: 5]
}

At [image: 4] we have a Stream of all the simulation results we need to combine. We use the groupingBy collector, introduced in the previous chapter, in order to aggregate all results that are equal. I said we were going to count the number of times each number occured and divide by N. In the streams framework, it’s actually easier to map numbers to 1/N and add them, which is exactly the same. This is accomplished in [image: 5] through the summingDouble function. The Map<Integer, Double> that gets returned at the end maps each sum of sides thrown to its probability.
I’ll admit it’s not totally trivial code, but implementing a parallel Monte Carlo simulation in five lines of code is pretty neat. Importantly, because the more simulations we run, the more closey we approximate the real answer, we’ve got a real incentive to run a lot of simulations. This is also a good use for parallelism as it’s an implementation that gets good parallel speedup.
I won’t go through the implementation details, but for comparison Example 6-4 lists the same parallel Monte Carlo simulation implemented by hand. The majority of the code implementation deals with spawning, scheduling, and awaiting the completion of jobs within a thread pool. None of these issues needs to be directly addressed when using the parallel streams library.
Example 6-4. Simulating dice rolls by manually implementing threading
public class ManualDiceRolls {

 private static final int N = 100000000;

 private final double fraction;
 private final Map<Integer, Double> results;
 private final int numberOfThreads;
 private final ExecutorService executor;
 private final int workPerThread;

 public static void main(String[] args) {
 ManualDiceRolls roles = new ManualDiceRolls();
 roles.simulateDiceRoles();
 }

 public ManualDiceRolls() {
 fraction = 1.0 / N;
 results = new ConcurrentHashMap<>();
 numberOfThreads = Runtime.getRuntime().availableProcessors();
 executor = Executors.newFixedThreadPool(numberOfThreads);
 workPerThread = N / numberOfThreads;
 }

 public void simulateDiceRoles() {
 List<Future<?>> futures = submitJobs();
 awaitCompletion(futures);
 printResults();
 }

 private void printResults() {
 results.entrySet()
 .forEach(System.out::println);
 }

 private List<Future<?>> submitJobs() {
 List<Future<?>> futures = new ArrayList<>();
 for (int i = 0; i < numberOfThreads; i++) {
 futures.add(executor.submit(makeJob()));
 }
 return futures;
 }

 private Runnable makeJob() {
 return () -> {
 ThreadLocalRandom random = ThreadLocalRandom.current();
 for (int i = 0; i < workPerThread; i++) {
 int entry = twoDiceThrows(random);
 accumulateResult(entry);
 }
 };
 }

 private void accumulateResult(int entry) {
 results.compute(entry, (key, previous) ->
 previous == null ? fraction
 : previous + fraction
);
 }

 private int twoDiceThrows(ThreadLocalRandom random) {
 int firstThrow = random.nextInt(1, 7);
 int secondThrow = random.nextInt(1, 7);
 return firstThrow + secondThrow;
 }

 private void awaitCompletion(List<Future<?>> futures) {
 futures.forEach((future) -> {
 try {
 future.get();
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 });
 executor.shutdown();
 }

}

Caveats

I said earlier that using parallel streams “just works,” but that’s being a
little cheeky. You can run existing code in parallel with little modification,
but only if you’ve written idiomatic code. There are a few rules and restrictions
that need to be obeyed in order to make optimal use of the parallel streams framework.
Previously, when calling reduce our initial element could be any value, but
for this operation to work correctly in parallel, it needs to be the identity
value of the combining function. The identity value leaves all other
elements the same when reduced with them. For example, if we’re summing
elements with our reduce operation, the combining function is (acc,
element) -> acc + element. The initial element must be 0, because any
number x added to 0 returns x.
The other caveat specific to reduce is that the combining function must be
associative. This means that the order in which the combining function is
applied doesn’t matter as long the values of the sequence aren’t changed.
Confused? Don’t worry! Take a look at Example 6-5, which shows how
we can rearrange the order in which we apply + and * to a sequence of
values and get the same result.
Example 6-5. + and * are associative
(4 + 2) + 1 = 4 + (2 + 1) = 7
(4 * 2) * 1 = 4 * (2 * 1) = 8

One thing to avoid is trying to hold locks. The streams framework deals with
any necessary synchronization itself, so there’s no need to lock your data
structures. If you do try to hold locks on any data structure that the
streams library is using, such as the source collection of an operation,
you’re likely to run into trouble.
I explained earlier that you could convert any existing Stream to be a
parallel stream using the parallel method call. If you’ve been looking at
the API itself while reading the book, you may have noticed a
sequential method as well. When a stream pipeline is evaluated, there is no
mixed mode: the orientation is either parallel or sequential. If a pipeline has
calls to both parallel and sequential, the last call wins.

Performance

I briefly mentioned before that there were a number of factors that
influenced whether parallel streams were faster or slower than sequential
streams; let’s take a look at those factors now. Understanding what works well
and what doesn’t will help you to make an informed decision about how and when
to use parallel streams. There are five important factors that influence parallel
streams performance that we’ll be looking at:
	
Data size

	
There is a difference in the efficiency of the parallel speedup due to the size of the input data. There’s an overhead to decomposing the problem to be executed in parallel and merging the results. This makes it worth doing only when there’s enough data that execution of a streams pipeline takes a while. We explored this back in Parallel Stream Operations.

	
Source data structure

	
Each pipeline of operations operates on some initial data source; this is usually a collection. It’s easier to split out subsections of different data sources, and this cost affects how much parallel speedup you can get when executing your pipeline.

	
Packing

	
Primitives are faster to operate on than boxed values.

	
Number of cores

	
The extreme case here is that you have only a single core available to operate upon, so it’s not worth going parallel. Obviously, the more cores you have access to, the greater your potential speedup is. In practice, what counts isn’t just the number of cores allocated to your machine; it’s the number of cores that are available for your machine to use at runtime. This means factors such as other processes executing simultaneously or thread affinity (forcing threads to execute on certain cores or CPUs) will affect performance.

	
Cost per element

	
Like data size, this is part of the battle between time spent executing in parallel and overhead of decomposition and merging. The more time spent operating on each element in the stream, the better performance you’ll get from going parallel.

When using the parallel streams framework, it can be helpful to understand how
problems are decomposed and merged. This gives us a good insight into what is
going on under the hood without having to understand all the details of the
framework.
Let’s take a look at how a concrete example is decomposed and merged.
Example 6-6 shows some code that performs parallel integer addition.
Example 6-6. Parallel integer addition
private int addIntegers(List<Integer> values) {
 return values.parallelStream()
 .mapToInt(i -> i)
 .sum();
}

Under the hood, parallel streams back onto the fork/join framework. The
fork stage recursively splits up a problem. Then each chunk is
operated upon in parallel. Finally, the join stage merges the results
back together.
Figure 6-2 shows how this might apply to Example 6-6.
[image: .Decomposing and merging using Fork/Join]

Figure 6-2. Decomposing and merging using fork/join

Let’s assume that the streams framework is splitting up our work to operate in parallel on a four-core machine:
	
Our data source is decomposed into four chunks of elements.

	
We perform leaf computation work in parallel on each thread in
Example 6-6. This involves mapping each Integer to an int and also
summing a quarter of the values in each thread. Ideally, we want to spend as much of
our time as possible in leaf computation work because it’s the perfect case for parallelism.

	
We merge the results. In Example 6-6 this is just a sum operation, but
it might involve any kind of reduce, collect, or terminal operation.

Given the way problems are decomposed, the nature of the initial source is
extremely important in influencing the performance of this decomposition.
Intuitively, the ease with which we can repeatedly split a data structure in half
corresponds to how fast it can be operated upon. Splitting in half also means
that the values to be operated upon need to split equally.
We can split up common data sources from the core library into three main
groups by performance characteristics:
	
The good

	
An ArrayList, an array, or the IntStream.range constructor. These data sources all support random access, which means they can be split up arbitrarily with ease.

	
The okay

	
The HashSet and TreeSet. You can’t easily decompose these with perfect amounts of balance, but most of the time it’s possible to do so.

	
The bad

	
Some data structures just don’t split well; for example, they may take O(N) time to decompose. Examples here include a LinkedList, which is computationally hard to split in half. Also, Streams.iterate and BufferedReader.lines have unknown length at the beginning, so it’s pretty hard to estimate when to split these sources.

The influence of the initial data structure can be huge. To take an extreme
example, benchmarking a parallel sum over 10,000 integers revealed an
ArrayList to be 10 times faster than a LinkedList. This isn’t to say that
your business logic will exhibit the same performance characteristics, but it
does demonstrate how influential these things can be. It’s also far more likely
that data structures such as a LinkedList that have poor decompositions
will also be slower when run in parallel.
Ideally, once the streams framework has decomposed the problem into smaller chunks,
we’ll be able to operate on each chunk in its own thread, with
no further communication or contention between threads. Unfortunately, reality
can get the way of the ideal at times!
When we’re talking about the kinds of operations in our stream pipeline that let
us operate on chunks individually, we can differentiate between two
types of stream operations: stateless and stateful. Stateless operations
need to maintain no concept of state over the whole operation; stateful
operations have the overhead and constraint of maintaining state.
If you can get away with using stateless operations, then you will get better
parallel performance. Examples of stateless operations include map, filter,
and flatMap; sorted, distinct, and limit are stateful.
Note
Performance-test your own code. The advice in this section offers rules of
thumb about what performance characteristics should be investigated, but
nothing beats measuring and profiling.

Parallel Array Operations

Java 8 includes a couple of other parallel array operations that utilize lambda
expressions outside of the streams framework. Like the operations on the
streams framework, these are data parallel operations. Let’s look at how
we can use these operations to solve problems that are hard to do in the streams
framework.
These operations are all located on the utility class Arrays, which also contains
a bunch of other useful array-related functionality from previous Java versions.
There is a summary in Table 6-1.
Table 6-1. Parallel operations on arrays
	Name 	Operation
	parallelPrefix
	Calculates running totals of the values of an array given an arbitrary function

	parallelSetAll
	Updates the values in an array using a lambda expression

	parallelSort
	Sorts elements in parallel

You may have written code similar to Example 6-7 before, where you initialize an
array using a for loop. In this case, we initialize every element to its index in the array.
Example 6-7. Initializing an array using a for loop
public static double[] imperativeInitilize(int size) {
 double[] values = new double[size];
 for(int i = 0; i < values.length;i++) {
 values[i] = i;
 }
 return values;
}

We can use the parallelSetAll method in order to do this easily in
parallel. An example of this code is shown in Example 6-8. We
provide an array to operate on and a lambda expression, which calculates the
value given the index. In our example they are the same value. One thing to
note about these methods is that they alter the array that is
passed into the operation, rather than creating a new copy.
Example 6-8. Initializing an array using a parallel array operation
public static double[] parallelInitialize(int size) {
 double[] values = new double[size];
 Arrays.parallelSetAll(values, i -> i);
 return values;
}

The parallelPrefix operation, on the other hand, is much more useful for
performing accumulation-type calculations over time series of data. It
mutates an array, replacing each element with the sum of that element and its predecessors. I use the term “sum” loosely—it doesn’t need to be
addition; it could be any BinaryOperator.
An example operation that can be calculated by prefix sums is a simple moving average. This takes a rolling window over a time series and produces an average for each instance of that window. For example, if our series of input data is 0, 1, 2, 3, 4, 3.5, then the simple moving average of size 3 is 1, 2, 3, 3.5. Example 6-9 shows how we can use a prefix sum in order to calculate a moving average.
Example 6-9. Calculating a simple moving average
public static double[] simpleMovingAverage(double[] values, int n) {
 double[] sums = Arrays.copyOf(values, values.length); [image: 1]
 Arrays.parallelPrefix(sums, Double::sum); [image: 2]
 int start = n - 1;
 return IntStream.range(start, sums.length) [image: 3]
 .mapToDouble(i -> {
 double prefix = i == start ? 0 : sums[i - n];
 return (sums[i] - prefix) / n; [image: 4]
 })
 .toArray(); [image: 5]
}

It’s quite complex, so I’ll go through how this works in a few steps. The input parameter n is the size of the time window we’re calculating our moving average over. At [image: 1] we take a copy of our input data. Because our prefix calculation is a mutating operation, we do this to avoid altering the original source.
In [image: 2] we apply the prefix operation, adding up values in the process. So now our sums variable holds the running total of the sums so far. For example, given the input 0, 1, 2, 3, 4, 3.5, it would hold 0.0, 1.0, 3.0, 6.0, 10.0, 13.5.
Now that we have the complete running totals, we can find the sum over the time window by subtracting the running total at the beginning of the time window. The average is this divided by n. We can do this calculation using the existing streams library, so let’s use it! We kick off the stream in [image: 3] by using Intstream.range to get a stream ranging over the indices of the values we want.
At [image: 4] we subtract away the running total at the start and then do the division
in order to get the average. It’s worth noting that there’s an edge case for the
running total at element n – 1, where there is no running total to subtract
to begin with. Finally, at [image: 5], we convert the Stream back to an array.

Key Points

	
Data parallelism is a way to split up work to be done on many cores at the same
time.

	
If we use the streams framework to write our code, we can utilize data parallelism
by calling the parallel or parallelStream methods.

	
The five main factors influencing performance are the data size, the source data
structure, whether the values are packed, the number of available cores, and how
much processing time is spent on each element.

Exercises

	
The code in Example 6-10 sequentially sums the squares of numbers in a Stream. Make it run in parallel using streams.

Example 6-10. Sequentially summing the squares of numbers in a list
 public static int sequentialSumOfSquares(IntStream range) {
 return range.map(x -> x * x)
 .sum();
 }

	
The code in Example 6-11 multiplies every number in a list together and multiplies the result by 5. This works fine
sequentially, but has a bug when running in parallel. Make the code run in parallel using streams and fix the bug.

Example 6-11. A buggy way of multiplying every number in a list together and multiplying the result by 5
public static int multiplyThrough(List<Integer> linkedListOfNumbers) {
 return linkedListOfNumbers.stream()
 .reduce(5, (acc, x) -> x * acc);
}

	
The code in Example 6-12 also calculates the sum of the squares of numbers in a list. You should try to improve the performance
of this code without degrading its quality. I’m only looking for you to make a couple of simple changes.

Example 6-12. Slow implementation of summing the squares of numbers in a list
 public int slowSumOfSquares() {
 return linkedListOfNumbers.parallelStream()
 .map(x -> x * x)
 .reduce(0, (acc, x) -> acc + x);
 }

Note
Make sure to run the benchmark code multiple times when timing. The sample code provided on GitHub comes with a benchmark harness that you can use.

Chapter 7. Testing, Debugging, and Refactoring

The rising popularity of techniques such as refactoring, test-driven development (TDD), and continuous integration (CI) mean that if we’re going to use lambda expressions in our day-to-day programming, we need to understand how to test code using them and written with them.
A wealth of material has been written on how to test and debug computer
programs, and this chapter isn’t going to revisit all that material. If you’re
interested in learning how to do TDD properly, I highly recommend the
books Test-Driven Development by Kent Beck and Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce (both from Addison-Wesley).
I am going to cover techniques specific to using lambda
expressions in your code, and when you might not want to (directly) use lambda
expressions at all. I’ll also talk about some appropriate techniques for
debugging programs that heavily use lambda expressions and streams.
We’re first going to look at some examples of how to refactor an existing
code base into using lambda expressions. I’ve talked a bit already about how to
do local refactoring operations, such as replacing a for loop with a stream
operation. Here we’ll take a more in-depth look at how non-collection code
can be improved.
Lambda Refactoring Candidates

The process of refactoring code to take advantage of lambdas has been given the
snazzy name point lambdafication (pronounced lambda-fi-cation, practitioners
of this process being “lamb-di-fiers” or “responsible developers”). It’s a
process that has happened within the Java core libraries for Java 8. When
you’re choosing how to model the internal design of your application, it’s also
really worth considering which API methods to expose in this way.
There are a few key heuristics that can help you out when identifying an appropriate place to lambdify your application or library code. Each of these can be considered a localized antipattern or code smell that you’re fixing through point lambdification.
In, Out, In, Out, Shake It All About

In Example 7-1, I’ve repeated our example code from Chapter 4 about
logging statements. You’ll see that it’s pulling out the Boolean value from
isDebugEnabled only to check it and then call a method on the Logger.
If you find that your code is repeatedly querying and operating on an object
only to push a value back into that object at the end, then that code belongs in the class of the object that you’re modifying.
Example 7-1. A logger using isDebugEnabled to avoid performance overhead
Logger logger = new Logger();
if (logger.isDebugEnabled()) {
 logger.debug("Look at this: " + expensiveOperation());
}

Logging is a good example of where this has historically been difficult to achieve, because in different locations you’re trying to provide different behavior. In this case, the behavior is building up a message string that will differ depending upon where in your program you’re logging and what information you’re trying to log.
This antipattern can be easily solved by passing in code as data. Instead of
querying an object and then setting a value on it, you can pass in a lambda
expression that represents the relevant behavior by computing a value. I’ve
also repeated the code solution in Example 7-2, as a
reminder. The lambda expression gets called if we’re at a debug level and the
logic for checking this call remains inside of the Logger itself.
Example 7-2. Using lambda expressions to simplify logging code
Logger logger = new Logger();
logger.debug(() -> "Look at this: " + expensiveOperation());

Logging is also a demonstration of using lambda expressions to do better object-oriented programming (OOP). A key OOP concept is to encapsulate local state, such as the level of the logger. This isn’t normally encapsulated very well, as isDebugEnabled exposes its state. If you use the lambda-based approach, then the code outside of the logger doesn’t need to check the level at all.

The Lonely Override

In this code smell, you subclass solely to override a single method. The
ThreadLocal class is a good example of this. ThreadLocal allows us to
create a factory that generates at most one value per thread. This is an easy
way of ensuring that a thread-unsafe class can be safely used in a concurrent
environment. For example, if we need to look up an artist from the database
but want to do it once per thread, then we might write something like the code in Example 7-3.
Example 7-3. Looking up an artist from the database
ThreadLocal<Album> thisAlbum = new ThreadLocal<Album> () {
 @Override protected Album initialValue() {
 return database.lookupCurrentAlbum();
 }
};

In Java 8 we can use the factory method withInitial and pass in a
Supplier instance that deals with the creation, as shown in Example 7-4.
Example 7-4. Using the factory method
ThreadLocal<Album> thisAlbum
 = ThreadLocal.withInitial(() -> database.lookupCurrentAlbum());

There are a few reasons why the second example would be considered
preferable to the first. For a start, any existing instance of Supplier<Album>
can be used here without needing to be repackaged for this specific case, so it
encourages reuse and composition.
It’s also shorter to write, which is an advantage if and only if all other
things are equal. More important, it’s shorter because it’s a lot cleaner:
when reading the code, the signal-to-noise ratio is lower. This means you spend
more time solving the actual problem at hand and less time dealing with
subclassing boilerplate. It also has the advantage that it’s one fewer class that
your JVM has to load.
It’s also a lot clearer to anyone who tries to read the code what its intent is.
If you try to read out loud the words in the second example, you can easily
hear what it’s saying. You definitely can’t say this of the first example.
Interestingly, this wasn’t an antipattern previously to Java 8—it was the
idiomatic way of writing this code, in the same way that using anonymous inner
classes to pass around behavior wasn’t an antipattern, just the only way of
expressing what you wanted in Java code. As the language evolves, so do the
idioms that you use when programming.

Behavioral Write Everything Twice

Write Everything Twice (WET) is the opposite of the well-known Don’t Repeat
Yourself (DRY) pattern. This code smell crops up in situations where your
code ends up in repetitive boilerplate that produces more code that needs to be
tested, is harder to refactor, and is brittle to change.
Not all WET situations are suitable candidates for point lambdification. In
some situations, couple duplication can be the only alternative to having an
overly closely coupled system. There’s a good heuristic for situations where
WET suggests it’s time to add some point lambdification into your application.
Try adding lambdas where you want to perform a similar overall pattern but
have a different behavior from one variant to another.
Let’s look at a more concrete example. On top of our music domain, I’ve decided
to add a simple Order class that calculates useful properties about some
albums that a user wants to buy. We’re going to count the number of musicians,
number of tracks, and running time of our Order. If we were using imperative
Java, we would write some code like Example 7-5.
Example 7-5. An imperative implementation of our Order class
public long countRunningTime() {
 long count = 0;
 for (Album album : albums) {
 for (Track track : album.getTrackList()) {
 count += track.getLength();
 }
 }
 return count;
}

public long countMusicians() {
 long count = 0;
 for (Album album : albums) {
 count += album.getMusicianList().size();
 }
 return count;
}

public long countTracks() {
 long count = 0;
 for (Album album : albums) {
 count += album.getTrackList().size();
 }
 return count;
}

In each case, we’ve got the boilerplate code of adding some code for each album
to the total—for example, the length of each track or the number of
musicians. We’re failing at reusing common concepts and also leaving ourselves
more code to test and maintain. We can shorten and tighten this code by
rewriting it using the Stream abstraction and the Java 8 collections library.
Example 7-6 is what we would come up with if we directly translated
the imperative code to streams.
Example 7-6. A refactor of our imperative Order class to use streams
public long countRunningTime() {
 return albums.stream()
 .mapToLong(album -> album.getTracks()
 .mapToLong(track -> track.getLength())
 .sum())
 .sum();
}

public long countMusicians() {
 return albums.stream()
 .mapToLong(album -> album.getMusicians().count())
 .sum();
}

public long countTracks() {
 return albums.stream()
 .mapToLong(album -> album.getTracks().count())
 .sum();
}

It still suffers from the same reuse and readability issues, because there are certain abstractions and commonalities that are only
expressible in domain terms. The streams library won’t provide a method for you to count the number of a certain thing per album—that’s the kind of domain method that you should be writing yourself. It’s also the kind of domain method that was very hard to write before Java 8 because it’s doing a different thing for each method.
Let’s think about how we’re going to implement such a function. We’re going to
return a long with the count of some feature for all the albums. We also
need to take in some kind of lambda expression that tells us what the number
for each album is. This means we need a method parameter that returns us a
long for each album; conveniently, there is already a ToLongFunction
in the Java 8 core libraries. As shown in Figure 7-1, it
is parameterized by its argument type, so we’re using
ToLongFunction<Album>.
[image: ToLongFunction]

Figure 7-1. ToLongFunction

Now that we’ve made these decisions, the body of the method follows naturally. We take
a Stream of the albums, map each album to a long, and then sum them.
When we implement the consumer-facing methods such as countTracks, we pass in
a lambda expression with behavior specific to that domain method. In this
case, we’re mapping the album to the number of tracks. Example 7-7 is
what our code looks like when we’ve converted the code to use this domain-appropriate method.
Example 7-7. A refactor of our Order class to use domain-level methods
public long countFeature(ToLongFunction<Album> function) {
 return albums.stream()
 .mapToLong(function)
 .sum();
}

public long countTracks() {
 return countFeature(album -> album.getTracks().count());
}

public long countRunningTime() {
 return countFeature(album -> album.getTracks()
 .mapToLong(track -> track.getLength())
 .sum());
}

public long countMusicians() {
 return countFeature(album -> album.getMusicians().count());
}

Unit Testing Lambda Expressions

Note
Unit testing is a method of testing individual chunks of code to ensure that
they are behaving as intended.

Usually, when writing a unit test you call a method in your test code that
gets called in your application. Given some inputs and possibly test doubles,
you call these methods to test a certain behavior happening and then specify
the changes you expect to result from this behavior.
Lambda expressions pose a slightly different challenge when unit testing code.
Because they don’t have a name, it’s impossible to directly call them in your test
code.
You could choose to copy the body of the lambda expression into your test and
then test that copy, but this approach has the unfortunate side effect of not actually
testing the behavior of your implementation. If you change the implementation
code, your test will still pass even though the implementation is
performing a different task.
There are two viable solutions to this problem. The first is to view the
lambda expression as a block of code within its surrounding method. If you
take this approach, you should be testing the behavior of the surrounding
method, not the lambda expression itself. Let’s take look
Example 7-8, which gives an example method for converting a list of
strings into their uppercase equivalents.
Example 7-8. Converting strings into their uppercase equivalents
public static List<String> allToUpperCase(List<String> words) {
 return words.stream()
 .map(string -> string.toUpperCase())
 .collect(Collectors.<String>toList());
}

The only thing that the lambda expression in this body of code does is directly
call a core Java method. It’s really not worth the effort of testing this lambda
expression as an independent unit of code at all, since the behavior is so
simple.
If I were to unit test this code, I would focus on the behavior of the
method. For example, Example 7-9 is a test that if there
are multiple words in the stream, they are all converted to their uppercase
equivalents.
Example 7-9. Testing conversion of words to uppercase equivalents
@Test
public void multipleWordsToUppercase() {
 List<String> input = Arrays.asList("a", "b", "hello");
 List<String> result = Testing.allToUpperCase(input);
 assertEquals(asList("A", "B", "HELLO"), result);
}

Sometimes you want to use a lambda expression that exhibits complex
functionality. Perhaps it has a number of corner cases or a role involving
calculating a highly important function in your domain. You really want to
test for behavior specific to that body of code, but it’s in a lambda
expression and you’ve got no way of referencing it.
As an example problem, let’s look at a method that is slightly more complex
than converting a list of strings to uppercase. Instead, we’ll be converting the
first character of a string to uppercase and leaving the rest as is. If we were
to write this using streams and lambda expressions, we might write something like
Example 7-10. Our lambda expression doing the conversion is at [image: 1].
Example 7-10. Convert first character of all list elements to uppercase
public static List<String> elementFirstToUpperCaseLambdas(List<String> words) {
 return words.stream()
 .map(value -> { [image: 1]
 char firstChar = Character.toUpperCase(value.charAt(0));
 return firstChar + value.substring(1);
 })
 .collect(Collectors.<String>toList());
}

Should we want to test this, we’d need to fire in a list and test the output for every single example we wanted to test. Example 7-11
provides an example of how cumbersome this approach becomes. Don’t worry—there is a
solution!
Example 7-11. Testing that in a two-character string, only the first character is converted to uppercase
@Test
public void twoLetterStringConvertedToUppercaseLambdas() {
 List<String> input = Arrays.asList("ab");
 List<String> result = Testing.elementFirstToUpperCaseLambdas(input);
 assertEquals(asList("Ab"), result);
}

Don’t use a lambda expression. I know that might appear to be strange advice
in a book about how to use lambda expressions, but square pegs don’t fit into
round holes very well. Having accepted this, we’re bound to ask how we can
still unit test our code and have the benefit of lambda-enabled libraries.
Do use method references. Any method that would have been written as a
lambda expression can also be written as a normal method and then directly
referenced elsewhere in code using method references.
In Example 7-12 I’ve refactored out the lambda expression
into its own method. This is then used by the main method, which deals
with converting the list of strings.
Example 7-12. Converting the first character to uppercase and applying it to a list
public static List<String> elementFirstToUppercase(List<String> words) {
 return words.stream()
 .map(Testing::firstToUppercase)
 .collect(Collectors.<String>toList());
}

public static String firstToUppercase(String value) { [image: 1]
 char firstChar = Character.toUpperCase(value.charAt(0));
 return firstChar + value.substring(1);
}

Having extracted the method that actually performs string processing, we can
cover all the corner cases by testing that method on its own. The same
test case in its new, simplified form is shown in
Example 7-13.
Example 7-13. The two-character test applied to a single method
@Test
public void twoLetterStringConvertedToUppercase() {
 String input = "ab";
 String result = Testing.firstToUppercase(input);
 assertEquals("Ab", result);
}

Using Lambda Expressions in Test Doubles

A pretty common part of writing unit tests is to use test doubles to
describe the expected behavior of other components of the system. This is
useful because unit testing tries to test a class or method in isolation of the
other components of your code base, and test doubles allow you to implement this
isolation in terms of tests.
Note
Even though test doubles are frequently referred to as mocks, actually both stubs and mocks are types of test double. The difference is that mocks allow you to verify the code’s behavior. The best place to understand more about this is Martin Fowler’s article on the subject.

One of the simplest ways to use lambda expressions in test code is to implement lightweight stubs. This is really easy and natural to implement if the collaborator to be stubbed is already a functional interface.
In Behavioral Write Everything Twice, I discussed how to refactor our common domain logic into
a countFeature method that used a lambda expression to implement different
counting behavior. Example 7-14 shows how we might go about unit testing part of its
behavior.
Example 7-14. Using a lambda expression as a test double by passing it to countFeature
 @Test
 public void canCountFeatures() {
 OrderDomain order = new OrderDomain(asList(
 newAlbum("Exile on Main St."),
 newAlbum("Beggars Banquet"),
 newAlbum("Aftermath"),
 newAlbum("Let it Bleed")));

 assertEquals(8, order.countFeature(album -> 2));
 }

The expected behavior is that the countFeature method returns the sum of
some number for each album it’s passed. So here I’m passing in four different
albums, and the stub in my test is returning a count of 2 features for each
album. I assert that the method returns 8—that is, 2×4. If you expect to
pass a lambda expression into your code, then it’s usually the right thing to
have your test also pass in a lambda expression.
Most test doubles end up being the result of more complex expectation setting.
In these situations, frameworks such as Mockito are often used to easily
generate test doubles. Let’s consider a simple example in which we want to
produce a test double for a List. Instead of returning the size of the List,
we want to return the size of another List. When mocking the size method
of the List, we don’t want to specify just a single answer. We want our answer to
perform some operation, so we pass in a lambda expression (Example 7-15).
Example 7-15. Using a lambda expression in conjunction with the Mockito library
List<String> list = mock(List.class);

when(list.size()).thenAnswer(inv -> otherList.size());

assertEquals(3, list.size());

Mockito uses an Answer interface that lets you provide alternative
implementation behavior. In other words, it already supports our familiar
friend: passing code as data. We can use a lambda expression here because
Answer is, conveniently, a functional interface.

Lazy Evaluation Versus Debugging

Using a debugger typically involves stepping through statements of your
program or attaching breakpoints. Sometimes you might encounter situations
using the streams library where debugging becomes a little bit more complex,
because the iteration is controlled by the library and many stream operations
are lazily evaluated.
In the traditional imperative view of the world, in which code is a sequence of
actions that achieve a goal, introspecting state after or before an action
makes perfect sense. In Java 8, you still have access to all your existing
IDE debugging tools, but sometimes you need to tweak your approach a
little in order to achieve good results.

Logging and Printing

Let’s say you’re performing a series of operations on a collection and you’re
trying to debug the code; you want to see what the result of an individual
operation is. One thing you could do is print out the collection value after
each step. This is pretty hard with the Streams framework, as intermediate
steps are lazily evaluated.
Let’s take a look at how we might log intermediate values by taking a look at
an imperative version of our nationality report from Chapter 3.
In case you’ve forgotten, and who doesn’t sometimes, this is code that
tries to find the country of origin for every artist on an album. In
Example 7-16 we’re going to log each of the nationalities
that we find.
Example 7-16. Logging intermediate values in order to debug a for loop
Set<String> nationalities = new HashSet<>();
for (Artist artist : album.getMusicianList()) {
 if (artist.getName().startsWith("The")) {
 String nationality = artist.getNationality();
 System.out.println("Found nationality: " + nationality);
 nationalities.add(nationality);
 }
}
return nationalities;

Now we could use the forEach method to print out the values from the stream,
which would also cause it to be evaluated. However, this way has the downside that we
can’t continue to operate on that stream, because streams can only be used once.
If we really want to use this approach, we need to recreate the stream. Example 7-17 shows how ugly this can get.
Example 7-17. Using a naive forEach to log intermediate values
album.getMusicians()
 .filter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .forEach(nationality -> System.out.println("Found: " + nationality));

Set<String> nationalities
 = album.getMusicians()
 .filter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .collect(Collectors.<String>toSet());

The Solution: peek

Fortunately, the streams library contains a method that lets you look at each
value in turn and also lets you continue to operate on the same underlying
stream. It’s called peek. In Example 7-18, we have rewritten
the previous example using peek in order to print out the stream values without
having to repeat the pipeline of stream operations.
Example 7-18. Using peek to log intermediate values
Set<String> nationalities
 = album.getMusicians()
 .filter(artist -> artist.getName().startsWith("The"))
 .map(artist -> artist.getNationality())
 .peek(nation -> System.out.println("Found nationality: " + nation))
 .collect(Collectors.<String>toSet());

It’s also possible to use the peek method to output to existing logging systems
such as log4j, java.util.logging, or slf4j in exactly the same way.

Midstream Breakpoints

Logging is just one of many tricks that the peek method has up its sleeve. To
allow us to debug a stream element by element, as we might debug a loop step by
step, a breakpoint can be set on the body of the peek method.
In this case, peek can just have an empty body that you set a breakpoint in.
Some debuggers won’t let you set a breakpoint in an empty body, in which case I just map a value to itself in order to be able to set the breakpoint.
It’s not ideal, but it works fine.

Key Points

	
Consider how lambda expressions can help when refactoring legacy code: there
are common patterns.

	
If you want to unit test a lambda expression of any complexity, extract it to a
regular method.

	
The peek method is very useful for logging out intermediate values when
debugging.

Chapter 8. Design and Architectural Principles

The critical design tool for software development is a mind well educated in design principles. It is not…technology.
—
Craig Larman

I’ve already established that lambda expressions are a fairly simple change to
the Java language and that there are a bunch of ways that we can use them within
the standard JDK libraries. Most Java code isn’t written by the core JDK
developers—it’s written by people like you. In order to use lambda expressions
in the most beneficial way possible, you need to start introducing them into
your existing code base. They are just another tool in the belt of a professional
Java developer, no different from an interface or a class.
In this chapter, we’re going to explore how to use to use lambda expressions to implement the SOLID principles that provide guidelines toward good object-oriented programming. There are also many existing design patterns that can be improved by the use of lambda expressions, and we’ll take a look at a smattering of those.
When coding with teammates at work, I’m sure you’ve come across a situation
where you’ve implemented some feature or fixed a bug, and you were pretty happy
with the way that you had done it, but soon after someone else took a look at the
same code—perhaps during a code review—and they weren’t so happy with it! It’s
pretty common to have this kind of disagreement over what really constitutes
good code or bad code.
Most of the time when people are disagreeing, they are pushing a matter of opinion.
The reviewer would have done it another way. It’s not necessarily that he is
right or wrong, or that you are right or wrong. When you welcome lambdas into
your life, there’s another topic to think about. It’s not that they are a difficult
feature or a big point of contention as much as they are just another design issue
that people can discuss or disagree on.
This chapter is here to help! I’ll try to put forth some well-grounded principles and
patterns upon which you can compose maintainable and reliable software—not
just to use the shiny new JDK libraries, but to use lambda expressions in your own
domain architecture and applications.
Lambda-Enabled Design Patterns

One of the other bastions of design we’re all familiar with is the idea of design patterns. Patterns document
reusable templates that solve common problems in software architecture. If you spot a problem and you’re familiar with an appropriate pattern, then you can take
the pattern and apply it to your situation. In a sense, patterns codify what
people consider to be a best-practice approach to a given problem.
Of course, no practice is ever the best practice forever. A common example is
the once-popular singleton pattern, which enforces the creation of only one instance of an
object. Over the last decade, this has been roundly criticized for making
applications more brittle and harder to test. As the Agile software movement
has made testing of applications more important, the issues with the singleton
pattern have made it an antipattern: a pattern you should never use.
In this section, I’m not going to talk about how patterns have become
obsolete. We’re instead going to look at how existing design patterns have become
better, simpler, or in some cases implementable in a different way. In all
cases, the language changes in Java 8 are the driving factor behind the pattern
changing.
Command Pattern

A command object is an object that encapsulates all the information required to
call another method later. The command pattern is a way of using this object
in order to write generic code that sequences and executes methods based on
runtime decisions. There are four classes that take part in the command
pattern, as shown in Figure 8-1:
	
Receiver

	
Performs the actual work

	
Command

	
Encapsulates all the information required to call the receiver

	
Invoker

	
Controls the sequencing and execution of one or more commands

	
Client

	
Creates concrete command instances

[image: .The Command Pattern]

Figure 8-1. The command pattern

Let’s look at a concrete example of the command pattern and see how it improves
with lambda expressions. Suppose we have a GUI Editor component that
has actions upon it that we’ll be calling, such as open or save, like in
Example 8-1. We want to implement macro functionality—that is, a series of
operations that can be recorded and then run later as a single operation. This
is our receiver.
Example 8-1. Common functions a text editor may have
public interface Editor {

 public void save();

 public void open();

 public void close();

}

In this example, each of the operations, such as open and save, are commands.
We need a generic command interface to fit these different operations
into. I’ll call this interface Action, as it represents performing a
single action within our domain. This is the interface that all our command
objects implement (Example 8-2).
Example 8-2. All our actions implement the Action interface
public interface Action {

 public void perform();

}

We can now implement our Action interface for each of the operations. All these classes need to do is call a single method on our Editor and wrap this call into our Action interface. I’ll name the classes after the operations that they wrap, with the appropriate class naming convention—so, the save method corresponds to a class called Save. Examples 8-3 and 8-4 are our command objects.
Example 8-3. Our save action delegates to the underlying method call on Editor
public class Save implements Action {

 private final Editor editor;

 public Save(Editor editor) {
 this.editor = editor;
 }

 @Override
 public void perform() {
 editor.save();
 }
}

Example 8-4. Our open action also delegates to the underlying method call on Editor
public class Open implements Action {

 private final Editor editor;

 public Open(Editor editor) {
 this.editor = editor;
 }

 @Override
 public void perform() {
 editor.open();
 }
}

Now we can implement our Macro class. This class can record actions and
run them as a group. We use a List to store the sequence of actions and then
call forEach in order to execute each Action in turn. Example 8-5 is our invoker.
Example 8-5. A macro consists of a sequence of actions that can be invoked in turn
public class Macro {

 private final List<Action> actions;

 public Macro() {
 actions = new ArrayList<>();
 }

 public void record(Action action) {
 actions.add(action);
 }

 public void run() {
 actions.forEach(Action::perform);
 }

}

When we come to build up a macro programmatically, we add an instance of each
command that has been recorded to the Macro object. We can then just run the
macro and it will call each of the commands in turn. As a lazy programmer, I
love the ability to define common workflows as macros. Did I say “lazy”? I meant
focused on improving my productivity. The Macro object is our client code
and is shown in Example 8-6.
Example 8-6. Building up a macro with the command pattern
Macro macro = new Macro();
macro.record(new Open(editor));
macro.record(new Save(editor));
macro.record(new Close(editor));
macro.run();

How do lambda expressions help? Actually, all our command classes, such as
Save and Open, are really just lambda expressions wanting to get out of
their shells. They are blocks of behavior that we’re creating classes in
order to pass around. This whole pattern becomes a lot simpler with lambda
expressions because we can entirely dispense with these classes.
Example 8-7 shows how to use our Macro class without these command
classes and with lambda expressions instead.
Example 8-7. Using lambda expressions to build up a macro
Macro macro = new Macro();
macro.record(() -> editor.open());
macro.record(() -> editor.save());
macro.record(() -> editor.close());
macro.run();

In fact, we can do this even better by recognizing that each of these lambda
expressions is performing a single method call. So, we can actually use
method references in order to wire the editor’s commands to the macro
object (see Example 8-8).
Example 8-8. Using method references to build up a macro
Macro macro = new Macro();
macro.record(editor::open);
macro.record(editor::save);
macro.record(editor::close);
macro.run();

The command pattern is really just a poor man’s lambda expression to begin
with. By using actual lambda expressions or method references, we can clean up
the code, reducing the amount of boilerplate required and making the intent of
the code more obvious.
Macros are just one example of how we can use the command pattern. It’s
frequently used in implementing component-based GUI systems, undo functions,
thread pools, transactions, and wizards.
Note
There is already a functional interface with the same structure as our interface Action in core Java—Runnable.
We could have chosen to use that in our macro class, but in this case it seemed more appropriate to consider an Action
to be part of the vocabulary of our domain and create our own interface.

Strategy Pattern

The strategy pattern is a way of changing the algorithmic behavior of software
based upon a runtime decision. How you implement the strategy pattern depends
upon your circumstances, but in all cases the main idea is to be able to define a
common problem that is solved by different algorithms and then encapsulate all
the algorithms behind the same programming interface.
An example algorithm we might want to encapsulate is compressing files. We’ll
give our users the choice of compressing our files using either the zip
algorithm or the gzip algorithm and implement a generic Compressor class
that can compress using either algorithm.
First we need to define the API for our strategy (see Figure 8-2), which I’ll call
CompressionStrategy. Each of our compression algorithms will implement this
interface. They have the compress method, which takes and returns an
OutputStream. The returned OutputStream is a compressed version of the
input (see Example 8-9).
[image: .The Strategy Pattern]

Figure 8-2. The strategy pattern

Example 8-9. Defining a strategy interface for compressing data
public interface CompressionStrategy {

 public OutputStream compress(OutputStream data) throws IOException;

}

We have two concrete implementations of this interface, one for gzip and one
for ZIP, which use the built-in Java classes to write gzip (Example 8-10) and ZIP (Example 8-11) files.
Example 8-10. Using the gzip algorithm to compress data
public class GzipCompressionStrategy implements CompressionStrategy {

 @Override
 public OutputStream compress(OutputStream data) throws IOException {
 return new GZIPOutputStream(data);
 }

}

Example 8-11. Using the zip algorithm to compress data
public class ZipCompressionStrategy implements CompressionStrategy {

 @Override
 public OutputStream compress(OutputStream data) throws IOException {
 return new ZipOutputStream(data);
 }

}

Now we can implement our Compressor class, which is the context in which we use our strategy. This has a compress method on it that takes input and output files and writes a compressed version of the input file to the output file. It takes the CompressionStrategy as a constructor parameter that its calling code can use to make a runtime choice as to which compression strategy to use—for example, getting user input that would make the decision (see Example 8-12).
Example 8-12. Our compressor is provided with a compression strategy at construction time
public class Compressor {

 private final CompressionStrategy strategy;

 public Compressor(CompressionStrategy strategy) {
 this.strategy = strategy;
 }

 public void compress(Path inFile, File outFile) throws IOException {
 try (OutputStream outStream = new FileOutputStream(outFile)) {
 Files.copy(inFile, strategy.compress(outStream));
 }
 }
 }

If we have a traditional implementation of the strategy pattern, then we can
write client code that creates a new Compressor with whichever strategy we
want (Example 8-13).
Example 8-13. Instantiating the Compressor using concrete strategy classes
Compressor gzipCompressor = new Compressor(new GzipCompressionStrategy());
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(new ZipCompressionStrategy());
zipCompressor.compress(inFile, outFile);

As with the command pattern discussed earlier, using either lambda
expressions or method references allows us to remove a whole layer of
boilerplate code from this pattern. In this case, we can remove each of the
concrete strategy implementations and refer to a method that implements
the algorithm. Here the algorithms are represented by the constructors of the
relevant OutputStream implementation. We can totally dispense with the
GzipCompressionStrategy and ZipCompressionStrategy classes when taking this
approach. Example 8-14 is what the code would look like if we used
method references.
Example 8-14. Instantiating the Compressor using method references
Compressor gzipCompressor = new Compressor(GZIPOutputStream::new);
gzipCompressor.compress(inFile, outFile);

Compressor zipCompressor = new Compressor(ZipOutputStream::new);
zipCompressor.compress(inFile, outFile);

Observer Pattern

The observer pattern is another behavioral pattern that can be improved and
simplified through the use of lambda expressions. In the observer pattern, an
object, called the subject, maintains a list of other objects, which are its
observers. When the state of the subject changes, its observers are
notified. It is heavily used in MVC-based GUI toolkits in order to allow view
components to be updated when state changes in the model without coupling
the two classes together.
Seeing GUI components update is a bit boring, so the subject that
we’ll be observing is the moon! Both NASA and some aliens want to keep track
of things landing on the moon. NASA wants to make sure its
Apollo astronauts have landed safely; the aliens want to
invade Earth when NASA is distracted.
Let’s start by defining the API of our observers, which I’ll give the name
LandingObserver. This has a single observeLanding method, which will be
called when something lands on the moon (Example 8-15).
Example 8-15. An interface for observing organizations that land on the moon
public interface LandingObserver {

 public void observeLanding(String name);

}

Our subject class is the Moon, which keeps a list of LandingObserver
instances, notifies them of landings, and can add new LandingObserver
instances to spy on the Moon object (Example 8-16).
Example 8-16. Our Moon domain class—not as pretty as the real thing
public class Moon {

 private final List<LandingObserver> observers = new ArrayList<>();

 public void land(String name) {
 for (LandingObserver observer : observers) {
 observer.observeLanding(name);
 }
 }

 public void startSpying(LandingObserver observer) {
 observers.add(observer);
 }
 }

We have two concrete implementations of the LandingObserver class that
represent the aliens’ (Example 8-17) and NASA’s views (Example 8-18) of the landing event. As mentioned
earlier, they both have different interpretations of what this situation
brings them.
Example 8-17. The aliens can observe people landing on the moon
public class Aliens implements LandingObserver {

 @Override
 public void observeLanding(String name) {
 if (name.contains("Apollo")) {
 System.out.println("They're distracted, lets invade earth!");
 }
 }

}

Example 8-18. NASA can also observe people landing on the moon
public class Nasa implements LandingObserver {
 @Override
 public void observeLanding(String name) {
 if (name.contains("Apollo")) {
 System.out.println("We made it!");
 }
 }
}

In a similar vein to the previous patterns, in our traditional example our
client code specifically wires up a layer of boilerplate classes that don’t
need to exist if we use lambda expressions (see Examples 8-19 and 8-20).
Example 8-19. Client code building up a Moon using classes and things landing on it
Moon moon = new Moon();
moon.startSpying(new Nasa());
moon.startSpying(new Aliens());

moon.land("An asteroid");
moon.land("Apollo 11");

Example 8-20. Client code building up a Moon using lambdas and things landing on it
Moon moon = new Moon();

moon.startSpying(name -> {
 if (name.contains("Apollo"))
 System.out.println("We made it!");
});

moon.startSpying(name -> {
 if (name.contains("Apollo"))
 System.out.println("They're distracted, lets invade earth!");
});

moon.land("An asteroid");
moon.land("Apollo 11");

One thing to think about with both the observer and the strategy patterns is that
whether to go down the lambda design route or the class route depends a lot on
the complexity of the strategy or observer code that needs to be implemented.
In the cases I’ve presented here, the code is simple in nature, just a method
call or two, and fits the new language features well. In some situations, though, the
observer can be a complex class in and of itself, and in those situations trying
to squeeze a lot of code into one method can lead to poor readability.
Note
In some respects, trying to squeeze a lot of code into one method leads to poor readability is the golden rule governing how to apply lambda expressions. The only reason I haven’t pushed this so much is that it’s also the golden rule of writing normal methods!

Template Method Pattern

A pretty common situation when developing software is having a common
algorithm with a set of differing specifics. We want to require the
different implementations to have a common pattern in order to
ensure that they’re following the same algorithm and also to make the code
easier to understand. Once you understand the overall pattern, you
can more easily understand each implementation.
The template method pattern is designed for these kinds of situations. Your
overall algorithm design is represented by an abstract class. This has a
series of abstract methods that represent customized steps in the algorithm,
while any common code can be kept in this class. Each variant of the algorithm
is implemented by a concrete class that overrides the abstract methods
and provides the relevant implementation.
Let’s think through a scenario in order to make this clearer. As a bank, we’re going to be giving out loans to members of the public, companies, and employees. These categories have a fairly similar loan application process—you check the identity, credit history, and income history. You get this information from different sources and apply different criteria. For example, you might check the identity of a person by looking at an existing bill to her house, but companies have an official registrar such as the SEC in the US or Companies House in the UK.
We can start to model this in code with an abstract LoanApplication class
that controls the algorithmic structure and holds common code for reporting the
findings of the loan application. There are then concrete subclasses for each
of our different categories of applicant: CompanyLoanApplication,
PersonalLoanApplication, and EmployeeLoanApplication. Example 8-21 shows what our
LoanApplication class would look like.
Example 8-21. The process of applying for a loan using the template method pattern
public abstract class LoanApplication {

 public void checkLoanApplication() throws ApplicationDenied {
 checkIdentity();
 checkCreditHistory();
 checkIncomeHistory();
 reportFindings();
 }

 protected abstract void checkIdentity() throws ApplicationDenied;

 protected abstract void checkIncomeHistory() throws ApplicationDenied;

 protected abstract void checkCreditHistory() throws ApplicationDenied;

 private void reportFindings() {

CompanyLoanApplication implements checkIdentity by looking up
information in a company registration database, such as Companies House.
checkIncomeHistory would involve assessing existing profit and loss
statements and balance sheets for the firm. checkCreditHistory would look
into existing bad and outstanding debts.
PersonalLoanApplication implements checkIdentity by analyzing the
paper statements that the client has been required to provide in order to check
that the client’s address exists. checkIncomeHistory involves assessing pay slips and
checking whether the person is still employed. checkCreditHistory delegates to an
external credit payment provider.
EmployeeLoanApplication is just PersonalLoanApplication with no
employment history checking. Conveniently, our bank already checks all its
employees’ income histories when hiring them (Example 8-22).
Example 8-22. A special case of an an employee applying for a loan
public class EmployeeLoanApplication extends PersonalLoanApplication {

 @Override
 protected void checkIncomeHistory() {
 // They work for us!
 }

}

With lambda expressions and method references, we can think about the template
method pattern in a different light and also implement it differently. What
the template method pattern is really trying to do is compose a
sequence of method calls in a certain order. If we represent the functions as
functional interfaces and then use lambda expressions or method references to
implement those interfaces, we can gain a huge amount of flexibility over using
inheritance to build up our algorithm. Let’s look at how we would implement our
LoanApplication algorithm this way, in Example 8-23!
Example 8-23. The special case of an employee applying for a loan
public class LoanApplication {

 private final Criteria identity;
 private final Criteria creditHistory;
 private final Criteria incomeHistory;

 public LoanApplication(Criteria identity,
 Criteria creditHistory,
 Criteria incomeHistory) {

 this.identity = identity;
 this.creditHistory = creditHistory;
 this.incomeHistory = incomeHistory;
 }

 public void checkLoanApplication() throws ApplicationDenied {
 identity.check();
 creditHistory.check();
 incomeHistory.check();
 reportFindings();
 }

 private void reportFindings() {

As you can see, instead of having a series of abstract methods we’ve got fields
called identity, creditHistory, and incomeHistory. Each of these fields
implements our Criteria functional interface. The Criteria interface
checks a criterion and throws a domain exception if there’s an error in passing
the criterion. We could have chosen to return a domain class from the check
method in order to denote failure or success, but continuing with an exception
follows the broader pattern set out in the original implementation (see Example 8-24).
Example 8-24. A Criteria functional interface that throws an exception if our application fails
public interface Criteria {

 public void check() throws ApplicationDenied;

}

The advantage of choosing this approach over the inheritance-based pattern
is that instead of tying the implementation of this algorithm into the
LoanApplication hierarchy, we can be much more flexible about where to delegate
the functionality to. For example, we may decide that our Company class should
be responsible for all criteria checking. The Company class would then have
a series of signatures like Example 8-25.
Example 8-25. The criteria methods on a Company
 public void checkIdentity() throws ApplicationDenied;

 public void checkProfitAndLoss() throws ApplicationDenied;

 public void checkHistoricalDebt() throws ApplicationDenied;

Now all our CompanyLoanApplication class needs to do is pass in method references
to those existing methods, as shown in Example 8-26.
Example 8-26. Our CompanyLoanApplication specifies which methods provide each criterion
public class CompanyLoanApplication extends LoanApplication {

 public CompanyLoanApplication(Company company) {
 super(company::checkIdentity,
 company::checkHistoricalDebt,
 company::checkProfitAndLoss);
 }

}

A motivating reason to delegate the behavior to our Company class is that
looking up information about company identity differs between countries. In
the UK, Companies House provides a canonical location for registering company
information, but in the US this differs from state to state.
Using functional interfaces to implement the criteria doesn’t preclude us from
placing implementation within the subclasses, either. We can explicitly use a
lambda expression to place implementation within these classes, or use
a method reference to the current class.
We also don’t need to enforce inheritance between EmployeeLoanApplication and
PersonalLoanApplication to be able to reuse the functionality of
EmployeeLoanApplication in PersonalLoanApplication. We can pass in
references to the same methods. Whether they do genuinely subclass each other
should really be determined by whether loans to employees are a special
case of loans to people or a different type of loan. So, using this approach could allow us to model the underlying problem domain
more closely.

Lambda-Enabled Domain-Specific Languages

A domain-specific language (DSL) is a programming language focused on
a particular part of a software system. They are usually small and frequently
less expressive than a general-purpose language, such as Java, for most
programming tasks. DSLs are highly specialized: by trading off being good at
everything, they get to be good at something.
It’s usual to split up DSLs into two different categories:
internal and external. An external DSL is one that is
written separately from the source code of your program and then parsed and
implemented separately. For example, Cascading Style Sheets (CSS) and regular expressions are commonly
used external DSLs.
Internal DSLs are embedded into the programming language
that they are written in. If you’ve used mocking libraries, such as JMock or
Mockito, or a SQL builder API such as JOOQ or Querydsl, then you’ll be familiar
with internal DSLs. In one sense, they’re just regular
libraries that have an API designed to be fluent. Despite their simplicity,
internal DSLs are valued because they can be a powerful
tool for making your code more succinct and easier to read. Ideally, code
written in a DSL reads like statements made within
the problem domain that it is reflecting.
The introduction of lambda expressions makes it easier to implement DSLs that are fluent and adds another tool to the belt of those wanting to experiment in the DSL arena. We’ll investigate those issues by building a DSL for performing behavior-driven development (BDD) called LambdaBehave.
BDD is a variant of test-driven development (TDD) that shifts the emphasis
onto talking about the behavior of the program rather than simply the tests
that it needs to pass. Our design is inspired by the JavaScript BDD framework
Jasmine, which has been getting heavy use in frontend circles. Example 8-27 is a simple
Jasmine suite that shows you how to create tests using Jasmine.
Example 8-27. Jasmine
describe("A suite is just a function", function() {
 it("and so is a spec", function() {
 var a = true;

 expect(a).toBe(true);
 });
});

I appreciate that if you’re not familiar with JavaScript, this may seem
confusing. We will be going through the concepts at a gentler pace as we
build a Java 8 equivalent next. Just remember that the syntax for a lambda
expression in JavaScript is function() { … }.
Let’s take a look at each of the concepts in turn:
	
Each spec describes a single behavior that your program exhibits.

	
An expectation is a way of describing the behavior of the application. You will
 find expectations in specs.

	
Groups of specs are combined into a suite.

Each of these concepts has an equivalent in a traditional testing framework,
such as JUnit. A spec is similar to a test method, an expectation is similar
to an assertion, and a suite is similar to a test class.
A DSL in Java

Let’s look at an example of what we’re aiming for with our Java-based BDD
framework. Example 8-28 is a specification of some of the behaviors of a
Stack.
Example 8-28. Some stories to specify a Stack
public class StackSpec {{

 describe("a stack", it -> {

 it.should("be empty when created", expect -> {
 expect.that(new Stack()).isEmpty();
 });

 it.should("push new elements onto the top of the stack", expect -> {
 Stack<Integer> stack = new Stack<>();
 stack.push(1);

 expect.that(stack.get(0)).isEqualTo(1);
 });

 it.should("pop the last element pushed onto the stack", expect -> {
 Stack<Integer> stack = new Stack<>();
 stack.push(2);
 stack.push(1);

 expect.that(stack.pop()).isEqualTo(2);
 });

 });

}}

We start off our suite of specifications using the describe verb. Then we
give our suite a name that tells us what it’s describing the behavior of;
here, we’ve picked "a stack".
Each of specifications reads as closely to an English sentence as possible.
They all start with the prefix it.should, with it referring to the object whose behavior
we’re describing. There is then a plain English sentence that tells us what the behavior is that we’re thinking about. We can then describe
expectations of the behavior of our object, which all start with the expect.that
prefix.
When we check our specifications, we get a simple command-line report that tells
us which pass or fail. You’ll notice that “pop the last element pushed onto
the stack” expected pop to be equal to 2, not 1, so it has failed:
a stack
 should pop the last element pushed onto the stack[expected:[image: 1] but was:[image: 2]]
 should be empty when created
 should push new elements onto the top of the stack

How We Got There

So now that you’ve seen the kind of fluency we can get in our DSLs using lambda
expressions, let’s have a look at how I implemented the framework under the
hood. Hopefully this will give you an idea of how easy it is to implement this
kind of framework yourself.
The first thing I saw when I started describing behavior was the describe verb. This is really just a statically imported method. It creates an instance of our Description class for the suite and delegates handling the specification to it. The Description class corresponds to the it parameters in our specification language (see Example 8-29).
Example 8-29. The describe method that starts the definition of a specification
public static void describe(String name, Suite behavior) {
 Description description = new Description(name);
 behavior.specifySuite(description);
}

Each suite has its code description implemented by the user using a lambda
expression. This means that we need a Suite functional interface, shown in
Example 8-30, to represent a suite of specifications. You’ll notice it
also takes a Description object as an argument, which we passed into it from
the describe method.
Example 8-30. Each suite of tests is a lambda expression implementing this interface
public interface Suite {

 public void specifySuite(Description description);

}

Not only are suites represented by lambda expressions in our DSL, but
so are individual specifications. They also need a functional interface,
which I’ll call Specification (Example 8-31). The variable called expect in our code
sample is an instance of our Expect class, which I’ll describe later.
Example 8-31. Each specification is a lambda expression implementing this interface
public interface Specification {

 public void specifyBehaviour(Expect expect);

}

The Description instance we’ve been passing around comes in handy at this
point. We want our users to be able to fluently name their specifications with
the it.should clause. This means our Description class needs a should
method (see Example 8-32). This is where the real work gets done, as this is the method that
actually executes the lambda expression by calling its specifySuite method.
Specifications will tell us they have failed by throwing the standard Java
AssertionError, and we consider any other Throwable to be an error.
Example 8-32. Our specification lambda expressions get passed into the should method
public void should(String description, Specification specification) {
 try {
 Expect expect = new Expect();
 specification.specifyBehaviour(expect);
 Runner.current.recordSuccess(suite, description);
 } catch (AssertionError cause) {
 Runner.current.recordFailure(suite, description, cause);
 } catch (Throwable cause) {
 Runner.current.recordError(suite, description, cause);
 }
}

When our specifications want to describe an actual expectation, they use the
expect.that clause. This means that our Expect class needs to have a
method called that for users to call, shown in Example 8-33. This wraps
up the object that gets passed in and can then expose fluent methods such as
isEqualTo that throw the appropriate assertions if there’s a specification
failure.
Example 8-33. The start of the fluent expect chain
public final class Expect {

 public BoundExpectation that(Object value) {
 return new BoundExpectation(value);
 }

 // Rest of class omitted

You may have noticed one more detail that I’ve so far ignored and that has nothing to do with lambda expressions. Our StackSpec class didn’t have any methods directly implemented on it, and I wrote the code inside. I’ve been a bit sneaky here and used double braces at the beginning and end of the class definition:
public class StackSpec {{
 ...
}}
These start an anonymous constructor that lets us execute an arbitrary block of Java code, so it’s really just like writing out the constructor in full, but with a bit less boilerplate.
I could have written the following instead:
public class StackSpec {
 public StackSpec() {
 ...
 }
}
There’s a lot more work involved in implementing a complete BDD framework, but
the purpose of this section is just to show you how to use lambda expressions
to create more fluent domain-specific languages. I’ve covered the parts of the
DSL that interact with lambda expressions in order to give you a flavor of how
to implement this kind of DSL.

Evaluation

One aspect of fluency is the idea that your DSL is IDE-friendly. In other
words, you can remember a minimal amount of knowledge and then use
code completion to fill in the gaps in memory. This is why we use and pass it
the Description and Expect objects. The other alternative would have been
to have static imports for methods called it or expect, which is an approach
used in some DSLs. If you pass the object into your lambda expression rather
than requiring a static import, it makes it easier for a competent IDE user
to code complete his way to working code.
The only thing a user needs to remember is the call to describe. The
benefits of such an approach might not be obvious purely from reading this text,
but I encourage you to test out the framework in a small sample project and see
for yourself.
The other thing to notice is that most testing frameworks provide a bunch of
annotations and use external magic or reflection. We didn’t need to resort to
such tricks. We can directly represent behavior in our DSLs using lambda
expressions and treat these as regular Java methods.

Lambda-Enabled SOLID Principles

The SOLID principles are a set of basic principles for designing OO programs. The name itself is a acronym, with each of the five principles named after one of the letters: Single responsibility, Open/closed, Liskov substitution, Interface segregation, and Dependency inversion. The principles act as a set of guidelines to help you implement code that is easy to maintain and extend over time.
Each of the principles corresponds to a set of potential code smells that can
exist in your code, and they offer a route out of the problems that they cause. Many
books have been written on this topic, and I’m not going to cover the
principles in comprehensive detail. I will, however, look at how three of the
principles can be applied in the context of lambda expressions. In the
Java 8 context, some of the principles can be extended beyond their original
limitations.
The Single Responsibility Principle

Every class or method in your program should have only a single reason to change.
An inevitable fact of software development is that requirements change over
time. Whether because a new feature needs to be added, your understanding of
your problem domain or customer has changed, or you need things to
be faster, over time software must evolve.
When the requirements of your software change, the responsibilities of the
classes and methods that implement these requirements also change. If you have
a class that has more than one responsibility, when a responsibility
changes the resulting code changes can affect the other responsibilities that the class
possesses. This possibly introduces bugs and also impedes the ability of the
code base to evolve.
Let’s consider a simple example program that generates a BalanceSheet. The program needs to tabulate the BalanceSheet from a list of assets and render the BalanceSheet to a PDF report. If the implementer chose to put both the responsibilities of tabulation and rendering into one class, then that class would have two reasons for change. You might wish to change the rendering in order to generate an alternative output, such as HTML. You might also wish to change the level of detail in the BalanceSheet itself. This is a good motivation to decompose this problem at the high level into two classes: one to tabulate the BalanceSheet and one to render it.
The single responsibility principle is stronger than that, though. A class
should not just have a single responsibility: it should also encapsulate it.
In other words, if I want to change the output format, then I should have to
look at only the rendering class and not at the tabulation class.
This is part of the idea of a design exhibiting strong cohesion. A class is
cohesive if its methods and fields should be treated together because
they are closely related. If you tried to divide up a cohesive class, you
would result in accidentally coupling the classes that you have just created.
Now that you’re familiar with the single responsibility principle, the question arises,
what does this have to do with lambda expressions? Well Lambda expressions
make it a lot easier to implement the single responsibility principle at the
method level. Let’s take a look at some code that counts the number of prime
numbers up to a certain value (Example 8-34).
Example 8-34. Counting prime numbers with multiple responsibilities in a method
public long countPrimes(int upTo) {
 long tally = 0;
 for (int i = 1; i < upTo; i++) {
 boolean isPrime = true;
 for (int j = 2; j < i; j++) {
 if (i % j == 0) {
 isPrime = false;
 }
 }
 if (isPrime) {
 tally++;
 }
 }
 return tally;
}

It’s pretty obvious that we’re really doing two things in Example 8-34:we’re counting numbers with a certain
property and we’re checking whether a number is a prime. As shown in Example 8-35, we can easily refactor this to split apart these two responsibilities.
Example 8-35. Counting prime numbers after refactoring out the isPrime check
public long countPrimes(int upTo) {
 long tally = 0;
 for (int i = 1; i < upTo; i++) {
 if (isPrime(i)) {
 tally++;
 }
 }
 return tally;
}

private boolean isPrime(int number) {
 for (int i = 2; i < number; i++) {
 if (number % i == 0) {
 return false;
 }
 }
 return true;
}

Unfortunately, we’re still left in a situation where our code has two responsibilities.
For the most part, our code here is dealing with looping over numbers. If we follow
the single responsibility principle, then iteration should be encapsulated elsewhere.
There’s also a good practical reason to improve this code. If we want to count the
number of primes for a very large upTo value, then we want to be able to perform
this operation in parallel. That’s right—the threading model is a responsibility
of the code!
We can refactor our code to use the Java 8 streams library (see Example 8-36), which delegates the responsibility for controlling the loop to the library itself. Here we use the range method to count the numbers between 0 and upTo, filter them to check that they really are prime, and then count the result.
Example 8-36. Refactoring the prime checking to use streams
public long countPrimes(int upTo) {
 return IntStream.range(1, upTo)
 .filter(this::isPrime)
 .count();
}

private boolean isPrime(int number) {
 return IntStream.range(2, number)
 .allMatch(x -> (number % x) != 0);
}

If we want to speed up the time it takes to perform this operation at the expense of using
more CPU resources, we can use the parallelStream method without changing any of the
other code (see Example 8-37).
Example 8-37. The streams-based prime checking running in parallel
public long countPrimes(int upTo) {
 return IntStream.range(1, upTo)
 .parallel()
 .filter(this::isPrime)
 .count();
}

private boolean isPrime(int number) {
 return IntStream.range(2, number)
 .allMatch(x -> (number % x) != 0);
}

So, we can use higher-order functions in order to help us easily implement
the single responsibility principle.

The Open/Closed Principle

Software entities should be open for extension, but closed for modification.
—
Bertrand Meyer

The overarching goal of the open/closed principle is similar to that of the single
responsibility principle: to make your software less brittle to change. Again, the
problem is that a single feature request or change to your software can ripple
through the code base in a way that is likely to introduce new bugs. The open/closed
principle is an effort to avoid that problem by ensuring that existing classes can be
extended without their internal implementation being modified.
When you first hear about the open/closed principle, it sounds like a bit of a pipe dream. How can
you extend the functionality of a class without having to change its implementation?
The actual answer is that you rely on an abstraction and can plug in new functionality that fits into this abstraction. Let’s think through a concrete example.
We’re writing a software program that measures information about system performance
and graphs the results of these measurements. For example, we might have a graph
that plots how much time the computer spends in user space, kernel space, and performing
I/O. I’ll call the class that has the responsibility for displaying these metrics
MetricDataGraph.
One way of designing the MetricDataGraph class would be to have each of the new metric
points pushed into it from the agent that gathers the data. So, its public API would
look something like Example 8-38.
Example 8-38. The MetricDataGraph public API
class MetricDataGraph {

 public void updateUserTime(int value);

 public void updateSystemTime(int value);

 public void updateIoTime(int value);

}

But this would mean that every time we wanted to add in a new set of time points to the plot, we would
have to modify the MetricDataGraph class. We can resolve this issue by introducing an
abstraction, which I’ll call a TimeSeries, that represents a series of points in time.
Now our MetricDataGraph API can be simplified to not depend upon the different types
of metric that it needs to display, as shown in Example 8-39.
Example 8-39. Simplified MetricDataGraph API
class MetricDataGraph {

 public void addTimeSeries(TimeSeries values);

}

Each set of metric data can then implement the TimeSeries interface and be
plugged in. For example, we might have concrete classes called
UserTimeSeries, SystemTimeSeries, and IoTimeSeries. If we wanted to add, say,
the amount of CPU time that gets stolen from a machine if it’s virtualized, then
we would add a new implementation of TimeSeries called StealTimeSeries.
MetricDataGraph has been extended but hasn’t been modified.
Higher-order functions also exhibit the same property of being open for
extension, despite being closed for modification. A good example of this is
the ThreadLocal class that we encountered earlier. The ThreadLocal class
provides a variable that is special in the sense that each thread has a single copy
for it to interact with. Its static withInitial method is a higher-order
function that takes a lambda expression that represents a factory for
producing an initial value.
This implements the open/closed principle because we can get new behavior out
of ThreadLocal without modifying it. We pass in a different factory
method to withInitial and get an instance of ThreadLocal with
different behavior. For example, we can use ThreadLocal to produce a
DateFormatter that is thread-safe with the code in Example 8-40.
Example 8-40. A ThreadLocal date formatter
// One implementation
ThreadLocal<DateFormat> localFormatter
 = ThreadLocal.withInitial(() -> new SimpleDateFormat());

// Usage
DateFormat formatter = localFormatter.get();

We can also generate completely different behavior by passing in a different
lambda expression. For example, in Example 8-41 we’re creating a unique identifier for
each Java thread that is sequential.
Example 8-41. A ThreadLocal identifier
// Or...
AtomicInteger threadId = new AtomicInteger();
ThreadLocal<Integer> localId
 = ThreadLocal.withInitial(() -> threadId.getAndIncrement());

// Usage
int idForThisThread = localId.get();

Another interpretation of the open/closed principle that doesn’t follow
in the traditional vein is the idea that immutable objects implement the
open/closed principle. An immutable object is one that can’t be modified
after it is created.
The term “immutability” can have two potential interpretations:
observable immutability or implementation immutability. Observable
immutability means that from the perspective of any other object, a class is
immutable; implementation immutability means that the object never mutates.
Implementation immutability implies observable immutability, but the inverse
isn’t necessarily true.
A good example of a class that proclaims its immutability but actually is only
observably immutable is java.lang.String, as it caches the hash code that
it computes the first time its hashCode method is called. This is entirely
safe from the perspective of other classes because there’s no way for them to
observe the difference between it being computed in the constructor every time
or cached.
I mention immutable objects in the context of a book on lambda expressions
because they are a fairly familiar concept within functional programming, which
is the same area that lambda expressions have come from. They naturally fit
into the style of programming that I’m talking about in this book.
Immutable objects implement the open/closed principle in the sense that because
their internal state can’t be modified, it’s safe to add new methods to them.
The new methods can’t alter the internal state of the object, so they are
closed for modification, but they are adding behavior, so they are open to
extension. Of course, you still need to be careful in order to avoid modifying
state elsewhere in your program.
Immutable objects are also of particular interest because they are inherently
thread-safe. There is no internal state to mutate, so they can be shared
between different threads.
If we reflect on these different approaches, it’s pretty clear that
we’ve diverged quite a bit from the traditional open/closed principle. In fact,
when Bertrand Meyer first introduced the principle, he defined it so
that the class itself couldn’t ever be altered after being completed. Within a
modern Agile developer environment it’s pretty clear that the idea of a class
being complete is fairly outmoded. Business requirements and usage of the
application may dictate that a class be used for something that it wasn’t
intended to be used for. That’s not a reason to ignore the open/closed
principle though, just a good example of how these principles should be taken
as guidelines and heuristics rather than followed religiously or to the
extreme.
A final point that I think is worth reflecting on is that in the context of
Java 8, interpreting the open/closed principle as advocating an abstraction
that we can plug multiple classes into or advocating higher-order functions amounts to the same thing. Because our abstraction needs to be represented by either
an interface or an abstract class upon which methods are called, this approach
to the open/closed principle is really just a usage of polymorphism.
In Java 8, any lambda expression that gets passed into a higher-order function
is represented by a functional interface. The higher-order function calls its
single method, which leads to different behavior depending upon which lambda
expression gets passed in. Again, under the hood we’re using polymorphism in
order to implement the open/closed principle.

The Dependency Inversion Principle

Abstractions should not depend on details; details should depend on abstractions.
One of the ways in which we can make rigid and fragile programs that are resistant to change is by coupling high-level business logic and low-level code that is designed to glue modules together. This is because these are two different concerns that may change over time.
The goal of the dependency inversion principle is to allow programmers to write
high-level business logic that is independent of low-level glue code. This
allows us to reuse the high-level code in a way that is abstract of the details
upon which it depends. This modularity and reuse goes both ways: we can
substitute in different details in order to reuse the high-level code, and we
can reuse the implementation details by layering alternative business
logic on top.
Let’s look at a concrete example of how the dependency inversion principle is
traditionally used by thinking through the high-level decomposition involved in
implementing an application that builds up an address book automatically. Our
application takes in a sequence of electronic business cards as input and
accumulates our address book in some storage mechanism.
It’s fairly obvious that we can separate this code into three basic
modules:
	
The business card reader that understands an electronic business card format

	
The address book storage that stores data into a text file

	
The accumulation module that takes useful information from the business cards and puts it into the address book

We can visualize the relationship between these modules as shown in Figure 8-3.
[image: .Dependencies]

Figure 8-3. Dependencies

In this system, while reuse of the accumulation model is more complex, the business card reader and the address
book storage do not depend on any other components. We can therefore easily reuse them in
another system. We can also change them; for example, we might
want to use a different reader, such as reading from people’s Twitter
profiles, or we might want to store our address book in something other than
a text file, such as a database.
In order to give ourselves the flexibility to change these components within our
system, we need to ensure that the implementation of our accumulation module
doesn’t depend upon the specific details of either the business card reader
or the address book storage. So, we introduce an abstraction for reading
information and an abstraction for writing information. The implementation of
our accumulation module depends upon these abstractions. We can pass in the
specific details of these implementations at runtime. This is the dependency
inversion principle at work.
In the context of lambda expressions, many of the higher-order functions that
we’ve encountered enable a dependency inversion. A function such as map
allows us to reuse code for the general concept of transforming a stream of
values between different specific transformations. The map function doesn’t
depend upon the details of any of these specific transformations, but upon an
abstraction. In this case, the abstraction is the functional interface
Function.
A more complex example of dependency inversion is resource management. Obviously, there are lots of resources that can be managed, such as database connections, thread pools, files, and network connections. I’ll use files as an example because they are a relatively simple resource, but the principle can easily be applied to more complex resources within your application.
Let’s look at some code that extracts headings from a hypothetical markup language
where each heading is designated by being suffixed with a colon (:). Our method is
going to extract the headings from a file by reading the file, looking at
each of the lines in turn, filtering out the headings, and then closing the
file. We shall also wrap any Exception related to the file I/O into a
friendly domain exception called a HeadingLookupException. The code looks
like Example 8-42.
Example 8-42. Parsing the headings out of a file
public List<String> findHeadings(Reader input) {
 try (BufferedReader reader = new BufferedReader(input)) {
 return reader.lines()
 .filter(line -> line.endsWith(":"))
 .map(line -> line.substring(0, line.length() - 1))
 .collect(toList());
 } catch (IOException e) {
 throw new HeadingLookupException(e);
 }
}

Unfortunately, our heading-finding code is coupled with the resource-management and file-handling code. What we really want to do is write some code that finds the headings and delegates the details of a file to another method. We can use a Stream<String> as the abstraction we want to depend upon rather than a file. A Stream is much safer and less open to abuse. We also want to be able to a pass in a function that creates our domain exception if there’s a problem with the file. This approach, shown in Example 8-43, allows us to segregate the domain-level error handling from the resource management–level error handling.
Example 8-43. The domain logic with file handling split out
public List<String> findHeadings(Reader input) {
 return withLinesOf(input,
 lines -> lines.filter(line -> line.endsWith(":"))
 .map(line -> line.substring(0, line.length()-1))
 .collect(toList()),
 HeadingLookupException::new);
}

I expect that you’re now wondering what that withLinesOf method looks like! It’s shown in Example 8-44.
Example 8-44. The definition of withLinesOf
private <T> T withLinesOf(Reader input,
 Function<Stream<String>, T> handler,
 Function<IOException, RuntimeException> error) {

 try (BufferedReader reader = new BufferedReader(input)) {
 return handler.apply(reader.lines());
 } catch (IOException e) {
 throw error.apply(e);
 }
}

withLinesOf takes in a reader that handles the underlying file I/O. This
is wrapped up in BufferedReader, which lets us read the file line by line.
The handler function represents the body of whatever code we want to use
with this function. It takes the Stream of the file’s lines as its argument.
We also take another handler called error that gets called when there’s
an exception in the I/O code. This constructs whatever domain exception we
want. This exception then gets thrown in the event of a problem.
To summarize, higher-order functions provide an inversion of control, which
is a form of dependency inversion. We can easily use them with lambda
expressions. The other thing to note with the dependency inversion principle
is that the abstraction that we depend upon doesn’t have to be an interface.
Here we’ve relied upon the existing Stream as an abstraction over raw
reader and file handling. This approach also fits into the way that resource
management is performed in functional languages—usually a higher-order function
manages the resource and takes a callback function that is applied to
an open resource, which is closed afterward. In fact, if lambda expressions had
been available at the time, it’s arguable that the try-with-resources feature
of Java 7 could have been implemented with a single library function.

Further Reading

A lot of the discussion in this chapter has delved into broader design
issues, looking at the whole of your program rather than just local issues
related to a single method. This is an area that we’ve just touched the surface
of due to the lambda expressions focus of this book. There are a number of
other books covering related topic areas that are worth investigating if you’re
interested in more detail.
The SOLID principles have long been emphasized by “Uncle” Bob Martin, who has both written and presented extensively on the topic. If you want to osmose some of his knowledge for free, a series of articles on each of the principles is available on the Object Mentor website, under the topic “Design Patterns.”
If you are interested in a more comprehensive understanding of domain-specific languages, both internal and external, Domain-Specific Languages by Martin Fowler with Rebecca Parsons (Addison-Wesley) is recommended reading.

Key Points

	
Lambda expressions can be used to make many existing design patterns
simpler and more readable, especially the command pattern.

	
There is more flexibility to the kind of domain-specific languages
you can create with Java 8.

	
New opportunities open up for applying the SOLID principles in Java 8.

Chapter 9. Lambda-Enabled Concurrency

I’ve already talked a bit about data parallelism, but in this chapter
I’m going to cover how we can use lambda expressions to write concurrent
applications that efficiently perform message passing and nonblocking I/O.
Some of the examples in this chapter are written using the Vert.x and RxJava frameworks. The principles are more general, though, and can be used in other frameworks and in your own code without you necessarily needing frameworks at all.
Why Use Nonblocking I/O?

When I introduced parallelism, I talked a lot about trying to use
a lot of cores efficiently. That approach is really helpful, but when trying to process
a lot of data, it’s not the only threading model that you might want to use.
Let’s suppose you’re trying to write a chat service that handles a very high
number of users. Every time a user connects to your service, a TCP
connection to your server is opened. If you follow a traditional threading
model, every time you want to write some data to your user, you would call a
method that sends the user the data. This method call would block the thread that
you’re running on.
This approach to I/O, called blocking I/O, is fairly common and fairly easy to
understand because the interaction with users follows a normal sequential flow
of control through your program. The downside is that when you start looking
at scaling your system to a significant number of users, you need to start a
significant number of threads on your server in order to service them. That approach
just doesn’t scale well.
Nonblocking I/O—or, as it’s sometimes called, asynchronous I/O—can be used to process many concurrent network connections without having
an individual thread service each connection. Unlike with blocking I/O, the methods to read and write data to your chat clients return immediately. The actual I/O processing is happening in a separate thread, and you are free to perform some useful work in the meantime. How you choose to use these saved CPU cycles may range from reading more data from another client to ticking over your Minecraft server!
I’ve so far avoided presenting any code to show the ideas because the concept of blocking versus nonblocking I/O can be implemented in a number of different ways in terms of the API. The Java standard library presents a nonblocking I/O API in the form of NIO (New I/O). The original version of NIO uses the concept of a Selector, which lets a thread manage multiple channels of communication, such as the network socket that’s used to write to your chat client.
This approach never proved particularly popular with Java developers and resulted
in code that was fairly hard to understand and debug. With the introduction of lambda
expressions, it becomes idiomatic to design and develop APIs that don’t have
these deficiencies.

Callbacks

To demonstrate the principles of this approach, we’re going to
implement a dead simple chat application—no bells and no whistles. In this
application, users can send and receive messages to and from each other. They
are required to set names for themselves when they first connect.
We’re going to implement the chat application using the Vert.x framework and
introduce the necessary techniques as we go along. Let’s start by writing some
code that receives TCP connections, as demonstrated in Example 9-1.
Example 9-1. Receiving TCP connections
public class ChatVerticle extends Verticle {

 public void start() {
 vertx.createNetServer()
 .connectHandler(socket -> {
 container.logger().info("socket connected");
 socket.dataHandler(new User(socket, this));
 }).listen(10_000);

 container.logger().info("ChatVerticle started");
 }

}

You can think of a Verticle as being a bit like a Servlet—it’s the atomic
unit of deployment in the Vert.x framework. The entry point to the code is the
start method, which is a bit like a main method in a regular Java program. In our
chat app, we just use it to set up a server that accepts TCP connections.
We pass in a lambda expression to the connectHandler method, which gets called
whenever someone connects to our chat app. This is a callback and works
in a similar way to the Swing callbacks I talked about way back in Chapter 1.
The benefit of this approach is that the application doesn’t control the threading
model—the Vert.x framework can deal with managing threads and all the associated
complexity, and all we need to do is think in terms of events and callbacks.
Our application registers another callback using the dataHandler method.
This is a callback that gets called whenever some data is read from the
socket. In this case, we want to provide more complex functionality, so instead
of passing in a lambda expression we use a regular class, User, and let it
implement the necessary functional interface. The callback into our User class
is listed in Example 9-2.
Example 9-2. Handling user connections
public class User implements Handler<Buffer> {

 private static final Pattern newline = Pattern.compile("\\n");

 private final NetSocket socket;
 private final Set<String> names;
 private final EventBus eventBus;

 private Optional<String> name;

 public User(NetSocket socket, Verticle verticle) {
 Vertx vertx = verticle.getVertx();

 this.socket = socket;
 names = vertx.sharedData().getSet("names");
 eventBus = vertx.eventBus();
 name = Optional.empty();
 }

 @Override
 public void handle(Buffer buffer) {
 newline.splitAsStream(buffer.toString())
 .forEach(line -> {
 if (!name.isPresent())
 setName(line);
 else
 handleMessage(line);
 });
 }

 // Class continues...

The buffer contains the data that has been written down the network
connection to us. We’re using a newline-separated, text-based protocol, so we
want to convert this to a String and then split it based upon those newlines.
We have a regular expression to match newline characters, which is a
java.util.regex.Pattern instance called newline. Conveniently, Java’s
Pattern class has had a splitAsStream method added in Java 8 that lets us
split a String using the regular expression and have a stream of values,
consisting of the values between each split.
The first thing our users do when they connect to our chat server is set their
names. If we don’t know the user’s name, then we delegate to the logic for
setting the name; otherwise, we handle our message like a normal chat message.
We also need a way of receiving messages from other users and passing them on
to our chat client so the recipients can read them. In order to implement this, at the
same time that we set the name of the current user we also register another
callback that writes these messages (Example 9-3).
Example 9-3. Registering for chat messages
eventBus.registerHandler(name, (Message<String> msg) -> {
 sendClient(msg.body());
});

This code is actually taking advantage of Vert.x’s event bus, which allows us to send
messages between verticles in a nonblocking fashion (see Figure 9-1). The registerHandler
method allows us to associate a handler with a certain address, so when a
message is sent to that address the handler gets called with the message as its
argument. Here we use the username as the address.
[image: .Eventbus Sending]

Figure 9-1. Event bus sending

By registering handlers at addresses and sending messages to them, it’s possible
to build up very sophisticated and/or decoupled sets of services that react in
an entirely nonblocking fashion. Note that within our design, we share no
state.
Vert.x’s event bus lets us send a variety of types of message over it,
but all of them will be wrapped in a Message object. Point-to-point
messaging is available through the Message objects themselves; they may hold a
reply handler for the sender of the Message object. Because in this case we
want the actual body of the message—that is, the text itself—we just called the
body method. We’ll send this text message to the receiving user’s chat
client, implemented by writing the message down the TCP connection.
When our application wants to send a message from one user to another, it sends
that message to the address that represents the other user (Example 9-4). Again, this is that user’s
username.
Example 9-4. Sending chat messages
eventBus.send(user, name.get() + '>' + message);

Let’s extend this very basic chat server to broadcast messages and followers. There are two new commands that we need to implement in order for this to work:
	
An exclamation mark representing the broadcast command, which sends all of its following text to any following users. For example, if bob typed “!hello followers”, then all of his followers would receive “bob>hello followers”.

	
The follow command, which follows a specified user suffixed to the command, as in “follow bob”.

Once we’ve parsed out the commands, we’re going to implement the
broadcastMessage and followUser methods, which correspond to each of these
commands.
There’s a different pattern of communication here as well. Instead of just having to send messages to a single user, you now have the ability to publish to multiple users. Fortunately, Vert.x’s event bus also lets us publish a message to multiple handlers (see Figure 9-2). This lets us use a similar overarching approach.
[image: .Eventbus Publishing]

Figure 9-2. Event bus publishing

The only code difference is that we use the publish method on the event bus
rather than the send method. To avoid overlapping with the existing
addresses whenever a user uses the ! command, it gets published to the user’s
name suffixed with .followers. So, for example, when bob publishes a message
it goes to any handler registered on bob.followers (Example 9-5).
Example 9-5. Broadcasting messages to followers
private void broadcastMessage(String message) {
 String name = this.name.get();
 eventBus.publish(name + ".followers", name + '>' + message);
}

When it comes to the handler, we want to do the same operation that we performed
earlier when registering sends: pass that message along to the client (Example 9-6).
Example 9-6. Receiving the broadcast messages
private void followUser(String user) {
 eventBus.registerHandler(user + ".followers", (Message<String> message) -> {
 sendClient(message.body());
 });
}

Note
If you send to an address and there are multiple handlers listening on that address, a round-robin selector is used to decide which handler receives your message. This means that you need to be a bit careful when registering addresses.

Message Passing Architectures

What I’ve been describing here is a message passing–based architecture that I’ve implemented using a simple chat client. The details of the chat client are much less important than the overall pattern, so let’s talk about message passing itself.
The first thing to note is that this is a no-shared-state design. All
communication between our verticles is done by sending messages over our
event bus. This means that we don’t need to protect any shared state, so
we don’t need any kind of locks or use of the synchronized keyword in our
code base at all. Concurrency is much simpler.
In order to ensure that we aren’t sharing any state between verticles, we’ve
actually imposed a few constraints on the types of messages being sent over the
event bus. The example messages that we passed over the event bus in this case
were plain old Java strings. These are immutable by design, which means that we
can safely send them between verticles. Because the receiving handler can’t
modify the state of the String, it can’t interfere with the behavior of the
sender.
Vert.x doesn’t restrict us to sending strings as messages, though; we can
use more complex JSON objects or even build our own binary messages using
the Buffer class. These aren’t immutable messages, which means that if
we just naively passed them around, our message senders and message handlers
could share state by writing or reading through these messages.
The Vert.x framework avoids this problem by copying any mutable message the
moment that you send it. That way the receiver gets the correct value, but you
still aren’t sharing state. Regardless of whether you’re using the Vert.x framework, it’s really important that you don’t let your messages be an accidental
source of shared state. Completely immutable messages are the simplest way of
doing this, but copying the message also solves the problem.
The verticle model of development also lets us implement a concurrent system
that is easy to test. This is because each verticle can be tested in
isolation by sending messages in and expecting results to be returned. We can
then compose a complex system out of individually tested components without
incurring as many problems in integrating the components as we would if they
were communicating via shared mutable state. Of course, end-to-end tests are
still useful for making sure that your system does what your users expect of
it!
Message passing–based systems also make it easier to isolate failure scenarios
and write reliable code. If there is an error within a message handler, we have
the choice of restarting its local verticle without having to restart the
entire JVM.
In Chapter 6, we looked at how you can use lambda expressions in conjunction with
the streams library in order to build data parallel code. That lets us use
parallelism in order to process large amounts of data faster. Message
passing and reactive programming, which we’ll look at later in this chapter,
are at the other end of the spectrum. We’re looking at concurrency situations
in which we want to have many more units of I/O work, such as connected chat
clients, than we have threads running in parallel. In both cases, the
solution is the same: use lambda expressions to represent the behavior and
build APIs that manage the concurrency for you. Smarter libraries mean
simpler application code.

The Pyramid of Doom

You’ve seen how we can use callbacks and events to produce nonblocking
concurrent code, but I haven’t mentioned the elephant in the room. If you
write code with lots of callbacks, it becomes very hard to read, even
with lambda expressions. Let’s take a look at a more concrete example in order
to understand this problem better.
While developing the chat server I wrote a series of tests that described the
behavior of the verticle from the point of view of the client. The code for
this is listed in the messageFriend test in Example 9-7.
Example 9-7. A test of whether two friends in our chat server can talk to each other
@Test
public void messageFriend() {
 withModule(() -> {
 withConnection(richard -> {
 richard.dataHandler(data -> {
 assertEquals("bob>oh its you!", data.toString());
 moduleTestComplete();
 });

 richard.write("richard\n");
 withConnection(bob -> {
 bob.dataHandler(data -> {
 assertEquals("richard>hai", data.toString());
 bob.write("richard<oh its you!");
 });
 bob.write("bob\n");
 vertx.setTimer(6, id -> richard.write("bob<hai"));
 });
 });
 });
}

I connect two clients, richard and bob, then richard says “hai” to bob and bob
replies “oh it’s you!” I’ve refactored out common code to make a connection,
but even then you’ll notice that the nested callbacks are beginning to turn
into a pyramid of doom. They are stretching rightward across the screen, a bit like a pyramid sitting on its side (don’t look at me—I didn’t come
up with the name!). This is a pretty well known antipattern,
which makes it hard for a user to read and understand the code. It also
stretches the logic of the code between multiple methods.
In the last chapter, I discussed how we could use lambda expressions to manage resources by passing a lambda expression into a with method. You’ll notice in this test that I’ve used this pattern in couple of places. We’ve got a withModule method that deploys the current Vert.x module, runs some code, and shuts the module down. We’ve also got a withConnection method that connects to the ChatVerticle and then closes down the connection when it’s done with it.
The benefit of using these with method calls here rather than using try-with-resources is that they fit into the nonblocking threading model that we’re using in this chapter. We can try and refactor this code a bit in order to make it easier to understand, as in Example 9-8.
Example 9-8. A test of whether two friends in our chat server can talk to each other, split into different methods
@Test
public void canMessageFriend() {
 withModule(this::messageFriendWithModule);
}

private void messageFriendWithModule() {
 withConnection(richard -> {
 checkBobReplies(richard);
 richard.write("richard\n");
 messageBob(richard);
 });
}

private void messageBob(NetSocket richard) {
 withConnection(messageBobWithConnection(richard));
}

private Handler<NetSocket> messageBobWithConnection(NetSocket richard) {
 return bob -> {
 checkRichardMessagedYou(bob);
 bob.write("bob\n");
 vertx.setTimer(6, id -> richard.write("bob<hai"));
 };
}

private void checkRichardMessagedYou(NetSocket bob) {
 bob.dataHandler(data -> {
 assertEquals("richard>hai", data.toString());
 bob.write("richard<oh its you!");
 });
}

private void checkBobReplies(NetSocket richard) {
 richard.dataHandler(data -> {
 assertEquals("bob>oh its you!", data.toString());
 moduleTestComplete();
 });
}

The aggressive refactoring in Example 9-8 has solved the
pyramid of doom problem, but at the expense of splitting up the logic of
the single test into several methods. Instead of one method having a single
responsibility, we have several sharing a responsibility between them! Our
code is still hard to read, just for a different reason.
The more operations you want to chain or compose, the worse this problem gets.
We need a better solution.

Futures

Another option when trying to build up complex sequences of concurrent
operations is to use what’s known as a Future. A Future is an IOU
for a value. Instead of a method returning a value, it returns the Future.
The Future doesn’t have the value when it’s first created, but it can be
exchanged for the value later on, like an IOU.
You extract the value of the Future by calling its get method, which
blocks until the value is ready. Unfortunately, Futures end up with
composability issues, just like callbacks. We’ll take a quick look at the
issues that you can encounter.
The scenario we’ll be considering is looking up information about an Album
from some external web services. We need to find the list of tracks associated
with a given Album and also a list of artists. We also need to ensure
that we have sufficient credentials to access each of the services. So we need to
log in, or at least make sure that we’re already logged in.
Example 9-9 is an implementation of this problem using the existing
Future API. We start out at [image: 1] by logging into the track and artist
services. Each of these login actions returns a Future<Credentials> object
with the login information. The Future interface is generic, so
Future<Credentials> can be read as an IOU for a Credentials object.
Example 9-9. Downloading album information from some external web services using Futures
@Override
public Album lookupByName(String albumName) {
 Future<Credentials> trackLogin = loginTo("track"); [image: 1]
 Future<Credentials> artistLogin = loginTo("artist");

 try {
 Future<List<Track>> tracks = lookupTracks(albumName, trackLogin.get()); [image: 2]
 Future<List<Artist>> artists = lookupArtists(albumName, artistLogin.get());

 return new Album(albumName, tracks.get(), artists.get()); [image: 3]
 } catch (InterruptedException | ExecutionException e) {
 throw new AlbumLookupException(e.getCause()); [image: 4]
 }
}

At [image: 2] we make our calls to look up the tracks and
artists given the login credentials and call get on both of these
login credentials in order to get them out of the Futures. At [image: 3] we build up
our new Album to return, again calling get in order to block on the
existing Futures. If there’s an exception, it gets thrown, so we have to
propagate it through a domain exception at [image: 4].
As you’ll have noticed, if you want to pass the result of one Future into the
beginning of another piece of work, you end up blocking the thread of
execution. This can be become a performance limitation because instead of work
being executed in parallel it is (accidentally) run in serial.
What this means in the case of Example 9-9 is that we can’t start
either of the calls to the lookup services until we’ve logged into both of them.
This is pretty unnecessary: lookupTracks only needs its login credentials,
and lookupArtists should only need to wait for its login credentials. The
breakdown of which actions need to wait for others to complete is
shown in Figure 9-3.
We could take the blocking get calls and drag them down into the
execution body of lookupTracks and lookupArtists. This would solve the
problem, but would also result in uglier code and an inability to reuse credentials
between multiple calls.
[image: Both lookup actions don’t need to wait for both login actions]

Figure 9-3. Both lookup actions don’t need to wait for both login actions

What we really want here is a way of acting on the result of a Future,
without having to make a blocking get call. We want to combine a
Future with a callback.

Completable Futures

The solution to these issues arrives in the form of the CompletableFuture.
This combines the IOU idea of a Future with using callbacks to handle
event-driven work. The key point about the CompletableFuture is that you can
compose different instances in a way that doesn’t result in the pyramid of
doom.
Note
You might have encountered the concept behind the CompletableFuture before;
various other languages call them a deferred object or a promise. In the
Google Guava Library and the Spring Framework these are referred to as
ListenableFutures.

I’ll illustrate some usage scenarios by rewriting Example 9-9
to use CompletableFuture, rather than Future, as in
Example 9-10.
Example 9-10. Downloading album information from some external web services using CompletableFutures
public Album lookupByName(String albumName) {
 CompletableFuture<List<Artist>> artistLookup
 = loginTo("artist")
 .thenCompose(artistLogin -> lookupArtists(albumName, artistLogin)); [image: 1]

 return loginTo("track")
 .thenCompose(trackLogin -> lookupTracks(albumName, trackLogin)) [image: 2]
 .thenCombine(artistLookup, (tracks, artists)
 -> new Album(albumName, tracks, artists)) [image: 3]
 .join(); [image: 4]
}

In Example 9-10 loginTo, lookupArtists, and
lookupTracks all return a CompletableFuture instead of a Future. The key
“trick” to the CompletableFuture API is to register lambda expressions and
chain higher-order functions. The methods are different, but the concept is
incredibly similar to the Streams API design.
At [image: 1] we use the thenCompose method to transform our Credentials
into a CompletableFuture that contains the artists. This is a bit like taking an
IOU for money from a friend and spending the money on Amazon when you get
it. You don’t immediately get a new book—you just get an email from Amazon
saying that your book is on its way: a different form of IOU.
At [image: 2] we again use thenCompose and the Credentials from our Track API login
in order to generate a CompletableFuture of tracks. We introduce a new method,
thenCombine, at [image: 3]. This takes the result from a CompletableFuture and combines
it with another CompletableFuture. The combining operation is provided by the
end user as a lambda expression. We want to take our tracks and artists and build
up an Album object, so that’s what we do.
At this point, it’s worth reminding yourself that just like with the Streams API,
we’re not actually doing things; we’re building up a recipe that says how to do things.
Our method can’t guarantee that the CompletableFuture has completed until one
of the final methods is called. Because CompletableFuture implements Future,
we could just call the get method again. CompletableFuture contains the
join method, which is called at [image: 4] and does the same job. It doesn’t have a
load of the nasty checked exceptions that hindered our use of get.
You’ve probably got the basic idea of how to use CompletableFuture, but
creating them is another matter. There are two different aspects of creating a
CompletableFuture: creating the object itself and actually completing it by
giving it the value that it owes its client code.
As Example 9-11 shows, it’s pretty easy to create a
CompletableFuture object. You just call its constructor! This object can now
be handed out to client code for chaining operations. We also
keep a reference to this object in order to process the work on another thread.
Example 9-11. Completing a future by providing a value
CompletableFuture<Artist> createFuture(String id) {
 CompletableFuture<Artist> future = new CompletableFuture<>();
 startJob(future);
 return future;
}

Once we’ve performed the work that needs to be done on whatever thread we’re
using, we need to tell the CompletableFuture what value it
represents. Remember that this work can by done through a number of different
threading models. For example, we can submit a task to an ExecutorService,
use an event loop-based system such as Vert.x, or just spin up a Thread
and do work on it. As shown in Example 9-12, in order to tell the
CompletableFuture that it’s ready, you call the complete method. It’s time
to pay back the IOU.
Example 9-12. Completing a future by providing a value
future.complete(artist);

[image: A completable future is an I-owe-you which can be processed by handlers]

Figure 9-4. A completable future is an IOU that can be processed by handlers

Of course, a very common usage of CompletableFuture is to asynchronously run
a block of code. This code completes and returns a value. In order to avoid
lots of people having to implement the same code over and over again,
there is a useful factory method for creating a CompletableFuture, shown in
Example 9-13, called supplyAsync.
Example 9-13. Example code for asynchronously creating a CompletableFuture
CompletableFuture<Track> lookupTrack(String id) {
 return CompletableFuture.supplyAsync(() -> {
 // Some expensive work is done here [image: 1]
 // ...
 return track; [image: 2]
 }, service); [image: 3]
}

The supplyAsync method takes a Supplier that gets executed. The key point,
shown at [image: 1], is that this Supplier can do some time-consuming work without
blocking the current thread—thus the Async in the method name. The value
returned at [image: 2] is used to complete the CompletableFuture. At [image: 3] we
provide an Executor, called service, that tells the CompletableFuture
where to perform the work. If no Executor is provided, it just uses the same
fork/join thread pool that parallel streams execute on.
Of course, not every IOU has a happy ending. Sometimes we encounter
exceptional circumstances and can’t pay our debts. As
Example 9-14 demonstrates, the CompletableFuture API
accounts for these situations by letting you completeExceptionally. This can
be called as an alternative to complete. You shouldn’t call both complete
and completeExceptionally on a CompletableFuture, though.
Example 9-14. Completing a future if there’s an error
future.completeExceptionally(new AlbumLookupException("Unable to find " + name));

A complete investigation of the CompletableFuture API is rather beyond the
scope of this chapter, but in many ways it is a hidden goodie bag. There are
quite a few useful methods in the API for composing and combining different
instances of CompletableFuture in pretty much any way imaginable. Besides, by
now you should be familiar with the fluent style of chaining sequences of
higher-order functions to tell the computer what to do.
Let’s take a brief look at a few of those use cases:
	
If you want to end your chain with a block of code that returns nothing,
such as a Consumer or Runnable, then take a look at thenAccept and thenRun.

	
Transforming the value of the CompletableFuture, a bit like using the map method
on Stream, can be achieved using thenApply.

	
If you want to convert situations in which your CompletableFuture has completed
with an exception, the exceptionally method allows you to recover by
registering a function to make an alternative value.

	
If you need to do a map that takes account of both the
exceptional case and regular use cases, use handle.

	
When trying to figure out what is happening with your CompletableFuture, you
can use the isDone and isCompletedExceptionally methods.

CompletableFuture is really useful for building up concurrent work, but it’s
not the only game in town. We’re now going to look at a related concept that
offers a bit more flexibility in exchange for more complex code.

Reactive Programming

The concept behind a CompletableFuture can be generalized from single values
to complete streams of data using reactive programming. Reactive programming
is actually a form of declarative programming that lets us program in terms of
changes and data flows that get automatically propagated.
You can think of a spreadsheet as a commonly used example of reactive programming. If you enter =B1+5 in cell C1, it tells the spreadsheet to add 5 to the contents of cell B1 and put the result in C1. In addition, the spreadsheet reacts to any future changes in B1 and updates the value in C1.
The RxJava library is a port of these reactive ideas onto the JVM. We won’t be going into the library in huge amounts of depth here, just covering the key concepts.
RxJava introduces a class called Observable that represents a sequence of
events that you can react to. It’s an IOU for a sequence. There is a
strong connection between an Observable and the Stream interface that we
encountered in Chapter 3.
In both cases we build up recipes for performing work by chaining higher-order
functions and use lambda expressions in order to associate behavior with these
general operations. In fact, many of the operations defined on an Observable
are the same as on a Stream: map, filter, reduce.
The big difference between the approaches is the use case. Streams are designed
to build up computational workflows over in-memory collections. RxJava, on the
other hand, is designed to compose and sequence asynchronous and event-based
systems. Instead of pulling data out, it gets pushed in. Another way of
thinking about RxJava is that it is to a sequence of values what a
CompletableFuture is to a single value.
Our concrete example this time around is searching for an artist and is shown in
Example 9-15. The search method filters the results by name and
nationality. It keeps a local cache of artist names but must look up other
artist information, such as nationality, from external services.
Example 9-15. Searching for an artist by name and nationality
public Observable<Artist> search(String searchedName,
 String searchedNationality,
 int maxResults) {

 return getSavedArtists() [image: 1]
 .filter(name -> name.contains(searchedName)) [image: 2]
 .flatMap(this::lookupArtist) [image: 3]
 .filter(artist -> artist.getNationality() [image: 4]
 .contains(searchedNationality))
 .take(maxResults); [image: 5]
}

At [image: 1] we get an Observable of the saved artist names. The higher-order
functions on the Observable class are similar to those on the Stream
interface, so at [image: 2] and [image: 4] we’re able to filter by artist name and
nationality, in a similar manner as if we were using a Stream.
At [image: 3] we replace each name with its Artist object. If this were as simple as
calling its constructor, we would obviously use the map operation. But in this
case we need to compose a sequence of calls to external web services, each of
which may be done in its own thread or on a thread pool. Consequently, we need
to replace each name with an Observable representing one or more artists. So
we use the flatMap operation.
We also need to limit ourselves to maxResults number of results in our search.
To implement this at [image: 5], we call the take method on Observable.
As you can see, the API is quite stream-like in usage. The big difference is
that while a Stream is designed to compute final results, the RxJava API
acts more like CompletableFuture in its threading model.
In CompletableFuture we had to pay the IOU by calling complete with
a value. Because an Observable represents a stream of events, we need the
ability to push multiple values; Example 9-16 shows
how to do this.
Example 9-16. Pushing values into an Observable and completing it
observer.onNext("a");
observer.onNext("b");
observer.onNext("c");
observer.onCompleted();

We call onNext repeatedly, once for each element in the Observable. We
can do this in a loop and on whatever thread of execution we want to produce
the values from. Once we have finished with whatever work is needed to generate
the events, we call onCompleted to signal the end of the Observable.
As well as the full-blown streaming approach, there are also several static
convenience factory methods for creating Observable instances from futures,
iterables, and arrays.
In a similar manner to CompletableFuture, the Observable API also allows for
finishing with an exceptional event. We can use the onError method, shown in
Example 9-17, in order to signal an error. The functionality
here is a little different from CompletableFuture—you can still get all the
events up until an exception occurs, but in both cases you either end normally
or end exceptionally.
Example 9-17. Notifying your Observable that an error has occurred
observer.onError(new Exception());

As with CompletableFuture, I’ve only given a flavor of how and where to use the Observable API here. If you want more details, read the project’s
comprehensive documentation. RxJava is also beginning to be integrated into the existing ecosystem of Java libraries. The enterprise integration framework Apache Camel, for example, has added a module called Camel RX that gives the ability to use RxJava with its framework. The Vert.x project has also started a project to Rx-ify its API.

When and Where

Throughout this chapter, I’ve talked about how to use nonblocking and event-based systems. Is that to say that everyone should just go out tomorrow and throw away their existing Java EE or Spring enterprise web applications? The answer is most definitely no.
Even accounting for CompletableFuture and RxJava being relatively new,
there is still an additional level of complexity when using these idioms.
They’re simpler than using explicit futures and callbacks everywhere, but
for many problems the traditional blocking web application development is
just fine. If it ain’t broke, don’t fix it.
Of course, that’s not to say that reading this chapter was a waste of your afternoon! Event-driven, reactive applications are growing in popularity and are frequently a great way to model the problems in your domain. The Reactive Manifesto advocates building more applications in this style, and if it’s right for you, then you should. There are two scenarios in particular in which you might want to think in terms of reacting to events rather than blocking.
The first is when your business domain is phrased in terms of events. A
classic example here is Twitter, a service for subscribing to streams of
text messages. Your users are sending messages between one another, so by
making your application event-driven, you are accurately modeling the business
domain. Another example might be an application that tries to plot the price
of shares. Each new price update can be modeled as an event.
The second obvious use case is a situation where your application needs to
perform many I/O operations simultaneously. In these situations, performing
blocking I/O requires too many threads to be spawned simultaneously. This
results in too many locks in contention and too much context switching.
If you want to deal with thousands of concurrent connections or more, it’s
usually better to go nonblocking.

Key Points

	
Event-driven architectures are easy to implement using
lambda-based callbacks.

	
A CompletableFuture represents an IOU for a value.
They can be easily composed and combined using lambdas.

	
An Observable extends the idea of a CompletableFuture to
streams of data.

Exercises

There’s really only one exercise for this chapter, and it requires refactoring some code to use a CompletableFuture. We’ll start out
with the BlockingArtistAnalyzer class shown in Example 9-18. This class takes the names of two artists, looks up the Artist objects from the names, and returns true if the first artist has more members and false otherwise. It is injected with an artistLookupService that may take some time to look up
the Artist in question. Because BlockingArtistAnalyzer blocks on this service
twice sequentially, the analyzer can be slow; the goal of our exercise is to
speed it up.
Example 9-18. The BlockingArtistAnalyzer tells its clients which Artist has more members
public class BlockingArtistAnalyzer {

 private final Function<String, Artist> artistLookupService;

 public BlockingArtistAnalyzer(Function<String, Artist> artistLookupService) {
 this.artistLookupService = artistLookupService;
 }

 public boolean isLargerGroup(String artistName, String otherArtistName) {
 return getNumberOfMembers(artistName) > getNumberOfMembers(otherArtistName);
 }

 private long getNumberOfMembers(String artistName) {
 return artistLookupService.apply(artistName)
 .getMembers()
 .count();
 }

}

The first part of this exercise is to refactor the blocking return code to use
a callback interface. In this case, we’ll be using a Consumer<Boolean>.
Remember that Consumer is a functional interface that ships with the JVM that
accepts a value and returns void. Your mission, should you choose to accept it,
is to alter BlockingArtistAnalyzer so that it implements ArtistAnalyzer (Example 9-19).
Example 9-19. The ArtistAnalyzer that you need to make BlockingArtistAnalyzer implement
public interface ArtistAnalyzer {

 public void isLargerGroup(String artistName,
 String otherArtistName,
 Consumer<Boolean> handler);

}

Now that we have an API that fits into the callback model, we can remove the need
for both of the blocking lookups to happen at the same time. You should refactor the
isLargerGroup method so that they can operate concurrently using the CompletableFuture
class.

Chapter 10. Moving Forward

In many ways, Java as a language has stood the test of time well. It’s still an
incredibly popular platform and a good choice for developing enterprise
business software. A vast array of open source libraries and frameworks have
been developed, solving every problem from how to write a modular and complex web
application (Spring) right down to getting basic date and time arithmetic right
(Jodatime). The tooling in space from IDEs such as Eclipse and Intellij right
through to build systems like gradle and maven is unrivaled.
Unfortunately, over the years Java has acquired a bit of a reputation as a staid development choice that has failed to evolve with the times, in part because it has been popular for a long period of time; familiarity breeds contempt. And of course, there have been genuine issues around the evolution of Java. The decision to maintain backward compatibility, despite its benefits, has complicated this.
Fortunately, the arrival of Java 8 signals not just an incremental improvement
in the language but a step change in its development. Unlike Java 6 and 7, this
release doesn’t equate to a few minor library improvements. I fully expect and
hope that future releases of Java will continue the rapid pace of improvement seen with
Java 8. That’s not just because I’ve enjoyed writing a book on the topic! I
really do think that there is a long way to go in terms of improving the
fundamental task of programming: making code easier to read, clarifying its
intent, making it easier to write high-performance code. My only regret is that
there isn’t enough space in this concluding chapter to detail the full
potential of future releases.
We’re nearing the end of this book, but I hope we’re not nearing the end of
your time with Java 8. I’ve covered a bunch of different ways you can use
lambda expressions: better collections library code, data parallelism,
simpler and cleaner code, and finally concurrency. I’ve explained the
why, what, and how, but it is still up to you to put everything into practice.
In this spirit, here is a series of open exercises to which there are no right
and wrong answers. Undertaking them can help guide your ongoing learning
experience:
	
Explain what lambda expressions are and why they should be of interest to another programmer. This could be a friend or a coworker.

	
Start a trial deployment of your work product on Java 8. If you’ve already got your unit tests running under the Jenkins CI system, then it’s very easy to run the same build under multiple Java versions.

	
Start refactoring a bit of legacy code in a real product to use streams and collectors. This could be an open source project you’re interested in or maybe even your work product if the trial deployment went well. If you aren’t ready to move wholesale, then perhaps prototyping things on a different branch is a good way to start.

	
Do you have any concurrency problems or large-scale data-processing code? If so, try to prototype a refactor in order to use either streams for data parallelism or some of the new concurrency features in RxJava or CompletableFuture.

	
Have a look at the design and architecture of a code base you know really well:

	
Could it be implemented better at a macro level?

	
Can you simplify the design?

	
Can you reduce the amount of code needed to implement a feature?

	
Can the code be made easier to read?

Index

A
	abstract classes, Template Method Pattern
	
	accumulators, A Common Pattern Appears
	
	ActionListener class, Your First Lambda Expression
	
	Agile software development, Lambda-Enabled Design Patterns
		immutable objects and, The Open/Closed Principle
	

	Amdahls Law, Why Is Parallelism Important?
	
	anonymous inner class, Your First Lambda Expression, Using Lambda Expressions in Code
	
	Answer interface (Mockito), Using Lambda Expressions in Test Doubles
	
	antipatterns, Lambda-Enabled Design Patterns
	
	Apache Camel, Reactive Programming
	
	Apache Maven, Moving Forward
	
	arguments, How to Spot a Lambda in a Haystack
	
	array operations, Parallel Array Operations
		parallel performance of, Performance
	

	ArrayList data source, Performance
	
	Arrays class, Parallel Array Operations
		parallelPrefix operation, Parallel Array Operations
	
	parallelSetAll operation, Parallel Array Operations
	
	parallelSort operation, Parallel Array Operations
	

	asynchronous I/O (see nonblocking I/O)
	
	averagingInt as downstream collector, Composing Collectors
	

B
	backwards binary compatibility, Binary Interface Compatibility
	
	Beck, Kent, Testing, Debugging, and Refactoring
	
	behavior-driven development (BDD), Lambda-Enabled Domain-Specific Languages
		test-driven development vs., Lambda-Enabled Domain-Specific Languages
	

	binary objects, passing between verticals, Message Passing Architectures
	
	BinaryOperator interface, Type Inference, Overload Resolution
	
	blocking I/O, Why Use Nonblocking I/O?
	
	boxed type, Primitives
	
	boxed() method, Primitives
	
	boxing, Primitives
	
	Buffer class (vertx), Message Passing Architectures
	
	build method, What’s Actually Going On
	
	builder pattern, What’s Actually Going On
	
	bun methods, collect(toList())
	

C
	callbacks, Callbacks–Callbacks
		combining with Futures, Completable Futures–Completable Futures
	
	Pyramid of Doom and, The Pyramid of Doom–The Pyramid of Doom
	

	Camel (Apache), Reactive Programming
	
	cascading style sheets, as external DSL, Lambda-Enabled Domain-Specific Languages
	
	class cohesion, The Single Responsibility Principle
	
	client class (command pattern), Command Pattern
	
	Closeable interface, @FunctionalInterface
	
	closures, Using Values
	
	code
		as data, Your First Lambda Expression
	
	opinions on, Design and Architectural Principles
	

	cohesion, The Single Responsibility Principle
	
	collect(toList()) operation (Stream), collect(toList())
	
	collections, Advanced Collections and Collectors–Key Points
		collectors, Enter the Collector–Reduction as a Collector
	
	creating parallel streams from, Parallel Stream Operations
	
	in Java 8, Collection Niceties–Collection Niceties
	
	method references, Method References
	
	stream elements, ordering, Element Ordering–Element Ordering
	

	Collections interface, Binary Interface Compatibility
	
	collectors, Enter the Collector–Reduction as a Collector
		composing, Composing Collectors–Composing Collectors
	
	custom, Refactoring and Custom Collectors–Refactoring and Custom Collectors
	
	data partitioning with, Partitioning the Data
	
	grouping data with, Grouping the Data
	
	into other collections, Into Other Collections
	
	reduction as, Reduction as a Collector
	
	refactoring, Refactoring and Custom Collectors–Refactoring and Custom Collectors
	
	strings, Strings
	
	to values, To Values
	

	combining functions, Caveats
	
	command class (command pattern), Command Pattern
	
	command pattern, Command Pattern–Command Pattern
		lambda expressions vs., Command Pattern
	

	Comparable interface, @FunctionalInterface
	
	Comparator, max and min
	
	comparing method, max and min
	
	completable futures, Completable Futures–Completable Futures
	
	CompletableFuture API, Moving Forward
		complete method, Completable Futures
	
	completeExceptionally, Completable Futures
	
	exceptionally method, Completable Futures
	
	Executor, Completable Futures
	
	isCompletedExceptionally method, Completable Futures
	
	isDone method, Completable Futures
	
	join method, Completable Futures
	
	Streams API vs., Completable Futures
	
	supplyAsync method, Completable Futures
	
	thenAccept method, Completable Futures
	
	thenApply method, Completable Futures
	
	thenCombine method, Completable Futures
	
	thenRun method, Completable Futures
	

	complete method (CompletableFuture), Completable Futures
	
	completeExceptionally (CompletableFuture), Completable Futures
	
	concrete classes, Template Method Pattern
	
	concurrency, Lambda-Enabled Concurrency–Key Points
		appropriate use of, When and Where
	
	callbacks and, Callbacks–Callbacks
	
	completable futures, Completable Futures–Completable Futures
	
	futures, Futures–Completable Futures
	
	message passing architecture, Message Passing Architectures
	
	nonblocking I/O, Why Use Nonblocking I/O?
	
	parallelism vs., Parallelism Versus Concurrency–Parallelism Versus Concurrency, Parallelism Versus Concurrency
	
	reactive programming, Reactive Programming–Reactive Programming
	

	concurrent package, Why Did They Need to Change Java Again?
	
	connectHandler method (vertx), Callbacks
	
	Consumer, Completable Futures
	
	continuous integration (CI), Testing, Debugging, and Refactoring
	
	CSS, as external DSL, Lambda-Enabled Domain-Specific Languages
	

D
	data parallelism, Data Parallelism–Key Points
		array operations for, Parallel Array Operations
	
	concurrency vs., Parallelism Versus Concurrency–Parallelism Versus Concurrency, Parallelism Versus Concurrency
	
	performance and, Why Is Parallelism Important?
	
	performance for, Performance–Performance
	
	rules of, Caveats
	
	simulations and, Simulations–Caveats
	
	stream operations and, Parallel Stream Operations–Parallel Stream Operations
	
	task parallelism vs., Parallelism Versus Concurrency
	

	data size and performance, Performance
	
	dataHandler method (vertx), Callbacks
	
	debug(String message), Using Lambda Expressions in Code
	
	debugging vs. lazy evaluation, Lazy Evaluation Versus Debugging
	
	default keyword, Default Methods–Default Methods and Subclassing
		subclassing and, Default Methods and Subclassing–Default Methods and Subclassing
	

	default methods, Default Methods
	
	deferred objects, Completable Futures
	
	dependency inversion principle, The Dependency Inversion Principle–The Dependency Inversion Principle
	
	describe verb (DSL), A DSL in Java
	
	design patterns, Lambda-Enabled Design Patterns
	
	design principles, Design and Architectural Principles–Further Reading
		command pattern, Command Pattern–Command Pattern
	
	domain-specific languages and, Lambda-Enabled Domain-Specific Languages–Evaluation
	
	lambda enabled, Lambda-Enabled Design Patterns–Template Method Pattern
	
	observer pattern, Observer Pattern–Observer Pattern
	
	SOLID principles, Lambda-Enabled SOLID Principles–The Dependency Inversion Principle
	
	strategy pattern, Strategy Pattern–Strategy Pattern
	
	template method pattern, Template Method Pattern–Template Method Pattern
	

	diamond operator, Type Inference
	
	domain model, exposing/hiding elements of, Putting Operations Together
	
	domain-specific languages (DSL), Lambda-Enabled Domain-Specific Languages–Evaluation
		describe verb, A DSL in Java
	
	evaluating, Evaluation
	
	expect class, How We Got There
	
	expectation, Lambda-Enabled Domain-Specific Languages
	
	external, Lambda-Enabled Domain-Specific Languages
	
	implementing, How We Got There–How We Got There
	
	in Java, A DSL in Java
	
	spec, Lambda-Enabled Domain-Specific Languages
	
	specifySuite method, How We Got There
	
	suite, Lambda-Enabled Domain-Specific Languages
	
	testing, Evaluation
	

	Domain-Specific Languages (Fowler and Parsons), Further Reading
	
	double type, Primitives
	

E
	eager methods, What’s Actually Going On
	
	Eclipse, Moving Forward
	
	effectively final variables, Using Values
	
	empty method (Optional), Optional
	
	encounter order, Element Ordering
	
	eventbus (vertx), Callbacks
		broadcast messages, implementing with, Callbacks
	

	exceptionally method (CompletableFutures), Completable Futures
	
	Executor (CompletableFuture), Completable Futures
	
	ExecutorService, Completable Futures
	
	expect class (DSL), How We Got There
	
	expectation (DSL), Lambda-Enabled Domain-Specific Languages
	
	external DSL, Lambda-Enabled Domain-Specific Languages
	
	external iteration, From External Iteration to Internal Iteration–From External Iteration to Internal Iteration
	

F
	filter method (Observable), Reactive Programming
	
	filter method (Stream), filter
	
	final variables, Using Values
	
	flatMap method (Observable), Reactive Programming
	
	flatmap operation, flatMap
	
	for loops
		external iteration vs., From External Iteration to Internal Iteration
	
	refactoring, Refactoring Legacy Code–Refactoring Legacy Code
	

	forEach method (Iterable), Default Methods
	
	Fowler, Martin, Using Lambda Expressions in Test Doubles, Further Reading
	
	Freeman, Steve, Testing, Debugging, and Refactoring
	
	Function objects
		flatmap operations and, flatMap
	
	passing lambda expressions as, map
	

	functional interfaces, Functional Interfaces–Functional Interfaces
		for DSLs, How We Got There
	

	functional programming, What Is Functional Programming?
		higher-order functions and, Higher-Order Functions
	

	@FunctionalInterface annotation, @FunctionalInterface
	
	futures, Futures–Completable Futures
		completable, Completable Futures–Completable Futures
	

G
	get method (Futures), Using Lambda Expressions in Code, Futures
		Optional values and, max and min, Optional
	

	gradle, Moving Forward
	
	group by (SQL), Grouping the Data
	
	groupingBy collector, Grouping the Data, Composing Collectors
	
	Growing Object-Oriented Software, Guided by Tests (Freeman and Pryce), Testing, Debugging, and Refactoring
	
	Guava Library (Google), Completable Futures
	
	GUI Editor example, Command Pattern
	
	gzip algorithm, Strategy Pattern
	

H
	HashSet (Collection), Element Ordering
		in parallel processing, Performance
	

	higher-order functions, Higher-Order Functions
	

I
	identity values, Caveats
	
	immutable objects, The Open/Closed Principle
	
	implementation immutability, The Open/Closed Principle
	
	inheritance, Multiple Inheritance
		of default methods, Default Methods–Default Methods and Subclassing
	
	rules of, The Three Rules
	
	super syntax and, Multiple Inheritance
	

	int type, Primitives
	
	Intellij, Moving Forward
	
	interfaces
		limitations of, Tradeoffs
	
	static methods on, Static Methods on Interfaces
	
	stream as, Static Methods on Interfaces
	

	internal DSL, Lambda-Enabled Domain-Specific Languages
	
	internal iteration, From External Iteration to Internal Iteration–From External Iteration to Internal Iteration
	
	IntStream.range constructor, Performance
	
	invoker class (command pattern), Command Pattern
	
	isCompletedExceptionally method (CompletableFutures), Completable Futures
	
	isDebugEnabled method, In, Out, In, Out, Shake It All About
		logging and, Using Lambda Expressions in Code
	

	isDone method (CompletableFutures), Completable Futures
	
	isPresent method (Optional), Optional
	
	Iterable objects, Default Methods
	
	iterate method (Stream), Performance
	
	iteration
		external vs. internal, From External Iteration to Internal Iteration–From External Iteration to Internal Iteration
	
	implementing, What’s Actually Going On
	

	iterator method (Streams), From External Iteration to Internal Iteration
	

J
	Jasmine framework, Lambda-Enabled Domain-Specific Languages
	
	Java 6, Moving Forward
	
	Java 7, Moving Forward
		type inference in, Type Inference
	

	Java 8, Why Did They Need to Change Java Again?
		backwards binary compatibility, Binary Interface Compatibility
	
	collections in, Collection Niceties–Collection Niceties
	
	comparing method, max and min
	
	default keyword, Default Methods–Default Methods and Subclassing
	
	design principles, Design and Architectural Principles–Further Reading
	
	domain, Example Domain
	
	functional programming in, What Is Functional Programming?
	
	@FunctionalInterface annotation, @FunctionalInterface
	
	general patterns in, A Common Pattern Appears
	
	method references, Method References
	
	multiple inheritance, Multiple Inheritance
	
	NIO API, Why Use Nonblocking I/O?
	
	open/closed principle and, The Open/Closed Principle
	
	optional core library, Optional
	

	Jenkins CI system, Moving Forward
	
	JMock, Lambda-Enabled Domain-Specific Languages
	
	Jodatime, Moving Forward
	
	join method (CompletableFuture), Completable Futures
	
	joining method (Collectors), Strings
	
	JOOQ, Lambda-Enabled Domain-Specific Languages
	
	JSON objects and verticals, Message Passing Architectures
	
	JUnit, Lambda-Enabled Domain-Specific Languages
	

L
	lambda expressions, Lambda Expressions–Key Points
		best practices for, Good Use of Lambda Expressions
	
	collections, Advanced Collections and Collectors–Key Points
	
	command pattern vs., Command Pattern
	
	concurrency, Lambda-Enabled Concurrency–Key Points
	
	design principles, Design and Architectural Principles–Further Reading
	
	domain-specific languages and, Lambda-Enabled Domain-Specific Languages–Evaluation
	
	format of, How to Spot a Lambda in a Haystack–How to Spot a Lambda in a Haystack
	
	functional interfaces and, Functional Interfaces–Functional Interfaces
	
	iteration, From External Iteration to Internal Iteration–From External Iteration to Internal Iteration
	
	libraries, Libraries–Optional
	
	observer pattern vs., Observer Pattern
	
	reading, How to Spot a Lambda in a Haystack
	
	refactoring, Lambda Refactoring Candidates–Unit Testing Lambda Expressions
	
	strategy pattern vs., Strategy Pattern
	
	streams and, Streams–Key Points
	
	template method pattern vs., Template Method Pattern
	
	test doubles, using, Using Lambda Expressions in Test Doubles–Using Lambda Expressions in Test Doubles
	
	type inference, Type Inference–Type Inference
	
	unit testing, Unit Testing Lambda Expressions–Unit Testing Lambda Expressions
	
	usage, Using Lambda Expressions in Code
	
	values and, Using Values
	

	lambdifiers, Lambda Refactoring Candidates
	
	lazy evaluation vs. debugging, Lazy Evaluation Versus Debugging
	
	lazy methods, What’s Actually Going On
	
	libraries, Libraries–Optional
		@FunctionalInterface annotation, @FunctionalInterface
	
	optional core, Optional
	
	overloading methods, Overload Resolution–Overload Resolution
	
	primitive types and, Primitives–Primitives
	

	lines method (BufferedReader), Performance
	
	LinkedList, Performance
	
	List (Collection), Element Ordering
	
	ListenableFuture, Completable Futures
	
	locking data structures, Caveats
	
	log4j logging system, Using Lambda Expressions in Code, The Solution: peek
	
	logging, Logging and Printing
		speeding up with lambda expressions, Using Lambda Expressions in Code
	

	logging (Util), The Solution: peek
	
	long type, Primitives
	
	LongStream function, Primitives
	
	LongUnaryOperator function, Primitives
	

M
	macro functionality, Command Pattern
	
	macros, Command Pattern
	
	Map collectors, Collection Niceties
	
	map method (Observable), Reactive Programming
	
	map operation (Stream), map
		for specialized primitives, Primitives
	

	mapping collector, Composing Collectors
	
	mapToLong function, Primitives
	
	mapToObj method, Primitives
	
	Martin, Bob, Further Reading
	
	Maven (Apache), Moving Forward
	
	max operation (Stream), max and min
	
	maxBy collector, To Values
	
	Message object (vertx), Callbacks
	
	message passing architecture, Message Passing Architectures
	
	method references, Method References
		unit testing and, Unit Testing Lambda Expressions
	

	Meyer, Bertrand, The Open/Closed Principle
	
	midstream breakpoints, Midstream Breakpoints
	
	min operation (Stream), max and min
	
	minBy collector, To Values
	
	mocking libraries, Lambda-Enabled Domain-Specific Languages
	
	Mockito framework, Using Lambda Expressions in Test Doubles, Lambda-Enabled Domain-Specific Languages
	
	mocks, Using Lambda Expressions in Test Doubles
	
	Mocks Arent Stubs (Fowler), Using Lambda Expressions in Test Doubles
	
	Monte Carlo simulations, Simulations–Caveats
	
	multicore CPUs, Why Did They Need to Change Java Again?, Why Is Parallelism Important?
	
	multiple inheritance, Multiple Inheritance
		rules of, The Three Rules
	

N
	New I/O (see nonblocking I/O)
	
	newline (Pattern class), Callbacks
	
	NIO (see nonblocking I/O)
	
	nonblocking I/O, Why Use Nonblocking I/O?
		blocking I/O vs., Why Use Nonblocking I/O?
	
	Java API for, Why Use Nonblocking I/O?
	

	null value, Optional
	
	NullPointerException, Optional
	

O
	Object Mentor website, Further Reading
	
	Observable (RxJava), Reactive Programming
		filter method, Reactive Programming
	
	flatMap method, Reactive Programming
	
	map method, Reactive Programming
	
	onCompleted method, Reactive Programming
	
	onError method, Reactive Programming
	
	onNext method, Reactive Programming
	
	Stream vs., Reactive Programming
	
	take method, Reactive Programming
	

	observable immutability, The Open/Closed Principle
	
	observer pattern, Observer Pattern–Observer Pattern
		designing APIs for, Observer Pattern
	
	lambda expressions vs., Observer Pattern
	

	ofNullable method (Optional), Optional
	
	onCompleted method (Observable), Reactive Programming
	
	onError method (Observable), Reactive Programming
	
	onNext method (Observable), Reactive Programming
	
	open/closed principle, The Open/Closed Principle–The Open/Closed Principle
		immutable objects, The Open/Closed Principle
	

	operations
		chaining, Putting Operations Together
	
	parallel array, Parallel Array Operations
	
	parallel stream, Parallel Stream Operations–Parallel Stream Operations
	
	refactoring legacy code, Refactoring Legacy Code–Refactoring Legacy Code
	

	optional core library, Optional
	
	Optional values, max and min
		empty method, Optional
	
	isPresent method, Optional
	
	ofNullable method, Optional
	

	Oracle, Composing Collectors
	
	orElse method, Optional
	
	orElseGet method, Optional
	
	overloading methods, Overload Resolution–Overload Resolution
		default methods and, Default Methods and Subclassing–Default Methods and Subclassing
	
	ThreadLocal and, The Lonely Override
	

P
	parallel method (Stream), Parallel Stream Operations
	
	parallelPrefix operation (Arrays), Parallel Array Operations
	
	parallelSetAll operation (Arrays), Parallel Array Operations
	
	parallelSort operation (Arrays), Parallel Array Operations
	
	parallelStream method (Collection), Parallel Stream Operations
	
	parameter types, Functional Interfaces
	
	Parsons, Rebecca, Further Reading
	
	partitioningBy collector, Partitioning the Data
	
	Pattern class (Regex), Callbacks
	
	peek operation, The Solution: peek
	
	performance
		boxed types and, Primitives
	
	Futures and, Futures
	
	logging and, Using Lambda Expressions in Code
	
	parallelism and, Why Is Parallelism Important?, Performance–Performance
	
	primitive specialized functions and, Primitives
	
	sequential vs. parallel processing and, Parallel Stream Operations
	

	point lambdafication, Lambda Refactoring Candidates
	
	Predicate, Type Inference
		filter method with, filter
	
	overloaded methods and, Overload Resolution
	
	stream partitioning with, Partitioning the Data
	

	primitive specialization, Primitives
	
	primitive types, Primitives–Primitives
		Stream specialization for, Primitives
	

	promise, Completable Futures
	
	Pryce, Nat, Testing, Debugging, and Refactoring
	
	Pyramid of Doom, The Pyramid of Doom–The Pyramid of Doom
	

Q
	Querydsl, Lambda-Enabled Domain-Specific Languages
	

R
	Reactive Manifesto website, When and Where
	
	reactive programming, Reactive Programming–Reactive Programming
	
	readability of code, Why Did They Need to Change Java Again?
		final values and, Using Values
	
	method references and, Method References
	

	receiver class (command pattern), Command Pattern
	
	reduce operation (Stream), reduce–reduce
		in parallel, Caveats
	

	reduction, collectors as, Reduction as a Collector
	
	refactoring code, Lambda Refactoring Candidates–Unit Testing Lambda Expressions
		logging, In, Out, In, Out, Shake It All About
	
	overriding single methods, The Lonely Override
	
	WET pattern and, Behavioral Write Everything Twice–Unit Testing Lambda Expressions
	
	with collectors, Refactoring and Custom Collectors–Refactoring and Custom Collectors
	

	refactoring legacy code, Refactoring Legacy Code–Refactoring Legacy Code
	
	regular expressions, as external DSL, Lambda-Enabled Domain-Specific Languages
	
	Runnable, Command Pattern
		CompletableFutures and, Completable Futures
	

	RxJava framework, Lambda-Enabled Concurrency, Moving Forward
		documentation, Reactive Programming
	
	reactive programming with, Reactive Programming
	

S
	Selectors, Why Use Nonblocking I/O?
	
	sequential method (Stream), Caveats
	
	Servlets vs. Verticals, Callbacks
	
	side effect-free functions, Good Use of Lambda Expressions
	
	single responsibility principle, The Single Responsibility Principle–The Single Responsibility Principle
	
	singleton pattern, Lambda-Enabled Design Patterns
	
	slf4j logging system, Using Lambda Expressions in Code, The Solution: peek
	
	SOLID principles, Lambda-Enabled SOLID Principles–The Dependency Inversion Principle
		dependency inversion principle, The Dependency Inversion Principle–The Dependency Inversion Principle
	
	open/closed principle, The Open/Closed Principle–The Open/Closed Principle
	
	single responsibility principle, The Single Responsibility Principle–The Single Responsibility Principle
	

	spec (DSL), Lambda-Enabled Domain-Specific Languages
	
	specifySuite method (DSL), How We Got There
	
	splitAsStream (Pattern class), Callbacks
	
	Spring, Moving Forward
	
	Spring Framework, Completable Futures
	
	SQL builder APIs, Lambda-Enabled Domain-Specific Languages
	
	state
		sharing between verticals, avoiding, Message Passing Architectures
	
	streams and, Performance
	

	stateful stream operations, Performance
	
	stateless stream operations, Performance
	
	static methods, Static Methods on Interfaces
	
	strategy pattern, Strategy Pattern–Strategy Pattern
		lambda expressions vs., Strategy Pattern
	

	Stream API, Common Stream Operations–Putting Operations Together
		collect(toList()) operation, collect(toList())
	
	CompletableFuture API vs., Completable Futures
	
	filter method, filter
	
	iterate method, Performance
	
	map operation, map, Primitives
	
	max operation, max and min
	
	min operation, max and min
	
	parallel method, Parallel Stream Operations
	
	peek, The Solution: peek
	
	reduce operation, reduce–reduce, Caveats
	
	RxJava vs., Reactive Programming
	
	sequential method, Caveats
	
	unordered() method, Element Ordering
	

	stream method, backwards compatibility of, Binary Interface Compatibility
	
	streams, Streams–Key Points
		chaining operations on, Putting Operations Together
	
	filter method, filter
	
	flatmap operation, flatMap
	
	implementing, What’s Actually Going On
	
	iterating over, From External Iteration to Internal Iteration–From External Iteration to Internal Iteration
	
	legacy code and, Refactoring Legacy Code–Refactoring Legacy Code
	
	multiple calls to, Multiple Stream Calls
	
	operations, Common Stream Operations–Putting Operations Together
	
	ordering elements in, Element Ordering–Element Ordering
	
	specialized versions of, Primitives
	
	stateful operations, Performance
	
	stateless operations, Performance
	

	String objects
		as immutable code, The Open/Closed Principle
	
	splitting with splitAsStream, Callbacks
	

	strings, Strings
	
	stubs, Using Lambda Expressions in Test Doubles
	
	subclassing, Default Methods and Subclassing–Default Methods and Subclassing
	
	subject (observer pattern), Observer Pattern
	
	suite (DSL), Lambda-Enabled Domain-Specific Languages
	
	summarizingInt collector, To Values
	
	summarizingLong, as downstream collector, Composing Collectors
	
	summaryStatistics method, Primitives
		summarizingInt collector, To Values
	

	summingInt collector, To Values
	
	super syntax, Multiple Inheritance
	
	supplyAsync method (CompletableFuture), Completable Futures
	
	Swing, Your First Lambda Expression
	

T
	take method (Observable), Reactive Programming
	
	target types of lambda expressions, How to Spot a Lambda in a Haystack, Overload Resolution
	
	task parallelism, Parallelism Versus Concurrency
	
	template method pattern, Template Method Pattern–Template Method Pattern
		lambda expressions vs., Template Method Pattern
	

	test doubles, Using Lambda Expressions in Test Doubles–Using Lambda Expressions in Test Doubles
	
	Test-Driven Development (Beck), Testing, Debugging, and Refactoring
	
	test-driven development (TDD), Testing, Debugging, and Refactoring
		behavior-driven development vs., Lambda-Enabled Domain-Specific Languages
	

	testing
		concurrent systems with verticals, Message Passing Architectures
	
	logging, Logging and Printing
	
	midstream breakpoints, Midstream Breakpoints
	
	verticals, Message Passing Architectures
	

	thenAccept method (CompletableFutures), Completable Futures
	
	thenApply method (CompletableFutures), Completable Futures
	
	thenCombine method (CompletableFuture), Completable Futures
	
	thenRun method (CompletableFutures), Completable Futures
	
	ThreadLocal class, The Open/Closed Principle
		lonely overrides and, The Lonely Override
	

	toCollection collector, Into Other Collections
	
	toList collector, Into Other Collections
	
	ToLongFunction method, Primitives
	
	toSet collector, Into Other Collections
	
	TreeSet, Into Other Collections
		in parallel processing, Performance
	

	Twitter, When and Where
	
	type inference, Type Inference
	
	types
		inferring, Type Inference–Type Inference
	
	parameter, Functional Interfaces
	
	Predicates and, Type Inference
	
	primitive, Primitives–Primitives
	

U
	unboxing, Primitives
	
	unit testing, Unit Testing Lambda Expressions–Unit Testing Lambda Expressions
		challenges of, Unit Testing Lambda Expressions
	
	test doubles and, Using Lambda Expressions in Test Doubles–Using Lambda Expressions in Test Doubles
	

	unordered method (Stream), Element Ordering
	
	user connections, handling, Callbacks
	
	utility code, Static Methods on Interfaces
	

V
	values
		final, Using Values
	
	variables vs., Using Values
	

	variables vs. values, Using Values
	
	verbosity of code, Why Did They Need to Change Java Again?
	
	vertical (vertx), Callbacks
	
	vertx framework, Lambda-Enabled Concurrency
		broadcast messages, implementing within, Callbacks
	
	Buffer class, Message Passing Architectures
	
	CompletableFutures in, Completable Futures
	
	connectHandler method, Callbacks
	
	dataHandler method, Callbacks
	
	eventbus, Callbacks, Callbacks
	
	implementing code within, Callbacks
	
	integrating with RxJava, Reactive Programming
	
	Message object, Callbacks
	
	verticals, Callbacks
	

	virtual methods, Default Methods and Subclassing
	

W
	with method, The Pyramid of Doom
	
	Write Everything Twice (WET), Behavioral Write Everything Twice–Unit Testing Lambda Expressions
	

Z
	zip algorithm, Strategy Pattern
	

Colophon
The animal on the cover of Java 8 Lambdas is a lesser spotted eagle (Aquila pomarina). This large bird of prey can be found in Eastern Europe and belongs to the family Accipitridae, like all typical eagles. The lesser spotted eagle is medium-sized with a head and bill that are small for eagles; these eagles typically measure up to 60 cm in length with a 150 cm wingspan.
Juvenile spotted eagles have white spots on their flight feathers, also called remiges, whereas adults are pale brown in the head and wings with dark plumage. These eagles breed in central and eastern Europe, laying 1–3 white buff-spotted eggs in a tree nest. As is typical for eagles, the number of young depends on the amount of food during the breeding season. The female begins incubation when the first egg is laid; often the first young outgrows its clutchmate and eventually kills or eats them.
The cover image is from Meyers Kleines. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Java 8 Lambdas

Richard Warburton

Editor
Meghan Blanchette

Editor
Melanie Yarbrough

Editor
Nancy Kotary

	Revision History
	2014-03-13	First release

Copyright © 2014 Richard Warburton

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Java 8 Lambdas, the image of a lesser spotted eagle,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and authors assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-03-13T18:09:58Z

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/images/jvld_0901.png
Verticle 1 Verticle 2 Verticle 3
A
send .
v receive

Eventbus

OEBPS/DejaVuSerif.otf

OEBPS/images/jvld_0202.png
T —>‘ Predicate — hoolean

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/callouts/1.png

OEBPS/UbuntuMono-Bold.otf

OEBPS/bk01-toc.html
Java 8 Lambdas

Table of Contents
		Preface		Why Should I Read This Book?

		Who Should Read This Book?

		How to Read This Book

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Introduction		Why Did They Need to Change Java Again?

		What Is Functional Programming?

		Example Domain

		2. Lambda Expressions		Your First Lambda Expression

		How to Spot a Lambda in a Haystack

		Using Values

		Functional Interfaces

		Type Inference

		Key Points

		Exercises

		3. Streams		From External Iteration to Internal Iteration

		What’s Actually Going On

		Common Stream Operations		collect(toList())

		map

		filter

		flatMap

		max and min

		A Common Pattern Appears

		reduce

		Putting Operations Together

		Refactoring Legacy Code

		Multiple Stream Calls

		Higher-Order Functions

		Good Use of Lambda Expressions

		Key Points

		Exercises

		Advanced Exercises

		4. Libraries		Using Lambda Expressions in Code

		Primitives

		Overload Resolution

		@FunctionalInterface

		Binary Interface Compatibility

		Default Methods		Default Methods and Subclassing

		Multiple Inheritance		The Three Rules

		Tradeoffs

		Static Methods on Interfaces

		Optional

		Key Points

		Exercises

		Open Exercises

		5. Advanced Collections and Collectors		Method References

		Element Ordering

		Enter the Collector		Into Other Collections

		To Values

		Partitioning the Data

		Grouping the Data

		Strings

		Composing Collectors

		Refactoring and Custom Collectors

		Reduction as a Collector

		Collection Niceties

		Key Points

		Exercises

		6. Data Parallelism		Parallelism Versus Concurrency

		Why Is Parallelism Important?

		Parallel Stream Operations

		Simulations

		Caveats

		Performance

		Parallel Array Operations

		Key Points

		Exercises

		7. Testing, Debugging, and Refactoring		Lambda Refactoring Candidates		In, Out, In, Out, Shake It All About

		The Lonely Override

		Behavioral Write Everything Twice

		Unit Testing Lambda Expressions

		Using Lambda Expressions in Test Doubles

		Lazy Evaluation Versus Debugging

		Logging and Printing

		The Solution: peek

		Midstream Breakpoints

		Key Points

		8. Design and Architectural Principles		Lambda-Enabled Design Patterns		Command Pattern

		Strategy Pattern

		Observer Pattern

		Template Method Pattern

		Lambda-Enabled Domain-Specific Languages		A DSL in Java

		How We Got There

		Evaluation

		Lambda-Enabled SOLID Principles		The Single Responsibility Principle

		The Open/Closed Principle

		The Dependency Inversion Principle

		Further Reading

		Key Points

		9. Lambda-Enabled Concurrency		Why Use Nonblocking I/O?

		Callbacks

		Message Passing Architectures

		The Pyramid of Doom

		Futures

		Completable Futures

		Reactive Programming

		When and Where

		Key Points

		Exercises

		10. Moving Forward

		Index

		Colophon

		Copyright

OEBPS/callouts/3.png

OEBPS/images/jvld_0304.png
T —>‘ Function — R

OEBPS/images/jvld_0401.png
T —>‘ ToLongFunction — long

OEBPS/images/jvld_0505.png
Container

N

Combiner

Container

OO0

Container

OEBPS/images/jvld_0503.png
Supplier

}

Container

Stream

OO0

Supplier

}

Container

OEBPS/images/jvld_0506.png
Container

Finisher

OO0

OEBPS/images/jvld_0403.png
long —{ LongUnaryOperator — long

OEBPS/images/jvld_0307.png
flatMap ([_] to OC>

OO OO

OEBPS/images/jvld_0201.png
ActionEvent —| ActionListener

OEBPS/images/cover.png.jpg
(o E

Java
Lambdas

FUNCTIONAL PROGRAMMING FOR THE MASSES

Richard Warburton

OEBPS/images/jvld_0501.png
true: O

partitioningBy (is O)

O false:

O

OEBPS/images/jvld_0404.png
- welcome

interface Parent

extends

implements

interface Child
- welcome

implements

Class ChildImp1

welcome from Child

class ParentImpi

welcome from Parent

OEBPS/callouts/4.png

OEBPS/callouts/2.png

OEBPS/images/jvld_0301.png
Application Code

Collections Code

[teration

hasNext()
/‘*’

hasNext

next()
/ﬁ*

element

v v

OEBPS/images/jvld_0302.png
Application code

Build operation

Result

Collections code

[teration

—

OEBPS/images/jvld_0308.png
result

OEBPS/images/jvld_0303.png
OO0

OEBPS/images/jvld_0504.png
Accumulatoy Stream \Accumulator

Container Container

O O
O

OEBPS/images/jvld_0903.png
What we're doing

loginTo("artist")

loginTo("track")

Wwaits on

lookupTracks()
lookupArtists()

What we want to do

loginTo("artist")

loginTo("track")

lookupTracks () .
waits on
lookupArtists()

OEBPS/images/jvld_0904.png
Client Code Worker Thread

CompletableFuture

Future (onstructed\

Register
Handlers

CompletableFuture |/complete()

Future Constructed
Final result

N

4‘\

OEBPS/images/jvld_0902.png
Verticle 1 Verticle 2 Verticle 3
) A A
VPUbI'Sh receive receive

Eventbus

OEBPS/images/jvld_0602.png
| Elements1...N |

= | Elements 1...N/2 | | ElementsN/2...N |
[1ova | [wawa] [we.] []
mapTolnt mapTolnt maplolnt maplolnt

sum sum

N

sum

OEBPS/images/jvld_0502.png
O~ QO

groupingBy (shape) »------

[]—

OEBPS/images/jvld_0601.png
Concurrent but not Parallel
Core 1 Core2

Task 1
Task 2

Parallel and Concurrent
Core 1 Core 2

Task 1
Task 2

OEBPS/images/jvld_0801.png
calls
Invoker » Command
'y A
creates impleme

. uses | Concrete
Client "| Command
calls

v

Receiver

OEBPS/images/jvld_0803.png
Accumulator

N

Card
Reader

Address Book
Storage

OEBPS/images/jvld_0802.png
Compressor

calls
v
Compression
Strategy
implemV Wements
7P qgzip

Compression Compression

OEBPS/callouts/5.png

OEBPS/images/jvld_0305.png
filter (green or orange)

OEBPS/images/jvld_0405.png
interface Parent
- welcome

extends implements

interface Child
- welcome

class ParentImp1i

welcome from Parent

implements

implements

Class ChildImp1

. class OverridingParent
welcome from Child

welcome from Parent

Class OverridingChild

welcome from Parent

OEBPS/images/jvld_0402.png
long —»

LongFunction

