
M A N N I N G

G. Ann Campbell
Patroklos P. Papapetrou

FOREWORD BY Olivier Gaudin

IN ACTION

SonarQube in Action

SonarQube in Action
G. ANN CAMPBELL

PATROKLOS P. PAPAPETROU

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Susanna Kline
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 261 Proofreader: Toma Mulligan
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290954
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 18 17 16 15 14 13

www.manning.com

 To the software architects, programmers, testers, project managers, executives,
and end users of every piece of software ever written.

We hope this book will make your lives easier.

brief contents
PART 1 WHAT THE NUMBERS ARE TELLING YOU1

1 ■ An introduction to SonarQube 3
2 ■ Issues and coding standards 26
3 ■ Ensuring that your code is doing things right 42
4 ■ Working with duplicate code 64
5 ■ Optimizing source code documentation 82
6 ■ Keeping your source code files elegant 96
7 ■ Improving your application design 113

PART 2 SETTLING IN WITH SONARQUBE135
8 ■ Planning a strategy and expanding your insight 137
9 ■ Continuous Inspection with SonarQube 156

10 ■ Letting SonarQube drive code reviews 178
11 ■ IDE integration 205

PART 3 ADMINISTERING AND EXTENDING...............................221
12 ■ Security: users, groups, and roles 223
13 ■ Rule profile administration 237
14 ■ Making SonarQube fit your needs 262
15 ■ Managing your projects 287
16 ■ Writing your own plugin 305
vii

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxviii

PART 1 WHAT THE NUMBERS ARE TELLING YOU1

1 An introduction to SonarQube 3
1.1 Why SonarQube 4

Proven technologies 6 ■ Multilingual: SonarQube speaks your
language 6

1.2 Running your first analysis 7
Installation considerations 7 ■ Analyzing with SonarQube
Runner 8 ■ Analyzing multilanguage projects 9 ■ Seeing the
output: SonarQube’s front page 9 ■ Drilling in: the
dashboard 10

1.3 Seven Axes of Quality 13
Potential bugs and coding rules 14 ■ Tests 15 ■ Comments and
duplications 15 ■ Architecture and design 16
Complexity 18

1.4 The languages SonarQube covers 18
ix

CONTENTSx
1.5 Interface conventions 20
Hierarchy: packages and classes in a metric drilldown 20 ■ File
details 21

Trend arrows 22

1.6 Related plugins 23
Technical debt 23 ■ Views 24

1.7 Summary 24

2 Issues and coding standards 26
2.1 Looking at your issues 27
2.2 What issues mean, and why they’re potential

problems 30
Bugs 31 ■ Potential bugs 31 ■ Indications of (potential)
programmer error 32 ■ Things that may lead to future programmer
error 34 ■ Inefficiencies 35 ■ Style inconsistencies (future
productivity obstacles) 36

2.3 Where do issues come from? 36
Picking a rule profile 37 ■ Viewing profiles and changing the
default 38

2.4 Related plugins 40
SCM Activity 40

2.5 Summary 41

3 Ensuring that your code is doing things right 42
3.1 Knowing how much of your code is doing things right 43

Understanding unit-test metrics 44 ■ Getting reports on unit-test
coverage metrics 47

3.2 Explaining metrics on a file level 50
Hunting source code lines with low coverage 50 ■ Finding
problems in your unit tests 54

3.3 Configuring your favorite code-coverage tool 57
Changing the default selection 57

3.4 Integration testing 58
Displaying integration testing coverage on the dashboard 59
Getting IT information in the source code Coverage tab 60

3.5 Related plugins 61
3.6 Summary 63

CONTENTS xi
4 Working with duplicate code 64
4.1 The hidden cost of duplicate code 65

4.2 Identifying duplications 66
Finding your first duplication 67 ■ Finding duplications on a
larger scale 69 ■ SonarQube’s duplication metrics 69
Drilling in: from the duplications widget to the Duplications
tab 70

4.3 Realizing the impact of code duplication 73
The DRY principle: minimizing and eliminating duplications 73
Duplications vs. size and complexity 74

4.4 Finding duplications across multiple projects 74
Turning on cross-project duplication detection 75 ■ Cross-project
duplications in source code tab 75

4.5 Cleaning up your duplications 77
Introduction to refactoring patterns 77 ■ Applying patterns to
remove code duplication 77 ■ Time for a new commons
library? 79

4.6 Related plugins 80
4.7 Summary 81

5 Optimizing source code documentation 82
5.1 To document or not? 83
5.2 Even commenting has its own metrics 84

How SonarQube calculates metrics 84 ■ What the numbers
are telling you 86

5.3 Identifying undocumented code 87
Finding files to improve documentation 88 ■ Viewing the
generic tab in the source code viewer 89

5.4 Simplifying your documentation strategy 90
Picking a documentation tool 90 ■ Defining a
straightforward process 91

5.5 Related plugins 92
Widget Lab 93 ■ Doxygen 93

5.6 Summary 94

CONTENTSxii
6 Keeping your source code files elegant 96
6.1 Keeping complexity low 97

Hunting those huge files 97 ■ Complexity: what it looks like and
how to fix it 99

6.2 Lack of Cohesion of Methods: files that do too much 101
Getting reports about the LCOM metric 102 ■ Counting
responsibilities 103 ■ Refactoring for fewer responsibilities 106

6.3 RFC and couplings: classes with too many friends 108
Response for Class 108 ■ Couplings 110

6.4 Summary 112

7 Improving your application design 113
7.1 Layering your code 114

Looking at dashboard widgets 114 ■ Understanding cycles and
unwanted dependencies 115 ■ Moving from project to package
level 117

7.2 Discovering dependencies and eliminating cycles 118
Navigating the Dependency Structure Matrix 119 ■ How the DSM
works 121 ■ Identifying cycles 124 ■ Library management for
Mavenites 127 ■ Browsing the library-dependency tree 127
Who uses this library 131

7.3 Defining your architectural rule set 132
7.4 Summary 134

PART 2 SETTLING IN WITH SONARQUBE 135

8 Planning a strategy and expanding your insight 137
8.1 Planning your strategy 138

Picking a metric 139 ■ Holding your ground 141 ■ Moving the
goal posts 141 ■ Boy Scout approach: leave the class better than
you found it 142 ■ SonarQube time: worst first 143
Re-architect 143 ■ The end game 144

8.2 History and trending 145
Time Machine 145 ■ Events and database cleanup 149

8.3 Everything’s a component 150
Project component view 150 ■ No package history 152

CONTENTS xiii
8.4 Related plugins 153
Tab Metrics 153 ■ Widget Lab 154

8.5 Summary 154

9 Continuous Inspection with SonarQube 156
9.1 Introducing Continuous Inspection 157

What and how? 157 ■ Life before and after Continuous
Inspection 158 ■ The big picture 159

9.2 Triggering your analysis with CI 160
Jenkins setup 162 ■ Other CI systems 167 ■ Best
practices 168

9.3 Monitoring quality evolution 169
Exploring differential views in the project dashboard 169
Differential views in the issues drilldown 172 ■ Differential views
in the source code viewer 173 ■ Choosing differential
periods 173 ■ The Compare service 174

9.4 Related plugins 175
Cutoff 175 ■ Build Breaker 176

9.5 Summary 177

10 Letting SonarQube drive code reviews 178
10.1 Reviewing code in SonarQube 179

Issues: a starting point 179 ■ Confirm, comment, and assign: the
simplest workflow options 181 ■ False positives: sometimes
SonarQube gets it wrong 183 ■ Changing severity: not every issue
is that bad 186 ■ Altering the code to make SonarQube turn a
blind eye 186 ■ Viewing the audit trail 188

10.2 Creating manual issues: when the rules aren’t
enough 188
Why you would want extra issues 188 ■ Making manual
issues 189

10.3 Tracking issues 190
Life cycle of an issue 190 ■ Tracking squashed issues 194
Searching issues 195

10.4 Planning your work with SonarQube’s action plans 196
Why bother with action plans? 196 ■ Managing action
plans 196 ■ Using action plans 197 ■ Tracking action
plans 198

CONTENTSxiv
10.5 Structuring a code review 198
Why: talking about code 199 ■ Who 200 ■ When 200
Where 200 ■ How 201

10.6 Related plugins 202
JIRA 202 ■ Taglist 202 ■ Widget Lab 204

10.7 Summary 204

11 IDE integration 205
11.1 What’s supported 206

Generic support 207 ■ Eclipse support 208

11.2 Setting up Eclipse integration 210
Installing the plugin 210 ■ Configuring the server 211
Project association 211

11.3 Working your assigned issues 212
Finding your assigned issues 214 ■ Finding and fixing the
code 216

11.4 Running a local analysis 216
11.5 Related plugins 218

Issues Report 218

11.6 Summary 219

PART 3 ADMINISTERING AND EXTENDING..................... 221

12 Security: users, groups, and roles 223
12.1 Creating users and groups 224

Managing users 224 ■ Personalization: what users can manage
for themselves 226 ■ Managing groups 227

12.2 Roles: who can do what 229
Project Administrator role 230 ■ User role 231 ■ Code Viewer
role 232 ■ Best practices for roles 232

12.3 System administrators 233
12.4 Related plugins 234

LDAP 235 ■ OpenID 235 ■ Crowd 235 ■ PAM 236

12.5 Summary 236

CONTENTS xv
13 Rule profile administration 237
13.1 Making your own profile: copy and modify 238

Copy or start from scratch? 238 ■ Your first profile edits and their
quality implications 240 ■ Adding rules: how to find them and
why you’d want to 242

13.2 Profile inheritance 243
Establishing inheritance 243 ■ Managing the relationship 245

13.3 Rule editing 246
Customizing individual rules: editing rule parameters 246
Cookie-cutter rules: the ones you can duplicate 248 ■ Extend
Description: the rest of the story 250 ■ Notes: profile-specific records
on individual rules 250

13.4 Alerts: knowing when your metrics have crossed
the line 252

13.5 How to track profile changes 254
Changelog: who did what, when 254 ■ Profile versions:
when changes go into production 255 ■ Profile
comparison 256

13.6 Administrative miscellany 256
Project assignment: which project uses which profile 257
Profile backup and restoration 258 ■ Permalinks 258

13.7 Plugins 259
Switch Off Violations 259 ■ Widget Lab 260

13.8 Summary 261

14 Making SonarQube fit your needs 262
14.1 Exploring filters 263

Adding a new filter 263 ■ Customizing the filter view 265
Advanced filtering 266 ■ SonarQube’s default filters 269

14.2 One size doesn’t fit all: managing global dashboards 270
Creating your first global dashboard 271 ■ Customizing your
dashboards 272 ■ Defining default global dashboards 275

14.3 Getting notified by SonarQube 277
Activating the notification mechanism 277 ■ Subscribing to event
types 278

CONTENTSxvi
14.4 Adjusting global settings 279
Database cleaner 280 ■ General 281 ■ Localization 282
Server ID 282

14.5 Housekeeping 282
Backing up your SonarQube configuration 282 ■ Working with
the update center 283

14.6 Summary 286

15 Managing your projects 287
15.1 Working with project dashboards 288
15.2 Adopting Continuous Inspection more quickly 289

Assigning quality profiles 290 ■ Defining your own metrics 291
Excluding source code from analysis 296 ■ Understanding
versions, snapshots, and events 297

15.3 Exploring the rest of the project configuration 299
Changing permissions 300 ■ Setting project links 300
Modifying the project key 302 ■ Deleting projects 303
Miscellaneous settings 304

15.4 Summary 304

16 Writing your own plugin 305
16.1 Understanding SonarQube’s architecture 306
16.2 Implementing the Redmine plugin 307

Creating the plugin Maven project 308 ■ Defining the plugin’s
available configuration 310 ■ Describing the metrics: what you’ll
calculate and store 313 ■ Implementing your analyzer with a
sensor 314 ■ Creating your first widget 318 ■ Supporting
internationalization 321 ■ A decorator example 322

16.3 Adding support for new programming languages 324
16.4 Summary 325

appendix A Installation and setup 327
appendix B Analysis 338

index 355

foreword
The software industry is still a young industry in which software quality means for many
people “pain,” “cost,” “constraint,” “nice to have,” “one-shot effort,” or “external
reviews.” Fortunately, with the Agile movement, the industry has started to realize dur-
ing the last decade that software quality also means “fun,” “built-in,” “rewarding,” and
“higher productivity.” Ann Campbell and Patroklos Papapetrou belong to the latter
group, and they strongly believe that software quality should be a daily concern shared
by all stakeholders in the industry for long-term success.

 Software quality is divided into external and internal quality. External quality looks
at how well the software fulfills its functional requirements: in other words, whether
you’re building the right software. Internal quality looks at how well the software is
designed/implemented to constantly welcome new changes: in other words, whether
you’re building the software right. Industry statistics show that on average, 80% of the
cost of software is spent on maintenance; there is considerable variability depending
on internal quality. This makes internal quality a key component for the future cost of
software.

 This is the reason why managing code quality of applications has become a major
concern for any company that builds or is involved in building software. Traditional
approaches to managing code quality propose to test code from time to time, mainly
at the end of a development phase. In the best case, this approach leads to delays and
re-work; in the worse case, it leads to the shipment of poor-quality, expensive-to-main-
tain software. There is therefore an urgent need for a new approach: one that clearly
gives ownership of code quality back to the development team; one that emphasizes
quality throughout the development phase and has a shorter feedback loop to ensure
xvii

FOREWORDxviii
rapid resolution of quality problems; in short, a model that builds in quality from the
start, rather than considering it after the fact.

 This is the mission we have set ourselves at SonarSource: to provide tooling for
support of this new approach called Continuous Inspection. This is what we believe
we have achieved with SonarQube, the open source platform to continuously manage
technical debt. SonarQube has a large ecosystem, is widely adopted, and has a very
large community. Ann and Patroklos are part of this community and among the most
active members, contributing not only by their feedback but also by expanding the
ecosystem. When they approached me with the idea of writing a book, I was thrilled,
because this is clearly something that is missing in the SonarQube ecosystem. Having
Ann and Patroklos writing it also meant it would have some great insight from the
community and, more important, that it would contain the end-user perspective on
the solution.

 This book will be your companion in your journey with SonarQube. It will take you
from why you should use SonarQube to installation, configuration, administration,
and utilization of services, up to extending the platform. You can use it either by read-
ing through from A to Z or as a support reference for information about a specific
topic.

 But that isn’t all! Ann and Patroklos also discuss the process surrounding the tool,
challenge existing and missing functionality, and provide numerous tips for using
SonarQube, all based on their own experience. Whatever your level of familiarity with
the product, you’ll learn from this book. This is what, in my opinion, makes this book
a unique source of information for a successful implementation.

 Enjoy!

OLIVIER GAUDIN

CEO AND COFOUNDER

SONARSOURCE

preface
“Would you like to help me write a book about Sonar?” My reaction was immediate:
“Yes!”

 I knew Patroklos Papapetrou from the Sonar mailing list, and I was aware that he
was pitching Sonar in Action (now SonarQube in Action, to match the technology’s new
name) to Manning. What I didn’t know was that he wanted a coauthor. Because I was
a native English speaker and active (and helpful) on the list, he thought of me. I had
only been a member of the list for about six months, but I’d been aware of Sonar since
late 2008 when my boss came across a mention of Sonar and asked me to evaluate it.

 I was coding in Java at the time, but I had started my programming career with Perl
and C. Lint was your friend, and bugs were found the hard way—by the users. So I
found Sonar intriguing. It promised to scan each line of code and point out all kinds
of things that were wrong or could go wrong. But to use it, you had to be building with
Maven. Unfortunately, we were in an Ant-build shop. Sonar was off the table.

 Fast-forward to early 2010. Sonar was approximately three years old, but already it
was gaining broad acceptance among community and enterprise users and being
downloaded more than 2,000 times a month. Patroklos had found the Sonar website
while researching software quality tools, and it was a classic boy-meets-software story.
(Cue the sappy music.) It didn’t take long before he was in love and Sonar was one of
his favorite tools.

 Meanwhile, I had begun moving our Ant builds to Jenkins (it was still called Hud-
son then), and I stumbled across the Sonar plugin for Hudson. It works differently
now, but at the time, it performed a shallow “Maven-ization” of a non-Maven project
and ran an analysis. Hmmm. Maybe Sonar was back on the table.
xix

PREFACExx
 I installed Sonar and the plugin on my localhost and ran an analysis. When I
poked around in the results, I didn’t understand everything I was seeing, but I knew I
liked the way it presented issues in the context of the offending code. And because
Sonar had a web-based front end, instead of having to send quality reports to people, I
could send the people to the reports! When I showed my colleagues, they agreed that
what we were seeing was good stuff, so we teamed up on our management.

 We pretty quickly got first-level management’s buy-in to pilot Sonar, and we started
talking about it to anyone who would listen. Pretty soon other teams were approach-
ing me to set them up “with that Sonar thing.” We were seeing a viral adoption. After
only a couple of months, management at the next level up said that everyone needed
to be on Sonar by the end of the year.

 By this time it was early 2011, and Patroklos was an active member of the Sonar
community. He had spent 2010 telling everyone he knew about Sonar via his articles
and blog posts. He also implemented his first Sonar plugin that year. By August of
2011, he was such a prominent figure in the small Sonar community that another pub-
lisher approached him to write a book about it. He was flattered, but didn’t have the
time to do it justice, so he turned it down.

 But although Patroklos didn’t write that book, he didn’t forget the idea. When his
schedule cleared at the end of the year, he approached Manning about writing Sonar
in Action. A few short months after that, we were on our way.

 Our goal in writing this book has been to condense the SonarQube lessons we
learned in the last few years, combine them with whatever wisdom we can lay claim to
from our combined 30 years of programming, and put a bow on all of it for you. The
first time I ran a Sonar analysis, I didn’t understand some of the things I was seeing,
but we don’t want that to happen to you. We’ll tell you not only what SonarQube’s
metrics mean, but also why you should care and (unless it’s really, really obvious) what
steps to take in your code to get started fixing what’s wrong. We’ll help you plan a
strategy for tackling your technical debt, and we’ll show you how to make SonarQube
a part of your routine rather than something extra you have to remember to do. We’ll
guide you in twiddling SonarQube’s knobs so you can tune it to get the best experi-
ence in your environment. And finally, in case you feel the need, we’ll show you how
to get started writing your own SonarQube plugin.

 Over and over, I’ve seen this in action: good programmers are passionate about
quality code. Show us what the problems are, and we’ll be almost compelled to fix
them. In the past, the hard part has been pinpointing the problems. With SonarQube,
the only hard part is finding the time to deal with them. Code quality used to be hard.
Now it’s easy. Welcome to SonarQube.

ANN CAMPBELL

acknowledgments
When we signed up to write this book, we didn’t know how much effort it would
require. It was for both of us our first authoring attempt, and although Ann had con-
siderable experience with documentation and journalism, Patroklos’s most recent
writing had taken place a decade earlier. Without the assistance of many people, this
book would definitely not be in your hands or on your screen right now. It’s much
more likely that we would still be working on it.

 From day one of the project, help has poured in, and all of it has been not only
appreciated but essential. If we’ve forgotten anyone, please accept our sincere apolo-
gies. In no particular order, we’d like to thank the following people for their work and
support.

Manning Publications

Many thanks to publisher Marjan Bace for accepting the initial proposal of two new and
inexperienced authors. He helped the book take its first—and most important—step.

 Thanks to Christina Rudolph and Michael Stephens, who were the first two people
we talked with about the book. They guided us as we improved our proposal, and they
explained the publishing process in detail.

 Hillary Clinton said it takes a village to raise a child. It turns out that it takes one to
produce a book, too. Clearly, our development editor, Susanna Kline, deserves a
shout-out for her continuous support and help. Her patience and encouragement
were invaluable.

 Thanks to Bert Gates and Cynthia Kane for teaching us how to write our first chap-
ters following “Manning style.”
xxi

ACKNOWLEDGMENTSxxii
 Thanks to Candace Gillhoolley for her marketing efforts on the first MEAP release.
She is a master of social media.

 Knowing that we didn’t have to worry about every semicolon because a copyeditor
would come after us has been tremendously freeing; our thanks to Tiffany Taylor. And
thanks to many other members of the Manning team who helped us behind the
scenes: Maureen Spencer, Kevin Sullivan, Olivia Booth, Toma Mulligan, Mary Piergies,
Dottie Marsico, and Janet Vail. And special thanks to our technical proofreader, Craig
Smith, for his final review of the manuscript shortly before it went into production.

The SonarSource team

Of course, without SonarQube itself, the book wouldn’t have been possible. That puts
the folks at SonarSource squarely at the front of the line for thanks for their incredi-
ble free and open source contribution to software quality. More than simply providing
the software, they’ve actively supported this book. SonarSource CEO Olivier Gaudin
and Product Director Freddy Mallet reviewed each chapter, offering invaluable feed-
back and insight. The fact that we have their blessings and support … wow. We
couldn’t ask for more. Without their help, we wouldn’t have been able to publish this
book with the most updated material.

The reviewers

Thanks to our MEAP readers and to the reviewers who read the manuscript at various
stages during its development and gave helpful comments and feedback to our editors
and to us: Alex Garret, Bobby Abraham, Brandon Campbell, Chris Baxter, Christo-
pher Taylor, Gregor Zurowski, Jason S. Shapiro, Javier Garcia Martin, Joshua White,
Mark Elston, Michael Hüttermann, Mikkel Arentoft, Rashid Jilani, Reinhard Prehofer,
Robert Wenner, and Steven Hicks.

Ann Campbell

I’d like to thank my husband, Charles Nix; my dog; and the rest of my family for their
patience with me this past year as I concentrated on writing rather than on … really,
anything else in my life.

 I’d also like to thank my high school English teacher, Dr. Richard L. Handles-
man (“Doc” to his students), for forcing me to write an essay every two weeks; and
my mother, Polly Campbell, for teaching me to write them (whether I wanted to
learn or not).

Patroklos Papapetrou

I’d like to thank my loving and beautiful wife, Anna, for her patience all these months,
especially during the weekends. Without her encouragement, I wouldn’t have
managed to finish my part of the book. Thanks to my sons, Panagiotis (age 4) and
Charis (age 2), who understood that sometimes Daddy couldn’t play with them or go
to the park. You can have me back now! Thanks to our families for their patience as
well and for sometimes watching the kids to let me work on the book.

about this book
Welcome to SonarQube in Action. This book is aimed at turning all the tedious and
sometimes hard-to-understand stuff about source code quality and software metrics
into an exciting experience. It aims to become the Holy Bible of software quality: a
reference for every development team that wishes to improve their source code. You’ll
see that metrics are meaningful and affect several aspects of your software’s health. In
this journey, SonarQube will be our pilot. SonarQube is an open source platform for
continuously measuring, managing, tracking, and improving source code’s quality.

How this book is organized

We begin each chapter of the book by describing a real problem/situation, and then
we talk about the features of SonarQube and the relevant metrics that help you
address and eventually solve that problem. We elaborate by providing some theoreti-
cal background, we discuss best practices (if any), and we end each chapter by talking
about relevant—to the chapter’s topic—SonarQube plugins and how you can take
advantage of them.

 Now it’s time to list in detail the book’s content.

Part 1 gives you an overview of SonarQube, explains the seven axes of quality (like the
seven deadly sins of software development), and sets the stage for the following parts.
We introduce SonarQube’s key features and benefits and discuss the core metrics that
SonarQube calculates.

 Chapter 1 sets the scene, introducing the core concepts of SonarQube. We
begin by showing you what you should expect to see when you analyze a project
xxiii

ABOUT THIS BOOKxxiv
using SonarQube for the first time. We briefly discuss the different metrics pre-
sented in SonarQube’s dashboard. At the end, we present the Technical Debt
plugin.

 Chapter 2 introduces the topic of code issues. You’ll learn, among other things,
where they come from and how they’re related to bugs or potential bugs.

 Chapter 3 is all about testing (unit and integration). It describes the impor-
tance of code-coverage metrics and how they’re calculated, and it gives you
some tips for improving the test quality and coverage of your code.

 Chapter 4 focuses on duplicated code by illustrating the problems that may
arise and the resulting impact on the quality and maintainability of your source
code.

 Chapter 5 deals with a topic which is rarely considered by development teams as
a quality factor: documentation. You’ll find out when and why it’s a good prac-
tice to document your code, and we’ll present a proposed documentation strat-
egy that fits any development process.

 Chapters 6 and 7 talk about design and complexity. Although some may argue
that they’re more or less the same thing, we’ve chosen to split them in order to
provide more examples and illustrate their value in code quality.

Part 2 discusses how you can get the best out of SonarQube, where it fits in any devel-
opment lifecycle, and how to make it part of your everyday work life. It also introduces
the concept of Continuous Inspection, which is the ultimate target when talking
about software quality.

 Chapter 8 discusses several approaches for improving the quality of your source
code. You can pick one or all of them based on your experience. Then we’ll
take you on a tour of all the possible data perspectives that SonarQube offers,
and we finish by explaining the concepts of history and trending.

 Chapter 9 delves into the details of Continuous Inspection. We’ll talk about
integrating SonarQube with Jenkins, and you’ll learn about the star feature of
differential views that lets you track quality evolution over time.

 Chapter 10 deals with the popular practice of code reviews and explains how
you can benefit from SonarQube. You’ll find out how issues are associated with
reviews, how to track them, and what SonarQube features let you plan your
work with action plans.

 Chapter 11 talks about integrating SonarQube with Eclipse. Enjoy most of the
SonarQube advantages without leaving your IDE by following the step-by-step
guide provided in this chapter.

Part 3 covers several administrative topics and gives you ideas about customizing and
tuning SonarQube to make it suitable for any kind of project. In an enterprise envi-
ronment with a SonarQube installation that hosts several projects, it’s a good idea to
adjust many of SonarQube’s predifined settings to fit your needs. This part of the

ABOUT THIS BOOK xxv
book also teaches you step by step how to extend SonarQube by writing a custom
plugin.

 Chapter 12 explores security concepts, including users, roles, and groups. You’ll
learn how to delegate authentication and authorization to external systems
(LDAP, OpenID, and so on).

 Chapter 13 deals with managing coding rules and organizing them in quality
profiles. You’ll also discover how you can create your own rules or edit existing
ones and trigger alerts when metrics fall below a threshold.

 Chapters 14 and 15 discuss global and project administration, including filters,
dashboards, and user notifications. The latter also provides a simple path for
adopting Continuous Inspection by discussing useful SonarQube features that
will assist you in this direction.

 Chapter 16 is dedicated to teaching you how to extend SonarQube. Although
it’s not possible to cover everything in a few pages, we provide a complete exam-
ple of implementing a real SonarQube plugin. We also give you some insights
into adding support for new programming languages.

The book also has two appendixes that will help you with the basics, especially if
you’re a SonarQube newbie:

 Appendix A focuses on installing SonarQube in Linux and Windows.
 Appendix B provides all the necessary details to run your first analysis with

SonarQube.

One last thing—don’t expect to find correct code in this book. Chapter 16 is the only
exception to that rule, because it deals with writing plugins. Most of the examples
intentionally illustrate bad habits in coding, and their purpose is to point out what you
should avoid. Nevertheless, in some cases we’ve included a refactored version to show
you that by using SonarQube, you can begin to understand these nasty metrics and
dramatically improve the quality of your code.

How to use/read this book

Each person has their own reading style, and we can’t force you to change it for this
book. But we can still give you a couple of ideas on how to get the most out of this book.

 Every chapter is organized in such a way that you can read it separately from the
rest. We do suggest that you read chapter 1, especially if you’re not an experienced
SonarQube user, because it’s an overview of SonarQube and introduces some basic
ideas you may need when reading the rest of the book.

 If you decide to read the book sequentially, you’ll find that each chapter is con-
nected to the previous one, and the chapters flow smoothly, without gaps. But again,
you can skip any chapter and come back later if you want to.

 We did our best to ensure that this book will become a reference for you whenever
you need to learn or remember anything about SonarQube or its computed metrics.

ABOUT THIS BOOKxxvi
Who should read this book

Believe it or not, source code quality is a topic that targets almost everyone who par-
ticipates in a software project. Although we provide several code examples, you don’t
need to be a code expert to read this book. You also don’t need to be familiar with
Java, because the code listings and snippets are so simple that anyone with basic pro-
gramming skills can understand them. Besides, don’t forget that most of the exam-
ples in the book show you poor or bad code, to illustrate techniques and habits you
should avoid. We do expect that you have some basic knowledge about software qual-
ity metrics.

 The book is aimed at the following professionals:

 Software engineers (developers, designers, architects)—This is the book’s primary tar-
get audience. Software engineers live a day-by-day battle to achieve software
quality, hunting and fixing bugs, adding new features, and designing and re-
designing the logical architecture of the system. Not to mention that all these
things have to be done within strict deadlines and constantly changing business
requirements. This book will help you spot the parts of the software that need
your attention so you can take immediate action.

 Quality assurance staff and testers—QA stuff nowadays plays a valuable role in soft-
ware engineering. In most cases, these people are part of the development
team, and it’s up to their judgment whether a product should be released. If
you fall in this category, this book will teach you how to track the quality of the
software under devlopment in an easy and comprehensive way, how to define
criteria and thresholds for critical metrics, and, eventually, how SonarQube can
assist you in decision making.

 Project/Product managers and team leaders—The era of project/product managers
and team leaders sitting in an office, isolated from the rest of the development
team, has passed. Managers exist to do more than read weekly reports and track
down timelines and deliverable. They must have a clear view of the software and
especially its quality in order to assist team members and get them on the right
track. This book explains all the quality axes without unnecessary technical
details. It provides you with a guide to how you can automatically track quality
measures in source code over time and improve the development lifecycle by
introducing new practices such as code reviews and Continuous Inspection.

Code conventions and downloads

All the source code in the book, whether in code listings or snippets, is in a fixed-
width font like this, which sets it off from the surrounding text. In most listings, the
code is annotated to point out the key concepts, and numbered bullets are sometimes
used in the text to provide additional information about the code. We have tried to
format the code so that it fits within the available page space in the book by adding
line breaks and using indentation carefully.

ABOUT THIS BOOK xxvii
 Source code for all the examples and the plugin from chapter 16 are available at
www.manning.com/SonarQubeinAction. If you want to get the most updated source
code for the plugin—remember, it’s a real one, so the latest version is likely to be dif-
ferent from the code shipped with the book—it’s available at the following GitHub
link: https://github.com/ppapapetrou76/sonar-redmine-plugin.

What this book doesn’t do

This book should not be considered a user or administration guide for SonarQube. If
you just want to learn how to use SonarQube, the online documentation at http://
docs.codehaus.org/x/EoDEBg should be sufficient.

 This book also doesn’t explain the underlying tools with which SonarQube inte-
grates, such as PMD, FindBugs, Checkstyle, and so on. You’re encouraged to visit the
corresponding websites to learn more about their purpose.

 In some chapters, we include tips and best practices for refactoring as well as some
introductory material. But this book doesn’t teach you how to refactor your code.

Author Online

The purchase of SonarQube in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/SonarQubeinAction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

G. ANN CAMPBELL has 15 years of experience in Perl, C, C++, Java, and web technolo-
gies on variously sized and organized teams, and she has spent far too much time
achieving code quality the hard way without SonarQube.

PATROKLOS P. PAPAPETROU is a Java architect, an experienced software developer, and
an Agile team leader. He’s an active SonarQube community member and contributor.

www.manning.com/SonarQubeinAction
https://github.com/ppapapetrou76/sonar-redmine-plugin
http://docs.codehaus.org/x/EoDEBg
http://docs.codehaus.org/x/EoDEBg
www.manning.com/SonarQubeinAction

about the cover illustration
The figure on the cover of SonarQube in Action is captioned “Habit of a Bonze of China
in 1700.” A bonze is a Buddhist monk. The illustration is taken from Thomas Jefferys’
A Collection of the Dresses of Different Nations, Antient and Modern (4 volumes), London,
published between 1757 and 1772. The title page states that these are hand-colored
copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771)
was called “Geographer to King George III.” He was an English cartographer who was
the leading map supplier of his day. He engraved and printed maps for government
and other official bodies and produced a wide range of commercial maps and atlases,
especially of North America. His work as a mapmaker sparked an interest in local
dress customs of the lands he surveyed and mapped, which are brilliantly displayed in
this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jeffreys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.
xxviii

Part 1

What the numbers
are telling you

In part 1 of SonarQube in Action, we’ll start by giving you an overview of Sonar-
Qube in chapter 1: what it offers, what you can do with it, and why you’re inter-
ested in giving it a try. Then, in chapters 2 through 7, we’ll walk you through
each of SonarQube’s Axes of Quality for an in-depth look at what each axis
means. We’ll show you the Axes’ impact on the quality and maintainability of a
code base, and we’ll look at how to begin fixing what SonarQube has pointed
out in your applications.

An introduction
to SonarQube
For as long as software developers have been writing code, we’ve been asking our-
selves and our teammates, “Did we do it right?” Until fairly recently, there weren’t a
lot of good answers.

 Unless you worked for NASA, the answer was “Well, it compiles.” Or, “Um, it
seems to work.” And then there’s the perennial favorite: “The users aren’t com-
plaining.”

 Sometimes that was enough. Until the users did start complaining. Or until we
had to add new features. Which is when we realized just how “not right” we had
done it.

This chapter covers
 Why SonarQube

 Running your first analysis

 The Seven Axes of Quality

 Languages SonarQube covers

 Interface conventions
3

4 CHAPTER 1 An introduction to SonarQube
 More recently, people have tried to answer these questions with automated test
suites. But how do you know you’ve written enough tests? What about the things tests
can’t cover?

 As much as developers have struggled to understand when they’ve “done it right,”
their bosses have struggled even more. It’s easy enough to evaluate salesmen (product
sold), and lawyers (cases won), and factory workers (whatzits produced with accept-
able quality). But how do you evaluate a coder?

 In the past, people have been so stuck for an answer that they’ve resorted to the
factory worker model. Only instead of whatzits, lines of code were counted. Not even
“lines of code with acceptable quality,” just “lines of code.” Because measuring quality
was hard.

 Now it’s not. Welcome to SonarQube.

1.1 Why SonarQube
Imagine that your CEO’s aunt is also a customer. It’s not a big account; in fact, it’s tiny.
But she makes his favorite pie, so her opinion matters more than it should. Unfortu-
nately, the last release had a couple of bugs that mattered to her, so he’s been on the
warpath ever since. He’s started ranting about quality and demanding numbers. He
says that if you don’t come up with a way to measure quality and show improvement,
he will. The glint in his eye says you won’t like it.

 Now what? Now it’s time for SonarQube, which will help you manage your code
quality, instead of letting your code quality (and Aunt Betty) manage you.

 SonarQube is a free and open source “code quality platform.” It gives you a
moment-in-time snapshot of your code quality today, as well as trending of lagging
(what’s already gone wrong) and leading (what’s likely to go wrong in the future) qual-
ity indicators. For test coverage (a leading indicator), a score of 50% may not look
great, but what was it last month? If you’re up from 35%, it’s high-fives all around.
Down from 70%? Time to shape up.

 SonarQube doesn’t just show you what’s wrong. It also offers quality-management
tools to actively help you put it right: IDE integration, integration for Jenkins, a popu-
lar Continuous Integration server, and code-review tools.

 SonarQube’s commercial competitors in the code-quality space offer some of
those things too (depending on which one you’re looking at); but they seem to focus
their definition of quality mainly on bugs and complexity, whereas SonarQube’s offer-
ings span what its creators call the Seven Axes of Quality. We’ll cover them in more detail
soon, but in brief, SonarQube addresses not just bugs but also coding rules, test cover-
age, duplications, API documentation, complexity, and architecture. Some of the
other players in this space also hit unit-test coverage and API documentation, but no
one else seems to address all Seven Axes.

 Because it’s free, it would be easy enough to say, “Why not SonarQube? Might as
well try it.” Although that’s a perfectly valid reason to give it a shot, once you put it
through its paces you’ll see that even if it weren’t free, SonarQube would be well

5Why SonarQube
worth the investment. That’s because software quality is something every system stake-
holder cares about, not just end users.

NOTE SonarQube hasn’t always been called that; it used to be named just
plain Sonar.

From a tester’s standpoint, SonarQube is worth attention because it will help you pin-
point the spots where automated testing is thin or nonexistent. It may also help target
manual penetration and security testing.

From a developer’s standpoint, SonarQube is worth the effort because it helps you
grow as a coder. From language-specific subtleties to thread safety and resource man-
agement, SonarQube can show you what you’re getting wrong—or doing sub-opti-
mally—and point you in the right direction for fixing it. That guidance isn’t just for
the folks fresh out of school. Experienced programmers can learn from SonarQube,
too, even if it’s only that their super-elegant code will be unreadable to the new guy.
Plus, let’s face it; everyone has off days, and SonarQube helps coders find their goofs
and fix them quickly.

From a software architect’s standpoint, SonarQube is worth the time because it helps
you keep an eye on whether your cleanly delineated initial design is being degraded
over time with creeping dependency cycles. It can show you whether the internal cod-
ing rules are being followed, and it can help you spot rising complexity that needs to
be refactored.

From a project management standpoint, SonarQube is worth the focus because testing
alone isn’t enough. It can only show whether software does what it’s supposed to do:
its level of external quality. On the other hand, SonarQube analyzes and fosters internal
quality: whether an application will run optimally and be readily maintainable and
extensible down the road.

From a business standpoint, SonarQube offers a strong ROI because its acquisition
and setup costs are low, and its intuitive interfaces mean that very little training is
required. Add to that the fact that its adoption within an organization is typically viral,
and you’ve got a minimal investment that produces what quickly become significant
results.

 Finally, from a management standpoint, SonarQube is worth the investment because it
gives you metrics. Like the stereotypical charts that salesmen are measured by, with
SonarQube in the fold, you’ve now got trending available on abstract measures of
code quality. It even offers charts, like the one in figure 1.1.

 In nearly every industry, serious leaders track metrics. Whether it’s manufacturing
defects and waste, sales and revenue, or baseball’s hits and RBIs, there are metrics that
tell you how you’re doing: if you’re doing well overall, and whether you’re getting bet-
ter or worse.

 Now we’ve got those metrics for software, packaged and presented through a stan-
dardized, centralized, server-based quality platform (nothing to install client-side!)
that uses code-quality tools already respected in the industry, such as FindBugs, PMD,

6 CHAPTER 1 An introduction to SonarQube
and JaCoCo for Java; and Gallio, Gendarme, and FxCop for C#. Those results are pre-
sented in a fairly intuitive web front end that also offers RSS feeds of the Alerts raised
when the quality thresholds you set are crossed.

1.1.1 Proven technologies

If SonarQube uses existing tools, you might ask why you need it at all. Why not just
run those tools alone? There are a couple of reasons. The first is that the tools gener-
ate laundry lists of potential problems. They don’t generate metrics, and, for the most
part, they don’t offer tracking or trending from analysis to analysis.

 Numbers aside, of course those tools can be run without SonarQube. But are they?
Any developer can download FindBugs or Gallio and point it at his code, but does he?
How often? With what settings? Are they the same ones that the coder in the next
cube is using? And what’s the visibility of those quality reports to the team at large?
SonarQube answers all these questions by applying standardized rule sets, not just
from analysis to analysis on a given project, but potentially across your entire stable of
projects. It also offers its own rules and measurement algorithms, such as an
enhanced duplication-detection mechanism that shows you cut-and-paste not just in a
given project, but across projects as well.

 With all that going on behind the scenes in SonarQube, you might think you need
a PhD to use it. In fact, analysis is easy to set up, and the SonarQube interface is sur-
prisingly intuitive, as you’ll begin to see shortly. Additionally, SonarQube’s review
functions and integration for the Eclipse IDE make it easy to transparently manage
the fix for whatever SonarQube tells you might be wrong.

1.1.2 Multilingual: SonarQube speaks your language

If you’ve heard of Sonar or SonarQube before, it may have been in the context of
Java. SonarQube is written in Java, and it started as a way to measure the quality of Java
projects, but it’s no longer limited to analyzing just Java. There is an ever-growing list
of languages you can analyze through SonarQube by adding plugins, many of which
are provided by the SonarQube community and offered for free.

Figure 1.1 Trending is a core
feature of SonarQube, with changes
represented in a variety of formats,
including this spark line-style graph
that can be added to any dashboard.

7Running your first analysis
Similarly, the other “language of SonarQube” is also easily changed with plugins. The
interface is in English by default, but the community supports a number of localiza-
tion plugins. So if you and your teammates are more comfortable in French, Spanish,
Greek, Chinese, or Japanese than English, you can accommodate them to make it as
easy as possible to use SonarQube.

 Whatever language you speak, whatever language you code in, once you decide to
begin using SonarQube you can manage your code quality from a proactive, rather
than a reactive, standpoint. Start using it regularly, and you can begin to manage your
quality, rather than letting your quality manage you.

1.2 Running your first analysis
At this point, we’ll assume that you’re bowled over by the possibilities and chomping
at the bit to get started. It’s not hard. Next we’ll look at installation, then we’ll give you
a high-level walk-through of running an analysis, and we’ll finish with a look at the
SonarQube interface.

1.2.1 Installation considerations

First you’ll need to download SonarQube, set up a database for it, and turn it on. All
that’s covered in appendix A, but before you jump in, there are a few things you’ll
want to take into account as you plan your setup.

THE SONARQUBE COMMUNITY

The SonarQube community has two mailing lists: one for users and another for devel-
opers. You can search the archives or get instructions on joining either one here:
http://sonarsource.org/support/support/.

See it on the web
If your interest is piqued but you’re not ready to install SonarQube for a trial run yet,
take a peek at Nemo, SonarQube’s public instance: http://nemo.sonarsource.org.
Here you’ll see analyses of many open source projects and get a feel for what Sonar-
Qube can show you on large and small code bases alike. Just be aware that this is
a showcase for SonarSource, the company behind SonarQube, so what you’ll see is
a tricked-out version of what you’ll get from SonarQube out of the box.

In addition to having customized the interface, the SonarSource guys are also using
Nemo to show off their commercial plugins for SonarQube. The ones you’re most
likely to notice on this site are the Developer Cockpit plugin, which is the only way to
get metrics not on projects but on the developers behind them, and the Views plugin,
which lets you aggregate quality metrics across multiple projects. Although Sonar-
Qube itself is free, you won’t get everything you see on Nemo without spending some
money.

http://sonarsource.org/support/support/
http://nemo.sonarsource.org

8 CHAPTER 1 An introduction to SonarQube
Ideally, you’re going to put SonarQube and its database on two separate hosts (to split
the CPU load) that are side by side on the network. Network I/O is one of the biggest
determinants in how long an analysis takes, so make sure you’ve got as fat a network
pipe between the hosts as possible.

 Once you’ve set up your database, configured SonarQube, and started it, open a
browser and head to port 9000 of your SonarQube host. If you’re running it locally,
then your target URL is http://localhost:9000. When your browser is able to connect,
SonarQube is up and running.

 At this point, you’re ready to begin collecting those metrics we’ve talked so much
about; you’re ready to run your first analysis. If you have a choice of where to run it
from, then the closer you can get to your SonarQube server and database, network-
wise, the better. Running it on the SonarQube host is best of all.

 If you’re in a Maven-centric Java shop, then you’ve got a few things to add to your
pom.xml file, detailed in appendix B, and you’re good to go. You’ll also want to refer
to appendix B if you need to integrate analysis into an Ant script. But the third option,
SonarQube Runner, which we cover briefly in the next section and in detail in appen-
dix B, is tidy enough that you may be tempted to <exec> it from Ant.

1.2.2 Analyzing with SonarQube Runner

Before you can run your first analysis, you need one more download: the SonarQube
Runner, which actually runs the analysis. The analysis is accomplished by setting some
properties and firing off the sonar-runner executable.

 Project-specific values are set at runtime, either on the command line or in a prop-
erties file. The simplest possible project properties file would look something like the
following listing.

required metadata

sonar.projectKey=my:project

sonar.projectName=MyProject

sonar.projectVersion=1.0

required path to source directories

sources=srcDir1,srcDir2

Listing 1.1 assumes that the project under analysis is written in Java and that you’ve set
the database connection values in the global properties file as described in appendix
B. It omits tests, the compiled byte code, and dependencies, all of which you’d want
included in a full analysis. But if you’ve put sonar-runner in your path, it’s runnable as
follows:

cd [path to project root]
sonar-runner

Listing 1.1 sonar-project.properties

A comment, which will be ignored

Project’s unique ID,
used internallyProject name to

display to users

http://localhost:9000

9Running your first analysis
Execute these steps, and your analysis begins immediately, with each step logged to
the console and prefixed with a timestamp. The time to run an analysis varies by proj-
ect size and, as mentioned earlier, network speed.

 While you wait for your analysis to complete, you may want to flip to appendix B,
which gives you a fuller idea of the analysis properties you can set. We’ve made the list
as complete as we can, but SonarQube is under constant active development, so it’s
possible to have new properties with each release. Each language-specific plugin also
typically adds its own properties to the mix.

1.2.3 Analyzing multilanguage projects

If you’ve browsed ahead to the analysis properties in appendix B and you have a proj-
ect that uses multiple languages, you might be scratching your head at this point. For
instance, a typical web project might use Java or C# for the back end and JavaScript
on the client side, but appendix B shows that the sonar.language property (which
specifies which language to use in a project analysis) only accepts one value. “Wait,”
you’re saying. “I’ve got Java, JavaScript, and XML in my project, and I can only ana-
lyze one of them?”

 Yes and no. You can analyze all of them. You can’t do it all in one analysis.
 Each SonarQube project is about a single language. So what you’ll need to do is set

up a separate analysis—a separate SonarQube project—for each language. This
means that you’ll have a SonarQube Runner properties file for each language, and
you’ll run an analysis for each properties file. (Maven folks, you’ll still run your pri-
mary analysis through Maven, but you’ll want to use SonarQube Runner for the rest.)

 But whether you’re using SonarQube Runner, Maven, or Ant to run your analysis,
you need to make sure you give SonarQube a way to differentiate between, say, your
Java evaluation of a project and the JavaScript analysis of the project. Don’t assume
that SonarQube will pick up on the difference in the specified language. It only differ-
entiates projects by projectKey, not by projectKey and language. Reuse the same
projectKey for each language, and each subsequent analysis against a new language
will overwrite the previous one (which will do bizarre things to your quality trends).
You may want to vary sonar.projectName as well, but that’s only for your own conve-
nience. It’s not as crucial, and it can easily be changed later if you find yourself getting
confused. In chapter 14, we’ll show you how to set up filters (project lists) for each
language, so if you wanted to keep the names the same, you could still easily tell each
aspect of, say, Project Blue apart by whether you’re looking at the list of Java analyses,
the JavaScript results, or the Flex list.

1.2.4 Seeing the output: SonarQube’s front page

Once your analysis is complete, you’ve got your first set of metrics. Point your browser
back to port 9000 of your SonarQube host to begin seeing them. When you arrive,
you’ll find yourself looking at something much like figure 1.2, which shows a welcome
message on the left and, on the right, two different views of the results of an initial
local analysis of the open source Apache Tomcat project.

10 CHAPTER 1 An introduction to SonarQube
Figure 1.2 shows SonarQube’s default front page, which is your 30,000-foot view of
code quality. The widget (box) at upper right lists all projects under analysis, with some
key data points for each. The widget at lower right is a treemap of those same projects.
With one project in SonarQube, it’s a solid, colored box; but as you’ll see in later
chapters, that changes as you add more projects.

1.2.5 Drilling in: the dashboard

In either the project list or the treemap, click-through on the name of your project to
reach the project dashboard. From the 30,000-foot view at the front page, you’ve just
dropped to 10,000 feet. The view from this altitude looks something like figure 1.3.

 There’s a lot to take in on the default project dashboard (other dashboards are
available), and it’s difficult to generalize about it as a whole except to say that you’d
like to see the bar graph weighted to the left. Each box here is called a widget. Gener-
ally, widgets are focused representations of a single facet of code quality. The widgets
on the default dashboard show three types of metrics. The first kind is like a golf
score; lower is better. The second is like bowling; high score wins. And the third is like
age, which could go either way depending on your perspective, but which is just a
value-neutral report of the current state.

 Before we move on to the metrics, let’s linger a moment on golf and bowling. It’s
no accident that we’ll be comparing the metrics ahead to those two games. On the
face of it, they each have you competing against other players, but unless you’re on a
professional tour and playing for prize money, you’re really competing against your-
self. You want to play better today than you did yesterday. It’s the same thing with
SonarQube; it’s not about benchmarking, it’s about having better code today than you
did before.

 Now let’s look at some metrics.

Figure 1.2 SonarQube’s front page is the default filter, which lists a few
choice metrics about each project under analysis.

11Running your first analysis
SIZE

The size metrics widget at upper left falls in the neutral category. It tells you how many
lines of code, methods, classes, and packages it found during the analysis, as shown in
figure 1.4.

Figure 1.3 SonarQube’s
default dashboard

Figure 1.4 The size
metrics widget shows how
many lines of code,
methods, classes, and
packages were found
during analysis.

12 CHAPTER 1 An introduction to SonarQube
We should make a distinction at this point between lines of code (often referred to as
LOC) and physical lines, which SonarQube also reports. The number of physical lines
in your project is a raw count of the number of times someone presses the Enter key,
whether or not there’s any content on the line. Lines of code, on the other hand, is
meant to be a count of the number of “working” lines in your project. The LOC defini-
tion is language-specific, but SonarQube calculates it for Java by subtracting com-
ments and blank lines from physical lines.

 Why do you care? Because we’re about to start showing you some percentages, and
LOC is the bottom number in most of them.

EVENTS

The two widgets in the bottom of the left column are also neutral. Second from the
bottom, the events widget gives you a quick list of events recorded on the project, as
shown in figure 1.5.

 There are several types of events, one of which is a change to the project version
string that you pass in to the analysis. That’s the lone event shown in figure 1.5. With
the first project analysis, SonarQube recorded a version string “change,” from nothing
to something.

 Events are significant, at least in part because they flag an analysis snapshot for long-
term retention. Every time an analysis is performed, a snapshot of the project state is
taken. That could quickly add up to a lot of snapshots, bloating the database, but Sonar-
Qube’s rigorous housekeeping routines keep that from happening. Those routines are
preconfigured to sane but tunable defaults. For more on that, see chapter 13.

DESCRIPTION

The description widget at lower left is a brief curriculum vitae of your project, showing
the language and ID you set during analysis. It also shows the name of the rule set, or
profile, applied in the last analysis, as shown in figure 1.6. Because multiple rule sets
exist, knowing which one was used can make a difference.

Figure 1.5 The events
widget gives a quick list
of events recorded for the
project.

13Seven Axes of Quality
Finally, the description widget ends with a link to an RSS feed of Alert events on the
project. We mentioned earlier that there are several types of events. One type of event
relates to Alert thresholds you can set on a rule profile. When those thresholds are
crossed in either direction, an Alert is raised (chapter 13 covers setting Alerts). For
instance, you may choose to set an Alert when test coverage falls below 80%, or when
the number of Blocker-level issues exceeds 0. These rule-based events are what the RSS
feed gives you.

1.3 Seven Axes of Quality
The remainder of the widgets on the default dashboard relate to what the creators of
SonarQube call the Seven Axes of Quality (and sometimes the Seven Deadly Devel-
oper Sins). First, let’s be clear: axes here is the plural of axis. This has nothing to do
with the seven dwarves or the pickaxes they carry into the mine every day. Instead,
think geometry, where an axis is a line against which you measure distance or height
(as in achievement).

 Here’s where we roll up our sleeves and dig in to the quality metrics of a project
that we promised you at the beginning of the chapter. The axes that SonarQube mea-
sures a project against are as follows:

 Potential bugs
 Coding rules
 Tests
 Duplications
 Comments
 Architecture and design
 Complexity

Figure 1.6 The description
widget shows basic data about
your project and its last analysis.

14 CHAPTER 1 An introduction to SonarQube
In this section, we’ll give you a high-level understanding of what each axis is about. In
the rest of part 1, we’ll go into detail on the metrics for each axis and give you a little
practical advice on how to start patching any problems SonarQube shows you.

1.3.1 Potential bugs and coding rules

The issues widget, shown in figure 1.7, is a two-for-one. The creators of SonarQube list
potential bugs and coding rules as separate axes, but for reporting they group them
together under issues. Generally, you can consider issue counts as lagging quality indi-
cators; they show what’s already gone wrong.

 Taken together, potential bugs and coding rule infractions span a continuum,
from setting up a logic path through the code that’s guaranteed to lead to a null
pointer dereference, to not putting the open curly brace on the line the team has
agreed to. Teetering between the two are things like flouting industry-standard nam-
ing conventions and writing one-line conditionals without using curly braces.

 Given those examples, it’s clear that some issues are worse than others. That’s why
SonarQube ranks them at different severities: Blocker, Critical, Major, Minor, and
Info. The rules-compliance percentage you see at lower left in the issues widget gives
perspective. It’s based on the number and severity of issues versus the lines of code in
the project. Whereas the issues counts are golf-style metrics, the rules-compliance
index is like bowling: higher is better.

 Looking ahead, chapter 2 covers the importance of issues, even the ones that don’t
seem all that critical at first blush. Later, in chapter 10, we’ll talk about issue manage-
ment, and in chapter 13, we’ll show you how to make the priority SonarQube places
on an issue line up with your own.

Figure 1.7 The issues widget combines
potential bugs and coding rules under the
issues banner.

15Seven Axes of Quality
1.3.2 Tests

Next in the list is unit-test coverage, which is a bit like double-entry bookkeeping, in
that each unit of work in your program should ideally be balanced by a test verifying
that it works correctly. In fact, in test-driven development, the test side of the books is
always entered first.

 The test coverage widget, shown in figure 1.8, shows how well that coverage equa-
tion balances and whether your tests are passing, failing, or erroring-out. The percent-
ages in this widget are bowling-style metrics, the failure and error counts are like golf,
and the test count and duration are neutral. All the metrics here are leading indica-
tors; if they head south, your quality may follow. For an in-depth look at unit tests, see
chapter 3.

1.3.3 Comments and duplications

The comments and duplications widget is another two-for-one. To return to sports,
comments are like bowling, and duplications are like golf. Both are leading quality
metrics (nothing’s gone wrong yet, but it could). The widget is shown in figure 1.9.

COMMENTS

There are two main types of code comments: the ones inline in any method (public or
private) that are intended to notate some detail of the code logic, and the ones out-
side a public method that are intended to communicate how and why to use it (the
API comments). The first kind is often referred to as a code smell. Like house guests and
leftovers, this kind of comment tends to get stale. The logic changes, but the com-
ments don’t; or the comments get separated from what they refer to. The second kind
of comment (the API documentation) is what’s measured by SonarQube.
This is a measure of maintainability. It looks at how often you’re going to make the
caller of your method read the code to understand what she’s getting into, versus

Figure 1.8 The test coverage widget
reports on how well your code base is
covered by unit tests, and how those
tests are doing.

16 CHAPTER 1 An introduction to SonarQube
reading intentional documentation that (ideally) explains what should be passed in,
what will be returned, and perhaps even what will happen in between.

 Comments are measured because they’re part of what makes a system easy (or not)
to work on. They’re measured with the idea that coders should spend their time writ-
ing the systems their users need, not trying to figure out what the last guy thought he
was doing when he coded the method you need to call. We’ll go in-depth on com-
ments in chapter 5.

DUPLICATIONS

On the face of it, code duplications may not seem like a big deal. And at first, they
might not be.

 The problem is that although copy-paste, the source of duplications, is often expe-
dient, it’s not efficient in the long term. Somewhere in the same book that Murphy’s
Law came from is the truism that the more places a chunk of logic has been dupli-
cated into, the more likely it is that it will need to be changed, probably with a high
level of urgency or criticality.

 That’s why duplications are something you want to get on top of as quickly as possi-
ble, which is what SonarQube’s duplications metrics let you do. Chapter 4 covers this
topic in detail.

1.3.4 Architecture and design

Winston Churchill said, “However beautiful the strategy, you should occasionally look
at the results.” He wasn’t talking about software quality, but he could have been.

 One side of the architecture and design axis is the tidiness of a program’s architec-
ture. Not the way it was originally charted out: undoubtedly, the original plan had a Zen-
like elegance and simplicity. What SonarQube measures is how it was implemented—
how clean it is today. Do classes in package A include classes in package B, and vice
versa? If so, either they should have been one package to start with, or you’ve got a big
mess to sort out. Either way, you’ve got some cleaning up to do.

Figure 1.9 The comments and duplications widget covers two quality axes, showing both how well your
public methods are documented (high scores are good) and how many duplications you need to eliminate
(high scores are bad).

17Seven Axes of Quality
From that perspective, whether architecture is a leading or lagging quality indicator is
up for debate. Is this a measure of what has already gone wrong in the implementa-
tion (lagging), or an indication of how hard the code base will be to understand and
maintain in the future (leading)? Either way, it deserves attention, and unless you’ve
caught it early, it isn’t likely something that can be cleaned up in an afternoon. The
package design widget, shown in figure 1.10, gives you the high-level view of that
cleanup in golf-style numbers.

 The other side of the architecture and design axis is addressed by the LCOM4 and
response for class widgets, and we’re cheating a little by showing them to you here.
They’re no longer on the default dashboard because the creators of SonarQube think
the concepts behind them are “too hard.” Chapter 6 will make them seem easy,
though. They’re shown in figure 1.11. In a nutshell, you want to see these graphs
weighted to the left because that means your classes are small and simple.

 Because these are golf-style metrics, we’ll use a golf example. Consider a Ball
object. It should bounce. And maybe roll. But that should be about all it has to know
how to do. Start layering in things like handicap calculation, club selection based on
wind speed, distance to the pin, and grass friction, and you’ve probably gone too far.
That’s what the LCOM4 number is about. How many responsibilities does a given class
have? One isn’t the loneliest number in this case, it’s the perfect number. Anything
over two is definitely a candidate for refactoring.

Figure 1.10 The package design widget shows how clean your design implementation is, giving you
high-level figures showing how much work needs to be done to make the implementation as clean as the
original design undoubtedly was.

Figure 1.11 The LCOM4 and response for class widgets show how your code stacks up from an object-
oriented design perspective. Ideally, both graphs would be weighted to the left, meaning that the classes
in your program are small and simple.

18 CHAPTER 1 An introduction to SonarQube
Response for Class (RFC) is also in the Keep It Simple, Smiley (KISS) realm, but a bit
more esoteric. Something of a corollary to LCOM4, it’s a measure of how many inter-
actions a class initiates within itself or with other classes. For instance, if the Ball class
reaches out to the Grass object to read friction, calls the Green object to see how far
away it is, calls getWindSpeed() from the Weatherman class, and maybe even asks
Golfbag for its list of clubs, it’s initiating interactions with a lot of other classes. Not
only is this a red flag from a design perspective, but it’s also likely that the Ball class is
harder to understand and therefore harder to maintain than it should be. One study
of C++ programs even showed that as RFC went up, bug density did, too.

 Architecture, design, and complexity are covered in depth in chapter 6 at the file
level and in chapter 7 at the package level and above.

1.3.5 Complexity

Oddly, the explanation of the complexity axis is fairly simple. It’s a little more compli-
cated than this, but essentially, these metrics are about how many pairs of curly braces
(real or implied) your method has. The premise of this leading indicator is that the
more pairs of curly braces there are, the more complex the logic is. And the more
complex the logic, the harder it is to understand and maintain. That means complex-
ity is another golf-style metric—lower is better—and the complexity graph, shown in
figure 1.12, is another that you’d like to see weighted to the left.

 Now that you’ve seen the quality metrics SonarQube offers for its first language,
Java, it’s time to talk about what SonarQube offers for the rest of its languages.

1.4 The languages SonarQube covers
Earlier we said that SonarQube can analyze multiple languages. Now it’s time to spell
out what those languages are and what kinds of metrics are available for each one.
Table 1.1 lists most of the other languages, but because the list of language plugins is
always growing, we won’t claim it’s exhaustive. For each language, you’ll see the

Figure 1.12 The complexity widget shows the distribution in your program of high-complexity
methods or classes. The more complex a program is, the more difficult it becomes to maintain; so,
ideally, this graph will be weighted to the left.

19The languages SonarQube covers
license model and the types of metrics (and therefore the quality axes) that are avail-
able for it.

Table 1.1 Languages SonarQube can analyze

Language Paid/Free Metrics

ABAP Paid Size, comments, complexity, duplications, issues.

C Free
(but closed source)

Size, comments, complexity, duplications, issues.

C++ Free Size, comments, complexity, duplications, issues.

C++ Paid Size, comments, complexity, duplications, issues. (This
is not a misprint. There are both free and paid plugins for
C++.)

C# Free Size, comments, complexity, duplications, tests, issues.
C# analysis is made available by a suite of plugins, many
of which rely on external tools that you'll need to install
separately. On the other hand, this is the one case
where you get to pick and choose which underlying tools
to apply in your analysis. You’ll need to install those
underlying tools separately, as well.

Cobol Paid Size, comments, complexity, duplications, issues. Lan-
guage-specific metrics such as outside and inside con-
trol-flow statements and LOC in data divisions.

Delphi Free Size, comments, complexity, design, duplications, tests,
issues.

Drools Free Size, comments, issues.

Flex/ActionScript Free Size, comments, complexity, duplications, tests, issues.

Groovy Free Size, comments, complexity, duplications, tests, issues.

JavaScript Free Size, comments, complexity, duplications, tests, issues.

Natural Paid Size, comments, complexity, duplications, issues.

PHP Free Size, comments, complexity, duplications, issues.

PL/I Paid Size, comments, complexity, duplications, issues.

PL/SQL Paid Size, comments, complexity, duplications, issues.

Python Free Size, comments, complexity, duplications, issues.

Visual Basic 6 Paid Size, comments, complexity, duplications, issues.

Web (JSP, JSF,
XHTML)

Free Size, comments, complexity, duplications, issues.

XML Free Size, issues.

20 CHAPTER 1 An introduction to SonarQube
The paid language plugins listed here all come from SonarSource, the originators of
SonarQube. Regardless of the author of the plugin, most can be installed from within
SonarQube, and chapter 14 will give you the details. Once you’ve installed your lan-
guage plugins, configure your sonar-runner.properties file (be sure to specify the lan-
guage under analysis with the sonar.language property!), and run your analysis. You
don’t have to do anything else; it just works. It’s that simple.

 Through the rest of the book, the majority of examples are Java-centric. But please
keep in mind that unless we explicitly state that something’s Maven-only or Java-only,
it applies to other languages as much as it applies to Java (assuming the language
plugin supports the metrics in question).

1.5 Interface conventions
If you’ve got the SonarQube dashboard in front of you, you’ve noticed that most of
the metrics on it are links. And if you’re even mildly curious, which we’re betting you
are, you’ve clicked-through on a few of them, from the 10,000-foot view at the dash-
board to the low-level intricacies of the issues themselves. So at this point, we want to
explain some of the interface conventions you’re seeing and that you’ll continue to
notice as you work with SonarQube.

1.5.1 Hierarchy: packages and classes in a metric drilldown

Every metric on the dashboard clicks-through to a metric drilldown, which is designed
to help you find the specific files (and sometimes the specific lines) that you need to
work on to start moving those project-level metrics the dashboard reports. A typical
drilldown is shown in figure 1.13.

Figure 1.13 Drilldowns in SonarQube start with the chosen metric and its value in the top row. That’s
followed by a row of hierarchical widgets: modules (if any—there aren’t any here) in the left-most box,
then directories/packages, then classes/files. Each widget’s contents are sorted by its metric value.
Click any module or package to filter widgets to its right.

21Interface conventions
There are some variations on the theme, but generally you’ll see the metric in ques-
tion at the top of the page followed by a row of hierarchical widgets. If it’s a multi-
module project, then this row will have three widgets, with the modules on the left
and packages/directories in the middle. For single-module projects, there are only
two widgets, with packages/directories on the left. In either case, a list of files is shown
on the right.

 Each widget is sorted by metric value with the worst first. You can click a module to
filter the directory and file lists, or click a directory/package to see only its files. With
or without module and package filtering, you can click a filename at any time to see its
details.

1.5.2 File details

When you click a file, the file detail view, shown in figure 1.14, is added to the page
below the module/package/file hierarchy. You see the full filename at the top, fol-
lowed by a series of links, which act like tabs. Which link is selected depends on the
metric under examination.

 Some of the metrics, such as duplications, have dedicated tabs in the file detail view
that are tailored to that metric’s clear communication. Other metrics, such as com-
plexity, take you straight to the Source tab. When you end up at the Source tab, it’s typ-
ically because the metric in question relates to the file as a whole, rather than a small
section of it, and there’s no good way to zoom in on the issue. Instead, SonarQube tells
you what you’re looking for and then shows you the source so you can see for yourself
how complex the class is or how documented or undocumented the API is.

Figure 1.14 The file details view offers a consolidated spot to see most of the metrics SonarQube’s gathered
on a particular file. The Source tab shows the file’s full contents.

22 CHAPTER 1 An introduction to SonarQube
1.5.3 Trend arrows

The final interface convention to show you is the trend arrows you’ll see throughout
the interface after your second analysis, starting with the front page. They come in
three colors—red, green, and grey—and if you guessed that the colors mean bad,
good, and neutral, you’re right.

Trend arrows show the 30-day trend of a given metric. You won’t see them after the
first analysis of a project because there’s no trend yet. Make some code changes and
re-analyze, and they should pop into view. An arrow alone shows a moderate change,
and an arrow with a line indicates a strong one. Figure 1.15 shows a project’s size met-
rics widget, with strong to moderate increases in all metrics.

 Metrics that are expressed as percentages, such as the rules compliance index, or
averages, such as complexity/method, aren’t eligible for trend arrows. Otherwise,
when you don’t see an arrow, it means there has been no change, or only a weak one.

 Those with sharp eyes have noticed that we’ve only scratched the surface when it
comes to the options in the SonarQube interface. For instance, a double-handful of
left-rail links were spread across the front page and in the project dashboard that we
haven’t even touched on yet. Don’t worry, we’ll get there—eventually.

When changes take effect
As we show you how to take full advantage of SonarQube in the coming chapters, it
will be important to keep in mind that almost none of the changes we’ll show you how
to make to SonarQube will take effect until the next analysis. That’s because Sonar-
Qube mostly shows you metrics, and metrics are only calculated during analysis; so
you can twiddle settings all you like, but they won’t affect what’s already been calcu-
lated and stored. To see the effect of your changes, you’ll need to reanalyze.

Just installed a new plugin and eager to see the results? Wait until the next analysis.
Tweaked your settings and looking for the change? Wait until the next analysis.
Moved your project from one rule set to another? Wait until… Oh, you get it. Okay.

Figure 1.15 Trend arrows are used throughout the SonarQube interface to indicate
the 30-day trend of a metric. Red, green, and grey arrows indicate bad, good, and
neutral changes. Arrows alone show moderate increases. An arrow with a line shows
a strong increase.

23Related plugins
1.6 Related plugins
Out of the box, SonarQube is a pretty incredible tool. But there are plugins that can
make it even better. We’ll end almost every chapter with a list of plugins related to the
functionality discussed in the chapter, and we’ll tell you how they enhance the rele-
vant aspect of SonarQube.

 If you decide to add any of these plugins, you’ll find that installation is pretty easy
for a logged-in administrator from within SonarQube (see chapter 14 for details).
Now we’ll talk about our first couple of plugins: Technical Debt, and Views.

1.6.1 Technical debt

At the heart of SonarQube is the concept of technical debt: the cumulative cost of work
that’s been put off or done poorly enough that it needs to be refactored. Because
measuring technical debt is a core principle of SonarQube, it’s not surprising that its
creators would come up with a set of technical debt metrics—in dollars and days.
What is surprising is that it’s not included in the core functionality, but available
instead as a plugin.

 Once you’ve installed the plugin and restarted SonarQube, add the widget to your
dashboard and run a new analysis. When it’s done, you’ll see something like what’s
shown in figure 1.16 on your dashboard.

 The dollar and man-day values come directly from the other metrics on your dash-
board. How many issues and duplications do you have? How much of your API is
uncommented? How out-of-hand are your design and complexity?

 The Technical Debt plugin takes all those numbers and multiplies each one by an
estimate of how long it will take to fix an average issue of each type. That gives an hour
figure, which is easily turned in to man-days. For the dollar number, the plugin multi-
plies by the configured cost per man-day. Simple, but often painful, calculations.

 The percent figure is called the debt ratio. It’s the total debt, divided by the total
possible debt—the worst-case scenario—times 100. Presumably, it’s included to ease
the sting of the other numbers.

 Each of these calculations is based on tunable estimates. The daily rate of a devel-
oper defaults to $500, but it’s easily changed. Time to fix an average coding issue
defaults to six minutes, but again, it’s tunable. Chapter 14 will show you how.

Figure 1.16 Technical debt is designed
to communicate the full liability of un-
addressed issues in your code base
clearly—what they could potentially cost
you, and where they’re coming from.

24 CHAPTER 1 An introduction to SonarQube
1.6.2 Views

Although SonarSource offers the Technical Debt plugin for free, it charges for the
Views plugin. What makes it compelling enough that you may want to pony up is the
cross-project aggregation it offers.

 The Views plugin’s functionality is most likely to appeal to managers and execu-
tives who need quick visibility of SonarQube’s leading and lagging quality metrics
across multiple projects in a group, or across multiple groups. There’s no other way to
get this cross-project view except to manually update spreadsheets, a tedious and
error-prone process.

 Instead, the Views plugin offers those aggregations not just on “report update day,”
but at a whim at the filter (list of projects) level. It also provides a dashboard for each
aggregation that shows totals and percentages calculated across every member of the
collection. Once you start drilling in to an aggregate view (clicking-through from the
dashboard), you’ll get aggregate drilldowns that let you identify culprit projects while
retaining the ability to continue drilling down to see the granular issues in the proj-
ects and files themselves.

1.7 Summary
Measuring software quality used to be hard. Instead of even trying, people did silly
things like measuring lines of code instead. Then the creators of SonarQube, the
SonarSource folks, came along and used existing tools that find problems in software
and derived metrics from their output, making quality trackable and trendable. They
added their own tools and metrics as well. They wrapped all those metrics in Sonar-
Qube’s intuitive interface, added review functionality and IDE integration, and …
gave it away.

 The beneficiaries of this generosity are the developers, testers, code architects, and
managers whose teams use SonarQube. Oh yes, and end users too.

 SonarQube was originally written to analyze Java, but plugins extend the offerings
to an ever-growing list of other languages. Each SonarQube “project” is about a single
language, but you can use multiple properties files to analyze every aspect of a com-
plex project. For instance, you can get quality metrics not just for the Java back end of
a web application, but for its XML and JavaScript, too.

 In this chapter we’ve walked through your first SonarQube analysis using the
SonarQube Runner and a basic properties file. Once the analysis was complete, we
looked at the results on SonarQube’s front page, the default filter, and drilled down to
the details on the project dashboard.

 The default dashboard is centered on SonarQube’s Seven Axes of Quality:

 Potential bugs
 Coding rules
 Tests
 Duplications

25Summary
 Comments
 Architecture and design
 Complexity

After getting a high-level understanding of each axis, you saw a few interface conven-
tions that you’ll be seeing regularly; the package/class hierarchy in metric drilldowns,
the file detail view that’s added below it, and the trend arrows you see on filters and
dashboard widgets.

 In the next chapter we’ll focus more deeply on those first two quality axes, with a
look at issues and why they should never be ignored.

Issues and
coding standards
If you’re only using your users’ bug reports to measure the bugginess of your code,
then you’re only seeing a tiny sliver of the picture—because users can only report
what they can perceive. Any user will recognize a program crash, but what about
gradual performance degradation caused by unclosed database connections?

 The report that comes back from the users typically sounds like “sometimes it
gets slow and we have to restart.” Which could, of course, mean anything.

 In this chapter, we’ll look at issues: programming errors that users aren’t neces-
sarily noticing…yet. Pay attention to coding rule issues, and you can head that bug
report and many others off at the pass by preventing problem code from ever
reaching the user.

 The term issues covers two of SonarQube’s Seven Axes of Quality: potential
bugs, and coding standards. We’ll start with what SonarQube tells you about issues

This chapter covers
 Looking at your issues

 What issues mean

 Where issues come from
26

27Looking at your issues
on the dashboard and in the issues drilldown. Then we’ll look at why each issue is a
potential problem, even the ones you might be tempted to shrug off.

 Next we’ll take a brief look at rule profiles—the sets of rules against which your
code is measured in an analysis—and how to change the defaults. We’ll round out the
chapter with a summary of issues-related plugins that might be of interest.

2.1 Looking at your issues
Bob is one of your best customers, and he says the app is crashing when he opens the
Edit window. But only sometimes. Your testers can’t reproduce the crash, but you have
to believe Bob because he sent you screenshots.

 The best suggestions at this point are a line-by-line audit of the code, which could
take weeks and still not produce anything, or flying someone out to watch over Bob’s
shoulder as he works.

 Neither idea is popular with upper management. Now what?
 Now it’s time to let computers do what they do best: automate intricate, detailed,

and mindlessly tedious tasks. It’s time to turn to SonarQube for a look at your issues.
 After your first analysis, you’ll likely see hundreds of issues on your SonarQube

dashboard. Each one represents some anti-pattern in your source or compiled byte
code. Not every issue is a bug, but it’s something that needs further attention. Also,
addressing issues is the quickest road to higher-quality software.

 Let’s start from the dashboard, where you see something that looks like figure 2.1.
This is the issues widget, which reports on your project’s adherence to a rule profile.
At upper left is the raw count of issues. To the right is the issue breakdown by severity.
At lower left in the widget is the project’s Rules Compliance Index, a calculation based
on the number and severity of issues versus the number of lines of code in the project.
It’s calculated with the formula shown in figure 2.2.

 The Rules Compliance Index is a gut-check type of metric that gives perspective.
After all, 465 issues in a project with 10,000 lines of code is entirely different from the
same issue count in a 500-line project. The problem with Rules Compliance is that it
can fluctuate without the number of issues ever changing. For instance, if you add
lines of issue-free code, your index goes up. At a glance, you might think you’ve
improved the code base, when all you’ve really done is dilute the problem. For that
reason, we won’t spend more time on the Rules Compliance Index.

Figure 2.1 The issues widget
gives the total number of issues,
the breakdown of that count by
level of severity, and the Rules
Compliance Index.

28 CHAPTER 2 Issues and coding standards
Instead, we’ll focus on the issues themselves. To see what the issues in your project are,
you can either choose Issues Drilldown in the left menu or click-through in the issues
widget on the Issues total at upper left or on one of the individual issue severities. Fig-
ure 2.3 shows you the issues drilldown with the Major severity highlighted. In chapter
1, we showed you a metric drilldown for complexity that looked a lot like the bottom
half of figure 2.3. That’s because the package and file/class hierarchy are standard
interface features you’ll see repeated from drilldown to drilldown.

 What’s specific to the issues drilldown is the severity and rule hierarchy across the
top. If you got here by clicking Issues Drilldown in the left menu, then none of the
severities are highlighted, and you’re seeing all issues in the Rule box at upper right,
grouped by severity (worst first) and sorted by count.

 To narrow the list of rules, click a severity. It will not only filter the rules at upper
right, but also limit the package list to only packages with issues of the selected sever-
ity, and similarly limit the class list to only classes with issues of the chosen severity.

 It works the same way with the rules. Click a rule to filter the packages and classes
to show only ones with issues of that rule. And of course, clicking a package filters the

(Blockers * 10) + (Criticals * 5) + (Majors * 3) + Minors
Lines of code

100 - * 100()

Figure 2.2 The Rules Compliance Index is the Weighted Issues score (your
counts of issues multiplied by severity factors), divided by the number of lines
of code in the project, turned into a percentage, and subtracted from 100.

Figure 2.3 The four widgets you first see in the issues drilldown represent a hierarchy: severity, rules,
packages, and classes/files. Each widget after Severity is sorted by the number of hits against the items listed.
Click at any level to filter the widgets lower in the hierarchy. Click a file or class name to begin seeing issues in
that file at any time.

29Looking at your issues
class list by that package. If you find that you’ve filtered too much, you can re-click
your choice at any level to remove that filter and the ones below it in the hierarchy.

 At any point, whether you’ve filtered the list or not, you can click a filename to
begin seeing the issues in the file detail view, which is added to the bottom of the
screen when you click a filename. If you did click a rule first, you’re only shown issues
of that particular rule in the file you’ve chosen. Other issues may exist, but they’re fil-
tered out initially. To see them, the easiest thing to do is consult the All Issues drop-
down at upper right of the file detail view, shown in figure 2.4. You can use it to show
all the issues in the file, or all the issues of a particular severity or of a particular rule.

 For each issue, SonarQube not only shows what the problem is and where to find
it, but also gives a few lines of context around each issue. If the context shown by
default around the issue isn’t enough for you to understand the problem, you can use
the Full Source check box at upper left in figure 2.4 to show the issues in the context
of the whole file.

 By default, SonarQube shows you the “what” and the “where” of a issue. If you’re
using the SCM Activity plugin, it can also show you “who,” as shown in the left column
in figure 2.4.

SCM stands for Source Control Management, and the plugin integrates with many
of the popular source control repositories, such as Git, Subversion, and CVS. It doesn’t
come bundled with SonarQube, but it’s maintained by the authors of SonarQube, and
it’s a free download.

 Now that you know how to find your issues, let’s dig in to what they are.

Figure 2.4 Once you click a file, you’re shown the issues in that file with a few lines of context on each
side. If you have the SCM Activity plugin in place, you see not only the problem code and its line number, but
also who checked it in and when.

30 CHAPTER 2 Issues and coding standards
2.2 What issues mean, and why they’re potential problems
The issues shown earlier were recorded during a SonarQube analysis. As one part of
the analysis, SonarQube compares your code to a set of rules. When a rule is broken,
an issue is marked against the line where it occurred. Issues are reported at one of five
severities: Blocker, Critical, Major, Minor, and Info, and the severities generally mean
what you’d think they would.

 Severities are attached to the rules being checked, not to the issues themselves. So
you won’t see SonarQube report one issue of rule A as a Blocker and another issue of
rule A as a Minor.

NOTE There are exceptions. Two rule profiles might include the same rule at
different severities, and it’s possible to change the severity of an individual
issue. See chapters 10 and 13 for details.

For the sake of discussion, it’s useful to break the issues SonarQube reports into six
general categories. They’re listed here in approximate order of importance:

 Bugs
 Potential bugs
 Indications of (potential) programmer error
 Things that may lead to future programmer error
 Inefficiencies
 Style inconsistencies (future productivity obstacles)

Very often, issues that represent bugs and potential bugs show up in SonarQube as
Blocker or Critical issues. After that, you can’t necessarily match up the severity of an
issue to the categories we’ve outlined here. That’s particularly true because the sever-
ity of an issue is editable (we’ll show you how in chapter 13), and the importance
(severity) that one person or team places on a rule may differ from another’s. To
make this clearer, figure 2.5 gives a general overview of severities versus categories.

 For instance, some things that would fall under “inefficiencies” or “future pro-
grammer error” are flagged by SonarQube as Major issues, and others show up as
Minor. So although the severities are important, we’re going to set them aside for the
purpose of this discussion.

 Next we’ll look at each category and tell you why it’s important. We’ll also give
you a few examples of issues in the category, but don’t think that these lists are

Bugs

Potential bugs Inefficiencies

Indications of
programmer error

Future
programmer error

Style

Figure 2.5 SonarQube’s
issue severities match up
only loosely with the
categories we’ll use in
this chapter to discuss
the kinds of issues that
are flagged.

31What issues mean, and why they’re potential problems
exhaustive. Unfortunately, the lists of things you can get wrong are far longer than we
have space for.

2.2.1 Bugs

The first (and worst) category is bugs. Issues in the bugs category are guaranteed to be
problems. Your users might not be complaining about them, but if so, that’s because
they just haven’t noticed them yet.

 Things in the bugs category include the following:

 Logic errors that would lead to null pointer exceptions
 Failures to close file handles or database connections
 Bad behavior in a multithreaded environment
 Methods designed to check equality that always return false (or true)
 Impossible class casts

Figure 2.6 shows one such issue flagged in SonarQube.
 Any piece of code flagged with the issue shown in figure 2.6, “Correctness–Null

pointer dereference,” is guaranteed to be a problem. Full stop. No horsing around.
 Sure, the particular example of reversed logic shown in figure 2.6 is trivial enough

to verge on silly, but it’s the kind of thing that’s easy to do when your mind is else-
where. And trivial or not, this example represents a very serious category of issue,
because these bugs are always guaranteed to have unpleasant results for the user.

 At best, issues in the bugs category result in performance degradation that eventu-
ally requires a restart, and Murphy’s Law dictates that it will come at an inconvenient
time. At worst, your users are probably dealing with weird program behavior and error
messages, or outright program crashes.

2.2.2 Potential bugs

As with bugs, potential bugs represent actual problems in the code. Often, though,
they’re conditional problems, ones that will only happen some of the time—which is
probably how they get past the programmers’ own testing.

Figure 2.6 Null pointer dereferences fall into the bugs category.

32 CHAPTER 2 Issues and coding standards
You’re even less likely to get coherent bug reports from the users about these prob-
lems, but they’re problems nonetheless. Figure 2.7 shows one such issue.

 We had to use the Full Source check box we mentioned earlier to see enough of
the code to understand the problem shown in figure 2.7. Once we did, we saw that the
code will work fine some of the time, when everything works as it should and no
exceptions are thrown. But when an exception is thrown, this code starts leaking
resources like a sieve, because the method re-throws all its exceptions without pausing
to clean up after itself first. This is the sort of thing that may happen only 1% of the
time—a corner case—but once it’s pointed out, it’s easy enough to fix, and there’s
really no reason not to.

 In addition to potential resource leaks, the potential bugs category includes things
like these:

 Potential null pointer exceptions, which happen only under certain conditions
 Null checks that dereference the items they’re checking
 Math operations that use the wrong precision or lose precision

Now that we’ve covered the two issues categories for things that are flat-out wrong,
what’s left are the categories with problems that typically are just as serious but that
may not be quite as urgent.

2.2.3 Indications of (potential) programmer error

Unlike the issues in the first two categories, the ones in the indications of programmer
error category aren’t guaranteed to cause problems. And at first blush, they may tempt
you (or developers you work with) to dismiss the entire enterprise as trivial, because
they flag code where there’s nothing technically wrong. Figure 2.8 shows an example.

 If you skimmed past it, take a minute to actually read the code in figure 2.8. On
line 22, a conditional checks whether the day in question is Tuesday. Then, on line 24,

Figure 2.7 If everything works well, on line 1096 this method will close the FileOutputStream that was
created on line 1084. But if an exception is encountered in the middle, that resource leaks instead. If this happens
once or twice, you may never notice. Let it go on long enough, though, and you’ll bring your application to its knees.

33What issues mean, and why they’re potential problems
the conditional block is closed. There’s nothing in between the open curly brace and
the close curly—except the issue block that SonarQube overlays into the code.

 The code shown in figure 2.8 will run just fine. But … don’t you have the sense
that something is missing? At the very least, you’re probably wondering what the pro-
grammer meant to do on Tuesdays.

 That’s why this gets flagged by SonarQube. Not because there’s anything demon-
strably wrong, but because there’s an indication that the developer might have made a
mistake.

 For instance, what if it should have looked like this?

public void complexMethod(RequestObject request) {

 String day = request.getWeekday();

 if (day.equals("Tuesday") {

 processPayroll();

 }

}

Clearly, forgetting to process payroll is a serious omission.
 A small subset of issues in the indications of error category has to do with null

checks: null-checking a variable that has already been dereferenced, re-null-checking
something you already know is null, and re-null-checking something you already know
isn’t null. Coders who cut their teeth on C may bridle at these, because they’ve long
lived by the motto “Null-check early; null-check often.” The reason SonarQube flags
these null-check instances, and the reason they’re included in this category, is that
they look like evidence of rearranging the code without really reading it.

 Other issues in this category include

 Comparing objects with == or != rather than the .equals() method
 Conditionals that assign rather than compare, such as if(count=1), which

always returns true, versus if(count==1), which is truly a conditional
 Unused members or methods
 Catch blocks that swallow exceptions rather than logging or passing them on

Figure 2.8 An empty conditional may mean the coder forgot to do something.

34 CHAPTER 2 Issues and coding standards
Next we’ll move from the issues that tell you a coder may have tripped up to the ones
that mark the bumps in the road ahead—where coders may trip in the future.

2.2.4 Things that may lead to future programmer error

Issues in the future programmer error category strike some as purely questions of
style. Others will recognize them for the traps that they are. Figure 2.9 gives an excel-
lent example.

 Figure 2.9 shows a conditional without curly braces. Like some of the previous
examples, figure 2.9’s brace-less conditional will run just fine. And many coders prefer
not to use curly braces around one-line if statements (and else statements, and
wheres, and so on). They argue that it makes for cleaner-looking code. Certainly for
the alert and focused programmer, the code shown in figure 2.9 is clear, concise, and
readable.

 The problem is that not every programmer is alert and focused. The next guy who
comes along may be more used to one of the languages where the indents count and
not the curly braces, or he may be focused more on what’s for lunch than the trivial
change he needs to make, and he may do something like this:

if (day.equals("Saturday") || day.equals("Sunday")
 playLotto();
 sleepLate();

If you’re paying attention only to the indention, like our hungry coder, you may think
this program now has you sleeping late and playing the lottery only on weekends.

 In fact, because only the first command after a brace-less if statement is condition-
ally executed, what it actually does is have you play lotto on the weekends and sleep
late every day of the week. Now you’ve not only squandered all your money on lottery
tickets, you’ve also started missing work.

 Then there are the rules that check naming conventions. They make sure your
class names start with capital letters and your method names don’t. They look for con-
stant variables that are named in all caps and make sure your non-constant variables
aren’t.

 These may seem like questions of style, which are covered shortly, but they’re
included here because straying from these industry-standard conventions will lead

Figure 2.9 Conditionals without curly braces could lead to future programmer error.

35What issues mean, and why they’re potential problems
experienced programmers to make false assumptions about code they’re not familiar
with—assumptions that at best will waste their time and at worst will lead to the kind
of subtle bug that can be very difficult to track down.

 Also in the future programmer error category are the things that will make the next
person’s job harder to do when she gets assigned to maintenance on your project:

 Classes that try to do too much and need to be chopped up
 Methods that are too long and complex
 Conditionals with too many clauses

Future programmer error issues can make it difficult to maintain existing code cor-
rectly and efficiently. The issues in the next category can make it difficult for your pro-
gram to run efficiently.

2.2.5 Inefficiencies

No issues in the inefficiencies category will keep your program from performing cor-
rectly. Nor will they lead to future problems. What they will do is keep your program
from performing at peak efficiency. And although that may not be a concern today, it
could become important as your program’s user base grows or its share of the CPU
shrinks.

 A set of issues in this category that deserves special mention, at least in Java, is the
inefficient use of strings. Using strings poorly is sadly easy to do in Java and particu-
larly likely for coders who come to Java from other languages. For instance, concate-
nating strings in a loop is standard operating procedure in some languages. But it’s
such a bad idea performance-wise in Java that a special rule checks for it. Figure 2.10
shows another rule in the strings group.

 Also in this category are

 Unneeded import declarations
 Suboptimal use of the special Java math objects like BigDecimal
 Unused members and methods

If you’re alert, you noticed that “unused methods” is listed in the indications of
(potential) programmer error category as well. There are many issues that could
span multiple categories, and this is one of them. In fact, many people would lump
everything in the next category, style inconsistencies, into the future programmer
error category.

Figure 2.10 Strings are easy to abuse in Java, and SonarQube offers several rules to
ensure that you’re using them efficiently.

36 CHAPTER 2 Issues and coding standards
2.2.6 Style inconsistencies (future productivity obstacles)

The issues in this category are the stuff of which holy wars are made. For instance,
which line does the left curly brace go on? This one?

if (day.equals("Monday")) {

Or this one?

if (day.equals("Monday"))
{

To add spaces?

if (day.equals("Monday"))

Or not?

if(day.equals("Monday"))

The idea behind these style rules is the same one behind consistent placement and
presentation of traffic signals; once you learn the system, your eye zooms past the pre-
sentation (“There’s a sign up ahead”) and straight to the critical data being presented
(“It’s red; I should stop!”).

 Start changing sign shapes or colors, and it takes longer to get to the meat of the
matter. Similarly, developers spend most of their day reading code. The extra time
required to take in code that’s not formatted in the style the team agreed to, multi-
plied by the number of files they read and the number of developers in an organiza-
tion, could work out to a lot of lost productivity.

 We’ve listed the bug categories here in order of the quickest bang for the buck,
which is also (in some minds) their order of importance. But others would argue that
the categories we put at the end of this list are just as important—even more so in the
long term—as the ones at the start, because they relate to the maintainability of the
code. Left unfixed, these issues could make your code difficult to maintain, favor the
introduction of bugs (because of low readability and high complexity), and, little by
little, make the business reticent to make changes because they’re costly and usually
end up breaking something.

 Now that you’ve got a feel for the kinds of rules SonarQube gives you, we’ll look at
where they come from and how SonarQube organizes them.

2.3 Where do issues come from?
You may be aware that very good open source tools are available to analyze code and
find anti-patterns. You may have even used them in the past. But when’s the last time
you remembered to do it? Even if you’re analyzing regularly on your own, what about
your teammates? Are you all using the same tools? With the same options? Chances
are, the answer is no.

37Where do issues come from?
 Standardizing the answers to those questions is one of the great benefits Sonar-
Qube offers. In Java and C#, it provides a few rules of its own, but the majority of the
rules SonarQube uses come from the major rules engines: FindBugs, PMD, and
Checkstyle for Java; FxCop, Gallio, Gendarme, NDeps, and StyleCop for C#. For most
other languages, the rules come directly from within the plugin.

2.3.1 Picking a rule profile

Even though SonarQube uses multiple external rules engines for Java and C#, it
doesn’t turn on all three tools full-bore. Instead, it packages selected rules from each
tool into what it calls profiles. Multiple profiles can exist per language, and one profile
is always set as a default for that language. The default for a language almost never
includes every single rule that’s available for the language. New projects and projects
that haven’t been specifically pinned to a rule profile (unassigned projects) are mea-
sured against their language’s default.

 For Java, SonarQube provides three profiles: Sonar way, Sonar way with FindBugs,
and Sun checks. It sets Sonar way as the default.

 The Sun checks rule set is a small one, weighing in at only 58 rules. All it does is
check source code against the Sun Java coding style conventions. For example, it checks
member- and class-name capitalization, curly brace position, and the use of spaces.

 The difference between the other two (the two versions of Sonar way) is the inclu-
sion or exclusion of FindBugs rules. It’s a big difference. Checkstyle and PMD scan
your uncompiled .java files. By contrast, FindBugs (and some of the SonarQube-native
rules as well) runs against your compiled byte code, the .class files. During a Sonar-
Qube analysis, if FindBugs is invoked (if any of its rules are included in the profile), it
performs a static analysis of every possible path through the program: no stone
unturned, and no execution necessary. Similarly, the C# suite also includes static anal-
ysis of compiled code.

 The bugs from static analysis tools like FindBugs are the “best” ones, the ones
you really want to catch, because those tools find the problems that are the most
likely to lead directly to bad program behavior. For instance, the Java issue “Correct-
ness - Null value is guaranteed to be dereferenced” comes out of FindBugs, and with-
out FindBugs in your profile, you’ll have a much harder time finding and fixing
these rotten apples.

 Clearly, you want to use the FindBugs rules if you have access to the .class files dur-
ing analysis. Unfortunately, because that access can’t be assumed, SonarQube’s out-of-
the-box default is the less demanding Sonar way profile.

 Assuming you have the .class files handy, you should use the Sonar way with Find-
Bugs profile instead of the out-of-the-box default. The most expedient way to do that
is to change SonarQube’s default Java profile.

38 CHAPTER 2 Issues and coding standards
2.3.2 Viewing profiles and changing the default

Changing a language’s default profile is as easy as the click of a button for a logged-in
administrator. The Configuration link at upper right on the screen takes any user to
the list of profiles, as shown in figure 2.11.

 This means any user can see what the default profile is for a language (the one
with the green check mark) or peruse the profile a project is being measured against
(it’s listed in the Description widget on the dashboard). But only administrators see
the columns of controls shown on the right in figure 2.12.

FindBugs presents minor challenges
FindBugs analyzes your compiled byte code, not the Java source. This means you
need to be aware of two things.

First, the issues it finds may sometimes be shown in SonarQube attached to the
wrong line of code. When that’s the case, look one or two lines above and below the
line SonarQube flags, and you’ll find the real source of the problem (as shown in the
following figure).

Second, for FindBugs and SonarQube to be able to make any kind of connection at
all between a issue and a line of source code, you need to have debug turned on
when you execute your javac command. (It’s off by default if you’re using Ant.) This
has the effect of embedding line-number information in your byte code. FindBugs can
then use this information when recording the issues it finds. (Of course, this implies
that it’s not FindBugs that occasionally gets line numbers wrong, as we said earlier,
but javac.)

Be aware that turning on debug in your compile will have the added effect (typically
considered a benefit!) of adding line numbers to any stack traces, thus making it eas-
ier to track down and fix your exceptions in production.

Sometime FindBugs flags the wrong line with the issue. It makes that occasional mistake
because it’s working from the compiled byte code, not the .java files. When this happens, look
a line or two above and below to find the real problem.

39Where do issues come from?
Your first analysis of a project will run against its language’s default profile, which we
hope you’ve just changed. Once it’s established in SonarQube, an administrator can
easily assign a project to a different profile, and all subsequent analyses will run
against it even if it’s not the default.
Even if your project’s preferred profile is currently set as the default, it’s not a bad idea
to also explicitly assign the project to that profile. To do that, start by clicking-through
on the profile name and then choosing the Projects tab, as shown in figure 2.13. Once
your project is assigned to the proper profile, you’ll still get the analysis you expect,
even if the default changes.

 When you begin analyzing your projects against a rule profile, you may find there
are rules in the profile or rule-severity assignments you don’t agree with. One option
is to switch to another profile, but a better option is customizing your rules. For
details, see chapter 13.

Figure 2.11 Any user can see the rule profiles by using the Configuration link at
upper right of the screen.

Figure 2.12 Administrators have the ability to create and edit rule profiles and
change which profile is the language’s default.

40 CHAPTER 2 Issues and coding standards
2.4 Related plugins
A number of plugins are available that add rules, but we’re going to focus here on
something different: the SCM Activity plugin, which enhances the presentation of
your issues. Here’s a brief rundown.

2.4.1 SCM Activity

The SCM (Source Control Management) Activity plugin integrates with your source
control repository to attach committer information to each line of code, as shown in
figure 2.14. This free plugin works with a number of mainstream SCM tools, such as
CVS, SVN, and Git, to show you not only who last checked in changes to a given line of
code (not necessarily the person who added an issue), but also how old that change is.

Figure 2.13 Projects can be assigned to a non-default profile for analysis.

Figure 2.14 The SCM Activity plugin adds committer and commit-date
information to the file detail view. This screenshot shows a section of code,
starting at line 54 of the file, that was checked in on 7/26/2012.

41Summary
 Once you install the SCM Activity plugin and restart SonarQube, you’ll need to
make configuration changes on a project-by-project basis to begin seeing commit
data. The configuration page for the plugin does a good job of walking you through
what to configure and how to do so.

 There are just a few things to keep in mind. First, after installation, this plugin is
on by default. If you’re in a Maven shop, with your SCM server info embedded in your
pom.xml, then this is peachy. For everyone else, this can be a pain, because if the
plugin is enabled for your project (the default) but your SCM server info isn’t available
(also the default), your analysis will fail. You’ll either want to switch the global config-
uration for this to be off by default, or be aware that your analyses will fail until you
either toggle this off at the project level or tell SonarQube where to find its source
control server.

 Second, there are plugin configuration inputs for the login and password to con-
nect to your SCM. You can leave these blank if your SCM URL encapsulates those cre-
dentials, as it does in a typical CVS URL, for example.

 Once you’ve finished application configuration and saved your changes, kick off
another analysis. This first one with the SCM Activity plugin on board can take signifi-
cantly longer than you’re used to. Essentially, the plugin is reading in the entire his-
tory of your project. Each analysis after the first one will take longer than analyses did
before you added SCM Activity, but not nearly as long as this setup analysis.

2.5 Summary
SonarQube scans your program code for anti-patterns and reports each instance as an
issue. Not all issues are bugs, but every issue needs further attention.

 Rules come from existing tools like FindBugs, PMD, and Checkstyle, as well as from
SonarQube itself. Rules are packaged into profiles, and for each language SonarQube
can analyze, there will be at least one profile. Among the profiles for a language, one
will always be marked as the default. An administrator can easily change which is the
default profile. If the default profile isn’t appropriate for your project, an administra-
tor can easily assign the project to a different one.

 We’ve focused on issues and coding standards in this chapter, but SonarQube also
offers rules that check (and flag) problems with complexity, duplications, documen-
tation, and unit testing—in other words, other Axes of Quality. As we cover those top-
ics in the next few chapters, starting with testing in chapter 3, keep in mind that you
also have the option to raise issues when the code isn’t meeting your standards for
those axes.

Ensuring that your code
is doing things right
These days, unit testing is a standard practice for many teams. But if you’re among
the holdouts, the first part of this chapter should convince you that it’s the right
time to get started with unit testing.

 Whether you’re just getting started with unit testing or you’re already an experi-
enced test writer, SonarQube can help you track how much of your code is covered
by unit tests. And more important, it will help you pinpoint the gaps in your testing,
so you can close them. Two types of things can go wrong with unit tests: runtime
issues (such as failing or erroring-out) and rule issues. We’ll talk about both in this
chapter.

 SonarQube’s great for everyone, not just coders. If you’re on the QA side of the
house, you’ll find that SonarQube helps you do a better job, too, by showing you

This chapter covers
 Knowing how much of your code is doing things right

 Explaining metrics on a file level

 Configuring your favorite code-coverage tool

 Integration testing (IT)
42

43Knowing how much of your code is doing things right
what the developers have already covered with unit tests and what they’ve left undone.
Now you can focus your efforts where they’ll do the most good, on the features that
are poorly covered by unit tests.

 Management and the rest of the project stakeholders all have something to gain
from SonarQube as well. We know you care about software quality, and test coverage is
an important element of quality control. We’ll show you how easy it is to track and
improve your coverage with SonarQube.

 We’ll start from the project dashboard and look at the high-level testing metrics.
Then we’ll drill in to the source code and show you how to spot files with problematic
tests and low coverage. When we’re done, you’ll never think of testing the same way
again.

 The topics we’ll cover here don’t require you to be an expert in unit and integra-
tion testing, but you may want to check out some of the following Manning titles if
you’d like more information:

 Effective Unit Testing, by Lasse Koskela (2013), www.manning.com/koskela2
 JUnit in Action, 2nd edition, by Petar Tahchiev, Felipe Leme, Vincent Massol,

and Gary Gregory (2010), www.manning.com/tahchiev
 The Art of Unit Testing, 2nd edition, by Roy Osherove (2012; 3rd edition forth-

coming), www.manning.com/osherove2/

The examples shown in this chapter are based on JUnit. But we’ve tried to keep them
as simple as possible so that TestNG fans or non-Java readers won’t find the chapter
hard to follow. TestNG and JUnit are the most popular unit-testing frameworks with
adequate online documentation (http://junit.org, http://testng.org). You can check
them for useful resources and use cases.

3.1 Knowing how much of your code is doing things right
What’s the biggest reason for the eternal brawl between programmers and testers? Is it
(from a coder’s perspective) because testers are exaggerating whiners who magnify
tiny issues in otherwise bulletproof code? Or is it because (from a tester’s point of
view) programmers are lazy slobs who would have tried to downplay the gash in the
Titanic?

 What about when customers find issues in a production environment? Someone
always asks: whose fault is it that the bug made it to production? The developers who
coded it? The testers who didn’t catch it? You won’t find an answer here—or even an
argument either way. It’s just not worth it. What’s more important is figuring out how
to keep it from happening again.

 The reason bugs slip into production is that time is a limited resource for everyone
on the team. You need to find a way to spend it wisely. Theoretically, developers write
unit tests for every method they implement, to prove that their code works. But do
they really? On the other hand, the QA team should re-test all the system functionality
for each iteration or release. That’s almost impossible, though, so they usually pick

www.manning.com/koskela2
www.manning.com/tahchiev
www.manning.com/osherove2/
http://junit.org
http://testng.org

44 CHAPTER 3 Ensuring that your code is doing things right
some subset of features for re-testing. What are the criteria for picking those features?
There probably are some, but it can seem as random as tossing darts at a feature list.

 Now comes the “what if” scenario. What if you knew which source files were
already covered by unit tests? Then the QA folks could focus their limited testing time
on the functionality that was only partially covered by unit tests or not covered at all—
making far, far better use of their time than the feature testing lottery you may have
had in the past. If you agree, then you’re reading the right chapter. Start SonarQube’s
engines, and get the testing coverage metrics you need.

3.1.1 Understanding unit-test metrics

We’ll start from the default dashboard, with the widget that displays SonarQube’s unit-
test metrics. After your first analysis, you’ll see something like figure 3.1, which shows
Code Coverage on the left and Unit Test Success on the right.

 Many readers will be familiar with the code-coverage numbers, but unit-test success
may need some explanation. For the time being, keep in mind that test-coverage met-
rics report on how much of your code is tested, whereas unit-test success provides
quantitative information about your unit tests.

Figure 3.1 SonarQube’s testing widget on the default dashboard

45Knowing how much of your code is doing things right
Let’s group these metrics into a category and call them unit-test metrics (see figure 3.2).
Starting from the right side of the widget, the first and most important metric is the
unit-test success density. Any number below 100% is unacceptable and should trigger
a red alert. Below the unit-test success density are some of the numbers that feed the
density calculation. Table 3.1 gives a detailed explanation of each metric. We decided
not to list them in the order they appear in the widget, but in a way that will help you
better to understand success density, which is computed based on the other metrics.

When you’re looking over your unit-test metrics, keep in mind that test failures and
errors are as important as success density. If you see any value other than zero (0) for
failures or errors, then it’s time to start worrying and take immediate action. Non-
zeros for either metric indicate either potential bugs in your code (worst-case sce-
nario) or outdated unit tests (best-case scenario).

 Skipped tests aren’t as critical as failed tests, but any positive number means you
need to do some investigation. Why are there tests that aren’t executed? Are they use-
less? Are they failed tests disguised as skipped tests? Did someone notice they were fail-
ing (maybe due to the latest code modification) and, instead of address the problem,
flag the tests to be ignored?

Table 3.1 Unit-test metrics

Metric Description

Failures Absolute number of assertions that failed. If a test includes more than one assertion
(which is considered bad practice), then those found after the first failed assertion are
never executed—which is one reason multiple assertions per test is bad practice.

Errors Absolute number of tests with errors. A test with one or more errors is a test that hasn’t
completed its assertion. For instance, an unexpected exception has occurred during its
execution.

Tests Absolute number of tests executed by SonarQube during the latest project analysis.

Skipped Absolute number of tests that weren’t executed. For example, in JUnit 4.x, these
tests are annotated with @Ignore; and in TestNG, they’re annotated with
@Test(enabled=false). Similar attributes exist in most xUnit frameworks.

Ms Time (in milliseconds) needed to execute all tests by SonarQube during the latest proj-
ect analysis.

Unit-test
success
density

A roll-up calculation of your unit-test suite’s overall success in the last run. It’s calcu-
lated based on the following formula:
Tests – (Failures + Errors) / Tests

Figure 3.2
Unit-test metrics

46 CHAPTER 3 Ensuring that your code is doing things right
 Unfortunately, developers sometimes skip tests instead of trying to fix them or
clean them out. The tests that get skipped are usually the ones that are hard to main-
tain, provide no real testing, or, worst-case, are failing and nobody knows why. Unless
you have serious reasons for skipping tests, you should examine each one carefully
and decide what has to be done so you can stop ignoring them.

 The last two metrics are the number of tests in your source code and the time
needed to run them during SonarQube’s analysis. Knowing how many unit tests you
have in your project is of little use: 10 tests means one thing for 100 lines of code and
something completely different for 10,000 lines of code. Also, how many assertions
does each test include? Ideally, you have a single assertion per test, but it’s possible
that one single test asserts more conditions than 10 optimally written tests. Based on
our experience, this metric is rarely used for quality conclusions, but it can still pro-
vide some valuable insight if combined with other metrics.

 On the other hand, the time elapsed to complete all unit tests could be useful.
Although you should write your unit tests in such a way that they fail if they take lon-
ger than you expect, the total time spent for unit-test execution is helpful to know in a
Continuous Integration environment because it can help you recognize when it’s time
to refactor your tests.

One of the key concepts of CI is that the development team gets instant feedback
(within a couple of minutes) on the build results so that they can take immediate
actions to fix a broken build. If tests take too long to execute, then the feedback is
delayed as well, and the team loses the immediate feedback advantage of the CI
practice.

 Continuous inspection using SonarQube (a step beyond CI) is covered in depth in
chapter 9. You’ll learn how to integrate your favorite CI tool with SonarQube and
automate your quality-inspection process.

 For the topic of this chapter, keep in mind that one of the key points of a success-
ful CI environment is to send feedback to every team member as soon as possible
after each commit. If unit tests, which are executed by every automated build, take
too long to complete, then feedback is delayed, and your CI process is less effective.
So if SonarQube reports a high value for unit-test execution time, you may need to
optimize your tests.

Martin Fowler’s definition of Continuous Integration
“Continuous Integration (CI) is a software development practice where members of a
team integrate their work frequently. Usually, each person integrates at least daily—
leading to multiple integrations per day. Each integration is verified by an automated
build (including test) to detect integration errors as quickly as possible” (Martin
Fowler, http://martinfowler.com/articles/continuousIntegration.html).

http://martinfowler.com/articles/continuousIntegration.html

47Knowing how much of your code is doing things right
3.1.2 Getting reports on unit-test coverage metrics

Let’s go back now to the dashboard widget and look at the code-coverage numbers on
the left. As figure 3.3 shows, there are three different coverage metrics: code coverage,
line coverage, and branch coverage.

 We prefer to group the coverage metrics in a category called unit-test coverage met-
rics. All of them are based on testing execution and provide an overview of how well
your source code is covered by unit tests. Once again, remember that numbers are
everything, and at the same time, they don’t mean anything if you try to interpret
them in isolation. Table 3.2 explains how these metrics are calculated and what they
mean.

A branch is a source code block that is conditionally executed at runtime—that is, only
when a condition at the branching point is satisfied. In our experience, branch cover-
age is always the metric with the lowest value. This means most projects are at risk,
because only a fraction of the logical paths through the code are tested. Imagine that
during an online checkout process the customer has to select a payment method
(credit card, PayPal, or bank transfer) and then enter the account details (card num-
ber or bank account, and so on). For simplicity, we’ll say that the selected payment
method and its details are handled in a single source code file. So at runtime, there

Table 3.2 Unit-test coverage metrics explanations

Metric Description

Line coverage The density of lines that are executed at least once during unit-test execution.
It’s calculated by the following formula:

Lines to Cover – Lines with No Unit Tests / Lines to Cover

where Lines to Cover is considered to be all lines that need to be covered by
unit testing.

Branch coverage The density of possible paths (branches) in flow-control structures that have
been covered by unit tests during SonarQube analysis. It’s calculated by the fol-
lowing formula:

((2 * Number of Paths) – Covered Paths by Unit Testing) / (2 * Number of Paths)

Code coverage A combination of line and branch coverage. It helps assign a single value for
test coverage. It’s calculated by the following formula:

((2 * Number of Paths) – Covered Paths) + Lines of Code – Covered Lines /
 (2 * Number of Paths) + Lines of Code

Figure 3.3 Unit-test
coverage metrics

48 CHAPTER 3 Ensuring that your code is doing things right
are three different paths to follow (one for each payment method), depending on
user interaction.

 If there are only unit tests for credit-card processing, then only a third of the actual
code is covered, and the branch coverage value for the file is 33.33%. Unfortunately,
developers tend to write unit tests only for the branch that’s most likely to be executed
at runtime: the happy path. We believe this happens for two reasons. First, they usually
don’t understand branching from a unit-testing perspective. Second, even if they do,
they feel that writing tests for all possible paths is a waste of time. But in our experi-
ence, leaving branches uncovered by unit tests means a lot of bugs not caught. Per-
haps it won’t be an issue immediately, but certainly it can be down the road as the
code evolves. For clarity, here’s an example of two branches:

public boolean isAdult(int age){
 if (age < 18){
 System.out.println ("You are still too young for that.");
 return false;
 }
 else{
 System.out.println ("Well done. Are you ready to change the world?");
 return true;
 }
}

Each branch displays a different message based on the result of the branch point
(age < 18). If you write only one unit test that checks this code, let’s say by passing in
a value of 10 for the age parameter, then you’ve covered only branch 1. Branch 2 is
still untested, and you can’t be 100% sure that your code is working as expected. The
following listing shows a JUnit test class that gives you 100% coverage for the isAdult
method.

public class AgeValidationTest {

 @Test
 public void validateAdult() {
 int age = 18;
 Employee instance = new Employee();
 assertTrue(instance.isAdult(age));
 }
 @Test
 public void validateNotAdult() {
 int age = 17;
 Employee instance = new Employee();
 assertFalse(instance.isAdult(age));
 }
}

There’s something else important here that SonarQube can’t tell you. You could use
the extreme ages of 0 and 500 in your test cases and get 100% branch or line coverage
and still miss a defect if the code checks for 180 instead of 18. That’s why you write two

Listing 3.1 JUnit Test class that gives 100% coverage on the isAdult method

Branch 1 is executed only
if age is less than 18

Branch 2 is executed
only if age is 18 or over

49Knowing how much of your code is doing things right
tests that check the maximum age (17) at which people are still considered non-adults
and the first age (18) at which people are considered adults.

 Remember that you should carefully select the inputs of your unit tests. As we said
in the chapter introduction, a couple of great books explain in detail all unit test best
practices.

 Let’s go back for a moment to why it’s not a good idea to focus on only one metric
for test coverage. A couple of years ago, we analyzed an open source project with
SonarQube and noticed that whereas line coverage was over 90%, branch coverage
was below 30%. If that were your project (or one you were using), would you think
there was enough coverage? We didn’t; 30% is too low for branch coverage.

 Let’s take a closer look at those numbers. It looks like unit tests execute 9 out of
every 10 lines of code at least once. And that’s great. On the other hand, only a third
of the paths in flow-control structures are exercised by unit tests. The conclusion?
This code base needs more unit tests for these branches.

 You might be wondering by now which number is acceptable for test coverage
(line, branch, and code). Well, there is no “right” answer to this question. Ideally
you’d expect to achieve 100% for all three metrics. But this isn’t feasible, especially in
large projects. Moreover, 100% coverage of a class doesn’t verify that the code is doing
what’s expected. For instance, if you have 70% coverage, the only safe information is
that the other 30% of your code isn’t executed by unit tests. The “covered” 70%
requires manual verification to ensure that everything is really and properly tested.

 Take a look at the next listing. It again gives you 100% coverage for the isAdult
method, but there is no real testing.

public class AgeValidationTestDummy {

 @Test
 public void validateIsAdult() {
 int age = 18;
 Employee instance = new Employee();
 instance.isAdult(age);
 age = 17;
 instance.isAdult(age);
 }
}

In the listing, both method branches are covered at least once during test execution.
But do you see any assertions of the returned values? Although you have a 100% value
on code coverage, you haven’t tested the method’s expected behavior. Furthermore,
you can configure SonarQube to notify you about a test without an assertion. To do so,
you need to enable the appropriate rules under the repository PMD Unit tests. You’ll
find more on administering rules and quality profiles in chapter 13.

 We advise you to use test metrics solely to identify poorly tested code blocks. If you
get high values on code coverage, feel free to celebrate, but only if you’re sure that all
developers correctly apply the unit-testing practice.

Listing 3.2 JUnit test class with no real testing

50 CHAPTER 3 Ensuring that your code is doing things right
 Let’s go back to the numbers. If you had to pick just one testing metric to track
over time, we’d recommend code coverage, the first number in SonarQube’s widget.
But all the coverage numbers deserve attention. With a little scrutiny, they reveal valu-
able information, such as the fact that you have untested paths or critical program fea-
tures with low coverage.

 Now that you’ve had a taste of testing metrics, it’s time for real action. The discus-
sion in the next few sections will be about technical details at a low level; so if you’re a
manager (technical or not), you might be tempted to skip ahead to section 3.4, which
covers integration testing. But even if you’re not a hands-on coder or tester, we think
an understanding of the technical details can be helpful. So take a deep breath and
dive in to your source code again. This time it’s all about testing.

3.2 Explaining metrics on a file level
Remember that dashboard widgets provide information on a project level, but track-
ing unit-testing metrics and coverage is nearly meaningless if you don’t drill down to
each source file and get reports for individual lines of code. After all, if you’re a devel-
oper, you’re responsible for testing your code on the unit level to ensure that it’s work-
ing as expected. And if you’re a tester, you need to know which parts of the code
(which program features) are poorly unit-tested (have low code coverage) so you can
spend more time testing them at a higher level.

 Next, we’ll look at how to spot which lines of code in a file aren’t covered and
which branches aren’t followed during test executions. When we’re done, you should
be able to get reports at a file level on the values of the three density metrics described
in table 3.2 (line coverage, branch coverage, and code coverage). You’ll also learn
how to read the Coverage tab in the file detail view, and the Tests tab, which appears
in the file detail view for the unit tests themselves and offers details on the tests exe-
cuted for a single file. More important, when we’re finished, you’ll know how to find
where to start fixing or testing what’s not already covered.

3.2.1 Hunting source code lines with low coverage

Starting again from SonarQube’s default dashboard, click-through on the first code-
coverage metric, and you’ll be redirected to the code-coverage drilldown view. You’d
get basically the same screen if you clicked Line Coverage or Branch Coverage; we’ll
cover the minor differences in a minute.

 At the top of the page, you see the drilldown view’s normal presentation of mod-
ules, packages, and files (if there is only one module in the project, then the first pane
is omitted). Click a module to filter the package and file sections to only those in the
selected module. The same applies when you click a package name. Figure 3.4 is a
screenshot taken from SonarQube’s public instance, http://nemo.sonarsource.org. It
shows coverage of SonarQube’s own modules; because we clicked the CPD plugin
module, lists in the second and third panes are filtered accordingly.

 Next to each module, package, and file is its corresponding code-coverage metric.
What’s cool is that the drilldown view is always sorted to show the worst first, so com-

http://nemo.sonarsource.org

51Explaining metrics on a file level
ponents with low coverage are displayed at the top. When you’re looking at your own
code coverage, keep in mind that components with perfect scores are omitted from
the drilldown (after all, the point is to help you find what you need to work on). In
other words, if a file or package has a code-coverage score of 100%, then it’s not dis-
played in these lists. If you don’t see some of your classes or packages, don’t worry. It’s
a feature, not a bug, and it’s telling you that you’ve done your job right!

 Before we move to the file’s Coverage tab, let’s see how the drilldown view looks
when you click Line Coverage or Branch Coverage from the dashboard. There are two
major differences between figure 3.5 and the list on the left in figure 3.4.

Figure 3.4 Drilldown view of code coverage

Figure 3.5 Drilldown view of line and branch coverage

52 CHAPTER 3 Ensuring that your code is doing things right
As you’ll probably notice, additional header information reports the absolute number
of uncovered lines/branches on a project level. By the term uncovered lines/branches,
we mean those source code lines or branches that aren’t tested at all. The other big
difference in the drilldown is that the numbers to the right of each component show
how many lines/branches need testing, rather than the density of coverage. Bigger
numbers are sorted upward, but the organization is still worst first, so less-tested com-
ponents are again shown at the top of the list.

 By now you can tell which modules, packages, and files are poorly covered by tests
just by browsing to the drilldown view. We’re sure the QA folks are already jumping up
and down at the prospect of knowing which parts of the system aren’t adequately unit-
tested. Developers, on the other hand, have both a low-level and a high-level insight
specifically into testing. What is missing is the file-level information that will allow you
to locate the individual code lines with little or no unit-testing coverage.

 Click a filename, and a brand-new world appears. It’s the Coverage tab for your file,
and as figure 3.6 shows, it contains everything you need to start improving your unit tests.

 At the top is the fully qualified filename (including package) and the module it
belongs to, if any. In the tab’s header, you see all the code-coverage metrics we dis-
cussed in section 3.1: line coverage, branch coverage, and code coverage, this time on
a file level.

 Just below the header is the source code of the file you’re looking at. By default, Sonar-
Qube hides useless lines such as package declarations, library
imports, and header information. You can limit the number of
lines shown by choosing a different view from the corresponding
list (see figure 3.7), or you can browse the full source code by
clicking the check box provided for that purpose. For now,
ignore the first drop-down list box. We’ll cover it in depth in
chapter 9, which discusses continuous inspection in detail.

Figure 3.6 The Coverage tab of a source code file

Figure 3.7 Coverage
tab view selection

53Explaining metrics on a file level
As figure 3.7 shows, SonarQube provides four options for identifying uncovered
source code. Table 3.3 lists these options and discusses how they affect the file view.

READING THE SOURCE CODE VIEWER

Before you start playing with these options, you need to know one more thing: how to
read the source code viewer. To the left of the code are three columns with numbers in
them (ignore the leftmost column for now; we’ll talk about it in chapter 10 when we
cover SonarQube’s review functionality). The first column with a number shows the
line number within the file, the second reports on how many times the line was accessed
during unit-test execution, and the third reports on the number of covered branches
out of the total count of branches. As you can see in figure 3.8, because the second col-
umn is about branches, it’s empty for lines that don’t include flow-control structures.

Table 3.3 Unit-test metric explanations

Selection Explanation

Lines to Cover The default selection. Displays all lines of code that need to be covered.
Lines that don’t need test coverage (header comments, the package declara-
tion, and library imports) aren’t displayed. Includes both uncovered and
already-covered lines.

Uncovered Lines Displays lines of code that aren’t covered by unit tests.

Branches to Cover Displays all possible branches that need to be covered, including the ones
that are already covered.

Uncovered Branches Displays uncovered or partially covered branches.

Figure 3.8 Source code viewer with coverage indicators

54 CHAPTER 3 Ensuring that your code is doing things right
When the first column is green and the line doesn’t contain any branch points, you
can check it off as “done” because it means the line is fully covered by tests. On the
other hand, if you see a zero on a red background in this column, it means the line
wasn’t exercised at all during unit testing and you definitely need to write one or more
tests for it. The third column is a bit more sophisticated. In addition to red and green,
you’ll also see yellow, which lets you know that some of the possible paths through the
code aren’t covered. When there’s red or yellow in either of the last two columns, that
color extends across the code so that even with a quick skim, your eye is pulled to the
problem areas.

 If you’re feeling lost with all these numbers, don’t worry. All you really need to do
is pay attention to the lines where you see red or yellow. If a line is colored, it’s not a
good thing, and you should consider taking action to address it.

 At this point, you understand how SonarQube “grades” your unit-test coverage,
and you’ve seen how test-coverage metrics are presented at the project, module, pack-
age, and file levels. Next we’ll look at the unit tests themselves, because SonarQube
has something to say about them, too.

3.2.2 Finding problems in your unit tests

Until now, we’ve concentrated on the metrics for your program’s source code. But
SonarQube offers insight into your unit tests as well, which, although not usually
included under the source code umbrella, are extremely important. This feedback
ensures that a software system does what it’s expected to do on a unit level. In this sec-
tion, you’ll learn how to identify problem areas in your unit-test files.

 First, you’ll have to go back to SonarQube’s default dashboard. Until now we’ve
looked at the left side of the code-coverage widget. Now it’s time to see what’s hiding
behind the Unit Test Success metrics on the right. Start by clicking any number under
Unit Test Success (shown in figure 3.9), and you’ll land at the drilldown view.

 We need to mention a couple of things here. Once you click-through, the packages
and files you see aren’t source code components, but testing components. For Maven
folks, all files under src/test are displayed here. If you’re an Ant-oriented software
house, then you’ll see all files placed in your project’s test directory here.

 If you click from the dashboard on a metric that has the best possible value (for
instance, 100% success, or 0 failures), then the drilldown view will be empty because

Figure 3.9 SonarQube’s
testing widget on the
default dashboard

55Explaining metrics on a file level
there is nothing you need to improve. If so, keep up the good work! And keep in
mind that the beauty of the drilldown view is that it displays only components that
need your attention.

 We hope you don’t have any failing or skipped tests in your projects, and the drill-
down view is empty for every metric except test count and execution time (ms). If
you’d like to see what skipped or failing tests look like in SonarQube, you can analyze
the source code of this book, which was intentionally written to demonstrate all sorts
of possible issues.

 To start exploring the quality of your unit tests, click-through from the dashboard
on the number of tests (you should have some), and navigate to any file you want in
the drilldown. You’ll find yourself on the Tests tab, which looks something like
figure 3.10.

 The unit-test presentation may remind you of the Coverage tab we discussed in sec-
tion 3.2.1. The truth is, they have a lot in common. First, a similar header shows all the
unit-test metrics for the current test file. Just below the header is a list of unit-test names,
with the most recent execution duration and status of each. For those familiar with
JUnit 4.x, this list shows all the methods in the test class that are annotated with @Test.

 As you’ve probably guessed, the icon to the left of the duration represents the sta-
tus of each unit test. It will match one of the images shown in table 3.4.

Table 3.4 Unit-test statuses

Status Image Description

Successful unit test

Skipped unit test

Errored unit test

Failed unit test

Figure 3.10 List of test methods in a test file

56 CHAPTER 3 Ensuring that your code is doing things right
For tests in the list that failed or errored-out, you’ll see a link in the far-left Expand
column. Click this, and you’ll get details about what went wrong. If the test failed,
then you’ll see the assertion that caused the failure. If there was an error, then you’ll
probably see an exception and the full stack trace, as shown in figure 3.11.

 One last thing about this list: execution time is always displayed, no matter what
the unit-test status is. For skipped tests or tests with errors—in other words, tests that
didn’t complete—the value of this metric is always 0 ms. For completed tests (success-
ful or failed), you’ll see the actual execution time of the test and its assertion(s).

 At this point, you’ve seen all of SonarQube’s core unit-test and coverage features.
Without any extra configuration, it takes only minutes to obtain detailed reports and
metrics on the testing health of your source code. The rest of this chapter focuses on
more advanced topics, such as selecting and configuring your favorite code-coverage
tool and displaying integration test metrics. At the end of the chapter, we’ll present a
couple of testing-related plugins that we think you might find useful.

Figure 3.11 The Expand link reveals the root cause of a test error.

Unit tests, rules, and issues
There’s one last thing to know about discovering issues in unit tests. We told you
earlier in this chapter that you can use rules and experience issues in unit-test files
just as you do with your source code files. In fact, these rules support only JUnit
tests. But if you’re an experienced user, you can create your own rules by modifying
existing ones to cover other frameworks.

In the previous chapter, we discussed issues and where they come from. In
chapter 13, we’ll cover rule-set administration in detail. Meanwhile, keep this in mind
regarding unit-test rules: by default, all rules aren’t enabled, and they fall under the
rules repository named PMD Unit Tests. Activate those that make sense to you, and
launch a new project analysis. Issues (if any) will appear in the Source tab. You won’t
have any trouble spotting the issues, because they look like those found in source
code files.

57Configuring your favorite code-coverage tool
3.3 Configuring your favorite code-coverage tool
SonarQube’s default code-coverage tool for Java projects is JaCoCo; but Cobertura is
also embedded (which means the two most popular Java coverage tools are available
by default), and there are plugins to support EMMA and Clover as well. For other lan-
guages, coverage tools are provided in the corresponding plugin.

 Table 3.5 summarizes the coverage tools supported by SonarQube. For more
details about installing and updating SonarQube plugins, please refer to chapter 14.
To check for the most up-to-date version of the tools, consult the update center in
your installation.

As we’ve told you, SonarQube isn’t only for Java gurus. It supports more than 20 lan-
guages that include their own code-coverage mechanism or integrate with popular
external tools.

 For instance, when analyzing a JavaScript project, the JSTest unit-testing frame-
work is used by default to provide coverage reports. The PHP plugin uses PHPUnit,
the Python plugin uses the Coverage.py toolkit, and so on. For a complete (and
updated) list of the coverage tools included in a language’s plugin, we advise you to
visit SonarQube’s online documentation.

 In the following subsections, you’ll learn how to choose your favorite coverage tool
(sorry, non-Java folks, but this feature isn’t yet available for other languages) and how
you can adjust its settings to fit your needs.

3.3.1 Changing the default selection

You can change the default code-coverage tool on a project or global basis, but we
strongly advise you to keep the default selection. If, and only if, you have very good
reasons to change it, then do it for all your projects. There are some differences that
aren’t terribly important among code-coverage tools regarding how coverage is calcu-
lated. See “Code Coverage Tools (JaCoCo, Cobertura, Emma) Comparison in Sonar-
Qube”1 for a comparison of the supported code-coverage engines supported by
SonarQube. Using different tools for different projects would not only be disorienting
as you browsed from project to project, but would also make comparisons of project
health across your portfolio difficult, if not meaningless.

Table 3.5 Code-coverage tools supported by SonarQube

JaCoCo Embedded/Default www.eclemma.org/jacoco

Cobertura Embedded http://cobertura.sourceforge.net

Clover (Commercial) Plugin www.atlassian.com/software/clover/overview

EMMA Plugin http://emma.sourceforge.net

1 Papapetrou, Patroklos, “Code Coverage Tools (JaCoCo, Cobertura, Emma) Comparison in Sonar,” Only soft-
ware matters, December 19, 2012, http://mng.bz/hjgg.

www.eclemma.org/jacoco
http://cobertura.sourceforge.net
www.atlassian.com/software/clover/overview
http://emma.sourceforge.net
http://mng.bz/hjgg

58 CHAPTER 3 Ensuring that your code is doing things right
 To make a global change, navigate to the global configuration page and select the
Java category from the General Settings options. Then set the sonar.java.coverage-
Plugin property to one of the accepted inputs: jacoco (default), cobertura, clover,
or emma. Note that although the tool names themselves are proper, the recognized val-
ues for this setting are in all lowercase. Once you’ve entered your choice, click Save
Java Settings, and run a new analysis for each project. That’s it! You’ve made the switch,
and the coverage metrics you now see are coming from your new tool of choice.

The same attribute is also available under project configuration settings, so you won’t
find it hard to change the code-coverage tool for a single project—even though it’s
not a good idea to do so.

 Each supported code-coverage tool, whether it’s embedded in SonarQube or not,
provides some advanced settings. The majority of these properties are available only
at the project level, but some can be applied globally, and a few can be set on a per-
analysis basis (see appendix B). For a complete list of available settings and their
meanings, you can browse SonarQube’s online documentation about each code-
coverage plugin.

3.4 Integration testing
Integration testing (IT) is today what unit testing was a decade ago. Unit testing is not
enough for complex systems, and no software is considered well-tested if there aren’t
adequate integration tests to cover program features.

IT focuses on testing source code not in isolation (like unit testing), but in a pro-
duction-like environment with all the external resources that implies. For instance, a
JavaEE application runs on an application server, stores and retrieves data in a data-
base, and takes advantage of services provided by frameworks such as EJB and JSF. Unit
testing must fake these interactions by using mocking tools such as Mockito, jMock,
EasyMock, and others. But IT validates the system directly against all these resources.

 Originally this was a manual process, typically involving (for a web app) a web
server, a browser, and a human, with the same process over and over: compile the
code, build the artifact, and deploy the project. Then access it with a browser, and
start manually testing each feature and interaction. At the beginning of a project, this
process was quick and easy because the functionality was still limited.

 After weeks of coding and adding new features, the process would become more
and more time-consuming—and boring. How do you stay engaged when you have to
check and recheck the same functionality over and over again, especially when it

Code-coverage tools for other languages
The code-coverage tool property is under the Java category settings. That means
changing its value affects only Java projects. Other languages supported by Sonar-
Qube may provide similar configuration for code-coverage engines, so you’re advised
to look at the corresponding category under the global or project settings.

59Integration testing
hasn’t changed? After a few weeks or months, this practice can drop in importance
from “necessary” to “necessary evil,” and it’s often abandoned sooner or later.

 Fortunately, this has changed in the last couple of years, and integration testing—
automated integration testing—is considered as valuable today as unit testing. No mat-
ter what programming language is used, plenty of tools allow the automation of inte-
gration tests. Once you’ve got your tests set up, SonarQube lets you track integration
test metrics separately from unit tests, so you can retain clarity on each.

3.4.1 Displaying integration testing coverage on the dashboard

SonarQube provides a separate widget for integration-test metrics. It’s not on the
dashboard by default, but it’s easy to add; you’ll find it in the dashboard configuration
in the Tests group. We’ll look at it in a minute, but before we do, we need to point out
some things:

 At the time this book was printed, integration-test metrics were supported in
Java, C#, and Python projects. It’s likely that this has changed, so you’re advised
to browse SonarQube’s online documentation for the most updated informa-
tion (http://docs.codehaus.org/x/opS7DQ). Both authors have a Java back-
ground, so the material taught in this section is Java-centric; but similar
concepts apply to other languages, too.

 You should use JaCoCo to create the IT report. It can be used to calculate IT
metrics no matter which tool or application was used to run these tests (Maven
Surefire Plugin, Maven Failsafe Plugin, Ant scripts, Selenium, Arquillian, Html-
Unit, and so on).

 Instruct SonarQube to reuse JaCoCo reports by setting the property
sonar.jacoco.itReportpath to the report file produced by JaCoCo.

 You can still use your favorite coverage engine to compute unit-testing metrics.

Figure 3.12 shows the integration test coverage widget, which is similar to the one for
unit-test metrics. But unlike the unit-test widget, the integration-test widget doesn’t
give any information about the tests themselves; it only shows how well they cover your
code. Furthermore, the Overall coverage section describes the combined coverage of
both unit and integration tests. We find this information useful, because there are
cases where unit tests are meaningless but we still want to aggregate both metrics in
one result.

 The metrics for IT coverage are the same ones we looked at for unit tests in section
3.1.2. Getting reports on unit-test coverage metrics. We gave you the formulas then,
but it’s been a while, so here’s a brief reminder:

 Line coverage % is the density of lines that are executed at least once during
integration-test execution.

 Branch coverage % is the density of branches that are covered at least once dur-
ing integration-test execution.

 Test coverage % is a combination of line and branch coverage.

http://docs.codehaus.org/x/opS7DQ

60 CHAPTER 3 Ensuring that your code is doing things right
At the file level, the integration-test data is … well, integrated with the unit-test cover-
age information, so getting to it is the same as what we looked at earlier. Click-through
on a test-coverage metric, and choose a file in the drilldown. Once you’re there, you’ll
see a familiar presentation enriched with new metrics and features.

3.4.2 Getting IT information in the source code Coverage tab

Enable reporting on integration test coverage, and after the next analysis, you’ll see a
couple of changes in the file detail Coverage tab. First, the header now has an addi-
tional row for integration-test metrics. They’re calculated with the same formulas we
looked at for unit testing, but they’re named slightly differently to reflect their mean-
ings, as shown in figure 3.13.

Now look at the dropdown that lets you pick your source code view. Again, you see
changes, as shown in figure 3.14 and explained in table 3.6.

Figure 3.12
Integration-test widget

Figure 3.13 Source
code Coverage tab
with IT metrics

Figure 3.14 Coverage tab view
selection—enriched with IT choices

61Related plugins
3.5 Related plugins
We’ve mentioned the EMMA and Clover plugins,
which offer integration with those two coverage
engines. But a complete testing strategy should
probably include more than just unit testing, or
even unit and integration testing combined. Ide-
ally, it would also include functional and/or
acceptance testing.

 In this section, we’ll discuss a testing-related
plugin that adds functional/acceptance testing
metrics by integrating SonarQube with Thucy-
dides’ open source library. We think it’s worth
your attention, and we suggest you give the plugin
a try because it’s particularly useful if you already use Thucydides or plan to do so.

 Thucydides is one of the most promising acceptance-testing frameworks. With
Thucydides, you can model your requirements and define acceptance criteria in a
simple way by using Java and JUnit or a business-driven development (BDD) tool such
as easyb (http://code.google.com/p/easyb).

Table 3.6 Integration-test metrics

Selection Description

IT Lines to Cover Displays all lines of code that need to be covered by integration tests.
Header information, package declaration, and library imports aren’t dis-
played. This number includes both uncovered lines and lines already cov-
ered by integration tests.

IT Uncovered Lines Displays lines of code that aren’t covered by integration tests.

IT Branches to Cover Displays all possible branches that need to be covered by integration
tests. This number includes both uncovered branches and already-
covered branches.

IT Uncovered Branches Displays branches that are uncovered or only partially covered by integra-
tion tests.

BDD
Business-driven development (BDD) is a software development practice that focuses
on modeling business needs and user requirements so that all team members (devel-
opers, analysts, customers, and so on) acquire the same knowledge about the sys-
tem under development. The modeled specifications are transformed into an IT
solution. The most important thing about BDD is that requirements are reevaluated
constantly to improve the business process during the development process.

Inactive plugins
There are a couple of plugins
we decided not to cover in
this book (JMeter and Green-
Pepper) because they’ve
been inactive for more than
two years. If you’re interested
in them, visit SonarQube’s
online documentation to find
installation and configuration
instructions.

http://code.google.com/p/easyb

62 CHAPTER 3 Ensuring that your code is doing things right
The Thucydides plugin feeds SonarQube with metrics gathered during acceptance-test
execution and presents them in a relevant widget. Before installing the plugin, we sug-
gest you look at the online documentation (www.thucydides.info/documentation) or
visit the official web site (www.wakaleo.com/resources/thucydides), where you can
also find other interesting resources.

 To add Thucydides metrics to your dashboard, click the Tests category filter and
add the widget named Thucydides Acceptance Tests. Then run a new analysis of your
project that contains Thucydides tests. What you’ll get is shown in figure 3.15.

 On the left is a list of metrics reminiscent of the default SonarQube test-coverage
widget. Figure 3.16 illustrates the major similarities between the two widgets. First you
see a report about the density of successful tests, and then the total number of exe-
cuted tests. After that, you get information about how many tests have passed, how
many are pending (not executed), and the number of failures. Finally, the widget dis-
plays the total execution time.

 On the right side of the widget are two numbers indicating the total features and
user stories tested by Thucydides. If you feel lost regarding these terms, keep in mind
that one feature is composed of one or more user stories. For instance, imagine the
feature Search Customers. A user story might be Search by Surname, and another one
could be named Search by Social Security Number. For every user story, you can write
as many tests as you need.

Figure 3.15 Thucydides plugin widget

Figure 3.16 Thucydides
acceptance-test metrics
mapped to unit-test metrics

www.thucydides.info/documentation

63Summary
The current version of the plugin supports only Maven projects and doesn’t execute
the Thucydides tests. But it expects to find them in the predefined location of a
Maven project structure, so you don’t have to worry about additional configuration.

 If you’re in the mood to evaluate SonarQube testing plugins, be sure to try both
Thucydides and its related plugin. Acceptance testing is an evolving field in the IT
industry and is currently taking its first baby steps. The fact that more and more com-
panies are in the process of including acceptance tests as part of their development
lifecycle makes us believe that there is more to come on this topic.

3.6 Summary
Do you use unit testing today? Are your numbers where they should be? In this chap-
ter we discussed the importance of unit testing, how it helps you know that your meth-
ods are doing the right things, and why it’s important to have full coverage (both line
and branch). We looked at SonarQube tools that help you find the chinks in your test-
ing armor, and we delved into how to use SonarQube for integration testing.

 We gave you a detailed overview of the features in SonarQube, including these
important points:

 Testing metrics are organized in two categories: code coverage and tests.
 Click the value of any code-coverage metric on the dashboard, and you can get

down to the file level to quickly see which lines aren’t covered by tests or are
only partially covered.

 Click the value of any test metric, and you can obtain a list of tests in a given file
with status indicators for the last run of each.

 Integration-testing code coverage is easier than ever thanks to SonarQube’s
embedded JaCoCo plugin.

 Open source plugins provide integration with third-party tools and calculate
metrics for load and performance testing, and acceptance and functional
testing.

We hope we’ve so thoroughly inspired you that you’re ready to start analyzing every one
of your company’s projects and spread the word to your co-workers and your manager.
At this point, you’re beginning to feel the power of SonarQube, but you have much
more to learn. Get ready for more metrics and more quality. The code-duplication qual-
ity axis comes next, and it reveals the darkest aspects of your code base.

Working with
duplicate code
When you start a new project, you have a clean code base with no duplications,
unless you copied another project to start with. Every single line of code is written
from scratch, and you have absolute confidence that neither you nor your team-
mates will introduce any duplications.

 As the project progresses, you and your teammates communicate regularly and
write good, clean code. You probably think you’ve done everything you need to, to
avoid duplications. But over time they still creep in, because you can’t totally avoid
code duplications no matter how hard you try.

This chapter covers
 The hidden cost of duplicate code

 Identifying duplications

 Realizing the impact of code duplications

 Finding duplications across multiple projects

 Cleaning up your duplications
64

65The hidden cost of duplicate code
 Because duplications always creep in, you need an efficient way to track and even-
tually remove them. You’ve already seen how SonarQube helps you measure test cover-
age and identify issues. Following a similar path, we’ll show you how easy SonarQube
makes it to spot repeated code blocks in a project and across multiple projects. We’ll
start from the comments and duplications widget on the dashboard, and progress to
the Duplications drilldown and the Duplications tab in the file detail view.

 Unfortunately, code duplications exist in every project. Even if this is the least con-
troversial deadly sin, everybody agrees that duplication is bad. The more complex a
software system, the more code blocks are likely to be repeated. This chapter will show
you how duplications affect your code, what metrics are available for tracking them,
and how to get started eliminating those duplications by applying basic refactoring
patterns.

4.1 The hidden cost of duplicate code
Friday morning. Your team is on track to roll out a major relaunch of your online coin
store on Monday. Suddenly, a guy from the QA team runs in. “The new version doesn’t
include the 10% discount we’re offering for the next three weeks. We can’t release it!”

 After some frantic debugging, you pin down the problem and commit the
changes. Once the QA team verifies the fix, you head off to lunch, incredibly relieved
that you didn’t have to spend the whole weekend working on the issue.

Monday noon. Customer Service says they’ve gotten several emails from customers
complaining that they didn’t get the discount you’re advertising. And because you
claimed to fix the problem on Friday (and then took a long lunch), your boss is apo-
plectic. You dive back into the code and quickly come to an alarming conclusion:
there are two different methods for calculating the discount. You fixed only half the
problem on Friday.

 If only you’d known what SonarQube had to say about your duplications. If only
you’d had access to what’s shown in figure 4.1.

 SonarQube reports duplication by line, block, and file. If you’ve lived through this
type of situation, you already know that duplicate code is one of the highest risk fac-
tors for bug propagation. But why does code get repeated again and again?

 Survey the developers you work with, and ask them if
copying and pasting code is acceptable. Not only will most
of them say code duplications are evil, but they’ll probably
also say they’ve never copy/pasted code themselves. Now
analyze your code base with SonarQube. You’ll probably see
that nearly every developer has duplicated code. Can you
explain this paradox? Can they?

 Table 4.1 lists some of the most common reasons for
duplicated code, with the most likely ones first. Which ones
apply to your organization?

Figure 4.1 SonarQube
detects duplications in
files and projects and also
across projects.

66 CHAPTER 4 Working with duplicate code
Now that you’ve seen that code duplications exist in software systems and that there
are many reasons for them, let’s move on and discuss what SonarQube has to tell you
about finding segments of repeated (copied and pasted) code.

4.2 Identifying duplications
We’ve said several times that SonarQube uses existing, best-of-breed technologies and
aggregates the results for your convenience, but it doesn’t do that across the board.
When it makes sense, the creators of SonarQube roll up their sleeves and start from
scratch to build code-quality engines that are superior to what’s already available.
That’s the case with duplications. SonarQube’s detection engine finds duplications at
three different levels:

Table 4.1 Common causes of code duplication

Cause Description

Laziness Reusing code that you know works is always tempting, even if it’s written
by someone else. Besides, copying and pasting several lines of code is
faster and shows productivity with less effort.

Risk of regressions Source code isn’t covered by unit tests and integration tests, so to pre-
vent any regression, this code is duplicated (and that may not be the
worst option if there’s no safety net).

Absence of refactoring It’s common to start developing functionality by copying an existing piece
of software. You then improve it until it does what you want. Finally, you
refactor to remove the duplication—but this step is often forgotten

Strict deadlines; never
enough time

Some developers see copying existing, tested code as more efficient
than refactoring, especially when deadlines loom. We’ve been there hun-
dreds of times, and even after many years of coding, we’re still tempted
to copy and paste.

Poor team communication Lack of communication can lead to duplications. It’s more likely to hap-
pen on large development teams, where communication is more diffi-
cult. We saw one project where three folks wrote the same utility
method, rather than asking if it already existed. Things get even worse in
large organizations with multiple development teams.

Misunderstandings Green developers have a tendency to slap in existing code that seems to
do what they want, rather than working to understand the real problem
or underlying business logic. Aside from leading to dirty code, this prac-
tice means they don’t develop real knowledge of the problem’s domain.

Merging projects Merging projects isn’t a common task, but when it happens, it’s likely
that the newly created/merged project will contain duplicated code. One
reason is that coders tend to need similar utilities in every project, so of
course they copy/paste already-proven code from previous projects. If
the merged projects had similar requirements, then it’s even more likely
that similar code may have migrated from one to the other, producing
duplications in the merged project.

67Identifying duplications
 Duplications in the same file
 Duplications in different files in a project
 Duplications across multiple projects (off by default)

Duplication detection is one of the core functionalities of the SonarQube platform, so
it’s available at all three levels natively, and with a uniform presentation, for every lan-
guage you can analyze under SonarQube.

4.2.1 Finding your first duplication

To get your feet wet with duplication, look at figure 4.2, which shows the default proj-
ect dashboard’s comments and duplications widget. SonarQube provides one widget
for both, with duplications on the right in the widget.

Figure 4.2 Duplications widget information

68 CHAPTER 4 Working with duplicate code
Figure 4.2 says there are 36 duplicate lines in two files. Before we proceed to the
Duplications drilldown, let’s take a quick look at those files, which come from the
online coin store we looked at earlier. The problem in the example was duplications
in different files in a project. The business requirement was to implement a default
discount policy for all purchases made in the next three weeks. Unfortunately, it was
only half done when the site relaunched on Monday, because of the necessary
changes we made to only one of two files.

 The files involved are related to the requirement that the site charge a sales tax
that varies based on the customer’s country. To achieve this, there are two different
classes: Order and InternationalOrder. Listing 4.1 shows the relevant part of the
Order class that is responsible for handling orders from U.S. residents.

public class Order {
 private Customer customer;
 //Setters and Getters omitted
 private List<OrderLine> orderlines = new ArrayList<OrderLine>();
 //Add/remove order line code omitted

 public BigDecimal getTotal() {
 BigDecimal total = BigDecimal.valueOf(0);
 for (OrderLine orderLine : orderlines) {
 total = total.add(orderLine.getOrderLineTotal());
 }
 BigDecimal discount = total.multiply(getDiscount());
 total = total.subtract(discount);
 BigDecimal tax = total.multiply(getVat());
 total = total.add(tax);
 return total;
 }
 private BigDecimal getTax() {
 return BigDecimal.valueOf(0.05);
 }
 private BigDecimal getDiscount() {
 return BigDecimal.valueOf(0.10);
 }
}

The InternationalOrder class, which is excerpted in listing 4.2, handles orders
placed by customers living outside the United States.

public class InternationalOrder {
 private InternationalCustomer customer;
 //Setters –and Getters omitted
 private List<OrderLine> orderlines = new ArrayList<OrderLine>();
 //Add/remove order line code omitted

 public BigDecimal getTotal() {
 BigDecimal total = BigDecimal.valueOf(0);

Listing 4.1 Order class

Listing 4.2 InternationalOrder class

Order for U.S. residents

B Calculates order’s
total value
(identical in
listings 4.1 and 4.2)

Default tax for U.S. residents

C
Default discount for U.S.
residents (identical in
both listings)

Order for international customers

B Calculates order’s total value
(identical in listings 4.1 and 4.2)

69Identifying duplications
 for (OrderLine orderLine : orderlines) {
 total = total.add(orderLine.getOrderLineTotal());
 }
 BigDecimal discount = total.multiply(getDiscount());
 total = total.subtract(discount);
 BigDecimal tax = total.multiply(getVat());
 total = total.add(tax);
 return total;
 }
 private BigDecimal getTax() {
 return (BigDecimal.valueOf(customer.getCountry().getVat()));
 }
 private BigDecimal getDiscount() {
 return BigDecimal.valueOf(0.10);
 }
}

You can easily spot the duplications. At a glance, you can see that the getTotal()
method B is exactly the same for both classes. Moreover, the method that returns the
discount percent C is also identical for both classes. This code may look simplistic,
but we’ve seen real code much like it. Whether the examples are simplistic or sophisti-
cated, the general idea remains the same: duplicate code means duplicate work down
the road.

4.2.2 Finding duplications on a larger scale

In the previous code listings, you can find the duplications fairly easily. It’s not hard to
identify code repetitions in a few classes and a couple dozen lines. But what about in a
hundred lines? A thousand? Or more? You’d need days to manually scan your source
code just to find duplications in the same file, let alone across multiple files or projects.

NOTE We strongly believe that any duplication density over 0% is a problem,
one you need to address as soon as possible, no matter how small the number.

Clearly, manual detection is impractical at best. Instead, the best practice is to run a
SonarQube analysis on a regular basis. This can be after each commit or at predefined
intervals, depending on your continuous inspection strategy. Chapter 9 goes into
detail on continuous inspection, but for now let’s assume that you run an analysis
every time the code base is modified.

4.2.3 SonarQube’s duplication metrics

We’ve said that duplications are bad, but also that you can’t totally avoid them. You’re
probably wondering what the duplication numbers we’ve shown mean and when you
should start worrying about them. We’ll answer those questions beginning with a brief
definition of each duplication-related metric in the comments and duplications wid-
get (see table 4.2).

B Calculates order’s
total value
(identical in
listings 4.1 and 4.2)

Tax based on customer’s country

C
Default discount for U.S.
residents (identical in
both listings)

70 CHAPTER 4 Working with duplicate code

The first three metrics in table 4.2 are pretty clear. The only complicated one is Den-
sity of Duplicated Lines. Imagine that you have a project with a total of 1,000 physical
lines of code, and the SonarQube analysis finds 1 one block of 5 lines repeated 10
times, for 50 duplicated lines. That means Density of Duplicated Lines is 50 / 1000 *
100 = 5%.

 Note that all metrics are calculated not only across each project, but also on a sub-
module, package, and file basis. This makes it even easier to find the sections of your
software with the most duplications.

4.2.4 Drilling in: from the duplications widget to the Duplications tab

To start chasing your duplications, click any metric in the comments and duplications
widget, and you’ll land at the common Drilldown metrics view (see figure 4.3). At
upper left is the package panel: a list of the project’s packages with duplications. At
upper right is the file panel showing the files with duplications.

 We’ve mentioned that SonarQube detects duplications on three levels: in a file,
throughout a project, and across multiple projects of the same language. We’ll talk

Table 4.2 SonarQube duplications-related metrics

Metric name Metric description

Duplicated Lines Absolute number of physical lines (not just lines of code) of source code
involved in at least one duplication. Physical lines means all carriage
returns in a file.

Duplicated Blocks Absolute number of duplicated source code blocks.

Duplicated Files Absolute number of source files that contain duplicated lines.

Density of Duplicated Lines Percentage shown at the top of the Duplications section, calculated by
dividing Duplicated Lines by the total physical lines in the project multi-
plied by 100.

Figure 4.3 Drilldown view example: density of duplicated lines

71Identifying duplications
here about the first two levels, and come back to how you can spot code copied from
one project to another.

 In the package and file panels, the number to the right of each item is the value of
the metric you clicked in the comments and duplications widget in the dashboard for
that package or file—with one exception. If you click Duplicated Lines %, then the
number to the right of each item in the package and file panels is the number of lines,
rather than their density in the project. Either way, descriptive messages in the drill-
down view header make it clear which metrics are being displayed.

 From the drilldown header in figure 4.3, you see the following:

 17.2% of the code is flagged as duplicated.
 36 lines participate in duplications.
 Two files (Order and InternationalOrder classes), both found under the

org.manning.sonarinaction.duplications package, have 18 duplicate lines
each.

This information is useful and important, but it’s just the tip of the iceberg. Click a
filename, and the file detail view for that file is added to the screen, with the Duplica-
tions tab activated. This is where you can see exactly which lines of the file are dupli-
cated and exactly what it is that they duplicate. Figure 4.4 shows the file detail view for
the Order class in the example project.

 There’s a lot going on in figure 4.4, so we’ll break it into three parts, starting with
the top section (the file header), which shows a metric summary for the current file/
class (see figure 4.5). Note that whereas the header section of the Duplications drill-
down varies based on which metric you chose on the dashboard, the Duplications tab
is always the same.

 The percentage displayed at left in the header is the density of duplications in the
current file. Next is Lines, which is the number of physical lines in the file. Again,
don’t confuse physical lines and lines of code, which are computed differently.

Figure 4.4 The Duplications tab view of a file/class

72 CHAPTER 4 Working with duplicate code
NOTE The lines of code (LOC) calculation varies slightly from language to
language, but for Java it’s as follows: LOC = physical lines – blank lines – com-
ment lines – header file comments.

The Duplicated Lines number is the absolute number of repeated lines; and the
Duplicated Blocks number, at right in the header, is the number of code blocks those
duplicated lines are spread across. To sum up, the Duplications tab header includes a
file-level view of three out of the four duplication metrics calculated by SonarQube,
and it’s easy to see why the fourth, Duplicated Files, isn’t included here.

 Below the header, SonarQube shows you the duplicated blocks in your file.
They’re presented in a two-column grid, with one row for each duplicated block. At
left is high-level information about the block, including the exact position of the
duplicated code in the current file/class, as shown in figure 4.6.

 The left side of each row is broken into a subgrid, with one row for each instance
of the duplicated block (one row for each time it was duplicated). It starts at the far
left in figure 4.6 with a simple count of the number of times the code block under
examination has been duplicated. You’ll see a subrow in this column for each one of
those blocks.

 Each subrow ends with the name of a file containing a copy of this block. For first-
level duplications (copies in the same class), the filenames are identical. In the exam-
ple, which is a second-level duplication (from one class to another), the Nb Lines value
shows that 18 lines of code are the same in the classes Order and InternationalOrder.
Note that the number of lines listed from file to file isn’t always the same. SonarQube’s
duplication-detection mechanism is sophisticated enough to pick up a duplicated
block even when there are whitespace differences from one copy to the next.

Figure 4.5 The Duplications tab’s file header

Figure 4.6 Locate the exact position
of duplicated code in two classes.

73Realizing the impact of code duplication
Next to NB Lines in each subrow is the From Line metric: the exact line number in
each file where the duplicated block starts. Click the name of a file, and the column
on the right shows a few lines of the duplicated block. By default, the code view is col-
lapsed to hide very large blocks of code. But you can expand it to see the full duplica-
tion by clicking Expand, as shown in figure 4.7. Once a duplicated block has been
expanded to its full length, the Expand link is swapped for a Collapse link, which does
what you would think.

 Now that you know how to find duplications, you’re probably asking yourself one
of two questions: either “Why do I care?” or “How do I fix them?” They’re both good
questions, and we’ll answer them next, starting with why duplications are important
and how they affect your project’s overall quality.

4.3 Realizing the impact of code duplication
At this point you may be wondering, “What’s wrong with having duplicate code? I have
unit tests that cover all the lines and branches, and I know the code is bug-free, so why
fix something that doesn’t appear to be broken?” Our experience, though, has shown
that most of the time, when there are lots of duplicated lines, there are few unit tests
(see “Risk of regression” in table 4.1).

 At first glance, that seems fair enough; but as our coin store example demon-
strated, even bug-free, fully unit-tested duplicate code can cause problems. One more
argument is that, as we’ll discuss later in this section, the cost of maintaining software
is commonly said to be directly proportional to the number of lines in the software.
Next we’ll delve more deeply into why duplication is a bad idea.

4.3.1 The DRY principle: minimizing and eliminating duplications

Don’t Repeat Yourself (DRY) is a software engineering principle that should be
applied to every aspect of a software project. It focuses on minimizing or eliminating
duplications among the resources of a system, especially in code.

 One of the basic concepts of DRY is that it’s more efficient and productive to keep
a single copy of each resource than to keep several copies. This may sound familiar to
those acquainted with database normalization, but it applies beyond just your data.

Figure 4.7 Viewing all lines containing detected code repetition

74 CHAPTER 4 Working with duplicate code
That’s because having multiple copies of anything, whether data or algorithms, not
only means more work when there are changes, but also could mean that you end up
with some outdated copies, which is the most dangerous side effect of duplication.

 Think back for a minute to the coin store example, with its Order and
InternationalOrder classes, each with identical getTotal() and getDiscount()
methods. Forgetting to update the InternationalOrder class with the promotional
discount had a huge impact on the system, the customers, and the business in gen-
eral. How many of the customers who didn’t get that discount will come back to place
another order? Duplicated code is responsible for a lot of bugs, and it can have far-
reaching impacts, especially in systems that are continuously evolving to reflect mar-
ket needs.

4.3.2 Duplications vs. size and complexity

Having outdated copies of duplicated code is the most obvious problem caused by
duplications, but there are others. Your project’s size and complexity are pointlessly
increased by each code repetition. You may think that’s acceptable for small projects,
but consider a project with 100,000 lines of code and only 20% duplications. That
20% means you have an extra 20,000 obsolete lines of code to maintain.

NOTE By the terms obsolete code and useless code, we don’t mean the code isn’t
working or used by the application; but you should refactor this part of your
system in order to eliminate as many duplicated lines as is feasible. In section
4.5, we’ll give you some tips on how to clean up this obsolete code.

Furthermore, code duplication is responsible for large blocks of code with only minor
differences, sometimes only a couple of lines or, even worse, only a few characters
apart.

 The comprehension of this code is a time-consuming task that makes further mod-
ifications or enhancements extremely difficult. That means the maintainability of
your software decreases dramatically. And last but not least, repeated code, especially
between methods with different method signatures, can hide the real purpose of each
method, making it harder to decide which one to use.

4.4 Finding duplications across multiple projects
Now that you know how to track and identify duplications in the same project, it’s
time to explore a noteworthy feature of SonarQube: duplication detection across mul-
tiple projects. This functionality is unique; you can’t find it in any other relevant tool.

 Because the duplication-detection engine is core functionality of SonarQube, it’s
available for all the languages you can analyze with SonarQube. Cross-project duplica-
tion detection isn’t on by default, so this section will show you how to activate it and
how to recognize cross-project duplications in the file detail view’s Duplications tab.

75Finding duplications across multiple projects
4.4.1 Turning on cross-project duplication detection

By default SonarQube is installed with cross-project duplication detection disabled,
perhaps because its use incurs a performance penalty during analysis. But it’s a power-
ful tool, and we urge you to turn it on.

 This may increase the time needed for completing an analysis, especially when you
have a lot of projects of the same language in SonarQube, but the ROI of cross-project
duplication detection is worth the hit to analysis speed.

 You can toggle its use at a global level or on a project-by-project basis. To set it glob-
ally, a logged-in administrator can choose Configuration under the Settings menu at
upper right in the interface. A submenu is added next to the left rail; choose Duplica-
tions there, as shown in figure 4.8.
In the Duplications settings, choose True for Cross Project Duplication Detection, and
save your changes. From now on, all SonarQube analyses will perform cross-project
duplication detections. Additionally, you can turn this feature on or off for a particu-
lar project by modifying the same attribute under the project settings configuration.

NOTE Remember that if cross-project duplication detection is turned off for
a project, SonarQube won’t look for cross-project duplications when the code
is analyzed. But the project’s source code will still be available for cross-
project duplication detection to other projects with this option enabled.

4.4.2 Cross-project duplications in source code tab

After activating cross-project duplication detection, you’ll need to run a new analysis
to begin seeing duplications. In this case, to show how duplications across multiple
projects are displayed in the file detail view, we reanalyzed the sample project with a
different project key.

 Once you turn on cross-project detection and start running new analyses, the first
thing you notice is that your duplication metrics jump dramatically. This is expected
and perfectly normal. But if you expected the duplication density to go to 100%, you

Figure 4.8 Enabling cross-project duplication detection

76 CHAPTER 4 Working with duplicate code
might wonder why it’s sitting below that. It’s because the duplication-detection engine
only tallies up duplicated lines of code. When counting duplicate lines, it ignores
import statements as well as any blank lines or comments that may be embedded in a
duplicated block. As we mentioned earlier, the density of duplicated code is based on
physical file lines (including those lines the duplications engine ignored), so you
should expect to see a number below 100%.

 Now let’s examine the Duplications tab in the file detail view. If you’re looking at a
file with cross-project duplications, you’ll probably see something like figure 4.9,
which is similar to what we showed you earlier.

 In the figure, notice that InternationalOrder is shown twice. As you can see, there
is a special icon next to one of the class names, which indicates that the class belongs to
another project. Click the icon or the class name to see part of the duplicated block.
When you do, the class’s project name (linked to its dashboard) is displayed to the left
of the full class name (linked to its file detail view), making it even easier to identify the
exact position of code repetitions, even between projects. Expanding and collapsing
code blocks works the same way across projects as within a project.

 Because our example of cross-project duplications analyzed the same project
under two different project keys, figure 4.9 shows the same class name displayed twice:
once for each project it appears in. Unfortunately, this wholesale duplication of
classes isn’t as outlandish an example as it should be. We’ve seen utility classes copied
in their entirety from one project to another (class name intact!), not just in private
enterprises, but also among well-known open source projects (but not SonarQube).

NOTE As you’ll learn, you can analyze multiple branches of the same project
by using the sonar.branch property. You may think that in this case, if cross-
project duplication detection is turned on, all code would be marked as dupli-
cated. To avoid this situation, SonarQube turns off this feature whenever you
analyze a project with the sonar.branch property.

Now that you’ve seen SonarQube’s suite of duplication-related functionality, it’s time
to look at how to clean up the mess. If you’re not a programmer, you may want to skip
to section 4.6, “Related plugins.”

Figure 4.9 Cross-project duplication in source code tab

77Cleaning up your duplications
4.5 Cleaning up your duplications
The purpose of this book isn’t just to teach you how to use SonarQube, but also to give
you adequate examples to improve your code quality and help you evolve as a software
engineer. Getting a list of code repetitions is a great start, but just looking at them
won’t fix the problem, unless you have some of Uri Geller’s talents.

 This section includes practical examples of applying software-engineering best
practices to code-duplication issues. First we’ll look at the extract pattern, then we’ll
explain the delegate pattern, and finally we’ll present a case in which you need to cre-
ate a new library to eliminate duplications across multiple projects.

4.5.1 Introduction to refactoring patterns

Teaching you refactoring patterns in general is out of the scope of this book. For that,
you should consult Refactoring to Patterns by Joshua Kerievsky (Addison-Wesley, 2004)
or Refactoring: Improving the Design of Existing Code by Martin Fowler et al. (Addison-
Wesley, 1999). Those two books are about refactoring code using best practices that
are typically referred to as patterns. The following examples use patterns that move
code within the same file or to another file in the same project. Before you see them
in action, here’s a brief explanation of each pattern:

 Extract method—Used for duplicate code in the same class. All you have to do is
create a new method, place the repeated block of code in this method, and
replace the duplicated blocks with invocations of the new method.

 Pull up field—Usually used in conjunction with the extract method. The basic
idea is to move a field used in two or more subclasses up to a superclass.

 Extract superclass—Applied in the case of code repetitions in different classes.
When classes have the same or even similar features, consider moving those fea-
tures to a superclass.

 Extract class—A combination of the extract method and extract superclass,
applied mainly to unrelated classes. Move code that’s repeated in unrelated
classes to a new utility class, and then invoke its methods from the source classes.

4.5.2 Applying patterns to remove code duplication

Going back to the Order and InternationalOrder classes, let’s look at how to eliminate
the duplications between them. Thanks to SonarQube, you know exactly where the
problem code is, so we can easily start refactoring our classes in order to get rid of it.

 From a design perspective, the classes have a lot in common. Each is responsible
for holding information about an order placed by a customer (domestic or interna-
tional). The code that returns the total amount is exactly the same from class to class,
but the classes differ in how they compute the discount and sales tax. Because the
sales tax is based on a customer’s country, you don’t need to make any changes in the
getTax() method. But you do need to do something about the other two methods.
Because you have similar classes with duplicate functionality, the extract superclass
method is the best pattern to use.

78 CHAPTER 4 Working with duplicate code
Now that you know which pattern to use, you’re ready to begin refactoring. Start by
creating a new class, AbstractOrder, and move the getTotal() and getDiscount()
methods into it, as well as any shared members and their getters and setters. Because
getTotal() calls getTax(), you also need to specify an abstract getTax() method to
be implemented by your concrete subclasses. (That getTax() call is why we made this
an abstract class to start with; another option would have been to leave the parent
class concrete and implement an overridable, default version of getTax().) The fol-
lowing listing details the AbstractOrder class after refactoring.

public class AbstractOrder {
 private List<OrderLine> orderlines = new ArrayList<OrderLine>();
 //Add/remove order line code omitted

 public BigDecimal getTotal() {
 BigDecimal total = BigDecimal.valueOf(0);
 for (OrderLine orderLine : orderlines) {
 total = total.add(orderLine.getOrderLineTotal());
 }
 BigDecimal discount = total.multiply(getDiscount());
 total = total.subtract(discount);
 BigDecimal tax = total.multiply(getTax());
 total = total.add(tax);
 return total;
 }
 public final BigDecimal getDiscount(){
 return BigDecimal.valueOf(0.10);
 }
 # Abstract method to be implemented by concrete classes
 protected abstract BigDecimal getTax();
}

With the superclass in place, you can refactor the Order and InternationalOrder
classes as shown in listings 4.4 and 4.5.

Listing 4.3 AbstractOrder class

Refactoring
Refactoring is a practice that developers should learn and be able to apply in their
everyday activities. But it requires experience in software engineering, discipline, and
broad knowledge of many related topics. Among its main purposes are optimizing
code, removing duplications, and increasing maintainability.

There is one thing to consider every time you want to refactor your code: ensure that
the affected classes are covered by the correct unit tests and that after you complete
the refactoring, the same unit tests aren’t failing. Only then can you be confident that
you haven’t created any bugs or other side effects.

79Cleaning up your duplications
public class Order extends AbstractOrder{
 private Customer customer;
 //Setters and Getters omitted

 private BigDecimal getTax() {
 return BigDecimal.valueOf(0.20);
 }
}

Both refactored classes now extend from the AbstractOrder class and implement the
abstract method getTax(). The code contained in that method is the only difference
in those classes. The rest of their behavior, which is the same, is inherited by the
AbstractOrder class.

Order for international customers
public class InternationalOrder extends AbstractOrder{
 private InternationalCustomer customer;
 //Setters and Getters omitted

 private BigDecimal getTax() {
 return (BigDecimal.valueOf(customer.getCountry().getTax()));
 }
}

With these modifications in place, a new SonarQube analysis will show that you’ve not
only removed any duplications between classes, but also decreased the complexity of
your code. It looks much cleaner than before and is much more maintainable. Next,
we’ll finish our examples by considering when you might need to create a new com-
mons library.

4.5.3 Time for a new commons library?

In the previous section, we looked at evolving code to eliminate duplications in a sin-
gle project. Assume that once you finish that project, you start a new one. After a few
weeks, you find yourself in a similar situation, where you again need to use an Order
class.

 Remembering your work on the previous project, you copy the classes you need
into your new project, feeling a little smug that you didn’t have to rewrite them. What
you’ve forgotten is that SonarQube’s detection mechanism can identify code duplica-
tions across multiple projects. Because both projects now have exactly the same Order
class implementation, SonarQube registers a new duplication for each file.

 How you should handle this kind of duplication? It’s time to start thinking about
creating a new library for the functionality that’s common to both projects. The pro-
cess of creating such a library is similar to the process you used to create the
AbstractOrder class.

Listing 4.4 Refactored Order class

Listing 4.5 Refactored InternationalOrder class

Order for U.S. residents

Default sales tax for U.S. residents

Tax based on
customer’s country

80 CHAPTER 4 Working with duplicate code
After creating the new library project, follow these steps to refactor your code:

1 Move the AbstractOrder class and its concrete implementations to the new
library.

2 Add the library as a dependency in your existing projects.
3 Modify your code to access the classes of the new library.
4 Run a SonarQube analysis, and pat yourself on the back when it shows zero

duplications.

4.6 Related plugins
SonarQube has become a standard for code-duplication detection, and it’s by far the
most stable and mature tool in this category. But it can be extended by the develop-
ment of new plugins (if you want to create one, check out chapter 16 of this book),
with brilliant ideas for more functionalities and features. This section covers a plugin
that’s related to duplicated code and that extends SonarQube’s default metrics and
capabilities: the Useless Code Tracker plugin.

 If you tried to give another definition for duplicate code, you’d probably end up with
something like “lines that are useless and could be deleted from the code base.” The
Useless Code Tracker plugin reports on exactly this kind of metric by adding to a
SonarQube analysis the meaningful numbers explained in table 4.3.

Table 4.3 Metrics of the Useless Code Tracker plugin

Metric name Metric description

Lines in Duplications Although it may seem identical to Duplicated Lines as described in table
4.2, this metric is a little more sophisticated. It reports actual lines that
may be removed from your code, not just duplicated lines. For example, if
your code has 100 duplicated lines in four blocks (that is, 25 lines repeated
four times), then the duplicated lines to reduce should be 75.

Lines in Unused Private
Methods

To activate this metric, you have to add one of two rules to your rule set:
PMD:UnusedPrivateMethod or SQUID:UnusedPrivateMethod. See
chapter 13 for more detailed descriptions of rule profiles.

Lines in Unused
Protected Methods

To activate this metric, you have to add one of two rules to your rule set:
PMD:UnusedProtectedMethod or SQUID:UnusedProtectedMethod.
See chapter 13 for more detailed descriptions of rule profiles.

Apache
Apache is the father of commons libraries. The purpose of such libraries is to develop
and maintain reusable Java components that can be used by other applications or
systems. Currently, several commons libraries cover various fields of interest, such
as string manipulation, file I/O, logging, and many more. For more information, see
Apache’s website at http://commons.apache.org/.

http://commons.apache.org/

81Summary
You can add the plugin’s widget to any dashboard, and because it isn’t categorized,
you’ll find it if you select None as the widget’s filter. Figure 4.10 shows how the metrics
described in table 4.3 are displayed to the end user and what they represent.

 The power of this plugin is that it doesn’t execute any duplication detection
(including cross project) itself, but rather relies on SonarQube’s embedded mecha-
nism and the results of duplication analysis. This means it can be used with any lan-
guage with duplication detection. To see it in action, add the Useless Code Tracker
plugin to your dashboard and run a new analysis. We’re sure you’ll find it useful.

4.7 Summary
At this point, you understand how to use SonarQube to detect duplicate code. Even
better, you understand where duplications come from, why they’re a basic software
quality issue, and how they contribute to new bugs.

 Face it! You can’t avoid the creation of duplicate code. But SonarQube will help
you find code duplications in the same file, in the same project, or even across multi-
ple projects, so you can clean up your duplications.

 There are four metrics related to code duplication. The most important is the den-
sity of duplications, which represents the number of duplicated lines relative to the
total physical lines of the project. SonarQube shows you all the duplications metrics
on a project, package, or class basis. Further, you can use the Duplications tab in the
file detail view to see the location of a duplication in a class.

 Just looking at your duplications isn’t enough. Knowing that you have code dupli-
cations is the first step; eliminating them is the final goal. You can begin to accomplish
that with the patterns you learned here, such as extract method and extract class.

Figure 4.10 Useless Code Tracker plugin

Optimizing source code
documentation
You’re probably wondering why documentation is a topic in a book about a soft-
ware quality tool. First, let’s be clear. This chapter isn’t about technical documenta-
tion or user/administration guides. It’s not even about design or requirements
artifacts. It’s all about understanding your source code. And because code under-
standability has a direct connection with quality, comments and documentation
form one of SonarQube’s seven Axes of Quality.

 In this chapter, we’ll look at what kinds of metrics are computed for comments
and documentation. You’ll see how they’re reported on the dashboard, what you
see at the file level, and how to identify undocumented source code. We’ll talk
about why documentation is important, what kind of comments to avoid, and how
to create or enhance your documentation process.

This chapter covers
 To document or not?

 The metrics of commenting

 Identifying undocumented code

 Simplifying your documentation strategy
82

83To document or not?
 If you don’t think comments and documentation are an important part of your
development process today, we believe this chapter will convince you to reconsider.
Besides, the standard default Java API documentation is completely useless. Right?

5.1 To document or not?
Sam is a junior developer who’s new on the team. She’s green but talented, so she gets
the task of integrating the in-house notification (email, SMS, and so on) library into
the project. After discussing the requirements, she gives an estimate: “I’ll be done in
two days!”

 You’ve warned Sam that the library’s documentation is out of date, so she starts by
looking at its code, but she realizes pretty quickly that it doesn’t match what’s in pro-
duction. Even worse, the guy who wrote most of it doesn’t work here any more. So, she
turns to the production version’s Application Programming Interface (API) to figure
out how to use it.

 Sam knows the library provides a single public class for sending event notifications
with email or SMS. “It can’t be that hard!” she thinks. Then, she sees the API.

 “Which one should I use?” she wonders, staring at the method signatures:

public void sendMsg (String varA, String varB)

public void sendMsg (List list, String var) throws Exception

public void sendNewMsg (String varA, String varB) throws Exception

She has little choice but to try all three methods and see what happens. After a couple
days of testing, she settles on sendNewMsg() and finishes the integration in just under
a week. She checks in her changes, but she still isn’t sure she picked the right method,
and she’s embarrassed that her two-day estimate proved far too optimistic. Sam over-
shot her estimate by three days trying to figure out the API, but writing just a little doc-
umentation for these methods wouldn’t have taken the original developer more than
a few minutes.

 Sam’s example shows only one problem with not properly documenting your code.
Without access to the correct source, she struggled to use a library that was written by
someone else and left uncommented. Now imagine a developer trying to maintain a
whole legacy system without comments or documentation. Even simple changes could
take days longer than they should as she struggles to understand what each piece of
code is actually doing.

 Before we move on, we’d like to clarify some things. It’s important that documen-
tation should start by having clean code with self-explanatory names for entities
(classes, methods, parameters, and so on). Then, when necessary, useful comments
should be added. The code snippets we just examined have no clean code and no doc-
umentation, and that’s why Sam struggled to determine the correct method.

 Furthermore, we’d like to consider—and we advise you to do the same—that every
public method or class is an API. And an API should be documented, because its pur-
pose is to be used by others. You may wonder how to handle protected methods. Well,

84 CHAPTER 5 Optimizing source code documentation
there’s no rule of thumb: it depends on how you’re using the protected method. For
instance, when you implement the Template Method pattern (www.oodesign.com/
template-method-pattern.html), concrete classes may need to implement a protected
method. That’s a good case in which documenting this abstract protected method
seems a good idea.

 Finally, we believe you should start treating comments like source code: they will
be updated throughout time. Therefore, you should only keep the useful ones, to
make sure maintenance cost is kept to the bare minimum.

 Most developers (including us) have left documentation to the end of an imple-
mentation and then “forgotten” to do it. Even worse, some coders actively deride doc-
umentation as a waste of time and refuse to do it because “Time is precious, and the
task is meaningless.” But the few minutes it takes to properly document code can save
hours down the road, not just for green developers like Sam, but for every subsequent
developer who will need to use or maintain a given method, class, or library. It’s an
investment—one you should make. If you haven’t been held to a rigorous standard of
documenting so far, you’ll have some catching up to do, but SonarQube can help by
providing comment and documentation metrics at the project, component, and file
levels. We’ll start by looking at those numbers and what they mean.

5.2 Even commenting has its own metrics
By now, you’re probably familiar with SonarQube’s default project dashboard. The wid-
get that displays the comment and documentation metrics is shown in figure 5.1. It’s
the same one we looked at in chapter 4, in our discussion of duplications. (The widget
shown in this section comes from SonarQube release 3.6. Since version 3.7, the widget
has been split in two widgets that are identical to the ones described in section 5.5.1.)
Duplications are on the right side of the widget, but in this chapter we’ll focus on the
left side.

5.2.1 How SonarQube calculates metrics

As you see in figure 5.2, there are four documentation-related metrics: a pair for com-
ments and a pair for API documentation. Each pair consists of an absolute value and a
density computation.

 For the first couple of metrics, the ones counting comment lines, we can’t tell you
what the best number is (we’ll come back to why that is in a moment). For the third
number, % Docu. API, you want to see a high number; and the last value, Undocu.

Figure 5.1 The comments and
duplications widget appears in
SonarQube’s default dashboard.

www.oodesign.com/template-method-pattern.html
www.oodesign.com/template-method-pattern.html

85Even commenting has its own metrics
API, should be as low as possible. Before we look at how to interpret these metrics,
look at table 5.1 to see how SonarQube calculates their values.

Before we move on, let’s look at a simple code example and walk through calculating
SonarQube’s comment metrics. Listing 5.1 shows the InternationalOrder class you
first saw in chapter 4. In order to give a more complete comment calculation example,
we’ve added several different types of comments and removed any obsolete lines.

Table 5.1 Commenting and documentation metrics definitions

Metric Explanation

Comment Lines Absolute number of comment lines. This metric is calculated differently for
each programming language.

For instance, in Java, all Javadocs (class, method, property) plus all single
or multicomment lines and all commented-out code are counted as com-
ment lines. Other comments, such as empty comment lines and header
comments, aren’t counted.

Comments in C are simpler. Every non-blank, non-auto-generated com-
ment line is counted. SonarQube’s online documentation details how this
metric is computed for other languages. See http://mng.bz/I0nd.

Comments (Density of
Comment Lines)

This is the percentage the widget starts with. It’s calculated for all lan-
guages based on the following formula:

Comment Lines / (Lines of Code + Comment Lines) * 100

Chapter 1 details how lines of code are calculated.

Public API This metric isn’t shown directly in the widget; it factors in to other calcula-
tions and is reported at the file level in the Source tab’s header. It’s an
absolute number, which is calculated differently for each programming
language.

For instance, in Java it’s based on the following formula:

Public Classes + Public Methods + Public Properties

Notice that setter and getter methods, as well as final static properties,
aren’t counted. They’re assumed to be self-documenting.

Public Undocumented API This metric is the absolute number of Public API (as just described) with-
out any documentation. For instance, in Java, a public method with no
Javadoc comment is considered undocumented.

Density of
Documented API

This metric is calculated based on the following formula for all program-
ming languages:

(Public API – Public Undocumented API) / Public API * 100

Figure 5.2 SonarQube
metrics shown in the
comments and
documentation widget

http://mng.bz/I0nd

86 CHAPTER 5 Optimizing source code documentation

public class InternationalOrder {
 private InternationalCustomer customer;
 /** Add – remove order line code omitted */
 public List<OrderLine> orderlines = new ArrayList<OrderLine>();
 /**
 * Calculates total amount of an order.
 * @return total amount as a BigDecimal number
 */
 public BigDecimal getTotal() {
 BigDecimal total = BigDecimal.valueOf(0);
 for (OrderLine orderLine : orderlines) {
 total = total.add(orderLine.getOrderLineTotal());
 }
 BigDecimal discount = total.multiply(getDiscount());
 total = total.subtract(discount);
 // Multiply with tax number
 BigDecimal tax = total.multiply(getVat());
 total = total.add(tax); // total = total.add(tax);
 return total; }
 private BigDecimal getTax() {
 return (BigDecimal.valueOf(customer.getCountry().getVat()));
}
 private BigDecimal getDiscount() {
 return BigDecimal.valueOf(0.10);
 }
}

First, let’s count the lines with comments. There is one line above the orderLines
property, two lines in the getTotal() method’s Javadoc, and a single-line comment.
The two blank comment lines aren’t counted because empty comment lines are left
out of SonarQube’s calculations. The commented-out code line (just before the
return in the getTotal() method) is still a comment, so it gets counted too. So the
number of comment lines is 5, and there are 21 lines of non-blank, non-commented-
out code. With the counts for Lines of Code (21) and Comment Lines (5), you can
compute the density based on the formula in table 5.1: approximately 19.2%.

 What about Public API? The public class has one public property and one public
method, so the number of Public API is three (one public class + one public method +
one public property). There are Javadoc comments only for the property and the
method, so the number of undocumented API is one, because the class itself isn’t doc-
umented. The calculation for the density of the documented API is easy: (3–1)/3*100
= 66.7%. Next, we’ll dig deeper into the real meanings of these metrics.

5.2.2 What the numbers are telling you

Let’s start with a closer look at the two density metrics. We strongly believe they’re the
most critical and give you the most valuable information. We’ll start with Density of
Comments, the first metric in the widget. Imagine you have three different projects,

Listing 5.1 InternationalOrder class

Javadoc for class is missing

Javadoc for
property

Javadoc for
method

Comment in one-line format

Commented-out
code

Default discount for non-US residents

87Identifying undocumented code
each with 1,000 physical lines; and assume that you get the following numbers for
their comment density: 0%, 50%, and 100%. The first one, 0%, means you have abso-
lutely no comments in your project (that is, 1,000 lines of code and 0 comments). If
you see a value of 50%, then you have as many lines of comments as you do of code
(500 lines of code and 500 comments). Finally, if comment density is 100%, then your
files consist completely of comments.

 What’s the story on this metric? Which of those scores is the best? Actually, we
don’t like any of them. A number north of 50% implies that you’re over-commenting
your source code, whereas a number near 0% means there are too few comments.
There’s no magic number, though we think somewhere between 20% and 30% is a
good score for most projects. But a score outside of that range doesn’t mean you
should start adding or removing comments.

 The significance of the Density of Documented API metric is more obvious and
clear-cut. Higher numbers tell you your code is more thoroughly described. Normally
you should shoot for a number near 100%. This is particularly important when the
project is something like an in-house commons library (code packaged to be shared
with other teams), and it’s critical if the project is used by third-party systems for inte-
gration purposes. But even when you do see numbers near 100%, that doesn’t neces-
sarily mean you’re in the clear. Unfortunately, SonarQube can only measure the
quantity, not the quality, of your API comments. Many IDEs auto-generate documenta-
tion “shells,” which could easily be used to game the system on these metrics, inten-
tionally or not. (We’ve accidentally done it.) Regardless of whether they’re filled in,
SonarQube counts those shells as API documentation, so it would be possible to have
high documentation scores without having documentation; a spot check of fully docu-
mented code might prove worthy of your time.

 The importance of API documentation on code that’s written for other teams or
companies is obvious, but you still need to document non-commons projects, and you
should even consider documenting private methods and/or choosing method and
parameter names that properly describe their purpose. Remember that your first pri-
ority is to keep your code clean and understandable. After that, you can still docu-
ment it. Even if your memory is perfect (will you really remember what every method
does six months from now?), you’re not the only one who will ever maintain or use
your code.

 If you’re on a new project, your job is easy: document as you go. But if you’ve
got some catch-up to do, you’ll want to know which parts of your project need atten-
tion first. So, next we’ll look at how to identify areas of a project with low levels of
documentation.

5.3 Identifying undocumented code
So far you have a broad understanding of your project’s comments and documenta-
tion. You can easily see from the numbers on the dashboard how much of your public

88 CHAPTER 5 Optimizing source code documentation
API is documented. And if your % API documentation is high, then you know that
most of your code is probably documented.

 Next, we’ll drill in to see documentation at the file level. Unlike what you’ve seen
for other metrics, there is no separate tab in in the file detail view that’s dedicated to
comments. Instead, you’ll be directed to the file’s Source tab, where you can see the
file’s comment metrics in the header and read the comments themselves in the con-
text of the code.

5.3.1 Finding files to improve documentation

Starting from the dashboard, click-through on the Public Undocumented API metric.
You’ll land at the familiar drilldown view of measures, and you can click any module
or package to narrow the file list to only those in the component you chose.

 To the right of each component name is the value of the metric you clicked from
the dashboard. Remember that SonarQube’s drilldown views are always sorted “worst
first,” so you see the components that most need your attention at the top. So far, this
should all be familiar, but there is one small variation to point out, and it’s shown in
figure 5.3.

 As you see, even though we clicked-through on the Public Undocumented API den-
sity (a percentage), the drilldown view is based on the absolute number of public undoc-
umented API.

 The other thing to keep in mind is that components with perfect scores for the
metric you’re drilling in to are omitted from these lists. That means if you do decide
to do a spot check of documentation quality (versus quantity), you’ll have a little extra
digging to do.

Figure 5.3 When the click-through metric is Public Undocumented API, the
drilldown view is a variation on the norm. Instead of seeing files sorted by that
density, they’re shown with and sorted by the absolute number of undocumented API.

89Identifying undocumented code
5.3.2 Viewing the generic tab in the source code viewer

Now click any of the files in the list on the right to see the file detail view. As we said
earlier, there isn’t a dedicated tab for documentation. Instead, you’ll find yourself
looking at the Source tab, which shows a metric summary for the file and its full
source code. You might get fewer tabs at the top, but the selected tab is still the same.
Figure 5.4 highlights the comments and documentation metrics in the header.

 The header contains several metrics we’ve covered in previous chapters and a few
we’ll talk about in chapter 6 when we discuss complexity. For now, focus on the third
and fourth columns. They contain the documentation and comment metrics. You’ll
see that all the comments and documentation metrics in the dashboard widget are
shown in the header as well, but this time on a file level. Additionally, you get one
more number here that you don’t see on the dashboard. It’s Public API, which we
described in table 5.1 as the number of public things (classes, methods, members) that
ought to have documentation.

 Below the header, you should see the file’s full source code so you can review the
comments and documentation (or lack thereof). Beyond that, there’s not much more
to say, because there’s no special presentation for comments.

 At this point, we’ve fully covered the comments quality axis. You’ve seen the met-
rics, their meaning, and how SonarQube computes them. You’ve also seen how to find
the parts of a system that are poorly documented or over-commented.

 As you look over these metrics in your own projects, remember that numbers
alone are useless if you haven’t decided what your target values are for comments or
how you’re going to improve your scores if they’re not where they should be. As
you’re setting these targets, keep in mind that commons libraries tend to need more
documentation than code that’s only used by a focused team.

 We’ll talk more about setting metric targets and strategies for achieving them in
chapter 8. The rest of this chapter aims to give you some ideas for making your docu-
mentation process a smooth activity, and we’ll wrap up by presenting a couple of
related plugins we believe you’ll find useful.

Figure 5.4 Source code tab’s header

90 CHAPTER 5 Optimizing source code documentation
5.4 Simplifying your documentation strategy
At the beginning of the chapter, we discussed some of the reasons developers dislike
documenting their code. The truth is, we’re all eager to finish the real code (don’t for-
get the unit tests) and see our systems running, and any activity that doesn’t advance
this goal is seen as unnecessary. But unless you’re on a one-person project and you
plan to remain a one-person shop, maintaining the same old code over and over for the
rest of your career, you have some obligations to your fellow coders.

 The code you write doesn’t belong to you, and it’s certain that during the project’s
lifecycle other developers will need to modify it or use it. Don’t fall prey to the stereo-
typical developer egotism: “My code is straightforward. It’s not my fault if you don’t
understand it.” Instead, remember that at some point you’ll be the new developer on
a team again, and write the documentation you’d like to read in that situation.

 If you’re in the extreme programming camp, then your response is that “The code is
the documentation.” To some degree, we agree. No one can overemphasize the
importance of well-named classes, methods, and variables. We have seen (much to our
lasting dismay!) variables in “professionally” written code named things like please-
Work. We’ll never get back the time spent following that piece of spaghetti. So yes, the
time and effort spent creating good names and writing clean code is invaluable.

 Another tenet of extreme programming is that close team communication makes
documentation unnecessary. While a system is being created, that’s likely true. But the
odds are that some day, the code will have to be maintained by someone who wasn’t
on the original team. Rather than making that person take time reading your clean
code, spend a few minutes on documentation to sum up what your well-named
method does.

5.4.1 Picking a documentation tool

Let’s get back on track and look at how to improve your documentation process. First,
every member of the team needs to commit to following the process. Once you have
agreement among the team members, you need to pick the tool and the format you’ll
use for your comments.

 The standard in Java is Javadocs. If you’re among those who think default Javadocs
looks ugly, keep in mind that you can create a custom XHTML doclet to provide good-
looking and professional documentation. For other languages, there are similar tools,
like NDoc for C# and DOC++ for C and C++. There’s also Doxygen, which has nice
SonarQube integration (we’ll cover it in the “Related Plugins” section) and can be
used for several languages, including Java, C, C++, Python, and PHP. You could even
use a combination of tools for best results and customize them to fit your needs. In
general, they’ll all give you smart and effective ways to generate the documentation of
your source code based on the provided comments.

91Simplifying your documentation strategy
5.4.2 Defining a straightforward process

Once you’ve picked a documentation tool, it’s time to define an easy-to-follow process.
To do that, you need to answer some simple questions:

 When should you write documentation?
 What parts of the source should you document?
 What information should the documentation include?
 How will the documentation be generated?

Your answers will guide you in creating the process that best fits your team’s needs.
Here are our suggestions to keep it simple and elegant.

WHEN TO DOCUMENT

First, document as you code. Before you start a new class, jot down a few comments
explaining its purpose. The same applies to methods/functions. Briefly describe what
they’re expected to do.

 After finishing the code, review the documentation and update it to reflect any
changes you might have made (see figure 5.5). Follow the same steps whenever you
need to modify a piece of code.

WHICH PARTS OF THE SOURCE TO DOCUMENT

Every public class and each of its public methods and properties is a candidate for
documentation. But there is no need to document setters and getters or other meth-
ods that are so simple that the signature itself is the explanation. The following snip-
pet shows one of our favorite over-documentation anti-patterns:

private String name;

/**
* Returns the name
* @return name
**/
Public String getName()

In this case, the Javadoc doesn’t provide anything the reader couldn’t have gotten
from the method signature itself—which means it’s entirely redundant and, like other
duplications, should be avoided. Redundant documentation, like redundant code,
needs to be maintained but doesn’t usually get attention. Instead, it only adds noise to
your source code. Or worse, it stops reflecting the actual purpose of the code because
it’s not kept up to date, and it adds confusion instead of clarity.

Briefly describe
new methods

code - code -
code

Review the
documentation

Adjust
documentation

to reflect
source code

Figure 5.5 Simple documentation process

92 CHAPTER 5 Optimizing source code documentation
 But you do need to document private methods, even though they won’t change the
numbers you see in SonarQube. Why bother? So that future developers maintaining
the code (including you, six months from now) can quickly understand the purpose
of each method by reading the clear and insightful summaries you’ll write, instead of
having to slog back through the logic to re-figure it out the hard way.

WHAT INFORMATION TO INCLUDE

In addition to describing the purpose of each class or method, it’s a good idea to
include descriptions of input and output parameters as well as any exceptions that
might be thrown. When appropriate, you may also want to include things like the ver-
sion of the API that introduced a particular feature. Include everything you think is
important, and keep in mind that documentation should be complete enough that the
reader won’t need to ask for clarification. Popular IDEs like Eclipse and NetBeans offer
many ways to facilitate this process, including the documentation shells we mentioned
earlier. They fill in basic information for you and let you focus on the real work.

 What you should avoid is as critical as what you document. Try not to comment-
out lines of real code; delete them, instead. If you need it back, you can always revert
to a previous version of the file from your source control system. So why add noise to
your code?

 Whether to avoid comments within the body of a method or function can be
debated. Many people contend that if your code needs comments to be understand-
able, what it actually needs is refactoring. Regardless of whether you agree, make sure
you agree (or disagree) as a team, so that everyone’s on the same page.

HOW TO GENERATE

Once you’ve started writing documentation comments, you need to decide how to
generate and publish the docs. We haven’t talked about Continuous Integration (CI)
yet, but in part 2 of the book we’ll discuss how it will walk your dog and wash your car
and generally make your life wonderful. Okay, that may be a bit of an oversell, but CI
can make the development process go a lot more smoothly by offloading the tedious,
repetitive tasks to computers (where they belong), leaving you and your teammates
free to tackle the interesting stuff. There are manual ways to generate your code docs,
but ideally you’ll set it up as part of your CI process so that no one has to remember to
do it and the docs are always up to date.

5.5 Related plugins
We’ve talked a lot about process. Let’s get back to SonarQube and discuss the exten-
sions that are available to help you track or publish documentation. First, we’ll revisit
the Widget Lab plugin we looked at in chapter 2. It offers extra widgets to give you a
clearer and more complete view of your documentation metrics. Then we’ll look at
the Doxygen plugin mentioned earlier in this chapter. It integrates SonarQube with
Doxygen, a popular documentation tool, and lets you view project documentation
from within SonarQube. Let’s get right to them.

93Related plugins
5.5.1 Widget Lab

This plugin is a collection of widgets that offer modified versions of some of Sonar-
Qube’s core widgets to provide extra functionality. SonarQube’s default widget for
comments and documentation mixes those metrics in with duplication numbers. So if
you wanted to create a dashboard dedicated to documentation, you’d have to put up
with irrelevant numbers.

 Fortunately, Widget Lab offers a widget that reports only on comments and docu-
mentation. The widgets described in this section have been included in SonarQube’s
core since release 3.7. See figure 5.6 for a visual comparison between the original and
the cloned version of the widget.

 The Widget Lab version shows the same metrics you’ll find in the standard widget,
plus one addition: it also shows the total number of Public API. As with the standard
widget, clicking any metric in the Widget Lab version sends you to the corresponding
metric drilldown. When you’re ready to add this widget to a dashboard, you’ll find it
under the Documentation category.

5.5.2 Doxygen

We said earlier that there’s no special tab in the file detail view for documentation,
and by default that’s true. But you can change that if you like, with the Doxygen
plugin.

 Doxygen is a popular open source documentation tool with support for multiple
languages. It generates docs from the comments in your source code and can output
to a variety of formats. HTML is typical, but it also supports RTF (for Microsoft Word
processing), PostScript, and hyperlinked PDF, as well as graphs.

 What’s really cool about this tool is that it can be used for several languages,
including C++, C, Java, Objective-C, Python, and many others. For examples and the
most up-to-date information on Doxygen, visit Doxygen’s official website: http://
doxygen.org.

Figure 5.6 Visual comparison between SonarQube’s original widget and the cloned widget
provided by the Widget Lab plugin

http://doxygen.org
http://doxygen.org

94 CHAPTER 5 Optimizing source code documentation
To get Doxygen working in SonarQube, you’ll need to install the plugin and Doxygen
itself. If you want Doxygen to generate graphs, you’ll need to install Graphviz as well.

 After it’s installed, you’ll find that the Doxygen plugin is disabled by default, so
you’ll need to explicitly enable it for each project. At the same time, you can turn on
generation of class graphs, caller graphs, and call graphs. Once it’s on, run an analysis:
you’ll see a Documentation link added to the left rail and a new Documentation tab in
the file detail view. The former navigates to the main page of documentation, and the
latter shows the Doxygen documentation of the selected file (see figure 5.7).

5.6 Summary
In this chapter, we looked at documentation, which is an afterthought for many devel-
opment teams. But if it’s properly managed, spending a few minutes now on documen-
tation can save you a lot of future work. At its heart, SonarQube is about technical debt:
the things that were done poorly or left undone, and the things that will stand in the
way of future productivity. And missing documentation falls squarely in that category.

 All code should be documented, even when its use is limited to a single team. But
documentation becomes critical when you’re writing libraries for use by other teams
or companies.

 You’ve seen that SonarQube provides metrics to help you track and improve your
documentation coverage. You’ve seen how the numbers are calculated, and their
importance in the software development lifecycle.

Figure 5.7 Doxygen plugin’s new link and new Documentation tab in the source code viewer

95Summary
 At this point, you know how to spot components and files with poor documenta-
tion. You also know how to approach setting up an easy-to-use process to improve the
documentation in your projects, and which practices to be wary of or avoid.

 Finally, we discussed two open source plugins related to documentation, Doxygen
and Widget Lab. Next, we’ll look at software architecture and complexity in chapters
6 and 7. Let’s move on!

Keeping your
source code files elegant
An active project gets bigger day by day, week by week. As your software grows, it
becomes more complex. New classes are added, and methods and attributes are
created or improved. Each time you make a change, you’re probably affecting the
health of your system’s design. Whenever logic is added, the complexity of the file,
the package, and the module is increased.

 Fortunately, SonarQube can alert you to these kinds of issues. For instance, it
can tell you when the quality of your design goes down, when the increasing com-
plexity of a file starts to make it hard to maintain, or when the time comes to break
up this complexity without reducing the overall complexity.

 In this chapter, we’ll look at complexity—not from a system-level perspective,
but at the level of individual files. How internally complex is the average file in your
system? How complex are its interactions with the rest of your system? Both

This chapter covers
 Distributing complexity

 Lack of Cohesion of Methods: files that do too much

 RFC and couplings: classes with too many friends
96

97Keeping complexity low
questions are important because they help you gauge how difficult the average file is
to work on and how broad an impact (good or bad) working on that file will have on
the rest of your system. Unless you’re familiar with a given system, you probably don’t
know offhand where its “worst” classes are, but SonarQube can help you find those
trouble spots and prioritize them for refactoring.

 We’ll begin by looking at class-level complexity (known as cyclomatic complexity, or
the McCabe metric). Then we’ll move back a step to look at Lack of Cohesion of
Methods (LCOM), which takes a more abstract view of each class to ask, “Is this class
doing too much?”

 After that, we’ll move on to the complexity of interactions with Response for Class
(RFC), which looks at how a file interacts in a system, and at afferent and efferent cou-
plings, which also fall under the “complexity of interactions” heading. We’ll show you
how to identify poorly designed classes, discuss refactoring methods, and give you
some tips on keeping your source code clean and simple.

6.1 Keeping complexity low
Sam, the junior developer on the team, is still smarting from giving an over-optimistic
estimate on her last assignment. She’s eager to redeem herself when she’s told to
change the validation algorithm for Visa credit cards. Visa recently changed the rules
for what’s valid, and the deadline to have the new validation in place is looming.

 Unfortunately, validation for every credit card type the system accepts (American
Express, Discover, Diners, MasterCard, Visa, and so on) is handled through the same
huge class. Worse, most of it runs through one monster method packed with more
spaghetti than an Italian restaurant. Sam knows it should be structured differently, but
she doesn’t have the time or (she’s afraid) the experience to restructure the code.
Instead, she spends several hours—with her restless boss asking constantly about her
progress—just reading the code.

 She finishes near the end of the day, just ahead of the deadline, but nobody is
happy. What should have taken less than two hours took a whole day, and even her
boss has to admit that it’s not Sam’s fault. The class was too complex, and she needed
lots of time to read the code and become familiar with it before modifying it.

 This section teaches you how to spot complex files by using SonarQube. It explains
why it’s important to keep the complexity as low as you can, and describes briefly how
complexity is calculated. At the end, we give you some refactoring tips, and we show
how you can minimize the complexity value without changing the output of your
code.

6.1.1 Hunting those huge files

Modifying highly complex files like Sam had to do is an error-prone process. Some
studies have shown that as complexity rises, so does bugginess. Sam went slowly, and
rightly so, because a high level of complexity decreases a file’s maintainability and
increases the time it takes to understand the code. The harder it is to completely take

98 CHAPTER 6 Keeping your source code files elegant
in a method or file, the more likely you are to subtly (or not so subtly) screw it up
when you work on it. Additionally, high complexity makes it difficult to properly unit-
test a method; that’s why most of the time, using a Test-Driven Development approach
prevents developers from generating such complex methods.

 How is complexity defined? Is it like the Supreme Court’s take on pornography—
you know it when you see it? Maybe, but believe it or not, it’s also measurable. It’s
more complicated than this, but loosely, you can think of complexity as the count of
pairs of curly braces (real or implied) in a class or method. That’s the McCabe metric,
commonly called cyclomatic complexity, which SonarQube reports in the complexity wid-
get shown in figure 6.1.

 The numbers in the widget are averages: average complexity per method, class,
and file. The number at the bottom is the application’s overall complexity, which is a
sum of the parts. The graph on the right side of the widget shows the distribution of
complexity across either methods or files, based on which radio button is selected.

 Because you want to see that graph weighted to the left, the project reflected in fig-
ure 6.1 looks pretty good. But switch it to show the complexity distribution across files,
as shown in figure 6.2, and the picture changes—literally.

 Suddenly that smooth, pretty slope has a spike on the right side. What’s this telling
us? The first graph shows that most methods have low complexity, and the second one
indicates that some files (five, to be exact) have high complexity. This likely means a
handful of files have lots and lots of methods.
Because getters and setters aren’t counted in
the complexity equations, you know the spike
in the graph doesn’t merely reflect classes with
a lot of members. No, these are files with a lot
going on.

 Because high complexity makes a file
harder to maintain, you should consider refac-
toring any file with a complexity of 60 or more,
whether that complexity comes from 2 meth-
ods with complexity scores of 30 each, or 10

Figure 6.1 Dashboard complexity widget

Figure 6.2 Files distribution/complexity
bar chart

99Keeping complexity low

Add
b

methods each with a score of 6. In the first case, both methods are complicated; but in
the second case, the class probably has too many methods. Tracking methods with too-
high complexity is important, and in that case, you should activate some rules to get
issues and track those methods that are candidates for refactoring (see Chapter 12 for
more details).

 Either way, these five files definitely need to be examined, but you’ll have to look
inside the file to decide your next steps. That’s where the drilldown comes in. Click-
through on the metric of your choice (probably complexity per file) to get there.
Once you’ve landed at the drilldown, the normal worst-first sorting brings the worst
offenders to the top. Choose a file, and you’ll find yourself on the Source tab. There is
no special tab in the file detail view for complexity, but the file’s complexity metrics
appear in the Source tab header, as shown in figure 6.3.

 Okay, so now what? You know the class is a problem, but what do you do with it? To
answer that, we’ll look at what these numbers actually mean—how they’re com-
puted—and then we’ll talk about refactoring strategies.

6.1.2 Complexity: what it looks like and how to fix it

We said earlier that cyclomatic complexity can be thought of as the count of pairs of
curly braces. But it’s more complicated than that. Early returns figure in, as do multi-
ple conditions (&&s and ||s) in control structures (ifs and whiles.) It’s best explained
with an example, like the following listing.

boolean myMethod(String value) {
if (value == null) {
 return true;
}

if (value.length() != 13) {
 return false;
}

for (int i = 0; i <= 11; i++) {
 cDigit = value.charAt(i);
 digit = Long.valueOf(String.valueOf(cDigit));

 if (((i + 1) % 2) == 0) {
 oddNumber = digit * 3;
 if (oddNumber > 9) {
 oddNumber = oddNumber - 9;

Listing 6.1 Example of code that is too complex

Figure 6.3 Complexity metrics shown
in source code viewer default tab

Each method starts
with a count of 1 1 for

ranch Add 1 for early return

Add 1 for branch
Add 1 for early return

Add 1 for control structure

Add 1 for branch

Add 1 for branch

100 CHAPTER 6 Keeping your source code files elegant

Add

r

 }
 oddNumbersSum = oddNumbersSum + oddNumber;
 } else {
 evenNumbersSum = evenNumbersSum + digit;
 }
 }

 totalsum = oddNumbersSum + evenNumbersSum;
 checkdigit = totalsum % 10;
 lastdigit = Long.valueOf(String.valueOf(value.charAt(12)));

if (lastdigit == checkdigit || lastdigit ==0) {
 result = true;
 }

return result;
}

Cyclomatic complexity can be calculated for any fraction of source code (method,
function, class, file, module, and so on). It counts the number of possible paths
(branches) through the source code.

 By default, every method has a complexity value of 1. For Java, the following key-
words and statements are considered branches and add one point to the complexity:
case, catch, for, if, throw, while, &&, ||, the ternary operator ? (which is just a fancy
if), and return, except for the last one in a method. If you manually compute the
complexity of the code in listing 6.1, you’ll get a value of 11 points, which comes from
the default value (+1), 5 ifs (+5), 3 early returns (+3), 1 for loop (+1), and 1 || (+1).

 Listing 6.2 shows another example: a method that gets an array of integers and
returns a count of array items that are divisible by four. If the array is empty, then an
IllegalArgumentException is thrown.

public int divisibleBy4Count(int[] numbers) throws IllegalArgumentException
{

 int divisibleCount = 0;

 if (numbers.length > 0) {

 for (int i:numbers){
 if (i % 2 == 0) {
 if ((i / 2) % 2 == 0) {
 divisibleCount++;
 }
 }
 }

 return divisibleCount;

 }
 else {
 throw new IllegalArgumentException();
 }
 }

Listing 6.2 Method that checks how many numbers are divisible by 4

Else: doesn’t count

Add 2 for branch and || (or)

 1 for
early
eturn Last return: doesn’t count

Total complexity of 11

Method starts at 1

+1 for branch

+1 for loop

+1 for branch

+1 counts as early return

+1 for throw

Total complexity of 7

101Lack of Cohesion of Methods: files that do too much

c

com
The cyclomatic complexity of the divisibleBy4Count() method comes to 7. Note
that even though there’s only one return, it increases the complexity of the method
because it doesn’t come at the end of the method. The compiler might smooth out
that little wrinkle, but it still makes the method harder to take in, and that’s what
you’re trying to calculate.

 The SonarSource folks suggest refactoring a method when its complexity is greater
than 7. The method in listing 6.2 weighs in at 7, just under the threshold, but it’s obvi-
ous that the method can be improved. You can remove the assertion of an empty array
by introducing a new method for performing this check. The new version of the code
looks like this.

public int divisibleBy4Count(int[] numbers) throws IllegalArgumentException {
 int divisibleCount = 0;
 assertArray(numbers);
 for (int i : numbers) {
 if (i % 4 == 0) {
 divisibleCount++;
 }
 }
 return divisibleCount;
}

private void assertArray(int[] numbers) throws IllegalArgumentException
{
 if (numbers.length == 0) {
 throw new IllegalArgumentException();
 }
}

Manually calculating the complexity for each method, you get the following results:

 divisibleBy4Count() = 3
 assertArray() = 3

The refactoring accomplished a couple of things. First, we reduced complexity by
refactoring the basic algorithm. This was a trivial example, but we hope it makes the
point that basic improvements like this are often possible. Second, we demonstrated
reducing complexity and improving readability by distributing the complexity of one
method across multiple methods.

 Now that we’ve looked at cyclomatic complexity, we’ll move on to a slightly more
abstract metric, which looks at the complexity of what the class is trying to do.

6.2 Lack of Cohesion of Methods: files that do too much
Earlier, we talked about two theoretical classes with a cyclomatic complexity of 60
each: one with 10 methods that each scored 6, and one with 2 methods scoring 30
each. We’ve already looked at how to approach the class with two large methods.

Listing 6.3 Revised method that checks how many numbers are divisible by 4

Method starts at 1
+1 for loop

+1 for
ollapsed

ifs

Return is last statement: doesn’t count

Total
plexity

of 3
Method
starts at 1

+1 for
branch +1 for

throwTotal complexity of 3

102 CHAPTER 6 Keeping your source code files elegant
 The next metric we’ll look at, Lack of Cohesion of Methods (LCOM), helps address
the class with lots of methods. At the time of this writing, the metric is only available
for Java projects, but sooner or later more languages’ plugins will compute this met-
ric. First we’ll discuss the widget that reports on the metric and why it’s not shown in
the default dashboard. Then we’ll show you the source code tab viewer that presents
the LCOM of a class in a nice, clean way. After that, it’s time for coding. Through a
short example, you’ll compute the LCOM metric of a simple class; then you’ll try to
refactor it to improve it.

6.2.1 Getting reports about the LCOM metric

At its root, LCOM is the count of the number of responsibilities a class has. There are
several variations on the LCOM algorithm. SonarQube uses LCOM4, the fourth one to
be published, because it’s the most convenient for computations in real source code.
The previous versions are used in scientific and research circles, but not in the field.

Although complexity is one of SonarQube’s Seven Axes of Quality, the related widgets
aren’t included in SonarQube’s default dashboard because the metrics are considered
“too hard.” The thinking is that for the majority of SonarQube users, the widgets
would only add noise to the dashboard. This won’t apply to you, because after reading
this chapter you’ll have a thorough understanding of how these metrics are computed
and what they tell you about your source code.

 Before we get to the meat, you should add the LCOM4 widget to your dashboard.
Chapter 14 gives you low-level details on how, but if you’re logged in as an administra-
tor, you’ll find an intuitive interface behind the Configure Widgets link at upper right
on any dashboard. While you’re at it, add the Response for Class widget, too. You don’t
need it for this section, but you’ll want it for the next one. The two target widgets are
filed in the Design widget category, and you can see a preview of them in figure 6.4.
Don’t be surprised that they already have data. Even though the widgets weren’t
included on your dashboard, SonarQube has been calculating these values all along,
so the normal “changes take effect after the next analysis” rule doesn’t apply here.

 The primary number in each of these widgets is the metric’s average per class
across the project, and the graphs represent a complexity distribution. In general, you
want the numbers to be low and the graphs weighted to the left. For LCOM4, you also
see the density of suspect files—those with LCOM more than 1. As you’ll see, every file
with LCOM >= 2 is a candidate for refactoring.

LCOM4 Variations
LCOM4 is also known as the Hitz and Montazeri version. If you’d like to know more
about LCOM and other object-oriented metrics, look up the paper Hitz and Montazeri
presented at the International Symposium on Applied Corporate Computing in Mex-
ico, in October 1994. You’ll find it here: http://mng.bz/G4k6.

http://mng.bz/G4k6

103Lack of Cohesion of Methods: files that do too much
From the dashboard, click any of the LCOM4 numbers (or the LCOM4 graph) to get to
the drilldown view. You’ll get the standard drilldown behavior: only files or classes that
need work, sorted worst first. Click a class, and SonarQube reports on the LCOM4
value for individual files in an LCOM4 tab with a graphic presentation of connected
components, as shown in figure 6.5.

 “But what does this mean?” you may be wondering. Let’s find out.

6.2.2 Counting responsibilities

We could try to explain LCOM4, but the best way to give you a fundamental under-
standing of it is to show how you’d compute it by hand in a simple class. Listing 6.4
shows a simple AmericanBreakfast class with some local members and several meth-
ods accessing them. The purpose of the class is to prepare an American breakfast,
update the availability of the materials, and print a message. A client would probably

Figure 6.4 LCOM4 and RFC metrics shown in dashboard widgets

Figure 6.5 SonarQube reports on LCOM4 with a separate tab in the file source code viewer. The beauty of the
LCOM4 tab is that you get a visual representation of which methods (an m in a reddish circle) are connected to
which fields (an f in a yellow circle), and how the relations are formed.

104 CHAPTER 6 Keeping your source code files elegant
use some or all of the public methods provided to prepare a partial or complete
breakfast. This code is a good example of a class with LCOM4 > 1, because its first ver-
sion has more than one responsibility.

public class AmericanBreakfast {
 private int availableOranges = 10;
 private int availableEggs = 5;
 private int availableBacon = 4;
 private int availableSugar = 10;
 private int availableSalt = 10;

 public void prepareOmelet(){
 fryBacon();
 bakeEggs();
 availableSalt-=1;
 System.out.println ("Omelet is ready!");

 }
 public void brewCoffee(){
 availableSugar -=1;
 System.out.println ("Coffee is ready!");
 }
 private void bakeEggs(){
 availableEggs -=2;
 }
 private void fryBacon(){
 availableBacon -=1;
 }
 public void squeezeJuice(){
 availableOranges -=2;
 availableSugar -=1;
 System.out.println ("Juice is ready!");
 }
}

LCOM4 counts the class’s responsibilities by looking at its methods and members and
grouping together ones that are connected. (Kind of like the six degrees of Kevin
Bacon, except that you don’t care how many degrees there are.)

 All class members used in a given method are seen as being connected to both the
method itself and to each other. If another method uses those same fields (or some
subset of them), then it’s connected to those members and to the first method as well;
it’s added to the relation connection. If it uses totally different members, it forms a
new, unrelated connection with those other members. Methods can be also consid-
ered connected if one calls another and vice versa.

 To sum up, two methods (m1 and m2) are grouped together if at least one of the fol-
lowing is true:

 Method m1 invokes method m2, or method m2 invokes method m1.
 Both methods (m1 and m2) use at least one of the same class attributes.

Listing 6.4 AmericanBreakfast class with LCOM4 > 1

105Lack of Cohesion of Methods: files that do too much
The AmericanBreakfast class in listing 6.4 has five members and several methods.
Let’s look at how many concrete (unrelated) components exist in the class; in other
words, let’s calculate the LCOM4.

 The prepareOmelet() method invokes bakeEggs() and fryBacon() and uses the
attribute availableSalt, so all three methods and the availableSalt member belong
to the same group. Further, bakeEggs() and fryBacon() access the availableEggs and
availableBacon members. Based on the previous definition, you need to add the two
methods and both members to the group just identified.

 Now look at the remaining public methods: brewCoffee() and squeezeJuice().
They’re connected because they use the availableSugar attribute. Notice that you
also need to add the availableOranges property to this group because it’s accessed
by the squeezeJuice() method. You might argue that you don’t add sugar to your
orange juice; well, we don’t either, but it’s a good way to get the kids to drink up with-
out complaint. Also, it works great in this example! It’s obvious that these two meth-
ods have no relation with the first group, so they form a new component.

 Figure 6.6 shows graphically what we’ve just walked through—which, by the way,
yields an LCOM4 of 2 for the AmericanBreakfast class we’re examining.

 So, what’s the best LCOM4 score? It’s 1. This means all the methods and members
in a class are well connected to each other and the class adheres to the Single Respon-
sibility Principle, which as you might guess says that a class should have only one
responsibility. A value of 0 implies a class with no methods, not even setters and get-
ters, such as package-info.java. In other words, it’s a file with no code in it. And any
value higher than 1 indicates that the class is a candidate for refactoring. Notice that
we used the word candidate. In a minute, we’ll show you why an LCOM4 value greater
than 1 doesn’t always mean bad design.

prepareOmelet brewCoffee squeezeJuice

bakeEggs fryBaconavailable
Salt

available
Sugar

available
Oranges

available
Eggs

available
Bacon Figure 6.6 Connected methods and attributes

of the AmericanBreakfast class

106 CHAPTER 6 Keeping your source code files elegant
6.2.3 Refactoring for fewer responsibilities

With an LCOM4 score of 2, the AmericanBreakfast class is a candidate for refactoring.
This means it breaks the Single Responsibility Principle because it’s responsible for
two tasks: preparing an omelet and fixing drinks. Let’s refactor the class to minimize
its LCOM4 score. There are two ways to go about this: split the class by responsibility,
or add cohesion (which could be a hack, depending on the circumstances). If an
American breakfast always contains orange juice, coffee, and an omelet, then you
want to go the “add cohesion” route and prevent the client from calling classes that
prepare only a portion of the breakfast. To do that, you make all the methods private,
and add a new public method like so:

public void prepare(){
 prepareOmelet();
 brewCoffee();
 squeezeJuice();

Running a new SonarQube analysis gives an LCOM4 score of 1 for the class because
the new prepare() method has tied together the formerly unconnected component
groups, as figure 6.7 illustrates.

 The second approach is more suitable if you want to allow clients to select which
parts of the breakfast should be prepared. At least one of the two groups identified in
figure 6.6 should be moved to a new class. Listings 6.5 and 6.6 show the code after the
refactoring process. Here’s the refactored version of the AmericanBreakfast class.

prepareOmelet brewCoffee

Prepare

squeezeJuice

bakeEggs fryBaconavailable
Salt

available
Sugar

available
Oranges

available
Eggs

available
Bacon

Figure 6.7 By tying together the separate
components, you make the class comply with
the Single Responsibility Principle. It has only
one task: to prepare an American breakfast.

107Lack of Cohesion of Methods: files that do too much
public class AmericanBreakfast {
 private int availableOranges = 10;
 private int availableSugar = 10;
 private Omelet omelet = new

Omelet();

 public void prepareOmelet(){
 omelet.prepare();
 }
 public void brewCoffee() {
 availableSugar -= 1;
 System.out.println("Coffee is ready!");
 }
 public void squeezeJuice() {
 availableOranges -= 2;
 availableSugar -= 1;
 System.out.println("Juice is ready!");
 }
}

Listing 6.6 shows a new class introduced after the refactoring (Omelet), which is
responsible for preparing the omelet. Notice that part of the AmericanBreakfast class
has been moved to the Omelet class.

public class Omelet {
 private int availableEggs = 5;
 private int availableBacon = 4;
 private int availableSalt = 10;

 public void prepare() {
 fryBacon();
 bakeEggs();
 availableSalt -= 1;
 System.out.println("Omelet is ready!");
 }
 private void bakeEggs() {
 availableEggs -= 2;
 }

 private void fryBacon() {
 availableBacon -= 1;
 }
}

A new class, Omelet, has been introduced. It’s responsible for preparing the omelet,
and all the methods and attributes needed to do so have been moved into it.
AmericanBreakfast now has a reference to the Omelet class and invokes its prepare()
method when needed (in the prepareOmelet() method). The rest of the code hasn’t
been modified. Running a new SonarQube analysis after this refactoring yields
LCOM4 scores of 1 for both classes. “But wait,” you might be saying, “Why doesn’t this

Listing 6.5 Refactored AmericanBreakfast class with LCOM4 = 1

Listing 6.6 Omelet class introduced after refactoring AmericanBreakfast

New class reference to Omelet
class, introduced after refactoring

Omelet preparation is
delegated to Omelet class

Methods not modified
during refactoring

All class methods are
taken from the initial
class AmericanBreakfast

108 CHAPTER 6 Keeping your source code files elegant
still get a 2? The Omelet in AmericanBreakfast isn’t connected to availableOranges
or availableSugar.” And of course, you’re right—because references to other objects
(such as Omelet) don’t count. So AmericanBreakfast now only has one responsibility,
to prepare the drinks.

 Splitting a class is one way to address an inflated LCOM4 score, but LCOM4 isn’t the
only reason you might need to refactor. Even if a class’s LCOM4 is perfect, its Response
for Class (RFC) and the incoming/outgoing dependencies may still lead you to refactor.

6.3 RFC and couplings: classes with too many friends
We’ve looked so far at two types of complexity in a class: cyclomatic complexity and
LCOM4. Now we’ll turn to the complexity of a class’s interactions with RFC and cou-
plings. Only one of these two, RFC, has a dashboard widget available, so we’ll start
with it.

RFC measures the size of a class’s response set, or how many distinct methods and
constructors can be invoked by the class, including the class’s own methods and con-
structors (or the default constructor if there’s no explicit constructor for the class).
RFC is another way of looking at complexity, but this time it’s about the complexity of
a class’s interactions.

6.3.1 Response for Class

For any complexity-related metric, you want to keep the score low. That’s a given. But
why keep this particular one low? Because having a class with a high RFC means that
when you need to work on it, you have to understand a lot more than just the code in
front of you to make sure your modifications are correct and appropriate. Conversely,
a lower RFC means your maintenance job is easier. Having a high RFC also makes a class
harder to understand when you’re considering reuse, harder to test, and less portable.

 SonarQube presents RFC in a dashboard widget much like the one for LCOM4. We
hope you added the RFC widget to the dashboard at the same time you added the
LCOM4 widget. In that case, your dashboard now includes something like figure 6.8.

 Again, you want to see the graph weighted to the left and the average RFC/class
number low. How low? Well, there’s no best answer for that, except “as low as possible.”
Acceptable RFC values vary from project to project, but in general, classes with an RFC
of 40 or more need your attention. That’s because a high RFC means a method call to

Figure 6.8 The RFC widget
is one of the simplest, with
only a distribution graph and
an average score.

109RFC and couplings: classes with too many friends
the class probably results in a large number of additional method calls either within
the same class or to other classes (including superclass methods). In other words:

 It’s hard to understand, debug, and maintain it.
 You need to read several extra classes to unit-test it.
 Simple unit-test cases will end up with several mocked objects.
 A lot of effort is needed for even simple modifications.

Because there’s no perfect RFC score, you’ll notice slightly different behavior in the
drilldown for RFC. From the dashboard, click-through on the RFC metric or graph,
and you land at a drilldown—standard behavior. But the drilldown itself isn’t stan-
dard. Most drilldowns show only a subset of the files in a system: only the ones that
need work. But the RFC drilldown shows them all, because there is no perfect score
for RFC. Potentially, all the classes in a system need work. But aside from that minor
point, the rest is pretty standard.

 There’s no special tab for this metric, so choose a file and you’ll find yourself on
the Source tab, as shown in figure 6.9. Once there, look at the numbers in the right
column of the header, where you’ll see several design metrics, including Response for
Class.

 There’s not a lot else to see with regard to RFC. But before we move on to demon-
strating the RFC calculation, we’d like to mention the other three metrics in this col-
umn: Classes, Number of Children, and Depth in Tree. They don’t have a dashboard
widget, but they’re worth being aware of.

 Classes reports on the total number of classes in the file. Typically it’s one, but if
there are nested classes, they’re reflected here. Number of Children is how many
classes inherit directly or indirectly from this class. Depth in Tree, sometimes called
Depth of Inheritance Tree (DIT), is the converse: the level of inheritance from
java.lang.Object. Because every class in Java inherits from java.lang.Object, 1—
for something that extends Object directly—is the lowest number you’ll ever see for
this metric. These metrics aren’t earth-shattering, but they’re worth a look when
you’re considering the impacts of refactoring a class.

 Now let’s revisit the refactored AmericanBreakfast class and compute its RFC.

Figure 6.9 Various design metrics in the source code viewer tab

110 CHAPTER 6 Keeping your source code files elegant

M

syste
public class AmericanBreakfast {
 private Integer availableOranges = 10;
 private Integer availableSugar = 10;
 private Omelet omelet = new Omelet();

 public void prepareOmelet(){
 omelet.prepare();
 }
 public void brewCoffee() {
 availableSugar -= 1;
 System.out.println("Coffee is ready!");
 }
 public void squeezeJuice() {
 availableOranges -= 2;
 availableSugar -= 1;
 System.out.println("Juice is ready!");
 }
}

With three methods of its own, one member class, calls to the methods of two other
classes, and the default constructor, AmericanOmelet has an RFC of 7. Notice that
there are two instances in the code of System.out.println(), but the count is only
incremented for it once, because each method is counted only once no matter how
many times it’s used. So the second instance of System.out.println in listing 6.4
doesn’t count—literally!

 What do you do if your RFC is too high? That depends on your situation and where
the RFC hits come from. If it’s high because your class has a lot of methods, you may
also find that its LCOM4 is high, and refactoring to break out some of those responsi-
bilities into other classes will naturally help your RFC. The same thing applies if it’s
high, because you’re making lots of calls to many other classes. That’s another case in
which you may need to split the class into smaller, simpler classes with less going on.
But if the RFC is high because you’re making a lot of calls to just one or two other
classes, then you may need to examine whether the things happening in this high-RFC
class belong in those other classes.

 You’ve seen so far that cyclomatic complexity, LCOM, and RFC metrics are key met-
rics for refactoring decisions, but you should also take a class’s couplings into account.
Next, we’ll look at couplings in depth, what they are and how to calculate them.

6.3.2 Couplings

Incoming (afferent) and outgoing (efferent) couplings are the last two metrics to con-
sider when looking at the cohesion and stability of a class. Coupling is the academic
term for dependency in software engineering. It’s used to describe the degree to
which each component relies on or is relied on by other components.

 These dependencies don’t have their own widgets, so you can’t get high-level infor-
mation on them like you can with LCOM4 and RFC. As you’ll see, they’re only available
at the file level via a dedicated tab in the file detail view, as shown in figure 6.10.

Listing 6.7 AmericanBreakfast class

Hidden default constructor (+1)

Constructor of other class (+1)

Method of target class (+1)

Method call of
Omelet class (+1)

Method of target class (+1)

ethod
call of
m.out

(+1)
Method of target class (+1)

println only counts the first time

111RFC and couplings: classes with too many friends
SonarQube shows couplings in two columns, with incoming couplings on the left and
outgoing on the right. Notice that core Java classes (such as java.io.File and
java.math.BigDecimal) don’t count for these metrics.

 The afferent coupling (incoming dependency) count represents the number of
other classes that depend on the target class. High scores mean the target class is play-
ing an important role in the module/system, and it’s an indication of the importance
of the tasks for which this class is responsible. High afferent coupling means a change
to the target class will affect many other classes in the system (those that depend on
it). So, changes to the class are riskier because there’s a higher chance of introducing
new bugs in the calling classes, or even breaking an integration.

 The efferent coupling (outgoing dependency count) is the number of classes that
this class depends on. High values mean this class uses a lot of other classes, which
could mean it’s brittle or unfocused, and definitely introduces the risk that every
change to those other classes could affect this class’s behavior, usually negatively.

 Like RFC, couplings are a reflection of the connectedness of a system. Even though
couplings are a file-level metric, you can look at them as a reflection of the complexity
of the whole package or module. Because complexity in general isn’t a good thing,
you want to keep couplings low. The most popular way to reduce coupling is called
decomposition. Extract smaller, more focused classes from the original, highly coupled
classes so that the responsibilities of the initial class are spread among several simpler,
easier-to-maintain classes with lower coupling.

 Manually calculating the outgoing dependencies of a class is simple. Just count the
class-level or method-level references to external classes.

public class AmericanBreakfast {
private Omelet omelet = new Omelet();
private Coffee coffee = new Coffee();

 public void prepareOmelet(){
 omelet.prepare();
 }

 public void prepareDrinks() {
 coffee.brew();
 Juice orangeJuice = new Juice();

Listing 6.8 AmericanBreakfast showing outgoing couplings

Figure 6.10 Afferent/
efferent couplings of a class
in the source code viewer

Dependency to Omelet class

Dependency to
Coffee class

Dependency to Juice class

112 CHAPTER 6 Keeping your source code files elegant
 juice.squeeze();
 }
}

In listing 6.8, the AmericanBreakfast class has been modified slightly to better dem-
onstrate how to find efferent couplings. There are now class-level dependencies to the
Omelet and Coffee classes, and one method-level reference to the Juice class, for a
total of three outgoing dependencies.

 Trying to compute the incoming dependencies is a lot harder, because you would
need to search all your code to find references to a given class. In large systems, and
even in smaller ones, it would be time-consuming and error-prone or almost impossi-
ble to get those numbers on your own.

 This concludes our tour of design metrics. As you’ve seen, SonarQube provides
quite a few, some more important than others, but all worth at least a glance when
you’re considering whether and how to refactor a class.

6.4 Summary
This chapter focused on file-level metrics related to design and complexity. Some of
the concepts are considered hard to understand. But even if they’re top-of-mind for
you, they’re still impractical to calculate by hand for an entire code base. Fortunately,
SonarQube does the tedious bits for you and lays the numbers at your feet. In this
chapter, you saw that

 High cyclomatic complexity makes your source code hard to understand and
maintain. We’ve shown how SonarQube computes cyclomatic complexity and
how to refactor for lower complexity.

 SonarQube’s LCOM4 presentation helps you find classes that do too much and
shows you, at a file level, how a class’s responsibilities are grouped so you can
make good refactoring decisions.

 RFC and the count of a class’s couplings help you understand a file’s interac-
tions in your system. Social butterfly classes with a high RFC are invoking a lot of
methods, either internally or externally, and may need to be reined in.

In this chapter, we looked at complexity at a file level. Before we move to part 2 of the
book, we’ll talk about complexity at a package and system level and show you what
SonarQube has to offer with regard to the architectural design of your system.

Total number of efferent couplings: 3

Improving your
application design
The size of an active project increases commit by commit, day by day, week by week.
As your software grows, it gets more complex. New classes are added, methods are
improved, and new libraries are created. Gradually, the structure that was clearly
delineated and pristinely designed at the start turns into a morass. The first sign of
trouble you usually notice is the mess of external libraries needed in order to com-
pile and run an application in a production-like environment, but that’s just the tip
of the iceberg.

 In chapter 6, we looked at complexity at a file level. In this chapter, we’ll zoom
out to look at complexity at the package, module, and application levels, and dis-
cuss how to use SonarQube to keep your architecture in good modular shape. We’ll
look at package and module-level dependencies and show you how to read the

This chapter covers
 Layering your code

 Discovering dependencies and eliminating cycles

 Library management for Mavenites

 Defining your architectural rule set
113

114 CHAPTER 7 Improving your application design
Dependency Structure Matrix (DSM) to find suspicious dependencies and suspicious cycles
among software components. We’ll talk about why they’re bad and how you can
remove them.

 You want to keep your design clean and your system maintainable and extensible.
SonarQube provides an extremely useful and powerful mechanism called the Depen-
dency Structure Matrix. With the DSM, you can visualize the dependencies between
software components (libraries, packages, or even source code files) and then find
those cycles that make your system’s design too complicated.

 This chapter will also show you how painless SonarQube makes it to examine a
Maven-centric project’s external library dependencies, their versions, and whether
there are conflicts that need your attention.

 Finally, we’ll show you how to create architectural rules to monitor access between
certain files or packages. You won’t be able to keep developers from accessing files or
packages in ways that run counter to your overall design; but you can have SonarQube
tell on them by creating issues based on the rules you define, allowing you to catch
problems and correct them early.

 Before we move on, we’d like to explain something important: the analysis done by
SonarQube, although powerful, is performed without understanding what packages
do. SonarQube computes the minimum number of links to break to remove the
cycles, but this is a theoretical approach. What you need to do might be completely
different.

7.1 Layering your code
Sam, after surviving a couple of rough assignments, now has a new challenge. It’s time
to improve an existing feature. She needs to implement recurring credit card billing
for a new Coin of the Month subscription that the coin store plans to add. Basic credit
card processing is already in place, but the current checkout process only supports
one-time payment.

 She gets to work, but after a couple of days Sam sees that it’s harder than she real-
ized, because the code that handles payment processing is too complicated. Several
classes participate to complete the checkout, and there is no orchestration class—a class
that coordinates other classes to perform a single task. Each class has several depen-
dencies (which could be potentially reduced), and changing a single method affects
many components. She worries that every little change could break the whole system.

 Sam’s having a difficult time, and it’s made worse by the fact that navigating to sev-
eral source code files just to see how the system works is time-consuming and poten-
tially error-prone. A modular system with concrete responsibilities among packages
would be less painful to understand and maintain.

7.1.1 Looking at dashboard widgets

The first step in improving the design of your application is to find (and fix) depen-
dency cycles between your components. But first, why are cycles bad? To get a feel for

115Layering your code
the effect of cycles, imagine a small application that’s split into three libraries. Over
the course of time, each library has evolved to depend on the other two (thus creating
cycles!), until finally you’re at the point that you can’t upgrade one without also
touching the others. Because of dependency cycles, simple changes that should be
easy take three times as long (at least) to complete.

 Detecting this sort of unhealthy circular dependency at the package level is the
focus of the package design widget, shown in figure 7.1. The widget is split into two
parts. On the left side you see a metric named Package Tangle Index and the number
of package cycles detected during analysis.

 On the right, the widget reports on unwanted dependencies between packages
and files. These are the dependencies you should try to cut in order to remove pack-
age cycles. For the project shown in figure 7.1, you would need to fix 35 package
dependencies involving 53 files to clean up your package dependency cycles.

 All the numbers in this widget are golf-style metrics, and 0 is always your target
score. Before you start clicking widget numbers (yes, there is a drilldown view,
although it’s different from what you’ve seen before), let’s clarify how SonarQube
computes these metrics.

7.1.2 Understanding cycles and unwanted dependencies

In chapter 6, you saw that SonarQube inventories each file’s afferent and efferent cou-
plings (incoming references from and outgoing references to other files). At the end
of an analysis, it has a full list of everything a given resource (file or package) uses and
everything that uses it. Each time a file or package is on both sides of that list, it’s con-
sidered a cycle, and the usage on one side of that list will be shown as a dependency to
cut. Figure 7.2 illustrates a set of package dependencies.

 Package A depends on package B and package C. Package C depends only on
package D. So far, so good. It’s a common dependency graph. But add in the fact that
package D depends on package A, and you’ve got a dependency cycle: A > C > D > A.

 Now imagine that packages A, C, and D (the ones in the cycle) contain only one
class each, like the simple classes in listings 7.1, 7.2, and 7.3.

Figure 7.1 SonarQube dashboard widget pertaining to cycles and dependencies

116 CHAPTER 7 Improving your application design
package org.manning.sonarinaction.packagea;
import org.manning.sonarinaction.packagec.ClassC;
public class ClassA
{
 private ClassC classC = new ClassC();
 public void doSomething(){
 System.out.println ("doSomething");
 }
 public void doSomethingBasedOnClassB(){
 System.out.println (classB.toString());
 }
}

Listing 7.2 shows the simple class ClassC that references ClassD.

package org.manning.sonarinaction.packagec;
import org.manning.sonarinaction.packaged.ClassD;
public class ClassC
{
 private ClassD classD = new ClassD();
 public void doSomethingBasedOneClassD(){
 System.out.println (classD.toString());
 }
 public String toString(){
 return "classC";
 }
}

Listing 7.3 shows the class ClassD that references ClassA and produces the cycle.

Listing 7.1 Simple ClassA of package A, referencing ClassC of package C

Listing 7.2 Simple ClassC of package C, referencing ClassD of package D

Package A

Package B Package C

Package D
Figure 7.2 Package-dependency graph,
demonstrating a package cycle

Dependency on
ClassC of package C

Dependency on
ClassD of package D

117Layering your code
package org.manning.sonarinaction.packaged;
import org.manning.sonarinaction.packagea.ClassA;
public class ClassD
{
 private ClassA classA = new ClassA();
 public void doSomethingBasedOneClassA(){
 System.out.println (classA.toString());
 }
 public String toString(){
 return "classD";
 }
}

After running a SonarQube analysis on these three classes, you would get a Package
Tangle Index value of 66.67%. The other three metrics in the widget would each be 1,
meaning that

 Two out of three packages (66.67%) participate in dependency cycles.
 At least one file cycle is detected inside a package.
 One dependency needs to be cut on a file level.
 One dependency needs to be cut on a package level.

You’ve probably already figured out that ClassD’s dependency on ClassA is the one
that closed the loop to create a package cycle (A > C > D > A), and that’s the depen-
dency we’d target to cut the cycle. Many times, the cycles you see will be directly recipro-
cal: that is, package A including package B and vice versa. We intentionally structured
this example to involve three packages, to make the point that cycles aren’t found
only between pairs of packages, but can involve several packages at once.

 Now that you know a little more about dependency cycles, let’s move on to Sonar-
Qube’s drilldown. As you’ll see, it’s different from the drilldowns you’re used to.

7.1.3 Moving from project to package level

To access SonarQube’s drilldown, click-through on any number in the package design
widget. Figure 7.3 shows the result of clicking Package Tangle Index.

 The top half of this drilldown is somewhat familiar. The metric you click is at
upper left, followed by a list of modules sorted worst first—although that appear only
if you’re in a multimodule project. If you’re in a single-module project, the list is elim-
inated and you only see the table shown at the bottom of figure 7.3. This presentation
is like the others you’ve seen in that components with no design issues are omitted
from the list.

 Just below the library list in figure 7.3 is the Design tab with the DSM. The DSM is a
powerful tool for exploring your project’s package interactions. Regardless of which
metric you click in the dashboard to get to the drilldown, the numbers in this matrix
are always package dependency counts.

Listing 7.3 Simple ClassD of package D, referencing ClassA of package A

Dependency on
ClassA of package A

118 CHAPTER 7 Improving your application design
The first time you access this drilldown from the dashboard widget, the DSM displays
all the packages in the project (see figure 7.4). Click any row in the module list at the
top of the page, and the matrix is filtered to display only the packages in the selected
module. You can even deselect a library by re-clicking its row to have the DSM return
to showing all the packages in the project.

 An alternate way to navigate to the DSM is to click the Design link on the menu at
left at the project level. Regardless of whether you’re in a multimodule project, you
don’t see the upper panel if you go this route (as illustrated in figure 7.4 with the
XStream project’s modules, and packages from one of those modules).

 Now that you’re thoroughly versed in how to get to the DSM, let’s take a deeper
look at what it shows.

7.2 Discovering dependencies and eliminating cycles
As we’ve said, the DSM is a flexible, colorful, and easy-to-use tool for browsing depen-
dencies at every level of your projects. Although it’s powerful, using it requires some
knowledge; so next we’ll look at how to decode what it’s telling you. You’ll see how to
read the DSM to spot dependencies between components. But be aware that the DSM
relies heavily on colors to convey its content. We’ll do our best to point out where data
is being washed out of our black-and-white screenshots, but your best bet is to follow
along in your own SonarQube instance as we walk you through it.

Figure 7.3 Drilldown view for design metrics

119Discovering dependencies and eliminating cycles
NOTE Before we move on, we’d like to remind you that it’s not always possi-
ble to fix cycles. For example, when the cycles involve an API, fixing them is
likely to involve a retro-compatibility issue.

7.2.1 Navigating the Dependency Structure Matrix

When you look at the DSM for the first time, it’s normal to find it difficult to read. For-
tunately, it’s one of those things that most people get used to pretty quickly. You’ve
seen a couple of screenshots of the DSM, and you know it’s considered a matrix.

 You may be wondering why only one axis has labels. The column labels are omitted
to save space and to simplify the interface, because they would be the same as the row
labels: the same text in the same order, as shown in figure 7.5.

 We’ve manually added the column headers in figure 7.5 to help you better visual-
ize the information in the graph. Unfortunately, unless you turn your head to the side,
it’s hard to read the headers in the figure. Now imagine how much more difficult it
would be in a very large program. We’ve seen DSMs that scrolled down multiple pages

Figure 7.4 DSM view for library and package dependencies

120 CHAPTER 7 Improving your application design
(and, because the DSM is always square, they scrolled sideways just as far). Imagine
how much noise duplicate header labels would create.

 Before we get into the DSM’s functionality, we’ll explain what its colors tell you.
We’ll start with the colored cells that contain numbers, as shown in figure 7.6.

 Some of the color cues that apply to the rest of the SonarQube interface work here
as well: red is bad, and gray is neutral. A black number in a gray cell is the count of ref-
erences between two components. White numbers on a red background alert you to a
dependency cycle that could (should?) be removed. Unfortunately, because this book
is printed in black and white, you’re seeing all the cells as gray. The good news is that
the colors of the numbers themselves will help you differentiate: the numbers in cells
that report on the dependencies between the components are written in black for
innocuous dependencies or white for cycle dependencies.

 The numbers represent dependencies. When the DSM lists modules in the left row
header, the numbers show package dependencies. When the left row header shows
packages, the DSM numbers show file dependencies.

Figure 7.5 Column headers would
make the DSM look busy.

Figure 7.6 Colored cells in the DSM report on dependencies and cycles between components.

121Discovering dependencies and eliminating cycles
Most of the figures and examples that you’ll see in the next few pages focus on pack-
age dependencies. Based on our experience, these dependencies are the most impor-
tant when we talk about software design; potential package cycles should be carefully
examined and removed.

 Next we’ll look at how to read the DSM and how to use it to identify cycles that may
need to be removed to keep your application’s modularity and maintainability in
good shape.

7.2.2 How the DSM works

To examine a package’s dependencies, click the package in the left column. The pack-
age’s row and its corresponding column are highlighted in pale blue. The numbers in
the package row are the package’s afferent, or incoming, dependencies—the other
packages that this one includes. Conversely, the numbers in the highlighted column
are the package’s efferent, or outgoing, dependencies—the packages that this one is
included by. Figure 7.7 shows this in action; it’s a screenshot of the DSM for the Server
module from SonarQube.

 As you see, the package org.sonar.server.charts was clicked, and its description
is highlighted in blue. All cells for its corresponding row and column are also high-
lighted light blue.

TIP Remember RICO to know what the rows and columns in the DSM are tell-
ing you: Row-Incoming, Column-Outgoing.

Let’s do some simple math with the DSM. Assume that you need to find the total
incoming and outgoing dependencies of the selected package. All you have to do is

Figure 7.7 Viewing dependencies of selected component in the DSM

122 CHAPTER 7 Improving your application design
sum up the numbers shown in the highlighted row and column, and you’re done. For
the record, org.sonar.server.charts has only one incoming file dependency (the
sum of the numbers shown in the highlighted row) and a total of six outgoing file
dependencies (the sum of the numbers shown in the highlighted column).

 You may have noticed that some rows (other than the selected one) have a colored
marker (green or gold) at the end of the package description. These colors are your
guide to finding out which package is dependent on which other one. They let you
read the dependencies as a sentence. The legend at the top of the DSM explains the
meaning of each color. Green uses (depends on) blue, and blue depends on gold.

 You can read the dependencies of the highlighted package in figure 7.7 just as
you’re reading this book. The org.sonar.server.platform package (green marker)
has one file dependency on org.sonar.server.charts (blue highlighted package),
which has five file dependencies on the org.sonar.server.charts.deprecated pack-
age (gold marker).

 As we mentioned, each number represents the total file dependencies (incoming
or outgoing) from one package to another. The fact that there are no column headers
in the DSM might make you think, especially if you’re a SonarQube starter, that it’ll be
hard to find the dependencies between two specific components. That’s where the
beauty of the DSM comes in.

 So far, you’ve seen that you can click any row label in the DSM. Now it’s time to try
clicking a cell. When you do, you’ll notice a couple of changes in the DSM. Figure 7.8
shows the DSM after we clicked the fourth cell in the last row: the one containing 5.
First, notice that more rows and columns are highlighted than before: two package
names are highlighted in blue instead of just one.

Figure 7.8 Clicking a DSM cell. Dependencies between selected components are highlighted
and differently colored in both directions. The clicked cell also turns purple.

123Discovering dependencies and eliminating cycles
 That’s because when you click any single cell in the DSM, you’re picking half of an
interaction: where package A meets package B in the grid. To show the full relation-
ship, SonarQube lights up the entire rectangle for you, also showing where package B
meets package A.

 In addition to highlighting the row you clicked, the DSM also highlights the pack-
age that belongs to the clicked column. For instance, in figure 7.8, we clicked the
fourth cell (column) in the row, so the corresponding package (the fourth row) is also
highlighted.

 If you’re following along on a live instance of SonarQube, you’ve also noticed that
the highlight colors have changed. Cells in the grid aren’t light blue anymore: they’re
either green or gold. The new colors indicate the direction of the dependency, similar
to the package name markers we showed you in the previous figure. And the same
rules apply: green depends on blue, and blue depends on gold.

 You’ll also have noticed (if you’re following along in a browser) that the two cor-
ner cells where green and gold meet (lower-left and upper-right) are colored purple.
The numbers in each corner reflect the dependencies in one direction of the rela-
tionship. In figure 7.8, the empty purple square at upper right is where org.sonar
.server.charts is included by org.sonar.server.charts.deprecated. That square
is empty, so you know there are zero dependencies. The corresponding purple square
with a 5 at lower left shows the other half of that relationship, where org.sonar
.server.charts.deprecated is included by org.sonar.server.charts five times.

 The last thing to talk about before we move on to hunting package cycles is how
the DSM sorts packages. High-level components are listed at the top of the DSM, and
low-level components are listed at the bottom. To better understand what makes a
package high-level or low-level, look at figure 7.9.

 The concurrent and event packages are considered high-level packages because
they have no incoming dependencies. Thus they appear at the top of the list, subsorted
alphabetically. On the other hand, several packages depend on the lang3 package, so

Figure 7.9 DSM sorting.
High-level components
appear at the top of the list.

124 CHAPTER 7 Improving your application design
it’s listed near the bottom—but it’s not last. Why? The lang3 package has outgoing
dependencies on the mutable and text.translate packages, so those two packages
are even lower-level and are listed after lang3.

 Now that you’ve got a handle on the DSM’s basic navigation, let’s move on to hunt-
ing down package cycles to improve the design of your application.

7.2.3 Identifying cycles

You may already be suspicious about the design of the project we’ve been showing you
because there are packages that depend on packages that depend in turn on the first
packages. (Dizzy yet?) You’re right to be suspicious. These are what we call undesired
dependencies. You’ve already seen that some cells in the DSM are red: you can get a quick
take on how bad your design is with a glance at the number of red cells, and an even
better understanding by looking at the size of the numbers in them. Yes, big is bad in
this case. In this section, we’ll dive in to what the DSM has to tell you about these cycles.

 First, remember that even though the column headers aren’t shown in the DSM,
you know what they are—they’re the same as the row headers. If the first column in
figure 7.10 were labeled, it would say org.sonar.server.ui to match the first row.
The second column would say org.sonar.server.platform to match the second row,
and so on.

 The diagonal line across the grid shows where each package matches up horizon-
tally and vertically. These cells never contain a number because SonarQube doesn’t
report a package’s dependencies on itself at this level.

 If you visually split the DSM into two triangles by drawing a line across all the
dashes, as we’ve done in figure 7.10, then all dependencies that circle back to form
cycles are shown in the upper-right triangle.

Figure 7.10 Unwanted cycles are displayed in the upper-right triangle.

125Discovering dependencies and eliminating cycles
 But why do the numbers showing unwanted dependencies all end up in the upper-
right triangle? Is it this way all the time? Well, yes. This is the norm because SonarQube
lists software components so dependencies to cut are always shown in the upper-right
triangle. You’ve seen that SonarQube sorts higher-level packages to the top of the DSM.
In general, you’ll see that SonarQube marks a higher-level package’s incoming depen-
dencies as the ones to be cut.

 We’ve told you that the numbers on red backgrounds in that upper-right triangle
in the DSM represent dependencies to cut in order to remove cycles. But knowing that
you have a total of N cycles in your project or module is completely useless, because a
single bad dependency can generate a lot of different cycles. The most important
thing is to quickly know which dependencies you need to cut in order to fully remove
unwanted cycles.

 Fortunately, when you’re looking at a package-level DSM, double-clicking a cell
gives you a list of file dependencies. When you click a red cell, the list represents the
file dependencies that should be removed to eliminate a package cycle, as shown in
figure 7.11.

Figure 7.11 Double-click a numbered cell, and you see a list of outgoing file dependencies between the
selected packages. Clicking a file name pops up a window with the file detail view you’ve seen before.

126 CHAPTER 7 Improving your application design
Before we move away from the DSM, there is one last thing to mention. You’ve seen
that double-clicking a cell drills down to display a list of individual couplings. You can
also double-click any row label to drill down within that package. Figure 7.12 shows
the result of that kind of drilldown: the file dependencies of a specific file.

 Figure 7.12 doesn’t show any file-level dependency cycles, but they’re possible, and
they would appear here in a case where two files directly depended on each other.
Most of the DSM behaviors we’ve discussed apply here as well, except for a slight differ-
ence in double-click behavior. Double-clicking a row pops up a new window showing
the source code viewer instead of drilling down (because there’s no down left to drill
in to), and double-clicking a numbered cell shows the names of the connected files
instead of showing a list of associated files.

 Now that you’ve identified all these cycles between packages and/or files, you may
be wondering how to get rid of them. The answer depends on the design of your sys-
tem, but there is a general starting place. Most cycles appear because the packages or
classes involved don’t have clear and concrete responsibilities. This could be a matter
of original design, of gradual design distortion, or lack of communication within the
team. Whatever the cause, to resolve the issue, you need to find those mixed responsi-
bilities and clean them up by doing one of the following:

 Moving responsibilities into higher-level classes
 Creating new classes

Figure 7.12 Double-clicking a row drills down the DSM to the next navigation level.

127Discovering dependencies and eliminating cycles
 Merging classes
 Reorganizing your packages

You’ve seen what SonarQube has to tell you about design and complexity among the
packages and modules in your application. Next we’re going to move back a step to
look at the complexity of an application’s external dependencies: its libraries.

7.2.4 Library management for Mavenites

The time when software systems were built from just a few source code files has long
since passed. Today, applications make extended use of common libraries to avoid
reinventing the wheel, improve productivity, and increase modularity and maintain-
ability. Theoretically, whenever a new library version is available, the old one is
replaced, and the system takes advantage of new features and resolved issues.

 This section discusses features that are available only for Java projects built with
Maven. We assume a familiarity with basic Maven concepts. (Sorry, non-Java and non-
Maven folks!)

 In general, Maven has dramatically decreased the time developers spend on library
management. It lets you define which libraries your source code depends on, and it
takes care of downloading those libraries and their dependencies from third-party
repositories. The idea is that Maven takes care of the tedious stuff, and your life as a
programmer gets a lot easier; and that’s almost true.

 When it works, it works beautifully. But sometimes your library dependencies have
second levels that conflict with each other. We’ve seen several problems caused by jars
that were silently downloaded by Maven and that were incompatible with other librar-
ies in the dependency tree.

 If you’ve ever been in the position of untangling one of these knots, you know it’s a
painful task. But the next time you find yourself in this situation, SonarQube can
make your life easier. It lets you browse library dependencies at the project or module
level and offers a dynamic search to spot libraries of interest. It also gives you a sepa-
rate search function to find which libraries depend in turn on a specific library.

7.2.5 Browsing the library-dependency tree

To start browsing your library dependencies, click the Libraries link on the left menu
at the project level. The link appears even if you’re watching a non-Maven project,
but clicking it won’t display any results. As figure 7.13 shows, you’ll get a library-
dependency tree including both direct and indirect dependencies. This is the result
of running the command mvn dependency:tree.

 Each top-level tree node represents an outgoing, first-level dependency—the one
that was explicitly stated in your pom.xml file. To the left of each library’s name is an
icon representing the status of the library in the current SonarQube installation.
Table 7.1 lists the possible icons and their meanings.

128 CHAPTER 7 Improving your application design

To the right of each library name is its dependency scope as defined in pom.xml
(compile, provided, runtime, or test). By default, only development libraries are
shown in the tree; but if you select the Display Test Libraries check box, the tree is re-
rendered to include libraries used for testing.

 Second-level tree nodes represent indirect dependencies. Those are libraries used
by your project’s first-level dependencies, the ones specified in the pom.xml files.

Table 7.1 Library statuses

Icon Explanation

The library has been analyzed by the current SonarQube installation, and the project/
library uses the latest analyzed snapshot.

The library has been analyzed by the current SonarQube installation, but the project/
library uses an older analyzed snapshot.

The library hasn’t been analyzed by the current SonarQube installation.

Figure 7.13 Library-dependency tree for Java Maven projects

129Discovering dependencies and eliminating cycles
Including these second- and third-level (and so on) dependencies can sometimes
result in a huge dependency tree. But huge or not, if everything works well, you prob-
ably don’t care. Unfortunately, that’s not always the case. Sometimes you end up with
branches of your tree that conflict with each other, such as one branch that specifies
version 1 of a library and another that wants version 2. This sad state is known as
Maven dependency hell, and as we’ve mentioned it can cause problems (what else would
you expect from Hell?). But unlike Dante’s Hell, there is no “Abandon hope, all ye
who enter here” sign. There is a way out, and SonarQube is your GPS.

 To start, imagine that you want to find all project dependencies (direct or indirect)
on Apache’s commons-lang library. You can use the dynamic filter at the top of the
dependency tree. Just type the name of the library you want to check, and the list is
automatically filtered accordingly. An example is shown in figure 7.14.

 With a few clicks, we found that three modules in the same project depend directly
or indirectly on commons-lang. Unfortunately, they all depend on different versions,
which could (and probably will!) cause stability and compatibility issues at runtime,
because they’ll load three different (most likely incompatible) versions of the same
library into their shared JVM. Which one will be used by your libraries? How can you
be sure your system won’t use an older library version than the one it needs (the one
that has the new API you call from your code)? Basically, you can’t know. And you can’t
do much at runtime to control which version is used. You need to deal with the issue
earlier in the development lifecycle.

 Your goal is to use only the latest stable release of commons-lang—version 2.6. To
get rid of the other versions, you need to make some pom.xml changes. First, change
all direct dependencies to the desired versions by setting the right attribute in
pom.xml (if you haven’t already). If your target library isn’t already a direct depen-
dency, then make it one, being sure to specify the correct version. Then, exclude the
indirect dependencies to avoid future references to the unwanted versions. That’s it.
The project now uses a single, correct version of the library.

 Listing 7.4 shows the starting point. You include version 2.6 of commons-lang explic-
itly, along with version 1.6 of commons-configuration. Unfortunately, commons-

Figure 7.14 Dynamic library filtering

130 CHAPTER 7 Improving your application design
configuration depends in turn on an older version of commons-lang. Because both
dependencies have a compile scope, both versions of the commons-lang library will
end up in the final WAR, which could cause problems at runtime, as mentioned earlier.

<dependencies>
 <dependency>
 <artifactId>commons-lang</artifactId>
 <groupId>commons-lang</groupId>
 <type>jar</type>
 <scope>compile</scope>
 <version>2.6</version>
 </dependency>
 <dependency>
 <artifactId>commons-configuration</artifactId>
 <groupId>commons-configuration</groupId>
 <type>jar</type>
 <version>1.6</version>
 <scope>compile</scope>
 </dependency>
</dependencies>

To overcome the issue, you need to add an exclusion to the commons-configuration
dependency to tell Maven to leave out the extra copy of commons-lang. The next list-
ing shows the changed pom.xml snippet.

<dependencies>
 <dependency>
 <artifactId>commons-lang</artifactId>
 <groupId>commons-lang</groupId>
 <type>jar</type>
 <scope>compile</scope>
 <version>2.6</version>
 </dependency>
 <dependency>
 <artifactId>commons-configuration</artifactId>
 <groupId>commons-configuration</groupId>
 <type>jar</type>
 <version>1.6</version>
 <exclusions>
 <exclusion>
 <artifactId>commons-lang</artifactId>
 <groupId>commons-lang</groupId>
 </exclusion>
 </exclusions>
 </dependency>

Now that you know how to navigate out of dependency hell, we’ll move on to Sonar-
Qube’s library-search function.

Listing 7.4 Sample dependencies section of a pom.xml file (commons-lang)

Listing 7.5 Revised dependencies section of a pom.xml file

Version
you want

Depends on wrong
commons-lang version

Version
you want

Excludes the version
you don’t want

131Discovering dependencies and eliminating cycles
7.2.6 Who uses this library

Libraries have been a boon to software development, but that doesn’t mean they’re
trouble-free. Unfortunately, many things can go wrong. Consider the following exam-
ple. Tom works for a Java software company. Most of the applications developed in the
company use the Apache commons-io library for file handling. Once in a while, each
project team checks for a new version of the library. They review the release notes and
then decide whether to upgrade their project to the newest version.

 Suppose that six months after the latest release of commons-io, a security issue is
discovered. Because there’s no standard process for library upgrades—when and if
libraries are upgraded is up to each team—nobody has a global view of which projects
and which libraries currently use the problem version.

 A manual search would be tedious, time-consuming, and error-prone. Fortunately,
SonarQube makes it easy with not one but two ways to search for library dependencies.
It’s worth mentioning that this functionality is unique: you can’t find anything similar
in other software quality tools. From the home page, you can click the Dependencies
link in the left rail and then enter the name of the library in the text box. Or, from the
project Libraries page, you can click the Usages link. Both entry points are shown in
figure 7.15.

 As figure 7.16 shows, the dependencies view is a comprehensive screen divided
into three panels. First is a list of all libraries matching the search criteria. Click a row
here, and the middle panel lists all the versions found as dependencies in SonarQube.
Click a version, and the last panel is filtered to show the projects/modules that use the
selected version. You’re done. With a search and three clicks, you can find all the uses
of a specific library version.

 Next, we’ll move away from library dependencies but stick to the package interac-
tions theme by discussing the ability SonarQube gives you to add governance around
the interactions within a system.

Figure 7.15 You can reach the dependencies view via two entry points in SonarQube.

132 CHAPTER 7 Improving your application design
7.3 Defining your architectural rule set
The majority of modern enterprise systems are based on n-tiered architectures. This
allows developers to build software in logical layers. Each layer should only interact
with the next lower layer via a predefined interface. Internal properties should also be
hidden from other layers. These architectures borrow basic principles and ideas from
the Open Systems Interconnection (OSI) model (http://en.wikipedia.org/wiki/
OSI_model), which targets communication systems.

 You Java folks who wrote code in Java EE, Spring, or Struts a decade ago are proba-
bly familiar with the similar Model-View-Controller (MVC) design pattern for building
an application in distinct tiers.

Figure 7.16 Finding library dependencies

The Model-View-Controller pattern
Model-View-Controller (MVC) is a software design pattern that lets you separate the
user interface from the representation of data. The model consists of application
data and business rules. The controller is the go-between: it’s the part responsible
for translating data and commands between the model and the view. The view shows
(in various ways) the data the model knows.

Assume that an accident happened in your area. The model in this case is the data:
where exactly it happened, how many cars were involved, any injuries, and so on. A
local TV channel, the controller, covered the event, and a short segment will be
shown on the evening news. Your TV is the view, and you click your remote control to
pick your favorite channel.

http://en.wikipedia.org/wiki/OSI_model

133Defining your architectural rule set
 What’s the story with SonarQube and all this architectural layers stuff? As with
every design pattern, MVC is a design principle. It gives you guidelines about structur-
ing your applications, but it doesn’t obligate you to follow any rules. Fortunately,
SonarQube allows you to define architectural rules to police access among layers.

 Before we explain how, figure 7.17 shows the layers in an MVC-structured applica-
tion. Similar layers and technologies apply to .NET and other languages. It’s a common
practice to name all packages in each layer with a prefix to suggest their location in the
MVC structure. For example, packages in the presentation layer are often named
com.mycompany.ui.* for user interface, or com.mycompany.web.. In the business logic
layer, it would be something like com.mycompany.ejb.*; and in the persistence layer,
com.mycompany.model.* or even com.mycompany.hibernate.*.

 According to the MVC pattern, there should be no access from the data layer
(com.mycompany.model.*) directly to the view layer (com.mycompany.ui.*).
Although it would be great to prevent such access, you can’t. But you’re not entirely
powerless. You can’t remove the possibility of creating those interactions, but you can
catch them and correct them quickly with SonarQube’s architectural rules. This fea-
ture is only available for Java projects with activated byte-code analysis (which is on by
default in SonarQube), so be aware that if you enable the sonar.skipDesign prop-
erty, you won’t be able to use it (see appendix B for more details).

 Chapter 2 discussed issues and where they come from, and chapter 13 will give you
full details on administering rule sets. Here we’ll just provide a few guidelines on how
to activate and customize SonarQube’s architectural rules.

 First, there’s only one rule you care about at this point: it’s named architectural con-
straint, and it’s deactivated. This is the rule you’ll use to set up your constraints. Sonar-
Qube offers a few rules that act as templates, and the architectural constraint rule is
one of them. That means you can modify it directly to impose a single architectural
constraint, or you can make multiple copies of it and set up as many constraints as
you’d like. Clearly, the second route is best.

 You’ll have the opportunity to name your copies. It’s a good practice to give each
one a name that reminds you of its purpose; and although the name doesn’t need to
be unique, it’s a good idea.

Presentation layer

Business logic layer

Persistence layer

JSF, Vaadin, and so on;
and managed beans

EJBs (session, stateless,
and message-driven)

JPA, Hibernate, MyBatis,
and so on

Figure 7.17 Typical layered
architecture of a Java EE application

134 CHAPTER 7 Improving your application design
 You also need to supply fromClasses and toClasses properties, and this is where
the rubber meets the road. Once enabled, your new rule will flag as an issue every
instance of something in the fromClasses category accessing something in
toClasses. Both inputs accept class names or packages names, and using wildcards to
broaden a rule’s scope means you don’t have to maintain a lot of granular rules.

Once you’re done creating rules, be sure to run a new analysis to check your work. In
fact, because no syntax checker is built in to rule administration, it may be useful to
start with a test rule you know will be broken so you can verify your methodology. It
will be easy enough to get rid of it if you don’t need it.

7.4 Summary
Measuring design and architecture quality can be difficult to get your head around.
Fortunately, SonarQube generates metrics for these facets of program quality and
presents them in ways that are easy to understand. All you have to do is to look over
metrics and take action, if needed.

 We hope you’ve learned the following by reading this chapter:

 Dependency cycles can decrease the productivity, maintainability, and compati-
bility of your project.

 The Dependency Structure Matrix (DSM) is a valuable tool to recognize cycles
in your projects and dependencies between software components.

 If you’re in a Maven-oriented software house, SonarQube makes finding depen-
dencies in your projects quick and easy.

 SonarQube lets you set custom architectural rules to monitor access between spe-
cific packages and help you maintain the cleanliness of your application layers.

At this point, we’ve covered all seven of SonarQube’s Axes of Quality, and you have a
thorough grounding in what SonarQube has to tell you. Unless you’re on a brand
new, greenfields project, you’re likely feeling a little overwhelmed by what you’ve
learned and the magnitude of the technical debt SonarQube has revealed. In the next
few chapters, we’ll look at how to deal with that technical debt—from high-level strat-
egies to day-to-day operational tactics.

 Unless you’re very lucky, you’ve used SonarQube to kick over a rock. Now we’ll
show you how to deal with what’s underneath.

Rule isolation
Defining an architectural rule set especially for large-scale layered systems is a pow-
erful feature of SonarQube. But after a while you may find yourself writing overlapping
rules or rules that seem to be hierarchically connected to each other. How does
SonarQube deal with those rules? Well, each rule is handled in isolation; so if two or
more rules check overlapping constraints, you’ll get one issue for each rule.

Part 2

Settling in with SonarQube

In part 2 we’ll help you integrate SonarQube into your regular work flow.
We’ll start in chapter 8 with a discussion of strategies you might want to adopt
for addressing your technical debt. Then we’ll move on to more hands-on parts
of a successful approach. In chapter 9, we’ll cover Continuous Inspection with
SonarQube and how it can lead to continuous improvement. Then we’ll move
on to code reviews in chapter 10 and discuss how to make the most of Sonar-
Qube’s review features. We’ll also share some general techniques we’ve seen
used to successfully structure and run code reviews. Finally, we’ll take you to
where the rubber meets the road, with a look at SonarQube’s IDE integration in
chapter 11.

Planning a strategy and
expanding your insight
So far, you’ve installed SonarQube and begun analyzing your projects, and you’ve
taken an in-depth look at each of SonarQube’s Seven Axes of Quality, the seven
ways SonarQube measures what’s right or wrong with your code. If you’re typical
(and don’t worry, you probably are typical) you’re wondering how you’ll ever get
through all the things SonarQube points out that need work.

 It may be intimidating, but it’s probably also clear that what SonarQube offers is
too valuable to walk away from. So now what? As with any big job, the best thing to
do is break it down into small, manageable chunks, and that’s what the next few
chapters will help you do. In part 2, we’ll help you see how to begin fitting Sonar-
Qube and what it has to say into your daily and weekly routines with Continuous
Inspection, code reviews, and IDE integration.

 We’ll start in this chapter by giving you some background knowledge that’s use-
ful in dealing with SonarQube, such as a better understanding of the history of

This chapter covers
 Planning your strategy

 Project history and metric trending

 Everything’s a component
137

138 CHAPTER 8 Planning a strategy and expanding your insight
your project, which SonarQube builds through data snapshots, and project events and
how they relate to the database housekeeping algorithms. We’ll also show you some of
the other views of your data SonarQube gives you. Part 1 of this book focused mainly
on the default dashboard and metric drilldowns, but if raw numbers don’t speak to
you, there’s still hope. SonarQube offers several other presentations, and in this chap-
ter you’re likely to find one that gives you what you need.

 Before we get to the other presentation formats, we’ll begin with what’s probably
foremost in your mind right now: how to whittle down your technical debt. We’ve
spent quite a while explaining what SonarQube’s numbers mean and helping you
understand why you should care. Now that you’re sold, we’ll help you figure out what
to do about the problems SonarQube helps you identify.

8.1 Planning your strategy
In chapter 1, we asked you to imagine that your CEO’s Aunt Betty was a customer, one
with a tiny account and big opinions. When she was hit by bugs in a new release, the
CEO went through the roof and demanded that you find a way to measure quality and
show improvement. Now that you’ve got SonarQube up and running, you certainly
have a way to measure quality—but it’s not measuring very much of it. In your gut,
you’ve known it all along, but now you’re facing clear evidence that years of developer
turnover and jumping to the hottest new framework every few years without removing
the old one have left your project in a shambles. Worse, your CEO has seen the num-
bers too. Where he was raging before, now he’s almost too quiet. You know you’ve got
to come up with a plan. Fast.

 First, don’t panic. Unless you’re lucky enough to be on a relatively new project,
you’re probably facing a technical debt that built up over years. It’s perfectly reason-
able to expect that it will take at least months, if not years, to clean up. (And once you
show your CEO that you’ve got a plan, he’ll probably calm down and agree.)

 Second, remember that the best way to approach a problem of any size is to break
it down into smaller pieces. Even though they’re all important, and no one quality axis
in isolation will give you the full picture, you can’t address all seven axes at once. So
tackle them one at a time. Now that you’ve understood and assessed the full weight of
all seven, start with the one or maybe two that call out to you the loudest from the
project dashboard. That could be any of them; but for most people, issues are the sore
thumb, because they’re about the things in your project that are demonstrably wrong.
So that’s what we’ll focus on here.

 The third step is getting the team on board. Diverting some of your time to quality
remediation and away from new features will require buy-in and backing, not just
across the development team (including testers, architects, and project managers) but
also from management and your business partners. For the technical folks on your
team, showing them what SonarQube has to say usually gets their attention and some
degree of buy-in. For the nontechnical types, like your business partners and certain
levels of management, you’ll probably need to pitch SonarQube as an investment—

139Planning your strategy
not necessarily in quality, because that may be a bit too esoteric. Instead, be candid
about the fact that low-quality code is harder to maintain. It takes longer, and the pro-
cess of making changes is more error-prone than it should be. Allowing time for reme-
diation now will help you give them what they want (more features and fewer bugs,
delivered faster) in the future.

 The next step is to pick the exact metric or metrics you want to track and decide
how you’ll approach them; that’s what we’ll spend our time on in this section. We’ll
begin by looking at what to consider when picking a metric you want to track long
term, and then discuss a few strategies for improving it.

 Before we move on to that, we need to touch on the final step: keeping everyone
focused. Choosing a metric to work on and getting everyone excited about it won’t do
much good if the effort trails off after a month. To keep the technical staff focused,
weekly code reviews can work wonders. We’ll go into detail on SonarQube’s code-
review functions in chapter 10. To keep your nontechnical teammates on board, you’ll
probably want to exploit the history and trending graphs we’ll show you later in the
chapter. Just seeing the graphs move in the right direction should help your team-
mates stay motivated, too.

8.1.1 Picking a metric

We’ve already said we’ll focus here on issues, so we could say that the target metric for
this discussion is “issues.” But that’s a bit vague. It will be easier to rally the troops and
keep them rallied if the target metric is specific and everyone is on the same page
about what it means. Narrowing the field to issues still leaves a number of specific met-
rics you could choose, and picking one isn’t as straightforward as it may seem. To show
you why (and lead you to our favorite issues metric), let’s walk through the pros and
cons of a few.

RULES COMPLIANCE INDEX

Focusing on the Rules Compliance Index (RCI) is tempting because it’s a high-
visibility number. It’s shown in the default filter (the front page) and again on the
default dashboard in the rules compliance widget shown in figure 8.1.

 It’s also tempting to use RCI because everyone loves a good percentage, right? The
problem is, it’s based partly on project size. So a developer could inadvertently cause a
drop in the RCI by cleaning up duplications, which is behavior you want to encourage.
That’s because the RCI is calculated by dividing a Weighted Issues (WI) score by the
project’s number of lines of code (LOC). Eliminate lines of code, and you torpedo
your RCI score, discouraging behaviors that benefit the project.

Figure 8.1 The rules compliance widget
appears on the default dashboard,
making the RCI a prominent gut-check
metric. It also shows the count of issues
at each level of severity.

140 CHAPTER 8 Planning a strategy and expanding your insight
 Conversely, adding a few new domain classes with lines and lines of issue-free get-
ters and setters will boost your RCI without fixing a single issue.

 While we’re talking about the RCI, note that the problem isn’t limited to that met-
ric. Any of SonarQube’s percentages will suffer from similar side effects. These per-
centages are good gut-check metrics, but for tracking progress, they’re probably not
what you want.

COUNT OF BLOCKER AND CRITICAL-LEVEL ISSUES
By focusing on the specific counts of high-value issues, you’re choosing metrics that
aren’t impacted by changes to the project’s LOC. Additionally, meeting a goal for
these numbers means high-value changes for your project. And if you’re working with
a single project or a group of projects that are similar metrics-wise, this may be exactly
the right way to go.

 But if you’re setting goals across a set of diverse projects, you may have a hard time
balancing where to set a goal based on these numbers between projects that are
already in decent shape and those that need a lot of work.

 Additionally, a developer who notices a few Major-level issues in another part of
the file he’s working on and cleans them up while he’s in there has improved the proj-
ect’s quality, but he’s had no impact on the target metrics. That tiny disincentive could
be the difference between cleaning up those Major issues and letting them lie to move
on to other work.

WEIGHTED ISSUES

The WI metric, which is part of the RCI, is also immune to swings in a project’s LOC
count. Unlike the Blocker and Critical counts, choosing WI as your focus metric has
the additional advantage that nearly every issue eliminated has an impact on the goal
you set against it, because the WI formula includes everything but Info-level issues.
The exact formula is as follows:

(Blockers * 10) + (Criticals * 5) + (Majors * 3) + Minors

Thus although fixing 10 Minors counts toward a goal, developers are incented to go
after the more important issues first.

 Additionally, it may be easier with a WI-reduction goal to find a balance between
the needs of healthy projects and those that need a bit more attention. Because a proj-
ect’s WI score encompasses nearly all its issues, setting a target reduction number in
WI points lets teams with cleaner projects work through their Blockers and Critical
issues and then move on to the Majors, and so on, while the teams with greater chal-
lenges focus on their highest-value issues.

WI ticks a lot of the boxes as a desirable metric to track, but it does have one minor
downside: it’s not visible by default. It’s not shown in either the default filter or the
default dashboard. But you can easily add it to your filters, and chapter 13 tells you
how. There are also a number of ways you can add the metric to your dashboard,
including a WI-focused version of the issues widget that’s shown in figure 8.2 (available
in the Widget Lab plugin). This is our favorite issues-related metric for long-term

141Planning your strategy
tracking, but you’ll have to make an effort to see this number if it’s what you choose
for your focus.

 If issues aren’t your target, your candidate metrics will be different, but you should
take similar factors into account—particularly when looking at percentages. Once
you’ve picked a metric to focus on, you need to decide how you’re going to approach
it. What follows are a number of methods we’ve seen work well. Each method is effec-
tive on its own, but don’t think you have to choose just one approach. Many of these
methods work well together.

8.1.2 Holding your ground

The first approach we’ll look at is just holding your target metric steady. It can be
alternately stated as “Just don’t let it get any worse.” This may sound like sandbag-
ging, but for a project under active, heavy development, this approach can be surpris-
ingly challenging—particularly for a team whose members have varying degrees of
experience.

 In addition to teams with very active development, this may be a good approach
for teams that are new to the world of SonarQube and a bit intimidated by the
thought of having to improve quality while they do the “real work” of satisfying cus-
tomer needs. In that case, a first goal of treading water for a while lets the team get
comfortable with SonarQube before being asked to step up and start moving the num-
bers in the right direction.

 If you do take this approach, you may be surprised to find that after an initial
adjustment period, the numbers do begin moving in the right direction. In our experi-
ence, good developers are passionate about good code, and once they see (and
accept) what’s wrong in their projects, they’ll want to fix it. Like straightening a
crooked picture, they’ll be compelled to put it right.

8.1.3 Moving the goal posts

The next method is a bit like weight training, where you start with a weight you can
just manage and work at it until lifting it becomes easy. Then you increase the weight
and begin again.

Figure 8.2 This version of the issues widget includes all the metrics in the standard rules
compliance widget, and it also shows the project’s WI score. (Issues used to be called violations.)

142 CHAPTER 8 Planning a strategy and expanding your insight
 In this case, you start with a limited analysis (either by using only the most impor-
tant rules or by analyzing only the most critical parts of your code), then you clean up
the problems, and then you make it harder (by adding either more rules to your rule
set or more code to your analysis). In other words, every time your coding team cleans
up the project, you move the goal posts.

 The main benefit of this approach is that you’re never faced with an overwhelming
task. And if your whole team understands at the outset that the goal posts will be mov-
ing, this could be a great way to handle your project’s initial cleanup.

 The downsides of this method are as follows:

 It messes up your trending. Each time your project approaches or attains per-
fection, you change the goal, and quality seems to plummet. If you like this
approach, but the trending is important, you may be able to use the
sonar.projectDate analysis property discussed in appendix B to retroactively
apply the enhanced profile.

 If your goal is rule-based, this approach limits your ability to use the teaching
aspect of SonarQube’s rules. Seeing what code is flagged with issues helps devel-
opers learn to write better code. Hide some of those best practices, and even
the best developers may inadvertently add Majors that you’ll hold them
accountable for later, while they’re fixing the Blocker- and Critical-level issues
you’re showing them now.

8.1.4 Boy Scout approach: leave the class better than you found it

The Boy Scout approach builds on the “holding your ground” method. Rather than
stopping at “don’t add any new issues,” it says that you clean up the existing issues in
files you touch in the normal course of satisfying customer needs.

 Because this approach limits your quality-centric changes to classes that need test-
ing attention anyway, it should help limit the impact of the team’s quality-remediation
changes on the QA folks. The downside of this approach is that frequently modified
classes quickly reach squeaky-clean status while your code backwaters continue to
stagnate.

 If you choose this method, you need to decide how rigorously to apply it. For
instance, typically you’d like developers to fix all the issues in the classes they have to
modify anyway. But if Susan needs to make one small change in a large, complex,
issue-riddled class, should she be required to clean up the entire thing? Or would it be
enough in this case to limit her changes to only cleaning up the method she needed
to modify?

 Stick with this approach, and eventually even your backwaters should be cleaned
up, but it may take a while. If “eventually” isn’t fast enough for you, you may want to
combine this approach with one or both of the next two methods.

143Planning your strategy
8.1.5 SonarQube time: worst first

This approach is a combination of two distinct mechanisms. The first is SonarQube
time, or setting aside a specific amount of time each week (or each sprint) for quality
remediation. Teams that use this approach refer to it as SonarQube time because it’s
when they’re explicitly focused on what SonarQube has to say. The rest of the week,
they’re practicing the Boy Scout method or at the least holding their ground. But for
a certain number of hours every week, they’re working through what SonarQube
reports and knocking out problems.

 During those hours they use a worst-first approach, picking the file or class that
scores the worst against the team’s target metric and working through it, fixing prob-
lems. This can require a little coordination if multiple folks are taking their Sonar-
Qube time at once, but otherwise this is a great approach if you have the freedom to
dedicate time for quality on a regular basis.

 There’s another whole dashboard that makes this approach an easy one to take.
The Hotspots dashboard is composed mainly of hotspot widgets, each set to show a
different metric. If your target metric isn’t included, you can easily add another wid-
get instance or edit one of the existing instances to show your target metric. You can
also choose the number of files to show. Figure 8.3 shows the hotspot metrics widget
set to show the five worst (highest-scoring) files for weighted issues.

8.1.6 Re-architect

If none of the previous methods seems right to you, it may be because a more drastic
approach is in order. In The Mythical Man-Month (Addison-Wesley, 1975) Frederick
Brooks advised that when you’re working with new concepts or technologies, you
should plan to “build a system to throw away” so that your second system, the one
you’ll actually use, can incorporate the lessons you learned the first time around.

Figure 8.3 The hotspot metrics widget provides an easy reference for which files or classes have
the highest score for any given metric. You can have as many instances of the widget as you like,
each configured to a different metric.

144 CHAPTER 8 Planning a strategy and expanding your insight
 Clearly, that’s not always practical, and we’re not necessarily advocating here that
you toss your current project code. We are saying that sometimes you find yourself with
a project that’s such a conglomeration of disparate ideas and technologies that patch-
ing up issues, or adding tests, or eliminating duplications would be like putting a
Band-Aid on a broken leg.

 If you find yourself in that situation, your best bet is likely re-architecting. Many
times that can be accomplished without huge, disruptive change. For instance, switch-
ing (or unifying) frameworks can often be done gradually, migrating one piece of the
code at a time from the old framework to the new and giving everyone involved time
to accommodate the changes.

 Whether you do it slowly or suddenly, in the process of refactoring you’re likely to
remove large swathes of issue-riddled, duplicative, poorly structured code. Because
you’re more attuned to quality now, the code you replace it with will be cleaner, better
structured, and more thoroughly tested. (Right?) Almost as a side effect of making
your code base more maintainable, your SonarQube metrics will improve.

 When it’s needed, this is the best approach to take. The hardest part is facing—
and then selling—that it’s needed.

8.1.7 The end game

Now you’ve seen approaches to remediation that run the gamut in terms of aggres-
siveness from seemingly passive (the “holding your ground” approach) to rather bold
(re-architecting). We hope we’ve presented at least one that will work for you. Just
keep in mind that it’s only a starting point.

 Yes, we’ve advised you to pick one metric and focus on it, but you won’t be finished
when you’ve mastered it. This is a long-haul effort for a couple of reasons. The first is
that addressing only one quality axis isn’t enough. Eventually, you’ll want them all
under control. You’ll begin by choosing one or two metrics, but as you whip each qual-
ity axis into shape, you’ll want to add another one, and another, and so on, until
you’ve got a handle on all seven.

 As you add axes, give some critical thought to the order that makes the most sense
for you. For instance, working on getting your API documented before tackling dupli-
cations may not be the best approach. Similarly, if you’re faced with a combination of
low test scores and high complexity, you may not want to spend a lot of time writing
tests for code you know you need to refactor.

 The second reason code quality is a long-haul undertaking is that once you’ve
started seeing some quality wins, you won’t want to backslide. Code reviews and
Continuous Inspection, which we’ll talk about in chapter 9, can help prevent that, but
eventually you’ll want to set quality gates as backstops. For instance, you may say that
you can’t release a new version to production if there are any Blocker or Critical issues
(maybe limit this rule to new issues at first) or if test coverage has dropped. Assuming
you have management backing to delay a production release, then these kind of crite-
ria can help keep code quality top-of-mind.

145History and trending
 You’ll gain that management backing as you begin to show progress and get some
quality wins under your belt. But you may wonder how you’ll track changes and show
that progress. That’s next.

8.2 History and trending
It’s all well and good to pick a metric and try to move it in the right direction (or hold
it steady for a while), but what’s the mechanism for keeping track? Are you supposed
to write down the number for your metric’s starting point and do the math every
time? In a word, no.

 One of the best things about SonarQube is that it doesn’t just give you a look at the
current state; it offers trending as well. We promised that in chapter 1, and it’s finally
time to deliver. We’ll look at differentials in chapter 9; they give you a quick compari-
son of current state against one of three points in history, but there are other mecha-
nisms for tracking trends in SonarQube. They’re up next.

8.2.1 Time Machine

SonarQube offers an entire dashboard devoted exclusively to trending. It’s called the
Time Machine, and it also touches most of the Seven Axes of Quality. Additionally, it
provides something else we promised in chapter 1 but haven’t delivered on yet:
graphs! Figure 8.4 gives an overview.

 This dashboard is focused on showing not current state, but your project’s prog-
ress over time. Sure, you’ve added 40 new features, but has that come at the cost of

Figure 8.4 The Time Machine dashboard is composed of multiple instances of the history table widget,
each configured for a different quality axis, and the timeline widget, at upper left, which gives a granular
history of up to three metrics.

146 CHAPTER 8 Planning a strategy and expanding your insight
quality? And if so, in what areas? The Time Machine dashboard can help you answer
those questions. It’s composed of multiple instances of the history table widget and
one copy of the timeline widget. As with each of the dashboards, you can edit the
Time Machine dashboard to change the balance if you like, and each widget instance
is itself configurable.

 At upper left on the Time Machine dashboard, the timeline widget offers a color-
ful, granular view across each snapshot in your project’s history. It covers up to three
metrics and is one of SonarQube’s sexiest out-of-the-box widgets. Figure 8.5 shows a
close-up.

 Although graphs are typically intuitive—that’s the beauty of a graph, after all—you
can’t take the timeline at face value. Because there’s no fixed y-axis, each line in the
graph is relative only to itself. A line in this widget can jump the full height of the
graph for a change of hundreds, and it can jump the full height of the graph for a
change of less than one. Figure 8.6 illustrates the point.

 Despite the mild caution required with the timeline widget, it’s still an excellent
tool to give at-a-glance trending of key project metrics over time. By default, it shows

Figure 8.5 The timeline widget, at the dashboard’s upper left, offers a colorful, granular graph of your project’s
history. There’s no fixed y-axis, though, so mouse over the graph to have the relevant values shown in the legend.

147History and trending
complexity (which you want to see headed down), rules compliance (which should be
headed up), and test coverage (which we hope is also headed up).
The other widget on the Time Machine dashboard is the history table widget. Each
instance gives you precise values for up to 10 specific metrics and sparklines for those
values at points in your project’s history. Figure 8.7 gives you a closer view.

 By default, those points in time are the first analysis on record, the last analysis on
record, and the analysis for the most recent version event. We’ll cover events in detail
next; but briefly, when you change the value of the sonar.projectVersion analysis

Figure 8.6 Don’t let your intuition rule too strongly when you’re reading the timeline
widget’s graphs. Because each line in the graph is essentially an independent sparkline,
you need to mouse over the graph to see the numeric values whenever they show what
looks like a large jump. As the bottom two figures show, a line can jump the full height
of the graph for a change of less than 1: .7 in this case. The upper two figures show the
opposite end of the spectrum, with a full-height jump for a change of 196.

148 CHAPTER 8 Planning a strategy and expanding your insight
property, it triggers a version event, and that snapshot is marked for special treat-
ment. One of the ways that snapshot is treated differently is that it’s eligible to be
shown in the history table widget.

 Both the number of metric rows and the number of snapshot columns are adjust-
able. As you increase the number of snapshot columns, you see additional version
event snapshots, working backward from the ones already showing. Because the spark-
lines this widget shows reflect only the values displayed in the table, rather than the
values from the fully detailed project history, the more snapshot columns you include,
the more detailed your sparklines.

 Now let’s take a closer look at exactly what those version events are.

Figure 8.7 The history table widget shows sparklines and historical values of up to 10 metrics. By
default, it shows the first value on record, the last value on record, and the value from the last time the
project’s version number changed. The sparklines to the right reflect only those values shown in the
widget, not the kind of detailed graphing that’s available from the timeline widget shown in figure 8.6.

149History and trending
8.2.2 Events and database cleanup

We’ve breezed over the topics of events and database cleanup previously. Now it’s time
to get into the details. Essentially, events are special flags on your project snapshots,
and snapshots with event flags get special treatment. Specifically, they’re exempt from
database cleanup.

 It’s analogous to old-fashioned photo snapshots. Take one every day or multiple
times every day, and you’ll have a lot without long-term value. But snapshots from
events (graduations, holidays, and vacations, for example) have long-term signifi-
cance. Those you hold on to. SonarQube does the same thing.

 There are four kinds of events:

 Version—The value of the sonar.projectVersion analysis property changes.
These events can also be set retroactively by a project administrator.

 Profile—A change is made to the rule profile against which your project is ana-
lyzed. This is when rules are added, removed, or edited.

 Alert—An alert status changes. You can set alert thresholds on rule profiles.
When your project crosses a threshold in either direction, an event is recorded.

 Other—The project administrator manually sets an event on a snapshot.

Why is it even a question? Because each snapshot holds a lot of data. If you run multi-
ple analyses a day, that adds up to a lot of snapshots and a whole lot of data over time;
so SonarQube does regular housekeeping. You may have noticed lines at the end of
your analysis logs that start with “Keep one snapshot per ….” That’s the database
cleanup we’ve been talking about. It’s run for each project as part of the analysis. By
default, SonarQube keeps the following snapshots:

 One per day—After the first 24 hours
 One per week—After the first month (4 weeks)
 One per month—After the first year (52 weeks)
 None—After 5 years (260 weeks)

Like many other settings, these thresholds are editable, both globally and at the proj-
ect level; we’ll show you how in chapter 14 for the global level and in chapter 15 for
the project level. In case you ever need to know (you probably won’t), we’ll also show
you how to manually clean out snapshots in chapter 15.

 Now that you have a better understanding of events, we want to point out a feature
of the timeline widget that we left out before: it shows events (see figure 8.8).

Figure 8.8 Each event in
a project’s history is
marked by a blue triangle
on the X axis. Mouse over
the triangle to add its name
to the graph.

150 CHAPTER 8 Planning a strategy and expanding your insight
8.3 Everything’s a component
In this chapter we promised you multiple ways to look at your data, and the next one
is based on a concept that we haven’t talked much about yet. SonarQube treats each
project, module, package, and file as a component. That means just as it calculates
metrics at the project level, SonarQube also calculates them for each module, sub-
module, package, and file in those projects. You can easily get a test-coverage score
not just for a project as a whole, but also for each package and class it contains.

 You can see this concept at work starting from SonarQube’s default front page,
with the treemap widget at lower right, like the one shown in figure 8.9.

 Assuming you’ve got multiple projects under analysis, you’ll see the treemap bro-
ken up into multiple subrectangles, one for each project. The size and color of those
blocks convey two key metrics. Block size reflects LOC; and color, which ranges from a
cool, grassy green to an angry red, ties to rules compliance. In general, the closer a
block is to an angry red, the more quickly you should pay attention to it.

 The treemap gives you two different ways to drill in. Click the block label (the com-
ponent name) to land at a dashboard for the component you’ve chosen, whether
that’s a project or something at a lower level, and click in the unlabeled portion of the
block to drill in to a treemap for the chosen component’s subcomponents. Drill down
far enough, and you’ll find yourself looking at filenames. Clicking the filename opens
the file detail pop-up.

8.3.1 Project component view

Next, let’s drill in to a project and choose the Components link in the left rail. The
presentation you see looks a lot like a filter. But instead of showing the projects in your
SonarQube instance, it shows the modules or packages in your project, with a few key

Figure 8.9 The treemap defaults to a subblock for each project, with relative block size
indicating Lines of Code, and block color (cool, grassy green to angry red) indicating rules
compliance. Click in the unlabeled part of the block to drill in to a treemap of that block’s
components. Click-through on the block’s name to land at a dashboard for that component.

151Everything’s a component
metrics for each (configuring which metrics is like configuring a filter, which is cov-
ered in chapter 14). Figure 8.10 shows part of the Components view for SonarQube.

 Click an item in the filter list, and you’ll find yourself at the Components view
for that item. Of course, the component names in the list change, but little else does.
As proof of that, figure 8.11 shows a drill-in from the Components view shown in fig-
ure 8.10.

 Continue clicking in the textual component list, and eventually you end up at a level
that only shows filenames. Just as with the treemap, once you’re at that level, your click-
through (on the magnifying glass) pops open the file’s detail view in a new window.

 If you’re not paying attention, it can be easy to get lost in the Components view
drilldown. Fortunately, each click adds a link to the breadcrumb trail at upper left to

Figure 8.10 The Components view shows a filter-style listing of the modules
or packages in your project.

Figure 8.11 The breadcrumb trail that’s added at upper left in the interface shows how deeply you’ve
drilled in to the Components view.

152 CHAPTER 8 Planning a strategy and expanding your insight
help you keep yourself oriented and allow you to walk back up the trail. As with the
Components drilldown, figure 8.12 shows there’s little to differentiate a component-
level dashboard from the one at the project level except the breadcrumb trail.

8.3.2 No package history

Once you’re drilled in to components at any level below the project, the dashboard
link in the left rail also takes you to a dashboard for that component. Most of the left-
rail links work correctly for components, with the exception of the Time Machine.

 The dashboard in figure 8.12 is supposed to start at upper left with a timeline wid-
get, which is borrowed from the Time Machine dashboard. The colorful graph the
widget offers is a nice addition to what might otherwise be a mass of grey. But when
you get to the package level, you don’t get a graph from the timeline widget. It only
says “No history.”

 You get similarly disappointing results when you check the Time Machine dash-
board at the package level, because although SonarQube generates its metrics at all
levels, it only keeps them long-term at the project and module levels. Metrics beyond
the last analysis aren’t kept for packages and classes, which helps keep the SonarQube
database size down to a manageable level and improves performance. So the timeline
widget says “No history,” and the history table widgets only show you the most recent
value for each metric. No sparklines or pretty graphs anywhere in sight.

Figure 8.12 As with the drilled-in version of the Components view, the default dashboard looks almost the same
from level to level. This version of the dashboard reflects a few of the suggestions we’ve been making, including
the use of the Widget Lab plugin’s WI rules compliance widget in place of the standard rules compliance widget
at upper right, and the addition of a treemap widget.

153Related plugins
 This behavior is the default. You can easily have SonarQube archive package met-
rics (globally or only for selected projects), but be aware that doing so will swell your
database and potentially degrade performance.

8.4 Related plugins
The related plugins for this chapter play on the “other ways to view your data” theme.
The first one, Tab Metrics, provides insight into the metrics collected at the file level.
The second, Widget Lab, gives you an alternate dashboard widget for issues.

8.4.1 Tab Metrics

The Tab Metrics plugin can be installed easily through the update center and requires
no configuration. In the file detail view, it adds a new Metrics link, which lists the cur-
rent value for every metric available for the file, as shown in figure 8.13.

Figure 8.13 The Tab Metrics plugin adds a tab to the file detail view that lists every metric
available for the file.

154 CHAPTER 8 Planning a strategy and expanding your insight
The metrics are shown grouped by SonarQube’s own internal categories. To the right
of each metric name and value is the metric description. Often the description is the
same as the name, but sometimes it offers a useful expansion.

 Be aware that the plugin shows both SonarQube’s core metrics and metrics intro-
duced and computed by other plugins.

8.4.2 Widget Lab

Widget Lab was already covered earlier in this chapter, when we talked about picking a
metric. If your focus is issues, we urged you to consider using the Weighted Issues met-
ric as your target. Normally that’s not a very visible metric. You can make it appear in
filters, but at a project level there’s no way to see it. That’s where Widget Lab’s WI rules
compliance widget comes in. It gives you all the metrics in the standard rules compli-
ance widget, plus WI at upper left, as figure 8.14 (repeated from figure 8.2) shows.

8.5 Summary
SonarQube analyzes your projects against up to seven different quality axes (depend-
ing on the language). For some projects, that can add up to a lot of things that need
to be worked on. Instead of being overwhelmed by the size of your technical debt, we
hope this chapter has helped you get started by choosing one or two metrics to focus
on and creating a plan of attack for moving them in the right direction.

 As you pick your target metric, remember that it’s best to avoid percentages
because they can be skewed by changes in project size. If you decide to make issues
your initial focus, we think Weighed Rule Violations makes a great target metric.

 We’ve given you a number of strategies to consider (although certainly not an
exhaustive list). As you decide which strategy or set of strategies you’ll use, don’t hesi-
tate to start with the “holding your ground” method if you need to. It’s a great way to
bring attention to a new push for quality while the team gets used to SonarQube and
to the idea of having its code quality measured. At the other extreme, if it’s called for,
you may need to re-architect. In the middle are a number of strategies that can work
well together: moving the goal posts, the Boy Scout method, and SonarQube time/
worst first. Once you’re comfortable with SonarQube and making good progress on

Figure 8.14 You can use Widget Lab’s WI rules compliance widget to put WI front and
center on your project dashboards.

155Summary
your first metric, you’ll want to add more to your focus, until you’ve got them all
under control.

 Whatever metric and strategy you begin with, your campaign may benefit from
using some of the other ways SonarQube provides to view your data, such as the
Hotspots and Time Machine dashboards for deeper insight into project history.

 Also in this chapter, you’ve seen how to drill in to your project for module- and
package-level metrics. You’ve learned about project snapshots and the importance of
events, and now you know how SonarQube decides which snapshots to keep and
which to discard.

 In the next chapter, we’ll explore trending more fully as part of a discussion of
Continuous Inspection, which can help keep your team focused on code quality from
day to day.

Continuous Inspection
with SonarQube
With half the book behind you, you now have a thorough grounding in what Sonar-
Qube is telling you, including an in-depth understanding of the metrics behind the
Seven Axes of Quality and a handle on how to tackle what those metrics show.

 In this chapter we shift gears from theory to practice, with the introduction of
Continuous Inspection, a practice that will boost your return on investment in
SonarQube. So far, we’ve mentioned Continuous Integration (CI) a few times and
hinted at its advantages. Now we’ll go in depth, starting with Continuous Inspec-
tion’s big picture and how SonarQube perfectly fits into a streamlined develop-
ment process.

 We’ll look at why it’s important to automate the Continuous Inspection practice
and how easily that automation can be done. We’ll give you a step-by-step guide to
integrating SonarQube with a CI system to automate your everyday analysis, and
we’ll offer advice on best practices.

This chapter covers
 Understanding Continuous Inspection

 Triggering your analysis with Continuous Integration

 Monitoring quality evolution
156

157Introducing Continuous Inspection
 Once you’ve automated your analysis, you’ll want to dig in to some of SonarQube’s
star features: differential views and version comparisons. In chapter 1, we touted
SonarQube’s ability to help you see not just a project’s current state, but its quality
evolution over time. Now it’s time to make good on that promise with differentials,
which we believe to be one of SonarQube’s most valuable features. You’ll see how to
check your projects’ progress—from day to day or version to version—and how to
configure differentials to meet your needs.

9.1 Introducing Continuous Inspection
Google the term Continuous Inspection, and you’ll notice that several of the top results
are related to SonarQube. What’s interesting is that although SonarQube dominates
the CI, it’s not a concept that originated with SonarSource. It seems to have started in
manufacturing, many years before SonarQube’s birth, and gradually taken root as a
software concept. At the time, CI for software was something you had to cobble
together yourself, laboriously adding to your build script each type of inspection you
wanted (style, bugs, duplications, and so on). But of course SonarQube rolls all those
inspections into one easy analysis, so it shouldn’t be surprising that in the last few
years, SonarQube has been recognized as a must-have tool for CI.

 But before we look at using SonarQube for CI, let’s examine some of the concepts
behind it to help make the big picture clearer.

9.1.1 What and how?

First, “What should you inspect?” The answer seems pretty clear: an application’s source
code. But what are you looking for? That’s where the Seven Axes of Quality—alternately
referred to as a developer’s Seven Deadly Sins—come in. They represent developers’
most common bad habits (copy and paste, poor unit-testing, dirty code, and more).
What you really want to do is keep an eye on what we covered in chapters 2 to 7.

 With Continuous Inspection in place, you should easily be able to answer these
questions:

 How much duplicate code was added last week?
 How well unit-tested are the files committed yesterday?
 Did we introduce any critical issues during the last iteration?

That might seem easier said than done, but with CI and SonarQube’s differentials,
answering is easy.

 To truly take advantage of a CI process, it should be a recurrent, automated activity
that doesn’t steal more than a few minutes (if any!) from your day. Once you set it up,
it should work without intervention, making fresh analysis results available on a regu-
lar basis, so that every morning you sit down to your cup of coffee and a fresh quality
analysis. The only thing you’ll still need to handle is your coffee preparation. (Sorry,
SonarQube’s not quite that good yet!)

158 CHAPTER 9 Continuous Inspection with SonarQube
 Effectively implementing Continuous Inspection presupposes a regular build pro-
cess—CI at best, but at least a nightly build. That’s what we’ll look at next.

9.1.2 Life before and after Continuous Inspection

To achieve Continuous Inspection, your best bet is to first implement a CI environ-
ment if you haven’t already. We’ll talk about your options in section 9.2. But first, let’s
look at the advantages of CI.

 In a traditional, pre-CI approach, developers check their changes in to the central
source control management (SCM) system and get other developers’ checked-in
changes—ideally, several times a day. Then, on occasion, the “build wizard” puts on
her wizard hat to manually perform a build. In this environment, changes—and
potential problems—can percolate for weeks or months before coming to the surface.

 Add a CI tool, and your build (compile, run unit tests, deploy, and so forth) is trig-
gered on a regular basis: automatically for every commit, or nightly if a build-per-
commit seems like too much. Problems come to the surface quickly, and the build wiz-
ard can retire the funny hat.

 To accomplish this, configure your CI server to poll your SCM at predefined inter-
vals (every few minutes, several times a day, and nightly are popular options), or set up
event handlers in your SCM to fire off a build for each commit event—literally have
the SCM push the commit event down to your CI system. Then instruct the CI tool to
run all required build steps (compile, run tests, deploy, and so forth), and you’re
done. Figure 9.1 shows what this system looks like.

 Our experience has shown that moving from manual to automated builds can be a
huge mental leap. If you aren’t familiar with CI practices, then you’re probably
shocked by the thought that your system would be built multiple times a day by a …
machine. But consider the advantages. First, you minimize the time it takes to create
your application’s executable. In fact, you don’t spend any time at all on it. It happens
regularly and automatically, which means you always have the latest ready-to-ship build
for testing, sales presentations, or beta evaluation. All unit tests are executed each

Check in your
clean code.

Get latest changes from
other team members.

Commit triggers build.

CI

SCM

Figure 9.1 Source code
management with a CI
server that pulls source
code changes and triggers
builds

159Introducing Continuous Inspection
time you build your system; and if something goes wrong, all team members are
immediately notified. No more dark arts to make sure everyone has committed all
their changes. You configure your build job once, and CI knows when to trigger it.

 Once CI is set up and humming, it’s time to invite SonarQube to join the game.
SonarQube integrates easily into most CI setups. You need to follow only two steps:

1 Decide how often you’d like to analyze your project.
2 Create a CI job that runs the analysis.

Figure 9.2 shows the system when you’re finished. What you see is a basic CI workflow.
As illustrated, SonarQube is triggered automatically by build jobs on the CI server.
When the analysis is complete, developers and other team members can get the latest
quality reports without worrying about manually triggering the analysis—in essence,
their check-ins did that for them.

 Now you have an idea of the details. Use CI tools to build your code base automati-
cally, and you can take advantage of that automation to add Continuous Inspection to
your system. But let’s back up and look at why you’d want to.

9.1.3 The big picture

CI addresses a unique challenge: to help you and your team track and reduce your
project’s technical debt on an ongoing basis.

 Financially speaking, debt is an obligation of a creditor to the debtor. For instance,
when you take a loan from a bank, you’re committed to make a monthly payment

Check in your
clean code.

Get latest changes from
other team members.

Get reports on
analysis results.

Commit triggers build.

Build triggers
SonarQube analysis.

Required/automatic

Optional/manual

SCM

Sonar-
Qube

CI

Figure 9.2 Source code management with
CI server and SonarQube. Build
automatically triggers SonarQube analysis.

160 CHAPTER 9 Continuous Inspection with SonarQube
until you cover the original amount plus the accrued interest. Usually, the loan is
repaid in a fixed period of time. Miss a payment, and the total amount you owe—the
debt—increases due to additional interest (and fees); thus you need more money to
meet your obligation.

 Similar principles apply to technical debt. The difference is that there is no initial
obligation. The debt starts to build when the first commit takes place, and it’s
increased every time you add new code to the project. It’s like when you get a new
credit card. On the first day, the balance is zero, but every purchase (commit) is a
charge to your card (technical debt) that eventually you’ll have to repay.

 But who is responsible for increasing your technical debt? Every duplicated line,
every new issue, and every file not covered by unit tests adds to your technical debt. If
you don’t take action to pay it down, your technical debt will grow quickly and eventu-
ally cost you much more effort—and money—later in the project.

 Technical debt comes in three flavors. As you can see, there is a straightforward
relationship between the types of technical debt and the Seven Axes of Quality:

 Code—Issues, duplications, and absence of commenting and documentation
 Design—Poor design, increased complexity, low cohesion and high coupling,

and architectural problems
 Testing—Low or no unit-test/integration-test coverage, and tests that are hard to

maintain

There are plenty of reasons to make charges against your credit card, just as there are
plenty of reasons why technical debt is added. And like paying your monthly credit
card bill, you know you should pay down your technical debt regularly. But there’s
always the temptation to avoid dealing with it: “Paying down technical debt will reduce
productivity and leave less time for new features.” In the short term, that may be true;
but by ignoring your debt, you’ll end up in a vicious cycle. As shown in figure 9.3, the
longer you avoid paying your technical debt, the harder it will be to maintain your sys-
tem, sending your productivity into a downward spiral.

 There is only one way to eliminate this deadlock: pay down your technical debt
continuously during the project’s lifetime. Make this your goal, and you’ll find Sonar-
Qube an invaluable tool for reaching it. The rest of this chapter shows you how. We’ll
start by automating SonarQube analysis with a CI server and then show you how to
track changes across time using differential views.

9.2 Triggering your analysis with CI
There are lots of CI servers out there—a dizzying array—but direct CI/SonarQube
integration is available for only a few: Jenkins and AnthillPro, both of which are free
and open source; and Atlassian Bamboo, a commercial offering. In this section, we’ll
look at the direct integration of Jenkins in depth and Atlassian Bamboo briefly.

161Triggering your analysis with CI
NOTE Even servers that don’t have direct integration can still be used to trig-
ger SonarQube analyses. It’s a matter of firing the proper command after the
build. The SonarQubeSource documentation offers advice at http://
mng.bz/43GI for doing that for three other popular servers: Apache Contin-
uum, CruiseControl, and JetBrains TeamCity. Even if your CI server isn’t one
of those three, the advice you’ll find at this site may be helpful.

If your team doesn’t currently have a CI server, you’ll need to pick one and set it up.
Our favorite is Jenkins. Unfortunately, we don’t have room here to show you how to
get it up and running, but the Jenkins community documentation can guide you
(http://jenkins-ci.org/). Like some of the other tools we’ve mentioned (and like
SonarQube itself), Jenkins is free, open source, and dependable. Plus, paid support is
available if you want it. It’s also the most popular open source CI tool because it can be
used with any programming language; and, last but not least, it’s easy to set up even
without previous experience.

 From this point on, we’ll assume you have a CI server up and running. The next
step is to set up a CI job. We’ll use Jenkins in our examples because, as we’ve men-
tioned, it’s a favorite—not just with us but generally. Basic knowledge of managing
Jenkins jobs isn’t required for this section, but it will help you better understand what
we’ll tell you.

New code
increases

technical debt.

No one
takes on

technical debt.

More time
needed to
implement

new features.

System becomes
difficult to
maintain. Figure 9.3 Not paying down

technical debt will make your system
hard to maintain and will eventually
decrease productivity.

http://mng.bz/43GI
http://mng.bz/43GI
http://jenkins-ci.org/

162 CHAPTER 9 Continuous Inspection with SonarQube
9.2.1 Jenkins setup

The procedure to integrate SonarQube with Jenkins is straightforward. It consists of
the following tasks in Jenkins:

1 Install the SonarQube Jenkins plugin.
2 Configure your SonarQube installation.
3 Configure SonarQube Runner.
4 Configure a job that triggers a SonarQube analysis. (If you’re dealing with a

Java or C# project, also make sure the job performs a build.)

Next, we’ll look at each of these steps in detail.

INSTALLING THE JENKINS PLUGIN

Before you start, double-check that both your SonarQube instance and your Jenkins
server are up and running, because you’ll need them during installation. Then, install
SonarQube’s Jenkins plugin.

 This can be easily done from the Jenkins update center. Point your browser to the
following URL: http://[yourJenkinsServer]:8080/pluginManager/available (if you
changed the port of the CI server, change the URL accordingly), or use the Jenkins
UI’s navigation by choosing Manage Jenkins in the left rail menu and then Manage
Plug-ins. Finally, click the Available tab to get a list of all available plugins. On this tab,
you can use the search filter at upper right to quickly filter Jenkins’ long list of plug-
ins, as shown in figure 9.4.

Learning about Jenkins
To learn more about Jenkins, you can download a free copy of John Fergusson
Smart’s Jenkins—The Definitive Guide (http://mng.bz/2dhG). If you’re in a Microsoft
house, Jenkins can handle your builds beautifully; but you might also look at the well-
written book Continuous Integration in .NET by Marcin Kawalerowicz and Craig Bernt-
son (Manning, 2011, www.manning.com/kawalerowicz/).

Figure 9.4 Installing SonarQube plugin
through Jenkins’ update center

http://mng.bz/2dhG
www.manning.com/kawalerowicz/

163Triggering your analysis with CI
Select the Install check box, and click Download Now and Install After Restart. (You
could click Install Without Restart, but the restart doesn’t work properly on some plat-
forms.) When Jenkins finishes downloading the plugin, you see a message similar to
what’s shown in figure 9.5. Restart your Jenkins installation to activate the plugin and
proceed with the configuration.

SETTING UP YOUR SONARQUBE INSTALLATION IN JENKINS

With the plugin installed, you’re ready to configure it with some server-level settings.
Start by choosing the Manage Jenkins link in the left rail. Then choose Configure Sys-
tem, and find the SonarQube section on the page. It will probably be toward the bot-
tom. Figure 9.6 shows what you’re looking for.

 You need to tell Jenkins about your SonarQube installation. Click the Add Sonar
button to add a few fields and some buttons to the page. Then click the Advanced but-
ton, and you’ll see a slew of additional fields as shown in figure 9.7. It’s time to fill
them in.

 First, give your SonarQube install a name. Skip the Disable field for now—it dis-
ables SonarQube for all jobs, no matter what. If Jenkins and SonarQube are running
on the same machine, and you haven’t changed SonarQube’s default port (9000),
then you can skip the next two properties (Server URL and Server Public URL). If not,
enter the proper values in these fields.

 Next you need to set up your database connection and configuration. Click the
Help icon (the question mark) next to the Database URL input text to see some URL
examples.

 After that, enter the credentials you selected when you created SonarQube’s data-
base user (see Appendix A for detailed instructions on installing and configuring
SonarQube). Finally, enter the database driver. Again, the Help icon will give you
examples for the most popular databases. Leave the last two properties empty.

Figure 9.5 When the plugin is
downloaded, you’re notified.

Figure 9.6 Adding a new
SonarQube installation in Jenkins

164 CHAPTER 9 Continuous Inspection with SonarQube
Now proceed to the triggering configuration. Figure 9.8 shows the available options.
We suggest that you leave all of them unchecked, because the setup we’ll recommend
later will require the analysis to be triggered by SCM changes.

 To finish the SonarQube plugin configuration, click the Apply button, not Save. If
you do click Save, return to the configuration page—you’re only half done. Next you
need to configure Jenkins’ SonarQube Runner.

CONFIGURING SONARQUBE RUNNER IN JENKINS

Find the SonarQube Runner section on the page, and click the Add Sonar Runner
button. As figure 9.9 shows, doing so again adds options to the page.

Figure 9.7 The SonarQube plugin’s available configuration options

Figure 9.8 SonarQube plugin: available triggering configuration options

165Triggering your analysis with CI
Give your installation a name; because it’s possible to have multiple instances of
SonarQube Runner installed on a Jenkins server, this will help you tell them apart.
Then, assuming you’re after the easiest route, select Install Automatically, and you’re
finished. Click Save.

 Now you’re ready to configure your job to run an analysis.

ENABLING SONARQUBE ANALYSIS IN A BUILD JOB

Create a new job (you’ll land automatically at its configuration page), or navigate to
the configuration page for the existing job that you’d like to use for analysis. Whether
you choose an existing job or set one up from scratch, make sure it includes a step to
compile your code if you’re dealing with Java or C#, because SonarQube performs
byte-code analysis for both languages.

 Now you’re ready to enable SonarQube in your job, but there are two ways to do
that, as figure 9.10 shows. First you’ll have to figure out which one to use.

Figure 9.9 Setting up a SonarQube Runner installation is easy. Click the Add button, name the
installation, and choose Install Automatically.

Figure 9.10 SonarQube analysis is available as either a build step or a post-build action, but the
only time you want to use the post-build option is for Maven projects.

166 CHAPTER 9 Continuous Inspection with SonarQube
The first option lets you trigger a SonarQube analysis as a build step. Unless you’re in
a Maven shop, this is the one you’ll use. The second option is a post-build action, and
it’s only appropriate for Maven projects. It’s available for all Jenkins jobs, even for
non-Maven projects; but if you use it on a non-Maven project, your build will always
fail (because you don’t have the right prerequisites in place). We’ll look first at the
build step option, which is shown in figure 9.11.

 If you have multiple JDKs configured in Jenkins, the JDK drop-down menu lets you
choose among them. Similarly, if you have multiple instances of SonarQube Runner
configured, you’ll see a Sonar Runner drop-down menu (it disappears if you have only
one SonarQube Runner instance). The next two inputs present an either/or proposi-
tion. If your project’s workspace includes a sonar-runner.properties file (whether it
goes by that name or not), provide its path—relative from the project root—in Path to
Project Properties. Otherwise, use the Project Properties field to enumerate your proj-
ect’s analysis properties. The final input, JVM Options, isn’t typically needed, but it
gives you the ability to pass additional JVM arguments to the analysis just in case.

 You’re done at this point. But before you click Save, be sure your SonarQube build
step comes after your job’s compile step (you can drag/drop steps to reorder them).

 The Maven-only, post-build option can be turned on by picking SonarQube from
the Add Post-Build Action menu. This gets you an all-defaults analysis. But if you need
more flexibility, clicking the Advanced button presents a host of options, as shown in
figure 9.12.

TIP It’s always a good idea to click the Advanced button whenever you see it
in Jenkins. Many interesting things may be hidden underneath, and the fact
that it’s not expanded by default doesn’t mean none of the values are filled in.

SonarQube uses the Branch and Language properties to specify a SCM branch or a
language other than Java. If you need more information about these properties, jump
to appendix B, which is about running and configuring a SonarQube analysis. The
Root POM field lets you specify where to find your pom file if it’s not in the standard
spot. The MAVEN_OPTS input lets you pass additional options into Maven for the anal-
ysis, such as -X to show debug logging. The Additional Properties field lets you define

Figure 9.11 Configuring standalone SonarQube Runner properties

167Triggering your analysis with CI
any additional properties that may be needed for the analysis. A valid input string
looks something like this:

-Pintegration-tests -Dappserver=tomcat -Ddatabase=mysql

Finally, you can override the global triggering configuration (those check boxes we
told you to skip in the server-level configuration) by selecting the relevant option and
adjusting the settings to fit your project needs.

 Whichever route you use to configure your analysis, when you’re done with the
configuration, be sure to click Save or Apply. The next time your job runs, you’ll see in
the console log that after Jenkins completes the build (your job does contain a com-
pile/build, right?), a new SonarQube analysis is triggered with the parameters you
configured.

 We’ve covered everything you need to know to integrate your Jenkins installation
with SonarQube, and you’ve seen how to enable quality analysis in build jobs. Next
we’ll give you an overview of SonarQube integration with other popular CI servers.

9.2.2 Other CI systems

In general, there are no plugins for other CI servers. The fact that Jenkins is dominant
has stopped development efforts on most other fronts—with one exception.

 Marvelution (https://marvelution.atlassian.net) offers a stable open source plugin
(https://marvelution.atlassian.net/browse/BAMSON) to integrate SonarQube with
the Bamboo CI server. Bamboo is a popular commercial CI and release-management

Figure 9.12 Advanced configuration for a SonarQube post-build action

https://marvelution.atlassian.net
https://marvelution.atlassian.net/browse/BAMSON

168 CHAPTER 9 Continuous Inspection with SonarQube
system. It’s developed by Atlassian (www.atlassian.com/software/bamboo) with lots of
features and great integration with other Atlassian products such as JIRA and Conflu-
ence. Marvelution’s web site offers user administration guides; so if you’re already
using Bamboo, take a serious look at the Marvelution plugin and open the door to the
advantages of Continuous Inspection with SonarQube.

9.2.3 Best practices

So far, we’ve shown you how to automate your SonarQube analysis through a CI envi-
ronment. But we think the puzzle is missing a piece. Usually, CI builds are triggered
after every change of the source control files or at predefined time intervals (every few
minutes or a couple times a day).

 Because it’s fair to assume that a programmer normally commits small code
changes 3 or 4 times a day, on a medium-sized project with 5 developers that means
the CI server builds the system 15 to 20 times a day. You do want your SonarQube anal-
ysis to run regularly, but 20 times a day is too often. Analyzing after each commit is
overkill because frequent, small commits mean there are few changes in the source
code and the analysis results may not change. For one thing, there’s the system load
consideration. The cycles required to run an analysis are usually well worth it, but it
does take a while to run an analysis; and if it isn’t going to show you anything new, why
not save those resources?

 Plus, you’ll see when we look at differentials in the next section that running an
analysis that you know isn’t likely to include any changes is counterproductive.

 So how often you should run SonarQube? Remember the following rule:

Analyze once or twice a day but only if there are changes in the source control repository.

Following this rule is easier than it may seem. For projects that build on a CI basis—
after every commit—you split the analysis job off from the build job and run it nightly.
(Okay, it isn’t truly Continuous Inspection, but regular or perhaps continual inspection.
Even if we have to waffle on the words, it’s still incredibly valuable.) For projects that
only build on a nightly basis—or a couple times a day at most—you integrate analysis
into the main build job. Then Jenkins makes it easy to trigger the job (set it up to run)
only when your cronned poll of the SCM indicates code changes.

 Because we’ve told you to be choosy about when you analyze, you may be wondering
whether you should restrict what you analyze. Should you include integration, accep-
tance, or performance tests? Should you analyze only the main language of your proj-
ect, or all of them? Again, the answer’s simple: make your analysis as broad as you can.

 As an example, consider a typical JEE web application. The persistence layer, the
business logic, and part of the user interaction logic are written in Java. The web inter-
face may be developed with JSF pages using XHTML templates and plenty of
JavaScript. Plus several modules include XML processing. So there are four different
kinds of source to analyze.

 If each language is segregated into a different module of a multimodule project,
then you’re in luck: SonarQube handles this automatically. But even if the lines in

www.atlassian.com/software/bamboo

169Monitoring quality evolution
your project aren’t so cleanly drawn, you can still handle this easily. Set up a separate
build step for each language (if it’s a Maven project, use the post-build action for the
main language and build steps for the rest). Make sure you set the language property
appropriately for each run and differentiate the runs by either using the branch prop-
erty or setting a different project ID for each one.

 Once you’ve finished configuring your build jobs, your SonarQube analysis should
be fully automated. You’ll have good, fresh data rolling in all the time. Now we’ll move
on to differentials, which help you take full advantage of your regular analysis by let-
ting you easily compare the current state to a previous analysis.

9.3 Monitoring quality evolution
Let’s say you’ve presented SonarQube to your boss and she’s excited about it. Now she
wants you to measure the test coverage of a critical system for the next couple months
and verify that it’s trending in the right direction.

 You’re thrilled that she’s buying in, so you scoot back to your desk to check the
project dashboard. Great Scott! Last night’s CI analysis shows that your project is more
than 75% covered by tests! Thrilled, you make a note of the number and head out to
lunch.

 A few days later, you check the dashboard again. Testing coverage is around 72%.
You’re glad to see it so high, but you can’t find the note with the previous number, so
you can’t tell your boss if coverage is increasing or not. This time you’ll be sure to put
the note in a more secure place.

 Fortunately, there’s a better way: SonarQube’s differential views.

9.3.1 Exploring differential views in the project dashboard

To start working with differential views, go to the dashboard of a project you’ve ana-
lyzed at least twice (preferably on two different days). At the top of the screen is the
Differential drop-down menu, as shown in figure 9.13.

 If you’re following along on your own instance of SonarQube, you’ve probably
noticed that the options in your drop-down menu are different than what’s shown in
figure 9.13. And that’s the power of this service. You can fully customize what you see
in the drop-down menu at the global and project levels. We’ll show you how in a min-
ute, but first let’s see what happens when you select a value in the drop-down list. Try
picking the first option, which should be ∆ Since Previous Analysis (Some date), and
notice how the widgets change when the page reloads, as shown in figure 9.14.

NOTE The reports you see when you select a period, say ∆ Over 5 days, don’t
change dynamically. Go a few days without analyzing, and what you’re looking
at will be the change over eight days—that is, five-day results that are three
days stale. You’ll need to analyze each day to see different numbers day by day.

170 CHAPTER 9 Continuous Inspection with SonarQube
If you take a closer look at the dashboard you’ll notice that all the trending arrows
have been replaced by colored (red, green, or black) numbers in parentheses. Fur-
thermore, two widgets (issues and unit-testing coverage) have been enriched with new
metrics. Let’s examine them step by step.

Figure 9.13 The Differential drop-down menu in the project’s dashboard

Figure 9.14 Picking an option from the
Differential drop-down list changes the widgets.

171Monitoring quality evolution
THE MEANING OF COLORED NUMBERS

At the right of each metric is a number showing the difference between the latest anal-
ysis and the snapshot analysis you selected in the Differential drop-down menu. We’ve
said before that SonarQube uses colored trend arrows—green for good and red for
bad. When you’re in differential mode, the same applies to the numbers that replace
the trend arrows. Good changes are green, bad are red, and value-neutral are black.

 Look at the comments and duplications widget in figure 9.15. In this case, the den-
sity of comments has decreased from 7.0% to 6.9%, so in SonarQube, the difference is
colored red. Similarly, there are 33 new duplicated lines and 3 new duplicated blocks
of code. They negatively affect the quality of the project, so they’re shown in red.

 On the other hand, two of the documentation metrics have improved, so their ∆ val-
ues are shown in green. Looking at your own dashboard, you’ll see that color has noth-
ing to do with whether the value of the change is a negative or positive number—it’s all
about whether the metric is improving or deteriorating. This means metrics with no
change and metrics that don’t affect the quality of the project, such as duplications
files and lines of comments in our example, are shown in black.

NEW METRICS IN THE UNIT-TESTING WIDGET

In addition to using the same red/green coloring for differential values, the unit-
testing widget adds metrics in differential mode. But to activate the feature, you need
to install and configure the SCM Activity plugin we discussed in chapter 2.

 Once you’ve done that, differential mode adds a new section to the lower left of
the unit-testing widget, as shown in figure 9.16. It’s titled On New Code, and it shows
the three coverage metrics for code added in the comparison period.

Figure 9.15 Colored numbers
indicate improvement,
deterioration, or no impact on
quality analysis.

Figure 9.16
Unit-testing widget
when a differential
view is enabled

172 CHAPTER 9 Continuous Inspection with SonarQube
Our experience has shown that monitoring this section regularly and politely nagging
developers who’ve checked in fresh and untested code keep an application’s overall
code coverage at the highest levels. In other words, Continuous Inspection (and cor-
rection) works!

NEW METRICS IN THE ISSUES WIDGET

The issues widget also adds metrics in differential mode. Just below the total number
of issues, you can see how many issues were added and removed in the comparison
period, as shown in figure 9.17.

 Look again at the differential numbers, and you may notice that the differential
values on the right (for Blockers, Criticals, and so on) don’t add up to the Added and
Removed values on the left. That’s because the numbers on the right are net changes
and the ones on the left are gross values. But sum each set, and the numbers should
match: (323 -326) = (-7 -2 +12 -6) = -3.

 So far, we’ve looked at differentials on the dashboard, but they extend into some
drilldowns as well. Next, we’ll drill into issues while in differential mode.

9.3.2 Differential views in the issues drilldown

The issues drilldown you saw in chapter 2 had a few extra features compared to other
drilldowns: severity and rule lists. It offers one more plus by honoring differentials
too, letting you examine how many issues for each severity, rule, and so on have been
added in a differential period, as shown in figure 9.18.

Figure 9.17 The rules compliance (issues) widget when a differential view is enabled

Figure 9.18 Issues widget when a differential view is enabled

173Monitoring quality evolution
Only new issues are shown here; existing issues are omitted. And don’t look for any
green in this differential view—it only shows added issues, not issues that were
removed.

9.3.3 Differential views in the source code viewer

Click any filename to reach the Issues tab of file detail view. When you do so in differ-
ential mode, the header changes slightly, again to show only new issues, as shown in
figure 9.19. This feature is available only when you have the SCM Activity plugin
installed and enabled for the current project.

 To decide which issues to show in differential mode, SonarQube applies an
algorithm.

 If there was an issue with the same rule, then it checks for the following:

 The issues have the same line number.
 The issues have the same line hash.
 The issues have the same message.

If at least two conditions are true, the issue is considered old; otherwise it’s marked as
new and displayed in the differential drilldown. As we’ve hinted, differentials aren’t
available on all tabs—just Issues, Coverage, and Source. Yes, you can use differentials
to see which lines of code have been added in the comparison period!

9.3.4 Choosing differential periods

When we first showed you the differential drop-down menu, it held some values that
probably don’t match what’s in your drop-down menu. For starters, our drop-down
menu had five periods and yours probably has three, if it’s a new SonarQube installa-
tion. Plus, some of our periods were different than yours. Well, now it’s time to talk
about those differences. As you’ve seen, you can put up to five values in the drop-
down menu. Chapters 14 and 15 will show you how to change those values. Here we’ll
talk about what you might want to change them to.

 The first three are set at the global level and will be the same for all projects, unless
you explicitly override them at the project level. By default, the three global periods
point to the previous analysis, 5 days ago, and 30 days ago. At the project level, you can
add two more periods for each project. The periods are named (not surprisingly)
Period1 through Period5.

Figure 9.19 The Issues tab in the source
code viewer shows only new issues when a
differential view is selected.

174 CHAPTER 9 Continuous Inspection with SonarQube
 SonarQube offers the following ways to define a threshold period:

 Use the string “previous_analysis” to compare the latest analysis with previous
one.

 Set an integer number of days before the current analysis. Note that this can
yield approximate results. SonarQube finds the first available snapshot analysis
inside the date range. So if there’s not a snapshot that’s exactly five days old,
you’ll get a comparison against a four-day-old or three-day-old snapshot.

 Predefine a date in yyyy-MM-dd format. SonarQube finds the first available snap-
shot analysis in the date range.

 Use the string “previous_version” to compare the latest analysis with the previ-
ous project version (corresponding to the last time you changed your project’s
sonar.projectVersion analysis property).

There is no “right” definition for these periods, but here are some tips based on our
experience:

 Keep “previous_analysis” as the first period.
 Decide how frequently you’ll inspect your analysis results, and define corre-

sponding periods by specifying numbers of days. For instance, we bump the
default 5-day period up to 7 days so we can check week over week; and a 30-day
period would give you a month-over-month comparison.

 Define a “previous_version” threshold, either on a global or (preferably) a proj-
ect level.

Earlier we said that you could set your differential periods to specific dates, but we
warned that you’d want to read up on events first (see chapter 15). That’s because any
snapshot that doesn’t have an event flagged against it is subject to being deleted during
housekeeping. If you do decide to set your differentials to dates—say January 1 each
year—you’ll want to not only run a starting-point analysis that day but also make sure
those analyses are marked with events. Because you can set version or other events ret-
roactively through SonarQube’s interface, they’re probably the best options to use.

 Once you make your changes, the drop-down menu text changes immediately to
reflect them, but remember that under the covers, those text values still correspond to
Period1, Period2, and so on. This means that if you adjust Period2 to be seven days
instead of five and immediately check your dashboard to see the seven-day differen-
tial, you’ll be disappointed. Differential modes look dynamic, but they’re not. So you
won’t see a seven-day differential until after your next analysis.

 But there is a way to satisfy—at least partially—the immediate urge to see the dif-
ference between one version of an application and another. And that’s next.

9.3.5 The Compare service

Filed under the Tools menu in the left rail, you’ll find Compare. It appears at both the
global and project levels and leads to an interface that allows you to put the metrics

175Related plugins
for specific project versions side by side for comparison. Access it from the project
level, and it’s automatically populated with up to six of that project’s most recent ver-
sions, as shown in figure 9.20.

 The Compare service doesn’t do the math for you, like differentials, so you have to
figure out for yourself whether code coverage increased or decreased from version to
version. But unlike differentials, it lets you do ad hoc comparisons on a whim—in a
project or across multiple projects.

 By default, Compare shows a basic set of metrics, but you can easily add metrics to
or remove them from the list. You can also easily reorder both the metrics and the
projects—just mouse over the labels to reveal those controls.

 At this point, you’ve plumbed the depths of Continuous Inspection and quality-
evolution monitoring through differentials and version comparisons. Now we’ll close
the chapter, as we usually do, with an overview of related plugins.

9.4 Related plugins
A couple of plugins related to CI and inspection offer related metrics and utilities.
Let’s look at the advantages of adding them to your process.

9.4.1 Cutoff

Have you ever wanted quality reports on just the code changes made last month?
Unless you happen to have tagged your repository a month ago, it seems like an
impossible task. Try to figure it out manually and you’d need weeks.

 And that’s where the Cutoff plugin comes in. At both the global and project levels,
it lets you define either a specific date, like 1/1/2013, or a cutoff period, such as 60

Figure 9.20 The Compare tool lets you compare selected metrics from multiple versions—of the same project
or different ones!

176 CHAPTER 9 Continuous Inspection with SonarQube
days, and it tells SonarQube to ignore files that haven’t been touched since then. It’s
especially useful for teams that maintain legacy systems and want to focus only on
their own changes—not what was written years ago by long-gone developers. It lets
them define the date they picked up maintaining the system, and it narrows Sonar-
Qube’s reporting to just the files they’re interested in.

 You need to be aware of a couple of things with this plugin. If both the date and
period are defined, the period is ignored in favor of the date. Also, it relies on the sys-
tem date. So, double-check that your system date is correctly set before you run a new
analysis with a date threshold. Furthermore, checking in minor changes to an “old”
file resets its date, meaning that all its legacy issues are included to your “only new”
analysis.

9.4.2 Build Breaker

The Build Breaker plugin is a simple yet useful plugin with a sole purpose: to break
the CI build when new alerts are raised during an analysis.

 We haven’t spent a lot of time yet on alerts, but the basic concept is that you can
define warning and error thresholds on specific metrics. When a project’s value
crosses the threshold, SonarQube raises an alert, and the Build Breaker plugin lets
you take advantage of your CI server’s notification mechanisms to raise a hue and cry.
That means you need to set some alerts (covered in chapter 13) to take full advantage
of this plugin.

 As an example, assume that you want to be notified if your duplications rise over
2%. All you have to do is to install this plugin and create an alert in the project’s qual-
ity profile. Then, if your threshold is hit during an analysis, the Build Breaker plugin
returns an error status to the CI server, and the build is marked as failed, as shown in
figure 9.21.

 The beauty of this integration is that, assuming you’ve configured your CI server to
send notifications (emails, instant messages, and so on) for build failures, whenever
an alert is raised on the SonarQube side, all team members are automatically notified
by the CI engine, eliminating the need for manually visiting SonarQube to check for

Figure 9.21 CI log output when analyzing SonarQube with the Build Breaker plugin enabled

177Summary
new alerts. Even better, because this plugin is installed on the SonarQube side rather
than in your CI server, it can be used with any CI server that respects a subprocess’s
return code.

9.5 Summary
This chapter was a real workout! First we looked at why CI and Continuous Inspection
should play an important role in your development process. You saw that automating
your project analysis is the basic foundation to apply Continuous Inspection.

 Thanks to some free plugins, SonarQube smoothly cooperates with the most popu-
lar CI servers: Jenkins, AnthillPro, and Bamboo. You saw how to install and configure
SonarQube integration for Jenkins and how to trigger analysis in a build job—includ-
ing multiple languages. Best practices say that you’ll set this up in a job that only runs
once a day or so.

 But there’s no real Continuous Inspection if you can’t monitor specifically how
your source code quality is changing, so next we looked at SonarQube’s differentials,
which give you details on the changes since a given point in time. Differential views,
which are fully customizable on both the global and project levels, allow you to com-
pare the current quality status with predefined thresholds—up to five of them—such
as the latest build, latest version, or a custom date. All SonarQube’s core widgets take
advantage of this service by showing the differences between the current analysis and
the selected period. Further, a couple of them (issues and unit testing) even add new
metrics in differential mode.

 You also saw the Compare tool, which gives you the ability to compare any two proj-
ect versions (even any two projects) on an ad hoc basis. Good differentials require a
little planning, but you can run the comparison tool on a whim.

 Closing this chapter, we showed you some plugins that either extend the differen-
tial views feature (Cutoff) or improve integration with CI servers (Build Breaker).

 Now you know how to continuously track what’s going right—or wrong—in your
project. In the next chapter, we’ll look at the tools SonarQube offers to help you man-
age your code reviews.

Letting SonarQube
drive code reviews
In this chapter, we’ll talk about how to use SonarQube in a code review, one of the
most loved/hated, revered/maligned duties of a coding team that (almost) never
gets done. There are a lot of reasons for skipping code reviews, among them that
there’s no starting place or that people will feel picked on. But centering your code
review around SonarQube can alleviate or eliminate many of the classic excuses. It
will also help you organize and manage your code-quality efforts through issue con-
firmation, commenting, assignment, and severity adjustment. When you find the
occasional dud issue (it happens once in a while), we’ll show you how to handle it
without tossing the baby out with the bathwater.

 Once your issues are commented and assigned, you’ll want to keep track of
them. SonarQube provides three mechanisms: email, search, and a dashboard.

This chapter covers
 Reviewing code in SonarQube

 Creating manual issues: when the rules aren’t enough

 Tracking issues

 Planning your work with SonarQube’s action plans
178

179Reviewing code in SonarQube
Beyond that, there’s also the ability to group issues and schedule them into action
plans. After we’ve shown you everything SonarQube has to offer on the subject, we’ll
finish with a discussion of the fundamental reasons to have code reviews. Reasons that
address the growth and development of your team members. Reasons that existed
before SonarQube came along and that will remain long after you’ve paid down all
your technical debt (yes, it will happen eventually!).

 We’ll talk about those reasons, and we’ll tell you how we’ve seen effective code
reviews structured to achieve the goals of giving developers a safe place to talk about
code—whether it’s what they did yesterday that they’re proud of, what they did yester-
day that maybe they shouldn’t be proud of, or what they would like to get the team on
board for doing tomorrow.

 The excuses for skipping code reviews are as varied and colorful as the people
making them, but like taking the time to buckle your seatbelt, you don’t have time not
to have code reviews. With SonarQube on board, you’ll find them both painless and
productive.

10.1 Reviewing code in SonarQube
Let’s say a coworker installed SonarQube on the spare box under her desk before the
last sprint. She’s been feeding it code ever since, and now that you’re between sprints
again, she’s showing you the project’s SonarQube dashboard. If your team is typical,
you’re staggered by the number of issues alone, not to mention the number of dupli-
cated blocks. And you don’t even want to think about the complexity scores.

 You may be tempted to shoot the messenger, but you’d be better off scheduling a
code review. Not the kind where two developers sit down one-on-one to go over what
one of them has just done, but the other kind, where everyone is in a room together
(literally or virtually). It’s a semiformal meeting with a public agenda, and it’s what
we’ll focus on here. It can be held with or without SonarQube; but with SonarQube
will be a lot better than without, because as good as it is at finding problems, Sonar-
Qube is about more than just showing you what you’ve done wrong. It also provides a
platform for managing solutions.

 There are many ways to run code reviews and many ways you can use the solution-
management tools SonarQube provides. Using the two together (SonarQube’s tools
in the context of a code review) makes a particularly effective combination, so that’s
the context we’ll use to explore what SonarQube offers.

10.1.1 Issues: a starting point

One of the common reasons people give for avoiding code reviews is that there’s no
good starting point. Navigate to the SonarQube issues drilldown, and you’re likely to
find that this is no longer the case, as figure 10.1 shows.

 In the issues drilldown, most teams are presented with a wealth of options for pick-
ing a starting point. The obvious choice is the highest issue severity with a non-zero

180 CHAPTER 10 Letting SonarQube drive code reviews
count (Critical, for the project shown in figure 10.1), but some might want to start
in the worst package, or in the single class with the most issues.

 Whatever you choose, drill down until you’re looking at issues. In each issue
block, you see the issue title, a little extra detail on the issue, and, if you’re logged
in, a row of links, as shown in figure 10.2.

Figure 10.1 Arriving at the issues drilldown from the left-hand menu (not visible here) shows you all issues in
all classes and all packages.

Figure 10.2 SonarQube does more than show you what the problem is. If you’re logged in, it also gives you links
to workflow functions at the bottom of each issue block that let you actively manage the problem.

181Reviewing code in SonarQube
Sometimes it’s not obvious to every member of the team why an issue was flagged, or
why it’s considered an issue. Even when the problem is obvious, it’s not always clear
how to fix it. Clicking the issue title here adds a little more information in line: the rule
description. Sometimes it’s detailed and helpful, as with the one shown in figure 10.3.
Other times, it’s only a slightly longer restatement of the issue title (for those cases,
chapter 14 will show you how to augment the description to make it more helpful).

 Once everyone on the team understands an issue, you’ll probably want to do some-
thing about it. At the very least, you’d probably like to mark it as reviewed, and maybe
annotate it with the outcome of your team discussions. This is where the last line of
the issue block comes into play. Each link there is a workflow option. For each issue,
you can use SonarQube’s workflow to track the notes and decisions the team makes
about an issue.

10.1.2 Confirm, comment, and assign: the simplest workflow options

The first three workflow options are simple, both to understand and to use: confirma-
tion, commenting, and assignment. The simplest option is confirmation. You use this
once an issue has been evaluated and you’re sure it actually is a problem. (For the
cases where you can’t confirm an issue, you may want to use the false-positive option,
which we’ll cover later.) The ability to confirm issues is particularly useful when you’re
dealing with a legacy application with a large backlog of technical debt. You can’t
address every issue right away, but at least you can keep track of your progress as you
work through evaluating your technical debt. Using it couldn’t be simpler: click the
Confirm link. There will be a blink, and when you look again, the text will have
changed to Unconfirm.

 Of course, once you’ve taken the time to understand an issue in its context, you
may want to do more than simply confirm it. You may want to annotate it with your
findings. That’s where the comment function comes in. It’s almost as easy to use as
Confirm. To start, click an issue’s Comment link, and you’ll see a text box added to
the interface. When you submit the comment dialog, your comments will appear at
the bottom of the issue block in a running log. Figure 10.4 shows both the before and
after, with the comment dialog on top and the result at the bottom.

Figure 10.3 Clicking the title of an issue adds more detail in line. Sometimes the information it offers
is helpful. Other times it’s just a longer version of the issue title.

182 CHAPTER 10 Letting SonarQube drive code reviews
You can comment on an issue as many times as you like, and each comment is added
to the bottom of the log. If you’re the author of a comment, you can edit or delete it.

 If you’re browsing through SonarQube by yourself, you might use a comment to
start a discussion. In a group setting, comments are often used in a “this needs further
investigation” kind of scenario. What you don’t want to do is make comments in Sonar-
Qube that have lasting value to the code base; those belong in the code. When it’s time
to move beyond simple confirmation and commenting, you can assign an issue to any
SonarQube user (we’ll talk about setting up user accounts in chapter 12). To do so,
click Assign in the issue block. Figure 10.5 shows the assignment form and results.

 Once an issue is assigned, the name of the assignee is shown in the workflow line,
and the workflow option changes from Assign to Assigned To, followed by the name of
the assignee. Issue assignments appear not just on the issue itself but also in the Issues
dashboard and listings covered later in this chapter. They’re also viewable to the
assignee through the Eclipse integration discussed in chapter 11, where you can not
only see the issue in context but also do something about it!

 Don’t think an assignment is a permanent sentence. If priorities or workloads
change, it’s easy to reassign or un-assign issues. To do either, reopen the Assign dialog
by clicking Assigned To and submit it using the Assign button with either a new name
or no name at all in the Name field.

Figure 10.4 You can make as many comments as you like on an issue. They’re shown in a running log.

183Reviewing code in SonarQube
10.1.3 False positives: sometimes SonarQube gets it wrong

As you and your team work through the issues in your project, you may find some
cases where SonarQube (or the rules engines it runs) just plain gets it wrong. Before
you start to lose confidence in the system, know that this kind of thing doesn’t happen
often. There are certain situations that the rules engines aren’t yet sophisticated
enough to evaluate properly. But in the vast majority of cases, the things that are
flagged in SonarQube as potential problems actually are problems.

 The code shown in figure 10.6 is flagged as violating the Preserve Stack Trace rule
because it catches one issue and throws a new one. What the rule engine missed is that
the stack track of the original issue is explicitly preserved in line 1619.

 That means the issue in figure 10.6 is a false positive. When you find one of these,
SonarQube gives you a handy way to take care of it, but it’s a mechanism you’ll want
to use sparingly. The False-Positive link tucked under the More Actions menu at the

Figure 10.5 The assignment form lets you assign
the cleanup of an issue to any user SonarQube
recognizes or auto-assign it to yourself.

Figure 10.6 SonarQube sometimes flags code that complies with the rules.

184 CHAPTER 10 Letting SonarQube drive code reviews
bottom of the issue block flips the issue status to False Positive. The issue marker stays
on the page until you browse to another file, but the next time you come back to this
file, the issue will be gone. (It’s still in the database; you just won’t see it by default
anymore.)

 There’s no automatic opportunity to comment when you mark an issue false posi-
tive, but we highly recommend that you follow (or precede) any use of the false-
positive function with a comment. A brief note about why you think it’s a false positive
will go a long way toward making your thinking clear to anyone who comes after you.
Don’t be afraid to be wordy. The more detail you give, the more your colleagues can
see your reasoning and trust your judgment, and the less likely it is that you’ll be
tracked down to explain in person.

 Commenting on false positives is particularly important when the line of code that
saves an issue—the one that makes it a false positive—is different from the line of
code flagged with the issue. In the example in figure 10.6, line 1619 saves the issue.
But figure 10.7 shows what happens after an edit and subsequent reanalysis.

NOTE Marking an issue as a false positive makes SonarQube blind to that par-
ticular rule on that particular line until the line changes.

 Originally, the issue in figure 10.6 was saved by setting the root cause from the orig-
inal exception into the new exception. Remember, the code originally looked like
this:

} catch (PrivilegedActionException pae){
 IllegalArgumentException iae =
 new IllegalArgumentException(location);
 iae.initCause(pae.getException());
 throw iae;
}

Figure 10.7 Once an issue is flagged as a false positive, SonarQube won’t re-report
that issue as long as the flagged line hasn’t changed.

This “saving” line
disappeared

This line was flagged
with the issue

185Reviewing code in SonarQube
But by the time you reach the state shown in figure 10.7, edits to the file have removed
that call. This is no longer a false positive.

 Unfortunately, the line flagged with the false-positive issue hasn’t changed, so
SonarQube won’t re-raise the issue. This implies two things:

 You should use the false-positive mechanism sparingly.
 You should review your false positives occasionally to make sure they haven’t

reverted.

Fortunately, there are a few saving graces in this situation. Because SonarQube always
records the “who” and the “when” of any action performed on an issue (more on this
soon), you know whom to ask about this particular false positive. And because the
reviewer commented, there is some record of what she was thinking at the time.

 Unfortunately, her comments didn’t contain quite enough detail, because what’s
now on line 1619 certainly isn’t the preservation of the stack trace. On the face of it, it
looks as though the reviewer was either fogged by cold medicine or temporarily
insane when she marked this as a false positive. Based on the issue’s time stamp and
the source control logs, she should be able to prove her sanity. But if her comments
had been just a little more detailed, she wouldn’t have to.

 The final thing to consider in this situation is how the whole mess could have been
avoided. Often SonarQube presents you with things you may see as no big deal. The
situation shown here in its original state is obviously one of them. In this case, the easy
way out was taken. The issue was marked as a false positive. But there was another way
to address the question.

 Recall that the flagged code originally looked like this:

} catch (PrivilegedActionException pae){

 IllegalArgumentException iae =

 new IllegalArgumentException(location);

 iae.initCause(pae.getException());

 throw iae;

A tidier way to handle the problem would have been to use the IllegalArgument-
Constructor that accepts both a Throwable and a String. Here’s the new version of
the problem code:

} catch (PrivilegedActionException pae){
 IllegalArgumentException iae =
 new IllegalArgumentException(location, pae.getException());
 throw iae;}

Because in the new version the original exception is passed in to the constructor, the
rules engine is satisfied that the stack trace will be preserved, and the issue goes away
entirely.

 It’s slightly more work but far closer to bulletproof.

This line preserves
the stack trace…

…but this line is flagged
with a Preserve Stack Trace
issue anyway

Original exception
passed in to
constructor

186 CHAPTER 10 Letting SonarQube drive code reviews
10.1.4 Changing severity: not every issue is that bad

After full-out false positives, the next point of wiggle room is issues that aren’t as bad
as SonarQube makes out. For instance, the Boolean Expression Complexity rule
checks the number of clauses in conditionals and flags anything with more than three.
By default, it’s a Major.

 Imagine that your teammate, Joe, has checked in some changes that got flagged
with (among other things) Boolean Expression Complexity. The rule’s threshold is set
to three. Joe’s code has four.

 Susan thinks you should just mark it false positive and move on, but after team dis-
cussion, you all agree that it could (and should) be simplified. You also agree that it’s
not of Major importance. This is where Change Severity comes in. You’ll find it under
the More Actions menu. Choose it, and a Severity drop-down will be added to the
workflow area as shown in figure 10.8.

 After you submit the dialog, the severity in the issue block is updated immediately,
but the change won’t appear anywhere else in the interface until after the next analysis.

10.1.5 Altering the code to make SonarQube turn a blind eye

In dealing with issues, SonarQube gives you one final tool: the //NOSONAR comment.
SonarQube will almost completely ignore issues on any line that ends with //NOSONAR.

Figure 10.8 Look for the Change Severity option under More Actions. The dialog that’s added presents a severity
drop-down and a comment input. Once you submit the form, SonarQube confirms your severity change by
immediately showing the new severity in the issue block.

187Reviewing code in SonarQube
Why would you want that? If you deal with multiple code branches, it may be easier to
hide a false positive from SonarQube with //NOSONAR, rather than having to mark the
false positive in every branch you’ve got under analysis. Another reason is that some-
times there are cases where you must violate a rule. For instance, there are (poorly
written?) libraries whose methods throw Exception itself, the raw, generic type,
rather than some subtype. To use those libraries you must either catch Exception,
which SonarQube flags as an issue, or rethrow it, also an issue.

 When you find yourself in this situation, you could mark the issue as a false positive.
That would certainly clear it out of your dashboard. The only problem is that it’s not a
false positive. You actually are catching or rethrowing Exception.

 You could try ignoring it, but experience shows that that doesn’t work well. So
the next best option is to end the line that SonarQube marks with the issue with the
//NOSONAR comment. Best practices here say that after //NOSONAR, you’ll end the
line with the reason you’re having SonarQube ignore issues.

 If you’re coding in Java or C#, the languages that are analyzed partly with Sonar-
Qube-native code and partly with other rules engines, you may also have the option of
using engine-specific markup to hide some issues from SonarQube. For instance, the
PMD rule engine for Java recognizes a //NOPMD comment, which has an effect similar
to the //NOSONAR comment, but it’s limited in scope to just PMD. Because SonarQube
uses PMD for some of its rule checking, if PMD can’t see an issue, SonarQube won’t see
it either. Similarly, Findbugs and FxCop offer method-level annotations and attributes
to turn off specific rules for that method. Again, if the rule engine can’t see an issue, it
won’t be reported to SonarQube.

 One more tool is available for Java: the @SuppressWarnings annotation, used at
either the method or class level. You specify either "all" or specific rule keys, for
usages like this:

@SuppressWarnings("all")
@SuppressWarnings("rule_key")
@SuppressWarnings({"rule_key","another_rule_key","and_so_on"})

Note that these aren’t changes you can make from the SonarQube interface. You must
return to your IDE to add this markup, then rerun analysis to see it take effect. If
you’re using the //NOSONAR comment, be aware that SonarQube will henceforth
ignore all issues on that line, not just the one it’s currently flagging. So this is another
powerful tool that should be used with a light hand.

NOTE Use //NOSONAR sparingly because it makes SonarQube ignore all issues
on a line.

Earlier we said that the //NOSONAR comment makes SonarQube almost completely
ignore issues on the commented line. There is one rule available, although it isn’t
included in any of the provided profiles, which counts instances of //NOSONAR. Its
default severity is Info, and it gives you a way to track these uses. See chapter 13 for a
discussion of rule profile management. All the methods in this section will suppress

188 CHAPTER 10 Letting SonarQube drive code reviews
issue detection, but the //NOSONAR comment is the only one that’s easily trackable, so
it’s the one we prefer.

10.1.6 Viewing the audit trail

We mentioned earlier that SonarQube records every action performed on an issue.
Now it’s time to show you how to find that audit trail. You may have noticed that
SonarQube displays each issue’s approximate age in the top line of the issue block.
Click the age, and you’ll see everything that has happened to the issue since it first
appeared in SonarQube, as shown in figure 10.9.

10.2 Creating manual issues: when the rules aren’t enough
SonarQube gives you a number of mechanisms to manage the code issues it finds. As
good as they are, the tools that SonarQube uses to find anti-patterns in your code will
never cover all the bases. Even if they did, you’d probably still find that you wanted to
use SonarQube’s issue mechanism to track things that don’t break coding rules, like
duplications you’ve decided to target for immediate elimination, or parts of the API
that need commenting, or just everyday refactoring.

 Because the SonarQube issue mechanism allows you to track work on your code
base almost directly in your code base, it has a compelling immediacy—the kind that
makes you want more. That’s why SonarQube lets you create manual issues.

10.2.1 Why you would want extra issues

Returning to our imaginary code review, it’s progressing nicely. You’ve worked
through a good number of your top-severity issues, and the team is starting to settle
into it when you stumble across a method signature that looks like this:

public String removeFromInventory(String userId, Date requestDate,
 String departmentId, String organizationId, String itemId, int qty,
 String reason, float price, int discountPercentage);

Once the team finishes discussing the benefits of request objects versus long tangles of
arguments, you all agree that this should be addressed. You’ve gotten into the swing of

Figure 10.9 Tucked under the issue age, so it doesn’t clutter the interface by default, is the issue’s
audit trail. Here you can see what actions have been performed on an issue, when, and by whom.

189Creating manual issues: when the rules aren’t enough
assigning issues and would like to do that here. But…it doesn’t break a rule. There is
no issue to assign.

 Fortunately, SonarQube allows you to mark your own issues on the fly. These home-
grown issues will appear in all the same places and act in all the same ways as the auto-
matically generated ones. Beyond that, they also give you the ability to manage some-
thing else: your test code. You won’t see SonarQube automatically flag issues on your
unit tests, but you can create manual issues on them. So with manual issues, you have
the flexibility to manage all your quality concerns through the same mechanisms.

10.2.2 Making manual issues

To begin marking manual issues, you’ll first need manual rules. SonarQube adminis-
trators can create them through the Manual Rules management screen (Settings >
Configuration > Manual Rules), which is shown in figure 10.10.

 Enter the name of your new rule and its description, and click Create. Once the
rules are in place, anyone who can use the issue workflow functions can create a man-
ual issue. The way to start is by clicking the plus sign that pops into the left column as
you mouse over code. Figure 10.11 points it out. When you do, a familiar-looking form
is added to the interface, as shown in figure 10.12.

 In the manual issue form, the rule and comment are required. Once this form is
submitted, you’ve got a new issue that looks and acts just like any other; you can per-
form all the additional workflow functions you’d like on a manual issue.

Figure 10.10 Manual rules consist of a name, and a description, which is used in the pop-up
you get when you click the rule title in an issue block.

Figure 10.11 To get started with a manual issue, click the plus sign that seems to
follow your mouse in the left column of views that show code.

190 CHAPTER 10 Letting SonarQube drive code reviews
10.3 Tracking issues
Now that you’ve confirmed, commented, severity-adjusted, and assigned out all those
issues, you might be wondering how you’re going to keep track of them all without hav-
ing to re-find each one in the issues drilldown every time you have a question about it.
Fortunately, SonarQube provides three mechanisms for keeping an eye on issues.

 The first mechanism is your inbox. Individual users can choose to be notified by
email of changes to issues they created or which are assigned to them. It’s off by
default, but turning it on is pretty simple. Choose Configuration from the top bar,
then My Profile in the left rail, and turn this option on under Notifications.

 The other two tracking mechanisms are the public interfaces that this section cov-
ers. At the global level, there’s a cross-project issue search; and at the project level,
there’s a dashboard that’s dedicated to issues.

10.3.1 Life cycle of an issue

Before we go any further, it’s useful to understand the life cycle of an issue. There are
five possible statuses in the life of an issue: open, confirmed, resolved, reopened, and
closed. Issues that are open, confirmed, or reopened are considered active. Issues that
are resolved or closed are inactive. Figure 10.13 shows the status transition diagram
for issues.

 Basically, once opened, an issue can only be closed by SonarQube. That happens
when a subsequent analysis shows that the underlying cause has been eliminated. In
the meantime, a developer might mark an issue as resolved (using the Resolve work-
flow option in the More Actions menu or via the IDE integration we’ll discuss in chap-
ter 11), indicating a belief that he has fixed the problem. If he’s right, the next
analysis will close the issue. If not, it’s reopened. If you notice before the next analysis

Figure 10.12 The manual issue form lets you choose the rule to use and requires you to fill in a comment. Once
entered, manual issues looks just like their “automatic” siblings.

191Tracking issues
that your resolve-happy developer is wrong about his fix, you have the option of manu-
ally reopening the issue.

 Inactive issues have one of three resolutions: false positive, fixed, or removed.
Fixed issues are ones that have either been marked resolved, or ones that have been
closed by SonarQube. Removed issues are ones associated with a rule that’s no longer
in the profile the project was last analyzed with. There is one exception to the issue
life cycle you’ve just seen: manual issues.

MANUAL ISSUES

Manual issues are never closed. SonarQube relies on its underlying rules engines to
tell it when an issue has gone away: when to close an issue. But because a manual
issue wasn’t raised by a rules engine, no rules engine can put it to rest, as shown in
figure 10.14.

 The best that can happen is that you (or the assigned developer) manually resolve
the issue, just as you manually created it. Like other issues, it can also be manually

Confirmed

Developer marks
issue as resolved.

Developer marks
issue as resolved.

Analysis shows the
problem remains.

Reopened

Resolved

Closed

Open

Manual
Automatic Analysis shows the

problem is fixed.

A person, not
SonarQube, revokes
the resolved status.

Figure 10.13 The status-transition diagram for most issues

Reopened

Resolved

Open

Manual
Automatic

Figure 10.14 Manual issues are never closed because there’s no rules engine that can
“rule” on them.

192 CHAPTER 10 Letting SonarQube drive code reviews
reopened. The upshot is that if you decide to use manual issues, you may need to do a
little extra policing to keep your projects tidy.

ISSUES DASHBOARD

We mentioned earlier that SonarQube provides two levels of visibility into issues in
aggregate: the project level and globally, across projects. At the project level, you can
use the Issues link in the left rail to reach the Issues dashboard. Whereas the main
dashboard is dedicated to helping you track your project’s quality metrics, this dash-
board is devoted to tracking your work on improving those metrics.

UNRESOLVED ISSUES BY STATUS WIDGET
The first is the unresolved issues by status widget, which is shown in figure 10.15. This
widget gives an overview of active issues: basically, the work left to be done. You can
click-through on any of the numbers to be taken to a list of the relevant issues.

 Some of the widgets on this dashboard update as you make changes to issues, but
this particular one doesn’t. The numbers in this widget are considered metrics, and
metrics are updated only during an analysis. So don’t be alarmed if you work through
reviewing a big batch of issues only to see these numbers unchanged when you check
the Issues dashboard. SonarQube hasn’t lost your changes; it just hasn’t updated yet.

UNRESOLVED ISSUES PER ASSIGNEE

The unresolved issues per assignee widget gives issue assignment counts per devel-
oper. Click-through on a developer’s name to see a list of the particular issues assigned
to her. These numbers are updated on a live basis, not during analysis.

MY UNRESOLVED ISSUES
The my unresolved issues widget shows a live list of issues. This time you get issue
severity, title, and age. Figure 10.16 shows the widget.

 This paginated widget is limited by default to five issues per page, but that number
is configurable. See chapter 14 for more detail. You can click-through on the issue
title to see an issue summary much like what you get in-line in the issues drilldown, as
shown in figure 10.17.

 Almost universally throughout the SonarQube interface, you can click the title of
an issue to get this pop-up. The one exception is in the issues drilldown, where you’re

Figure 10.15 The unresolved issues by status
widget gives an overview of all active issues.

193Tracking issues
basically already looking at this presentation. There the “issue title” is actually the title
of the rule the issue breaks. In that context, clicking the title adds detail about the
rule to the issue block, as you saw earlier.

Figure 10.16 The my unresolved issues widget shows issue severity, title, last modified
date, and most recent comment on the first five issues assigned to the logged-in user.

Figure 10.17 Clicking the title of an issue displays an issue summary presentation very like what you
see in the issues drilldown. It doesn’t pop up in a new window, but rather as an overlay in the current
page. You can close it using either the Escape key or the close button at lower-right on the screen.

194 CHAPTER 10 Letting SonarQube drive code reviews
10.3.2 Tracking squashed issues

Earlier in this chapter, we looked at three different ways to hide or moderate an issue
other than fixing it: marking it as false positive, changing the severity, or hiding it alto-
gether with the //NOSONAR comment. Each of these methods is powerful and poten-
tially dangerous, and ought to be monitored. Fortunately, the tools exist to do that.

FALSE-POSITIVES WIDGET

The false-positives widget, which is already on your Issues dashboard, is nearly identi-
cal to the my unresolved issues widget. It tracks what you would expect—false posi-
tives—and gives you a quick way to drill down to the details.

 For the other two methods, you have to install plugins and add their widgets to
your dashboard. Neither of those operations is hard, and the results are worth the
effort.

TAGLIST WIDGET

The taglist widget allows you to track instances of the //NOSONAR and //TODO comments.
 The //NOSONAR comment you’ve seen. The //TODO comment reminds the devel-

oper that more needs to be done in some area of the code. Some IDEs automatically
insert //TODOs into auto-generated methods; and because most Java IDEs offer TODO-
list tracking, some coders use it manually to set reminders.

 You have to add a rule to your profile for each of these tags. Once you do that and
add the widget to your dashboard, your next analysis should show you something sim-
ilar to figure 10.18.

 The taglist widget offers click-throughs to the files that hold the flagged com-
ments. Drill down here, and you land at the file’s source view, where you can use your
browser’s find functionality to jump to the comment of interest. Or, because you had
to turn on issues to be able to make these counts, you could click over to the file’s
Issues view and use the issues drop-down menu to zip right to the comments you’d
like to see, as shown in figure 10.19.

MANUAL SEVERITY WIDGET

The manual severity widget is one of the widgets offered in the Widget Lab plugin. To
use it, install the plugin and add the widget to your dashboard. It immediately begins
showing any issues where the issue severity was adjusted.

Figure 10.18 The taglist widget
tracks //NOSONAR and //TODO
comments, offering click-throughs
to the files involved.

195Tracking issues
It looks much like the other issues widgets you’ve seen, with one exception. Instead of
showing just the issue’s current severity, it shows both the original and current severi-
ties, as shown in figure 10.20. At no other place in the SonarQube interface can you
see the original severity of an adjusted issue, or even get an indication that the severity
was adjusted.

10.3.3 Searching issues

From the Issues dashboard, you can easily track the active issues in a project and keep
an eye on the squashed issues. But if you want to see issues across projects, or non-
active issues, you’ll need to use the issue search.

 To run a search, start from the Issues link in SonarQube’s top menu bar. The
search interface lets you choose which project to search in, which severities to show,
and which statuses and resolutions to search against. You can also choose to search by
creator and assignee.

 The Project, Assignee, and Reporter fields work as type-ahead user lists, just like in
the assign interface. Once your results are shown, you can again click an issue title to
get to the issue detail pop-up. Now you can find all your issues, but how do you man-
age them? We’ll look at that next, with action plans.

Figure 10.19 The taglist widget’s underlying mechanism is a pair of issues, so you can either search the Source
view for the relevant comment or flip over to the Issues view and use the drop-down menu to see the flagged
comments.

Figure 10.20 The manual severity widget shows both current and original severities.

196 CHAPTER 10 Letting SonarQube drive code reviews
10.4 Planning your work with SonarQube’s action plans
Most teams are faced with hundreds, if not thousands, of issues after an initial Sonar-
Qube analysis. Obviously, you’d like to fix them all. And ideally it would be done yes-
terday, but that’s not practical. SonarQube’s action plans help you structure the work.

10.4.1 Why bother with action plans?

Let’s return briefly to our code review scenario. You walked out of your first code
review feeling pretty good about what the group accomplished. You worked through
reviewing and assigning quite a few issues, and as a bonus, you caught some things
that SonarQube didn’t flag but that need work anyway.

 Now, as you start week two’s code review, there’s grumbling. Most people didn’t
have time to work on all the issues they were assigned last week, and you’re going to
assign more? Plus, the commits over the past week introduced new issues, and some
folks are saying that eradicating them should be top priority, while others say you
should concentrate on the legacy Blockers first. To head off a full-scale war, you
decide to take a different tack and create some SonarQube action plans. Then you
can decide as a team which new issues to fix immediately and which you’ll need to live
with for a while.

 SonarQube’s action plans allow you to group your issues and segment the work
into phases, with the option of a due date per phase. Once the issues are grouped,
action plans also help you track progress.

 You can link assigned or unassigned issues to an action plan, so this week the team
agrees to skip the assignments and use the code review meeting to pick which issues to
link to the Phase 1 action plan. Then anyone who has free time next week can use the
action plan like a job jar and grab something out of it to work on. When they do,
they’ll have permissions to assign the issues to themselves, so there shouldn’t be any
frustration about two people working on the same issue at one time.

10.4.2 Managing action plans

Before you can assign issues to an action plan, you need to create it. This requires
project administration rights and isn’t something that can be done on the fly.

 Start from the Action Plans link in the Configuration menu. Figure 10.21 shows
SonarQube’s action-plan management interface.

 The action-plan metadata is simple: a name and, optionally, a description and due
date. Each of those three elements is editable, and the edit mechanism is startlingly
simple. Click the Edit link for an action plan, and the Create form becomes an Edit
form with the plan in question prefilled. This is worth mentioning because it happens
without a page reload. So if you’re not watching, you could sit around for a while wait-
ing for your edit form to render, like we did the first few times.

197Planning your work with SonarQube’s action plans
Once you have issues linked to a plan, which we’ll cover in a minute, issue totals and a
colored progress bar appear in the Progress column, as shown in figure 10.22. Both
the issue totals and the progress bar are linked to lists of relevant issues.

10.4.3 Using action plans

Now that you’ve created your action plans, you can begin assigning issues to them.
You’ve probably already noticed the Plan option in the workflow section of the issues
block. Choose it, and you’re given the ability to pick the action plan to assign. After
you’ve linked the issue to a plan, the plan name is added to the issue block, as shown
in figure 10.23.

Figure 10.21 The management interface for action plans presents a list of existing action plans on the left and
an action-plan creation form on the right.

Figure 10.22 When you link issues to an action plan, a colored progress bar is added to
the interface. The progress bar and accompanying issue totals are linked to lists of the
relevant issues.

198 CHAPTER 10 Letting SonarQube drive code reviews
Plan assignments aren’t irrevocable: you can choose a different plan at any time. Alter-
nately, if you want to un-plan an issue, go back to the Plan interface and click the
Unplan button that’s added to the form when the issue has already been planned.

10.4.4 Tracking action plans

Once you’ve assigned a few issues to action plans, go back to the Issues dashboard,
and you’ll see that SonarQube helps you track plan progress with the open action
plans widget. The widget, shown in figure 10.24, displays a progress bar for each
action plan. The More link goes to action-plan administration and appears only if you
have plan administration rights.

10.5 Structuring a code review
We’ve spent quite a bit of time on how to make the most of SonarQube in the context
of a group code review. But if you’re not already holding regular code reviews, it may
feel like we’ve put the cart before the horse. If your team doesn’t make a habit of sit-

Figure 10.23 Once your action plans are created, you can assign issues from the More Actions menu
in the issues block. Choose the plan to use, and optionally add a comment.

199Structuring a code review
ting down together to discuss code as a group, then you may be wondering how to
bootstrap the process. Good code reviews can result in better cohesiveness both
among team members and within the code base, but they require a little planning.
Next we’ll give you the optimal answers to the basics: why, who, when, where, and how.

10.5.1 Why: talking about code

First and foremost, code reviews are important because they may be the only time your
team has to sit down together and talk about the code. If your team is geographically
diverse, then you may already be aware that more group time is needed on the code.
On the other hand, if your team sits together, you may think there’s plenty of time to
talk—folks sure seem to talk about weekends and spouses and sports over the cube
wall. But while folks are talking about those things—and that chatter is more impor-
tant than you may think for team relationships—they’re not talking about the code.

 Even when they’re talking about code, it’s probably only in pairs or small subsets of
the team as a whole. And in those conversations, information is being conveyed, or
decisions are being made, that the rest of the team may not be privy to—even when
they should be.

 Setting time aside to talk about the code lets your team come together on things
like these:

 How to tackle thorny problems in the code
 How the code is structured and where to find things
 Whether and how the structure should change
 The best ways to address major new requirements
 How to address technical debt

There are good reasons to do code reviews, but you’ll also hear a number of reasons
not to do them:

 We don’t have time.
 They’re boring.
 We just end up arguing about style.

Figure 10.24 The open action plans widget gives you an at-a-glance status of all your open
action plans, with links to lists of the relevant issues.

200 CHAPTER 10 Letting SonarQube drive code reviews
 There’s no need—we don’t have anything to talk about.
 There’s no starting point but to open a file at random and see if we find

problems.
 People will feel picked on.
 People will feel left out.

The list could go on, but you get the point. As you’re probably aware by now, many of
these things can be addressed directly by SonarQube. The rest can be handled with a
little planning and structure.

10.5.2 Who

For a code review to be truly effective, every coder on the team should be included
and involved. If no one works remotely, this should be fairly easy to arrange. But if
your team is geographically diverse, you’ll want to pull in the remote workers via
phone and web conferencing.

 You want all the programmers in the room, but the folks you don’t necessarily
need there are the managers. This may not go over well—especially when the code-
review concept is still new. In that case, let the managers in, but ask them to remain
inconspicuous. Remember, code reviews are a place for the coders to talk about code,
and not everyone is comfortable speaking up in front of management.

 Not only that, but it won’t take many iterations of having to explain low-level tech-
nical details to managers who haven’t coded since punchcards to sap all the energy
from the room. Make them justify every technical decision, and many coders will go so
quiet that the Moon would seem noisy.

 But that brings up another point. If the managers are locked out, who’s running the
meeting? Code review should be run by one of the team’s senior developers. If there’s
a choice, the optimal pick is the one who’s both even-tempered and experienced at run-
ning meetings. If you can only have one of those things, go for even-tempered.

10.5.3 When

Code reviews should be held regularly. An hour once a week is a good interval, but
depending on how your team works, you may find that once or twice per sprint is best
for you. The main thing is to develop the habit and stick to it—even after you’ve
cleaned up all your issues in SonarQube, eliminated your duplications, and simplified
your complexity.

10.5.4 Where

It’s important to emphasize that a code review meeting is just that—a meeting. And
like a formal meeting, it should be held in a conference room or some other place
that’s separate from the normal routine. Unless your team is only two or three people,
just having everyone pause at their desks and join the conversation guarantees that
you’ll lose someone to a phone call or IM or the piece of code she was interrupted on
that’s frankly more interesting than one more boring meeting.

201Structuring a code review
 Ideally your conference room is equipped with a door and a speaker phone (if you
have folks who work remotely). Another key piece of equipment is a projector. Rather
than having each person follow along on his or her laptop, you should project what
you’re talking about onto the wall to help keep attention focused on the group’s topic
and minimize distractions like email.

10.5.5 How

Code reviews should be run with enough formality that people respect the process,
but not so much that interesting discussion is squashed. What that seems to boil down
to is that you publish a minimal agenda beforehand and keep minutes as you go
along. You may wonder why we’re advising you to keep minutes when SonarQube
offers such great mechanisms for making notes on code. There are definitely some
decisions you’ll want to use the SonarQube issue workflow to record, but others
belong in higher-level documents. Not every decision the team makes can or should
tie to an issue. For instance, sometimes you’ll discuss sweeping questions that
shouldn’t be tacked to a single file.

 Your agenda and minutes should be posted publicly and available to everyone on
the team. In this case, “everyone” does include management—they’ll feel better once
they see from the minutes that you’re being productive and talking about code rather
than gaming or plotting against them. A wiki is a great place to handle these formali-
ties. You can easily set up templates, and everyone can make contributions or correc-
tions, with changes tracked automatically.

 In general, a good code-review agenda consists of a few fixed items, such as review-
ing the action items from the last meeting and the changes in SonarQube since then,
plus time for the discussion topic queue.

 The discussion topic queue is a rolling list of code-review topics that anyone on the
team can add to. When the poster’s topic rolls around, he has the stage. The kinds of
things that end up on a queue like this vary widely, from “Cancel button on the left or
right?” to “Demo & Proposal—JSR 303 Bean validation.” Neither end of the spectrum
is more important than the other, and each item deserves serious consideration for
several reasons:

 It’s important—at some level—to someone on the team.
 Open discussion gets all views aired.
 Agreement here leads to consistency across the team and the code base.

The last point to consider in structuring how your meetings will run is the occasional
need to call on the one in the corner. You know, the coder who does great work but
who would be just as happy never to open her mouth. Be sure to call on her occasion-
ally during the discussion. Nothing too formal, just “Sam, what do you think?”

 Once she sees that no one’s going to bite her head off or laugh in her face, she
may be more inclined to speak up on her own. And then, when you schedule her onto
the agenda to show what she’s been working on (you know she’ll never schedule her-
self), speaking to the group is that tiny bit easier because she’s done it before.

202 CHAPTER 10 Letting SonarQube drive code reviews
 By the way, just because you need to provide both an agenda and meeting minutes,
that doesn’t mean you can’t satisfy both requirements with one document. Start with a
rudimentary agenda with the fixed items and the discussion topics you think you’ll get
to, and then edit it during the meeting to show who attended, which topics were cov-
ered, and any decisions that came out of the discussion. File it by date afterward, and
when the meeting’s over, you’re done except for carrying out your action items.

 As the team (and management) gets more comfortable with the process, you
might decide to boil some of the formality away, dropping the agenda and minutes. If
you decide to do that, we urge you to retain the discussion topic queue so everyone on
the team has the opportunity to contribute and to know what’s coming from the rest
of the team.

10.6 Related plugins
Usually, at this point in the chapter, we tell you about the available plugins that relate
to the chapter’s topic. In this case, we’ve already discussed two of the three relevant
plugins in the chapter itself, so we’ll keep the treatment of them brief. We’ll start with
the one you haven’t seen yet, the JIRA plugin.

10.6.1 JIRA

If you use the JIRA issue-tracking system, then you’ll be excited to know that this
plugin offers two significant points of integration between SonarQube and JIRA. The
first is the ability to track your issue counts as project metrics. With each analysis, this
plugin logs in to your JIRA instance to retrieve issue counts by priority. They’re shown
in the widget provided by the plugin (shown in figure 10.25).

 The other integration point, and the reason it’s included in this chapter, is the
ability to create a JIRA issue ticket for an issue from the More Actions workflow menu,
as figure 10.26 shows.

 The comments you enter are used both as issue comments and in the text of the
JIRA issue. The SonarQube issue and the JIRA issue contain references to each other
for easy cross navigation, but that’s where the relationship ends. Resolving the issue
won’t have any effect on the issue or vice versa.

10.6.2 Taglist

We’ve already mentioned the taglist plugin. It gives you a way to track and count com-
ments. Here we’ll go into the details that we omitted earlier. Typically, the comments

Figure 10.25 The JIRA widget shows your project’s issue counts, both in
aggregate and by priority.

203Related plugins
you want to track are //NOSONAR and perhaps //TODO comments, although you’re not
limited to those two.

 Once you’ve installed the plugin and added the taglist widget to your dashboard,
you also need to turn on two rules: the “Avoid use of //NOSONAR marker” rule, which
comes from SonarQube; and the Checkstyle rule engine’s “Comment pattern
matcher.” You can have as many instances as you like of this particular rule, each one
looking for a different comment; chapter 13 will show you how to make those copies.
Figure 10.27 shows two variations: the expected TODO matcher and one that looks for
TESTER comments.

Figure 10.26 Once you’ve installed and configured the JIRA plugin, look under More Actions to find the option
to add a JIRA ticket from SonarQube. When you submit, you’ll see a link to the ticket in the issue comment.

Figure 10.27 You can have as many copies of the “Comment pattern
matcher” rule as you like. The taglist widget displays them all.

204 CHAPTER 10 Letting SonarQube drive code reviews
Keep in mind that by setting up rules, you use the issue mechanism to track the com-
ments of interest. The examples in figure 10.27 are set up to flag comments at the low-
est possible issue level, Info, but you could flag them at any severity.

 With your rules set up, all that’s left is to run a new analysis. When it’s done, you’ll
see something like figure 10.28 in the dashboard.

 The last thing to know is that the taglist widget makes a distinction between man-
datory and optional tags; the difference is the severity the rule was set to. In figure
10.32, all the TESTER and TODO comments appear as optional tags because we set them
to create Info-level issues. But issues of a rule that’s set to Blocker or Critical would be
registered as mandatory tags.

10.6.3 Widget Lab

The Widget Lab plugin offers a small suite of additional widgets, including a widget to
show instances where an issue’s severity has been manually adjusted. SonarQube
keeps track of manual severity adjustments internally, but it doesn’t offer any built-in
way to find those issues or to see what the severity was originally. Widget Lab’s manual
severity widget gives dashboard-level visibility into downgraded or upgraded issues,
showing both an adjusted issue’s original severity and its current severity.

10.7 Summary
Regular code reviews can enhance your team’s effectiveness and cohesion. Using
SonarQube’s workflow and action-plan mechanisms in a code review can make code
reviews an even more effective tool for managing and paying down technical debt.
SonarQube’s workflows allow you to attach a running comment log to an issue. They
also provide a mechanism to confirm an issue, and assign it to a SonarQube user.
There are three ways to moderate an existing issue: flag it as a false positive, change
the severity, or add a //NOSONAR comment to the end of the flagged line.

 The manual issue mechanism lets you flag code problems that SonarQube doesn’t
(such as the need to restructure a method). Once a manual issue has been created, it
can be managed and tracked in the same way as any other issue. SonarQube’s action
plans allow you to group issues and monitor progress. And SonarQube provides a
project-level Issues dashboard, for quick oversight of issues and action plans. The
global issues search allows you to search issues across projects.

 Now that we’ve given code reviews thorough coverage, we’ll turn next to what hap-
pens after a code review. In chapter 11, we’ll examine what happens when you sit back
down to work on what you were assigned in code review: that is, we’ll look at Sonar-
Qube’s IDE integration.

Figure 10.28 The pie in the taglist
widget has a section for each relevant
rule you’ve activated: one for the
NOSONAR rule, and one for each instance
of the Comment pattern matcher rule.

IDE integration
Rules that show you what’s wrong and rule descriptions that point you in the right
direction for fixing the problems can help green developers become good develop-
ers, and good developers become even better. SonarQube gives you both.

 But with SonarQube in place, your code quality is visible. Mistakes are no longer
private or anonymous—the SCM Activity plugin pastes your ID next to each line of
code like a billboard. Now there’s team and even management focus on mistakes.

 Of course, visibility into code quality is supposed to be a good thing.
Co-ownership of the code and team spirit (agile practices) should focus on get-
ting things done, not on placing blame. After all, issues aren’t for pointing the
finger but for increasing software quality. In the best situations, that’s exactly what
happens: each issue is a teaching opportunity. But in other situations, the atten-
tion SonarQube brings to code quality isn’t always positive.

This chapter covers
 What’s supported

 Setting up Eclipse

 Working your assigned issues

 Running a local analysis
205

206 CHAPTER 11 IDE integration
 It’s been likened to cruising down a highway and suddenly finding yourself in a
lazy little speed trap of a town. Sure, SonarQube posts the speed limit; but if you don’t
know how fast you’re going until after the cop tells you what speed he clocked you
at—after the next analysis runs—well, it can seem a little unfair.

 That’s especially true because most developers—most good developers—are pas-
sionate about good code. Tell us ahead of time what the problems are, and we’ll get
them fixed. Embarrass us with them later, and we’ll get … resentful.

 Fortunately, IDE integration offers a solution by allowing you to check your code
the same way SonarQube will before you check it in. But in the world of SonarQube
IDE integration, there are definitely first- and second-class passengers. If you work in
Eclipse, then welcome to first class. Would you like a glass of champagne before we
take off? If you spend your days in some other IDE, you still get to board the plane
(we’ll look at what’s available to you), but your flight won’t be as comfortable.

 In this chapter, we’ll look at both classes and show you what’s available to each.
First-class passengers will see how to set up SonarQube’s plugin for Eclipse and start
making the most of it with issue management and local issue scanning. For those not
traveling in first class today, we’ll discuss how to pull the rules in your profile out of
SonarQube for import into your IDE of choice.

 If you’re not an Eclipse user, and you’re jealous because you wish you had access to
the same level of integration, consider this: Eclipse is free and open source and sup-
ports development in a number of the same languages that SonarQube can analyze,
including (but not limited to) C/C++, C#, Cobol, Flex, JavaScript, JSP, PHP, PL/SQL,
Python, Natural, XML, and of course Java.

 If you’re not yet convinced to try switching environments, you might also like to
know that the trend has been for the SonarSource folks to migrate language plugins
away from third-party rules engines to native, SonarQube-only ones. So, the ability to
pull your SonarQube rules into other IDEs and run them without SonarQube may even-
tually disappear.

11.1 What’s supported
As the weekly code review ends, Susan looks down the table. “Okay Joe, how’d you do
it?” He nearly suppresses a tiny smirk. “Do what?”

 Susan laughs. “Come on, don’t B.S. me. I got spanked this week for adding three
issues in last night’s build and forgetting to clean up one of the old issues assigned to
me. Usually you’re the goat, but you didn’t add a single issue this week and you han-
dled all the ones you were assigned. You must have a trick.”

 Joe considers. “I shouldn’t tell you for a few more weeks. I like being the golden
child for once.” At Susan’s look, he hurries on: “But, because I owe you … I installed
that Eclipse plugin.”

 She smirks. “I didn’t know there was a plugin for the Easy button.”
 “Har. No, seriously, the SonarQube a plugin. It lets me prescan my code before I

check it in so I can make sure I’m not adding new issues.”
 Susan’s eyebrows rise. “That sure would have helped me yesterday.”

207What’s supported
 “Yeah, and I can see all the issues assigned to me right there in Eclipse. For each
one, I get everything I see in SonarQube, plus I can double-click an issue to jump
straight to the code. And once I’m done, I can set the issue to Resolved without having
to open a browser.”

 As Susan and Joe head back to their desks, her voice floats back. “Huh. Looks like
there might be more than one golden child next week.”

 Susan and Joe can take full advantage of SonarQube from within their IDE because
their team uses Eclipse; but as we’ve said, there are two flavors of IDE integration:
Eclipse and everything else. We’ll spend most of this chapter on Eclipse, but first let’s
look at what everyone else gets. (Eclipse users may want to skip ahead to section
11.1.2, “Eclipse support.”)

11.1.1 Generic support

Assuming your IDE has integration with the source code analysis engine(s) that Sonar-
Qube uses for your language of choice, then the integration you get is the ability to
check your code against the same rules SonarQube will use before you check it in. To
do that, you have to pull those rules into your IDE manually. On the SonarQube side,
that starts from the description widget on your project’s dashboard, which shows the
profile it’s analyzed against, as shown in figure 11.1.

Figure 11.1 The description widget provides some of the static vitals of a project,
including which profile it’s analyzed with.

208 CHAPTER 11 IDE integration
Click-through on the profile name, and you’ll find yourself at the profile’s list of rules.
Select the Permalinks tab, as shown in figure 11.2.

 On this tab is a link for every rule engine relevant to the language—whether or not
it’s used in the profile. Each one leads to a list in XML format of the rules from that
engine that are in the profile. Once you have your lists of rules, the mechanics of
importing them into your IDE obviously vary from editor to editor, but it’s possible to
do in many popular IDEs (including Visual Studio, NetBeans, and IntelliJ IDEA). Typi-
cally this is done by adding a plugin for the rule engine to your IDE and then using the
plugin’s management options to import the XML rule set.

 After you import your rules, whether scans are triggered automatically or manually
depends on what’s offered by your IDE. But at least you can double-check yourself
before committing your code changes. Just keep in mind that you won’t be running
any SonarQube-native rules, and you’ll need to reimport if your rule set changes. If
those restrictions are too confining, then you may want to take advantage of the Issues
Report plugin, which we’ll detail at the end of the chapter. It doesn’t integrate with
any IDEs, but it does give you the ability to run local scans against your full rule set—
without the need to keep a local copy of the rules in sync with the server.

11.1.2 Eclipse support

If you’re working in Eclipse, SonarQube integration is a lot easier and more richly fea-
tured for you than for everyone else. You have to trigger scans manually, but you don’t
have to manually import the rule sets. Instead, they’re pulled from SonarQube as part
of the scan. There’s no need to notice when your profile has changed and reimport

Figure 11.2 Each profile makes its lists of rules available as XML documents: one for each
rules engine and one for the profile as a whole.

209What’s supported
the rules, because that happens automatically. SonarQube integration helps you bring
your code quality efforts full circle.

 It’s not just a one-way trip from your IDE through source-code management and
continuous integration into SonarQube. Now you can pull what SonarQube has to say
directly into your IDE, completing the cycle, as shown in figure 11.3.

 Once you’ve closed the circle, in addition to being able to pull up a list of issues for
a project, package, or file, you also get a SonarQube issue tree in the markers view and
a warning in the problems view for each issue, as well as a marginal marker for each
issue. If you’re working in Java, you’ll notice that some of the native Eclipse warnings
duplicate SonarQube rules. For an unused method, for instance, you get both a
SonarQube issue marker and an Eclipse warning. If the duplication bothers you, you
can turn off the Eclipse warnings at the project level (right-click the project in the
Package or Project Explorer, and choose Properties) or globally (Window > Prefer-
ences). You’ll find the warning settings under Java > Compiler > Errors/Warnings.

 In addition to displaying the issues on your code as you work, SonarQube integra-
tion also closes the circle with issue-management functionality. You can view your
assigned issues, comment on them, and mark them resolved.

Check in your
clean code.

Local analysis
(includes pulling
rules from server)

Comment on your
issues or update
them to Resolved.

Metrics and
new issues

Fixed issues
 updated to
 Closed

Commit
triggers build

Build triggers
SonarQube
analysis

Code review
generates more
assignments.

Required/automatic

Optional/manual

SCM

Sonar-
Qube

CI
™

Figure 11.3 The SonarQube plugin for Eclipse helps you close the circle of
code quality. It gives you local visibility into existing issues in the files you’re
working on, helps you manage your issue assignments, and lets you prescan
your code changes for issues.

210 CHAPTER 11 IDE integration
11.2 Setting up Eclipse integration
The SonarQube integration for Eclipse is pretty nice, but before you can use it, you’ll
need to set it up. There are four steps:

1 Install the SonarQube plugin for Eclipse.
2 Configure your SonarQube server.
3 Link your workspace project to the copy on SonarQube.
4 Add the SonarQube views to your current perspective.

None of the steps is hard, and, assuming you have a decent internet connection, they
shouldn’t take long.

11.2.1 Installing the plugin

Eclipse makes plugin installation in general fairly painless. The most important thing
to know for any plugin is the URL of its update site. In this case, it’s http://dist.sonar-
ide.codehaus.org/eclipse.

 With the URL for the update site in hand (or on the clipboard), go to the Help menu
and choose Install New Software. You’ll get a dialog like the one shown in figure 11.4.

Figure 11.4 Eclipse plugin installation starts with the URL of a download site. From there, Eclipse takes over,
checking dependencies, retrieving all the pieces, and getting your agreement to the appropriate licenses.

http://dist.sonar-ide.codehaus.org/eclipse
http://dist.sonar-ide.codehaus.org/eclipse

211Setting up Eclipse integration
Enter the URL in the first field, and press Enter. Eclipse checks the site and recursively
fetches the list of downloads for the plugin. Alternately, choose Help > Eclipse Market-
place. Search for Sonar, and, once the plugin is found in the Marketplace, click its
Install button.

NOTE We mentioned earlier in this book that SonarQube used to be called
Sonar. Similarly, SonarQube’s issues used to be called violations. This chapter
was last revised when that transition was incomplete. Those name changes
were made at the server but not yet in Eclipse. That’s why you’ll see refer-
ences in this chapter to Sonar and violations. Please treat them as synonyms for
SonarQube and issues.

Installation via either avenue is remarkably similar from this point. In the list of plugin
components, select the components you want, including those needed for the lan-
guages you’d like to analyze in Eclipse plus any optional components you’re inter-
ested in. Once you’ve picked all your components, click Next. On the next screen, you
have a chance to review a granular list of downloads. Click Next again, and you’re
asked to agree to the components’ licenses. After you do, the downloads begin.

 Note that it’s common to get security warnings about unsigned content while
installing Eclipse plugins. These warnings make you explicitly accept the risk in order
to continue with the installation. We typically say OK and finish the install, but you
have to make your own security decisions.

 After a successful installation, you’re urged to restart Eclipse. Go ahead and do
that.

11.2.2 Configuring the server

When Eclipse comes back up, you need to tell it where your SonarQube server is.
Choose Window > Preferences, and then expand the Sonar option in the Preferences
dialog and choose the Servers suboption. A Sonar server at localhost is preconfigured.
Click Add to set up a server on another host, or edit an existing entry. You should con-
figure not only the server location, but also your SonarQube credentials. Figure 11.5
shows the dialog.

11.2.3 Project association

Now that Eclipse is configured, it’s time to configure the project. From the Package
Explorer—or from the Project Explorer—right-click the project, and choose Config-
ure. In the submenu, pick Associate with Sonar, as shown in figure 11.6.

212 CHAPTER 11 IDE integration
If you’re using Maven, or if your project’s name coincides with its key in SonarQube,
it’s nearly effortless from here—the plugin automatically searches your servers for
projects with a matching name and fills in the most likely match. But if you’re not
using Maven and your project names in Eclipse and SonarQube don’t match, you
have to do a little more typing: click into the Sonar Project field, and enter your proj-
ect name. When you click Finish in this dialog, Eclipse immediately begins loading
your project’s data from SonarQube. Once that load is complete, you may notice addi-
tional markers in the Eclipse interface, as shown in figure 11.7.

 Now you’ll want to make a few changes to your current perspective to make the
most of the Eclipse plugin. Choose Window > Show View > Other. In the Show View
dialog, several options appear on the Sonar menu, but we’ll only work with Sonar
Issues and Sonar Issue Editor in this chapter.

11.3 Working your assigned issues
At the beginning of this chapter, one of the things Susan got scolded for during code
review was leaving one of her assigned SonarQube issues unresolved. Fortunately, the
Eclipse integration makes issues easy to find, so you’ll never have to look sheepish for
forgetting again (unless that’s the best excuse that comes to mind).

 At this point, we’ll assume you’ve followed along and you have the Eclipse plugin
fully configured. You should see issues listed in the Sonar Issues view, and you’re
about to sort them to find the ones assigned to you. If you don’t have any assigned
issues, well … go assign yourself some low-hanging fruit like missing curly-brace issues
or unused imports. Don’t worry about over-committing yourself; this will be easy.

Figure 11.5 At minimum, you need to tell Eclipse where your SonarQube server is. If you want to be
able to manage your assigned issues from within Eclipse, you also need to set up the credentials you
use to log in to SonarQube. If your SonarQube authentication is integrated with LDAP, don’t forget that
you’ll need to come back here after a password change!

213Working your assigned issues
You have two choices for how to do the assignment. You can head for the SonarQube
interface in a browser, or you can click an issue in the Sonar Issues view and then
switch to the Sonar Issue Edit view. This view does what you might guess—it lets you
edit an issue—with the same functionality you get in the SonarQube interface,
because what it shows is a tiny slice pulled directly from the SonarQube interface: the
issue summary you saw in chapter 10, complete with all the workflow options includ-
ing assignment. If you included your SonarQube credentials when you set up the
server earlier, it even includes the Assign to Me option.

Figure 11.6 To associate your project with SonarQube, type the project name in the Sonar Project field,
if it’s not prefilled for you.

214 CHAPTER 11 IDE integration
11.3.1 Finding your assigned issues

If you did your issue-assigning from Eclipse, then your Sonar Issues tab updated auto-
matically to show the new assignments. But if you used the SonarQube interface to
make the assignments, you may be wondering how to pull them in—they didn’t magi-
cally appear when you flipped back into Eclipse. Use the Synchronize button in the
Sonar Issues tab, as shown in figure 11.8.

 At this point, you probably see a lot of issues in the list. If you’re lucky, the ones
assigned to you bobbed to the top. But they probably didn’t. That’s easy to fix, though,
and you have a couple of choices for how to go about it. Right next to the Synchronize
button is the selector for the view menu, which lets you sort issues by assignee. By
default, issues are grouped by severity; but if you set the grouping to None (also in the
view menu), all your assigned issues will sort together. Of course, if your name starts
with a letter from the middle of the alphabet (you can flip the sort from ascending to
descending by clicking the column header), this isn’t the best solution.

 Fortunately, the Configure Contents option on the view menu lets you configure
which issues you see. You can even specify multiple issue filters. There are two default
filters; you can edit them or add your own, as figure 11.9 shows. Then you can choose

Figure 11.7 SonarQube linking adds several markers to the Eclipse interface,
including one on the project and a marginal marker for each existing issue synched in from the server. Existing
issues also show up as warnings in the Problems view.

215Working your assigned issues
Figure 11.8 Use the Synchronize button to re-synchronize SonarQube issues.

Figure 11.9 You can easily reconfigure the search that
underlies the Sonar Issues tab to show only issues
assigned to you. In fact, you can configure and save as
many searches as you’d like. Once they’re saved, you’ll
access them from the Show option in the view menu.

216 CHAPTER 11 IDE integration
to layer them by turning on several at once (use the check box next to the filter name
in the Configure Contents interface), or you can turn them all off to see all the issues.

11.3.2 Finding and fixing the code

Now that you have issues to work on, double-click one. Eclipse opens the associated
file and puts your cursor on the right line. All you have to do is add the missing curly
brace or whatever was called for by the issue you grabbed.

 Once that’s done, you may think the issue will automatically be marked Closed, or
at least Resolved. The integration is good, but it’s not that good—you have to do that
part manually. Head back to the Sonar Issue Edit view, make whatever comments you
like, and mark the issue Resolved (under the More Actions menu).

 We’ve covered resolving an issue here for the sake of keeping all the issue-related
steps together, but normally we’d counsel running a local SonarQube scan first (doing
so is covered in the next section). After all, you’d hate to resolve an issue only to have
SonarQube reopen it.

11.4 Running a local analysis
By all means, let’s run a local analysis. But first, you may want to find your target issue
in the list of issues so you can verify that it disappears after the analysis. Doing this won’t
affect the analysis, but we like to see issues disappear from the list, just to make sure.

 Now, in the Package Explorer (or the Project Explorer), right-click the project
and choose Sonar > Mode > Local. The Console view immediately pops to the front,
and an analysis begins. You see it interact with the SonarQube server briefly at the
beginning to register metrics and rule repositories and then to select the appropriate
rule profile for your project. From that point on, though, it’s a completely local oper-
ation. None of these results are stored on your SonarQube server—this analysis is for
your benefit only.

 The console output during the analysis is similar to what you’re used to, but this
analysis doesn’t take as long as most—it’s primarily an issue scan. Other parts of the
analysis, such as duplications detection, are left out.

 When the analysis is done, you should be able to use the Sonar Issues tab to verify
that you have indeed eliminated the issue you were targeting. Notice that all the
markers for the issue are gone—not just the item in the list on the Issues tab, but also
the marginal markers (and their accompanying mouseovers) that are added for each
issue.

 You’ve stepped through the whole workflow now, although admittedly not in the
optimal order, which is as follows:

1 Pull in assigned issues.
2 Fix issues.
3 Verify your fix with a local analysis.
4 Mark issues resolved.

217Running a local analysis
One thing you haven’t done is close a fixed issue. Remember, that only happens when
the root issue disappears during a full SonarQube analysis (the analyses you run
locally in Eclipse don’t count).

 As a best practice before any SCM commit, we typically open each file we’re about
to check in and run a local analysis. Then it’s easy to flip through each file, making
sure we’ve fixed what we meant to and haven’t added any new issues. When we’ve run
through that cycle enough times to get everything right, it’s time to commit our
changes. At that point, the Continuous Integration/Inspection system kicks in and
fires off a full analysis. It may take a little while for the changes to churn through the
system, but eventually SonarQube closes those issues. You’ve seen the 30,000-foot view
shown in figure 11.10 before, but it bears repeating now that you’ve had the opportu-
nity to walk through every step in the process.

 The next time you want to run a local analysis, you’ll use a different menu item. By
default, you start in remote mode, pulling values from the Sonar server. Right-clicking
in your project and choosing Sonar > Mode > Local does two things: it kicks off a local
analysis, and it flips you into local mode. So next time through, you’ll choose Sonar >
Run Local Analysis. If you want to re-pull what SonarQube has on file, then you’ll
need to use the remote option: Sonar > Mode > Remote.

Check in your
clean code.

Local analysis
(includes pulling
rules from server)

Comment on your
issues or update
them to Resolved.

Metrics and
new issues

Fixed issues
 updated to
 Closed

Commit
triggers build

Build triggers
SonarQube
analysis

Code review
generates more
assignments.

Required/automatic

Optional/manual

SCM

Sonar-
Qube

CI
™

Figure 11.10 If everything’s working as it should, you see a virtuous cycle of
improved code quality and higher developer productivity from the combination
of Continuous Inspection, code reviews, and Eclipse integration.

218 CHAPTER 11 IDE integration
 In fact, let’s do that now. But first, add an issue. It could be anything—just some-
thing you know breaks a SonarQube rule. Then run a local analysis. When it’s fin-
ished, you’ll see that your new issue is picked up in the analysis, as expected. What you
perhaps didn’t expect is that it gets special treatment. The normal SonarQube
marginal marker is a tiny blue SonarQube logo. But for new issues, the logo is red.
Further, new issues are marked not as warnings in the Problems view, but as errors, so
Eclipse’s error-marking mechanisms kick in: a red X on the project, on each file that
introduces new issues, and on the packages that contain them. Run an analysis before
each commit, and you’ll never inadvertently add new issues again!

 On the other hand, if having new issues presented the same way as compile breaks
bothers you (it does bother some people), you can easily turn it off in the global pref-
erences. You’ll find this option under Window > Preferences. Click Sonar, and you’ll
see the option to adjust the severity of the markers.

11.5 Related plugins
If you don’t use Eclipse, and the makeshift integration available for other IDEs doesn’t
suit you, the Issues Report plugin offers another alternative.

11.5.1 Issues Report

Although it offers a local analysis option, the Issues Report plugin is installed server-
side. Once you’ve installed it and restarted SonarQube, you’re ready to run an analysis
that won’t update the SonarQube database.

 Similar to the functionality in Eclipse, you manually trigger an analysis that checks
with the server to pull the current set of rules for your project and runs a local-only
analysis. The Eclipse integration presents the analysis results in an Issues view; Issues
Report generates an HTML-formatted file.

 To take advantage of the plugin, each developer needs an analysis engine (see
appendix B) such as SonarQube Runner installed locally. In this case, though, the
installation is a rather shallow one—there’s no need to configure the SonarQube data-
base location or credentials because you aren’t updating the database. Instead, you
only configure the URL of the SonarQube host (SonarQube Runner interacts with the
SonarQube web services to pull the data it needs for analysis) and make sure sonar-
runner is in your PATH variable. Then you need to set up the project properties file.

sonar.projectKey=test:project2

sonar.projectName=Test

sonar.projectVersion=1.0

sonar.sources=src

sonar.binaries=bin

sonar.dryRun=true

Listing 11.1 sonar-project.properties

You still need to provide all
the required properties

You can choose to provide any
of the optional propertiesRequired

for
local-only

analysis

219Summary
sonar.issuesReport.html.enable=true

sonar.issuesReport.html.location=issues-report.html

sonar.issuesReport.console.enable=true

Once your properties file is in place, fire off an analysis. It won’t take as long to run as
a full analysis, because it’s only an issues check. At the end of the console output,
you’ll see something like this:

20:28:49.515 INFO - HTML Issues Report generated: /path/to/issues-report.html

20:28:49.515 INFO - ------------- Issues Report -------------

20:28:49.515 INFO - 3 new violations

20:28:49.515 INFO - +3 major violations

20:28:49.515 INFO - ---

The resulting report starts with a project-level summary of new and existing issues, as
shown in figure 11.11, and continues with a file-by-file breakdown.

11.6 Summary
IDE integration is a developer’s first line of defense against the embarrassment of add-
ing new issues to a project, and SonarQube enables that for a wide variety of develop-
ment environments.

 If you don’t spend your days in Eclipse, your best bet is the Issues Report plugin,
which offers a solid subset of the functionality available to Eclipse users. If you really
want IDE integration, SonarQube offers the ability to import your rule set into your
IDE for local scans, although as more and more of SonarQube’s language integrations
go native, that ability will slowly diminish. In the meantime, you’ll need to remember
to reimport your rules when the rule profile changes. But that’s better than being
caught out in code review.

Optional:
sets

output
format

Optional: defaults to
.sonar/issues-report.html

Optional: emits brief report
summary to console

Figure 11.11 The output from the Issues Report analysis is a single HTML
file that shows at a project-level and file-by-file level which rules were
violated and how many of the issues are new since the last full analysis.

220 CHAPTER 11 IDE integration
If you do work in Eclipse, then the offerings are far richer. With integration that’s rap-
idly approaching seamless, the SonarQube plugin for Eclipse brings code-quality
remediation full circle. We showed you how to install the plugin, point it to your
SonarQube server, and connect your local project to the copy on SonarQube. We
walked through setting up an issue query to retrieve your assigned issues, and we
showed you how to use an issue to jump right to the problem it describes.

 Once you make your fixes, the plugin lets you prescan your code to make sure you
haven’t inadvertently introduced any new issues before you check in your changes.
Then you can mark the issue resolved without having to leave Eclipse.

 In the next part of the book, we’ll dive into administration—users and groups,
rules and profiles, and projects and SonarQube itself. You’ll learn to tune your rule
sets to eliminate the rules that don’t fit your situation, add the ones that do, and adjust
the remaining rules so their priorities line up with yours. You’ll see how to fine-tune
your project settings and SonarQube itself. And you’ll learn how to set up project
rights so you can delegate project administration to a team’s project or development
lead, rather than handling it all yourself.

Part 3

Administering and extending

This part of SonarQube in Action covers administration. In the previous part
of the book, we discussed how to use SonarQube’s capabilities to get the most
out of it on a day-to-day basis. Now we’ll explain how to tune SonarQube to your
environment, starting with permissions in chapter 12 and rule profile adminis-
tration in chapter 13, and moving on to global and project-level settings in chap-
ters 14 and 15. We’ll end the book by showing you how to further customize
SonarQube by writing your own plugins in chapter 16.

Security:
users, groups, and roles
So far, you’ve been working under the default accounts and permissions. You’ve
made all your changes as Admin, and all your users have presumably been access-
ing SonarQube anonymously. In this chapter, we’ll help you set up a slightly more
sophisticated system that takes advantage of SonarQube’s role-based authorization,
which determines who can do what; and we’ll show you how to grant those roles at
the project level to groups and individual users. Once your users have their own
accounts in SonarQube, they’ll be able to manage their own preferences, so we’ll
look at the settings on a user account and discuss the features available to a user.

 We’ll end the chapter with a look at the plugins that let you delegate authentica-
tion to an existing system through the Lightweight Directory Access Protocol
(LDAP), Central Authentication Service (CAS) protocol, Security Assertion Markup
Language (SAML), OpenID, or Protocol Analysis Module (PAM).

This chapter covers
 Creating users and groups

 Roles: who can do what

 System administrators
223

224 CHAPTER 12 Security: users, groups, and roles
12.1 Creating users and groups
The foundations of security in any application are users and their permissions. In a
good application (which SonarQube is), these foundations include not just users and
their individually granted permissions, but users, the groups they belong to, and user
or group permissions. SonarQube can handle both authentication and authorization
for you, but there are also several authentication integrations available, which we’ll
tell you about at the end of the chapter. Using one of them will render user creation
moot. But you can manage users directly in SonarQube; and whether or not you do,
you still have to manage your groups in SonarQube. Both are easy, and this section will
show you how.

12.1.1 Managing users

Russell sighed. Usually, being the company’s SonarQube admin was a piece of cake—
once he got the analyses set up, they pretty much ran themselves. But lately he’d been
spending a lot of time making piddly little SonarQube changes for a bunch of proj-
ects. The Blue team wanted to tweak their analysis exclusions—over and over again—
while the Red team wanted some bad snapshots deleted and the Green team needed
their Manual Measures updated. No single change took much time, but it was like
being attacked by gnats—a never-ending swarm of annoyances—and each one pulled
him away from the things he was supposed to be doing.

 Fed up, Russell was considering handing out the default SonarQube admin creden-
tials he’d been using (in appendix A, you’ll learn that the default admin credentials
are login: admin, password: admin, and we’ll urge you to change the password), when
he remembered he’d never dug into SonarQube’s security. As he fired up his browser,
he wondered if there was a way to let one or two people on each team administer their
own projects without having to give them the keys to the kingdom.

 Because Russell wanted to grant rights to other users, he figured the Users option
was a good place to start. The interface he found is shown in figure 12.1.

 The interface for user management is straightforward. Just fill out and submit the
Add New User form, and voilà! Your newly created user is added to the list in the center
of the screen. Once created, you can’t edit a user’s login, but you can use the links pro-
vided to the right of each user to edit her name and email address, or use the Change
Password link for a password reset. When you use the Edit links, the Add New User
form is replaced with the Edit User form. At a glance, the forms are similar: blink, and
you could miss the swap. So if you think you’ve been waiting a long time for the page
to refresh and take you to the editing screen, make sure you read the title on the form
at right on the page—it may already be in front of your face, as figure 12.2 shows.

 As you’d expect, the Delete link by each user gives you a confirmation dialog. What
you may not expect is that clicking the link doesn’t actually delete the user. But that
makes sense when you consider that the user you’re axing may have entered some of
the issues we talked about in chapter 10, and truly deleting the user would eliminate
all record of his contributions and wreak havoc on the issue comment logs. Instead,
the Delete link deactivates the user, removing him from all the security interfaces.

225Creating users and groups
Of course, deactivate implies reactivate, but there’s no button for that. Instead, you re-
add a user with the same login. If you do, you’ll see a dialog like the one shown in fig-
ure 12.3. When you resurrect a previously deleted user through the Add interface, you
revive his old account, but the name and email address are the values you entered on
the Add form—as though you had done an edit on the original account.

Figure 12.1 The Users interface gives a list of current users, links to manage each one, and the form to create
new users.

Figure 12.2 When you click the link to edit a user, the Edit User form replaces the Add New User form. This is
typically a blink-and-you’ll-miss-it operation.

Figure 12.3 Once you’ve deleted a user, you can get him back by re-adding a user with the same login. If
resurrection wasn’t intended, the additional confirmation shown here gives you the chance to go back and try
another user name.

226 CHAPTER 12 Security: users, groups, and roles
The other things you’ll notice inline with each user are a list of that user’s groups and
a link to a separate interface where you can add the user to multiple groups in one
easy go. But first, you need groups. SonarQube starts you out with a couple of default
groups. But Russell needs an admin group per team, so in the next section we’ll look
at setting that up.

12.1.2 Personalization: what users can manage for themselves

First, let’s see what having a user account gets you. The administrator isn’t the only
person who can change a user’s password. When users log in to SonarQube, they have
access to a brief menu of options tucked under their names in the top menu bar. What
they see after picking the My Profile option is shown in figure 12.4.

 We’ll show you how to configure the global email settings in chapter 14; once you
have that set up, users can also have SonarQube send them emails. They can choose
to receive notification when “their” issues are edited, either throughout the system or
on specific projects. They can also choose email notification for new issues, alerts, and
false positives either globally or on specific projects.

 The final thing users can do for themselves is set up their own filters—so they can
pick and choose the projects they see in a list based on a number of different crite-
ria—and dashboards. (We’ll cover filter administration in chapter 14 and dashboard
administration in chapters 14 and 15.) Once you’re comfortable with filter and dash-
board administration, it will be in your best interest as a harried administrator to

Figure 12.4 Users can perform their own password changes and set their email preferences, as well as manage
their own filters.

227Creating users and groups
teach your users how to take advantage of these capabilities (because every filter and
dashboard they make for themselves is one you don’t have to make for them). You
administer filters in the Configuration area of the interface. Dashboard administra-
tion is available from the Manage Dashboards link that appears for a logged-in user at
upper right on each dashboard, as shown in figure 12.5.

 There’s one more thing to mention before we leave users. The Admin account is
just another user. In addition to all the administrative functions available to someone
logged in with those credentials, she also sees at the top of the navigation list the same
basic user options that any other user sees. And she has the same interface for chang-
ing the Admin account’s password and setting its email preferences.

 Now let’s move on to managing groups.

12.1.3 Managing groups

SonarQube gives you the ability to grant permissions to either users or groups. But
once you get past a couple dozen people, managing permissions for individual users
can be a real pain—which is where groups come in. If you bundle your users into
groups and only grant permissions to groups, controlling who can do what becomes
much, much easier.

 Out of the box, SonarQube provides two groups: sonar-administrators and sonar-
users. We’ll look at global administration permissions a little later in the chapter,
but the global Admin account you’ve been using so far is a member of the sonar-
administrators group; this is what gives the account its global administration privi-
leges, as well as admin privileges on every project. All new users are automatically
added to the sonar-users group, which by default has non-admin permissions to every
project (we’ll examine those privileges in the next section).

 Russell, the harried SonarQube admin, needs to create some new groups. As fig-
ure 12.6 shows, the group-management interface is even simpler than the one for
users because there are fewer moving parts: only Name and Description.

 As with users, the Add and Edit forms swap in and out of the same spot at right on
the group-management page. The only differences between them are the title at the
top and whether the inputs are prefilled.

Figure 12.5 Users can make their own private dashboards with whatever filters and widgets they like. New
dashboards appear in the left navigation rail just like any other dashboard. Users can control the order in
which dashboards appear.

228 CHAPTER 12 Security: users, groups, and roles
With some groups in place, you’re ready to start adding users to them. Click the Select
link in the Members column for the target group: doing so takes you to a page like the
one shown in figure 12.7.

Figure 12.6 With fewer options, the group-management interface is even more straightforward
than the one for users.

Figure 12.7 The group membership interface presents two lists: the in crowd on the right and everyone
else on the left. Use the arrows between the two lists to move people from one side to the other.

229Roles: who can do what
NOTE When we looked at users, we skipped the interface to add groups to a
user because you hadn’t created any groups yet. The interface to do so is
much like that used to add users to a group, with a list of in groups on the
right, the groups the user isn’t in on the left, and arrows in between to move
items from one side to the other.

12.2 Roles: who can do what
Now that you have users and groups, it’s time to start granting permissions. That’s
done through project roles. Membership in a role grants specific sets of privileges. You
can grant a project role to a group or to an individual user; but managing individually
granted permissions can be a pain, so you probably want to stick with groups. You can
grant three roles: Administrator, User, and Code Viewer. We’ll cover their permissions
in that order. But first, let’s look at the interface—there’s a bit more going on in it
than in the ones you’ve seen so far in this chapter, as figure 12.8 shows.

 The bottom section of the Roles interface is a list of projects. To the right of each
project name is a list of the users and groups who hold each of the three project roles.
Use any of the Select links, and you’ll find yourself looking at another iteration of the
two-lists-with-arrows-between interface to add either groups or users to a project role.

 If you’re following along in your own SonarQube installation, you may be wonder-
ing at this point why you’re seeing entries in your projects’ role lists if you’ve never
been to this page before. That’s what the top section of the Roles interface is about. It
sets up the default permissions to be granted on any new project. The top row, with
the Administrator role, shows that the sonar-administrators group is granted project
administration rights on all new projects. The next two rows show that Anyone and
the sonar-users group get the other two roles on every new project. You can use the
links next to each role to change those defaults. Click through on any of the links to
open the interface shown in figure 12.9.

Figure 12.8 The Roles interface is where projects, users, and groups all come together, giving you a
dashboard of who has what permissions on any given project.

230 CHAPTER 12 Security: users, groups, and roles
But who is this Anyone? Anyone is SonarQube-speak for anonymous, and it’s a phantom
group. You can’t add members to it, but when you’re administering group project
roles, you see it in the list as a way to give anonymous users rights to a project. Anyone
(anonymous) has the ability to view all aspects of your rule profiles; and as we said, by
default, Anyone gets both User and Code Viewer privileges on all new projects.

 Just what those privileges are comes next.

12.2.1 Project Administrator role

Russell needs to grant the project Administrator role, which gives you permission to
do pretty much what you’d think—administer a project. We’ll cover project adminis-
tration in detail in chapter 15; but in short, it gives you access to twiddle all the
project-level settings. That includes choosing your project’s analysis profile, granting
other users permissions to the project, and tweaking a project’s analysis exclusions.
With project Administrator rights you also get the ability to create the action plans we
examined in chapter 10.

 By default, this role is granted only to the sonar-administrators group. Thus only
those people with global admin permissions have the lower-level permissions to
administer a project—which is what’s making Russell crazy.

 By this point, he has created a Red Team admin group and put Susan in it. When
he grants that group the Administrator role on Red Team’s projects, Susan will see her
new administration options the next time she logs in, as illustrated in figure 12.10. All
that’s left for Russell to do is put on his Tom Sawyer hat and convince her that she
wants to do the work herself instead of having to wait around for him to do it.

 Russell could certainly have granted admin permissions on Red Team’s projects
directly to Susan as an individual—you can do it either way. But the beauty of using
groups is that if Susan moves to another team, he takes her out of the Red Team

Figure 12.9 To add a group to a project role, highlight it on the left, use the Select button to move it to
the right, and save your changes.

231Roles: who can do what
admin group and adds her replacement. Compared to individual user permissions, a
team swap like that works out to six of one, a half dozen of the other if there’s only
one project per team. But if you have multiple projects per team (or if you will in the
future), the extra step of creating the group makes life much easier.

 One last note before we move on to the other roles: when you’re editing a project’s
list of admin groups, think carefully before you evict the sonar-administrators group
from the list. There’s nothing particularly special about the sonar-administrators
group—it’s just another group. If you remove it from a project’s list of administrators,
you remove the global administrators’ ability to configure that project. That’s not an
irrevocable change, because you don’t lose the ability to configure that project’s roles,
and it may be exactly what you want. But be aware of what you’re doing.

 Next we’ll look at the User role.

12.2.2 User role

Having the User role on a project (as opposed to having a user account, which we
showed you how to create earlier) lets you see the project—to know that it exists. If
you don’t have the User role on a project, you see something like figure 12.11 when
you look at a project list that would normally include that project.

Figure 12.10 Project administrators have an
additional menu of options—options that allow
them to tweak every setting on a project.

Figure 12.11 A project’s users are the ones who are able to see it.

232 CHAPTER 12 Security: users, groups, and roles
By default, the User role is granted to Anyone and the default group (sonar-users). It
gives them the ability to see a project and navigate through every project interface,
examining almost every aspect of the project.

 To make a project private, you definitely want to remove Anyone and may want to
remove sonar-users as well. But if you do, you should probably add back the sonar-
administrators group as well as the group you’ve set up for the project-level adminis-
trators. Roles aren’t hierarchical—having access to administer a project doesn’t give
you access to see it. Because you can’t administer a project you can’t see, you should
make sure your project administrators also have the project User role—whether that’s
through Anyone or through some other group.

 If you find that you’ve somehow locked yourself out of seeing a project, don’t
panic. Not having the User role on a project means you can’t see the project in filters
or get to its dashboards or drilldowns. But you can still see it in the Roles interface,
and you still have the ability to re-grant yourself permissions to it.

 The final role to consider is Code Viewer.

12.2.3 Code Viewer role

There’s no mystery about what users with the Code Viewer role can do: they can see a
project’s source code. Logged-in code viewers (but not anonymous users accessing a
project through Anyone’s roles) can see the source code and also comment on it, or
assign its issues for cleanup, or perform any of the other issue functions we covered in
chapter 10, including marking issues as false positives or changing their severity.

 Again, just keep in mind that there’s no hierarchy to roles. Having the Code
Viewer role without also having the User role is useless. But the reverse isn’t true. We
mentioned that the User role gives you access to almost every aspect of a project; view-
ing the code is the one thing it doesn’t give you. Figure 12.12 shows the issues drill-
down for a user who’s not assigned the Code Viewer role.

 Appendix B’s list of analysis properties includes sonar.importSources, which
accepts Boolean values and defaults to true. It controls whether the analysis process
imports your source code into SonarQube. With source importing turned off, no one
can see the code—not even code viewers—because it’s not there. With source import-
ing turned on, careful use of a project’s Code Viewer role is the best way to control
who can see the source code of sensitive projects.

12.2.4 Best practices for roles

Before we move on to global administration, we’d like to take a minute to talk about
best practices. We’ve given you a couple so far: grant roles to groups rather than indi-
vidual users, and create an administration group for each project or team that holds
one or two members of that team. What we can’t do is go beyond that in terms of stat-
ing best practices, because they’re situational.

 Work for the U.S. Navy on nuclear secrets? Then you want SonarQube locked
down tight as a drum, and Anyone is definitely out. On an open source project? Then

233System administrators
let everyone see everything, and just be choosy about who gets an account (and there-
fore issue permissions) and about who you put in a project admin group. In between
are too many permutations to list, so we won’t even try.

 Now that you know everything there is to know about project permissions, let’s
move on to SonarQube’s global permissions.

12.3 System administrators
System administration in SonarQube is just another role: it gives you permissions, and
you can grant it to either users or groups. There are two system administration–level
roles in SonarQube: the Quality Profile Administrators role for profile editing, and
the System Administrators role for general system administration. System administra-
tion will be covered in detail in chapter 14. But in short, system administration rights
let you make all the security changes we’ve discussed in this chapter as well as install
plugins, tweak all global settings, and administer all default dashboards and filters.
The Quality Profile Administrators role lets you administer quality profiles (which
we’ll discuss in chapter 13).

 By default, both system administration roles are granted to the sonar-administrators
group, and the lone default member of that group is the Admin account you’ve been

Figure 12.12 The User role grants access to view every facet of a project but one: seeing the code. That’s what
the Code Viewer role does.

234 CHAPTER 12 Security: users, groups, and roles
using so far to make global changes. Now that you’re up to speed on administering
users and groups, it’s time to change that.

 Of course, you could continue using the default admin login, but at some point
you should share administration rights with someone else. After all, everyone likes to
take vacation now and then. That means either sharing the credentials to the admin
account or granting individual users admin rights—preferably both to you and your
stand-in. Why? Well, there’s not a lot of audit trailing in SonarQube, but for what is
available you should be able to trace which of you made what changes.

 The first step is creating the user accounts, if you haven’t already. Then add your-
self and your stand-in to the sonar-administrators group. And you’re finished, because
out of the box, the sonar-administrators group has system admin rights. You could use
a different group if you wanted; again, there’s nothing special about either the default
admin account—it’s just another user—or the sonar-administrators group. But the
sonar-administrators group is clearly named and already in place, so you might as well
stick with it.

 If you did want to use a different group or grant system admin privileges to individ-
ual users, you’d do it in the System Administrators interface, shown in figure 12.13. As
you’ll see, it’s the simplest of the security screens.

 Once you’ve given your vacation stand-in system administration rights, what he
sees after clicking the Configuration link at the top of the page changes from the
short list of user options to a much longer list that includes those options and a lot
more. The discussions in the following three chapters will help you train your stand-in
to run SonarQube in your absence so your vacation can be as peaceful and undis-
turbed as possible. But before we move on to that, let’s look at this chapter’s plugins.

12.4 Related plugins
The plugins for this chapter don’t do anything nifty to the interface. They don’t add
metrics or rules. They don’t aggregate data in new and interesting ways. They just inte-

Figure 12.13 The System Administrators interface is the simplest of the security screens, with links
to edit the lists of users and groups who have the privilege to make system-level changes.

235Related plugins
grate with your local authentication system so you don’t necessarily have to worry
about manually creating users, and your users don’t have to worry about remember-
ing their system password and their SonarQube password. Whenever they log in to
SonarQube, whether directly or through the Eclipse integration, they’ll do it with
their normal system passwords.

 Most of these plugins are installed like the rest—through the update center—but
you configure them by adding options to the $SONAR_HOME/conf/sonar.properties
file rather than through the SonarQube interface.

 Each plugin has its own options, but one is common to most of them: sonar
.authenticator.createUsers. Set this to true to have users created in the Sonar-
Qube database on their first successful login. Set to false, this option means you have
to manually create every new SonarQube user.

12.4.1 LDAP

The LDAP plugin lets you use the Lightweight Directory Access Protocol for user
authentication. Once you have it up and running, it automatically synchs in your
users’ email addresses and names so you don’t need to maintain them manually. The
LDAP plugin also offers a fallback for the SonarQube user database, so you can use
accounts created directly in SonarQube (such as the Admin account) even if they
don’t exist in your external authentication system.

 You install the LDAP plugin through the update center. You can find its configura-
tion details on its SonarQube wiki page: http://docs.codehaus.org/display/SONAR/
LDAP+Plugin.

12.4.2 OpenID

The OpenID plugin lets you set up single sign-on through an OpenID provider. This
means you can let users sign in to SonarQube with their Google accounts if you’d like.
The configurations for this plugin are minimal: the sonar.authenticator.create-
Users setting mentioned earlier, sonar.security.realm, the URL of the OpenID pro-
vider, the URL to refer users to once they’ve logged out, and the URL of the
SonarQube server.

 You install the OpenID plugin through the update center. You can find its configu-
ration details on its SonarQube wiki page: http://docs.codehaus.org/display/
SONAR/OpenID+Plugin.

12.4.3 Crowd

The Crowd plugin lets you delegate authentication to Atlassian Crowd. This plugin is
one of the few authentication plugins that doesn’t use the sonar.authenticator
.createUsers option. If you use Crowd, you still have to manually create your users.

 You install the Crowd plugin through the update center. You can find its configura-
tion details on its SonarQube wiki page: http://docs.codehaus.org/display/SONAR/
Crowd+Plugin.

http://docs.codehaus.org/display/SONAR/LDAP+Plugin
http://docs.codehaus.org/display/SONAR/OpenID+Plugin
http://docs.codehaus.org/display/SONAR/OpenID+Plugin
http://docs.codehaus.org/display/SONAR/LDAP+Plugin
ttp://docs.codehaus.org/display/SONAR/Crowd+Plugin
ttp://docs.codehaus.org/display/SONAR/Crowd+Plugin

236 CHAPTER 12 Security: users, groups, and roles
12.4.4 PAM

The PAM plugin allows delegation in Unix/Linux and Mac OS boxes to the OS’s
underlying PAM authentication system. This is the only authentication plugin that’s
not installed through the update center—or at least not solely through the update
center. There is a plugin to install, and it can be installed through the update center.
But you also need to add a Java-PAM (JPam) jar to your $SONAR_HOME/bin/lib direc-
tory, which means you have an extra step at SonarQube upgrade time. Thus you
should make sure you migrate not just your plugins and settings to the new version
but the jpam library as well.

 The PAM plugin has another distinction: it’s one of the few authentication plugins
that doesn’t use the sonar.authenticator.createUsers option. If you use PAM, you
still have to manually create your users.

 The plugin has only a few configurations to set, and you can find them at its Sonar-
Qube wiki page: http://docs.codehaus.org/display/SONAR/PAM+Plugin.

12.5 Summary
In this chapter, we’ve shown you how to create and administer groups and users.
We’ve explained the phantom group named Anyone—which is SonarQube-speak for
anonymous—and looked at the difference between what Anyone and a logged-in user
can do.

 We’ve explained the three project roles—User, Code Viewer, and Administrator—
along with what permissions they give and the fact that there’s no hierarchy among
the roles. Having the Administrator role on a project does you no good if you don’t
also have the User role on that project, which allows you to see the project in the first
place. And we hope we’ve convinced you that life will be far easier in the long run if
you restrict your role-granting to groups rather than individual users.

 You’ve learned how to grant system administrator permissions and why you should
do that for your own user account and for a stand-in or two, rather than just passing
around the credentials to the default Admin account. You’ve seen that Admin is just
another user account and sonar-administrators is just another group.

 And finally, you’ve seen that there are integration plugins that allow you to dele-
gate authentication to your existing authentication system, lightening your adminis-
tration burden (which is always a good thing, right?).

 Now that, like Russell, you know how to share administration privileges judiciously,
rather than handing around the keys to the kingdom, the next three chapters will take
you in depth into what your administration options are and how to use them.

http://docs.codehaus.org/display/SONAR/PAM+Plugin

Rule profile
administration
A lot of things happen during an analysis. Your code is examined for duplications,
complexity, and a host of other things. Most important (to this chapter, anyway),
it’s measured against a set of rules: a rule profile. Out of the box, you get at least one
rule profile for each language SonarQube can analyze. Those default rule sets
make great starting points; but as you’ve probably realized by now, they’re not per-
fect for every situation. In fact, almost every coder has a bone to pick with at least
one rule in any given rule set, whether it’s that the severity is wrong, or the rule
threshold is too low, or it shouldn’t be in the profile at all.

This chapter covers
 Making your own profile: copy and modify

 Profile inheritance

 Rule editing

 Alerts: knowing when your metrics have crossed the line

 Tracking profile changes

 Administrative miscellany
237

238 CHAPTER 13 Rule profile administration
 In this chapter, we’ll show you how to go about fixing that. You can edit the default
rule sets, but we’ll explain how to peel off a copy and start customizing it to meet your
needs. But it’s not just rule sets that are customizable. You can augment the global
description of any rule and make profile-specific notes on rules. You can also edit
some rules, and we’ll show you how. We’ll also cover how to check a profile’s change
log and how to compare one profile to another.

 Profile inheritance is another useful feature. It allows you to set up a base rule set
and then augment child profiles with the additional rules needed for a specific proj-
ect or team.

 Although profiles are primarily about rules, you can also use them to set alerts: sim-
ple Boolean thresholds that help you raise the alarm if any of your metrics (even the
ones that have nothing to do with rules or issues) cross the warning or error thresh-
olds you set.

13.1 Making your own profile: copy and modify
As Russell deleted yet another demanding email, he mused that being the SonarQube
admin wasn’t always a life of wine and roses. Not one team was satisfied with the rule
profile he had set as the default, and the natives were getting decidedly restless. But
although all the teams disliked the rule set, that was the only thing they agreed on.
Red Team wanted it stripped down to just the most important rules so they could
focus on the worst offenders. Green Team wanted to add rules, and Blue Team wanted
to pick and choose—add some and delete others—and twiddle severities to boot!
Meanwhile, management was adamant that everyone needed to adhere to the same
minimums.

 He’d been putting it off, but Russell realized it was time to dig in to rule profile
administration. Because everyone’s basing their requests on the current default pro-
file, working from a copy or copies of that profile is a great strategy. A more sophisti-
cated approach, which we’ll look at in the next section, might have Russell create a
base profile, perhaps based on the minimum rule set that Red Team and management
wants, and set up team-specific child profiles that inherit the basics from the core rule
set. Whatever strategy Russell uses, his first step should be to create a new profile.

13.1.1 Copy or start from scratch?

There are two ways to make a new profile. You can create one from scratch or copy an
existing one, which is supremely easy (as shown in figure 13.1).

 Each profile is displayed with a Copy button. Provide a unique profile name in the
resulting pop-up, and you’re in business. If you’d rather start from scratch, that’s easy
too. Just click the Create link to the right of the language in question. A creation form
pops up, as shown in figure 13.2.

 Depending on the language, the Create Java Profile form may include upload
inputs for selected rules engines. The formats of the files you need to feed into these
engines are rule-engine-specific. We’ll look later at how you can export the rules from

239Making your own profile: copy and modify
Figure 13.1 Clicking the Configuration link at the top of the page takes you to a list of rule profiles. Logged-in
administrators can easily copy any profile with the click of a mouse. The only hard part is coming up with a good
name for the new profile.

Figure 13.2 You create a profile from scratch via a form that’s added inline on the page. Depending
on the language, you may get the opportunity to seed your new profile with rules from some of the
language’s available rules engines, uploaded in an engine-specific format.

240 CHAPTER 13 Rule profile administration
an engine from one profile for import into a new one. When you submit the form,
your new profile is added to the list.

 Once you have your new profile, it’s time to begin editing. Click-through on the
profile name to land at the Coding Rules tab of the profile editing interface; this is its
list of rules. If you started from scratch, you’re looking at a blank list (remember, by
default this page shows the profile’s active rules, and you haven’t added any yet) with
the search form at the top. If you copied another rule set, then there are plenty of
rules to look at here.

 As we’ve said before, any user, even Anonymous, can get to the list of rules in a pro-
file. But for administrators looking at a modifiable profile, the rules are presented in
an editable search results format, as shown in figure 13.3.

13.1.2 Your first profile edits and their quality implications

By default, the Coding Rules tab shows all the rules currently active in your profile.
Each rule is displayed with two controls: a check box and a drop-down menu. Scroll

Figure 13.3 The rules that make up a profile are presented in a search/search result interface. The default
presentation is all rules in the profile.

241Making your own profile: copy and modify
up and down the page, and you see that the check box to the left of every rule is
checked, indicating that it’s part of the current profile.

 To drop a rule from your profile—one of the two things most people are itching to
do at this stage—uncheck it. There’s no submit button on this interface; your changes
take effect immediately, but the search results aren’t refreshed interactively. If you
remove rules from your profile by unchecking them, they stay on the page until you
refresh it—giving you the chance to turn them back on if you mis-clicked.

 The other thing most folks are eager to do is adjust rule severities. Nearly everyone
thinks the default severity on some rule is a bit of an overreaction. Rule severities are
set per profile, so if you want a rule’s severity changed everywhere, you have to do that
manually. But it’s a simple enough change to make, as figure 13.4 shows.

 The drop-down menu to the left of each rule lists all possible severities, with the
rule’s current severity in the current profile highlighted. To change a rule’s severity,
pick a different option in the drop-down list. Again, your changes are recorded imme-
diately.

 Don’t think that dropped rules or changed severities will be immediately reflected
in your projects’ issues drilldowns or metrics, though. You’ll need to re-analyze each
affected project to see those changes in action. Depending on your issue counts, these
edits can produce what look like wild swings in quality, as, say, 50 Criticals are “fixed”
while 50 Majors are “added” because of a severity adjustment, and another 20 Minors
are “fixed” because of a dropped rule. In reality, the code hasn’t changed a key-
stroke—only the way you look at it has.

 For the next couple of weeks, maybe the next few months, you’ll remember what
caused that wild quality swing. Next year? Maybe not. Fortunately, analysis with a new
profile version (yes, rule profiles are versioned; more on that soon) is marked as an
event in SonarQube. We talked about events in chapter 8; they’re special flags that
mark analyses where something memorable happened. So your next analysis, with
your newly edited profile applied, will be flagged with a profile-change event, noting
the profile name and version. Because analyses with events are exempt from auto-
mated database cleanup, you’ll have a long-term record of both when and why that
quality swing occurred.

Figure 13.4 Use the drop-down menu to the left of any rule to adjust its severity in
that profile. Note that no other profile is affected by this change.

242 CHAPTER 13 Rule profile administration
13.1.3 Adding rules: how to find them and why you’d want to

The third kind of change you might want to make is adding rules, but first you have to
find them. As you scroll up and down the page, you’ll see that there are no unchecked
(addable) rules available. Remember, that’s because by default, this page shows all the
rules in the current profile, and only those rules. Finding the others is easy, though.

 Scroll back up to the search interface at the top of the page, as shown in figure
13.5. To find the rules that aren’t currently in your profile, search by Status Inactive,
and you should have plenty to choose from. Enabling rules in your profile is intuitive;
just check the check box. But you may be wondering why, with over 500 rules cur-
rently in your profile (assuming you copied from the SonarQube way with FindBugs
profile), you would want more.

 Believe it or not, there are a number of reasons to turn on more rules. For
instance, various plugins operate through additional rules, such as the Tag List plugin
we discussed in chapter 10. It tracks instances of the //TODO comment for you, but
only if you’ve enabled the relevant rule in your profile.

 You may also want to investigate the rules that aren’t on by default, such as those
available for many languages to let you track some of the non-issue metrics: duplica-
tions (the Duplicated Block rule), test coverage (Insufficient Line Coverage by Unit
Tests), complexity (Avoid Too Complex Method, Avoid Too Complex Class), and so
on. Even beyond the Seven Axes of Quality, the non-default rules offer useful options,
such as the Avoid Deprecated Method rule, which can help you hunt for and destroy
these incompatibilities waiting to happen. There are also a lot of potentially valuable
rules that don’t fit neatly into a single category, such as Avoid Multiple Unary Opera-
tors, For Loop Should Be While Loop, and the rules available for most languages to
record parsing failures so you don’t have to pore over your analysis log every time to

Figure 13.5 The rule search interface is straightforward. You can search by any combination
of rule name, rule engine, severity, and status. It defaults to showing all active rules in the
current profile.

243Profile inheritance
make sure SonarQube was able to read all your files. Even if you don’t think you’re in
the market for extra rules, they’re well worth at least a browse.

 Now that you’ve seen how easy it is to get started with your own profile and make
changes to it, you may be ready to go to town. But before you go too far down the
road, you should look at profile inheritance if you have multiple profiles to manage
for a given language.

13.2 Profile inheritance
Remember, Russell was facing three different teams wanting three different rule sets:
Red Team wanted a stripped-down set of just the “most important” rules; Green Team
wanted to add rules; and Blue Team wanted to remove some rules, add others, and
change some severities.

 Of course, one option might be to have each team manage its own profile. But as
you saw in chapter 12, only SonarQube administrators can edit rule profiles, and
global admin permissions probably aren’t something you want to hand out like candy.

 Fortunately, you don’t have to. Because Red Team and management concur on the
minimum rule set (the Blockers and Criticals from the Sonar way with FindBugs pro-
file), the Red Team profile is a good candidate to be the parent profile. In this section,
we’ll show you how to set up and manage inheritance and how to track the state of the
relationship.

13.2.1 Establishing inheritance

If Red Team only wanted a handful of rules, creating it from scratch might be the way
to go, especially because there’s a Bulk Change feature that lets you toggle the status
of every rule on the page at once. But the Sonar way with FindBugs profile includes
hundreds of Blockers and Criticals: nearly every single one. Because a couple of Criti-
cals don’t belong in the profile, the easiest first step is to copy the Sonar way with Find-
Bugs profile, search for the rules to drop from the copy, and then do a bulk change to
deactivate them all in one fell swoop, as shown in figure 13.6.

Figure 13.6 Each selection in the rule search accepts multiple options. Directly under the search form,
a Bulk Change drop-down menu lets you activate or deactivate every rule on the page at once.

244 CHAPTER 13 Rule profile administration
Now that a parent profile is in place, you can follow a similar copy/modify strategy to
create Green Team’s profile. Start again with a copy of Sonar way with FindBugs, and
then click-through to the list of rules and deactivate all the Blockers and Criticals: all
those that will be inherited from the Red Team profile. Then click the Profile Inheri-
tance tab. By default, this part of the interface is pretty spare, except for the yellow
editing box at right where you can set a profile’s parent (as shown in figure 13.7).

 Once you’ve set a parent profile, the Inheritance tab shows how many rules the
profile has in total and how many of those rules are inherited. From here, head back
to the Coding Rules tab. The interface has changed a bit, as shown in figure 13.8.

Figure 13.7 The Profile Inheritance tab lets you set a parent profile. It also reports on a profile’s
lineage, including the number of rules the current profile inherits.

Figure 13.8 Inherited rules appear in a profile’s rule search. You can’t deactivate them, but you
can change their severity. If you do change an inherited rule’s severity, its inheritance icon
changes to one that’s partially red.

245Profile inheritance
13.2.2 Managing the relationship

Starting from the top, you now have an extra selection in the search interface: Inheri-
tance. Among the rules, you now see not only the rules explicitly included in the pro-
file, but also the ones inherited from the parent profile. Those inherited rules are
denoted with a blue and white inheritance icon to the left of the rule name, and they
can’t be removed from a child profile (the check box is greyed out), but you can still
adjust their severities. If you do adjust the severity of an inherited rule, it’s reported
inline with a different inheritance icon: this one is red and white to show that the rule
is out of synch.

 The total number of overridden rules also appears on the Profile Inheritance tab,
which displays not only a profile’s parent but its children as well. Figure 13.9 demon-
strates that with an updated shot of Red Team’s profile inheritance. We’ve added a
stubbed-in profile for Blue Team and given Red Team a parent: a Management Base
Set profile, into which we’ve moved all the Blockers.

 If you decide you’d like to revert an overridden rule to the parent profile configu-
ration, click the rule name to expand the rule details section. (When you click a rule
name in the issues drilldown, you get a pop-up, but here it’s a different behavior.)
We’ll cover most of what you see in the rule details section in a moment. The thing to
focus on here is the grey block, which you can see in figure 13.10.

Figure 13.9 The Profile Inheritance tab reports not only on the inheritance relationship,
but also on the state of it, showing the total number of overridden rules.

246 CHAPTER 13 Rule profile administration
13.3 Rule editing
Now that your profiles are set up, there are a couple other ways you may want to tweak
their rules. In addition to adjusting a rule’s severity, you can make up to three other
types of edits: you can add a global extension to the rule description; add a profile-spe-
cific note; and, in some cases, adjust the rule’s parameters.

 To make those edits, start again from your profile’s Coding Rules tab and click the
rule name to expand the rule details section. At the top of the section, you see the
same rule description that’s in the pop-up you get when you click a rule name from
the issues drilldown. Below that are a few links, and maybe some inputs.

 The links are Extend Description and Add Note. The inputs are rule specific, and
we’ll look at them first.

13.3.1 Customizing individual rules: editing rule parameters

The rule sets for most languages offer a handful or so of rules that accept configura-
tions. For Java, it’s perhaps a double handful. Unfortunately, no reliable rule of thumb

Figure 13.10 The rule details for an inherited rule contain a summary of that rule’s inheritance status in the
current profile. If you’ve overridden some aspect of the rule, such as severity, you can realign the rule with the
parent profile using the Revert to Parent Definition button, which only appears conditionally.

247Rule editing
lets you know ahead of time whether a rule is configurable, especially from the issues
drilldown, which is where you’re likely to spend the most time looking at rules.
If you see a rule that cites a number, such as the Cyclomatic Complexity rule shown in
figure 13.11, it’s highly possible that the number is configurable.

 A rule doesn’t have to cite a number to be configurable. The only way to know for
certain is to look at the rule details section in the Coding Rules tab. If the rule is con-
figurable, its details section includes a form. There is one shortcut to finding all the
configurable rules in your profile: use the expand/collapse link at the top of the rule
list to show all the rules’ details at once and skim down the page, looking for form
inputs. Figure 13.12 shows a couple of editable rules.

 Once you find a configurable rule, how to make the configuration change should
be pretty obvious from the context of the rule, the inline explanations next to the
field, or both.

 Rule parameters are one place you might thank profile inheritance (if you’ve cho-
sen to use it). The parameter edits you make in a profile are unique to that profile; and

Figure 13.11 Rules that cite specific numbers are often configurable, but they’re not the only
configurable rules.

Figure 13.12 The variety of possible rule configurations is as wide as the rules they configure, from
simple integers and Booleans to regular expressions, method names, and package names.

248 CHAPTER 13 Rule profile administration
every other profile can have those parameters set to different values. But parameters
set in a parent profile will be inherited by the child, just like the rule is. And just like
the severity of an inherited rule, an inherited rule’s parameters can be overridden at
the child level, marking the rule and the profile as out of synch with the parent.

 As you edit your rule parameters, there are only a couple of things you need to
keep in mind. First, unlike every other edit you’ve seen so far on this page, these
changes are not saved automatically. You must explicitly click the Update button for
every single field you change. The second thing is something you can probably pre-
dict at this point: you need to run a new analysis to see your changes take effect.

13.3.2 Cookie-cutter rules: the ones you can duplicate

There’s a subset of editable rules that you probably won’t want to edit directly,
although you can if you like. They’re the copyable rules, and typically they’re copyable
because you’ll want multiple variations on the configuration.

 To try this, find a copyable rule. Again, there’s no way of knowing whether a rule is
copyable without looking at its details, but the trick of expanding the rule details
works here too. Click the link, and then do a find on the page for Copy. Or you can use
the rule we did, Comment Pattern Matcher, which is the rule you need if you want to
use the Tag List plugin mentioned in earlier chapters. You should be able to find it
pretty easily by entering comment in the Name/Key search input. Just be sure all the
selects are set to Any.

 When you’ve found the rule and expanded its details, a Copy Rule link appears at
lower left. Click it, and you’ll see that the process is pretty transparent, as shown in fig-
ure 13.13. Typically, you make copies of this rule to find //TODO and //NOSONAR com-
ments. We’ve created a copy for a third comment, //FixMe, which would be relevant
only if it was a something your team used regularly.

 Note that creating a rule copy doesn’t automatically enable it in the profile you
were working in. That’s because in making that copy, you haven’t made a change
that’s local to that rule set. Instead you’ve created a new, globally available rule. You
can enable it in your current rule set. Or not. You can also choose to enable it in every
other rule set you have for that language. And if you decide not to enable it in any of
them, that’s fine too. It’ll still be waiting for you in the inactive rule list when you’re
ready to use it.

249Rule editing
If you want to edit the parameters of your rule copy, the interface is the same as for
any other editable rule. But when you expand the rule details, you’ll notice an extra
option on these rule clones: Edit Rule, as shown in figure 13.14.

 In addition to having the option to edit all the fundamentals of a copied rule
(including the name), you also have the option to delete it. What’s that? You’ve
already got issues racked up against your copy? No problem. Nothing blows up when
you delete the rule, and the issues against it go away with the next analysis.

Figure 13.13 Copying a rule is a straightforward process, from the Copy Rule link to filling in the rule details
(including the description that will be used in the rule’s pop-up). After you’ve created the rule, you land back at
a search result for it so you can enable it in your profile.

250 CHAPTER 13 Rule profile administration
13.3.3 Extend Description: the rest of the story

Using the Extend Description link you’ll find on every rule makes a global change,
similar to duplicating rules. It affects all profiles, not just the one you’re working in.

 Why would you want to extend a rule description? Poke around in SonarQube
long enough, and you’ll find a rule with a description that’s useless at best. For
instance, the description of the Parameter Assignment rule is “Disallow assignment of
parameters” with no indication of why that’s a bad idea. Another reason to extend a
description would be to add specifics about your environment.

 To get started, click Extend Description. Doing so expands an editing form into
the page, as shown in figure 13.15.

 Again, these changes aren’t auto-saved; you have to explicitly submit them. Once
you do, they’re reflected everywhere immediately, both when you browse to other
profiles and when you click a rule name from the issues drilldown. You can also edit
your extended description from any profile, not just the one where you originally
extended it.

13.3.4 Notes: profile-specific records on individual rules

As you edit your profiles, adding rules and adjusting parameters, you may find your-
self wishing you could annotate why you changed a certain parameter or why you

Figure 13.14 The process of creating new rules by copying is a forgiving one. Want to change the
default severity? Use the Edit Rule link. Ditto the name and the description. If you decide you didn’t
need the rule after all, you can always delete it.

251Rule editing
included a given rule in the profile. That’s what the Add Note link is for. Using it adds
a profile-specific note that’s displayed in the note details, as figure 13.16 shows.

 Rule notes have a very limited life. They only appear in the profile administration
interface; they aren’t added to the rule’s issues drilldown, because they’re intended to
be an admin’s “note to self” sort of annotation. And because they’re profile-specific,
dropping a rule from your profile drops your notes on it as well. Further, notes made
on a rule in a parent profile aren’t inherited by child profiles, and adding a note to a
child profile does not mark an inherited rule as overriding.

 At this point, you know how to make all the rule-related changes that are possible
in a profile. Next we’ll look at alerts, which aren’t related to rules at all.

Figure 13.15 Extend the description of a rule in one
profile, and you’ve extended it for all profiles. You can use
limited markdown syntax to help get your point across.

Figure 13.16 Rule notes are profile-specific reminders you can set on
any rule. They appear when you expand the rule details in the profile
administration interface, and nowhere else.

252 CHAPTER 13 Rule profile administration
13.4 Alerts: knowing when your metrics
have crossed the line
In addition to modifying the rules in a profile, you can also set alerts, which are met-
ric-based warning and error thresholds. When you set an alert on a profile, any project
analyzed with that profile will have an alert raised against it if it crosses one of those
thresholds.

 Even though a profile is primarily about rules (and therefore issues), you can set
an alert against any metric: issues certainly, but also duplications, documentation,
complexity, and so on. Alert setup and maintenance is found on the Alerts tab of the
profile maintenance interface, as shown in figure 13.17.

 You have the flexibility to set either warning or error thresholds, or both at once.
To set one up, you choose the metric to monitor, the Boolean operator to use, and the
threshold to test. If you do, you may be surprised to see a colorful new widget appear
on your dashboard. The alerts widget isn’t displayed on projects that are analyzed with
alert-less profiles, but it will pop into view after your first analysis once you’ve set
alerts. Its background color gives you at-a-glance insight into a project’s alert status,
and its contents provide the specifics, as shown in figure 13.18.

 In addition to the colorful presentation of the alerts widget itself, other widgets
may start to show additional color once you’ve set alerts. As the right side of
figure 13.18 shows, a metric that has crossed an alert threshold is displayed on a col-
ored background to draw your attention to the problem. But you only see red (error)
and yellow (warning) backgrounds on these metrics; acceptable metric values aren’t
presented on green backgrounds.

Figure 13.17 You can set as many alerts as you’d like. They’re simple Boolean tests against metric thresholds.

253Alerts: knowing when your metrics have crossed the line
Setting and seeing alerts is easy, but choosing alert metrics is a little more tricky. Some
alerts are probably obvious: Blocker issues > 0 is an attractive alert because Block-
ers need immediate attention. But what about Criticals? Clearly you don’t want any
issues in your project, but from a practical standpoint can you set up an alert on
Critical issues > 0? For a brand-new project it may work; but set that alert on a
profile that’s used by legacy projects too, and you’re likely to see your dashboards light
up like Christmas trees. Sure, Criticals need attention too, but alerts are like salt: best
used in moderation.

 Fortunately, SonarQube offers the ability to set differential-based alerts, so that you
can raise an alert when the number of Criticals increases versus any of your differential
periods. Percentage metrics offer another handy option. In chapter 8, we advised you
against using percentages for goal setting because they fluctuate based on project size,
but they make good alert candidates because they can help you balance that brand-
new, probably tiny project against your lumbering giants of legacy projects. Going
back to Criticals, there’s no Critical % metric to set an alert on, but there is a Rules
Compliance Index metric, which factors the size of the code base against the number
and severity of its issues.

 Also looking backwards, you may remember that chapter 9 talked about using the
Build Breaker plugin to mark your continuous integration build as failed if the Sonar-
Qube analysis raised any alerts. That way you can take advantage of the notification
mechanisms available in most CI platforms to raise the alarm for new alerts, rather
than having them wait passively (if colorfully) in SonarQube to be found.

 Now that you know what alerts are, how to set them, and how to recognize a metric
value that has raised an alert, we’ll move on to how to track all the changes you’ve
been making to your profile, including what is tracked and what isn’t.

Figure 13.18 SonarQube gets more colorful once you’ve set up alerts. The alert widget, shown three times on the
left, uses a stoplight scheme to convey alert status. Any other widget that displays an alerted metric will also use
color if the value has crossed an alert threshold, as shown with duplications on the right.

254 CHAPTER 13 Rule profile administration
13.5 How to track profile changes
You’ve edited your rule set, edited the rules themselves, and probably set some alerts.
At the beginning of this chapter, we advised you to start your profile journey by mak-
ing a copy of your favorite profile and modifying it. At this point, your copy could be
pretty far afield from where you started. Or maybe not. There are two ways you can
keep up with those changes. The profile changelog gives you a granular record of
changes to a profile, and the ability to compare two profiles will give you a summary of
how far you’ve diverged from the source.

13.5.1 Changelog: who did what, when

Not surprisingly, you’ll find the granular log of your changes under the Changelog tab
in the profile editing interface. The changes recorded here are the ones that would
affect an analysis. So setting an alert doesn’t appear because it doesn’t impact the met-
rics that come out of analysis; it just reports on them. Neither will adding a rule note
or extending a rule description.

 What does appear here are the times when you’ve added or removed a rule, and
when you’ve changed a rule’s severity or parameters—when you’ve made changes that
will affect an analysis. Each of those changes is recorded granularly, so adding a new
rule to your rule set and then adjusting it from the default severity appears as two dis-
tinct items in the changelog, as shown in figure 13.19.

 Interestingly, profile inheritance changes are reflected in the changelog, but not
in the manner you might expect. Recall that Russell has set up several profiles. The
Red Team profile is a conservative set of only Blocker and Critical rules. The Green
Team profile inherits from Red Team and adds rules of lower priorities as well. When
that inheritance relationship is established (when he picked the Red Team profile as

Figure 13.19 Each change you make to a rule set is recorded granularly.

255How to track profile changes
the Green Team’s parent profile), what was recorded in the changelog was not the
establishment of that relationship, as you can see in figure 13.20. Instead, the Green
Team changelog shows (granularly) the addition of every single rule in the Red Team
profile. In fact, the relationship between the two profiles isn’t explicitly reflected in
the changelog, because the relationship has no impact on an analysis. The rules that
come with that relationship do, so they’re what’s recorded.

 Similarly, if you override some aspect of an inherited rule or revert the rule back to
the parent definition, the change is recorded, not the impact on the relationship.
Even so, the changelog holds clues to the relationship, if you know what you’re look-
ing for, as figure 13.20 shows.

13.5.2 Profile versions: when changes go into production

Now that you’ve seen a couple of changelog excerpts and you understand what is
recorded in a profile version, you may be wondering about the versions themselves.
Profile creation is version 0, and your initial changes afterward go into version 1. But
when does version 1 end and version 2 begin?

 The version number changes when you run an analysis. That’s because profile
changelogs aren’t about the profiles at all. Instead, they’re about the changes you’ve
made to a profile that will affect an analysis. Just as you’d change a program’s version
number when you put changes into production, a profile’s version number is incre-
mented when its changes go into production: when you perform the next analysis
with it.

Figure 13.20 Setting or revoking an inheritance relationship between profiles isn’t explicitly recorded in a
changelog, but you can nonetheless find clues to a relationship. For instance, the addition or deletion of a couple
hundred rules in the space of a minute is a strong indicator. An irrefutable one is the presence of multiple changes
in a single record, because SonarQube doesn’t record changes made manually in that way.

256 CHAPTER 13 Rule profile administration
The Changelog tab is the only place in the profile editing interface that you see any
reference to a profile’s versions. But they’re referenced in the projects that use the
profile, as figure 13.21 shows.

 Because everything in SonarQube revolves around the analysis, the description
widget shows a project’s assigned profile and the last version of the profile that was
used to analyze the project, which isn’t necessarily the most recent version of the pro-
file. Profile version changes also appear in a project’s events (an event is recorded for
every analysis with a profile change) and history. Again, keep in mind that the history
of an infrequently analyzed project may not reflect every single version of a profile.

13.5.3 Profile comparison

At the beginning of this chapter, we advised you to start your profile editing journey
by making a copy of your favorite profile and editing it. At this point, your copy could
be pretty far afield from where you started. Or not.

 Fortunately, there is a way to tell. At the top of the list of quality profiles is an unob-
trusive link: Compare Profiles. Click-through, and you’ll find yourself at a simple inter-
face showing two drop-down menus. Each one lists all available profiles. To find out how
far you’ve strayed from the profile you copied, choose them in the drop-down menus
and click the Compare button. Figure 13.22 shows the results for the Green Team.

 With changelogs and profile comparisons under your belt, you know 95% of every-
thing you need to fully and successfully administer your profiles. We’ll cover the last
5% in the next section.

13.6 Administrative miscellany
At this point, we’ve discussed the meat of profile administration. But before we close
the chapter, you need to know about a few more things: project assignment, backup
and restore, and permalinks. Unfortunately, there’s no good unifying theme among

Figure 13.21 The description widget and the events widget both reflect profile version changes.

257Administrative miscellany
these topics, which is why we’ve punted and named this the miscellany section. We’ll
start with project assignment.

13.6.1 Project assignment: which project uses which profile

We covered the topic of the default profile and assigning a project to a profile in chap-
ter 2, but it deserves at least a mention here. Every language SonarQube can analyze
has a default profile: it’s the one marked with a green check in the list of profiles.
Changing the default is as easy as clicking the Set as Default button next to a different
profile. When you do, the next analysis of each project that hasn’t explicitly been
assigned to a different profile will be run with the new default.

 If you have projects that you don’t want analyzed with the default profile, you can
explicitly assign them to the profile you do want them analyzed with. To do that, click-
through from the list of profiles on the target profile, and choose the Projects tab. Fig-
ure 13.23 shows the interface.

Figure 13.22 You access the profile comparison interface from the Compare Profiles link at the top of the list of
profiles. It lets you compare any two profiles, regardless of language, and shows the differences in summary form
at the top with a list of details at the bottom.

258 CHAPTER 13 Rule profile administration
Once you’ve assigned a project to a profile, all its subsequent analyses take place with
that profile—unless you override that choice by using the sonar.profile parameter
at analysis time to specify a different profile, which isn’t something you should do on a
regular basis (if at all). One reason is that although a project’s assigned profile appears
on the project dashboard in the description widget, an analysis-time override of the
assigned profile is not reflected there.

13.6.2 Profile backup and restoration

The mechanics of backing up a profile and then restoring it are fairly simple. The
Quality Profiles page has a Backup button on each non-default profile. Click it, and
SonarQube spits out an XML file. Save that to disk, and presto! You have a backup.

 But a backup of what? Browse around in that file, and you’ll find only two things:
the profile’s alerts and its rules. The backup includes your rule parameters, but it
doesn’t include any rule notes, the profile’s changelog, or its assigned project list.

 And although the backup includes every single rule in the profile, including the
inherited ones, it doesn’t include any indication of the inheritance relationship. So
restoring that backup gives you back every rule, but you have to handle resetting
inheritance manually.

 But that raises the question of restoration. There’s a Restore Profile link at upper
right in the list of profiles. Click it, and a form pops up as shown in figure 13.24.

 Restoring a backup is a simple matter of uploading it. Just be sure you’re not trying
to restore an existing profile.

13.6.3 Permalinks

A project’s permalinks are a little like a backup. Each rule engine–specific link gives
you a list of the profile’s rules from that engine. Filed under the Permalinks tab in the
profile administration interface, you’ll find an All Rules link—which is another way to
access the backup file—and a link for each rule engine available for the language.

Figure 13.23 Use the interface on the Projects tab to assign projects to a specific profile for
analysis. This works even on the uneditable profiles.

259Plugins
At the beginning of this chapter, we looked at creating profiles from scratch. In that
from-scratch interface, you have the opportunity to upload rule engine–specific rule
files with which to seed the profile. At the time, we dodged the question of where
those files would come from. Well, this is one source.

 Like a profile backup, the engine-specific files contain your parameter settings.
But because each of these files is generated in a format specific to the rule engine in
question, don’t look for your rule notes, because they’re strictly a SonarQube-only
thing.

 With permalinks, backups, and project assignment under your belt, you now know
everything you need to about how to administer SonarQube profiles.

13.7 Plugins
A number of plugins make new rules available, but most of them are better covered in
other places. We’ll cover only two plugins in this chapter: Switch Off Violations and
our old favorite, Widget Lab.

13.7.1 Switch Off Violations

The Switch Off Violations plugin gives you the option to turn off rules in a fine-
grained way. Why would that be useful? Let’s say you have a profile that’s being
applied to both JEE and Swing applications. They’re both flavors of Java development,
but they’re very different in focus and method. And the Swing developers are com-
plaining about the “Unused formal parameter” rule.

 They keep being dinged by it, but they say they can’t help it because they didn’t
choose the method parameters; those are set by the Swing API. If they want their app
to work, they have to use the method signature dictated by Swing, regardless of
whether they need the parameter. They’re lobbying to turn off the rule, but the JEE
developers want to keep it on. You could split their rule sets, but if there are only a few

Figure 13.24 The Restore Profile link at the top of the Quality Profiles page adds a form that allows
you to restore a backup. Just make sure you aren’t trying to restore over an existing profile; you need
to delete the current copy first.

260 CHAPTER 13 Rule profile administration
points of contention, it might be better to just turn off the use of that rule for the
Swing trouble spots. That’s what the Switch Off Violations plugin lets you do.

 Using settings at a global or a project level, you can configure as many exclusions
as you’d like. Each exclusion is one of the following:

 A pair of regular expressions to mark the beginning and ending of blocks that
should be completely ignored by the rules. This is useful, for instance, when
you’re dealing with NetBeans’ auto-generated code.

 A regular expression describing files or packages to be ignored.
 A combination of the file/package name regular expression, the key of the rule

to be ignored, and a set of lines or line ranges, such as [4,23-50,72-81]. Leave
the Lines input blank to have the exclusion cover all lines.

13.7.2 Widget Lab

The other plugin for this chapter is Widget Lab, which we created to fill what we saw
as gaps in SonarQube’s display of data. It’s relevant here because it offers an aug-
mented alerts plugin. In the earlier figures, you may have noticed that when there are
multiple alerts, they’re displayed together in paragraph form. Although that gets the
point across, it doesn’t grab you as hard as we thought it should. So we offer an alter-
native, shown side by side with the standard widget in figure 13.25.

Figure 13.25 Whereas the standard alerts widget (left) presents all alerts in paragraph form, the
project alerts widget (right) breaks out each alerting metric for a clearer picture of what’s past its
error threshold and what’s at warning stage. The bar graphs to the right show you how far out of
compliance the metric is.

261Summary
13.8 Summary
This chapter has been a primer on profile management. You saw how to create a new
profile (making a copy is usually much less work than starting from scratch) and how
to set up profile inheritance. You learned how to include rules in and exclude them
from your profiles and how to adjust their severities, and you learned to do lower-level
edits of the rules themselves: their parameters, notes, and descriptions. We also
showed you how to create alerts and how to pick good alert metrics.

 You saw that you can track a profile’s drift from the one you copied either by com-
paring the two profiles or by looking at your profile changelog. And you saw that pro-
file changelogs and backups are rule-centric. Although a backup contains your alerts,
the changelog doesn’t; and neither reflects inheritance, rule notes, or rule-descrip-
tion extensions, because none of those things affect an analysis.

 By learning to manage your profiles, you may feel you’ve mastered all the adminis-
tration you need, but you’re just scratching the surface. In the next chapter, you’ll see
how to configure filters and global dashboards to put the data that’s most important
for your organization front and center. You’ll also learn how to set up notifications so
that SonarQube notifies you (and your users) via email when there are new issues on
one of your favorite projects.

Making SonarQube
fit your needs
In most books that talk about software systems or tools, the parts that cover config-
uration or administration topics are considered boring and are usually skipped by
readers. You’re probably thinking the same about this chapter too, but don’t pull
the trigger yet.

 SonarQube’s default configurations are well thought out, but you can get much
more out of them by adjusting some of the options we’ll show you in this chapter.
We aren’t going to teach you only the “how”—instead, we’ll focus on explaining the
“why.” You’ll learn through real-world scenarios when and why you need to modify
SonarQube configurations or use an administration feature.

 We’ll start by discussing filters. You might have already figured out that the
default project list on SonarQube’s home page is actually a filter. You can create as

This chapter covers
 Working with filters

 SonarQube notifications

 The power of SonarQube dashboards

 Exploring the rest of global configuration
262

263Exploring filters
many as you want, depending on your needs, and display their results in your dash-
boards. The first section of this chapter explains how to master SonarQube filters.

 Then we’ll look at global dashboards. They can show information on the highest
level. You’ll learn the purpose of default dashboards and how to share yours with
other users (if you belong to the administrators group) or add theirs to your startup
page. For normal users, dashboards are private, with no option to change that.

 After that, we’ll jump to SonarQube’s embedded notification mechanism. You’ll
learn how you and your team can automatically receive important information, such
as new issues or assigned issues. Next we’ll cover custom metrics. These are metrics for
which you manually enter the values because they can’t be computed during a typical
quality analysis.

 Then we’ll discuss some cases where you might want to modify the default Sonar-
Qube settings. For instance, how can you adjust SonarQube to appear in your lan-
guage? Based on our experience, we’ll present some best practices that we hope you’ll
find useful.

 The rest of the chapter presents some low-level administration topics such as
backup and restore, showing system info, and so on. Finally, although it may sound
weird, we end with an overview of the related plugins. Before we start, make sure
you’re logged on in SonarQube as an administrator, because most of the stuff we’ll
show you is only available to registered users with admin rights.

14.1 Exploring filters
Tim’s company started using SonarQube a couple of years ago. In the beginning, for
evaluation and learning purposes, only a few Java projects were analyzed. Today,
SonarQube hosts hundreds of projects developed in various programming languages.

 Tim is the R&D line manager, and one of his key responsibilities is to track source
code quality in collaboration with team leaders. Every day, he struggles to find, in
SonarQube’s first page, those projects for which the code-coverage metric is below
50%. He estimates that he spends around 15 minutes on searching activities. That’s
more than one hour per week!

 In this section, we’ll explain to Tim (and to you, of course) that SonarQube offers
a flexible and powerful way to create filters based on a variety of attributes. Filters can
be created by any logged-in user.

14.1.1 Adding a new filter

To create a new filter, click the Measures link, which can be found at upper left on
your screen. When you do, the page shown in figure 14.1 opens. On the left are a link
to manage your favorite filters and the search criteria form. The rest of the screen is
currently blank. This is where you’ll see the results when you perform your first
search. Note that you can’t use your new filter until you’ve added it to a dashboard,
which we’ll cover in the next section of this chapter.

264 CHAPTER 14 Making SonarQube fit your needs
Let’s try to create your first search and save it as a filter. Assume that you want to
search all projects with test coverage less than 50%. Click the input labeled What?
Projects, Files in the search form to define what you want to search for, and select Proj-
ects. (From now on, we’ll call this field the resources input field.) Then click the More
Criteria button to add some more criteria. Select Metric from the criteria types drop-
down list that appears. After that, click the Metric button, and pick Coverage (under
the Tests category). Finally, fill in the rest of the fields so your screen looks like the left
part of figure 14.2.

Figure 14.1 Managing filters and performing a search

Figure 14.2 SonarQube’s flexible search form

265Exploring filters
Click the Search button, and the results of your search appear as shown in figure 14.2.
You now have several options, which we’ll discuss in the next sections. For now, let’s
save the filter so you can use it in your dashboards.

 Click the Save As link at upper right in the search results. In the pop-up window,
pick a name that describes your filter, enter an optional description, and check the
last option if you want to share your filter with other SonarQube users. When you click
the Save button, you’ll notice two changes on your screen: the Save As button is
renamed Copy (clicking it opens the same window and makes a clone of the filter),
and the filter you just created appears in the favorite filters section at left on your
screen. From now on, whenever you browse the Measures page, you’ll see this filter; if
you click its name, SonarQube will display its results.

 Before we explore more topics related to filtering, click the Manage link at the
top of the search form. This link navigates to the filter administration page. As shown
in figure 14.3, the upper part of this page displays the filters you’ve created, and the
bottom lists filters created and shared by others. You’re probably wondering where
these shared filters came from. These are predefined filters included in the Sonar-
Qube installation. Only administrators can manage them, but by default they’re avail-
able to all users.

14.1.2 Customizing the filter view

Now that we’ve covered the basics of filter administration, let’s discuss how you can
customize the look and feel of the search results. As shown in figure 14.2, two links
appear at upper right on the page:

 Change columns/Change Treemap—Allows you to add/remove or change the
order of the columns or change the values of the treemap view.

 Display as List/Treemap—Allows you to change the view of the current filter.

Figure 14.3 Filter administration page

266 CHAPTER 14 Making SonarQube fit your needs
When you’re in List mode and you click the Change Columns button, a new panel is
displayed at the top of the results, as shown in figure 14.4. You can add a new column
by clicking the drop-down list box, remove an existing one, or change the order by
using the arrows located over each column. Finally, you can sort the results by clicking
a column’s name.

 Let’s change the view mode to Treemap, which provides an alternative view of the
filter results (see figure 14.5). Clicking the Change Treemap link displays a configura-
tion panel similar to the one we showed you for the list view. There are only two attri-
butes to set when using this display type: the selected Size metric is used to tell
SonarQube how the project rectangles will be computed, and the selected Color met-
ric is responsible for colorizing the rectangles.

 Before we move on to more advanced cases of filter creation, as an exercise, try to
remove the Date column from the filter you just created, and add a column about
project complexity. Also move the Issues column so it’s the first column, and then sort
the results by the Lines of Code metric. Finally, add criteria so the filter displays proj-
ects with code coverage less than 50% and code duplication more than 1%.

14.1.3 Advanced filtering

Looking again at figure 14.2, by clicking the More Criteria button you can add criteria
to your search. Notice that every possible SonarQube entity can be included in your
search, which makes SonarQube filtering a powerful and flexible mechanism. Let’s
explore these options with some practical examples.

DIFFERENTIAL FILTERS

Imagine that Tim (the R&D line manager) wants to get a list of all the resources for
which the code coverage got worse since the last analysis. He’s in luck, because filters
can take advantage of SonarQube’s differential service. You might want to refresh your
memory by going back for a minute to chapter 9, where we covered this topic in detail.

Figure 14.4 Change Columns panel at the top of the search results

267Exploring filters
We’ll guide you through the required steps to create such a filter in a couple of min-
utes. First, click the New Search button to reset the search form and the results. Now,
in the first input, select all the available resources: Projects, Sub-projects, Directories,
and Files. (We omitted the unit test files because SonarQube doesn’t compute code
coverage for this type of resource.) Then enter the search criteria: select the Coverage
metric; and instead of Value, change the drop-down list to the differential period
Since Previous Analysis. Choose your assertion criteria (<= in this example), and enter
the value 0 in the last input field. Your screen should look like the one in figure 14.6.

Figure 14.5 Previewing and customizing how a filter looks as a treemap

Figure 14.6 Creating a
differential filter

268 CHAPTER 14 Making SonarQube fit your needs
The filter criteria you just entered might look weird. A change of zero (0) would mean
no change at all, whereas a change of greater than zero would mean a change. What
does this negative change criteria mean? Well, when you’re dealing with differential
periods, checking for negative change makes absolute sense: it means the metric got
worse since the selected differential period.

 Click the Search button to get a sneak peek at the results of your filter. Figure 14.7
displays a preview of the results. Notice that there are only two columns. We did that
in the screenshot to call your attention to the difference between the value and differ-
ential period columns.

 In the value column, in addition to the metric value, you also see the trending
icon. Furthermore, we added a variation column for the coverage metric (there is a
note under the column header to distinguish them) to show only the difference from
the selected analysis for comparison. Note also that placing a variation column in a
non-differential view is useless, because it doesn’t show anything (it’s blank). To
familiarize yourself with columns and differential filters, try adding some more met-
rics as values or variations, or select another differential period to see how the filter
results change.

 Before the resource’s name is an icon
indicating its type. Table 14.1 summarizes
the different icons and their meanings.

OTHER CASES

Filtering has more flexibility to show us.
Let’s assume that in your SonarQube
installation, you host projects written in
multiple programming languages. You’d
like to examine the quality of all web
development files containing the word
print, excluding those developed in Java.

Figure 14.7 Results preview of a differential filter

Table 14.1 Resource types and icon indicators

Icon Indicator Resource type

Project

Subproject/module

Package

Directory

File/Class

269Exploring filters
Due to the fact that there are plenty of legacy projects that have had no code modifi-
cations for a long time, you want to get results only for analyses triggered in the last
three months.

NOTE This example supposes that additional language plugins such as XML,
JavaScript, and WEB have been installed in SonarQube. Chapter 1 provides an
overview of the supported languages, and later in this chapter we’ll discuss
the update center, which is the central place to manage your plugins.

For all the requirements we just described, SonarQube filtering has something to tell
you. Create a new search, and follow these steps:

1 Select only Files in the Resources input. Select the required languages by click-
ing the More Criteria button and selecting the Language option. Click again on
the input that appears, and select all the required languages. For instance, if
you deal with J2EE web development, you might need to check XML, JavaScript,
and WEB. Don’t select Java, because you don’t want Java files in your results.

2 Add a new Name criteria, and enter the following value: *print*. The charac-
ter * can be used as a wildcard to match more than one resource.

3 Add a new Age criteria, and enter the number 90 in the Inspected field to tell
your search to include only files built during the last three months (90 days).

4 Click Search.

Before we move on to the next topic, there are a couple of criteria types we haven’t
discussed yet. In the last example, instead of using the resource name, you could have
used its key. But be aware that for files, the key is composed of the project/module key
plus the full package name.

 For instance, let’s say a project has the following key: org.codehaus.sonar-
plugins:sonar-widget-lab-plugin. The key for the file AlertsWidget contained
in the package org.codehaus.sonar.plugins.widgetlab is org.codehaus.sonar-
plugins:sonar-widget-lab-plugin.org.codehaus.sonar.plugins.widgetlab.AlertsWidget.

 There is one last thing we’d like to explain: the Components criteria type. In gen-
eral, you can use it to limit the results of a filter for a given project or subproject/mod-
ule. By selecting this type, you can pick a project or a component/module. To do so,
type the name or part of the name you’re looking for, and SonarQube will display a
list of all projects and subprojects matching your input. Click Search to see the result
of your filter and save it to your favorites.

14.1.4 SonarQube’s default filters

Now that you’re familiar with searching and creating filters, let’s go back to the filter
administration screen. To do so, click the Manage link. The filter you just added is
shown in the My Filters list, and SonarQube’s default filters appear below.

 As we mentioned earlier, SonarQube comes with two ready-to-use-filters, which
we’ll discuss in this section. The bad news is that they’re generic and, in large Sonar-
Qube installations, almost useless. The good news is that you copy them and modify
their criteria.

270 CHAPTER 14 Making SonarQube fit your needs
MY FAVORITES

As you’ve probably figured out, this filter lists all your favorite resources: projects,
components, or files. You can easily flag (or unflag) a resource as a favorite by clicking
the star icon that appears on many SonarQube screens. For instance, in the source
code tab viewer, the star icon is located just before the name of the file, as shown in
figure 14.8. Similarly, when you’re viewing a project’s dashboard, you can find the
Favorite star at upper right on the screen.

 You can even flag/unflag resources when viewing a filter without needing to drill
in to a project dashboard or browse resources. The Favorite star for each resource
appears in the far-left column. Every resource that is flagged as a favorite is automati-
cally displayed in the Favorites filter.

PROJECTS

In small SonarQube installations, or if you’re making your first baby steps with Sonar-
Qube, this filter is useful because it shows all projects hosted in SonarQube. But as
more and more projects are analyzed, such filters become obsolete or hard to use.
Thus, we suggest you create filters that make sense to you and/or your team.

 By now we hope that you’ve mastered SonarQube filters and can define search cri-
teria based on your needs. The next section introduces dashboards and, among other
things, teaches you how to use your mighty filters.

14.2 One size doesn’t fit all: managing global dashboards
As you’ve already figured out, SonarQube computes hundreds of metrics associated
with different aspects of quality. Its usefulness isn’t limited to the developers’ world; as
we’ve mentioned many times throughout the book, testers, architects, team leaders,
line or project managers, and even upper management can take advantage of what
SonarQube offers.

 The problem is that a line manager, for instance, needs completely different infor-
mation to track and evaluate the quality of a project than a developer. A line manager
is presumably satisfied with an overview of all active projects without too many details,
whereas team members surely want to have access to source code coverage reports or
complexity metrics for the projects they’re currently involved in.

 We’ve worked in all possible technical roles in a software project, and we’ve learned
that each person needs a different point of view for the same data. SonarQube comes

Figure 14.8 Adding a file to your favorites

271One size doesn’t fit all: managing global dashboards
to the rescue and provides a powerful and easy-to-use mechanism to manage your
dashboards at a global or project level.

NOTE If you’re a SonarQube administrator or a SonarQube evangelist who
introduces it to your team, then we advise you to empower users to create
their own dashboards that show exactly what they want to see. Of course,
SonarQube administrators should set up some generally useful dashboards
and filters, but we’re pretty sure those will never manage to make everyone
happy. Instead of trying to fit all the different needs into a few global dash-
boards, focus on teaching users how to customize dashboards of their own.

This section discusses global dashboards, but most of the content also applies to proj-
ect dashboards, which we’ll cover in the next chapter. You’ll learn how to create and
customize the look of global dashboards by adding widgets or adjusting the way they
look. We’ll also show you the purpose of default global dashboards and how you, as an
administrator, can manage them.

14.2.1 Creating your first global dashboard

To start managing your global dashboards, click the Home link in the upper-left cor-
ner of SonarQube’s first page. Then click the Manage Dashboards link in the upper-
right corner (see figure 14.9).

If you don’t see the latter, ensure that you’ve already logged in, because global and
project dashboard configuration isn’t available to anonymous users. Figure 14.10
shows what you should see once you’ve clicked the Manage Dashboards link.

Figure 14.9 The Manage
Dashboards link is available
on your home page.

Figure 14.10 Global dashboard configuration page

272 CHAPTER 14 Making SonarQube fit your needs
Similar to filters, SonarQube comes with default dashboards that we’ll explore later in
this section. The Available Dashboards list includes all shared dashboards (either by
administrators or by SonarQube). You can follow/unfollow any dashboard by clicking
the relevant links. For clarification purposes, following a dashboard means the dash-
board appears as a link in the left menu of your homepage.

 Now that you’re familiar with the basic concepts of global dashboards, let’s create a
new one. Enter a name and description in the New Dashboard panel, and click the
Create Global Dashboard button. Keep in mind that only users with administrator
privileges can share a dashboard, so if you can’t find the Shared check box, you’re
probably logged in as a normal user.

 The newly created dashboard now appears in the My Global Dashboards list, as
shown in figure 14.11. If you want to edit its details (name, description, or sharing),
click the Edit link. To see how it looks, although it’s currently empty, click its name. If
you want to completely remove it from SonarQube, click the Delete link.

14.2.2 Customizing your dashboards

To add some widgets and customize the dashboard’s look, click the Configure Widgets
link. As shown in figure 14.12, from the global dashboard customization page, you can
do the following things:

 Change the layout
 Add/remove global or project widgets
 Preview your dashboard

SonarQube dashboards support several common page layouts. You can choose from
among the following: single column, two columns, and three columns. The two-col-
umn layout comes in three flavors:

 50%-50%—Both columns are equally sized, and each gets half of the available
page width.

 30%-70%—The left column gets 30% of the available page width, and the right
column gets the rest (70%).

 70%-30%—The Left column gets 70% of the available page width, and the
right column gets the rest (30%).

Figure 14.11 Every new global dashboard is added to the My Global Dashboards list.

273One size doesn’t fit all: managing global dashboards
For this section’s example, select the last option (70%-30%).
 Adding a widget to your dashboard is easy. Search for the widget you wish to add by

clicking the categories shown at the top of the screen. Once you find it, click the Add
Widget button, and your widget is added in the upper-left position on your dash-
board. But we need to clarify a couple of things.

 You haven’t met the Global widget category until now. This category contains wid-
gets that can be placed only in global dashboards. Typical (project) widgets are avail-
able for both kinds of dashboards. Only three global widgets ship with SonarQube:
Measure Filter as List, Measure Filter as Treemap, and Welcome, as shown in figure
14.13. Other plugins, such as the Widget Lab plugin, may offer additional widgets for
your global dashboards.

Figure 14.12 Global dashboard customization page

Figure 14.13 Adding the global widget Measure Filter as List to a global dashboard

274 CHAPTER 14 Making SonarQube fit your needs
Once you’ve added a global widget to your dashboard, you need to select a filter from
the drop-down list. You can pick either a filter you’ve created or a shared filter you fol-
low. Click Save, and you’ll see your dashboard in action. There is no limit on the num-
ber of filter widgets allowed in the same dashboard.

 Now let’s add a project widget in the same dashboard: code coverage, for instance,
or any other one you’re familiar with. As shown in figure 14.14, as soon as you add the
widget, SonarQube asks you to specify the project for which you want to fetch data
(code coverage in this case).

 Click the Save button again, and the selected project’s code-coverage metrics are
shown in the widget. Notice that widgets in global dashboards have a descriptive title
to remind you of the project or the filter you’re viewing.

 To remove a widget from the dashboard, click the Delete link in the upper-right
corner of the widget. Finally, if you’re dealing with a configurable widget (such as the
filter widget we’re looking at), you can edit its settings by clicking the Edit link, which
is to the left of the Delete link.

 Because new widgets are added to the left column by default, your dashboard
probably isn’t attractive right now, with two widgets on the left side and none on the
right. To move a widget between dashboard columns, grab the widget’s header to drag
and drop it into a different column or into a different position in its current column
(see figure 14.15).

Figure 14.14 Adding a
project widget to a global
dashboard requires that you
specify the project from
which SonarQube will fetch
widget data.

Figure 14.15 Project widgets in global dashboards have a header you can drag and drop
between columns, and a title displaying the project or filter name.

275One size doesn’t fit all: managing global dashboards
When you’re done rearranging your widgets, click the Back to Dashboard button,
which is located in the upper-right corner of this page, and you’ll go to your home
page. In the left menu you’ll see a new link that points to the dashboard you just cre-
ated. If you want to make more modifications, you can always click the Configure Wid-
gets button.

 Figure 14.16 shows how the dashboard will look. Notice that in the right (30%)
column, we’ve added the same project widget (coverage) for several projects.

14.2.3 Defining default global dashboards

In the beginning of this section, we scratched the surface of the topic of default global
dashboards. Now it’s time to expand on that topic. As you saw in figure 14.10, Sonar-
Qube ships with one preconfigured global dashboard named Home, which includes
all the available global widgets. Recall from the section on SonarQube’s default filters
that, by default, you can use the following shared filters:

 Projects (displays all projects analyzed by SonarQube)
 My Favorites (displays all resources flagged as favorites)

Accordingly, on your home page you can add any global dashboard by clicking the
Follow link in the dashboard administration page. Every user automatically follows the
global dashboard that SonarQube ships with.

Figure 14.16 A complete global dashboard. The left column contains one global filter widget, and the right column
contains three instances of the same project-coverage widget showing information for different projects.

276 CHAPTER 14 Making SonarQube fit your needs
The dashboards that are displayed by default for all users are called global default dash-
boards. Their usefulness isn’t restricted to logged-in users; they’re available for anony-
mous access as well. Otherwise, an anonymous user trying to access SonarQube’s
home page would probably see a blank page, which isn’t convenient.

 The beauty of default dashboards is that users with administrator privileges can add
any global dashboards to or remove any global dashboards from them. Let’s see how.

NOTE Global dashboards are likely to contain one or more filter global wid-
gets. You might be wondering what happens if a user follows a default global
dashboard that contains a non-shared filter. You can try it at home and see
how SonarQube handles it, but you need to take several steps to do so. The
answer is that SonarQube displays the results of the filter even if the filter isn’t
shared.

First navigate to the global configuration page and click the Default Dashboards link
from the left menu. As shown in figure 14.17, this administration page is split in three
panels.

 On the top are the default global dashboards. All of them are shown by default on
SonarQube’s home page. Remember that, as you learned in section 14.2.1, each user
is free to choose which default dashboards to follow. Next, there’s a list of default proj-
ect dashboards. As you probably figured out, these dashboards appear on a project’s
home page. We’re going to cover them in depth in chapter 15. The last panel lists all
available (flagged as shared by administrators or SonarQube) dashboards that can be
added to global or project default dashboards.

 To add dashboards to or remove them from the default lists, click the link shown
in the Operations column. You don’t have to worry which list (global or project) to

Figure 14.17 Default dashboard administration

277Getting notified by SonarQube
move it into, because SonarQube automatically picks the right place for you, depend-
ing on the dashboard’s type. You can change the order in which they appear by click-
ing the arrows shown in the Order column. Finally, the Shared By column indicates
who has created (and shared) each dashboard.

 For practice, play around with the default global dashboards. Try to remove all of
them from the first list, and notice how SonarQube behaves.

 So far, we’ve covered the two most important global configuration topics for Sonar-
Qube: filters and global dashboards. In the rest of the chapter, we’ll explore some
valuable features such as notifications and global settings.

14.3 Getting notified by SonarQube
In the world of automation, collaboration, and Continuous Inspection, processes and
tools should help you keep your team in good shape. Interruptions or losing time in
non-development activities should be eliminated as much as possible.

 Assume that you’ve recently adopted the code review practice. Ivan, your team
leader, has assigned an issue to you. You need to refactor a class to remove the com-
plexity issues raised during the latest SonarQube analysis. It’s a task that you’ll need
around two days to complete.

 Unfortunately, you got sick and were absent for a few days. When you returned,
you immediately started working on your task. Meanwhile, Ivan had assigned the same
issue to Helen, because it was a top priority for the current iteration. At the end of the
day, in a stand-up discussion, you realize that you were both working—the whole day—
on the same task. Lack of communication, you probably think. Well, we’d say lack of
notification!

14.3.1 Activating the notification mechanism

SonarQube comes with a notification mechanism that was making its first baby steps
when this book was published. To activate it, you need to set up your email server set-
tings. To do so, navigate to the global configuration page, click General Settings in the
left menu’s System section, and select the Email category.

 As shown in figure 14.18, all attributes are straightforward, and SonarQube pro-
vides adequate information. When you’re done, you can test if everything works by
sending a test email using the Test Configuration section.

NOTE Before we move on, double-check that you’ve entered a valid email
address in your user profile. Otherwise you won’t be able to receive email
notifications for the events you’ll subscribe to in the following sections. If you
don’t remember how, go back and take a look at chapter 12.

Now that you’ve activated the notification mechanism, let’s see what kind of emails
SonarQube can send you.

278 CHAPTER 14 Making SonarQube fit your needs
14.3.2 Subscribing to event types

SonarQube can notify registered users about four kinds of events per project or
globally:

 Changes in an issue assigned to you or created by you
 New alerts created by the assigned quality profiles
 New false positives
 New issues on your favorite projects introduced during the first differential view

period

You’ve learned that, by default, the first differential period is Since Last Analysis. All
notification events except the first one are triggered as a post-analysis step, which
means you’ll receive emails for new issues, alerts, and false positives on projects intro-
duced during the last analysis. Of course, you can change the first differential period
in the global configuration to something other than Since Last Analysis, in which case
you’ll be notified about issues, alerts, and false positives introduced since the period
you’ve set.

 By default, all notification types are disabled, so each individual user needs to tell
SonarQube that they want to receive email messages. Navigate to your profile either
by clicking your name in the upper-right corner or by clicking Configuration and then
My Profile in the left menu.

 Figure 14.19 shows the available options. Check the boxes to subscribe to the event
types and start receiving emails for all projects. If you enable the first notification,
SonarQube will send you a message when a change (comment, resolution, new assign-

Figure 14.18 Email settings: activation of SonarQube notifications

279Adjusting global settings
ment, and so on) occurs in a review assigned to you or created by you. The rest of the
events are triggered for all projects. You receive an email when new issues, alerts, and
false positives are introduced during the first differential period—that is, period 1 in
the global differential service settings, as you saw in chapter 10.

TIP SonarQube includes a URL for accessing the issue or project issues in all
email messages. Make sure you’ve changed the server’s base URL in the global
settings, as we’ll show you in the next section, so the URLs make sense to you
and you can access SonarQube in your intranet or from the internet.

If you host several projects in your SonarQube installation, after a while you’ll find
that receiving emails for all of them isn’t very productive or useful. The good news is
that you can tell SonarQube the projects for which you want to receive these notifica-
tions. Click the Add Project list in the Notifications per Project section. Then, type the
first three letters and select your favorite project. Finally, choose which notification
types you want, and you’re finished. Repeat the same steps for every project you’re
interested in.

 In the last three sections, we’ve discussed the most remarkable topics related to
global administration in SonarQube. You can use SonarQube without knowing about
them, but we believe that by mastering these features, you’ll boost the value of your
SonarQube installation and, in some cases, the productivity of your team.

 The rest of the chapter focuses on more specific configuration topics and ends by
explaining the usability of the update center, as well as by describing a related plugin.

14.4 Adjusting global settings
We’re pretty sure you’re already familiar with the term global settings, because we’ve
shown you many times how to edit global attributes for SonarQube core or other plu-
gins. In this section we’ll add some glue to what you’ve seen so far in the book and
explain the remaining categories.

Figure 14.19 Event subscription

280 CHAPTER 14 Making SonarQube fit your needs
 SonarQube ships with many system plugins and features with editable global prop-
erties. A newly installed plugin may also provide attributes that can be configured
globally.

 To see this default global configuration and edit it for your environment, start
from the global configuration page and click the General Settings link in the left rail.
On the left side of the content area is a list of available configuration categories. Look-
ing at them, you’ll realize that we’ve already covered most of them.

 Configuring Checkstyle and FindBugs was introduced in chapter 2. Cobertura,
code coverage, and JaCoCo were discussed in chapter 3, and duplications were
explained in chapter 4. Email settings are fresh because you saw them earlier in sec-
tion 14.3.1. Chapter 12 covered security settings; and finally, in chapter 9, we dealt
with the differential view attributes and how you can use them to assist you in the Con-
tinuous Inspection process. Let’s see how and when the rest of the categories may be
useful.

14.4.1 Database cleaner

In large installations with hundreds of projects and many analyses per day, it’s point-
less to keep all snapshots stored in the database. SonarQube is enriched with a power-
ful database-cleanup mechanism that decides how many snapshots it will keep per day,
week, or month, and how historical data of packages/directories should be handled.

 We’ll cover in detail the concept of a project snapshot in the next chapter, but for
now bear in mind that a snapshot is an image of your project quality at a specific time.
In that sense, keeping multiple snapshots for the same day won’t make any difference
when you’re looking back a few weeks later, so the database cleaner is responsible for
removing these obsolete snapshots from the database.

 In the global settings, you can specify the attributes presented in table 14.2. (Sonar-
Qube’s inline help is awesome in this category, so we don’t need to explain further.)

 The default values shouldn’t cause you any problem because they’ve been carefully
selected by the SonarQube team, but you can always adjust them if you feel that you
need to increase or decrease the time before the snapshots will be removed.

Table 14.2 Database-cleaning configuration attributes

Property description Default value

Number of hours before SonarQube starts keeping only one snapshot per day 24 (one day)

Number of weeks before SonarQube starts keeping only one snapshot per week 4

Number of weeks before SonarQube starts keeping only one snapshot per
month

52 (one year)

Number of weeks before SonarQube starts removing all snapshots of a project 260 (five years)

Enable/disable the cleaning of historical data for directories/packages True

Number of days before deleting closed issues 30

281Adjusting global settings
 Just keep in mind that these values don’t represent a schedule of when some sort
of sweeper runs through the database, deleting snapshots. Snapshot cleanup is per-
formed at the end of each analysis, and these values are the age thresholds beyond
which any given snapshot (that’s not marked with an event) is eligible to be deleted.

 So if you’ve got a lot of hoary old snapshots from idle projects clogging your
database, adjusting these settings won’t free up any space. No analysis, no cleanup.
You need to run a fresh analysis of each of those projects to have their snapshots
cleaned out.

14.4.2 General

This category includes attributes that can’t be grouped elsewhere. You can find some
things to modify:

 If you’re not in a Java house, you can change the default language of the source
code to analyze.

 The next two attributes list the plugins that are accepted and excluded when
running an analysis in DryRun mode. DryRun mode lets you get all data
required to do a project analysis through a web service and dump the result of
the analysis in a local file. So, DryRun mode is database-less. The first use case
that takes advantage of this feature is Sonar Eclipse, but in the future it might
be used in other cases such as pre-commit analysis to reject a file based on some
criteria.

 Rules weight are related to issues and allow you to change the weight of each
issue severity.

 The server base URL is the URL root SonarQube uses when it talks about itself.

As you saw in section 14.3.2, when SonarQube sends you an email notification, the
message body includes a URL pointing to the issue page.

 If you activate the notification mechanism, we strongly advise you to change the
server base URL to something accessible at least within your intranet, because the
default value (http://localhost:9000) doesn’t make any sense unless you’re reading
the email messages on the same machine that hosts SonarQube.

 Rules weight feeds into the formula SonarQube uses to calculate the Weighted
Issues (WI) and Rules Compliance Index (RCI) metrics. Take a look at figure 14.20 to
refresh your memory. If you edit the WI value, you’ll have to run a new analysis for all
projects in order to use the new weights.

Figure 14.20 The Rules Compliance Index is the Weighted Issues score divided by
the number of lines of code in the project, turned into a percentage and subtracted
from 100.

282 CHAPTER 14 Making SonarQube fit your needs
14.4.3 Localization

As we’ve already told you, localization of SonarQube messages relies on browser con-
figuration. But if you want to display the rule engine messages in your language as well
(if it’s supported by the localization plugin), you need to change the value of the
Localization attribute.

 By default, it’s set to en, which means all messages are displayed in English. Set it to
the language you prefer, install the relevant localization pack, and restart SonarQube,
and if the rule engine’s message are translated, you’ll see them in the language you’ve
chosen.

14.4.4 Server ID

When you purchase a commercial plugin from SonarSource (the company behind
SonarQube), you’re asked for your server ID. To generate one, navigate to the Server
ID category on the global settings page. You need to enter the name of your organiza-
tion and the IP of the machine that hosts SonarQube.

 If, for some reason, you change the IP address or move SonarQube to a new
machine with a different IP address, you’ll have to generate a new server ID to match
the new configuration.

14.5 Housekeeping
SonarQube offers a couple of useful features for housekeeping activities, and we’ll
cover them in this section. We’ll start by showing how you can create copies of your
configuration and restore it in another SonarQube instance, and then we’ll jump to
the update center to discuss in detail how you can manage existing plugins, install new
ones, and get upgrade information about SonarQube’s latest version.

14.5.1 Backing up your SonarQube configuration

Imagine that you’ve been using SonarQube for several years, but only for one depart-
ment in your organization. A week ago, you had a request from another IT manager
who wants to analyze her projects in SonarQube as well. The problem is that the
machine hosting your SonarQube installation is old, and adding more projects isn’t
the best idea. On the other hand, you’ve done a lot of work regarding quality profiles,
general settings, and so on, and duplicating this configuration to a new machine is a
time-consuming activity.

 Your best bet is a full database backup. But if that’s not an option, SonarQube pro-
vides some native backup functionality for the following:

 Global settings
 Custom metrics
 Quality profiles (coding rules and alerts)

To see the screen shown in figure 14.21, navigate to the global configuration page and
click the Backup link in the left menu’s General section. Both actions are simple. To

283Housekeeping
back up your configuration, click the Backup button, and an XML file containing the
configuration data will be locally downloaded. To do the opposite, choose a backup
file located on your hard disk, and click the Restore button. Keep in mind that the
restore process permanently deletes any previous configuration, and there is no way
to get it back, unless of course you’ve already created a copy.

 Before you’re tempted to play around with restoring a backup if you don’t need to,
be aware that it doesn’t contain dashboards or filters, anything under Security (users,
groups, and roles), or any details of your projects’ configurations. Additionally, the
profile backup it contains has the same limitations discussed in chapter 13.

 Another useful SonarQube feature, especially when something goes wrong in the
setup, running, or analysis phase, is the system info page found in the left rail a couple
of links below the Backup option. This page gives you detailed information about the
SonarQube installation, installed plugins, system environment, Java virtual machine
statistics, and various system properties.

TIP Take a look at this page if you’re facing problems, to see if something
isn’t as expected. Also, if you ask for help in a user mailing list, this page
might provide you with important information for a quicker and more accu-
rate reply/solution.

14.5.2 Working with the update center

Many times throughout this book, especially in part 1, we discussed plugins that add
extra value to SonarQube’s core features. In chapter 1, we mentioned that SonarQube
is suitable for more than just the Java community; it supports plenty of different pro-
gramming languages. And as we hinted, SonarQube has been translated to several
human languages.

 The update center is the place where you perform the following activities:

 Install, remove, or update plugins to provide new features, localizations, or
analysis of new languages.

Figure 14.21 Configuration backup and restore, made easy by SonarQube

284 CHAPTER 14 Making SonarQube fit your needs
 Get information about newer SonarQube versions. At the time this book was
published, automated upgrades of SonarQube were unavailable (you have to
upgrade manually). This is one reason we’ve included upgrade scripts in
appendix A.

To access the update center, navigate to the global configuration page and click the
link in the left menu’s System section.

 As shown in figure 14.22, there are four tabs to explore. By default, you see the
Installed Plugins tab, which lists all the plugins found in your SonarQube installation.
Near the top is a list of all the plugins you’ve manually installed after the initial instal-
lation. Below that are the system plugins: those shipped with SonarQube core.
The Available Plugins tab displays the available plugins that are compatible with your
SonarQube version. To see plugins in this page, the machine on which SonarQube is
installed must have access to the internet. The same applies to the next two tabs. Also
keep in mind that not all plugins can be installed in all SonarQube versions. For a
complete and updated compatibility matrix, browse SonarQube’s online documenta-
tion at http://mng.bz/OOf9. The plugins are grouped according to their purpose.
Table 14.3 summarizes the available plugin categories.

Table 14.3 Plugin categories

Category Plugins that…

Additional Languages Support the analysis of new programming languages.

Additional Metrics Calculate new metrics during analysis.

Developer Tools Facilitate developers’ everyday life.

Figure 14.22 SonarQube’s update center

285Housekeeping
TIP If the update center doesn’t show any available plugins or other informa-
tion retrieved from the internet, then you’re probably behind a firewall. To fix
this, edit the sonar.properties file and set a couple of attributes (http.proxy-
Host and http.proxyPort) based on your intranet configuration.

To install a plugin, click its name on the Available Plugins tab and then click the Install
button, as shown in figure 14.23. SonarQube downloads the plugin and installs it, but
you need to restart SonarQube in order to activate your new plugin. An informative
message that reminds you of that is shown at the top of the update center screen.

 If you’ve changed your mind, you can click the Cancel Pending Installations but-
ton, and SonarQube will roll back all pending plugin installations. Note that Sonar-
Qube needs to be restarted not only when you add plugins, but also when you update
or remove them.

 The third tab, Plugin Updates, is simple because it looks like a lot like the previous
tab. The only difference is that it lists the plugins for which a newer version than the
one you’re currently running (compatible with your SonarQube version) has been
found. If no updates are found, then you should see the message “All of your plugins
are up to date.”

 The last tab, System Updates, doesn’t offer any actions. It displays messages about
new SonarQube versions and detailed instructions on how to update your installation.

Governance Use existing metrics to create an overview based on practices, indexes,
or methodologies, such as SQALE and Technical Debt.

Integration Integrate SonarQube with third-party systems, such as LDAP and Google
Analytics.

Localization Translate plugins into other human languages.

Visualization/Reporting Use existing metrics to create reports, or offer new widgets to display
quality data in different representations.

Table 14.3 Plugin categories (continued)

Category Plugins that…

Figure 14.23 Installing a
SonarQube plugin from the
update center

286 CHAPTER 14 Making SonarQube fit your needs
14.6 Summary
Well done, SonarQube administrator! Nothing now prevents you from feeling com-
fortable with every detail of SonarQube’s global configuration.

 You’re ready to manage and configure what anonymous users and registered users
who haven’t configured any dashboards yet will see when they access SonarQube.
You’ve learned what global dashboards are, and that you can place both project wid-
gets and global widgets in them. Furthermore, by now you should be able to do the
following:

 Create filters and add them to your dashboards to show only the information
you need. Design each filter by entering as many or few as you like of the follow-
ing: criteria, differential periods, desired programming languages, and how
results are displayed (treemap or table).

 Enable the notification mechanism to receive alerts about assigned issues or
issues created by you. SonarQube also sends you messages whenever new issues
are created for the projects you’ve flagged as favorites.

 Define your own custom metrics or use the preconfigured metrics that Sonar-
Qube ships with, and use them in filters or widgets to display their manually
entered measures.

 Adjust a variety of global settings and make SonarQube fit in your development
lifecycle instead of fighting it.

 Use the update center to install, update, and remove plugins, and to read the
update instructions for the latest SonarQube version.

The next chapter is dedicated to project administration. It will guide you through the
different ways you can customize a project analysis and manage its history.

Managing your projects
Welcome to the last chapter of the administration part of the book. Although it
may be the last, it’s not the least, because it will teach you how to tune your projects
and customize them to fit in the Continuous Inspection process you started adopt-
ing after reading chapter 9 (right?).

 We’ll start by explaining the differences between global and project dashboards.
What you saw in the previous chapter about managing global dashboards works
almost the same for project dashboards. We’ll focus only on the details that vary.

 Have you ever wondered how SonarQube handles projects with source files
from multiple programming languages? If every module contains code from a dif-
ferent language, then you can take advantage of a powerful SonarQube feature
that lets you run a single project analysis for all languages. Without that, you would
have to instead run several analyses (one for each language), and you could end up

This chapter covers
 Differences between project and global dashboards

 Manual metrics

 Multiple quality profiles

 Understanding the history of a project

 Exploring the rest of project configuration
287

288 CHAPTER 15 Managing your projects
with multiple SonarQube projects. In this chapter, we’ll show you how to assign vari-
ous quality profiles (one for each language) in the same project.

 SonarQube also offers a plethora of quality metrics. In addition, you’ve seen
throughout the book that plugins extend SonarQube by feeding it new metrics. But
plenty of measures (budget, team size, and so on) are outside pure code quality, so
SonarQube can’t compute them based on the source code. In such cases you can use
the manual measures feature: embedded reporting functionality that displays infor-
mation in a unified dashboard.

 Next we’ll explore how to manage your project history. We’ll explain basic terms
such as snapshots, versions, and events, and we’ll present some cases when you need
to manage them in SonarQube.

 The last part of this chapter covers the rest of the available project configuration.
We’ll discuss the various settings, similar to what we covered for global settings; and
you’ll learn how to define links, delete project(s), and modify a project’s key.

 You’ll notice that the order of the topics we’ll discuss doesn’t follow the order of
the links that appear in SonarQube’s menu. The reason for that inconsistency is that
we decided to present first the features that are most used or most significant, and
leave the less important stuff for the end.

 Enough with the introduction. It’s time to see what’s different in project
dashboards.

15.1 Working with project dashboards
In chapter 14, we covered a lot about managing global dashboards. You’ve learned
about customizing the look and feel of your dashboards, sharing them, and configur-
ing widgets. Project dashboards are more or less the same.

 Because most of the material in this chapter is about projects, navigate to Sonar-
Qube’s start page and click your favorite project. You’re redirected to the project
dashboard, where you see various widgets we’ve covered in
previous chapters.

 Let’s start by exploring the page where you can manage
your project dashboards. It’s identical to what you saw in
our discussion of global dashboards. The only difference is
that you can access this page only when viewing an existing
dashboard. Don’t worry if you haven’t created any yet.
Remember that SonarQube comes with four default dash-
boards that appear in the upper-left menu (see figure 15.1).
That means every new SonarQube user automatically fol-
lows all default dashboards—unless you edit them as you
saw in chapter 14. Don’t get confused by the fact the first
project dashboard is called…Dashboard. All of them are
dashboards, and table 15.1 summarizes them.

Figure 15.1 SonarQube
ships with five default
project dashboards.
They’re available in the
upper-left menu when
you’re viewing a project.

289Adopting Continuous Inspection more quickly
Now that you’re viewing a (default) project dashboard, you can see in the upper-right
corner the links—the same ones you see for global dashboards—for managing dash-
boards and configuring widgets. We won’t discuss that further because what you already
know from the previous chapter applies here as well. Don’t forget that you can share
project dashboards only when you’re granted global system administration rights.

 But keep in mind a small difference about widgets in project dashboards. You
don’t need to specify the project (as you do in global dashboards), because it’s
assumed that the widget will display data from the current project.

 Even though it might be considered weird, you can use global widgets in project
dashboards exactly as you do with global dashboards.

 Figure 15.2 shows the same widget (rules compliance) in a global dashboard and a
project dashboard. You can see the extra widget header in the global dashboard for
the project description.

 As a last reminder, you don’t have to create every dashboard your users want to see.
They can create their own private global and/or project-level dashboards and follow/
unfollow default dashboards created by global administrators.

 Now we’re leaving dashboards behind and moving on to a more sophisticated
topic. In the next section, we’ll discuss the available project settings that assist you in
applying Continuous Inspection practices in your development process.

15.2 Adopting Continuous Inspection more quickly
In chapter 9, we explained in detail the idea of Continuous Inspection and covered
the steps to achieve it. We even dedicated a whole chapter (10) to code reviews and
how SonarQube makes them a piece of cake, to underline the importance of this
practice when adopting Continuous Inspection.

Table 15.1 Default global dashboards shipped with SonarQube

Name Widgets included

Dashboard Rules compliance, test coverage, comments and duplications, size metrics, com-
plexity, and package design. This is the dashboard you land on by default when you
click-through from the global level to the project level.

Hotspots Most violated resource, most violated rules, and several instances of the metric
hotspot widget (highest untested lines, highest complexity, highest duplications,
and so on).

Reviews All widgets related to reviews and action plans (review activity, unplanned reviews,
reviews by developers, my active reviews, and so on).

Time Machine A timeline widget about coverage, rules, and complexity, and several instances of
the history table widget for the most important metrics.

Issues Unresolved issues by status, unresolved issues by assignee, action plans, false
positive issues, and unresolved issues.

290 CHAPTER 15 Managing your projects
This section elaborates on this topic and discusses some project-dependent features
and configuration that will help smooth the adoption of the Continuous Inspection
practice. We’ll start by showing how you can assign multiple quality profiles in a proj-
ect and the reasoning behind doing so. Then we’ll explain manual metrics, and finally
you’ll learn when and how you might want to exclude part of your source code from
analysis.

15.2.1 Assigning quality profiles

In modern layered systems, a common and best practice is to separate source code in
different libraries (called modules) based on the programming language used. For
instance, imagine a project with two modules. The first module contains Java source
code files, and the other one contains files related to the web interface (JSP/JSF/
XHTML pages). SonarQube can analyze this language-based multi-module project
during one analysis, which is convenient.

 In chapter 1, we talked about running multiple analyses for multiple languages in
the same project, which is different from what we’re discussing here (multi-module
language-based project organization). Both approaches are possible, both are com-
mon, and they’re supported by all available analyzers (clients). If you don’t know/
remember how to trigger such an analysis, refer to appendix B.

 As you learned in chapter 13, SonarQube ships with several default quality profiles.
Accordingly, every language plugin adds at least one default quality profile. But as we
explained, it’s a good idea to create your own profiles and associate them with proj-
ects. This can be done two ways. On the quality profiles administration page, you can

Figure 15.2 Adding a widget in a project dashboard is simple because you don’t need to specify
the project, as you probably expect from chapter 14.

291Adopting Continuous Inspection more quickly
associate a project with the selected profile, but this requires that the logged-in user
have system administration rights.

 You also learned in chapter 12 that it’s a good practice to create an admin group
for each project and assign them administrator rights only for that project.

 By following this practice, you can have project admins manage the selected qual-
ity profiles. They can’t create new profiles, but they can assign for each language
which profile SonarQube should use to analyze the source code.

 Figure 15.3 shows the project Quality Profiles page. Yours might be different,
because this page is dynamically created. A separated option is displayed for each pro-
gramming language supported by the current SonarQube installation. Your project
might contain only Java and JavaScript source files, but SonarQube doesn’t know that,
so it displays all available languages. You can navigate to this page (when viewing a
project) by clicking the Configuration link at upper right on your screen. In the drop-
down menu that appears, select Quality Profiles. If you don’t see such an option, it
means you haven’t yet created a quality profile, as you saw in chapter 13.

 After that, all you have to do is select your favorite profile for your project lan-
guages and click the Update button for each selection. For instance, clicking Update
for the Java language doesn’t save a selection made for XML. Run a new analysis, and
you’ll see language-specific metrics calculated by SonarQube for each module.

 Speaking of metrics, have you ever wondered if SonarQube supports measures that
can’t be computed from source code analysis but that are important to track? The
next section answers that question.

15.2.2 Defining your own metrics

We’ve seen many posts in the SonarQube user mailing list from users asking how to
group projects with attributes that don’t exist in computed SonarQube metrics or in
project properties. Assume that you work in a large organization, and SonarQube
hosts hundreds of projects assigned to different development teams. Team members
would prefer to see in their global dashboard only the projects they’re responsible for,

Figure 15.3 Assigning project quality
profiles for supported languages

292 CHAPTER 15 Managing your projects
but there’s no common characteristic across the project set on which to base a filter.
SonarQube doesn’t have any built-in feature to distinguish projects based on a condi-
tion that isn’t related to computed metrics. So what now? If only you could add a
property (such as team ID or name) to your project and set its value! Then you could
create a filter based on this property and show only the correct projects.

ADDING A NEW MANUAL METRIC

The answer is simple: it’s called manual measures. SonarQube allows you to create as
many manual metrics as you want and specify their measures for each project. In this
section, we’ll show you how to manage manual metrics at a global level and how to set
their values and include them in dashboards and filters.

NOTE Metrics and measures are two different concepts in SonarQube. A met-
ric is a definition/specification, and a measure is the result of a metric compu-
tation by an analysis.

To add a new manual metric, click the Settings link at upper right on your screen and
then select Configuration from the drop-down menu. This takes you to the global
administration page we covered in chapter 14. Click Manual Metrics, and you see the
page shown in figure 15.4. Keep in mind that although project-level rights are suffi-
cient for most of the configuration discussed in this chapter, to add manual metrics
you must have global administration permissions. See chapter 12 to refresh your
memory about permission levels.

 The Manual Metrics page is similar to the one we discussed for global dashboards.
It lists all the manual metrics and, at right, provides a form you can use to create a new

Figure 15.4 SonarQube ships with three manual metrics. The administration page is simple: it lists
all available metrics and provides a form to add new or edit existing ones.

293Adopting Continuous Inspection more quickly
one. SonarQube comes with three preconfigured manual metrics you can use in your
projects.

 Burned Budget—The budget used so far by the project
 Business Value—How important the project is to the business
 Team Size—Project team size

Let’s create a new metric to indicate the project’s development team. Enter the name
of the metric (Team Name/ID) and a description that reminds you of its purpose, and
select or enter a domain. Finally, choose the metric type. The available options are as
follows:

 Integer
 Float
 Percent
 Level
 Text
 Yes/No

In the example, you only want to record the name of the in-charge team, so the Text
type is what you’re looking for. Click the Create button, and the metric is automati-
cally added to the table. In addition, the Operations links are activated so you can edit
or delete the metric, as shown in figure 15.5. (Preconfigured metrics can’t be modi-
fied or removed.)

 Now you can use the metric to create a new filter that lists all team projects, as dis-
cussed in chapter 14. Of course, you aren’t finished. You need to set each project’s
metric values, as we’ll discuss next.

SETTING MEASURES OF MANUAL METRICS

Select a project to view, and click the Configuration drop-down option Manual Mea-
sures. Figure 15.6 shows the page for managing measures of manual metrics. Because
you haven’t set any values yet, your page probably looks identical to the figure. To add
a new measure, click the Add Measure link at upper right.

Figure 15.5 The Edit and Delete links are shown only in custom manual metrics.

294 CHAPTER 15 Managing your projects
As you can see in figure 15.7, the Add Manual Measure page is pretty simple. Just
choose a manual metric from the corresponding list, and two new attributes (Value
and Description) appear below it. Fill in the information, and save your settings. Your
new manual measure is (almost) ready for use like a typical measure (filters, widgets,
and so on), as we’ll show you in a minute. There’s one last step.

 As the upper part of figure 15.8 shows, in the custom measures list view, a golden
marker appears to the left of the measure. This indicates that the measure is still
pending, meaning you need to run a new project analysis so its value will be integrated
with the other SonarQube metrics. The lower part of the figure shows that after the
analysis, the golden marker and the corresponding message disappear.

Figure 15.6 Manual measures (empty) administration page

Figure 15.7 Adding a new manual measure

295Adopting Continuous Inspection more quickly
DISPLAYING CUSTOM MEASURES IN DASHBOARDS

Showing custom measures in a dashboard is easy. If you don’t remember how to add
widgets to a global or project dashboard, go back to chapter 14 to refresh your memory.

 First, as step 1 in figures 15.9 shows, locate the custom measures widget and add it
to your favorite dashboard. (Don’t forget that you can add a widget in both project
and global dashboards.) Then select the custom measure(s) you want the widget to
display. When you’re done, click the Save button at the bottom of the widget. That’s it.
The widget now shows your custom metric(s).

Figure 15.8 A golden marker points out which measures have not yet been integrated with the rest of the
SonarQube metrics. Running a new project analysis removes these markers.

Figure 15.9 Displaying custom measures in a dashboard takes two steps:
add the custom measures widget, and select the measures you want to show.

296 CHAPTER 15 Managing your projects
TIP The custom measures widget shows only the newest metric values inte-
grated with the rest of the SonarQube metrics during the last project analysis.
That means you may enter multiple values for the same measure, but only the
last one entered is displayed in the corresponding widget. Custom measures
behave just like other metrics calculated by SonarQube: you can add them to
a timeline widget and see their historical evolution.

Well done! Now that you’ve mastered SonarQube’s custom metrics, it’s time to change
the subject. The next section will introduce the concept of omitting some files from
SonarQube analysis.

15.2.3 Excluding source code from analysis

Assume that you recently integrated your system with a promising open source frame-
work. After a while, you discovered some bugs that seriously affect your system but that
aren’t scheduled for resolution in any future release of the framework. So you decide
to fix them locally.

 You download the source files, make copies of the five classes involved, fix the
issues, and place the corrected files with the rest of your project. So far, so good. The
next morning, you open SonarQube’s web page, and—what a mess! Most of the met-
rics (coverage, issue compliance, documentation, and so on) have decreased. You
quickly drill down to see what happened, and you realize that the classes you copied
from the open source framework appear at the top of the drilldown lists. No tests, no
documentation, and many broken rules for your favorite quality profile. These files
destroy the quality of your project.

 Don’t panic! Remember that you’re in the world of SonarQube, where (almost)
everything is possible one way or another. Once again, in this case, there’s an easy-to-
implement solution. Click the Settings option in the Configuration drop-down menu,
and then select the Exclusions category.

 (We’ll explore most of the available settings in the next section. We’re mentioning
exclusions here because of the importance of this feature and the flexibility it adds to
SonarQube analysis.)

 Figure 15.10 shows the exclusions settings page. You can add several values both
for sources and tests based on a pattern. The instructions and examples provided by
SonarQube on this page are awesome, and it’s redundant to repeat them here.

 We prefer to give you a comparison of all available exclusions discussed in this
book. You saw the Switch Off Violations plugin in chapter 13 and the Cutoff plugin in
chapter 9. Both of them exclude files from SonarQube analysis. Table 15.2 summa-
rizes their basic features along with what we explored in this section.

 Which one you should use? It depends on what you want to achieve. You can even
combine them. In general, SonarQube’s core exclusions feature is used when you
want to ignore source files during analysis. Switch Off Violations fits when you want to
bypass issue creation without modifying the quality profile. And finally, keep in mind
that the Cutoff plugin is convenient to exclude legacy parts of the code.

297Adopting Continuous Inspection more quickly
The last part of this section is dedicated to the project’s history. You’ll learn how to
manage it and how it interacts with the differential views we explored in chapter 10.

15.2.4 Understanding versions, snapshots, and events

Before we start explaining some terms, let’s browse the project’s history. To do so,
click the History link, found in the project’s Configuration drop-down menu. Sonar-
Qube has a clever, flexible mechanism to maintain historical information for a proj-
ect. This information isn’t limited to previous analyses but is expanded to include
versions and events.

 In figure 15.11, notice that all the details you could want about your project’s his-
tory are consolidated on just one page. Starting from the left column, you get precise
information about the date and time of analysis execution. Year and Month column
data are omitted if they’re the same as the previous analysis; this makes the table even

Table 15.2 SonarQube’s exclusion options

Name Description Plugin Metrics affected Project / Global

SonarQube’s
exclusions
settings

Exclude files from being ana-
lyzed by SonarQube based on
patterns

No All Project

Switch off Viola-
tions plugin

Exclude issues in a fine-
grained way by rule, name/
path, line or range of lines,
and file content

Yes Only issues. Complexity,
duplications, and so on are
still calculated.

Both

Cutoff plugin Exclude files from being ana-
lyzed by SonarQube based on
a predefined date or period
threshold

Yes All Both

Figure 15.10 By modifying exclusions settings, you can make SonarQube exclude
source files based on patterns.

298 CHAPTER 15 Managing your projects
more readable. Next, the Version column shows the sonar.projectVersion property
provided in SonarQube Runner or in an Ant task. In Maven projects, it can be auto-
matically retrieved by the pom.xml file (that is, the <project><version> property).
Next is the Events section, which is composed of three columns: the first displays man-
ually created events, and the other two indicate events created by alerts or quality pro-
file changes. The last column provides a button to delete a snapshot analysis. Note
also that SonarQube doesn’t let you delete the most recent snapshot analysis.

 Before we move on, let’s elaborate on three terms we used in the previous para-
graph: snapshot, event, and version. Table 15.3 explains them in detail.

Table 15.3 History terms

Term Description Comments

Snapshot Every time SonarQube runs a new proj-
ect analysis, its results are stored in
the database, and a new snapshot of
the project is created.

Snapshots aren’t forever. Recall what
we discussed in chapter 14 about the
database cleaning mechanism and how
you can modify the default settings.

Version The project’s version number is passed
as parameter in SonarQube analysis.

The latest snapshot of a version is
always kept in the database, even if it
breaks the database cleaner rules.

Figure 15.11 Every detail of your project’s history on one page

299Exploring the rest of the project configuration
Now that we’ve clarified the basic terms, let’s go back to figure 15.11. You might be
thinking right now that this is a static page, and the only interaction is through the
Delete Snapshot button. Well, move your mouse over a row.

 As figure 15.12 shows, the row is highlighted; and depending on its content, vari-
ous actions appear. For instance, if there’s no information about the version or cus-
tom event, you see a Create link in the corresponding places. On the other hand, if
the row (that is, a snapshot analysis) holds data about the version, you see links to
rename or remove it. For the Events column, in addition to the Rename/Remove
links, you always see a Create link, because you can have more than one custom event
associated with a snapshot analysis.

 As you might expect, you can rename an event or a version. To do so, click the
Rename link and enter the new description in the resulting input. Removing data is
just as easy: click the Remove link.

TIP You’re probably wondering why you need a Delete Snapshot button,
because SonarQube takes care of older snapshots. In some cases, you need to
delete a snapshot such as wrong rules in a quality profile or any other wrong
parameter passed to the analysis. Instead of waiting for the database cleaner,
it’s much better to do it yourself.

We’ve now covered the most significant project administration topics that you need to
know. The rest of the chapter discusses subjects that are less important but still useful
to know.

15.3 Exploring the rest of the project configuration
This section explores in more depth some low-level project administration options
and features covered in previous chapters. Although you might never use them, it’s

Event Events either are noteworthy facts that
occurred during project analysis or can
be manually added.

A snapshot may be associated with
more than one event. Snapshots with
events are never deleted automatically
from the database, although someone
with project administration rights can do
that manually.

Table 15.3 History terms (continued)

Term Description Comments

Figure 15.12 Moving your mouse over a row displays various actions depending on the row’s content.
You can create a new version, add multiple custom events, rename them, or remove them from the
selected snapshot.

300 CHAPTER 15 Managing your projects
good to know they exist, in case some day you need them. We’ll discuss assigning proj-
ect roles, setting various project links, modifying the project’s key, and deleting
project(s). Finally, we’ll show you some useful miscellaneous project settings.

15.3.1 Changing permissions

In chapter 12 we talked about user, group, and role management. You learned that it’s
a good idea to add users with administrator privileges for each project and let them
manage project security without bothering the SonarQube administrator.

 For that purpose, there’s a Roles link in the project’s configuration drop-down
menu. The page shown in figure 15.13 looks very similar to the Roles pages you saw in
chapter 12. The only difference is that here, you can manage only the permissions of
the current project you’re viewing. You can use the Select links to add/remove indi-
vidual users or groups.

15.3.2 Setting project links

SonarQube lets you define up to 10 external project links by clicking the Links link on
the project configuration menu (see figure 15.14). These links can be categorized as
follows:

 Standard links—Can be passed as SonarQube execution parameters or discov-
ered automatically in Maven projects. These links can’t be modified using
SonarQube’s UI.

 Custom links (up to five)—Can be added/edited only by using SonarQube’s UI.

Table 15.4 lists the available standard links and compares them with a generic custom
link.

Figure 15.13 Project Roles page, which is similar to the global roles administration page

301Exploring the rest of the project configuration
Table 15.4 Standard links

Link Description Property Name Maven attribute
Usage in

SonarQube

Home Links to the
project’s home
page

sonar.links.homepage <url> Dashboards
(description
widget)
Filters

Continuous
Integration

Links to the job
page of a CI
engine (Jenkins/
Hudson,
Bamboo)

sonar.links.ci <ciManagement>
 <url>

Dashboards
(description
widget)
Filters

Issue
Manage-
ment System

Links to the
issue manage-
ment system
(JIRA, Mantis,
Redmine, Trac,
and so on)

sonar.links.issue <issueManagement>
 <url>

Dashboards
(description
widget)
Filters

Sources Links to the
project sources

sonar.links.scm <scm>
 <url>

Dashboards
(description
widget)
Filters

Figure 15.14 You can define up 10 ten links for every project, but only half of them can be generic
and managed though SonarQube’s UI.

302 CHAPTER 15 Managing your projects
TIP In Maven projects, you can override the pom.xml attributes by setting
the corresponding sonar.links.* property during SonarQube analysis.

15.3.3 Modifying the project key

If you think modifying a project’s key in SonarQube might be a useless feature, imag-
ine the following (real-world) scenario. You’ve been using SonarQube for the last year
for your project. That means you have a lot of historical data. For some reason (poli-
cies, wrong key, and so on), you need to modify the project’s key, which is a trivial
activity. Next, you run a new SonarQube analysis, and BOOM!

 Why does SonarQube now display two projects with the same name (one with the
previous key and one with the new)? Where is the historical information in the project
with the new key? It’s a complete mess.

 If you’re wondering why these evil things happened, the answer is simple. Sonar-
Qube identifies projects by their keys. If a key isn’t found in the database, it’s consid-
ered new, and the project is created from scratch. That’s why you see a replica (in
terms of description) of the initial project.

 To solve this issue, SonarQube allows you to modify the project’s key by choosing
Update Key in the Configuration drop-down menu. The resulting page is simple (see
figure 15.15): all you have to do is enter the new project key and click the Rename
button. Keep in mind that you need to modify the project key in SonarQube’s UI
before triggering a new analysis of the project with the new key.

 In other words, before you run a new analysis, make sure both keys (project key in
source files/analysis properties and project key in SonarQube) are identical. Other-
wise you end up with two different projects in SonarQube.

Developer
Connection

URL for develop-
ers to get a copy
of the source
code

sonar.links.scm_dev <scm>
<developerConnection>

Dashboards
(description
widget)
Filters

Custom Anything useful
(Javadocs, other
documentation,
and so on)

N/A N/A Dashboards
(description
widget)

Table 15.4 Standard links (continued)

Link Description Property Name Maven attribute
Usage in

SonarQube

Figure 15.15 SonarQube lets you edit a project’s key, but you should do this before triggering
a new analysis of the project with the new key.

303Exploring the rest of the project configuration
15.3.4 Deleting projects

SonarQube offers two ways to delete a project:

 Single-project deletion
 Bulk deletion

Although the second option is more like a global administration feature, we decided
to list both of them in this section to make it easier for you to use this book as a refer-
ence and not a one-time read.

 If you want, for any reason, to delete a project from SonarQube’s database, choose
Project Deletion in the project’s Configuration drop-down menu, and then confirm
the action. Keep in mind that there’s no way to undo this operation: double-check that
you really want to delete the project and its history, and/or back up your database first!

 Bulk deletion is available by choosing Bulk Deletion from the global configuration
menu. You see a list of all available projects with pagination (see figure 15.16). At the
top of the screen is an input where you can type some text and filter the projects.
Select all the projects you want to delete, or choose the Select All check box to quickly
select all projects on the current page.

TIP When you navigate between pages, previous selections aren’t remem-
bered. For instance, if you select project X from page 1, navigate to page 2,
select project Y, and click Delete, only project Y will be deleted.

Be aware that if your projects span several pages and you want to select all of them,
you must use the link that appears to the right of Select All, as shown in figure 15.17.
Finally, SonarQube, before executing the deletion, requests for a final confirmation.

Figure 15.16 You can delete several projects at the same time by using the
Bulk Deletion feature.

304 CHAPTER 15 Managing your projects
As with single-project deletion, there’s no way to undo this action unless you have a
database backup in place.

15.3.5 Miscellaneous settings

The last option in the project configuration menu that we haven’t discussed yet is the
Settings link. The settings page is similar to the global settings feature you saw in chap-
ter 14. We’ve already covered all the available categories in chapter 14 or elsewhere;
for instance, the Code Coverage category was discussed in chapter 3, and the Differen-
tial Views category in chapter 9.

 Keep in mind that many plugins provide not only global settings but also settings
at a project level. Every time you install a new plugin, it’s a good idea to visit this page
to explore the available project settings.

15.4 Summary
Well done, SonarQube Master! You can be proud that you know everything you
need to work with SonarQube in action. This chapter covered the topics of project
administration.

 You’ve learned what’s different in project dashboards and how you can improve
your Continuous Inspection process by doing the following:

 Assigning multiple quality profiles for multi-module, multi-language projects.
 Creating manual metrics, setting their measures, and using them in filter crite-

ria and widgets as you do the rest of the metrics calculated by SonarQube.
 Excluding parts of your source code from analysis. We also presented a compar-

ison of the three ways you can do this (core SonarQube, the Switch Off Viola-
tions, and the Cutoff plugins).

 Managing your project’s history by creating custom events or new versions, or
deleting useless snapshots.

Finally, we covered some low-level administration features such as assigning project
roles, changing the project key, and deleting one or many projects at the same time.
We also discussed setting standard or custom links (project-related) and where you
can use them.

 The final chapter of this book is dedicated to developers and will give you a step-
by-step guide to create your own plugin using the SonarQube API. To make this fun
and useful at the same time, we’ve chosen to implement a plugin for Redmine
(www.redmine.org), an alternative to the JIRA issue-tracking system.

Figure 15.17 Checking the Select
All (in current page) option activates
a new link to select all projects.

www.redmine.org

Writing your own plugin
Welcome to the last chapter of SonarQube in Action, which will teach you how to
implement your own SonarQube plugins. If you wonder why you might want to
write your own plugin, here’s a non-exhaustive list of possible needs:

 Integrate SonarQube with external tools such as the example we’ll show you
in this chapter.

 Create customized reports based on the metrics computed by SonarQube.
 Translate SonarQube in a new language (localization).
 Add support for a new programming language.

We’ve told you that SonarQube isn’t Java-centric and that even though our exam-
ples are Java-based, the same ideas apply to other languages. From an analysis
standpoint, that’s true; but in this chapter, that changes. What we’re going to show
you requires you to be familiar with Java, jRuby, and Ruby on Rails, because these

This chapter covers
 Understanding SonarQube architecture

 Writing code for a SonarQube plugin

 Creating your own widgets

 Supporting new languages
305

306 CHAPTER 16 Writing your own plugin
are the languages currently supported for plugin writing in SonarQube. You’ll also be
using Maven to build your plugin, but we’ll feed you the commands, so only a passing
familiarity with Maven is required.

 We’ll start by briefly explaining how SonarQube works internally when you launch
an analysis. It’s important to understand what’s going on behind the scenes when
SonarQube runs a plugin. The first thing you’ll learn is the difference between decora-
tors and sensors and when they’re executed during an analysis.

 Then we’ll give you a step-by-step guide for implementing your own plugin.
Together we’ll integrate SonarQube with Redmine (www.redmine.org), an alternative
to JIRA. Redmine is more than a ticket system, but for the purpose of this chapter we’ll
focus only on ticket-related features. It’s recommended, although not required, that
you install Redmine (http://bitnami.org/stack/redmine) so you can run and see the
plugin in action. Plugin writing can include many tasks, and we’ll cover most of them
in this chapter: adding metrics, class loading and Dependency Injection, widget cre-
ation, and internationalization, just to name a few.

 Finally, we’ll look at how you can make SonarQube support new languages. You
won’t implement the entire plugin, but you’ll get the basic idea; and you’ll discover
the SonarSource Language Recognizer (SSLR), a library that simplifies the develop-
ment process of a language plugin in SonarQube. Let’s start by exploring Sonar-
Qube’s architecture.

16.1 Understanding SonarQube’s architecture
Now that you’ve gotten this far in SonarQube in Action, we’re betting you’re wondering
how to implement your own plugin to integrate your favorite tool or external applica-
tion with SonarQube. If so, this is the chapter you’ve been waiting for. But before you
start writing code, you need to familiarize yourself with SonarQube’s architecture and
the analysis process, as shown in figure 16.1.

 In general you can run a SonarQube analysis with three different tools: Maven,
Ant, and SonarQube Runner (recommended by SonarSource). Let’s call them clients.
Appendix B discusses all of them in detail, but no matter what your preferred method
is, what happens in SonarQube during an analysis is the same.

 As soon as an analysis is triggered by a client, the first thing SonarQube does is
import the source code and (optionally) test files. This is done by the appropriate lan-
guage plugin. As you know, SonarQube ships with Java support but you can add support
for other languages by installing additional plugins. Once SonarQube has the source
files loaded, it’s time to analyze them with a variety of analyzers that can create or
update measures. These analyzers are either embedded in SonarQube core, included
in language plugins, or provided by non-language-specific plugins.

 The analyzers can be grouped in two categories. Analyzers that are able to create
new measures, compute their metrics for each resource (method, file, or package),
and store them in SonarQube’s database are called sensors. After all the sensors have
done their jobs, other analyzers, called decorators, are triggered. They can aggregate

http://bitnami.org/stack/redmine

307Implementing the Redmine plugin
the metrics that have already been computed at low levels into new, higher-level met-
rics. We’ll come back to the details of these two flavors of analyzers in the next section.

 When the analysis is over, meaning that all sensors and decorators have completed
their tasks, a new snapshot is created in SonarQube’s database, and all the newly com-
puted metrics are connected to it. At this point, you can see the data by using your
favorite browser to send requests to the SonarQube web server.

 Now that you have a general idea of how SonarQube works, it’s time to move to the
chapter’s core topic: plugin writing. We decided to implement a SonarQube plugin
for the Redmine project management tool as a way to demonstrate most of the con-
cepts of plugin writing in a real-world and easy-to-understand scenario. We’ll focus on
Redmine’s issue-tracking features to provide functionality similar to the SonarQube
JIRA plugin (http://docs.codehaus.org/display/SONAR/JIRA+Plugin). The purpose
of the example is to retrieve from Redmine—using its Rest API—a project’s unre-
solved issues and display them by priority in a SonarQube widget.

NOTE The source code shipped with the book includes only the first version
of the plugin. In the meantime, the plugin might have been updated; to be
sure you have the latest version, you can get the code directly from the GitHub
public repository (https://github.com/SonarCommunity/sonar-redmine).

16.2 Implementing the Redmine plugin
This section will show you how to create a SonarQube plugin, step by step. The pur-
pose of the example plugin is to collect open project issues from a Redmine installa-
tion and present them in a dashboard widget, grouped by priority. We’ll try to avoid

Figure 16.1
SonarQube’s
internal
architecture

http://docs.codehaus.org/display/SONAR/JIRA+Plugin
https://github.com/SonarCommunity/sonar-redmine

308 CHAPTER 16 Writing your own plugin
getting bogged down in the details of the integration of SonarQube with Redmine
and focus on the important stuff—plugin-related code and configuration.

 You’ll start by setting up your development environment and creating the outline
of the plugin. This is something you can do in many ways, but we’ll show you the easi-
est, especially if you’re not an experienced plugin developer. Then you’ll learn how
you can specify the configuration and settings exposed by your plugin. After that, we’ll
look at how new metrics can be described and configured. Then we’ll dig in to the dif-
ference between sensors and decorators and discuss how Dependency Injection works
in SonarQube. You’ll learn how to compute measures using sensors. Then we’ll show
you how to create a new widget to display the metrics you calculated on SonarQube
dashboards. Finally, we’ll discuss a simple decorator example and show you how to
support internationalization.

16.2.1 Creating the plugin Maven project

Let’s begin by ensuring that you have all the necessary tools available in your machine.
You need Java 6 or above. You also need to install Maven (version 2 or later) to build
and package the plugin (http://maven.apache.org).

NOTE If you install a version of Java higher than 6, such as Java 7, your plugin
must be compiled for Java 6 compatibility.

Now it’s time to create the plugin project. There are a couple of ways to do it. You
could create the project from scratch, but then you’d have to manually edit the
pom.xml file to enter some required property values. Alternately, you can copy an
existing SonarQube plugin or the SonarQube reference plugin (http://mng.bz/
FlZC). Although this approach sounds like a good idea, it adds extra work such as
renaming classes, modifying headers, changing pom attributes, cleaning out
unneeded code, and so on. Furthermore, inexperienced developers may get confused
about what they actually want to implement. But you might use this technique later, if
you’re familiar enough with plugin writing or if you’re going to implement a plugin
that’s similar to an existing one.

 To make it easy, we’ve implemented a simple Maven archetype that automatically
generates a plain SonarQube plugin that includes only some basic classes you’ll need.
The tutorial that follows in this chapter is based on this Maven archetype. Download
the archetype’s source code compressed file from http://mng.bz/8hm3, unzip it, and
install it in your local Maven repository by running the mvn install command. Then
you’re ready to create a new SonarQube plugin based on this archetype by running the
following Maven command: mvn archetype:generate -DarchetypeCatalog=local.
You’ll be prompted for a series of values. Table 16.1 details them.

http://mng.bz/8hm3
http://maven.apache.org

309Implementing the Redmine plugin
Table 16.1 SonarQube plugin Maven archetype input parameters

Parameter Explanation
Default
value

Value you should enter

groupId Maven group ID. It must be the same for
all plugins submitted back to the Sonar-
Qube Community, so a default value is
provided, and it’s highly recommended
that you not change it.

Yes

artifactId Maven artifact ID. Used in pom.xml and
for creating the project directory.

N/A sonar-redmine-plugin

Version Plugin’s version. Used in pom.xml. Usu-
ally, the first release of a SonarQube
plugin is version 0.1.

Yes

package Full package name where plugin classes
will be placed. For all plugins submitted
back to the community, the packages
should start with org.sonar.plugins
followed by the plugin’s key. The actual
value is composed of the default value
and plugin’s key. If you don’t intend to
submit the plugin to the community, you
can change this value by editing your
pom.xml file.

Yes

inceptionYear Used in pom.xml and headers license. No The current year

organizationName Used in pom.xml and headers license.
Also displayed in SonarQube’s update
center information.

No Your company’s name or your
full name

pluginDescription Used in pom.xml to describe the purpose
of the plugin, and displayed in Sonar-
Qube’s update center information.

No SonarQube Redmine
Plugin: Integrates
SonarQube with Redmine
in various ways

pluginKey Very important parameter. Used by the
archetype to build the names of pack-
ages, auto-generated plugin classes,
project folders, and so on. First letter
should always be in uppercase.

No Redmine

pluginName Used in pom.xml and license headers.
Also displayed in SonarQube’s update
center information.

No SonarQube Redmine
Plugin

sonarVersion Used in pom.xml to specify the minimum
SonarQube version supported by the
plugin. Keeps SonarQube from loading
incompatible plugins.

No 3.0 (if you’re not sure) or
something greater if you’re
going to use features intro-
duced after version 3.0

310 CHAPTER 16 Writing your own plugin
When you’re done with all these parameters, the archetype creates your SonarQube
plugin project in a directory named sonar-redmine-plugin. Open the project with
your favorite IDE, and you’ll see the structure and contents shown in figure 16.2.

 The Maven archetype creates a generic plugin outline that includes the following:

 Two classes (RedmineMetrics and RedminePlugin) describing the plugin con-
figuration and its metrics

 Two analyzer classes: a sensor (RedmineSensor) and a decorator (Redmine-
Decorator)

 Two files describing the dashboard widget: a Java class (RedmineWidget) and a
Ruby file for the actual representation (redmine_widget.html.erb)

 One property file to support internationalization (redmine.properties)

The plugin is fully usable at this point, because there’s demo code in the auto-
generated files that explains the purpose of each class. You can build and deploy it in
your SonarQube instance immediately if you like. But right now, it doesn’t add any
meaningful functionality, so the next step is to make it valuable.

16.2.2 Defining the plugin’s available configuration

The first thing you should consider is the configuration settings that will be exposed
to the end user. You want to collect issues from a Redmine installation for a specific
project, so you need to know the Redmine host URL and project. Furthermore,
according to the Redmine API documentation (http://mng.bz/AC2P), you need an
API access key, which a logged-in user can find on the Redmine account page in the
right pane of the default layout.

Figure 16.2 Project structure and contents of the
plugin created by the SonarQube Maven archetype

http://mng.bz/AC2P

311Implementing the Redmine plugin
 The RedminePlugin class is where you define these properties. Take a close look at
the following listing, which shows most of the actual RedminePlugin class (import
statements and header definition are omitted for space).

@Properties({

 @Property(key = RedminePlugin.HOST,
 name = "Redmine Host URL",
 description = "Example : http://demo.redmine.org/",
 defaultValue = "",
 global = true,
 project = true,
 module = false),
 @Property(key = RedminePlugin.API_ACCESS_KEY,
 name = "API Access Key",
 description = "You can find your API key on your
 account page (/my/account) when logged in,
 on the right-hand
 pane of the default layout.",
 type = org.sonar.api.PropertyType.PASSWORD,
 global = true,
 project = true,
 module = false),
 @Property(key = RedminePlugin.PROJECT_KEY,
 name = "Project Key",
 global = false,
 project = true,
 module = false)
})

public final class RedminePlugin extends SonarPlugin {

public static final String HOST = "sonar.redmine.host";
public static final String API_ACCESS_KEY = "sonar.redmine.api-access-key";
public static final String PROJECT_KEY = "sonar.redmine.project-key";

public List getExtensions() {
 return ImmutableList.of(RedmineMetrics.class,RedmineSensor.class,
 RedmineWidget.class);
}
}

There’s a lot to take in here—more than can be adequately covered in a few code
annotations, so we’ll walk through it field by field. First, two annotations in the Sonar-
Qube API can be used to specify properties (@Properties and @Property). The for-
mer is used to define an array of properties (you can skip it if you only have one), and
the latter provides attributes to fully describe a property. The required attributes for
the @Property annotation are key and name. We’ll look at the rest of its attributes
shortly.

 Each property should have a unique key, so it’s a good idea to follow some naming
conventions: we started with the word sonar followed by the plugin key and then the

Listing 16.1 RedminePlugin class: properties definition and plugin extensions

Annotation for Properties definition

Required attribute
for every property

Available in
global settings

Type definition

Extends base class

Returns all plugin
extensions

312 CHAPTER 16 Writing your own plugin
property name. The name and description attributes are used by the SonarQube UI.
Use name to briefly describe the property, and add some explanation—if necessary—
in the description attribute. If there’s no user input, you have the option of setting a
default value with the defaultValue attribute.

 By default, all properties are Strings, but you can change a property’s type with
the type attribute, which expects a value from the PropertyType Enum. Several
options are available, such as Integer, Boolean, Regular Expression, Multi-line
text, or even password to mask the input value with asterisks. For a complete (and
up-to-date) list of the available property types, check the relevant API documentation.

NOTE In the following pages we’ll talk a lot about SonarQube’s API. We rec-
ommend that you always look at the latest online documentation (http://
docs.sonarsource.org/latest/apidocs/) before you use a provided class or
interface.

Two of the properties in listing 16.1 use the default type, whereas the API access key
property is set to PASSWORD because you don’t want its value to be visible in the Sonar-
Qube UI.

 Finally, you need to tell SonarQube at which levels the property can be set, using
the global, project, and module attributes, which accept Boolean values. If you don’t
specify any of these attributes, then by default the property will be available only at a
global level, because global is true by default and the other two attributes default to
false. In listing 16.1, the host and API access key properties are settable at the
global level and overridable at the project level. Nothing is set at the module level,
and the project key can only be set at the project level, not globally.

 Now that we’ve covered the properties, we can move to the code of the Redmine-
Plugin class. Each plugin should have one class that extends the base SonarPlugin
class so that SonarQube will recognize and load your plugin. In this case, it’s the
RedminePlugin class, and for that reason it implements the abstract method get-
Extensions. This method should return a list (preferably immutable) of all extension
points implemented by the plugin.

Back to the RedminePlugin class, notice that the implementation of the getExtensions
method returns a list of all classes found in the plugin (except of course the Redmine-
Plugin class itself). This enables SonarQube to register these extension points and exe-
cute their code when needed (during analysis, when showing the widget, and so on).

Extension points
We didn’t mention this earlier, but now it’s the right time: a SonarQube plugin is a
set of classes that extend other classes or implement interfaces provided by the
SonarQube API. We refer to them as extension points, and you can get a complete list
of the available extension points by visiting the relevant API documentation.

http://docs.sonarsource.org/latest/apidocs/
http://docs.sonarsource.org/latest/apidocs/

313Implementing the Redmine plugin

De
the

by p

 At this point, the configuration and plugin description class is complete, so you
can move to the next step: specifying the metrics the plugin will compute and store in
SonarQube’s database.

16.2.3 Describing the metrics: what you’ll calculate and store

According to the requirements, the plugin should collect a count of all open issues for
a given project and display the counts by priority. So you need a couple of metrics: one
to keep the total number of open issues, and one to keep the number of open issues
for each priority. Although these metrics can be combined as one, for clarity the
responsible RedmineMetrics class in the next listing has two definitions (one for each
metric).

public final class RedmineMetrics implements Metrics {

public static final String ISSUES_DOMAIN = "Issues";
public static final String ISSUES_KEY = "redmine-issues";
public static final String ISSUES_BY_PRIORITY_KEY =
 "redmine-issues-by-priority";

public static final Metric ISSUES =
 new Metric.Builder(ISSUES_KEY, "Redmine Issues", Metric.ValueType.INT)
 .setDescription("Number of Redmine Issues")
 .setDirection(Metric.DIRECTION_NONE)
 .setQualitative(false)
 .setDomain(ISSUES_DOMAIN).create();

public static final Metric ISSUES_BY_PRIORITY =
 new Metric.Builder(ISSUES_BY_PRIORITY_KEY, "Redmine Issues by priority",
 Metric.ValueType.DATA)
 .setDescription("Number of Redmine issues by priority")
 .setQualitative(false)
 .setDomain(ISSUES_DOMAIN).create();

public List<Metric> getMetrics() { #Implementation of abstract method
 return ImmutableList.of(ISSUES, ISSUES_BY_PRIORITY);
}
}

Looking at the class definition, you see that it implements the abstract Metrics class,
which is another extension point provided by SonarQube. Then, each metric is
described as a static final variable of type Metric using the Builder design pattern
(www.oodesign.com/builder-pattern.html). You’re required to provide three attri-
butes for every metric: a key, which should be unique (consider including the plugin
key as part of the metric key to ensure uniqueness); a short name; and the value type.

 The value type is critical because it tells SonarQube what kind of data is stored in
the database. The possible choices are straightforward and can be found in Sonar-
Qube’s API documentation. But keep in mind that if you want to store large amounts
of data, such as the example’s distribution of issues, you should use the Data value

Listing 16.2 RedmineMetrics class: metrics definition

Implements abstract
Metrics class

Describes the “total
number of issues” metric

Each metric has three
required fields (key,

name, value type)
scribes
“issues
riority”
metric

It’s a good practice
to categorize
metrics in domains

www.oodesign.com/builder-pattern.html

314 CHAPTER 16 Writing your own plugin
type. Wondering why you don’t define a metric per priority? Although this approach
would work, it would make your code much more complex and make it difficult to
handle and display your metrics in a widget. The Data value type was created by Sonar-
Qube for that reason: to avoid creating several metrics just to describe a distribution
of them.

 For the complete list of the available metric attributes, you can browse the latest
online API documentation, but we’d like to give you some useful tips:

 A metric’s domain determines how it’s grouped in drop-downs in the Sonar-
Qube UI. You can make up your own value to put your metrics together in their
own group, or use an existing value such as Complexity, Documentation, or
Rules to add your metrics to one of those groupings.

 When you’re dealing with metrics where trending is important, be sure to set
the direction attribute so SonarQube knows if an increase in this value is good
or bad. Then you can use the quantitative attribute (if set to true) to tell
SonarQube to colorize (green/red) the metric’s trending icons in the UI.

 If you want to hide resources from the drilldown view when they’ve reached the
best possible value for a metric, set the metric’s bestValue attribute.

The last thing you need to do in a Metrics class is implement the getMetrics
method to return a list of the plugin’s metrics.

 As you’ll see in next section, there are two kind of metrics: those that hold a single
value and those that hold a collection of values, which is called a distribution. We’ll
show you how to compute and store both of these types in the database.

 The basic configuration of the plugin is now ready. The next step is to compute the
measures. In other words, you need to write the code that will perform the core func-
tionality of your plugin.

16.2.4 Implementing your analyzer with a sensor

As we already told you, the hard work is done by analyzers, which are responsible for
computing measures. There are two types: sensors and decorators. The logical difference
is that sensors are executed only once during the analysis phase. They’re responsible for
producing measures by parsing files (for instance, code-coverage result files), commu-
nicating with external services such as the Redmine server in the example, or even
invoking a Maven plugin. On the other hand, decorators are triggered when all sen-
sors have finished their tasks. The decorate method is executed for every resource of
a given level following a bottom-up approach. Resources in SonarQube are considered
the following: block units (methods, functions, and so on), files, directories (pack-
ages), program units (classes, interfaces) or projects (projects, modules, and so forth).

 Because decorators are executed after sensors, they have access to the metrics cal-
culated by sensors and can also create new metrics based on them. Normally, a decora-
tor is used to aggregate at higher levels the measures computed by sensors at lower
levels. Table 16.2 summarizes the differences between sensors and decorators.

315Implementing the Redmine plugin

.
You know the difference, and it’s time to decide. What kind of analyzer do you need:
sensor or decorator? A complicated plugin can be composed of several sensors and
decorators, so you might say, “Both.” Fortunately, in this example things are simpler.
You want a component to access a Redmine server’s API, retrieve issues, and store
them, and you want that to happen only once per analysis, not once per file (for
example). Thus a sensor is what you’re looking for.

 Before we continue, we recommended that you delete the RedmineDecorator class
from the auto-generated project, because you won’t need it. Later we’ll discuss an
example of a decorator out of the Redmine plugin context.

 Listing 16.3 contains the basic code of the Redmine plugin. This is the code trig-
gered by SonarQube during the analysis phase. Once again, the RedmineSensor class
implements the appropriate base class (sensor) and two abstract methods (should-
ExecuteOnProject and analyze).

public class RedmineSensor implements Sensor {

private final Settings settings;
private final RedmineAdapter redmineAdapter;

public RedmineSensor (Settings settings,
 RedmineAdapter redmineAdapter) {
 this.settings = settings;
 this.redmineAdapter = redmineAdapter;
}

public boolean shouldExecuteOnProject
 (Project project) {
 if (missingMandatoryParameters()) {
 LOG.info("Redmine issues sensor will not run as some parameters are

missing.");
 }
 return project.isRoot() && !missingMandatoryParameters();
}

Table 16.2 Differences between sensors and decorators

Characteristic Sensor Decorator

Analysis Triggered only once at the project
or submodule level

Triggered several times, once for every
resource.

Timing Can be executed in random order Executed only when all sensors have fin-
ished. You can specify the order of execution
between decorators.

Metrics / Usage Used to feed SonarQube with new
measures

Used to aggregate already-computed mea-
sures on a higher level.

Listing 16.3 RedmineSensor class: analyzer implementation

Implements abstract sensor

Local variables to hold
injected components

Declares needed
components in constructor
Components will be
injected by SonarQube’s
IoC container.

Implements abstract method
that checks if sensor should
be executed in current project

316 CHAPTER 16 Writing your own plugin

D

public void analyse(Project project, SensorContext context) {
 try {
 Map<String, Integer> issuesByPriority =
 redmineAdapter.collectProjectIssuesByPriority(
 getHost(), getApiAccessKey(), getProjectKey());
 double totalIssues = 0;
 PropertiesBuilder<String, Integer> distribution = new
 PropertiesBuilder<String, Integer>();
 for (Map.Entry<String, Integer> entry : issuesByPriority.entrySet()) {
 totalIssues += entry.getValue();
 distribution.add(entry.getKey(),
 entry.getValue());
 }

 saveMeasures(context, totalIssues, distribution.buildData());
 } catch (RedmineException ex) {
 LOG.error("Redmine issues sensor failed to get project issues.", ex);
 }
}

protected void saveMeasures(
 SensorContext context, double
 totalPrioritiesCount,
 String priorityDistribution) {

 context.saveMeasure(new Measure(
 RedmineMetrics.ISSUES,

 totalPrioritiesCount));
 context.saveMeasure(new Measure(RedmineMetrics.ISSUES_BY_PRIORITY,
 priorityDistribution));
} }
}

The first method (shouldExecuteOnProject) is responsible for allowing the plugin
to run or not based on its output. In the example, the sensor analyzes the project
(which is passed as a method parameter) only if it’s a root project (and not a submod-
ule) and if all required parameters have been set (see the missingMandatory-
Parameters protected method). Keep in mind that a project in SonarQube is either the
root project or any of its submodules. If you don’t check for the project level, then the
sensor will run for the root project and all submodules. Let’s consider a couple more
examples to help you understand the purpose of this method. If you want to trigger
the sensor for all analyses and then return just a true value—or, for instance, if you
want to enable it only for Java projects—you should consider writing something like
return Java.INSTANCE.equals(project.getLanguage());.

 In general, keep in mind, that the shouldExecuteOnProject method should
check for the existence of required settings and/or other project attributes (level, lan-
guage) to turn on the green light for execution.

 The analyze method is where all the great things happen. Here, you write the meat
of your plugin: you get information from external resources, compute metrics, and save
them in SonarQube. You have available as input parameters the project currently being

Implements
abstract
method that
does the
hard work

istribution
metric

Basic
(double)

metric

Transforms Map to Properties-
Builder datatype provided by
SonarQube and used to store
data value types to database

Method to persist computed
measures to database

SensorContext, responsible
among others to handle
measures

317Implementing the Redmine plugin
analyzed and the context of the sensor. This context is used to store computed metrics
in the database, add issues on source/test files, and so on.

 As we told you, there are two kinds of metrics (single values and distributions), and
the example deals with both of them. Before you compute the metrics, you need to
get access to the data, which consists of the Redmine issues. To do so, by invoking the
collectProjectIssuesByPriority method of the RedmineAdapter class, you get a
reference to a map (key of String type, value of Integer type) that contains the num-
ber of open issues for each priority. You might wonder who created the Redmine-
Adapter object. Hold you breath; we’ll get back to that in a minute.

 Having access to this map, you can iterate it and calculate the total number of open
issues by simple addition. You may think that calculating and storing the distribution
metric of open issues by priority would be done the same way. Well, that’s almost true.
The difference is that you need to transform this map to String or Binary type (for a
large amount of data) before you store it in the database. You can’t store the map that’s
returned from the RedmineAdapter class. The PropertiesBuilder class is the gift of
the SonarQube API for that transformation. You just need to fill it accordingly when
you iterate through the map. Then you can use the buildData method to transform it
to a readable String—for instance, "Normal=2;Urgent=1"—or use the build method
to transform it to a Measure object that contains the same data in binary format.

 To see how you can store these metrics in the database, look at the saveMeasures
method. It uses the SensorContext reference by invoking the saveMeasure method.
You can either pass as a parameter the object produced by the Properties-
Builder#build method or create a new Measure object. The Measure constructor
takes two arguments: the unique key of the metric and the computed value. The rest is
automatically done by the SonarQube API.

 With about 20 lines of code, you’ve written the most important part of the Red-
mine plugin, which computes and stores two metrics in SonarQube! The next step
is to create a widget to show these metrics in a dashboard. But before we show you
how to do that, we’ll explain a couple of dark spots we haven’t covered yet in the
RedmineSensor class.

DEPENDENCY INJECTION IN SONARQUBE PLUGINS

In several places, the code uses the settings and RedmineAdapter variables, which
are passed to the class as constructor parameters. But you may be wondering how
those parameters are created.

 Here comes the beauty of Dependency Injection in SonarQube. We told you
before that it’s a good practice for every class you create in a plugin to extend an
extension point and be included in the list of extensions returned by the getExten-
sions method of the class in the plugin that extends the SonarPlugin class. All classes
that do so are automatically registered with SonarQube’s Inversion of Control (IoC)
container, for constructor injection. That means you can pass any component you
want to use in the class constructor, and SonarQube will automatically inject it (cre-
ate it for you).

318 CHAPTER 16 Writing your own plugin
NOTE If you’re not familiar with Inversion of Control and Dependency Injec-
tion, check out Martin Fowler’s excellent article on the subject at http://
martinfowler.com/articles/injection.html, or refer to the book Dependency Injec-
tion by Dhanji R. Prasanna (Manning, 2009: www.manning.com/prasanna/).

Now you can specify any registered extension as a constructor parameter and use it as
if you had manually initialized it. The great thing is, as shown in listing 16.3, you can
pass objects not only from your own plugin (RedmineAdapter), but from SonarQube
core (Settings) as well.

You’re almost finished. You’ve created a plugin, declared its properties and metrics,
and written the code to create and store those metrics. If you only wanted to show
your metric values in filter columns, you’d be done. But you probably also want to
make your metrics available on dashboards, so there’s one last step: the design of a
dashboard widget. In the next section, we’ll teach you how to do it.

16.2.5 Creating your first widget

A widget is composed of two source files: a Java class that—what a surprise—extends
another basic class and needs to be included in the plugin’s extension points, and a
Ruby file that is the actual representation of the widget. Widgets are typically used to
show in a nice way the metrics computed by the plugin and allow interaction with end
users. The following listing shows the code for the RedmineWidget class.

@WidgetCategory("Redmine")
public class RedmineWidget extends AbstractRubyTemplate implements

RubyRailsWidget {

public String getId() {
 return "redmine";
}

public String getTitle() {
 return "Redmine Widget";
}

@Override

Listing 16.4 RedmineWidget class: describing the widget

Dependency Injection in SonarQube
A final note about Dependency Injection in SonarQube: it’s a very bad technique,
although programmatically allowed, to manually instantiate classes that implement
(directly or indirectly) the BatchComponent or ServerComponent class, because
those classes should be automatically instantiated via IoC. If you do, your plugin
might work today, but nobody guarantees that it will work under future versions of
SonarQube. To avoid this kind of potential problem, and to make your life easier, let
the IoC container handle the creation/destruction of the classes you need.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
www.manning.com/prasanna/

319Implementing the Redmine plugin
protected String getTemplatePath() {
 return "/redmine/redmine_widget.html.erb";
}
}

 As you probably notice, RedmineWidget implements RubyRailsWidget to override
the getTemplatePath method and provide its own Ruby file reference. The getTitle
method is used in the SonarQube Web UI when adding the widget to a dashboard; but
as you’ll see in the next section, you can change this when localizing the plugin.
Finally, the getId method provides a unique widget ID, so it’s a good practice to
include in the ID the name of the plugin to avoid duplications with other widgets.

Now it’s time to design the widget, so refresh your HTML and Ruby skills. The widget
you’ll create will be split in two columns. On the left it’ll show the total number of open
issues, and on the right will be a list of open issues by priority. This layout might be
familiar, because it’s the general layout of the issues widget we discussed in chapter 2.

<%
 issues_measure = measure('redmine-issues')
 issues_by_priority_measure = measure('redmine-issues-by-priority')
 if issues_measure
%>
<table width="100%">
 <tbody>
 <tr>
 <td align="left">
 <div class="dashbox" >
 <p class="title"><%= message('widget.redmine.name') -%></p>
 <p>
 <%= format_measure(issues_measure) -%></p>
 </div>
 </td>
 <td valign="top" align="left">
 <div class="dashbox">
 <p class="title">
 <%= message('widget.redmine.by_priority') -%></p>
 <table>
 <%
 priorities =

issues_by_priority_measure.text_value.split(";")
 priorities.each do |priority_with_issues|

Listing 16.5 redmine_widget.html.erb

The @WidgetCategory annotation
Before we move on to the Ruby code, let’s explain the @WidgetCategory annotation.
It’s used to group the plugins in the specified category during dashboard editing. It’s
optional, but if you don’t use the annotation, then the widget will only be found under
the None category (or by browsing the entire, uncategorized list).

Gets measure by its key

BLocalization

Displays
formatted
valueC

LocalizationB

Splits
values

D

320 CHAPTER 16 Writing your own plugin
 priority_with_issues_array =
 priority_with_issues.split("=")
 %>
 <tr>
 <td align="left">
 <%= priority_with_issues_array[0] -%>
 </td>
 <td align="right" style="padding-left: 10px;">
 <%= priority_with_issues_array[1] -%>
 </td>
 </tr>
 <% end %>
 </table>
 </div>
 </td>
 </tr>
 </tbody>
 </table>
<% end %>

Listing 16.5 is a mixture of HTML with Ruby templating (ERB) included between the
<% and %> symbols. We won’t explain the HTML formatting of the plugin but will
instead focus on some Ruby functions provided by SonarQube that you can use in
your widgets.

 The first thing you want to do in a widget is get the value of a metric, which is easy
thanks to the SonarQube Ruby function measure. It takes as a parameter the metric ID
discussed in section 16.2.3 and returns its value. To display the value in a formatted
way, you can use the format_measure function C. You’ll probably want to use this
function because it automatically formats the measure based on its value, and you
don’t have to worry about adding symbols such as percent signs or commas in the wid-
get. That’s all you need to get and display metrics from SonarQube’s database.

 But what about distribution metrics like the issues by priority you implemented in
the Redmine plugin? You need to introduce another step before you show them—
one that splits the metric. Remember that it’s stored as a string in the following for-
mat: "Normal=2;Urgent=1". You don’t want end users to see something like that in
your widget!

 To split the values D, you get the text_value of the metric and then call the
split function by passing as a parameter the semicolon character (;). This creates an
array of Strings: [Normal=2][Urgent=1]. You could display the content of each ele-
ment; but you can also use the split function, this time passing an equal sign (=) as a
parameter, to get an array of split values for each element. For example, splitting the
first element, you get the following table: [Normal][2]. Splitting the second, you get
[Urgent][1]. From this point on, you can display the appropriate cell E.

 And there you have it. Your widget is ready! But wait—we promised that your
plugin would support localization. Where is it? B: another Ruby function (message)
that accepts a key as a parameter, finds its value (where?—we’ll show you in a minute),
and displays it at runtime. In the next section, we’ll discuss how SonarQube supports
localization and how you should name the keys in your localized bundles.

Displays cell E

D
Splits
values

321Implementing the Redmine plugin
16.2.6 Supporting internationalization

SonarQube uses the i18n mechanism for platform and plugin localization. We’re not
going to cover how to create a language pack (a plugin that translates SonarQube
core and other open source plugins), but if you’re interested in creating one you can
visit SonarQube’s online documentation. In this section, we’ll explain how to allow
the localization of the Redmine plugin you just finished.

 The first thing you need to do is to create a properties file like the one shown in
listing 16.6. It’s a simple text file containing keys and their values. This file must be
placed under the src/main/resources project directory in a package named
org.sonar.i18n, and its name should follow the pattern <pluginKey>.properties. In
the case of the Redmine plugin, because its key is redmine (if you don’t remember
when you gave this name, go back to section 16.2.1, where you initialized your plugin’s
project), you should save the file as redmine.properties.

widget.redmine.name=Redmine issues
widget.redmine.description=Displays the number
 of open issues of a given redmine project.
widget.redmine.redmine_issues=Redmine Issues
widget.redmine.by_priority=By Priority

metric.redmine-issues.name=Redmine Open Issues
metric.redmine-issues.description=Number of Open Redmine Issues
metric.redmine-issues-by-priority.name=Redmine Open Issues by Priority
metric.redmine-issues-by-priority.description=
 Number of Open Redmine Issues grouped by Priority

You can use the localized messages in widgets or other Ruby on Rails pages by invok-
ing the overloaded message Ruby function. The simplest form of execution requires
only the message key. So, to display in your widget the message “By priority”, you
could write

message('widget.redmine.by_priority')

Or you could provide a default value, in case the given property key isn’t found in the
file:

message('widget.redmine.by_priority',:default=>'By Priority')

What we’ve shown you so far is all you need to know about i18n for widgets. But on the
server side—during analysis—there’s a restriction: you can only take advantage of the
localized messages in components that extend the ServerExtension base class. Classes
that directly or indirectly extend from BatchExtension, such as the RedmineSensor
class, can’t use these messages for logging or in the rare case where the metric may
need to be internationalized before being stored in the database. To get the value of a
property key in a server component, you need to pass the org.sonar.api.i18n.I18n
component in its constructor to be injected by the IoC container discussed in

Listing 16.6 redmine.properties: localization file for the Redmine plugin

322 CHAPTER 16 Writing your own plugin
section 16.2.4. Then you can write something like the following in your code (for
instance, to get the value of the redmine.issue_subject property):

: i18n.message(Locale.getDefault(),"redmine.issue_subject",null,
 new Object[0])

The latest version of the Redmine plugin hosted in GitHub (https://github.com/
SonarCommunity/sonar-redmine) adds integration with SonarQube issues. A class
named RedmineLinkFunction extends ServerExtension and uses what we discussed
in the previous paragraph, so you can see a real-world scenario of using localized mes-
sages in Java.

 There’s one more thing to note about localizing messages. You probably noticed
that the property keys follow some conventions. For instance, to localize the name/
description of the metrics defined in section 16.2.3, you need to follow the conven-
tions metric.<key>.name and metric.<key>.description and include in your prop-
erties file pairs of keys for each metric, as shown in listing 16.6. The same or similar
idea applies to the widget key/description, property key/description, and other
SonarQube concepts such as issues and rules. For a complete and updated list of these
conventions, we recommend that you visit SonarQube’s wiki at http://mng.bz/Ufcv.

 This completes our discussion of writing a SonarQube plugin. We covered most of
the stuff you need to be aware of to start implementing your own brilliant ideas for
extending SonarQube’s functionality. But before we close, there’s a little more to see.
We promised we’d give you an example of a decorator; and after that we’ll discuss
some concepts related to supporting new languages.

16.2.7 A decorator example

We mentioned earlier in this chapter that a decorator, in SonarQube terms, is a com-
ponent that applies a decorate function to all resources. It’s your responsibility to
check the level of resources in this method and perform tasks. In this section, we’ll
show you an example of such a decorator.

 The source code, shown in listing 16.7, is taken from the open source Abacus
plugin (http://docs.codehaus.org/display/SONAR/Abacus+Plugin), which reads the
complexity value of the given resource (as calculated by SonarQube), computes the
so-called Abacus Complexity, and stores it in the database as a new metric.

public class AbacusDecorator implements Decorator {

 @DependsUpon
 public List<Metric> dependsOn() {
 return Arrays.asList(CoreMetrics.FILE_COMPLEXITY);
 }

 public boolean shouldExecuteOnProject(Project project) {
 return true;
 }

Listing 16.7 AbacusDecorator: example of simple decorator

https://github.com/SonarCommunity/sonar-redmine
https://github.com/SonarCommunity/sonar-redmine
http://mng.bz/Ufcv
http://docs.codehaus.org/display/SONAR/Abacus+Plugin

323Implementing the Redmine plugin
 public void decorate(Resource rsrc, DecoratorContext dc) {
 computeAbacusComplexity(rsrc, dc);
 }

 private void computeAbacusComplexity(Resource rsrc, DecoratorContext dc) {
 if (ResourceUtils.isFile(rsrc) ||
 ResourceUtils.isPackage(rsrc) ||
 ResourceUtils.isDirectory(rsrc) ||
 ResourceUtils.isRootProject(rsrc) ||
 ResourceUtils.isModuleProject(rsrc)) {
 Double fileComplexity =
 MeasureUtils.getValue(dc.getMeasure(CoreMetrics.FILE_COMPLEXITY),
 Double.NaN);
 if (!Double.isNaN(fileComplexity)) {
 dc.saveMeasure(new Measure(AbacusMetrics.ABACUS_COMPLEXITY,
 ComplexityThresholdsUtils.
 convertCyclomaticComplexityToAbacusComplexity(
 fileComplexity, complexityThresholds)));
 }
 }
 }

}

The class implements the decorator interface and its two required methods. The first
method, shouldExecuteOnProject, is just like the sensor method with the same
name. The second, decorate, is to a decorator what the analyze method is to a sen-
sor. That means it’s where the real code goes.

 The huge difference between decorate and analyze is that the former takes a
Resource parameter, and not the Project itself; so as we told you, you need to do
some additional work to check whether you want to run the decorator’s code for the
given resource. To make it even clearer, if the analyzed project has a total of 120
resources, then SonarQube will trigger the decorate method 120 times: once for each
resource with that resource passed as an incoming parameter.

 Also notice the annotated method at the beginning of the class. When you want to
use another metric calculated by SonarQube core or other plugins, you should
declare it in an annotated (@DependsUpon) method. Don’t worry about the method
name—you can choose anything you like. The signature of this method may return a
list of Metrics instead of a single one. For instance, you can write something like the
following:

@DependsUpon
public List<Metric> dependsOnCoreMetrics() {
 return ImmutableList.of(CoreMetrics.COMPLEXITY,CoreMetrics.COVERAGE);
}

This means the decorator depends on the Complexity and Coverage metrics already
computed by other sensor(s).

 Now let’s examine the core of the decorator: the decorate method. The context
parameter, just as in sensor classes, is responsible for handling measures. If you want
to refer to the value of a metric listed in any of the @DependsUpon annotated methods

324 CHAPTER 16 Writing your own plugin
(you may have more than one methods annotated with @DependsUpon), invoke the
DecoratorContext.getMeasure method.

 What we’ve discussed about saving measures in sensors applies to decorators as
well. Keep in mind that the context changes every time the decorate method is trig-
gered. So, expect to get a different measure value each time—the value that corre-
sponds to the current resource. If the metric isn’t calculated for the resource, such as
when the metric you’re calculating is the average complexity per package but the
resource you’re on is a file, the measure is null.

 Finally let’s look at how you can check the resource’s level to control the flow of
your decorator’s code. SonarQube provides a ResourceUtils class with static methods
that test a resource against a level and return a Boolean. We suggest that you visit the
latest SonarQube online Javadoc to read more about the method definitions and how
you can use the ResourceUtils class.

 So far, we’ve covered most of the basic and some advanced concepts related to
SonarQube plugin development. As we’ve mentioned, plugins can be also used to add
support for new languages. Next we’ll give you an overview of how you can start writ-
ing your own language plugin.

16.3 Adding support for new programming languages
Most of the basic concepts we’ve discussed apply to language plugins. To quickly begin
writing, you can clone an existing plugin or create a new one from the Maven arche-
type we presented earlier. But this time, you need to make several modifications in the
generated code.

 Before we show you the basics, let’s consider the reasons you might want to write
such a plugin and what it offers. At the time this book was written, SonarQube sup-
ported about 20 programming languages of the several hundred available. We know
that most of them are known by very few people, but plenty of them are popular
though not covered by SonarQube. Imagine that you’re using one of those languages.
Too bad your projects can’t take advantage of all the brilliant SonarQube features dis-
cussed in this book. So why don’t you try to write your own language plugin? As you’ll
discover in this section, a significant part of the work you need to do has already been
implemented by SonarSource.

 But you’ll still need to write some serious code for the plugin. Not all plugins do
the same things: for instance, the open source C++ plugin doesn’t compute measures
about LCOM4 and RFC metrics. So, your first and most important decision should be
which metrics your plugin will support. Then you may consider adding coding rules
grouped in a default profile. After that, you might include other features such as unit-
test execution, duplication recognition, and so on. Let’s discuss the steps to start
implementing such a plugin.

 First you need a way to parse your target language: you need a “language recog-
nizer.” Open source libraries are available for the job, but the SonarQube toolkit offers
the SonarSource Language Recognizer (SSLR: http://docs.codehaus.org/display/

http://docs.codehaus.org/display/SONAR/SSLR

325Summary
SONAR/SSLR), a lightweight library for analyzing source code. It offers a stable integra-
tion with SonarQube core and facilitates the development of language plugins. Many
of the most popular language plugins (JavaScript, COBOL, C#, Python, PL/SQL, C,
C++, Flex, and so on) already use SSLR, so we strongly recommend it and will give you
some insights in this section.

 Typically, a language plugin based on SSLR is a multi-module Maven project. Figure
16.3 shows the structure of the JavaScript plugin, which is composed of four modules:

 JavaScript :: Sonar Plugin—The plugin module as discussed in previous sec-
tions. You need to provide code, apart from defining the extensions, for the lan-
guage quality profile, the rule repository, the source importer, and basic metrics
such as coverage, duplications, and so on.

 JavaScript :: Checks—Library that includes code for checking the code
(using the SSLR, of course) against rules.

 JavaScript :: Squid—The core of the plugin. Here you can find the code for
parsing and analyzing source code. Language grammar, as well as keywords,
metrics, and punctuation definitions, are also placed in this module.

 JavaScript :: DevKit : A development kit for testing and displaying all the
available measures on your project

You can integrate the plugin with external tools (such as coverage tools to parse result
files) just as you’d do with simpler plugins. You can write as many sensors or decora-
tors as you need, and you can create as many widgets as you like to display the metrics
you compute during analysis. Certainly the most time-consuming and difficult task is
to describe the language using the SSLR and to parse the source code files. Unfortu-
nately, that’s beyond what we can cover in this book.

 But we believe that if you know the basics—and you have surely learned more than
the basics by reading this chapter—you’ll be able to quickly start implementing a
SonarQube plugin for your favorite programming language.

16.4 Summary
Well done, developers! You’ve learned many great things about extending SonarQube
and building your own plugins. We started this chapter by illustrating how SonarQube
works behind the scenes. We discussed its architecture and briefly explained the core
components. Then you began to implement a fully working plugin for SonarQube

Figure 16.3 SSLR-based language
plugin (JavaScript) project structure

http://docs.codehaus.org/display/SONAR/SSLR

326 CHAPTER 16 Writing your own plugin
that integrates it with Redmine, a popular issue-tracking system. You’ve learned how
to do the following:

 Quickly start a Maven SonarQube plugin project by using a Maven archetype.
 Implement a complete plugin that supports localization with basic and some

advanced features.
 Choose between a sensor and a decorator. By now you should be able to identify

their differences and when you should use each analyzer type.
 Write the analyzing code to compute the values of your metrics and store them

in SonarQube’s database.

Finally, we scratched the surface of writing a plugin to support a new programming
language with an overview of the SSLR and the factors you need to keep in mind when
implementing such a plugin. The truth is that fully explaining how to write a language
plugin would probably take several chapters; maybe we’ll include more content in the
next edition of this book or—who knows?—in another book.

 We hope you’ve enjoyed reading this book as much as we enjoyed writing it. We’d
like to thank you for following us to the end. Best of luck with your first or advanced
steps with SonarQube!

appendix A
Installation and setup

The purpose of this appendix is to get you up and running on the SonarQube plat-
form. We’ll assume that if you’re here, it’s because you’re ready to give SonarQube
a try, so we’ll focus on practical advice and skip the persuasive writing.

 Before you can get SonarQube up and running, there are a few prerequisites.
You’ll need to have Java installed where you want to run SonarQube, at least ver-
sion 6, as well as a database.

 Don’t let the fact that SonarQube bundles-in the H2 database tempt you to skip
this step. H2 is included as a courtesy for initial testing only and is not for long-term,
production use. If you try to use H2 as your production database, we guarantee
you’ll be disappointed—not least because you cannot upgrade a SonarQube data-
base that’s stored in H2. We use MySQL because, much like SonarQube, it’s free
and open source; it’s dependable; and if you decide down the road that you want
paid support, it’s available. But you can use any one of the supported databases:
Oracle, Postgres, SQL Server, and of course MySQL.

 Once you’ve checked off the basic requirements, you can move on to installing
SonarQube itself. We’ll start by walking you through verifying your Java installation
and setting up the SonarQube database, then move on to installing SonarQube
itself, and then finish with some advice on upgrades. For the SonarQube installa-
tion and upgrade steps, we’ll look at Windows 7 and Ubuntu Linux.

A.1 Preparing for installation
First, let’s deal with the prerequisites: Java and a database. We won’t show you how
to install either of these things—that’s what the internet is for—but we can show
you how to make sure you’re ready to install SonarQube.

A.1.1 Verifying Java

To verify that Java is installed and ready, go to a command prompt and type the fol-
lowing command:

java –version

Depending on the version of Java you’re using, the response will be something
along these lines:
327

328 APPENDIX A Installation and setup

C
sc

permi
java version "1.7.0_09"
Java(TM) SE Runtime Environment (build 1.7.0_09-b04)
Java HotSpot(TM) Server VM (build 20.6-b01, mixed mode)

A.1.2 Database setup

Once you’ve installed a database, you need to create the schema and user that Sonar-
Qube will need. After these steps, SonarQube will handle all its own database manage-
ment for you, but you need to get it bootstrapped first. The following instructions
assume you’re using MySQL.

 Go to a command prompt (Windows 7 users: run cmd.exe to get to the command
line), and type the following command:

mysql -u root -p

This command starts a session with the MySQL database. The -u means that the next
thing coming up is the user name to log in as. The -p says you want to specify a pass-
word. After you press Enter, you’re prompted for it. Enter the database’s root pass-
word. You’ll see a MySQL prompt, like so:

mysql>

You’re nearly ready to create the SonarQube user and database, but first you need to
pick a password for the SonarQube user you’re about to make. It’s a good idea to use
something different than the root password. You don’t want to use sonar as the pass-
word, either.

 It’s time to set up the SonarQube schema and user. The good folks at SonarSource
make this particularly easy by providing the commands you need in a script format.
We’ve reproduced it in listing A.1 for your convenience. As you enter these com-
mands, make sure you end each one with a semicolon, and be sure each instance of
the sonar user’s password is enclosed in single quotes.

CREATE DATABASE sonar CHARACTER SET utf8 COLLATE utf8_general_ci;

CREATE USER 'sonar' IDENTIFIED BY '<password you picked>';

GRANT ALL ON sonar.* TO 'sonar'@'%' IDENTIFIED BY '<password you picked>';

GRANT ALL ON sonar.* TO 'sonar'@'localhost' IDENTIFIED BY '<password you
picked>';

FLUSH PRIVILEGES;

After each line, MySQL should respond like this:

Query OK, 0 rows affected (0.00 sec)

When you get Query OK after the last line, type exit to quit the session. You’ve just
created SonarQube’s database, named sonar, and SonarQube’s user, also named
sonar. The last three lines give the sonar user permission to do whatever it wants in
the sonar database.

 Now you’re ready to move on to the installation of SonarQube itself.

Listing A.1 Schema and user creation

reate
hema Create user

Grant
ssions

Finalize

329APPENDIX A Installation and setup
A.2 Installing SonarQube
Ideally, you’ll run SonarQube as a service, whatever your platform. That way, it starts
back up automatically after a reboot. We prefer running SonarQube standalone, so
that’s what we’ll show you how to set up. The exact steps for setting up a service vary
by platform, but the download is the same regardless of platform (which is the beauty
of Java applications).

 The following URL goes to the download page: www.sonarsource.org/downloads/.
The versions’ zip files are listed with the newest first—and the newest is always the one
you want. The SonarSource folks release fairly frequently (several times a year), and
almost every time the new version contains compelling new features. If you’re run-
ning Windows 7, skip ahead to section A.2.2 for specific installation instructions. For
Ubuntu, continue with the next section.

A.2.1 Ubuntu

The first thing you need to do is decide where to install the SonarQube server. We use
/usr/share, and the scripts that follow reflect that. If you prefer a different parent
directory, adjust accordingly.

 Listing A.2 is an install script. We’ll tell you what you’re about to do and then give
you the commands to do it:

1 Expand the SonarQube zip file into /usr/share in a subdirectory named for the
zip file, including the version number.

2 Create a symbolic link to your expanded directory, named sonar (without the
version number), in /usr/bin.

3 Create a link in /etc/init.d to the service startup script provided with Sonar-
Qube. (For this step, you need to know whether you’re running a 32-bit or
64-bit version of the OS.)

4 Register your startup script with the OS.

sudo unzip -d /usr/share sonar-<version>.zip

sudo ln -s /usr/share/sonar-<version> /usr/bin/sonar

sudo ln -s /usr/bin/sonar/bin/linux-x86-

 <32 / 64 depending on your OS>/sonar.sh /etc/init.d/sonar

sudo update-rc.d sonar defaults

Once you’ve completed these steps, SonarQube is installed, but you still need to con-
figure it. Skip ahead to section A.2.3 for those steps.

Listing A.2 Ubuntu SonarQube installation

Expand zip file

Create first link

Link to
startup script

Register
startup with OS

www.sonarsource.org/downloads/

330 APPENDIX A Installation and setup
A.2.2 Windows 7

The first thing you need to do is decide where to install the SonarQube server. We typ-
ically put it right into the root of whatever drive is chosen, but that’s more a religious
decision than a technical one. Whatever you decide, it’s best to create a parent direc-
tory named SonarQube and then expand the zip file you downloaded into a subdirec-
tory with the version in the name. This will make life simpler at upgrade time, which
comes fairly frequently.

 Once you’ve expanded the zip, you can set up SonarQube as a startup service. The
good folks at SonarSource have made this easy for you with an installer. Look in the
bin directory of the expanded SonarQube zip, and choose the subdirectory that’s
correct for your operating system: windows-x86-32 for a 32-bit operating system or
windows-x86-64 for a 64-bit version. In the subdirectory, right-click the InstallNT-
Service.bat file and choose Run as Administrator to make SonarQube a startup service
on the box.

 Depending on how permissions are set up on your machine, you may get an error
when you try to run the service setup script. If you do, look in sonar-<version>/logs at
sonar.log. You’ll probably see something like this toward the bottom of the file
(although not at the very bottom):

Unable to create file in temporary directory, please check existence
of it and permissions:

C:\Windows\system32\config\systemprofile\AppData\Local\Temp\

If so, open Explorer and try to navigate down the cited path. As you drill in, you’ll
eventually be told that you don’t have permissions to access the folder you just tried to
open and given an option to grant yourself permissions. Accept the option in the dia-
log, and keep drilling until you get as far down the path as the directories exist (when
we tried it, we got the dialog twice). The last directory in the path (Temp) probably
isn’t there. Don’t worry about creating it—now that the permissions are taken care of,
SonarQube can handle that for you. Try Run as Administrator again on the install
script provided with SonarQube, and you should be good to go.

 Next you need to make a few configuration changes.

A.2.3 Configuring SonarQube: Windows 7 and Ubuntu

You’re nearly ready to turn on SonarQube. There’s just one more step: telling it where
its database is.

 Look in SonarQube’s conf directory for the sonar.properties file, and open it in your
favorite text editor. (If you’re on Linux, you’ll need to use sudo to open the file; because
you used sudo to unzip the archive originally, root owns all the files.) You’ll find that it’s
well documented internally, with clearly named properties and helpful comment
blocks above each section. In case you’re not used to the conventions used here, lines
that start with a pound sign (#) are comments (or commented-out properties).

 There are two formats for properties in this file: one where the key and the value
are separated by a colon and whitespace doesn’t seem to matter, and ones where the

331APPENDIX A Installation and setup
key and value are separated by an equal sign. Whitespace does matter for these, so
don’t insert any spaces around an equal sign, like so:

sonar.sample.property1: spaces_don't_matter

sonar.sample.property2=leaveSpacesOut

These two formats aren’t interchangeable, so properties you see with colons initially
should retain those colons.

 To point SonarQube to the database you set up for it, start by looking for the line
that begins with sonar.jdbc.password. The default value is sonar. Change it to the
password you set up for the sonar database user earlier:

sonar.jdbc.password: <password you picked>

Next, look for these two lines:

Comment the following line to deactivate the default embedded database.
sonar.jdbc.url: jdbc:h2:tcp://localhost:9092/sonar

Comment-out the second one by adding a pound sign to the beginning of the line.
 Scroll down a little until you see this set of lines, and uncomment each one that

starts with sonar.jdbc by removing the pound sign from the beginning of the line:

#----- MySQL 5.x/6.x
Comment the embedded database and uncomment the following line to use MySQL
#sonar.jdbc.url:
jdbc:mysql://localhost:3306/sonar?useUnicode=true&characterEncoding=
utf8&rewriteBatchedStatements=true

Optional properties
#sonar.jdbc.driverClassName: com.mysql.jdbc.Driver

Be sure to correct the server name in the database access URL if it’s not on the same
box as SonarQube. At this point, you could save the file and turn on SonarQube if you
wanted, but there are a few other configurations you might like to look at.

 If you’re behind a proxy, be sure to uncomment and configure your authentica-
tion properties in the Update Center section so you can use SonarQube’s built-in
plug-in installation and updating features:

#---
UPDATE CENTER
#---

The Update Center requires an internet connection to request http://
update.sonarsource.org

It is activated by default:
#sonar.updatecenter.activate=true

HTTP proxy (default none)
#http.proxyHost=
#http.proxyPort=

Spaces after the colon are OK

Remove whitespace before
and after the property value

332 APPENDIX A Installation and setup
NT domain name if NTLM proxy is used
#http.auth.ntlm.domain=

SOCKS proxy (default none)
#socksProxyHost=
#socksProxyPort=

proxy authentication. The 2 following properties are used for HTTP and
SOCKS proxies.

#http.proxyUser=
#http.proxyPassword=

Once you’ve finished your configurations, you’re ready to start SonarQube.

A.2.4 Turning it on

It’s time to start the SonarQube service. If you’re not familiar with how to start a ser-
vice on your platform, we’ll tell you how.

 This first time, it will take SonarQube a few minutes to start up—in addition to all
the normal startup activities, it’s also creating the tables and indexes it needs in the
database. After a few minutes, you should be able to point your browser to http://
localhost:9000 and see something like what’s shown in figure A.1.

WINDOWS 7
You can start the service from the Services control panel (which you may have to Run
as Administrator); or, if you prefer a command-line interface, open a privileged ses-
sion by clicking the Start button and typing cmd without pressing Enter. This time,
press Shift-Ctrl-Enter. You’re asked if you want to “allow the program to make changes
to this computer.” Accept, and at the command line, type

sc start sonar

SonarQube should start. But depending on how permissions are set up on your
machine, you may get an error when you try to start SonarQube for the first time. If
that’s the case, refer to section A.2.2.

UBUNTU

Enter the following in a terminal:

sudo service sonar start

Figure A.1 Congratulations! SonarQube is up and running.

333APPENDIX A Installation and setup
A.2.5 Default admin account

The final thing you need at this point is the credentials for the default admin account.
You need these if you want to make any changes to SonarQube’s default setup. You
probably could have guessed, but the login is admin and the password is also admin.

 Go ahead and log in now—use the link at upper right in the interface—to change
the password. Once you’re logged in, click the username at upper right (Administra-
tor, in this case), and choose My Profile to open the password-change form.

A.3 Upgrading
You’ve just gotten SonarQube installed and up and running. Now seems terribly pre-
mature to talk about upgrades. But the SonarSource folks release fairly frequently—as
often as eight times a year. And almost every release has compelling new functionality.
So when new versions come out, you’ll probably want to upgrade. Go to http://
mng.bz/ahZm to sign up to be notified when new versions are available.

 The steps for upgrading aren’t onerous:

1 Read the upgrade guide, and download the new version. Expand the zip file
into a new directory.

2 Copy your plugins (if any) to the new version.
3 Copy your configuration to the new version.
4 Stop SonarQube.
5 Back up your database.
6 Update your links, aliases, and service to point to the new version.
7 Start SonarQube.
8 Point a browser to http://[yourSonarHost]:9000/setup, and click the button.

As you can see, the steps themselves aren’t difficult, but the list is a little long, and
stepping through it can be tedious. Because laziness and impatience are among the
chief virtues of a programmer (thank you, Larry Walls!) we’ve scripted the steps in an
upgrade. Not only will these steps save you tedium and time, but they ensure consis-
tency of process as well.

 You’ll still have to do a few things manually. Of course, you’ll need to perform the
download manually—the link is different every time. You should also consult the
upgrade guide (it’s linked from the email announcing a new version) in case there are
any configuration tweaks you need to make for forward compatibility. After those two
steps, though, the rest should be pretty painless. Continue to the next section for the
Ubuntu version or to section A.3.2 for Windows 7.

A.3.1 Ubuntu

The Linux upgrade script relies on your having followed our installation guidelines. If
you didn’t, then this script won’t work for you. Feel free to use it as a guide for writing
your own upgrade script, but don’t run it as-is.

http://mng.bz/ahZm
http://mng.bz/ahZm

334 APPENDIX A Installation and setup
 If you did follow our advice, then put the script in listing A.3 into a clearly named
file (say, sonarUpgrade.sh) in the same directory as the zip file of the new version, and
make it executable (chmod 755 sonarUpgrade.sh).

 It’s ready to go, but you have to pass it two arguments: the version number you’re
upgrading from and the version number you’re upgrading to.

 Kicking it off looks something like this:

./sonarUpgrade.sh 3.4 3.5

If the script is able to verify that you have the 3.5 zip file waiting (or already expanded
in the correct location) and that an install of 3.4 exists, it will start the upgrade. You’re
asked to enter two different passwords. The first is your sudo password. The script uses
the sudo access of the person who invoked it to create directories in privileged loca-
tions, to move files around, and to stop and restart the SonarQube service.

 The second password is the MySQL root password. That access is used to make a
backup copy of your database, which is compressed (with gzip) and placed in the
directory of the version you’re upgrading from—the version it went with. If worse
comes to worst (not that it should), you’ll be able to restore SonarQube to the instant
at which you started the upgrade.

 When the script is finished, it instructs you to point a browser at http://[yourSonar-
Host]:9000/setup and follow the instructions on the screen. That screen presents a
button. When you click it, SonarQube kicks off the database structure changes that
accompany most upgrades. Depending on the size of your database, these can take a
few minutes. When those changes are done, your browser will automatically refresh to
SonarQube’s front page. Here’s the script.

#!/bin/bash

old=$1
oldDir=/usr/share/sonar-${old}
new=$2
newDir=/usr/share/sonar-${new}

if [[-z $old || -z $new]]
then
 echo "usage: ${0} oldVer newVer"
 echo "E.g ${0} 2.9 2.10"
else
 if [[! -e $oldDir]]
 then
 echo "Cannot upgrade from ${old}. Directory does not exist: ${oldDir}"
 exit
 else
 echo "Upgrade from sonar-${old} to sonar-${new}"

 if [[! -e "sonar-${new}.zip"]]
 then
 echo "sonar-${new}.zip not found. Skipping expansion"

Listing A.3 Ubuntu upgrade script

335APPENDIX A Installation and setup
 else
 if [! -e /usr/share/sonar-${new}]
 then
 echo "expanding sonar-${new}.zip to /usr/share"
 sudo unzip -d /usr/share sonar-${new}.zip

 echo "copying plugins"
 sudo cp $oldDir/extensions/plugins/*.jar $newDir/extensions/plugins/.

 echo "copying conf"
 sudo mv $newDir/conf/sonar.properties $newDir/conf/

sonar.properties.bak
 sudo cp $oldDir/conf/sonar.properties $newDir/conf/.
 fi
 fi

 if [[! -e ${newDir}]]
 then
 echo "Cannot complete upgrade. Directory for new version does not

exist: ${newDir}"
 else
 echo "Stopping service"
 sudo service sonar stop

 echo "Updating symlink in /usr/bin"
 sudo rm /usr/bin/sonar
 sudo ln -s ${newDir} /usr/bin/sonar

 echo "Backing up database"
 d=`date +"%y%m%d"`
 mysqldump -u root -p sonar | gzip -9 > sonar-db-ver${old}-${d}.sql.gz
 sudo mv sonar-db-ver${old}-${d}.sql.gz ${oldDir}/.

 echo "Starting service"
 sudo service sonar start

 echo ""
 echo "To complete upgrade, access the following in a browser and follow

instructions:"
 echo "http://$(hostname):9000/setup"
 echo "Once the front page renders, run a trial anaysis"
 fi
 fi
fi

A.3.2 Windows 7

The Windows upgrade script relies on your having followed our installation guidelines
earlier. If you didn’t, then this script won’t work for you. Feel free to use it as a guide
for writing your own upgrade script, but don’t run it as-is.

 If you did follow our advice, then put the script in listing A.4 into a clearly named
file with a .bat extension under the SonarQube root directory, say sonarUpgrade.bat.
When you’re ready to use it, download the new version and unzip it into a subdirec-
tory of the SonarQube root named sonar-<version>. Your directory listing should look
something like this:

336 APPENDIX A Installation and setup
 sonar-<oldVersion>
 sonar-<newVersion>
 sonarUpgrade.bat

Now you’re ready to kick off the upgrade script, but you can’t just double-click it. You
need to pass it two arguments: the version number you’re upgrading from and the ver-
sion number you’re upgrading to.

 To do so, open a privileged command-line session by clicking the Start button, typ-
ing cmd, and then pressing Shift-Ctrl-Enter. You’re asked if you “want to allow the fol-
lowing program to make changes to this computer.” Say Yes. At the command line, cd
to your SonarQube root directory and then start the script:

cd C:\Sonar
sonarUpgrade 3.4 3.5

If the script is able to verify that the directories exist for the old and new versions, it
starts the upgrade. Part way through, you’re asked to enter the MySQL root password.
That access is used to make a backup copy of your database, which is placed in the
directory of the version you’re upgrading from—the version it went with. If worse
comes to worst (not that it should), you’ll be able to restore SonarQube to the instant
at which you started the upgrade.

 When the script is finished, it instructs you to point a browser at http://[yourSonar-
Host]:9000/setup and follow the instructions on the screen. That screen presents a
button. When you click it, SonarQube kicks off the database structure changes that
accompany most upgrades. Depending on the size of your database, these can take a
few minutes. When those changes are done, your browser will automatically refresh to
SonarQube’s front page.

 You may need to make one small adjustment to the script; it assumes you’re run-
ning 64-bit Windows. If you’re using 32-bit instead, then look for this line about half-
way down the script:

call %new%\bin\windows-x86-64\InstallNTService

And change the 64 to a 32, like so:

call %new%\bin\windows-x86-32\InstallNTService

Here’s the script.

@echo off
if "%1"=="" goto :USAGE
if "%2"=="" goto :USAGE

set old=sonar-%1
set new=sonar-%2

if not exist %old% goto :1NOTEXIST
if not exist %new% goto :2NOTEXIST

Listing A.4 Windows upgrade script

337APPENDIX A Installation and setup
echo Upgrade from %old% to %new%
echo.

echo Copying conf
move %new%\conf\sonar.properties %new%\conf\sonar.properties.bak
copy %old%\conf\sonar.properties %new%\conf /Y
echo Copying plugins
copy %old%\extensions\plugins*.jar %new%\extensions\plugins /Y
echo.

echo Stopping service
sc stop sonar
sc delete sonar
echo.

echo Backing up database
set date=%date:~4,2%%date:~7,2%%date:~10,4%
set outfile=%old%\sonar-db-ver%1-%date%.sql
mysqldump -u root -p sonar > %outfile%
echo.

echo Starting service
call %new%\bin\windows-x86-64\InstallNTService
sc start sonar
echo.

echo To complete upgrade, access the following in a browser and follow
instructions:

echo http://%hostname:9000/setup

goto :DONE
:2NOTEXIST
echo Cannot upgrade to %2. Directory does not exist
goto :DONE
:1NOTEXIST
echo Cannot upgrade from %1. Directory does not exist
goto :DONE
:USAGE
echo "Usage: %0 oldVersion newVersion"
:DONE

appendix B
Analysis

In this appendix, we’ll show you how to run a SonarQube analysis via three differ-
ent methods: SonarQube Runner, Maven, and Ant. Each of the first three sections
stands alone, so feel free to skip to the one that interests you the most. For Sonar-
Qube Runner analysis, continue to section B.1. For Maven, skip to B.2, and for Ant
you want B.3. If you’re not sure which one to use, then you probably want Sonar-
Qube Runner.

NOTE In each analysis section, we’ll show you configurations that use
localhost in URLs that refer to the SonarQube server or database. If you’re
not running your analyses on the SonarQube server itself, you’ll need to
replace every instance of localhost with your SonarQube server’s host-
name.

When you’re done with the analysis section of interest, be sure to check section B.4
for a full listing of properties you can use to modify the execution of any type of
analysis.

B.1 Analyzing with SonarQube Runner
SonarQube Runner is a Java application you fire from the command line. You feed
it your project and a simple set of properties, and with those two things it can run
the analysis for any language SonarQube handles (Java, C, C++, C#, ABAP, COBOL
and so on).

 Before you can analyze with the SonarQube Runner, you need to download it:
http://docs.codehaus.org/x/N4KxDQ. The best place to go for the download is
the SonarQube wiki, which lists all the available versions, newest first. Pretty much
without exception, the newest will be the one you want.

 You also need to make sure you have Java installed—because the SonarQube
Runner was written in Java, you need to have Java on your machine to run it.

 With Java on board, you’re ready to install SonarQube Runner. Continue to sec-
tion B.1.1 if you’re on Windows, and skip to section B.1.2 if you’re using Ubuntu.
338

http://docs.codehaus.org/x/N4KxDQ

339APPENDIX B Analysis
B.1.1 Install: Windows 7

Once you’ve downloaded the SonarQube Runner zip file, expand it into the location
of your choice. When you do so, by default the name of the directory that’s created
contains the version number. Leaving the version number in that directory name is a
good idea because it will make things clearer at upgrade time.

 Now create an environment variable called SONAR_RUNNER_HOME that points to your
sonar-runner-<version> directory. You also need to make sure you have a JAVA_HOME
environment variable that points to your Java directory. If Java was preinstalled for
you, you may have a Java directory under Program Files. This isn’t the directory you
want to point your JAVA_HOME variable at. Open C:\Program Files\Java, and find the
subdirectory named something like jre6. The full path to that subdirectory is what
should be in JAVA_HOME.

 After you set up SONAR_RUNNER_HOME and JAVA_HOME, add the following to the end
of your PATH environment variable, and restart:

;%SONAR_RUNNER_HOME%\bin;%JAVA_HOME%\bin

When your machine is back up, head to section B.1.3 for instructions on verifying and
configuring your installation.

B.1.2 Install: Ubuntu

Installing SonarQube Runner is short and sweet for Linux. Run the following com-
mands to expand the zip file and sym-link it into the default path:

sudo unzip -d /usr/share sonar-runner-<version>.zip

sudo ln -s /usr/share/sonar-runner-<version> /usr/bin/sonar-runner

Once you’re done, continue to the next section to verify and configure your
installation.

B.1.3 Verify and configure : Ubuntu and Windows 7

Now that SonarQube Runner is installed—whatever your platform—the instructions
for using it are the same for everyone. First you need to verify your installation, so
head to a command line and type:

sonar-runner -h

If you get a usage message in response, then you’re good to go.
 You could choose to use SonarQube Runner as is, but you’ll save yourself some

effort down the road if you configure a few of the more common properties globally
rather than on a project-by-project basis. Every analysis, no matter how it’s performed,
needs to know where its target database is and what the credentials are to access that
database. So you should configure those properties centrally.

 To set these central properties, go to the SonarQube Runner home directory, and
open conf/sonar-runner.properties in your favorite text editor. Uncomment (remove
the leading # character) from the sonar.host.url line as well as the lines with the cor-

Expand zip
Create link

340 APPENDIX B Analysis
rect database driver and URL for your SonarQube install, and the database username
and password. Be sure to correct the hostname in all the uncommented .url proper-
ties if you’re not setting up SonarQube Runner on the machine that hosts SonarQube.
Also correct the database password—assuming you didn’t use the default. (You didn’t,
did you?)

B.1.4 Analyze

With SonarQube Runner installed and configured, you’re ready to run your first anal-
ysis. In the target project’s root directory, create a file named sonar.properties and open
it in your favorite text editor. The following listing shows a sample properties file. Adjust
it to match your project. Note that the libraries property is a comma-delimited list of
explicit library files or the wildcard paths to them, as shown in the listing.

required metadata
sonar.projectKey=test:project2
sonar.projectName=Chapt 2 Javarunner
sonar.projectVersion=1.0

Comma-separated list of library directories
sonar.libraries=lib/*.jar

comma-delimited list of paths to source directories (required)
sonar.sources=src

comma-delimited list of paths to test source directories (optional)
#sonar.tests=testDir1,testDir2

path to project binaries (optional)
sonar.binaries=bin

sonar.host.url=http://localhost:9000

sonar.jdbc.url=jdbc:mysql://localhost:3306/sonar?useUnicode=
true&characterEncoding=utf8
sonar.jdbc.driver=com.mysql.jdbc.Driver

sonar.jdbc.username=sonar
sonar.jdbc.password=sonar

Once your properties file is configured, you can use it as is, like this:

cd <project root directory>
sonar-runner -Dproject.settings=sonar.properties

In response, you’ll get about 80 lines (or more) of output. Here’s a condensed version:

Runner configuration file: /usr/share/sonarRunner/conf/sonar-
runner.properties

Project configuration file: <path to project root>/sonar.properties
Runner version: 1.2
Java version: 1.6.0_31, vendor: Sun Microsystems Inc.
OS name: "Linux", version: "3.0.0-19-generic", arch: "i386"
Server: http://<your server>:9000

Listing B.1 SonarQube Runner project properties file

Skip if
configured
centrally

http://localhost:9000/

341APPENDIX B Analysis
Work directory: <path to project root>/.sonar
18:32:31.238 INFO o.s.c.p.Database - Create JDBC datasource
18:32:31.869 INFO actDatabaseConnector - Initializing Hibernate
18:32:33.740 INFO .s.b.b.ProjectModule - ------------- Analyzing <Project

Name>
...
18:32:41.453 INFO p.PhasesTimeProfiler - Sensor CoberturaSensor done: 0 ms
18:32:42.207 INFO p.PhasesTimeProfiler - Execute decorators...
18:32:43.793 INFO .b.p.UpdateStatusJob - ANALYSIS SUCCESSFUL,
you can browse http://localhost:9000
18:32:43.794 INFO b.p.PostJobsExecutor - Executing post-job class
org.sonar.plugins.core.batch.IndexProjectPostJob
18:32:43.901 INFO b.p.PostJobsExecutor - Executing post-job class
org.sonar.plugins.dbcleaner.ProjectPurgePostJob
...
Total time: 14.082s
Final Memory: 8M/112M

When you see the ANALYSIS SUCCESSFUL line, the runner isn’t quite finished—there
are still database cleanup routines to go through—but your metrics will be ready, and
you can head over to your SonarQube host to see them.

B.1.5 Multi-module projects

If you’re dealing with a multi-module project, you need to set up the properties for
each module. Fortunately, module properties follow an inheritance model, so you can
set the common ones (or the most common ones) at the parent level and override
what you need to at the module level.

 You have two choices of how to set up your module properties. You can put every-
thing in a parent-level sonar-project.properties file, or you can combine a parent-level
properties file (it’s needed either way) with a properties file per module.

 Again, a parent-level sonar-project.properties file is needed either way. At a mini-
mum, it will contain the following:

 sonar.projectKey=com.myCompany:multiModuleProject

 sonar.projectName=Multi Module Project

 sonar.projectVersion=1.0

 sonar.modules=moduleA,moduleB

The sonar.modules property holds a comma-delimited list of module names or
aliases. If your module’s name doesn’t match its directory, you also need to specify its
directory, like so: moduleB.sonar.projectBaseDir=path/to/moduleB.

 Notice how the base directory property is prefixed with moduleB. All module-
specific properties specified in the parent properties file should begin with the project
name/alias you specified in the modules list. Module properties specified in a sepa-
rate, child-level file don’t need the prefix. Make sure you set a property for the
projectName of each module; after that, it’s just a matter of adding any module-
specific properties you need to override from the parent level.

342 APPENDIX B Analysis

co
B.2 Analyzing with Maven
If your favorite build tool is Maven, you’re in luck, because SonarQube has supported
Maven analysis from the start. In fact, for quite a while you could only perform a
SonarQube analysis with Maven, and even today the Maven analysis functionality is
richer than that offered by the other methods.

 To perform your own Maven-based analysis, we’ll start by assuming that you
already have Maven installed and configured and that Maven’s bin directory is in your
system path variable. You can verify that it is by typing mvn at a command prompt. You
should see something like this in response:

[INFO] Scanning for projects...

[INFO] --

[ERROR] BUILD FAILURE

[INFO] --

The beauty of Maven is that you don’t need to explicitly download any additional
libraries. Setting up Maven was the biggest step in the process. Let’s look at how to
configure an analysis.

B.2.1 Setup

First you need to set up a SonarQube profile specifying how to connect to Sonar-
Qube’s database. To do that, edit Maven’s global configuration file, settings.xml,
which is located in $MAVEN_HOME/conf or in your home folder under a .m2 subdi-
rectory. You can open it in your favorite text editor; or sometimes your IDE will show it
with your project files, as shown in figure B.1, and you can edit it from there.

 The next listing shows a sample SonarQube profile using MySQL. (For details on
installing and configuring SonarQube to use MySQL, see appendix A.)

<...>
 <profiles>
 <profile>
 <id>sonar</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <sonar.jdbc.url>jdbc:mysql://localhost:3306/sonar?useUnicode=
 ➥ true&characterEncoding=utf8

Listing B.2 Maven settings.xml configuration

Figure B.1 Editing settings.xml
with NetBeans and Eclipse IDE

Profile name: choose
something that
makes sense to you

Activation must be
enabled by default

MySQL
nnection string

343APPENDIX B Analysis

e
rd
ked

e
tion
 </sonar.jdbc.url>
 <sonar.jdbc.driverClassName>com.mysql.jdbc.Driver
 </sonar.jdbc.driverClassName>
 <sonar.jdbc.username>username you picked</sonar.jdbc.username>

 <sonar.jdbc.password>password you picked</sonar.jdbc.password>

 <sonar.host.url>http://localhost:9000</sonar.host.url>
 </properties>
 </profile>
 </profiles>
<...>

Now that you’ve configured the SonarQube profile, you need to add a sonar-maven-
plugin dependency to your project’s pom.xml file. You can skip this step if you want,
but it’s a good idea to add this dependency because SonarQube provides two Maven
plugins: one for Maven 2 and another for Maven 3. Adding the sonar-maven-plugin
section to pom.xml ensures that the correct one is always used. If you don’t know
which version of Maven you’re using, type this at a command line: mvn -v or mvn
-version. You’ll get something like this:

Apache Maven 2.2.1 (r801777; 2009-08-06 22:16:01+0300)
Java version: 1.6.0_26
Java home: C:\Program Files\Java\jdk1.6.0_26\jre
Default locale: el_GR, platform encoding: Cp1253
OS name: "windows 7" version: "6.1" arch: "amd64" Family: "windows"

The good folks at SonarSource make setting up the plugin dependency as easy as pos-
sible by providing the exact XML to use, and we’ve replicated it here for your conven-
ience in listings B.3 through B.5. If you’re on Maven 2, then add the code in listing
B.3 to your pom.xml. If you’re on Maven 3, then use what’s in listing B.4.

<build>
 <pluginManagement>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>sonar-maven-plugin</artifactId>
 <version>1.0</version>
 </plugin>
 </pluginManagement>
</build>

<build>
 <pluginManagement>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>sonar-maven-plugin</artifactId>

Listing B.3 Maven 2 plug-in specification for project pom.xml

Listing B.4 Maven 3 plug-in specification for project pom.xml

MySQL JDBC
driver nameMySQL

username you
picked during

database
installation

MySQL
usernam
passwo
you pic
during
databas
installa

SonarQube’s host URL: if SonarQube isn’t installed on the
same machine with Maven, change it accordingly

Version number
listed here

344 APPENDIX B Analysis
 <version>2.0</version>
 </plugin>
 </pluginManagement>
</build>

If you need to be able to build your project with either Maven version, then you must
create two profiles in pom.xml and let Maven decide which one to use. Listing B.5
shows you how. The tricky part is in the activation tag, which relies on the existence
(or not) of the ${basedir} expression. Maven 3 recognizes ${basedir} but Maven 2
doesn’t, and you set the sonarVersion attribute accordingly.

<build>
 <pluginManagement>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>sonar-maven-plugin</artifactId>
 <version>${sonarVersion}</version>
 </plugin>
 </pluginManagement>
</build>
<profile>
 <id>m2-profile</id>
 <activation>
 <file>
 <missing>${basedir}</missing>
 </file>
 </activation>
 <properties>
 <sonarVersion>1.0</sonarVersion>
 </properties>
</profile>
<profile>
 <id>m3-profile</id>
 <activation>
 <file>
 <exists>${basedir}</exists>
 </file>
 </activation>
 <properties>
 <sonarVersion>2.0</sonarVersion>
 </properties>
</profile>

B.2.2 First analysis

You’re ready to run your first SonarQube analysis using Maven. At a command
prompt, cd to the directory holding your pom.xml file. You could skip straight to the
analysis, but it’s recommended that you run the Maven install goal first, like so:

mvn clean install

Once that’s complete, run the analysis:

mvn sonar:sonar

Listing B.5 Analyzing a project with either Maven version

345APPENDIX B Analysis
Alternately, you can run both goals in a single command:

mvn clean install sonar:sonar -Dmaven.test.failure.ignore=true

We need to mention a couple of points here:

 The parameter -Dmaven.test.failure.ignore should always be used to
instruct SonarQube to continue with analysis even if one or more tests fail.

 By default, your unit tests are executed twice: once for the install goal and once
for the sonar goal. It’s possible to skip the second run and reuse the test results
from the first run. For details, see sonar.dynamicAnalysis and its companion
properties in section B.4.

 Avoid using the Maven parameters -Dtest=false and -DskipTests=true.
They’ll prevent SonarQube from running your unit tests, and you won’t get any
test metrics.

B.2.3 Multi-module

If you have a multi-module project, you can easily analyze it using the steps just out-
lined. Each child module automatically inherits its parent properties. If there are
properties you want overridden at the child level, such as sonar.language, define
them in the child module’s pom.

B.3 Analyzing with Ant
If you’re in an Ant-build shop, you’ll be happy to know that the good folks at Sonar-
Source have ported analysis functionality into an Ant task. Before you can use it, you’ll
need to download the Ant task jar from http://docs.codehaus.org/x/QYKxDQ. The
best place to go for the download is the SonarQube wiki, where the latest links and
documentation are maintained.

 Put the Ant task jar somewhere central. You can make it readily available to every-
one by dropping it into the lib directory in the Ant installation (${ant.library
.dir}), or put it in your user home in a directory named .ant/lib.

 Once that’s done, you’re ready to go, and listing B.6 gives you a sample target.
Notice that it refers to the Ant task jar as sonar-ant-task.jar, rather than sonar-ant-task-
<version>.jar. That’s because we typically cheat by either renaming the jar to remove
the version number or adding a version-less symlink to the directory. If it’s not your
practice to do either, then you need to correct the name of the jar.

<property name="src" value="src"/>
<property name="classes" value="build/classes"/>

<target name="sonar" depends="compile">
 <taskdef uri="antlib:org.sonar.ant"
 resource="org/sonar/ant/antlib.xml">
 <classpath path="${ant.library.dir}/sonar-ant-task.jar" />
 </taskdef>

Listing B.6 Ant script

http://docs.codehaus.org/x/QYKxDQ

346 APPENDIX B Analysis
 <!-- if you pass in libraries, it needs to be in the form
 of a comma-delimited list of jar files -->
 <path id="tmpPath">
 <fileset dir="lib" includes="**/*.jar"/>
 <fileset dir="${someother.library.dir}" includes="*.jar"/>
 </path>
 <pathconvert dirsep="/" pathsep=","
 property="sonar.libraries" refid="tmpPath"/>

 <!-- database access -->
 <property name="sonar.jdbc.url"
 value="jdbc:mysql://localhost:3306/sonar?useUnicode=
 true&characterEncoding=utf8" />
 <property name="sonar.jdbc.driverClassName"
 value="com.mysql.jdbc.Driver" />
 <property name="sonar.jdbc.username" value="sonar" />
 <property name="sonar.jdbc.password" value="${yourSonarPassword}" />

 <!-- required -->
 <property name="sonar.sources" value="${src}" />

 <!-- optional -->
 <property name="sonar.projectName" value="My Sample Project" />
 <property name="sonar.binaries" value="${classes}" />

 <sonar:sonar key="org.example:example" version="0.1"
 xmlns:sonar="antlib:org.sonar.ant"/>

 </target>

There are a couple of things to note about this listing. The first is that it’s not a full
project file. We’re assuming you’ve already got one into which you need to incorpo-
rate analysis. Second, we’ve made the sonar target dependent on an (unprovided)
compile target.

 Of course, you’re free to remove that dependency (also remove the
sonar.binaries property); but you’ll probably want to leave it in because the more
you give SonarQube, the fuller the analysis it returns, and the compiled binaries can
be an important part of a full analysis.

 And of course, the elephant in the room for true Ant-heads is that the whole thing
isn’t very Ant-y. At all. That’s probably because SonarSource is a Maven shop, and Ant-
based analysis isn’t its primary focus.

 That’s why you must give the properties the names shown in the example if you
want the analysis to run correctly. That’s also why this example turns what you might
expect to see as a path reference into a comma-delimited string that lists paths to jars.

 Telling SonarQube where your dependencies are can enhance the quality of the
analysis you get, but unfortunately you can’t just pass the SonarQube Ant task a
resource collection, or even a stereotypical **/*.jar path. Instead it needs a comma-
delimited list of jars. Assembling that list is what this chunk of code early in the tar-
get does:

 <path id="tmpPath">

 <fileset dir="lib" includes="**/*.jar"/>

 <fileset dir="${ant.library.dir}" includes="*.jar"/>

Omit this property
if compiled classes
aren’t available

347APPENDIX B Analysis
 </path>

 <pathconvert dirsep="/" pathsep="," property="sonar.libraries"
refid="tmpPath"/>

Like binaries, libraries are optional, so feel free to leave this part out.
 If you’re doing a multi-module build and want to make it a multi-module analysis

as well, you need a few more (specifically named) properties. The first is

<property name="sonar.modules" value="moduleA,moduleB"/>

The sonar.modules property holds a comma-delimited list of module names or
aliases. If your module’s name doesn’t match its directory, you also need to specify its
directory, like so:

<property name="moduleB.sonar.projectBaseDir" value="path/to/moduleB"/>

Notice how the base directory property is prefixed with moduleB. All module-specific
properties should begin with the project name/alias you specified in the modules list.
Make sure you set a property for the projectName of each module, and after that, it’s
just a matter of adding any module-specific properties you need to vary from what
you’ve already set for the analysis as a whole.

B.4 Analysis properties
SonarQube provides a variety of advanced properties to customize analysis. Some of
them can be set permanently on a project through the SonarQube interface, but oth-
ers are available only as analysis parameters. They allow you to adjust individual analy-
sis runs to meet the needs of the moment. The tables in this section list the available
properties and discuss how they affect an analysis.

 Table B.1 lists required analysis properties. Some must be explicitly stated for all
analysis types; others, marked “Required for non-Maven analysis,” are inherited from
elsewhere in the project settings for Maven analyses but must be explicitly stated for
other analysis types.

Table B.1 Required analysis properties

Property Example Details

sonar.projectKey com.myDomain:projectId
Format should be a:b

What’s shown here is a stereo-
typical Maven project ID.
There’s no requirement that
your project use Maven to be
analyzable, but you still need
to give it an ID in the Maven
format of something
:somethingElse. Don’t
worry that it’s ugly. It’s not
shown in many places.

For an Ant analysis, this
requirement is fulfilled by the
key argument to the analysis
task.

348 APPENDIX B Analysis
sonar.projectName My Project This value is what’s usually
shown to users. It may contain
spaces.

sonar.projectVersion 1.0 As this value changes, Sonar-
Qube records events, which
are used to flag project snap-
shots, for long-term retention
and comparison.

sonar.sources srcDir1,srcDir2 Required for non-Maven
projects.

This is a comma-delimited list
of paths from project root to
the directories holding source
files. Directories are scanned
recursively, so there’s no need
to list subdirectories. If the
source files are in the project
root, set this value to a single
period (.)

sonar.jdbc.driverClassName One of the following:
com.mysql.jdbc.Driveroracle
 .jdbc.OracleDriver
org.postgresql.Driver
net.sourceforge.jtds.jdbc
 .Driver

During an analysis, Sonar-
Qube must know how to reach
its database. This property
tells it which database driver
class to use to make a con-
nection.

sonar.jdbc.url jdbc:mysql://localhost:3306/
sonar?useUnicode=
true&characterEncoding=
utf8&rewriteBatchedStatements=
true

This property tells the local
SonarQube analysis engine
where its database is. It’s used
in conjunction with the sonar
.jdbc.driverClassName
property and the two creden-
tials properties.

sonar.jdbc.username sonar This is the name of the Sonar-
Qube database user you cre-
ated during setup and
installation in appendix A.

sonar.jdbc.password <password you picked> This is the password you
assigned to the SonarQube
database user you created
during setup and installation
in appendix A.

Table B.1 Required analysis properties (continued)

Property Example Details

349APPENDIX B Analysis
None of the properties in table B.2 are required, but their use will help you get the
most out of a SonarQube analysis, because the more data you give SonarQube, the
richer the analysis you’ll get back. As with some of the properties in table B.1, some of
these properties are available implicitly for a Maven analysis.

sonar.login
sonar.password

Credentials of a user with permissions
to SonarQube and/or User role on the
project

These properties are required
only if one of the following two
conditions is true:
 Your SonarQube instance

is secured and requires a
user to log in for basic
access.

 The Anyone group doesn’t
have the User role on the
project under analysis.

Table B.2 Analysis enrichment properties

Property Example Details

sonar.tests testDir1,testDir2 This is a comma-delimited list of paths
from project root to the directories
holding test files.

Implicit for Maven analysis.

sonar.binaries binDir This is a comma-delimited list of paths
from project root to the compiled byte
code.

Implicit for Maven analysis.

sonar.libraries lib/lib1.jar,lib/*.jar This is a comma-delimited list of paths
to individual library files or directories.

For a SonarQube Runner analysis, you
can make this a comma-delimited list
of paths to lib directories and end
each entry with *.jar or whatever the
appropriate extension is for your
language.

For an Ant analysis, this needs to be a
comma-delimited list of paths to exact
libraries. Listing B.6 in the Ant analy-
sis section of this appendix gives you
a way to do that.

Implicit for Maven analysis.

Table B.1 Required analysis properties (continued)

Property Example Details

350 APPENDIX B Analysis
Table B.3 lists properties you can use to tune various aspects of your analysis, such as
which language is being analyzed and whether byte-code analysis is performed. It also
lists a number of properties you can use to override values set at the server, such as
which rule profile to use.

sonar.dynamicAnalysis One of true, false,
reuseReports

Unit tests are executed by default, but
you can choose to turn that off or to
reuse previously generated reports. If
you choose reuseReports, you
need to use one of the companion
properties to specify the report type
and location.

sonar.jacoco.reportPath
sonar.surefire.reportsPath
sonar.coberatura.reportPath
sonar.clover.reportPath

path/to/reports This is the absolute or relative path to
the chosen reports.

Table B.3 Analysis tuning and overrides

Property Example Details

sonar.language One of abap, c, cobol, delph, cs
(C#), flex, grvy, java, js,
natur, php, plsql, py, vb, web,
xml

This specifies the single non-Java lan-
guage under analysis. Many properties
may be set to comma-delimited lists, but
this property may not be. It only accepts
a single value.

sonar.importSources true / false This defaults to true, which means by
default, SonarQube imports your source
files into its database for display in the
interface as a reference and for clearer
illustration of the issues it finds. There
are some controls you can place around
who can view project sources in Sonar-
Qube, but if it’s ultra-sensitive, set this
property to false to prevent the source
files from being imported.

sonar.projectDate yyyy-MM-dd This defaults to now. If you’d like Sonar-
Qube to catch up the history on a project,
use this property to tell SonarQube what
date you checked out from your SCM.

sonar.branch [your SCM branch name] If you have multiple SCM branches of a
project under analysis, use this property
to differentiate them from Head and
each other.

Table B.2 Analysis enrichment properties (continued)

Property Example Details

351APPENDIX B Analysis
sonar.sourceEncoding UTF-8 This is the character set your source files
are saved in. UTF-8 is the default and is
typically correct for most projects.

sonar.exclusions com/myCo/genned/*.java, com/
**/*Dummy.java

This is a comma-delimited list of paths to
files or directories that should be ignored
during analysis. No metrics—including
the basics like size—will be calculated
on anything listed here.

Wildcards in file or path names will be
expanded. The examples at left will
exclude the following:

 com/myCo/genned/*.java
Every Java file directly under com/
myCo/genned. Files in subdirectories
will be included in the analysis.

 com/**/*Dummy.java
Every file anywhere under com/ that
ends with Dummy.java. For example,
com/mom/ShesNoDummy.java will
be excluded.

Exclusion paths may also be set through
the SonarQube interface, which is the
preferred method. If set there, they’re
remembered from analysis to analysis,
without the need to repeat them each
time in the analysis properties.

sonar.skippedModules names,ofModules,toSkip If your Maven project is composed of
multiple modules and you want some of
them skipped during analysis, list their
IDs here in comma-delimited format.
Does not apply to non-Maven projects.

sonar.includedModules names,ofModules,toInclude If your Maven project is composed of
multiple modules and you want only
some of them analyzed, list their IDs
here in comma-delimited format.
Does not apply to non-Maven projects.

Table B.3 Analysis tuning and overrides (continued)

Property Example Details

352 APPENDIX B Analysis
sonar.profile Sonar way with Findbugs Set this property to the name of the pro-
file you want your project analyzed with.
This property overrides the profile that’s
set at the server.

For long-term use, it is preferable to
assign a project to the chosen profile via
SonarQube’s configuration interface.
Note that using this property may cause
confusion—because the dashboard
description widget displays the name of
the profile the project is assigned to (via
the configuration interface) rather than
the one it was last analyzed with (via this
analysis property).

sonar.skipDesign true / false SonarQube implements byte-code analy-
sis to determine dependencies and other
design metrics. Set this property to true
if for some reason you need to skip that
analysis.

sonar.phase [Maven phase name] Use this property to have a Maven goal
or phase executed before analysis
starts. When SonarQube needs a phase
or Maven goal to be executed prior to
analysis, this parameter can be used. For
example, sonar.phase=generate-
sources.

sonar.java.source
sonar.java.target

One of 1.5, 1.6, 1.7 These properties align the source and
target parameters to the Java compiler. If
you’re using those parameters, set these
properties correspondingly.

sonar.findbugs
.excludesFilters

relative/path/to/file SonarQube lets you exclude certain
classes or packages from analysis, but
FindBugs, one of the tools SonarQube
can use for Java analysis, provides a
much more fine-grained ability to set up
exclusions for specific bugs or bug types
against classes or packages. See:
http://findbugs.sourceforge.net/
manual/filter.html.

Those FindBugs filters are defined in an
XML file. If this property is defined,
SonarQube passes in its value when the
FindBugs portion of an analysis is
invoked—assuming the rule profile in
force includes FindBugs rules.

Table B.3 Analysis tuning and overrides (continued)

Property Example Details

http://findbugs.sourceforge.net/manual/filter.html

353APPENDIX B Analysis
The properties in table B.4 shouldn’t usually be needed, but they’re useful if you’re
trying to debug an analysis problem.

Table B.4 Troubleshooting and debugging

Property Example Details

sonar.host.connectTimeoutMs
sonar.host.readTimeoutMs

100000 Measured in milliseconds, these timeouts apply
to Maven-based analyses, which make some
HTTP requests to the server. Because two time-
outs will make the call fail, you may want to
increase these values if your server is slow and
you’re having trouble.

Defaults:
connectTimeoutMs = 30000
readTimeoutMs = 60000

sonar.verbose true / false Defaults to false. Set this to true to see a lot
more detail in your analysis logs.

sonar.showSql true / false Defaults to true. Set this to true to see all SQL
queries executed by SonarQube during batch analy-
sis. Useful for debugging purposes and when
you’re developing custom plug-ins.

sonar.showSqlResults true / false Defaults to true. Set this to true to see the
results of SQL queries executed by SonarQube dur-
ing batch analysis. Useful for debugging purposes
and when you’re developing custom plug-ins.

index
Symbols

${basedir} expression 344
$SONAR_HOME/conf/

sonar.properties file 235
∆ Since Previous Analysis

option 169

A

AbstractOrder class 78
Action Plans link, Configura-

tion menu 196
activating notifications 277
active issues 190
Add Manual Measure

page 294
Add New User form 224
Add Sonar button 163
Add Sonar Runner button 164
addable rules 242
Additional Properties

field 166
admin account 333
Advanced button, Jenkins 166
afferent coupling metric

110–112
alerts, for rule profiles

252–253
AlertsWidget 253, 269
AmericanBreakfast class 110
analysis

properties for 347–353
with Ant 345–347
with Maven

multi-module projects 345
overview 342

running analysis 344–345
setting up 342–344

with SonarQube Runner
configuring 339–340
installing on Ubuntu 339
installing on Windows 7

339
multi-module projects

341
overview 338–339
running analysis 340–341

analyze method 316, 323
Ant, analysis with 345–347
Anyone group 230
Apache 80
API (Application Program-

ming Interface) 83
architectural constraint

rule 133
architectural rule sets 132
architecture, and custom

plugins 306–307
artifactId parameter 309
Assign dialog 182
assignment form 183
Associate with Sonar

option 211
Atlassian Crowd 235
Available Plugins tab

284–285

B

backing up
configuration 282–283
rule profiles 258

BatchComponent class 318

BDD (business-driven
development) 61

bestValue attribute 314
Blocker count 140
Boolean Expression Complex-

ity rule 186
branch coverage metric 47,

51, 59
branch property 169
Branches to Cover 53
bugs 31
Build Breaker plugin 176–177
buildData method 317
Bulk Deletion option 303
Burned Budget metric 293
Business Value metric 293
business-driven development.

See BDD

C

CAS (Central Authentication
Service) protocol 223

Change Columns panel 266
Change Severity option 186
Change Treemap link 266
changelog, for rule

profiles 254–255
Checkstyle 37
CI (Continuous Inspection)

and versions 297–299
assigning quality

profiles 290–291
best practices for 168–169
Compare service 174–175
defining metrics

creating 292–293
355

356 INDEX
CI (Continuous Inspection),
defining metrics (continued)
displaying in

dashboards 295–296
setting measures 293–295

differential periods 173–174
differential views in dash-

board
colored numbers 171
issues widget 172–173
overview 169–171
source code viewer 173
unit-testing widget

171–172
environment for 158–159
excluding source code from

analysis 296–297
Jenkins

configuring SonarQube
Runner 164–165

enabling SonarQube analy-
sis in job 165–167

installing plugin 162–163
overview 160–162
setting up SonarQube

in 163–164
Marvelution 167–168
overview 156–157
plugins for

Build Breaker plugin
176–177

Cutoff plugin 175–176
technical debt 159–160
what to inspect 157–158

Clover 57
Cobertura 57
code coverage metric 47
code duplication

causes of 65–66
Don’t Repeat Yourself

principle 73–74
Duplications tab 70–73
duplications widget 70–73
finding

cross-project duplication
detection 75

in source code tab 75–76
overview 67–69

metrics for 69–70
plugins for 80–81
problem of 74
refactoring

creating common
libraries 79–80

overview 77–79
refactoring patterns 77

code reviews
discussion topic queue 201
plugins for 202
process for

how 201–202
importance of 199–200
when 200
where 200–201
who 200

code smell 15
code-coverage

metric
identifying problems in

unit tests 54–56
overview 50–53
source code viewer 53–54

tools
changing default

selection 57–58
overview 57

Coding Rules tab 240, 244,
246–247

collectProjectIssuesByPriority
method 317

colored cells, DSM report 120
colored numbers, for differen-

tial views 171
com.mycompany.model 133
com.mycompany.ui 133
Comment Lines metric 85
Comment pattern matcher

rule 203
comments, metrics for

best practices for 86–87
overview 84–86

commons-configuration
library 129

commons-io library 131
commons-lang library 129–130
Compare Profiles link 256–257
Compare service 174–175
comparing rule profiles 256
complexity of code

coupling metrics 110–112
cyclomatic complexity

overview 97–99
refactoring 99–101

keeping low 97
LCOM metric

defined 101–102
example of 103–105
refactoring 106–108
reporting on 102–103

overview 96–97
RFC metric 108–110

complexity widget 18
Components view 151–152
concurrent package 123
Configuration link 38, 239
configuration settings, for Red-

mine plugin 310–313
Configure Widgets button 102,

275
Console view 216
context parameter 323
Continuous Inspection. See CI
Copy Rule link 248–249
copyable rule profiles 248–249
coupling metrics 110–112
Coverage tab 51–52

integration testing in 60–61
integration testing

metrics 60
view selection 52, 60

Coverage.py toolkit 57
Create Java Profile form 238
Critical count 140
cross-project duplication

detection 75
Crowd plugin 235
custom links 300
custom measures 294–296
custom plugins

overview 305–306
Redmine plugin

configuration settings
for 310–313

creating Maven
project 308–310

creating widget 318–320
decorator example

322–324
defining metrics 313–314
dependency injection

in 317–318
implementing analyzer

with sensor 314–318
internationalization

support 321–322
SonarQube

architecture 306–307
Cutoff plugin 175–176
cycles

directly reciprocal 117
in DSM view 124–127
overview 115–117

cyclomatic complexity 108, 110
overview 97–99
refactoring 99–101
rule 247

357INDEX
D

dashboards
default dashboard 11
differential views in

colored numbers 171
issues widget 172–173
overview 169–171
source code viewer 173
unit-testing widget

171–172
displaying metrics in

295–296
following 272
global

creating 271–272
customizing 272–275
default 275–277
overview 270–271

integration testing in 59–60
overview 10
project dashboards 288–289

database cleaner settings
280–281

database setup for
SonarQube 328

debt ratio 23
debug, using with javac 38
decomposition 111
decorate method 314, 322–324
decorator example, in Red-

mine plugin 322–324
DecoratorContext.getMeasure

method 324
decorators 306
default admin account 333
Default Dashboards link 276
default filters 270
default global dashboards

275–277
defaultValue attribute 312
Delete Snapshot button 299
deleting projects 303–304
Density of Documented API

metric 85, 87
Dependencies link 131
dependencies view 131
dependencies, unwanted

115–117
dependency cycles 115
dependency injection, in

plugins 317–318
Dependency Structure Matrix

view. See DSM
@DependsUpon method 323

Depth of Inheritance Tree.
See DIT

description attribute 312
description widget 13, 207
design improvements

architectural rule sets 132
DSM view

browsing library-
dependency tree
127–130

cycles in 124–127
dependencies view 131
Maven library

management 127
navigating 119–121
overview 121–124

layering code
and DSM view 117–118
cycles 115–117
dashboard widgets

for 114–115
unwanted

dependencies 115–117
overview 113–114

Design tab 117
Developer Cockpit plugin 7
Differential drop-down

menu 169
differential filters 266–268
differential mode 171–173, 177
differential periods 173–174
differential views

colored numbers 171
issues widget 172–173
overview 169–171
source code viewer 173
unit-testing widget 171–172

direction attribute 314
directly reciprocal cycles 117
distribution 314
DIT (Depth of Inheritance

Tree) 109
divisibleBy4Count()

method 101
documentation

advantages of 83–84
comment metrics

best practices for 86–87
overview 84–86

finding undocumented code
in source code viewer 89
overview 87–88

plugins for
Doxygen plugin 93
Widget Lab plugin 93

strategy for
documentation tool 90
generating

documentation 92
information to include 92
overview 90
parts to document 91–92
when to document 91

Doxygen plugin 92–93
drilldowns 20
DRY (Don’t Repeat Yourself)

principle 73–74
DryRun mode 281
DSM (Dependency Structure

Matrix) view 114
browsing library-dependency

tree 127–130
cycles in 124–127
dependencies view 131
Maven library

management 127
navigating 119–121
overview 121–124

duplicate code
causes of 65–66
Don’t Repeat Yourself

principle 73–74
Duplications tab 70–73
duplications widget 70–73
finding

cross-project duplication
detection 75

in source code tab 75–76
overview 67–69

metrics for 69–70
plugins for 80–81
problem of 74
refactoring

creating common
libraries 79–80

overview 77–79
refactoring patterns 77

Duplicated Lines %, 71
Duplications tab 71
duplications widget 67
duplications-related metrics 70

E

Edit User form 224–225
efferent coupling metric

110–112
email settings, activation of

SonarQube
notifications 278

358 INDEX
EMMA 57
empty conditional 33
environment, for CI 158–159
event package 123
event types, subscribing

to 278–279
events 299
events widget, in

dashboard 12
exclusion options 297
Exclusions category 296
Expand link 56, 73
Extend Description link, for

rule profiles 250
extension points 312, 318
extract class pattern 77
extract method pattern 77
extract superclass pattern 77
extreme programming 90

F

failed tests 45
false-positives widget 194
filters

creating 263–265
customizing view 265–266
default

My Favorites filter 270
Projects filter 270

differential filters 266–268
finding recent files with word

‘print’ 268–269
FindBugs 37–38, 242–244
finding

duplicate code
cross-project duplication

detection 75
in source code tab 75–76

rule profiles 242–243
undocumented code

in source code viewer 89
overview 87–88

flagging resources 270
following dashboards 272
format_measure function 320
Fowler, Martin 46
From Line metric 73
fromClasses property 134
future programmer error 30
FxCop 37

G

Gallio 37
Gendarme 37
generating documentation 92
getDiscount() method 74, 78
getExtensions() method 312,

317
getMetrics() method 314
getTax() method 77
getTemplatePath()

method 319
getTitle() method 319
getTotal() method 69, 74, 78,

86
global attribute 312
global dashboards

creating 271–272
customizing 272–275
default 275–277
overview 270–271

global settings
database cleaner 280–281
general 281
localization 282
overview 279–280
server ID 282

Global widget 273
Graphviz 94
GreenPepper 61
groupId parameter 309

H

happy path 48
history table widget 145–148
Hitz and Montazeri

version 102
hotspot metrics widget 143
housekeeping algorithms 149

I

icon indicators 268
icons, for SonarQube

installation 127
IDE integration

Eclipse
associating projects with

Sonar 211–212
configuring server 211
overview 208–209

generic support 207–208
overview 205

running local analysis
216–217

@Ignore 45
IllegalArgumentConstructor

185
IllegalArgumentException 100
import statements, ignored in

counting duplicates 76
importing rules 208
improving designs

architectural rule sets 132
DSM view

browsing library-
dependency tree
127–130

cycles in 124–127
dependencies view 131
Maven library

management 127
navigating 119–121
overview 121–124

layering code
and DSM view 117–118
cycles 115–117
dashboard widgets

for 114–115
unwanted dependencies

115–117
overview 113–114

inactive plugins 61
inceptionYear parameter 309
incoming couplings 111
incoming dependencies 123,

125
inefficiencies 30, 35
inheritance, for rule profiles

establishing 243–244
managing relationships

245–246
Install Without Restart option,

Jenkins 163
Installed Plugins tab 284
installing

configuring
SonarQube 330–332

default admin account 333
Jenkins plugin 162–163
on Ubuntu 329
on Windows 7 330
preparing for 7–8

database setup 328
verifying Java 327

SonarQube Runner
on Ubuntu 339
on Windows 7 339

359INDEX
installing (continued)
starting service

on Ubuntu 332
on Windows 7 332

upgrading
on Ubuntu 333–335
on Windows 7 335–337
overview 333

InstallNTService.bat file 330
integration testing. See IT
internationalization, adding

support in plugins
321–322

InternationalOrder class 68, 71
IoC (Inversion of Control) 317
issue workflow options

assignment 182
commenting 181
confirmation 181

issues
//NOSONAR

comment 186–188
action plans

managing 196–197
purpose of 196
using 197–198

active 190
audit trail 188
bugs 31
changing severity 186
comments 181–182
false positives 183–185
future programmer

error 34–35
hiding 194
in dashboard

active issues per developer
unresolved issues per
assignee widget
191–192

false-positives widget 194
manual severity

widget 194–195
my active issues widget 192
review activity unresolved

issues by status
widget 191–192

unresolved issues by status
review activity
widget 192

unresolved issues per
assignee active issues
per developer
widget 192

indications of programmer
error category 33–34

inefficiencies 35
life cycle of

false positives 191
manual issues 191–192
overview 190

manual issues
creating 189
manual rules 189
purpose of 188–189
vs. manual issues 189

overview 27–29
plugins for 40–41
potential bugs 31–32
reopening 191
reviewing code 179–181
rule profiles

choosing 37
viewing 38–39

style inconsistencies 36
working with in IDE 212–216

Issues dashboard 192
Issues Drilldown option 28
Issues link, SonarQube 195
Issues Report plugin 218
issues widget 27

differential views in 172–173
in dashboard 14

IT (integration testing)
branch coverage metric 59
displaying on dashboard

59–60
in Coverage tab 60–61
line coverage metric 59
overview 58–59
test coverage metric 59

J

JaCoCo 57, 59
Java 327

File class 111
JAVA_HOME variable 339
java.lang.Object 109

BigDecimal class 111
javac 38
Jenkins

configuring SonarQube
Runner 164–165

enabling SonarQube analysis
in job 165–167

installing plugin 162–163
overview 160–162

setting up SonarQube
in 163–164

JIRA issue ticket 202
JMeter 61
JPAM (Java-PAM) 236
jpam library 236
JVM Options 166

K

KISS (Keep It Simple,
Smiley) 18

L

lang3 package 124
language plugin 306, 324–326
language property 169
layering code

and DSM view 117–118
cycles 115–117
dashboard widgets for

114–115
LCOM (Lack of Cohesion of

Methods) metric 97
defined 101–102
example of 103–105
refactoring 106–108
reporting on 102–103

LCOM4 widget 17, 102
LDAP (Lightweight Directory

Access Protocol) 223, 235
libraries

avoiding duplicate code
using 79–80

browsing dependency
tree 127–130

Maven library
management 127

Libraries link 127
libraries property 340
Lightweight Directory Access

Protocol. See LDAP
line coverage metric 47, 51, 59
lines 12
Lines in Duplications

metric 80
Lines in Unused Private Meth-

ods metric 80
Lines in Unused Protected

Methods metric 80
Lines to Cover 53
LOC (lines of code) 12, 139
Localization attribute 282
localization settings 282

360 INDEX
M

mailing lists 7
Manage Dashboards link 227,

271
Manage Jenkins link 163
Manage link 265
Management Base Set

profile 245
managing projects

and versions 297–299
assigning quality

profiles 290–291
changing permissions 300
defining metrics 291–296
excluding source code from

analysis 296–297
modifying project key 302
setting project links 300–302

manual measures 288, 292
manual rules 189
Marvelution 167–168
Maven

analysis with
multi-module projects 345
overview 342
running analysis 344–345
setting up 342–344

creating project for Red-
mine plugin 308–310

Maven dependency hell
state 129

Maven library management
127

MAVEN_OPTS input 166
McCabe metric 97–98
Measure Filter widget 273
measures, setting in

metrics 293–295
merging projects 66
Metric variable 313
metrics

code-coverage metric
identifying problems in

unit tests 54–56
overview 50–53
source code viewer 53–54

defining 292–293
displaying in

dashboards 295–296
for comments

best practices for 86–87
overview 84–86

for duplicate code 69–70
for Redmine plugin 313–314

overview 44–46
reporting on 47–50
setting measures 293–295

Metrics link 153
missingMandatoryParameters

method 316
module attribute 312
modules 290
More Criteria button 264, 266,

269
multi-module projects

in Maven 345
in SonarQube Runner 341

mutable package 124
MVC (Model-View-

Controller) 132
mvn dependency:tree

command 127
mvn install command 308
My Favorites filter 270
My Global Dashboards list 272
my unresolved issues

widget 192

N

name attribute 312
Name/Key search input 248
navigating DSM view 119–121
NDeps 37
Nemo 7
//NOSONAR

overview 186
tracking 194

notes, for rule profiles 250–251
notifications

activating mechanism 277
overview 277
subscribing to event

types 278–279
null pointer exceptions 32

O

obsolete code 74
On New Code section 171
OpenID plugin 235
orchestration class 114
Order class 68, 71
orderLines property 86
org.manning.sonarinaction

.duplications package 71
org.sonar.server.charts

package 121

org.sonar.server.charts.depre-
cated package 122

org.sonar.server.platform
package 122, 124

org.sonar.server.ui package 124
organizationName

parameter 309
OSI (Open Systems Intercon-

nection) model 132
outgoing couplings 110

P

package design widget 17
package parameter 309
Package Tangle Index 117
paginated widget 192
PAM (Protocol Analysis

Module) 223
PAM plugin 236
Parameter Assignment

rule 250
parameters, for rule

profiles 246–248
patterns, refactoring 77
Permalinks tab 208
permalinks, for rule

profiles 258–259
permissions, changing for

projects 300
PHP plugin 57
physical lines 12, 70
Plan option, More Actions

menu 197
plugin categories 284
Plugin Updates tab 285
pluginDescription

parameter 309
pluginKey parameter 309
pluginName parameter 309
plugins

adding support for program-
ming languages 324–326

creating custom
overview 305–306
SonarQube

architecture 306–307
Eclipse 210–211
for CI

Build Breaker plugin
176–177

Cutoff plugin 175–176
for documentation

Doxygen plugin 93
Widget Lab plugin 93

361INDEX
plugins (continued)
for duplicate code 80–81
for IDE integration 218–220
for rule profiles

Switch Off Violations
plugin 259–260

Widget Lab plugin
260–261

for unit testing 61–63
Redmine plugin

configuration settings
for 310–313

creating Maven
project 308–310

creating widget 318–320
decorator example

322–324
defining metrics 313–314
dependency injection

in 317–318
implementing analyzer

with sensor 314–318
internationalization

support 321–322
PMD Unit Tests 56
PMD:UnusedPrivateMethod

80
PMD:UnusedProtectedMethod

80
pom.xml files 128
post-build actions 166
Preserve Stack Trace rule 183
previous_analysis string 174
previous_version string 174
Profile Inheritance tab

244–245
profiles

alerts for 252–253
assigning projects to

257–258
backing up 258
copying vs. creating 238–240
editing

copyable rules 248–249
Extend Description

link 250
notes 250–251
overview 240–241
parameters 246–248

finding 242–243
inheritance

establishing 243–244
managing

relationships 245–246

overview 237–238
permalinks 258–259
plugins for

Switch Off Violations
plugin 259–260

Widget Lab plugin
260–261

restoring 258
tracking changes

changelog 254–255
comparing profiles 256
version numbers 255–256

programmer error
indications of 32
potential future errors 34

programming languages
324–326

project attribute 312
project key 302
project links 300–302
projectKey 9
projects

assigning to rule
profiles 257–258

dashboards for 288–289
deleting 303–304
managing

and versions 297–299
assigning quality

profiles 290–291
changing permissions 300
defining metrics 291–296
excluding source code

from analysis 296–297
modifying project key 302
setting project links

300–302
multi-module projects

in Maven 345
in SonarQube Runner 341

Projects filter 270
properties, for analysis

347–353
PropertiesBuilder class 317
@Property annotation 311
PropertyType Enum 312
Protocol Analysis Module.

See PAM
Public API metric 85
Public Undocumented API

metric 85, 88
pull up field 77
Python plugin 57

Q

Quality Profile Administrators
role 233

quality profiles 290–291
Quality Profiles page 258–259,

291
quantitative attribute 314

R

RCI (Rules Compliance
Index) 27, 253, 281

Redmine plugin 307, 315, 317,
320–322

configuration settings
for 310–313

creating Maven project
308–310

creating widget 318–320
decorator example 322–324
defining metrics 313–314
dependency injection

in 317–318
implementing analyzer with

sensor 314–318
internationalization

support 321–322
RedmineDecorator class 310,

315
RedmineLinkFunction class

322
RedmineMetrics class 310, 313
RedminePlugin class 310–312
RedmineSensor class 310, 315,

317, 321
RedmineWidget class 310,

318–319
refactoring 78

cyclomatic complexity
99–101

duplicate code
creating common

libraries 79–80
overview 77–79
refactoring patterns 77

LCOM classes 106–108
reopening issues 191
reporting

on LCOM metric 102–103
on metrics 47–50

Resource parameter 323
resources input field 264
ResourceUtils class 324
response for class widget 17, 102

362 INDEX
Response for Class. See RFC
Restore Profile link 258
restoring rule profiles 258
reusing code 66
Revert to Parent Definition

button 246
reviews

false positives 183
overview 178

RFC (Response for Class) 18,
97, 108–110

Roles interface 229, 232
Roles pages 300
rule isolation 134
rule parameters 247
rule profiles

alerts for 252–253
assigning projects to

257–258
backing up 258
changing default 38
choosing 37
copying vs. creating 238–240
editing

copyable rules 248–249
Extend Description

link 250
notes 250–251
overview 240–241
parameters 246–248

finding 242–243
inheritance

establishing 243–244
managing

relationships 245–246
overview 237–238
permalinks 258–259
plugins for

Switch Off Violations
plugin 259–260

Widget Lab plugin
260–261

restoring 258
tracking changes

changelog 254–255
comparing profiles 256
version numbers 255–256

rules compliance (issues)
widget 172

Rules Compliance Index.
See RCI

rules compliance widget 139,
141, 152, 154, 289

rules, importing 208

S

SAML (Security Assertion
Markup Language) 223

saveMeasure method 317
SCM (source control manage-

ment) system 29, 158
SCM Activity plugin 29, 40,

171, 205
searching issues 195
security

groups 227–229
plugins for

Crowd plugin 235
LDAP plugin 235
OpenID plugin 235
PAM plugin 236

roles
Administrator role

230–231
best practices for 232–233
Code Viewer role 232
overview 229

Security Assertion Markup Lan-
guage. See SAML

sensors 306, 314–318
server ID settings 282
Server module 121
ServerComponent class 318
ServerExtension class 321–322
service, starting

on Ubuntu 332
on Windows 7 332

settings global
database cleaner 280–281
general 281
localization 282
overview 279–280
server ID 282

Seven Axes of Quality 13–18,
26, 82, 147

architecture and design 16
comments 15
comments and duplications

widget 15–16
complexity 18
complexity widget 18
duplications 16
issues widget 14
package design widget 16–18
potential bugs and coding

rules 14
relationship with technical

debt 160
tests 15

severity, changing for
issues 186

shouldExecuteOnProject
method 316, 323

Since Last Analysis period 278
size metrics widget, in

dashboard 11–12
skipped tests 45
snapshots 298
Sonar way 37
SONAR_RUNNER_HOME

variable 339
sonar.authenticator.create-

Users property 235
sonar.binaries property 346,

349
sonar.branch property 76, 350
sonar.clover.reportPath

property 350
sonar.coberatura.reportPath

property 350
sonar.dynamicAnalysis

property 350
sonar.exclusions property 351
sonar.findbugs.excludesFilters

property 352
sonar.host.connectTimeoutMs

property 353
sonar.host.readTimeoutMs

property 353
sonar.host.url property 339
sonar.importSources

property 232, 350
sonar.includedModules

property 351
sonar.jacoco.itReportpath

property 59
sonar.jacoco.reportPath

property 350
sonar.java.coveragePlugin

property 58
sonar.java.source property 352
sonar.java.target property 352
sonar.jdbc.driverClassName

property 348
sonar.jdbc.password

property 331, 348
sonar.jdbc.url property 348
sonar.jdbc.username

property 348
sonar.language property 9, 20,

350
sonar.libraries property 349
sonar.links.ci property 301
sonar.links.homepage

property 301

363INDEX
sonar.links.issue property 301
sonar.links.scm property 301
sonar.links.scm_dev

property 302
sonar.login property 349
sonar.modules property 341,

347
sonar.phase property 352
sonar.profile property 258, 352
sonar.projectDate

property 142, 350
sonar.projectKey property 347
sonar.projectName

property 348
sonar.projectVersion

property 147, 149, 298,
348

sonar.security.realm
property 235

sonar.showSql property 353
sonar.showSqlResults

property 353
sonar.skipDesign property 133,

352
sonar.skippedModules

property 351
sonar.sourceEncoding

property 351
sonar.sources property 348
sonar.surefire.reportsPath

property 350
sonar.tests property 349
sonar.verbose property 353
sonar-maven-plugin 343
SonarPlugin class 312, 317
SonarQube

advantages of 4
analysis with 159–160, 162
file details view 21
front page 9–10
hierarchy of packages and

classes 20–21
languages analyzed by 18–20
localization 6–7
multilanguage projects 9
plugins 23
tools used with 6

SonarQube analysis 166–168
SonarQube Runner

analysis with
configuring 339–340
installing on Ubuntu 339
installing on Windows

7 339
multi-module projects 341

overview 338–339
running analysis 340–341

configuring for Jenkins
164–165

overview 8–9
sonar-redmine-plugin

directory 310
sonar-runner.properties file 20,

166
sonarVersion attribute 344
sonarVersion parameter 309
source code viewer

code-coverage metric in
53–54

differential views in 173
duplicate code in 75–76
undocumented code in 89

source code, excluding from
analysis 296–297

source control management
system. See SCM

SQUID:UnusedPrivateMethod
80

SQUID:UnusedProtected-
Method 80

standard links 300–301
starting service

on Ubuntu 332
on Windows 7 332

strategy planning
Boy Scout approach 142
choosing metric

and critical-level
issues 140

RCI metric 139–140
Components view 150–152
holding target metric steady

strategy 141
moving goal strategy

141–142
overview 137–139
package history 152–153
purpose of 144–145
re-architect approach

143–144
style inconsistencies 36
StyleCop 37
submodules 316
subscribing, to event

types 278–279
sudo 330
Sun checks 37
@SuppressWarnings

annotation 187
Switch Off Violations

plugin 259–260

Synchronize button, Sonar
Issues tab 214

system administrators 233–234
System.out.println()

method 110

T

Tab Metrics plugin 153–154
Tag List plugin 194–195, 202–

204, 242, 248
Team Size metric 293
technical debt 159–161
Technical Debt plugin 23
Template Method pattern 84
@Test 45
test coverage 15, 59
TESTER comments 203
testing

code-coverage metric
identifying problems in

unit tests 54–56
overview 50–53
source code viewer 53–54

code-coverage tools
changing default

selection 57–58
overview 57

integration testing
displaying on

dashboard 59–60
in Coverage tab 60–61
overview 58–59

metrics for
overview 44–46
reporting on 47–50

overview 42–43
plugins for 61–63

testing widget 44
text.translate package 124
Thucydides plugin 62
timeline widget 145–149, 152
toClasses property 134
//TODO comment 194
TODO comment 204
TODO-list tracking 194
tools, for documentation 90
tracking

action plans 198–199
changes, for rule profiles

changelog 254–255
comparing profiles 256
version numbers 255–256

issues 190

364 INDEX
treemap widget 150, 152
trend arrows 22
trending

events 149
Time Machine

dashboard 145–148
True for Cross Project Duplica-

tion Detection option 75
tunable estimates 23

U

Ubuntu
installing SonarQube 329
installing SonarQube Run-

ner on 339
starting service on 332
upgrading SonarQube

333–335
Ubuntu upgrade script 334
unassigned projects 37
unchecked rules 242
uncommented .url

properties 340
Uncovered Branches 53
Uncovered Lines 53
undesired dependencies 124
undocumented code, finding

in source code viewer 89
overview 87–88

unflagging resources 270
unit testing 47

branch coverage metric 47,
51

code-coverage metric 47
identifying problems in

unit tests 54–56
overview 50–53

source code viewer 53–54
code-coverage tools

changing default
selection 57–58

overview 57
line coverage metric 47, 51
metrics for 45

errors metric 45
failures metric 45
ms metric 45
overview 44–46
reporting on 47–50
skipped metric 45
tests metric 45

overview 42–43
plugins for 61–63
rules 56
widget 171–172

unresolved issues by status
widget 192

unresolved issues per assignee
widget 192

unwanted dependencies
115–117

Update button 291
update center 283–286
Update Key option 302
upgrade scripts

Ubuntu 334
Windows 336

upgrading
on Ubuntu 333–335
on Windows 7 335–337
overview 333

useless code 74
Useless Code Tracker

plugin 80
User role 231–232

users
managing 224–226
personalization by 226–227

V

version event 147–148
version numbers 255–256, 298
Version parameter 309
<version> property 298
versions, and Continuous

Inspection 297–299
Views plugin 7, 24

W

WI (Weighted Issues)
metric 28, 140–141

@WidgetCategory
annotation 319

widgets 10
wiki 201
Windows 7

installing SonarQube 330
installing SonarQube Run-

ner on 339
starting service on 332
upgrading SonarQube

335–337
Windows upgrade script 336
worst first approach 143

X

-X option 166
XHTML doclet 90

Campbell ● Papapetrou

S
onarQube is a powerful open source tool for continuous
inspection, a process that makes code quality analysis and
reporting an integral part of the development lifecycle. Its

unique dashboards, rule-based defect analysis, and tight build
integration result in improved code quality without disruption
to developer workfl ow. It supports many languages, including
Java, C, C++, C#, PHP, and JavaScript.

SonarQube in Action teaches you how to effectively use Sonar-
Qube following the continuous inspection model. This practi-
cal book systematically explores SonarQube’s core Seven Axes
of Quality (design, duplications, comments, unit tests, com-
plexity, potential bugs, and coding rules). With well-chosen
examples, it helps you learn to use SonarQube’s review func-
tionality and IDE integration to implement continuous inspec-
tion best practices in your own quality management process.

What’s Inside
● Gather meaningful quality metrics
● Integrate with Ant, Maven, and Jenkins
● Write your own plug-ins
● Master the art of continuous inspection

The book’s Java-based examples translate easily to other
development languages. No prior experience with
SonarQube or continuous delivery practice is assumed.

Ann Campbell and Patroklos Papapetrou are experienced
developers and team leaders. Both actively contribute
to the SonarQube community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SonarQubeinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

SonarQube IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“A unique source of
information for successful

implementation.”
—From the Foreword by Olivier

Gaudin, CEO of SonarSource

“Not just a reference manual
for Sonar, but a guide to

retooling your entire soft-
 ware development process.”—Alex Garrett

Hot Towel Consulting

“Lives up the high standards
of Manning In Action books
... provides a great narrative

on how to complement
and extend Sonar’s online

documentation.”
—Steve Hicks, MyDonate

“Highly recommended for
 all agile engineers.”—Michael Hüttermann

Author of Agile ALM

SEE INSERT

	SonarQube
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Manning Publications
	The SonarSource team
	The reviewers
	Ann Campbell
	Patroklos Papapetrou

	about this book
	How this book is organized
	How to use/read this book
	Who should read this book
	Code conventions and downloads
	What this book doesn’t do
	Author Online
	About the authors

	about the cover illustration
	Part 1 What the numbers are telling you
	1 An introduction to SonarQube
	1.1 Why SonarQube
	1.1.1 Proven technologies
	1.1.2 Multilingual: SonarQube speaks your language

	1.2 Running your first analysis
	1.2.1 Installation considerations
	1.2.2 Analyzing with SonarQube Runner
	1.2.3 Analyzing multilanguage projects
	1.2.4 Seeing the output: SonarQube’s front page
	1.2.5 Drilling in: the dashboard

	1.3 Seven Axes of Quality
	1.3.1 Potential bugs and coding rules
	1.3.2 Tests
	1.3.3 Comments and duplications
	1.3.4 Architecture and design
	1.3.5 Complexity

	1.4 The languages SonarQube covers
	1.5 Interface conventions
	1.5.1 Hierarchy: packages and classes in a metric drilldown
	1.5.2 File details
	1.5.3 Trend arrows

	1.6 Related plugins
	1.6.1 Technical debt
	1.6.2 Views

	1.7 Summary

	2 Issues and coding standards
	2.1 Looking at your issues
	2.2 What issues mean, and why they’re potential problems
	2.2.1 Bugs
	2.2.2 Potential bugs
	2.2.3 Indications of (potential) programmer error
	2.2.4 Things that may lead to future programmer error
	2.2.5 Inefficiencies
	2.2.6 Style inconsistencies (future productivity obstacles)

	2.3 Where do issues come from?
	2.3.1 Picking a rule profile
	2.3.2 Viewing profiles and changing the default

	2.4 Related plugins
	2.4.1 SCM Activity

	2.5 Summary

	3 Ensuring that your code is doing things right
	3.1 Knowing how much of your code is doing things right
	3.1.1 Understanding unit-test metrics
	3.1.2 Getting reports on unit-test coverage metrics

	3.2 Explaining metrics on a file level
	3.2.1 Hunting source code lines with low coverage
	3.2.2 Finding problems in your unit tests

	3.3 Configuring your favorite code-coverage tool
	3.3.1 Changing the default selection

	3.4 Integration testing
	3.4.1 Displaying integration testing coverage on the dashboard
	3.4.2 Getting IT information in the source code Coverage tab

	3.5 Related plugins
	3.6 Summary

	4 Working with duplicate code
	4.1 The hidden cost of duplicate code
	4.2 Identifying duplications
	4.2.1 Finding your first duplication
	4.2.2 Finding duplications on a larger scale
	4.2.3 SonarQube’s duplication metrics
	4.2.4 Drilling in: from the duplications widget to the Duplications tab

	4.3 Realizing the impact of code duplication
	4.3.1 The DRY principle: minimizing and eliminating duplications
	4.3.2 Duplications vs. size and complexity

	4.4 Finding duplications across multiple projects
	4.4.1 Turning on cross-project duplication detection
	4.4.2 Cross-project duplications in source code tab

	4.5 Cleaning up your duplications
	4.5.1 Introduction to refactoring patterns
	4.5.2 Applying patterns to remove code duplication
	4.5.3 Time for a new commons library?

	4.6 Related plugins
	4.7 Summary

	5 Optimizing source code documentation
	5.1 To document or not?
	5.2 Even commenting has its own metrics
	5.2.1 How SonarQube calculates metrics
	5.2.2 What the numbers are telling you

	5.3 Identifying undocumented code
	5.3.1 Finding files to improve documentation
	5.3.2 Viewing the generic tab in the source code viewer

	5.4 Simplifying your documentation strategy
	5.4.1 Picking a documentation tool
	5.4.2 Defining a straightforward process

	5.5 Related plugins
	5.5.1 Widget Lab
	5.5.2 Doxygen

	5.6 Summary

	6 Keeping your source code files elegant
	6.1 Keeping complexity low
	6.1.1 Hunting those huge files
	6.1.2 Complexity: what it looks like and how to fix it

	6.2 Lack of Cohesion of Methods: files that do too much
	6.2.1 Getting reports about the LCOM metric
	6.2.2 Counting responsibilities
	6.2.3 Refactoring for fewer responsibilities

	6.3 RFC and couplings: classes with too many friends
	6.3.1 Response for Class
	6.3.2 Couplings

	6.4 Summary

	7 Improving your application design
	7.1 Layering your code
	7.1.1 Looking at dashboard widgets
	7.1.2 Understanding cycles and unwanted dependencies
	7.1.3 Moving from project to package level

	7.2 Discovering dependencies and eliminating cycles
	7.2.1 Navigating the Dependency Structure Matrix
	7.2.2 How the DSM works
	7.2.3 Identifying cycles
	7.2.4 Library management for Mavenites
	7.2.5 Browsing the library-dependency tree
	7.2.6 Who uses this library

	7.3 Defining your architectural rule set
	7.4 Summary

	Part 2 Settling in with SonarQube
	8 Planning a strategy and expanding your insight
	8.1 Planning your strategy
	8.1.1 Picking a metric
	8.1.2 Holding your ground
	8.1.3 Moving the goal posts
	8.1.4 Boy Scout approach: leave the class better than you found it
	8.1.5 SonarQube time: worst first
	8.1.6 Re-architect
	8.1.7 The end game

	8.2 History and trending
	8.2.1 Time Machine
	8.2.2 Events and database cleanup

	8.3 Everything’s a component
	8.3.1 Project component view
	8.3.2 No package history

	8.4 Related plugins
	8.4.1 Tab Metrics
	8.4.2 Widget Lab

	8.5 Summary

	9 Continuous Inspection with SonarQube
	9.1 Introducing Continuous Inspection
	9.1.1 What and how?
	9.1.2 Life before and after Continuous Inspection
	9.1.3 The big picture

	9.2 Triggering your analysis with CI
	9.2.1 Jenkins setup
	9.2.2 Other CI systems
	9.2.3 Best practices

	9.3 Monitoring quality evolution
	9.3.1 Exploring differential views in the project dashboard
	9.3.2 Differential views in the issues drilldown
	9.3.3 Differential views in the source code viewer
	9.3.4 Choosing differential periods
	9.3.5 The Compare service

	9.4 Related plugins
	9.4.1 Cutoff
	9.4.2 Build Breaker

	9.5 Summary

	10 Letting SonarQube drive code reviews
	10.1 Reviewing code in SonarQube
	10.1.1 Issues: a starting point
	10.1.2 Confirm, comment, and assign: the simplest workflow options
	10.1.3 False positives: sometimes SonarQube gets it wrong
	10.1.4 Changing severity: not every issue is that bad
	10.1.5 Altering the code to make SonarQube turn a blind eye
	10.1.6 Viewing the audit trail

	10.2 Creating manual issues: when the rules aren’t enough
	10.2.1 Why you would want extra issues
	10.2.2 Making manual issues

	10.3 Tracking issues
	10.3.1 Life cycle of an issue
	10.3.2 Tracking squashed issues
	10.3.3 Searching issues

	10.4 Planning your work with SonarQube’s action plans
	10.4.1 Why bother with action plans?
	10.4.2 Managing action plans
	10.4.3 Using action plans
	10.4.4 Tracking action plans

	10.5 Structuring a code review
	10.5.1 Why: talking about code
	10.5.2 Who
	10.5.3 When
	10.5.4 Where
	10.5.5 How

	10.6 Related plugins
	10.6.1 JIRA
	10.6.2 Taglist
	10.6.3 Widget Lab

	10.7 Summary

	11 IDE integration
	11.1 What’s supported
	11.1.1 Generic support
	11.1.2 Eclipse support

	11.2 Setting up Eclipse integration
	11.2.1 Installing the plugin
	11.2.2 Configuring the server
	11.2.3 Project association

	11.3 Working your assigned issues
	11.3.1 Finding your assigned issues
	11.3.2 Finding and fixing the code

	11.4 Running a local analysis
	11.5 Related plugins
	11.5.1 Issues Report

	11.6 Summary

	Part 3 Administering and extending
	12 Security: users, groups, and roles
	12.1 Creating users and groups
	12.1.1 Managing users
	12.1.2 Personalization: what users can manage for themselves
	12.1.3 Managing groups

	12.2 Roles: who can do what
	12.2.1 Project Administrator role
	12.2.2 User role
	12.2.3 Code Viewer role
	12.2.4 Best practices for roles

	12.3 System administrators
	12.4 Related plugins
	12.4.1 LDAP
	12.4.2 OpenID
	12.4.3 Crowd
	12.4.4 PAM

	12.5 Summary

	13 Rule profile administration
	13.1 Making your own profile: copy and modify
	13.1.1 Copy or start from scratch?
	13.1.2 Your first profile edits and their quality implications
	13.1.3 Adding rules: how to find them and why you’d want to

	13.2 Profile inheritance
	13.2.1 Establishing inheritance
	13.2.2 Managing the relationship

	13.3 Rule editing
	13.3.1 Customizing individual rules: editing rule parameters
	13.3.2 Cookie-cutter rules: the ones you can duplicate
	13.3.3 Extend Description: the rest of the story
	13.3.4 Notes: profile-specific records on individual rules

	13.4 Alerts: knowing when your metrics have crossed the line
	13.5 How to track profile changes
	13.5.1 Changelog: who did what, when
	13.5.2 Profile versions: when changes go into production
	13.5.3 Profile comparison

	13.6 Administrative miscellany
	13.6.1 Project assignment: which project uses which profile
	13.6.2 Profile backup and restoration
	13.6.3 Permalinks

	13.7 Plugins
	13.7.1 Switch Off Violations
	13.7.2 Widget Lab

	13.8 Summary

	14 Making SonarQube fit your needs
	14.1 Exploring filters
	14.1.1 Adding a new filter
	14.1.2 Customizing the filter view
	14.1.3 Advanced filtering
	14.1.4 SonarQube’s default filters

	14.2 One size doesn’t fit all: managing global dashboards
	14.2.1 Creating your first global dashboard
	14.2.2 Customizing your dashboards
	14.2.3 Defining default global dashboards

	14.3 Getting notified by SonarQube
	14.3.1 Activating the notification mechanism
	14.3.2 Subscribing to event types

	14.4 Adjusting global settings
	14.4.1 Database cleaner
	14.4.2 General
	14.4.3 Localization
	14.4.4 Server ID

	14.5 Housekeeping
	14.5.1 Backing up your SonarQube configuration
	14.5.2 Working with the update center

	14.6 Summary

	15 Managing your projects
	15.1 Working with project dashboards
	15.2 Adopting Continuous Inspection more quickly
	15.2.1 Assigning quality profiles
	15.2.2 Defining your own metrics
	15.2.3 Excluding source code from analysis
	15.2.4 Understanding versions, snapshots, and events

	15.3 Exploring the rest of the project configuration
	15.3.1 Changing permissions
	15.3.2 Setting project links
	15.3.3 Modifying the project key
	15.3.4 Deleting projects
	15.3.5 Miscellaneous settings

	15.4 Summary

	16 Writing your own plugin
	16.1 Understanding SonarQube’s architecture
	16.2 Implementing the Redmine plugin
	16.2.1 Creating the plugin Maven project
	16.2.2 Defining the plugin’s available configuration
	16.2.3 Describing the metrics: what you’ll calculate and store
	16.2.4 Implementing your analyzer with a sensor
	16.2.5 Creating your first widget
	16.2.6 Supporting internationalization
	16.2.7 A decorator example

	16.3 Adding support for new programming languages
	16.4 Summary

	Appendix A Installation and setup
	A.1 Preparing for installation
	A.1.1 Verifying Java
	A.1.2 Database setup

	A.2 Installing SonarQube
	A.2.1 Ubuntu
	A.2.2 Windows 7
	A.2.3 Configuring SonarQube: Windows 7 and Ubuntu
	A.2.4 Turning it on
	A.2.5 Default admin account

	A.3 Upgrading
	A.3.1 Ubuntu
	A.3.2 Windows 7

	Appendix B Analysis
	B.1 Analyzing with SonarQube Runner
	B.1.1 Install: Windows 7
	B.1.2 Install: Ubuntu
	B.1.3 Verify and configure : Ubuntu and Windows 7
	B.1.4 Analyze
	B.1.5 Multi-module projects

	B.2 Analyzing with Maven
	B.2.1 Setup
	B.2.2 First analysis
	B.2.3 Multi-module

	B.3 Analyzing with Ant
	B.4 Analysis properties

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

