
The only guide you need for Oracle8i DBA SQL
and PL/SQL exam success . . .
You’re holding in your hands the most comprehensive and effective guide available for the first exam on
the Oracle8i DBA track. An outstanding team of database professionals and trainers delivers crystal-clear
explanations of every topic covered on the exam, highlighting critical concepts and offering hands-on tips that
can help you in your real-world DBA career.

About the Authors
Damir Bersinic, an Oracle Certified DBA as well as an MCSE
and MCDBA, has worked with Oracle and SQL Server for nearly
two decades. He is the founder and president of Bradley Systems Inc., a
Microsoft certified partner specializing in database, Internet, and system
integration consulting and training. Stephen Giles, creator of a
customized SQL course, Susan Ibach, an application developer, and
Myles Brown, a database programming specialist, all teach the Oracle
curriculum at TMI-Lernix, a leading training company based in Canada.

Get complete coverage of SQL
and PL/SQL exam objectives
• Get a handle on Oracle database basics
• Retrieve data using basic SQL statements
• Find out how to use single and multi-row functions
• Delve into advanced select statements
• Create and manage Oracle database objects
• Get in-depth explanations of security configurations
• Understand PL/SQL basics
• Take control of program execution in PL/SQL
• Master PL/SQL database interactions
• Handle errors and exceptions in PL/SQL
• Get the scoop on stored programs

Figures and code examples
illustrate critical concepts,
such as how a join works

Test-Prep Tools on CD-ROM

Turn in: .75 Board: 7.125 .5

• Hungry Minds test engine powered by top-rated Boson Software
• Trial versions of Knowledge Base for Active PL/SQL and ER/Studio

Rapid SQL and the Introduction to
Oracle: SQL and PL/SQL Prep Exam

• Plus an e-version of the book

Customized test engine provides
a different experience each time

you take the exam.

Oracle8i ™ DBA:
SQL and PL/SQLOracle8i ™ DBA:
SQL and PL/SQL

Master the
material for the
Oracle8i DBA Exam
1Z0-001

Test your knowledge
with assessment
questions, scenarios,
and lab exercises

Practice on state-
of-the-art test-
preparation software

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Damir Bersinic, Stephen Giles,
Susan Ibach, and Myles Brown

Board: 7.125 Turn in: .75.5

BERSINIC, GILES,
IBACH & BROWN

100%
C O M P R E H E N S I V E

Covers Exam 1Z0-001

O
racle8i

™D
BA:

SQ
L

andPL/SQ
L

O
racle8i

™D
BA:

SQ
L

andPL/SQ
L

VISIBLE SPINE = 1.875

Bible
Boson Software—

powered
test engine
on CD-ROM

Certification

Hungry Minds Test
Engine powered by

Shelving Category:
Certification

Reader Level:
Beginning to Advanced

System Requirements: PC running Windows
NT Service Pack 4 or later; 64 MB RAM. See the
What’s on the CD-ROM? Appendix for details and
complete system requirements.

ISBN 0-7645-4832-8

$59.99 USA
$89.99 Canada
£44.99 UK incl. VAT

,!7IA7G4-feidcb!:p;p;T;T;tw w w . h u n g r y m i n d s . c o m

*85555-AIBFHe

Oracle8i ™ DBA:
SQL and PL/SQL

Certification Bible

4832-8 FM.F 7/27/01 8:59 AM Page i

4832-8 FM.F 7/27/01 8:59 AM Page ii

Oracle8i ™ DBA:
SQL and PL/SQL

Certification Bible

Damir Bersinic, Stephen Giles, Susan Ibach, Myles Brown

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY ✦ Cleveland, OH ✦ Indianapolis, IN

4832-8 FM.F 7/27/01 8:59 AM Page iii

Oracle8i™ DBA: SQL and PL/SQL Certification Bible

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Control Number: 2001092738

ISBN: 0-7645-4832-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1P/TQ/QY/QR/IN

Distributed in the United States by Hungry Minds,
Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial

Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and
foreign-language translations, please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-653-7000 or fax
650-653-7500.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Oracle8i is a trademark of Oracle Corporation. All other trademarks are the property of their
respective owners. Hungry Minds, Inc., is not associated with any product or vendor mentioned in this book.

is a trademark of
Hungry Minds, Inc.

4832-8 FM.F 7/27/01 8:59 AM Page iv

About the Authors
Damir Bersinic has over 17 years of industry experience working with Oracle, SQL

Server, Microsoft Windows NT/2000 and BackOffice, and other advanced products.

He is president and founder of Bradley Systems Incorporated, a Microsoft Certified

Partner focusing on database, Internet, and system integration consulting and train-

ing. He holds a number of industry certifications including Oracle Certified

Professional–Database Administrator, Microsoft Certified Systems Engineer (MCSE),

Microsoft Certified Database Administrator (MCDBA), Microsoft Certified Trainer

(MCT) and Certified Technical Trainer (CTT). His extensive work with Oracle, SQL

Server, Windows NT/2000, and BackOffice has enabled him to provide high-level

consulting and other assistance to clients in Canada, the United States, and other

parts of the globe. He is an avid fan of Formula 1 and CART racing and can be found

in front of his large-screen TV on almost all race weekends. In his spare time (a con-

cept that is somewhat foreign to him), he likes to listen to music and enjoys spend-

ing time with his wife Visnja and son Anthony. He can be reached via e-mail at

damir@bradsys.com.

Stephen Giles came to IT through an indirect path. He obtained a master’s degree

in English from the University of Toronto and held several IT support positions in

Toronto until he found his way back to the classroom. He has been a technical

trainer since 1999. He currently works for TMI-Learnix in Canada. Stephen brings

his support background and a love of databases into the classroom, teaching both

Microsoft SQL Server and Oracle development courses. He has also developed a

customized SQL course and has contributed to two books on SQL 2000.

Susan Ibach teaches Oracle courses for TMI-Learnix in Ottawa, Canada. After grad-

uating from the University of New Brunswick with a degree in electrical engineering,

she worked for a consulting firm. After five years of application programming and

development, she became a technical instructor. She teaches SQL, PL/SQL, and

Oracle developer courses for TMI-Learnix two weeks a month and spends the rest

of her time at home entertaining her son Connor.

Myles Brown is a database programming specialist who currently delivers Oracle

certified training for TMI-Learnix. He has a strong background in the design, devel-

opment, and support of database software solutions in a variety of languages,

including COBOL, RPG, PL/SQL, and Visual Basic. Myles has a bachelor of science

degree in mathematics (with honors) and a bachelor of education degree from

Queen’s University. He has been an Oracle Certified Professional since 1999.

4832-8 FM.F 7/27/01 8:59 AM Page v

Credits
Acquisitions Editor

Terri Varveris

Project Editor

Martin V. Minner

Technical Editor

Harry Liebschutz

Copy Editor

Nancy Crumpton

Project Coordinators

Emily Wichlinski

Regina Snyder

Graphics and Production Specialists

Brian Torwelle

Jeremey Unger

Erin Zeltner

Quality Control Technicians

Laura Albert

Andy Hollandbeck

Carl Pierce

Permissions Editor

Laura Moss

Media Development Specialist

Angela Denny

Media Development Coordinator

Marisa Pearman

Proofreading and Indexing

TECHBOOKS Production Services

4832-8 FM.F 7/27/01 8:59 AM Page vi

I want to dedicate this book to what a colleague of mine refers to as the lightbulbs —
that look in the eye of a student or reader when the pieces fall into place. As you begin
your journey in Oracle certification with this book, may you be blessed with many
lightbulbs.

— Damir Bersinic

4832-8 FM.F 7/27/01 8:59 AM Page vii

4832-8 FM.F 7/27/01 8:59 AM Page viii

Preface

Preparing to become an Oracle Certified Professional in the database adminis-

tration track is a journey that starts with a single step. The first step is to

pass the “Introduction to Oracle: SQL and PL/SQL” exam, which this book is

designed to help you accomplish.

About Certifications
In order to become an Oracle Certified Professional (OCP) in the database adminis-

trator (DBA) track for Oracle 8i, you must pass the following examinations:

✦ Exam 1Z0-001: Introduction to Oracle: SQL and PL/SQL

✦ Exam 1Z0-023: Oracle 8i Architecture and Administration

✦ Exam 1Z0-025: Oracle 8i Backup and Recovery

✦ Exam 1Z0-024: Oracle 8i Performance and Tuning

✦ Exam 1Z0-026: Oracle 8i Network Administration

The Oracle 8i certification path is designed to lead you gradually to the goal of

becoming an OCP. You are not required to take the exams in the order they are

intended so you do not have to take the exam for which this book prepares you

right away. It’s acceptable for you to take another one of the exams first if you pre-

fer to gain more experience. To become an Oracle Certified Professional in the DBA

track, you must pass all five exams, in no particular order.

For each of the previously listed exams, Oracle provides a set of objectives that you

are tested on and required to be familiar with. The objectives for the “Introduction to

Oracle: SQLand PL/SQL” exam are listed in Appendix C, as well as a cross-reference of

which chapters in this book provide information on that objective. The complete set

of objectives for the entire track may be found in the Oracle Certified Professional
Program Candidate Guide, Oracle 8i Certified Database Administrator Track available

on Oracle’s Web site at http://www.oracle.com/education/certification/
index.html?ocpguides.html. The exact link to the Adobe Acrobat PDF file for

the DBA track is: http://www.oracle.com/education/downloads/dba8i_cg.pdf.

4832-8 FM.F 7/27/01 8:59 AM Page ix

x Oracle8i DBA: SQL and PL/SQL Certification Bible

The Candidate Guide document should be reviewed to gain a full understanding of

the Oracle Certified Professional Program, as well as how to schedule your exams

for your geographical area.

How this Book is Organized
This book is divided into three parts:

✦ Part I — The Oracle SQL Language: This part begins by providing an under-

standing of an object relational database management system (ORDBMS) and

how it can be used. You are then introduced to the Structured Query

Language (SQL) and what it is used for, followed by an in-depth discussion of

SQL and the use of functions, expressions, and the various types of joins.

Finally, we outline how to add, change, and remove data in the database.

✦ Part II — Managing Database Objects: This part of the book is designed to

show you how to create and manage objects in the database, as well as to

ensure that access is restricted to the appropriate users. This part begins by

providing insight into how to make effective use of SQL*Plus, an Oracle utility

used to execute commands against the database and format the data

returned.

✦ Part III — Using PL/SQL: The goal of this part of the book is to provide a fun-

damental understanding of the syntax and features of the procedural exten-

sions to SQL introduced by Oracle with PL/SQL. You learn how to create

anonymous PL/SQL blocks and to define and make use of cursors and vari-

ables. The last chapter of the book also introduces stored program units and

how they can be used to add functionality to your databases.

The book has been divided into these three parts from the standpoint of organiza-

tion and logic and not to satisfy the exam requirements in a one-to-one mapping.

Each objective of the exam is covered by material in the book. Appendix C lists the

exam objectives and the relevant section of the book where each is covered.

The appendixes of the book provide a number of useful items:

✦ Appendix A: Outlines the programs and other information found on the

CD-ROM that accompanies this book, including an electronic copy of the book

in PDF format, a sample exam with 300 or so questions that will help you pre-

pare to take the real exam, and many other useful software programs.

✦ Appendix B: Contains a sample exam with the same number of questions

found in the actual Oracle exam. The questions in this appendix are designed

to closely emulate the type of questions you can expect on the exam and

therefore to help to prepare for it. Answers to each question are also pro-

vided, along with an explanation of why the correct answer is correct and the

others are incorrect.

4832-8 FM.F 7/27/01 8:59 AM Page x

xiPreface

✦ Appendix C: Provides a mapping of the “Introduction to Oracle: SQL and

PL/SQL” exam objectives to the chapters and sections where these objectives

are covered in the book. If you find that you are weak in a particular area, this

appendix enables you to focus your study on the part of the book containing

information you require.

✦ Appendix D: Contains information on how to properly prepare for the exam

and how to register to take it.

✦ Appendix E: Lists the objects used by the exercises at the end of each chap-

ter, as well as providing a hard copy of the scripts used to create and populate

the objects.

✦ Appendix F: Lists the common Oracle data dictionary views and their

structure.

✦ Appendix G: Recommends other books, Web sites, and other resources that

may be useful in helping you prepare for the exam and increase your knowl-

edge of relational databases and Oracle.

How to Use this Book
When asked where the best place to start is, a wise individual once said “at the

beginning.” This truth holds true here. The later parts and chapters of this book are

meant to build upon concepts presented in previous chapters. Similarly, the labs of

each chapter may also depend upon the results of labs in previous chapters. While

this last point is not a hard-and-fast rule, it should be kept in mind. The recom-

mended practice is to read the book from beginning to end and absorb the material

in the order presented.

Each chapter, as well, follows a consistent structure. You are first presented with a

series of questions to test your knowledge of the material in the chapter. The ques-

tions are useful in determining whether you are familiar with the topics about to be

presented. The Chapter Pre-Test questions enable you to verify that you have a

good grasp of the information.

The main body of the chapter follows the Chapter Pre-Test. You are introduced to

concepts and shown examples of code, as appropriate. Feel free to try the code as

you are reading the material to verify that you get the same results as the authors.

Each chapter ends with a Key Point Summary designed to reinforce the main ele-

ments presented in the chapter, and then presents a series of exam-style questions

to test your understanding of the material. They are followed by one or more sce-

nario-based questions to further test your understanding of the material. You are

then asked to complete Lab Exercises to provide hands-on experience. You are free

to do the labs before answering the exam-style Assessment questions.

4832-8 FM.F 7/27/01 8:59 AM Page xi

xii Oracle8i DBA: SQL and PL/SQL Certification Bible

Answers for the Chapter Pre-Test, Assessment, Scenarios, and Lab Exercises are

provided at the end of the chapters. The answers enable you to confirm the results

of your work and often provide additional information .

After you have read each chapter, you should use the CD-based exam to further test

your knowledge. When you feel that you are ready, you can then try your hand at

the Practice Exam in Appendix B. When you feel that you have sufficient informa-

tion, schedule your exam.

The night before taking the exam, review each chapter’s Key Point Summary to

make sure you understand the material and answer the Chapter Pre-Test questions

again. After passing the exam, the book also is an excellent reference on SQL and

PL/SQL, so keep it handy.

Using this book’s icons
Watch for the following margin icons to help you get the most out of this book:

Tips provide special information or advice.

Caution icons warn you of a potential problem or error.

This icon directs you to related information in another section or chapter.

Exam Tips offer insider information about the exam.

This icon identifies on-the-job best practices or instances where exam informa-
tion deviates from actual practice.

In the
Real World

Exam Tip

Cross-
Reference

Caution

Tip

4832-8 FM.F 7/27/01 8:59 AM Page xii

xiiiPreface

Conventions
Whenever command syntax is presented, it appears similar to the following:

CREATE [GLOBAL TEMPORARY] TABLE [schema.]tablename
(columnname datatype [NULL | NOT NULL] [DEFAULT expression]

[, ...]);

✦ Elements of the command that are required are presented in uppercase, such

as the words CREATE and TABLE in the preceding example.

✦ Elements of the command language that are optional are also presented in

uppercase and enclosed in square brackets ([and]), such as the [GLOBAL

TEMPORARY] option in the preceding example.

✦ Elements that are substitution variables for object names in a code example

are presented in lowercase, such as “tablename”, “columnname”, and

“datatype” in the preceding example.

✦ Elements that are optional substitution variables for object name compo-

nents, or object names, such as the word “schema” in the preceding example,

are all lowercase and enclosed in square brackets.

✦ Optional elements of the command syntax always are enclosed in square

brackets.

✦ Portion of the command syntax where mutually exclusive choices must be

made separate those choices by a pipe symbol (|) — for example, the choice

between NULL and NOT NULL in the preceding syntax.

✦ Elements that can be repeated several times within the code syntax are repre-

sented by three dots (...).

4832-8 FM.F 7/27/01 8:59 AM Page xiii

Acknowledgments

Iwant to acknowledge the hard work of my contributing authors. Writing a book

was a new experience to some, but you all came through with flying colors. This

task was greatly helped by the assistance of the entire Hungry Minds team, who

pushed us when we needed to be pushed, but otherwise let us do what we needed

to do.

Each of us would also like to acknowledge the contribution our family makes to

these types of projects. Their understanding when we need to write but would

rather be with them helps make the process less painful. They also know that the

smoother the process is for those of us involved in it, the sooner we can spend

more of time with them. To our wives, husbands, and children, we are always grate-

ful for your support and understanding, even if we don’t show it all the time.

Finally, if you read the snippets of information on the authors contributing to this

book, you will note that three out of four work for the same company, TMI-Learnix.

A special thank you goes out to Tim Mabey and Mia Hempey who allowed me not

only to grab some of their trainers’ free time and get them involved with this pro-

ject, but also actively encouraged it. Working with you folks has always been, and

continues to be, a pleasure.

— Damir Bersinic

4832-8 FM.F 7/27/01 8:59 AM Page xiv

Contents at a Glance
Preface. ix

Acknowledgments . xiv

Part I: The Oracle SQL Language . 1
Chapter 1: The Oracle Database . 3

Chapter 2: Retrieving Data Using Basic SQL Statements 35

Chapter 3: Using Single- and Multi-Row Functions 89

Chapter 4: Advanced SELECT Statements . 139

Chapter 5: Adding, Updating, and Deleting Data 191

Part II: Managing Database Objects 225
Chapter 6: The SQL*Plus Environment . 227

Chapter 7: Creating and Managing Oracle Database Objects 267

Chapter 8: Configuring Security in Oracle Databases 359

Part III: Using PL/SQL . 401
Chapter 9: Introduction to PL/SQL . 403

Chapter 10: Controlling Program Execution in PL/SQL 443

Chapter 11: Interacting with the Database Using PL/SQL 479

Chapter 12: Handling Errors and Exceptions in PL/SQL 533

Chapter 13: Introduction to Stored Programs . 571

Appendix A: What’s on the CD-ROM? . 615

Appendix B: Practice Exam . 621

Appendix C: Objective Mapping . 653

Appendix D: Exam Tips . 665

Appendix E: Database Schema for Labs . 669

Appendix F: Data Dictionary Views . 687

Appendix G: Suggested Readings, Web Sites, and Other Resources 717

Index . 721

End-User License Agreement . 741

CD-ROM Installation Instructions . 744

4832-8 FM.F 7/27/01 8:59 AM Page xv

xvi Oracle8i DBA: SQL and PL/SQL Certification Bible

Contents
Preface. ix

Acknowledgments . xiv

Part I: The Oracle SQL Language 1

Chapter 1: The Oracle Database . 3
Overview of Database Concepts . 5

Relational Database Management System (RDBMS) 6

Object Relational Database Management System (ORDBMS) 9

Database Objects . 11

Tables . 13

Columns and datatypes . 13

Constraints . 15

Sequences . 17

Views . 17

Indexes . 18

Synonyms . 19

User-defined datatypes . 19

Program Units . 20

The Oracle Data Dictionary . 21

Assessment Questions . 25

Scenario . 27

Lab Exercise . 28

Answers to Chapter Questions . 29

Chapter Pre-Test . 29

Assessment Questions . 31

Scenario . 33

Chapter 2: Retrieving Data Using Basic SQL Statements 35
A Quick SQL Overview . 37

Data Definition Language statements 38

Data Control Language statements . 38

Data Manipulation Language statements 38

The Basic SELECT Statement . 40

Arithmetic operations . 41

Ordering data in the SELECT statement 55

4832-8 FM.F 7/27/01 8:59 AM Page xvi

xviiContents

Limiting Rows Using the WHERE Clause . 57

Using logical operators in WHERE clauses 63

Additional comparison operators in the WHERE clause 66

Including the ROWNUM pseudo-column in the WHERE clause 72

Assessment Questions . 77

Scenarios . 80

Lab Exercises . 80

Answers to Chapter Questions . 82

Chapter Pre-Test . 82

Assessment Questions . 83

Scenarios . 85

Lab Exercises . 86

Chapter 3: Using Single- and Multi-Row Functions 89
Single-Row Functions . 91

Conversion functions . 91

The TO_DATE function . 98

Character functions . 99

Number functions . 105

Date functions. 107

Additional functions . 110

Group/Aggregate Functions . 114

Using the GROUP BY Clause . 119

Using the HAVING Clause . 122

Assessment Questions . 126

Scenarios . 129

Lab Exercises . 129

Answers to Chapter Questions . 131

Chapter Pre-Test . 131

Assessment Questions . 132

Scenarios . 133

Lab Exercises . 135

Chapter 4: Advanced SELECT Statements 139
Working with Joins . 141

Working with equijoins . 142

Cross-joins . 145

Nonequijoins . 146

Outer joins . 148

Self-joins . 149

Working with Subqueries . 151

Working with basic subqueries . 151

Working with inline views . 157

Working with correlated subqueries 159

4832-8 FM.F 7/27/01 8:59 AM Page xvii

xviii Oracle8i DBA: SQL and PL/SQL Certification Bible

Working with SET Operators . 161

Using the UNION operator . 162

Using the UNION ALL operator . 165

Using the INTERSECT operator . 165

Using the MINUS operator . 166

Using Hierarchical Queries . 166

Using Substitution Variables . 172

The ROWID pseudo-column . 176

Assessment Questions . 179

Scenarios . 182

Lab Exercises . 183

Answers to Chapter Questions . 185

Chapter Pre-Test . 185

Assessment Questions . 185

Scenarios . 187

Lab Exercises . 188

Chapter 5: Adding, Updating, and Deleting Data 191
DML Statements: Inserting Data into Tables 193

Using the column list . 195

Inserting values using additional language elements 196

DML Statements: Modifying Existing Data 198

DML Statements: Removing Data from Tables 199

Using subqueries in DML statements 200

How Oracle Processes DML Statements . 203

Controlling Transactions . 205

The ACID test . 206

Transaction control statements . 207

Controlling concurrent operations with locking 210

Assessment Questions . 213

Scenarios . 216

Lab Exercises . 217

Answers to Chapter Questions . 220

Chapter Pre-Test . 220

Assessment Questions . 221

Scenarios . 222

Lab Exercises . 223

Part II: Managing Database Objects 225

Chapter 6: The SQL*Plus Environment 227
The SQL Buffer . 229

Defining Variables . 231

Substitution variables . 231

DEFINE . 234

ACCEPT . 235

Bind variables . 236

4832-8 FM.F 7/27/01 8:59 AM Page xviii

xixContents

SQL*Plus Commands . 237

DESCRIBE . 237

SAVE . 237

EDIT . 238

GET . 238

START . 239

@ . 239

SPOOL . 239

EXIT . 240

Customizing SQL*Plus with SET Commands 240

ARRAYSIZE . 241

COLSEP . 241

FEEDBACK . 242

HEADING . 243

LINESIZE . 243

LONG . 244

PAGESIZE . 244

PAUSE . 244

TERMOUT . 245

Formatting Output with SQL*Plus . 245

Headers and footers . 245

COLUMN . 247

BREAK . 250

COMPUTE . 251

Saving Environment Settings . 252

Scripts . 252

PRODUCT_USER_PROFILE . 254

Assessment Questions . 257

Scenarios . 259

Lab Exercises . 260

Answers to Chapter Questions . 261

Chapter Pre-Test . 261

Assessment Questions . 262

Scenarios . 262

Lab Exercises . 263

Chapter 7: Creating and Managing Oracle Database Objects 267
The Ground Rules for Creating Objects . 269

Data Definition Language (DDL) . 269

Oracle naming conventions . 270

Fully qualified object names . 270

Creating and Managing Tables . 272

The CREATE TABLE statement . 273

The ALTER TABLE command . 283

The DROP TABLE command . 288

The TRUNCATE TABLE command . 289

Documenting tables and columns . 289

4832-8 FM.F 7/27/01 8:59 AM Page xix

xx Oracle8i DBA: SQL and PL/SQL Certification Bible

Data Integrity Using Constraints . 291

Naming constraints . 293

Defining constraints . 293

A little more about constraint types 295

Managing constraints . 300

Creating Other Database Objects . 308

Views . 309

Indexes . 318

Sequences . 325

Synonyms . 333

Assessment Questions . 339

Scenarios . 342

Lab Exercises . 343

Answers to Chapter Questions . 345

Chapter Pre-Test . 345

Assessment Questions . 347

Scenarios . 349

Lab Exercises . 351

Chapter 8: Configuring Security in Oracle Databases 359
Users and Schemas . 361

Creating and managing users . 362

Granting and Administering User Privileges 366

System privileges . 366

Object privileges . 372

Roles . 377

Creating and granting roles . 378

Determining privileges and roles granted 380

Revoking roles . 381

Assessment Questions . 384

Scenarios . 387

Lab Exercises . 387

Answers to Chapter Questions . 389

Chapter Pre-Test . 389

Assessment Questions . 390

Scenarios . 391

Lab Exercises . 392

Part III: Using PL/SQL 401

Chapter 9: Introduction to PL/SQL . 403
Uses and Benefits of PL/SQL . 405

Modularity . 405

Variables . 406

Control structures . 406

4832-8 FM.F 7/27/01 9:00 AM Page xx

xxiContents

Superior performance . 406

Error handling . 406

Support for SQL . 406

Portability . 407

The PL/SQL Engine and Statement Processing 407

Types of PL/SQL blocks . 408

Block structure . 409

Comments . 412

Variables . 413

Scalar variables . 414

Bind variables . 422

Composite datatypes . 423

User-defined types . 426

Reference types . 427

Executing and Testing PL/SQL Blocks . 429

Print command . 430

DBMS_OUTPUT package . 430

Assessment Questions . 433

Scenarios . 435

Lab Exercises . 436

Answers to Chapter Questions . 437

Chapter Pre-Test . 437

Assessment Questions . 438

Scenarios . 439

Lab Exercises . 440

Chapter 10: Controlling Program Execution in PL/SQL 443
Loops . 445

Basic loop . 445

WHILE loop . 447

FOR loop . 447

Nested loops and labels . 451

Conditional Processing . 455

IF . . . THEN . 455

ELSE . 456

ELSIF . 457

Nested Blocks . 459

Transaction Control . 461

Assessment Questions . 468

Scenarios . 473

Lab Exercise . 473

Answers to Chapter Questions . 474

Chapter Pre-Test . 474

Assessment Questions . 475

Scenarios . 476

Lab Exercise . 477

4832-8 FM.F 7/27/01 9:00 AM Page xxi

xxii Oracle8i DBA: SQL and PL/SQL Certification Bible

Chapter 11: Interacting with the Database Using PL/SQL 479
SQL Statements . 481

SELECT . 481

INSERT . 484

UPDATE . 486

DELETE . 487

Implicit cursors . 487

Explicit Cursors . 489

Declaring explicit cursors . 489

Opening explicit cursors . 490

Closing an explicit cursor . 491

Fetching from explicit cursors . 492

%ROWTYPE . 494

The cursor FOR loop . 495

Cursor variables . 497

Cursors with subqueries . 499

Cursor parameters . 500

FOR UPDATE and WHERE CURRENT OF 501

Composite and Collection Datatypes . 504

PL/SQL records . 504

Index-by tables . 506

Tables of records . 510

Nested tables . 511

VARRAYs . 513

Collection methods . 515

Assessment Questions . 519

Scenarios . 522

Lab Exercises . 523

Answers to Chapter Questions . 524

Chapter Pre-Test . 524

Assessment Questions . 525

Scenarios . 526

Lab Exercises . 528

Chapter 12: Handling Errors and Exceptions in PL/SQL 533
Types of Errors . 535

Compile errors . 535

Program logic errors . 537

Runtime errors or exceptions . 539

Exception Handling . 539

Predefined exceptions . 541

Non-predefined exceptions . 544

User-defined exceptions . 546

WHEN OTHERS Clause . 548

Error Propagation . 549

Coding Conventions . 555

Assessment Questions . 558

4832-8 FM.F 7/27/01 9:00 AM Page xxii

xxiiiContents

Scenarios . 563

Lab Exercises . 563

Answers to Chapter Questions . 565

Chapter Pre-Test . 565

Assessment Questions . 566

Scenarios . 567

Lab Exercises . 567

Chapter 13: Introduction to Stored Programs 571
Subprograms . 573

Procedures . 574

Client-side procedures . 575

Server-side procedures . 575

Parameters . 576

Nesting . 579

Deleting Procedures . 580

User-Defined Functions . 580

Deleting Functions . 582

Packages . 583

Specification . 583

Package body . 584

Accessing programs and variables in packages 586

Removing Packages . 587

Listing Package contents . 588

Triggers . 588

Triggering events . 589

Statement-level triggers . 589

Row-level triggers . 591

Trigger predicates . 594

Restrictions on triggers . 595

Order of firing . 596

INSTEAD OF triggers . 597

Event triggers . 598

Enabling and disabling triggers . 599

Removing triggers . 600

Data Dictionary Views . 600

USER_SOURCE . 600

USER_TRIGGERS . 601

USER_OBJECTS . 602

Assessment Questions . 605

Scenarios . 607

Lab Exercises . 608

Answers to Chapter Questions . 609

Chapter Pre-Test . 609

Assessment Questions . 610

Scenarios . 610

Lab Exercises . 611

4832-8 FM.F 7/27/01 9:00 AM Page xxiii

xxiv Oracle8i DBA: SQL and PL/SQL Certification Bible

Appendix A: What’s on the CD-ROM? 615

Appendix B: Practice Exam . 621

Appendix C: Objective Mapping . 653

Appendix D: Exam Tips . 665

Appendix E: Database Schema for Labs 669

Appendix F: Data Dictionary Views . 687

Appendix G: Suggested Readings, Web Sites,
and Other Resources . 717

Index . 721

End-User License Agreement. 741

CD-ROM Installation Instructions . 744

4832-8 FM.F 7/27/01 9:00 AM Page xxiv

The Oracle SQL
Language

This part of the book deals with the SQL language used by

Oracle to retrieve, add, change, and delete data in your

database.

Chapter 1 introduces the general concepts of a database and

defines the terms relational database management system
(RDBMS) and object relational database management system
(ORDBMS), and how Oracle satisfies the requirements for

each. The chapter then introduces the database objects that

can be created in Oracle 8i and their purposes. Next, we

briefly discuss the Oracle data dictionary and introduce the

common data dictionary views, which are helpful in getting

information on the objects that exist in the database.

Chapter 2 provides information on the Structured Query

Language (SQL) — what it is and how it is used. You learn how

to formulate and execute a basic SELECT statement that can

be used to retrieve data from the database. We discuss differ-

ent operators that are available in Oracle, as well as how to

deal with concatenation, NULLs, and aliasing. The chapter

provides a discussion of how to limit the data returned using

the WHERE clause, and how to sort the resulting rows using

the ORDER BY clause of the SELECT statement. Finally, we

introduce the DUAL table and describe how to use it to test

operations.

Chapter 3 expands upon the information presented in the pre-

vious chapter by introducing single- and multi-row functions.

We describe the single-row functions that are available in

Oracle 8i and how they are used, along with examples. We

show how to perform calculations on a set of rows and return

a single value using multi-row functions. We also discuss the

use of the GROUP BY and HAVING clauses to perform aggrega-

tion on sets of data for defined columns. Finally, we explain

other functions and pseudo-columns available in Oracle.

✦ ✦ ✦ ✦

In This Part

Chapter 1
The Oracle Database

Chapter 2
Retrieving Data Using
Basic SQL Functions

Chapter 3
Using Single- and
Multi-Row Functions

Chapter 4
Advanced SELECT
Statements

Chapter 5
Adding, Updating,
and Deleting Data

✦ ✦ ✦ ✦

P A R T

II

4832-8 PO1.F 7/27/01 9:00 AM Page 1

Chapter 4 builds upon the previous two chapters to discuss advanced SELECT

statement topics including how to join data from two or more tables in a single

resultset. We discuss the different types of joins available in Oracle and provide

examples of their usage, along with an explanation of how to vary the data retrieved

through the use of runtime substitution variables in SQL*Plus. We cover such com-

plex topics as hierarchical queries and the use of set operators. The chapter pro-

vides a lengthy discussion on the different types and uses of subqueries in Oracle,

and why they are necessary, as well as their impact on performance.

After the data retrieval information presented in the previous three chapters, Chapter

5 shows you how to get data in the database using the INSERT statements, as well as

how to change or remove it using the UPDATE and DELETE statements. We discuss

transaction control and the use of COMMIT, ROLLBACK, and SAVEPOINT, as well as

what constitutes a transaction.

4832-8 PO1.F 7/27/01 9:00 AM Page 2

The Oracle Database

EXAM OBJECTIVES

✦ Overview of relational databases, SQL and PL/SQL

• Discuss the theoretical and physical aspects of a relational

database

• Describe the Oracle implementation of RDBMS and ORDBMS

• Describe the use and benefits of PL/SQL

✦ Creating and managing tables

• Describe the main database objects

• Describe the datatypes that can be used when specifying

column definitions

✦ Including constraints

• Describe constraints

✦ Creating views

• Describe a view

✦ Oracle data dictionary

• Describe the data dictionary views a user may access

• Query data from the data dictionary

✦ Other database objects

• Describe database objects and their uses

11C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch01.F 7/27/01 9:00 AM Page 3

4 Part I ✦ The Oracle SQL Language

CHAPTER PRE-TEST
1. What is the key difference between a relational database management

system and database systems that came before it?

2. What are the required attributes that all columns must have?

3. Why would you specify a NOT NULL constraint for a column?

4. What makes Oracle an ORDBMS?

5. What is the difference between a PRIMARY and UNIQUE constraint?

6. How many FOREIGN KEY constraints can you define on a single table?

7. What are the benefits of sequences?

8. Name three types of stored subprograms that can be created in Oracle.

9. What are some benefits to using views?

10. What is the effect of indexes on database queries? Database updates?

11. What is the difference between a trigger and a constraint?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch01.F 7/27/01 9:00 AM Page 4

5Chapter 1 ✦ The Oracle Database

The first step in understanding how to use Oracle is to understand what a

database is and how Oracle satisfies the requirements of a relational database

management system (RDBMS). After this, you need to be aware of how Oracle’s

implementation of an RDBMS, and its extensions to include support for objects,

make it an Object RDBMS or ORDBMS. Finally, the basics of database objects and

the Structured Query Language (SQL) used to manipulate database objects must be

appreciated to be able to work with Oracle on a daily basis.

This chapter covers the theoretical, as well as physical and logical, characteristics

of Oracle and introduces database objects, datatypes, and the Oracle implementa-

tion of the SQL language. The rest of this book expands upon the basic concepts

covered here and provides more detail on how to make effective use of Oracle at

the most basic level.

Overview of Database Concepts
In one form or another, databases have existed throughout history. They may not

have had the form we expect today — that of a computer program — but as long as

data had to be stored, there was always a method of storing them. In fact, you prob-

ably have databases in existence in your home or office that you don’t refer to as

such, but they perform the basic function — the storage of some form of data.

When you open a file cabinet and take out a folder, you are accessing a database.

The content of the file folder is your data (for example, your credit card statements,

your bank statements, invoices, purchase orders, and so on). The file cabinet and

drawers are your data storage mechanisms. Before the advent of computers, all

data was stored in some easily recognizable physical form. The introduction of

computers simply moved the data from a physical form that you can touch and feel

to a digital form that is represented by a series of 1s and 0s in a binary format. Does

the information that you display for a purchase order on the screen differ greatly

from the same information in the hard copy version of the purchase order? Sure,

the way the information is presented is not the same as on the screen, but the key

critical elements — who the PO is issued to, the terms, and the purchase order

items — are all the same.

In looking at a database and its most basic set of characteristics, the following hold

true:

✦ A database stores data. The storage of data can take a physical form, such as

a filing cabinet or a shoebox.

✦ Data is composed of logical units of information that have some form of con-

nection to each other. For example, a genealogical database stores informa-

tion on people as they are related to each other (parents, children, and so on).

4832-8 ch01.F 7/27/01 9:00 AM Page 5

6 Part I ✦ The Oracle SQL Language

✦ A database management system (DBMS) provides a method to easily retrieve,

add, modify, or remove data. This can be a series of filing cabinets that are

properly indexed, making it easy to find and change what you need, or a com-

puter program that performs the same function.

When data began to be moved from a physical form to a digital form using comput-

ers, several different incarnations of systems to manage the data evolved. Some of

the more common types of database management systems in use over the last 50

years include the hierarchical, network, and relational. Oracle is a relational

database management system (RDBMS).

Relational Database Management System (RDBMS)
The relational model for database management systems was proposed in 1970 by

E.F. Codd in a paper called “A Relational Model of Data for Large Shared Data

Banks.” For its time, it was a radical departure from established principles because

it stated that it was not necessary for tables that have data that is related among

them to know where the related information was physically stored. Unlike previous

database models, including the hierarchical and network models, which used the

physical location of a record to relate information between two sets of data, the

relational model for databases stated that data in one table needed to know only

the name of the other table and the value on which it is related. It was not neces-

sary for data in one table to keep track of the physical storage location of the

related information in another.

The relational model broke down all data into collections of objects or relations

(that is, tables) that store the actual data. It also introduced a set of operators to

act on the related objects to produce other objects (that is, join conditions to pro-

duce a new result set). Finally, the model proposed that a set of elements (that is,

constraints) should exist to ensure data integrity so that the data would be consis-

tent and accurate. Codd proposed 12 rules that enable you to determine if the

database management system satisfied the requirements of the relational model.

Although no database today satisfies all 12 rules, it is generally accepted that any

RDBMS should comply with most of them.

The essence of the relational model is that data is made up of a set of relations.

These relations are implemented as two-dimensional tables with rows and columns

as shown in Figure 1-1. In this example, the Students table stores information about

students such as their student IDs, their names, and the name of the courses the

students are taking. The Courses table stores information about the courses includ-

ing the course IDs, the course names, and the start and end dates. The CourseID

column in both tables provides the relationship between the two tables and is the

source of the relation. The tables themselves are stored in a database that resides

on a computer. One thing that is not needed to be known is the physical location of

the tables — only their names.

4832-8 ch01.F 7/27/01 9:00 AM Page 6

7Chapter 1 ✦ The Oracle Database

Figure 1-1: A relational database is made up of two-dimensional relations, or tables.

For a database to be considered relational, and because the physical location of

rows is not something that users querying data need to know, the table must enable

each row to be uniquely identified. The column (or set of columns) that uniquely

identifies a row is known as the primary key. Each table in a relational database

(according to database theory) must have a primary key. In this way, you are cer-

tain that the specific value appears only once in the table. In Figure 1-1, the

DATABASE

Table Name: STUDENTS

StudentID Name CourseID

Table Name: COURSES

CourseID CourseName StartDate

PL/SQL Introductory PL/SQL 04/01/2001

EndDate

06/30/2001

O8IDBA Oracle 8i DBA 04/15/2001 08/31/2001

SQL1 Introductory SQL 03/01/2001 03/31/2001

9930 John Smith O8IDBA

9077 Jane Doe SQL1

9322 Adam First O8IDBA

8744 David Wau PL/SQL

6633 Steve Golf SQL1

Relational database theory

For more information on the theory of databases and the relational model in particular, see
E.F. Codd, The Relational Model for Database Management Version 2, Addison-Wesley,
1999. Another good reference is C.J. Date, An Introduction to Database Systems, 7th Edition,
Addison-Wesley, 1999. The first book is out of print and may be hard to find, while the sec-
ond is a good introduction to the theory of relational databases and is still available.

You should be aware that these are academic texts and are written for that audience. The
language might be a bit hard to follow and, in the case of the E.F. Codd book in particular,
be less exciting than you may desire. However, both of these texts are worthwhile in pro-
viding a basis for the understanding of how a RDBMS functions at its core.

A third book, which provides more of a historical discussion on the evolution of relational
database theory and E.F. Codd’s contribution to it (and also explains why some of the
quirky things in relational databases are there) is C.J. Date, The Database Relational Model:
A Retrospective Review and Analysis, Addison-Wesley, 2001.

4832-8 ch01.F 7/27/01 9:00 AM Page 7

8 Part I ✦ The Oracle SQL Language

StudentID column of the Students table is a primary key, and it ensures that each

StudentID appears only once in the table. For the Courses table, the CourseID is the

primary key.

When relating tables (the whole point of a relational database), the value of a pri-

mary key column in one table can be placed in a column in another table. The col-

umn in the second table holding the value is known as the foreign key. A foreign key

states that the value in this column for a row exists in another table and must con-

tinue to exist; otherwise, the relationship is broken. In Figure 1-1, the CourseID col-

umn in the Students table is a foreign key to the CourseID column in the Courses

table. In order for the relationship to be valid, any value placed in the CourseID col-

umn of the Students table must already exist in the CourseID column of the Courses

table. In other words, in order for a student to take a course, the course must be

offered by the institution the student is attending. If the course is not offered, the

student cannot take it.

Oracle enforces the primary key/foreign key relationship through the use of con-

straints, which are discussed later in this chapter.

All of the relations in a relational database are managed by a relational database

management system. As indicated earlier, an RDBMS enables you to manipulate

relational tables and their contents. It provides a language that enables you to cre-

ate, modify, and remove objects in the database, as well as add, change, and delete

data. The language that Oracle uses is the Structured Query Language, or SQL.

SQL is actually a collection of several different “languages” designed for a particular

purpose. It is made up of the following:

✦ Data Definition Language (DDL): DDL is used to create and modify database

objects. Commands used include CREATE, ALTER, DROP, RENAME, and

TRUNCATE. When you need to add a new table to the database, you use the

CREATE TABLE statement to perform that task. To remove an index, you use

DROP INDEX, and so on.

The use of DDL and the syntax to create, alter, and drop database objects is cov-
ered in Chapter 7, “Creating and Managing Oracle Database Objects.”

✦ Data Manipulation Language (DML): DML is used to modify data in tables in

the database. Commands used include INSERT, UPDATE, and DELETE, as well

as extensions to control transactions in the database including COMMIT,

ROLLBACK, and SAVEPOINT. The SELECT statement used to query data in the

database is not technically considered a DML command, although it is some-

times included with the definition of DML because it deals with the retrieval of

data.

The use of DML, how to use the SELECT command to query the database, and
how to control transactions in Oracle are covered in Chapters 2 through 5.

Cross-
Reference

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 8

9Chapter 1 ✦ The Oracle Database

✦ Data Control Language (DCL): DCL is used to grant and revoke privileges to

allow users to perform database tasks and manipulate database objects.

Commands used include GRANT and REVOKE. Permissions can be granted to

enable a user to perform a task, such as create a table, or to manipulate or

query data, such as insert into a table in the database.

The use of DCL, including statement- and object-level security, is covered in
Chapter 8, “Configuring Security in Oracle Databases.”

Another characteristic of an RDBMS is that tables in a relational database do not

have the relationship between them represented by data in one table having a phys-

ical location of the data in a related table. As you can see in Figure 1-1, the Students

table and the Courses table are related by the data that exists in the CourseID col-

umn of both tables. The physical location on disk of each table does not factor in

the relationship between them. As long as a user querying the two tables knows the

column that relates them, he or she is able to formulate a SQL statement that

extracts the data that satisfies the condition of that relationship (also known as a

join condition). Should one of the tables be moved to a different hard disk used to

store data in the database, the relationship still holds true.

A third characteristic of an RDBMS is that the language used to manipulate the

database has a rich and varied set of operators that can be used to manipulate the

data and explore the relationship between the various tables. The SQL language

enables you to determine, through the proper use of operators, data that is related

between tables, data where the relationship does not hold true, and much more.

The SQL language does not, however, have any elements of a programming lan-

guage such as loops, conditional logic, and the use of variables. Oracle has

extended SQL to include these elements through PL/SQL, a proprietary set of lan-

guage elements that can be used to create stored procedures, triggers, and other

subprograms.

RDBMSes became popular because of the previously mentioned characteristics.

However, nothing stays static for long, so Oracle, a relational database since its

introduction, has now expanded the definition of what it means to include objects.

Object Relational Database Management
System (ORDBMS)
Releases of Oracle prior to Oracle 8 were RDBMSes; that is, they followed the rela-

tional model and complied with its requirements, and often improved upon them.

With the introduction of Oracle 8, Oracle is now considered an Object Relational

Database Management System. An ORDBMS complies with the relational model but

also extends it to support the newer object relational database model introduced in

the 1980s.

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 9

10 Part I ✦ The Oracle SQL Language

An ORDBMS is characterized by a number of additional features, including the

following:

✦ Support for user-defined datatypes. This means that users can create their

own datatypes based upon the standard Oracle datatypes or other user-

defined datatypes. This enables more accurate mapping of business objects to

database features and can reduce the time it takes to maintain databases after

they have been implemented.

✦ The ability to attach methods to objects. A method is a piece of PL/SQL code

that performs a particular action. For example, a method could be attached to

an OrderItems object that would calculate the extended price for each item in

an order.

✦ Support for multimedia and other large objects. Oracle 8 and subsequent

releases have full support for binary large objects or BLOBs. This means that

it is now possible to store large amounts of information, such as video clips,

images, and large amounts of text, in the column of a row. Even though earlier

releases of Oracle had a feature that enabled this to happen, it lacked func-

tionality and was not implemented in a way that allowed it to conform to

object relational standards. The current implementation is much improved.

✦ Full compatibility with relational database concepts. Even though object

extensions have been added to Oracle 8, in order for it to be called an

ORDBMS, it still has to conform to the requirements of an RDBMS. Because of

Oracle’s strong legacy as an RDBMS, object features enhance the capabilities

of the relational part of Oracle and do not replace it.

If you had to state one feature that defines Oracle as an ORDBMS, it is its capability

to enable you to create a user-defined datatype, which becomes an object in Oracle.

For example, if you want to use a common definition for a telephone number in sev-

eral tables (Students, Instructors, Employees, and so on) and want to be sure that

whenever its characteristics change, that change is inherited by all tables using it,

you can create a new datatype “PhoneNumber” with the proper characteristics, and

then create the tables using the PhoneNumber datatype as one of the column defi-

nitions. If the rules for area codes, for example, change, you can modify the

attributes and methods of the PhoneNumber datatype, and all tables will inherit the

change.

This exam does not test your knowledge or ability to define and make use of
objects within Oracle. You simply need to be aware that Oracle supports objects
and that they can be used to create user-defined datatypes, and support multime-
dia, images, and other large objects.

Exam Tip

4832-8 ch01.F 7/27/01 9:00 AM Page 10

11Chapter 1 ✦ The Oracle Database

Database Objects
Every RDBMS needs to support a minimum number of database objects in order to

comply with the basic requirements for a relational database. Oracle supports the

minimum and many more.

The basic set of functionality that all RDBMSes must adhere to is defined in a stan-
dard called the ANSI SQL-92 standard. The set of features for the SQL language
that are specified in this standard outline what every relational database must be
able to do. Database vendors, such as Oracle, are free to enhance their product
beyond the standard, and all of them do to provide greater functionality. Oracle
adheres to the SQL-92 standard.

An updated standard, called the SQL-99 standard, includes a richer set of features
and changes to the syntax for some SQL operations. Oracle 8i does not adhere to
the SQL-99 standard, but it is expected that Oracle 9i will.

Oracle’s collection of database objects includes all of those that are needed for it to

be called a relational database (tables, views, constraints, and so on) as well as oth-

ers that go beyond what is required and are included because they provide addi-

tional functionality (packages, object types, synonyms, sequences, and so on). The

full list of database objects that Oracle supports is provided in Table 1-1.

Table 1-1
Database Objects in Oracle 8i

Object Description

Table A collection of columns and rows representing a single entity (for example,
students, courses, instructors, and so on).

Column A single attribute of an entity stored in a table. A column has a name and a
datatype. A table may have, and typically does have, more than one column
as part of its definition.

Row A single instance of an entity in a table including all columns. For example,
a student row stores all information about a single student such as the ID,
name, address, and so on.

Constraint Database objects that are used to enforce simple business rules and
database integrity. Examples of constraints are PRIMARY KEY, FOREIGN KEY,
NOT NULL, and CHECK.

View Views are a logical projection of data from one or more tables as
represented by a SQL statement stored in the database. Views are used to
simplify complex and repetitive SQL statements by assigning those
statements a name in the database.

Continued

In the
Real World

4832-8 ch01.F 7/27/01 9:00 AM Page 11

12 Part I ✦ The Oracle SQL Language

Table 1-1 (continued)

Object Description

Index Indexes are database objects that help speed up retrieval of data by storing
logical pointers to specific key values. By scanning the index, which is
organized in either ascending or descending order according to the key
value, you are able to retrieve a row quicker than by scanning all rows in a
table.

Sequence Sequences enable you to create and increment a counter that can be used
to generate numerical values to be used as primary key values for a table.

Synonym As in the English language, a synonym is another name for an existing
object. Synonyms are used in Oracle as shorthand for objects with long
names, or to make it easier to remember a specific object.

Stored A collection of SQL and PL/SQL statements that perform a specific task such
Procedure as insert a row into a table, update data, and so on.

Trigger A special kind of stored procedure that cannot be invoked manually but
rather are automatically invoked whenever an action is performed on a
table. Triggers are always associated with a table and a corresponding
action such as INSERT, UPDATE, or DELETE.

Functions Functions are stored programs that must return a value. Unlike stored
procedures, which can have parameters passed to them and do not need to
return any value as output, a function must return a value.

Packages Packages are a collection of stored procedures and functions grouped
under a common name. This allows you to logically group all program
elements for a particular part of the database under a single name for
maintenance and performance reasons.

User-Defined User-defined datatypes are database objects that can be used in any table
Datatype or another object definition. Using user-defined datatypes allows you to

ensure consistency between tables and also lets you apply methods (i.e.,
actions that can be performed by the object) as part of the definition.

LOB LOBs are binary large objects used to store video, images, and large
amounts of text. They are defined as a column in a table.

Oracle also includes other objects that are beyond the scope of this book, including

clusters, index-organized tables, partitions, and subpartitions. These objects are

created by the database administrator (DBA) to ensure the efficient storage and

organization of data in the database.

The creation and maintenance of many of the database objects outlined in Table
1-1 is covered in Chapter 7. The creation and management of stored procedures,
triggers, functions, and packages is covered in Chapter 13, “Introduction to Stored
Programs.”

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 12

13Chapter 1 ✦ The Oracle Database

Although Table 1-1 lists almost all database objects available in Oracle, only
your understanding of those covered in Chapters 2 through 12 are tested on
the exam. Information about other objects is primarily included here for
completeness.

Each object in an Oracle database is owned by a user. A user defined in an Oracle

database does not have to own any objects, but those that do are known as schema
users. A schema is a collection of all objects owned by a particular user, including

tables, indexes, and views.

For more information on how to create and maintain users, see Chapter 8.

Tables
The basic element of any database is a table. It is used to store the data and is

defined as a collection of rows and columns. A table always represents a single

entity (for example, students, courses, instructors, cars, customers, orders, and

so on).

The columns in a table are the attributes of the entity that it stores. For example, a

training center must store certain types of information about each student such as

the name of the student, the address, telephone number, email address, and maybe

an enrollment date. All of these things that must be known about each student then

become columns in the Students table. Similarly, the courses a training center

offers also must have a name, description, retail price, and so on. These then

become columns in the Courses table.

Because it is unlikely that a training center would offer only a single course or have

only a single student enrolled, a table has the potential to contain information

about many students or courses. The information about each registered student

becomes a row in the table, as does the information about each offered course. The

table is also sometimes referred to as an entity set — a collection of information

about a set of entities.

The syntax and options for creating tables are outlined in detail in Chapter 7.

Columns and datatypes
Each column in an Oracle table must have at least two properties: It must have a

name unique within the table and a valid datatype. Datatypes in Oracle enable you

to specify what types of data can be stored in the column (for example, numbers,

characters, dates, and BLOBs). The datatypes that are available include the stan-

dard Oracle scalar datatypes listed in Table 1-2 or a user-defined datatype that is

based upon one of the scalar datatypes or another user-defined datatype.

Cross-
Reference

Cross-
Reference

Exam Tip

4832-8 ch01.F 7/27/01 9:00 AM Page 13

14 Part I ✦ The Oracle SQL Language

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
the creation or usage of user-defined datatypes.

Table 1-2
Scalar Datatypes

Datatype Description

VARCHAR2(size) Variable-length character string having a maximum length of 4,000
bytes and a minimum length of 1 byte. You must specify the size for
VARCHAR2.

NVARCHAR2(size) Variable-length character string whose data is stored in the National
Language character set of the database having a maximum length of
4,000 bytes and a minimum length of 1 character (which may be 1 or
2 bytes, depending on the National Character set). You must specify
the size for NVARCHAR2.

NUMBER(p,s) Number having precision p and scale s. The precision p can range from
1 to 38. The scale s can range from –84 to 127. Precision determines
how many numbers total can be stored. Scale determines how many
decimal places are allowed.

LONG Character data of variable length up to 2 gigabytes (GB). Previous
versions of Oracle used LONG datatype columns to support large
character data, but they should no longer be used and are strongly
discouraged. Character large object (CLOB) and NCLOB datatype
columns are the recommended way to store large amounts of
character data.

DATE Valid date range from January 1, 4712 BC to December 31, 9999 AD.

RAW(size) Raw binary data of a miximum size of 2,000 bytes and a minimum size
of 1 byte. You must specify the size for a RAW value. This datatype is
included for backward compatibility and should not be used.

LONG RAW Raw binary data of variable length up to 2GB. This datatype is included
for backward compatibility and should not be used. To store large
amounts of binary data, BLOB datatype columns are recommended.

ROWID Hexadecimal string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudo-column.

UROWID [(size)] Hexadecimal string representing the logical address of a row of an
index-organized table. The optional size is the size of a column of type
UROWID. The maximum size and default is 4,000 bytes.

CHAR(size) Fixed-length character data with a maximum size of 2,000 bytes. The
default and minimum size is 1 byte.

Exam Tip

4832-8 ch01.F 7/27/01 9:00 AM Page 14

15Chapter 1 ✦ The Oracle Database

Datatype Description

NCHAR(size) Fixed-length character data of whose data is stored according to the
National Language character set of the database. The maximum size is
determined by the number of bytes required to store each character,
with an upper limit of 2,000 bytes. The default and minimum size is 1
character or 1 byte, depending on the character set.

CLOB A character large object containing single-byte characters. Both fixed-
width and variable-width character sets are supported, both using the
database character set. The maximum size is 4GB.

NCLOB A character large object containing multibyte characters. Both fixed-
width and variable-width character sets are supported using the
National Language character set of the database. The maximum size
is 4GB.

BLOB A binary large object with a maximum size of 4GB.

BFILE Contains a locator to a large binary file stored outside the database
such as an MP3 file or an image. The maximum size is of the BFILE
object on disk is 4GB.

Notice in Table 1-2 that for character data, you have both NCHAR and CHAR

columns, as well as NVARCHAR2 and VARCHAR2. This is because Oracle introduced

support for National Language character sets in Oracle 8. In essence, this enables

you to store data in CHAR and VARCHAR2 columns with one set of characters

(Western European, for example) and data in NCHAR and NVARCHAR2 columns

with a different set of characters (Japanese, for example). This allows the same

database to house different character data instead of requiring a second database

to hold the same information. In real work environments, the character set of a

database and the National Language character set of a database typically are either

the same or very similar.

This exam does not test your knowledge of how to use National Language charac-
ters or how to create a database to support different National Language character
sets. It is sufficient to be aware of the two different sets of datatypes and which
character set corresponds to which.

Constraints
Constraints are database objects that are used to ensure that data in the database

makes sense. They are used to enforce business rules such as “every student must

be uniquely identified” or “each student must have a first and last name, but not all

students are required to have an email address.” Constraints can also be used to

prevent deletion of data in one table that may be depended upon by data in

another. For example, if you wanted to ensure that an instructor is not deleted from

Exam Tip

4832-8 ch01.F 7/27/01 9:00 AM Page 15

16 Part I ✦ The Oracle SQL Language

the Instructors table when he or she is currently teaching or has taught a course,

you can create a foreign key on the Classes table that points to the Instructors

table’s primary key. After these constraints are defined, an instructor cannot be

deleted if one row in the Classes table has that instructor’s primary key value in a

row in the Classes table.

The types of constraints supported by Oracle 8i are listed in Table 1-3.

Table 1-3
Constraints Supported by Oracle 8i

Constraint Description

NOT NULL This constraint states that a column must have a value at all times. Oracle
supports NULL by default on all columns in a table, which means that a
value for the column does not need to be entered. If a value is required, a
NOT NULL constraint can be defined on the column. For example, to ensure
that all students have a first and last name entered in the Students table,
you can specify the NOT NULL constraint for the FirstName and LastName
columns.

UNIQUE A UNIQUE constraint ensures that the value for a column or combination of
columns in a table is unique or NULL for the entire table. This can be used
to prevent the duplication of data. UNIQUE constraints create or use an
existing index to enforce this uniqueness. A table may have multiple
UNIQUE constraints.

PRIMARY KEY A PRIMARY KEY constraint is the combination of a NOT NULL and UNIQUE
constraint. This means that any column or columns defined for the
PRIMARY KEY constraint ensure that data in the table is UNIQUE and NOT
NULL. Like a UNIQUE constraint, a PRIMARY KEY constraint also either
creates or uses an existing index to enforce the constraint. A table may have
only one PRIMARY KEY constraint.

FOREIGN KEY A FOREIGN KEY constraint states that data in the column or columns of a
table reference a PRIMARY KEY or UNIQUE constraint of another table to
ensure that the value entered is valid. For example, when specifying that a
class is taught by a specific instructor, a FOREIGN KEY on the InstructorID
column of the Classes table can reference the InstructorID of the Instructors
table to ensure that a nonexistent instructor is not assigned to a class.

CHECK CHECK constraints are used to enforce simple business rules, such as an
enrollment date for a class is not after the end date for the class. CHECK
constraints can only reference data in the same row of the table and cannot
perform any kind of lookups in other tables to verify the condition. For the
enforcement of more complex business rules, triggers should be used.

4832-8 ch01.F 7/27/01 9:00 AM Page 16

17Chapter 1 ✦ The Oracle Database

Constraint Description

DEFAULT A DEFAULT is not actually considered a constraint, although it is often
grouped with them. A DEFAULT ensures that when data is inserted into a
table and no value is specified for a column on which a DEFAULT has been
defined, the value specified by the DEFAULT and not NULL is automatically
assigned to the column. DEFAULTs are a way to ensure that a NOT NULL
constraint is not violated when data is not entered into a column through a
user action. It specifies what the value should be, by default.

Constraints are a way to ensure that data in your database is entered to enforce

database consistency in order to satisfy business requirements. Should the busi-

ness rules change, constraints can also be modified without any changes to the

client application accessing the database.

The syntax and options for creating tables with constraints and adding constraints
to existing tables are outlined in detail in Chapter 7.

Sequences
One of the challenges faced by any database developer is ensuring that unique val-

ues are always entered for columns with PRIMARY KEY or UNIQUE constraints.

Oracle supports the use of sequences to help in this task.

Sequences are database objects that generate incremental numeric values that are

always unique for the named sequence. When you need to insert a new value for a

row in a table with a primary key, instead of figuring out what the last number was

and adding one to it, you can define a sequence and assign the next value in the

sequence. An Oracle database can support many sequences simultaneously so that

you can define one for each PRIMARY KEY or UNIQUE column where you need to

generate new values.

The syntax and options for creating sequences and how to use them to ensure
unique values are inserted into the rows of a table are outlined in detail in
Chapter 7.

Views
A view is a database object that enables you to present data from one or more

tables in a single rowset (or recordset). It is created by specifying a name for the

view and assigning that name to the SELECT statement that defines the view. When

a user retrieves data from the view, the view appears as if it were a table. In fact, a

user cannot tell the difference from the output when using an SQL SELECT state-

ment to retrieve data from a view or a table — the output appears the same with

column headings and rows returned as expected.

Cross-
Reference

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 17

18 Part I ✦ The Oracle SQL Language

The syntax of the SELECT statement is discussed in detail in Chapters 2 through 4.

Views are useful to make complex queries easier to write by only having to do it

once. By creating a view whose definition is the complex SQL SELECT statement for

the query, users are now able to SELECT from the view and do not have to repeat

the complex SQL syntax each time they want the same result.

Views are also useful in restricting access to only certain rows or columns in a

database. For example, if you want to create a phone list for your organization with

everyone’s name, email address, phone number, and office location, you can create

a table to hold that information or, preferably, create a view that extracts the neces-

sary columns from the Employees table. In this way, the data is only stored once in

the Employees table, and those columns in the Employees table that users should

not be allowed to see (salary, bonus, last review results, and so on) are not avail-

able through the view.

The syntax and options for creating views are outlined in detail in Chapter 7.

Indexes
Database users always want to be able to retrieve data in the fastest possible way.

In large databases, scanning the entire table to locate a particular value for a row

can take a long time. Indexes can be created to make data retrieval quicker.

Indexes store, by default, the value of the column or columns of a table being

indexed (also known as the key) in the index, as well as a pointer to the physical

location of the row or rows that hold the value (the rowid). By issuing a query

against the table where the index is created, Oracle may decide to scan the index,

which is always organized in either ascending or descending order according to the

key, and when it finds the entries with the required key value, use the correspond-

ing key’s rowid to return only those rows with the appropriate value.

Indexes can also be used to enforce uniqueness in a table. It is possible to create a

unique index on a table (and one is created for you if it does not already exist)

when you specify a UNIQUE or PRIMARY KEY constraint on a table. Oracle uses the

index to ensure that no duplicate value exists.

You should note that indexes can also increase the time it takes to perform inserts

or updates of data on a table on which they are defined. This is because as rows are

inserted or updated in a table, Oracle may have to insert the data as well as create

or update any index keys for that row. Having too many indexes on a table can be

detrimental to the speed of data modifications; not having enough indexes can be

detrimental to data retrieval speed.

The syntax and options for creating and managing indexes are outlined in detail in
Chapter 7.

Cross-
Reference

Cross-
Reference

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 18

19Chapter 1 ✦ The Oracle Database

Synonyms
If you took an English course in school (and most of us had to), you are already

familiar with what a synonym is: a word that means the same as another word, such

as car and automobile. Synonyms in Oracle do the exact same thing: They enable

you to refer to an object in the database by another name.

Synonyms are created for other objects, such as tables and views. They can be

used as a form of shorthand for tables with long names (for example, “Emps” for

the Employees table or “Teachers” for Instructors). They can also be created to

refer to objects that are owned by another user without having to specify the fully

qualified name of the object. They are, in short, a form of shorthand.

The syntax and options for creating and managing synonyms are outlined in detail
in Chapter 7.

User-defined datatypes
Starting with Oracle 8, you are able to create your own user-defined datatypes.

These datatypes must be based on one of the scalar datatypes outlined in Table 1-2,

or on another datatype already created. The reasons for doing so primarily deal

with ensuring consistency across the database.

For example, let’s say you wanted to ensure that address information for students,

instructors, and employees included the following information:

✦ Street address

✦ City

✦ State or province

✦ Postal or zip code

✦ Country

To guarantee that all tables have the same information, you can manually review

that the column structure of each table has the necessary columns of the appropri-

ate datatype and size, or you can create a user-defined datatype AddressType with

these attributes. If you create a user-defined datatype, you can then create an

Address column in each of the required tables whose datatype is the AddressType.

In this way, all tables that have AddressType as the datatype of the Address column

will have a uniform structure.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
how to create and use user-defined datatypes. You only need to be aware that
they exist and why they are useful.

Exam Tip

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 19

20 Part I ✦ The Oracle SQL Language

Program units
Oracle 8i also enables you to create database objects that are actually programs.

The objects that you can create are stored procedures, functions, triggers, and

packages. Each of these objects can be written in either PL/SQL or Java and is used

to manipulate data, enforce business rules, and perform database actions.

The syntax and options for creating stored procedures, functions, triggers, and
packages are outlined in detail in Chapter 13.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
stored programs or how to create or maintain them. However, this information is
useful in creating a working database that can be easily maintained.

Stored procedures
Stored procedures are database objects that contain PL/SQL or Java code. They are

created in the database and may have parameters passed to them (IN parameters),

pass values back to the calling program or statement (OUT parameters), or have

parameters do both (IN OUT parameters). They are used to perform further manip-

ulation of data prior to it being committed to the database or to simplify complex

actions that may involve several tables. Stored procedures can perform any action

that is available through PL/SQL or Java and can be as simple or as complex as

required.

Stored procedures can be invoked from another stored procedure or from the com-

mand line using SQL*Plus. They can also be invoked from many client applications

such as Oracle Forms or Procedure Builder.

User-defined functions
User-defined functions in Oracle are also named blocks of PL/SQL or Java code that

perform a specific action. They too can have IN parameters but do not support OUT

or IN OUT parameters. Functions, however, must return a value, and the datatype of

this value is specified in the function definition.

User-defined functions in Oracle can be used anywhere Oracle’s own functions are

allowed (that is, in any expression), but if the user-defined function operates on

data, it can operate on only one row at a time. This means that you cannot create

user-defined group functions (that is, multi-row or aggregate functions).

Chapter 3, “Using Single- and Multi-Row Functions,” outlines the built-in functions
available in Oracle and how to use them. User-defined functions can be used any-
where single-row functions are allowed in Oracle.

Cross-
Reference

Exam Tip

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 20

21Chapter 1 ✦ The Oracle Database

Triggers
Triggers are a special kind of stored procedure that cannot be invoked interactively

(that is, you cannot call them from another stored procedure, or invoke them from

the SQL*Plus command line or from a client application). Triggers are tied to a spe-

cific table or view, and an action being performed on the data in that table or view.

The actions that can invoke a trigger include INSERT, UPDATE, and DELETE.

When a trigger is defined on a table, and the action for which it is defined takes

place, the code in the trigger (which can be PL/SQL or Java) is run. If the trigger

code runs smoothly and the changes satisfy the trigger conditions, no message is

displayed, and the action is allowed to proceed. If the trigger code has a condition

that is not satisfied, an error is raised in the trigger and returned to the calling pro-

gram, in which case, the statement is rolled back, and the calling program or appli-

cation must take corrective action.

Packages
In many situations, it is quite likely that a series of functions and stored procedures

is run frequently to perform a particular series of actions. For example, when

enrolling a student in a course, you may need to insert data into a number of tables

and perform various verification checks to ensure that the student is eligible to

take the course, that the course has room, that the course is being offered, that an

instructor has been assigned, and so on. Each of these actions can be performed

through a stored procedure, and some user-defined functions may be used in per-

forming these actions. You can create each stored procedure and function by itself,

or you can group them all into a package.

A package makes it easy to reference and load into memory (for speed) all the com-

ponents that make up the package (such as stored procedures, functions, user-

defined datatypes) by using a single name. Furthermore, because a package

consists of a specification (which is the list of procedures and functions that is visi-

ble to anyone looking for information on the package) and a package body (which is

the actual code to be run), it is possible to “hide” some of the code actually run by

creating other procedures or functions that exist only in the package.

For more information on creating packages, and public and private procedures
and functions within a package, refer to Chapter 13.

The Oracle Data Dictionary
As you may well imagine, a database may contain hundreds and even thousands of

objects. Keeping track of all this information is the job of the Oracle data dictio-

nary. A data dictionary in any database contains metadata information. Metadata is

“data about data” or a set of tables and other database objects that store informa-

tion about your own tables and database objects.

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 21

22 Part I ✦ The Oracle SQL Language

The data dictionary in Oracle is a set of tables, called base tables, that contain the

most basic information about user-created database objects. These base tables are

owned by an Oracle user called SYS, which is created when the database itself is

created. The base tables are never accessed directly because their names are cryp-

tic by design to discourage users from querying and modifying them. To make it

easier to access the data dictionary and get information on objects in the database,

a series of views are created during the database creation process. These views are

commonly referred to as data dictionary views.

Oracle has three sets of data dictionary views:

✦ USER_ views: These views enable users to get information on objects that are

in their schema (that is, objects that they have created and own).

✦ ALL_ views: These views enable users to get information on objects that they

own or that they have been given access to. ALL_ views contains a superset of

the information presented in USER_ views and enables users to find out what

other objects they are allowed to reference or manipulate in the database.

✦ DBA_ views: The DBA_ views are designed to be used by the database admin-

istrator (DBA) and provide a full set of information for objects in the database

(that is, any object created by any user). Normal users do not have access to

these views because special privileges are needed to SELECT from them.

A list of USER_ views available in Oracle 8i databases and their structure is
included in Appendix F, “Data Dictionary Views.”

The Oracle data dictionary contains many USER_ views that enable an Oracle user

to have a complete set of information on the objects that they own. Some of the

more common views are listed in Table 1-4.

Table 1-4
Commonly Referenced USER_ Views in Oracle 8i

View Description

USER_CATALOG Lists all tables, sequences, and views in the user’s schema.

USER_CONSTRAINTS Displays information about all constraints created by the user in
any schema.

USER_CONS_COLUMNS Displays information about the columns on which the user has
created constraints.

USER_ERRORS Lists errors for PL/SQL blocks executed by the user. This
includes anonymous PL/SQL blocks as well as stored programs
like procedures, functions, and packages.

USER_INDEXES Lists information on all indexes created by the user on objects
in the database.

Cross-
Reference

4832-8 ch01.F 7/27/01 9:00 AM Page 22

23Chapter 1 ✦ The Oracle Database

View Description

USER_IND_COLUMNS Lists the columns and the position (in a composite index) of
objects in the database on which the user created indexes.

USER_IND_EXPRESSIONS For function-based indexes, lists the column, its position in the
index, and expression applied for the index created by the user.

USER_OBJECTS Displays information about all objects in the user’s schema.

USER_SEGMENTS Displays storage properties of segments created by the user.
Segments may include tables, indexes, materialized views,
partitions, and LOBs.

USER_SEQUENCES Displays information on sequences created in the user’s
schema.

USER_SYNONYMS Lists synonyms in the user’s schema and the objects to which
they refer.

USER_TABLES Displays information on tables created in the user’s schema
and, if an ANALYZE has been performed, statistics for them.

USER_TAB_PRIVS Lists all permissions that were granted on tables to others by
the user, granted on tables by others to the user, or granted on
tables in the user’s schema. This includes tables owned by the
user, those owned by the others to which the user has been
given permissions, or those tables to which the user has
granted others permissions.

USER_TAB_PRIVS_MADE Lists permissions granted to others by the user for tables in the
user’s schema.

USER_TAB_PRIVS_RECD Lists permissions granted to the user by others for tables not in
the user’s schema.

USER_USERS Displays information on the current user such as default and
temporary tablespace settings and password expiration date.

USER_VIEWS Displays information on all views created in the user’s schema.

Key Point Summary
In understanding Oracle’s place in the development of database management sys-

tems and its features and functionality, please keep these points in mind:

✦ Oracle is a database management system that is based upon the relational

model developed by E.F. Codd in 1970. This makes Oracle an RDBMS.

✦ Oracle 8 and later versions also have features supporting the use of objects in

the database. This makes Oracle an ORDBMS.

✦ The data dictionary stores information about all objects created in a database.

4832-8 ch01.F 7/27/01 9:00 AM Page 23

24 Part I ✦ The Oracle SQL Language

✦ USER_, ALL_, and DBA_ views enable you to query the data dictionary in

order to retrieve information about the objects that you own or to which you

have access.

✦ All database objects in Oracle are owned by a user. The collection of all

database objects that a user owns is called a schema.

✦ Tables are database objects that store information about things or entities.

Tables are composed of columns and rows.

✦ Columns must have at least two attributes — a name and a datatype.

✦ Oracle supports columns of character (CHAR, NCHAR), variable character

(VARCHAR2, NVARCHAR2), numeric (NUMBER), date (DATE), large object

(BLOB, CLOB, NCLOB, BFILE, LONG, and LONG RAW), binary (RAW), and

physical location (ROWID, UROWID) datatypes.

✦ Indexes are created to speed data retrieval and to enforce uniqueness of data.

They require additional storage and typically consist of a key value and a

rowid for each row in the table on whose columns they are created.

✦ Constraints are used to enforce business rules and guarantee data integrity.

Constraints supported by Oracle 8i include NOT NULL, PRIMARY KEY,

FOREIGN KEY, UNIQUE, DEFAULT, and CHECK.

✦ A view is a SQL SELECT statement that has been given a name and been cre-

ated in the database. Views are used to hide complexity from the user and

also provide a security mechanism by allowing access to some data in a table

without requiring that access be granted to the whole table.

✦ Sequences are used to generate primary key values and ensure that the values

generated are not repeated.

✦ Synonyms enable you to reference objects in your schema, or another user’s

schema, using a shorthand name.

✦ User-defined datatypes enable you to ensure that data in tables follows a con-

sistent pattern and structure. The use of user-defined datatypes requires that

the SQL syntax used to insert, update, and delete rows is somewhat modified.

✦ Subprograms consist of stored procedures, user-defined functions, triggers,

and packages.

✦ The main difference between a function and a stored procedure is that a func-

tion must return a value and a stored procedure does not have to.

✦ A trigger cannot be called interactively and is invoked when only the action

for which the trigger is created takes place on the table on which the trigger is

defined.

✦ Packages enable you to group stored procedures and functions commonly

used together under a single name. All components of a package are loaded

into memory when any one part of it is accessed, which helps improve

performance.

✦ ✦ ✦

4832-8 ch01.F 7/27/01 9:00 AM Page 24

25

STUDY GUIDE

This section will enhance your understanding of the material presented in this

chapter. Answer the questions and then work through the lab exercise in order to

feel more comfortable with the material.

Assessment Questions
1. Which of the following are valid database datatypes in Oracle 8i? (Choose all

correct answers.)

A. BOOLEAN

B. NUMBER

C. CHAR

D. NBLOB

E BFILE

F. RECORD

2. For which of the following types of information stored in a database is the use

of a sequence appropriate? (Choose two correct answers.)

A. Invoice line item

B. Invoice number

C. Employee name

D. Atomic element

E. Customer identifier

3. Under what conditions may Oracle automatically create an index? (Choose

two correct answers.)

A. A primary key is added to a table.

B. A foreign key is added to a table.

C. A default is added to a column.

D. A check constraint is added to a table.

E. A unique constraint is added to a table

25Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 25

4. If not specified explicitly, which of the following is automatically assumed to

be true for a column in a table? (Choose the best answer.)

A. Datatype is varchar2

B. Default is ‘’

C. NOT NULL

D. NULL

E. The column is named “Col” plus a unique number.

5. How many columns of datatype LONG RAW are allowed in a table? (Choose

the best answer.)

A. 1

B. 5

C. 10

D. 1,000

E. 0

6. What two components do typical Oracle indexes store for each row of a table

being indexed? (Choose two correct answers.)

A. File number

B. ROWID

C. Key value

D. Block number

E. Entire row

7. How much data may be stored in a an external file specified in a column of

datatype BFILE? (Choose the best answer.)

A. 2GB

B. 64KB

C. 4MB

D. 4GB

E. 2TB

8. What is a key benefit to making use of user-defined datatypes in Oracle?

(Choose the best answer.)

A. Ability to rename Oracle built-in datatypes

B. Consistency of similar data structures across multiple tables

C. Polymorphism

D. Inheritance

E. Easier maintenance of databases

26 Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 26

27

9. Which data dictionary views can you query to get information on the tables in

your database? (Choose three correct answers.)

A. USER_SEGMENTS

B. USER_USERS

C. USER_OBJECTS

D. USER_TABLES

E. USER_CONSTRAINTS

10. In which of the following situations would it be beneficial to use a view?

(Choose all correct answers.)

A. You generate a sales report on a weekly basis that joins several tables

and performs calculations to return a single set of data.

B. You want to enable users to see only the retail price of products that

you sell.

C. You need to move data from one table to another.

D. You want to ensure that primary key values are not being repeated.

E. You want to enable users to create their own tables.

Scenario
Your small company is considering implementing an enterprise resource planning

application that uses Oracle so that you are more easily able to manage your busi-

ness as the 200 percent annual growth rate you predict for the next three years

comes into force. Currently you have the following information tracking taking

place:

1. A billing system that stores customer invoice and payment information.

2. A hard copy of all invoices and purchase orders in a filing cabinet.

3. A spreadsheet-based application that tracks receipt of goods from suppliers

and reports on those items received so that they can be matched to purchase

orders.

4. A Microsoft SQL Server-based application that enables sales and customer

service representatives to track communications and interactions with your

clients.

27Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 27

You are looking to consolidate all of this into a single system based on Oracle.

A. How many databases do you currently have in place?

B. How many of those are relational database management systems (RDBMSes)?

C. What is the most important factor in moving all of your data to a single

Oracle-based system?

D. What language will your client applications use to extract and update data in

the Oracle database?

Lab Exercise
This chapter does not have any preset lab exercises. However, because the rest of

the labs require that you have Oracle installed and the database objects outlined in

Appendix E created, this is a good time to install Oracle and run the scripts out-

lined in Appendix E.

Lab 1.1 Setting Up Oracle and Creating Tables
1. The first step to installing Oracle is to acquire the software. Oracle 8.1.6

Enterprise Edition or later is required for the successful completion of the

labs. Although there is no reason why you cannot use Oracle 8i Standard

Edition, or Personal Oracle 8i, Oracle’s “Introduction to Oracle: SQL &

PL/SQL” exam assumes that you have been working with Enterprise Edition.

The operating system may be Windows NT, Windows 2000, or any Unix variant

including Linux. If you do not own the software, you may be able to download

it from Oracle’s Web site by joining the Oracle Technology Network (OTN).

More information is available on Oracle’s Web site at

http://otn.oracle.com.

2. Once you have acquired the software, read the documentation that came with

it. If you did not get paper documentation, view any online documentation for

information on the requirements to successfully install it on your computer.

3. Make sure that your computer meets the minimum system requirements out-

lined in Appendix A of this book, “What’s on the CD-ROM.” As a minimum,

your computer should be a Pentium 266 or better with 128MB of RAM, a

CD-ROM drive, an SVGA video card, and a 10GB hard disk with a minimum of

2GB free disk space.

4. Install the Oracle software as per the instructions provided by Oracle. When

running the Oracle Universal Installer to install the software and asked to cre-

ate a starter database, have the Universal Installer create it with the default

settings on the hard disk with the most free space.

5. You may need to restart your computer before proceeding. If you are not sure,

restart your computer anyway.

28 Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 28

29

6. Create the tables and other structures required for the rest of this book by fol-

lowing the directions provided in Appendix E. If you want to create the Oracle

components on a drive other than C, or you are not running Windows NT or

Windows 2000, you must change the scripts to point to the new location or to

properly create the files (for example, for Linux, change the backslash (\) to a

forward slash (/) for directory paths.)

Answers to Chapter Questions

Chapter Pre-Test
1. A relational database management system (RDBMS) is based upon the rela-

tional model developed by E.F. Codd in 1970. This model states that all data is

a collection of relations (tables) with only logic links between them. This

means that to find data in one table related to data in another table, you do

not need to know the physical location of data in the each table. Only the key

value that is common to both, regardless of the physical location of the data,

is needed to find the data in the other table. This is different from flat file, net-

work, or hierarchical systems where the physical location of the related data

must be known.

2. Every column must have a name that is unique within the table, and a

datatype, and size. Without these, a column definition is not complete.

3. You specify a NOT NULL constraint for a column when you want to ensure

that data is always entered into the column whenever a row is inserted or

updated. NOT NULL specifies that the value of the column must always be

known.

4. Oracle is an Object Relational Database Management System because it sup-

ports object enhancement to the relational model, including the ability to cre-

ate user-defined datatypes and support for large objects. Oracle supports

large objects in columns of BLOB, NCLOB, CLOB, and BFILE datatypes.

5. A PRIMARY KEY constraint specifies that data in the column or columns is

unique within the table and cannot be null. A UNIQUE constraint specifies that

data in the column or columns is unique within the table or NULL. Both a

PRIMARY KEY and UNIQUE constraint creates indexes to enforce the unique-

ness, if they do not already exist. You are allowed to have only one PRIMARY

KEY constraint on a table but may have any number of UNIQUE constraints.

6. You may define as many FOREIGN KEY constraints on a table as makes sense

to enforce your business rules. There is no maximum, but you are limited to

1,000 columns per table and 255 indexes per table. These may become limita-

tions before the number of FOREIGN KEYs on the table.

29Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 29

7. Sequences enable you to ensure that PRIMARY KEY or UNIQUE constraints

always have a numerical incremental value assigned to the columns in the

appropriate table, regardless of the number of users in a database. This pre-

vents you from having to manually keep track of the next incremental value

and enables you to have Oracle do it for you.

8. In Oracle you can create four types of stored subprograms. They are: stored

procedures, triggers, user-defined functions, and packages. Packages are con-

sidered a fourth type of subprogram but really are made up of stored proce-

dures or user-define functions.

You can also create user-defined datatypes, which may have methods defined

for them, and these may also be considered subprograms, although they are

really object-oriented features.

9. Views enable you to take complex SQL statements and give them a logical

name in the database. In this way, instead of typing the whole statement

again, when you select from the view, the SELECT statement defining the view

is run.

Views also enable you to hide complexity from the user by having a multi-

table join assigned a logical name. Furthermore, you can also enable users to

have access to parts of the database that they would not have permission to

by creating a view that selects only those columns that a user should be

allowed to see, such as an employee’s name, email address, and phone num-

ber for a phone list based on the Employees table.

10. Indexes have a positive effect on database queries — they can speed them up

and return the data to the user much quicker than by scanning the table as a

whole to find the relevant data. Indexes have a negative effect on data updates

because they require that both the data and index entries be updated when-

ever a new row is inserted into a table, a key value is updated, or a row is

deleted from the table. The ideal for indexes is to have enough of them to

speed up queries but not too many to slow down data changes too much.

11. A constraint is used to enforce simple business rules, such as each student

must have a first and last name, and to ensure relational integrity. This way,

when using constraints, it is not possible for a user to delete a row from a par-

ent table if corresponding child table rows exist, or to enter a duplicate stu-

dent ID if a PRIMARY KEY constraint exists on a table.

Triggers are a stored subprogram written in PL/SQL or Java that enable you to

include conditional logic and perform checking of more sophisticated busi-

ness rules, such as a student may not be enrolled in two courses that run at

the same time, or an instructor cannot teach two courses without at least a

30-minute break between them.

30 Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 30

31

Assessment Questions
1. B, C, E — Valid datatypes for columns in Oracle 8i include CHAR, NCHAR,

VARCHAR2, NVARCHAR2, NUMBER, DATE, ROWID, UROWID, BLOB, BFILE,

CLOB, NCLOB, LONG, LONG RAW, and RAW. RECORD and BOOLEAN are valid

datatypes for variables in PL/SQL but cannot be used as a datatype for a col-

umn in the database. There is no NBLOB datatype.

2. B, E — Because invoice number and customer ID are unique ways to identify a

specific invoice or customer, they are good candidates for the use of a

sequence. Because most databases are accessed by several users at the same

time, the use of sequences enables the developer to ensure that each new

invoice or customer added is assigned an incremental numeric value. That

way, they eliminate the need to manually keep track of this information in the

application.

Although at first glance, an invoice line item might also seem an appropriate

candidate for the use of a sequence, because it is most likely that the line item

number would be reset to 1 for each invoice created, it means that a sequence

would have to be created for each invoice — an almost impossible task to

manage.

Employee name requires a character datatype, and sequences must be numer-

ical, so one cannot be used here. Atomic elements already have a unique iden-

tifier — their symbol and atomic weight — so a sequence is not appropriate

here.

3. A, E — Oracle automatically creates an index to correspond to the definition

of a PRIMARY KEY or UNIQUE constraint, if an index does not already exist

when the constraint is created. When any other type of constraint is added to

a table, including a FOREIGN KEY constraint, no indexes are created.

4. D — When defining a column of a table, you must specify the column name,

datatype, and size. Failing to do so causes Oracle to generate an error, and the

table creation fails. However, if you do not specify NULL or NOT NULL, Oracle

always assumes that a column should support NULLs. Therefore, it is always a

good idea to explicitly specify whether or not a column should support NULLs

so that you are able to determine it by looking at the table create statement.

Furthermore, not all RDBMSes support NULLs by default, so if you want your

table definition to be portable between systems, you should also explicitly

specify whether or not a column supports NULLs.

5. A — Oracle supports the use of columns of LONG and LONG RAW datatypes in

Oracle 8i for backward compatibility only. This means that the rules that are

applied in previous versions of Oracle for these datatypes still apply. For this

reason, you are allowed to create a table with only one column of LONG or

LONG RAW datatype. Furthermore, the table in which this type of column is

being defined cannot have any columns based upon objects (that is, LOBs,

VARRAYs, nested tables, or user-defined datatypes).

31Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 31

6. B, C — Oracle’s default index type of B*Tree always stores the value (that is,

the key value) found in the table for the column or columns being indexed and

the location of a row (that is, the rowid) that contains the value being

indexed. This ensures that when a user performs a query where the key value

found in the index is used, Oracle can scan the index and retrieve the rowids

of all rows that have the value and then very quickly return the rest of the

data for the rows by going directly to the location specified in the rowid. The

rowid contains the file number, block number, and slot for the row, which is

its physical location on disk.

7. C — A BFILE datatype can store up to 4GB of information. This is the same as

any other datatype supporting large objects such as BLOB, CLOB, and NCLOB.

8. B — When creating a user-defined datatype and using it in your database, you

are ensuring that whenever that user-defined datatype is used in the defini-

tion of a table, it will be the same in every case. This enables you to ensure

consistency of similar data structures across multiple tables. If you answered

E, you should get partial points as well because, in the long run, the database

will be easier to maintain.

9. A, C, D — The USER_SEGMENTS view stores information about the physical

storage of a table including the tablespace it is created on, and other storage

parameters specified at creation time or modified since then. The

USER_OBJECTS view stores information about all objects that a user owns,

including tables, indexes, and user-defined datatypes. The USER_TABLES view

stores information about the table including storage parameters and statisti-

cal information populated through the ANALYZE command. The USER_

CONSTRAINTS views has information about constraints in the database,

including the table on which the constraint is defined, so answering E gives

you partial points because the main purpose of the view is not to provide

information on the table but the constraint. The USER_USERS view has infor-

mation about the currently logged in user and does not contain any informa-

tion about tables.

10. A, B — Generating a sales report on a regular basis using a complex query is a

good candidate for a view because you are able to write the SQL statement

once to define the view and then SELECT from the view to get the results.

Should the requirement change, you only need to redefine the view to match

the new criteria. Any application using the view, assuming it returns the same

number and types of columns, does not have to be changed.

Projecting only the columns you want, such as enabling customers to see only

the retail price for a product, is also a good candidate for a view, because you

do not need to assign permissions to the underlying tables in order for users

to see the information they need. This helps in securing your data.

Moving data from one table to another cannot be done through a view.

Enabling users to create their own tables requires you to assign them the per-

missions to do so. Ensuring that primary key values are unique for a table is a

good candidate for the use of a sequence.

32 Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 32

33

Scenario
A. Based upon the description presented, you currently have four database man-

agement systems in place. This includes the billing system holding customer

invoice and payment information, the spreadsheet-based application tracking

receipt of goods from suppliers, the Microsoft SQL Server-based customer

relationship management system, and the filing cabinets with the hard copies

of the invoices and purchase orders. It is important to remember that filing

cabinets, and even shoeboxes, are database management systems because

they allow for the quick retrieval and organized storage of data.

B. Only one of the systems that you currently have is a relational database man-

agement system (RDBMS). This is the customer relationship management

application that is using Microsoft SQL Server. This will be replaced by your

Oracle-based enterprise resource planning software.

C. The most important factor in moving your data to an Oracle-based system

is the design of the tables and other database objects that are needed to

hold the information. In designing a database, the business requirements

must be mapped to a logical structure. In performing this task, you should not

rush its completion, and you should ensure that all requirements are met.

D. RDBMSes, such as Oracle, use the Structured Query Language (SQL) to

retrieve and change data. This is the language that you will use once you

migrate to Oracle. You can also make use of PL/SQL to write subprograms and

client-side application logic.

33Chapter 1 ✦ Study Guide

4832-8 ch01.F 7/27/01 9:00 AM Page 33

4832-8 ch01.F 7/27/01 9:00 AM Page 34

Retrieving Data
Using Basic SQL
Statements

EXAM OBJECTIVES

✦ Writing basic SQL statements

• List the capabilities of SQL SELECT statements

• Execute a basic SELECT statement

• Differentiate between SQL statements and SQL*Plus

statements

✦ Restricting and sorting data

• Limit the rows retrieved by a query

• Sort the rows retrieved by a query

22C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch02.F 7/27/01 9:00 AM Page 35

36 Part I ✦ The Oracle SQL Language

CHAPTER PRE-TEST
1. What two syntax elements are required in all SQL queries?

2. How do you find only one occurrence of a repeating value in a table?

3. Which is evaluated first, the multiplication or addition operator?

4. What happens if you subtract two date values from each other?

5. If you have a column that stores order dates, how do you query the
database for orders placed in a quarter?

6. How do you find rows that are not in a range?

7. How can you override the order of precedence for any SQL operation?

8. What happens if you have a NULL in an arithmetic expression?

9. What operator do you use to find a NULL field in a WHERE clause?

10. What is the default column name for any column in a SELECT list that
is derived from an expression?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch02.F 7/27/01 9:00 AM Page 36

37Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

This chapter examines one the most important aspects of the Structured Query

Language (SQL) — the SELECT statement, or SQL query. Having a relational

database isn’t useful if you cannot effectively access the data it contains. The basic

SQL query is how you access your data. If you do not understand the SELECT state-

ment and all of its options, you cannot retrieve your data. The basic SELECT state-

ment has a number of key clauses and operators, and in order to take full

advantage of Oracle’s querying capabilities, you must completely understand these

language elements. In this chapter, you will learn how to use the various elements

of the SELECT statement to access data from one or more tables and to limit your

queries so that they return only the exact data that you require. You will also exam-

ine the various functions in Oracle that enable you to manipulate and format data.

Finally, you will look at ways in which you can use SQL queries to derive summary

information from your data using grouping functions.

As a Relational Database Management System (RDBMS), the Oracle engine controls

all access to the database. Any activity that deals with data must be done through

SQL. In order to work effectively with data in the database, you must have a full

understanding of how Oracle’s implementation of SQL works. The primary focus of

this chapter is the basic query language of SQL. Queries in SQL all start with the

SELECT statement. A number of key clauses and operators make up the basic

SELECT statement, and for the exam, you will be expected to be familiar with all of

them. Before we look at the basic SELECT statement in SQL, however, let’s first

examine the various elements that make up the SQL language.

A Quick SQL Overview
In Chapter 1, we introduce the concept of the Relational Database Management

System (RDBMS). The RDBMS controls all access to the data contained in the

database. When you want to change the storage structure of the database (for

example, creating or modifying a table), adding or modify data, or just retrieving

data from the database, you must do so using Oracle’s implementation of SQL. Even

when you are connecting to the database through a client application (such as an

Oracle Forms application), you still send SQL statements to the RDBMS to perform

actions on the data.

Oracle’s implementation of SQL is based on the entry-level American National

Standards Institute (ANSI) SQL standard. However, as is the case with most com-

mercial database systems, Oracle has modified the ANSI standard (often referred to

as “ANSI -92”) to fit the needs of its internal systems. As a result, Oracle’s SQL is

unique, and any script written for an Oracle database may not run correctly on any

other database system. Therefore, if you are going to be working with Oracle, you

need to learn its rules.

SQL can be broken down into three basic sections or “languages”: Data Definition

Language (DDL), Data Control Language (DCL), and the Data Manipulation

Language (DML).

4832-8 ch02.F 7/27/01 9:00 AM Page 37

38 Part I ✦ The Oracle SQL Language

Data Definition Language statements
DDL statements do not deal with data directly, rather they deal with the objects

that hold and provide access to data. When you want to add, modify, or remove any

object in the database schema (such as a table, a view, or an index), you must do so

using a DDL statement. DDL includes, among others, all CREATE, ALTER, and DROP

statements. Database creation begins with DDL statements; they build the entire

framework of tables and constraints that will become the structure of the database.

Before data can be added, you must have some place to add it. Your users, nor-

mally, will not issue DDL statements; your database administrators (DBAs) and

database developers will perform them.

DDL statements are discussed in detail in Chapter 7, “Creating and Managing
Oracle Database Objects.”

Data Control Language statements
Oracle databases often contain sensitive information, and controlling access to

data is essential. Database access is controlled by the Data Control Language. Once

a login account is created for a user, that user can be given privileges on the

database. Privileges are given using the GRANT statement and is taken away using

the REVOKE statement. These two statements form the core of the DCL.

Two types of privileges can be granted and revoked: system and object . System

privileges enable a user to perform action on the database. System privileges are

required to perform such activities as creating a table or index, or backing up the

database.

Object privileges are applied to particular objects in the database. The privileges

available may change depending on the type of object. For example, it is possible to

grant a user the SELECT, INSERT, or UPDATE privilege on a table or view, but one of

the EXECUTE privileges can be granted on a stored procedure. DCL statements are,

for the most part, the job of the DBA. It is his or her job to create user accounts for

every user and to assign those accounts the correct permissions.

DCL statements are covered in Chapter 8, “Configuring Security in Oracle
Databases.”

Data Manipulation Language statements
DML statements are the level of the SQL language that deals directly with data. Any

manipulation or retrieval of data requires a DML statement. The key elements of the

DML are SELECT, INSERT, UPDATE, and DELETE. These commands enable you to

retrieve data from a table, add new data to a table, modify existing data, and delete

rows from a table.

Cross-
Reference

Cross-
Reference

4832-8 ch02.F 7/27/01 9:00 AM Page 38

39Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

An additional sublanguage is contained within the DML — the transactional control

language (COMMIT, ROLLBACK, and SAVEPOINT). These language elements help

control the execution of DML statements by grouping them together into

transactions.

Transactions are one or more physical operations that are logically grouped into a
single operation called a logical unit of work.

Transactions and DML statements are discussed in Chapter 5, “Adding, Updating,
and Deleting Data.”

DML statements are the most common type of interaction with the database. It is

the level of SQL that your users will be working in almost exclusively. The DML

includes the SELECT statement, and this is where we will begin this chapter.

General rules and conventions for all SQL statements
When you write any SQL statement, you should be aware of some general rules that

apply to all of them:

✦ SQL commands and keywords cannot be abbreviated. If you attempt to trun-

cate any SQL keyword, you will receive a syntax error.

✦ SQL statements are not case sensitive. In other words, you can use any mix-

ture of uppercase and lowercase characters in your SQL statements and get

the same results.

Oracle is case sensitive in its treatment of data. If you refer to a literal string value
(that is, any value enclosed in single quotes), you must use the correct case. For
example, Oracle treats the names “McLean”, “Mclean”, and “mclean” as three dif-
ferent values. This topic is discussed in detail later in this chapter.

Oracle also ignores indents, tabs, and carriage returns in SQL statements. This

means that you can format the text of your code to make it more readable. Consider

the following two scripts:

select instructorID, lastname, firstname, address1, address2,
city, state, country, postalcode from instructors where
(firstname, lastname) in (select firstname, lastname from
students);

or

SELECT InstructorID, LastName, FirstName, Address1
Address2, City, State, PostalCode

FROM instructors
WHERE (Firstname, LastName) IN (SELECT FirstName, LastName

FROM students);

Tip

Cross-
Reference

Tip

4832-8 ch02.F 7/27/01 9:00 AM Page 39

40 Part I ✦ The Oracle SQL Language

To Oracle, both of these examples appear the same. It will parse and execute both

statements exactly the same. However, the second query, from a user perspective,

is clearly easier to read (and by extension, easier to edit and correct). The standard

convention for SQL statements is to place keywords, functions, and operators in

capital letters and to place object names (such as table and column names) in low-

ercase. It is also common to place the key elements on the left of the script and

indent other elements to the right (as you can see in the second query). These are,

of course, only guidelines. You will note, for example, that the second query capital-

izes the initial character of all column names. The code was written this way to fol-

low the manner in which these column names are expressed in the database. It also

makes the point that rules are made to be broken! Ultimately, you must find a for-

mat you are comfortable with that provides legibility and clarity.

The Basic SELECT Statement
✦ List the capabilities of SQL SELECT statements

✦ Execute a basic SELECT statement

All SQL queries begin with the SELECT statement. This statement enables you to

retrieve all data or only certain columns and rows in a table. It can also return data

from more than one table. It enables you not only to retrieve data, but also to per-

form calculations on existing data and return the results of these calculations. The

basic SELECT statement requires two elements: the SELECT list and a FROM clause.

These clauses specify what columns to retrieve and from where. Here is the basic

format:

SELECT [DISTINCT] {* | column,[expression], . . . }
FROM table;

Objective

SQL*PLus vs. SQL

SQL*Plus is a SQL editor tool that ships with Oracle. It allows you to submit SQL statements
against the database. SQL*Plus is not a language, but it contains its own commands.
SQL*Plus commands are used primarily to format output and to manipulate statements
within the editor.

Oracle is not able to process SQL*Plus commands. When a script is executed that contains
both SQL and SQL*Plus elements, SQL*Plus strips away the SQL*Plus commands and sends
the SQL statements to Oracle. When the result set is returned, SQL*Plus applies its com-
mands and returns the modified output to the user.

SQL*Plus commands can be abbreviated, but SQL commands cannot. For example, if you
want to edit a script in SQL*Plus, you can use the command EDIT or simply type ED.

For more information on SQL*Plus see Chapter 6, “The SQL*Plus Environment.”

4832-8 ch02.F 7/27/01 9:00 AM Page 40

41Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

The select list can contain either the asterisk or a list of column names or expres-

sions. The select list dictates what is returned by the query. The asterisk is simply a

shorthand, meaning all columns. For example, when you want to see all columns in

the Courses table, you can use either of the following queries:

SELECT *
FROM Courses;

or

SELECT CourseNumber, CourseName, ReplacesCourse, Description,
RetailPrice
FROM Courses;

In both examples, the query returns all rows and all columns from the Courses

table. One query, however, clearly takes a lot less typing! Note that all of the

columns must be separated by commas; however, make sure that you do not put a

comma after the last column. When the last column is followed by a comma, it indi-

cates to Oracle that there is another column in the list to consider, and you will

receive the following error:

ERROR at line 2:
ORA-00936: missing expression

The select list does not have to return all columns and does not have to follow the

order of the columns in the table. For example, if you want only the retail price and

name of a course, you can execute the following query:

SELECT RetailPrice, CourseName
FROM Courses;

Oracle returns all of the columns in the select list in the order they are referenced.

You must always separate columns with a comma. You can also reference columns

in an order that differs from the order in the data dictionary for the table.

Arithmetic operations
The select list is not limited to returning values that are actually stored in columns.

It is also possible to return values that are derived from data that is stored in the

tables. You may want to combine values, project changes in prices or salaries, and

create “what if” projections. One way is to use arithmetic operations. The four

arithmetic operators in SQL are listed in Table 2-1.

4832-8 ch02.F 7/27/01 9:00 AM Page 41

42 Part I ✦ The Oracle SQL Language

Table 2-1
Arithmetic Operators in Oracle

Operation Operator

Multiply *

Divide /

Add +

Subtract -

You can use the operators in the select list with either literal values or columns to
derive values for the select list. For example, suppose you want to generate a list
that shows how much each instructor charges for a five-day course. You can use
the following query:

SELECT InstructorID, PerDiemCost, PerDiemCost * 5
FROM Instructors;

which returns the following result set:

INSTRUCTORID PERDIEMCOST PERDIEMCOST*5
------------ ----------- -------------

300 500 2500
310 450 2250
100 600 3000
110 500 2500
200 750 3750
210 400 2000

The instructors table doesn’t contain a PerDiemCost*5 column. This column has
been generated by Oracle and is returned in the result set as if it really existed. You
do not need to use literal values with arithmetic operators. For example, when
instructors must travel to teach a course, their actual per diem cost includes both
their Cost and their Expenses. If you want to see the actual per diem for an instruc-
tor who is on the road, you can use the following query:

SELECT InstructorID, PerDiemCost + PerDiemExpenses
FROM Instructors;

The result set for this query looks like this:

INSTRUCTORID PERDIEMCOST+PERDIEMEXPENSES
------------ ---------------------------

300 700
310 650
100 800
110 700
200 1000
210

4832-8 ch02.F 7/27/01 9:00 AM Page 42

43Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

Note that although you have referenced two columns, the arithmetic operation

returns only one row of data.

Using arithmetic operators with date values
Oracle also enables you to perform arithmetic operations on data values. When you

add or subtract a number from a date, you return a data value that is that many

days before or after the date that you are dealing with. For example, suppose you

want to calculate the date when a course ends. The ScheduleClasses table contains

a StartDate column and a DaysDuration numeric column but does not store an end

date. You can, however, generate this date using an arithmetic operator:

SELECT CourseNumber, StartDate, DaysDuration, StartDate +
DaysDuration
FROM ScheduledClasses;

COURSENUMBER STARTDATE DAYSDURATION STARTDATE + DAYSDURATION
------------ --------- ------------ -----------------------

100 06-JAN-01 4 10-JAN-01
200 13-JAN-01 5 18-JAN-01
100 14-FEB-01 4 18-FEB-01

As you can see, the final column accurately represents the projected end date of

each course based on the number of days. This works because Oracle stores date

data in an internal numeric format that counts the number of days between a cer-

tain begin and end point. When you subtract a number from a date, Oracle simply

adds or subtracts that number from its internal numeric value and recalculates

the date.

You cannot use the multiplication or division operators with dates. Nor can you

add two dates together. However, it is possible to subtract two date values. When

you subtract two dates, Oracle provides a numeric value that is the difference (in

days) between the two dates. If you take the STARTDATE and STARTDATE +

DAYSDURATION columns from the previous example, you can reconstruct the

DAYSDURATION values:

SELECT CourseNumber, (StartDate + DaysDuration) - StartDate
FROM ScheduledClasses

COURSENUMBER (STARTDATE+DAYSDURATION)-STARTDATE
------------ ----------------------------------

100 4
200 5
100 4

If you alter the order of the two values in the equation so that the earlier date is ref-

erenced first, Oracle gives you a negative integer with the same numeric value (that

is, –4, –5, and –4).

4832-8 ch02.F 7/27/01 9:00 AM Page 43

44 Part I ✦ The Oracle SQL Language

Understanding order of precedence with multiple arithmetic operators
At times you want to use more than one arithmetic operator in a select list. In order

to work with multiple operators effectively, you must understand the order of

precedence for these operators. The order of precedence is, simply, the order in

which Oracle applies these operators. The order of precedence is governed by

three rules:

✦ The multiplication and division operators have the same level of precedence

and execute before addition and subtraction operators.

✦ Oracle processes all operators with the same level of precedence from left to

right.

✦ You can override the rules of precedence with the use of parentheses.

You probably first came across these rules in fourth or fifth grade. The rules have

not changed since elementary school; however, if you forget them in your SELECT

statements, you may end up with inaccurate data.

For example, in the previous section you calculated the price that an instructor

charges for a week and how much an instructor on the road charges. Suppose you

want to know how much an instructor charges for one week on the road. If you

used the following query to obtain this information, you would receive incorrect

data:

SELECT InstructorID, PerDiemCost + PerDiemExpenses * 5
FROM Instructors;

With this query, Oracle executes the multiplication operation first and then the

addition operation. In other words, you get each instructor’s per diem cost added

to five times the per diem expense. To correct the query, you have to use parenthe-

ses. Applying the third rule governing the order of precedence, parentheses over-

ride the natural order of precedence. To obtain the correct information, you use the

following query:

SELECT InstructorID, (PerDiemCost + PerDiemExpenses) * 5
FROM Instructors;

In this query, the addition operation takes place before the multiplication and pro-

duces the values that you require.

You can use your arithmetic operations to derive complex calculations. However, as

the complexity increases, you must be more aware of the rules of precedence.

Consider the following query:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) –
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100

FROM Instructors

4832-8 ch02.F 7/27/01 9:00 AM Page 44

45Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

This query calculates the difference between the cost of an instructor with and

without travel expenses for a week and then divides that amount by the cost of an

instructor teaching on the road for a week. It then multiplies that amount by 100,

providing the percentage increase of cost when the instructor is teaching a course

that requires travel. As you can see, it is possible to nest expressions in parenthe-

ses. SQL processes the innermost expressions in parentheses first and then passes

those values out to evaluate the outermost expressions. If you are missing any

opening or closing parentheses, Oracle returns an error. For example, if you omit

the final closing parenthesis on the preceding query, you receive the following

error:

ERROR at line 2:
ORA-00907: missing right parenthesis

When writing queries like the preceding, it is best to start with the innermost

expressions and work out. This makes it easier to keep your parentheses in the

right order and to make sure you do not forget any closing parentheses.

Concatenating columns
In SQL it is also possible to use expressions on character data. You may want to dis-

play data stored in multiple columns as a single value in the result set. For example,

first and last names are often stored in separate columns, but you may want a sin-

gle “name” value that contains both the first and last name. This is done using the

concatenation operator. In Oracle’s implementation of SQL, the concatenation oper-

ator is represented by the double pipe (||) character. The pipe character is the ver-

tical line above the backslash key (Shift+\). With this operator, it is possible to join

together two or more columns into a single string expression. For example, when

you execute the following query:

SELECT FirstName || LastName
FROM Instructors;

you receive the following output:

FIRSTNAME||LASTNAME
--
MichaelHarrison
SusanKeele
DavidUngar
KyleJamieson
LisaCross
GeoffWilliams

6 rows selected.

Notice that only one column is returned and that the two columns are joined

together without any intervening spaces. If you want a space between the two val-

ues, you must include a string-literal in the select list. A string-literal is simply a text

string that is repeated for reach row in the result set. You include a string-literal by

4832-8 ch02.F 7/27/01 9:00 AM Page 45

46 Part I ✦ The Oracle SQL Language

including the text in the select list enclosed in single quotes. To place a space

between the first and last name in the previous example, you concatenate a blank

space between the two columns:

SELECT FirstName || ‘ ‘ || LastName
FROM Instructors;

The result set is as follows:

FIRSTNAME|| ‘ ‘ || LASTNAME
--
Michael Harrison
Susan Keele
David Ungar
Kyle Jamieson
Lisa Cross
Geoff Williams

6 rows selected.

You can place any string value in the select list, and it is repeated in every line. For

example, if you want to generate a list of products each instructor teaches, you can

use the following statement:

SELECT FirstName || ‘ ‘ || LastName || ‘ teaches ‘ ||
InstructorType

FROM Instructors;

The result set for this query looks like this:

FIRSTNAME||’’||LASTNAME||’TEACHES’||INSTRUCTORTYPE
--
Michael Harrison teaches ORACLE
Susan Keele teaches UNIX
David Ungar teaches ORACLE
Kyle Jamieson teaches ORACLE
Lisa Cross teaches UNIX
Geoff Williams teaches UNIX

6 rows selected.

Because a space is embedded on either side of the text string “teaches”, the spaces

are included in the output. You can combine any number of columns and text

strings in this manner. The output of the concatenation is always a string value. If

Oracle encounters nonstring data, it implicitly converts this data into a character

datatype. Consider this query:

SELECT ‘Instructor ‘ || InstructorID || ‘ charges $’||
PerDiemCost

FROM Instructors;

4832-8 ch02.F 7/27/01 9:00 AM Page 46

47Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

In this case, the PerDiemCost column has a number datatype. However, Oracle con-

verts the values in this column to a character datatype before including them in the

result set. The result set is as follows:

‘INSTRUCTOR’||INSTRUCTORID||’CHARGES$’||PERDIEMCOST
--
Instructor 300 charges $500
Instructor 310 charges $450
Instructor 100 charges $600
Instructor 110 charges $500
Instructor 200 charges $750
Instructor 210 charges $400

6 rows selected.

This works fine as long as Oracle is able to make the conversion. However, consider

this query:

SELECT ‘Instructor ‘ || InstructorID || ‘ charges $’||
PerDiemCost + PerDiemExpenses

FROM Instructors;

When you execute this query, you receive this error:

SELECT ‘Instructor ‘ || InstructorID || ‘ charges $’||
*

ERROR at line 1:
ORA-01722: invalid number

The problem with this query is that it has been asked to execute both an arithmetic

operation and a string operation at the same time. To correct this, you must explic-

itly separate the two operations. In this case, you can solve the problem by placing

parentheses around the arithmetic expression.

SELECT ‘Instructor ‘ || InstructorID || ‘ charges $’||
(PerDiemCost + PerDiemExpenses)

FROM Instructors;

This forces Oracle to complete this operation first and then convert the resulting

value to a string. Sometimes you are forced to explicitly convert values using a con-

version function.

Conversion and other functions are covered in Chapter 3, “Using Single- and Multi-
Row Functions.”

Adding column aliases
In the previous examples, you may have noticed that when you execute a SELECT

statement, the column headings in the result set are the same as in the select list.

Cross-
Reference

4832-8 ch02.F 7/27/01 9:00 AM Page 47

48 Part I ✦ The Oracle SQL Language

This is fine when you are selecting column data, but it becomes more difficult when

you use arithmetic or concatenation operations. Consider one of the previous

examples:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) –
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100

FROM Instructors;

The output for this query looks something like this:

INSTRUCTORID

((((PERDIEMCOST+PERDIEMEXPENSES)*5)-
(PERDIEMCOST*5))/((PERDIEMCOST+PERDIEMEXPENSES)*5))*100
--

300

28.571429

310

30.769231

100

25

110

28.571429

200

25

210

6 rows selected.

Clearly this does not make for very readable output. SQL, however, provides a bet-

ter way of handling column names through the use of aliases. An alias is simply a

column-heading name that replaces the value from the select list.

4832-8 ch02.F 7/27/01 9:00 AM Page 48

49Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

There are two ways to add an alias to SQL SELECT statement. The first way is sim-

ply to place the alias after the column name in the select list. The alias and column

name must be separated by a space. Make sure not to put a comma between the

alias and column names. If you do, Oracle will interpret the alias as another column

name. The second way to add an alias is to include the AS operator. Although the

AS keyword is not necessary, it makes the code easier to read and should be

included. When you rewrite the previous example with an alias, it looks like this:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) –
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100 Price_difference;

FROM Instructors

When you use the AS operator, it looks like this:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) –
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100 AS Price_difference;

FROM Instructors

In both cases, the output of this query looks like this:

INSTRUCTORID PRICE_DIFFERENCE
------------ ----------------

300 28.571429
310 30.769231
100 25
110 28.571429
200 25
210

6 rows selected.

When you compare this to the previous output example, you can clearly see the

advantage of using an alias. You will also notice that the second query is easier to

read because it is immediately clear in this case what the value Price_difference

represents in the query.

Aliases can also be used with concatenation expressions. For example, the follow-

ing statement:

SELECT FirstName || ‘ ‘ || LastName || ‘ teaches ‘ ||
InstructorType AS Instructors_by_Course

FROM Instructors;

4832-8 ch02.F 7/27/01 9:00 AM Page 49

50 Part I ✦ The Oracle SQL Language

returns the following result set:

INSTRUCTORS_BY_COURSE
--
Michael Harrison teaches ORACLE
Susan Keele teaches UNIX
David Ungar teaches ORACLE
Kyle Jamieson teaches ORACLE
Lisa Cross teaches UNIX
Geoff Williams teaches UNIX

6 rows selected.

In all of these examples, the alias name cannot include an embedded space. The

reason is that when Oracle parses the query, it interprets the first value after the

column name as the alias and then does not know what to do with the second ele-

ment. For example, the following query:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) -
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100 AS Price difference

FROM Instructors;

returns the following error:

ERROR at line 2:
ORA-00923: FROM keyword not found where expected

In this query, Oracle treats the equation as the column source, the word “Price” as

the alias name, and then, because there are no more commas, expects the FROM

clause. However, instead it finds the word “difference”. This is the source of the

error.

You can run into a similar problem if you include SQL keywords as alias names. For

example, the word “Order” is a SQL keyword (as one-half of the ORDER BY clause).

If you use “Order” as an alias name:

SELECT ClassID, StudentNumber, (Price * 1.1) AS Order
FROM ClassEnrollement;

you receive the same error. In this case, Oracle encounters the Order keyword

where it does not expect to find it (because it should be at the end of the query fol-

lowed by a BY <column name>).

The way to correct these problems is to enclose the entire alias name in double

quotes (“). This becomes known as a delimited identifier. The double quotes tell

Oracle that everything between the two quotes should be considered part of the

same object. One other effect of using double quotes is that the alias preserves its

case. Looking at the first alias example, although the alias was entered as

4832-8 ch02.F 7/27/01 9:00 AM Page 50

51Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

Price_difference, it appears in the result set as PRICE_DIFFERENCE. When you

reference an alias without using double quotes, SQL automatically returns the alias

in capitals (in the same way that it returns the column names and expressions in

capitals).

Testing this against the earlier example, you can see the full effect of the double

quotes on aliases. The following query:

SELECT InstructorID,
((((PerDiemCost + PerDiemExpenses) * 5) –
(PerDiemCost * 5)) / ((PerDiemCost + PerDiemExpenses) *
5)) * 100 AS “Price Difference”

FROM Instructors;

returns the following result set:

INSTRUCTORID Price Difference
------------ ----------------

300 28.571429
310 30.769231
100 25
110 28.571429
200 25
210

6 rows selected.

As you can see, the alias name preserves both the embedded space and the capital-

ization in the query.

Aliases are not restricted to expressions. You can create an alias for any column in

the SELECT list. In the course of database design, columns are sometimes given

names that are not easily interpreted. If this is the case, you can use aliases to make

your output more readable. For example, this query:

SELECT FirstName || ‘ ‘ || Lastname AS “Name”,
InstructorType AS “Specialty”,
PerDiemCost AS “Daily Rate”

FROM Instructors;

produces the following output:

Name Specialty Daily Rate
------------------------ ---------- ----------
Michael Harrison ORACLE 500
Susan Keele UNIX 450
David Ungar ORACLE 600
Kyle Jamieson ORACLE 500
Lisa Cross UNIX 750
Geoff Williams UNIX 400

6 rows selected.

4832-8 ch02.F 7/27/01 9:00 AM Page 51

52 Part I ✦ The Oracle SQL Language

In this result, each column is represented by its alias, and because each alias is

enclosed in single quotes, each one retains its case and allows for embedded

spaces. This makes for much more readable output.

The effect of NULL values on arithmetic and concatenation operations
The presence of NULLs in your tables can have an effect on both arithmetic and

concatenation operations. A NULL is not a value. It is not considered a zero or a

blank space; rather, it is the absence of a value. A NULL represents a value that is

unknown or cannot be determined. If a row is inserted into a table, but a value is

not assigned for a particular column, that column is determined to be null. In sim-

ple terms, a null is Oracle’s way of say “I don’t know.” The presence of NULLs in a

column can have an effect on a variety of operations including arithmetic and con-

catenation operator expressions.

When Oracle encounters a null in any element of an arithmetic operation, the result

of the expression is always null. Because one of the elements is unknown, the result

of that element added, subtracted, multiplied, or divided by another value is still

unknown (that is, still null). Consider the result of the following query:

SELECT InstructorID, PerDiemCost, PerDiemExpenses,
PerDiemCost + PerDiemExpenses AS “Daily Cost”

FROM Instructors;

INSTRUCTORID PERDIEMCOST PERDIEMEXPENSES Daily Cost
------------ ----------- --------------- ----------

300 500 200 700
310 450 200 650
100 600 200 800
110 500 200 700
200 750 250 1000
210 400

6 rows selected.

In this example, instructor 210 has a NULL in the PerDiemExpenses column and, as

a result, also has a NULL value under Daily Cost. If we consider the null as an

unknown, this makes perfect sense because 400 plus an unknown value is still an

unknown value.

With the concatenation operators, the effects of nulls are slightly different. When

Oracle encounters a NULL in a concatenated string, it converts the null into a blank

text string. It still, however, returns the rest of the string. Consider the following

query and result:

SELECT InstructorID || ‘ charges $’ || PerDiemExpenses ||
‘ per day for expenses.’ AS “Travel Expenses”

FROM Instructors;

4832-8 ch02.F 7/27/01 9:00 AM Page 52

53Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

Travel Expenses
--
300 charges $200 per day for expenses.

310 charges $200 per day for expenses.

100 charges $200 per day for expenses.

110 charges $200 per day for expenses.

200 charges $250 per day for expenses.

210 charges $ per day for expenses.

6 rows selected.

In this example, the per diem expenses for instructor 210 are simply left blank, and

the rest of the string is concatenated after the blank text string.

Eliminating duplication in the result set
When you issue a SELECT statement, Oracle returns all rows that match the query.

For example, if you issue the following query:

SELECT City
FROM Students;

you receive the following:

CITY

Victoria
New York
New York
Toronto
Ottawa
New York
Dallas
San Francisco
Toronto
San Francisco
San Francisco

11 rows selected.

This list contains several students from the same city. What if, however, you wanted

a list only of all the cities from which the company had enrolled students? To create

such a list, you have to use the DISTINCT keyword. When you include this keyword,

4832-8 ch02.F 7/27/01 9:00 AM Page 53

54 Part I ✦ The Oracle SQL Language

Oracle sorts the result set and then returns only the first occurrence of each value

returned by the query. To use the DISTINCT keyword, you place it in the SELECT list

after the SELECT keyword. For example, to display the distinct cities in the student

list, you use the following:

SELECT DISTINCT City
FROM Students;

which returns:

CITY

Dallas
New York
Ottawa
San Francisco
Toronto
Victoria

6 rows selected.

With this keyword, only a single occurrence of every city is returned in the result

set. Notice as well that Oracle returns the data in sorted order. Oracle sorts the

data to group together identical values so that duplicates can be removed.

Remember that the DISTINCT operator applies to the entire select list. If you

include multiple columns in the select list, DISTINCT sorts by the unique occur-

rence of all columns. Consider the following example and result:

SELECT DISTINCT Country, City
FROM Students;

COUNTRY CITY
------------------------------ -----------------------------
Canada Ottawa
Canada Toronto
Canada Victoria
USA Dallas
USA New York
USA San Francisco

6 rows selected.

In this case, the value of Country is repeated even though it is next to the DISTINCT

keyword. However, if you look at the rows for Toronto or San Francisco, you will

notice that there is only one row for each of these cities. Oracle treats the two

columns as a single value and returns the unique combination of the two. This can

4832-8 ch02.F 7/27/01 9:00 AM Page 54

55Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

become a problem when you include a column in the select list that does not have

any duplicate values. This is the case when you add, for example, StudentNumber

to the previous query:

SELECT DISTINCT Country, City, StudentNumber
FROM Students;

COUNTRY CITY STUDENTNUMBER
--------------------- -------------------- -------------
Canada Ottawa 1004
Canada Toronto 1003
Canada Toronto 1008
Canada Victoria 1000
USA Dallas 1006
USA New York 1001
USA New York 1002
USA New York 1005
USA San Francisco 1007
USA San Francisco 1009
USA San Francisco 1010

11 rows selected.

In this example, Oracle returns the unique occurrence of Country, City, and
StudentNumber. StudentNumber is the primary key for the table. A Primary Key is a

constraint that allows you to identify unique rows by forcing all values in the col-

umn to be unique. This means that each row has a unique student number and the

query will return all rows in the table. Note, however, that the DISTINCT keyword is

still forcing the query to be sorted.

For details on the primary key, see Chapter 7, “Creating and Managing Oracle
Database Objects.”

Ordering data in the SELECT statement
✦ Sort the rows retrieved by a query

When you issue a SELECT statement in SQL, you receive a result set that contains

all data in the table or tables that match the query. However, the order in which

that data is returned is completely random. It is conceivably possible to issue the

same query ten times and receive the same data back in ten different orders. When

you want the data returned in a specific order, you must use the ORDER BY clause.

With this statement, you specify the column or columns that you want as the basis

of your ordering. You can also specify whether you want the data sorted in ascend-

ing order (lowest to highest) or descending order (highest to lowest). You can

order by a column of any datatype except for the large object datatypes (that is,

CLOB, NCLOB, BLOB, BFILE, RAW, LONGRAW, and LONG). The default for character

columns is to sort alphabetically.

Objective

Cross-
Reference

4832-8 ch02.F 7/27/01 9:00 AM Page 55

56 Part I ✦ The Oracle SQL Language

Suppose you wanted to list all of your instructors and their per diem costs, listing

them from least to the most expensive. You could use the following query:

SELECT InstructorID, PerDiemCost
FROM Instructors
ORDER BY PerDiemCost ASC;

which returns:

INSTRUCTORID PERDIEMCOST
------------ -----------

210 400
310 450
300 500
110 500
100 600
200 750

6 rows selected.

The default order is ascending, and you can omit the ASC when you want the rows

sorted in this manner. When you are interested in ordering data from highest cost

to lowest cost, you use DESC instead of ASC.

It is also possible to sort by more than one column. When Oracle encounters an

ORDER BY clause with more than one column, it orders by the first column, and

within that column, orders by the second. For example, suppose you wanted to list

all of the courses that you have scheduled, their locations, and their starting dates.

You want the list ordered by location; however, you also want it ordered by course

number for each location. You can use the following query:

SELECT LocationID, CourseNumber, StartDate
FROM ScheduledClasses
ORDER BY LocationID, CourseNumber;

which returns a result set that looks like this:

LOCATIONID COURSENUMBER STARTDATE
---------- ------------ ---------

100 100 06-JAN-01
300 100 14-FEB-01
300 200 13-JAN-01

In this example, two courses are scheduled at location 300, and they are also pre-

sented in the result set in ascending order.

4832-8 ch02.F 7/27/01 9:00 AM Page 56

57Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

When you reference multiple columns, you can specify ascending or descending for

each column. For example, you can issue the following statement:

SELECT LocationID, CourseNumber, StartDate
FROM ScheduledClasses
ORDER BY LocationID ASC, CourseNumber DESC;

which returns:

LOCATIONID COURSENUMBER STARTDATE
---------- ------------ ---------

100 100 06-JAN-01
300 200 13-JAN-01
300 100 14-FEB-01

In this case, the result set is still sorted in ascending order by LocationID but is now

sorted in descending order by CourseNumber.

When executing a SQL query, the ORDER BY statement is always executed last. For
this reason, the ORDER BY clause must always be the last clause in the SELECT
statement. When you put a clause after the ORDER BY, you receive an error.

Limiting Rows Using the WHERE Clause
✦ Limit the rows retrieved by a query

In all of the examples so far, the queries have limited which columns have been

returned but have returned all rows in the table. In most cases, however, when you

work with the data in you database, you are interested in only certain data. For

example, order entry personnel will rarely want to know the prices of all products

simultaneously but, more likely, will want to know the price of widget X (especially

when they have a client on the phone inquiring about the price of this product). In

SQL, you limit the number of rows returned with the use of a WHERE clause. In a

SELECT statement, the WHERE clause is always placed after the FROM clause:

SELECT [DISTINCT] {* | column,[expression], . . . }
FROM table;
[WHERE condition1 [{AND | OR [NOT]} conditon2 . . .]]

When SQL processes the WHERE clause, it tests the value of each row in a column

(or the result of each row in an expression) against a particular value. The query

includes only rows that meet the condition in the WHERE clause. Each condition is

set with the use of an operator. An operator is a keyword or symbol that instructs

Oracle to perform an action. You have already seen two sets of operators in this

chapter (the arithmetic and concatenation operators). You can also link multiple

conditions using another set of operators: the logical operators, which are covered

later in this chapter. You will require a complete understanding of these operators

to complete the exam successfully (and to work effectively with SQL).

Objective

Tip

4832-8 ch02.F 7/27/01 9:00 AM Page 57

58 Part I ✦ The Oracle SQL Language

Comparison operators
The most common set of operators used in WHERE clauses are the comparison

operators. As their name suggests, these operators compare the values in a column

or column expression to a particular value. Each comparison operator can compare

a column to only one value. The comparison operators are listed in Table 2-2.

Table 2-2
The Comparison Operators in SQL

Operator Meaning

= Equal to

< > or != Not equal to

> Greater than

< Less than

> = Greater than or equal to

< = Less than or equal to

Currently both the < > and != symbols can be used for “not equal to.” However, !=
was borrowed from C and was never adopted into the SQL-92 standard. As Oracle
further adopts the standard (considering that SQL-99 is beginning to be imple-
mented), it is possible that this symbol may be removed from a later version of
Oracle. For that reason, it is best to stay with the ANSI “not equal to” operator
(< >).

These operators are used in the following manner:

WHERE <column | expression> operator <value>

It is conventional to show the column on the left and the comparison value on the

right.

For example, when you want a list of all instructors who charge more than $500 per

day, you can use the following query:

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost > 500;

which returns the following result:

INSTRUCTORID PERDIEMCOST
------------ -----------

100 600
200 750

In the
Real World

4832-8 ch02.F 7/27/01 9:00 AM Page 58

59Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

The result set returns only those rows that meet the condition set in the WHERE

clause.

Using comparison operators with character and date data
When you refer to character and date values in a WHERE clause, you must enclose

them in single quotes. Numeric data does not require single quotes. If you omit the

single quotes, Oracle attempts to interpret the value as a schema object, and you

receive an error.

For example, when you issue this statement:

Select InstructorID, FirstName, LastName
FROM Instructors
WHERE Firstname = Susan;

you receive the following error:

ERROR at line 3:
ORA-00904: invalid column name

When Oracle executes this statement, it assumes that “Susan” is the name of

another column and then looks in the table referenced in the FROM clause for a col-

umn called “Susan”. Because the Instructors table doesn’t contain a “Susan” col-

umn, Oracle returns the preceding message, explaining that the column name is

invalid.

If you issue a query such as:

Select InstructorID, FirstName, LastName
FROM Instructors
WHERE Firstname = LastName;

no syntax error occurs. Oracle simply looks in the FirstName and LastName

columns and returns any row that has the same value in both columns. In this par-

ticular table, you get a “no rows selected” message. This is not a syntax error.

Rather, Oracle is informing you that no rows matched your WHERE clause

condition.

When you place single quotes around these values, they become literal values. This

has an important effect on how Oracle processes these statements. At the begin-

ning of this chapter, we mentioned that SQL statements are not case sensitive.

However, when you deal with literal values, case becomes an issue. Let’s look at the

effect of single quotes on character data and then at its impact on date data.

4832-8 ch02.F 7/27/01 9:00 AM Page 59

60 Part I ✦ The Oracle SQL Language

When Oracle stores character data in tables, it stores that data in whatever case it

was inserted. When you want to reference this data, you must, therefore, reference

it in the same case that it is stored. For example, when you want a list of the

instructors from Toronto, you might try the following query:

SELECT Instructorid, LastName, City
FROM Instructors
WHERE City = ‘toronto’;

You receive the following message:

no rows selected

You receive this message because, in the table, data in the city column is stored

with initial capital letters, as you can see from the following statement:

SELECT Instructorid, LastName, City
FROM Instructors
WHERE City = ‘Toronto’;

INSTRUCTORID LASTNAME CITY
------------ ------------------------ ----------------------

300 Harrison Toronto
310 Keele Toronto
210 Williams Toronto

In this case, Oracle is able to find data that matched the character string in the

WHERE clause. If you are not sure of the case your data is stored in, you can use

certain character functions to modify case.

Character and other functions are discussed in Chapter 3, “Using Single- and
Multi-Row Functions.”

You can use any of the comparison operators with character data. When you use

the greater than or less than sign, Oracle returns all values that are alphabetically

greater or less than a particular value.

Consider the following example:

SELECT FirstName
FROM Instructors
WHERE FirstName < ‘Lisa’;

FIRSTNAME

David
Kyle
Geoff

Cross-
Reference

4832-8 ch02.F 7/27/01 9:00 AM Page 60

61Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

In this case, all of the instructor names that are alphabetically less than Lisa are

returned. The two names that are not returned are Michael and Susan, both alpha-

betically greater than Lisa.

There is an issue with date data in the WHERE clause that has to do with how

Oracle handles date data. As was mentioned earlier in this chapter, Oracle stores

date data in an internal numeric format. However, as human beings, we are not as

adept at mentally converting numeric values in days, months, and years. For this

reason, Oracle performs the conversion for us. The format that it uses is deter-

mined by the configuration of the National Language Support (NLS) date format. In

a default installation, the NLS_DATE_FORMAT value is set to “DD-MON-YY” — that

is, the day, the first three letters of the month, and a two-digit year, each separated

by a hyphen.

If you are not sure what your NLS date format is, you can determine it by querying
a system view: V$NLS_Parameters. Use the following query:

SELECT value
FROM V$NLS_Parameters
WHERE parameter = ‘NLS_DATE_FORMAT’;

When you reference date data in the WHERE clause of a query, Oracle compares the

date string against the NLS_DATE_FORMAT value to convert it into its internal for-

mat. If it cannot interpret the date string from this format, it returns an error. For

example, suppose you want to know which course is scheduled to start on January

6, 2001 (assuming your Oracle database is using the default data parameter set-

ting). The following query returns data:

SELECT CourseNumber
FROM ScheduledClasses
WHERE StartDate = ‘06-JAN-01’;

whereas, this query returns the following error:

SELECT CourseNumber
FROM ScheduledClasses
WHERE StartDate = ‘January 6, 01’;

ERROR at line 3:
ORA-01858: a non-numeric character was found where a numeric
was expected

The “non-numeric character” in this example is the word “January” where Oracle

expected to find the two-digit day value (DD-MON-YY). Because Oracle is unable to

convert this string into its internal date format, it is unable to process the WHERE

condition and returns the error.

Tip

4832-8 ch02.F 7/27/01 9:00 AM Page 61

62 Part I ✦ The Oracle SQL Language

One interesting point about date data used in a WHERE clause is that, unlike char-

acter data, it is not case sensitive. For example, Oracle resolves all of these WHERE

clauses the same, to the same internal date value:

WHERE StartDate = ‘06-JAN-01’
WHERE StartDate = ‘06-Jan-01’
WHERE StartDate = ‘06-jan-01’

Using comparison operators with expressions
The comparison operators in SQL are not limited to comparing column values.

They can also be used to compare the results of a derived column. In an earlier

example, the weekly cost of each instructor was calculated using the following

query:

SELECT InstructorID, (PerDiemCost + PerDiemExpenses) * 5 As
Weekly_Cost
FROM Instructors;

What if, however, you want only those instructors whose weekly cost is greater

than $3,500? To find this information, you simply place the expression in the

WHERE clause:

SELECT InstructorID, (PerDiemCost + PerDiemExpenses) * 5 As
Weekly_Cost
FROM Instructors
WHERE (PerDiemCost + PerDiemExpenses) * 5 > 3500;

INSTRUCTORID WEEKLY_COST
------------ -----------

100 4000
200 5000

When you perform queries with an expression in the WHERE clause, you must

include the entire expression. You cannot place the alias name in its place.

For example, the following query returns an error:

SELECT InstructorID, (PerDiemCost + PerDiemExpenses) * 5 As
Weekly_Cost
FROM Instructors
WHERE Weekly_Cost > 3500;

ERROR at line 3:
ORA-00904: invalid column name

This error is generated because the alias is not applied until the result set is gener-

ated, and the result set is not generated until after the WHERE clause has been eval-

uated. By placing the alias name in the WHERE clause, you are referencing an object

that does not yet exist.

4832-8 ch02.F 7/27/01 9:00 AM Page 62

63Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

You can, however, place aliases in the ORDER BY statement because the result set
must be generated before it can be ordered, and thus, the alias exists before the
ORDER BY is evaluated.

Using logical operators in WHERE clauses
It is possible to have more than one condition in a WHERE clause. However, to com-

bine conditions, you must use a logical operator. There are three logical operators

in SQL (see Table 2-3), and each has a different effect on the outcome of a WHERE

clause.

Table 2-3
SQL Logical Operators

Operator Meaning

AND Returns a row when both conditions are TRUE.

OR Returns a row when either condition is TRUE.

NOT Returns a row when the condition is FALSE.

The AND operator
The AND operator is used to join two or more conditions in one query. In order for

a row to be returned in this condition, all of the conditions linked together must

return TRUE. Consider the following query:

SELECT InstructorID, City, PerDiemCost
FROM Instructors
WHERE City = ‘New York’ AND PerDiemCost > 500;

INSTRUCTORID CITY PERDIEMCOST
------------ ------------------------------ -----------

100 New York 600

In this table, three instructors are from New York, and two instructors charge more

than $500 per day. However, only one instructor, instructor 100, satisfies both condi-

tions. The other instructors either charge less than $500 per day or live somewhere

other than New York. Note that when either condition returns a NULL, no rows are

returned. In the Instructors table, instructor 210 is the only instructor with a

PerDiemCost of $400. He has a NULL PerDiemExpense. If you were to execute the

following query:

SELECT InstructorID, PerDiemCost, PerDiemExpenses
FROM Instructors
WHERE PerDiemCost = 400 AND PerDiemExpenses >= 200;

Tip

4832-8 ch02.F 7/27/01 9:00 AM Page 63

64 Part I ✦ The Oracle SQL Language

no rows are returned. Because a NULL is returned for the PerDiemExpenses, the

second condition does not evaluate to TRUE, and therefore this row is not returned.

The OR operator
When you combine two or more conditions with the OR operator, Oracle returns

any row that meets either condition. If you take the first example for the AND oper-

ator and use the OR operator instead, you notice a significant difference between

the two:

SELECT InstructorID, City, PerDiemCost
FROM Instructors
WHERE City = ‘New York’ OR PerDiemCost > 500;

INSTRUCTORID CITY PERDIEMCOST
------------ ------------------------------ -----------

100 New York 600
110 New York 500
200 Palo Alto 750
410 New York 400

In this case, Oracle returns the two instructors from New York who charge less than

$500 dollars per day and the one instructor who is not from New York but charges

more than $500. You may have several conditions linked by the OR operator, and a

row is returned as long as one of the conditions returns TRUE.

For this reason, columns that return a NULL value do not have the same effect on

OR queries as they do with the AND operator. With the OR, as long as one of the

other conditions is met, the row is returned even when the other condition returns

a NULL. When you execute the second example in the previous section with an OR

instead of an AND, you see the difference:

SELECT InstructorID, PerDiemCost, PerDiemExpenses
FROM Instructors
WHERE PerDiemCost = 400 OR PerDiemExpenses > 100;

INSTRUCTORID PERDIEMCOST PERDIEMEXPENSES
------------ ----------- ---------------

300 500 200
310 450 200
100 600 200
110 500 200
200 750 250
210 400

7 rows selected.

In this case, instructor 210 is the only instructor who charges $400 per day, but six

other instructors charge more than $100 for daily expenses.

4832-8 ch02.F 7/27/01 9:00 AM Page 64

65Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

The NOT operator
Unlike the AND and OR operators, the NOT operator is not used to set multiple con-

ditions on a WHERE clause. Instead, it is a negative operator. It negates a condition

so that it returns all rows that do not meet the condition. The NOT operator cannot

be used with the standard comparison operators, but it is used with some of the

other WHERE clause operators, which are discussed later in this chapter.

It is possible to select by negative conditions using the NOT operator; however, it
should be avoided when possible. Positive queries tend to be more efficient than
negative queries because they can take better advantage of indexes. Negative
queries tend to result in more table scans. If you find yourself writing a negative
query, check to see if it is possible to rewrite it as a positive query. If not, the neg-
ative is syntactically acceptable.

The rules of precedence for logical operators
Just as with the arithmetic operators, rules of precedence govern the operators.

The order is shown in Table 2-4.

Table 2-4
Order of Precedence for Logical Operators

Operator Order of Evaluation

Parentheses 1

All comparison operators 2

NOT 3

AND 4

OR 5

As with the arithmetic operators, the order of precedence can be overridden with

parentheses. It is important to keep these rules in mind; otherwise, you can run

into serious problems.

Consider the following situation. Cust_list is a master customer table for your com-

pany that contains over 1,000,000 customers from across the continent. You are

interested in getting the address and phone number of everyone named “Smith”

that lives in either New York or Chicago, and you issue the following query:

SELECT Name, Address, City, State, Postal, Telephone
FROM Cust_list
WHERE Name = ‘Smith’

AND CITY = ‘New York’ or City = ‘Chicago’;

In the
Real World

4832-8 ch02.F 7/27/01 9:00 AM Page 65

66 Part I ✦ The Oracle SQL Language

When you execute this query, you are in for a surprise. Why? Consider the order of

precedence. When Oracle parses this query, it parses the AND condition first

(Name = ‘Smith’ AND City = ‘New York’) and then applies the OR condition (City =

‘Chicago’). In other words, this query returns all customers named “Smith” living in

New York and every customer living in Chicago! This problem can be resolved with

the use of parentheses:

SELECT Name, Address, City, State, Postal, Telephone
FROM Cust_list
WHERE Name = ‘Smith’

AND (CITY = ‘New York’ or City = ‘Chicago’);

In this example, Oracle resolves the OR condition first (generating a list of all cus-

tomers in New York and Chicago) and then applies the AND operator to the result,

linking it to the first WHERE clause condition.

For this exam, you are expected to fully understand the order of precedence for
the logical operators. You may be presented with complex scenarios involving log-
ical operators in nested parentheses. Make sure you practice reading and inter-
preting these types of queries. See question 6 for an example of this in the
Assessment Questions at the end of the chapter.

Additional comparison operators
in the WHERE clause
Other comparison operators are available in the WHERE clause (see Table 2-5).

Some of them are shortcuts that automatically combine several conditions; others

help you overcome some inherent problems in working with the WHERE clause.

Table 2-5
Addition Comparison Operators

Operator Meaning

BETWEEN ... AND Returns all rows between two values.

IN Returns any row matching a list of values.

LIKE Allows two rows based on a character pattern.

IS NULL Returns all rows where value is NULL.

You should be familiar with each of these operators.

Exam Tip

4832-8 ch02.F 7/27/01 9:00 AM Page 66

67Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

Using the BETWEEN ... AND operator
When limiting rows, you may sometimes want to limit by a range of values. For

example, suppose you have a list of orders stored in an Order_Info table. For each

row in this orders table, you have an order date column. If you wanted a list of all

the sales for the first calendar quarter, how would you retrieve the data? You would

probably write a query like this:

SELECT *
FROM Order_Info
WHERE orderdate >= ‘01-JAN-01’ AND orderdate <= ‘30-MAR-01’

In this case, you have to use >= and <= rather than simply > or <; otherwise, you

would not return any orders placed on the first of the last day of the quarter. SQL

provides a shortcut for this type of query: the BETWEEN ... AND operator.

The BETWEEN operator enables you to write a query that returns a range of values

in a single statement. For example, you can rewrite the last query as follows:

SELECT *
FROM Order_Info
WHERE orderdate BETWEEN ‘01-JAN-01’ AND ‘30-MAR-01’

It is important to remember that the BETWEEN operator returns any value between

and including the upper and lower limits. For example, when you want a list of all

instructors who charge more than $400 per day but less than $700, you cannot use

the following query because it includes those who make exactly $400:

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost BETWEEN 400 and 700;

INSTRUCTORID PERDIEMCOST
------------ -----------

300 500
310 450
100 600
110 500
210 400

In order to eliminate instructor 210, you have to set your WHERE condition to

BETWEEN $401 AND $700.

You also want to make sure that you place the lower range value first in the

BETWEEN statement. For example, the following query returns no rows:

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost BETWEEN 700 and 400;

4832-8 ch02.F 7/27/01 9:00 AM Page 67

68 Part I ✦ The Oracle SQL Language

The query returns no rows because Oracle interprets the WHERE clause as follows:

WHERE PerDiemCost >= 700 AND PerDiemCost <= 400

Because there cannot be a condition where a value can simultaneously be greater

that $700 and less than $400, no rows in the query match this condition.

When you want to exclude a range, you can do so with the NOT operator. For exam-

ple, the following query:

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost NOT BETWEEN 400 and 700;

returns all instructors who have a per diem cost below $400 or above $700.

Using the IN operator
Sometimes you may want to retrieve data based on a list of values from the same

column. For example, suppose you want to find instructors from Toronto or New

York. Comparison operators accept only one value so you have to use an OR opera-

tor. The query looks something like this:

SELECT InstructorID, City
FROM Instructors
WHERE city = ‘Toronto’ OR City = ‘New York’;

This is a perfectly valid query; however, what happens when the list contains 10 or

20 items? This may lead to a great deal of typing. To accommodate this situation,

SQL includes the IN operator. The IN operator enables you to compare a column or

expression to a range of values. Oracle implicitly adds an OR operator between

each element in the list.

If you rewrite the previous query with an IN operator, it looks like this:

SELECT InstructorID, City
FROM Instructors
WHERE city IN (‘Toronto’, ‘New York’);

You must include the list in parentheses and separate each element in the list with

a comma.

You can also exclude all elements in the list using the NOT operator. For example, if

you want all instructors except those from Toronto or New York, you can use the

following query:

SELECT InstructorID, City
FROM Instructors
WHERE city NOT IN (‘Toronto’, ‘New York’);

4832-8 ch02.F 7/27/01 9:00 AM Page 68

69Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

In this query, Oracle interprets the WHERE condition as:

WHERE city <> ‘Toronto’ OR City <> ‘New York’

and returns all rows that do not match either condition.

Using the LIKE operator
When dealing with large text strings, you may want to search by a part of the string

rather than the full string. This kind of search cannot be performed with the com-

parison operators. A comparison operator can be used only when you include the

entire string. For example, the Instructors table includes comments for each

instructor. Suppose you want to know which instructors have knowledge of C++

programming; the following query does not return any data:

SELECT InstructorID, Comments
FROM Instructors
WHERE comments = ‘C++’

Comments for two instructors mention C++, but in neither case is C++ the entire

text string. The “equals to” sign returns rows only where the contents of the com-

ments column match the entire string in single quotes. If you want to match only

part of a string, you must use the LIKE operator.

The LIKE operator enables you to use wild card characters to match a portion of a

character string. A wild card is simply a single character that can represent a num-

ber of different characters. The two wild cards in SQL are shown in Table 2-6.

Table 2-6
Wild Card Operators in SQL

Symbol Meaning

% Any number of characters (including none)

_ Any one character

The string value, including the wild cards, must be placed inside single quotes. You

can use wild card characters on either side of the character string. You use the

underscore (_) to represent a single character. For example, when you are not sure

whether a name was entered in a table as LaGrand or LeGrand, you can find either

value with the following condition:

WHERE name LIKE ‘L_Grand’

4832-8 ch02.F 7/27/01 9:00 AM Page 69

70 Part I ✦ The Oracle SQL Language

Remember that the rest of the string is case sensitive, but the wild card value is

not. When you are unsure of more than one character, you can use multiple wild

cards. For example, when you are unsure whether a name is stored as Hardy or

Hurdy, you can use the following:

WHERE name LIKE ‘H__dy’

You can also use the percent (%) wild card, but it also returns strings that have

more than or less than two characters. Compare the output of these two queries:

SELECT FirstName
FROM Instructors
WHERE FirstName LIKE ‘_a%’;

FIRSTNAME

David
Lana

SELECT FirstName
FROM Instructors
WHERE FirstName LIKE ‘%a%’;

FIRSTNAME

Michael
Susan
David
Lisa
Lana

As you can see, the first query returned only those names that have a lowercase “a”

as the second letter, whereas the second returned all names that contain an “a”.

Remember that the % wild card also includes cases where there is no character. For

example:

SELECT FirstName
FROM Instructors
WHERE FirstName LIKE ‘%A%’;

returns:

FIRSTNAME

Adele

4832-8 ch02.F 7/27/01 9:00 AM Page 70

71Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

This also demonstrates the case-sensitive nature of the rest of the string. The per-

cent wild card is used most often when you are looking for one word in sentences

stored in the database. Going back to the original example in this section, if you

want to find instructors in the company that have C++ mentioned in their com-

ments, you can use the following query:

SELECT InstructorID, Comments
FROM Instructors
WHERE comments LIKE ‘%C++%’;

This query returns the following instructors:

INSTRUCTORID COMMENTS
------------ --
210 Has extensive shell scripting experience. Has
211 also programmed with C and C++

410 Has 10 years experience with C and C++.

Just as with IN and BETWEEN, you can search on a negative condition using a NOT

operator:

SELECT InstructorID, Comments
FROM Instructors
WHERE comments NOT LIKE ‘%C++%’;

When using the LIKE and NOT LIKE operator, you should try to avoid using wild-
cards at the beginning of the string. Placing a wildcard at the beginning of a char-
acter string forces Oracle to ignore any indexes.

Using the IS NULL operator
NULL fields present a particular problem when working with comparison operators.

Because a NULL is an unknown value, it is logically impossible to compare it to any

other values using a comparison operator. Whenever you use a comparison opera-

tor with NULL, the result is always NULL. In a query, this means that no rows are

returned. At times, however, you want to limit the number of rows by a NULL in a

column. You may want to search for clients who do not have a fax number listed in

their client record or for employees who do not have Social Security numbers or

department IDs. Each one of these examples requires you to find rows where the

column is NULL.

To get around this problem, SQL includes the IS NULL operator. The IS NULL opera-

tor tests each value in a column and determines whether the cell has a value. When

it does not, the row is returned. When the field has a value, it is ignored, and Oracle

moves to the next row. This is the only way to retrieve rows based on the presence

of a NULL.

In the
Real World

4832-8 ch02.F 7/27/01 9:00 AM Page 71

72 Part I ✦ The Oracle SQL Language

Here is an example. The PerDiemExpenses column for some instructors has a NULL.

When you want a list of these instructors, you can use the following query:

SELECT InstructorID, PerDiemExpenses
FROM Instructors
WHERE PerDiemExpenses IS NULL;

INSTRUCTORID PERDIEMEXPENSES
------------ ---------------

210
410

As with the other operators in this chapter, you can also find all rows that do not

contain NULL values by using the NOT operator:

SELECT InstructorID, PerDiemExpenses
FROM Instructors
WHERE PerDiemExpenses IS NOT NULL;

INSTRUCTORID PERDIEMEXPENSES
------------ ---------------

300 200
310 200
100 200
110 200
200 250
450 200

6 rows selected.

Including the ROWNUM pseudo-column
in the WHERE clause
Aside from column data and expressions, Oracle includes a number of pseudo-

columns that you can reference as part of the select list. A pseudo-column acts as if

it were a column in a table but does not actually exist within the table schema, and

the values produced by the pseudo-column are not stored in the database. You can

reference a pseudo-column in conjunction with any table. One of these pseudo-

columns is the ROWNUM column. ROWNUM returns a numerical value that indi-

cates the order in which the data was returned. For example, the following

statement:

SELECT ROWNUM, InstructorID, City
FROM Instructors;

4832-8 ch02.F 7/27/01 9:00 AM Page 72

73Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

returns a result set that looks something like this:

ROWNUM INSTRUCTORID CITY
--------- ------------ --------------------------

1 300 Toronto
2 310 Toronto
3 100 New York
4 110 New York
5 200 Palo Alto
6 210 Toronto

6 rows selected.

The value of the pseudo-column is not physically stored anywhere; rather, it is gen-

erated as the result set is generated. If you change the rows that are returned, the

values of the ROWNUM column change with them. For example, compare the result

of the previous query with this query and result set:

SELECT ROWNUM, InstructorID, City
FROM Instructors
WHERE City = ‘Toronto’;

ROWNUM INSTRUCTORID CITY
--------- ------------ --------------------------

1 300 Toronto
2 310 Toronto
3 210 Toronto

Notice that the ROWNUM value for instructor 210 changes from 6 to 3 in this case.

The reason for this value change is simple: The row containing instructor 210 is

now the third row in the result set. Instructor 210 is still the sixth row in the table,

but the ROWNUM pseudo-column is concerned only with the rows in the result set.

You can use this behavior to your advantage when writing SELECT statements. For

example, if you want only the first four instructors listed, you can use the following

statement:

SELECT ROWNUM, InstructorID, City
FROM Instructors
WHERE ROWNUM < 5;

which returns the following:

ROWNUM INSTRUCTORID CITY
--------- ------------ ------------------------------

1 300 Toronto
2 310 Toronto
3 100 New York
4 110 New York

4832-8 ch02.F 7/27/01 9:00 AM Page 73

74 Part I ✦ The Oracle SQL Language

As each row is returned, it is assigned a ROWNUM. That ROWNUM is then tested

against the WHERE clause. When a row is rejected, the next row is given the same

ROWNUM as the row before it. It too is rejected, and on it goes until you reach the

end of the result set.

This behavior has one side effect. You cannot select a row number that is greater
than a particular number. For example, if you want all but the first two rows and

you execute the following statement:

SELECT ROWNUM, InstructorID, City
FROM Instructors
WHERE ROWNUM > 2;

you receive the following message:

no rows selected

The reason is that when the first row is returned, it is given the ROWNUM value of

1. It is tested against the WHERE clause and then rejected. The next row is then

given the ROWNUM value of 1. It is tested and also rejected. This continues until no

more rows are in the table, and no rows are returned in the result set.

There is one final effect of the order of operation with the ROWNUM column: It is

evaluated before the ORDER BY clause. This order can be seen in the result to the

following query:

SELECT ROWNUM, InstructorID, PerDiemCost
FROM Instructors
ORDER BY PerDiemCost DESC;

ROWNUM INSTRUCTORID PERDIEMCOST
--------- ------------ -----------

5 200 750
3 100 600
1 300 500
4 110 500
2 310 450
6 210 400

6 rows selected.

In this case, the order of the ROWNUM column demonstrates that the values for

this column are generated before the order by was applied; otherwise, they would

be listed in ascending order. This means that this statement cannot be used to find

the three highest paid employees:

SELECT ROWNUM, InstructorID, PerDiemCost
FROM Instructors
WHERE ROWNUM < 4
ORDER BY PerDiemCost DESC;

4832-8 ch02.F 7/27/01 9:00 AM Page 74

75Chapter 2 ✦ Retrieving Data Using Basic SQL Statements

ROWNUM INSTRUCTORID PERDIEMCOST
--------- ------------ -----------

3 100 600
1 300 500
2 310 450

When you compare this result set to the previous result, you can see that what is

returned is not the three most expensive instructors, but rather the first three

instructors encountered, ordered by their per diem costs. To solve this problem,

you have to either determine the value programmatically (using, for example,

PL/SQL) or use aTop-N query with a subquery in the FROM clause (this topic is

examined in Chapter 4, “Advanced SELECT Statements”).

Key Point Summary
When you want to retrieve data from your database, you must query the database

using a SQL SELECT statement. The SELECT statement is made up of multiple parts

or clauses but must always contain a SELECT list and a FROM clause.

The SELECT list can contain multiple elements:

✦ The SELECT list contains a list of the columns you want returned.

✦ When you want to return all columns, use the asterisk (*).

✦ When you want to remove duplicates, use the DISTINCT keyword.

✦ Values in the select list can also be derived using arithmetic expressions or

concatenation operators.

✦ Arithmetic operators can be used with numeric or date data. When you add

or subtract a number from a date, the result is a date. When you subtract two

dates, the result is the number of days between the two dates.

✦ When Oracle calculates an arithmetic expression, it evaluates parentheses,

then multiplication and division, and then addition and subtraction.

✦ A column created by an expression has a column heading that is the same as

the expression.

✦ You can change any column heading by using a column alias.

A basic SELECT statement returns all rows in a table. It returns this data in a ran-

dom order. When you want to order the data returned by the query, you must

include an ORDER BY clause. When using an ORDER BY clause, remember:

✦ The ORDER BY clause must always be the last clause in the SQL statement.

✦ You can order by one or more columns.

✦ You can specify ascending (ASC) or descending (DESC) sorted order.

4832-8 ch02.F 7/27/01 9:00 AM Page 75

76 Part I ✦ The Oracle SQL Language

When you want to limit the number of rows returned, you must use a WHERE

clause. The WHERE clause uses a number of operators to set conditions for which

rows a query returns:

✦ The WHERE clause must follow the FROM clause.

✦ WHERE clauses compare a column to a condition (in the form WHERE <col-

name> <condition>.

✦ The condition can use any of the legal comparison operators.

✦ All rows in the table are tested against the condition. Only those rows that sat-

isfy the condition are returned in the result set.

✦ Character and date data must be enclosed in single quotes in a WHERE clause.

✦ Character data enclosed in single quotes is treated as case sensitive.

✦ Date data must match the NLS date format in order for Oracle to interpret it

correctly without the use of functions.

✦ You can link more than one condition in a WHERE with a logical operator (OR,

AND).

✦ In the case of multiple logical operators, Oracle evaluates the AND conditions

first and then the OR conditions.

✦ Parentheses can be used to override the behavior described in the preceding

bullet.

✦ NULL values cannot be tested for with a conditional operator. You must use

the IS NULL to test for NULLS.

✦ ✦ ✦

4832-8 ch02.F 7/27/01 9:00 AM Page 76

77

STUDY GUIDE

In this chapter, we have looked at all of the elements of the basic SELECT state-

ment. The exam tests very heavily on the SQL query language, and you will be

required to have a firm grasp of the elements of the SELECT statement to success-

fully complete this exam. You can test your understanding with the sample ques-

tions, scenarios, and exercises that follow.

Assessment Questions
1. You issue the following query against the Instructors table:

SQL> SELECT InstructorID, FirstName || ‘ ‘ || LastName AS
2 Employee Name
3 FROM Instructors
4 WHERE city = ‘new york’;

Which line in this statement will cause an error?

A. 1

B. 2

C. 3

D. 4

2. For which of the following tasks would you use the ROWNUM function in a

SELECT list. Select two.

A. Return the four highest salaries determined with an ORDER BY clause.

B. Return the first ten rows of the result set.

C. Number all of the rows in a result set.

D. Return all rows except the first ten.

3. Which of the following WHERE clauses would you use to find all courses run-

ning after January 1, 2001 but before March 31, 2001? Choose all that apply.

A. WHERE CourseDate BETWEEN ‘01-JAN-01’ and ‘31-MAR-01’

B. WHERE CourseDate > =‘01-JAN-01’ AND CourseDate <= ‘31-MAR-01’

C. WHERE CourseDate BETWEEN ‘JAN-01-01’ and ‘MAR-31-01’

D. WHERE CourseDate > ‘01-JAN-01’ AND CourseDate < ‘31-MAR-01’

77Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 77

4. Which expression will be evaluated first in the following query?

SELECT ColA * (ColB /(ColC + (ColD * ColE/2)) / ColF)
FROM TestTable;

A. ColD * ColE

B. ColE/2

C. <exp> / ColF

D. ColC + <exp>

5. You issue the following query against the Instructors table:

SQL>SELECT InstructorID, Firstname || Lastname
2 “Instructor Name”,
3 (PerDiemCost + PerDiemExpenses) x 5
4 FROM Instructors
5 WHERE City = ‘New York’;

Which line in this statement will cause an error?

A. 1

B. 2

C. 3

D. 4

6. Consider the following query:

SELECT FirstName, LastName, City
FROM Instructors
WHERE FirstName Like ‘K%’ OR LastName LIKE ‘C%’ AND Firstname
LIKE ‘L%’ AND City = ‘Toronto’ OR city = ‘New York’;

Which of the following rows would be returned by this query? Choose all that

apply.

A. Lana, Chiu, New York

B. Lisa, Cross, Palo Alto

C. David, Unger, New York

D. Kyle, Jamieson, New York

7. Which of the following WHERE clauses will return only rows that have a NULL

in the PerDiemExpenses column?

A. WHERE PerDiemExpenses <> *

B. WHERE PerDiemExpenses IS NULL

C. WHERE PerDiemExpenses = NULL

D. WHERE PerDiemExpenses NOT IN (*)

78 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 78

79

8. You issue the following query:

SELECT FirstName
FROM StaffList
WHERE FirstName LIKE ‘_A%’

Which names would be returned by this query? Choose all that apply.

A. Allen

B. CLARK

C. JACKSON

D. David

9. You execute the following query:

SELECT (PerDiemCost + PerDiemExpense) * 5
FROM Instructors
WHERE InstructorID = 210;

If instructor 210 has a PerDiemCost of $400 and a PerDiemExpenses that is

NULL, what will be the outcome of the arithmetic expression?

A. 0

B. NULL

C. 2000

D. The query will return an error.

10. You execute the following query:

SQL>SELECT InstructorID AS “Instructor Number”,
2 FirstName || ‘ ‘ || LastName AS
3 “Employee”, City, PerDiemCost * 5 AS
4 “Weekly Charge”
5 FROM Instructors
6 WHERE PerDiemCost = $400
7 ORDER BY City ASC, “Weekly Charge” DESC

Which line will return an error?

A. 2

B. 5

C. 6

D. 7

79Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 79

Scenarios
1. You are writing a report on the courses that you have scheduled for your vari-

ous centers. The majority of data required for this report is held in the

ScheduledClasses table.

A. How can you find the information for only the New York office?

B. The ScheduledClasses table contains the start date for each course and

the number of days for each course. However, for the purpose of the

report, you want both the start and end date for each course. How

would you write a query that generated the ending date for each course?

C. For the report, you want the title of the new column to be EndDate. What

is the default column name, and how would you change the column

name?

D. What would be the value of the End Date column if one of the courses

had a NULL in the StartDate column?

2. You have been asked to generate a report on your company’s various

locations.

A. How would you write a query to list only the U.S. sites?

B. Some of the locations are near the subway. How would you find those

locations?

C. How would you find only U.S. sites that are close to the subway?

D. How could you list all of your locations ordered alphabetically by city?

Lab Exercises
Lab 2-1 Working with basic queries

1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Write a query that returns all rows and columns from the Students table.

3. How many rows are returned? ______________

4. Modify your query so that it returns only the first name, last name, and city

for each student.

5. Write a second query that only returns each city only once.

6. Do you need to order this list with an ORDER BY clause?

80 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 80

81

Lab 2-2a Using expressions in SQL queries: the
concatenation operator

1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Rewrite the first query from the pervious exercise so that it returns only two

columns, one that contains both the first and last name in the following for-

mat <LastName, FirstName> and one that contains the city information.

3. What is the name of the new column? ________________

4. Rewrite the query so that the two columns are called Student Name and Home

City.

5. Rewrite the query so that it lists the students alphabetically by last name.

Lab 2-2b Using expressions in SQL queries: the arithmetic
operator

1. Using the Instructors table, write a query that lists each instructor by ID and

last name and includes a third column that is each instructor’s per diem cost

times five days. Name this third column weekly cost.

2. Modify this query to add a fourth column that adds the per diem cost and the

per diem expense and multiply this value by 5. Name the fourth column travel

cost.

3. Rewrite this query so that it lists the instructors from the highest travel cost

to the lowest.

Lab 2-3 Limiting the rows returned with a WHERE clause
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Write a query that returns all instructors who have a per diem cost higher

than $400 but lower than $600.

3. Write a query that lists only instructors who live in Toronto or New York.

4. Rewrite this query so that it lists all instructors who have a per diem cost

higher than $400 but lower than $600 and who live in Toronto or New York.

5. Write a query that lists the InstuctorID for instructors that do not have a

NULL in their per diem expenses column.

81Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 81

Lab 2-4 Using the ROWNUM pseudo-column
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Write a query that returns the first and last name of each instructor, the per

diem cost, and gives each of them a number.

3. Rewrite this query to return only the first four instructors.

4. Rewrite the query to return all instructors and order them by their per diem

cost.

5. Check to see if the generated row numbers are still in numeric order.

Answers to Chapter Questions

Chapter Pre-Test
1. All SQL queries must have a SELECT list and a FROM clause. That is, you must

supply what you are selecting and from where.

2. You can find one occurrence of a repeating value by using the DISTINCT key-

word as part of the SELECT list. For example, if you want a list of the dates

when courses are scheduled, you can use the following query:

SELECT DISTINCT StartDate
FROM ScheduledClasses;

3. In an arithmetic operation, multiplication and division operators are evalu-

ated before addition and subtraction operators.

4. When you subtract two dates from each other, the result is a number that rep-

resents the number of days between the two dates. If you subtract the earlier

date from the later date, the result is a negative number.

5. You can find date data by quarter one of two ways. Either you can have two

conditions linked by an AND:

WHERE order_date >= ‘01-JAN-01’ AND order_date <= ‘31-Mar-01’

or you can use the BETWEEN operator:

WHERE order_date BETWEEN ‘01-JAN-01’ AND ‘31-Mar-01’

The BETWEEN clause is simply a shorthand so you don’t have to rewrite the

column name. When Oracle evaluates the BETWEEN clause, it converts it back

to the Boolean comparison before it executes the query.

82 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 82

83

6. You can find rows that are not in a range by using the NOT operator with the

BETWEEN operator. If you take the previous example, to find all rows not in

the first quarter of 2001, you can use the following query:

WHERE order_date NOT BETWEEN ‘01-JAN-01’ AND ‘31-Mar-01’

The NOT operator returns all rows that do not meet the BETWEEN condition.

7. You can override the order of precedence for any operator by using parenthe-

ses. You can also nest parentheses. In this case, the innermost operators are

executed first.

8. If you have a NULL anywhere in an arithmetic expression, the result is NULL.

NULL is an unknown value, and any number treated arithmetically with this

value also is unknown.

9. To find a NULL field with a WHERE clause, you must use the IS NULL operator.

All of the other WHERE clause operators ignore NULL fields.

10. By default, the name of any column derived from an expression is the actual

expression itself. You can change this behavior through the use of a column

alias.

Assessment Questions
1. B — The error in this query occurs at line 2. Because an embedded space is in

the alias name, you must enclose it in double quotes. If you do not, Oracle

assumes that the first element of the alias name is the alias and then is unable

to process the second element. Spacing does not matter in any SQL state-

ment, and the fact that the alias is on a different line from the column name

has no bearing on the query as long as commas enclose the two. The fact that

New York is in all lowercase characters is not in itself a syntax error, but it

may cause no rows to be returned.

2. B and C — The ROWNUM function numbers each row in the result set as it is

returned. Therefore, it can be used to number each row. It can also be used in

a WHERE clause to limit the number of rows returned. However, the ROWNUM

value is generated before the ORDER BY clause is applied so you cannot use it

to find the four highest salaries, only the salaries of the first four rows

returned by the query. You also cannot limit ROWNUM by the lower range.

This results in no rows being returned because each row is assigned a

ROWNUM value of 1 and then rejected by the WHERE clause. For more infor-

mation, see Chapter 4, “Advanced SELECT Statements.”

3. D — Only answer D is correct. Both A and B are syntactically correct; however,

both return courses running on both January 1 and March 31. The question

does not ask for courses running on these two dates. Answer C uses an incor-

rect NLS date format and returns a syntax error.

83Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 83

4. A — Arithmetic expressions are evaluated from the innermost parentheses

outward. However, in this example, two operations in the innermost parenthe-

ses have the same level of precedence (ColD * ColE /2). In this case, Oracle

processes the elements from left to right, and therefore, the multiplication is

evaluated first (ColD * ColE). This result is divided by 2. The query then

works its way outward until it has a final value.

5. C — The error in this query is in line 3. The multiplication operator in SQL is

the asterisk (*), not an “x”. In this example, Oracle assumes “x” is the alias for

the column and then is unable to process the 5.

6. A, C, D — Oracle evaluates AND conditions first and then OR conditions.

Therefore, Oracle evaluates this query based on three criteria:

WHERE LastName LIKE ‘C%’ AND Firstname LIKE ‘L%’ AND City =
‘Toronto’

OR WHERE FirstName Like ‘K%’
OR WHERE City = ‘New York’

Both Lana Chiu and Lisa Cross have last names starting with “C” and first

names starting with “L”; however, neither one is from Toronto. Therefore,

none of them meet the first condition. Lana Chiu is returned only because she

lives in New York and meets the final condition. Remember that with an AND

operator, all conditions must be TRUE for a row to be returned, but with the

OR operator, only one condition must return TRUE to return the row. For more

information, see the section “Using logical operators in WHERE clauses,” ear-

lier in this chapter.

7. B — Only answer B returns rows that contain a NULL. Because a NULL is an

unknown value, you cannot use a comparison operator to find a NULL (that is,

you cannot look for rows that equal an unknown value). For this reason, SQL

includes the IS NULL operator. You also cannot use the asterisk in WHERE

clauses to mean all values. It can be used only in the select list to mean all

columns. For more information, see the section “Using the IS NULL Operator,”

earlier in this chapter.

8. C — Two wildcards are used with the LIKE operator. The underscore (_)

stands for any one character of any case, and the percent sign (%) stands for

any number of characters of any case including none. Because this string

starts with an underscore rather than a percent sign, it won’t return Allen or

Clark because they represent zero and two characters before the “A”. If the

LIKE string had been “%A%”, both of these values would have been returned.

David was not returned because all non-wild card characters are case sensi-

tive. Therefore, only strings with an uppercase “A” as their second letter are

returned. For more information, see the section “Using the LIKE Operator,”

earlier in this chapter.

9. B — Whenever a NULL value is part of an arithmetic expression, the result is

always NULL. A NULL is an unknown value, not a zero. This does not register

as a syntax error because the query is syntactically correct. The NULL is the

expected result. For more information, see the section “The Effect of NULL

Values on Arithmetic and Concatenation Operations,” earlier in this chapter.

84 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 84

85

10. C — The error in this query is on line 6. Specifically, the author of the query

has put a dollar sign next to the per diem cost value. Oracle is expecting a

numeric value for this column. Instead, it has received a string value that is

not enclosed in single quotes. Line 7 does not contain an error. You should

remember that you can use aliases in the ORDER BY clause but not in a

WHERE clause because the aliases are generated after the WHERE clause is

evaluated but before the ORDER BY clause is evaluated.

Scenarios
1. There is no city column in this table; however, the ScheduledClasses table

does list courses by location ID. In order to list courses in the New York office,

you would simply have to use a WHERE clause to limit the row returned to

rows with a locationID of 100 (the ID for the New York office).

To find the end date for a course, you simply have to add the start date and

the duration. Remember that when you add or subtract a number to or from a

date, the resulting value is a date that is that many days away from the origi-

nal date (either forward or backward in time, depending on whether you add

or subtract the number).

The default name of the column is the expression itself. You have to use a col-

umn alias to change the name of the column. Because you want to use an alias

name that has an embedded space, you also have to enclose the alias name in

double quotes.

Just as with other arithmetic expressions, when the start date field is NULL

for a particular row, the resulting end date value is also NULL. The entire

query would look like this:

SELECT CourseNumber, StartDate, Startdate + DaysDuration AS
“End Date”
FROM ScheduledClasses
WHERE locationID = 100

2. Because you have offices in only two countries, you can find either all rows

where the country equals the U.S. or all rows where the country does not

equal Canada. However, it is always best to use positive conditions rather

than negative conditions. This also saves your having to rewrite the query

when you open your first office in Mexico.

Information about subways is stored in the Description column. This is a large

text field; therefore, you have to use the LIKE operator to find the rows you

are interested in. Also, because you do not know where in the text field the

word “subway” occurs, you have to use wild cards with the LIKE operator.

The code looks like this,

SELECT LocationID, LocationName
FROM Locations
WHERE Description LIKE ‘%subway%’;

85Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 85

You have to be careful with this code. If the description information is stored

in all capital letters or an initial capital is in the word “subway” for any of the

descriptions, no rows are returned for those locations.

To find only American locations near the subway, you simply add a second

condition in the WHERE clause using the AND operator. If you use the OR

operator, you get Canadian locations near subways and all U.S. locations

(whether or not they are near a subway). The query should look like this:

SELECT LocationID, LocationName
FROM Locations
WHERE Description LIKE ‘%subway%’ AND Country =

‘USA’;

Finally, to list all locations alphabetically by city, you simply include the fol-

lowing ORDER BY clause:

ORDER BY city

The ORDER BY clause orders text columns alphabetically in either ascending

or descending order.

Lab Exercises

Lab 2-1 Working with basic queries
2.

SELECT *
FROM Students;

3. Eleven rows should be returned. You may see more or fewer rows if you

added or deleted data outside of the labs.

4.

SELECT FirstName, LastName, City
FROM Students;

5.

SELECT DISTINCT City
FROM Students;

6. No. The Distinct keyword automatically sorts all data in ascending order.

However, if you want the data sorted in descending order, you have to use an

ORDER BY clause.

Lab 2-2a Using expressions in SQL queries: the
concatenation operator

2.

SELECT LastName || ‘, ‘ || FirstName, City
FROM Students;

86 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 86

87

3. The new column has the same name as the expression (LastName || ‘ , ‘ ||

FirstName).

4.

SELECT LastName || ‘, ‘ || FirstName AS “Student Name”, City
AS “Home City”
FROM Students

5.

SELECT LastName || ‘, ‘ || FirstName AS “Student Name”, City
AS “Home City” “
FROM Students
ORDER BY “Student Name”

Lab 2-2b Using expressions in SQL queries: the arithmetic
operator

1.

SELECT InstructorID, LastName, PerDiemCost * 5 AS “weekly
cost”
FROM Instructors;

2.

SELECT InstructorID, LastName,
PerDiemCost * 5 AS “weekly cost”,
(PerDiemCost + PerDiemExpenses) * 5 AS “travel cost”
FROM Instructors

3.

SELECT InstructorID, LastName,
PerDiemCost * 5 AS “weekly cost”,
(PerDiemCost + PerDiemExpenses) * 5 AS “travel cost”
FROM Instructors
ORDER BY “travel cost” DESC

Lab 2-3 Limiting the rows returned with a WHERE clause
2.

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost > 400 AND PerDiemCost < 600;

Note: If you use the condition “WHERE PerDiemCost BETWEEN 400 AND 600”,

your answer is incorrect because this condition includes those who make

exactly $400 and exactly $600. The question asks for those who make more

than $400 and less than $600.

87Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 87

3.

SELECT InstructorID, City
FROM Instructors
WHERE city IN (‘Toronto’, ‘New York’);

4.

SELECT InstructorID, PerDiemCost, City
FROM Instructors
WHERE PerDiemCost > 400 AND PerDiemCost < 600
AND city IN (‘Toronto’, ‘New York’);

5.

SELECT InstructorID
WHERE PerDiemExpenses IS NOT NULL;

Lab 2-4 Using the ROWNUM pseudo-column
2.

SELECT FirstName, LastName, PerDiemCost, ROWNUM
FROM Instructors;

3.

SELECT FirstName, LastName, PerDiemCost, ROWNUM
FROM Instructors
WHERE ROWNUM <=4;

4.

SELECT FirstName, LastName, PerDiemCost, ROWNUM
FROM Instructors
ORDER BY PerDiemCost;

5. No. The ORDER BY statement is processed after the ROWNUM values have

been assigned and changes the order in which the rows are presented.

88 Chapter 2 ✦ Study Guide

4832-8 ch02.F 7/27/01 9:00 AM Page 88

Using Single- and
Multi-Row
Functions

EXAM OBJECTIVES

✦ Single-Row Functions

• Describe various types of functions available in SQL

• Use character, number, and date functions in SELECT

statements

• Describe the use of conversion functions

✦ Aggregating Data Using Group Functions

• Identify the available group functions

• Describe the use of group functions

• Group data using the GROUP BY clause

• Include or exclude grouped rows by using the HAVING clause

33C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch03.F 7/27/01 9:00 AM Page 89

90 Part I ✦ The Oracle SQL Language

CHAPTER PRE-TEST
1. What is the primary difference between single-row and multi-row

functions?

2. When do you use a case-conversion function in a WHERE clause?

3. How do you format a date to include an ordinal number (for example,
January 12th)?

4. What data types are accepted by the MAX() function?

5. What is the difference between COUNT(column) and COUNT(*)?

6. What function do you use to return the current date?

7. Can you write a query that calculates a value without drawing data
from a specific table?

8. Do you have to include all nonaggregate values in the SELECT list in
the GROUP BY clause?

9. Can you use group functions in the WHERE clause?

10. How do you write a query that returns a different value depending on
the value of another column?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch03.F 7/27/01 9:00 AM Page 90

91Chapter 3 ✦ Using Single- and Multi-Row Functions

This chapter discusses Oracle’s built-in functions. It examines both group and

single-row functions. A function is a named programming element that takes

one or more input values and returns an output value that has been generated by

the code that defines the function. Oracle includes a number of functions. These

functions can be used to modify, or generate values in the SELECT list of a SQL

query. For the exam, you are expected to have a full understanding of the various

functions in Oracle and how they are used. This chapter starts by looking at single-

row functions. A single-row function returns one value for each value passed into it.

Next, this chapter examines the use of group functions to generate aggregate data.

It also examines how the GROUP BY and HAVING clauses can be used with group

functions to generate subtotal data.

Having a solid understanding of how Oracle’s built-in queries work enables you to

greatly increase the power of the SQL language. Without these functions, you are

limited to returning the data as it appears in the tables. However, the information

you require often is not in the table but derived from data in the table. To derive this

data you can use Oracle’s functions. These functions, for example, enable you to

format your output more effectively and to derive values from your tables that

would be otherwise unavailable. Group functions also enable you to aggregate or

summarize data in your tables to return values based on the data in your tables.

This chapter starts by looking at single-row functions and then proceeds to an

examination of group functions.

Single-Row Functions
✦ Describe various types of functions available in SQL

✦ Use character, number, and date functions in SELECT statements

✦ Describe the use of conversion functions

All single-row functions return one output value for each input value. For example,

if you place a single-row function in a SELECT statement that returns ten rows, you

receive one output value for each of the ten rows (that is, ten output values). Single-

row functions are used to manipulate table values or expressions. They can work

with different datatypes and can even be used to change the datatype of value.

These functions can be broken down into four general categories: conversion func-

tions, character functions, number functions, and date functions.

Conversion functions
As you saw in Chapter 2, Oracle is, in some cases, capable of implicitly converting

data from one datatype to another. For example, if you concatenate a character col-

umn and a numeric column using the concatenation operator ||, Oracle implicitly

Objective

4832-8 ch03.F 7/27/01 9:00 AM Page 91

92 Part I ✦ The Oracle SQL Language

converts the data in the numeric column into character data. However, in some sit-

uations, Oracle is unable to perform these conversions unassisted. For these situa-

tions, you need to use a conversion function. Oracle includes three conversion

functions: TO_NUMBER, TO_CHAR, and TO_DATE.

When writing SQL statements, it is often better to explicitly convert values using a
conversion function rather than rely on implicit conversion. This makes the code
more readable and also avoids unexpected errors that result when Oracle is, for
whatever reason, unable to make an implicit conversion.

The TO_NUMBER function
The TO_NUMBER function is used to convert character data, or strings, into

numeric data. The syntax for this function is:

TO_NUMBER (string, [format])

This function is particularly useful when data has been stored in a character format

to allow for thousand separators and decimal points. Consider the following exam-

ple. A table called Sales_records contains two columns with a variable character

datatype (varchar2(10)) called Asking_price and Sale_price. If the data in these

columns looks like this:

Asking_price Sale_price
------------ -----------
2000 1000
3000 1500

Oracle can execute the following query using implicit conversion:

SELECT Asking_price - Sale_price AS “Price Difference”
FROM Sales_records;

Price Difference

1000
1500

In this example, Oracle is able to implicitly convert the varchar2 values into

numeric values and perform the arithmetic expression.

However, if the data in these columns looks like this:

Asking_price Sale_price
------------ -----------
2,000.00 1,000.00
3,000.00 1,500.00

Tip

4832-8 ch03.F 7/27/01 9:00 AM Page 92

93Chapter 3 ✦ Using Single- and Multi-Row Functions

The previous query returns the following error:

ERROR at line 1:
ORA-01722: invalid number

You get this error because non-numeric characters in the data prevent Oracle from

performing the implicit conversion. To avoid this error you can use the TO_NUM-

BER function. It would look like this:

SELECT TO_NUMBER(Asking_price, ‘9,9999.99’) -
TO_NUMBER(Sale_price, ‘99,999.99’) AS “Price Difference”
FROM Sales_records;

This query works because the TO_NUMBER returns a numeric value. The character

9 in the formatting code represents any numeric value. By including the thousands

separator and the decimal point, you are instructing the function on how it is to

interpret the value passed into the function.

The last example in this section does not work properly when the column has a
fixed-length character datatype. The reason is that the column contains padding
characters to pad the value up to the width of the column. The TO_NUMBER func-
tion is unable to deal with these padding characters. This can be dealt with by
using the TRIM function inside the TO_NUMBER function. If we consider the previ-
ous example, it looks like this:

SELECT TO_NUMBER(TRIM(Asking_price), ‘9,9999.99’) -
TO_NUMBER(TRIM(Sale_price), ‘99,999.99’) AS “Price
Difference”
FROM Sales_records;

Using the TO_CHAR function
The TO_CHAR function is used to convert either date or numeric data to character

data. It is most often used to format the appearance of date and numeric data using

non-numeric characters to improve readability. In both cases, the syntax of the

function is as follows:

TO_CHAR({numeric data | date data}, [‘format’])

The format characters depend on what type of conversion you are attempting.

Using T0_CHAR with numeric data
In several situations, you can use the TO_CHAR function to convert numeric into

character data. You might want to include a thousands separator or a decimal point

(if the value is not stored in the table with decimal values). Also, if the numeric data

represents currency, you might also want to include a currency symbol.

To indicate how you want the data formatted, you must include format elements

with the function. Some of the more common format elements are listed in

Table 3-1.

Tip

4832-8 ch03.F 7/27/01 9:00 AM Page 93

94 Part I ✦ The Oracle SQL Language

NLS currency settings

If you are working in a multilingual environment, you should use the “L” rather than the “$”
as the formatting character to represent the currency symbol. The $ character always dis-
plays a dollar sign; however, when you use “L”, it displays the currency symbol specified in
the NLS_currency parameter.

For example, if your database’s NLS language is set to American, the following query returns
a value with the American currency symbol:

SELECT InstructorID,
TO_CHAR(PerDiemCost * 5, ‘L99,999.99’) AS “Weekly Cost”

FROM Instructors;

INSTRUCTORID Weekly Cost
------------ -----------

300 $2,500.00
310 $2,250.00
100 $3,000.00
110 $2,500.00
200 $3,750.00
210 $2,000.00
410 $2,000.00
450 $2,250.00

In this case, the NLS_currency parameter value is the dollar sign. If you change the
NLS_Territory value to Italy, you receive a different out put from the same query:

SELECT InstructorID,
TO_CHAR(PerDiemCost * 5, ‘L99,999.99’) AS “Weekly Cost”

FROM Instructors;

INSTRUCTORID Weekly Cost
------------ --------------------

300 L.2,500.00
310 L.2,250.00
100 L.3,000.00
110 L.2,500.00
200 L.3,750.00
210 L.2,000.00
410 L.2,000.00
450 L.2,250.00

In this case, the NLS_currency value has changed from the dollar sign to the lira symbol (L.).
Using the floating local currency symbol makes your scripts portable among language settings.

If you are not sure what your current NLS_currency value is, you can find it using the fol-
lowing query:

SELECT value FROM V$NLS_parameters
WHERE Parameter = ‘NLS_CURRENCY’;

4832-8 ch03.F 7/27/01 9:00 AM Page 94

95Chapter 3 ✦ Using Single- and Multi-Row Functions

Table 3-1
Number Format Elements with the TO_CHAR Function

Symbol Significance

0 Displays a leading zero.

9 Represents any number. The number of nines determines width of output but
does not display leading zeros.

, Thousand separator.

. Decimal point.

L Floating currency symbol.

$ Floating dollar sign.

MI Places minus sign to right of value if the value is negative.

These formatting elements describe how values are to be displayed. For example,

suppose you want to list the weekly cost for each instructor and you want to

include a dollar sign, you can use the following query:

SELECT FirstName, LastName,
TO_CHAR(PerDiemCost * 5, ‘$99,999.99’) AS “Weekly Cost”

FROM Instructors;

which produces the following output:

FIRSTNAME LASTNAME Weekly Cost
---------------- --------------------- -----------
Michael Harrison $2,500.00
Susan Keele $2,250.00
David Ungar $3,000.00
Kyle Jamieson $2,500.00
Lisa Cross $3,750.00
Geoff Williams $2,000.00
Lana Chiu $2,000.00
Adele LaPoint $2,250.00

Note that in this example, the dollar sign is floating — that is, it appears next to the

first numeral even though the format shows a five-digit number. If, however, you do

not include enough number symbols, Oracle is unable to return any output.

Consider the following example:

SELECT InstructorID,
TO_CHAR(PerDiemCost * 5, ‘$999.99’) AS “Weekly Cost”

FROM Instructors;

INSTRUCTORID Weekly C
------------ --------

4832-8 ch03.F 7/27/01 9:00 AM Page 95

96 Part I ✦ The Oracle SQL Language

300 ########
310 ########
100 ########
110 ########
200 ########
210 ########
410 ########
450 ########

In this example, the data returned exceeds the width of the formatting, and Oracle

is unable to display the result set.

Show an example using zeros (0) in the format model, e.g. ‘$000.99’, & perhaps tell

why this might be used over just 9s.

Using the TO_CHAR function with date value
Just as with currency, Oracle looks to the NLS settings when it displays date data.

When Oracle stores data using the date datatype, it stores the date in an internal

numeric format. It must convert this numeric value to character data before it

returns the value. When it makes this conversion, it uses the NLS_date_format

value to determine how the date information will be presented. If you want a date

format other than the NLS format, you must use the TO_CHAR function. TO_CHAR

includes a number of format elements that are specific to date. A partial list of

these format elements is provided in Table 3-2.

Table 3-2
TO_CHAR Date Format Elements

Symbol Significance

DD Two-digit day value

MM Two-digit month value

Mon Abbreviated month value

Month The full month spelled out

YYYY Four-digit year value

Year The full year spelled out

Day The day of the week

DY Three-letter abbreviation for the day of the week

Q The quarter

These formatting elements are used the same way as the number format elements.

In addition to these elements, you can include spelling, punctuation, and literal val-

ues (enclosed in double quotes).

4832-8 ch03.F 7/27/01 9:00 AM Page 96

97Chapter 3 ✦ Using Single- and Multi-Row Functions

For example, the following query displays the start date for all classes, including

the day of the week and the month spelled out:

SELECT ClassID, TO_CHAR(StartDate, ‘DAY MONTH DD, YYYY’)
AS “Start Date”

FROM ScheduledClasses;

CLASSID Start Date
--------- ----------------------------

50 SATURDAY JANUARY 06, 2001
51 SATURDAY JANUARY 13, 2001
53 WEDNESDAY FEBRUARY 14, 2001

You should note a few points about this result set. First, the values for DAY and

MONTH are all uppercase. This is because Oracle sets the capitalization of these

values in the same manner as you list them in the format elements. If you had sub-

mitted the format values “DAY” and “MONTH” as “Day” and “Month”, the output

also would be in initial capital letters:

SELECT ClassID, TO_CHAR(StartDate, ‘Day Month DD, YYYY’)
AS “Start Date”

FROM ScheduledClasses;

CLASSID Start Date
--------- ----------------------------

50 Saturday January 06, 2001
51 Saturday January 13, 2001
53 Wednesday February 14, 2001

The second point to note is that the punctuation in the format elements is included

in the result set. Finally, notice that spaces are embedded between the various date

elements. These embedded spaces can be removed by placing the “fm” prefix

before the elements in the format elements. If we include this prefix in the previous

query, we get a different result:

SELECT ClassID, TO_CHAR(StartDate, ‘fmDay Month fmDD, YYYY’)
AS “Start Date”

FROM ScheduledClasses

CLASSID Start Date
--------- ----------------------------

50 Saturday January 06, 2001
51 Saturday January 13, 2001
53 Wednesday February 14, 2001

In this query, the result set does not contain the same embedded spaces that were

in the previous query.

4832-8 ch03.F 7/27/01 9:00 AM Page 97

98 Part I ✦ The Oracle SQL Language

You can include two suffixes in the format elements. The suffix “sp” is used to spell

out a numeric value (for example, the format element DDsp spells out the day

rather than returning a numeral). You can also include the “th” suffix to add an ordi-

nal ending to a numeric format element. Consider the following query:

SELECT ClassID,
TO_CHAR(StartDate, ‘fmDAY “the” DDth “of” Month DD, YYYYsp’)

AS “Start Date”
FROM ScheduledClasses

CLASSID Start Date
-------- --

50 SATURDAY the 6TH of January 06, TWO THOUSAND ONE
51 SATURDAY the 13TH of January 13, TWO THOUSAND ONE
53 WEDNESDAY the 14TH of February 14, TWO THOUSAND ONE

The TO_DATE function
The TO_DATE function is used to help Oracle convert string values into its internal

date format. It uses the same formatting values that the TO_CHAR function uses

with dates. The syntax for this function is:

TO_DATE(string, ‘format’)

When Oracle encounters a character string that it needs to treat as a date, it uses

the NLS_date_format value to attempt to interpret the string. If the date string does

not conform to this format, Oracle returns an error. Consider the following query:

SELECT ClassID
FROM ScheduledClasses
WHERE StartDate = ‘January 6, 2001’;

WHERE StartDate = ‘January 6, 2001’
*

ERROR at line 3:
ORA-01858: a non-numeric character was found where a numeric
was expected

The reason Oracle was expecting a numeric value is the NLS_date_format for this

server was not changed from the default “DD-MON-YY”. It was looking for a numeric

value for the day of the month and, instead, encountered a character value. In order

to make this query work, you have to use the TO_DATE function to show Oracle

how to interpret the string:

SELECT ClassID
FROM ScheduledClasses
WHERE StartDate = TO_DATE(‘January 6, 2001’, ‘Month DD, YYYY’);

CLASSID

50

4832-8 ch03.F 7/27/01 9:00 AM Page 98

99Chapter 3 ✦ Using Single- and Multi-Row Functions

Character functions
Character functions are used to manipulate case and appearance of character data.

Character functions can be divided into two general categories: case-conversion

functions and character-manipulation functions.

Case-conversion functions
Case-conversion functions are used to alter the case of character data in the result

set. The three case-conversion functions are described in Table 3-3:

The DUAL Table

All SQL queries contain two mandatory clauses: the SELECT list and the FROM clause. At
times, however, you may want to issue a query that derives all of its data expressions within
the query which do not rely on any table. If you were to issue a query without a FROM
clause, for example:

SELECT UPPER(‘Hello There’) AS UPPER,
LOWER(‘HOW ARE’) AS LOWER,
INITCAP(‘YOU TODAY’) AS INITCAP

you would receive the following error:

ERROR at line 3:
ORA-00923: FROM keyword not found where expected

You receive this message because Oracle cannot process a query without a FROM clause.
To solve this problem, Oracle includes the DUAL table.

The DUAL table is a very small public table. When you use the SQL*Plus DESC command to
view this table, it appears as follows:

SQL> DESC dual;
Name Null? Type
-------------------------------- -------- -----------------
DUMMY VARCHAR2(1)

The Dummy column contains a single row with a value of X. In the example above, because
you are not referencing any column, you could have put any table in your schema in the
FROM clause. However, this query would evaluate one for each row in the table. Because
the DUAL table only contains one row, the select expression is only evaluated once, and the
lookup on the table is much faster.

4832-8 ch03.F 7/27/01 9:00 AM Page 99

100 Part I ✦ The Oracle SQL Language

Table 3-3
Case-Conversion Functions

Function Description

LOWER Returns all alphabetic characters in lowercase.

UPPER Returns all alphabetic characters in uppercase.

INITCAP Capitalizes the first letter of each word and sets the remaining characters in
lowercase.

You can see the results of all three functions in the following query:

SELECT UPPER(‘Hello There’) AS UPPER,
LOWER(‘HOW ARE’) AS LOWER,
INITCAP(‘YOU TODAY’) AS INITCAP

FROM Dual

UPPER LOWER INITCAP
----------- ------- ---------
HELLO THERE how are You Today

Case-conversion functions are also quite useful in the WHERE clause. If you do not

know the exact case of a character value as it is stored in the table, it is very diffi-

cult to retrieve data using that string in a WHERE clause. For example, consider the

outcome of the following query:

SELECT InstructorId, City
FROM Instructors
WHERE City = ‘TORONTO’;

no rows selected

There are instructors in this table from Toronto; however, in the table, the string is

stored in initial capital letters. Because the character strings in the WHERE clause

are case sensitive, values must match case as well as spelling. You can avoid this

problem by using one of the case-conversion functions:

SELECT InstructorId, City
FROM Instructors
WHERE UPPER(City) = ‘TORONTO’;

INSTRUCTORID CITY
------------ --------------------------

300 Toronto
310 Toronto
210 Toronto

4832-8 ch03.F 7/27/01 9:00 AM Page 100

101Chapter 3 ✦ Using Single- and Multi-Row Functions

In this query, Oracle takes each value in the City column, forces it into uppercase,

and then compares it to the string. This allows the query to return the three

Toronto instructors even though the city value is not stored in all capital letters.

Character-manipulation functions
Character-manipulation functions are used to modify the appearance of character

data or to manipulate the strings to provide information about them. Several

character-manipulation functions are listed in Table 3-4.

Table 3-4
Character-Manipulation Functions

Function Description

SUBSTR Returns a portion of a string.

CONCAT Combines two string values.

LPAD Pads a string with a defined character to a defined length.

TRIM Trims leading or ending characters.

LENGTH Returns the length of a string value.

INSTR Returns the position of a particular character within a string.

SUBSTR
The SUBSTR function is used to return a portion of a string value. The portion that

the function returns is determined with parameters in the function itself. The syn-

tax for the function is:

SUBSTR(string, <start position>, <number of characters>)

Both the start position and number of characters are numeric values indicating the

position of the characters within the string that you want returned. For example, if

you want to return the first initial and last name of all instructors, you can use the

following query:

SELECT SUBSTR(FirstName, 1, 1) , Lastname
FROM Instructors;

S LASTNAME
- ---------------------------
M Harrison
S Keele
D Ungar

4832-8 ch03.F 7/27/01 9:00 AM Page 101

102 Part I ✦ The Oracle SQL Language

K Jamieson
L Cross
G Williams
L Chiu
A LaPoint

8 rows selected.

In this case, the SUBSTR function instructs Oracle to return a portion of FirstName,

starting at the first character and returning only one character. The output of this

function also includes any spaces included in the string. Consider the output of the

following query:

SELECT SUBSTR(CourseName, 5, 10) AS SUBSTRING
FROM Courses

SUBSTRING

c SQL
nced SQL
ormance Tu
base Perfo
base Admin
ing up you
c PL/SQL
nced PL/SQ
g your PL/

In the preceding example, spaces are maintained. If the number of characters

required is greater than the number of characters in the string, Oracle simply

leaves the remainder blank (as is the case with the first row “Basic SQL” which has

only nine characters total).

CONCAT
The CONCAT function works much like the concatenation operators (||) that you

saw in Chapter 2. The function takes any two string values and combines them into

a single value. The syntax for this function is:

CONCAT(string1,string2)

For example:

SELECT CONCAT(‘Oracle’, ‘Server’) AS Concat
FROM Dual;

CONCAT

OracleServer

4832-8 ch03.F 7/27/01 9:00 AM Page 102

103Chapter 3 ✦ Using Single- and Multi-Row Functions

With the CONCAT function, you are limited to joining only two values. This might

seem less effective than using the concatenation operators; however, the advantage

of this function is that it can be nested in other functions (whereas the concatena-

tion operator cannot be used within all SQL function).

LPAD
The LPAD function is used to place characters to the left of a string whose size will

always be as specified in the parameters passed to the function. This function is

used to format output and make it uniform. The syntax for this function is:

LPAD(char, size of string, ‘padding character’)

For example:

SELECT LPAD(LastName, 10, ‘*’) AS LPAD
FROM Students;

LPAD

*****Smith
*****Jones
****Massey
*****Smith
*****Hogan
*******Hee
****Andrew
***Holland
*****Jones
****Colter
*Patterson

In this example, the result set returns ten characters per row. The value in each row

returns a string with the last name and pads the values with the padding character

up to ten characters in length.

There is also an RPAD function that pads right-justified. Its syntax is the same as the

LPAD function. If you do not supply a padding character of the LPAD and RPAD func-

tions, they will pad with a blank space by default.

TRIM
The TRIM function removes leading and trailing characters from a string. The syn-

tax for this function is:

TRIM([{LEADING | TRAILING | BOTH}]char FROM string)

4832-8 ch03.F 7/27/01 9:00 AM Page 103

104 Part I ✦ The Oracle SQL Language

If you do not specify a character to be trimmed, Oracle trims blank spaces by

default. If you do not specify leading or trailing, the default behavior is to trim both

leading and trailing values. For example, the following query removes the character

“S” from a string:

SELECT TRIM(‘S’ FROM ‘STEVENS’) AS TRIM
FROM Dual;

TRIM

TEVEN

If you want only one trimmed, you must specify which string you want trimmed. For

example, the query:

SELECT TRIM(TRAILING ‘S’ FROM ‘STEVENS’) AS TRIM
FROM Dual;

returns:

TRIM

STEVEN

An additional point you must remember with this function is that it is case sensi-

tive. The characters you choose to trim must match the case of the characters in

the string. Consider the following example:

SELECT TRIM(BOTH ‘S’ FROM ‘Stevens’)AS TRIM
FROM Dual

TRIM

tevens

Because the trailing “s” is lowercase, it is ignored by the TRIM function.

Finally, you cannot include multiple characters in the list of characters to be

trimmed. For example, the following query returns an error

SELECT TRIM(‘ST’ FROM ‘STEVENS’) AS TRIM
FROM Dual;

ERROR at line 1:
ORA-30001: trim set should have only one character

The TRIM function is new to Oracle 8i and can be used in place of both the LTRIM
and RTRIM functions (although these still work and can be used). The LTRIM func-
tion removes leading characters, whereas the RTRIM function removes trailing
characters.

Tip

4832-8 ch03.F 7/27/01 9:00 AM Page 104

105Chapter 3 ✦ Using Single- and Multi-Row Functions

LENGTH
The LENGTH function is used to return the length of a string value. It returns it as a

numeric value.

For example:

SELECT Firstname, LENGTH(Firstname) AS LENGTH
FROM Instructors;

FIRSTNAME LENGTH
------------------------------ ---------
Michael 7
Susan 5
David 5
Kyle 4
Lisa 4
Geoff 5
Lana 4
Adele 5

INSTR
The INSTR function returns the position of first occurrence of a particular character

within a string. Like the LENGTH function, it returns a numeric value. If it does not

find the character value, it returns a 0. For example:

SELECT Firstname, INSTR(Firstname, ‘a’) AS INSTR
FROM Instructors

FIRSTNAME INSTR
------------------------------ ---------
Michael 5
Susan 4
David 2
Kyle 0
Lisa 4
Geoff 0
Lana 2
Adele 0

Note that the string value in the function is case sensitive. Adele shows an INSTR

value of 0 because the function is looking only for the lowercase “a” character.

Number functions
Number functions enable you to manipulate numeric values. There are many num-

ber functions, but you are responsible for knowing the following functions: ROUND,

TRUNC, and MOD.

4832-8 ch03.F 7/27/01 9:00 AM Page 105

106 Part I ✦ The Oracle SQL Language

ROUND
The ROUND function is used to round numeric values to a decimal place specified

as a parameter of the functions. The syntax for this function is:

ROUND(number, n)

where n is the number of decimal places to which you want the value rounded. If n

is a negative number, the ROUND function rounds to the left of the decimal place. If

n is zero, Oracle rounds to the nearest whole number. If you do not supply a value

for n, Oracle rounds the numeric value to the nearest whole number.

Consider the following example:

SELECT ROUND(44.647, 2) AS POSITIVE,
ROUND(44.647, 0) AS ZERO,
ROUND(44.647, -1) AS NEGATIVE

FROM Dual;

POSITIVE ZERO NEGATIVE
--------- --------- ---------

44.65 45 40

In this example, the value in the POSITIVE column has been rounded to the nearest

hundred (two decimal places), the value of ZERO has been rounded to the nearest

whole number, and the value for NEGATIVE has been rounded to the nearest ten.

TRUNC
The TRUNC function works much like the ROUND function except that rather than

rounding values, it simply truncates the value at the specified decimal place. The

syntax for this function is:

ROUND(number, n)

Just as with the ROUND function, if n is a positive number, the function truncates

values to the right of the decimal place; if the value is 0, it truncates to the nearest

whole number; and if it is negative, it truncates to the left of the decimal point.

Consider the following example:

SELECT TRUNC(44.647, 2) AS POSITIVE,
TRUNC(44.647, 0) AS ZERO,
TRUNC(44.647, -1) AS NEGATIVE

FROM Dual;

POSITIVE ZERO NEGATIVE
--------- --------- ---------

44.64 44 40

As you can see from this example, there is no rounding of the values; instead, any-

thing outside the scope of the truncation is ignored.

4832-8 ch03.F 7/27/01 9:00 AM Page 106

107Chapter 3 ✦ Using Single- and Multi-Row Functions

MOD
The MOD function returns the remainder of two values. The syntax for this

function is:

MOD(value1, value2)

When this function is called, it divides value1 by value2 and returns only the

remainder. If there is no remainder, the function returns a zero.

Consider the following example:

SELECT MOD(2200, 300) AS ODD, MOD(2100, 300) AS EVEN
FROM Dual

ODD EVEN
--------- ---------

100 0

In the ODD column, 300 goes into 2,200 three times with a remainder of 100. In the

EVEN column, 2,100 can be evenly divided by 300, leaving no remainder. In Oracle,

when the second value is a 0, the MOD function returns the first value (which devi-

ates a bit from the rules of mathematics). For example, the query:

SELECT MOD(1000, 0)AS ZERO_DIVIDE
FROM Dual;

should return a mathematical error (because values cannot be mathematically

divided by zero). However, in Oracle this function returns the following:

ZERO_DIVIDE

1000

When either element passed into the MOD function is NULL, the result is NULL.

Date functions
Oracle includes a number of functions that enable you to modify and manipulate

date data. Most of these functions enable you to perform calculations on dates. As

mentioned in Chapter 2, when you add a number to or subtract a number from a

date, the result is the date that many days forward or backward in time. However,

what happens if you want to add two months? Clearly you cannot add 60 days,

because not all months are 30 days in length. It is these kinds of problems that the

majority of the date functions were designed to deal with. The date functions are

listed in Table 3-5.

4832-8 ch03.F 7/27/01 9:00 AM Page 107

108 Part I ✦ The Oracle SQL Language

Table 3-5
Oracle Date Functions

Function Description

ADD_MONTHS Adds a number of months to date value and returns a new date.

MONTHS_BETWEEN Determines the number of months between two dates.

NEXT_DAY Determines the next occurrence of a particular day of the week.

LAST_DAY Determines the last day of the month.

ROUND Rounds to the nearest date part.

TRUNC Truncates to the nearest date part.

ADD_MONTHS
The ADD_MONTHS function is used to add or subtract a number of months to or

from a date value. The syntax for this function is:

ADD_MONTHS(date, number)

For example, if you want to schedule a course six months after the current start

date for the courses in the ScheduledClasses table and need to know the date, you

can use the following query:

SELECT StartDate, ADD_MONTHS(StartDate, 6) AS 6_MONTHS
FROM ScheduledClasses;

STARTDATE 6_MONTHS
--------- ---------
06-JAN-01 06-JUL-01
13-JAN-01 13-JUL-01
14-FEB-01 14-AUG-01

Internally, the function is able to calculate the number of days that are in the six-

month span defined by the StartDate value and add that many days to the start

date value.

MONTHS_BETWEEN
The MONTHS_BETWEEN function also enables you to derive values that cannot

easily be calculated mathematically. Remember that when you subtract two dates,

the result is the number of days between the two dates. If you need the number of

months, you need to use this function. The syntax for the function is:

MONTHS_BETWEEN(date1, date2)

4832-8 ch03.F 7/27/01 9:00 AM Page 108

109Chapter 3 ✦ Using Single- and Multi-Row Functions

For example:

SELECT MONTHS_BETWEEN(‘01-JAN-01’, ‘01-AUG-01’) AS
MONTHS_BETWEEN
FROM Dual;

MONTHS_BETWEEN

-7

The result of this function returns a negative value because in this example, you are

subtracting a higher value from a lower number (because numeric values in

Oracle’s internal date format increase with time). If you put the later date first, the

result is a positive number.

NEXT_DAY
The NEXT_DAY function returns the date for the next day of the week requested in

the parameters of the function. The syntax for this function is:

NEXY_DAY(date, day)

For example, to find the date of the Friday after each course start date, you use the

following query:

SELECT StartDate, NEXT_DAY(StartDate, ‘FRIDAY’) AS NEXT_DAY
FROM ScheduledClasses;

STARTDATE NEXT_DAY
--------- ---------
06-JAN-01 12-JAN-01
13-JAN-01 19-JAN-01
14-FEB-01 16-FEB-01

The advantage of using this function is that you do not have to know which day of

the week the initial date falls on. In this example, the first course actually starts on

a Friday, whereas the last course starts on a Wednesday.

LAST_DAY
The LAST_DAY function returns the last day of the month that contains the date

specified in the function’s parameters. The syntax for this function is:

LAST_DAY(date)

4832-8 ch03.F 7/27/01 9:00 AM Page 109

110 Part I ✦ The Oracle SQL Language

For example, suppose you pay your instructors on the last day of each month. You

can calculate the payment date with the following query:

SELECT ClassID, StartDate, LAST_DAY(StartDate) AS Payment
FROM ScheduledClasses;

CLASSID STARTDATE PAYMENT
--------- --------- ---------

50 06-JAN-01 31-JAN-01
51 13-JAN-01 31-JAN-01
53 14-FEB-01 28-FEB-01

Oracle determines the month in which each date value exists and then determines

the last day for that month.

ROUND and TRUNC
You can also use the ROUND and TRUNC functions with date values. In this case,

you specify the part of the date you want to round or truncate values on rather

than a decimal position. For example, if you want to round a date to a particular

month or year, you can use the following query:

SELECT ROUND(StartDate, ‘MONTH’) AS MONTH,
ROUND(StartDate, ‘YEAR’) AS YEAR

FROM ScheduledClasses

MONTH YEAR
--------- ---------
01-JAN-01 01-JAN-01
01-JAN-01 01-JAN-01
01-FEB-01 01-JAN-01

Additional functions
Oracle also contains a few single-row functions that do not fit into any of the above-

mentioned categories. Three main functions in this category are: NVL, SYSDATE,

and DECODE.

Use the NVL function
The NVL function is used to provide an actual value in place of a NULL returned by

a query. It can be used with any date, number, or character datatype. This value can

then be treated as a literal value in the query. This function evaluates a specified

column in each row returned. The syntax for this function is:

NVL(column, value)

As each row is passed into the function, it checks to see if the field for the specified

column is NULL. If it is not, the NVL function simply forwards the value; however, if

4832-8 ch03.F 7/27/01 9:00 AM Page 110

111Chapter 3 ✦ Using Single- and Multi-Row Functions

it is NULL, the NVL function returns whatever value you specified in the function.

For example, if you want to calculate the total weekly cost for each instructor, you

can use a query like the following:

SELECT InstructorID,
(PerDiemCost + PerDiemExpenses) * 5 AS “Weekly Cost”

FROM Instructors;

INSTRUCTORID Weekly Cost
------------ -----------

300 3500
310 3250
100 4000
110 3500
200 5000
210
410
450 3250

You remember from Chapter 2 that any arithmetic expression containing a NULL in

one of its values always returns NULL. In this case, because instructors 210 and 410

have a NULL value in the PerDiemExpenses column, their total weekly cost also is

NULL. To return a value for these two instructors, you must use the NVL function:

SELECT InstructorID,
(PerDiemCost + NVL(PerDiemExpenses, 0)) * 5 AS “Weekly

Cost”
FROM Instructors;

INSTRUCTORID Weekly Cost
------------ -----------

300 3500
310 3250
100 4000
110 3500
200 5000
210 2000
410 2000
450 3250

In this example, the NVL function checks the PerDiemExpenses field for each row. If

it is not NULL, the function returns whatever value was passed into it. If the value is

NULL, the function returns a 0. Unlike the NULL, the zero is a literal value and

allows the arithmetic expression to be evaluated correctly.

The value you include in the NVL function must match the datatype of the column

being evaluated. For example, the following query returns an error:

SELECT InstructorID, NVL(PerDiemExpenses, ‘No expenses’)
FROM Instructors;

4832-8 ch03.F 7/27/01 9:00 AM Page 111

112 Part I ✦ The Oracle SQL Language

SELECT InstructorID, NVL(PerDiemExpenses, ‘No expenses’)
*

ERROR at line 1:
ORA-01722: invalid number

In this case, Oracle is being asked to place character date in a numeric column,

which violates the datatype.

If you want to supply an NVL default that is of a different datatype, you must also
include a conversion function in the query to convert the datatype of the column
in the result set. The following query does not return an error:

SELECT InstructorID, NVL(TO_CHAR(PerDiemExpenses)
‘No Expenses’)

FROM Instructors

Using the SYSDATE function
The SYSDATE function is used to return the current date from the system. When

this function is called, it consults the internal clock for the server and returns the

current date. This function often is used in scripts that are temporal in nature. For

example, if you want to write a query that returns a list of all courses that have

already passed, you can use the following SQL statement:

SELECT CourseNumber, Startdate
FROM ScheduledClasses
WHERE Startdate < SYSDATE;

Clearly, in this statement, you do not want to hard-code the date in the condition

because that fixes the result set. The SYSDATE value is recalculated every time the

statement is run. Therefore, the query always returns courses that started previous

to the current day.

Using the DECODE function
The DECODE function enables you to build some conditional logic into your

queries. It functions much like an If-Then-Else statement. The syntax for this func-

tion is:

DECODE(column/expression, conditon1, result1
[,condition2, result2]
[, default])

The use of this function is best demonstrated in this scenario. You want to return

each instructor and total daily cost. You also want to include a rank value based on

the instructors’ cost. You want to order the list by this rank value, with the highest-

ranking instructors at the top of the list. You can do so with the following query:

Tip

4832-8 ch03.F 7/27/01 9:00 AM Page 112

113Chapter 3 ✦ Using Single- and Multi-Row Functions

SELECT InstructorID, PerDiemCost,
DECODE(ROUND(PerDiemCost/100, 0),

4, 1,
5, 2,
6, 3,
7, 4,

5) AS Rank
FROM Instructors
ORDER BY Rank DESC;

INSTRUCTORID PERDIEMCOST RANK
------------ ----------- ---------

200 750 5
100 600 3
300 500 2
110 500 2
450 450 2
310 450 2
210 400 1
410 400 1

In this query, the PerDiemCost value for each row is divided by 100 and then

rounded to the nearest whole number. That whole number is then compared

against the first value in the list (in this case, 4). If it equals this value, the substi-

tute value is returned (if the value is 4, the substitute value is 1). If it is not equal, it

evaluates against the next value in the list. This continues until either the generated

value finds a match or it reaches the end of the list. If it reaches the end of the list

(that is, the value is greater than 7), the final substitute value (5) is returned.

Nesting functions
In SQL, single-row functions can be nested within each other. When functions are

nested, Oracle evaluates the innermost function first and passes its value to the

outer function. Only the outermost function actually returns a value back to the

result set. Consider the following example. In the Instructors table, the InstructorID

column is numeric, but suppose you want an InstructorID that is the first three let-

ters of each instructor’s last name concatenated to the first two initials of the

instructor’s first name. You can do so with the following query:

SELECT CONCAT(SUBSTR(LastName, 1, 3), SUBSTR(FirstName, 1, 2))
AS CONCAT_ID
FROM Instructors;

CONCA

HarMi
KeeSu
UngDa
JamKy

4832-8 ch03.F 7/27/01 9:00 AM Page 113

114 Part I ✦ The Oracle SQL Language

CroLi
WilGe
ChiLa
LaPAd

If you want to eliminate the possibility of NULL values and pad the column so that

the full column name is visible, you can add further functions to the query:

SELECT CONCAT(SUBSTR(NVL(LastName, ‘xxx’), 1, 3),
SUBSTR(NVL(FirstName, ‘yy’), 1, 2)) AS CONCAT_ID
FROM Instructors;

CONCA

HarMi
KeeSu
UngDa
JamKy
CroLi
WilGe
ChiLa
LaPAd

In this example, the two NVL functions are evaluated first. If either the first name or

the last name is NULL, the NVL value is returned, otherwise the column value is

passed to the SUBSTR functions (which are evaluated second). Finally, the results

of the two SUBSTR functions are used to evaluate the outermost function

(CONCAT), and it is that function that actually returns a value to the result set.

Group/Aggregate Functions
Group (sometimes referred to as multi-row) functions differ greatly from the single-

row functions. They are used to derive aggregate values. All of these functions

return one and only one value, regardless of how many values are passed into the

function. The value that is returned by these functions is a result based on all of the

values passed into the function. There are a number of group functions (the pri-

mary ones are listed in Table 3-6).

Table 3-6
Group Functions

Function Description

AVG Returns the average of all values inputted.

SUM Returns the total of all values inputted.

COUNT Counts the number of rows inputted.

4832-8 ch03.F 7/27/01 9:00 AM Page 114

115Chapter 3 ✦ Using Single- and Multi-Row Functions

Function Description

MIN Returns the lowest value inputted.

MAX Returns the highest value inputted.

A SELECT list can contain one or more group functions; however, the SELECT list

cannot contain both multi-row functions and nonaggregate column data unless it

also contains a GROUP BY clause.

The GROUP BY clause is discussed later in this chapter in “Using the GROUP BY
Clause.”

AVG and SUM
The AVG and SUM functions accept only numeric datatype values. The AVG function

returns the average of all NOT NULL values passed into the function, and the SUM

function returns the total for all NOT NULL values. For example, if you want to know

the average per diem cost for all instructors and the total of all per diem costs, you

can use the following query:

SELECT AVG(PerDiemCost) AS AVERAGE, SUM(PerDiemCost) AS TOTAL
FROM Instructors;

AVERAGE TOTAL
--------- ---------

506.25 4050

To determine the total value, Oracle adds the values from all rows passed into the

function. To determine the average value, Oracle divides the sum by the number of

columns that do not contain NULLs. This final point is important to remember and

is discussed in detail at the end of this section.

COUNT(column) and COUNT(*)
The COUNT function is used to count the number of rows passed into the function.

The difference between COUNT(column) and COUNT(*) is that COUNT(*)includes

rows where there are NULL values, whereas COUNT(column) only counts those

rows that are not NULL in the specified example. Consider the following example:

SELECT COUNT(*) AS ALL_ROWS,
COUNT(PerDiemExpenses) AS NOT_NULL

FROM Instructors

ALL_ROWS NOT_NULL
---------- -----------

8 6

Cross-
Reference

4832-8 ch03.F 7/27/01 9:00 AM Page 115

116 Part I ✦ The Oracle SQL Language

Eight rows are in the Instructors table, and the COUNT(*) function includes all of

them; however, two instructors do not have a value in the PerDiemExpenses col-

umn. This is why the value in this column is two less than the COUNT(*) value.

Each of these functions can be used with columns of any data type.

MIN and MAX
The MIN and MAX functions return the lowest and highest values in a column. The

MIN and MAX functions also ignore NULLs. For example, if you want to know who

has the highest and lowest per diem travel cost, you can use the following query:

SELECT MAX(PerDiemExpenses) AS HIGHEST,
MIN(PerDiemExpenses) AS LOWEST

FROM Instructors;

HIGHEST LOWEST
--------- ---------

250 200

As with all group functions, only one value is returned. If multiple rows all have the

highest or lowest values, still, only one row is returned.

These functions work with any datatypes except for BLOB, CLOB, RAW, LONG, and

LONG RAW. When you use MIN and MAX with dates, it gives you the oldest and

most recent dates. For example, if you want to see the first and last days when

there were enrollments, you can use the following query:

SELECT MAX(EnrollmentDate) AS Latest,
MIN(EnrollmentDate) AS Earliest

FROM ClassEnrollment;

LATEST EARLIEST
--------- ---------
05-JAN-01 02-DEC-00

When you use MIN and MAX with character data, Oracle retrieves the lowest or

highest value alphabetically (that is, closest to “a” and closest to “z”). Consider the

following query:

SELECT MIN(LastName) AS “Closest to A”,
MAX(LastName) AS “Closest to Z”

FROM Instructors;

Closest to A Closest to Z
------------------------------ ------------------------------
Chiu Williams

4832-8 ch03.F 7/27/01 9:00 AM Page 116

117Chapter 3 ✦ Using Single- and Multi-Row Functions

Group functions and NULLs
It is important to be aware of the fact that, with the exception of COUNT(*), all

group functions ignore NULL values. Because of this behavior, it is important to be

aware of the existence of NULL fields in your tables (particularly when the

COUNT(exp) and AVG functions are involved) because this behavior may result in

unexpected results.

Suppose a two-column table called Wages looks like this:

Employee Hourly_Wage
--------- -----------
Bob 15
Sue 10
Jane
Rich 5

How Oracle determines character values

Oracle determines MIN and MAX character values based on the ASCII values for each letter.
For this reason, uppercase letters (ASCII characters 65–90) are considered to be lower than
lowercase letters (ASCII characters 97–122). Therefore, if you have a single column table
called test with the following values:

TEST_VAl

Banana
apple
orange
Watermelon

and you apply the MIN and MAX functions, they consider lowercase letters higher than
uppercase letters. Consider the following query:

SELECT MAX(TEST_VAL) AS HIGHEST,
MIN(TEST_VAL) AS Lowest

FROM Test;

HIGHEST LOWEST
--------------- ---------------
orange Banana

If you consider the whole list, apple is alphabetically lower than Banana; however, the ASCII
value for “a” (97) is higher than the ASCII value for “B” (66). In the same fashion, “o” (ASCII
value 112) is higher than “W” (ASCII value 87).

4832-8 ch03.F 7/27/01 9:00 AM Page 117

118 Part I ✦ The Oracle SQL Language

You execute the following query against this table and receive a result:

SELECT AVG(Hourly_Wage) as AVG_SAL
FROM Wages;

AVG_SAL

10

To process this query, Oracle adds all of the values and divides by all of the non-

NULL columns. However, is this answer, strictly speaking, correct? The answer to

this question is “it depends.” It depends on why Jane has a NULL Hourly_Wage. If

she is a seasonal contractor who works only on holidays and you want to know

only the average wage for your regular employees, 10 is the correct value. However,

if you simply haven’t determined Jane’s salary yet, this value is accurate only if

Jane ends up earning $10 per hour. To include all of the employees, you would have

to use the NVL function to replace any NULLs (which will be ignored by the func-

tion) with a value that will be read by the function. For example, you could rewrite

the previous query to return a value of zero for any nulls:

SELECT AVG(NVL(Hourly_Wage,0)) as AVG_SAL
FROM Wages;

AVG_SAL

7.5

Using the DISTINCT keyword with NULL
If you want to consider only unique rows, it is possible to use the DISTINCT opera-

tor inside a group function. For example, to find the average of all unique per diem

expense rates in the Instructors table, you use the following query:

SELECT AVG(DISTINCT PerDiemExpenses) AS WITH_DISTINCT,
AVG(PerDiemExpenses) AS NO_DISTINCT

FROM Instructors;

WITH_DISTINCT NO_DISTINCT
------------- -----------

225 208.33333

In this example, the values are different because the NO_DISTINCT column adds up

all duplicate values and then divides by all values, whereas the WITH_DISTINCT col-

umn adds only one instance of each value and divides by the number of unique

instances. The DISTINCT keyword can be used with all group functions in the same

manner. Since group functions return only one value, there is no advantage to using

the DISTINCT keyword in the SELECT list — for example:

SELECT DISTINCT AVG(PerDiemExpenses)
FROM Instructors;

4832-8 ch03.F 7/27/01 9:00 AM Page 118

119Chapter 3 ✦ Using Single- and Multi-Row Functions

Using the WHERE clause with group functions
In any SQL query, you can use a WHERE clause to limit the number of rows returned

in the result set. When you use a WHERE clause in a query that contains group func-

tions, you limit the number of rows that are considered by the query. For example,

the following query returns the AVG per diem cost for all instructors:

SELECT AVG(PerDiemCost) AS “AVG COST”
FROM Instructors

AVG COST

506.25

However, if you want the per diem cost for only those instructors in Toronto, you

can limit the group function with a WHERE clause:

SELECT AVG(PerDiemCost) AS “AVG COST”
FROM Instructors
WHERE City = ‘Toronto’

AVG COST

450

The result for this second query is different from the first because the WHERE

clause is evaluated by Oracle before the group function is evaluated. Only those

rows that match the WHERE clause criteria are included in the calculation of the

group function.

Using the GROUP BY Clause
✦ Identify the available group functions

✦ Describe the use of group functions

✦ Group data using the GROUP BY clause

✦ Include or exclude grouped rows by using the HAVING clause

When you use a group function, it returns only one value that considers all applica-

ble rows in the table. However, you may not want a single value that includes all

rows. For example, rather than the average per diem cost for all trainers, you might

want to know the average for each location. You might also want to list the location

in the result set; however, if you execute the following query, it raises an error:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors;

SELECT City, AVG(PerDiemCost)

Objective

4832-8 ch03.F 7/27/01 9:00 AM Page 119

120 Part I ✦ The Oracle SQL Language

*
ERROR at line 1:
ORA-00937: not a single-group group function

The source of the error in this query is that Oracle is not able to evaluate a group

function result and the result set of a nonaggregate column in the same query.

Essentially, this query is asking Oracle to return one value and multiple values in

the same result set. Oracle, clearly, is unable to satisfy this query.

This understanding, however, does not help you find the average salary by city. You

can determine each value individually by limiting the rows considered by the AVG

function with a WHERE clause, but this is impractical when you have several hun-

dred (or several thousand) values. To enable you to find an aggregate based on a

nonaggregate value, SQL includes the GROUP BY clause.

With the GROUP BY clause, you can return both aggregate and nonaggregate data in

the same query. Consider the previous example with the GROUP BY clause added:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors
GROUP BY City;

CITY Average Cost
------------------------------ ------------
New York 487.5
Palo Alto 750
Toronto 450

In this query, the GROUP BY clause groups all rows based on the column(s) speci-

fied in the clause (in this case, City) and then returns a single aggregate value for

each unique grouping value. In this example, three different cities are listed in the

City column, with multiple instances of each value. The AVG function is applied to

all rows that contain a particular city value, and only one row is returned per city.

You do not have to put the nonaggregate column in the SELECT list; however, the

output is more readable when you know what each Average Cost is referring to.

If you place a nonaggregate column in the SELECT list, you must include it in the

GROUP BY clause. For example, suppose you want to know what the highest per

diem is in each city . You also want the query to include the ID of the instructor

who makes this amount. When you execute the following query, you receive an

error:

SELECT InstructorID, City, MAX(PerDiemCost) AS “Highest Cost”
FROM Instructors;
GROUP BY City;

SELECT InstructorID, City, MAX(PerDiemCost) AS “Highest Cost”
*

ERROR at line 1:
ORA-00979: not a GROUP BY expression

4832-8 ch03.F 7/27/01 9:00 AM Page 120

121Chapter 3 ✦ Using Single- and Multi-Row Functions

In this query, you receive an error because Oracle doesn’t know how to deal with

the additional nonaggregate column. Again, Oracle is being asked to return one row

per group and multiple rows in the same operation. In order to avoid this error, you

have to include InstructorID in the GROUP BY clause, but this adds a new set of

problems. Consider the output of the query when you include the InstructorID col-

umn in the GROUP BY clause:

SELECT InstructorID, City, MAX(PerDiemCost) AS “Highest Cost”
FROM Instructors
GROUP BY InstructorID, City;

INSTRUCTORID CITY Highest Cost
------------ ------------------------------ ------------

100 New York 600
110 New York 500
200 Palo Alto 750
210 Toronto 400
300 Toronto 500
310 Toronto 450
410 New York 400
450 New York 450

8 rows selected.

In this example, the query returns all the rows in the Instructors table. In fact, if you

execute the following query, you receive the same results:

SELECT InstructorID, City, PerDiemCost AS “Highest Cost”
FROM Instructors;

Why do we get this result? It is because SQL groups values on the unique occur-

rence of all columns listed in the GROUP BY clause. Because InstructorID is the pri-

mary key for the table, by definition, each row is unique. This means that only one

row value is being considered by the group function for each row. In this case, you

only wanted to group by City, however, because you included the InstructorID col-

umn in the SELECT list, you were forced to place it in the GROUP BY clause to avoid

a syntax error. Therefore, you must include only those columns in the SELECT list

that you intend to use as grouping criteria in the GROUP BY clause.

You can also use a WHERE clause with a GROUP BY clause. The WHERE clause lim-

its which rows are considered by the grouping function. For example, returning to

the earlier average cost by city example, if you want a report for only U.S. centers,

you can add the following WHERE clause:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors
WHERE Country = ‘USA’
GROUP BY City;

4832-8 ch03.F 7/27/01 9:00 AM Page 121

122 Part I ✦ The Oracle SQL Language

CITY Average Cost
------------------------------ ------------
New York 487.5
Palo Alto 750

When writing this query, you must always place the WHERE clause before the

GROUP BY clause. As with the other group functions, the WHERE clause is evalu-

ated first when Oracle executes the query.

Using the HAVING Clause
As you just saw, it is possible to limit the rows considered by using a WHERE

clause. But what happens when you want to limit the rows returned based on the

result of a group function? Consider the previous example. Suppose, rather than

limiting the result set to U.S. centers, you want to limit the result set to those cen-

ters with an average cost less than $500. How do you write this query? If you place

the condition in the WHERE clause, you actually receive an error:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors
WHERE AVG(PerDiemCost) < 500
GROUP BY City;

WHERE AVG(PerDiemCost) < 500
*

ERROR at line 3:
ORA-00934: group function is not allowed here

The source of this error is easy to understand if you remember one key fact: The

WHERE clause is evaluated before the group function values are calculated. In this

example, the WHERE clause must be evaluated before the AVG(PerDiemCost) func-

tion can be calculated; however, you cannot evaluate the WHERE clause until you

calculate this value — catch -22. It is for this reason that SQL includes a HAVING

clause.

The HAVING clause is essentially a second WHERE clause that is evaluated after
Oracle has calculated the grouping values. To fix the previous query, you can write

something like this:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors
GROUP BY City
HAVING AVG(PerDiemCost) < 500;

CITY Average Cost
------------------------------ ------------
New York 487.5
Toronto 450

4832-8 ch03.F 7/27/01 9:00 AM Page 122

123Chapter 3 ✦ Using Single- and Multi-Row Functions

You can still include a WHERE clause, but any conditions based on the outcome of a

group function must be placed in the HAVING clause. For example, if you want U.S.

centers with an average per diem cost below $500, you can use the following query:

SELECT City, AVG(PerDiemCost) AS “Average Cost”
FROM Instructors
WHERE Country = ‘USA’
GROUP BY City
HAVING AVG(PerDiemCost) < 500;

CITY Average Cost
------------------------------ ------------
New York 487.5

The WHERE clause is evaluated first in this query. The rows returned by the WHERE

clause are the criteria for the grouping function. Finally, the HAVING clause condi-

tion is applied to the result of the grouping function.

The execution order of a SQL statement is shaped partially by the order the various
clauses are listed in the query. When the Oracle parser finds clauses where it does
not expect them, it can raise an error. The standard order of all of the clauses in a
SQL query is:

SELECT ...
FROM ...
WHERE ...
GROUP BY...
HAVING ...
ORDER BY...

Key Point Summary
Oracle contains a number of functions that can be used to manipulate and modify

data in the result set. These functions can be divided into two basic groups: single-

row functions and group or multi-row functions. With a single-row function, one

value is returned for each value that is input into the function. With a group func-

tion, one and only one value is returned regardless of the number of values passed

into the function.

✦ Single-row functions:

• You can alter the datatype of the result set using the TO_NUMBER,

TO_DATE, and TO_CHAR functions.

• TO_CHAR can be used to convert both numeric and date data.

• TO_DATE is used to convert non-NLS_date_format date strings into

Oracle’s internal date format.

Tip

4832-8 ch03.F 7/27/01 9:00 AM Page 123

124 Part I ✦ The Oracle SQL Language

• The UPPER, LOWER, and INITCAP functions can be used to alter capital-

ization. They can be used in the WHERE clause when the case of charac-

ter data in the table is unknown.

• You can use the SUBSTR, CONCAT, LPAD, and TRIM functions to alter the

appearance of character data.

• You can use the LENGTH and INSTR functions to return information

about string data.

• With numeric data, you can use the ROUND and TRUNC functions to deal

with decimal values.

• The MOD function returns the remainder of two numeric values.

• MOD always returns the first value when the second value is 0.

• When you add a number to a date value, the result is another date value.

However, if you want to add months, you must use the ADD_MONTH

function.

• You can use the MONTHS_BETWEEN, NEXT_DAY, and LAST_DAY func-

tions to calculate date values.

• You can also use the ROUND and TRUNC functions to manipulate date

values to the nearest month or year.

Single-row functions can be nested within each other. When the query is exe-

cuted, the innermost function is evaluated first, and the outermost function is

evaluated last. Only the outermost function returns data for the result set.

✦ Group functions:

Group (or multi-row) functions are used to aggregate or summarize data. They

take all rows passed into them and return a single value based on these rows.

The main group functions are AVG, SUM, COUNT, MIN, and MAX.

• A WHERE clause can be used to limit the numbers of rows considered by

a group function.

• You can have multiple group functions in a SELECT list.

• You cannot combine group functions and nonaggregate columns and

expressions in a SELECT list without a GROUP BY clause.

• With the exception of COUNT(*), all group functions ignore NULLs.

• AVG and SUM return the average and total of all non-NULL rows. They

accept only numeric datatypes.

• COUNT(*) returns the total number of rows in a table; COUNT(column)

returns the number of non-NULL fields in a column.

4832-8 ch03.F 7/27/01 9:00 AM Page 124

125Chapter 3 ✦ Using Single- and Multi-Row Functions

• MIN and MAX return the highest and lowest values in a column. They

can be used with character, numeric, and date datatypes.

• The DISTINCT keyword can be used within any group function to force

the function to ignore duplicate values in a column.

• If you want a group function to include NULL fields, you must use the

NVL function to assign a literal value to these fields.

✦ GROUP BY and HAVING

The GROUP BY clause is used to group data together and create subtotals

with group functions. If you want aggregate and nonaggregate values in the

same result set, you must use a GROUP BY clause. The HAVING clause is, basi-

cally, a second WHERE clause that is evaluated after the group functions are

evaluated. This enables you to include group functions in conditions for the

result set.

• You cannot have nonaggregate columns or expressions in the SELECT

list unless they are also listed in the GROUP BY clause.

• SQL groups by the unique occurrence of all values listed in the GROUP

BY clause.

• You cannot use group functions in a WHERE clause; you can use them in

the HAVING clause.

• A query can contain both a WHERE and HAVING clause.

✦ ✦ ✦

4832-8 ch03.F 7/27/01 9:00 AM Page 125

STUDY GUIDE

In this chapter, we have looked at Oracle’s use of single-row and group functions.

For the exam, you are expected to be familiar with uses of the functions listed in

this chapter and how they work. You also are expected to understand the purpose

and correct use of the GROUP BY and HAVING clauses and to understand queries

using all of these language elements.

Assessment Questions
1. Which of the following functions can be used only with numeric values?

(Choose all that apply.)

A. AVG

B. MIN

C. LENGTH

D. SUM

E. ROUND

2. Which function do you use to find the position of the letter “x” in a given char-

acter string?

A. CONCAT

B. INSTR.

C. STRCOUNT

D. SUBSTR

3. Consider the following query:

SELECT CONCAT(‘THE STRING LENGTH IS: ‘,
TO_CHAR(ROUND(NVL(LENGTH(‘Hello There’), 0), 0)))
FROM Dual;

In what order will these queries be executed?

A. CONCAT, TO_CHAR, ROUND, NVL, LENGTH

B. CONCAT, LENGTH, NVL, ROUND, TO_CHAR

C. TO_CHAR, ROUND, NVL, LENGTH, CONCAT

D. LENGTH, NVL, ROUND, TO_CHAR

126 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 126

127

4. What result is generated when the following statement is executed?

SELECT MOD(1500, 0)
FROM Dual;

A. NULL

B. 0

C. 1500

D. An Oracle error message

5. You issue the following query against the Instructors table:

SQL> SELECT InstructorID, InstructorType,
2 MAX(PerDiemCost) AS “Highest Sal”
3 FROM Instructors
4 WHERE Country <> ‘Canada’
5 GROUP BY InstructorType
6 HAVING MAX(PerDiemCost) > 500
7 ORDER BY “Highest Sal”;

Which line in this statement causes an error?

A. 1

B. 5

C. 6

D. 7

6. Which function do you use to remove all padded characters to the right of a

character value in a column with a char datatype?

A. RTRIM

B. RPAD

C. TRIM

D. TRUNC

7. Which statement do you use to eliminate padded spaces between the month

and day values in a TO_CHAR function?

A. TO_CHAR(SYSDATE, ‘Month TRIM(DD), YYYY’)

B. TO_CHAR(SYSDATE, ‘fmMonth DD, YYYY’)

C. TO_CHAR(SYSDATE, ‘Month spDD, YYYY’

D. TO_CHAR(SYSDATE, ‘Month DDfm YYYY’)

127Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 127

8. You issue the following query:

SELECT TO_CHAR(SYSDATE, ‘Dy. “THE” DDspth “of” MONTH,
YYYY’)

FROM Dual;

Assuming the current date is 12-JAN-01, which of the following reflects the

output of the query?

A. Fri. THE TWELTH of JANUARY, 2001

B. FRI the 12th of January, 2001

C. Friday THE TWELTH of JANUARY, 2001

D. Fri THE TWELTH of JANUARY, 20001

9. You want to write a query that returns the date of the Monday after each

course so you can schedule followup letters to be sent after the course is

over. Which query do you use to find this information?

A. SELECT StartDate + 7 AS Next_Monday FROM ScheduledClasses;

B. SELECT ADD_WEEK(StartDate, 1) AS Next_Monday FROM

ScheduledClasses;

C. SELECT NEXT_DAY(StartDate, Monday) AS Next_Monday FROM

ScheduledClasses;

D. SELECT NEXT_DAY(StartDate, ‘Monday’) AS Next_Monday FROM

ScheduledClasses;

10. You execute the following query:

SQL> SELECT InstructorType,
2 AVG(PerDiemCost + NVL(PerDiemExpenses, 0)) AS
3 AVG_SAL
4 FROM Instructors
5 GROUP BY InstructorType
6 WHERE Country = ‘USA’
7 HAVING MAX(PerDiemCost) > 500
8 ORDER BY AVG_SAL

Which line returns an error?

A. 2

B. 5

C. 6

D. 7

E. 8

128 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 128

129

Scenarios
1. You have been asked to create a report that evaluates the status of the vari-

ous class enrollments. Working with the ClassEnrollment table:

A. How do you find the number of classes that currently have students in

them?

B. Each registration has a status (confirmed, canceled, on hold). You have

been asked to write a query that returns the number of students in each

category. How do you write this query?

C. Your manager wants this query further broken down by ClassID. Is it

possible to group by both ClassID and status?

D. How do you include both elements in the grouping?

E. Your manager also wants you to displace the price of each course. Can

you also include the price but not include it in the grouping?

2. You have been asked to generate a report on the instructors your company

uses.

A. You have been asked to generate a list of each instructor and his or her

total weekly cost with and without travel expenses. You notice that when

you execute the query, some of the instructors have NULLs in the two

calculated columns. What is the cause of these NULLs, and how can you

remove them?

B. Your manager wants the list formatted so that the values appear with a

dollar sign, decimal point, and a thousands separator. How do you add

these elements to your output?

C. This script will also be run at your offices in Brussels and Paris. Those

offices want the output formatted with their local currency symbols.

How do you alter your script so it returns the local currency symbol

rather than the dollar sign (assumimg that each location is using its own

NLS settings)?

D. Your manager has asked that the report also contain the average local

and traveling costs. Can you add these values to your current query? If

not, why?

Lab Exercises
Lab 3-1 Using single-row functions

1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

129Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 129

2. Write a query that generates a new student identifier by concatenating the

first four characters of each student’s first name and the second to fifth char-

acters of their last names. Name the column Student_code. Include the stu-

dents’ first and last names in the query.

3. Attempt to modify the previous query to include their middle initials between

the portions of the first and last names.

4. Was the query successful? If not, why?

Lab 3-2 Using conversion functions
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Write a query that returns the InstructorID and PerDiemCost for five days for

all instructors. Format the cost value in the following manner $###,###.00.

Call the column TOTAL_COST.

3. Rewrite this query to include the PerDiemExpenses column.

4. When you run the query, do all instructors have a value in their TOTAL_COST

columns?

5. Rewrite the query so that all instructors have a value in the TOTAL_COST

column.

6. Currently the following query returns an error.

SELECT CourseNumber, LocationID
FROM ScheduledClasses
WHERE StartDate = ‘Saturday January 6, 2001’

Without altering the date string, how can you rewrite this query to return a

result set?

Lab 3-3 Using character functions
1. Write a query that graphically displays each instructor and his or her

PerDiemCost in a single column with an asterisk (*) representing every $10 of

the cost. Your output should look like this:

Instructor Cost Chart
--
210 ***************************************
410 ***************************************
310 **
450 **
300 ***
110 ***
100 ***
200 **

130 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 130

131

8 rows selected.

Order the data by PerDiemCost with the lowest first and the highest last.

Lab 3-4 Using group functions
1. Write a query that returns the highest and lowest PerDiemCost values and a

third column that is the difference between the two. Give each column the

appropriate name.

2. Rewrite the previous query so that it returns information only for Canadian

instructors.

3. Write a query that returns each Instructor Type and the number of instructors

of that type. The query should also return the total number of instructors.

Your output should look like this:

TOTAL ORACLE UNIX PROG
-------- --------- --------- ---------

8 3 3 2

Lab 3-5 Using GROUP BY and HAVING clauses
1. Write a query that returns the average and highest PerDiemCost for each

Instructor Type.

2. Rewrite this query so that it does not include the “Prog” Instructor Type.

3. Rewrite the query so that it also excludes any Instructor Type with a maxi-

mum PerDiemCost greater than $700.

Answers to Chapter Questions

Chapter Pre-Test
1. The primary difference between single-row and multi-row or group functions

is that a single-row function returns one value for each value passed into it,

whereas a group function returns only one value that is a summary of all the

values passed into it.

2. A case conversion is most useful in a WHERE clause when you don’t know the

case of a character value in a table. Character values in WHERE clauses are

case sensitive, and if you set a string with the wrong case as search criteria,

the value will not be found. For example, if a last name value is stored in a

table as “Smith” and you issue the condition WHERE lastname = ‘SMITH’, no

rows are returned. Whereas, if you issue the condition WHERE UPPER(last-

name) = ‘SMITH’, the value is returned, regardless of its case in the table.

131Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 131

3. To format a date to include ordinal numbers, you need to include the “th” suf-

fix to the day value in the format string of the TO_CHAR function (for exam-

ple, TO_CHAR(SYSDATE, ‘MONTH DDth, YYYY). The “th” suffix always returns

the appropriate ordinal end (that is, 1st, 2nd, 3rd, 4th).

4. The MAX function accepts any character, number, or date datatype. It does

not accept large object datatypes such as CLOB and BLOB.

5. The difference between COUNT(*) and COUNT(column) is that the

COUNT(column) function counts all non NULL fields, whereas the COUNT(*)

returns the total number of rows regardless of the presence of NULL fields.

6. To return the current date, you use the SYSDATE function.

7. All SELECT statements must have a value in the FROM clause; however, if you

are calculating a value that does not draw data from a table source, you can

use the dual table in the FROM clause.

8. All nonaggregate values in the SELECT list must also be included in the

GROUP BY clause; otherwise, Oracle raises an error. When you have multiple

columns in the GROUP BY clause, Oracle groups by the unique occurrence of

all columns listed.

9. Group functions cannot be included in a WHERE clause because this clause

must be evaluated before the group values are determined. If you want to limit

the rows returned based on the result of a group function, you must use a

HAVING clause.

10. To return a different value based on the value of another column, you have to

use the DECODE function. DECODE works much like an IF-THEN-ELSE state-

ment, enabling you to test every each row as it is passed into the function.

Assessment Questions
1. A and D — Only A and D are correct. The MIN function works with any charac-

ter, numeric, or date datatype. The LENGTH function is a character function

that returns the number of letters in a character value. The ROUND function

works with both numeric and date values.

2. B — The INSTR function returns the first position of a specified letter within a

character string. The CONCAT function concatenates two values. The SUBSTR

function returns only a portion of a string. There is no STRCOUNT function in

Oracle.

3. D — Only answer D is correct. When Oracle executes a query that contains

nested functions, it ill executes the innermost function first and then works its

way out to the outermost query. In this example, the LENGTH function passes

a value to the NVL function. NVL in turn passes a value to ROUND and so on

until it reaches the CONCAT function. Only CONCAT returns a value to the

user.

132 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 132

133

4. C — Mathematically you would expect this function to return an error

(because you cannot divide a value by 0). However, Oracle avoids the error by

having the MOD function return the first value when the second value is 0.

Therefore, this function returns 1500 (the initial value).

5. A — The error in this query is in line 1. The SELECT list for this query contains

two nonaggregate columns (InstructorID and InstructorType); however, only

one of these columns appears in the GROUP BY clause. In order for this query

to execute successfully, all nonaggregate columns in the SELECT list must also

appear in the GROUP BY clause.

6. C — The TRIM function is used to remove padded spaces. LTRIM and RTRIM

functions were included in earlier versions of Oracle, but Oracle 8i has

replaced them with a single TRIM function (although both are still included in

the product for backwards compatability). The TRUNCATE function is used

with only numeric and date columns. RPAD has the opposite function of TRIM;

it is used to pad columns with additional characters.

7. B — To remove padded spaces, you use the “fm” prefix before the date ele-

ment that contains the spaces. The TRIM function cannot be used in the for-

mat string of a TO_CHAR function. The “th” suffix is used to add ordinal

endings to number values.

8. A — When you use the TO_CHAR function with dates, the capitalization and

punctuation in the format string is preserved in the output. For example, the

format element Dy. returns a day abbreviation with initial capital and a period

at the end.

9. D — To find the next Monday after a particular date, you use the NEXT_DAY

function. Simply adding seven days does not work unless the initial date is

also a Monday. Within the NEXT_DAY function, you must include single quotes

around the day parameter; otherwise, Oracle returns an error. There is no

ADD_WEEK function in Oracle.

10. C — The error in this query is on line 6. Each clause individually is syntacti-

cally correct; however, the problem in this query is one of order. In a SQL

query, the WHERE clause must appear before the GROUP BY clause. Because

Oracle does not find the WHERE clause where it expected it, it returns an

error. The proper order for SQL SELECT clauses is: SELECT, FROM, WHERE,

GROUP BY, HAVING, ORDER BY. Only the SELECT and FROM clause are

mandatory.

Scenarios
1. Any course that shows up on the enrollment list, by definition, has students in

it. (Otherwise, why is it listed in the ClassEnrollment table?) The problem is

that some classes have more than one student enrolled in them, making a sim-

ple COUNT(*) impossible. To find this answer, you have to use the DISTINCT

keyword in the COUNT function. For example:

SELECT COUNT(DISTINCT ClassID)
FROM ClassEnrollment;

133Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 133

To write a query that lists the number of students by status requires the pres-

ence of both aggregate and nonaggregate columns in the SELECT list. In order

to have this mix, you must include a GROUP BY clause to group the results of

you count by the Status Column.

It is possible to include ClassID and status in this query; however, you have

some repetition because Oracle does not group on the unique combination of

ClassID and Status. Both columns must appear in the GROUP BY clause and

return output like this:

SELECT Status, ClassID, COUNT(StudentNumber) AS Count
FROM ClassEnrollment
GROUP BY Status, ClassID;

STATUS CLASSID COUNT
---------- --------- --------------------
Cancelled 51 1
Confirmed 50 3
Confirmed 51 2
Hold 53 1

Notice that both the Confirmed status and Class 51 repeat, but the unique

combination of the two columns does not.

You cannot, however, include the price for each course. Any nonaggregate col-

umn listed in the SELECT list must be included in the GROUP BY clause and

thereby included in the grouping.

2. The NULLs that you are noticing are most likely the result of NULL values in

the underlying columns. When you include a NULL in an arithmetic expres-

sion, the result is always NULL. You can deal with this problem by using the

NVL function to replace the NULLs with a value of 0. The zero does not affect

the accuracy of the expression, but because it is a literal value, it allows the

expression to be calculated. It looks something like this:

SELECT InstructorID, NVL(PerDiemCost, 0) * 5 AS NO_TRAVEL,
(NVL(PerDiemCost,0) + NVL(PerDiemExpenses, 0) * 5
AS WITH_TRAVEL

FROM Instructors;

In order to format the output, you need to use the TO_CHAR function with the

appropriate formatting options. The resulting query looks something like this:

SELECT InstructorID, TO_CHAR(NVL(PerDiemCost, 0) * 5,
‘$99,999.99’) AS NO_TRAVEL,
TO_CHAR((NVL(PerDiemCost,0) +
NVL(PerDiemExpenses,0)* 5), ‘$99,999.99’)
AS WITH_TRAVEL

FROM Instructors;

In order to make the script portable to your European offices, you need to

include a formatting character that uses the NLS currency symbol rather than

the static dollar sign. The formatting character that does this is the “L”. This

134 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 134

135

character indicates a floating currency symbol but defers to the NLS parame-

ters to determine which symbol to use. In this example, you can run the same

script in Brussels and Paris, and each country gets its own currency symbol.

The format string of the TO_CHAR function looks like this: ‘L999,999.99’.

As with the previous scenario, you cannot use an aggregate function in this

query. If you attempt to place an AVG function in the SELECT list, you have to

group by the unique occurrence of the InstructorID (because it is the Primary

KEY) and the results of both arithmetic expressions.

Lab Exercises

Lab 3-1 Using single-row functions
2.

SELECT CONCAT(SUBSTR(FirstName, 1, 4), SUBSTR(LastName,
2,4))AS Student_Code, FirstName, LastName
FROM Students;

3.

SELECT SUBSTR(FirstName, 1, 4) || MiddleInitial ||
SUBSTR(LastName, 2,4) AS Student_Code, FirstName, LastName
FROM Students

4. The query is successful only if you use the concatenation operators rather

than the CONCAT function. This function accepts only two values, whereas

you can link multiple values together with the operator. The concatenation

operators cannot be embedded in all functions.

Lab 3-2 Using conversion functions
2.

SELECT InstructorID, TO_CHAR((PerDiemCost * 5),
‘$999,999.99’) AS TOTAL_COST
FROM Instructors;

3.

SELECT InstructorID, TO_CHAR(((PerDiemCost + PerDiemExpenses)
* 5), ‘$999,999.99’) AS TOTAL_COST

FROM Instructors;

4. No. Some of the instructors have a NULL in the TOTAL_COST column. This is

because two instructors have NULLs in the PerDiemExpenses column.

5.

SELECT InstructorID, TO_CHAR(((NVL(PerDiemCost, 0) +
NVL(PerDiemExpenses,0))
* 5), ‘$999,999.99’) AS TOTAL_COST

FROM Instructors;

135Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 135

6.

SELECT CourseNumber, LocationID
FROM ScheduledClasses
WHERE StartDate = TO_DATE(‘Saturday January 6, 2001’, ‘Day
Month DD, YYYY’

Lab 3-3 Using character functions
1.

SELECT InstructorID || ‘ ‘ || RPAD(‘ ‘, PerDiemCost/10, ‘*’)
FROM Instructors
Order by PerDiemCost;

In this query, you need to use the RPAD function to add the asterisk (*) (RPAD

is simply LPAD in the other direction). The way this query works is to add a

blank space and pad the rest of the row with asterisks up to a width of the

PerDiemCost value for each row divided by ten. Because RPAD is a single-row

function, the value is recalculated for each row based on the current

PerDiemExpenses column. Therefore, its width is different for each instructor.

Lab 3-4 Using group functions
1.

SELECT MAX(PerDiemCost) AS HIGHEST, MIN(PerDiemCost)
AS LOWEST, MAX(PerDiemCost)- MIN(PerDiemCost) AS

DIFFERNCE
FROM Instructors;

2.

SELECT MAX(PerDiemCost) AS HIGHEST, MIN(PerDiemCost)
AS LOWEST, MAX(PerDiemCost)- MIN(PerDiemCost) AS

DIFFERNCE
FROM Instructors
WHERE Country = ‘Canada’;

3.

SELECT COUNT(*) AS TOTAL, SUM(DECODE(TRIM(InstructorType),
‘ORACLE’, 1,0)) AS Oracle,

SUM(DECODE(TRIM(InstructorType), ‘UNIX’, 1,0)) as
UNIX,

SUM(DECODE(TRIM(InstructorType), ‘Prog’, 1,0)) as PROG
FROM Instructors

For each column (with the exception of Total), you need to test the value of

InstructorType before deciding whether or not to count it. To do this test, you

need the DECODE function. In the Oracle column, for example, the contents of

the InstructorType column is evaluated for each row. If the value is Oracle, a

1 is passed to the SUM function; if it is not Oracle, a 0 is passed. The SUM

136 Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 136

137

function then totals all of the 1s and 0s it has been passed and derives a value.

Because the InstructorType column is a fixed-length column (a char(10), in

this case), you must use the TRIM function to eliminate any of the hidden

padding characters; otherwise, Oracle cannot match the values in the column

to the strings in the DECODE function.

Lab 3-5 Using GROUP BY and HAVING clauses
SELECT InstructorType, AVG(PerDiemCost) AS AVERAGE,
Max(PerDiemCost) AS HIGHEST
FROM Instructors
GROUP BY InstructorType;

2.

SELECT InstructorType, AVG(PerDiemCost) AS AVERAGE,
Max(PerDiemCost) AS HIGHEST
FROM Instructors
WHERE InstructorType <> ‘Prog’
GROUP BY InstructorType;

3.

SELECT InstructorType, AVG(PerDiemCost) AS AVERAGE,
Max(PerDiemCost) AS HIGHEST
FROM Instructors
WHERE InstructorType <> ‘Prog’
GROUP BY InstructorType
HAVING MAX(PerDiemCost) > 700;

137Chapter 3 ✦ Study Guide

4832-8 ch03.F 7/27/01 9:00 AM Page 137

4832-8 ch03.F 7/27/01 9:00 AM Page 138

Advanced SELECT
Statements

EXAM OBJECTIVES

✦ Displaying Data from Multiple Tables

• Write SELECT statements to access data from more than one

table using equality and nonequality joins

• View data that generally does not meet a join condition by

using outer joins

• Join a table to itself

✦ Producing Readable Output with SQL*Plus

• Produce queries that require an input variable

✦ Subqueries

• Describe the types of problems that subqueries can solve

• Define subqueries

• List the types of subqueries

• Write single-row and multiple-row subqueries

✦ Multiple-Column Subqueries

• Write multiple-column subqueries

• Describe and explain the behavior of subqueries when NULL

values are retrieved

• Write subqueries in a FROM clause

44C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch04.F 7/27/01 9:00 AM Page 139

140 Part I ✦ The Oracle SQL Language

CHAPTER PRE-TEST
1. What three syntax elements are required to write a query that joins

multiple tables together?

2. What happens if you omit a join condition when referencing more
than one table?

3. Can you join a table to itself?

4. When would you want to use an outer join?

5. How many columns can be returned by a subquery?

6. What happens when a subquery returns a NULL?

7. Which clauses of a query can contain a subquery?

8. When do you use a correlated subquery?

9. How can you control the execution of a SQL statement at runtime?

10. Does Oracle’s implementation of SQL have a runtime variable?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch04.F 7/27/01 9:00 AM Page 140

141Chapter 4 ✦ Advanced SELECT Statements

This chapter expands upon the information in Chapter 2, “Retrieving Data Using

Basic SQL Statements.” In Chapter 2, you learned how to write a basic SQL

query against a single table; in this chapter, you learn how to expand this query to

consider two or more tables. In a properly normalized database, information is

often stored in multiple tables linked by primary and foreign keys. For example, you

may have a column containing a ClassID value in the ScheduledClasses table, but

the actual name of that course is stored in the Courses table. In order to write a

query with schedule information and the name of the course, you have to join these

tables in the query. This chapter shows you how to write an Oracle join to combine

data from multiple tables. In addition to joins, you also learn how you can use sub-

queries to draw information from one table, based on values drawn from the same

or another table.

This chapter also looks at the SQL set operators. These operators enable you to

combine multiple queries into a single result set. This chapter ends with some mis-

cellaneous advanced query topics, which, although not necessarily covered on the

exam, are worth knowing when you start working extensively with Oracle’s SQL.

Oracle is a relational database management system (RDBMS). The implication of

being relational is that data is often stored in more than one related table. Data is

stored in more than one table for many reasons, and one is to avoid redundancy.

Consider the registration of students. If one single table contains the student’s

information (such as name and phone number) in additon to all of the course infor-

mation (name of class and start date), you have to repeat all of the student informa-

tion every time a student enrolls in a different course. Normalizing the tables

eliminates this redundancy; however, when querying data, it means that you often

must go to two or more places to find all of the information that you require. There

are different methods of accessing multiple tables in a SQL query: joins, subqueries,

and set operators. This chapter examines all of these methods. It will start by exam-

ining one of the most common methods of combining tables (joins.

Working with Joins
✦ Write SELECT statements to access data from more than one table using equality

and nonequality joins

✦ View data that generally does not meet a join condition by using outer joins

✦ Joining a table to itself

All SQL queries require two elements — a SELECT list (which specifies what to

retrieve) and a FROM clause (which specifies where to retrieve the items in the

SELECT list from). In the all of the examples in Chapter 2, only one table is refer-

enced in the FROM clause, but it is possible to include more than one table in the

FROM clause of a query. This increases the scope of columns that can be refer-

enced in the SELECT list.

Objective

4832-8 ch04.F 7/27/01 9:00 AM Page 141

142 Part I ✦ The Oracle SQL Language

It is important to understand how to work with joins, not just because it is required

for the exam, but because the majority of queries you will write in the real world will

include joins. Consider the training company tables (Courses, ScheduledClasses,

Instructors, etc.) that were added to your database in the labs for Chapter 1. If you

want to write a query that looks up a particular class starting on a particular day,

you can simply write a query against the ScheduledClasses table. However, if you

want that query to include the name of the course, the name of the instructor that

is teaching it, and the city it is running in, you have to include information from the

Instructors, Courses, and Locations tables. To do this, you need to use a join.

Writing a join requires more than just a SELECT list and a FROM clause; it also

requires a join condition. A join condition is a way to equate specific rows in one

table with specific rows in another table. This condition is most often a primary

key/foreign key pair and is expressed in the WHERE clause.

Primary keys and foreign keys are discussed in detail in Chapter 7, “Creating and
Managing Oracle Database Objects.”

The join condition is defined in the syntax of the join. The basic join syntax looks

like this:

SELECT {* | [exp, col1][,col2 ...]}
FROM Table1, Table 2
WHERE Table1.col <cond> Table2.col

You need to be comfortable with four basic types of joins: equijoins, nonequijoins,

outer joins, and self-joins.

Working with equijoins
An equijoin joins two tables based on the equality of values in those tables; that is,

an equijoin returns all rows that are common to the two tables. Consider the follow-

ing situation. You want to list a particular class and the name and cost of the

instructor who will be teaching it. To get this information, you need to join the

Instructors table and the ScheduledClasses table. It is possible to join these two

tables because the InstructorID column in the ScheduledClasses table is a foreign

key to the InstructorID primary key in the Instructors table. Therefore, you can join

the two tables where the InstructorID in the ScheduledClasses table is equal to the

InstructorID in the Instructors table. The join looks like this:

SELECT ScheduledClasses.ClassID, ScheduledClasses.StartDate,
Instructors.FirstName, Instructors.LastName,
Instructors.PerDiemCost

FROM ScheduledClasses, Instructors
WHERE ScheduledClasses.InstructorID = Instructors.InstructorID;

Cross-
Reference

4832-8 ch04.F 7/27/01 9:00 AM Page 142

143Chapter 4 ✦ Advanced SELECT Statements

CLASSID STARTDATE FIRSTNAME LASTNAME PERDIEMCOST
-------- --------- ------------------ ------------------------- -----------

50 06-JAN-01 David Ungar 600
51 13-JAN-01 Lisa Cross 750
53 14-FEB-01 Kyle Jamieson 500

In this example, a single query and a single result set draw information from two

separate tables.

This type of join is referred to as an equijoin because it returns data from a table

only when the join condition exists in both tables. Eight instructors are listed in

the Instructors table, but only three appear in the result set. The reason that only

these instructors are returned is that their InstructorIDs appear in both tables. All

of the other instructors exist only in the Instructors table and are, therefore, not

returned. When Oracle processes this query, it takes the instructor ID from the

ScheduledClasses table for each row and uses that value to locate the correspond-

ing first name, last name, and per diem cost values. It ignores all other instructors

in the table. If some classes do not have instructors assigned to them, they also

are excluded from the result set.

When you write this query, you do not have to include the table source for each

column, only for those that are ambiguous. A column is considered ambiguous

when it exists in both tables. If you were to execute the previous query without any

table references, you would receive the following error:

WHERE InstructorID = InstructorID;
*

ERROR at line 3:
ORA-00918: column ambiguously defined

This error is raised because Oracle is presented with an InstructorID column in

both tables and is unable to determine which InstructorID column is referenced by

either side of the join condition statement. All of the other columns in the query are

unique to one table or the other and, therefore, do not raise any ambiguity errors.

To execute this join correctly using the fewest number of table references, the

query looks like this:

SELECT ClassID, StartDate, FirstName, LastName, PerDiemCost
FROM ScheduledClasses, Instructors
WHERE ScheduledClasses.InstructorID = Instructors.InstructorID;

Because only InstructorID is ambiguous, it is the only column that must be defined

to avoid ambiguity.

With an equijoin, it is even possible to join more than two tables. To do so, you sim-

ply include all tables in the FROM clause and then include all of the join conditions

in the WHERE clause separated by an AND operator.

4832-8 ch04.F 7/27/01 9:00 AM Page 143

144 Part I ✦ The Oracle SQL Language

Suppose that, in the previous example, you want the actual name of the course, a

single column for instructor, and the city that the course is being held in. You can

use the following query:

SELECT c.CourseName, s.StartDate, i.FirstName || ‘ ‘
||i.LastName as Instructor, l.City
FROM ScheduledClasses s, Instructors i, Courses c, Locations l
WHERE s.InstructorID = i.InstructorID

AND s.CourseNumber = c.CourseNumber
AND s.LocationId = l.LocationID;

COURSENAME STARTDATE INSTRUCTOR CITY
---------------------------- --------- --------------- --------
Basic SQL 06-JAN-01 David Ungar New York
Database Performance Basics 13-JAN-01 Lisa Cross Toronto
Basic SQL 14-FEB-01 Kyle Jamieson Toronto

Note that in this example, you must place a table reference on the City column. The

reason is that both the Instructor and Locations tables contain City columns, and

this causes ambiguity if you do not specifically reference it. This type of accidental

ambiguity is easily avoided by using table aliases.

After you have referenced a table in the FROM clause, you can use any column from

that table, even if that column is not mentioned in the SELECT list. For example,

you can limit the previous query to courses running in the United States by includ-

ing the Country column from the Locations table in the WHERE clause with another

AND operator:

SELECT c.CourseName, s.StartDate, i.FirstName || ‘ ‘
||i.LastName as Instructor, l.City
FROM ScheduledClasses s, Instructors i, Courses c, Locations l

Using table aliases in joins

One practice that is very useful (although not necessary when working with equijoins) is
the use of aliases. In Oracle, you can give tables alias names in the FROM clause. You can
then use those aliases in the rest of the query (including the SELECT list). Using these
aliases with all column objects makes the code more readable and avoids the possibility of
ambiguous column references. If you were to rewrite the previous example with aliases, it
would look like this:

SELECT s.ClassID, s.StartDate, i.FirstName, i.LastName,
i.PerDiemCost
FROM ScheduledClasses s, Instructors i
WHERE s.InstructorID = i.InstructorID;

You are able to use the alias even before you declare it because Oracle parses the entire
statement before it attempts to reconcile the object names in the data dictionary. The table
aliases are not included in the column headers in the result set.

4832-8 ch04.F 7/27/01 9:00 AM Page 144

145Chapter 4 ✦ Advanced SELECT Statements

WHERE s.InstructorID = i.InstructorID
AND s.CourseNumber = c.CourseNumber
AND s.LocationId = l.LocationID
AND l.Country = ‘USA’;

Of course, none of this is possible unless you are able to associate all of the various

tables together with the appropriate join conditions. In an equijoin, the number of

conditions in the WHERE clause should be one less than the number of tables listed

in the FROM clause. If this is not the case, your query will produce a CROSS JOIN.

Cross-joins
There is a real concern in omitting the join condition in the WHERE clause. When

you list multiple columns in the FROM clause but do not include a join condition,

Oracle must decided for itself how to join the two tables together. Because the soft-

ware is not intuitive enough to come up with a complex relationship (such as

InstructorID being equal to InstructorID, it simply joins every row in one table with

every row in the second table. This is known as a Cartesian Product or a cross-join.

Consider the output of the following example:

SELECT i.InstructorID, l.LocationID
FROM Instructors i, Locations l;

INSTRUCTORID LOCATIONID
------------ ----------

300 100
310 100
100 100
110 100
200 100
210 100
410 100
450 100
300 200
310 200
100 200
110 200
200 200
210 200
410 200
450 200
300 300
310 300
100 300
110 300
200 300
210 300
410 300
450 300

24 rows selected.

4832-8 ch04.F 7/27/01 9:00 AM Page 145

146 Part I ✦ The Oracle SQL Language

These two tables include eight instructors and three locations. Because you have

not told Oracle how to relate the two tables together, it has simply joined every

InstructorID with every LocationID (8 *3 = 24 rows returned). Imagine now if each

one of these tables included over 100,000 rows; you might find yourself with more

output than you expected!

A cross-join, however, can be useful if you want to create a sample table and popu-

late it with a large amount of test data. Performing an insert based on a cross-join

can, as you have seen, produce a large amount of data quickly.

Nonequijoins
In the previous equijoin examples, you joined the tables on a condition of equality

(that is, where a value in one table was equal to a value in another table). For exam-

ple, you were able to match classes with the names of the instructors teaching

them by taking the InstructorID value from the ScheduledClasses table and finding

an exact match with that InstructorID in the Instructors table. However, at times

you may want to join a table on a condition of something other than simple equal-

ity. This is called a nonequijoin. The syntax for a nonequijoin is the same as the

equijoin syntax. The only difference between the two is that the join condition uses

a comparison operator other than the equal sign (=).

The examples for this section rely on tables that are not created by the sample
data script (see Appendix E). You can create the two tables used by running the
nonequijoin.sql script on the CD.

Consider the following situation. A number of sales people earn bonuses based on

their annual sales. The bonus is calculated by setting low and high sale values. To

calculate the bonus percentage for each sales person, you need to compare each

salesperson’s annual sales to the low and high range and determine which bonus

they qualify for. The bonuses are calculated using a table called Bonus that looks

like this:

SQL> DESC Bonus
Name Null? Type
------------------------------- -------- --------------------
BONUS_RATE NUMBER(4,2)
LOW_VALUE NUMBER(8,2)
HIGH_VALUE NUMBER(8,2)

A table called Sales contains the name of each salesperson and their total sales for

the year. The table looks like this:

SQL> DESC Sales;
Name Null? Type
-------------------------------- -------- --------------------
NAME VARCHAR2(15)
ANNUAL_SALES NUMBER(8,2)

Tip

4832-8 ch04.F 7/27/01 9:00 AM Page 146

147Chapter 4 ✦ Advanced SELECT Statements

In this example, you can clearly not use an equijoin to find the information you

required because there is no common column between the two tables. If you join

annual_sales to either the low_value or high_value, you only get a bonus_rate for

those sales people who sold exactly the high or low value. No value is returned for

those sales people whose annual sales fall somewhere between the two values.

The join condition then must be created between the annual_sales column and a

range created by considering both the low_value and high_value. You must com-

pare the annual salary for each salesperson to this range. Luckily SQL includes a

comparison operator that enables you to view data in a range — the BETWEEN

operator. Therefore, the join condition is that the annual salary in the Sales table

must be matched to the range created by the low and high value columns. Such a

query looks like this:

SELECT s.name, s.annual_sales, b.bonus_rate
FROM Sales s, Bonus b
WHERE s.annual_sales BETWEEN b.low_value AND b.high_value;

NAME ANNUAL_SALES BONUS_RATE
--------------- ------------ ----------
Sam 3200 .1
Paul 2400 .1
Leslie 7200 .25
Phil 9900 .25
Louis 6400 .25
Stewart 13450 .3
Peter 16245 .4
Scott 18400 .4
Fred 17050 .4
Jane 22000 .45
Larry 24990 .45
Emily 64000 .5
Eve 27100 .5
Bill 28000 .5

As with the equijoin, after the conditional relationship has been established

between the two tables, you can reference any column in the query.

For example, if you want to limit the result set to only those with a minimum annual

sales of $20,000 and calculate the actual dollar value of the bonus, you can use the

following:

SELECT s.name, s.annual_sales, b.bonus_rate, (b.bonus_rate *
s.annual_sal)

AS “Bonus Amount”
FROM Sales s, Bonus b
WHERE s.annual_sales BETWEEN b.low_value AND b.high_value;

AND b.low_value >= 20000;

4832-8 ch04.F 7/27/01 9:00 AM Page 147

148 Part I ✦ The Oracle SQL Language

NAME ANNUAL_SALES BONUS_RATE Bonus Amount
--------------- ------------ ---------- ----------------
Jane 22000 .45 9900
Larry 24990 .45 11245.5
Emily 64000 .5 32000
Eve 27100 .5 13550
Bill 28000 .5 14000

Outer joins
In the discussion of equijoins, you saw that an equijoin returns only those rows that

are common to both tables referenced in the join condition. In the example that

returned courses and the name of the instructors, the names of those instructors

not scheduled to teach classes were not returned by the query. At times, however,

you may want all elements from one table, regardless of whether there is a match

between the two tables. For example, suppose you want a list of all locations and

the courses running at those locations; to get a list of all courses and the locations

where they are running, you can use the following query:

SELECT l.LocationID, l.City, s.Classid
FROM Locations l, ScheduledClasses s
WHERE l.locationid = s.locationid;

LOCATIONID CITY CLASSID
---------- ------------------------------ ---------

100 New York 50
300 Toronto 51
300 Toronto 53

This list does not provide the result set you are looking for because it does not

include San Francisco. The reason for its omission is simple: No classes currently

are scheduled in that center. If you want to write a query that returns all cities,

regardless of the courses running, you require an outer join.

An outer join returns all data from one column in the join condition and matches it

to the other table where possible. When Oracle is unable to find a match, it leaves

all columns referenced in the second table NULL. An outer join is written using the

outer join operator: (+). This operator is placed in the WHERE clause next to the

column that will have NULL values returned if no match is found. Consider the pre-

vious query expressed as an outer join:

SELECT l.LocationID, l.City, s.Classid
FROM Locations l, ScheduledClasses s
WHERE l.locationid = s.locationid(+);

LOCATIONID CITY CLASSID
---------- ------------------------------ ---------

100 New York 50
200 San Francisco
300 Toronto 51
300 Toronto 53

4832-8 ch04.F 7/27/01 9:00 AM Page 148

149Chapter 4 ✦ Advanced SELECT Statements

In this result set, all of the locations are returned, including San Francisco. The

outer join operator has returned a NULL for its ClassID. You can use this behavior

to find only those centers that do not have any classes running by using this gener-

ated NULL as an additional search argument in the WHERE clause. You can also use

the NVL function to replace the NULL with a more meaningful output.:

SELECT l.LocationID, l.City,
NVL(TO_CHAR(s.Classid), ‘No Class’) AS ClassID

FROM Locations l, ScheduledClasses s
WHERE l.locationid = s.locationid(+)

AND s.Classid IS NULL;

LOCATIONID CITY CLASSID
---------- ------------------------------ ---------------------

200 San Francisco No Class

The placement of the outer join operator can be a bit confusing. If you were to

place the operator next to the l.LocationID, you would receive a result set that

looks the same as an equijoin. This is because it returns all classes (with or without

LocationID) and matches them to a city, if possible, or returns a NULL, if not possi-

ble. Because LocationID is the primary key for the Location table, all classes must

have a LocationID; therefore, no NULL rows are in the result set. Always place the

operator next to the column in the join condition that references the table that has

the NULLs added to it.

Self-joins
All of the examples so far have involved joining multiple tables together; however,

in some situations, it is necessary to join a table to itself. This is usually required

when a table contains a self-referential key. A self-referential key occurs when one

column is a foreign key to another column in the same table. Consider the following

table:

SQL> DESC Management
Name Null? Type
---------------------------- -------- -----------------
ID NOT NULL NUMBER(2)
NAME VARCHAR2(15)
MANAGER NUMBER(2)
POSITION VARCHAR2(15)

This table can be created using the selfjoin.sql script on the CD included with this
book.

In this table, the Manager column contains the ID value for each employee’s man-

ager. If you want to write a query that returns the name of each employee, their

position, and the name of their manager, you have to join a row in the Management

table with another row in the same table. This is called a self-join.

Cross-
Reference

4832-8 ch04.F 7/27/01 9:00 AM Page 149

150 Part I ✦ The Oracle SQL Language

In order to write a self-join, you must use table aliases and reference the same table

twice using different aliases, and you must use the join condition that establishes a

relationship between employees and their managers:

SELECT emp.name, emp.position, mgr.name
FROM Management emp, Management mgr
WHERE emp.Manager = mgr.ID;

NAME POSITION NAME
--------------- --------------- ---------------
Bob Vice-President Jane
Susan Vice-President Jane
Rich Manager Bob
Ellen Manager Bob
Jim Manager Susan
Sam Manager Susan
Joan Analyst Rich
Pat Supervisor Ellen
Fred Supervisor Ellen
Joe Developer Sam
Stu Accountant Pat
Arthur Operator Fred

To process this query, Oracle retrieves each row and finds the Manager number for

each employee; it then goes back into the Management table and finds an employee

ID value that matches that Manager number. After it finds a match in the ID column,

Oracle returns the name that corresponds to the second ID value.

Notice in this result set that Jane does not appear in the Name column. The reason

is that the query has performed a self-equijoin and Jane (as company president)

does not have a manager (and, therefore, has a NULL in the Manager column).

Because a NULL is in her Manager column, the equijoin does not return a row for

her. If you want to return all employees, you must use a self outer join. A self-outer

join works just like a normal outer join. In this case, you put the outer join operator

on the Mgr.ID column because you want to return a NULL for Jane’s manager:

SELECT emp.name, emp.position, mgr.name
FROM Management emp, Management mgr
WHERE emp.Manager = mgr.ID(+)
ORDER BY mgr.name DESC

NAME POSITION NAME
--------------- --------------- ---------------
Jane President
Jim Manager Susan
Sam Manager Susan
Joe Developer Sam
Joan Analyst Rich
Stu Accountant Pat
Bob Vice-President Jane
Susan Vice-President Jane
Arthur Operator Fred

4832-8 ch04.F 7/27/01 9:00 AM Page 150

151Chapter 4 ✦ Advanced SELECT Statements

Pat Supervisor Ellen
Fred Supervisor Ellen
Rich Manager Bob
Ellen Manager Bob

As with the other outer joins, you can also use the NVL function to provide a value

in place of the null generated by the outer join.

Working with Subqueries
✦ Describe the types of problems that subqueries can solve

✦ Define subqueries

✦ List the types of subqueries

✦ Write single-row and multiple-row subqueries

✦ Write multiple-column subqueries

✦ Describe and explain the behavior of subqueries when NULL values are retrieved

✦ Write subqueries in a FROM clause

Working with basic subqueries
Other than joins, other ways of writing queries derive their information from one or

more tables. One of these is the subquery. A subquery is an embedded query that

runs inside the context of another query. Subqueries are often used to answer a

question that must be answered before a greater question can be answered.

Consider the following query: “Which instructor(s) charge a higher per diem than

the instructor who is teaching class 53?” In order to answer this question, you actu-

ally need to ask two questions: “How much does the instructor teaching class 53

charge?” and “Who charges more than that person?” The first question is implied in

the second and must be answered before the second question can be addressed.

In order to express this embedded question in SQL, you use a subquery. Subqueries

are most often contained in the WHERE clause (although they can show up in most

clauses including the SELECT list). The SQL for the previous example looks like this.

SELECT FirstName, LastName, PerDiemCost
FROM Instructors
WHERE PerDiemCost > (SELECT i.PerDiemCost

FROM Instructors i, ScheduledClasses s
WHERE i.IinstructorID = s.InstructorID
AND s.ClassID = 53);

FIRSTNAME LASTNAME PERDIEMCOST
------------------------ ------------------- ------------
David Ungar 600
Lisa Cross 750

Objective

4832-8 ch04.F 7/27/01 9:00 AM Page 151

152 Part I ✦ The Oracle SQL Language

All subqueries (regardless of which clause they are contained in) must be enclosed

in parentheses. The subquery executes first and passes its values to the outer

query. The subquery can contain any SQL elements except the ORDER BY clause.

The ORDER BY clause must be the last clause executed in a SQL statement.

Because the subquery is considered part of the calling query, placing an ORDER BY

clause in the subquery causes it to execute before the outer query executes, which

causes a syntax error.

As with most things, there is an exception to this rule. The ORDER BY clause can
be used when working with inline views. See “Working With Inline Views” later in
this chapter.

It is also possible to nest subqueries inside of subqueries. Oracle does not impose

any limit on the number of nested subqueries (although there are some practical

performance-based limitations when you nest too many subqueries). With nested

subqueries, the innermost subquery executes first and passes its value up to the

next level and so on until you reach the outermost query. Only the outermost query

returns a result set to the user.

As an example of a nested subquery, it is possible to rewrite the previous query

using a second subquery rather than a join:

SELECT FirstName, LastName, PerDiemCost
FROM Instructors
WHERE PerDiemCost >(SELECT PerDiemCost

FROM Instructors
WHERE InstructorID = (SELECT InstructorID

FROM ScheduledClasses
WHERE ClassId = 53));

In performance terms, the join is more efficient than the nested subquery. You
should avoid using nested subqueries in the real world if it is possible to use a join
(particularly if you have appropriate indexes on all of the columns in the join
condition).

In this second example, the innermost subquery determines who teaches class 53

and passes this information to the outer subquery. The outer subquery determines

that instructor’s per diem, and it is that value which is passed to the outer query.

Only the outer query returns a result set.

Working with subqueries that return multiple rows
In all of the previous examples, the subquery is limited to returning one row. This

limit is imposed because of the comparison operator. All of the comparison opera-

tors in SQL can accept only one value.

The use of comparison operators is discussed in detail in Chapter 2, “Retrieving
Data Using Basic SQL Statements.”

Cross-
Reference

In the
Real World

Cross-
Reference

4832-8 ch04.F 7/27/01 9:00 AM Page 152

153Chapter 4 ✦ Advanced SELECT Statements

For example, suppose you want to find all of the instructors who charge a higher

per diem than any of the Oracle trainers. If you entered the following query, you

receive an error:

SELECT InstructorId, InstructorType, PerDiemCost
FROM Instructors
WHERE PerDiemCost > (SELECT PerDiemCost

FROM Instructors
WHERE InstructorType = ‘ORACLE’);

WHERE PerDiemCost > (SELECT PerDiemCost
*

ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

The greater than operator is expecting only one row; however, the table includes

three Oracle instructors. Therefore, three PerDiemCost values are returned. In

order to make this query work, you need an operator that can handle more than

one row. Oracle provides two operators for this particular situation: ANY and ALL.

Each of these work slightly differently, and you should understand the distinction

and where the operators are used.

The effect of NULL subqueries

In all queries, if an inner query returns a NULL, the outer query also returns NULL. The outer
query requires that the inner query provide a value in order to evaluate itself. If the com-
parison operator in the WHERE clause is presented with a NULL, it nullifies the outer query.
Consider the output for the following query:

SELECT FirstName, LastName, PerDiemCost
FROM Instructors
WHERE PerDiemCost > (SELECT PerDiemCost

FROM Instructors
WHERE InstructorID = 0);

no rows selected

In this query, the output is simply no rows selected. The reason for this outcome is because
the Instructors table does not include an instructor 0. When the subquery is run, it is unable
to determine a value for PerDiemCost, so it returns a NULL to the outer query. Remember
that a NULL is not the same as a zero or a blank; rather, it is a value that is unknown.
Because it is unknown, Oracle is unable to find which instructors earn more (it simply can’t
determine what is greater than “I don’t know”). Because the outer query is unable to return
a value, the “no rows selected” message is returned. The only exception to this rule is when
you use the IS NULL or IS NOT NULL operator in the outer WHERE clause. In this case, the
NULL generated by the subquery is converted into a Boolean TRUE or FALSE value. This
Boolean can be used by the outer query to return a value.

4832-8 ch04.F 7/27/01 9:00 AM Page 153

154 Part I ✦ The Oracle SQL Language

The ANY and ALL operator can be used in conjunction with any comparison opera-

tor. The ANY operator is used when you want to compare against any individual

result, the ALL operator is used when you want to compare the result against all of

the combined results. The difference between the two can be best illustrated using

the previous example.

If you were to rewrite the last query using the ANY operator, you would receive the

following result:

SELECT InstructorId, InstructorType, PerDiemCost
FROM Instructors
WHERE PerDiemCost > ANY (SELECT PerDiemCost

FROM Instructors
WHERE InstructorType = ‘ORACLE’);

INSTRUCTORID INSTRUCTOR PERDIEMCOST
------------ ---------- -----------

100 ORACLE 600
200 UNIX 750

In this case, one of the instructors returned is an Oracle instructor. This instructor

is returned because he charges more than the other two Oracle instructors (who

both charge $500 per day). With the ANY operator, the subquery returns all of its

rows, and each row in the outer query is evaluated against all of these values. As

long as the WHERE condition is satisfied by one of the values passed out of the sub-

query, the row is returned in the result set. In this particular example, the values

500 (twice) and 600 are passed out of the subquery to the WHERE clause. All rows

in the Instructors table are then tested against the following condition:

WHERE PerDiemCost > 500 or PerDiemCost > 600

Instructor 100 charges $600 per day and thus satisfies the first WHERE condition,

and the row is returned. If you want to find out which instructor charges more than

all of the Oracle instructors, you must use the ALL operator.

You can replace =ANY with the IN operator. Both of these operators evaluate to:
WHERE col = x or col = y [or col = ...].

The ALL operator combines every value returned from the subquery. Consider the

outcome of the previous example when you use ALL instead of ANY:

SELECT InstructorId, InstructorType, PerDiemCost
FROM Instructors
WHERE PerDiemCost > ALL (SELECT PerDiemCost

FROM Instructors
WHERE InstructorType = ‘ORACLE’);

INSTRUCTORID INSTRUCTOR PERDIEMCOST
------------ ---------- -----------

200 UNIX 750

Tip

4832-8 ch04.F 7/27/01 9:00 AM Page 154

155Chapter 4 ✦ Advanced SELECT Statements

In this example, the subquery returns the values 500 and 600, and Oracle tests all

rows against the following condition:

WHERE PerDiemCost > 500 AND PerDiemCost > 600

In order for a row to be returned, it must test true against both conditions. Only

instructor 200 satisfies this condition.

An easy shorthand enables you to remember the distinction between ANY and
ALL. If a query condition is >ANY, each row in the result set is greater than the
lowest value returned. When a query is >ALL, each row in the result set is greater
than the highest value returned.

Working with multi-column subqueries
In Oracle, subqueries can return only one column for consideration. That is, if you

pass multiple columns out of a subquery, you receive a syntax error. For example:

SELECT InstructorID, InstructorType, PerDiemCost
FROM Instructors
WHERE InstructorType, PerDiemCost =(SELECT InstructorType,

PerDiemCost
FROM Instructors
WHERE InstructorID = 110);

WHERE InstructorType, PerDiemCost =(SELECT InstructorType,
*

ERROR at line 3:
ORA-00920: invalid relational operator

However, in some situations, you may want to base a WHERE condition on more

than one column from a subquery. To do so, you have two options: You can perform

either a pairwise or a nonpairwise comparison.

The difference between these two types of comparison is in how they treat the two

columns. In a pairwise comparison, Oracle applies the single column return rule by

combining the two columns together and comparing the combined value against all

rows considered by the outer query. This is achieved syntactically by placing

parentheses around the two columns. Consider the previous example using a pair-

wise comparison. If you want to find all instructors with the same per diem and

instructor type as instructor 110, the query looks like this:

SELECT InstructorID, InstructorType, PerDiemCost
FROM Instructors
WHERE (InstructorType, PerDiemCost) =(SELECT InstructorType,

PerDiemCost
FROM Instructors
WHERE InstructorID =
110);

Exam Tip

4832-8 ch04.F 7/27/01 9:00 AM Page 155

156 Part I ✦ The Oracle SQL Language

INSTRUCTORID INSTRUCTOR PERDIEMCOST
------------ ---------- -----------

300 ORACLE 500
110 ORACLE 500

In this query, InstructorType and PerDiemCost are considered a single value. All

other rows in the table are compared against this combined value. If you do not

want instructor 110 in the result set, you have to eliminate her using the <> opera-

tor in a second WHERE condition.

A nonpairwise condition is one that treats each column as a separate WHERE condi-

tion, each with its own subquery. If you were to rewrite the previous example as a

nonpairwise comparison, you get a very different comparison depending on how

you link the paired elements. For example, the following query returns the same

result set as the pairwise example:

SELECT InstructorID, InstructorType, PerDiemCost
FROM Instructors
WHERE InstructorType =(SELECT InstructorType

FROM Instructors
WHERE InstructorID = 110)

AND

PerDiemCost = (SELECT PerDiemCost
FROM Instructors
WHERE InstructorID = 110);

However, if you use the OR operator rather than the AND operator, you get a very

different result:

SELECT InstructorID, InstructorType, PerDiemCost
FROM Instructors
WHERE InstructorType =(SELECT InstructorType

FROM Instructors
WHERE InstructorID = 110)

OR

PerDiemCost = (SELECT PerDiemCost
FROM Instructors
WHERE InstructorID = 110);

INSTRUCTORID INSTRUCTOR PERDIEMCOST
------------ ---------- -----------

300 ORACLE 500
100 ORACLE 600
110 ORACLE 500

4832-8 ch04.F 7/27/01 9:00 AM Page 156

157Chapter 4 ✦ Advanced SELECT Statements

In this case, a row is returned if either condition returns TRUE. That is, this query

returns all Oracle instructors and any non-Oracle instructors that charge $500 per

day. No non-Oracle instructors charge $500; however, instructor 100 shows up

because, as an Oracle instructor, he satisfies the first condition (which is all that is

needed for the row to be returned).

Working with inline views
An inline view is treated like a view, but it is not created using the CREATE VIEW

statement. Instead, an inline view is a subquery in the FROM clause that gets

treated like a view object. To use an inline view, you must first give the subquery an

alias name. This alias enables you to reference the result of the subquery as if it

were a literal object (hence, the term view). Here is a simple example of using an

inline view to show each class and its total cost:

SELECT s.ClassID, s.StartDate, a.totalcost
FROM ScheduledClasses s, (SELECT InstructorID, (PerDiemCost +

NVL(PerDiemExpenses, 0)) * 5 AS
totalcost

FROM Instructors) a
WHERE s.InstructorID = a.InstructorID;

CLASSID STARTDATE TOTALCOST
--------- --------- ---------

50 06-JAN-01 4000
51 13-JAN-01 5000
53 14-FEB-01 3500

When this query is executed, Oracle executes the subquery first and generates a

result set. It gives the result set the name of “a”. For the rest of the process, Oracle

is able to treat the output as if it were a literal object — as with any other table or

view. The alias used in the subquery becomes a valid column name in the outer

query, and the values in the result set are treated as literal column values.

Inline views are useful when dealing with derived data. In the discussion of the

GROUP BY statement in Chapter 3, “Using Single- and Multi-Row Functions,” a prob-

lem was identified: You want to return each instructor, the city he or she is based

in, and the highest per diem for all instructors in that city. To solve this problem,

the only legal query was this:

SELECT InstructorID, City, MAX(PerDiemCost) AS “Highest Cost”
FROM Instructors
GROUP BY InstructorID, City;

However, this query does not return the required results because it groups

MAX(PerDiemCost) by the unique occurrence of both InstructorID and City. You want

the function to group only by City, but to do so violates the GROUP BY function, by

having nonaggregate columns in the SELECT list that were not included in the GROUP

BY clause. The problem here is that you want to treat MAX(PerDiemCost) as a literal,

4832-8 ch04.F 7/27/01 9:00 AM Page 157

158 Part I ✦ The Oracle SQL Language

but you are forced to calculate the value in the query. This problem can be solved by

the use of an inline view because when you generate the aggregate value in a sub-

query, you can treat it as a literal value in the outer query:

SELECT i.InstructorID, i.City, a.Highcost
FROM Instructors i, (SELECT City, Max(PerDiemCost) AS highcost

FROM Instructors
GROUP BY City) a

WHERE i.city = a.city;

INSTRUCTORID CITY HIGHCOST
------------ ------------------------------ ---------

100 New York 600
110 New York 600
450 New York 600
410 New York 600
200 Palo Alto 750
300 Toronto 500
310 Toronto 500
210 Toronto 500

In this query, the subquery calculates the MAX(PerDiemCost) for each city and

aliases that value to Highcost. The outer query is then able to treat that column as

a literal value and returns it in a join just as it does with any other table or view. In

order for this to work, there must be a common column between a table referenced

in the outer query and a column in the inline view. This is required in order to

establish an appropriate join condition.

Another use of inline views is possible. When an inline view is the only object in the

FROM clause, it is possible to place an ORDER BY clause in the view. This enables

you to preorder data before returning it. This is most useful in conjunction with the

ROWID function introduced in Chapter 2. By combining the two, it is possible to

generate the TOPn values.

For example, if you want to know the top five instructors in terms of per diem cost,

you can use the following query:

SELECT InstructorID, PerDiemCost
FROM (SELECT InstructorID, PerDiemCost

FROM Instructors
ORDER BY PerDiemCost DESC)

WHERE ROWNUM <=5;

INSTRUCTORID PERDIEMCOST
------------ -----------

200 750
100 600
300 500
110 500
310 450

4832-8 ch04.F 7/27/01 9:00 AM Page 158

159Chapter 4 ✦ Advanced SELECT Statements

This is the only condition where an ORDER BY clause is accepted in a subquery. In

all other instances, the presence of an ORDER BY clause returns a syntax error.

Working with correlated subqueries
Another type of subquery available in SQL is the correlated subquery. A correlated

subquery is a subquery that requires some information from the outer query before

it can process the inner query. In order to write a correlated subquery, you must

alias both the table source in the FROM clause for both the inner and outer table

objects, and then create a join condition in a WHERE clause in the inner query that

binds the inner and outer query together. This syntax looks like the following:

SELECT <select list>
FROM Table outer
WHERE colx = (SELECT colx

FROM table inner
WHERE inner.column = outer.column)

These subqueries are used most often when you want to base a condition on a

result that is tied to another aspect of each row. Consider the following example.

You want to retrieve a list of all instructors who have a higher per diem than the

average for their instructor type. In order to solve this, you must first find the

instructor type for each employee and then find the average for that type. The sub-

query looks like this:

SELECT InstructorID, PerDiemCost
FROM Instructors outer
WHERE PerDiemCost > (SELECT AVG(PerDiemCost)

FROM Instructors inner
WHERE inner.InstructorType =

outer.InstructorType);

INSTRUCTORID PERDIEMCOST
------------ -----------

100 600
200 750
450 450

When this query is executed, each row is retrieved by the outer query, and the

InstructorType value for that row is passed into the inner query. The inner query

uses that value to evaluate the AVG(PerDiemCost) based on the InstructorType that

was passed in. The subquery then returns this value to the outer query, and the

row is either accepted or rejected based on the WHERE clause condition. Oracle

then fetches the next row and repeats the process until no more rows remain. In

this example, the subquery is processed eight times to return the result set,

because eight instructors are listed in the table.

4832-8 ch04.F 7/27/01 9:00 AM Page 159

160 Part I ✦ The Oracle SQL Language

Using the EXISTS and NOT EXISTS operators
Correlated subqueries are often used in conjunction with the EXISTS and NOT

EXISTS operators. These operators are used to test for the existence or lack of exis-

tence of a correlated value in the same or another table. These operators work by

passing a value in the correlated subquery and testing to see whether a value is

returned. Suppose, for example, you want a list of all instructors who are or have

been scheduled to teach a course. You can use the following query:

SELECT FirstName, LastName
FROM Instructors i
WHERE EXISTS (SELECT 1

FROM ScheduledClasses s
WHERE i.InstructorID = s.InstructorID);

FIRSTNAME LASTNAME
------------------------------ ---------------------------
David Ungar
Kyle Jamieson
Lisa Cross

In this example, each InstructorID is passed into the subquery and tested. If there is

a match, the subquery returns the literal value 1. If there is no match, the subquery

returns a NULL. The EXISTS operator simply tests to see if any value comes back. If

a value is returned, the row that corresponds to the InstructorID passed into the

subquery is returned by the outer query. If a NULL is returned, the row correspond-

ing to the InstructorID is discarded.

It is a good practice to return a literal value with the subquery rather than actually

looking up a value for performance reasons. The EXISTS operator does not care

what value is returned; it cares only that a value is returned. Therefore, it is easier

for Oracle to pass back a declared literal rather than go through the processing

involved in retrieving an actual value from the table. The end result, however, is the

same whether you use a literal or return an actual value from the subquery table.

You can perform the opposite operation by using the NOT EXISTS operator. The fol-

lowing example returns all instructors who are not currently on the schedule:

SELECT FirstName, LastName
FROM Instructors i
WHERE NOT EXISTS (SELECT 1

FROM ScheduledClasses s
WHERE i.InstructorID = s.InstructorID);

FIRSTNAME LASTNAME
------------------------------ ------------------------------
Michael Harrison
Susan Keele
Geoff Williams
Lana Chiu
Adele LaPoint

4832-8 ch04.F 7/27/01 9:00 AM Page 160

161Chapter 4 ✦ Advanced SELECT Statements

In this case, the procedure is the same; however, rows are returned in the outer

query only if the subquery returns a NULL.

Performance issues with correlated subqueries
For the exam, you are expected to know how correlated subqueries work. In the

real world, however, you may want to find alternatives to correlated subqueries. By

using joins and inline views, it is often possible to return the same result set in a

more efficient manner. Consider the first correlated subquery example. For each

row, the InstructorType is passed into the subquery, and the AVG(PerDiemCost) for

that instructor type is passed out. However, this calculation is performed once for

every row. Three instructors have the instructor type “ORACLE”, and this means

the AVG(PerDiemCost) for an Oracle instructor is recalculated three times, even

though the value does not change. The same is true for all of the other instructor

types. Even in this small table, the effect is noticeable, but when you have a table

with hundreds of thousands of rows and thousands of different values, the cost of

this type of subquery is very high. Consider this query when you use an inline view

rather than a correlated subquery:

SELECT InstructorID, PerDiemCost
FROM Instructors i, (SELECT InstructorType, AVG(PerDiemCost)

AS avgsal
FROM Instructors
GROUP by InstructorType) a

WHERE i.InstructorType = a.InstructorType AND i.PerDiemCost >
a.avgsal ;

INSTRUCTORID PERDIEMCOST
------------ -----------

100 600
450 450
200 750

In this example, the result set is the same as the one generated by the correlated

subquery, but, unlike the correlated subquery, the AVG(PerDiemCost) is calculated

only once for each instructor type. Again, the difference is not noticeable in a table

this small but would be a significant in a very large table.

Working with SET Operators
Up to this point in the chapter, we have been writing single queries that returned a

single result set drawn from multiple tables. Set operators work slightly differently.

Rather than joining tables in a single query, set operators join the output of multi-

ple queries into a single result set. The basic syntax for a set operator is as follows:

SELECT <select list>
FROM table
[WHERE]

4832-8 ch04.F 7/27/01 9:00 AM Page 161

162 Part I ✦ The Oracle SQL Language

{UNION | UNION ALL | INTERSECT | MINUS}
SELECT <select list>
FROM table
[WHERE]

Each query must be syntactically correct and complete. That is, the query must

have a SELECT and FROM clause and may contain other clauses such as a WHERE

clause. It is also possible to use an ORDER BY statement with a set operator

(although only one query can contain the statement).

Because the set operators link the results sets from the various queries into a single

result set, each query must have a SELECT list that returns the same number of

columns with the same datatypes. If the queries do not agree in the number of

columns, or if the datatypes for each column do not match, Oracle returns an error.

You can return a literal, if necessary, in one of the queries, as long as the literal

value matches the datatype of the corresponding column in the other query. If you

want to use column aliases, you must place them in the first query. When Oracle

processes a set of queries, it uses the column names of the first query for the entire

result set.

There are four set operators in Oracle: UNION, UNION ALL, INTERSECT, and MINUS.

Each operator dictates how the result sets of the two columns are combined. This

chapter examines each operator in detail.

Using the UNION operator
The UNION operator is the most common set operator. It and the UNION ALL opera-

tor are also the only ANSI SQL set operators. The UNION operator is used to unite

the result sets of two queries into a single query. If a duplicate row is returned

between the two queries, the UNION operator returns only one row. For example,

the following query returns a list of all instructors and students, and includes a lit-

eral value that identifies which table the row is derived from:

SELECT FirstName, LastName, ‘Instructor’ AS Title
FROM Instructors
UNION
SELECT FirstName, LastName, ‘Student’
FROM Students;

FIRSTNAME LASTNAME TITLE
------------------ ---------------- --------------
Adele LaPoint Instructor
Chris Patterson Student
Davey Jones Student
David Ungar Instructor
Geoff Williams Instructor
Gordon Jones Student
Jane Massey Student
John Hee Student

4832-8 ch04.F 7/27/01 9:00 AM Page 162

163Chapter 4 ✦ Advanced SELECT Statements

John Smith Student
Kyle Jamieson Instructor
Lana Chiu Instructor
Lisa Cross Instructor
Michael Harrison Instructor
Mike Hogan Student
Roxanne Holland Student
Sue Colter Student
Susan Andrew Student
Susan Keele Instructor
Trevor Smith Student

Notice in the result set that the rows have been ordered by the first column value.

Oracle has ordered the result to detect any duplicate rows. This example contains

no duplicate rows so all rows are returned. If you want to change the order of the

result set, you can include an ORDER BY clause in the last SELECT statement. For

example:

SELECT FirstName, LastName, ‘Instructor’ AS Title
FROM Instructors
UNION
SELECT FirstName, LastName, ‘Student’
FROM Students
ORDER BY Title;

FIRSTNAME LASTNAME TITLE
--------------- --------------- ----------
Adele LaPoint Instructor
David Ungar Instructor
Geoff Williams Instructor
Kyle Jamieson Instructor
Lana Chiu Instructor
Lisa Cross Instructor
Michael Harrison Instructor
Susan Keele Instructor
Chris Patterson Student
Davey Jones Student
Gordon Jones Student
Jane Massey Student
John Hee Student
John Smith Student
Mike Hogan Student
Roxanne Holland Student
Sue Colter Student
Susan Andrew Student
Trevor Smith Student

Notice that the ORDER BY clause in the second query references a column from the

first query. As previously mentioned, the resulting columns receive their names

from the first query, and those column names must be the ones referenced when

ordering columns in the query.

4832-8 ch04.F 7/27/01 9:00 AM Page 163

164 Part I ✦ The Oracle SQL Language

In order to see the full functionality of the operator, you need two tables that con-

tain duplicate rows.

This table can be created using the enrollementhistory.sql script on the CD
included with this book.

For the purpose of comparison, assume another table stores archival registration

information called Enroll_Hist, which looks like this:

SQL> DESC Enroll_Hist;
Name Null? Type
-------------------------------------- -------- --------------
CLASS_NUM NUMBER(38)
STUDENT_ID NUMBER(38)
GRADE CHAR(4)
COURSEDATE DATE

This table contains values similar to those found in the ClassEnrollment table. Each

of the tables includes entries for students 1002 and 1005 taking course 50. As well,

the entry for student 1001 in class 46 was accidentally duplicated in the Enroll_Hist

table. Consider the result of the following query:

SELECT class_num, student_id, grade
FROM Enroll_Hist
UNION
SELECT ClassID, StudentNumber, Grade
FROM ClassEnrollment
ORDER BY student_id;

CLASS_NUM STUDENT_ID GRADE
--------- ---------- -----

46 970 A
45 990 C
46 1001 A
50 1001 B
48 1002 C
50 1002 A
51 1003
53 1003
51 1004 A
50 1005 F
51 1008 A

In the result set for this query, notice that Oracle returns only one row for each of

these students. The duplicate values of student 1002 and 1005 in course 50 between

the two tables are removed, and the duplication of student 1001 in class 46 is also

removed. Students 1001, 1002, and 1003 are returned more than once, but each

occurrence has a different Class_num and grade value. The UNION operator com-

bines the results and removes the duplicates but only where all elements in the

result set are identical. If you wish to include the duplicates, you must use the

UNION ALL operator.

Cross-
Reference

4832-8 ch04.F 7/27/01 9:00 AM Page 164

165Chapter 4 ✦ Advanced SELECT Statements

Using the UNION ALL operator
The UNION ALL operator works the same as the UNION operator with one excep-

tion — the former returns duplicate rows if they exist between tables. To see this

behavior, consider the previous example using the UNION ALL rather than the

UNION operator:

SELECT class_num, student_id, grade
FROM Enroll_Hist
UNION ALL
SELECT ClassID, StudentNumber, Grade
FROM ClassEnrollment
ORDER BY student_id;

CLASS_NUM STUDENT_ID GRAD
--------- ---------- ----

46 970 A
45 990 C
46 1001 A
46 1001 A
46 1001 A
50 1001 B
48 1002 C
50 1002 A
50 1002 A
51 1003
53 1003
51 1004 A
50 1005 F
50 1005 F
51 1008 A

In this example, you can see two entries for students 1002 and 1005 in class 50. One

of these rows is derived from each table. In addition, both instances of the row for

student 1001 in class 46 are presented in the output.

Using the INTERSECT operator
The INTERSECT operator is used when you want to find rows that are common

between two tables. This operator compares the result sets and returns only rows

that are identical in both tables. Consider the following example:

SELECT class_num, student_id, grade
FROM Enroll_Hist
INTERSECT
SELECT ClassID, StudentNumber, Grade
FROM ClassEnrollment
ORDER BY student_id;

4832-8 ch04.F 7/27/01 9:00 AM Page 165

166 Part I ✦ The Oracle SQL Language

CLASS_NUM STUDENT_ID GRAD
--------- ---------- ----

50 1002 A
50 1005 F

The result set for this query returns only the references for students 1002 and 1005

in class 50. These rows are the only two that match exactly between the two tables.

Notice that the comparison is only made between the tables because the double ref-

erence to student 1001 in class 46 is not included because both occurrences occur

in the same table.

Using the MINUS operator
The MINUS operator is essentially the opposite of the INTERSECT operator. This

operator returns all rows from the first subquery listed except those rows that can

be matched to the second query or are duplicated in the first query. Consider the

following query:

SELECT class_num, student_id, grade
FROM enroll_hist
MINUS
SELECT classid, studentnumber, grade
FROM classenrollment

CLASS_NUM STUDENT_ID GRAD
--------- ---------- ----

45 990 C
46 970 A
46 1001 A
48 1002 C

This result set does not contain any of the rows from the ClassEnrollment table, and

it also does not contain those rows with students 1002 and 1005. Notice also that

the duplicate records in the enroll_hist table for student 1001 in class 46 have also

been removed. The MINUS operator removes all duplicates, but unlike the UNION

operator, it does not return nonduplicate rows from the second table.

Using Hierarchical Queries
At times, you require information to be presented in a hierarchical fashion. For

example, you may want to show the organizational chart for a company or the bill

of materials for a particular manufactured product. However, in an Oracle table,

data is not stored in a hierarchical fashion. Rather, it is stored in a relational man-

ner, with data in tables with relational keys linking rows together. It is, nevertheless,

4832-8 ch04.F 7/27/01 9:00 AM Page 166

167Chapter 4 ✦ Advanced SELECT Statements

possible to derive hierarchical information from a table based on a natural hierar-

chy in the relationship between rows. Consider, for example, the Management table

that you created to test the self-joins. The table simply stores employees, their

jobs, and the employee ID of their manager. However, due to the relationship

between employees and managers, it is possible to re-create the hierarchy for all

employees in the table. In Oracle, this is known as “walking the tree.” By walking

the tree, you are able to derive the entire reporting structure of the company either

from the top down or from the bottom up.

This is achieved through the use of two special Oracle SQL clauses: START WITH

and CONNECT BY PRIOR. These two clauses are used in conjunction with a SQL

query to retrieve hierarchical results. The basic syntax for these clauses is as

follows:

SELECT <select list>
FROM table
[WHERE condition(s)]
[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)]

The START WITH clause is used to establish where in the hierarchy you plan to

start the query. You use a condition to establish where in the table you intend to

start. You can use any valid conditional operator (for example, START WITH mgr IS

NULL). You can even use a subquery in the START WITH clause if you want to deter-

mine the starting value based on another table or an unknown condition.

The CONNECT BY PRIOR clause dictates which direction the tree is walked (that is,

whether you are going from the top to the bottom or the bottom to the top of the

hierarchy). The CONNECT BY PRIOR clause also establishes the relationship that

defines the hierarchy. The order in which you present the condition in this clause

determines whether you walk from the top down or from the bottom up. In a hierar-

chy, all levels can be described in terms of a parent and child relationship. An

object higher up in the hierarchy can be said to be a parent to those objects under

it. The object directly under the parent is said to be the child. A child can also be a

parent to another object under it in the hierarchy. When you present the condition

in the CONNECT BY PRIOR statement, the keyword PRIOR indicates that Oracle

should look for a parent row. When you place the child before the parent key, you

walk up from the bottom to the top. When you place the parent before the child

value, you walk from the top to the bottom.

To see how this works, consider this condition:

CONNECT BY PRIOR ID = Manager

In this clause, you instruct Oracle to take the value in the ID column (starting with

the row referenced in the START WITH clause) and match it in the Manager column

for the rest of the table. This ID is then seen as the parent for those rows that

4832-8 ch04.F 7/27/01 9:00 AM Page 167

168 Part I ✦ The Oracle SQL Language

match. It then takes the ID values for each of these child rows and looks in the

Manager column to see if they are parents to other rows. It continues this process

until it gets to the bottom of the tree.

If you reverse this condition, you walk from the bottom to the top:

CONNECT BY PRIOR Manager = ID.

In this case, Oracle takes the value in the Manager column of the starting row and

finds the ID of the manager; it then repeats this for each row until it gets to the top

of the tree structure. In both examples, the starting point is determined by the

START WITH condition.

Putting these two elements together, you can see in the following example a query

that returns the entire hierarchy of the Management table starting at the top and

walking down to the bottom:

SELECT ID, Name, Manager
FROM Management
CONNECT BY PRIOR ID = Manager
START WITH Manager IS NULL;

ID NAME MANAGER
--------- --------------- ---------

1 Jane
2 Bob 1
4 Rich 2
8 Joan 4
5 Ellen 2
9 Pat 5
12 Stu 9
10 Fred 5
13 Arthur 10
3 Susan 1
6 Jim 3
7 Sam 3
11 Joe 7

In this output, Jane is the first row returned because she has a NULL in the Manager

column and is, therefore, the START WITH value. Under her are Bob and Susan. The

result set first takes Bob and returns those under him. It then returns Susan and all

of the people under her. It may seem that the order is a bit odd, but Oracle is pre-

senting the starting point and all values under it in each of the branches. It returns

Bob and Jane and all of the branches off of Bob, and then returns Susan and the

branches off of Susan.

4832-8 ch04.F 7/27/01 9:00 AM Page 168

169Chapter 4 ✦ Advanced SELECT Statements

You can also use the PRIOR command in the SELECT clause to enable you to see the

parent value. For example:

SELECT name || ‘ is managed by ‘ || PRIOR name
AS ORG_CHART

FROM Management
CONNECT BY PRIOR id = manager
START WITH manager IS NULL;

ORG_CHART

Jane is managed by
Bob is managed by Jane
Rich is managed by Bob
Joan is managed by Rich
Ellen is managed by Bob
Pat is managed by Ellen
Stu is managed by Pat
Fred is managed by Ellen
Arthur is managed by Fred
Susan is managed by Jane
Jim is managed by Susan
Sam is managed by Susan
Joe is managed by Sam

You can also present this information in reverse order by reversing the arguments

in the CONNECT PRIOR statement. In this example, the query returns the reporting

structure from Arthur, up through his superiors, to the top of the tree:

SELECT name || ‘ is a Manager for ‘ || PRIOR name
AS ORG_CHART

FROM Management
CONNECT BY PRIOR manager = id
START WITH Name = ‘Arthur’;

ORG_CHART
--
Arthur is a Manager for
Fred is a Manager for Arthur
Ellen is a Manager for Fred
Bob is a Manager for Ellen
Jane is a Manager for Bob

Because you have listed the child first in the CONNECT BY PRIOR statement, it

walks backwards. Oracle takes the Manager value starting with Arthur and finds the

ID for that Manager value. It then finds the Manager value for Arthur’s manager and

continues until it does not find any more manager values (with Jane).

4832-8 ch04.F 7/27/01 9:00 AM Page 169

170 Part I ✦ The Oracle SQL Language

Using the LEVEL pseudo-column
To make the elements of this output more readable, Oracle also includes a pseudo-

column that shows the level in the tree that a particular row occupies. The name of

the pseudo-column is LEVEL. The column does not actually exist and its values are

not stored in any table. Rather, it is generated when the hierarchical query is gener-

ated. For example:

SELECT name || ‘ is managed by ‘ || PRIOR name
AS ORG_CHART, LEVEL

FROM Management
CONNECT BY PRIOR id = manager
START WITH manager IS NULL;

ORG_CHART LEVEL
--- ---------
Jane is managed by 1
Bob is managed by Jane 2
Rich is managed by Bob 3
Joan is managed by Rich 4
Ellen is managed by Bob 3
Pat is managed by Ellen 4
Stu is managed by Pat 5
Fred is managed by Ellen 4
Arthur is managed by Fred 5
Susan is managed by Jane 2
Jim is managed by Susan 3
Sam is managed by Susan 3
Joe is managed by Sam 4

In this query, all values with the same LEVEL value occupy the same level down the

tree from the starting position.

You can also use this pseudo-column in conjunction with the LPAD function to for-

mat your output to show the hierarchy graphically.

The LPAD function is described in Chapter 3.

Consider the following:

SELECT LPAD(‘ ‘, 2* LEVEL -2) || NAME AS Report_structure,
LEVEL, position
FROM Management
CONNECT BY PRIOR id = manager
START WITH manager IS NULL;

REPORT_STRUCTURE LEVEL POSITION
------------------------------ --------- --------------

Cross-
Reference

4832-8 ch04.F 7/27/01 9:00 AM Page 170

171Chapter 4 ✦ Advanced SELECT Statements

Jane 1 President
Bob 2 Vice-President
Rich 3 Manager
Joan 4 Analyst

Ellen 3 Manager
Pat 4 Supervisor
Stu 5 Accountant

Fred 4 Supervisor
Arthur 5 Operator

Susan 2 Vice-President
Jim 3 Manager
Sam 3 Manager
Joe 4 Developer

In this example, the LPAD function places two blank spaces at the beginning of the

Name value for each level above 1 (2 * 1 -2 = 0, 2*2 -2 = 2, etc). This indents all rows

so that values of the same level are on the same line and each branch on the tree is

visibly identifiable.

Limiting rows in the hierarchy
At times you want only certain values returned. You may want to remove a refer-

ence to an individual, or you may want to remove an entire branch of the tree. You

can do either, and that which is eliminated is dictated by where you put your limit-

ing condition.

If you want to eliminate a single value, you can simply include a WHERE clause in

the query. For example, this query eliminates only the reference to Bob:

SELECT LPAD(‘ ‘, 2* LEVEL -2) || NAME AS Report_structure,
LEVEL, position
FROM Management
WHERE Name <> ‘Bob’
CONNECT BY PRIOR id = manager
START WITH manager IS NULL;

REPORT_STRUCTURE LEVEL POSITION
------------------------------ --------- ---------------
Jane 1 President

Rich 3 Manager
Joan 4 Analyst

Ellen 3 Manager
Pat 4 Supervisor
Stu 5 Accountant

Fred 4 Supervisor
Arthur 5 Operator

Susan 2 Vice-President
Jim 3 Manager
Sam 3 Manager
Joe 4 Developer

4832-8 ch04.F 7/27/01 9:00 AM Page 171

172 Part I ✦ The Oracle SQL Language

The output does not include Bob, but the rest of the tree under Bob is maintained

(starting with Rich and Ellen). If you want to remove Bob and the entire branch of

the tree under him, you must place the condition in the CONNECT BY PRIOR

clauses, joining it with an AND operator:

SELECT LPAD(‘ ‘, 2* LEVEL -2) || NAME AS Report_structure,
LEVEL, position
FROM Management
CONNECT BY PRIOR id = manager AND name <> ‘Bob’
START WITH manager IS NULL;

REPORT_STRUCTURE LEVEL POSITION
------------------------------ --------- ---------------
Jane 1 President
Susan 2 Vice-President
Jim 3 Manager
Sam 3 Manager
Joe 4 Developer

In the output to this query, only Susan and the branch of the tree under Susan is

presented. Everyone under Bob has been removed.

Using Substitution Variables
✦ Produce queries that require an input variable

In all of the examples so far, the output of the queries has been static; that is, the

values have been coded into the queries, and every time the query is executed

(provided the underlying data does not change), the same values are returned. At

times, however, you may not want this rigid behavior. For example, the following

query always returns Oracle instructors:

SELECT InstructorID, FirstName, LastName
FROM Instructors
WHERE InstructorType = ‘Oracle’;

But what if you want to determine the type of instructor at runtime? To do so, you

need a runtime variable. A variable is an object that can hold another value.

Runtime variables are variables whose value is not determined until the code is

actually executed. Standard SQL does not contain any runtime variables; however,

such variables are available in SQL*Plus. SQL*Plus commands are used by the

SQL*Plus editor. When a script is executed, SQL*Plus recognizes the variable and

prompts the user to supply a value. When the user supplies a value, SQL*Plus sub-

stitutes this value for the runtime variable and executes the statement. The runtime

variable in SQL*Plus is identified by the ampersand (&) and a name. To see the use

of a runtime variable, consider the following statement and execution:

Objective

4832-8 ch04.F 7/27/01 9:00 AM Page 172

173Chapter 4 ✦ Advanced SELECT Statements

SQL> SELECT InstructorID, FirstName, LastName
2 FROM Instructors
3 WHERE InstructorType = ‘&Type’;

Enter value for type: UNIX
old 3: WHERE InstructorType = ‘&Type’
new 3: WHERE InstructorType = ‘UNIX’

INSTRUCTORID FIRSTNAME LASTNAME
------------ ------------------------------ -------------------

310 Susan Keele
200 Lisa Cross
210 Geoff Williams

In this query, the WHERE clause contains a runtime variable: &type. When it is iden-

tified, SQL*Plus raises the prompt: “Enter value for <var>:” where <var> is the run-

time variable without the ampersand.

By default, SQL*Plus returns the extra two lines of information showing the old
and new values for the variable. You can turn this functionality off using the SET
VERIFY OFF command.

Notice that the previous query contained single quotes around the variable name. If

the runtime variable is for a date or a character string, it is necessary to place the

single quotes around the variable; otherwise, the user has to include them in the

variable value. If the user does not include single quotes, the statement returns a

syntax error.

A single query can contain multiple runtime variables. Consider the execution the

following statements:

SQL> SET VERIFY OFF
SQL> SELECT &col, City
2 FROM locations
3 WHERE City = ‘&city’;

Enter value for col: LocationID
Enter value for city: Toronto

LOCATIONID CITY
---------- ------------------------------

300 Toronto

This statement contains two runtime variables, and each is collected in order

before the query is executed. It is possible to rerun this query with a completely

different result set.

Tip

4832-8 ch04.F 7/27/01 9:00 AM Page 173

174 Part I ✦ The Oracle SQL Language

Dealing with repeating values
One problem with using the ampersand in queries is that SQL*Plus prompts for a

value every time it encounters an ampersand, even when it has already received a

value for a variable of the same name. Consider the following:

SQL> SELECT &Colx, &Coly
2 FROM Instructors
3 WHERE &Colx > &cond
4 ORDER BY &Colx;

Enter value for colx: PerDiemCost
Enter value for coly: LastName
Enter value for colx: PerDiemCost
Enter value for cond: 400
Enter value for colx: PerDiemCost

PERDIEMCOST LASTNAME
----------- ------------------------------

450 Keele
450 LaPoint
500 Harrison
500 Jamieson
600 Ungar
750 Cross

In this example, the value &Colx is repeated three times, and SQL*Plus prompts for

each occurrence, even though you may want all three to be the same value. This

behavior can be overridden by using double ampersands (&&). When SQL*Plus

encounters &&, it prompts for a value the first time and then reuses that value for

each subsequent occurrence. The last occurrence of the variable must use a single

ampersand. If you were to rewrite the previous query with double ampersands, the

outcome would look like this:

SQL> SELECT &&Colx, &Coly
2 FROM Instructors
3 WHERE &&Colx > &cond
4 ORDER BY &Colx;

Enter value for colx: PerDiemCost
Enter value for coly: LastName
Enter value for cond: 400

PERDIEMCOST LASTNAME
----------- ------------------------------

450 Keele
450 LaPoint
500 Harrison
500 Jamieson
600 Ungar
750 Cross

In this example, you are prompted only for the Colx variable once, and that value is

reused through the query.

4832-8 ch04.F 7/27/01 9:00 AM Page 174

175Chapter 4 ✦ Advanced SELECT Statements

Using the ACCEPT command
In addition to the ampersand, you can also use the ACCEPT SQL*Plus command to

create a runtime variable in your scripts. The ACCEPT command differs from a stan-

dard runtime variable in that it is defined before the query executes and can be

reused in the query. The syntax for the ACCEPT command is as follows:

ACCEPT variable [datatype] [format] [PROMPT] text

This statement must be executed before the query is run. When you create the vari-

able in the ACCEPT statement, you do need to include the ampersand next to the

variable name, but you must use the ampersand when you reference the variable in

your SQL statement. For example, if you were to rewrite the previous example using

an ACCEPT statement, it would look like this:

SQL> ACCEPT Colx PROMPT ‘Please enter column name: ‘
Please enter column name: PerDiemCost
SQL> ACCEPT cond PROMPT ‘Please enter lowest salary value: ‘
Please enter lowest salary value: 400
SQL> SELECT InstructorID, LastName, &Colx
2 FROM Instructors
3 WHERE &Colx > &cond
4 ORDER BY &Colx;

INSTRUCTORID LASTNAME PERDIEMCOST
------------ ------------------------------ -----------

310 Keele 450
450 LaPoint 450
300 Harrison 500
110 Jamieson 500
100 Ungar 600
200 Cross 750

In this example, the values for &Colx and &cond are captured by the ACCEPT state-

ment. You are prompted for the values when you execute the ACCEPT statement,

and you are not prompted again for a value.

One final point to be aware of when using SQL*Plus runtime variables is that they

are cached with the query. When you reuse a variable in the same session, rather

than prompting for a value, SQL*Plus sometimes uses the value in the cache.

You can override this behavior by undefining the variable. You do so using another

SQL*Plus command — UNDEFINE. For example, if you want to clear the value for

Colx in the last query, you simply run this command:

UNDEFINE Colx

and the value for Colx is removed from the cache.

4832-8 ch04.F 7/27/01 9:00 AM Page 175

176 Part I ✦ The Oracle SQL Language

The ROWID pseudo-column
One other SQL element is the ROWID pseudo-column. The ROWID pseudo-column

represents the specific row location for data on the physical disk. This value exists

for every row and changes only if data is moved on the physical disk.

To retrieve the ROWID, you simply reference it as if it were any other column in the

tables. For example:

SELECT ROWID, LocationID, City
FROM Locations;

ROWID LOCATIONID CITY
------------------ ---------- ------------------------------
AAADA6AAHAAAABiAAA 100 New York
AAADA6AAHAAAABiAAB 200 San Francisco
AAADA6AAHAAAABiAAC 300 Toronto

The ROWID value contains all of the information that Oracle needs to locate a row

and can be used to speed data retrieval. Remember, however, that a particular

ROWID value is not permanently bound to a row, and if the row changes its physical

location (for example, you move a table to another tablespace), the ROWID value

for that row also changes.

Key Point Summary
It is possible to write a single query that returns data from multiple tables. This can

be done using either a join or a subquery.

✦ Joins: In order to join multiple columns together, you must have a common

join condition. A join condition is a method of relating rows in one table with

rows in another table.

• The join condition is often on the primary key/foreign key relationship

between tables.

• Once a join condition has been established, you can reference any col-

umn from the joined tables.

• If you have ambiguous columns (that is, columns with the same name in

different tables) you must reference the table that the column is derived

from (tablename.columname).

• You can alias a table in the FROM clause and use the alias value as short-

hand when identifying the table source for a column.

4832-8 ch04.F 7/27/01 9:00 AM Page 176

177Chapter 4 ✦ Advanced SELECT Statements

If you include more than one table in the FROM clause and do not reference it

with a condition in the WHERE clause, you get the Cartesian product of the

tables. The Cartesian product is simply every value in the first table joined to

every value in the second table. To avoid a Cartesian product, you need one

less condition in the WHERE clause than the number of tables in the FROM

clause. There are four types of joins: equijoins, nonequijoins, outer joins, and

self-joins.

Equijoins

• Join two or more tables based on a condition of equality.

• Only return rows that are common to both tables in the join condition.

• Can include all other SQL clauses (for example GROUP BY, HAVING,

ORDER BY).

Nonequijoins

• Follow all the rules of equijoins.

• Are created with any join condition that is not based on equality includ-

ing BETWEEN.

• Can reference more than one column in a table as part of the join

condition.

Outer joins

• Are used when you want to return all values from one table, even if there

is no corresponding value in the other table.

• Return a value from the joined table where possible and return a NULL

when no join can be made.

• Are indicated using the outer join operator (+).

• This operator is placed in the WHERE condition on the column that has

NULLs added to it when a match cannot be made.

Self-joins

• Occur when you need to join a table to itself.

• Are created by adding the same table twice in the FROM clause with dif-

ferent alias names.

• Occur most often when a table has a self-referential foreign key (for

example, the Manager column referring to the employee ID column in the

same table).

• Can be inner or outer joins.

• Follow all the rules of the other join forms.

4832-8 ch04.F 7/27/01 9:00 AM Page 177

178 Part I ✦ The Oracle SQL Language

✦ Subqueries: Another method of writing a query that references more than one

table is to use a subquery. A subquery is an independent statement nested

inside a parent query.

• All subqueries must be enclosed in parentheses.

• A subquery must return data from only one column unless you are using

a pairwise comparison.

• A pairwise comparison binds two columns together and treats them as

one column.

• You can nest subqueries. The innermost query always executes first.

• Subqueries can return only one row unless you are using an operator

that can accept multiple rows (IN, ANY, and ALL).

• Some subqueries can be correlated. Correlated subqueries are achieved

by aliasing the tables in the FROM clause of both queries and making a

join condition between the inner and outer table aliases in a WHERE

clause in the subquery.

• Subqueries can also appear in the FROM clause.

• Subqueries in the FROM clause are executed before the outer query and

can be treated as temporary table objects by the outer query.

Aside from joins and subqueries, you can also use set operators to derive data from

more than one table by combining the results of several queries. When you use a

set operator, the queries must all return the same number of columns with the

same datatypes. There are four set operators:

✦ The UNION operator returns the result set from all queries but eliminates

duplicate values both between tables and within a single table.

✦ The UNION ALL operator returns the results from all queries including dupli-

cate values.

✦ The INTERSECT operator returns only those values that exist in the result sets

for both queries.

✦ The MINUS operator returns all data from the first query except for values

that exist in the second query.

Runtime variables are available in SQL*Plus.

✦ You can define a runtime variable with either the ampersand (&) or the

ACCEPT statement.

✦ When you use a runtime variable to represent character or date data, you

should place single quotes around the variable in the query.

✦ When you have a repeating runtime variable, SQL*Plus prompts you for a

value each time it occurs unless you use double ampersands (&&).

✦ The ACCEPT command is used to define a variable before the statement is

executed.

✦ ✦ ✦

4832-8 ch04.F 7/27/01 9:00 AM Page 178

179

STUDY GUIDE

In this chapter, you looked at some of the advanced elements in SQL. You learned

how to used joins and subqueries to access multiple tables in a single query, and

you have used the set operators to combine result sets from multiple queries. In

addition, you have learned how to write hierarchical queries and use runtime vari-

ables to control execution of a statement at runtime. The exam focuses mostly on

joins, subqueries, and runtime variables; however, all of this information is impor-

tant and may come up, not just in the exam, but in the real world. Now you can test

your understanding with the sample questions, scenarios, and exercises that follow.

Assessment Questions
1. You issue the following query against the Instructors table:

SQL> SELECT InstructorID, City, ClassID, StartDate,
2 StartDate + DaysDuration AS EndDate
3 FROM Instructors, ScheduledClasses
4 WHERE instructorid = instructorID
5 AND country = ‘USA’
6 ORDER BY

Which line in this statement causes an error?

A. 2

B. 4

C. 5

D. 6

2. In which of the following situations do you use an outer join?

A. You need to return the class ID and start date from the ScheduledClasses

table and the city from the Locations table.

B. You need to join information on one table to a range of values on another

table.

C. You have a self-referential foreign key on your Employees table between

the Empid and Manager columns, and you want to return all employees

and their managers including the CEO, who does not have a Manager

value listed.

D. You need to join more than two tables.

179Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 179

3. You execute the following query:

SELECT InstructorID, PerDiemCost
FROM Instructors
WHERE PerDiemCost >

(SELECT AVG(PerDiemCost)
FROM Instructors
WHERE City =

(SELECT City
FROM Locations
WHERE LocationID =

(SELECT LocationID
FROM ScheduledClasses
WHERE startdate = ‘01-JAN-01’)

Which query is executed first?

A. SELECT city

B. SELECT LocationID

C. SELECT InstructorID, PerDiemCost

D. SELECT AVG(PerDiemCost)

4. You issue the following query:

SQL> SELECT s.ClassID, c.Coursename, l.LocationName
2 FROM ScheduledClasses s, Courses c, Locations l
3 WHERE s.coursenumber = c.coursenumber AND
4 s.locationID = c.locationID
5 AND city = &city
6 ORDER BY s.classid

When you are prompted, you enter the string “Toronto”. However, you

receive the following error:

ORA-00904: invalid column name

What is the most likely reason for the error?

A. You did not place single quotes around the runtime variable.

B. You did not alias the City column in line 5.

C. You used aliases in the SELECT list before they were established in the

FROM clause.

D. The City column in line 5 is not referenced in the SELECT list.

180 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 180

181

5. You want to issue a hierarchical query that lists all of the managers beginning

with a clerk named Stu and working up to the president whose name is Jane. If

the tables have a column for employee IDs called id and a column for manager

IDs called manager, which CONNECT BY PRIOR and START WITH combination

do you use to write this query?

A.

CONNECT BY PRIOR manager = id
START WITH name = ‘JANE’

B.

CONNECT BY PRIOR id = manager
START WITH ‘JANE’

C.

CONNECT BY PRIOR id = manager
START WITH ‘Stu’

D.

CONNECT BY PRIOR manager = id
START WITH ‘Stu’

6. Which operator do you use to return all of the rows from one query except

where those rows are returned in a second query?

A. UNION

B. UNION ALL

C. MINUS

D. INTERSECT

7. You issue the following query:

SELECT FirstName, LastName, PerDiemCost
FROM Instructors
WHERE PerDiemCost > (SELECT PerDiemCost

FROM Instructors
WHERE InstructorID = 10);

If no instructors have an InstructorID of 10, what is returned by the outer

query?

A. No rows

B. A syntax error

C. All instructors with a PerDiemCost greater than 0

D. All instructors with a PerDiemCost greater than NULL

181Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 181

8. You issue the following query:

SQL> SELECT i.InstructorID, i.PerDiemCost
2 i.InstructorType, a.avgcost
3 FROM Instructors i, (SELECT InstructorType,
4 AVG(PerDiemCost)
5 FROM Instructors
6 GROUP BY InstructorType) a
7 WHERE i.instructortype = a.instructortype

Which line in this statement will cause an error?

A. 2

B. 3

C. 4

D. 6

E. 7

9. Which of the following clauses can contain a subquery? (Choose all that

apply.)

A. GROUP BY

B. WHERE

C. HAVING

D. FROM

10. Which of the following is not true of the ROWID function?

A. Each ROWID value is unique.

B. The ROWID value contains everything Oracle requires to find a particu-

lar row.

C. The ROWID value is permanently bound to a particular row.

D. The ROWID value is not stored in the table.

Scenarios
1. You have been asked to create a report that draws information from several

tables. The report has three separate components, and you require separate

queries.

A. The first query requires you to list all instructors whose combined cost

and expenses are greater than the average for the city they are located

in. How do you write this query? Is there more than one way to write it?

Which way is preferable?

182 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 182

183

B. In the second report, you are asked to list each class, the name of the

course, and the center in which the class is running. You are also asked

to include all centers, even those without classes. Is it possible to return

this information? If so, how do you find this information?

C. In the third query, you need to compare the current enrollment figures to

past enrollments on an archive table. You have to write a query that lists

all of the students who exist on both tables. How do you find this infor-

mation? You are also concerned that some entries were copied to the

archive table but not removed from the enrollment tables. How do you

eliminate these rows?

2. You have been asked to write a script that most users will run in SQL*Plus.

The script must return information about orders in your company’s order-

entry system. These scripts need to be flexible and efficient.

A. You have a table called ORDERS, and you want to create a script that

returns all orders within x number of days of the current date. You want

the user to supply the value for x at runtime. How do you write this

query to allow the current date to change? How do you enable the user

to choose the value of x?

B. Your products are manufactured from other components. Some of the

these other components are also manufactured by your company of

other subcomponents. Each product ID is stored in a column called

prod_id, and each component is listed in a column called comp_id. How

can you write a query that shows each product and the bill of materials

(that is, the subcomponents) that make up that component?

Lab Exercises
Lab 4-1 Using equijoins

1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Write a query that joins instructor and location names based on city.

3. How many rows are returned? ______________

4. How many instructors are included in the Instructors table? _______________

5. Why is an instructor not listed?

6. Rewrite the previous query to include the ClassID column from the

ScheduledClasses table.

7. How many rows are returned? __________

8. Why is this number of rows returned?

183Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 183

Lab 4-2 Using self-joins and outer joins
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Using the Management table, write a query with an output that looks like this:

ORG_CHART

--
Bob is a Vice-President and reports to Jane
. . .

If you have not run the selfjoin.sql script to create the Management table, you
must run it before completing this lab.

3. Does this query return all employees in the table?

4. Rewrite the query so that it returns all employees in the table. If any employ-

ees have NULL for their manager’s name, replace the NULL with the string “no

one”.

Lab 4-3 Using subqueries
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle

2. Write a query using a subquery that returns all instructors by ID and name

whose total cost and expense are higher than the average for their city.

3. Rewrite this query to return that average value in the SELECT list of the outer

query with the name AVG_COST.

Lab 4-4 Using hierarchical queries
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Using the Management table, write a query that lists a hierarchical tree start-

ing with Bob and walking downward. The result set should include every per-

sons’ name, their level within the hierarchy, and their position. Each name

should be indented three spaces for each level.

3. Rewrite the query so that the branch starting from Rich is removed.

4. Rewrite the first query in this section so that you can determine your starting

point at runtime.

Caution

184 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 184

185

Answers to Chapter Questions

Chapter Pre-Test
1. The three syntax elements required to write a join are a SELECT list, a FROM

clause, and a WHERE clause that contains the join condition.

2. Without the WHERE clause, Oracle generates a Cartesian product and joins all
rows with all other rows.

3. Yes, you can join a table to itself. In order to do so, you must have two
columns that can be related to each other. You must reference the table name
twice in the FROM clause and give each reference a different alias name.

4. You want to use an outer join when you want all rows from one table in a join
returned, even if they cannot be joined to a row on the other table in the join.

5. A subquery can return only one column unless you are performing a pairwise
comparison. In a pairwise comparison, you join multiple columns together
and return the unique occurrence of several columns.

6. If any subquery returns a NULL, the output of entire query is NULL.

7. A subquery can be placed in most clauses, including in the SELECT list, in the
FROM clause, the WHERE clause, the HAVING clause, and the ORDER BY
clause. The only clause that cannot contain a subquery is the GROUP BY
clause. Subqueries are most often found in the WHERE and HAVING clauses.

8. You want to use a correlated subquery when the inner query requires a value
from the outer query to evaluate. For example, a subquery that returns the
AVG(PerDiemCost) based on the InstructorType of the instructor in the outer
query. In the real world, you might consider using an inline view or a join
rather than a subquery.

9. You can control the execution of a SQL statement at runtime by using a run-
time variable. Without runtime variables, the statement must be hard-coded
at design time.

10. Oracle’s implementation of SQL does not have any provision for runtime vari-
ables. To use runtime variables, you have to use runtime variables available in
other platforms such as SQL*Plus or PL/SQL.

Assessment Questions
1. B — The error in this query occurs at line 4. It is generated because you have

an ambiguous column reference. An InstructorId column is included in both
the Instructors and ScheduledClasses tables, and Oracle is unable to resolve
which column is associated with which table. In order to correct this problem,
you have to specify the table source for each column. For example:

WHERE instructor.instructorid =
scheudledclasses.instructorid

You can also use column aliases to avoid this ambiguity between tables.

185Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 185

2. C — You use an outer join in situation C because you want to return all

employees including the CEO. The fact that the table is self-referential only

suggests a self-join; however, the CEO most likely has a NULL in the Manager

column, and you have to use an outer join to have him returned with the rest

of the employees. Situation A simply recommends an equijoin, and situation B

requires an nonequijoin.

3. B — When Oracle executes a statement with nested subqueries, it always exe-

cutes the innermost query first. This query passes its results to the next

query and so on until it reaches the outermost query. It is the outermost

query that returns a result set.

4. A — The correct answer is A. If you do not put single quotes around the run-

time variable, the user is required to enter the quotes manually as part of the

supplied value for the variable. If the user does not add the quotes, no quotes

are placed around the string. When Oracle encounters character data that is

not enclosed in single quotes, it tries to interpret the value as an object name.

This explains the error message. You do not have to alias unambiguous

columns, and it is possible to reference a column elsewhere in the query with-

out referencing it in the SELECT list. It is also possible to use alias values in

the SELECT list before they are declared. This is because Oracle parses the

whole query before it attempts to reconcile the objects in the query.

5. D — If you want to walk up the tree, you must use the CONNECT BY PRIOR val-

ues where child = parent (in this case, where ID = Manger). This takes the

Manager column from the starting row and finds that value in the ID column. It

then takes that new ID look for its manager and continues until it encounters a

null manager. You must put Stu in the START WITH clause as you are walking

up from him.

6. C — You use the MINUS operator to return all rows from one query except

where duplicate rows are found in a second query. The UNION operator

returns all rows from both queries minus duplicates. The UNION ALL operator

returns all rows from both queries including duplicates. The INTERSECT oper-

ator returns only those rows that exist in both queries.

7. A — If any subquery returns a NULL (which occurs when the subquery refer-

ences a nonexistent instructor), the entire query returns a NULL. When the

output of a query is NULL, Oracle returns the “no rows returned” message.

8. A — The error occurs at line 2. The SELECT list at line 2 references a nonexis-

tent column. The source of the error is actually at line 5. When you place a

subquery in the FROM clause of a query, it generates a temporary table with

column names equal to the column name in the SELECT list of the subquery.

In order for this query to work, you have to alias the AVG(PerdiemCost) as

avgcost in the subquery. Otherwise, Oracle is unable to find the column and

returns a “column not found” error.

9. B, C, D — A subquery can be contained in all SELECT clauses except for the

GROUP BY clause. It can be used in the WHERE clause and HAVING clause to

return a value for the condition. It can also be used in the FROM clause to cre-

ate a temporary table source.

186 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 186

187

10. C — The ROWID function is not bound to the row. If the row is physically

moved (such as through an import or export operation), it is assigned a new

ROWID value. The value is unique and is used by Oracle to locate the row.

ROWID is a pseudo-column and is not stored in the table itself.

Scenarios
1. A. This query can be written using either a correlated subquery or an inline

view. The inline view (that is, a subquery in the FROM clause) is preferable

because it calculates each value once rather than once per row.

B. In order to find this information, it may seem that you are going to have to

write an outer join, because you must find those centers that do not have

classes. The problem is an outer join is only possible between two tables, and

this query requires joining three tables. It is possible to retrieve the required

data, but it requires the use of the UNION operator. The query looks some-

thing like this:

SELECT s.Classid, c.coursename, l.LocationName
FROM ScheduledClasses s ,courses c, Locations l
WHERE s.coursenumber = c.coursenumber AND s.locationid =
l.locationid
UNION
SELECT s.classid, null, l.locationName
FROM locations l, scheduledclasses s
WHERE l.locationid = s.locationid(+)
AND s.classid is null;

The first query returns all rows except for the centers that do not have

classes. The second query uses an outer join to find the other centers. Notice

that you need to add an extra column in the SELECT list of the second query

using the NULL operator. With the UNION operator, both queries must agree

in the number of columns.

C. In order to find all rows including duplicates, you can use the UNION ALL

operator. To determine whether rows are duplicated between tables, rather

than in the same table, however, you can include some kind of flag in each

query, like this:

SELECT class_num, student_id, grade, ‘EH’ AS Flag
FROM enroll_hist
UNION
SELECT classid, studentnumber, grade, ‘CE’
FROM classenrollment
ORDER BY student_id;

This flag value indicates whether a duplicate row came from different tables

or the same table.

187Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 187

2. A. To write this query, you can use a combination of system functions and

runtime variables. To allow the script to always use the current date, you sim-

ply have to use the SYSDATE function in the WHERE clause of the query. Using

this function saves the user from having to enter the current date. To provide

the value of x, you have to use a runtime variable. Because you are working in

SQL*Plus, you can use either the ampersand or the ACCEPT statement in your

scripts.

B. To produce a bill of materials, you have to build a hierarchical query. In

this case, you start with the finished product and walk down the tree through

all of the components and subcomponents that make up that product. The

query might look something like this:

SELECT prod_id, prod_name, comp_id
FROM manufacturing
CONNECT by Prior prod_id = compid
Start with prod_id = x

If you have subcomponents in the list with child comp_id values, they are

included in the tree under the product.

Lab Exercises

Lab 4-1 Using equijoins
2.

SELECT i.InstructorID, l.LocationName
FROM Instructors i, Locations l
WHERE i.City = l.City;

3. Seven rows are returned.

4. There are eight instructors.

5. One of the instructors is from Palo Alto, and there is not a location in that city.

6.

SELECT i.InstructorId, l.LocationName, s.ClassID
FROM Instructors i, Locations l, ScheduledClasses s
WHERE i.InstructorID = s.InstructorID AND l.LocationID =
s.LocationID;

7. Three rows are returned.

8. Only three classes have instructors assigned to them.

188 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 188

189

Lab 4-2 Using self-joins and outer joins
2.

SELECT e.Name || ‘ is a ‘ || e.position || ‘ and reports to ‘
|| m.name Org_Chart
FROM management e, management m
WHERE e.manager = m.id;

3. No, Jane is not included on the list.

4.

SELECT e.Name || ‘ is a ‘ || e.position || ‘ and reports to ‘
|| NVL(m.name, ‘No one’ AS Org_Chart
FROM management e, management m
WHERE e.manager = m.id(+);

Lab 4-3 Using subqueries
2.

SELECT InstructorID, FirstName, LastName
FROM Instructors o
WHERE (PerDiemCost + PerDiemExpenses) > (SELECT

AVG(PerDiemCost +
PerDiemExpenses)
FROM Instructors i
WHERE o.city =

i.city);

3.

SELECT i.InstructorID, i.FirstName, i.LastName, a.AVG_Cost
FROM Instructors i, (SELECT City, AVG(PerDiemCost +

PerDiemExpenses) AS AVG_COST
FROM Instructors
GROUP by City) a

WHERE i.city = a.city AND (i.PerDiemCost +
i.PerDiemExpenses) > AVG_COST;

Lab 4-4 Using hierarchical queries
2.

SELECT LPAD(‘ ‘ , LEVEL * 3 -3) || Name AS Name,
LEVEL, Position
FROM Management
START WITH name = ‘Bob’
CONNECT BY PRIOR id = Manager;

To make this script more readable, you should shorten the Name column to a

column 30 characters wide with the following command:

COLUMN Name FORMAT A30

189Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 189

3.

SELECT LPAD(‘ ‘ , LEVEL * 3 -3) || Name AS Name,
LEVEL, Position
FROM Management
START WITH name = ‘Bob’
CONNECT BY PRIOR id = Manager AND name <> ‘Rich’;

4.

SELECT LPAD(‘ ‘ , LEVEL * 3 -3) || Name AS Name,
LEVEL, Position
FROM Management
START WITH name = ‘&Name’
CONNECT BY PRIOR id = Manager;

190 Chapter 4 ✦ Study Guide

4832-8 ch04.F 7/27/01 9:00 AM Page 190

Adding, Updating,
and Deleting Data

EXAM OBJECTIVES

✦ Manipulating Data

• Describe each DML statement

• Insert rows into a table

• Update rows in a table

• Delete rows from a table

• Control transactions

55C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch05.F 7/27/01 9:01 AM Page 191

192 Part I ✦ The Oracle SQL Language

CHAPTER PRE-TEST
1. How many rows can be inserted in a single INSERT statement?

2. How is data modified once it has been added to a table?

3. Can data in one table be modified based on data from another table?
If so, how is this done?

4. What happens if you do not want to supply values for all columns
when you insert a row into a table?

5. Is there an easy way to change the date of a record to today’s date?

6. Can all rows in a table be deleted with a single statement?

7. What is a transaction? How do you control transactions?

8. What happens to transactions when you combine DML statements
with other kinds of SQL statements?

9. What do you see when you issue a SELECT statement on a row that
has been locked by another user?

10. What happens when you try to modify this row?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch05.F 7/27/01 9:01 AM Page 192

193Chapter 5 ✦ Adding, Updating, and Deleting Data

This chapter examines one of the key language elements of SQL in Oracle — the

Data Manipulation Language (DML). Unlike the SQL elements discussed in

Chapters 2 and 3, DML is not used to query existing data; rather, it’s used to add,

remove, or manipulate data within tables. The three main commands in DML are

INSERT, UPDATE, and DELETE. For the exam, you will be expected to understand

thoroughly how each command works. This chapter begins by examining each

command individually and then looks at how you can use subqueries to modify

data from one table based on data in another. Next, we examine how Oracle orga-

nizes these statements using transactions. Sometimes a single logical operation

requires multiple DML statements. The transaction helps us group these state-

ments and ensure that they execute as a logical unit of work. Finally, we look at how

Oracle uses locking to maintain transactional consistency and what happens when

users encounter locked data.

As a Relational Database Management System (RDBMS), the Oracle engine controls

all access to the database. This means that when you want to place or modify data

in a table, you must instruct Oracle to add the data for you. This is achieved

through the INSERT, UPDATE, and DELETE statements. Because storing and manipu-

lating data is the key function of an Oracle database, you must have a full under-

standing of how to issue these statements in order to begin working with Oracle.

DML Statements: Inserting Data into Tables
✦ Insert rows into a table

In an active production database, new information is constantly being added. You

may have new employees join the company, new products, new customers, or new

Locations. In order to add data to one or more tables, you must issue the correct

DML statement. When you want to add data to a table, you use the INSERT state-

ment. The basic syntax for an INSERT statement is as follows:

INSERT INTO table [(column, [column . . .])]
VALUES (value [, value . . .]);

You can insert information into only one table at a time using the INSERT statement.

Thus, you can include only one table name in the INSERT statement. The VALUES

keyword is followed by a list of values that are entered into the table in the same

order as the columns for that table. When you are inserting character data or date

data into a table, you must enclose this information in single quotes. Numeric data

does not require single quotes. When you do not use single quotes with character

or date data, Oracle attempts to interpret the data as a schema object, and you

receive the following error:

ERROR at line 2:
ORA-00984: column not allowed here

Objective

4832-8 ch05.F 7/27/01 9:01 AM Page 193

194 Part I ✦ The Oracle SQL Language

Remember that string data is stored in the case in which you enter it, and that it
must be accessed in that case when performing subsequent queries. Date infor-
mation must be in the format of your National Language Support (NLS) date for-
mat. If it is not, you must use the TO_DATE function (see Chapter 2, “Retrieving
Data Using Basic SQL Statements”). Date issues are discussed later in this chapter
in “Inserting Values Using Additional Language Elements.”

Here is a simple INSERT statement that adds a new training center into the

Locations table:

INSERT INTO Locations (LocationID, LocationName, Address1,
Address2, City, State, Country, PostalCode, Telephone, Fax,
Contact, Description)
VALUES (
123,
‘Tor_Downtown’,
‘123 Main St.’,
‘Suite 2101’,’Toronto’,
‘ON’,
‘Canada’,
‘4165551234’,
‘4165553342’,
‘Jane Simpson’,
‘New Toronto location’);

This statement inserts the data into the Location table in the order that it appears

in the values list. You must ensure that the order of the data in the VALUES list

matches the order of the columns in the table. If you are not sure of the order of

columns in the table, you can use the SQL* Plus DESC[RIBE] command to find this

information, as follows:

SQL> DESC Instructors;
Name Null? Type
------------------- -------------- --------------------
INSTRUCTORID NOT NULL NUMBER(38)
SALUTATION CHAR(4)
LASTNAME NOT NULL VARCHAR2(30)
FIRSTNAME NOT NULL VARCHAR2(30)
MIDDLEINITIAL CHAR(5)
ADDRESS1 VARCHAR2(50)
ADDRESS2 VARCHAR2(50)
CITY VARCHAR2(30)
STATE CHAR(2)
COUNTRY VARCHAR2(30)
POSTALCODE CHAR(10)
OFFICEPHONE CHAR(10)
HOMEPHONE CHAR(10)
CELLPHONE CHAR(10)

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 194

195Chapter 5 ✦ Adding, Updating, and Deleting Data

EMAIL VARCHAR2(50)
INSTRUCTORTYPE CHAR(10)
PERDIEMCOST NUMBER(38)
PERDIEMEXPENSES NUMBER(38)
COMMENTS VARCHAR2(2000)

SQL>

This query also assumes that you are supplying information for all columns. When

the table contains more columns than there are values in the VALUES list, the state-

ment returns an error.

Using the column list
If you are not going to insert a value into each column in the table, you must

include a column list after the table name. This list specifies the column or columns

that you want to insert data into, and the order in which those columns appears in

the VALUES list. The following example inserts data into only a select number of

columns in the Instructor table:

INSERT INTO Instructors (
InstructorID,
first_name,
LastName,
InstructorType)

VALUES (
1234,
‘Stephen’,
‘Giles’,
‘Full Time’);

Looking at the description for the Instructors table (see the preceding), you notice

that many columns in the table are not included in the preceding INSERT statement.

Also notice that in the schema, LastName appears before FirstName. When you

include a column list after the table name, this list is matched with the VALUES list.

Therefore, the data in the VALUES list must be in the same order as it appears in the

column list. A NULL value is inserted into any column not listed in the column list.

When the column has a NOT NULL constraint, you must include the column in the

INSERT statement; otherwise, the statement returns an error.

Information on the NOT NULL constraint can be found in Chapter 7, “Creating and
Managing Oracle Database Objects.”

Except as noted in the following statement, it is important to remember that you

can affect only one row with each INSERT statement. For example, the following

statement, which tries to insert two instructors, results in the error shown:

INSERT INTO Instructors (InstructorID, FirstName, LastName)
VALUES (1, ‘Bob’, ‘Smith’, 2, ‘Stephen’, ‘Giles’)

Cross-
Reference

4832-8 ch05.F 7/27/01 9:01 AM Page 195

196 Part I ✦ The Oracle SQL Language

ERROR at line 1:
ORA-00913: too many values

The only exception to the single-row insert rule is when you insert data using a sub-

query. This action enables you to insert multiple rows. Inserting data with sub-

queries is discussed later in this chapter in “Using Subqueries in DML Statements.”

Inserting values using additional language elements
SQL contains a number of additional language features that enable you to insert val-

ues into a table. One such feature is the NULL operator, which indicates to Oracle

that you intend to leave the value of a column NULL. The following example adds a

new course but leaves the ReplacesCourse column null:

INSERT INTO Courses
VALUES (3456, ‘Intermediate SQL’, NULL, ‘This course introduces
more advanced elements of the SQL language’, 1875);

This statement does not return any errors because it supplies the correct number

of values, and because the ReplacesCourse column allows NULL values. Be careful

not to include single quotes around the NULL operator. When you include quotes,

Oracle interprets it as a character string and not the NULLoperator.

If you use the NULL operator on a column that has a default, the null overrides the
default. Oracle views the null operator as an explicit null. When you want to insert
the default values into the column, omit the column from the insert list.

For more information on defaults, see Chapter 7.

You can also use SQL functions to generate values in INSERT statements. A function

is a predefined block of code that can receive parameters and return values. Oracle

SQL contains a number of built-in functions to assist you in working with data. One

such function is the SYSDATE function. This function returns the current data and

time. You can use this function to add the current date to a column.

For example, if you add a row to the ClassEnrollment table with the current date in

the EnrollmentDate column, you can use the following statement:

INSERT INTO classEnrollment (ClassID, StudentNumber, Price,
EnrollmentDate)
VALUES (1234, 454, 1875, SYSDATE);

As with the NULL operator, be sure not to place single quotes around the SYSDATE

function; otherwise, Oracle attempts to enter it as a character string.

Cross-
Reference

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 196

197Chapter 5 ✦ Adding, Updating, and Deleting Data

SYSDATE normally includes the hours and minutes when it is used during an
INSERT. If the column is intended to include date and time, SYSDATE by itself
works well. However, the time components can sometimes cause problems later
when trying to select data from the rows using just the date component. To cap-
ture just the date component on a SELECT, INSERT, or UPDATE, include the trun-
cate function (TRUNC) as follows: TRUNC(SYSDATE).

Finally, you can use the conversion functions (TO_CHAR, TO_DATE, TO_NUMBER)

to modify data before inserting it into the table. This is especially useful when deal-

ing with dates. As we mentioned earlier in the chapter, date data must be enclosed

in single quotes. When the SQL engine interprets this data, it attempts to convert

the character string into Oracle’s internal date format by applying the

NLS_DATE_FORMAT value against it.

For a discussion of TO_CHAR, TO_DATE, and TO_NUMBER, see Chapter 2,
“Retrieving Data Using Basic SQL Statements.”

If you are not sure what the NLS defaults are for your server, you can find out by
querying the V$NLS_PARAMETERS view. For example, to find the NLS_DATE_FOR-
MAT for your server, you use the following query:

SELECT value FROM v$nls_parameters
WHERE parameter = ‘NLS_DATE_FORMAT’;

You can see the type of problem that may arise due to the NLS_DATE_FORMAT in

the following example. When your NLS_DATE_FORMAT is “DD-MON-YY”, the follow-

ing query returns an error:

INSERT INTO ClassEnrollment (ClassID, StudentNumber, Price,
EnrollmentDate)
VALUES (123, 445, 1875, ‘January 12, 2001’)

ERROR at line 2:
ORA-01858: a non-numeric character was found where a numeric
was expected

The problem here is that Oracle is not able to convert the nonstandard date string

into its internal date format. However, the following query will execute successfully:

INSERT INTO ClassEnrollment (ClassID, StudentNumber, Price,
EnrollmentDate)
VALUES (123, 445, 1875, TO_DATE(‘January 12, 2001’, ‘Month DD,
YYYY’)

Tip

Cross-
Reference

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 197

198 Part I ✦ The Oracle SQL Language

In this query, TO_DATE explicitly translates the date format for Oracle using the for-

mat information specified in the parameters of the function.

See Chapter 2, “Retrieving Data Using Basic SQL Statements,” for more informa-
tion on the TO_DATE conversion function.

DML Statements: Modifying Existing Data
✦ Update rows in a table

In an active database, data is constantly changing — shipping dates are added to

orders, product inventories are modified, and client information is updated as

clients move locations and change positions. To modify data after a row has been

inserted into a table, you must use the UPDATE command. The basic syntax for the

UPDATE statement follows:

UPDATE table
SET column = value [, column = value, . . .]
[WHERE condition];

As you can see, it is possible to modify multiple columns with a single UPDATE

statement; however, you can update only one table at a time. The WHERE condition

in an UPDATE statement controls which columns are updated. An UPDATE state-

ment updates all rows that match the WHERE condition. If the WHERE clause is

omitted, all rows in the table are modified. The following example changes the

address for instructor 123 in the Instructors table:

UPDATE Instructors
SET Address1 = ‘222 Green St.’
WHERE InstructorID = 123;

It is very important to include the WHERE clause in the UPDATE statement to get

the required results. The UPDATE statement updates all rows that are included by

the WHERE clause. Therefore, the following query:

UPDATE Instructors
SET Address1 = ‘222 Green St.’;

updates the Address1 column for all of the instructors in the Instructors table. The

WHERE clause is evaluated before the UPDATE takes place so only rows that satisfy

the condition in the WHERE clause are updated. The condition of the WHERE clause

in the UPDATE statement accepts any of the operators mentioned in Chapter 2.

Objective

Cross-
Reference

4832-8 ch05.F 7/27/01 9:01 AM Page 198

199Chapter 5 ✦ Adding, Updating, and Deleting Data

It is also possible to use arithmetic operators and functions in the SET clause to

modify data. For example, suppose instructor 123 added $50 to his per diem price.

You can update his record with the following query:

UPDATE Instructors
SET PerDiemCost = PerDiemCost + 50
WHERE InstructorID = 123;

In this query, Oracle enters a new value in the PerDiemCost column for instructor

123 based on the outcome of the arithmetic operation.

As an example of using a function in the SET clause, the following query will change

the value of the FirstName column to place a value into upper case:

UPDATE Instructors
SET FirstName = UPPER(Firstname)
WHERE InstructorID = 123

In this example, Oracle retrieves the current value for FirstName, applies the UPPER

function, and sets the result as the new value in the column.

Again, without the WHERE clause, this UPDATE affects all rows in the table. This

behavior, however, can sometimes be beneficial. For example, if you want to

increase the total cost of all courses by 10 percent, you can use the following

statement:

UPDATE Courses
SET RetailPrice = RetailPrice * 1.1;

This query sets the outcome of the arithmetic expression based on the retail price

for each row in the Courses table. This operation is repeated for each row in the

table.

DML Statements: Removing Data from Tables
✦ Delete rows from a table

In an active database, you will want to remove records at times — employees may

leave, products may be discontinued, data may be moved to archival tables. To

remove a row from a table, you use the DELETE command. The basic syntax for the

DELETE statement is as follows:

DELETE [FROM] table
[WHERE condition];

Objective

4832-8 ch05.F 7/27/01 9:01 AM Page 199

200 Part I ✦ The Oracle SQL Language

As with the UPDATE statement, the WHERE clause is used to control which rows are

affected by the DELETE statement. For example, if you wanted to delete student 4

from the Students table, you use the following statement:

DELETE FROM Students
WHERE StudentNumber = 4;

If you omit the WHERE clause, the DELETE statement removes all rows from the

table. For example, the following statement removes all rows from the Students

table:

DELETE FROM Students;

When this statement is executed, the definition for the table remains, but all data in

the table is removed. Data still can be inserted into this table, but a query against

the table returns the following message:

no rows selected

If you do want to remove all rows from a table, it is better to use the TRUNCATE
command rather than issuing a DELETE statement without a WHERE clause
because the DELETE is repeated and logged for each row, whereas the TRUNCATE
executes as a single operation. The downside to the TRUNCATE command is that
it cannot be rolled back.

Both the DELETE and TRUNCATE commands may fail if the table has a dependent
FOREIGN KEY. In this case, you will receive the following error:

ERROR at line 1:
ORA-02292: integrity constraint
(STUDENT.FK_SCHEDCLASSES_LOCATIONID) violated - child
record found.

For more on the TRUNCATE command, see Chapter 7, “Creating and Managing
Oracle Database Objects.”

As was the case with the UPDATE statement, you can use any of the WHERE opera-

tors in the DELETE statement. For example, if you want to delete all records for

1997 from the CourseEnrollment table, you can use the following statement:

DELETE FROM CourseEnrollment
WHERE EnrollmentDate BETWEEN ‘01-JAN-1997’ AND ‘31-DEC-1997’;

Using subqueries in DML statements
It is possible to issue DML statements based on data in other tables. This is

achieved by including subqueries in the DML statements. Each type of statement

treats subqueries slightly differently. In this section, we look at how to use sub-

queries in INSERT, UPDATE, and DELETE statements.

Cross-
Reference

Tip

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 200

201Chapter 5 ✦ Adding, Updating, and Deleting Data

Using subqueries in INSERT statements
With INSERT statements, you can add a new row in a table using data derived from

one or more tables. For example, suppose some of your contract instructors (with

an InstructorID of 456) takes courses at your training facility, and you want to add

them into the Students table. You could do so with the following statement:

INSERT INTO Students (StudentNumber, LastName, FirstName,
MiddleInitial, Address1, Address2, City, State, Country,
PostalCode, Homephone, WorkPhone, Email)
SELECT 999, LastName, FirstName, MiddleInitial, Address1,
Address2, City, State, Country, PostalCode, Homephone,
WorkPhone, Email
FROM Instructors
WHERE InstructorID = 456;

Note that when you use a subquery with the INSERT statement, you do not need

the VALUES keyword. For this statement to work, the subquery must return the

same number of columns listed in the INSERT list, and the datatype must match

between the two columns. If the SELECT list in the subquery does not return

enough values, or if the number of columns do not match, or the datatypes do not

match, the INSERT returns an error.

This statement also inserts one row for each row returned by the subquery. For

example, the following query adds four rows to the Students table:

INSERT INTO Students (StudentNumber, LastName, Firstname,
MiddleInitial, Address1, Address2, City, State, Country,
PostalCode, Homephone, WorkPhone, Email)
SELECT 999, LastName, Firstname, MiddleInitial, Address1,
Address2, City, State, Country, PostalCode, Homephone,
WorkPhone, Email
FROM Instructors
WHERE InstructorID IN (123, 234, 345, 456);

This is the only way to insert more than one row with a single INSERT statement.

Using subqueries in UPDATE statements
Subqueries can be used in both the SET and WHERE clauses of the UPDATE state-

ment. This enables you to alter the values of a column in one table from values in

another table (or even a different row in the same table). For example, if you want

to change the price of all courses that have the same price as course 123 to the

price of course 456, you can use the following statement:

UPDATE Courses
SET RetailPrice =

(SELECT RetailPrice FROM Courses
WHERE CourseNumber = 456)

4832-8 ch05.F 7/27/01 9:01 AM Page 201

202 Part I ✦ The Oracle SQL Language

WHERE RetailPrice =
(SELECT RetailPrice FROM Courses
WHERE CourseNumber = 123);

This statement evaluates each row in the table. Wherever it finds a row that has the

same retail price as course 123, it changes the price to the retail price of course

456. It evaluates the subqueries first, so it also updates course 123 without affecting

subsequent rows.

Using a subquery in the SET clause of an UPDATE statement returns an error when
the subquery returns multiple rows. Oracle does not allow you to update the same
row more than once in a single UPDATE statement, so the SET clause accepts only
a single value for each column being modified.

You can also use subqueries to update multiple columns by placing more than one

column in the SELECT list of the subquery. Suppose you wanted to update both the

PerDiemCost and the PerDiemExpenses for instructors 3, 5, 7, and 9 to be the same

as for instructor 11; you can use the following statement:

UPDATE Instructors
SET (PerDiemCost, PerDiemExpenses) =

(SELECT PerDiemCost, PerDiem Expenses
FROM Instructors WHERE InstructorID =
10)

WHERE InstructorID in (3, 5, 7, 9);

Make sure to enclose the two columns to the left of the equal sign in parentheses. In

order for this statement to function correctly, Oracle must treat the two columns as

a pair-wise operation. A pair-wise operation is one in which the contents of the two

columns are treated as a single value. If the parentheses are omitted, Oracle tries to

resolve each column independently, and you receive the following error:

ERROR at line 2:
ORA-00927: missing equal sign

In this case, Oracle matches the subquery with the PerDiemExpenses and then

looks for a value to set for the PerDiemCost column.

Using subqueries in DELETE statements
You can use subqueries in DELETE statements to remove rows from one table

based on rows from a different table. Suppose, for example, that you have closed

your London location, and you want to remove all classes scheduled to run in that

location. You can remove these rows using the following statement, prior to remov-

ing London from the Locations table:

DELETE FROM ScheduledClasses
WHERE LocationID = (SELECT LocationID

FROM Locations
WHERE City = ‘London’);

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 202

203Chapter 5 ✦ Adding, Updating, and Deleting Data

As with the UPDATE statement, you can also use subqueries to reference other

rows in the same tables. For example, if you want to remove all courses from the

schedule that are scheduled on the same day as class 123, you can use the follow-

ing statement:

DELETE FROM ScheduledClasses
WHERE StartDate = (SELECT StartDate

FROM ScheduledClasses
WHERE ClassID = 123);

Oracle evaluates the subquery first and then deletes each row that matches the

date returned (including ClassID 123).

How Oracle Processes DML Statements
Understanding how Oracle processes DML statements is important for under-
standing transactional controls; however, you will not be tested directly on this
section.

When a user connects to an Oracle database (for example, by starting a SQL*Plus

session and providing a valid username and password for a database instance), an

area of memory, called the Private Global Area (PGA), is made available to the user.

The PGA stores cursor state information and the values of bind variables used, as

well as other connection information. This area of memory resides on the server

side in a process launched for the user when the database connection is estab-

lished. This process is called the server process.

When an Oracle instance is started on the server to connect to an Oracle database,

several other processes are also launched. These include the following:

✦ The DB Writer (DBWR) to write data to the disks

✦ Process Monitor (PMON) to monitor server processes and user connections

✦ Log Writer (LGWR) to write data to redo log files as transactions are processed

✦ System Monitor (SMON) to perform maintenance tasks on the instance

✦ The Checkpoint process (CKPT) to ensure that all files are synchronized, and

users don’t see uncommitted data

The Oracle instance also includes a shared memory structure called the System

Global Area (also called the Shared Global Area) or SGA. The SGA contains a num-

ber of structures that enable Oracle to process requests received by users and

return the right data. These include the following:

✦ The Shared Pool, which contains the Data Dictionary Cache (to hold fre-

quently accessed database object definitions) and the Shared SQL Areas of

the Library Cache (to hold the text and execution plan of recently executed

SQL statements)

Exam Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 203

204 Part I ✦ The Oracle SQL Language

✦ The Database Buffer Cache, which holds copies of recently accessed database

blocks from the data files

✦ The Redo Log Buffer, which holds copies of changes made to the database

prior to those changes being written to the Redo Log Files

The server process, the PGA, and the SGA, along with the other processes that

make up the Oracle instance, all work together when a SQL statement is sent to the

Oracle server to query or update data. When a user issues any SELECT, INSERT,

UPDATE, or DELETE statement, Oracle must go through several steps to process

these queries. Consider the processing of the following statement:

UPDATE Courses
SET RetailPrice = 1900
WHERE CourseID = 101;

When this statement is executed, Oracle goes through the following steps. Oracle

first parses the statement to make sure that it is syntactically correct. During this

parse phase, Oracle also determines whether the objects that are referenced (in

this case, the Courses table) are available for the user and whether the user has

permission to access the object and perform the required task (that is, the

UPDATE). It does this by locating information about the object in the Data

Dictionary Cache or, if this information is not in cache, by reading the information

from the Data Dictionary and placing it in the cache. By placing information about

the object in the cache, it ensures that future requests for the object are performed

quicker, in case other users are also referencing the Courses table. If the user does

not have permissions or the object does not exist, an error is returned to the user.

When the object is located and the user has permissions, the next element of the

parse phase is to check whether the statement has been previously executed by

anyone. If so, then Oracle does not need to build the execution plan (the series of

tasks to be performed to satisfy the query). It can simply keep the execution plan

that was previously created and use it in the next phase of processing. If it cannot

find the execution plan, indicating this is the first time the statement is being run,

or the statement is no longer in the Shared SQL Areas and has been aged out,

Oracle then builds the execution plan and places it in the Shared SQL Areas. Oracle

then proceeds to the execute phase of processing.

During the execute phase, Oracle runs the execution plan in the Shared SQL Areas

and performs whatever tasks are contained therein. This includes locating the rele-

vant blocks of data in the Database Buffer Cache, or if they are not in the cache, the

server process reads the datafiles where the data resides and loads the data blocks

into the Database Buffer Cache within the SGA.

The server process then places a lock on the data being modified (in this case, the

row containing course 101). This lock prevents other users from updating the row

at the same time you are updating it. Oracle then updates a Rollback Segment and a

Data Segment in another area of cache in the SGA — the Redo Log Buffer. It places

the data in the row prior to the update in a rollback block and the new value in a

data block.

4832-8 ch05.F 7/27/01 9:01 AM Page 204

205Chapter 5 ✦ Adding, Updating, and Deleting Data

The Rollback Segment is used for two purposes:

✦ Read consistency: Until the change is committed, any user who executes a

query for the retail price of course 101 sees the price prior to the upgrade.

The new value is not visible until the update is committed.

✦ Recoverability: If the system crashes before the transaction is committed, or

if the user issues an explicit ROLLBACK command, the data in the Rollback

Segment can be used to return the row to its initial state.

When the modifications to the data are first initiated, the transaction is assigned a

unique value called a System Change Number (SCN), indicating that the change is

to be synchronized with the datafile, as well as a timestamp, indicating when the

change took place. The changes are processed and placed in the Redo Log Buffer to

be written to the Redo Log Files by the LGWR process. The process continues until

all the data has been updated and the entire query has been satisfied.

The final phase of processing is the fetch phase. For a SELECT statement, the fetch
phase of processing returns the actual data to the user, and it is displayed in

SQL*Plus. For an UPDATE operation, or any DML statement, the fetch phase simply

notifies the user that the requisite number of rows has been updated.

When other statements are part of the same transaction, the same series of steps

(that is, parse, execute, and fetch) take place for each statement until the user

issues a COMMIT or ROLLBACK statement. When the transaction is committed or

rolled back, Oracle ensures that all information in the Redo Log Buffer pertaining to

the transaction is written to the Redo Log Files, in the case of a COMMIT, or the

data blocks are restored to their previous state, in the case of a ROLLBACK, and

removes all locks. Oracle also erases the values held in the rollback segment. This

means that once a transaction is committed, it is not longer possible to roll it back.

Controlling Transactions
✦ Control transactions

As you have seen, each DML statement is a single operation that affects one or

more rows. However, at times you need to link more than one statement into a logi-

cal unit. Consider the steps involved in a bank transfer. Because SQL does not

include a transfer command, transferring $1,000 between two bank accounts

requires two UPDATE statements:

SQL>UPDATE Accounts
2 SET balance = balance - 1000
3 WHERE AccountName = ‘SourceAccount’;

SQL>UPDATE Accounts
2 SET balance = balance + 1000
3 WHERE AccountName = ‘TargetAccount’;

Objective

4832-8 ch05.F 7/27/01 9:01 AM Page 205

206 Part I ✦ The Oracle SQL Language

Physically these are two independent statements, but logically they are a single

operation. If the first statement executes, but something prevents the second state-

ment from executing, there is a problem — $1,000 is removed from the source

account but is never deposited into the target account. This is also a serious finan-

cial problem because you are now missing $1,000! With a transaction, you can

group these two operations into a single action. Transactions do more than just

group statements together; they also ensure the logical consistency of the database

and your data.

The ACID test
Transactional control in Oracle has been designed to meet the ACID test first sug-

gested by Jim Gray and Andreas Reuter. ACID stands for “Atomicity,” “Consistency,”

“Isolation,” and “Durability,” and these characteristics are discussed in the sections

that follow.

Atomicity
This means that the entire transaction must commit entirely, or not at all. In the

previous example, when the second statement fails, the first statement should be

reversed (or rolled back) to maintain transactional consistency.

Consistency
Consistency means that the transaction must follow some logical rules. In the

account transfer example, you are moving money from one location to another.

Consistency, in this case, requires that money not be created or destroyed. It must

be moved, and the amount credited must be the amount debited.

Isolation
Isolation means that while one process is processing a transaction, it must have

absolute control over all of the elements it is affecting. Oracle provides a concur-

rent environment. This means that many users are able to access the same data at

the same time. In our example, isolation prevents two different database users from

updating the balance of the source account at the same time. Oracle achieves isola-

tion through the use of locking. While a process has a row locked, it cannot be mod-

ified by another process. Isolation also extends to reading data. If someone were to

read the balance from the target account after the first statement had executed but

before the second statement, he or she would receive information that was not nec-

essarily accurate. Oracle uses the Rollback Segment discussed in the previous sec-

tion to maintain read isolation.

Durability
Durability means that after a transaction completes (or commits), it must remain

that way. It is a built-in mechanism that enforces atomicity. In other words, when a

system failure occurs, you must be able to return the system to the state it was in

before the failure. Because changes in Oracle are made in cache, a mechanism must

exist to restore lost transactions. This is achieved through the redo logs.

4832-8 ch05.F 7/27/01 9:01 AM Page 206

207Chapter 5 ✦ Adding, Updating, and Deleting Data

In addition, when a failure occurs before the transaction is committed, a mecha-

nism must exist that automatically rolls back any part of the transaction that com-

pleted before the failure. Oracle’s recovery mechanisms provide this type of

durability.

Transaction control statements
A transaction is implicitly begun when the first executable statement is executed. It

is not terminated until it is either committed or rolled back.

An executable statement includes the INSERT, UPDATE, and DELETE commands, as
well as DDL and DCL statements (see Chapters 6 and 7). SELECT statements are
not considered part of a transaction. However, if you use the SELECT FOR UPDATE
statement, Oracle locks the rows being selected.

In Oracle SQL, you can explicitly control the end of a transaction using the COMMIT

and ROLLBACK commands. When you issue a COMMIT statement, the changes

made by the DML statement become permanent. When you issue a ROLLBACK, the

changes are reversed. For example, to complete the bank transfer example, you

submit the following statements:

SQL>UPDATE Accounts
2 SET balance = balance - 100
3 WHERE AccountName = ‘SourceAccount’;

SQL>UPDATE Accounts
2 SET balance = balance + 100
3 WHERE AccountName = ‘TargetAccount’;

SQL>COMMIT;

The transaction is started implicitly when the first UPDATE statement is issued and

ends when the COMMIT statement is executed. Every DML statement between

these two events is considered part of the same transaction.

The advantage of this system is that is possible to verify an operation before com-

mitting it. As you saw in the previous section, when you query the table that you

have modified, Oracle displays the results of all DML statements within the transac-

tion. These changes are not visible to other users until you either commit or roll

back the transaction. This provides isolation. You can issue several DML state-

ments, realize that you have made a mistake, and undo your actions without other

users being aware of the change. To undo the changes, you simply issue a

ROLLBACK statement.

Consider the following:

UPDATE Accounts
SET balance = balance - 1000
WHERE AccountName = ‘SourceAccount’;

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 207

208 Part I ✦ The Oracle SQL Language

UPDATE Accounts
SET balance = balance + 100
WHERE AccountName = ‘TargetAccount’;

An error occurs in this case. One thousand dollars was withdrawn from the source

account, but only one hundred dollars was deposited in the target account. If you

discover this mistake, you can undo it by issuing the following statement:

SQL>ROLLBACK;

When the ROLLBACK statement is issued, it undoes all of the statements that have

been executed since the transaction began. In the preceding example, when the

ROLLBACK is issued, it takes the $100 out of the target account and places the

$1,000 back into the source account.

A ROLLBACK can be issued at any point as long as the transaction is still open. If
you commit a transaction, it is no longer possible to issue a ROLLBACK statement.

At times, however, you may not want to roll back the entire transaction. For

instance, you may want to verify each step of a multi-step transaction and roll back

individual steps. This level of transactional control can be achieved with the use of

savepoints. Savepoints are named markers within the transaction that can be used

as the target for a rollback. You set savepoints with the following syntax:

SAVEPOINT <name>;

After the savepoint is set, you can roll back to that point by including the TO opera-

tor and the name of the savepoint. Consider the following example:

SQL> DELETE FROM Courses
2 WHERE CourseID = 10;
SQL> SAVEPOINT ID10del;
Savepoint Created
SQL> UPDATE Instructors
2 SET city = ‘New York’
3 WHERE InstructorID = 4;
SQL> SAVEPOINT update4;
SQL> UPDATE Instructors
2 SET PerDiemExpense = 6000
3 WHERE PerDiemExpense = 500;
SQL> ROLLBACK TO update4

In this example, a transaction is started when the DELETE statement is executed. It

then processes the two UPDATE statements, setting a savepoint before each

UPDATE. With the final UPDATE, you intended to raise only the per diem expenses

to $600, and you want to roll back only this last statement. When the ROLLBACK TO

update4 statement is executed, only the second UPDATE statement is rolled back.

The other two statements (the DELETE and the first UPDATE) remain unchanged,

and the transaction remains open. It remains this way until the transaction is either

committed or rolled back using the COMMIT or ROLLBACK (without the TO param-

eter) statement.

Tip

4832-8 ch05.F 7/27/01 9:01 AM Page 208

209Chapter 5 ✦ Adding, Updating, and Deleting Data

After you issue a ROLLBACK TO statement, it is also possible to add subsequent

statements to the transaction. For example, you could correct the final statement

this way:

SQL> DELETE FROM Courses
2 WHERE CourseID = 10;
SQL> SAVEPOINT ID10del;
Savepoint Created
SQL> UPDATE Instructors
2 SET city = ‘New York’
3 WHERE InstructorID = 4;
SQL> SAVEPOINT update4;
SQL> UPDATE Instructors
2 SET PerDiemExpense = 6000
3 WHERE PerDiemExpense = 500;
SQL> ROLLBACK TO update4
SQL> UPDATE Instructors
2 SET PerDiemExpense = 600
3 WHERE PerDiemExpense = 500;
SQL> COMMIT;

In this example, the DELETE and the first and third UPDATE statements are commit-

ted. The ROLLBACK TO statement reverses only the second UPDATE statement. All

savepoints and locks are removed after the transaction is committed. When you

issue a ROLLBACK statement without the TO operator, it reverses all steps in the

transaction and also removes all savepoints.

One final consideration concerns transactions. Under certain conditions, transac-

tions can be implicitly committed or rolled back. Whenever a Data Control

Language (GRANT or REVOKE) or Data Definition Language (CREATE, ALTER,

DROP) statement is issued, it automatically commits any open transactions. This is

because both of these types of statements must run as their own transaction. This

means that once you issue one of these statements, all savepoints are removed, and

it is no longer possible to roll back any DML statement issued prior to the DCL or

DDL statement.

Also, if you are using SQL*Plus as your SQL editor and you do not commit your

work, SQL*Plus automatically commits any changes when you exit the program.

The same is also true for any program that issues a CONNECT command to connect

to an Oracle instance including, among others, Oracle Forms and Oracle Enterprise

Manager. Exiting any of these programs automatically issues a DISCONNECT com-

mand that commits any active transactions before cleaning up the connection.

On the other hand, if the program were to fail for some reason (for example, a client

system or the Oracle instance crashes or is in some way abnormally disconnected

from the server), Oracle automatically rolls back all open statements up to the last

COMMIT or ROLLBACK.

4832-8 ch05.F 7/27/01 9:01 AM Page 209

210 Part I ✦ The Oracle SQL Language

In the case of an abnormal termination of a client program (for example, the sys-
tem crashes or the program is killed), the actual rollback of any open transaction
is not immediate and may take some time. This is because a process on the Oracle
server called Process Monitor (PMON) must ensure that the client has indeed
gone away and does not want to terminate the session prematurely. This is analo-
gous to renting an apartment: You want to make sure the landlord has verified the
previous tenant is gone before the landlord tells you to move in.

Controlling concurrent operations with locking
You will remember that part of the ACID test was isolation. Isolation implies that

while a transaction is being processed, no other user can manipulate the data that

was being treated in the transaction. Oracle controls this isolation with the use of

locks. There are two types of locks in Oracle:

✦ Shared locks

✦ Exclusive locks

Shared locks are acquired when you issue a SELECT statement. Oracle locks the

table to ensure that no one modifies its structure while you are using its data, but

does not place any locks on the rows being queried. Shared locks do not prevent

other users from reading or modifying the data in the table — only from making

changes to the table’s structure using the ALTER TABLE command or from dropping

the table using the DROP TABLE command. Multiple users can acquire shared locks

on the same data.

Exclusive locks are acquired when you issue a DML statement, and they are

acquired for each row being modified. The exclusive lock prevents other users from

acquiring exclusive locks on the data you are working with as part of your transac-

tion until you issue a COMMIT or ROLLBACK statement. This prevents two users

from attempting to update the same data at the same time. When a user attempts to

update data that is locked by another user, the user must wait until the lock is

removed.

Exclusive locks do not prevent another user from querying the data, however; the

query returns the data from the Rollback Segment (that is, values that do not reflect

the outcome of any DML statement issued as part of the uncommitted transaction).

Oracle returns values from the Rollback Segment because the user who has placed

the exclusive lock still has the option to roll back his or her changes. Changes are

visible only to other users when the transaction is committed. Up to that point, the

changed data is considered only potential data and is visible only to the user who

acquired the exclusive lock. This prevents unrepeatable reads.

In the
Real World

4832-8 ch05.F 7/27/01 9:01 AM Page 210

211Chapter 5 ✦ Adding, Updating, and Deleting Data

Oracle holds exclusive locks until the transaction is committed. This means that
one user can block other users who are trying to modify the same data. For per-
formance reasons, you should try to keep transactions as short as possible. The
longer a transaction, the more locks it will hold and, therefore, the more likely it is
to block other users on database.

Key Point Summary
The Oracle relational database engine controls all access to the database. This

engine understands only SQL and, therefore, when you want to add, modify, or

remove data from tables in the database, you must use the Data Modification

Language of SQL. DML is made up primarily of three statements:

✦ INSERT: The INSERT statement is used to add rows to a table.

• An INSERT statement can add only one row at a time (with the exception

of INSERTS based on the results of subqueries).

• The values being inserted into a column are either derived from a sub-

query or listed in brackets as part of the VALUES clause.

• Character and date data must be enclosed in single quotes.

• If you intend to insert data into some but not all columns in the table,

you must include a column list surrounded by parentheses after the

table name in the INSERT statement that lists the names and order of the

columns that you are supplying data for.

• You can use SQL functions such as SYSDATE and TO_DATE to insert data

in the VALUES clause.

✦ UPDATE: The UPDATE statement is used to modify existing rows in a table.

• You use the WHERE clause in the UPDATE statement to determine which

rows will be updated by the statement. The statement updates all rows

identified in the WHERE clause.

• If you omit the WHERE clause, all rows in the table are updated.

• You can use arithmetic expressions and functions in the SET clause to

change the value of a column based on the current value.

• You can use subqueries in both the SET and WHERE clauses to modify

data in one table based on another table or on other rows in the same

table.

✦ DELETE: The DELETE statement is used to remove rows from a table.

• Like the UPDATE statement, you use a WHERE clause to determine which

rows are deleted.

• If you omit the WHERE clause, all rows are deleted from a table.

In the
Real World

4832-8 ch05.F 7/27/01 9:01 AM Page 211

212 Part I ✦ The Oracle SQL Language

Each DML statement can form part of a transaction. A transaction is a collection of

DML statements that act as a logic unit. A transaction must complete in its entirety

or not at all. Oracle implicitly begins a transaction whenever the first executable

statement is executed. Once a transaction is started, it remains open until it is

either committed or rolled back. You can commit a transaction with the COMMIT

statement and roll it back using a ROLLBACK statement.

When you issue a ROLLBACK, all DML statements issued after the start of the trans-

action are undone. If you do not want to roll back an entire transaction, you can set

savepoints. Savepoints are named markers in the transaction. When a savepoint is

added to a transaction, it is then possible to use the TO operator with a ROLLBACK

statement and roll back to that savepoint in the transaction.

To prevent users from overwriting each other’s transactions, Oracle locks data. It

sets either a shared lock or an exclusive lock. A shared lock ensures that no one

modifies the structure of the table and blocks other users from acquiring shared

locks on the same resources. An exclusive lock is acquired when you issue a DML

statement. This lock prevents other users from issuing DML statements against the

same rows on which you are working until you either commit or roll back your

transaction. When another user attempts to query data that has an exclusive lock

on it, the user sees the state of data prior to any UPDATE, INSERT, or DELETE state-

ments until the transaction is committed. The user who is controlling the transac-

tion is able to see any changes to the data.

✦ ✦ ✦

4832-8 ch05.F 7/27/01 9:01 AM Page 212

213

STUDY GUIDE

In this chapter, we looked at the various elements of the Data Modification

Language of SQL. A full understanding of this part of Oracle’s SQL is essential to

interact fully with the database. Without writing proper DML statements, it is

impossible to add, modify, and remove data from the database. Now you can test

your understanding with the sample questions, scenarios, and exercises that follow.

Assessment Questions
1. You attempt to add a row to the Instructors table with the following

statement:

SQL> INSERT INTO Instructors (InstructorID, Firstname,
2 Lastname, MiddleInitial, Address1, City, State)
3 VALUES (3, ‘Bob’, ‘Smith’, ‘A’, 1500 Main St.,
4 ‘NULL’, ‘IN’)

Which line in this statement will cause an error?

A. 1

B. 2

C. 3

D. 4

2. Which of the following executable statements will end a transaction? (Choose

three.)

A. ROLLBACK TO

B. DROP

C. UPDATE

D. GRANT

E. CREATE

3. You issue the following statement:

SQL> UPDATE Courses
2 SET RetailPrice = 1500
3 WHERE RetailPrice = 1400;

213Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 213

At the same time, another user issues a SELECT statement looking for the

price of a course that has a retail price of $1,400. What value will be returned

to this user?

A. 1500.

B. 1400.

C. Oracle does not return a value until the UPDATE statement is committed.

D. ORA-000000X: Current row locked by another process.

4. You execute a script with the following statements:

1 INSERT into Instructors (FirstName, LastName)
2 VALUES (‘Bob’, ‘Green’);
3 SAVEPOINT spA;
4 INSERT into Instructors (FirstName, LastName)
5 VALUES (‘Julius’, ‘Black’);
6 SAVEPOINT spB;
7 INSERT into Instructors (FirstName, LastName)
8 VALUES (‘Jane’, ‘Grey’);
9 SAVEPOINT spC;
10 ROLLBACK TO spA;
11 INSERT into Instructors (FirstName, LastName)
12 VALUES (‘Jean’, ‘Brown’);
13 Commit;

Which instructors are inserted into the table when this script is executed?

(Choose all that apply.)

A. Bob Green

B. Julius Black

C. Jane Grey

D. Jean Brown

5. You attempt to modify a row to the ScheduledClass table with the following

statement:

SQL> UPDATE ScheduledClass
2 SET StartDate = ‘January 12, 2001’
3 WHERE ClassID = 4321

and you receive the following error:

ERROR at line 2:
ORA-01858: a non-numeric character was found where a numeric
was expected

How can you alter this statement to avoid this error? (Choose two.)

A. Use the SYSDATE function.

B. Change the date string to match your server’s NLS date format.

C. Remove the single quotes around the date in the SET clause.

D. Use the TO_DATE function with the parameters “Month DD, YYYY”.

214 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 214

215

6. You want to add data to a table using SQL*Plus, but you are not sure of the

names of the columns within the table or their datatypes. What is the easiest

way to find the names and datatypes of a table?

A. Use the TAB[LE] SQL*Plus command.

B. Query the tab_col system table.

C. USE the SCH[EMA] SQL*Plus command.

D. Use the DESC[RIBE] SQL*Plus command.

7. You have been working in SQL*Plus for some time. You started by modifying

several records and then changed your password with the ALTER USER com-

mand. You then made several more updates to the data when your session of

SQL*Plus crashed. When you restart the application and reconnect, what is

the state of your data?

A. All DML statements and the ALTER statement are rolled back.

B. Only statement issued after the ALTER statements are rolled back.

C. Oracle rolls back all operations up to the first DML statement.

D. The transaction is open until you issue a COMMIT.

8. You issue a DELETE statement in SQL*Plus but omit the WHERE clause. You

then exit the application. You realize afterward that you did not want to delete

all rows. How can you undo this delete?

A. Do nothing. Because you closed the application without committing the

changes, the DELETE is automatically rolled back.

B. Restart SQL*Plus and issue a ROLLBACK statement. The transaction is

still open because you did not explicitly commit it.

C. You cannot undo the deletion.

D. You have to log in as the SYSTEM account and issue a ROLLBACK state-

ment from this account.

9. One of your instructors has enrolled in a course, and you want to add her to

the Students table. Her instructor ID is 14. You issue the following statement:

SQL> INSERT INTO Students (StudentNumber, Firstname,
2 Lastname, Address1, City, State, PostalCode)
3 SELECT 456, FirstName, LastName, Address1,
4 City, State FROM Instructors
5 WHERE InstructorID = 14;

When you execute the statement, it returns an error. Which line contains the

error?

A. 2

B. 3

C. 4

D. 5

215Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 215

10. You attempt to update two columns based on the outcome of a subquery

using the following query:

SQL> UPDATE Students
2 SET HomePhone, Email =
3 (SELECT HomePhone, Email
4 FROM Instructors WHERE InstructorID = 10)
5 WHERE StudentNumber = 345;

When you execute the query, you receive an error. How can you edit this

query to remove the error?

A. Place brackets around the two columns in the SET clause.

B. Place double quotes around the two columns in the SET clause.

C. Remove the brackets from around the subquery.

D. Place single quotes around the InstructorID value.

Scenarios
1. You are working on an order-entry system for your company. Fifty order-entry

people in a call center will use this system. These order entry people will

access a common set of customer and product records, and they may change

these records after they are entered. Because these users will be working

while on the phone with your customers, speed is an issue.

A. Can one user update customer records while other users are viewing

them? What happens when two users try to update the same record?

B. How can you modify the INSERT statement used by the operators so

they don’t have to enter the current date in the OrderDate column?

C. What steps can you take to speed up the update process?

D. Sometimes, your application will be called upon to update the prices of

all your products to reflect changes in costs. How many UPDATE state-

ments are required to update the prices? How can you change the value

of the unitprice column in the Products table to reflect a 15 percent

increase?

2. You have been asked to move some data from an older Orders table into an

archival Order_History table. The data to be moved is any order placed before

January 1, 1998.

The layout of the Orders table follows:

CREATE TABLE Orders
(OrderID number(10),
Order_Date char(25),
CustomerID number(10),
SalespersonID number(10),
Ship_date char(25));

216 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 216

217

The layout of the Order_History table follows:

CREATE TABLE Order_History
(Order_num number(15),
Customer_no number(15)
Orderdate date,
shipdate date,
Sales_no number(15),
Archive_date date)

The Archive_date column in the Order_History table holds the date that a

record was moved to this table.

A. How can you write the statement to migrate the data? How do you deal

with the extra column in Order_History?

B. The date data in the Orders table is stored as text in the form of “Month

dd, yyyy”. Your NLS date format is “DD-MON-YY”. How do you deal with

the date as you move the data?

C. You want to verify that all rows are moved in the operation before you

commit the INSERT. Can you do this? If so, how do you verify that all

rows are transferred?

D. What statement do you use to delete the records from Orders after they

have been moved to the Order_History table?

Lab Exercises
Lab 5-1 Inserting data

1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Add the new instructors listed in Table 5-1 to the Instructors table.

Table 5-1
New Instructors List

InstructorID FirstName LastName Address1 City State

101 Jessica Jones 4 Apple Rd. Flint MI

102 Fred Baker 123 Center St. Patton NJ

103 Suzie Smith 34 North rd. Toronto ON

3. What is inserted into all of the other columns after you complete your inserts?

217Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 217

Lab 5-2 Updating data
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Use the information in Table 5-2 to modify the instructors you added in the

last exercise.

Table 5-2
Modification List

InstructorID InstructorType PerDiemCost PerDiemExpenses

101 FT 500 400

102 FT 650 400

103 FT 500 400

3. What is the fewest number of UPDATE statements required to make these

modifications?

4. Increase the PerDiemExpense for all instructors with an expense of less than

$500 by 25 percent.

Lab 5-3 Testing transactional controls
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Issue the following statement:

UPDATE Courses
SET RetailPrice = 1000
WHERE CourseNumber = 110;

3. Place a savepoint called “sp_1” after the UPDATE.

4. Open a second session of SQL*Plus and log in using the Student account.

5. Issue the following query:

SELECT RetailPrice from Courses
WHERE CourseNumber = 110;

6. What is the retail price returned by the query? Record your results:

___________.

7. Go back to the first session and run the same query.

8. What is the retail price returned by this query?

218 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 218

219

9. In the first session of SQL*Plus, issue a second UPDATE statement:

UPDATE Courses
SET RetailPrice = 0
WHERE CourseNumber = 201;

10. In the second session, run the following query:

SELECT CourseNumber, RetailPrice
FROM Courses
WHERE CourseNumber IN (110, 201);

11. What are the two retail prices returned? Record the results in Table 5-3.

Table 5-3
Testing Transactional Control

CourseID RetailPrice

12. In the first SQL*Plus session, roll back to sp_1.

13. In the second session of SQL*Plus, rerun the last query.

14. Has anything changed in the retail prices?

15. In the first session of SQL*Plus, issue a COMMIT statement.

16. In the second session, run the query a third time.

17. What changes have been made to the retail price? Record the answers in

Table 5-4.

Table 5-4
Testing Transactional Control

CourseID RetailPrice

Lab 5-4 Deleting data
1. Open SQL*Plus and connect to your instance using the Student account with

password oracle.

2. Delete the instructors that you added in Lab 5-1.

219Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 219

Answers to Chapter Questions

Chapter Pre-Test
1. Only one row can be inserted in a singe INSERT statement. When you include

data for more than one row in the VALUES column, you receive an error. The

only exception to this is when you use a subquery. Oracle executes an INSERT

statement for each row returned by the subquery.

2. After data has been added to a table, it can be modified with an UPDATE

statement.

3. Data from one table can be modified based on data in another table. This is

accomplished by adding a subquery in the SET clause of the UPDATE state-

ment. The value returned by the subquery is the new value of the column ref-

erenced in the SET clause.

4. When you do not want to supply values for all columns, you have two options.

You can include an INSERT list and list only those columns for which you are

supplying values, or you can use the NULL operator in the VALUES list to indi-

cate that a particular column should be left NULL.

5. When you want to change a date record to the current date, you can use the

SYSDATE function in the SET clause of an UPDATE statement.

6. It is possible to delete all rows in a table with a single DELETE statement. To

do so, simply omit a WHERE clause. When you want to dump all of the data in

a table, you can also use the TRUNCATE TABLE statement (see Chapter 6).

Only the DELETE statement can be rolled back.

7. A transaction is one or more DML statements grouped into a logical unit of

work. Transactions are treated as a single unit of work that must be com-

pleted in its entirety or not at all. You can control transactions using the

COMMIT, SAVEPOINT, and ROLLBACK statements.

8. If you combine DML statements with SELECT statements, there is no effect.

However, if you issue a DDL (such as CREATE TABLE or TRUNCATE TABLE) or

DCL statement (such as GRANT or REVOKE) together with DML statements,

these statements commit any open transactions. This means that once you

issue a DCL or DDL statement, you cannot roll back any prior DML state-

ments. They are committed prior to the execution of the DCL or DDL

statement.

9. When you issue a SELECT statement against a row that has been locked by

another user, you see the data as it appeared before the user made any modifi-

cations to the row.

10. When you attempt to modify a row that has been locked by another user, you

are blocked and have to wait until that user either commits or rolls back the

transaction.

220 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 220

221

Assessment Questions
1. C — The error in this statement occurs at line 3. The problem is that the value

for the address does not have single quotes around it. All character and date

data must be enclosed in single quotes. The single quotes around the NULL

operator in line 4 does not create an error. It does, however, insert the value

NULL as a text string rather than just leaving the column NULL. For more

information, see the “DML Statements: Modifying Existing Data” section in this

chapter.

2. B, D, E — A transaction can be ended in many ways. The obvious one is to

execute either a COMMIT or ROLLBACK command. However, when you issue

a Data Definition Language (DROP and CREATE) or Data Control Language

statement (GRANT), you also commit any open transactions. The ROLLBACK

TO rolls back only to a savepoint. It does not terminate the transaction. For

more information, see the “Transaction control statements” section in this

chapter.

3. B — Until a user commits a transaction, the modification made cannot be seen

by other users. Therefore, the old value of 1400 will be visible to other users.

Exclusive locks do not block readers so there is no “ORA-000000X” error. For

more information, see the “Controlling concurrent operations with locking”

section in this chapter.

4. A, D — When the ROLLBACK TO statement is issued, it reverses any DML

statements between the rollback statement and the savepoint. This removes

Julius Black and Jane Grey. It does not, however, commit the transaction, so

the addition of Jean Brown is still considered part of the same transaction and

is made permanent when the COMMIT statement commits the transaction.

For more information, see the “Transaction control statements” section in this

chapter.

5. B, D — The source of the error is that Oracle is unable to convert the date

string into its internal date format. Editing the text string will solve this prob-

lem, but it requires knowing your NLS date format. With the TO_DATE func-

tion, you do not have to know the date format; the function performs the

translation for you. The SYSDATE function does not help in this case because

it sets only the current date. Date data requires single quotes in both INSERT

and UPDATE statements. Removing the single quotes only adds a second error

to the statement. For more information, see the “DML Statements: Modifying

Existing Data” section in this chapter.

6. D — You can use the SQL*Plus DESC[RIBE] command to find the names and

datatypes of columns within a table. The other commands do not exist. There

are also tab_columns views in the data dictionary.

7. B — Only statements issued after the ALTER statement are rolled back. As part

of the recovery process, Oracle automatically rolls back all uncommitted

transactions when recovering from a failure. However, the ALTER statement is

a DDL statement, and it commits any open transactions. Transactions do not

stay open when connection to the client is lost. For more information, see the

“Transaction control statements” section in this chapter.

221Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 221

8. C — There is no way to undo the DELETE after you close SQL*Plus. When you

close this utility normally, it automatically commits any uncommitted transac-

tions. The only way to recover the lost data is to restore from a backup.

Logging in as the System account does not change this behavior. For more

information, see the “Transaction control statements” section in this chapter.

9. C — The problem with this statement is that the subquery returns fewer val-

ues than are listed in the INSERT list. In order to insert data from a subquery,

the subquery must return the same number of columns in the same order as

they appear in the INSERT list. If the subquery returns a fewer or greater num-

ber of columns in the SELECT list, the statement generates an error. For more

information, see the “Using subqueries in INSERT statements” section in this

chapter.

10. A — To remove the error, you need to place parentheses around the two

columns in the SET clause. Without the parentheses, Oracle tries to match

both values returned by the subquery to the second listed column and cannot

find any value to set for the first. Placing single or double quotes around the

two columns does not bind them together. The subquery requires the paren-

theses, and removing them only creates another error. For more information,

see the “Using subqueries in UPDATE statements” section in this chapter.

Scenarios
1. Because writers do not block readers in Oracle, no conflict occurs between

users when it comes to the customer records. When your user attempts to

query a client record while another user is updating it, the first user receives

the pre-update values. When two users try to update the same values, the sec-

ond user is blocked and has to wait for the first to complete his or her trans-

action. The best way to modify the INSERT statement to insert the current

date is to use the SYSDATE function as part of the VALUES clause in the

INSERT statement. To speed up the update process, make sure that the trans-

actions are kept as short as possible. If two DML operations are not logically

linked, commit the first before starting the second. This releases any locks

and makes the data available to other users. It also prevents blocking. You

need only one value to update all of the products. If you include the column

name and an arithmetic operator in the SET clause, it updates each row

separately:

UPDATE Products
Set unitprice = unitprice * 1.25

If you omit the WHERE clause, it updates the entire table.

2. You can move the data by using an INSERT statement with a subquery. You

can deal with the extra column by either including an INSERT list and omitting

the Archive_date columns or including the NULL operator as a literal in the

SELECT list. The easiest way to deal with the translation of the date data is to

use the TO_DATE function in the subquery. This passes the data to the desti-

nation table in the correct format. The subquery would look something like

this:

222 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 222

223

INSERT INTO Order_History (Order_num, Customer_no, Orderdate,
shipdate, Sales_no)
SELECT OrderID, CustomerID, TO_DATE(Order_Date, ‘Month DD,
YYYY’), TO_DATE(Ship_Date, ‘Month DD, YYYY’), SalespersonID
FROM Orders
WHERE TO_DATE(Order_Date, ‘Month DD, YYYY’) < ‘01-JAN-1997’;

The TO_DATE function is needed in the WHERE clause of the subquery to

enable you to use a comparison operator with the date (comparison opera-

tors using dates do not work with character data). You can verify the rows by

running a query on the Orders table using the COUNT() function (see Chapter

2) to see how many rows match the criteria of the WHERE clause and then run

the same query on the Order_History table after the transfer. If the count is

not the same, you can issue a ROLLBACK to undo the transaction. To remove

the rows from the Orders table, use a DELETE statement with the same

WHERE clause condition you used in the subquery of your INSERT statement.

Lab Exercises

Lab 5-1 Inserting data
2.

INSERT INTO Instructors
(InsturctorID,FirstName,LastName,Address1,City,State
VALUES (101, ‘Jessica’, ‘Jones’, ‘4 Apple Rd.’,

‘Flint’, ‘MI’)

All other rows with have the same syntax with different values in the VALUES

list.

3. A NULL will be inserted into all columns not referenced in the INSERT list.

Lab 5-2 Updating data
2.

UPDATE Instructors
SET InstructorType = ‘FT’, PerDiemCost = 500,

PerDiemExpenses = 400
WHERE InstructorID = 101

All other rows will use the same syntax with different values in the SET and

WHERE clauses.

3. Because you can modify multiple columns with one UPDATE statement, the

minimum number of queries need is three — one for each row.

4.

UPDATE Instructors
SET PerDiemExpenses = PerDiemExpenses * 1.25
WHERE PerDiemExpenses < 500;

223Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 223

Lab 5-3 Testing transactional controls
6. The second user sees a value of 2000. This is the original value before the

UPDATE statement was run.

8. The first user sees a value of 1000. This is the result of the UPDATE statement.

11.

Testing Transactional Control

CourseID RetailPrice

201 4000

110 2000

14. There is no change in the results because the changes from the first UPDATE

are still not commited.

17.

Testing Transactional Control

CourseID RetailPrice

201 4000

110 1000

Lab 5-4 Deleting data
2.

DELETE FROM Instructors
WHERE InstructorID = 101;

Repeat this query for each Instructor in Table 5-1.

224 Chapter 5 ✦ Study Guide

4832-8 ch05.F 7/27/01 9:01 AM Page 224

Managing
Database
Objects

This part of the book deals with SQL*Plus, creating tables

and other database objects, and managing users and per-

missions in the database.

Chapter 6 deals with SQL*Plus, the primary tool used to cre-

ate and manage objects in the Oracle database. It also enables

you to write and execute PL/SQL code and create, edit, and

run scripts. The chapter starts by discussing how SQL*Plus

works and then follows with the definition and use of vari-

ables. We introduce commands that are specific to the

SQL*Plus environment and how to use them to format output.

Finally, we show how to customize SQL*Plus to meet your

specific requirements.

Chapter 7 is the big one in this book. This chapter walks you

through the process of creating tables, views, indexes,

sequences, synonyms, and constraints. We also provide infor-

mation on how to manage these objects, and how to drop

them when they are no longer necessary.

Chapter 8 is important if you desire a secure environment for

your database, or if you want anyone beside yourself to see

the data in the tables you have created. In fact, you won’t be

able to create tables or other objects unless you have the

right permissions. We discuss how to create and manage

users, the value of roles in the assignment and management of

permissions, how to assign privileges to users and roles, and

how to delegate the administration of security to others. The

majority of the security management in any database is done

by the database administrator (DBA), but all users should be

familiar with the basics of security introduced in this chapter.

✦ ✦ ✦ ✦

In This Part

Chapter 6
The SQL*Plus
Environment

Chapter 7
Creating and
Managing Oracle
Database Objects

Chapter 8
Configuring Security
in Oracle Databases

✦ ✦ ✦ ✦

P A R T

IIII

4832-8 PO2.F 7/27/01 9:01 AM Page 225

4832-8 PO2.F 7/27/01 9:01 AM Page 226

The SQL*Plus
Environment

EXAM OBJECTIVES

✦ Producing readable output with SQL*Plus

• Produce queries that require an input variable

• Customize the SQL*Plus environment

• Produce more readable output

• Create and execute script files

• Save customizations

66C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch06.F 7/27/01 9:01 AM Page 227

228 Part II ✦ Managing Database Objects

CHAPTER PRE-TEST
1. How do you use a substitution variable in a SQL statement?

2. How do you save a SQL statement into a file?

3. How do you execute SQL commands stored in a file?

4. Name four options you can change using the SET command.

5. In what file can you save SET commands so that they are run
automatically when you log in to SQL*Plus?

6. What SQL*Plus command enables you to send output from a SQL
statement to a file?

7. What table can you create to limit the commands that may be
executed from SQL*Plus?

8. How many SQL commands are stored in the SQL buffer?

9. Which SQL*Plus command will give you a description of a database
table?

10. What is the difference between the DEFINE and ACCEPT commands?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch06.F 7/27/01 9:01 AM Page 228

229Chapter 6 ✦ The SQL*Plus Environment

This chapter covers the features of the SQL*Plus tool. Learning to use the fea-

tures of the SQL*Plus tool will make you a more productive SQL programmer.

In this chapter, you learn to use SQL*Plus to access and modify your last command

in the SQL buffer, to save commands in files, and to use variables to write reusable

scripts. Finally, you learn to format command output and save that output to files.

All the new commands introduced in this chapter are SQL*Plus commands. There

are a few differences between SQL commands, such as SELECT and UPDATE, and

SQL*Plus commands, such as EXIT and DESCRIBE:

✦ SQL*Plus commands can be abbreviated.

✦ SQL*Plus commands are not saved in the SQL buffer.

✦ SQL*Plus commands do not require a command terminator such as a forward

slash (/) or semicolon (;).

The SQL Buffer
Every SQL command you type in SQL*Plus is saved in a SQL buffer. The buffer

stores the last SQL command you entered in SQL*Plus.

SQL*Plus enables you to access the SQL buffer. This saves you time correcting and

modifying your SQL statements.

In order to see how the SQL buffer works, execute a SELECT statement such as the

following:

SQL> SELECT firstname, lastname
2 FROM students
3 WHERE studentnumber=1000;

FIRSTNAME LASTNAME
------------------------------ -----------------------------

John Smith

Now use the LIST command to show the contents of the SQL buffer:

SQL> LIST
1 SELECT firstname, lastname
2 FROM students
3* WHERE studentnumber=1000

4832-8 ch06.F 7/27/01 9:01 AM Page 229

230 Part II ✦ Managing Database Objects

Execute a different SQL statement:

SQL> SELECT coursename, retailprice
2 FROM courses
3 WHERE coursenumber=300;

COURSENAME RETAILPRICE
-- -----------
Basic PL/SQL 2500

Execute the LIST command again and take note that the contents of the SQL buffer

have changed. Also notice that only the most recent SQL statement is stored in the

SQL buffer. SQL*Plus stores only the last SQL statement.

You can reexecute a command stored in the buffer by using either the RUN com-

mand or by typing a forward slash (/) at the command line. RUN can be abbreviated

with R. Try both.

SQL> RUN
1 SELECT coursename, retailprice
2 FROM courses
3* WHERE coursenumber=300

COURSENAME RETAILPRICE
-- -----------
Basic PL/SQL 2500

SQL> /

COURSENAME RETAILPRICE
-- -----------
Basic PL/SQL 2500

You can modify the contents of the SQL buffer using the EDIT command. (EDIT can

be abbreviated with ED.) Typing the EDIT command, or ED, launches a text editor

so you can modify the contents of the buffer.

SQL> EDIT

After you open the editor, you can use all the features of the text editor to modify

your command. Once you have completed all the desired changes, you save your

changes and exit the text editor. You are brought back to the SQL> prompt. You can

now run the modified command by using the RUN or / command to execute the

contents of the buffer.

4832-8 ch06.F 7/27/01 9:01 AM Page 230

231Chapter 6 ✦ The SQL*Plus Environment

Defining Variables
✦ Produce queries that require an input variable

You can use two types of variables within a SQL statement:

✦ Substitution variables: Can be created within the SQL statement or by using

the DEFINE or ACCEPT SQL*Plus commands.

✦ Bind variables: Are created using the SQL*Plus command VARIABLE.

Substitution variables
Substitution variables enable you to specify values to be used within a SQL state-

ment when the SQL statement is run. Substitution variables are prefixed with an

ampersand (&).

Try executing the following SQL statement:

SQL> SELECT firstname, lastname
2 FROM students
3 WHERE studentnumber=&p_student;

When you are prompted to enter a value for p_student, specify a student number of

1005.

Enter value for p_student: 1005
old 3: WHERE studentnumber=&p_student
new 3: WHERE studentnumber=1005

FIRSTNAME LASTNAME
------------------------------ -----------------------------
John Hee

When you ran the SQL statement, you were prompted to enter a value for the vari-

able p_student. After you entered a value, the SQL statement executed using the

value you specified. Now try running the same SQL statement again by typing RUN

or /:

SQL> /
Enter value for p_student: 1002
old 3: WHERE studentnumber=&p_student
new 3: WHERE studentnumber=1002

FIRSTNAME LASTNAME
------------------------------ -----------------------------
Jane Massey

Objective

4832-8 ch06.F 7/27/01 9:01 AM Page 231

232 Part II ✦ Managing Database Objects

When you ran the statement again, you were prompted again to enter a value for

the variable. After you enter a new value, the SQL statement runs with the new

value you specify.

The old and new messages you see after you specify a value for the variable are
displayed so you can see where the variable is used in the SQL statement and the
changes made to the SQL statement after you specify a value for the variable. If
you do not want to see these messages, you can type SET VERIFY OFF at the SQL
prompt.

Let’s try another example:

SQL> SELECT studentnumber, firstname, lastname
2 FROM students
3 WHERE lastname = &p_name;

Enter value for p_name: Hee
old 3: WHERE lastname = &p_name
new 3: WHERE lastname = Hee
SELECT studentnumber, firstname, lastname
*
ERROR at line 1:
OCA-30035: column not found
[POL-5205] column not found

In the preceding example, you get an error message. That is because the substitu-

tion variable is being used for a character string, and we did not put single quotes

around the string. Whenever you use a variable to hold a date or character value,

you must put quotes around the value. Let’s execute it again, but this time put sin-

gle quotes around the name:

SQL> /
Enter value for p_name: ‘Hee’
old 3: WHERE lastname = &p_name
new 3: WHERE lastname = ‘Hee’

STUDENTNUMBER FIRSTNAME LASTNAME
------------- ------------------------------ ---------------

1005 John Hee

It’s a good habit to put quotes around the variable name itself in the SQL statement

so you don’t have to remember to specify the quotes at runtime:

SQL> SELECT studentnumber, firstname, lastname
2 FROM students
3 WHERE lastname = ‘&p_name’;

Enter value for p_name: Hee
old 3: WHERE lastname = ‘&p_name’
new 3: WHERE lastname = ‘Hee’

Tip

4832-8 ch06.F 7/27/01 9:01 AM Page 232

233Chapter 6 ✦ The SQL*Plus Environment

STUDENTNUMBER FIRSTNAME LASTNAME
------------- ------------------------------ ---------------

1005 John Hee

Substitution variables are versatile. You can use them to specify values used in the

WHERE clause, table names, and column names. For example you might try some-

thing like this:

SQL> SELECT &column1, &column2
2 FROM &table;

Enter value for column1: firstname
Enter value for column2: lastname
Enter value for table: students

FIRSTNAME LASTNAME
------------------------------ ---------------------
John Smith
Davey Jones
Jane Massey

If you use the same variable name twice in the same SQL statement, you are

prompted for a value each time the variable is referenced. This can cause problems.

In the following example, the same variable name &column1 is used in the SELECT

clause and the ORDER BY clause:

SQL> SELECT &column1, &column2
2 FROM &table
3 ORDER BY &column1;

Enter value for column1: firstname
Enter value for column2: lastname
Enter value for table: students
Enter value for column1: firstname

FIRSTNAME LASTNAME
------------------------------ ------------
Chris Patterson
Davey Jones
Gordon Jones

When we reference the same variable twice, we are prompted for values twice. You

can specify a different value for the variable each time you are prompted. If you

want to use the same variable twice in one SQL statement, with the same value

each time, but do not wish to be prompted twice, put && at the beginning of the

variable. When you specify && in front of a variable, that variable retains its value

until you log out of SQL*Plus.

SQL> SELECT &&column1, &column2
2 FROM &table
3 ORDER BY &column1;

4832-8 ch06.F 7/27/01 9:01 AM Page 233

234 Part II ✦ Managing Database Objects

Enter value for column1: firstname
Enter value for column2: lastname
Enter value for table: students

FIRSTNAME LASTNAME
------------------------------ ----------------
Chris Patterson
Davey Jones
Gordon Jones

DEFINE
The DEFINE command can be used to create substitution variables and assign them

values. These variables can then be used within SQL statements. Any variable cre-

ated with the DEFINE command stays in memory until you exit the SQL*Plus ses-

sion or until you delete the variable using the UNDEFINE command. The DEFINE

command is limited in that it can be used only to create variables of datatype CHAR

and you must assign a value to the variable when it is created. If you wish to change

the value of the variable later, you execute a second DEFINE command for the same

variable but assign it a different value.

SQL> DEFINE v_student_nbr=1000
SQL> SELECT firstname, lastname
2 FROM students
3 WHERE studentnumber = &v_student_nbr;

FIRSTNAME LASTNAME
------------------------------ --------------------
John Smith

SQL> SELECT COUNT(*)
2 FROM students
3 WHERE studentnumber > &v_student_nbr;

COUNT(*)

10

You can examine the contents of a variable created using the DEFINE command by

typing DEFINE and specifying the variable name:

SQL> DEFINE v_student_nbr
DEFINE V_STUDENT_NBR = “1000” (CHAR)

You can also use the DEFINE command to get a list of all currently defined variables

by typing the DEFINE command and specifying no arguments. Certain variables are

created when you start your SQL*Plus session, so you will see variables listed that

you did not explicitly create.

4832-8 ch06.F 7/27/01 9:01 AM Page 234

235Chapter 6 ✦ The SQL*Plus Environment

SQL> DEFINE
DEFINE _O_VERSION = “Oracle Open Client Adapter for ODBC
2.0.2.15.0
Oracle Lite ORDBMS 4.0.0.2.0” (CHAR)
DEFINE _O_RELEASE = “0” (CHAR)
DEFINE _RC = “1” (CHAR)
DEFINE V_STUDENT_NBR = “1000” (CHAR)

To remove a variable created with the DEFINE command, use the UNDEFINE

command:

SQL> UNDEFINE v_student_nbr
SQL> DEFINE v_student_nbr
symbol v_student_nbr is UNDEFINED

The DEFINE command can also be used to list substitution variables created by
specifying &&. The UNDEFINE command can be used to delete substitution vari-
ables created by specifying && or ACCEPT.

ACCEPT
The ACCEPT command can be used to prompt users to enter values for a substitu-

tion variable before the SQL statement is executed. The substitution variable is cre-

ated when the ACCEPT command is executed and remains in memory until you exit

SQL*Plus or you use the UNDEFINE command to delete the variable.

ACC[EPT] variable [NUM[BER]|CHAR|DATE] [FOR[MAT] format]
[DEF[AULT] default] [PROMPT text|NOPR[OMPT]] [HIDE]

The PROMPT option specifies the message to display when you ask the user to

enter a value for the variable:

SQL> ACCEPT v_name PROMPT “Enter student last name: “
Enter student last name: Holland
SQL> SELECT studentnumber, firstname, lastname
2 FROM students
3 WHERE lastname = ‘&v_name’;

STUDENTNUMBER FIRSTNAME LASTNAME
------------- ------------------------------ -----------

1007 Roxanne Holland

The ACCEPT command creates a variable of datatype CHAR by default, but

datatypes of NUMBER or DATE can also be specified. If you create a variable of

datatype NUMBER or DATE, you can also specify the FORMAT in which they must

be entered:

SQL> ACCEPT p_date DATE FORMAT dd/mm/yy PROMPT “Enter date “
Enter date 01/01/01

Tip

4832-8 ch06.F 7/27/01 9:01 AM Page 235

236 Part II ✦ Managing Database Objects

SQL> SELECT classid, coursenumber, locationid, status
2 FROM scheduledclasses
3 WHERE startdate > ‘&p_date’;

CLASSID COURSENUMBER LOCATIONID STATUS
---------- ------------ ---------- ----------

50 100 100 Confirmed
51 200 300 Confirmed
53 100 300 Hold

When entering any SQL*Plus command, if you write the command over two lines,
you must put a hyphen (-) at the end of the first line to indicate the command
continues on the next line:

SQL> ACCEPT p_low_date DATE FORMAT dd/mm/yyyy -
> PROMPT “Enter a date (dd/mm/yyyy) “

The DEFAULT option enables you to specify a default value for the variable.

The HIDE option displays asterisks when you type a value for the variable. This is

useful when you are prompting for sensitive information such as a password.

Bind variables
The VARIABLE command enables you to create bind variables that may be popu-

lated and referenced in a PL/SQL block. After the variable is populated within a

PL/SQL block, it can then be printed using the PRINT command. The VARIABLE

command enables you to specify a datatype of NUMBER, CHAR, VARCHAR, or

REFCURSOR. When you use the VARIABLE command to create a variable of

datatype CHAR or VARCHAR, you must specify a size. No size is specified for vari-

ables of datatype NUMBER.

VAR[IABLE] [variable [NUMBER|CHAR|CHAR(n)|VARCHAR2(n)|
REFCURSOR]]

SQL> VARIABLE my_student NUMBER
SQL> BEGIN

:my_student := 1000;
END;

2 @code:/
SQL> PRINT my_student
MY STUDENT

10

Typing the VARIABLE command with no arguments provides a list of all variables

created with the variable command:

SQL> VARIABLE
variable my_student
datatype NUMBER

Caution

4832-8 ch06.F 7/27/01 9:01 AM Page 236

237Chapter 6 ✦ The SQL*Plus Environment

SQL*Plus Commands
SQL*Plus features a set of commands that enable you to save commands to files,

execute commands stored in files, and send output to files. These commands

enable you to create scripts and reports. In this section, we examine the most

important SQL*Plus commands.

DESCRIBE
The DESCRIBE command enables you to see a description of a database table. The

DESCRIBE command returns a list of all the columns on the specified database

table, their datatypes, and whether the columns are NOT NULL.

DESC[RIBE] [table]

SQL> DESCRIBE courses
Name Null? Type
------------------------------- -------- ----
COURSENUMBER NOT NULL NUMBER(10)
COURSENAME NOT NULL VARCHAR2(200)
REPLACESCOURSE NUMBER(10)
RETAILPRICE NOT NULL NUMBER(10)
DESCRIPTION VARCHAR2(2000)

SAVE
The SAVE command enables you to save the contents of the SQL*Plus buffer into a

file. This file can be executed later using the START or @ commands. The file is

saved to the working directory of SQL*Plus by default. You can save it to a different

directory by specifying a path with the filename:

SAV[E] file_name[. ext] [CRE[ATE]|REP[LACE]|APP[END]]

SQL> select coursename, retailprice
2 FROM courses;

COURSENAME RETAILPRICE
-- -----------
Basic SQL 2000
Advanced SQL 2000

SQL> SAVE myselect
Created file myselect

When you do not specify a file extension, SQL*Plus saves the file with a .SQL exten-

sion. If you specify a different file extension, you must include the file extension

when editing the file with EDIT command or running the file with the START or

4832-8 ch06.F 7/27/01 9:01 AM Page 237

238 Part II ✦ Managing Database Objects

@ commands. The SAVE command uses the CREATE option by default. With the

CREATE option, when the file does not exist, a new file is created with the specified

name. If the file does exist, you get an error message:

SQL> SAVE myselect
File “myselect.SQL” already exists.
Use another name or “SAVE filename REPLACE”.

If you specify an existing filename with the SAVE command, you must use either the

REPLACE or APPEND option. The REPLACE option overwrites the existing file with

the contents of the buffer. The APPEND command adds the contents of the buffer to

the end of the file.

EDIT
The EDIT command enables you to modify the contents of a file from the SQL*Plus

tool. As we saw in the section on the SQL*Plus buffer, typing EDIT brings up the

buffer in a text editor so you can modify and execute the last command stored in

the buffer. When you specify a filename with the EDIT command, it opens the speci-

fied file in the text editor. When the filename specified does not exist, you are given

the opportunity to create a new file. When you do not specify a file extension,

SQL*Plus uses the default file extension of .SQL:

ED[IT] [file_name[. ext]]
SQL> EDIT my_cmdfile

If you are working with SQL*Plus for Windows, you control which text editor is
launched with the EDIT command by choosing Edit➪Editor➪Define Editor from
the menu and specifying any application such as Notepad or WordPad that creates
ASCII text files. If you are working in UNIX, you control which text editor is
launched by specifying a value for the SQL*Plus variable _EDITOR:

SQL> DEFINE _EDITOR=vi

GET
The GET command enables you to fetch the contents of a file into the SQL buffer.

Once the contents of the file have been fetched into the SQL buffer, they can be

executed using the RUN or / commands, or they can be edited by using the EDIT

command.

GET file_name[. ext]

SQL> GET myselect
1 select coursename, retailprice
2* FROM courses

SQL> /

Tip

4832-8 ch06.F 7/27/01 9:01 AM Page 238

239Chapter 6 ✦ The SQL*Plus Environment

COURSENAME RETAILPRICE
-- -----------
Basic SQL 2000
Advanced SQL 2000

Because the buffer can hold only one SQL statement at a time, when you use the
GET command to read the contents from a file that contains multiple SQL com-
mands or a mixture of SQL and SQL*Plus commands, you receive an error if you try
to execute the buffer using RUN or /.

START
The START command enables you to execute the contents of a command file. The

default file extension is .SQL. The @ and START commands are interchangeable.

STA[RT] file_name[. ext]
SQL> START myselect

COURSENAME RETAILPRICE
-- -----------
Basic SQL 2000
Advanced SQL 2000

@
The @ command enables you to execute the contents of a file created using the

SAVE or EDIT command. The default file extension is .SQL. The @ and START com-

mands are interchangeable:

@ file_name[. ext] [arg...]
SQL> @myselect

COURSENAME RETAILPRICE
-- -----------
Basic SQL 2000
Advanced SQL 2000

In some older versions of SQL*Plus, the @ command did not work when you exe-
cuted a file that contained a mixture of SQL and SQL*Plus commands. If this is the
case with your file, you may have to use the START command.

SPOOL
The SPOOL command enables you to send the screen output to a file:

SPO[OL] [file_name[. ext]|OFF|OUT]

Caution

Caution

4832-8 ch06.F 7/27/01 9:01 AM Page 239

240 Part II ✦ Managing Database Objects

To start sending screen output to a file, use the spool command and specify a file-

name where the output is to be written. The default file extension is .LST or .LIS,

depending on your operating system.

SQL> SPOOL myoutput

After starting to spool your output, execute the SQL statement that generates the

desired output, or type a command. The command and the output are written to

the specified spool file.

SQL> select coursename, retailprice
2 FROM courses
3 /

COURSENAME RETAILPRICE
-- -----------
Basic SQL 2000
Advanced SQL 2000

After you generate the desired output, halt the spooling by using either SPOOL OFF

or SPOOL OUT. SPOOL OFF halts the spooling and closes the spool file. SPOOL OUT

halts the spooling and sends the spool file to the printer.

SQL> SPOOL OFF
SQL> SPOOL OUT

The SPOOL OUT command is not supported on all operating systems. Windows

does not support SPOOL OUT.

EXIT
The EXIT command enables you to exit your SQL*Plus session. Any unsaved

updates, insertions, or deletions are committed to the database when you exit.

QUIT is a synonym for the EXIT command.

{EXIT|QUIT}
SQL> EXIT

Customizing SQL*Plus with SET Commands
✦ Customize the SQL*Plus environmentObjective

4832-8 ch06.F 7/27/01 9:01 AM Page 240

241Chapter 6 ✦ The SQL*Plus Environment

The SQL*Plus environment can be customized using the SET command to change

the SQL*Plus environment options. A number of settings can be changed using the

SET command. For a full listing of the commands, type SHOW ALL:

SQL> show all
appinfo is OFF and set to “SQL*Plus”
arraysize 15
...
verify ON
shiftinout INVISIBLE
wrap : lines will be wrapped

To change any of these settings, use the SET command. You specify which option

you want to change and the new value for that option. You can also modify the set-

tings with the Menu option “Options – Environment,” which gives you a complete

list of the SQL*Plus environment options. Highlight the name of the setting you

want to change and specify the value for the setting under “Value.” After a value has

been changed, it holds its value until you log out of SQL*Plus or change the value of

that setting.

We won’t cover all the environment settings that can be modified; we focus on the

most commonly modified settings.

ARRAYSIZE
When you execute a SELECT statement, SQL*Plus fetches ARRAYSIZE records at a

time from the database and stores them in a local buffer. When you execute a

SELECT statement that fetches records that contain large amounts of data, you may

get the following error message:

buffer overflow. Use SET command to reduce ARRAYSIZE or
increase MAXDATA.

This error message indicates that SQL*Plus cannot fit the number of records speci-

fied in ARRAYSIZE into the buffer, and you need to decrease ARRAYSIZE, so that it

fetches less records into the buffer at a time. The default value for ARRAYSIZE is 20.

ARRAY[SIZE] {20| n}
SQL> SET ARRAYSIZE 10

COLSEP
The COLSEP option affects the character displayed between columns when you

execute a SELECT statement. The default value is spaces.

COLSEP {_| text}

4832-8 ch06.F 7/27/01 9:01 AM Page 241

242 Part II ✦ Managing Database Objects

SQL> SELECT firstname, lastname
2 FROM students;

FIRSTNAME LASTNAME
------------------------------ -----------
John Smith
Davey Jones

SQL> SET COLSEP ,

SQL> SELECT firstname, lastname
2 FROM students;

If you set COLSEP to comma (,) and spool the output of your SELECT statement to
a file using the SPOOL command, you can create a comma delimited file. Comma
delimited files are often used as input files for programs and applications such as
Microsoft Excel.

FIRSTNAME ,LASTNAME
------------------------------,----------------
John ,Smith
Davey ,Jones

FEEDBACK
The FEEDBACK option affects when you see a message telling you how many

records were selected from a query, or affected by a Data Manipulation Language

(DML) Statement. The default value is 6, so you see a message telling you how many

rows were selected when you retrieve six rows or more from your query. With

FEEDBACK set to its default value of 6, when you execute a DML statement such as

INSERT, UPDATE, DELETE, COMMIT, or ROLLBACK you see a message displayed

regardless of the number of rows affected.You can suppress this message alto-

gether by specifying FEEDBACK OFF.

FEED[BACK] {6| n|OFF|ON}

SQL> SELECT firstname, lastname
2 FROM students;

FIRSTNAME LASTNAME
------------------------------ -----------------------------
John Smith
...
Chris Patterson
11 rows selected.

SQL> SELECT locationid, city
2 FROM locations;

Tip

4832-8 ch06.F 7/27/01 9:01 AM Page 242

243Chapter 6 ✦ The SQL*Plus Environment

LOCATIONID CITY
---------- ------------------------------

100 New York
200 San Francisco
300 Toronto

SQL> SET FEEDBACK 1
SQL> /

LOCATIONID CITY
---------- ------------------

100 New York
200 San Francisco
300 Toronto

3 rows selected.

SQL> SET FEEDBACK OFF
SQL> SELECT firstname, lastname
2 FROM students;

FIRSTNAME LASTNAME
------------------------------ -------------
John Smith

Chris Patterson

HEADING
The HEADING option enables you to control whether the column headers are

displayed.

HEA[DING] {OFF|ON}

SQL> SET HEADING OFF
SQL> SELECT firstname, lastname
2 FROM students;

John Smith
Davey Jones

LINESIZE
The LINESIZE option controls how many characters are displayed on each line in

the SQL*Plus window. It is often increased when you are writing output to a file and

you want to fit an entire record on one line.

LIN[ESIZE] {80| n}
SQL> SET LINESIZE 40
SQL> SELECT coursename, retailprice
2 FROM courses;

4832-8 ch06.F 7/27/01 9:01 AM Page 243

244 Part II ✦ Managing Database Objects

COURSENAME
--
RETAILPRICE

Basic SQL

2000

Advanced SQL
2000

...
SQL> SET LINESIZE 300
SQL> /

COURSENAME ...RETAILPRICE
--
Basic SQL ...2000
Advanced SQL ...2000

LONG
The LONG option controls how many characters are displayed when you SELECT a

column of datatype LONG from a table. The default value is 80 characters.

LONG {80| n}

SQL> SET LONG 500

PAGESIZE
The PAGESIZE option controls how many lines appear on a page. The default value

is 24. Every time a new page starts, the column headers are displayed, and any TTI-

TLE or BTITLE values will appear. (TTITLE and BTITLE are explained in the section

“Headers and Footers,” later in this chapter.) When counting the number of lines on

a page, the column headers themselves, as well as any TTITLE and BTITLE lines,

are included in the count.

PAGES[IZE] {24| n}
SQL> SET PAGESIZE 100

PAUSE
The PAUSE option enables you to scroll through the data returned by a SELECT

statement. The number of lines of text that appear before the screen output stops

and you must press a key to continue is defined by the option PAGESIZE. SET PAUSE

ON to scroll through data. Set PAUSE OFF to remove scrolling. SET PAUSE text dis-

plays the specified text on the screen whenever the screen pauses in scrolling.

4832-8 ch06.F 7/27/01 9:01 AM Page 244

245Chapter 6 ✦ The SQL*Plus Environment

PAU[SE] {OFF|ON| text}
SQL> SET PAUSE ON
SQL> SET PAUSE ‘Hit a key to continue’
SQL> /
Hit a key to continue

FIRSTNAME LASTNAME
------------------------------ ---------------
John Smith
Davey Jones

Hit a key to continue

TERMOUT
The TERMOUT option is used within SQL scripts. If you do not wish to see the out-

put from a SQL script displayed on the screen, set TERMOUT OFF. This is usually

used when the output from a SQL script is being spooled to a file and the user does

not want the output sent to the screen because it will slow down execution.

TERM[OUT] {OFF|ON}
SQL> @MYSCRIPT

ID LAST_NAME FIRST_NAME
-- -------- -----

1 VELASQUEZ CARMEN

SQL> SET TERMOUT OFF
SQL> @MYSCRIPT
SQL>

Formatting Output with SQL*Plus
✦ Produce more readable output

The SQL*Plus tool includes a set of commands that enable you to format query out-

put and create formatted reports. These commands are often saved in script files

with SELECT statements to create simple reports.

Headers and footers
SQL*Plus contains a set of commands that enables you to add headers and footers

to SQL output. Headers and footers may be displayed on each page or only once

per SQL statement.

Objective

4832-8 ch06.F 7/27/01 9:01 AM Page 245

246 Part II ✦ Managing Database Objects

TTITLE
The TTITLE command enables you to display a title at the top of each report page.

TTI[TLE] [printspec [text| variable] ...]|[OFF|ON]

BTITLE
The BTITLE command enables you to display a title at the bottom of each report

page.

BTI[TLE] [printspec [text| variable] ...]|[OFF|ON]

REPHEADER
The REPHEADER command enables you to display a title at the start of the entire

report.

REPH[EADER] [printspec [text| variable] ...]|[OFF|ON]

REPFOOTER
The REPFOOTER command enables you to display a title at the end of the report.

REPF[OOTER] [printspec [text| variable] ...]|[OFF|ON]

After you have decided where you want the title to appear, you need to specify

what will appear in the title and where. This is specified in the printspec clause of

each command.

The following options can be specified in the printspec:

✦ S[KIP] [n] — Skip n lines.

✦ LE[FT] — Left-justify the text.

✦ CE[NTER] — Center-justify the text.

✦ R[IGHT] — Right-justify the text.

✦ FORMAT — Specify a date or numeric format for the text.

The following example displays the text “Course List” centered at the top of each

page and then skips one line before displaying data:

SQL> TTITLE CENTER “Course List” SKIP 1
SQL> SELECT coursename
2 FROM courses;

Course List
COURSENAME
--
Basic SQL
Advanced SQL

4832-8 ch06.F 7/27/01 9:01 AM Page 246

247Chapter 6 ✦ The SQL*Plus Environment

The following example displays a left-justified message “End of Report” at the end

of the SQL output:

SQL> REPFOOTER “***End of Report***”
SQL> /

COURSENAME

Basic SQL
...
Using your PL/SQL skills
End of Report

A series of variables may be used in these commands as well:

✦ SQL.LNO — Current line number

✦ SQL.PNO — Current page number

✦ SQL.USER — Current username

These variables may be displayed in the headers and footers — for example, when

you want to display the title “Registration Report” and a page number on each

page. You might do the following:

SQL> TTITLE LEFT SQL.PNO CENTER “Course List”
SQL> /

1 Course List
COURSENAME

Basic SQL
Advanced SQL

When you create a header or footer for your SQL output, those settings are saved

until you exit SQL*Plus. If you do not want the headers and footers appearing on

the output of subsequent SQL statements, you should turn off the headers and

footers.

SQL> TTITLE OFF
SQL> REPFOOTER OFF

COLUMN
The COLUMN command enables you to format the output of a column with a given

column name.

COL[UMN] [{ column| expr} [option ...]]

4832-8 ch06.F 7/27/01 9:01 AM Page 247

248 Part II ✦ Managing Database Objects

where option is one or more of the following choices:

✦ CLE[AR] — Removes the column format setting for a column.

✦ FOR[MAT] format — Formats the data within the column.

✦ HEA[DING] text — Changes the displayed column heading.

✦ JUS[TIFY] {L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]} — Justifies the column

heading.

✦ NOPRI[NT]|PRI[NT] — Suppresses or displays the column output.

✦ NUL[L] text — Changes the value displayed when the column contains a NULL

value.

✦ WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED] — Determines whether data

is wrapped or truncated when the format specified is not long enough to dis-

play the entire string.

For example, when you want to format the retailprice column on the courses table

and change the column heading to “Retail Price”, you specify the following:

SQL> COLUMN retailprice FORMAT $9,999,990.00 -
HEADING “Retail Price”
SQL> SELECT retailprice
2 FROM Courses;

Retail Price

$2,000.00

The format specifications for date and number datatypes are similar to those used

in the TO_CHAR function.

For columns of datatype NUMBER, use the following format options:

✦ 9 — The number of nines specifies the number of digits to display, leading

zeros will be suppressed.

✦ 0 — The number of zeros specifies the number of digits to display, leading

zeros will be displayed.

✦ $ — The dollar sign is used to prefix a number with a dollar sign.

✦ , — The comma displays in the position it is placed.

✦ . — The period displays in the position it is placed.

SQL> COLUMN retailprice FORMAT $0,000,000.00
SQL> SELECT retailprice
2 FROM courses;

4832-8 ch06.F 7/27/01 9:01 AM Page 248

249Chapter 6 ✦ The SQL*Plus Environment

RETAILPRICE

$0,002,000.00
$0,002,000.00

For character datatype columns, you can specify the number of characters a col-

umn can use for display. If the column may contain data that exceeds the specified

length, you should also specify whether the text should be wrapped, word-

wrapped, or truncated.

SQL> COLUMN coursename FORMAT A20 WORD_WRAP
SQL> SELECT coursename
2 FROM courses;

COURSENAME

Basic SQL
Using your
PL/SQL skills

By inserting a pipe symbol (|) in the HEADING, you can specify a header that

appears over two lines:

SQL> COLUMN retailprice FORMAT $9,999,990.00 -
HEADING “Retail|Price”
SQL> SELECT retailprice
2 FROM courses;

Retail
Price

$2,000.00
$2,000.00

To check the current format settings for a particular column, you can use the COL-

UMN command with no options to list the settings for a column:

SQL> COLUMN retailprice
column retailprice ON
heading ‘Retail|Price’ headsep ‘|’
format $9,999,990.00

To obtain a list of all the columns with format settings, you use the COLUMN com-

mand and do not specify a column name:

SQL> COLUMN

To remove the format settings for a column, use the CLEAR option:

SQL> COLUMN retailprice CLEAR

4832-8 ch06.F 7/27/01 9:01 AM Page 249

250 Part II ✦ Managing Database Objects

BREAK
The BREAK command enables you to group related data in your SQL output.

BRE[AK] [ON column_name [action]]

[action] specifies what action should be taken when the specified column changes.

You can specify two different actions:

✦ [SKI[P] n|[SKI[P]] PAGE] — Enables you to leave blank lines between records

or start a new report page between records.

✦ [NODUP[LICATES]|DUP[LICATES]] — Enables you to suppress or display

duplicate values in a column.

Before you use the BREAK command, you should add an ORDER BY clause to your

SQL statement to ensure the data is sorted by the columns by which you want to

group.

SQL> SELECT city, lastname, firstname
2 FROM students
3 ORDER by city;

After the data is sorted, you can use BREAK to group the output. You could put

each city on a different page, for example:

SQL> BREAK ON city SKIP PAGE

SQL> /

CITY LASTNAME FIRSTNAME
--------------- ------------------------------ ------------
Dallas Andrew Susan

CITY LASTNAME FIRSTNAME
--------------- ------------------------------ ------------
New York Hee John

Massey Jane

You can also use the BREAK command to insert blank lines between records when

the column value changes:

SQL> BREAK ON city SKIP 2
SQL> /

CITY LASTNAME FIRSTNAME
--------------- ------------------------------ -----------
Dallas Andrew Susan

New York Hee John
Massey Jane

4832-8 ch06.F 7/27/01 9:01 AM Page 250

251Chapter 6 ✦ The SQL*Plus Environment

By default, the BREAK command also suppresses duplicate values in the same col-

umn. If you want to list the duplicate values, specify the DUPLICATES option:

SQL> BREAK ON city SKIP 2 DUPLICATES
SQL> /

CITY LASTNAME FIRSTNAME
--------------- ------------------------------ ----------
Dallas Andrew Susan

New York Hee John
New York Massey Jane

To remove BREAKS, use the command CLEAR BREAKS:

SQL> CLEAR BREAKS

COMPUTE
When you use the BREAK command to group your output, you can use the COM-

PUTE command to perform calculations on each group:

COMP[UTE] [function] OF {column} ON {column}]

You can choose from the following functions:

✦ AVG — Returns the average of non-null values of datatype NUMBER.

✦ COU[NT] — Returns the count of non-null values for all datatypes.

✦ MAX[IMUM] — Returns the maximum value for datatypes NUMBER or

CHARACTER.

✦ MIN[IMUM] — Returns the minimum value for datatypes NUMBER or

CHARACTER.

✦ NUM[BER] — Returns the count of rows for all datatypes.

✦ STD — Returns the standard deviation of non-null values for datatype

NUMBER.

✦ SUM — Returns the sum of non-null values for datatype NUMBER.

✦ VAR[IANCE] — Returns the variance of non-null values for datatype NUMBER.

For example, you can list all students enrolled in courses and see a total number of

students in each course:

SQL> BREAK ON city
SQL> COMPUTE COUNT OF lastname ON city
SQL> SELECT city, lastname, firstname

FROM students
ORDER BY city;

4832-8 ch06.F 7/27/01 9:01 AM Page 251

252 Part II ✦ Managing Database Objects

CITY LASTNAME FIRSTNAME
--------------- ------------------------------ -----------
Dallas Andrew Susan
*************** ------------------------------
count 1
New York Hee John
New York Massey Jane
New York Jones Davey
*************** ------------------------------
count 3

The COMPUTE command has no effect unless a BREAK is defined on the column

the computations are grouped by.

To remove any computations, use the CLEAR COMPUTES command:

SQL> CLEAR COMPUTES

Saving Environment Settings
✦ Save customizations

After you decide which settings you want to change within SQL*Plus, you can save the

SET commands into a file so that every time you log in to SQL*Plus, your preferences

are set. This is done using the login.sql file. (The exact filename may vary depending

on your operating system; see your Oracle installation and user’s manual for the exact

filename.) You can list any SQL*Plus commands, SQL commands, or PL/SQL com-

mands in this file. The file should be located in the SQL*Plus working directory.

For example, your login.sql file might contain the following:

SET PAUSE ON
SET PAGESIZE 50

You can edit this file in Notepad or vi and then save it to the working directory of

SQL*Plus. Now each time you start SQL*Plus, these setting are changed from their

default values to your preferred settings.

Scripts
✦ Create and execute script files

You may want to save frequently used SQL and SQL*Plus commands. You can use

scripts to save and reexecute commands. Scripts can contain SQL statements,

Objective

Objective

4832-8 ch06.F 7/27/01 9:01 AM Page 252

253Chapter 6 ✦ The SQL*Plus Environment

SQL*Plus commands, or a mixture of the two. To create a script, you use the EDIT

command or the SAVE command to create a file. Files created have a .sql extension

unless you specify a different file extension. After you have created the file, you

type the SQL statements or SQL*Plus commands you want to execute.

When you put a SQL statement inside a script, you must include a forward slash (/)

at the end of the SQL statement.

SQL> EDIT myscript
SELECT *
FROM students
/

When you have a mixture of SQL and SQL*Plus commands, place the forward slash

or a semicolon at the end of each SQL statement. This command terminator also

enables you to include multiple SQL statements in one script. Each individual SQL

statement in the script should end with a forward slash or a semicolon.

SQL> EDIT myscript
SET FEEDBACK OFF
SPOOL myoutput
SELECT *
FROM students
/
SET FEEDBACK ON

or

SQL> EDIT myscript
SET FEEDBACK OFF
SPOOL myoutput
SELECT *
FROM students;
SET FEEDBACK ON

Some users prefer to use a semicolon (;) at the end of a SQL statement instead of a

forward slash (/). Scripts accept a semicolon as the command terminator as long as

the SQL statement is not the last command in the script. When a SQL statement is

the last command in the script, you must use the forward slash and not the semi-

colon as the command terminator for the last SQL statement; otherwise, you

receive an error. When including a SQL statement in PL/SQL code, SQL statements

should always end with a semicolon. The forward slash causes an error.

When you include SQL*Plus commands within scripts that affect how output is dis-

played, it is good practice to return the output to its default at the end of the script.

If you change the LINESIZE to 200 at the start of the script, you should set it back to

80 at the end of the script. If you create a TTITLE at the start of the script, you

4832-8 ch06.F 7/27/01 9:01 AM Page 253

254 Part II ✦ Managing Database Objects

should turn TTITLE off at the end of the script. If you format a column with the

COLUMN command, you should clear those column format settings. For example:

TTITLE CENTER “Student Information”
SET LINESIZE 200
COLUMN retailprice FORMAT $9,999,999.99 –
HEADING “Retail|Price”
SELECT *
FROM courses
/
TTITLE OFF
SET LINESIZE 80
COLUMN retailprice CLEAR

After you have created a script, you can execute it using the START or

@ commands:

SQL> @myscript
SQL> START myscript

When you need to modify a script after it has been created, use the EDIT command:

SQL> EDIT myscript

PRODUCT_USER_PROFILE
✦ Customize the SQL*Plus environment

Certain Oracle products, including SQL*Plus, use the PRODUCT_USER_PROFILE

table. This table enables you to restrict which commands can be executed within

the tool. You may have users who like the functionality of SQL*Plus, but you might

need to restrict the commands they can execute to protect data integrity. You cre-

ate a row in the table that specifies which commands you want to disable and the

user(s) for which the command is disabled.

To create the PRODUCT_USER_PROFILE table, you run the PUPBLD.SQL script as

the user SYSTEM. The exact filename and file location are system dependent; see

SQL*Plus User’s Guide and Reference for the exact filename and location.

The PRODUCT_USER_PROFILE table contains the following columns:

SQL> DESCRIBE PRODUCT_USER_PROFILE
Name Null? Type
------------------------------- -------- ----
PRODUCT NOT NULL CHAR(30)
USERID CHAR(30)
ATTRIBUTE CHAR(240)
SCOPE CHAR(240)
NUMERIC_VALUE NUMBER(15,2)

Objective

4832-8 ch06.F 7/27/01 9:01 AM Page 254

255Chapter 6 ✦ The SQL*Plus Environment

CHAR_VALUE CHAR(240)
DATE_VALUE DATE
LONG_VALUE LONG

Table 6-1 Gives a detailed description of each of the columns in the

PRODUCT_USER_PROFILE table.

Table 6-1
PRODUCT_USER_PROFILE Columns

Column Description

PRODUCT Specifies the name of the product — in this case, “SQL*Plus”.

USERID Specifies the name of the user(s) for whom this command should be
disabled. Wild cards (%) may be used in this column.

ATTRIBUTE Specifies in uppercase the command to be disabled. Wild cards are not
allowed in this column.

SCOPE Ignored by SQL*Plus; set this column to NULL.

NUMERIC_VALUE Ignored by SQL*Plus; set this column to NULL.

CHAR_VALUE Should contain the character string “DISABLED”.

DATE_VALUE Ignored by SQL*Plus; set this column to NULL.

LONG_VALUE Ignored by SQL*Plus; set this column to NULL.

Suppose you want to prevent all students from executing INSERT, UPDATE, and

DELETE commands and specify that all student accounts have the prefix “STD”; you

add three rows to the table:

INSERT INTO PRODUCT_USER_PROFILE (product, userid, attribute,
char_value)
VALUES (‘SQL*Plus’,’STD%’,’INSERT’,’DISABLED’);

INSERT INTO PRODUCT_USER_PROFILE (product, userid, attribute,
char_value)
VALUES (‘SQL*Plus’,’STD%’,’UPDATE’,’DISABLED’);

INSERT INTO PRODUCT_USER_PROFILE (product, userid, attribute,
char_value)
VALUES (‘SQL*Plus’,’STD%’,’DELETE’,’DISABLED’);

If you want to disable the SQL*Plus HOST command for all users, you add the fol-

lowing row. (The HOST command enables you to launch a host operating system

command from the SQL*Plus command prompt.)

4832-8 ch06.F 7/27/01 9:01 AM Page 255

256 Part II ✦ Managing Database Objects

INSERT INTO PRODUCT_USER_PROFILE (product, userid, attribute,
char_value)
VALUES (‘SQL*Plus’,’%’,’HOST’,’DISABLED’);

Key Point Summary
SQL*Plus is a tool with a number of features that can enhance development. The

capability to save commands and use variables enables you to save and reuse com-

mon SQL statements. The capability to customize your environment and format

your output enables you to write reports without purchasing a separate reporting

tool.

✦ Your last SQL statement is saved in a SQL buffer that can be accessed and

modified.

✦ You can use substitution variables in SQL statements and specify values for

those variables when you execute the SQL statement.

✦ SQL*Plus includes a set of commands that enables you to save commands

and output to files.

✦ Using the SET command, you can set various options in the SQL*Plus environ-

ment that affect how output is displayed. Those commands can be saved in a

file called login.sql, which are executed whenever you start SQL*Plus.

✦ SQL*Plus commands and SQL commands can be placed in scripts that can be

saved and executed.

✦ SQL*Plus includes a set of commands that enable you to format your output

and create formatted reports.

✦ The table PRODUCT_USER_PROFILE can be created to restrict the commands

that users can execute within SQL*Plus.

✦ ✦ ✦

4832-8 ch06.F 7/27/01 9:01 AM Page 256

257

STUDY GUIDE

Now that you have learned about SQL*Plus, you should test your understanding by

reviewing the assessment questions and performing the exercises that follow.

Assessment Questions
1. Which two SQL*Plus commands enable you to run the SQL command stored

in the SQL buffer?

A. START

B. RUN

C. GO

D. LIST

E. /

2. Which SQL*Plus option do you set to enable you to scroll page-by-page

through the output from your SQL statement?

A. SCROLL

B. LINESIZE

C. PAUSE

D. PAGELENGTH

E. PROMPT

3. Which SQL*Plus command enables you to specify a title at the top of each

page of output?

A. REPHEADER

B. PAGEHEADER

C. BTITLE

D. TTITLE

E. REPFOOTER

257Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 257

4. Which two commands run the contents of the script myfile.sql?

A. RUN myfile

B. START myfile

C. @myfile

D. EXECUTE myfile

E. GO myfile

5. Which SQL*Plus command enables you to send your output to a file so you

can print it?

A. SPOOL myoutput

B. PRINT myoutput

C. SET PRINTER ON

D. SET TERMOUT ON

E. OUTPUT=myoutput

6. Which of these commands returns the description of the student table?

A. SPOOL students

B. SHOW students

C. SELECT columns FROM students

D. LIST students

E. DESCRIBE students

7. Which command prompts you to enter a value for the variable used in the fol-

lowing SELECT statement:

SELECT * FROM students WHERE studentnumber = &p_student

A. DEFINE p_student

B. VARIABLE p_student NUMBER

C. ACCEPT p_student NUMBER PROMPT “Enter Student Number: “

D. ENTER p_student

E. DEFINE p_student PROMPT “Enter Student Number:

8. Which SQL*Plus command displays the contents of the SQL buffer on the

screen?

A. SHOW buffer

B. GET

C. LIST

D. SHOW

E. GET buffer

258 Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 258

259

9. Which SQL*Plus command enables you to start a new page when the value

contained in the classid column changes?

A. SKIP PAGE on classid

B. START PAGE on classid

C. BREAK on classid

D. BREAK on classid SKIP PAGE

E. SKIP PAGE on BREAK

10. How many SQL commands are stored in the SQL buffer?

A. 1

B. 2

C. 0

D. 5

E. 10

Scenarios
1. Your manager has just asked you to set up standards for the development

team. He wants all the developers to have the same SQL*Plus option settings

when they log in. You need to determine what options you need to set and

where you should put the commands to specify these options. Most of the

default settings can be kept, but the following changes must be made:

A. When a SQL statement returns several pages of output, the developer

should scroll through the output page-by-page.

B. The message showing the number of lines selected should always be dis-

played, regardless of the number of rows actually selected.

C. There should be 120 characters displayed on each line.

D. A coworker comes to you with the following script because he or she is

getting error messages when the script is executed. The script should

prompt you to enter a student name and then return all the information

in the students table about the specified student. The output should also

be sent to a file called myoutput. What corrections must be made to this

script?

ACCEPT studname PROMPT “Enter student name: “
SPOOL myoutput
SELECT *
FROM students
WHERE lastname = &studname

259Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 259

SPOOL OFF
3. @NL:You have been asked to create a simple report with the
output formatted as follows. Write the SQL*Plus commands to
format the output.
SELECT coursename, retailprice
FROM courses
/
COURSE LISTING

Course
Name Cost

--------------- ------------
Basic SQL $2,000.00
Advanced SQL $2,000.00

Lab Exercises
Lab 6-1 Creating scripts

1. Write a SELECT statement to list all the students in class 50.

2. Using the SAVE command, save the SQL statement in a script called

courserep.sql.

Lab 6-2 Using substitution variables
1. Modify the script courserep.sql so that you can specify the class number at

runtime using a substitution variable.

2. Using the ACCEPT command, prompt the user to enter a class number with

the following prompt:

Please specify class for report:

Lab 6-3 Formatting output
1. Modify the script courserep.sql to include the following:

A. Use the TTITLE command to add a title at the top of the report that

includes the page number on the left and the centered title “Class

Registration”.

B. Use the REPFOOTER command to add a center-justified message, “End of

Report,” at the end of the report.

2. Modify the SQL statement so all classes are listed and, using the BREAK com-

mand, show each class on a separate page.

260 Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 260

261

Lab 6-4 Sending output to a file
1. Use the SPOOL command and modify courserep.sql so the output from the

SQL statement is written to a file called classreg.lst.

2. Change the FEEDBACK setting to suppress the message that specifies how

many rows are selected.

3. Change the LINESIZE setting so one row of data fits on one line.

Answers to Chapter Questions

Chapter Pre-Test
1. Place an ampersand (&) in front of the variable name within the SQL

statement.

2. To save a SQL statement to a file, you either write the SQL statement in

SQL*Plus and use the SAVE command, or you use the EDIT command to cre-

ate a file and write the SQL statement in the created file.

3. To execute a SQL command or commands stored in a file, you type either

@filename or START filename, where filename is the name of the file where the

commands are stored.

4. You can change a number of options using the SET command. They include

ARRAYSIZE, COLSEP, FEEDBACK, HEADING, LINESIZE, LONG, PAGESIZE,

PAUSE, TERMOUT.

5. Commands contained in the file login.sql are executed automatically when

you log in to SQL*Plus.

6. The SPOOL command enables you to send output from a SQL command to a

file.

7. The PRODUCT_USER_PROFILE table allows you to limit the commands that

may be executed from SQL*Plus.

8. Only one SQL command is stored in the SQL buffer.

9. The DESCRIBE command provides a description of a database table.

10. The DEFINE command creates and populates a substitution variable. The

ACCEPT command creates and prompts the user to specify a value for a sub-

stitution variable.

261Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 261

Assessment Questions
1. B, E — The RUN and the / command both execute the SQL command stored in

the SQL buffer. The START command executes a command file. The LIST com-

mand displays the contents of the SQL buffer. Go is not a valid SQL*Plus

command.

2. C — The PAUSE option controls whether output pauses between pages. The

LINESIZE command controls how many characters are displayed on each line.

SCROLL, PAGELENGTH and PROMPT are not valid options.

3. D — TTITLE displays a title at the top of each page of output. BTITLE displays

a footer at the bottom of each page. REPHEADER displays a title once at the

start of the output. REPFOOTER displays a footer once at the end of the out-

put. PAGEHEADER is not a valid SQL*Plus command.

4. B, C — Either START myfile or @myfile executes the contents of the file

myfile.sql. The RUN command executes the contents of the SQL buffer. The

EXECUTE command executes PL/SQL programs stored in the database. GO is

not a valid SQL*Plus command.

5. A — SPOOL myoutput sends the output to a file myoutput.lst. SET TERMOUT

ON controls whether output from a script is displayed on the screen. PRINT,

SET PRINTER ON and OUTPUT are not valid SQL*Plus commands.

6. E — The DESCRIBE command is used to get a description of a database table.

The SPOOL command sends output to a file. The SELECT statement returns

the contents of the students table. The LIST command displays the contents

of the SQL buffer. SHOW is not a valid SQL*Plus command.

7. C — The ACCEPT command prompts for a value for a substitution variable.

DEFINE creates a substitution variable but will not prompt for a value. The

VARIABLE command creates bind variables which must be prefixed with a

colon (:) instead of an ampersand (&). ENTER is not a valid SQL*Plus

command.

8. C — The LIST command displays the contents of the SQL buffer. The GET com-

mand fetches the contents of a command file into the SQL buffer. SHOW is not

a valid SQL*Plus command.

9. D — BREAK on classid SKIP PAGE starts a new page when classid changes. You

must specify the SKIP PAGE option at the end of a BREAK command.

10. A — Only one SQL command is stored in the SQL buffer.

Scenarios
1. In order to modify the SQL*Plus options from their default settings, you must

edit or create a file login.sql. In order to have the output scroll, you must

specify SET PAUSE ON. In order to have the message specifying the number of

rows selected at all times, you must specify SET FEEDBACK ON. In order to fit

120 characters on one line, you must specify SET LINESIZE 120.

262 Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 262

263

2. The DEFINE command cannot be used to prompt a user for input. Instead, the

ACCEPT command must be used. There is no semicolon (;) or forward slash

(/) after the SQL statement, so SPOOL OFF is considered part of the SELECT

statement. You need to insert a command terminator after the SQL statement.

Whenever you prompt the user to enter a character string or a date value,

place single quotes around the variable name so the user does not need to put

quotes around the value entered at runtime. The corrected script should look

like the following:

ACCEPT studname PROMPT “Enter student name”
SPOOL myoutput
SELECT *
FROM students
WHERE lastname = ‘&studname’
/
SPOOL OFF
or
ACCEPT studname PROMPT “Enter student name”
SPOOL myoutput
SELECT *
FROM students
WHERE lastname = ‘&studname’;
SPOOL OFF
3. @NL:You need a TTITLE command to specify the title for the
report. You need a COLUMN command to format the course name
and a COLUMN command to format the course cost. The commands
should appear as follows:

TTITLE CENTER “COURSE LISTING” SKIP 1
COLUMN coursename FORMAT A15 HEADING “Course|Name” -JUSTIFY
CENTER
COLUMN retailprice FORMAT $999,990.00 –
HEADING “Cost” JUSTIFY CENTER

Lab Exercises

Lab 6-1 Creating scripts
SQL> SELECT s.firstname, s.lastname, ce.classid
2 FROM students s, classenrollment ce
3 WHERE s.studentnumber=ce.studentnumber
4 AND ce.classid = 50;

FIRSTNAME LASTNAME CLASSID
-------------------------- --------------------- ----------
Davey Jones 50
Jane Massey 50
John Hee 50

SQL> SAVE courserep
Created file courserep

263Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 263

Lab 6-2 Using substitution variables
SQL> ED courserep

ACCEPT p_classid NUMBER -
PROMPT “Please specify class for report: “

SELECT s.firstname, s.lastname, ce.classid
FROM students s, classenrollment ce
WHERE s.studentnumber=ce.studentnumber
AND ce.classid = &p_classid
/
UNDEFINE p_classid

SQL> @courserep
Please specify class for report: 51
old 4: AND ce.classid = &p_classid
new 4: AND ce.classid = 51

FIRSTNAME LASTNAME CLASSID
------------------------------ -------------------- --------
Trevor Smith 51
Mike Hogan 51
Gordon Jones 51

Lab 6-3 Formatting output
SQL> ED courserep

TTITLE LEFT SQL.PNO CENTER “Class Registration” SKIP 2
REPFOOTER SKIP 1 CENTER “End of Report”
BREAK ON classid SKIP PAGE

SELECT s.firstname, s.lastname, ce.classid
FROM students s, classenrollment ce
WHERE s.studentnumber=ce.studentnumber
ORDER BY ce.classid
/
TTITLE OFF
REPFOOTER OFF
CLEAR BREAKS

SQL> @courserep

1 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ --------------------- -------
Davey Jones 50
Jane Massey
John Hee

264 Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 264

265

2 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ --------------------- -------
Trevor Smith 51
Mike Hogan
Gordon Jones

3 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ --------------------- -------
Trevor Smith 53
Jane Massey

End of Report

8 rows selected.

Lab 6-4 Sending output to a file
SQL> ED courserep

TTITLE LEFT SQL.PNO CENTER “Class Registration” SKIP 2
REPFOOTER SKIP 1 CENTER “End of Report”
BREAK ON classid SKIP PAGE

SET FEEDBACK OFF
SET LINESIZE 100
SPOOL classreg.lst

SELECT s.firstname, s.lastname, ce.classid
FROM students s, classenrollment ce
WHERE s.studentnumber=ce.studentnumber
ORDER BY ce.classid
/
SPOOL OFF

SET LINESIZE 80
SET FEEDBACK ON

TTITLE OFF
REPFOOTER OFF
CLEAR BREAKS
SQL> @courserep

265Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 265

1 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ -------------------- --------
Davey Jones 50
...

End of Report

SQL> ED classreg.lst
1 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ -------------------- --------
Davey Jones 50
Jane Massey
John Hee

2 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ -------------------- --------
Trevor Smith 51
Mike Hogan
Gordon Jones

3 Class Registration

FIRSTNAME LASTNAME CLASSID
------------------------------ -------------------- --------
Trevor Smith 53
Jane Massey

End of Report

266 Chapter 6 ✦ Study Guide

4832-8 ch06.F 7/27/01 9:01 AM Page 266

Creating and
Managing Oracle
Database Objects

EXAM OBJECTIVES

✦ Creating and managing tables

• Create tables

• Alter table definitions

• Drop, rename, and truncate tables

✦ Including constraints

• Describe constraints

• Create and maintain constraints

✦ Creating views

• Describe a view

• Create a view

• Retrieve data through a view

• Insert, update, and delete data through a view

• Drop a view

✦ Oracle data dictionary

• Describe the data dictionary views a user may access

• Query data from the data dictionary

✦ Other Database Objects

• Describe database objects and their uses

• Create, maintain, and use sequences

• Create and maintain indexes

• Create private and public synonyms

77C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch07.F 7/27/01 9:01 AM Page 267

268 Part II ✦ Managing Database Objects

CHAPTER PRE-TEST
1. What must be specified when a table is created?

2. When a DEFAULT is defined on a database column, which operations
and conditions cause the DEFAULT to be used?

3. How many indexes should you create on a table?

4. Which clause that was previously invalid is now allowed in a view
definition? Why is this useful?

5. Suppose you have three tables called Customers, Orders, and
Suppliers. Assuming each table has a column to uniquely identify a
customer, order, or supplier, how many sequences should you create?

6. Who is allowed to create PUBLIC synonyms, by default?

7. Why would you cache sequences? Why not?

8. What is the difference between a PRIMARY KEY and UNIQUE con-
straint?

9. If you do not specify a name for a constraint, what name is assigned
to it by Oracle?

10. What is the difference between a column of CHAR datatype and a
column of the NCHAR datatype?

11. What must an Oracle object name start with? What are the other rules
for naming Oracle objects?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch07.F 7/27/01 9:01 AM Page 268

269Chapter 7 ✦ Creating and Managing Oracle Database Objects

Up to this point you have been shown how to access data from tables within

the database. However, before you can store data in a database, you have to

create the necessary database objects to store and manage your data. These

objects include the tables that will be used to store information about the entities

that you are keeping track of, such as Students, Customers, Inventory, and so on. In

order for the data to make sense, to enforce business rules, and to define the rela-

tionships between the various tables, you may also need to define constraints on

the columns in those tables. Indexes may enable you to speed the retrieval of data

in your database as it grows. To ensure duplicate values are not placed in primary

key columns that you define, you may decide to use sequences to generate values

that will be unique. For reporting, security, or other purposes, you may need to

define views to make it easier to perform the necessary data retrieval. Finally, when

the table names are long or when you want to more easily access database objects

created by other users, you may decide to make use of synonyms.

In this chapter, you learn how to create and manage the objects that make up your

database. We show you how to create, alter, and drop tables, as well as perform

other actions to manage the data that you store in them. We then present a discus-

sion on using constraints and how to manage them. Finally, the creation of other

database objects such as views, indexes, sequences, and synonyms is described.

The Ground Rules for Creating Objects
Before creating any objects in an Oracle database, it is important to understand the

language elements and rules that apply to the process. This includes the state-

ments that are used to create and manage database objects, the rules for naming

database objects, and some general information about permissions.

Data Definition Language (DDL)
When creating and managing any object in an Oracle database, you use the Data

Definition Language (DDL) elements of the SQL language. DDL has three principal

statements:

✦ CREATE: The CREATE statement adds a new object to the database. You use it

to create new tables, views, stored procedures, and other objects. In order for

the CREATE command to succeed, no other object with the same name can

exist in the schema .

✦ ALTER: The ALTER statement is used to change the characteristics of tables,

indexes, and other objects in the database. The ALTER statement does not

apply to all objects in the database.

✦ DROP: The DROP statement is used to remove objects from the database.

When used on tables, it also gets rid of any data that existed in the table.

4832-8 ch07.F 7/27/01 9:01 AM Page 269

270 Part II ✦ Managing Database Objects

Oracle naming conventions
When creating any object in Oracle, it is important to know the valid characters and

other rules for naming objects. If you attempt to create an object that does not fol-

low the required naming conventions, Oracle generates an error.

Names of objects in Oracle must follow these rules:

✦ All object names must begin with a letter (A–Z, a–z).

✦ An object name may be from 1 to 30 characters in length.

✦ An object name can contain letters (A–Z, a–z), numbers (0–9), and the under-

score character (_), dollar sign symbol ($), or pound sign symbol (#).

Although $ and # are supported, their use is strongly discouraged.

✦ An object name cannot be the same as any Oracle reserved word. Oracle

reserved words include most commands (for example, SELECT, INSERT, DROP,

GRANT), as well as the name of functions, and so on. The complete list of

Oracle reserved words can be found in the Oracle 8i SQL Reference manual.

✦ An object name must not be the same as the name of another object owned

by the same user. When you attempt to create a duplicate object, Oracle gen-

erates an error. This does not mean, however, that you cannot have the same

column name in more than one table — you can. This is because the fully qual-

ified name of any object in Oracle has many subcomponents (see the discus-

sion that follows).

The names of objects in Oracle are case insensitive, so if you use uppercase only,

lowercase only, or mixed case when you create an object, Oracle always returns the

object name in uppercase.

Even though Oracle object names are not case sensitive, character data in Oracle
is always case sensitive. This means that the statement “SELECT * FROM Courses”
returns the same results as “SELECT * FROM courses”. However, the statement
“SELECT * FROM Courses WHERE CourseName LIKE ‘%SQL%’” does not return the
same data as “SELECT * FROM Courses WHERE CourseName LIKE ‘%sql%’”.

When naming objects, it is always a good idea to use descriptive names so that it is

easier to understand what the object is supposed to represent. This means that it is

not a good idea to name tables T1, T2, T3, and so on, but rather you should name

them, for example, Courses, Instructors, and Students. Using plural nouns for the

names of tables is a recognized practice in the database world.

Fully qualified object names
Some user must own every object in Oracle. Oracle creates two users when the

database is created — SYS and SYSTEM. The user SYS owns the data dictionary for

the database, and the user SYSTEM has full control of any object in the database.

For your database objects, you need to create another user who will become the

Caution

4832-8 ch07.F 7/27/01 9:01 AM Page 270

271Chapter 7 ✦ Creating and Managing Oracle Database Objects

owner of any object that he or she creates. It is possible to have many owners of

database objects in a single database, although this practice is discouraged

because it may become too difficult to manage.

For more information on creating users and assigning permissions to users, see
Chapter 8, “Configuring Security in Oracle Databases.”

When a user creates an object, he or she becomes its owner. Oracle assigns a fully

qualified name to every object in the database. The fully qualified name must be

unique in the database. A fully qualified name is written as follows:

<ownername>.<objectname>.<objectname>

For example, the CustomerID column of the Customers table owned by Sam is iden-

tified by the following fully qualified name:

sam.customers.customerid

As mentioned previously, the names of objects must be unique within the schema

of the user that owns them. For example, if user Bob creates a table called Students

and user Sally creates a table called Students, there is no naming conflict because

the fully qualified names of the tables are as follows:

bob.students
sally.students

Similarly, having the same column name in two tables owned by the same user does

not create a conflict. In fact, it is recommended for columns that relate the two

tables together because it makes it easy to see on which values the two tables are

related. For example, the LocationID column can exist in both the ScheduledClasses

and Locations tables owned by the user Student. The fully qualified names are:

Student.Locations.LocationID
Student.ScheduledClasses.LocationID

When referencing an object in Oracle, if any part of the fully qualified name is not

specified, that portion defaults to a value preset by Oracle. The rules are:

✦ If the name of the owner is omitted, it is assumed to be the current user. For

example, if Bob issues the command “SELECT * FROM Students”, Oracle

assumes this to mean “SELECT * FROM Bob.Students”.

✦ If the object (for example, Bob.Students) does not exist, Oracle checks to see

whether the user has been given permissions to another object with the same

name in another schema (that is, whether Bob has been granted permission

to David’s Students table). If this is not the case, Oracle returns an error; if it

is, Oracle ensures that the user has not been granted permissions on objects

by the same name in several schemas (that is, that Bob has permissions to

SELECT from David.Students and Cheryl.Students). If this is true, an error is

reported; otherwise, the statement is processed normally.

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 271

272 Part II ✦ Managing Database Objects

✦ The ownership of columns specified in a SELECT or UPDATE statement is

checked to ensure uniqueness of column names for all tables referenced in

the statement. If this is not the case, Oracle generates an error and requires

that the problem be corrected before the statement can be processed. You

then must qualify the name.

✦ When creating objects, unless otherwise specified, the object is created in

the user’s schema and the user creating the object becomes the owner

automatically.

✦ To create an object in someone else’s schema, you must have permissions to

do so, and you must qualify the name of the object to be created with the

name of the user in whose schema you want to create the object.

The bottom line is that Oracle always assumes that you own every object you are

creating or manipulating. If this is not true, to avoid ambiguity, always qualify the

name of the object with the owner, or create a synonym.

Creating and Managing Tables
✦ Create tables

• Alter table definitions

• Drop, rename, and truncate tables

If the purpose of every database is to store and manage data, then the purpose of

every table in the database is to act as the primary vehicle for the storage of data.

A database without tables is not a database. It is, therefore, critical that you know

how to create and manage tables in your databases so that you are able to logically

store the data for your organization in a way that makes sense.

One of the most critical elements of creating tables is knowing what tables to create

and what pieces of information they should hold. This task is typically the job of

the database designer. This individual determines, based upon the business

requirements outlined by the organization, how many tables to create, what data

they should hold, and the relationships that exist between them. The process of

designing databases can be a lengthy one and, when done properly, should be a

very lengthy one taking about 80 percent of the time from when the decision to

implement a database is made to when the database becomes operational. Because

of the complexity of database design, it is not discussed here. It is important to

remember that you should not simply create tables because you think you need

one — you should create tables because they are needed as part of an overall

design.

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 272

273Chapter 7 ✦ Creating and Managing Oracle Database Objects

The CREATE TABLE statement
✦ Create tables

The statement used to create tables in Oracle is the CREATE TABLE DLL command.

The syntax of the CREATE TABLE statement is:

CREATE [GLOBAL TEMPORARY] TABLE [schema.]tablename
(columnname datatype [NULL | NOT NULL] [DEFAULT expression]

[, ...]);

The CREATE TABLE syntax outlined here is not the complete syntax. A great many
more options can be specified such as where the table will be stored, the charac-
teristics of storage, whether or not it is partitioned, as well as constraints. You will
be tested on the preceding syntax in the “Introduction to Oracle: SQL & PL/SQL”
exam. For a complete syntax of the CREATE TABLE command refer to the Oracle 8i
SQL Reference manual.

For example, to create the table courses in your own schema, you issue the

command:

CREATE TABLE Courses
(CourseID number(5) NOT NULL,
CourseName varchar2(200) NOT NULL,
ReplacesCourse number(5) NULL,
RetailPrice number(9,2) NULL,
Description varchar2(2000) NULL);

Tip

Objective

Learning to design databases

Although the “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
database design concepts and theory, if you want to be a more well rounded individual in
the database world, an understanding of design is necessary. A number of useful titles are
available that explain the process of designing a database. They include Michael J.
Hernandez, Database Design for Mere Mortals: A Hands-On Guide to Relational Database
Design (Addison Wesley, 1997), which is a good book for designing most databases. If you
are looking at working with data warehouses, Ralph Kimball et al., The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data
Warehouses (John Wiley & Sons, 1998) provides useful information on the design process
for data warehouses.

For books that are more specific to Oracle, a helpful data warehouse guide for the Oracle
world is Gary Dodge et al., Essential Oracle8i Data Warehousing: Designing, Building, and
Managing Oracle Data Warehouses (John Wiley & Sons, 2000). Another useful reference
dealing with Oracle database design is David Ensor and Tim Stevenson, Oracle Design
(O’Reilly & Associates, 1997). The information presented in this last title, though dealing
with Oracle 7 and Oracle 8 primarily, still applies to Oracle 8i.

4832-8 ch07.F 7/27/01 9:01 AM Page 273

274 Part II ✦ Managing Database Objects

In creating a table, you must specify a table name and at least one column with a

valid datatype and size. NULL or NOT NULL are not required but are recommended

to ensure that you are aware whether or not a value must be entered for the

column.

Although it is not necessary to place each column definition on a separate line for
the statement to work (each column definition need be separated only by a
comma), doing so improves the readability of the statement and makes it easier to
see specific information about each column. You should follow this rule when cre-
ating your own tables.

Datatypes available in Oracle
Each column in an Oracle table must have at least two properties: It must have a

name unique within the table and a valid datatype. Datatypes in Oracle enable you

to specify what types of data (for example, numbers, characters, dates, or binary

large objects — BLOBs) can be stored in the column. The datatypes that are avail-

able include the standard Oracle scalar datatypes listed in Table 7-1 or a user-

defined datatype that is based upon one of the scalar datatypes or another

user-defined datatype.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
the creation or usage of user-defined datatypes.

Table 7-1
Scalar Datatypes

Datatype Description

VARCHAR2(size) Variable-length character string having maximum length-size bytes. The
maximum size is 4,000, and the minimum is 1. You must specify the
size for VARCHAR2.

NVARCHAR2(size) Variable-length character string having maximum length-size characters
or bytes, depending on the choice of the National Language character
set. The maximum size is determined by the number of bytes required
to store each character, with an upper limit of 4,000 bytes. You must
specify the size for NVARCHAR2.

NUMBER(p,s) Number having precision p and scale s. The precision p can range from
1 to 38. The scale s can range from –84 to 127. Precision determines
the total numbers that can be stored. Scale determines the number of
decimal places allowed.

LONG Character data of variable length up to 2GB, or 231 –1 bytes. LONG
datatype columns were used in previous versions of Oracle to support
large character data; however, they should no longer be used and are
strongly discouraged. CLOB and NCLOB datatype columns are the
recommended way to store large amounts of character data.

Exam Tip

Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 274

275Chapter 7 ✦ Creating and Managing Oracle Database Objects

Datatype Description

DATE Valid date range from January 1, 4712 BC to December 31, 9999 AD.

RAW(size) Raw binary data of length-size bytes. Maximum size is 2,000 bytes. You
must specify size for a RAW value. This datatype is included for
backward compatibility and should not be used.

LONG RAW Raw binary data of variable length up to 2GB. This datatype is included
for backward compatibility and should not be used. To store large
amounts of binary data, BLOB datatype columns are recommended.

ROWID Hexadecimal string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudo-column.

UROWID [(size)] Hexadecimal string representing the logical address of a row of an
index-organized table. The optional size is the size of a column of type
UROWID. The maximum size and default is 4,000 bytes.

CHAR(size) Fixed-length character data of length-size bytes. Maximum size is 2,000
bytes. Default and minimum size is 1 byte.

NCHAR(size) Fixed-length character data of length-size characters or bytes,
depending on the choice of National Language character set.
Maximum size is determined by the number of bytes required to store
each character, with an upper limit of 2,000 bytes. Default and
minimum size is 1 character or 1 byte, depending on the character set.

CLOB A character large object containing single-byte characters. Both fixed-
width and variable-width character sets are supported, both using the
database character set. Maximum size is 4GB.

NCLOB A character large object containing multibyte characters. Both fixed-
width and variable-width character sets are supported, both using the
National Language character set of the database. Maximum size is
4GB.

BLOB A binary large object. Maximum size is 4GB.

BFILE Contains a locator to a large binary file stored outside the database.
Enables byte stream I/O access to external large objects (LOBs)
residing on the database server. Maximum size is 4GB.

Notice in Table 7-1 that for character data, you have both NCHAR and CHAR

columns, as well as NVARCHAR2 and VARCHAR2. This is because Oracle introduced

support for National Language character sets in Oracle 8. In essence, this allows

you to store data in CHAR and VARCHAR2 columns with one set of characters

(Western European, for example) and data in NCHAR and NVARCHAR2 columns

with a different set of characters (Japanese, for example). This allows the same

4832-8 ch07.F 7/27/01 9:01 AM Page 275

276 Part II ✦ Managing Database Objects

database to house different character data instead of requiring a second database

to hold the same information. Typically, in real work environments, the character

set of a database and the National Language character set of a database are either

the same or very similar.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge
of National Language characters or how to create a database to support different
National Language character sets. It is sufficient to be aware of the two different
sets of datatypes and which character set corresponds to which.

The GLOBAL TEMPORARY clause
In Oracle 8i, a new feature was introduced that enabled you to create a table whose

definition would remain the data dictionary but whose data would persist only for a

session or a transaction. The GLOBAL TEMPORARY clause in the CREATE TABLE

statement indicates that you wish to create a temporary table.

GLOBAL TEMPORARY tables are useful when you need a temporary place to store

information before committing it to the database. For example, if your database is

used to enter orders, you can place information about the order in a temporary set

of tables while the order process is taking place. When the customer confirms the

order, you can issue a command that inserts data from the temporary tables to the

permanent Orders and OrderDetails tables. This way, you do not insert data into

the “real” tables until customers are sure that they want to place the order. Without

the use of temporary tables, you would have to insert and then delete the informa-

tion, which can slow down other users.

A GLOBAL TEMPORARY table can be assigned permissions just like any other table;

however, each user that inserts or updates data in such a table sees only their own

information. This is because Oracle assumes, when you create a GLOBAL TEMPO-

RARY table, that its contents are held on a per session basis (that is, every connec-

tion to the database will have different data). The data in one session’s temporary

table is visible only to that session.

To create a GLOBAL TEMPORARY table to hold class registration information as it

is being processed, you issue the following command:

CREATE GLOBAL TEMPORARY TABLE TempClassEnrollment
(ClassID number(5) NOT NULL,
StudentNumber number(5) NOT NULL,
Status char(10) NOT NULL,
EnrollmentDate date NOT NULL,
Price number(9,2) NOT NULL,
Grade char(4) NULL,
Comments varchar2(2000) NULL);

Exam Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 276

277Chapter 7 ✦ Creating and Managing Oracle Database Objects

The DEFAULT clause
When creating a table, you can specify the value that should be assigned to a col-

umn if no value is provided when a row is inserted into the table. This is particu-

larly useful on those columns that have NOT NULL specified for them because you

are now able to ensure that a value is assigned if the user fails to specify one on

insert. Unless a DEFAULT is specified for a column, Oracle always assigns NULL to

the column if no value is specified. If this behavior is not what you desire, specify a

DEFAULT for the column.

To assign a value to the EnrollmentDate column of the ClassEnrollment table, you

use the following CREATE TABLE statement:

CREATE TABLE ClassEnrollment
(ClassID number(5) NOT NULL,
StudentNumber number(5) NOT NULL,
Status char(10) NOT NULL,
EnrollmentDate date NOT NULL DEFAULT SYSDATE,
Price number(9,2) NOT NULL,
Grade char(4) NULL,
Comments varchar2(2000) NULL);

This assigns the value of SYSDATE (a system function returning the current date

and time) to the EnrollmentDate column if another value was not specified at the

time the row was inserted.

It is important to remember that DEFAULTs apply only when a row is INSERTed into
a table. They do not apply when an UPDATE statement is used to change data for
the column. It is, therefore, possible that, unless NOT NULL is specified or a trigger
exists to prevent the action, a user can modify the value of the column and set it
to NULL by using the UPDATE statement after the INSERT has taken place.

The DEFAULT clause enables you to specify a literal value, a simple expression, or a

SQL function such as SYSDATE. When using expressions, it is important to note that

you may not reference other columns or tables in the expression, nor may you ref-

erence pseudo-columns such as ROWID. When more functionality is required to

assign the column a value, you must create a trigger to perform the action.

For more information on how to create triggers and how they work, refer to
Chapter 13, “Introduction to Stored Programs.”

Finally, although it may be obvious, the datatype of the expression must match the

datatype of the column. For example, if the column is a date datatype and the

DEFAULT expression returns a character value, you must use the TO_DATE system

function to convert the result of an expression to a date; otherwise, the assignment

of the default will fail.

Cross-
Reference

Caution

4832-8 ch07.F 7/27/01 9:01 AM Page 277

278 Part II ✦ Managing Database Objects

Creating a table using a subquery
A variation of the CREATE TABLE syntax enables you to create a table and populate

it with data that is the result of a subquery specified in the CREATE TABLE com-

mand. The syntax to create a table using a subquery is as follows:

CREATE TABLE tablename
[(columnname, columnname, ...)]
AS subquery;

For more information on subqueries, please refer to Chapter 4, “Advanced SELECT
Statements.”

When creating a table from a subquery, you can also specify the names of columns

in the CREATE TABLE portion of the statement, and any columns returned by the

subquery are given the names specified there. You cannot specify the datatype of

the column because it is determined by the result of the subquery.

Another method, and one that is more accepted, is to alias the column in the

SELECT statement of the subquery. Aliasing the name of the column in the sub-

query actually makes the statement more readable.

The rules for creating tables by using a subquery are straightforward:

✦ When you specify the names of columns in the CREATE TABLE portion of the

command, the table is created with the specified column names.

✦ The column definition in the CREATE TABLE portion can contain only the col-

umn name and a DEFAULT.

✦ When you specify the names of columns in the CREATE TABLE portion of the

command, the number of columns returned by the subquery must be equal to

the number of columns specified. If they differ, the command fails.

✦ When no column names are specified in the CREATE TABLE portion of the

command, the number of columns and all column names are taken from the

subquery.

✦ The names of columns in the subquery must adhere to Oracle naming conven-

tions or be aliased to conform to those conventions.

✦ Any rows retrieved by the subquery are inserted into the table after it is

created.

Creating tables using subqueries is a very useful feature in Oracle because it

enables you to duplicate some or all of the data in one table under a different table

name. In organizations that have large amounts of data, the CREATE TABLE ... AS

SELECT syntax can be used to create historical records of information and reduce

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 278

279Chapter 7 ✦ Creating and Managing Oracle Database Objects

the size of production tables so that data retrieval works faster. For example, if you

want to create a table with all class enrollments that are more than two years old,

you can issue the following command:

CREATE TABLE ClassEnrollmentArchive AS
SELECT * FROM ClassEnrollment
WHERE EnrollmentDate < (SYSDATE-730);

You can also use it to create a table of the amount of revenue generated on a per

class basis for the last two years and then use that for reporting. To create the

table, you issue a command similar to the following:

CREATE TABLE EnrollmentRevenueSummary AS
SELECT ClassID, SUM(Price) as Revenue

FROM ClassEnrollment
WHERE EnrollmentDate

BETWEEN (SYSDATE-730) AND SYSDATE
GROUP BY ClassID
ORDER BY ClassID;

Notice that the SUM(Price) aggregate expression must be aliased as Revenue in this

case. This is because a table created as a result of a subquery must have valid

Oracle names for columns. SUM(Price) cannot be a column name because the open

parenthesis and close parenthesis characters are invalid in a column name. When

creating tables from a subquery, it is important to ensure that the resulting column

names follow proper naming convention rules.

Another use of creating tables from a subquery is to duplicate the structure of an

existing table without adding the data at the same time. This is done by adding a

WHERE clause to the subquery that always evaluates to FALSE, as in the following

example:

CREATE TABLE NewStudents AS
SELECT * FROM Students
WHERE 0=1;

The NewStudents table will have no rows because the expression 0=1 always evalu-

ates to FALSE and does not return any rows.

Getting information on tables from the data dictionary
✦ Describe the data dictionary views a user may access

✦ Query data from the data dictionary

Oracle provides several ways to get information on tables from the data dictionary.

One of these methods is by querying USER_ views. Several USER_ views provide

information on tables. Two that are the most useful are USER_TABLES, which lists

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 279

280 Part II ✦ Managing Database Objects

the names and storage characteristics of tables that a user owns, and

USER_TAB_COLUMNS, which lists the columns of all tables in the user’s schema

and their properties. Oracle actually has three sets of data dictionary views:

✦ USER_ views: These views enable users to get information on objects that are

in their schemas (that is, objects that they have created and own).

✦ ALL_ views: These views enable users to get information on objects that they

own or that they have been given access to. The ALL_ views contains a super-

set of the information presented in the USER_ views and enables users to find

out what other objects they are allowed to reference or manipulate in the

database.

✦ DBA_ views: The DBA_ views are designed to be used by the database admin-

istrator (DBA) and provide a full set of information for objects in the database

(that is, any object created by any user). Ordinary users do not have access

to these views because special privileges are needed to SELECT from them.

To obtain information on the objects that you own, you query the USER_ views. If

you wanted to find out information about objects that you have been granted per-

missions to, you can make use of ALL_ views. Unless you are a DBA, you do not

ordinarily have access to DBA_ views.

Appendix F, “Data Dictionary Views,” provides a listing and the structure of most of
the USER_ views that you will use for the exam.

To get a listing of all tables that you own, you can issue the following command:

SQL> SELECT table_name FROM USER_TABLES;

TABLE_NAME

BATCHJOBS
CLASSENROLLMENT
COURSEAUDIT
COURSES
COURSES_TEMP
INSTRUCTORS
LOCATIONS
SCHEDULEDCLASSES
STUDENTS

9 rows selected.

SQL>

To get a listing of all tables that you have been granted access to, including the

tables that you own, you can issue the command:

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 280

281Chapter 7 ✦ Creating and Managing Oracle Database Objects

SQL> SELECT owner, table_name FROM ALL_TABLES
2 ORDER BY owner, table_name;

OWNER TABLE_NAME
------------------------- ------------------------------
MDSYS CS_SRS
MDSYS MD$DICTVER
MDSYS OGIS_SPATIAL_REFERENCE_SYSTEMS
MTSSYS MTS_PROXY_INFO
STUDENT BATCHJOBS
STUDENT CLASSENROLLMENT
STUDENT COURSEAUDIT
STUDENT COURSES
STUDENT COURSES_TEMP
STUDENT INSTRUCTORS
STUDENT LOCATIONS
STUDENT SCHEDULEDCLASSES
STUDENT STUDENTS
SYS AUDIT_ACTIONS
SYS DUAL
SYS PSTUBTBL
SYS STMT_AUDIT_OPTION_MAP
SYS SYSTEM_PRIVILEGE_MAP
SYS TABLE_PRIVILEGE_MAP
SYSTEM DEF$_TEMP$LOB
SYSTEM HELP

21 rows selected.

SQL>

You can also query the USER_TAB_COLUMNS view to get a listing of all columns for

a table that you own, for example:

SQL> SELECT table_name, column_name, data_type, data_length
2 FROM USER_TAB_COLUMNS
3 WHERE table_name = ‘COURSES’
4 ORDER BY column_id;

TABLE_NAME COLUMN_NAME DATA_TYPE DATA_LENGTH
-------------------- -------------------- ---------- -----------
COURSES COURSENUMBER NUMBER 22
COURSES COURSENAME VARCHAR2 200
COURSES REPLACESCOURSE NUMBER 22
COURSES RETAILPRICE NUMBER 22
COURSES DESCRIPTION VARCHAR2 2000

5 rows selected.

SQL>

4832-8 ch07.F 7/27/01 9:01 AM Page 281

282 Part II ✦ Managing Database Objects

Oracle SQL*Plus also offers another mechanism to find the structure of a single

table, as well as other objects — the DESCRIBE command. To retrieve the structure

of the Courses table without having to formulate a SQL query as shown previously,

you can issue the following command in SQL*Plus:

SQL> DESC Courses
Name Null? Type
--- -------- ----------------------------
COURSENUMBER NOT NULL NUMBER(38)
COURSENAME NOT NULL VARCHAR2(200)
REPLACESCOURSE NUMBER(38)
RETAILPRICE NOT NULL NUMBER(9,2)
DESCRIPTION VARCHAR2(2000)

SQL>

The DESCRIBE command, whose shorthand is DESC, is useful in determining the

structure of a table, view, or other database objects.

Another view, USER_CATALOG, simply returns the name of an object (that is, a table

or a view) that contains data and its type (table, view, or synonym). USER_CATA-

LOG is an ANSI-standard view and provides a brief listing of all objects that you

own. Its corresponding ALL_CATALOG view provides information on all tables,

views, and synonyms that you have been granted access to.

The USER_CATALOG view also has a synonym defined. Therefore, the following

commands are interchangeable and result in the same output:

SELECT * FROM USER_CATALOG;
SELECT * FROM CAT;

Issuing either of the preceding commands provides the following result:

SQL> SELECT * FROM CAT;

TABLE_NAME TABLE_TYPE
-------------------- -----------
BATCHJOBS TABLE
CLASSENROLLMENT TABLE
COURSEAUDIT TABLE
COURSES TABLE
COURSES_TEMP TABLE
INSTRUCTORS TABLE
LOCATIONS TABLE
SCHEDULEDCLASSES TABLE
STUDENTS TABLE

9 rows selected.

SQL>

4832-8 ch07.F 7/27/01 9:01 AM Page 282

283Chapter 7 ✦ Creating and Managing Oracle Database Objects

Querying the ALL_CATALOG view provides a rather lengthy list of objects that you

have been granted access to, as well as those that you own. The output (truncated

here because of space limitations) is similar to the following:

SQL> SELECT * FROM ALL_CATALOG;

OWNER TABLE_NAME TABLE_TYPE
--------------- ------------------------- -----------
SYS ALL_ALL_TABLES VIEW
PUBLIC ALL_ALL_TABLES SYNONYM
SYS ALL_ARGUMENTS VIEW
PUBLIC ALL_ARGUMENTS SYNONYM
SYS ALL_ASSOCIATIONS VIEW
PUBLIC ALL_ASSOCIATIONS SYNONYM
SYS ALL_CATALOG VIEW
PUBLIC ALL_CATALOG SYNONYM
SYS ALL_CLUSTERS VIEW
PUBLIC ALL_CLUSTERS SYNONYM
SYS ALL_CLUSTER_HASH_EXPRESSI VIEW
PUBLIC ALL_CLUSTER_HASH_EXPRESSI SYNONYM
SYS ALL_COLL_TYPES VIEW
PUBLIC ALL_COLL_TYPES SYNONYM
SYS ALL_COL_COMMENTS VIEW
PUBLIC ALL_COL_COMMENTS SYNONYM
SYS ALL_COL_PRIVS VIEW
PUBLIC ALL_COL_PRIVS SYNONYM
SYS ALL_COL_PRIVS_MADE VIEW
PUBLIC ALL_COL_PRIVS_MADE SYNONYM
SYS ALL_COL_PRIVS_RECD VIEW
PUBLIC ALL_COL_PRIVS_RECD SYNONYM
SYS ALL_CONSTRAINTS VIEW
PUBLIC ALL_CONSTRAINTS SYNONYM
SYS ALL_CONS_COLUMNS VIEW
PUBLIC ALL_CONS_COLUMNS SYNONYM
SYS ALL_CONTEXT VIEW
PUBLIC ALL_CONTEXT SYNONYM
SYS ALL_DB_LINKS VIEW

... many more rows follow ...

The ALTER TABLE command
When you need to change your table definition, by adding or removing a column,

modifying the length or datatype of a column, or adding a DEFAULT to a column,

you use the ALTER TABLE command.

4832-8 ch07.F 7/27/01 9:01 AM Page 283

284 Part II ✦ Managing Database Objects

Adding columns to a table
To add a column to an existing table, the syntax of the ALTER TABLE command is as

follows:

ALTER TABLE tablename
ADD (columnname datatype [DEFAULT expr]

[, columnname datatype ...] ...);

For example, if you want to add a new column called BirthDate to the Students

table, you issue the following command:

ALTER TABLE Students
ADD (BirthDate date NULL);

After a column is added to a table, it becomes the last column in its definition.

When issuing a DESCRIBE command on the table, it is listed after all other existing

columns, as shown here:

SQL> DESC Students
Name Null? Type
--- -------- ----------------------------
STUDENTNUMBER NOT NULL NUMBER(38)
SALUTATION CHAR(4)
LASTNAME NOT NULL VARCHAR2(30)
FIRSTNAME NOT NULL VARCHAR2(30)
MIDDLEINITIAL VARCHAR2(5)
ADDRESS1 VARCHAR2(50)
ADDRESS2 VARCHAR2(50)
CITY VARCHAR2(30)
STATE CHAR(2)
COUNTRY VARCHAR2(30)
POSTALCODE CHAR(10)
HOMEPHONE CHAR(15)
WORKPHONE CHAR(15)
EMAIL VARCHAR2(50)
COMMENTS VARCHAR2(2000)
BIRTHDATE DATE

SQL>

Adding a column to an existing table does not physically change the data in the

database. Oracle applies the default value, if specified, to the column for all existing

data and assigns the column any values that a user assigns to it for a particular row.

When querying the database for the value of the BirthDate column, the output

includes those rows that have the value and those assigned the DEFAULT (or NULL

when no DEFAULT is defined), as shown here:

4832-8 ch07.F 7/27/01 9:01 AM Page 284

285Chapter 7 ✦ Creating and Managing Oracle Database Objects

SQL> SELECT studentnumber, lastname, firstname, birthdate FROM Students;

STUDENTNUMBER LASTNAME FIRSTNAME BIRTHDATE
------------- -------------------- -------------------- ---------

1000 Smith John
1001 Jones Davey
1002 Massey Jane
1003 Smith Trevor
1004 Hogan Mike
1005 Hee John
1006 Andrew Susan
1007 Holland Roxanne
1008 Jones Gordon
1009 Colter Sue
1010 Patterson Chris 18-APR-76

11 rows selected.

SQL>

Modifying existing columns in a table
The ALTER TABLE command also enables you to modify existing columns in a table.

The syntax of the command is:

ALTER TABLE tablename
MODIFY (column datatype [DEFAULT expression]);

Using the ALTER TABLE command you can:

✦ Increase the size or precision of a numeric column. For example, you can

change a column from NUMBER(9,2) to NUMBER(11,2).

✦ Reduce the size of a column, such as making a VARCHAR(2) column smaller.

You are able to do this only when the table contains no rows. For this reason,

this action is not usually performed; dropping and recreating the table is more

common.

✦ Change a column from one datatype to another when all rows for the column

contain only NULL values. Again, because this is not a very typical situation, it

is not likely that you ever actually will change a table’s datatype without

recreating it.

✦ Change a column from VARCHAR2 to CHAR, or vice versa if you do not change

the size. When you do want to increase, but not decrease, the size, the table

may contain data, and the column may be populated. When you wish to

change the size as well as the datatype, the column can contain only NULL

values.

✦ Add a DEFAULT to a column. When you add the DEFAULT, all new rows added

to the table where a value is not specified during the INSERT operation are

assigned the DEFAULT value. The values of all existing rows are not changed.

4832-8 ch07.F 7/27/01 9:01 AM Page 285

286 Part II ✦ Managing Database Objects

The following example changes the size of the RetailPrice column in the Courses

table:

ALTER TABLE Courses
MODIFY (RetailPrice number(11,2)0;

Removing a column from a table
Oracle 8i introduces a new feature — the ability to drop columns that are no longer

needed from a table. You can do so using a single-step process with the ALTER

TABLE ... DROP COLUMN command or by first marking the column UNUSED.

Marking columns UNUSED
Marking a column UNUSED no longer makes it available to any application using the

table. For all intents and purposes, the columns marked UNUSED no longer exist

and cannot be referenced in SELECT, INSERT, or UPDATE statements. However, the

advantage of marking a column UNUSED is that Oracle does not physically rebuild

the table to remove the column but only flags it as UNUSED. This is useful in those

cases where the table whose column you no longer require has large amounts of

data. Physically removing the column may take a long time because the entire table

must be rebuilt, but marking the column as UNUSED is a quick operation.

Two variations of the syntax can be used to mark a column as UNUSED. One way

that can be used is:

ALTER TABLE tablename
SET UNUSED (columnname);

Another way to mark a column as UNUSED is to use the following syntax:

ALTER TABLE tablename
SET UNUSED COLUMN columnname;

The end result of using either syntax is the same: The column no longer is available,

and the table is not physically reorganized.

Dropping a column from a table
Another way to remove a column from a table is to drop it. The syntax of the com-

mand is as follows:

ALTER TABLE tablename
DROP COLUMN columnname;

When this command is issued, Oracle physically rebuilds the table to not include

the column structure in any row. On tables with large amounts of data, this process

can take a long time.

4832-8 ch07.F 7/27/01 9:01 AM Page 286

287Chapter 7 ✦ Creating and Managing Oracle Database Objects

If you previously marked one or more columns as UNUSED, you can also drop them

all at the same time by using the following version of the ALTER TABLE command:

ALTER TABLE tablename
DROP UNUSED COLUMNS;

This command drops any columns that have been previously marked as UNUSED in

the table and physically reorganizes the table itself.

It’s important to note that when you issue a DROP COLUMN command for any col-

umn in a table, if other columns in the same table have already been marked as

UNUSED, they also are dropped. While this may seem like a problem, it really is not.

After a column is marked as UNUSED, it is not longer available and cannot be recov-

ered. For all intents and purposes, the column is gone. By dropping those columns

marked UNUSED at the same time that you explicitly drop a single column, Oracle is

merely performing housecleaning and ensuring that it no longer has to remove from

the data it retrieves any references to those UNUSED columns.

Being able to mark columns as UNUSED first and then drop them all at the same

time is helpful when you need to drop more than one and you do not want to have

to rebuild the table physically each time.

Rules for dropping columns or marking them UNUSED
When marking columns as UNUSED or issuing the DROP COLUMN variant of the

ALTER TABLE command, you need to ensure that the following rules are followed:

✦ The table whose columns are being marked as UNUSED or dropped must have

at least one column after the operation is complete. In other words, you can-

not mark a column UNUSED or drop it if it is the last column in the table.

✦ When using the DROP COLUMN syntax, you cannot drop more than one col-

umn at the same time. The ALTER TABLE ... DROP COLUMN command must

issued once for each column to be dropped. A better way to do this is to mark

the columns as UNUSED and then issue the following command:

ALTER TABLE tablename
DROP UNUSED COLUMNS;

✦ After a column is marked as UNUSED or dropped, it cannot be recovered.

Either variation on removing the column will cause it to be logically removed

from the table definition. The DESCRIBE command does not return UNUSED or

dropped columns.

✦ If the column contains data, the data is no longer accessible. It is always rec-

ommended that a table whose columns are being marked as UNUSED or

dropped be backed up prior to doing so, or another copy of the table with a

different name be created using the CREATE TABLE ... AS SELECT syntax.

4832-8 ch07.F 7/27/01 9:01 AM Page 287

288 Part II ✦ Managing Database Objects

The DROP TABLE command
Over time, the use of certain tables is no longer required, and you may need to free

up disk space for other tables that are being heavily accessed. The Oracle com-

mand that enables you to remove a table from the database is the DROP TABLE

command. The syntax of the command is as follows:

DROP TABLE tablename [CASCADE CONSTRAINTS];

When you issue the preceding command, the following happens:

✦ Any pending transactions on the table are allowed to complete before the

table is dropped. This is similar to making sure that all customers are out of

the store before you lock the door.

✦ The definition of the table is removed from the data dictionary.

✦ Any data that existed in the table is deleted.

✦ All indexes created on columns of the table are dropped as well.

✦ Any views and synonyms that are based on the table are not dropped, but

their definitions become marked as INVALID, and they need to be recreated

before they can be used again.

Only certain users are allowed to drop tables. When you create a table, you are its

owner. As the owner of any object, you are allowed to make any changes to it,

including getting rid of it. The owner of a table can always drop it, as can any user

that has been granted the DROP ANY TABLE privilege. The latter is typically true

only for DBAs because they can do anything they want in the database.

It is not possible to drop a table, even if you are the owner, when FOREIGN KEYs of

other tables depend on a PRIMARY KEY or UNIQUE constraint that exists on your

table. The reason for this is that, under these circumstances, your table is the par-

ent to data in another table. For example, the LocationID column of the

ScheduledClasses table, which has a FOREIGN KEY defined, is dependent upon the

LocationID column of the Locations table, which is the PRIMARY KEY. If you

decided to drop the Locations table, the relationship would be broken, and the

database would no longer be consistent. In other words, the database would con-

tain child records (ScheduledClasses) without any parents (Locations). Oracle pre-

vents this from happening by default.

More information on constraints can be found later in this chapter in the section
“Data Integrity Using Constraints.”

If you want to drop a table and break any relationship between it and other tables

that depend upon it, you can add the CASCADE CONSTRAINTS clause to the DROP

TABLE statement. In this case, Oracle also drops any FOREIGN KEY constraints in

child tables that depend upon PRIMARY KEY or UNIQUE constraints in the table

being dropped.

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 288

289Chapter 7 ✦ Creating and Managing Oracle Database Objects

After you issue the DROP TABLE command, it cannot be rolled back. This is

because any DDL statement in Oracle is its own transaction. As soon as the com-

mand completes, a COMMIT is automatically issued by Oracle.

You can drop only one table at a time using the DROP TABLE statement.

The TRUNCATE TABLE command
When you do not want to drop a table from the database, but need to quickly

remove all the data in a table, you can use the TRUNCATE TABLE command. The

syntax is as follows:

TRUNCATE TABLE tablename;

This command differs from the DELETE command in the following ways:

✦ It removes all rows from the table and releases disk space back to Oracle. The

DELETE command does not release disk space back to Oracle.

✦ It cannot be rolled back once executed. TRUNCATE TABLE is considered a

DDL command and is, therefore, its own transaction.

✦ It always removes ALL rows in a table and cannot be used to selectively delete

data from a table. When you need to selectively remove only certain rows, use

the DELETE command with a WHERE condition instead.

The TRUNCATE TABLE command is the quickest way to remove all of the rows from

a table. Like the DROP TABLE command, it also fails when any tables have FOREIGN

KEY constraints that depend upon a PRIMARY KEY or UNIQUE constraint in the

table being truncated.

Documenting tables and columns
Oracle provides the capability to document your tables and columns using the

COMMENT command. While in practice, few organizations make extensive use of

this feature, it can be useful in providing insight into the purpose of tables and

columns, and what they were intended to be used for to new users or DBAs.

The syntax of the COMMENT command for adding information about a table is:

COMMENT ON TABLE tablename IS commentstring;

The syntax of the COMMENT command for adding information about a column is:

COMMENT ON COLUMN columnname IS commentstring;

4832-8 ch07.F 7/27/01 9:01 AM Page 289

290 Part II ✦ Managing Database Objects

The comment string must be enclosed in single quotes and must not itself contain

any single quotes. If the comment string must contain single quotes, you can use

the SQL*Plus escape character (a backslash — \) to tell Oracle that the single quote

should be treated as text and not a string terminator.

For example, to add a comment on the Courses table, you can issue the following

command:

SQL> COMMENT ON TABLE Courses IS
2 ‘This is a table providing information on the courses
3 offered by the training center. The CourseID column
4 is the PRIMARY KEY for the table.’;

Comment created.

SQL>

You can also clear any comments that exist for a table or column in the database by

assigning the comment a null string. This removes any existing comments. For

example, to remove a comment on the LocationID column of the ScheduledClasses

table, you issue the following command:

SQL> COMMENT ON COLUMN ScheduledClasses.InstructorID IS ‘’;

Comment created.

SQL>

To view comments, you can query the corresponding USER_ or ALL_ views. For

tables, comments can be seen by querying the USER_TAB_COMMENTS view for all

tables owned by the user, and ALL_TAB_COMMENTS view for all tables that the

user has access to. For columns, comments can be seen by querying the

USER_COL_COMMENTS view for columns of tables the user owns, or the

ALL_COL_COMMENTS view for columns from the tables the user owns and those

columns from tables in other users’ schemas that the user has access to.

For example, to view comments on any tables that the user Student owns, you issue

the following command while connected to the instance as Student, with results

similar to those displayed:

SQL> SELECT * FROM USER_TAB_COMMENTS;

TABLE_NAME TABLE_TYPE COMMENTS
------------ ----------- ---

4832-8 ch07.F 7/27/01 9:01 AM Page 290

291Chapter 7 ✦ Creating and Managing Oracle Database Objects

BATCHJOBS TABLE
CLASSENROLLM TABLE
ENT

COURSEAUDIT TABLE
COURSES TABLE This is a table providing information on the courses

offered by the training center. The CourseID column
is the PRIMARY KEY for the table.

COURSES_TEMP TABLE
INSTRUCTORS TABLE
LOCATIONS TABLE
NEWSTUDENTS TABLE
SCHEDULEDCLA TABLE
SSES

STUDENTS TABLE

10 rows selected.

SQL>

Data Integrity Using Constraints
✦ Including Constraints

• Describe constraints

• Create and maintain constraints

Constraints are database objects that are used to ensure that data in the database

makes sense. They are used to enforce business rules such as “every student must

be uniquely identified” or “each student must have a first and last name, but not all

students are required to have an email address.” Constraints can also be used to

prevent deletion of data in one table that may be depended upon by data in

another. For example, if you want to ensure that an instructor is not deleted from

the Instructors table if he or she is currently teaching or has taught a course, you

can create a foreign key on the Classes table that points to the Instructors table’s

primary key. Once these constraints are defined, an instructor cannot be deleted

when one row in the Classes table has that instructor’s primary key value in a row

in the Classes table.

The types of constraints supported by Oracle 8i are listed in Table 7-2.

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 291

292 Part II ✦ Managing Database Objects

Table 7-2
Constraints Supported by Oracle 8i

Constraint Description

NOT NULL This constraint states that a column must have a value at all times. Oracle
supports NULL by default on all columns in a table, which means that a
value for the column does not have to be entered. If a value is required, a
NOT NULL constraint can be defined on the column. For example, to ensure
that all students have a first and last name entered in the Students table,
you specify the NOT NULL constraint for the FirstName and LastName
columns.

UNIQUE A UNIQUE constraint ensures that the value for a column or combination of
columns in a table is unique or NULL for the entire table. This can be used
to prevent the duplication of data. UNIQUE constraints create or use an
existing index to enforce this uniqueness. A table may have multiple
UNIQUE constraints.

PRIMARY KEY A PRIMARY KEY constraint is the combination of a NOT NULL and UNIQUE
constraint. This means that any column or columns defined for the
PRIMARY KEY constraint ensure that data in the table is UNIQUE and NOT
NULL. Like a UNIQUE constraint, a PRIMARY KEY constraint also either
creates or uses an existing index to enforce the constraint. A table may
have only one PRIMARY KEY constraint.

FOREIGN KEY A FOREIGN KEY constraint states that data in the column or columns of a
table references a PRIMARY KEY or UNIQUE constraint of another table to
ensure that the value entered is valid. For example, when specifying that a
specific instructor will teach a class, a FOREIGN KEY on the InstructorID
column of the Classes table can reference the InstructorID of the Instructors
table to ensure that a nonexistent instructor is not assigned to a class.

CHECK CHECK constraints are used to enforce simple business rules, such as an
enrollment date for a class cannot occur after the end date for the class.
CHECK constraints can reference data only in the same row of the table
and cannot perform any kind of lookups in other tables to verify the
condition. For the enforcement of more complex business rules, triggers
should be used.

Constraints are a way to ensure that data in your database is entered consistently

and that the requirements of the business are met. Should the business rules

change, constraints can also be modified without any changes to the client applica-

tion accessing the database.

4832-8 ch07.F 7/27/01 9:01 AM Page 292

293Chapter 7 ✦ Creating and Managing Oracle Database Objects

Naming constraints
When you specify a constraint on a column or a table, Oracle automatically assigns

the constraint a name. The name must be of the format SYS_Cnnnnnn where nnnnnn
is a system assigned numerical value to ensure that the name is unique within the

schema. This is actually a bad thing because Oracle notifies a user when a con-

straint is violated while attempting to insert or modify data in a table with a mes-

sage similar to:

*
ERROR at line 1:
ORA-02291: integrity constraint (STUDENT.SYS_C001381)
violated - parent key not found

While the name of the owner of the constraint (STUDENT) and the name of the con-

straint is returned with the error message, it does not provide sufficient informa-

tion on what actually caused the problem. When you name the constraints when

adding them to a table, either during table creation or later with the ALTER TABLE

command, the message may look more like the following:

*
ERROR at line 1:
ORA-02291: integrity constraint (STUDENT.FK_CLASSENROLLMENT_STUDENTNUM)
violated - parent key not found

In this case, we know that the constraint is owned by the user STUDENT and the

constraint is probably a foreign key defined on the ClassEnrollment table on the

StudentNumber column.

A useful naming convention for constraints, while still adhering to the rules out-

lined earlier in this chapter, is as follows:

constrainttype_table_column

Using this convention, when creating a constraint on the Students table that is a

primary key on the StudentNumber column, you should name it as follows:

PK_Students_StudentNumber

Defining constraints
Oracle enables you to define constraints at the time a table is created (that is, when

you issue the CREATE TABLE statement) or afterward using the ALTER TABLE com-

mand. When you define your constraints at the same time that you create the table,

you can specify constraints at the column or table level. Constraints specified for a

column at table creation time are also known as in-line or column constraints
because they are part of the definition of the column. Constraints specified after all

columns have been defined are known as out-of-line or table constraints.

4832-8 ch07.F 7/27/01 9:01 AM Page 293

294 Part II ✦ Managing Database Objects

The syntax for defining constraints while creating a table is as follows:

CREATE TABLE [schema.]tablename
(columnname datatype [DEFAULT expression]

[[CONSTRAINT constraintname] constrainttype],
...
[CONSTRAINT [constraintname] constraintype (columns),...]);

In the first instance of the word CONSTRAINT, you are defining a constraint at the

column level that only applies to a specific column. At this point, you need only

specify the constraint type, and the constraint is assumed to apply to the column

on which it is defined.

In the second instance of the word CONSTRAINT, all of the columns have already

been defined, and you are now adding a table constraint. In this case, you must

specify the keyword CONSTRAINT to tell Oracle that what follows is a constraint

definition. You then have the option to specify a constraint name, which is strongly

recommended for the reasons outlined earlier in this chapter. You must specify a

constraint type and the column or columns to which the constraint applies. For

example, to add two FOREIGN KEY constraints and a PRIMARY KEY constraint to

the ClassEnrollment table when the CREATE TABLE statement is issued, you can

execute the following command:

SQL> CREATE TABLE ClassEnrollment (
2 ClassID number(5) NOT NULL
3 CONSTRAINT FK_ClassEnrollment_ClassID
4 FOREIGN KEY (ClassID) REFERENCES ScheduledClasses (ClassID),
5 StudentNumber number(5) NOT NULL
6 CONSTRAINT FK_ClassEnrollment_StudentNum
7 FOREIGN KEY (StudentNumber) REFERENCES Students (StudentNumber),
8 Status char (10) NOT NULL ,
9 EnrollmentDate date NOT NULL,
10 Price number (9,2) NOT NULL ,
11 Grade char (4) NULL ,
12 Comments varchar2 (2000) NULL,
13 CONSTRAINT PK_ClassID_StudentNumber
14 PRIMARY KEY (ClassID, StudentNumber);

Table created.

SQL>

Note that each NOT NULL found in the preceding table creation statement also

specifies a constraint on the ClassEnrollment table. However, because these con-

straints were not named using the “CONSTRAINT constraintname NOT NULL” syn-

tax, they were each assigned a system-defined name in the form SYS_Cnnnnnn.

When you define constraints at the column level, you can define any constraint

type, but it can apply only to the column itself. In the previous example, each of the

FOREIGN KEY constraint created applies only to the column it was specified for.

4832-8 ch07.F 7/27/01 9:01 AM Page 294

295Chapter 7 ✦ Creating and Managing Oracle Database Objects

When you define a constraint at the table level, the constraint can apply to more

than one column, as shown previously in the definition of a primary key for the

ClassEnrollment table. The primary key is composed of both the ClassID and

StudentNumber columns. Because more than one column is specified in the con-

straint definition, this type of constraint must be specified at the table level. You

cannot define a NOT NULL constraint at the table level, but all others may be speci-

fied at that level.

A little more about constraint types
As shown previously in Table 7-2, Oracle enables you to use five different constraint

types. These include the PRIMARY KEY, UNIQUE, FOREIGN KEY, NOT NULL, and

CHECK constraints. Each has its uses and restrictions, which are discussed in the

sections that follow.

The NOT NULL constraint
The NOT NULL constraint ensures that the column on which it is defined always

has a value. The value can be anything appropriate for the datatype of the column,

but the column cannot be NULL. You can define a NOT NULL constraint only at the

column level because it applies to the value of the column and not the table as a

whole.

To define a NOT NULL constraint on the CourseNumber column of the Courses

table, you specify the following at the definition of the column:

... CourseNumber number(5) NOT NULL ...

Defining a NOT NULL constraint in this manner assigns it a system-generated name

in the form of SYS_Cnnnnnn. When you want to give the constraint a name, you can

change the constraint definition to read as follows:

... CourseNumber number(5)
CONSTRAINT NN_Courses_CourseNumber NOT NULL ...

The UNIQUE constraint
The UNIQUE constraint ensures that all data within the scope of the constraint does

not duplicate an existing set of values, or is NULL. In other words, when you apply a

UNIQUE constraint to a column of a table, the value for that column for each row in

the table must be different than any other row in the table, or it may be NULL.

When applying a UNIQUE constraint, Oracle ensures that values for the columns to

which the constraint applies are unique within the table or NULL.

A UNIQUE constraint can be specified at the column level, in which case, the values

for the column must be unique within the table or NULL. You can also specify a

UNIQUE constraint at the table level by indicating to which columns it should apply.

Doing so ensures that the combination of values for the columns are unique within

the table.

4832-8 ch07.F 7/27/01 9:01 AM Page 295

296 Part II ✦ Managing Database Objects

For example, to ensure that the Email column for each instructor in the Instructors

table is different from other instructors, or NULL, you can define a UNIQUE con-

straint at the column level as follows:

... EMail varchar2(50)
CONSTRAINT UQ_Instructors_Email UNIQUE ...

You also can define the same constraint at the table level after all other columns

have been specified, but you need to specify to which column the constraint

applies, as shown here:

... CONSTRAINT UQ_Instructors_Email UNIQUE (EMail) ...

At the table level, you can also define a UNIQUE constraint that applies to more

than one column of a table. When you want to ensure that the combination of

FirstName, LastName, and OfficePhone are unique in the Instructors table, you can

define a UNIQUE constraint at the table level as in the following:

... CONSTRAINT UQ_Instructors_FNameLNameOTel
UNIQUE (FirstName, LastName, OfficePhone) ...

The way that Oracle enforces uniqueness for the constraint is by creating an index

on the table. If an index already exists that has the column or columns to which the

UNIQUE constraint applies as the leading part of the index, Oracle does not create

another index but uses the existing one. If no index is available, or exists, for the

columns to which the UNIQUE constraint applies, Oracle creates an index with the

same name as the UNIQUE constraint. It is, therefore, very important that you name

your UNIQUE constraints and not allow Oracle to assign them system names in the

format SYS_Cnnnnnn because it becomes more difficult to determine which index

may require maintenance as data grows.

While it is not typical to have more than one combination of values to uniquely

identify rows in a table, Oracle does enable you to define more than one UNIQUE

constraint on the table. In fact, there really is no limit to the number of UNIQUE con-

straints you can define on a table, but Oracle does limit you to 255 indexes on a

table.

A UNIQUE constraint is a valid target of a FOREIGN KEY constraint in another or the

same table.

The PRIMARY KEY constraint
The PRIMARY KEY constraint is a combination of the NOT NULL and UNIQUE con-

straints discussed previously. When you define a PRIMARY KEY on a column or set

of columns in a table, the values for those columns specified in the PRIMARY KEY

definition must be unique within the table and cannot be NULL. This ensures that

every row in the table has a value for the PRIMARY KEY at all times.

4832-8 ch07.F 7/27/01 9:01 AM Page 296

297Chapter 7 ✦ Creating and Managing Oracle Database Objects

Like a UNIQUE constraint, a PRIMARY KEY can be defined at the column or table

level. To specify that the CourseNumber column in the Courses table is a PRIMARY

KEY, you can define the column in this manner:

... CourseNumber number(5) PRIMARY KEY ...

Notice that there is no need to name the constraint or in any other way tell Oracle

that data cannot be NULL. This is all automatic with the PRIMARY KEY definition.

However, even though you can shortcut the PRIMARY KEY definition as shown pre-

viously, you should still follow good practices and define a PRIMARY KEY as any

other constraint, as follows:

... CourseNumber number(5)
CONSTRAINT PK_Course_CourseNumber PRIMARY KEY ...

When you need to create a composite PRIMARY KEY (that is, where the uniqueness

is true only if the combination of two or more columns are combined), you need to

specify the PRIMARY KEY constraint at the table level. To define a PRIMARY KEY on

the ClassEnrollment table as the combination of ClassID and StudentNumber, after

all the columns for the table have been defined, you specify the following:

... CONSTRAINT PK_ClEnrol_ClassIDStudentNo
PRIMARY KEY (ClassID, StudentNumber) ...

Like a UNIQUE constraint, when a PRIMARY KEY constraint is defined on a table,

Oracle tries to use an existing index and, if none is available, Oracle creates an

index to enforce the PRIMARY KEY constraint.

Oracle enables you to define only one PRIMARY KEY constraint on a table, as stated

in the relational database model. The PRIMARY KEY constraint is a valid target of a

FOREIGN KEY constraint in another or the same table.

The FOREIGN KEY constraint
A FOREIGN KEY constraint, also known as a referential integrity constraint, specifies

that the values in a column or combination of columns in the table where the FOR-

EIGN KEY is defined must already exist in a column or columns defined as a PRI-

MARY KEY constraint of the same or another table. A FOREIGN KEY creates a

parent/child relationship between data in the table with the PRIMARY KEY or

UNIQUE constraint (the parent) and the table where the FOREIGN KEY constraint is

defined (the child). Just as all children have biological parents, so the data in

columns that are part of the FOREIGN KEY must already exist in the table with the

PRIMARY KEY or UNIQUE constraint.

The main purpose of a FOREIGN KEY constraint is to ensure that your data makes

sense. This is to say that any relationships between tables in your database can be

defined using a combination of PRIMARY KEY, or UNIQUE, and FOREIGN KEY con-

straints. If a user attempts to enter a value in a column on which the FOREIGN KEY

has been defined and whose values cannot be found in the table and column to which

the FOREIGN KEY points, the value is disallowed, and the operation is rolled back.

4832-8 ch07.F 7/27/01 9:01 AM Page 297

298 Part II ✦ Managing Database Objects

For example, if you define a FOREIGN KEY on the LocationID column of the

ScheduledClasses table that points to the PRIMARY KEY of the Locations table,

which is the LocationID column of the table, and you try to enter a LocationID in

the ScheduledClasses table that does not exist in the Locations table, Oracle gener-

ates an error and does not allow the insert to take place.

In order to define a FOREIGN KEY constraint, you must specify it either for a col-

umn or a table. The FOREIGN KEY constraint must also specify which PRIMARY

KEY or UNIQUE constraint columns in another or the same table it references, and,

optionally, if you want the data in the child table to be deleted when the parent key

value is deleted.

The syntax for defining a FOREIGN KEY constraint at the table level is as follows:

CONSTRAINT [constraintname] FOREIGN KEY (column, ...)
REFERENCES tablename (column, ...)
[ON DELETE CASCADE]

Defining a FOREIGN KEY constraint at the column level is similar, without the need

to specify the column to which the FOREIGN KEY applies, as shown here:

CONSTRAINT [constraintname] FOREIGN KEY
REFERENCES tablename {column, ...)
[ON DELETE CASCADE]

For example, to define a FOREIGN KEY on the LocationID column of the

ScheduledClasses table, you can define it at the column level as follows:

... LocationID number(5) NOT NULL
CONSTRAINT FK_SchedClass_InstructorID

REFERENCES Instructors (InstructorID) ...

You can also define the same constraint at the table level after all column defini-

tions have taken place as follows:

... CONSTRAINT FK_SchedClass_InstructorID
FOREIGN KEY (InstructorID)

REFERENCES Instructors (InstructorID) ...

When defining a FOREIGN KEY, three key phrases in the definition tell Oracle how

to establish the relationship. They are:

✦ FOREIGN KEY: Tells Oracle that the column names enclosed in parentheses

that follow this phrase at a table-level definition of the constraint, or the col-

umn where the constraint is defined when done at the column level, must only

have values that exist elsewhere.

4832-8 ch07.F 7/27/01 9:01 AM Page 298

299Chapter 7 ✦ Creating and Managing Oracle Database Objects

✦ REFERENCES: Identifies the table and columns that have a PRIMARY KEY or

UNIQUE constraint on them and that serve as the source of data verification

when a user enters a value in the column or columns to which the FOREIGN

KEY applies. If the value being entered into the FOREIGN KEY columns does

not exist in the table and columns identified by the REFERENCES clause,

Oracle does not allow the entry and generates an error.

✦ ON DELETE CASCADE: Tells Oracle that whenever a value in the table that

the FOREIGN KEY REFERENCES is deleted, automatically delete any corre-

sponding child rows in the table on which the FOREIGN KEY is defined. For

example, if you delete an InstructorID in the Instructors table, any rows in the

ScheduledClasses table with that same InstructorID also are deleted automati-

cally. This ensures that the child table has no values in the FOREIGN KEY

columns that do not exist in the parent table (that is, no orphans are in the

child table). Without ON DELETE CASCADE, any attempt to delete a parent

row with corresponding child rows generates an error. This option should be

used with caution.

It is important to note that when you define a FOREIGN KEY constraint, unlike PRI-

MARY KEY or UNIQUE constraints, Oracle does not automatically create an index.

However, the lack of an index on the columns that make up the FOREIGN KEY can

lead to performance problems in enforcing the relationship between the parent and

the child tables, because Oracle needs to lock the child table or may need to per-

form full table scans on the child table each time data changes in the parent. For

this reason, it is strongly recommended that you create an index on the FOREIGN

KEY columns.

Although Oracle introduced support for temporary tables in Oracle 8i, it is not pos-

sible to create a referential integrity constraint on a temporary table. This means

that a temporary table cannot have a FOREIGN KEY constraint defined on it. It is

possible to create NOT NULL, CHECK, PRIMARY KEY, and UNIQUE constraints on a

temporary table.

The CHECK constraint
A CHECK constraint is a way to enforce simple business rules on all rows of a table,

by using an expression. The CHECK constraint can be defined at either the column

or table level but cannot perform anything except the most basic of evaluations.

To define a CHECK constraint on the CourseNumber column of the Courses table

that ensures that the lowest course number is 1,000, you specify the following:

... CourseNumber number(5) NOT NULL
CONSTRAINT CK_Courses_CourseNumber

CHECK (CourseNumber >= 1000) ...

4832-8 ch07.F 7/27/01 9:01 AM Page 299

300 Part II ✦ Managing Database Objects

You can also specify a CHECK constraint at the table level, in which case, the con-

straint condition can reference other columns in the same row (but not other

rows).The following example ensures that the grade of a student in the

ClassEnrollment table is NOT NULL when the status of the student is “COMPLETE”:

... CONSTRAINT CK_ClassElroll_Grade
CHECK ((Status=’COMPLETE’ AND Grade is NOT NULL)) ...

When defining a CHECK constraint on a column or table, you should keep the fol-

lowing rules in mind:

✦ The condition specified by the CHECK constraint is applied to each row of the

table as it is inserted or updated. When the row does not meet the CHECK

condition, Oracle generates an error and rolls back the statement.

✦ The condition can use the same constructs as a WHERE condition and can

be complex with a combination of the OR and AND operators and other

constructs.

✦ References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudo-columns

are not allowed in the CHECK condition.

✦ You cannot make calls to the SYSDATE, UID, USER, and USERENV system

functions.

✦ You cannot reference other rows of the same table or data in other tables.

When you need to perform these actions, you must define a trigger on the

table.

✦ You can reference other columns of the same row only if the CHECK con-

straint is defined at the table level.

✦ You can define more than one CHECK constraint for the same column. There

is no real limit to the number of CHECK constraints that can be defined on a

column or table, although you should limit the number to only what is

needed; otherwise, management of the constraints can become difficult.

Managing constraints
In Oracle, it is possible to add constraints to tables after the tables have been cre-

ated. Similarly, you can also drop constraints that you no longer need. In some

cases, you may also want to turn a constraint off, or disable it, to allow for large

bulk operations on the table. After you have performed your bulk operation, you

may want to once again enable the constraint to ensure data integrity is enforced.

Oracle enables you to perform all of these operations to manage your constraints.

It is important to remember that you can add a constraint to a table after it is cre-

ated and that you can drop a constraint from a table after it is defined. However,

you cannot modify a constraint that already exists on a table. To modify a con-

straint, you need to drop it and then add it again.

4832-8 ch07.F 7/27/01 9:01 AM Page 300

301Chapter 7 ✦ Creating and Managing Oracle Database Objects

Adding constraints to a table
To add a constraint to an existing table, you use the ALTER TABLE statement, as

shown in the following syntax:

ALTER TABLE tablename
ADD [CONSTRAINT constraintname]

constrainttype (columnname[, ...]);

As shown in the preceding syntax example, it is not necessary to name a constraint

when adding it to a table, although doing so is highly recommended.

You can add any type of constraint to a table except a NOT NULL constraint. This is

because when adding a constraint with the ALTER TABLE syntax, the constraint is

considered to be a table-level constraint. Because a NOT NULL constraint applies

only to a column, the way to add it is to modify the column definition by using the

following syntax:

ALTER TABLE tablename
MODIFY (columnname datatype NOT NULL)

When using the preceding syntax to add a NOT NULL constraint to a column, you

need to ensure that the table either contains no rows or that all rows have data in

the affected column. This is because the addition of a constraint does not modify

existing data, and because Oracle will check to see if all rows satisfy the NOT NULL

constraint.

When adding constraints to a table using the ALTER TABLE syntax, all other con-

straint rules apply. This means that only one PRIMARY KEY can be defined on a

table, CHECK constraints cannot access data in other rows, and so on.

An example of adding a FOREIGN KEY constraint on the InstructorID column of the

ScheduledClasses table after it has already been created is as follows:

SQL> ALTER TABLE ScheduledClasses
2 ADD CONSTRAINT FK_SchedClasses_InstID
3 FOREIGN KEY (InstructorID)
4 REFERENCES Instructors (InstructorID);

Table altered.

SQL>

To add a NOT NULL constraint to the ChangedBy column of the CourseAudit table,

you issue the following command:

SQL> ALTER TABLE CourseAudit
2 MODIFY (ChangedBy varchar2(15)
3 CONSTRAINT NN_CourseAudit_ChangedBy NOT NULL);

4832-8 ch07.F 7/27/01 9:01 AM Page 301

302 Part II ✦ Managing Database Objects

Table altered.

SQL>

Dropping constraints
Dropping constraints that are already defined on a table can be a simple process or

one that requires more thought and effort. The guiding factor in determining which

it will be often depends on the constraint type. Dropping CHECK, NOT NULL, and

FOREIGN KEY constraints is usually a pretty straightforward process. Dropping PRI-

MARY KEY and UNIQUE constraints may require more care and additional work to

ensure that data integrity is not compromised.

If you properly name constraints when you define them, the process of dropping

them will be much easier. If you follow a naming convention when you define your

constraints, you do not have to go searching in the USER_CONSTRAINTS and

USER_CONS_COLUMNS data dictionary views to figure out what the name of the

constraint you wish to drop is — you’ll have a pretty good idea already.

The USER_CONSTRAINTS and USER_CONS_COLUMNS data dictionary views are
discussed later in the “Viewing Information About Constraints” section of this
chapter. To get information on their structure, please refer to Appendix F.

The syntax for dropping a constraint is as follows:

ALTER TABLE tablename
DROP PRIMARY KEY | UNIQUE (column) |

CONSTRAINT constraintname [CASCADE];

As noted in the preceding syntax, to drop a PRIMARY KEY or UNIQUE constraint,

you do not need to specify the constraint name. Because a table can contain only

one PRIMARY KEY, issuing the following command:

ALTER TABLE tablename DROP PRIMARY KEY;

automatically drops the PRIMARY KEY constraint on the affected table, as well as

any associated index if the index was created by the constraint definition (that is, if

the PRIMARY KEY constraint used an existing index, that index is not dropped).

Similarly, you can also drop a UNIQUE constraint without specifying its name by ref-

erencing the column or columns on which it is defined. To drop a UNIQUE con-

straint defined on the EMail column of the Instructors table, you issue the following

command:

SQL> ALTER TABLE Instructors
2 DROP UNIQUE (EMail);

Table altered.

SQL>

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 302

303Chapter 7 ✦ Creating and Managing Oracle Database Objects

Similar to the PRIMARY KEY, any indexes that were created to enforce the unique-

ness also are dropped.

The recommended way to drop any constraint in a table is to specify the name of

the constraint that you wish to drop in the ALTER TABLE statement. Using this

method, you can drop any constraint, including NOT NULL constraints, as long as

you know the constraint name. You do not have to specify what the type of the con-

straint is — simply provide the name of the constraint — in your ALTER TABLE

statement. For example, to drop a NOT NULL constraint defined on the ChangedBy

column of the Course Audit table, you issue the following command:

SQL> ALTER TABLE CourseAudit
2 DROP CONSTRAINT NN_CourseAudit_ChangeBy;

Table altered.

SQL>

An important consideration when dropping PRIMARY KEY or UNIQUE constraints is

that they may be depended upon by FOREIGN KEY constraints in other tables.

When this is the case and you attempt to drop a PRIMARY KEY or UNIQUE con-

straint, you will get an error message from Oracle similar to the following:

SQL> ALTER TABLE Instructors
2 DROP PRIMARY KEY;

ALTER TABLE Instructors
*
ERROR at line 1:
ORA-02273: this unique/primary key is referenced by some foreign keys

SQL>

This is a good time to reconsider your decision to drop the PRIMARY KEY because

doing so may compromise the referential integrity of the database. If you are cer-

tain that you want to drop the PRIMARY KEY or UNIQUE constraint, you can

instruct Oracle to also drop any FOREIGN KEY constraints that depend upon the

constraint that you are dropping. To do so, include the CASCADE keyword in the

ALTER TABLE statement, as in the following example:

SQL> ALTER TABLE Instructors
2 DROP PRIMARY KEY CASCADE;

Table altered.

SQL>

The preceding example drops the PRIMARY KEY on the Instructors table

(InstructorID) and also drops any FOREIGN KEY constraints that depend upon it,

such as the InstructorID column of the ScheduledClasses table.

4832-8 ch07.F 7/27/01 9:01 AM Page 303

304 Part II ✦ Managing Database Objects

Disabling and enabling constraints
In many environments, especially those using Oracle for data warehousing or as a

decision-support system, it is quite common to perform loads of large amounts of

data. Constraints can be problematic when you need to load large amounts of data

into one table and a related row does not yet exist in the parent table. Furthermore,

if Oracle has to check every row as it is inserted into a table, this can increase the

time required to perform the load. This is especially true in those situations where

you have defined PRIMARY KEY or UNIQUE constraints, because indexes also have

to be updated as the rows are loaded.

VALIDATE and NOVALIDATE constraints

In versions prior to Oracle 8i, when you enabled a constraint, all data in the table had to sat-
isfy the constraint conditions. If that was not true, you could not enable the constraint and
had to correct the problem prior to enabling the constraint on the table. In Oracle 8i, two
new clauses have been added to the ALTER TABLE syntax dealing with enabling or disabling
a constraint — VALIDATE and NOVALIDATE.

In Oracle 8i, the default mode for enabling a constraint is VALIDATE, which means that
Oracle ensures that all rows in the table satisfy the constraint condition. When you enable a
constraint and specify NOVALIDATE, Oracle assumes that all existing rows in the table satisfy
the constraint condition and does not read the rows to verify it. In other words, the existing
data is not checked for constraint compliance, and it is possible to have rows in the table
that do not conform to the constraint condition. However, any new rows added to the table,
or any existing rows that are updated, must comply with any constraints on the table.

The syntax for enabling a constraint has also been expanded to include these new clauses.
The full syntax is as follows:

ALTER TABLE tablename
ENABLE | DISABLE

CONSTRAINT constraintname
[VALIDATE | NOVALIDATE] [CASCADE];

When enabling a constraint, the default is VALIDATE (that is, all rows must satisfy the con-
straint condition). When disabling constraints, the default is NOVALIDATE (the constraint is
not enforced).

Enabling a constraint NOVALIDATE allows existing rows to violate the constraint condition,
but all new or modified rows must satisfy the constraint condition.

DISABLE VALIDATE drops any indexes, if the constraint was a PRIMARY KEY or UNIQUE con-
straint, and ensures that all data in the table satisfies the constraint conditions. The net
effect of this is to make the table read only, because any attempt to INSERT, UPDATE, or
DELETE rows in the table generates an error. This is useful for small lookup tables that do
not change frequently and are too small to create an index on.

4832-8 ch07.F 7/27/01 9:01 AM Page 304

305Chapter 7 ✦ Creating and Managing Oracle Database Objects

To increase the speed of large data loads, Oracle enables you to temporarily turn

off, or disable, constraints before you perform the load. You can also enable any

constraints that you have turned off after the load has completed. At that point,

data in the tables must satisfy constraint conditions.

The “Introduction to Oracle: SQL & PL/SQL” exam tests you on your knowledge of
enabling and disabling constraints. You may not be tested on the VALIDATE/
NOVALIDATE clause of this syntax, but this information is useful in making better
use of your own databases.

Disabling constraints
You may want to disable a constraint prior to a large data load into the table or

when you are performing a bulk update that may modify key values where a PRI-

MARY KEY or UNIQUE constraint exists. Disabling a constraint tells Oracle to no

longer enforce the constraint condition and to allow data that does not satisfy the

constraint to be added to, changed in, or deleted from the table. If you disable a

PRIMARY KEY or UNIQUE constraint, Oracle automatically drops any associated

indexes.

The syntax to disable a constraint is:

ALTER TABLE tablename
DISABLE CONSTRAINT constraintname [CASCADE];

The CASCADE clause of the ALTER TABLE syntax is used to also automatically dis-

able any FOREIGN KEY constraints that are dependent upon the PRIMARY KEY or

UNIQUE constraint being dropped.

The CASCADE clause disables all FOREIGN KEY constraints depending on the PRI-
MARY KEY or UNIQUE constraint being disabled. However, no corresponding CAS-
CADE clause is available when you ENABLE the constraint. It is always a good idea
to manually disable all FOREIGN KEY constraints first and then disable the PRI-
MARY KEY or UNIQUE constraint without the CASCADE clause. This way, you will
be certain that no dependent FOREIGN KEY constraints are dropped without you
knowing about it.

Another option is to use the CASCADE clause but to create a script that will re-cre-
ate the FOREIGN KEY constraints in the appropriate order. You can use the
USER_CONSTRAINTS and USER_CONS_COLUMNS data dictionary views to deter-
mine on which PRIMARY KEY or UNIQUE constraints a FOREIGN KEY depends.

There is a short form to disable a PRIMARY KEY in a table. The syntax is as follows:

ALTER TABLE tablename
DISABLE PRIMARY KEY [CASCADE];

Because a table can have only one PRIMARY KEY, Oracle knows exactly which con-

straint to disable.

Tip

Exam Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 305

306 Part II ✦ Managing Database Objects

Enabling constraints
After a bulk load or update has been performed, you may want to enable the con-

straints that you disabled prior to performing the action. The ALTER TABLE com-

mand enables you to perform this action.

When you enable a constraint, Oracle, by default, verifies that all data satisfies the

constraint condition. If any rows are found not to conform to the requirements of

the constraint, Oracle generates an error, and the constraint remains disabled.

To enable a constraint, the syntax is as follows:

ALTER TABLE tablename
ENABLE CONSTRAINT constraintname;

Finding rows not meeting constraint conditions

When you attempt to enable a constraint, it is also possible to determine which rows in the
table are causing the operation to fail. This can be done by creating a table to hold excep-
tions to the constraint that Oracle has found in the table. A script called UTLEXCPT.SQL can
be used to create a table called EXCEPTIONS, which has the proper structure. The script can
be found in the ORACLE_HOME/RDBMS/ADMIN directory, where ORACLE_HOME is the
physical location on the hard drive where you installed the Oracle software. After running
the script, you have a table with the following structure:

SQL> desc Exceptions
Name Null? Type
--- -------- -----------------

ROW_ID ROWID
OWNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
CONSTRAINT VARCHAR2(30)

SQL>

After creating the Exceptions table in your schema, you can then issue the command to
enable the constraint in question and tell Oracle to put information about any rows that do
not satisfy constraint conditions in the Exceptions table. The syntax to do so is as follows:

ALTER TABLE tablename
ENABLE CONSTRAINT constraintname

EXCEPTIONS INTO schema.exceptiontable;

By then retrieving the rows from the table in question using the ROWID placed in the
Exceptions table, you can correct any errors. After all errors have been corrected, the con-
straint can then be enabled.

4832-8 ch07.F 7/27/01 9:01 AM Page 306

307Chapter 7 ✦ Creating and Managing Oracle Database Objects

Similar to the syntax to disable a PRIMARY KEY constraint, there is also a short

form to enable a PRIMARY KEY constraint, as shown here:

ALTER TABLE tablename
ENABLE PRIMARY KEY;

When the constraint to be enabled is a PRIMARY KEY or UNIQUE constraint and all

rows satisfy the constraint condition, Oracle automatically creates an index to

enforce the PRIMARY KEY or UNIQUE constraint, if no other index on the columns

making up the constraint already exists.

Viewing information about constraints
After you have defined constraints on your tables, if you want to find out what the

constraints are called and on which columns they are defined, you can use the

USER_CONSTRAINTS and USER_CONS_COLUMNS views. The corresponding

ALL_CONSTRAINTS and ALL_CONS_COLUMNS views also enable you to find out

information about constraints defined on tables that you have been granted access

to.

For example, to get a list of constraints defined on the ScheduledClasses table, you

issue the following command:

SQL> SELECT constraint_name, constraint_type,
2 search_condition
3 FROM USER_CONSTRAINTS
4 WHERE table_name = ‘SCHEDULEDCLASSES’;

CONSTRAINT_NAME C SEARCH_CONDITION
------------------------------ - -----------------------------------
SYS_C001879 C “CLASSID” IS NOT NULL
SYS_C001880 C “COURSENUMBER” IS NOT NULL
SYS_C001881 C “LOCATIONID” IS NOT NULL
SYS_C001882 C “CLASSROOMNUMBER” IS NOT NULL
SYS_C001883 C “INSTRUCTORID” IS NOT NULL
SYS_C001884 C “STARTDATE” IS NOT NULL
SYS_C001885 C “DAYSDURATION” IS NOT NULL
SYS_C001886 C “STATUS” IS NOT NULL
PK_CLASSID P
FK_SCHEDCLASS_COURSENUM R
FK_SCHEDCLASSES_LOCATIONID R
FK_SCHEDCLASSES_INSTID R

12 rows selected.

SQL>

When viewing the preceding output, it is important to note that the

Constraint_Type column of the view returns a single character for the type of con-

straint. The letter C indicates a CHECK constraint, R indicates a FOREIGN KEY

4832-8 ch07.F 7/27/01 9:01 AM Page 307

308 Part II ✦ Managing Database Objects

constraint, P indicates a PRIMARY KEY constraint, and U indicates a UNIQUE con-

straint. As shown previously, NOT NULL constraints are actually CHECK constraints

where the condition specifies that the column on which the NOT NULL is defined

“is NOT NULL”. You can also see that NOT NULL constraints, when defined on the

ScheduledClasses table were not named, because they have been assigned system

names in the format SYS_Cnnnnnn.

For PRIMARY KEY, UNIQUE, and FOREIGN KEY constraints, when you want to deter-

mine which columns make up the constraint, you can query the USER_CONS_

COLUMNS view, as in this example:

SQL> SELECT constraint_name, column_name
2 FROM USER_CONS_COLUMNS
3 WHERE table_name = ‘SCHEDULEDCLASSES’;

CONSTRAINT_NAME COLUMN_NAME
------------------------------ ---
FK_SCHEDCLASSES_INSTID INSTRUCTORID
FK_SCHEDCLASSES_LOCATIONID LOCATIONID
FK_SCHEDCLASS_COURSENUM COURSENUMBER
PK_CLASSID CLASSID
SYS_C001879 CLASSID
SYS_C001880 COURSENUMBER
SYS_C001881 LOCATIONID
SYS_C001882 CLASSROOMNUMBER
SYS_C001883 INSTRUCTORID
SYS_C001884 STARTDATE
SYS_C001885 DAYSDURATION
SYS_C001886 STATUS

12 rows selected.

SQL>

Creating Other Database Objects
✦ Describe a view

✦ Create a view

✦ Retrieve data through a view

✦ Insert, update, and delete data through a view

✦ Drop a view

✦ Create, maintain, and use sequences

✦ Create and maintain indexes

✦ Create private and public synonyms

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 308

309Chapter 7 ✦ Creating and Managing Oracle Database Objects

Aside from tables and the constraints that you can define on them, Oracle also

enables you to create other objects that make the use of your database easier or

speed up performance of queries. Some of the objects that you can create, and

which are discussed in this chapter, include views, indexes, sequences, and syn-

onyms. Oracle also allows the creation of many other objects, including clusters,

stored procedures, user-defined functions, packages, and tablespaces.

The “Introduction to Oracle: SQL & PL/SQL” exam tests your knowledge of creat-
ing tables, defining constraints, and creating views, indexes, synonyms, and
sequences. The creation and use of other Oracle database objects are tested in
other exams.

Views
A view is a database object that enables you to present data from one or more

tables in a single rowset (or recordset). It is created by specifying a name for the

view and assigning that name to a SELECT statement that defines the view. When a

user retrieves data from the view, the view appears as if it were a table. In fact, a

user cannot tell the difference in the output when using an SQL SELECT statement

to retrieve data from a view or a table — the output appears the same with column

headings and rows returned as expected.

The syntax of the SELECT statement is discussed in detail in Chapters 2 through 4.

Views are useful to make complex queries easier to write. By creating a view whose

definition is the complex SQL SELECT statement for the query, users are able to

SELECT from the view and not have to repeat the complex SQL syntax each time

they want to see the resulting data.

Views are also useful in restricting access to only certain columns or rows in a

database. For example, if you want to create a phone list for your organization with

everyone’s name, email address, phone number, and office location, you can create

a table to hold that information or, preferably, create a view that extracts the neces-

sary columns from the Employees table. In this way, the data is stored only once in

the Employees table, and those columns in the Employees table that users should

not be allowed to see (such as salary, bonus, and last review results) are not avail-

able through the view.

The tables on which a view is based are called base tables. A view can be based

upon one or more base tables. The number of tables a view is based on, and the

types of operations that are being performed in the SELECT statement that defines

a view, determine whether the view is considered to be a simple or a complex view.

Cross-
Reference

Exam Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 309

310 Part II ✦ Managing Database Objects

A simple view is one that is based upon a single table and has the following addi-

tional characteristics:

✦ No functions, either system or user-defined, are used in the query.

✦ No grouping of data is used in the query. This means that the SELECT state-

ment contains no GROUP BY clauses and no group functions in the column

list.

A complex view is one that is based upon more than one table, or has functions,

groupings, or other elements in the SELECT statement. A view that contains only

one base table is considered complex if its definition makes use of functions or

groupings of data.

The determination of whether a view is simple or complex is important if you want

to modify data through the view. When using simple views, it is possible to perform

INSERT, UPDATE, and DELETE operations on the view, and the underlying base

table will receive, change, or remove the rows affected, provided that no integrity

constraints are violated by the operation.

The topic of performing Data Manipulation Language (DML) operations through a
view is covered later in this chapter in the section “Performing DML Through a
View.”

The CREATE VIEW statement
The CREATE VIEW statement is used to create a view in Oracle8i. The syntax is as

follows:

CREATE [OR REPLACE] [FORCE | NOFORCE] VIEW viewname
[(columnalias, columalias, ...)]

AS SELECT ...
[WITH CHECK OPTION [CONSTRAINT constraintname]]
[WITH READ ONLY]

Because the preceding syntax is somewhat long and complex, information on each

of the clauses is presented in Table 7-3.

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 310

311Chapter 7 ✦ Creating and Managing Oracle Database Objects

Table 7-3
CREATE VIEW Clauses

Clause Description

OR REPLACE Oracle 8i enables you to modify the definition of a view. Unlike tables,
where the ALTER TABLE clause is used to add or remove columns, there
is no corresponding ALTER VIEW clause to change a view’s definition. To
do so, you add the OR REPLACE clause to the CREATE command, and
Oracle replaces a view with the same name specified on the command
line with the new definition. Using the CREATE OR REPLACE clause
creates the view when it does not exist and replaces an existing view
when it does. It is a good idea to always use CREATE OR REPLACE to
avoid errors.

FORCE/NOFORCE When a view is created, Oracle checks to see that the underlying base
tables already exist in the database. If they do not, Oracle generates an
error and does not create the view (the default NOFORCE behavior). If
you want to create a view based on tables that do not yet exist, or that
you may not have been granted permissions to yet, you can specify the
FORCE keyword to tell Oracle to create the view anyway.

The view is marked as INVALID. The first time the view is used (that is,
a user issues a SELECT statement from the view), Oracle verifies that all
the objects in the view definition exist and updates the view’s
definition in the data dictionary. If the view cannot be verified, Oracle
returns an error to the user, and the view remains in an INVALID state
until the next time it is accessed and the process is repeated.

It is generally not recommended that you use the FORCE option. You
should always create all dependent tables first, or ensure that you have
permissions to tables in another user’s schema upon which your view
definition depends.

(columnalias, ...) When a view is created, the names of the columns for the view are
derived from the list of column names specified in the SELECT
statement. If you want to specify different names for the columns, you
can do so here. This is useful when some of the columns in the SELECT
statement are the result of an expression or functional operation.

Another way to alias the column names is to specify an alias in the
SELECT statement. Of the two, either works equally well, although
column aliasing in the SELECT statement is more common.

Continued

4832-8 ch07.F 7/27/01 9:01 AM Page 311

312 Part II ✦ Managing Database Objects

Table 7-3 (continued)

Clause Description

AS SELECT ... This is the SELECT statement (that is, the subquery) that defines the
view. The names of the columns for the view are derived from column
names specified and/or aliased in the SELECT statement.

The subquery can be any SELECT statement that is valid in Oracle. Prior
to Oracle 8i, the subquery could not contain an ORDER BY clause. This
is no longer true.

When columns in the subquery are the result of an expression or
functional operation, they must be aliased either in the subquery itself
or in the VIEW definition. The same also holds true for columns with
the same name from different tables, if the subquery contains a join
condition.

WITH CHECK The WITH CHECK OPTION specifies that any changes to data through
OPTION an INSERT or UPDATE operation cannot be performed if those changes

would cause the added or modified row not to be visible through the
view.

For example, if you create a view for all California customers and you
specify the WITH CHECK OPTION, any attempt to insert or modify a row
in the base table through the view with a state of Georgia would fail
because those rows would not be returned the next time you issued a
SELECT statement on the view.

CONSTRAINT Specifies the name of the constraint that is defined on the view when
constraintname the WITH CHECK OPTION is specified. Oracle adds the conditions for

the WITH CHECK OPTION to the data dictionary automatically based
upon the WHERE clause of the SELECT statement that defined the view.
If not named by the users, Oracle assigns the constraint a system-
supplied name in the form of SYS_Cnnnnnn. If you want to provide
your own name to the WITH CHECK OPTION constraint, you can specify
it by including this clause.

This clause is available only if the WITH CHECK OPTION has been
specified.

WITH READ ONLY If you do not want to allow users to add, change, or delete data from
the base table through the view, create the view with the WITH READ
ONLY clause. Any view with this clause specified generates an error if a
user attempts to perform an INSERT, UPDATE, or DELETE operation on
the view.

Most views should typically be created WITH READ ONLY, unless you
create INSTEAD OF triggers to deal with complex updates.

4832-8 ch07.F 7/27/01 9:01 AM Page 312

313Chapter 7 ✦ Creating and Managing Oracle Database Objects

For more information on INSTEAD OF triggers, refer to Chapter 13.

If you want to create a view that returns the names of instructors and the courses

they are scheduled to teach, you issue the following command:

SQL> CREATE VIEW InstructorClasses AS
2 SELECT TRIM(FirstName || ‘ ‘ || LastName) AS Instructor,
3 C.CourseNumber AS CourseID,
4 CourseName, StartDate
5 FROM Instructors I, Courses C, ScheduledClasses S
6 WHERE I.InstructorID=S.InstructorID
7 AND S.CourseNumber=C.CourseNumber;

View created.

SQL>

Using the DESCribe command to find the structure of the view provides this

information:

SQL> DESC InstructorClasses
Name Null? Type
--- -------- ----------------------------
INSTRUCTOR VARCHAR2(61)
COURSEID NOT NULL NUMBER(38)
COURSENAME NOT NULL VARCHAR2(200)
STARTDATE NOT NULL DATE

SQL>

Querying data by selecting from the view runs the SELECT statement that defines

the view and also enables you to further refine or sort your data, as shown here:

SQL> SELECT * FROM InstructorClasses
2 ORDER BY StartDate;

INSTRUCTOR COURSEID COURSENAME STARTDATE
--------------- ---------- -- ---------
David Ungar 100 Basic SQL 06-JAN-01
Lisa Cross 200 Database Performance Basics 13-JAN-01
Kyle Jamieson 100 Basic SQL 14-FEB-01

SQL>

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 313

314 Part II ✦ Managing Database Objects

If you want to modify the view to sort the output by the StartDate instead of having

to specify it when issuing a SELECT statement on the view, you issue the following

command:

SQL> CREATE OR REPLACE VIEW InstructorClasses AS
2 SELECT TRIM(FirstName || ‘ ‘ || LastName) AS Instructor,
3 C.CourseNumber AS CourseID,
4 CourseName, StartDate
5 FROM Instructors I, Courses C, ScheduledClasses S
6 WHERE I.InstructorID=S.InstructorID
7 AND S.CourseNumber=C.CourseNumber
8 ORDER BY StartDate;

View created.

SQL>

Then, issuing the following at the SQL*Plus prompt, provides you with presorted

output:

SQL> SELECT * FROM InstructorClasses;

INSTRUCTOR COURSEID COURSENAME STARTDATE
--------------- ---------- -- ---------
David Ungar 100 Basic SQL 06-JAN-01
Lisa Cross 200 Database Performance Basics 13-JAN-01
Kyle Jamieson 100 Basic SQL 14-FEB-01

SQL>

Performing DML through a view
As mentioned earlier, Oracle, by default, enables users to perform INSERT, UPDATE,

and DELETE operations on data that is presented through a view. No restrictions

are placed on this for simple views, and it is possible to insert rows that cannot be

seen when querying the view if the WITH CHECK OPTION is not specified.

Oracle, to ensure that the data makes sense and to deal with the fact that a view is

simply a SELECT statement that has been given a name, has placed several restric-

tions on performing DML through a view. In fact, depending upon how the subquery

is formulated, it may not be possible to perform any DML through a view unless an

INSTEAD OF trigger is created.

Any DML performed through a view always modifies the base table that is refer-

enced in the subquery. The view itself has no physical storage because all of its

data is derived from the tables that make it up.

4832-8 ch07.F 7/27/01 9:01 AM Page 314

315Chapter 7 ✦ Creating and Managing Oracle Database Objects

Oracle supports the use of snapshots (in versions prior to Oracle 8i) and material-
ized views (in Oracle 8i). These are views that have a storage component and are
used in large data warehousing environments to precalculate values so that
queries work faster. Oracle 8i can make use of the data in materialized views
instead of or together with the base tables to return the result of a SELECT state-
ment to the user more quickly than by scanning the base table data. For more
information on materialized views, refer to the Oracle 8i Data Warehousing
Guide, a component of the Oracle documentation set. The “Introduction to Oracle:
SQL & PL/SQL” exam does not test your knowledge of materialized views.

The rules for performing DML on a view, without the use of INSTEAD OF triggers,

are:

✦ On a simple view, it is always possible to perform DML because a simple view

is based on only a single table and contains no functions, expressions, or

GROUP BY, DISTINCT, or other problematic clauses.

✦ You cannot delete, update, or insert data through a view if the view definition

contains a GROUP BY clause.

✦ You cannot delete, update, or insert data through a view if the view definition

contains the DISTINCT keyword in the column list.

✦ You cannot delete, update, or insert data through a view if the view contains

reference to the ROWNUM pseudo-column.

✦ You cannot update or insert data through a view if the view contains columns

that are the determined by the result of an expression.

✦ You cannot insert data through a view if the base tables contain columns not

referenced in the view definition that have a NOT NULL constraint and do not

have a DEFAULT defined.

If any of the preceding conditions are true, you cannot perform an INSERT, UPDATE,

or DELETE except through the use of INSTEAD OF triggers.

The WITH CHECK option
If you allow users to perform DML operations on a view, it may be possible for the

users to make changes to the data that would not allow them to view the row modi-

fied using the view.

For example, suppose you allow a user to change the State column of the

Instructors table through the a view called NewYorkInstructors that lists all New

York instructors. The user may be able to change the location of an instructor from

New York to Toronto. Using the NewYorkInstructors view, the instructor whose

location was changed to Toronto would no longer be visible through the view. If you

do not want to allow users to make changes to the data that would make the data

not visible using the view, you can create the view using the WITH CHECK OPTION.

To create the NewYorkInstructors view, the syntax is:

Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 315

316 Part II ✦ Managing Database Objects

SQL> CREATE OR REPLACE VIEW NewYorkInstructors AS
2 SELECT TRIM(FirstName || ‘ ‘ || LastName) as Name,
3 City, State, Email, CellPhone, InstructorType
4 FROM Instructors
5 WHERE State = ‘NY’
6 WITH CHECK OPTION;

View created.

SQL>

When retrieving data, a list of only those instructors residing in New York state is

displayed, as shown here:

SQL> col name format a40
SQL> SELECT * FROM NewYorkInstructors;

NAME CITY ST
-- ------------------------------ --
EMAIL CELLPHONE INSTRUCTOR
-- --------------- ----------
David Ungar New York NY
davidungar@trainers.com ORACLE

Kyle Jamieson New York NY
kylejamieson@trainers.com 412-987-0423 ORACLE

SQL>

If you attempt to change the value of the State column for David Ungar to ON,

Oracle returns the following error:

SQL> UPDATE NewYorkInstructors SET State=’ON’ WHERE Name LIKE ‘%Ungar%’;
UPDATE NewYorkInstructors SET State=’ON’ WHERE Name LIKE ‘%Ungar%’

*
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

As you can see, Oracle checks the WHERE clause of the view definition to ensure

that after the UPDATE, the row being modified is still visible through the view.

Because this would not be true should the UPDATE complete, Oracle does not allow

the update and returns the ORA-01402 error code.

4832-8 ch07.F 7/27/01 9:01 AM Page 316

317Chapter 7 ✦ Creating and Managing Oracle Database Objects

The READ ONLY option
If you do not want to allow any INSERT, UPDATE, or DELETE statements to be per-

formed on a view, you can create the view using the WITH READ ONLY option. This

returns an error whenever an attempt is made to modify data through the view; any

changes to the data on which the view is based must be done using the base tables

or other views on which the target view depends.

The READ ONLY option is useful for complex views that perform aggregation and/or

join many tables. Because performing updates on these views may not be success-

ful anyway if an INSTEAD OF trigger is not used, preventing data modifications com-

pletely ensures that there is no possibility of data inconsistency.

To disable updates on the InstructorClasses view, you create the view as follows:

SQL> CREATE OR REPLACE VIEW InstructorClasses AS
2 SELECT TRIM(FirstName || ‘ ‘ || LastName) AS Instructor,
3 C.CourseNumber AS CourseID,
4 CourseName, StartDate
5 FROM Instructors I, Courses C, ScheduledClasses S
6 WHERE I.InstructorID=S.InstructorID
7 AND S.CourseNumber=C.CourseNumber
8 WITH READ ONLY;

View created.

SQL>

Any attempt to perform an INSERT, UPDATE, or DELETE on the view results in the

following:

SQL> UPDATE InstructorClasses
2 SET StartDate=’14-APR-01’ WHERE CourseID=200;

SET StartDate=’14-APR-01’ WHERE CourseID=200
*

ERROR at line 2:
ORA-01733: virtual column not allowed here

SQL>

The preceding error message, which is returned whenever an INSERT or UPDATE is

attempted on a view created WITH READ ONLY, may not clearly indicate what the

problem is, which may be an issue because a user may repeatedly attempt to per-

form the update but no changes to the data will be allowed.

4832-8 ch07.F 7/27/01 9:01 AM Page 317

318 Part II ✦ Managing Database Objects

When attempting to DELETE data through a view that was created using the WITH

READ ONLY option, you get the following error:

SQL> DELETE FROM InstructorClasses;
DELETE FROM InstructorClasses

*
ERROR at line 1:
ORA-01752: cannot delete from view without exactly one key-preserved table

SQL>

Again, the message may be somewhat cryptic, but the desired result takes place —

the DELETE fails.

Dropping views
To remove a view from the database, you can use the DROP VIEW command, as

follows:

SQL> DROP VIEW InstructorClasses

View dropped.

SQL>

When a view is dropped, any objects that reference it, such as other views based

upon the view that was dropped, are marked as INVALID by Oracle and no longer

work correctly until they are modified to remove the reference to the view.

However, dropping a view does not drop the objects that it is based on. In other

words, any tables or other objects referenced by the view remain in the database

after the view is dropped.

Indexes
✦ Create and maintain indexes

Database users always want to be able to retrieve data in the fastest possible way.

In large databases, scanning the entire table to locate a particular value for a row

can take a long time. Indexes can be created to make data retrieval quicker.

Indexes store, by default, the value of the column or columns of a table being

indexed (also known as the key) in the index, as well as a pointer to the physical

location of the row or rows that hold the value (the rowid). By issuing a query

against the table where the index is created, Oracle may decide to scan the index,

which is always organized in either ascending or descending order according to the

key, and when it finds the entries with the required key value, use the correspond-

ing key’s rowid to return only those rows with the appropriate value.

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 318

319Chapter 7 ✦ Creating and Managing Oracle Database Objects

This chapter only discusses the creation of B*Tree indexes, which are covered on
the “Introduction to Oracle: SQL & PL/SQL” exam. Oracle also supports another
type of index, called a bitmap index. Bitmap indexes are useful in large data ware-
housing environments and can speed up queries considerably. Bitmap indexes
should only be used on tables whose data does not change, as they have a signif-
icant overhead in key values are changed, or data is added or deleted to the table.

Indexes can also be used to enforce uniqueness in a table. It is possible to create a

unique index on a table (and one is created for you if it does not already exist)

when you specify a UNIQUE or PRIMARY KEY constraint on a table. Oracle uses the

index to ensure that no duplicate values exist.

You should note that indexes can also increase the time it takes to perform updates

of data on a table on which they are defined. This is because as rows are inserted or

updated in a table, Oracle may have to insert the data as well as create or update

any index keys for that row. Having too many indexes on a table can be detrimental

to the speed of data modifications; not having enough indexes can be detrimental

to the speed of data retrieval.

The syntax of the CREATE INDEX command is as follows:

CREATE INDEX indexname
ON tablename (column [, column] ...);

The preceding CREATE INDEX syntax is not complete. Many more options can be
specified when an index is created. You are not tested on these additional options
on the “Introduction to Oracle: SQL & PL/SQL” exam. If you want more information
on these options, consult the Oracle 8i SQL Reference manual that is part of the
Oracle documentation set.

At a minimum, the syntax to create an index requires you specify a number of key

things:

✦ Index name: The name of the index must be unique within the schema in

which it is being created.

✦ Table name: The name of the table on which the index is being created.

✦ Column list: The list of columns within the table on which the index is being

created. You may specify more than one column in the column list, in which

case a “composite” index is created. Separate each column using a comma.

The column list may also include an expression, in which case a function-

based index is created.

Exam Tip

Exam Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 319

320 Part II ✦ Managing Database Objects

To create an index on the LastName column of the Students table, you issue the fol-

lowing command:

SQL> CREATE INDEX StudentLastName
2 ON Students (LastName);

Index created.

SQL>

As when creating any object in Oracle, when creating indexes, you should use a
naming convention. The previous example names the index with the table name
followed by the column being indexed (that is, Student_LastName). This may or
may not be an appropriate way for you to name your index. The convention used
in your database is not as much of an issue as the existence and consistent use of
a naming convention.

Reasons for and against creating B-tree indexes
You should not create indexes in your databases because you think you need them,

but rather, because it makes sense to do so. You should follow a number of rules

when determining whether or not an index on a particular column or set of

columns makes sense.

Remember that too many indexes on a table can cause inserts and updates to take

longer than if the indexes did not exist. This is because indexes occupy physical

storage in the database and cause Oracle to update the block where the row is on

the hard disk, as well as any index blocks that exist for columns on the table. In

environments where data changes frequently, you need to decide carefully if

indexes should be created.

Some of the conditions when indexes make sense include the following:

✦ Columns used in join conditions: It is a good idea to create an index on those

columns that are used to join two tables in the WHERE clause of a SELECT

statement. For example, the LocationID column of the ScheduledClasses table

might be an appropriate candidate for an index because you may frequently

join the ScheduledClasses and Locations tables on the LocationID column of

each table to get information on where the class is held.

Typically, any column, or collection of columns, used to define a FOREIGN

KEY constraint is an appropriate candidate for an index. Oracle does not auto-

matically create an index on FOREIGN KEY columns, so you should.

✦ High cardinality columns: Columns that have a wide range of different values

(that is, high cardinality) are appropriate candidates for an index if they are

frequently used in the WHERE clause of a SQL statement. If a column’s values

do not frequently repeat, this means that Oracle can retrieve a single row, or a

small number of rows, when using the index instead of a large chunk of the

data.

In the
Real World

4832-8 ch07.F 7/27/01 9:01 AM Page 320

321Chapter 7 ✦ Creating and Managing Oracle Database Objects

Similarly, columns whose values often repeat are not appropriate candidates

for an index. For example, a column called gender is not a good candidate for

an index because it can store only three possible values — male, female, and

unknown.

✦ Columns with many NULLs: If a column contains a NULL, Oracle does not

index it. If you have a column in a table with many NULL values, indexing the

column creates a “sparse index,” (that is, an index with only those rows con-

taining data having index keys). Oracle does not create an index entry for a

NULL value column. In this way, the index may represent a small portion of

the actual data in the table, making index scans very efficient when searching

for a value.

✦ Columns frequently used in a WHERE, GROUP BY, or ORDER BY clause:

Oracle tries to make use of an index when the optimizer finds that one is avail-

able and makes sense. Oracle uses the WHERE clause, GROUP BY, and ORDER

BY clauses of a SQL statement to determine whether an index can be used

and what the most efficient method to retrieve the data would be. Creating

indexes on those columns frequently queried by users and making up one of

the aforementioned clauses could allow the optimizer to make use of the

index in satisfying a query and thereby speed performance. A good way to

gauge this is to look at the application code to determine what columns are

used in these clauses and then create the index where appropriate.

✦ Most data retrieval involves 2 to 4 percent of a large table: In cases where a

table is large and most queries return a small portion of the total data in the

table, creating an index when any of the preceding conditions also exist

makes sense. However, if most queries on the table return 25 percent or more

of the data, creating an index may not help query performance, and a full

table scan may actually end up being quicker. This is because indexes cause

more disk I/O operations because more than one Oracle object must be read

from the disk.

Indexes do not make sense if any of the following are true:

✦ Small tables: If the table you want to create an index on is small and contains

very few rows, as might be the case with a lookup table, then creating an

index actually hinders performance because it may cause Oracle to perform

additional I/O. Small tables may actually perform better when full table scans

are performed because Oracle may be able to load all blocks for the table in

memory and retrieve data from there.

✦ Columns not often used in a query: If creating an index on columns fre-

quently used in a query is a good idea, the reverse must also be true. In other

words, if a user is not very likely to query a column’s value, do not create an

index on that column. Doing so may cause Oracle to use the index when

another index may be more appropriate.

4832-8 ch07.F 7/27/01 9:01 AM Page 321

322 Part II ✦ Managing Database Objects

✦ Queries return more than 10 percent of data in a table: If you find that most

queries return a large portion of the data in a large table, don’t create the

index on the large table but rather create indexes on supporting tables that

might be joined to it. Oracle can use those indexes for data retrieval from the

supporting tables while doing a full table scan on the one without an index.

This may be more efficient than creating indexes on the large table.

✦ Heavy data modifications: If a table is the target of frequent DML operations,

create only as many indexes as make sense. If a situation exists in which a lot

of changes take place to tables in a database, fewer indexes are the rule. You

will probably want to have indexes to enforce PRIMARY KEY and UNIQUE con-

straints, as well as create indexes on FOREIGN KEY columns, but do not cre-

ate too many, if any, additional indexes. Doing so slows down write operations

and reduces performance.

The general rule for indexes has always been, and should always be, create enough

to make data retrieval faster but not too many to cause poor DML performance.

Depending upon your environment, you may need to adjust the number of indexes

accordingly. If you have a data warehousing or decision-support system that is

query intensive, you will create more indexes than if you have an online transaction-

processing environment that is very update intensive. Create indexes when you feel

they are warranted, but be prepared to drop some and potentially create others if

the ones you have do not provide the performance your users expect.

Function-based indexes
A new feature in Oracle 8i is the ability to create an index whose key value is the

result of an expression. This is quite handy in those situations where expressions

are used in the WHERE clause of a query or in the GROUP BY or ORDER BY clauses.

For example, you need to frequently generate a report of the most expensive

instructors that you deal with. The query to do so is as follows:

SQL> SELECT LastName, FirstName, (PerDiemCost + PerDiemExpenses) AS DailyCost
2 FROM Instructors
3 WHERE (PerDiemCost + PerDiemExpenses) > 500
4 ORDER BY (PerDiemCost + PerDiemExpenses) DESC;

LASTNAME FIRSTNAME DAILYCOST
------------------------------ ------------------------------ ----------
Cross Lisa 1000
Ungar David 800
Harrison Michael 700
Jamieson Kyle 700
Keele Susan 650

SQL>

4832-8 ch07.F 7/27/01 9:01 AM Page 322

323Chapter 7 ✦ Creating and Managing Oracle Database Objects

Because you are frequently executing this query, and you expect the number of

instructors to grow over time, you may want to create an index on the result of the

“(PerDiemCost + PerDiemExpenses)” expression. Doing so allows Oracle to use the

index to quickly present the data in the right order. To create this function-based

index, you execute the following:

SQL> CREATE INDEX InstructorCost
2 ON Instructors ((PerDiemCost + PerDiemExpenses));

Index created.

SQL>

After the function-based index is created, Oracle can make use of the index when

you execute the preceding SELECT statement.

Privileges for creating indexes
When you need to create an index on a table and you are the owner of the table,

you automatically have permission to create the index because you own both

objects. However, you cannot create a function-based index even if you own the

table.

In order to be able to create a function-based index on tables you own, you must be

granted the QUERY REWRITE privilege by the DBA. This privilege tells Oracle that

the optimizer may dynamically rewrite a query to make use of the index instead of

reading data from the table to perform the calculation. It is used in conjunction

with materialized views introduced in Oracle 8i.

Materialized views are an advanced Oracle 8i topic. You are not tested on them or
on query rewrites on the “Introduction to Oracle: SQL & PL/SQL” exam. If you want
to lean more about materialized views or query rewrites, consult the Oracle8i
Data Warehousing Guide, a part of the Oracle 8i documentation set.

You can also create indexes in another user’s schema, or on tables that are in

another schema, if you have the CREATE ANY INDEX privilege. This must be

granted by the DBA and gives you global carte blanche to create indexes on any

table in the database. For obvious reasons, it is not likely to be given to the average

user.

If you also want to create function-based indexes on tables in another schema, or in

another schema, you must also have the GLOBAL QUERY REWRITE privilege, in

addition to the CREATE ANY INDEX privilege. Unless you are responsible for the

creation and maintenance of indexes in your database, it is not likely that these

privileges will be relinquished to you by the DBA.

Exam Tip

4832-8 ch07.F 7/27/01 9:01 AM Page 323

324 Part II ✦ Managing Database Objects

Viewing index information
Oracle provides a couple of data dictionary views that you can use to get informa-

tion on what indexes are created and on which columns of a table they are defined.

These are the USER_INDEXES and USER_IND_COLUMNS views.

The structure of the USER_INDEXES and USER_IND_COLUMNS views can be
found in Appendix F. This appendix also lists other useful data dictionary views.

To get a listing of all indexes, and the tables and columns on which they have been

created, you issue the following command:

SQL> col index_name format a25
SQL> col table_name format a20
SQL> col column_name format a18
SQL> SELECT i.index_name, i.table_name, c.column_name, i.uniqueness
2 FROM USER_INDEXES i, USER_IND_COLUMNS c
3 WHERE i.index_name = c.index_name
4 ORDER BY i.table_name;

INDEX_NAME TABLE_NAME COLUMN_NAME UNIQUENES
------------------------- -------------------- ------------------ ---------
BATCHJOBS_JOBID_PK BATCHJOBS JOBID UNIQUE
PK_CLASSID_STUDENTNUMBER CLASSENROLLMENT STUDENTNUMBER UNIQUE
PK_CLASSID_STUDENTNUMBER CLASSENROLLMENT CLASSID UNIQUE
COURSEAUDIT_PK COURSEAUDIT COURSENUMBER UNIQUE
COURSEAUDIT_PK COURSEAUDIT CHANGE UNIQUE
COURSEAUDIT_PK COURSEAUDIT DATECHANGED UNIQUE
PK_COURSENUMBER COURSES COURSENUMBER UNIQUE
INSTRUCTORCOST INSTRUCTORS SYS_NC00020$ NONUNIQUE
PK_INSTRUCTORID INSTRUCTORS INSTRUCTORID UNIQUE
PK_LOCATIONID LOCATIONS LOCATIONID UNIQUE
PK_CLASSID SCHEDULEDCLASSES CLASSID UNIQUE
PK_STUDENTNUMBER STUDENTS STUDENTNUMBER UNIQUE
STUDENTLASTNAME STUDENTS LASTNAME NONUNIQUE

13 rows selected.

SQL>

As you may have already noticed, the output of this query also returns those

indexes that have been automatically created when PRIMARY KEY and UNIQUE con-

straints were defined on a table. By properly naming the constraints, when you

review the output from the preceding query on the data dictionary views, you can

easily tell which columns make up the PRIMARY KEY or UNIQUE constraint, as well

as the constraint type.

Cross-
Reference

4832-8 ch07.F 7/27/01 9:01 AM Page 324

325Chapter 7 ✦ Creating and Managing Oracle Database Objects

Dropping indexes
When you no longer need an index, you can drop it using the DROP INDEX com-

mand. When the index is dropped, Oracle removes any reference to it from the data

dictionary and frees any disk space used by the index.

The syntax to drop an index is quite simple:

DROP INDEX indexname;

To drop the InstructorCost index, you issue the following command:

SQL> DROP INDEX InstructorCost;

Index dropped.

SQL>

Sequences
✦ Create, maintain, and use sequences

In many applications, it may be necessary to generate chronological numerical val-

ues. These numerical values typically are the basis for a PRIMARY KEY or UNIQUE

constraint on a table. For example, an order-entry system most likely generates

unique numerical order numbers. The order information may be stored in an

Orders table with OrderID as a PRIMARY KEY to uniquely identify each order. The

challenge is to ensure that unique values are always entered for columns with PRI-

MARY KEY or UNIQUE constraints. Oracle supports the use of sequences to help in

this task.

Sequences are database objects that generate incremental numeric values that are

always unique for the named sequence. When you need to insert a new value for a

row in a table with a PRIMARY KEY, instead of figuring out what the last number

was and adding one to it, you can define a sequence and assign the next value in

the sequence. An Oracle database can support many sequences simultaneously so

that you can define one for each PRIMARY KEY or UNIQUE column where you need

to generate new values.

The benefits of sequences are as follows:

✦ Sequences automatically generate unique numbers: Each call to assign

a sequence’s value to a column of a table automatically increments the

sequence. There is never a possibility of a duplicate value being used (unless

this is what you want and have used the CYCLE option when creating a

sequence).

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 325

326 Part II ✦ Managing Database Objects

✦ Sequences are database objects that can be managed by the DBA or appli-

cation developer: If a sequence needs to be restarted or the value range

needs to be modified, the DBA re-creates the sequences with the new parame-

ters, and all applications using it get the changes. There is no need to modify

application code to take into account the changes.

✦ Sequences replace application code: Instead of writing a procedure to deter-

mine the next order number or customer number, using a sequence simply

requires a call to increment the sequence value — the number will be unique.

Therefore, you do not run the risk of creating a bottleneck in the database by

locking rows in a table holding the next number of an invoice or order, or risk

having duplicate values when using a query to select the MAX of the order

number of invoice number in a table within application code.

✦ Sequences can be cached for speed: Oracle enables you to cache sequence

values in memory. Doing so reduces the number of reads Oracle has to per-

form on the data dictionary to determine the next sequence value. However,

in the event of an database instance crash, any cached values are lost, and

you could have gaps in the sequence.

Do not cache sequence values in those situations where you cannot live with gaps
in the chronological numbering of data. For example, do not use a sequence for
generating check numbers since caching the sequence will lose any cached values
in the event of an instance crash. In order to reset the sequence to the correct
value, you need to re-create the sequence.

The CREATE SEQUENCE command
The Oracle CREATE SEQUENCE command is used to create sequences in the

database. The syntax for the command is as follows:

CREATE SEQUENCE sequencename
[INCREMENT BY num]
[START WITH num]
[MAXVALUE num | NOMAXVALUE]
[MINVALUE num | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE num | NOCACHE]

The meaning of the various parameters is described in Table 7-4.

Caution

4832-8 ch07.F 7/27/01 9:01 AM Page 326

327Chapter 7 ✦ Creating and Managing Oracle Database Objects

Table 7-4
CREATE SEQUENCE Parameters

Parameter Description

INCREMENT BY num This parameter instructs Oracle to increment the value of the
sequence by the number specified by num. The default increment
value is 1, which means that each sequence value assigned is 1
greater than the previous. If you want to leave gaps in the
chronological numbering of data (that is, you want values to go up
in increments of 5), you specify an INCREMENT BY value other than
the default of 1.

To create a sequence whose values decrement (that is, they go
down instead of up), specify an INCREMENT BY of –1 or another
negative value. In this case, make sure you specify a high value for
the START WITH parameter.

START WITH num Oracle always starts a sequence with 1 as the first value in the
sequence, unless a different value is specified for num in the START
WITH clause. For example, invoice numbers typically start with 1,000
or a higher value. To change the default start value for the sequence
to 1,000, you add the START WITH 1000 parameter to the sequence
creation command.

When you create a decrementing sequence, you should use a very
high number for the START WITH parameter.

MAXVALUE num This parameter tells Oracle whether the sequence has a maximum
NOMAXVALUE value, after which it may reuse previous values depending upon the

setting of the CYCLE/NOCYCLE parameter. The default is not to have
a maximum value for a sequence (NOMAXVALUE), which causes it
to continue to grow to a maximum of 1027 for an ascending
sequence, or –1 for a descending sequence.

MINVALUE num Specifies the minimum value for a sequence. If NOMINVALUE is
NOMINVALUE specified, 1 is the minimum value for an ascending sequence, while

1026 is the minimum value for a descending sequence.

In the case of ascending sequences, it is a good idea to specify a
MINVALUE that is the same as the START WITH parameter for the
sequence. To limit the minimum invoice number to 1,000 for the
sequence, you can use the MINVALUE 1000 parameter when
creating the sequence.

Continued

4832-8 ch07.F 7/27/01 9:01 AM Page 327

328 Part II ✦ Managing Database Objects

Table 7-4 (continued)

Parameter Description

CYCLE/NOCYCLE When an ascending sequence reaches its highest value, or when a
descending sequence reaches its lowest value, Oracle does not
allow any further values to be generated, and any attempt to do so
generates an error. This is the default NOCYCLE behavior.

If you want Oracle to continue to reuse sequence values after the
sequence limit is reached, you can specify the CYCLE parameter
when the sequence is created.

CACHE num Any call to use a sequence value causes a read of data dictionary
NOCACHE information. To reduce the overhead of doing this, Oracle enables

you to cache sequence values in memory so that they may more
easily be retrieved and assigned to data. By default, the value for
cache is 20 (that is, Oracle caches 20 sequence values whenever an
instance is started).

After a sequence value is cached, it is considered by Oracle to be
used up. This means that if the instance crashes, any cached values
are lost, and you may have a numerical gap in the data.

If you do not want to cache sequence values, use the NOCACHE
parameter. This has a negative impact on performance because the
sequence needs to be read from the data dictionary each time it is
used in a value assignment, but using the NOCACHE parameter
reduces the possibility of gaps in data using sequences.

To create a sequence that will be used to automatically assign student numbers,

starting with 1100 and incrementing the value by 1 for each new student, on the

Students table you issue the following command:

SQL> CREATE SEQUENCE StudentNumSeq
2 INCREMENT BY 1
3 START WITH 1100
4 MAXVALUE 99999
5 NOCACHE
6 NOCYCLE
7 /

Sequence created.

SQL>

4832-8 ch07.F 7/27/01 9:01 AM Page 328

329Chapter 7 ✦ Creating and Managing Oracle Database Objects

Using sequences
The main reason to create sequences is to use them for generating PRIMARY KEY

values when INSERTs are made to tables. Oracle provides two pseudo-columns for

sequences that make this possible: NEXTVAL and CURRVAL.

Each sequence that you define in your database can have the next value in the

sequence assigned to a column by using the NEXTVAL sequence pseudo-column.

For example, to add a new student to the Students table and ensure that a unique

PRIMARY KEY was generated using the StudentNumSeq sequence, you issue the fol-

lowing command to perform the INSERT:

SQL> INSERT INTO Students (StudentNumber, FirstName, LastName, Email)
2 VALUES (StudentNumSeq.NEXTVAL, ‘David’,’Smith’,’davids@bradsys.com’);

1 row created.

SQL>

Using the NEXTVAL pseudo-column in the INSERT statement and prefixing it with

the sequence name tells Oracle to get the next value for the sequence and place it

in the StudentNumber column during the INSERT operation. The value returned by

NEXTVAL is different for each user and is guaranteed to be unique every time,

thereby ensuring that no duplicates exist in the data, even when multiple users are

adding rows to the table at the same time.

If you want to check the value added to the table, after performing the INSERT, you

can check to see what the sequence value used was with the CURRVAL pseudo-

column. For example, to see what value was put in the StudentNumber column by

the preceding INSERT, you can issue the following command:

SQL> SELECT StudentNumSeq.CURRVAL FROM DUAL;

CURRVAL

1100

SQL>

As you can see, the student is assigned a StudentNumber of 1100, which makes

sense because this is the value you said the sequence should start with.

It is important to note that the value of CURRVAL is not populated until after

NEXTVAL has been used. In other words, if you try to check the current sequence

value by using CURRVAL before assigning the value with NEXTVAL, you get an error

from Oracle, as shown here:

SQL> SELECT StudentNumSeq.CURRVAL FROM DUAL;
SELECT StudentNumSeq.CURRVAL FROM DUAL

*
ERROR at line 1:

4832-8 ch07.F 7/27/01 9:01 AM Page 329

330 Part II ✦ Managing Database Objects

ORA-08002: sequence STUDENTNUMSEQ.CURRVAL is not yet defined in this session

SQL>

The use of NEXTVAL must be very precise and used only in those situations where

you want to increment the sequence value. This means that issuing a statement

such as the following causes the sequence to increment, even though it was not

assigned to data in a table:

SQL> SELECT StudentNumSeq.NEXTVAL FROM DUAL;

NEXTVAL

1101

SQL>

The rules for using NEXTVAL and CURRVAL are as follows:

✦ NEXTVAL and CURRVAL can be used in the column list of a SELECT statement

that is not part of a subquery.

✦ NEXTVAL and CURRVAL can be used in the column list of a subquery in a

INSERT statement, in the form INSERT INTO ... SELECT ... FROM

✦ NEXTVAL and CURRVAL can be used in the VALUES clause of an INSERT state-

ment to assign values to columns, as shown previously.

✦ NEXTVAL and CURRVAL can be used in the SET clause of an UPDATE state-

ment to modify existing data in a table.

✦ After NEXTVAL is used, each call to NEXTVAL increments the sequence, and

the value used cannot be regained. This means that NEXTVAL always adds the

INCREMENT value to the previous sequence value and changes the value of

CURRVAL.

✦ CURRVAL cannot be used until NEXTVAL has been used.

✦ NEXTVAL and CURRVAL cannot be used as part of a view definition. This

means that the SELECT statement used to define a view cannot include a ref-

erence to NEXTVAL or CURRVAL.

✦ You cannot precede NEXTVAL or CURRVAL with the DISTINCT keyword in the

column list of a SELECT statement. This generates an error and is not allowed.

✦ You cannot use NEXTVAL or CURRVAL in a SELECT statement that includes a

GROUP BY, HAVING, or ORDER BY clause.

✦ You cannot use NEXTVAL or CURRVAL in a subquery of a SELECT, UPDATE, or

DELETE statement. As noted previously, these sequences can be used in the

subquery of an INSERT statement.

✦ NEXTVAL and CURRVAL cannot be used in the definition of a DEFAULT for a

column. Although it would be quite handy to have a PRIMARY KEY with a

4832-8 ch07.F 7/27/01 9:01 AM Page 330

331Chapter 7 ✦ Creating and Managing Oracle Database Objects

DEFAULT that uses a sequence’s NEXTVAL, Oracle does not allow it because

the sequence is a separate database object, and they cannot be used in the

definition of a DEFAULT.

When designing sequences, it is a good idea to create a sequence for each table and

column where it will be used. This means that the database schema that you are

using for the labs should have a sequence for the StudentNumber, InstructorID,

LocationID, and CourseNumber columns. Although not all of these columns in their

respective tables require sequences, each is a potential candidate.

Oracle does allow the same sequence to be used to assign values to columns in

more than one table. For example, you can create a sequence that would be used to

create student numbers and instructor IDs. The uniqueness of the values is spread

across both tables, creating gaps in the student number column, as well as in the

instructor ID column. This is possible because a sequence is a data dictionary

object, which can be accessed by a user and implemented as the user sees fit.

It is possible to have gaps in sequences. This can occur for a number of reasons,

including:

✦ A user rolled back a transaction after using the sequence in an INSERT with

the NEXTVAL pseudo-column. Once the NEXTVAL has been called for a

sequence, the value is considered used and cannot be regained. A ROLLBACK

does not cause the value used with NEXTVAL to be replaced. Sequence usage

does not confirm to the transaction rules of COMMIT, ROLLBACK, and SAVE-

POINT. NEXTVAL always uses up a sequence value.

✦ The Oracle instance has crashed, and the sequence was created with a CACHE

parameter. Any cached values for a sequence that are held in memory by

Oracle are considered to be used as soon as they are cached. This means that

if the instance crashes, those values cannot be reused and are lost. This is the

main reason not to cache sequences.

✦ If a sequence is used in two or more tables, each table will have some of the

sequence values and each will appear to have gaps. This is the way sequences

work, indicating that each sequence should be designed to be used in one

table and one table only.

Getting information on sequences
Oracle enables you to view information on sequences in your schema by querying

the USER_SEQUENCES data dictionary view. There is also a corresponding

ALL_SEQUENCES data dictionary view that enables you to view information on

sequences that you have been granted access to. For example, if you want to view

the name, incremental value, cache number, and next number to be used for the

StudentNumSequence, you issue the following command:

SQL> SELECT sequence_name, increment_by, cache_size, last_number
2 FROM USER_SEQUENCES
3 WHERE sequence_name = ‘STUDENTNUMSEQ’;

4832-8 ch07.F 7/27/01 9:01 AM Page 331

332 Part II ✦ Managing Database Objects

SEQUENCE_NAME INCREMENT_BY CACHE_SIZE LAST_NUMBER
------------------------------ ------------ ---------- -----------
STUDENTNUMSEQ 1 0 1101

SQL>

In the data returned, it is important to note that the LAST_NUMBER column indi-

cates what the next noncached sequence value is. This means that if the

CACHE_SIZE column has a value other than 0, LAST_NUMBER does not represent

the next value that will be assigned to data in the database, but rather the next

value that will be assigned to the cache. As mentioned earlier, any sequence values

in the cache are considered by Oracle to be used and are retained should the

instance crash.

Modifying sequences
Oracle enables you to change a number of the sequence parameters by using the

ALTER SEQUENCE command. The following can be changed:

✦ The INCREMENT BY value: Changing the incremental value for a sequence

applies to all uses of the sequence after the ALTER SEQUENCE command has

been issued.

✦ The MAXVALUE for the sequence: In those situations where you find that you

are already reaching the previous maximum value you defined for a sequence,

you can raise the bar by modifying the sequence and increasing the ceiling

value.

✦ The cache status for a sequence: If the sequence was previously cached, you

can increase or decrease the cache size, or turn off caching for the sequence.

If the sequence was not cached, you can implement caching to improve per-

formance.

✦ The cycle status for a sequence: If you want to disallow recycling of sequence

values after the MAXVALUE or MINVALUE are reached for an ascending or

descending sequence, respectively, the ALTER SEQUENCE command enables

you to change the cycle parameter.

The syntax for the ALTER SEQUENCE command is as follows:

ALTER SEQUENCE sequencename
[INCREMENT BY num]
[MAXVALUE num | NOMAXVALUE]
[MINVALUE num | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE num | NOCACHE]

4832-8 ch07.F 7/27/01 9:01 AM Page 332

333Chapter 7 ✦ Creating and Managing Oracle Database Objects

For example, to modify the StudentNumSeq sequence to cache five values to

improve the performance of INSERTs to the Student table, you issue the following

command:

SQL> ALTER SEQUENCE StudentNumSeq
2 CACHE 5;

Sequence altered.

SQL>

Dropping sequences
To remove a sequence that is no longer required, you issue the DROP SEQUENCE

command. For example, to remove the StudentNumSeq sequence, you issue the fol-

lowing command:

SQL> DROP SEQUENCE StudentNumSeq;

Sequence dropped.

SQL>

After a sequence is dropped, it can no longer be used, and any calls to it fail. Drop

sequences only after you have modified any application code that makes use of it.

Synonyms
✦ Create private and public synonyms

Sometime while taking English in school, you were introduced to Roget’s Thesaurus
and told by your English teacher what a wonderful tool it can be. You can look up a

word and find other words that have the same or almost the same meaning. These

words, you were told, are synonyms.

In Oracle, you are also allowed to make use of synonyms. Synonyms are created for

objects, such as tables and views. They are used as a form of shorthand for tables,

or other objects, with long names (for example, “Emps” for the Employees table or

“Teachers” for Instructors). They can also be created to refer to objects that are

owned by another user without having to specify the fully qualified name of the

object. They are, in short, a form of shorthand.

The syntax to create a synonym is as follows:

CREATE [PUBLIC] SYNONYM synonymname
FOR objectname

Objective

4832-8 ch07.F 7/27/01 9:01 AM Page 333

334 Part II ✦ Managing Database Objects

For example, ScheduledClasses is a long name for a table. If you want to refer to the

same table by using the name Classes instead, you can create a synonym as follows:

SQL> CREATE SYNONYM Classes
2 FOR ScheduledClasses;

Synonym created.

SQL>

From this point, if you issue a query against the Classes synonym or the

ScheduledClasses table, Oracle always operates against the table. For example, a

query on the base table ScheduledClasses also has the same result using the syn-

onym, as shown here:

SQL> SELECT ClassID, CourseNumber, StartDate, Status
2 FROM ScheduledClasses;

CLASSID COURSENUMBER STARTDATE STATUS
---------- ------------ --------- ----------

50 100 06-JAN-01 Confirmed
51 200 13-JAN-01 Confirmed
53 100 14-FEB-01 Hold

SQL> SELECT ClassID, CourseNumber, StartDate, Status
2 FROM Classes;

CLASSID COURSENUMBER STARTDATE STATUS
---------- ------------ --------- ----------

50 100 06-JAN-01 Confirmed
51 200 13-JAN-01 Confirmed
53 100 14-FEB-01 Hold

SQL>

The use of synonyms is particularly handy when you want to have a shorthand way

to refer to a table in another schema. Instead of always qualifying the object name

with the schema name, you can create a synonym that does that for you. For exam-

ple, to access the Customers table in Roger’s schema, you can create a synonym as

follows (this is only an example and you do not have a Roger schema in your

database):

SQL> CREATE SYNONYM RogerCusts
2 FOR Roger.Customers;

Synonym created.

SQL>

4832-8 ch07.F 7/27/01 9:01 AM Page 334

335Chapter 7 ✦ Creating and Managing Oracle Database Objects

An important element to consider here is that Oracle does not verify that the object

you are creating a synonym for actually exists at the time the synonym is being cre-

ated. It is possible to create a synonym for an object that does not yet exist in the

database. A simple spelling mistake in the creation of a synonym can result in the

synonym being created in the database, but an attempt to use it may generate the

following error:

ERROR at line 1:
ORA-00942: table or view does not exist

Always test the synonym immediately after creating it to ensure that it works prop-

erly. Failure to do so may make it more difficult to determine the cause of the prob-

lem later.

Public synonyms
When you create a synonym in your schema, it is accessible only to you and is con-

sidered a private synonym. If you have been granted the CREATE PUBLIC SYN-

ONYM permission, you can create a synonym that can be used by anyone with

access to the database. Unlike a private synonym, whose name must be unique

within the schema, a public synonym must be unique within the database. For this

reason only DBAss have the privilege to create them.

If you want to create a public synonym called Enrollment for the ClassEnrollment

table in the Student schema, provided you have the correct permissions, you can

issue the following command:

SQL> CREATE PUBLIC SYNONYM Enrollment
2 FOR Student.ClassEnrollment;

Synonym created.

SQL>

If the command failed with the error:

CREATE PUBLIC SYNONYM Enrollment
*
ERROR at line 1:
ORA-01031: insufficient privileges

it indicates that you have not been granted the CREATE PUBLIC SYNONYM

permission.

Getting information on synonyms
Like other objects, information on synonyms may be retrieved by the data dictio-

nary by querying one of the USER_, ALL_, or DBA_ views. In the case of synonyms,

the view is USER_SYNONYMS.

4832-8 ch07.F 7/27/01 9:01 AM Page 335

336 Part II ✦ Managing Database Objects

To find out the names of all synonyms and the tables they refer to, you can issue

the following command:

SQL> SELECT synonym_name, table_owner, table_name
2 FROM USER_SYNONYMS;

SYNONYM_NAME TABLE_OWNER TABLE_NAME
-------------------- -------------------- --------------------
CLASSES STUDENT SCHEDULEDCLASSES

SQL>

The list presented does not include any public synonyms because they are created

in the SYS schema so that they may be used by all. To get a list of public synonyms,

you must query the ALL_SYNONYMS view. Oracle creates close to synonyms when

the database is created; thus, when querying the ALL_SYNONYMS view, you should

be precise as to what information you want to retrieve. In the following case, you

retrieve all synonyms for objects created in the Student schema:

SQL> SELECT owner, synonym_name, table_name, table_owner
2 FROM ALL_SYNONYMS
3 WHERE table_owner = ‘STUDENT’ AND owner=’PUBLIC’;

SYNONYM_NAME TABLE_NAME TABLE_OWNER
-------------------- -------------------- --------------------
ENROLLMENT CLASSENROLLMENT STUDENT

SQL>

Dropping synonyms
After you have created a private synonym, if you no longer need to make use of it,

you can drop it using the DROP SYNONYM command, as follows:

SQL> DROP SYNONYM Classes;

Synonym dropped.

SQL>

Dropping a synonym removes its reference from the data dictionary.

If you want to drop a public synonym, you must have the DROP PUBLIC SYNONYM

permission, which only the DBA has by default. If you attempt to drop a public syn-

onym without the required permission, you get an error as shown here:

SQL> DROP PUBLIC SYNONYM Enrollment;
DROP PUBLIC SYNONYM Enrollment

*
ERROR at line 1:

4832-8 ch07.F 7/27/01 9:01 AM Page 336

337Chapter 7 ✦ Creating and Managing Oracle Database Objects

ORA-01031: insufficient privileges

SQL>

Key Point Summary
Oracle enables you to create database objects to support your requirements. The

objects that you can create include tables, views, indexes, sequences, and

synonyms.

✦ Object names in Oracle can be up to 30 characters in length and must start

with a letter. Object names may also contain numbers (0–9) and the _, #, and $

characters, although the use of # and $ is discouraged.

✦ All objects created in Oracle are owned by an Oracle user. Any user who cre-

ates database objects is said to be a schema owner. The collection of all

objects that a user owns is called the schema.

✦ Object names within a schema must be unique.

✦ To create tables to store data, you use the CREATE TABLE command.

✦ The ALTER TABLE command enables you to add or remove columns of a table.

✦ All columns of a table must have at least two attributes — a name and a

datatype. Oracle supports many datatypes including CHAR, VARCHAR2,

NCHAR, NVARCHAR2, NUMBER, DATE, BLOB, CLOB, NCLOB, BFILE, RAW,

LONG, LONG RAW, ROWID, and UROWID.

✦ CHAR, VARCHAR2, and CLOB datatypes store data in the character set of a

database. NCHAR, NVARCHAR2, and NCLOB datatypes store data in the

National Language character set of a database. Both the character set and

National Language character set of a database are specified when the

database is created and may not normally be changed.

✦ Constraints may be defined on columns of a table and on the table as a whole.

Constraints are used to enforce database integrity and business rules. Oracle

supports PRIMARY KEY, UNIQUE, FOREIGN KEY, CHECK, and NOT NULL

constraints.

✦ PRIMARY KEY and UNIQUE constraints automatically create an index on the

constraint columns, if one does not already exist, to enforce the uniqueness.

FOREIGN KEY constraints do not automatically create an index, but you

should create them manually after the constraint is defined.

✦ A table may have only one PRIMARY KEY constraint but multiple UNIQUE con-

straints. PRIMARY KEY constraints ensure that rows are unique in the table

and NOT NULL; UNIQUE constraints allow NULLs.

✦ Constraints may be dynamically enabled or disabled using the ALTER TABLE

command. This capability is useful when you need to perform a mass update

or mass insert into a table, which may not be done in such an order to main-

tain constraint integrity.

4832-8 ch07.F 7/27/01 9:01 AM Page 337

338 Part II ✦ Managing Database Objects

✦ A DEFAULT may be specified for a column to assign a value, other than NULL,

to the column if another value is not specified during an INSERT. DEFAULTs are

only applied during INSERT operations and are not maintained thereafter.

✦ A VIEW enables you to give a simple or complex SELECT statement a name

and store its definition in the data dictionary. Users then can SELECT from the

VIEW, which automatically runs the SELECT statement that defines the view.

✦ You can perform DML through simple views (that is, views based on a single

table with no expressions or functions in the column list), but you may not

always be able to perform DML through complex views.

✦ To ensure that DML does not put the data outside of the scope of the view,

you can create the view using the WITH CHECK OPTION. To prevent DML on a

view, create the view with the READ ONLY option.

✦ Sequences enable you to automatically generate incremental values, either

ascending or descending, which then can be assigned to a column of a table

using the NEXTVAL and CURRVAL pseudo-columns for the sequence.

✦ Once NEXTVAL is used, the value for the sequence is automatically incre-

mented and cannot be reused. You should use NEXTVAL only when assigning

the next value in the sequence to a column in a table.

✦ After using NEXTVAL, you can check the value assigned using CURRVAL. CUR-

RVAL has no value until NEXTVAL is used.

✦ Caching sequences improves performance because the next set of incremental

values for the sequence will be cached in memory. After a sequence value is

cached, it is considered used, and an instance crash loses any cached values.

✦ Synonyms enable you to create alternate names to reference tables in the

database. They can be used as a form of shorthand.

✦ Public synonyms can be created only by the DBA, by default, and can be used

by anyone connected to the database.

✦ Indexes enable you to potentially speed the retrieval of data in the database.

Indexes also slow down the performance of DML in the database when they

are created on tables that are frequently modified.

✦ The right number of indexes to create is as many as are needed for queries to

work faster but not too many that DML operations slow to a crawl.

✦ Create indexes on columns that form part of a join condition, are frequently

referenced in the WHERE clause of a SQL statement, or used in the GROUP BY,

HAVING, or ORDER BY clauses.

✦ Oracle 8i enables you to create function-based indexes, which store the result

of an expression instead of a column value. In order to create function-based

indexes, you need to be granted the QUERY REWRITE permission.

✦ ✦ ✦

4832-8 ch07.F 7/27/01 9:01 AM Page 338

339

STUDY GUIDE

This section will enhance your understanding of the material presented in this

chapter. Answer the questions and then work through the lab exercises in order to

feel more comfortable with the material.

Assessment Questions
1. On which line will the following CREATE TABLE statement fail? (Choose the

best answer.)

1 CREATE TABLE MyTable (
2 IdColumn number(5) NULL,
3 Name varchar2(30),
4 Status varchar2(10);

A. 1

B. 2

C. 3

D. 4

E. The statement will not fail.

2. Which permissions are required to create a function-based index on a table in

another schema? (Choose three answers.)

A. CREATE INDEX

B. CREATE ANY TABLE

C. SELECT on the table being indexed

D. GLOBAL QUERY REWRITE

E. QUERY REWRITE

F. ALTER TABLE

G. CREATE ANY INDEX

339Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 339

3. If you need to create a view that returns data so that it can be used for

“Top-N” analysis, which of the following clauses must you include in the view

definition? (Choose the best answer.)

A. HAVING

B. ORDER BY

C. TOP-N

D. ROWNUM

E. GROUP BY

F. GROUPING

4. If you are connected to your Oracle instance as the user “Student”, which of

the following database objects can you drop, assuming a default configura-

tion? (Choose all correct answers.)

A. Student.Courses

B. Scott.Courses

C. Student.Table2

D. USER_CONSTRAINTS

E. Public Synonym ENROLLMENT defined on Student.ClassEnrollment

5. Which of the following benefits do indexes provide? (Choose two answers.)

A. Speed data inserts.

B. May provide data in sorted order.

C. Speed data updates.

D. Speed data deletes.

E. Speed view creation.

F. Speed data retrieval.

6. Which of the following commands can be used to add a constraint to an exist-

ing table called Courses? (Choose all correct answers.)

A. CREATE CONSTRAINT ...

B. ALTER TABLE Courses MODIFY ...

C. ALTER TABLE Courses CONSTRAINT ...

D. ALTER TABLE Courses ADD ...

E. MODIFY TABLE Courses CONSTRAINT ...

F. UPDATE TABLE Courses SET CONSTRAINT ...

340 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 340

341

7. You need to create a view through which users can update employee records.

The view will extract data from a number of tables, but the INSERT, UPDATE,

or DELETE can take place only on one of the underlying tables. Which of the

following clauses will cause the updates to fail? (Choose all correct answers.)

A. CREATE VIEW

B. SELECT DISTINCT

C. WHERE

D. GROUP BY

E. HAVING

F. ORDER BY

8. You create a sequence to be used to assign incremental order numbers in the

Orders table. You create the sequence using the following definition:

CREATE SEQUENCE OrderNumSequence
START WITH 1000
INCREMENT BY 1
MAXVALUE 100000000
NOCYCLE

The instance accessing the orders database crashes. After instance restart,

you determine that the highest order number is 1277. The LAST_NUMBER col-

umn of the USER_SEQUENCES view has a value of 1320. What is the next order

number to be assigned when using the NEXTVAL psuedo-column for the

sequence? (Choose the best answer.)

A. 1280

B. 1300

C. 1301

D. 1278

E. 1281

9. In the following ALTER TABLE command, which line causes the command to

fail? (Choose the best answer.)

1 ALTER TABLE Employees
2 MODIFY (EmployeeID number
3 PRIMARY KEY NOT NULL
4 DEFAULT EmpIDSequence.NEXTVAL)

A. 1

B. 2

C. 3

D. 4

E. The statement will process correctly.

341Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 341

10. Which of the following constraint options is the default when you attempt to

add a constraint to an existing table? (Choose two answers.)

A. ENABLE

B. DISABLE

C. FORCE

D. NOFORCE

E. VALIDATE

F. NOVALIDATE

11. Which of the following system views can you query to determine which views

are in your schema? (Choose all correct answers.)

A. USER_TABLES

B. USER_VIEWS

C. ALL_VIEWS

D. USER_CATALOG

E. MY_VIEWS

12. If you want to remove references to a column in an existing table without reor-

ganizing the entire table, which command do you issue? (Choose the best

answer.)

A. ALTER TABLE ... DROP COLUMN ...

B. ALTER TABLE ... DROP UNUSED COLUMNS

C. ALTER TABLE ... UNUSED COLUMN ...

D. ALTER TABLE ... SET UNUSED ...

E. ALTER TABLE ... MODIFY ...

Scenarios
1. You have just been hired as a junior DBA for a national training organization.

As one of your first tasks, you have been asked to assist the sales department

in keeping better track of their data. They need to be able to perform the

following:

• Create a listing of the instructors who have taught the most courses over

the last six months.

• Create a listing of the courses generating the highest revenue over the

last year, with the output showing a subtotal by course and month.

342 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 342

343

• The reporting functions, which will grow as the company increases in

size, must be performed so that they do not impact other users making

changes to the existing data.

What database objects would you create to help support these requirements?

2. A major distributor of houseware products has been using a part-numbering

scheme in their Products table based upon the manufacturer and product

description of the products they sell. This has caused problems when manu-

facturers release products with similar names because the clerks entering the

new products often were informed that the product code they were creating

already exists.

The DBA has also mentioned to you that the objects in the database are

owned by many users, and the objects have names close to the 30-character

limit that Oracle allows. Referencing those objects and performing queries

requires a lot of typing and is time consuming.

What suggestions would you make to solve these problems?

Lab Exercises
In the lab exercises, you will create and manage tables, views, constraints, and

other database objects. You should use the same database used in labs in previous

chapters because you need to reference the existing tables in the Student schema.

Lab 7.1 Creating and Managing Tables
1. Open SQL*Plus and connect to your instance using the Student account with

the password oracle.

2. Create a table called SalesPersons that will hold salesperson information. The

table should have the following structure:

Column Name Datatype Length Null?

SalesPersonID number 5 No

FirstName varchar2 15 No

LastName varchar2 20 No

Address varchar2 30 Yes

City varchar2 25 Yes

State char 2 Yes

Continued

343Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 343

Column Name Datatype Length Null? (continued)

PostalCode varchar2 10 Yes

Telephone varchar2 15 Yes

Email varchar2 40 Yes

Salary number 9,2 Yes

Commission number 3 No

Comments varchar2 2000 Yes

3. Insert data into the Salespersons table with the following information:

Column Name Datatype Length Null?

SalesPersonID 1001 1002 1003

FirstName Adrian Natasha Erin

LastName Newey Konkle Smith

Address 101 Williams Rd. 117 Hennesy Crt.

City Dorsett Toronto

State NH ON

PostalCode 12123 L4M 3C7

Telephone (555) 244-5523 (416) 555-1313

EMail Anewey@bradsys.com

Salary 2000.00 2200.00

Commission 20 17 35

Comments

Add more records into the table if you wish, but ensure that the preceding

information is inserted. Verify your data by querying the table.

4. Modify the SalesPersons table so that a MiddleInitial column is added with a

datatype of VARCHAR2 and length 3, and that NULLs are allowed.

5. Modify the Email address column so that if another email address is not speci-

fied when a record is created, an email address of “sales@bradsys.org” is auto-

matically entered.

Insert a new record of your choosing without an email address to verify that

the email address is being assigned properly.

344 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 344

345

6. Create a temporary table called TempClassEnroll that will be used by your

application to hold a class enrollment record while a salesperson is on the

phone with a student. The information in the temporary table should have the

exact same structure as that ClassEnrollment table.

Verify that the structure of both tables is the same by querying the data

dictionary.

Lab 7.2 Creating and Managing Constraints
1. Modify the TempClassEnroll table to include the exact same FOREIGN KEY

constraints as those of the ClassEnrollment table. What happened? Why?

2. Create a PRIMARY KEY constraint on the SalesPersonID column of the

SalesPersons table.

3. You need to ensure that a commission rate for a salesperson is no more than

50 percent of the sale amount. Modify the SalesPersons table to include this

constraint. Attempt to modify the commission for Adrian Newey to 65 to test

your constraint

Lab 7.3 Creating Other Database Objects
1. You need to ensure that each row in the SalesPersons table has a unique

SalesPersonID and that these IDs increment chronologically by a value of 1.

Create the appropriate database object to satisfy this requirement.

2. You determine that users frequently query information in the Students,

Instructors, and SalesPersons tables using the LastName columns in the

respective table. Create a database object that will speed queries on the table

when this column is referenced in the WHERE clause.

3. Your manager has asked for an enrollment count for each class in all loca-

tions. This information must be generated each week. Create a database

object that can be queried by your manager to more easily generate this data

when needed.

Answers to Chapter Questions

Chapter Pre-Test
1. When creating a table, you must specify a table name that is unique in the

schema of the user creating the table. The table must also contain at least one

column, for which a name and datatype must be specified.

345Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 345

2. When you define a DEFAULT on a database column, Oracle uses only the

DEFAULT when an INSERT is made into the table and only if another value for

the column was not explicitly specified in the INSERT statement. DEFAULTs

are used to assign values to a database column if no other value is specified at

INSERT time. The DEFAULT is not used during an UPDATE operation.

3. You should create sufficient indexes on a table so that queries perform well,

but not too many indexes so that DML operations suffer greatly in perfor-

mance. In general, indexes should be created on columns used to join tables

(that is, all columns in a PRIMARY KEY/FOREIGN KEY relationship), columns

frequently used in a WHERE clause, or columns often used in the GROUP BY,

HAVING, or ORDER BY clauses of a SQL statement. You should always create

indexes on FOREIGN KEY columns. Oracle automatically creates indexes on

columns with PRIMARY KEY or UNIQUE constraints.

4. In Oracle 8i it is now possible to include the ORDER BY clause in a view defini-

tion. This is useful if you need to perform “top-N” analysis, such as finding the

ten best customers or the ten worst salespeople. You can define a view with

the SELECT statement required to return the data in the appropriate order,

and then use the ROWNUM pseudo-column to retrieve only the number of

sorted rows you desire from the view.

5. Because you have three tables (Customers, Order, Suppliers) and each table

must have a unique number generated to identify its contents and support

PRIMARY KEY or UNIQUE constraints, you should create three sequences —

one for each table’s data. This way you do not have gaps in sequences, and

the data makes chronological sense for the unique identification columns. You

can create a single sequence, but this distributes the sequence values across

all three tables creating gaps in each.

6. By default, only the DBA has the CREATE PUBLIC SYNONYM permission. This

means that only DBAs are allowed to create PUBLIC synonyms. In order for

other users to be able to create or drop a PUBLIC synonym, they must be

granted the CREATE PUBLIC SYNONYM or DROP PUBLIC SYNONYM permis-

sion by the DBA.

7. Caching sequences improves performance in environments where rapid DML

is common, such as order-entry systems and other online transaction-

processing environments. Instead of requiring Oracle to get the next sequence

value from the data dictionary and then increment it, caching a sequence

preincrements a number of sequence values and touches the data dictionary

only when the cache is exhausted. This reduces the calls to the data dictio-

nary and improves performance.

Caching of sequences can cause gaps in the sequence values, because an

instance crash loses any cached values. After a sequence value is cached, it is

considered used by Oracle and cannot be regained.

346 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 346

347

8. A PRIMARY KEY constraint ensures that the values for the column or columns

on which the constraint is defined are unique within the table and NOT NULL.

A UNIQUE constraint ensures that the values for the column or columns on

which the constraint is defined are unique within the table or NULL. You can

define only a single PRIMARY KEY constraint on a table, whereas a table may

support multiple UNIQUE constraints.

9. Oracle automatically assigns a name to a constraint when you do not do so

when defining the constraint. The constraint name is in the format of

SYS_Cnnnnnn, such as SYS_C002037. Not naming constraints is a bad idea

because Oracle returns a constraint name in the error message when the con-

straint is violated. Naming the constraint enables you to more easily deter-

mine which constraint has been violated when you receive an error message.

10. Columns defined using the CHAR datatype store data using the character set

specified when the database was created. Columns using the NCHAR datatype

store data using the National Language character set specified when the

database was created. Both the CHAR and NCHAR datatypes store character

data but differ in which characters they can store.

11. Every object you create in Oracle must start with a letter (a–z or A–Z). Other

valid characters for naming objects include numbers (0–9) and the symbols _,

#, and $. The use of # and $ is discouraged. Object names in Oracle can be up

to 30 characters long and are not case sensitive. In fact, Oracle converts all

names to uppercase when storing them in the data dictionary.

Assessment Questions
1. D — The syntax for the CREATE TABLE statement is not properly terminated

with a closing parenthesis “)”. For this reason, the last line of the command

fails. You should also explicitly specify whether or not a column will allow

NULL for each column of the table, as was done for IdColumn.

2. C, D, G — In order to create an index in a schema other than your own, you

need the CREATE ANY INDEX privilege to create the index in another user’s

schema, and the SELECT permission on the table on whose columns the index

will be created. Because the index will also be function based in somebody

else’s schema, you need the GLOBAL QUERY REWRITE privilege.

If the index were in your schema, you would need the CREATE INDEX and

QUERY REWRITE privileges. If the table on whose columns the index was

being created was not in your schema, you would also need SELECT permis-

sions on the table whose columns would be referenced in the index.

3. B — “Top-N” analysis requires that the data be presented in sorted order. For

this reason, you need an ORDER BY clause in the SELECT statement portion of

the view definition. In most cases, a GROUP BY and a HAVING clause also are

used, but they are not required.

347Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 347

4. A, C — Assuming a default configuration where you have not been provided

any extraordinary privileges, you can drop objects in your own schema. The

only two objects listed that are owned by Student are Student.Courses and

Student.Table2. The Scott.Courses table is owned by another user, while

USER_CONSTRAINTS and public synonyms can be dropped only by the DBA.

It is not recommended, even if you have DBA privileges, that you drop data

dictionary objects, such as USER_CONSTRAINTS.

5. B, F — Indexes are primarily used to speed data retrieval operations. Using an

index in a query can also retrieve the data in sorted order, assuming the

query is not too complex or specifies another sort order with an ORDER BY.

Indexes always reduce the speed of data modifications because Oracle must

update the data and index blocks for each data modification.

6. B, D — In order to add a constraint to an existing table, you can use the ALTER

TABLE ... ADD command, which can be used to add a PRIMARY KEY, UNIQUE,

CHECK, or FOREIGN KEY constraint to the table. You can also use the ALTER

TABLE ... MODIFY syntax to add a NOT NULL constraint to an existing column.

All of the other commands are not valid in Oracle.

7. B, D — If you want to perform DML through a view, you cannot have the DIS-

TINCT keyword in the column list of the view definition. You are also not

allowed to have a GROUP BY in the view definition because this clause causes

data aggregation and does not allow individual records to be projected

through the view.

8. B — The next value that will be used when the NEXTVAL pseudo-column is

used to assign a value to a table is 1300. This is because USER_SEQUENCES

reported 1320 in the LAST_NUMBER column. The sequence has an incremen-

tal value of 1 and a default CACHE value of 20. Because 20 values are being

cached, the LAST_NUMBER column reports only the next uncached value (in

this case, 1320), which means that the first cached value is 1300.

9. C — The line reading PRIMARY KEY NOT NULL will cause the ALTER TABLE

command to fail. This is because you cannot modify a column to include a

PRIMARY KEY constraint. In order to add the PRIMARY KEY constraint, you

need to use the ADD clause of the ALTER TABLE command.

The definition of the DEFAULT also uses a NEXTVAL pseudo-column of the

EmpIDSequence sequence, which is also not allowed but is not the primary

cause of the failure. The PRIMARY KEY definition is interpreted and deemed

invalid by Oracle before it even parses the DEFAULT clause.

10. A, E — The default state of all constraints added to an existing table is always

ENABLE and VALIDATE. This is to ensure backward compatibility with previ-

ous versions of Oracle, as well as to ensure that all data satisfies constraint

conditions. FORCE and NOFORCE are not valid options for constraint

definition.

348 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 348

349

11. B, C, D — The USER_VIEWS view contains all the views in a your schema. The

ALL_VIEWS view contains information about views in your schema and all

other views in other schemas that you have been granted permissions to. The

USER_CATALOG view is an ANSI-standard view that provides information on

all tables and views in your schema.

12. D — The ALTER TABLE ... SET UNUSED ... command can be used to mark a col-

umn as unusable without forcing a structural reorganization of the table. The

ALTER TABLE ... DROP COLUMN and ALTER TABLE ... DROP UNUSED

COLUMNS commands remove the column as well as reorganize the data. None

of the other examples are valid Oracle commands.

Scenarios
1. In order to satisfy the requirements that have been outlined, the best course

of action includes:

• Create a view that with the proper SQL syntax to provide a listing of

instructors who have taught courses over the last six months. Your view

definition might look something like this:

SQL> CREATE OR REPLACE VIEW InstructorUsage AS
2 SELECT I.InstructorID, Name,
3 COUNT(DISTINCT S.ClassID) “Classes Taught”
4 FROM Instructors I, ScheduledClasses S, ClassEnrollment C,
5 (SELECT InstructorID, (FirstName || ‘ ‘ || LastName) Name
6 FROM Instructors) N
7 WHERE I.InstructorID = S.InstructorID
8 AND I.InstructorID = N.InstructorID
9 AND S.ClassID = C.ClassID
10 AND UPPER(S.Status) = ‘CONFIRMED’
11 AND S.StartDate BETWEEN ADD_MONTHS(SYSDATE,-6) AND SYSDATE
12 GROUP BY I.InstructorID, Name
13 ORDER BY COUNT(DISTINCT S.ClassID) DESC, Name;

View created.

SQL> col name format a40
SQL> SELECT * FROM InstructorUsage;

INSTRUCTORID NAME Classes Taught
------------ -- --------------

100 David Ungar 1
200 Lisa Cross 1

SQL>

• Create a view that summarizes the revenue generated from each course

by querying the ClassEnrollment table and joining it to the

ScheduledClasses table to report only on those classes that have run

and been confirmed. You also need to exclude those enrollments that

were canceled. The view definition might look something like this:

349Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 349

SQL> CREATE OR REPLACE VIEW ClassRevenue AS
2 SELECT S.CourseNumber, CourseName,
3 TO_CHAR(SUM(Price), ‘$99,999.99’) “Course Revenue”
4 FROM ScheduledClasses S, ClassEnrollment C,
5 (SELECT CourseNumber, CourseName
6 FROM Courses) N
7 WHERE S. CourseNumber = N.CourseNumber
8 AND S.ClassID = C.ClassID
9 AND UPPER(S.Status) = ‘CONFIRMED’
10 AND S.StartDate BETWEEN ADD_MONTHS(SYSDATE,-12) AND SYSDATE
11 GROUP BY S.CourseNumber, CourseName
12 ORDER BY SUM(Price) DESC, CourseName
13 /

View created.

SQL> col CourseName format a40
SQL> SELECT * FROM ClassRevenue;

COURSENUMBER COURSENAME Course Reve
------------ -- -----------

200 Database Performance Basics $11,500.00
100 Basic SQL $5,750.00

SQL>

• In order to reduce the impact on users making changes to the database,

you should create copies of the tables with the data you need and create

the views on the copied tables. You can do this by using the CREATE

TABLE ... AS SELECT ... syntax of the CREATE TABLE command for each

relevant table. You then populate those tables with the data from the

production system periodically.

2. In order to make the entry of new products more efficient, you should recom-

mend that a numeric code be used to uniquely identify products for the com-

pany. The part number column should be changed to include a primary key.

You should also create a sequence that allows for the population of part num-

ber column with the next incremental part number using the NEXTVAL

pseudo-column of the sequence in the INSERT statement.

To make it easier to reference objects in other schemas with shorter names,

synonyms can be created for each object that must be referenced. If all users

need to manipulate many objects, the DBA can create public synonyms that

can be accessed by all users. Permissions on the tables to which the syn-

onyms refer will prevent users seeing data that they should not be allowed

to see.

350 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 350

351

Lab Exercises

Lab 7.1 Creating and Managing Tables
1. Open SQL*Plus and connect to your instance using the Student account with

the password oracle.

2. Create a table called SalesPersons that holds salesperson information. The

table should have the following structure:

Column Name Datatype Length Null?

SalesPersonID number 5 No

FirstName varchar2 15 No

LastName varchar2 20 No

Address varchar2 30 Yes

City varchar2 25 Yes

State char 2 Yes

PostalCode varchar2 10 Yes

Telephone varchar2 15 Yes

EMail varchar2 40 Yes

Salary number 9,2 Yes

Commission number 3 No

Comments varchar2 2000 Yes

SQL> CREATE TABLE SalesPersons (
2 SalesPersonID number(5) NOT NULL,
3 FirstName varchar2(15) NOT NULL,
4 LastName varchar2(20) NOT NULL,
5 Address varchar2(30) NULL,
6 City varchar2(25) NULL,
7 State char(2) NULL,
8 PostalCode varchar2(10) NULL,
9 Telephone varchar2(15) NULL,
10 Email varchar2(40) NULL,
11 Salary number(9,2) NULL,
12 Commission number(3) NOT NULL,
13 Comments varchar2(2000) NULL
14);

Table created.

SQL>

351Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 351

3. Insert data into the Salespersons table with the following information:

Column Name Datatype Length Null?

SalesPersonID 1001 1002 1003

FirstName Adrian Natasha Erin

LastName Newey Konkle Smith

Address 101 Williams Rd. 117 Hennesy Crt.

City Dorsett Toronto

State NH ON

PostalCode 12123 L4M 3C7

Telephone (555) 244-5523 (416) 555-1313

EMail Anewey@bradsys.org

Salary 2000.00 2200.00

Commission 20 17 35

Comments

Add more records into the table if you wish, but ensure that the preceding is

inserted. Verify your data by querying the table.

SQL> INSERT INTO SalesPersons VALUES
2 (1001, ‘Adrian’, ‘Newey’, ‘101 Williams Rd.’, ‘Dorsett’, ‘NH’,
3 ‘12123’, ‘(555) 244-5523’, ‘Anewey@bradsys.org’, 2000, 20, NULL);

1 row created.

SQL> INSERT INTO SalesPersons VALUES
2 (1002, ‘Natasha’, ‘Konkle’, ‘117 Hennesy Crt.’, ‘Toronto’, ‘ON’,
3 ‘L4M 3C7’, ‘(416) 555-1313’, NULL, 2200.00, 17, NULL);

1 row created.

SQL> INSERT INTO SalesPersons (SalesPersonID, FirstName, LastName, Commission)
2 VALUES (1003, ‘Erin’, ‘Smith’, 35);

1 row created.

SQL> set pagesize 100
SQL> SELECT * FROM SalesPersons;

352 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 352

353

SALESPERSONID FIRSTNAME LASTNAME
------------- --------------- --------------------
ADDRESS CITY ST POSTALCODE
------------------------------ ------------------------- -- ----------
TELEPHONE EMAIL SALARY COMMISSION
--------------- -- ---------- ----------
COMMENTS
--

1001 Adrian Newey
101 Williams Rd. Dorsett NH 12123
(555) 244-5523 Anewey@bradsys.com 2000 20

1002 Natasha Konkle
117 Hennesy Crt. Toronto ON L4M 3C7
(416) 555-1313 2200 17

1003 Erin Smith

35

SQL>

4. Modify the SalesPersons table so that a MiddleInitial column is added with a

datatype of VARCHAR2 and a length 3 and that NULLs are allowed.

SQL> ALTER TABLE SalesPersons ADD
2 (MiddleInitial varchar2(3) NULL);

Table altered.

SQL>

5. Modify the email address column so that if another email address is not speci-

fied when a record is created, an email address of “sales@bradsys.org” is auto-

matically entered.

SQL> ALTER TABLE SalesPersons MODIFY
2 (EMail varchar2(40) DEFAULT ‘sales@bradsys.org’);

Table altered.

SQL>

Insert a new record of your choosing without an email address to verify that

the email address is being assigned properly.

SQL> INSERT INTO SalesPersons
2 (SalesPersonID, FirstName, LastName, Commission)
3 VALUES (1004, ‘Arthur’, ‘Jones’, 35);

353Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 353

1 row created.

SQL> SELECT SalesPersonID, FirstName, LastName, Email
2 FROM SalesPersons;

SQL> SELECT FirstName, LastName, EMail FROM SalesPersons;

FIRSTNAME LASTNAME EMAIL
--------------- -------------------- ------------------------
Adrian Newey Anewey@bradsys.org
Natasha Konkle
Erin Smith
Arthur Jones sales@bradsys.org

SQL>

6. Create a temporary table called TempClassEnroll that can be used by your

application to hold a class enrollment record while a salesperson is on the

phone with a student. The information in the temporary table should have the

exact same structure as that ClassEnrollment table.

SQL> CREATE GLOBAL TEMPORARY TABLE TempClassEnroll AS
2 SELECT * FROM ClassEnrollment WHERE 0=1;

Table created.

SQL>

Verify that the structure of both tables is the same by querying the data

dictionary.

SQL> DESC ClassEnrollment;
Name Null? Type
--- -------- ----------------------------
CLASSID NOT NULL NUMBER(38)
STUDENTNUMBER NOT NULL NUMBER(38)
STATUS NOT NULL CHAR(10)
ENROLLMENTDATE NOT NULL DATE
PRICE NOT NULL NUMBER(9,2)
GRADE CHAR(4)
COMMENTS VARCHAR2(2000)

SQL> DESC TempClassEnroll;
Name Null? Type
--- -------- ----------------------------
CLASSID NOT NULL NUMBER(38)
STUDENTNUMBER NOT NULL NUMBER(38)
STATUS NOT NULL CHAR(10)
ENROLLMENTDATE NOT NULL DATE
PRICE NOT NULL NUMBER(9,2)
GRADE CHAR(4)
COMMENTS VARCHAR2(2000)

SQL>

354 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 354

355

Another query that you can use to compare columns visually is:

SQL> SELECT table_name, column_name, data_type, data_length, nullable
2 FROM USER_TAB_COLUMNS
3 WHERE table_name IN (‘CLASSENROLLMENT’,’TEMPCLASSENROLL’)
4* ORDER BY column_name;

TABLE_NAME COLUMN_NAME DATA_TYPE DATA_LENGTH N
-------------------- ------------------------------ ---------- ----------- -
CLASSENROLLMENT CLASSID NUMBER 22 N
TEMPCLASSENROLL CLASSID NUMBER 22 N
CLASSENROLLMENT COMMENTS VARCHAR2 2000 Y
TEMPCLASSENROLL COMMENTS VARCHAR2 2000 Y
CLASSENROLLMENT ENROLLMENTDATE DATE 7 N
TEMPCLASSENROLL ENROLLMENTDATE DATE 7 N
CLASSENROLLMENT GRADE CHAR 4 Y
TEMPCLASSENROLL GRADE CHAR 4 Y
CLASSENROLLMENT PRICE NUMBER 22 N
TEMPCLASSENROLL PRICE NUMBER 22 N
CLASSENROLLMENT STATUS CHAR 10 N
TEMPCLASSENROLL STATUS CHAR 10 N
CLASSENROLLMENT STUDENTNUMBER NUMBER 22 N
TEMPCLASSENROLL STUDENTNUMBER NUMBER 22 N

14 rows selected.

SQL>

Lab 7.2 Creating and Managing Constraints
1. Modify the TempClassEnroll table to have the exact same FOREIGN KEY con-

straints as those of the ClassEnrollment table. What happened? Why?

SQL> ALTER TABLE TempClassEnroll
2 ADD CONSTRAINT TempEnroll_ClassID
3* FOREIGN KEY (ClassID) REFERENCES Classes.ClassID;

ALTER TABLE TempClassEnroll
*
ERROR at line 1:
ORA-14455: attempt to create referential integrity constraint
on temporary table

SQL>

You cannot create FOREIGN KEY constraints on temporary tables. FOREIGN

KEY constraints can only be created on permanent tables.

355Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 355

2. Create a PRIMARY KEY constraint on the SalesPersonID column of the

SalesPersons table.

SQL> ALTER TABLE SalesPersons
2 ADD CONSTRAINT SalesPersons_PK
3 PRIMARY KEY (SalesPersonID);

Table altered.

SQL>

3. You need to ensure that a commission rate for a salesperson is no more than

50 percent of the sale amount. Modify the SalesPersons table to include this

constraint. Attempt to modify the commission for Adrian Newey to 55 to test

your constraint.

SQL> ALTER TABLE SalesPersons
2 ADD CONSTRAINT SalesPersons_Comm_CK
3* CHECK (Commission <= 50);

Table altered.

SQL> UPDATE SalesPersons
2 SET Commission = 65
3 WHERE SalesPersonID = 1001;

UPDATE SalesPersons
*
ERROR at line 1:
ORA-02290: check constraint (STUDENT.SALESPERSONS_COMM_CK)
violated

SQL>

Lab 7.3 Creating Database Objects
1. You need to ensure that each row in the SalesPersons table has a unique

SalesPersonID and that these IDs increment chronologically by a value of 1.

Create the appropriate database object to satisfy this requirement.

Insert a new row into the SalesPersons table to ensure that the object you cre-

ated is working properly.

SQL> CREATE SEQUENCE SalesPersonIDSequence
2 START WITH 1005
3 INCREMENT BY 1
4 MAXVALUE 99999
5 NOCYCLE
6 NOCACHE;

Sequence created.

SQL> INSERT INTO SalesPersons
2 (SalesPersonID, FirstName, LastName, Commission)
2 VALUES
3 (SalesPersonIDSequence.NEXTVAL, ‘Robert’, ‘Miller’, 30);

356 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 356

357

1 row created.

SQL> commit;

Commit complete.

SQL> SELECT SalesPersonID, LastName FROM SalesPersons;

SALESPERSONID LASTNAME
------------- --------------------

1001 Newey
1002 Konkle
1003 Smith
1004 Jones
1005 Miller

SQL>

2. You determine that users frequently query information in the Students,

Instructors, and SalesPersons tables using the LastName columns in the

respective table. Create a database object that can speed queries on the table

when this column is referenced in the WHERE clause.

SQL> CREATE INDEX Instructors_LastName_IDX
2 ON Instructors (LastName);

Index created.

SQL> CREATE INDEX SalesPersons_LastName_IDX
2 ON SalesPersons (LastName);

Index created.

SQL> CREATE INDEX Students_LastName_IDX
2 ON Students (LastName);

Index created.

SQL>

3. Your manager has asked for an enrollment count for each class in all loca-

tions. This information must be generated each week. Create a database

object that can be queried by your manager to more easily generate this data

when needed.

SQL> CREATE OR REPLACE VIEW ClassEnrollmentView AS
2 SELECT S.LocationID Location, S.ClassRoomNumber Room,
3 S.CourseNumber Course, S.StartDate,
4 COUNT(StudentNumber) Enrolled
5 FROM ScheduledClasses S, ClassEnrollment C
6 WHERE S.ClassID = C.ClassID
7 GROUP BY S.LocationID, S.ClassRoomNumber,
8 S.ClassID, S.CourseNumber, S.StartDate
9 ORDER BY S.LocationID, S.StartDate;

357Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 357

View created.

SQL> SELECT * FROM ClassEnrollmentView;

LOCATION ROOM COURSE STARTDATE ENROLLED
---------- ---------- ---------- --------- ----------

100 4 100 06-JAN-01 3
300 1 200 13-JAN-01 3
300 2 100 14-FEB-01 1

SQL>

358 Chapter 7 ✦ Study Guide

4832-8 ch07.F 7/27/01 9:01 AM Page 358

Configuring Security
in Oracle Databases

EXAM OBJECTIVES

✦ Controlling user access

• Create users

• Create roles to ease setup and maintenance of the security

model

• Use the GRANT and REVOKE statements to grant and revoke

object privileges

88C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch08.F 7/27/01 9:01 AM Page 359

360 Part II ✦ Managing Database Objects

CHAPTER PRE-TEST
1. What is the difference between a schema user and a nonschema

user?

2. When a user is granted permission to update data in a table, is it
possible to limit which columns the user is able to change?

3. What is a role, and how can it be used to streamline security
administration?

4. Is it possible to grant a role to another role?

5. After a user creates a table, who is able to query the table?

6. What happens when permission on a view is granted WITH GRANT
OPTION?

7. Which data dictionary view do you query to determine what permis-
sions you have been granted on tables created by other users?

8. When another user references your table in a FOREIGN KEY constraint,
what happens if you attempt to remove the user’s privileges on your
table?

9. What command is used to remove system privileges from a user?

10. How do you change your Oracle password?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch08.F 7/27/01 9:01 AM Page 360

361Chapter 8 ✦ Configuring Security in Oracle Databases

Are databases accessed by a single person or by more than one individual? If

the answer is more than one, which is typically the case in most organiza-

tions, then it is necessary to control access to those objects through the use of per-

missions. Furthermore, each individual that requires access should have a user

account that may be used to track his or her access and to ensure that a user can-

not perform actions that are not permitted. Security in an Oracle database is

responsible for all of these things.

By default, Oracle does not allow anyone, except the Oracle users that exist at

database creation time, to perform any actions on the database. In fact, the basic

Oracle security model is that “all actions that are not explicitly permitted are

implicitly denied.” This means that Oracle disallows anything that you try to do

unless the DBA (database administrator — an Oracle user) or the owner of an

object has permitted you to perform the action.

In this chapter, you learn how to create users in the Oracle database and then how

to enable those users to perform certain actions in the database, such as create or

modify tables or other database objects. You also learn how you can grant and

manage permissions on database objects to enable a user to insert, update, and

delete data in another user’s schema.

Users and Schemas
By default, Oracle creates two users when you create your database. They are

called SYS (with a password of “change_on_install”) and SYSTEM (with a password

of “manager”). The SYS user owns the data dictionary and all of its associated

objects. The user SYSTEM has access to all objects in the database. The distinction

between a user owning objects and a user having access only to objects that are

owned by another user is an important one in Oracle.

Any user that has been given the permission to create objects and does so is said

to own a schema. The schema is a collection of all objects that are owned by a user.

The schema has the same name as the user.

For example, if Bob creates a table called Orders, at that point, Bob also creates his

schema. The schema has the same name as the owner of the Orders table, namely

Bob. Bob is said to own Bob’s schema and is therefore a schema owner. Bob is also

sometimes referred to as a schema user because he owns objects.

If Susan wants to be able to read data in Bob’s Orders table, she must be granted

permission by Bob to do so. Susan does not own any objects of her own, and conse-

quently, she does not have a schema. She reads data in other schemas, such as

Bob’s. For this reason, Susan is also referred to as a nonschema user.

4832-8 ch08.F 7/27/01 9:01 AM Page 361

362 Part II ✦ Managing Database Objects

If Susan wants to query the contents of the Orders table that Bob created, she has

to begin the name of the table with the name of the schema (that is, the name of the

owner), in the form of Bob.Orders. In this way it is possible for her to distinguish an

Orders table that Bob created from an Orders table created by another user. The

full name of the table (Bob.Orders) is called the fully qualified name of the table.

The reason for using the fully qualified name instead of just the table name is that

Susan may have access to a table called Orders in another schema. If this is so,

Oracle returns an error indicating that reference to the Orders table is ambiguous,

and Oracle is unable to determine which of the Orders tables that Susan has access

to should be used to satisfy the query. Whenever creating multiple schemas by

allowing more than one user to create database objects, it is important to use

schema names in references to Oracle objects to avoid ambiguity.

Taking the concept of schema users and nonschema users to a real-world example,

it is similar to you still living with your parents. Your parents own the house that

you live in, just like an Oracle user owns a schema. Your parents allow you to live in

the house (with or without cost), which makes you the nonschema user because

you do not own the house. In fact, they have given you permission to access

objects in the house (your room, the bathroom, the kitchen, and — most

important — the fridge), which is similar to a schema owner granting privileges to

other Oracle users to access a table or other object. The schema owner (that is,

your parents), always has the option to revoke any privileges granted to objects in

the database, just like parents have the option to kick you out of the house (but

they won’t because you’re a good person).

Creating and managing users
✦ Create users

Gaining access to an Oracle database requires that you have a user account in the

database. For this to happen, the person who controls the database has to create

an Oracle user account for you. That person is the Oracle DBA.

The DBA is automatically granted permissions to do anything he or she wants in

the database. This is because the DBA is the one that creates the database in the

first place and, therefore, inherits all permissions in it. The Oracle user that the

DBA corresponds to is called SYS. Another Oracle user that has been granted full

DBA privileges is SYSTEM. As mentioned earlier, these two Oracle user accounts

are created automatically by Oracle when the database is created. The password

for the SYS user is always “change_on_install” at database creation time, and the

password for the SYSTEM user is always “manager” at creation time. These pass-

words should be changed to prevent users with some Oracle knowledge from gain-

ing access to the database.

Changing user passwords is covered in the section “Using the ALTER USER
Command to Change Passwords,” later in this chapter.

Cross-
Reference

Objective

4832-8 ch08.F 7/27/01 9:01 AM Page 362

363Chapter 8 ✦ Configuring Security in Oracle Databases

After the database has been created, the DBA connects to the instance as either

SYS or SYSTEM (typically SYSTEM) and creates additional users to become schema

owners, or to grant them some or all of the privileges that the DBA has inherited.

Only the DBA can create users by default.

The CREATE USER command
The command issued by the DBA to create a user is the CREATE USER Oracle com-

mand. The simplified syntax for the CREATE USER command is as follows:

CREATE USER username
IDENTIFIED BY password;

The syntax of the CREATE USER command outlined here is a subset of the com-
plete syntax allowed by Oracle. For a description of the complete syntax, refer to
the Oracle 8i SQL Reference in the Oracle documentation set.

For example, to create a user called Bob with a password of “mypass”, you issue

the following command:

SQL> CREATE USER Bob
2 IDENTIFIED BY mypass;

User created.

SQL>

It is important to note that usernames and passwords in Oracle are not case sensi-

tive. When attempting to connect to an Oracle database instance, whether you

specify the username/password combination as “Bob/mypass” or “BOB/MYPASS”

does not matter to Oracle because it ensures only that the right combination of

characters are sent across, not whether they are uppercase or lowercase.

Cross-
Reference

Connecting to an Oracle Instance

In order to connect to an Oracle instance, you need to provide a username and password,
as well as the name of the instance to connect to. Most tools, including SQL*Plus, prompt
you for this information and hide the password by echoing asterisks instead of the pass-
word characters. Another syntax that you can use in SQL*Plus, or any command line utility,
is username/password@instance. If you use this syntax, it is important to remember that
the password must be specified unencrypted. However, if you omit the password, you will
be prompted to enter it, at which time no characters will be echoed and the password will
not be visible to prying eyes. Although using the username/password@instance combina-
tion when executing the CONNECT command can be useful in having batch job runs suc-
cessfully at off-peak hours, it is not recommended as it introduces a big security hole.

4832-8 ch08.F 7/27/01 9:02 AM Page 363

364 Part II ✦ Managing Database Objects

After creating a user, if you try to connect to the instance using the user account

created, you get the following error:

SQL> connect bob/mypass@orcl.delphi.bradsys.com
ERROR:
ORA-01045: user BOB lacks CREATE SESSION privilege; logon denied

Warning: You are no longer connected to ORACLE.
SQL>

This error is returned because the act of creating a user does not mean that the

user can actually access a database. In order to do so, the user must be granted a

system privilege called CREATE SESSION. System privileges are discussed later in

this chapter in the “System Privileges” section.

The DROP USER command
If a DBA determines that a user should no longer have access to the database, he or

she can remove the user from the database using the DROP USER command. The

syntax for the command is as follows:

DROP USER username [CASCADE];

For example, if you were a DBA, you issue the following command to remove Susan

from the database:

SQL> DROP USER Susan;

User Dropped.

SQL>

If Susan owned objects in the database, you receive an error as follows:

SQL> DROP USER Susan;
DROP USER Susan
*
ERROR at line 1:
ORA-01922: CASCADE must be specified to drop ‘SUSAN’

SQL>

The reason for the error is that Oracle does not allow a user who owns database

objects to be removed because this orphans the objects. This is because the user’s

schema cannot be separated from the user. If you want to drop Susan and all of the

objects she owns, you can, as the message indicates, specify the CASCADE option.

4832-8 ch08.F 7/27/01 9:02 AM Page 364

365Chapter 8 ✦ Configuring Security in Oracle Databases

You should completely back up the database before specifying the CASCADE
option while issuing the DROP USER command. Oracle does not have a mecha-
nism to undo the DROP USER command because it is a Data Definition Language
(DDL) command. Any DDL command, including DROP USER, automatically com-
mits its work to the database. To reverse the action of the command, you must
restore a backup copy of your database.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
how to remove users from the database. This is because a normal user, even one
with a schema, is not normally allowed to create other users. This task is one that
DBAs keep for themselves.

Using the ALTER USER command to change passwords
It is likely that after a user is created, the user will need to change his or her pass-

word to comply with the organization’s security policy, or a DBA may need to

change a user’s password in case it has been forgotten. The command to accom-

plish this is the ALTER USER command.

Oracle 8i provides many account management features that can be used to
enforce a company’s security policy with regard to user passwords. Included is the
ability to specify a maximum time that a user can be idle before being automati-
cally disconnected, the maximum connect time, and the number of invalid logon
attempts before the account is locked out. A discussion of these features is
beyond the scope of this book. For more information, refer to profiles in the
Oracle 8i Administrators Guide in the Oracle documentation set.

To change a user’s password, you issue the following command:

ALTER USER username
IDENTIFIED BY password;

The syntax of the ALTER USER command outlined here is a subset of the complete
syntax allowed by Oracle. For a description of the complete syntax, refer to the
Oracle 8i SQL Reference in the Oracle documentation set.

In order to change another user’s password, you must be the DBA, or have been

granted the ALTER USER system privilege. Any user can change his or her own

password using the preceding syntax.

ALTER USER and other system privileges are covered later in this chapter in the
“System Privileges” section.

Cross-
Reference

Cross-
Reference

In the
Real World

Exam Tip

Caution

4832-8 ch08.F 7/27/01 9:02 AM Page 365

366 Part II ✦ Managing Database Objects

For example, if Bob is logged into the database as the user Bob, to change his pass-

word from “mypass”, which was specified when the user was created, to “newpass”,

Bob issues the following command:

SQL> ALTER USER Bob
2 IDENTIFIED BY newpass;

User altered.

SQL>

If the DBA wanted to change Bob’s password, the command that the DBA would

issue is the same.

Granting and Administering User Privileges
After you have created user accounts in Oracle, you need to enable those users to

perform certain actions in the database or to access and manipulate objects in the

database. This is accomplished through the granting and revoking of different privi-

leges (or permissions).

Oracle has two different types of privileges that can be granted — system privileges

and object privileges. System privileges enable a user to perform certain database

actions, such as create a table or an index or even connect to the instance. Object

privileges enable a user to manipulate objects, such as read data through a view,

execute a stored procedure, or change data in a table. Generally, system privileges

are granted to and revoked from users by the DBA, while object privileges are

granted to and revoked from users by the owner of the object.

System privileges
Oracle 8i includes over 100 system privileges that can be granted to users. They

include the capability to create various database objects and modify the configura-

tion of the database. The granting of these privileges is restricted to the DBA by

default, but it is possible to enable users who have been granted a privilege to grant

it to others as well. Some of the most commonly granted system privileges are

listed in Table 8-1. For a complete listing of all system privileges, refer to the Oracle
8i Administrators Guide, a part of the Oracle 8i documentation set.

4832-8 ch08.F 7/27/01 9:02 AM Page 366

367Chapter 8 ✦ Configuring Security in Oracle Databases

Table 8-1
Common System Privileges

Privilege Description

CREATE SESSION Enables a user to connect to the database instance. After
creating a new user, you need to grant the CREATE SESSION
privilege; otherwise, the user cannot connect. Granting the
CREATE SESSION privilege is not done automatically by Oracle
and must be granted explicitly.

CREATE TABLE Enables a user to create a table in his or her schema.

CREATE VIEW Enables a user to create a view in his or her schema.

CREATE SYNONYM Enables a user to create a private synonym in his or her
schema.

CREATE PUBLIC SYNONYM Enables a user to create a synonym in the SYS schema that
can be used by any user in the database.

CREATE PROCEDURE Enables a user to create a stored procedure or function is his
or her schema.

CREATE SEQUENCE Enables a user to create a sequence in his or her schema.

CREATE TRIGGER Enables a user to create a trigger in his or her schema on a
table in his or her schema.

CREATE USER Enables a user to create another user in the database and
specify the password and other settings at creation time.

ALTER USER Enables a user who has been granted the privilege to modify
the user information of another user in the database, including
changing the user’s password.

DROP ANY TABLE Enables a user to drop any table in any schema in the
database.

ALTER ANY TABLE Enables a user to alter any table in any schema in the
database.

BACKUP ANY TABLE Enables a user to make a copy of any table in the database
using the Export utility (exp).

SELECT ANY TABLE Enables a user to issue a SELECT statement against any table
in the database, whether or not permissions to the table have
been explicitly granted to the user performing the action.

INSERT ANY TABLE Enables a user to issue an INSERT statement against any table
in the database, whether or not permissions to the table have
been explicitly granted to the user performing the action.

Continued

4832-8 ch08.F 7/27/01 9:02 AM Page 367

368 Part II ✦ Managing Database Objects

Table 8-1 (continued)

Privilege Description

UPDATE ANY TABLE Enables a user to issue an UPDATE statement against any
table in the database, whether or not permissions to the table
have been explicitly granted to the user performing the action.

DELETE ANY TABLE Enables a user to issue a DELETE statement against any table
in the database, whether or not permissions to the table have
been explicitly granted to the user performing the action.

Granting system privileges
In order to assign system privileges to users, you must be connected to the

instance as a user who is a DBA, or as a user who has been given permissions to

assign the system privilege to others. The syntax for assigning system privileges is

as follows:

GRANT privilege [, privilege, ...]
TO username [, username, ...]
[WITH ADMIN OPTION];

As you can see by this syntax, it is possible to grant multiple privileges to multiple

users at the same time. The privileges granted to a user are immediately available

to the user. This means that the user does not have to disconnect from the instance

and log in again in order for the privilege change to take effect. Simply granting the

privilege enables the user to make use of it right away.

For example, if you as the DBA want to grant the CREATE SESSION privilege to Bob

and Susan, you issue the following command:

SQL> GRANT CREATE SESSION
2 TO Bob, Susan;

Grant succeeded.

SQL>

If you want to enable Bob to create tables, views, triggers, indexes, synonyms, and

sequences in his schema, you can issue the following command:

SQL> GRANT CREATE TABLE, CREATE VIEW, CREATE SYNONYM,
2 CREATE SEQUENCE, CREATE TRIGGER, CREATE INDEX
3 TO Bob;

4832-8 ch08.F 7/27/01 9:02 AM Page 368

369Chapter 8 ✦ Configuring Security in Oracle Databases

Grant succeeded.

SQL>

Just because you have been granted a system privilege does not always mean that

you can perform the action that you have been granted permissions to. For exam-

ple, if Bob connects to the instance and attempts to create a table, the following

results:

SQL> connect Bob/newpass@orcl.delphi.bradsys.com
Connected.
SQL> CREATE TABLE BobTable
2 (BobID number,
3 Name varchar2(40));

CREATE TABLE BobTable
*
ERROR at line 1:
ORA-01950: no privileges on tablespace ‘USERDATA’

SQL>

The error message that Oracle returns indicates that Bob does not have privileges

on tablespace “USERDATA”. A tablespace is a logical unit of storage that is made up

of one or more operating system files. Tables, indexes, and any other Oracle object

that requires storage are located on tablespaces.

In order for users to be able to create tables and indexes, they must also be granted

a quota on the tablespace that will be used to store the data. When Bob tried to cre-

ate the table BobTable, Oracle checked to see if Bob had been granted a quota on

the tablespace where the table will be stored (specified by the DBA). When no

quota was found, the command returned the error shown previously.

The “Introduction to Oracle: SQL & PL/SQL” exam does not test your knowledge of
how to assign quotas to users or how to define a default tablespace for a user.

The DBA typically assigns a default and temporary tablespace to the user, and

assigns the user a quota on the tablespace. The quota specifies the maximum

amount of disk space that a user’s object may take up on the tablespace and can be

set to unlimited if needed (although it should not be). For more information on the

management of user quotas or tablespaces, refer to the Oracle 8i Administrators
Companion in the Oracle 8i documentation set.

The WITH ADMIN OPTION privilege
When a user is granted system privileges, the grantor (that is, the person granting

the privilege — typically the DBA) also has the option to enable the grantee (the

person receiving the privilege, typically the user) to grant the same privilege to

other users. If this is the result desired, the grantor can grant the privilege using the

WITH ADMIN OPTION.

Exam Tip

4832-8 ch08.F 7/27/01 9:02 AM Page 369

370 Part II ✦ Managing Database Objects

If the DBA wants to enable Bob, who is the development manager, to grant the privi-

leges to create tables, indexes, and other database objects to other users, the DBA

grants Bob the privilege WITH ADMIN OPTION as shown here:

SQL> GRANT CREATE TABLE, CREATE VIEW, CREATE SYNONYM,
2 CREATE SEQUENCE, CREATE TRIGGER, CREATE PROCEDURE
3 TO Bob WITH ADMIN OPTION;

Grant succeeded.

SQL>

In turn, if Bob then wants to grant Susan the privilege to create tables, sequences,

and synonyms, Bob can issue the following command:

SQL> connect Bob/newpass@orcl.delphi.bradsys.com
Connected.
SQL> GRANT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM
2 TO Susan;

Grant succeeded.

SQL>

If Bob had not been granted the privileges he then granted to Susan, the following

error would be presented:

SQL> GRANT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM
2 TO Susan;

GRANT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM
*
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

Granting system privileges WITH ADMIN OPTION is not recommended in practice.
By allowing others to grant the privileges they have received, you may lose control
over certain aspects of managing the database. In real-world situations, few DBAs
grant system privileges to other Oracle users WITH ADMIN OPTION.

Revoking system privileges
If you do not want anyone to continue to have a system privilege granted to them,

you can use the REVOKE command to remove the privileges granted. The syntax to

revoke system privileges is very similar to that of granting them, as follows:

REVOKE privilege [, privilege, ...]
FROM username [, username, ...];

In the
Real World

4832-8 ch08.F 7/27/01 9:02 AM Page 370

371Chapter 8 ✦ Configuring Security in Oracle Databases

As with the GRANT command, the REVOKE command also accepts multiple privi-

leges and/or users in the syntax. In order for the REVOKE command to be issued to

remove system privileges from users, the person executing the command must be a

DBA or have been granted the privilege being revoked WITH ADMIN OPTION.

For example, if the DBA no longer wanted Bob to be able to create stored proce-

dures in the database, the DBA can issue the following command:

SQL> REVOKE CREATE PROCEDURE FROM Bob;

Revoke succeeded.

SQL>

After the command is processed, Bob no longer is able to issue the CREATE PROCE-

DURE command. Furthermore, if Bob were granted the privilege to create proce-

dures in the database WITH ADMIN OPTION, Bob also would not be able to grant

the privilege to others (because he does not have it himself).

It is important to note one side effect that is the result of specifying WITH ADMIN

OPTION at the time a system privilege is granted. While the DBA may revoke the

privilege granted to the user WITH ADMIN OPTION, if the user (in this case, Bob)

granted that privilege to others, it is not removed from those users that were

granted the privilege.

For example, if you give the key to your apartment to a friend and tell him that he

can make copies of the key, when you ask for the key back from your friend, you

cannot, at the same time, get back all copies that were made by him and given to

others. In order to retrieve the other copies of the key, you must find out who has

them. Similarly, in Oracle, you must query the data dictionary to determine which

other users were granted the permission being revoked by the user from which it is

being revoked.

Determining system privileges granted
If you want to find out which system privileges you have been granted, Oracle pro-

vides the USER_SYS_PRIVS view. The view enables you to see which privileges you

have been granted and whether or not they have been granted WITH ADMIN

OPTION. For example, if Bob queried the USER_SYS_PRIVS views, the output might

be similar to the following:

SQL> SELECT * FROM USER_SYS_PRIVS;

USERNAME PRIVILEGE ADM
------------------------------ -- ---
BOB CREATE SEQUENCE YES
BOB CREATE SESSION NO
BOB CREATE SYNONYM YES
BOB CREATE TABLE YES
BOB CREATE TRIGGER YES
BOB CREATE VIEW YES

4832-8 ch08.F 7/27/01 9:02 AM Page 371

372 Part II ✦ Managing Database Objects

6 rows selected.

SQL>

Only those system privileges that have been granted appear on the list. Any privi-

leges that have been revoked are not listed because Oracle does not keep track of

permissions denied a user. The default for Oracle is to deny all actions unless those

explicitly granted; therefore, only those explicitly granted are listed.

Object privileges
✦ Use the GRANT and REVOKE statements to grant and revoke object privileges

The second type of privileges that can be granted to a user in Oracle are object

privileges. Object privileges enable a user to manipulate data in the database or

perform an action on an object, such as execute a stored procedure. Unlike system

privileges, which are granted by the DBA, object privileges must be granted by the

owner of the object.

The syntax to assign object privileges is as follows:

GRANT privilege [,privilege, ...] | ALL [(column[, column,
...])]

ON objectname
TO user | role | PUBLIC
[WITH GRANT OPTION];

The major difference in the syntax between system and object privileges is that the

keyword ON must be specified to determine which object the privileges apply to.

Furthermore, object privileges for views and tables can also specify which column

of the view or table they should be applied to. The keyword ALL specifies that all

privileges that apply to the object should be granted. The privilege can be granted

to a user, role (to be discussed later), or the keyword PUBLIC, which means all

users in the database.

For example, to enable all users in the database to query the Courses table, the

owner of the table (Student) issues the following command:

SQL> GRANT SELECT ON Courses TO PUBLIC;

Grant succeeded.

SQL>

At this point, any user that exists in the database is able to query the

Student.Courses table.

Objective

4832-8 ch08.F 7/27/01 9:02 AM Page 372

373Chapter 8 ✦ Configuring Security in Oracle Databases

The types of privileges that can be granted depend on the object on which they are

being granted. For example, it makes no sense to grant the SELECT privilege to a

stored procedure, while the SELECT privilege makes perfect sense on a table. The

object privileges that can be granted and the object they can be granted to are out-

lined in Table 8-2. The options listed in the table make sense. For example, you can-

not issue an ALTER VIEW command, so therefore, the ALTER privilege cannot apply

to a view.

Table 8-2
Object Privilege Application

Privilege Granted On

SELECT Table, view, sequence

INSERT Table, view

UPDATE Table, view

DELETE Table, view

ALTER Table, sequence

INDEX Table

REFERENCES Table

EXECUTE Procedure, function, package

Most of the privileges shown in Table 8-2 are self-explanatory, with the possible

exception of the REFERENCES privilege. The REFERENCES privilege can be granted

to a user to create a FOREIGN KEY constraint on a column or columns of a table, or

to create a view on the table. By granting users the REFERENCES privilege, you do

not have to enable the users to see that data, as they would with the SELECT privi-

lege, but are allowing them only to reference the data in the FOREIGN KEY or the

view. The SELECT permission alone is not sufficient to create a FOREIGN KEY or

view that references a column in the table; the REFERENCES permission is also

required. Even when the user has the SELECT permission on the table, the creation

of a FOREIGN KEY or view fails without the REFERENCES permission.

One of the options available when granting the INSERT, UPDATE, and REFERENCES

privileges on a table or view is to restrict the columns available for modifying or ref-

erencing in the table. This is done by providing a list of columns in the GRANT

statement, as shown here:

SQL> GRANT UPDATE (CourseName)
2 ON Courses
3 TO Susan;

4832-8 ch08.F 7/27/01 9:02 AM Page 373

374 Part II ✦ Managing Database Objects

Grant succeeded.

SQL>

This enables Susan to update the CourseName column of the Courses table. Susan

cannot update any other columns in the table.

Granting object privileges at the column level is generally not recommended, and
often frowned upon. The management of many column-level privileges can
become quite time consuming, as well as confusing. When you need to assign
privileges to only certain columns of a table, it is generally recommended that you
create a view including only those columns and grant the appropriate permission
on the view itself. This way, if you drop the view, or remove permission from the
view for a user, the management is easier and cleaner.

The WITH GRANT OPTION privilege
Similar to the WITH ADMIN OPTION system privilege, the WITH GRANT OPTION

object privilege enables a user granted the privilege to grant it to someone else.

The reason for doing this is to minimize the administrative burden of granting

object privileges. To grant the privilege to query class enrollment information to

Bob and also to enable Bob to grant this privilege to other users, you issue the fol-

lowing command:

SQL> GRANT SELECT ON ClassEnrollment TO Bob
2 WITH GRANT OPTION;

Grant succeeded.

SQL>

If Bob needs to grant this same privilege to Susan, he issues the following

command:

SQL> connect Bob/newpass@orcl.delphi.bradsys.com
Connected.
SQL> GRANT SELECT ON Student.ClassEnrollment TO Susan
2 WITH GRANT OPTION;

Grant succeeded.

SQL>

Note that Bob had to begin the name of the ClassEnrollment table with the owner

name; otherwise, he receives the following message:

SQL> GRANT SELECT ON ClassEnrollment TO Susan
2 WITH GRANT OPTION;

GRANT SELECT ON ClassEnrollment TO Susan
*

In the
Real World

4832-8 ch08.F 7/27/01 9:02 AM Page 374

375Chapter 8 ✦ Configuring Security in Oracle Databases

ERROR at line 1:
ORA-00942: table or view does not exist

SQL>

Notice also that Bob is able to grant Susan SELECT permissions on the

Student.ClassEnrollment table. This is by design and is permitted so that Bob can

further lighten his workload by enabling Susan to grant access to the

Student.ClassEnrollment table to others.

Determining the object privileges granted
As is the case with system privileges, Oracle enables a user to determine which

object privileges have been granted to him or her by querying the data dictionary.

Table 8-3 identifies the various data dictionary views and the information available

through them.

Table 8-3
Object Privilege Data Dictionary Views

View Description

USER_TAB_PRIVS_MADE Lists the object privileges granted to others on objects in the
user’s schema. This includes privileges granted by the user to
others and granted by users that have been assigned the
privilege WITH GRANT OPTION.

USER_TAB_PRIVS_RECD Lists the object privileges that were granted to the user on
objects in other schemas.

USER_COL_PRIVS_MADE Lists the object privileges made on columns of objects owned
by the user.

USER_COL_PRIVS_RECD Lists the object privileges on columns of objects in other
schemas granted to the user.

To view the list of privileges that you have granted to others on tables in your

schema, you issue the following command:

SQL> col grantee format a10
SQL> col grantor format a10
SQL> col table_name format a20
SQL> col privilege format a20
SQL> SELECT * FROM USER_TAB_PRIVS_MADE;

4832-8 ch08.F 7/27/01 9:02 AM Page 375

376 Part II ✦ Managing Database Objects

GRANTEE TABLE_NAME GRANTOR PRIVILEGE GRA
---------- -------------------- ---------- -------------------- ---
BOB CLASSENROLLMENT STUDENT SELECT YES
SUSAN CLASSENROLLMENT BOB SELECT YES
PUBLIC COURSES STUDENT SELECT NO

SQL>

Notice that the fact that Bob granted Susan the SELECT privilege on the

ClassEnrollment table is clearly indicated in the output presented. This enables the

owner of an object to quickly determine who has been granting permissions to

other users on his or her objects.

Revoking object privileges
Revoking object privileges has similar syntax to granting them. The full syntax is:

REVOKE privilege [,privilege, ...] | ALL [(column[, column,
...])]

ON objectname
FROM user | role | PUBLIC
[CASCADE CONSTRAINTS];

To revoke the SELECT privilege grant to Bob on the ClassEnrollment table, the table

owner executes the following command:

SQL> REVOKE SELECT ON ClassEnrollment FROM Bob;

Revoke succeeded.

SQL>

Querying the USER_TAB_PRIVS_MADE data dictionary view after executing the pre-

ceding command results in the following:

SQL> SELECT * FROM USER_TAB_PRIVS_MADE;

GRANTEE TABLE_NAME GRANTOR PRIVILEGE GRA
---------- -------------------- ---------- -------------------- ---
PUBLIC COURSES STUDENT SELECT NO

SQL>

If you compare this output with the results of the same query on the previous page,

you note that the SELECT privilege has been removed on the ClassEnrollment table

from both Bob and Susan. This is because any object privileges that were granted

to a user using WITH GRANT OPTION are revoked from that user and any other

user (Susan) that he (Bob) granted them to. Contrast this to the behavior of revok-

ing system privileges granted to a user WITH ADMIN OPTION, where the cascading

delete of permissions does not take place.

4832-8 ch08.F 7/27/01 9:02 AM Page 376

377Chapter 8 ✦ Configuring Security in Oracle Databases

An option of the REVOKE command for object privileges is CASCADE CONSTRAINTS.

This option is required in those situations where a user has been granted REFER-

ENCES permission on a table in your schema, and he or she has used this privilege

to create a table with a FOREIGN KEY constraint depending upon the table you

own. Attempting to revoke the REFERENCES privilege generates an error, as shown

here:

SQL> REVOKE REFERENCES ON Courses FROM Bob;
REVOKE REFERENCES ON Courses FROM Bob
*
ERROR at line 1:
ORA-01981: CASCADE CONSTRAINTS must be specified to perform this revoke

SQL>

To correct the problem, simply reissue the command using the CASCADE CON-

STRAINTS option, as follows:

SQL> REVOKE REFERENCES ON Courses FROM Bob CASCADE CONSTRAINTS;

Revoke succeeded.

SQL>

At this point, the permission is revoked, and the FOREIGN KEY that Bob created

that referenced the Courses table in the Student schema is also dropped.

When using the CASCADE CONSTRAINTS option of the REVOKE command for
object privileges, verify that any FOREIGN KEY created in another schema referenc-
ing the table is no longer required. One of the things you do not want to do is
break the database and invite inconsistent data by simply revoking an object priv-
ilege. If you do get the ORA-01981 error, query the data dictionary to determine
which objects are referencing the table and notify those table’s owners of your
intentions prior to performing the action.

Roles
✦ Create roles to ease setup and maintenance of the security model

Up to this point, you have learned how to assign system and object privileges to

users or, in the case of object privileges, PUBLIC. In small environments, assigning

permissions directly to users may be sufficient, especially if new users must be cre-

ated in the database only occasionally. However, as things can always change and

to support volatile and large environments, Oracle provides a mechanism to group

permissions together and then assign the whole group of permissions to a user.

This mechanism is called a role.

Objective

Caution

4832-8 ch08.F 7/27/01 9:02 AM Page 377

378 Part II ✦ Managing Database Objects

A role is a container that holds privileges. Just as a soft drink can is a container for

a tasty and refreshing beverage, a role holds privileges. Many individuals at the

same time can enjoy a soft drink, just as many users in Oracle can be granted the

role. A user may hold many roles at the same time, just as a user can drink many

different soft drinks.

The main benefit of a role is that it simplifies the process of granting privileges to

users. To make the process efficient, a DBA creates a role and then grants all of the

privileges required by a user to perform a task to the role. If another user comes

along that needs to perform the same task, instead of granting that user the permis-

sion explicitly, the DBA grants the user the role. Any privileges that have been

granted to a role that has been granted to a user automatically apply to the user.

Furthermore, it is possible to grant a role to another role, in which case the second

role will inherit all of the privileges of the first. However, granting roles to other

roles can make it difficult to track down problems with permissions and should be

carefully planned.

Creating and granting roles
Roles are created by the DBA using the CREATE ROLE command, as shown here:

SQL> CREATE ROLE OrderEntry;

Role created.

SQL>

After the role has been created, the DBA, or the owner of a database object, can

assign permissions to a role, as follows:

SQL> GRANT CREATE SESSION TO OrderEntry;

Grant succeeded.

SQL> connect student/oracle@orcl.delphi.bradsys.com;
Connected.
SQL> GRANT SELECT ON Student.Courses TO OrderEntry;

Grant succeeded.

SQL> GRANT SELECT, INSERT, UPDATE
2 ON Student.ClassEnrollment TO OrderEntry;

Grant succeeded.

SQL>

4832-8 ch08.F 7/27/01 9:02 AM Page 378

379Chapter 8 ✦ Configuring Security in Oracle Databases

As shown by the preceding output, both system privileges and object privileges can

be granted to a role. The full syntax for assigning privileges to a role is:

GRANT privilege | role [, privilege | role, ...]
TO rolename;

The next step is to grant the role to a user, at which point the user inherits all per-

missions granted the role. In the following example, Bob attempts to query the

ClassEnrollment table before and after being granted the role OrderEntry by the

DBA:

SQL> connect bob/newpass@orcl.delphi.bradsys.com;
Connected.
SQL> SELECT * FROM Student.ClassEnrollment;
SELECT * FROM Student.ClassEnrollment

*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> connect system/manager@orcl.delphi.bradsys.com;
Connected.
SQL> GRANT OrderEntry TO Bob;

Grant succeeded.

SQL> connect bob/newpass@orcl.delphi.bradsys.com;
Connected.
SQL> SELECT ClassID, StudentNumber, Status, TO_CHAR(Price,’$99,999.99’) AS Price
2 FROM Student.ClassEnrollment;

CLASSID STUDENTNUMBER STATUS PRICE
---------- ------------- ---------- -----------

50 1001 Confirmed $2,000.00
50 1002 Confirmed $1,750.00
50 1005 Confirmed $2,000.00
51 1003 Cancelled $4,000.00
51 1004 Confirmed $4,000.00
51 1008 Confirmed $3,500.00
53 1003 Hold $1,500.00

7 rows selected.

SQL>

You should note that it is possible to grant a role to another role. In this way, the

assignment of permissions can be broken down further. You can first create a role

to accomplish a very specific task, such as to enter or update an order. You then

create another role to correspond to the individual who will perform one or more

tasks, such as an order-entry clerk. You then assign each task-specific role to the

4832-8 ch08.F 7/27/01 9:02 AM Page 379

380 Part II ✦ Managing Database Objects

user-specific role. In this way, when another task must be added to the list of tasks

a user has to perform, another task-specific role can be created and then granted to

the user-specific role. Similarly, when a task has to be removed from the job

description for a group of individuals, you simply revoke the task-specific role from

the user-specific role.

While the “Introduction to Oracle: SQL & PL/SQL” exam may not test whether or
not you are aware that roles can be granted to other roles, it is a good idea to keep
this bit of information in mind when studying for the exam. You may be tested on
this knowledge in an indirect manner.

Determining privileges and roles granted
After privileges have been granted to a role, and after that role has been granted to

a user, the user can query the data dictionary to determine which roles have been

granted and their associated permissions. The data dictionary views providing this

information are outlined in Table 8-4.

Table 8-4
Data Dictionary Views Describing Roles

View Description

ROLE_SYS_PRIVS Lists the system privileges that have been assigned to roles and
available to the currently logged in user.

ROLE_TAB_PRIVS Lists the object privileges granted to the role on tables in the
database. All of these privileges are available to the current user.

USER_ROLE_PRIVS Lists the roles that have been granted to the user.

While connected to the instance as Bob and you want to see which roles are avail-

able, you issue the following command:

SQL> SELECT GRANTED_ROLE FROM USER_ROLE_PRIVS;

GRANTED_ROLE

ORDERENTRY

SQL>

Exam Tip

4832-8 ch08.F 7/27/01 9:02 AM Page 380

381Chapter 8 ✦ Configuring Security in Oracle Databases

To determine which system privileges have been granted to the roles that are cur-

rently active for Bob, he can issue the following command:

SQL> SELECT * FROM ROLE_SYS_PRIVS;

ROLE PRIVILEGE ADM
------------------------------ -------------------- ---
ORDERENTRY CREATE SESSION NO

SQL>

To find out which privileges he has been granted on objects in the database, Bob

can query the ROLE_TAB_PRIVS view, as shown here:

SQL> col role format a15
SQL> col owner format a15
SQL> col table_name format a20
SQL> col privilege format a10
SQL> SELECT ROLE, OWNER, TABLE_NAME, PRIVILEGE
2 FROM ROLE_TAB_PRIVS;

ROLE OWNER TABLE_NAME PRIVILEGE
--------------- --------------- -------------------- ----------
ORDERENTRY STUDENT CLASSENROLLMENT INSERT
ORDERENTRY STUDENT CLASSENROLLMENT SELECT
ORDERENTRY STUDENT CLASSENROLLMENT UPDATE
ORDERENTRY STUDENT COURSES SELECT

SQL>

Revoking roles
The syntax to revoke a role granted to a user is similar to what you have seen when

revoking system and object privileges, as shown here:

REVOKE ROLE rolename FROM user | role;

Only the DBA is allowed to revoke roles from users and other roles.

For example, to revoke the OrderEntry role from Bob, the DBA issues the following

command:

SQL> REVOKE OrderEntry FROM Bob;

Revoke succeeded.

SQL>

4832-8 ch08.F 7/27/01 9:02 AM Page 381

382 Part II ✦ Managing Database Objects

At this point, if Bob queried the data dictionary to determine what object privileges

were available through roles granted him, he would get the following result:

SQL> connect bob/newpass@orcl.delphi.bradsys.com;
Connected.
SQL> col role format a15
SQL> col owner format a15
SQL> col table_name format a20
SQL> col privilege format a10
SQL> SELECT ROLE, OWNER, TABLE_NAME, PRIVILEGE
2 FROM ROLE_TAB_PRIVS;

no rows selected

SQL>

Key Point Summary
Security is a very important element of ensuring that your data remains safe and

can only be seen or changed by those individuals authorized to do so. The bullet

points that follow summarize the salient points presented in this chapter.

✦ Each individual that must create or access database objects must be provided

with an Oracle username and password.

✦ The DBA is the only one who can create a user, by default. The DBA can grant

the CREATE USER privilege to others, which can be used to create more

Oracle database users. This is not normally done.

✦ Any user can change his or her password by using the ALTER USER command.

✦ A user must be granted the CREATE SESSION privilege in order for a connec-

tion to the instance to be established.

✦ Oracle has two types of privileges: system privileges and object privileges.

✦ System privileges enable a user to execute a particular command, such as

CREATE TABLE or CREATE VIEW. They are granted to users so that the admin-

istrative burden on the DBA is lessened.

✦ System privileges can be granted WITH ADMIN OPTION, which enables the

person granted a system privilege in this manner to grant it to others.

✦ When a system privilege granted WITH ADMIN OPTION is revoked, the revoke

does not cascade to all users granted the privilege through the option.

✦ Object privileges enable a user to manipulate objects, such as SELECT data

from a table, sequence, or view, or EXECUTE a stored procedure.

4832-8 ch08.F 7/27/01 9:02 AM Page 382

383Chapter 8 ✦ Configuring Security in Oracle Databases

✦ Object privileges can be granted WITH GRANT OPTION, which enables the

grantee to grant the privilege to others.

✦ Revoking object privileges granted WITH GRANT OPTION will cascade and

also will be revoked from others they have been granted to.

✦ A DBA can create roles and grant system privileges, object privileges, or other

roles to the roles created.

✦ Roles simplify the administration of privileges by reducing the assignment of

the same privileges to multiple users to an assignment of the role only, with

all permissions granted the role being inherited by all users granted the role.

✦ ✦ ✦

4832-8 ch08.F 7/27/01 9:02 AM Page 383

STUDY GUIDE

This section will enhance your understanding of the material presented in this

chapter. Answer the questions and then work through the labs in order to feel more

comfortable with the material.

Assessment Questions
1. When attempting to revoke a user’s privilege on your Orders table, you

receive an error. What is the most likely cause of the error? (Choose the best

answer.)

A. Your Orders table contains data.

B. Another user has a primary key defined on your Orders table.

C. You have defined a FOREIGN KEY constraint on your Orders table that

references another user’s table’s PRIMARY KEY constraint.

D. Another user has defined a FOREIGN KEY constraint that references the

PRIMARY KEY constraint of your Orders table.

E. Users are making changes to the data in the table.

2. You have been granted the CREATE TABLE privilege WITH ADMIN OPTION.

Which of the following can you perform? (Choose all correct answers.)

A. Grant the privilege to other users.

B. Revoke the privilege from the DBA.

C. Revoke the privilege from other users.

D. Revoke the privilege from yourself.

E. Grant the privilege to other users WITH ADMIN OPTION.

3. What users exist in an Oracle database after it has been created?

A. DBA

B. SYS

C. BOB

D. SCOTT

E. SYSTEM

384 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 384

385

4. Which of the following cannot be granted to a role? (Choose all correct answers.)

A. System privileges

B. System privileges WITH ADMIN OPTION

C. Roles

D. Roles WITH GRANT OPTION

E. Roles WITH ADMIN OPTION

F. Object privileges

G. Object privileges with GRANT OPTION

5. Which of the following clauses of the CREATE USER command specify a pass-

word for the user? (Choose the best answer.)

A. CREATE USER

B. PASSWORD

C. ROLE

D. IDENTIFIED BY

E. Users do not have password in Oracle.

6. In the following grant of system privileges, which line will cause the command

to fail? (Choose the best answer.)

1 GRANT CREATE TABLE, CREATE VIEW,
2 CREATE PROCEDURE, CREATE SEQUENCE
3 TO SCOTT, BOB, DeveloperRole
4 SUSAN;

A. 1

B. 2

C. 3

D. 4

E. None of the above

7. You have been granted the CREATE VIEW privilege by the DBA WITH ADMIN

OPTION. You grant the privilege to Susan. When the DBA revokes the CREATE

VIEW privilege from you, which of the following is true? (Choose all correct

answers.)

A. You no longer can create views.

B. Susan no longer can create views.

C. You are able to create views.

D. Susan is able to create views.

E. You are able to grant the CREATE VIEW privilege to others.

F. You are not able to grant the CREATE VIEW privilege to others.

385Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 385

8. If you want to see what users Bob granted the SELECT privilege on your

Courses table to, which data dictionary view do you query? (Choose the best

answer?)

A. USER_TAB_PRIVS

B. USER_TAB_PRIVS_MADE

C. USER_TAB_PRIVS_RECD

D. ROLE_TAB_PRIVS

E. USER_ROLE_PRIVS

9. If you want to completely remove all privileges on your ClassEnrollment table

from Susan, which of the following commands should you execute? (Choose

the best answer.)

A. REVOKE ALL ON ClassEnrollment FROM Susan;

B. REVOKE PRIVILEGES ON ClassEnrollment FROM Susan;

C. REVOKE ALLPRIVS ON ClassEnrollment FROM Susan;

D. REVOKE ALLPRIVS ON ClassEnrollment FROM Susan CASCADE

CONSTRAINTS;

E. REVOKE ALL ON ClassEnrollment FROM Susan CASCADE CONSTRAINTS;

F. REVOKE PRIVILEGES ON ClassEnrollment FROM Susan CASCADE

CONSTRAINTS;

10. Which of the following combinations of commands is the best way to assign

privileges to the FirstName and LastName columns of the Instructors table to

Susan? (Choose two correct answers.)

A. GRANT ALL (FirstName, LastName) ON Instructors TO Susan;

B. CREATE VIEW InstructorNames AS SELECT FirstName, LastName FROM

Instructors;

C. GRANT ALL ON InstructorNames TO Susan;

D. GRANT SELECT, INSERT, UPDATE, DELETE, REFERENCES (FirstName,

LastName) ON Instructors TO Susan;

E. GRANT SELECT, INSERT, UPDATE, DELETE, REFERENCES ON Instructors

(FirstName, LastName) TO Susan;

F. GRANT ALL ON Instructors (FirstName, LastName) TO Susan

386 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 386

387

Scenarios
1. You have just been hired as a consultant by a major consumer goods distribu-

tor to assist the distributor in making it easier to assign permissions to

database objects. The problems the client has identified include the following:

• Assignment of permissions for new order-entry clerks is time consuming

because many tables and other database objects are involved.

• Managers of departments want an easy mechanism to grant additional

privileges to their employees without involving the DBA.

• The DBAs in the company are spending way too much time dealing with

the assignment or revocation of privileges.

• Users’ actions on the database can be logically organized into a series of

tasks.

What recommendations do you recommend to make it easier to assign and

maintain permissions?

2. As the senior DBA of a multinational retailer of books, music, and video prod-

ucts, you are swamped with requests to create additional databases. You are

spending a great deal of your time managing users and creating database

objects at the request of users in any one of your company’s locations. You

now are typically one to two weeks behind in responding to requests, and

management and users are complaining. What can you do to lessen your

workload and carry out the creation of databases and database objects, and

the management of users, in a timely manner?

Lab Exercises
Lab 8.1 Creating and Managing Users

1. Invoke SQL*Plus and connect to your database instance as the user SYSTEM

with a password of manager. If you previously changed the password for the

user SYSTEM, make sure you specify the new password when connecting.

2. Create three new users with usernames of Carol, Ted, and Alice. Make the

password for all three users: oracle.

3. Attempt to connect to the instance as any one of the users. What happens and

why?

4. Connect as SYSTEM and grant each of the users the appropriate privileges to

connect to the instance. Connect to the instance as each of the users to

ensure that the assignment worked correctly.

387Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 387

5. Connect to the instance as Alice and change your password to newpass.

Disconnect and reconnect to the instance as Alice to test the password

change.

6. Connect to the instance as SYSTEM and change Ted’s password to password.

Attempt to connect to the instance as Ted with both the old and new pass-

word. What happens when you try the old password?

7. Connect to the instance as SYSTEM and drop Alice’s user account. Attempt to

connect to the instance as Alice. What happens?

Lab 8.2 Creating and Managing Roles and Permissions
1. Connect to the instance as system and create two new roles called

DeveloperRole and UserRole.

2. Grant the following privileges to the DeveloperRole:

CREATE TABLE
CREATE VIEW WITH ADMIN OPTION
CREATE SEQUENCE WITH ADMIN OPTION
CREATE SYNONYM

3. Grant the DeveloperRole to Carol and the UserRole to Ted.

4. Connect as Ted and verify what privileges you have.

5. Connect to the instance as Student and grant the following privileges to the

UserRole:

SELECT ON Student.Courses
SELECT, INSERT, UPDATE ON Student.ClassEnrollment
SELECT ON Student.ScheduledClasses
ALL ON Student.Students

6. Connect as Ted and verify what privileges you now have. What has changed?

7. While still connected as Ted, attempt to create a view that includes the

StudentNumber, FirstName, and LastName columns of the Students table.

What happens?

8. Connect to the instance as Carol and attempt to create the same view as in

the previous step. What happens?

9. Connect to the instance as student and create the view mentioned in step 7 in

such a way that users cannot change data through the view. Grant the

UserRole all permissions on the view.

10. Connect to the instance as Ted and attempt to query the StudentNameView in

the Student schema. What happens?

11. Connect to the instance as SYSTEM and grant the appropriate privileges to

enable Carol to grant the DeveloperRole to other users.

388 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 388

389

12. Connect to the instance as Carol and grant the DeveloperRole to Ted.

13. Connect to the instance as Ted and attempt to create a synonym for the

Student.Students table. What happens? Use the synonym in a query.

14. Connect to the instance as SYSTEM and revoke the DeveloperRole from Carol.

15. Connect to the instance as Ted and drop and then attempt to create the syn-

onym from step 13. What happens and why?

Answers to Chapter Questions

Chapter Pre-Test
1. A schema user is one who owns objects in the database. As soon as a user has

been given permission to create objects, and the user exercises that permis-

sion and creates an object, a schema with the same name as the user is

defined in the database. Schema users own objects; nonschema users do not

own objects but may be granted permissions to access the objects.

2. Yes, it is possible to limit which columns a user is able to modify in a table

when granting the user permissions to update the table. This is done by speci-

fying the columns that the user can update in the GRANT statement. A better

way is to create a view with only those columns included and then grant the

user permission to update the view.

3. A role is a container for permissions. You can assign any statement and/or

object privileges that are required for a user to perform a specific task to the

role, and then grant the role to the user. Any privileges that the role has the

user will inherit. Furthermore, when you add new privileges to or revoke

privileges from the role, all users granted the role also inherit the changes

immediately.

4. Yes, it is possible to grant a role to a role. To avoid the problem of tracking

permissions, you should limit the number of levels to one or two at most. In

other words, don’t grant a role that has been granted another role to a role.

5. After a user creates a table, only the user who created the table and the DBA

can query it. The user is the owner and has full privileges on the table; the

DBA has full privileges on all objects in the database.

6. When you grant permission on a view to a user WITH GRANT OPTION, this

means that the user to whom the permission has been granted may also grant

it to another user. When the permission is granted to a role, any user to whom

the role has been granted may also grant the same permission to other users.

7. To determine which permissions have been granted to you on tables other

than your own, you query the USER_TAB_PRIVS_RECD view.

389Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 389

8. When another user has referenced your table in a FOREIGN KEY constraint,

you cannot remove the REFERENCES privilege on the table. In order to do so,

you must specify the CASCADE CONSTRAINTS option on the REVOKE

command.

9. The REVOKE command is used to remove system privileges from a table. By

default, only the DBA is allowed to revoke system privileges. Users that have

been granted a system privilege WITH ADMIN OPTION may revoke it from

those other users to whom they granted the privilege.

10. The ALTER USER command is used to change your password.

Assessment Questions
1. D — The most likely reason that you are unable to revoke a user’s privileges

on your table is that he or she has referenced your table in a FOREIGN KEY

constraint definition. Whether or not your Orders table contains data, or you

create a FOREIGN KEYconstraint on the table referencing another user’s

table’s PRIMARY KEYconstraint, or users are making changes to the data does

not prevent you from revoking a user’s privileges on the table.

2. A, C, E — When you have been granted the CREATE TABLE privilege WITH

ADMIN OPTION, you can grant the same privilege to other users with or with-

out the ADMIN OPTION. You can also revoke the privilege from other users as

long as you were the one who granted it to them in the first place. You cannot

revoke the privilege from the DBA or yourself.

3. B, E — When an Oracle database is first created, only the SYS and SYSTEM

users are defined by default. The DBA is not a user in Oracle; “DBA” is the

name of a role. The user Scott may be created by a script that is used to cre-

ate a default starter database in an Oracle environment but is not created by

default — only as a result of adding sample schemas and data to the database.

Bob is never created unless the DBA creates the user.

4. D — The only one that cannot be granted to roles is another role WITH GRANT

OPTION. This is because WITH GRANT OPTION is not valid for roles — only

WITH ADMIN OPTION is. All of the others can be granted to a role.

5. D — The IDENTIFIED BY clause of the CREATE USER command specifies a

password for a user.

6. C — This line causes the GRANT command to fail because a comma is missing

after DeveloperRole. The command should read as follows:

GRANT CREATE TABLE, CREATE VIEW
CREATE PROCEDURE, CREATE SEQUENCE
TO SCOTT, BOB, DeveloperRole,
SUSAN;

390 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 390

391

7. A, D, F — When you have been granted the CREATE VIEW privilege WITH

ADMIN OPTION and then grant it to Susan and the privilege is revoked from

you, you no longer can create views (A), and you no longer can grant the CRE-

ATE VIEW privilege to others (E). Each of these limitations are because the

privilege has been revoked.

Susan still can create views (D) because WITH ADMIN OPTION does not cas-

cade when the permission is revoked from a user. The DBA also must revoke

the privilege from Susan, if this is the intention.

8. B— The USER_TAB_PRIVS_MADE view shows to whom permissions on tables

have been granted and who granted them. The GRANTOR column of the view

lists Bob’s username whenever he did the granting. The USER_TAB_PRIVS_RECD

view shows which tables in other schemas you have been granted permissions

to. All other options are not data dictionary views in Oracle 8i.

9. E — The REVOKE command specifying ALL privileges and CASCADE CON-

STRAINTS ensures that any privileges granted, and any constraints that are

created by Susan referencing the ClassEnrollment table are removed. If you do

not want to automatically drop the constraints and be informed of their exis-

tence, option A would work, but the question asked how you can completely

remove all privileges.

10. B, C — The best way to assign privileges to only the FirstName and LastName

columns of the Instructors table to Susan is to create a view with only those

columns and then grant Susan all privileges on the view. You also can assign

privileges on the columns directly, but you were asked to choose to answers,

so the view was the only available option.

The “Introduction to Oracle: SQL & PL/SQL” exam may present questions

similar to number 10 requesting a specific number of answers to solve the

problem. Other answers may also work, but you should pay attention to the

number of responses the question is looking for. In other words, read the

question completely.

Scenarios
1. In order to solve the problems outlined in the scenario, you should recom-

mend that the client create a role for each task that users will be performing.

Then other roles should be created according to the job functions of the peo-

ple in the company, and these roles would be assigned the task-oriented roles

previously created. You can grant these user roles to the respective managers

WITH ADMIN OPTION so that they can then grant those roles to new users as

they join the company.

Using roles at the task level and user level streamlines the assignment of per-

missions and also enables delegation. This reduces the workload of the DBAs

and also make managers feel that they have control over aspects of the

database that relate to their jobs.

391Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 391

2. While you cannot grant other users privileges to create additional databases

through roles, the other problems you are experiencing can be solved by

using roles. To lessen your workload and to make the creation of database

objects more streamlined across a multinational enterprise, you should desig-

nate junior DBAs in each key geographic region. Those individuals can be

granted a role you create in each database. The role can be granted all system

privileges needed to assign permissions to create all relevant database

objects. You do not specify WITH ADMIN OPTION on either the role or the sys-

tem privileges granted to the role because you want the junior DBAs to per-

form the work and not enable others to do so. From the way the DBA is

currently controlling access to any database, control is a very important issue

and still needs to be maintained.

Lab Exercises

Lab 8.1 Creating and Managing Users
1. Invoke SQL*Plus and connect to your database instance as the user SYSTEM

with a password of manager. If you previously changed the password for the

user SYSTEM, make sure you specify the new password when connecting.

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL>

2. Create three new users with usernames of Carol, Ted, and Alice. Make the

password for all three users oracle.

SQL> CREATE USER Carol IDENTIFIED BY oracle;

User created.

SQL> CREATE USER Ted IDENTIFIED BY oracle;

User created.

SQL> CREATE USER Alice IDENTIFIED BY oracle;

User created.

SQL>

3. Attempt to connect to the instance as any one of the users. What happens and

why?

SQL> connect ted/oracle@orcl.delphi.bradsys.com
ERROR:
ORA-01045: user TED lacks CREATE SESSION privilege; logon
denied

Warning: You are no longer connected to ORACLE.
SQL>

392 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 392

393

In order for a user to be able to connect to an Oracle instance, he or she also

needs to be granted the CREATE SESSION system privilege, as the error mes-

sage indicates.

4. Connect as system and grant each of the users the appropriate privileges to

be able to connect to the instance. Connect to the instance as each of the

users to ensure that the assignment worked correctly.

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> GRANT CREATE SESSION
2 TO Carol, Ted, Alice;

Grant succeeded.

SQL> connect carol/oracle@orcl.delphi.bradsys.com
Connected.
SQL> connect ted/oracle@orcl.delphi.bradsys.com
Connected.
SQL> connect alice/oracle@orcl.delphi.bradsys.com
Connected.
SQL>

5. Connect to the instance as Alice and change your password to newpass.

Disconnect and reconnect to the instance as Alice to test the password

change.

SQL> connect alice/oracle@orcl.delphi.bradsys.com
Connected.
SQL> ALTER USER Alice
2 IDENTIFIED BY newpass;

User altered.

SQL> disconnect
Disconnected from Oracle8i Enterprise Edition Release 8.1.7.0.0 -
Production
With the Partitioning option
JServer Release 8.1.7.0.0 - Production
SQL> connect alice/newpass@orcl.delphi.bradsys.com
Connected.
SQL>

6. Connect to the instance as system and change Ted’s password to password.

Attempt to connect to the instance as Ted with both the old and new pass-

word. What happens when you try the old password?

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> ALTER USER Ted
2 IDENTIFIED BY password;

User altered.

393Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 393

SQL> connect ted/oracle@orcl.delphi.bradsys.com
ERROR:
ORA-01017: invalid username/password; logon denied

Warning: You are no longer connected to ORACLE.
SQL> connect ted/password@orcl.delphi.bradsys.com
Connected.
SQL>

7. Connect to the instance as SYSTEM and drop Alice’s user account. Attempt to

connect to the instance as Alice. What happens?

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> DROP USER Alice;

User dropped.

SQL> connect alice/newpass@orcl.delphi.bradsys.com
ERROR:
ORA-01017: invalid username/password; logon denied

Warning: You are no longer connected to ORACLE.
SQL>

Alice is not able to connect to the instance because her user account no

longer exists. It was dropped by the DBA.

Lab 8.2 Creating and Managing Roles and Permissions
1. Connect to the instance as SYSTEM and create two new roles called

DeveloperRole and UserRole.

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> CREATE ROLE DeveloperRole;

Role created.

SQL> CREATE ROLE UserRole;

Role created.

SQL>

2. Grant the following privileges to the DeveloperRole:

CREATE TABLE
CREATE ANY VIEW WITH ADMIN OPTION
CREATE SEQUENCE WITH ADMIN OPTION
CREATE SYNONYM

394 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 394

395

SQL> GRANT CREATE TABLE, CREATE SYNONYM
2 TO DeveloperRole;

Grant succeeded.

SQL> GRANT CREATE ANY VIEW, CREATE SEQUENCE
2 TO DeveloperRole WITH ADMIN OPTION;

Grant succeeded.

SQL>

3. Grant the DeveloperRole to Carol and the UserRole to Ted.

SQL> GRANT DeveloperRole TO Carol;

Grant succeeded.

SQL> GRANT UserRole TO Ted;

Grant succeeded.

SQL>

4. Connect as Ted and verify the privileges you have.

SQL> connect ted/password@orcl.delphi.bradsys.com
Connected.
SQL> SELECT * FROM ROLE_SYS_PRIVS;

no rows selected

SQL> SELECT * FROM ROLE_TAB_PRIVS;

no rows selected

SQL> col username format a10
SQL> col granted_role format a12
SQL> SELECT * FROM USER_ROLE_PRIVS;

USERNAME GRANTED_ROLE ADM DEF OS_
---------- ------------ --- --- ---
TED USERROLE NO YES NO

SQL>

5. Connect to the instance as Student and grant the following privileges to the

UserRole:

SELECT ON Student.Courses
SELECT, INSERT, UPDATE ON Student.ClassEnrollment
SELECT ON Student.ScheduledClasses

395Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 395

ALL ON Student.Students

SQL> connect student/oracle@orcl.delphi.bradsys.com
Connected.
SQL> GRANT SELECT ON Student.Courses TO UserRole;

Grant succeeded.

SQL> GRANT SELECT, INSERT, UPDATE
2 ON Student.ClassEnrollment
3 TO UserRole;

Grant succeeded.

SQL> GRANT SELECT ON Student.ScheduledClasses
2 TO UserRole;

Grant succeeded.

SQL> GRANT ALL ON Student.Students TO UserRole;

Grant succeeded.

SQL>

6. Connect as Ted and verify the privileges that you now have. What has

changed?

SQL> connect ted/password@orcl.delphi.bradsys.com
Connected.
SQL> SELECT * FROM ROLE_SYS_PRIVS;

no rows selected
SQL> col role format a10
SQL> col owner format a12
SQL> col table_name format a25
SQL> col privilege format a15
SQL> col column_name noprint
SQL> SELECT * FROM ROLE_TAB_PRIVS;

ROLE OWNER TABLE_NAME PRIVILEGE GRA
---------- ------------ ------------------------- --------------- ---
USERROLE STUDENT CLASSENROLLMENT INSERT NO
USERROLE STUDENT CLASSENROLLMENT SELECT NO
USERROLE STUDENT CLASSENROLLMENT UPDATE NO
USERROLE STUDENT COURSES SELECT NO
USERROLE STUDENT SCHEDULEDCLASSES SELECT NO
USERROLE STUDENT STUDENTS ALTER NO
USERROLE STUDENT STUDENTS DELETE NO
USERROLE STUDENT STUDENTS INSERT NO
USERROLE STUDENT STUDENTS SELECT NO

396 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 396

397

USERROLE STUDENT STUDENTS UPDATE NO

10 rows selected.

SQL> SELECT * FROM USER_ROLE_PRIVS;

USERNAME GRANTED_ROLE ADM DEF OS_
---------- ------------ --- --- ---
TED USERROLE NO YES NO

SQL>

7. While still connected as Ted, attempt to create a view that includes the

StudentNumber, FirstName, and LastName columns of the Students table.

What happens?

SQL> CREATE VIEW NyStudents AS
2 SELECT StudentNumber, FirstName, LastName
3 FROM Student.Students;

FROM Student.Students
*

ERROR at line 3:
ORA-00942: table or view does not exist

SQL> SELECT COUNT(*) FROM Student.Students;

COUNT(*)

12

SQL>

You are told that the table Student.Students does not exist and the view is not

created. However, querying the table directly to return a count of the number

of rows works fine. The problem must be that Ted does not have permissions

to create the view or reference the table in the creation of the view.

8. Connect to the instance as Carol and attempt to query data in the

Student.Students table. What happens?

SQL> connect carol/oracle@orcl.delphi.bradsys.com;
Connected.
SQL> SELECT COUNT(*) FROM Student.Students;
SELECT COUNT(*) FROM Student.Students

*
ERROR at line 1:
ORA-00942: table or view does not exist

SQL>

Carol is not able to query the Student.Students table. This is because even

though the DeveloperRole grants her the privilege to create any view, she has

not been granted the UserRole to be able to SELECT from the table.

397Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 397

9. Connect to the instance as student and create the view mentioned in step 7 in

such a way that users cannot change data through the view. Grant the

UserRole all permissions on the view.

SQL> connect student/oracle@orcl.delphi.bradsys.com
Connected.
SQL> CREATE VIEW StudentNameView AS
2 SELECT StudentNumber, FirstName, LastName
3 FROM Student.Students
4 WITH READ ONLY;

View created.

SQL> GRANT ALL ON StudentNameView TO UserRole;

Grant succeeded.

SQL>

10. Connect to the instance as Ted and attempt to query the StudentNameView in

the Student schema. What happens?

SQL> connect ted/password@orcl.delphi.bradsys.com;
Connected.
SQL> SELECT * FROM Student.StudentNameView;

STUDENTNUMBER FIRSTNAME LASTNAME
------------- ------------------------------ ----------------

1000 John Smith
1001 Davey Jones
1002 Jane Massey
1003 Trevor Smith
1004 Mike Hogan
1005 John Hee
1006 Susan Andrew
1007 Roxanne Holland
1008 Gordon Jones
1009 Sue Colter
1010 Chris Patterson
1100 David Smith

12 rows selected.

SQL>

Because Ted has been granted the UserRole role, and the role has been

granted the SELECT permission on the view, Ted is able to see data through

the view.

398 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 398

399

11. Connect to the instance as SYSTEM and grant the appropriate privileges to

enable Carol to grant the DeveloperRole to other users.

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> GRANT DeveloperRole TO Carol WITH ADMIN OPTION;

Grant succeeded.

SQL>

12. Connect to the instance as Carol and grant the DeveloperRole to Ted.

SQL> connect carol/password@orcl.delphi.bradsys.com
Connected.
SQL> GRANT DeveloperRole TO Ted;

Grant succeeded.

SQL>

13. Connect to the instance as Ted and attempt to create a synonym for the

Student.StudentNameView view. Use the synonym in a query.

SQL> connect ted/password@orcl.delphi.bradsys.com
Connected.
SQL> CREATE SYNONYM StudentView
2 FOR Student.StudentNameView;

Synonym created.

SQL> SELECT * FROM StudentView;

STUDENTNUMBER FIRSTNAME LASTNAME
------------- ------------------------------ ----------------

1000 John Smith
1001 Davey Jones
1002 Jane Massey
1003 Trevor Smith
1004 Mike Hogan
1005 John Hee
1006 Susan Andrew
1007 Roxanne Holland
1008 Gordon Jones
1009 Sue Colter
1010 Chris Patterson
1100 David Smith

12 rows selected.

SQL>

399Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 399

14. Connect to the instance as SYSTEM and revoke the DeveloperRole from Carol.

SQL> connect system/manager@orcl.delphi.bradsys.com
Connected.
SQL> REVOKE DeveloperRole FROM Carol;

Revoke succeeded.

SQL>

15. Connect to the instance as Ted and drop and then attempt to create the syn-

onym from step 13. What happens and why?

SQL> connect ted/password@orcl.delphi.bradsys.com
Connected.
SQL> DROP SYNONYM StudentView;

Synonym dropped.

SQL> CREATE SYNONYM StudentView
2 FOR Student.StudentNameView;

Synonym created.

SQL>

Ted is able to both drop and re-create the synonym because the

DeveloperRole was not revoked from him, even though it was revoked from

Carol. This is because the WITH ADMIN OPTION does not cascade.

400 Chapter 8 ✦ Study Guide

4832-8 ch08.F 7/27/01 9:02 AM Page 400

Using PL/SQL

This part of the book deals with PL/SQL, an Oracle-specific

set of language extensions that enable flow-of-control

and logic, looping, conditional branching, handling of errors,

and the use of different types of identifiers. None of these ele-

ments are defined in the SQL language, so vendors of rela-

tional database management systems (RDBMSes) have

implemented their own set of constructs. Oracle’s is PL/SQL,

which stands for Procedural Language Extensions to SQL.

Chapter 9 provides a basic understanding of PL/SQL and

where it can be used in Oracle. We discuss the requirements

for PL/SQL on the client and the server, the different types of

PL/SQL blocks, the basic structure of a block, and the types

and use of variables within PL/SQL.

Chapter 10 introduces the basic constructs available in

PL/SQL to control the execution of your programs. You first

learn about the different types of loops and then about the

use of IF statements and related Oracle syntax. We discuss

nesting PL/SQL blocks, followed by a discussion of the use of

transaction control statements in PL/SQL.

Chapter 11 shows you how to interact with the Oracle

database using PL/SQL. We introduce cursors and the special

types of variables that are typically used to store database

information. You learn how to use DML statements to update

the data in your database, followed by more advanced con-

cepts for using cursors, and how to eliminate their declara-

tion altogether using cursor FOR loops.

In Chapter 12 we show you how Oracle handles errors in

PL/SQL code and the types of errors that you may encounter.

You learn how you can trap errors in PL/SQL and the rules for

error propagation. Finally, we briefly discuss coding standards,

as well as information on how to debug your PL/SQL programs.

Chapter 13 contains information on how to create stored pro-

cedures, triggers, and packages in Oracle. While the

“Introduction to Oracle: SQL & PL/SQL” exam does not test

your knowledge of this information directly, it is information

that is worth knowing because it enables you to make your

knowledge of PL/SQL immediately useful.

✦ ✦ ✦ ✦

In This Part

Chapter 9
Introduction to
PL/SQL

Chapter 10
Controlling Program
Execution in PL/SQL

Chapter 11
Interacting with the
Database Using
PL/SQL

Chapter 12
Handling Errors and
Exceptions in PL/SQL

Chapter 13
Introduction to Stored
Programs

✦ ✦ ✦ ✦

P A R T

IIIIII

4832-8 PO3.F 7/27/01 9:02 AM Page 401

4832-8 PO3.F 7/27/01 9:02 AM Page 402

Introduction to
PL/SQL

EXAM OBJECTIVES

✦ Declaring variables

• List the benefits of PL/SQL

• Describe the basic PL/SQL block and its sections

• Describe the significance of variables in PL/SQL

• Declare PL/SQL variables

• Execute a PL/SQL block

✦ Writing executable statements

• Describe the significance of the executable section

• Write statements in the executable section

• Execute and test a PL/SQL block

• Use coding conventions

99C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch09.F 7/27/01 9:02 AM Page 403

404 Part III ✦ Using PL/SQL

CHAPTER PRE-TEST
1. What are the benefits of using PL/SQL?

2. What are the various types of PL/SQL blocks and how do they differ?

3. How many sections are in the anonymous block and which keyword
starts each section?

4. Name the different types of variables that can be used in PL/SQL, and
which ones must be declared.

5. List the scalar datatypes available in PL/SQL.

6. How can a variable be declared based upon the datatype of another
previously declared variable?

7. How can comments be added to document the code in a
PL/SQL block?

8. What support for SQL is available in PL/SQL?

9. What are two ways of displaying the values of PL/SQL variables on the
SQL*Plus screen?

10. Compare and contrast PL/SQL records and tables.

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch09.F 7/27/01 9:02 AM Page 404

405Chapter 9 ✦ Introduction to PL/SQL

While SQL is a powerful language for retrieving and manipulating database

data, it lacks the flexibility and processing power of a procedural

programming language. This chapter introduces the PL/SQL programming language,

which was developed by Oracle in order to extend the functionality of SQL.

PL/SQL is structured much like other procedural languages such as C or PASCAL.

In fact, it is based on the Ada programming language, but it also includes seamless

support for SQL. This means that it is possible to include, natively within the

PL/SQL code, certain SQL statements and most of the SQL functions, operators,

and datatypes.

Uses and Benefits of PL/SQL
✦ List the benefits of PL/SQL

Before the integration of the PL/SQL language in Oracle, applications were limited

in how they could retrieve and manipulate database information. The two methods

were to send a number of SQL statements to the server in a script file from an

interactive tool like SQL*Plus or to embed those statements into a language

precompiler called Pro*C. The latter provided the desired processing power but

was not trivial to implement. It took several lines of code to explain how to connect

to the database, what statement to run, and how to use the results from that

statement. There were also differences in the datatypes available in SQL and the

precompiled language. PL/SQL addresses the limitations of both of these methods.

The benefits of using PL/SQL include:

✦ Modularity

✦ Variables

✦ Control structures

✦ Superior performance

✦ Error handling

✦ Support for SQL

✦ Portability

✦ Support for object orientation

Modularity
PL/SQL is a modular language; this means that code is broken down into a number

of smaller portions, called modules. Modularity provides a number of benefits over

creating large scripts with many commands:

Objective

4832-8 ch09.F 7/27/01 9:02 AM Page 405

406 Part III ✦ Using PL/SQL

✦ Each module is smaller, which usually makes it easier to develop and debug.

✦ Several developers can work simultaneously on different parts of the program,

speeding development time.

✦ These modules perform very specific tasks that may be repeated elsewhere in

that application, or in another, so they can be reused. This again serves to

speed development time.

Variables
SQL does not incorporate the idea of variables for the temporary storage of data.

When a SELECT statement is issued from SQL*Plus, for example, the results are

simply displayed on the screen or written to an output file, depending on the

environment settings. In PL/SQL, you are able to hold onto that result in a variable

for manipulation within the block of code. This enables you to do more complex

computations than you can do in a single SQL statement.

Control structures
In SQL*Plus script files, each statement must execute before the next, and there is

no way to conditionally control whether a statement should run, or how many

times it should run. PL/SQL includes statements for looping and making decisions,

giving you more control over the flow of the program.

Superior performance
Often an application must include more than one SQL statement to complete a task.

For example, you may want to retrieve some information from the database using a

SELECT statement, then make a decision based on that data retrieved and make

some sort of change accordingly. In a client-server environment, each of these

individual calls to the server result in costly network traffic. With PL/SQL, this can

all be encapsulated in one block of code and sent to the server at once, resulting in

better performance of the application.

Error handling
If an application, say in SQL*Plus, runs individual SQL statements, there is no

provision for what to do in the case of an Oracle server error occurring. Within

PL/SQL, you can code error handlers to control what statements will run when a

particular error is encountered. This makes the PL/SQL code run more smoothly.

Support for SQL
Unlike precompiled languages, PL/SQL enables you to natively embed SELECT, Data

Manipulation Language (DML), and transaction processing statements within its

code. These statements appear as one executable line of code each. New to Oracle

4832-8 ch09.F 7/27/01 9:02 AM Page 406

407Chapter 9 ✦ Introduction to PL/SQL

version 8i is native dynamic SQL, which allows SQL statements to be written “on

the fly” (at runtime), and even includes Data Definition Language (DDL) and Data

Control Language (DCL) statements. PL/SQL also supports all of the SQL operators,

datatypes, and most of the SQL functions.

Portability
PL/SQL has no platform-specific statements so it can be run on any platform that

Oracle runs on. This means that the code can be written for one database and then

transferred to another platform with no rewrite required.

Support for object orientation PL/SQL includes packages, which support many of

the characteristics of the object-oriented programming paradigm. Since Oracle

version 8, PL/SQL also supports object types, which are constructs that encapsulate

operations on data with the data itself. Object-oriented design and programming

enables you to better map your real-world objects to constructs in your program,

and the result is that it is easier to relate one object to another.

The PL/SQL Engine and Statement Processing
✦ Describe the basic PL/SQL block and its structure

PL/SQL code must be written in specific pieces called blocks. Because PL/SQL is a

compiled language, these blocks must be processed by a compiler before they can

execute. Compilation is the process of checking to ensure that the objects referred

to in the code exist and that the statements have a valid syntax. After this process

is completed, the code can then run, but it must run within a PL/SQL engine.

The PL/SQL engine is not a separate product from the Oracle server, but instead a

technology that takes a PL/SQL block and executes it. It can be in one of two places:

✦ On the client: This is the case with Oracle’s own development suite of tools

called Oracle Developer.

✦ On the server: This means that the block of code is run by the engine that

resides on the Oracle server. This is the case when you enter a block of code

through SQL*Plus.

Once the block of code starts running in the PL/SQL engine, that engine performs all

of the instructions contained within the executable lines except any SQL statements

that it encounters. These SQL statements must be sent to the database to retrieve or

manipulate data from there.

The existence of a PL/SQL engine on the client of an Oracle Developer application

enables you to balance your client-server load by deciding on which engine the

code should run, client or server.

Objective

4832-8 ch09.F 7/27/01 9:02 AM Page 407

408 Part III ✦ Using PL/SQL

Types of PL/SQL blocks
PL/SQL blocks come in two varieties:

✦ Anonymous blocks

✦ Named blocks

Regardless of the type of block, they can be nested within one another to any level.

Anonymous blocks
These are pieces of PL/SQL code that have no header with a name. As such, you

send them to the PL/SQL engine through an interactive tool like SQL*Plus, and they

run once. Remember that PL/SQL is a compiled language so the block is compiled,

run, and then disappears. If you want to run it again, you have to send the entire

block to the engine again, where it once again is compiled, run, and then disappears.

These anonymous blocks can be saved to script files in the operating system to

make rerunning them easier.

Named blocks or subprograms
A named block can be “called” one or more times by its name. For this reason, the

named blocks are often used to implement modularity within a program. The program

can be broken down into several modules or subprograms, which can be called one

or more times. There are four types of named subprograms:

✦ Procedures: Perform a task.

✦ Functions: Carry out a calculation and return a value.

✦ Packages: Created as one object, these are collections of related procedures

and functions.

✦ Triggers: Code that runs automatically when an event, such as DML, occurs in

the database.

Procedures and functions are subprograms that can be created as objects in the

database, in the schema of their owner. When this happens, they are called stored
subprograms. The advantage of using stored subprograms is that they are compiled

at creation time and then can be run many times without the processing overhead

of recompiling. Packages and triggers are also schema objects, but they cannot be

explicitly called by a user. Because a package is a collection of procedures and

functions, some of the individual subprograms within the package can be called.

Triggers are blocks of code that do not need to be called directly. Simply performing

a database event, such as inserting a row into a table, causes the code in a trigger

to run, if the trigger is defined for that particular event on that particular table.

The remainder of this discussion of PL/SQL focuses on the structure of anonymous

blocks.

4832-8 ch09.F 7/27/01 9:02 AM Page 408

409Chapter 9 ✦ Introduction to PL/SQL

For more information on the named subprograms, consult Chapter 13,
“Introduction to Stored Programs.”

The exam includes questions dealing only with anonymous blocks. Named blocks,
or subprograms, are included here and in Appendix B for more information on the
“real world” implementation of PL/SQL.

Block structure
The basic structure of an anonymous block is outlined in Figure 9-1.

Figure 9-1: Structure of an
anonymous block

Note that the DECLARE and EXCEPTION keywords are optional. If you have no

variables to declare and you are not performing any error handling, then the block

can be as simple as:

BEGIN
statement;
statement;
.
.
.

END;

Remember that the PL/SQL block is free format, so each statement can take up one

or more lines and include tabs and spaces. Therefore, to indicate to the compiler

where one statement ends and another begins, you must end each statement with

a semicolon (;).

The convention used in these examples is that each statement is placed on a separate

line, and indenting is used to clarify where the block begins and ends. This simply

improves readability.

DECLARE
declarations

Optional

Required

Optional

Required

BEGIN
executable statements

EXCEPTION
error handlers

END;

Exam Tip

Cross-
Reference

4832-8 ch09.F 7/27/01 9:02 AM Page 409

410 Part III ✦ Using PL/SQL

The following is a more detailed look at each of the three sections outlined in

Figure 9-1.

Declare section
The DECLARE keyword begins the declare section in an anonymous block. This

section is necessary only when identifiers are used in the body of the block. An

identifier is anything that needs to be declared before it can be used. Examples of

identifiers are variables, constants, exceptions, cursors, and user-defined types.

In some programming languages, a variable can be assigned a value without the

program having first reserved some area in memory. This usually results in excess

storage being used because the datatype of that variable is unknown, and it must

be made large enough to store all possible values. PL/SQL does not enable you to

waste resources in that fashion. Instead, every variable that is going to be used

within the block must be declared before it is referenced.

The declaration of each identifier must take place on its own line of code and end

with a semicolon (;). The following illustrates a valid declaration of a numeric

variable named v_salary, with a precision of 13 and a scale of 2:

DECLARE
v_salary NUMBER(13,2);

...

Note that the name of the identifier is given, followed by the datatype. The same

method is used for the declaration of constants, collections, and exceptions.

Examples of these follow the discussion on each of these identifiers. It is important

to remember that you do not have to include the DECLARE keyword for each

identifier being declared. Often PL/SQL novices make this mistake:

DECLARE
v_salary NUMBER(13,2);

DECLARE
v_name VARCHAR2(15);

...

when it should look like this:

DECLARE
v_salary NUMBER(13,2);
v_name VARCHAR2(15);

...

Another common mistake made by programmers that are new to PL/SQL is that

they try to declare more than one identifier on one line. While this is allowed in

many programming languages, it is strictly forbidden in PL/SQL. Therefore, the

following code will fail:

4832-8 ch09.F 7/27/01 9:02 AM Page 410

411Chapter 9 ✦ Introduction to PL/SQL

DECLARE
v_old_salary, v_new_salary NUMBER(13,2);

...

It is also possible to give variables an initial value when they are first declared. This

initialization and other declaration options are discussed in detail in the “Variables”

section, later in this chapter.

Executable section
The executable section of the block starts with the keyword BEGIN. It is here that

you include the main body of your code. Valid statements include PL/SQL variable

assignments, loops, decision structures, cursor and subprogram calls, as well as

the supported SQL statements: SELECT, INSERT, UPDATE, DELETE, COMMIT, ROLL-

BACK, and SAVEPOINT.

Expressions in PL/SQL are very much like those in SQL: Date or character literals

must be enclosed in single quotes, while numeric literals are not. Furthermore, date

literals must be in your Oracle default date format. PL/SQL also supports numbers

in scientific notation. For example, 2E5 means 2*105. Expressions are often used in

the assignment of values to variables, and this is done using the assignment

operator. The assignment operator is := , not just an equal sign as it is in many

languages. Following is an example of several variable declaration and assignments

using literals:

DECLARE
x NUMBER;
v_message VARCHAR2(20);
v_today DATE;

BEGIN
x := 10;
x := 2E5;
v_message := ‘Hello’;
v_today := ‘01-JAN-00’; -- default date format DD-MON-YY
v_today := SYSDATE; -- SQL function

END;

Notice that expressions can also include SQL functions, like SYSDATE. All of the

single-row SQL functions are supported except for DECODE, GREATEST, and LEAST.

Group functions are not allowed in PL/SQL expressions, but are still allowed within

the SQL statements embedded in the code.

The operators available in PL/SQL expressions include:

✦ Arithmetic: Concatenation (denoted by a double pipe — ||), SQL arithmetic

operators (+, -, *, /), plus the exponential (**)

✦ Relational: =, <=, >=, <, >, <>, BETWEEN, IN, LIKE, IS NULL

✦ Logical: AND, OR, NOT

4832-8 ch09.F 7/27/01 9:02 AM Page 411

412 Part III ✦ Using PL/SQL

Exception section
The exception section is where error handling occurs. When an error condition is

encountered in the PL/SQL engine, an exception is raised. These exceptions may be

predefined by Oracle or declared by the programmer (in the declare section). When

an exception is raised, the normal flow of the executable section is halted, and

control shifts to the exception section for that block, where it searches for a handler

for that particular exception. An exception handler is simply a piece of code that

indicates what is to happen when a specific exception is raised.

Here is a sample of the flow of control in a simple anonymous block with error

handling:

DECLARE
x NUMBER;

BEGIN
x := 10/0; -- this will cause a predefined exception
y := x + 1; -- this line will never run

EXCEPTION

WHEN ZERO_DIVIDE THEN -- this is the handler
X := 0;

END;

When this block begins, a variable named x is created that will hold numeric data.

Then the PL/SQL engine attempts to assign x the value ten divided by zero. Any

fifth-grade math student will tell you that this is mathematically impossible so the

engine raises an exception. This is a common exception so it has been predefined in

the server as ZERO_DIVIDE. Immediately upon raising this exception, control shifts

to the exception section where it searches for an appropriate handler, finding it to

be the second one. Then the value of x is set to 20, and the flow goes to the next

executable line after this block.

If no exceptions are raised, then the lines of code contained in the exception handlers

are never executed. If an error is raised and no appropriate handler is found, control

returns to the calling environment from which this block was called, with an error

condition.

For more information on exceptions, consult Chapter 12, “Handling Errors and
Exceptions in PL/SQL.”

Comments
The PL/SQL code within any type of block is both case insensitive and free format.

This means that you can include tabs and blanks (known as white space) as you see

fit to make the code more readable. You may also want to include comments about

what the code is doing. Comments can take the form of notes embedded in the

code for you or other developers, but they must be denoted as comments so that

the compiler and PL/SQL engine ignore it.

Cross-
Reference

4832-8 ch09.F 7/27/01 9:02 AM Page 412

413Chapter 9 ✦ Introduction to PL/SQL

Some PL/SQL editors recognize that a section of text in your code is a comment
and display it in a different color.

The two syntaxes for adding comments in PL/SQL are:

✦ Single-line comment: Denoted by two dashes (--) immediately before the

comment, which makes everything to the right of the dashes on that line a

comment.

✦ Multi-line comment: This begins with /* and ends with */. Everything in

between the opening and closing characters becomes a comment, regardless

of how many lines it encompasses.

In this example, both types of comments are used:

DECLARE
x NUMBER := 10; -- x will be used to store numbers

BEGIN
/* this block will reassign the

value of the variable x */
x := 20;

END;

Multi-line comments are often used to “comment out” a particular piece of code
so that it will no longer be used. This can be more effective than simply deleting it
because it shows the evolution of the block of code, and it is simple to revert to an
earlier version — just remove the comment markings. Another way in which com-
ments are used is to comment out sections of code while debugging, in order to
test smaller sections of the code at one time.

Variables
✦ Describe the significance of variables in PL/SQL

✦ Declare PL/SQL variables

Because the storage and manipulation of values is one of the main purposes of

database programming, variables are the backbone of any programming language.

PL/SQL provides several different types of variables:

✦ Scalar

✦ Bind

✦ Composite

✦ User-defined

✦ Reference

Objective

In the
Real World

Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 413

414 Part III ✦ Using PL/SQL

With the exception of bind variables, these variables are included in the declare

section of the block to reserve space in memory. The values in those variables can

then be changed in the executable or exception sections. The names of PL/SQL

variables must follow these identifier naming guidelines:

✦ Names must be between 1 and 30 characters long.

✦ Names must begin with a letter, but the subsequent characters can be letters,

digits, or the special characters $, _, or #.

✦ Names cannot be PL/SQL reserved words, such as BEGIN or SELECT. For a

complete list of reserved words, consult the Oracle documentation.

✦ Using double quotes (“) around the name enables you to include characters

other than those stated previously, as well as spaces and reserved words. This

is not a common practice and can detract from the readability of the code.

Scalar variables
A scalar variable is a placeholder for one value of a specific datatype. It can hold

one number, date, character string, or logical value, depending on how it was

declared. Declaring a scalar variable is accomplished simply by specifying the name

of the variable and its datatype in the declare section of the block in which it is

going to be referenced. You can optionally give it an initial value or even enforce

that its value can never be NULL. The syntax for declaring scalar variables is:

variable_name [CONSTANT] datatype[(size)] [NOT NULL] [{:= or
DEFAULT} initial_value];

Note that the word CONSTANT, the size, NOT NULL, and the initialization are

optional. Initialization is the assignment of a value to a variable when it is declared,

and if a variable is not initialized, its value is NULL. Table 9-1 illustrates several

different declarations of a numeric scalar variable x.

Although Oracle provides both the assignment operator (:=) and the DEFAULT key-
word for initializing variables, in practice, most PL/SQL developers use just the
assignment operator for consistency between the declare and executable sections.

Table 9-1
Variable Declaration Options

Declaration Comment

X NUMBER; This creates a numeric variable that has no specified
size. Because it has not been given an initial value,
x has the value NULL.

In the
Real World

4832-8 ch09.F 7/27/01 9:02 AM Page 414

415Chapter 9 ✦ Introduction to PL/SQL

Declaration Comment

X NUMBER(11,2); This again has no initial value, but it specifies a size.
The method you use to include the optional size
element depends on which datatype is used. Here
with a NUMBER, you can specify a precision and scale.

X NUMBER(11,2) := 10; This example includes an initialization using the
assignment operator (:=).

X NUMBER DEFAULT 0; An alternative to the assignment operator is the
DEFAULT keyword, which is syntactically equal in the
declaration section of the block. The DEFAULT keyword
may be used for actual physical defaults to distinguish
them from situations where you just happen to be
setting the value in the declare section.

X NUMBER NOT NULL := 20; This example also includes the optional NOT NULL
specification, which ensures that this variable can
never be assigned NULL as its value. Any attempt to
do so results in a runtime error being raised. This
means that you must initialize it (otherwise, it gets
the default value of NULL).

X CONSTANT NUMBER := 3.14; This declares a constant called x. Unlike variables,
constants cannot be assigned new values in the
executable section. This means that you must also
initialize them.

Constants can be used instead of repeating values throughout the executable
section. The advantage of using constants is that if you later need to change the
value, you only make the change once in the declaration of the constant instead of
each time in the code that the value is referenced.

In order to declare a scalar variable, you must specify its datatype. A judicious

choice of datatype allows your variable to hold the necessary values, without

consuming more resources than necessary. The datatypes available in PL/SQL

include all of those available in the Oracle database and fall into one of four

datatype families:

✦ Numeric

✦ Character

✦ Date

✦ Boolean

Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 415

416 Part III ✦ Using PL/SQL

While the SQL datatypes are all available in PL/SQL, their range of values may not
be the same as they are in database columns. For example, in declaring PL/SQL
variables of datatype VARCHAR2, you can specify a maximum size of up to 32,676
bytes, whereas the VARCHAR2 datatype in the Oracle database can only hold up
to a maximum of 4,000 bytes,

Numeric datatypes
Though several datatypes can be used to store numeric data, most are subtypes of

the NUMBER, BINARY_INTEGER, or PLS_INTEGER datatypes. Subtypes share some, if

not all, of the properties of their “base” type. If a subtype shares all of its properties

with its base type, then it is equivalent. This subtype name might be just used for

clarity or for compliance with a standard from some other database.

The NUMBER datatype holds floating-point representations of positive or negative

numbers with magnitudes from 10-130 to 10125. It uses 38 digits of precision, although

some platforms do not allow this much accuracy in calculations. Some subtypes of

NUMBER that are equivalent are FLOAT and FLOATING POINT.

If you know that your variable does not need 38 digits of precision and you do

not want to unnecessarily consume your memory resources, then you may want

to specify a precision and scale for the variable. For this, you can use the

NUMBER(p, s) syntax. For example, the following declares a variable that holds

7 digits, two of which may be decimals:

x NUMBER(7,2);

The maximum precision that you can specify is 38, while the scale can range from

–84 to 127. Specifying a precision with no scale is equivalent to specifying a scale of

zero. Then a variable with datatype NUMBER(3) holds integers with three digits. In

fact, the subtypes INTEGER, INT, and SMALLINT are all equivalent to NUMBER with

a precision specified but scale of zero.

Other subtypes of the NUMBER datatype that are equivalent to NUMBER with a

precision and scale are DEC, DECIMAL, and NUMERIC. The REAL subtype is similar

to NUMBER(p,s) but the maximum precision is about 18 digits.

The other two numeric base types are BINARY_INTEGER and PLS_INTEGER. While

they both hold integers in the range -2147483647 to 2147483647, the PLS_INTEGER

performs calculations faster. It is a relatively new datatype in PL/SQL so it is not

supported in older versions of the Oracle database, but it should be used in new

applications because of the improved performance.

The BINARY_INTEGER datatype has several subtypes, namely POSITIVE, NATURAL,

POSITIVEN, NATURALN, and SIGNTYPE. Both POSITIVE and NATURAL denote the

subset of integers that are non-negative, while POSITIVEN and NATURALN also add

that the variable cannot accept a NULL value. This is usually enforced with the NOT

NULL specification in the declaration of the variable, however. Finally, variables

declared as SIGNTYPE can have values only of –1, 0, or 1.

Caution

4832-8 ch09.F 7/27/01 9:02 AM Page 416

417Chapter 9 ✦ Introduction to PL/SQL

Character datatypes
Character datatypes are used to declare variables that hold strings of alphanumeric

characters. These strings are either fixed-length or variable-length, and the two main

datatypes used are CHAR(n) and VARCHAR2(n). For both of these, the maximum size

for n is 32,676 bytes. Keep in mind that the database column datatypes of the same

names have a much smaller maximum — 4000 bytes. This can cause problems when

writing information to the database from PL/SQL variables that are too large.

For variables declared as CHAR(n), the n defaults to one character if it is excluded,

and the n represents the actual size of the variable, padded with blanks. For

VARCHAR2, n is mandatory, and it is the maximum size of the variable. If the value

assigned to the variable is not n-long, then it does not necessarily take up n bytes

of space. For n < 2000, however, it reserves 2,000 bytes of space.

The CHAR datatype has an equivalent subtype CHARACTER, while the VARCHAR2

has equivalent subtypes VARCHAR and STRING. Other types available are

NCHAR(n) and NVARCHAR2(n), in which the size n is specified in either bytes or

characters, depending on the National Language Support (NLS) settings for your

Oracle server. These are included because not all languages can be stored in the

same way — languages such as Japanese or Arabic have many symbols and may

require more than one byte to store each character.

Similar to the VARCHAR2 datatype is the LONG datatype. It is again used to hold

alphanumeric strings up to 32,676 bytes long but has limited usage in PL/SQL. That

is, LONG datatypes cannot be used in expressions, SQL function calls, and in many

clauses of the INSERT, UPDATE, DELETE, and SELECT statements. They are included

only to support the SQL datatype of the same name. This is also true of the RAW

and LONG RAW datatypes, which hold binary data such as sound or picture

information and also have a maximum size of 32,676 bytes. Problems can occur

when retrieving LONG or LONG RAW database columns, which can hold up to 2 GB

of data, into their PL/SQL variable counterparts that can only hold 32,676 bytes.

For this reason, is it recommended that BLOB, CLOB, or NCLOB PL/SQL datatypes

be used as they correspond to the appropriate database datatypes.

The final character datatypes are ROWID and UROWID. These are not supported in

SQL but exist only to store the unique address of a database table (called the rowid)

in a PL/SQL variable. The UROWID, or universal rowid, is a newer datatype that is

more flexible in what it stores. For example, a UROWID variable may be able to

store rowid information from a non-Oracle database. ROWID and UROWID variables

are generally filled up using a SELECT statement such as the following example:

DECLARE
v_selection ROWID;

BEGIN
SELECT ROWID
INTO v_selection
FROM Courses
WHERE CourseNumber = 870;

4832-8 ch09.F 7/27/01 9:02 AM Page 417

418 Part III ✦ Using PL/SQL

.

.

.
UPDATE Courses
SET RetailPrice = 500
WHERE ROWID = v_selection;

END;

Date datatypes
Used for holding date and time information, the DATE datatype includes the century,

year, month, day, hours, minutes, and seconds. It has a range from January 1, 4712 BC

to December 31, 9999 AD. If an assignment is made but portions of the value are

missing, the defaults are current century, year, and month with day 01 and time

00:00:00 (midnight). For example, the following declaration of a DATE variable

includes a partial initialization:

DECLARE
v_EnrollmentDate DATE := TO_DATE(‘07/11’,’DD/MM’);

The day and month have been given, but the century and year will default to the

current century and year at runtime, while the time portion will be midnight, the

beginning of that day.

Boolean datatypes
Variables declared as BOOLEAN hold only the logical values TRUE, FALSE, and

NULL. Unlike other languages where you may be able to use values such as 1, 0, ON,

OFF, or others, PL/SQL BOOLEAN datatypes accept only TRUE, FALSE, NULL, or

some logical expression that evaluates to one of those values.

DECLARE
x NUMBER := 10;
y NUMBER := 20;
v_flag BOOLEAN;

BEGIN
v_flag := (x > y);

END;

In this example, the expression evaluates to FALSE because the value x is not

greater than that of y. Before that line executes, the value of v_flag is NULL. These

assignments can include any valid logical expression and can use the logical

operators AND, OR, and NOT.

The logic tables for the AND, OR, and NOT operators are Tables 9-2, 9-3, and 9-4,

respectively. You can use these to determine the outcome of a logical expression,

but keep in mind that the operators are evaluated in the following order: NOT, AND,

then OR. This means that in the following example, the value of v_flag is TRUE. The

logic to this is laid out in Figure 9-2. The OR is the last operator evaluated, so it

4832-8 ch09.F 7/27/01 9:02 AM Page 418

419Chapter 9 ✦ Introduction to PL/SQL

splits the entire expression into two cases. In the first, the AND evaluates to FALSE

because x is not greater than y and x is not equal to zero. Then the OR evaluates to

TRUE because the first case is FALSE, but the second is TRUE:

DECLARE
x NUMBER := 10;
y NUMBER := 20;
v_flag BOOLEAN;

BEGIN
v_flag := (x > y AND x = 0 OR Y IN (20,22,24));

END;

Figure 9-2: Logical steps for the
Boolean example

Table 9-2
AND Operator

TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

(x > y AND x = 0 OR Y IN (20, 22, 24))

(x > y AND x = 0) OR (Y IN (20, 22, 24))

(FALSE AND FALSE) OR (TRUE)

(FALSE) OR (TRUE)

(TRUE)

4832-8 ch09.F 7/27/01 9:02 AM Page 419

420 Part III ✦ Using PL/SQL

Table 9-3
OR Operator

TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Table 9-4
NOT Operator

TRUE FALSE NULL

NOT FALSE TRUE NULL

All of the datatypes are included here, but the only types that are included on the
exam are NUMBER, BINARY_INTEGER, PLS_INTEGER, CHAR, VARCHAR2, LONG,
RAW, LONG RAW, DATE, BOOLEAN, and possibly ROWID.

Datatype conversion
The datatype conversion functions TO_CHAR, TO_DATE, and TO_NUMBER are

available for use in PL/SQL expressions, just as they are in SQL. These can be used to

explicitly change the datatype of an expression, but PL/SQL also does some implicit

datatype conversion. For example, the following block runs without exception:

DECLARE
y VARCHAR2(10);

BEGIN
y := 100;

END;

However, for clarity and a slight improvement in performance, you can explicitly

change the number 100 to a character string, using:

y := ‘100’;

or

y := TO_CHAR(100);

Exam Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 420

421Chapter 9 ✦ Introduction to PL/SQL

This explicit datatype conversion becomes necessary when you have dates in a

nonstandard format, such as the following:

DECLARE
v_EnrollmentDate DATE;

BEGIN
v_EnrollmentDate := TO_DATE(‘January 01, 2000’,

‘Month DD, YYYY’);
END;

Implicit datatype conversion occurs only between numeric and character, or date

and character scalar and bind variable expressions.

%TYPE attribute
In some programming languages, you are able to declare more than one variable of

the same datatype with one line of code. This is not possible in PL/SQL, but you can

declare scalars based on the datatype of a previously declared variable. The %TYPE

attribute of a variable or database column returns its datatype and size. The following

example illustrates the use of %TYPE:

DECLARE
x NUMBER(7,2) := 100;
y x%TYPE;

BEGIN
y := 200;

END;

In this example, the datatype of the variable y is determined by the previously

declared variable x. Of all the specifications that can be made in the declare

statement, only the datatype and size, not the initialized value or the optional

NOT NULL specification, is imparted on this second variable. This is convenient

for making changes to the datatype at a later date; you need to change only the

datatype of the first variable, and all of the variables that reference its datatype

with %TYPE are automatically updated.

The %TYPE attribute can also be prefixed by a database column name in order to

declare a variable that has the same datatype and size as that column. The syntax

for this declaration is as follows:

variable_name table_name.column_name%TYPE;

As with the previously declared variable, the %TYPE takes only the datatype and size

of that column, and not any default value or NOT NULL constraint on it. Therefore,

the following statement declares a variable that is able to hold a student’s status from

the Students table:

v_status students.status%TYPE;

4832-8 ch09.F 7/27/01 9:02 AM Page 421

422 Part III ✦ Using PL/SQL

The advantage of using %TYPE instead of “hard-coding” the datatype is that you are

ensured that no datatype mismatch occurs when you retrieve a value from the

database into the variable.

The use of %TYPE makes the variable declaration dynamic. If the datatype or size
of a column happens to change, you do not need to change your code to account
for the corresponding change in the variable. You do, however, need to recompile
your code.

Bind variables
Bind variables are the only type of variables that do not need to be included in the

declare section of the block. This is because bind variables are simply placeholders

that are “filled in” at runtime with values from the calling environment, or host. For

this reason, bind variables are also referred to as host variables.

Because a bind variable is used in much the same way as a scalar PL/SQL variable,

and it can have the same name as one, you have to distinguish the bind variable by

prefixing it with a colon (:). Here is an example of creating a numeric SQL*Plus

variable named x that will be used as a bind variable within a PL/SQL block:

SQL> VARIABLE x NUMBER
SQL> BEGIN
2 :x := 100;
3 END;
4 /

PL/SQL procedure successfully completed.

SQL> PRINT x

X

100

Notice that within the PL/SQL block, the variable x is prefixed by the colon (:),

whereas outside of the block, in SQL*Plus commands such as VARIABLE and PRINT, it

is not. Because this SQL*Plus variable exists for the duration of the session, it can be

referenced in more than one PL/SQL block. Therefore, it is said that bind variables are

not “local” to one block; they are global variables.

Using a naming convention for global variables, like g_name for a global variable
that will hold a name, can further help to distinguish them from local variables.

For more information on SQL*Plus variables consult Chapter 6, “The SQL*Plus
Environment.”

Cross-
Reference

Tip

Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 422

423Chapter 9 ✦ Introduction to PL/SQL

Composite datatypes
Your PL/SQL blocks of code usually contain many variables for storing and

manipulating values, but often these variables are logically related to one another.

For example, you may have variables that contain the total sales for each month, or

the course number, name, and retail price of a particular course. PL/SQL provides

several composite datatypes that are collections of related values:

✦ Records

✦ VARRAYs

✦ Nested tables

✦ Index-by tables

Records
A PL/SQL record is a collection of one or more logically related elements called

fields. Each field must have a name and datatype, and may have a default value and

NOT NULL specification. The declaration of a record is similar to scalar variables:

record_name record_type;

but these record types are not predefined like the scalar datatypes are. This means

that you must first declare the record type as follows:

TYPE record_type IS RECORD
(field_name datatype[(size)] [NOT NULL] [:= value],
field_name datatype[(size)] [NOT NULL] [:= value],
.
.
.);

Notice that each field declaration looks like a scalar variable declaration. You can

also use the DEFAULT keyword instead of the assignment operator and %TYPE

instead of specifying a datatype and size. This is an example of a simple record that

holds a person’s name, phone number, and birth date:

DECLARE
TYPE person_rec_type IS RECORD
(first_name VARCHAR2(20),
last_name VARCHAR2(20),
phone_number NUMBER(10),
birthdate DATE);

person_rec person_rec_typ;
BEGIN

SELECT FirstName, LastName, HomePhone, NULL
INTO person_rec
FROM Instructors
WHERE InstructorID = 210;

4832-8 ch09.F 7/27/01 9:02 AM Page 423

424 Part III ✦ Using PL/SQL

.

.

.
person_rec.first_name := ‘Larry’;

.

.

.
END;

The simplest way to declare a record is to use the %ROWTYPE attribute. Similar to

the %TYPE attribute, this enables you to created a record without explicitly stating

the datatype of each field. The %ROWTYPE begins with a table name and retrieves

the names and datatypes of each of the fields from the columns in that table. For

example, the following declares a record that has five fields for holding all of the

information on a particular course from the COURSES table:

DECLARE
course_rec courses%ROWTYPE;

BEGIN
SELECT *
INTO course_rec
FROM courses
WHERE CourseNumber = 870;

course_rec.RetailPrice := 900;
.
.
.
END;

Note that this record enables you to treat the fields as one logical unit for some

operations, such as the SELECT statement, but it also enables you to get and set the

values of a particular field using the recordname.fieldname syntax. When using the

%ROWTYPE attribute, you have no control over the names of the fields; they are

the same as the names of the columns in the table.

VARRAYs, nested tables, index-by tables
While records are useful for storing related information of different datatypes (such

as a row of information from a database table), the PL/SQL collection types VARRAY,

nested table, and index-by table are better for storing related information that is all

of the same datatype.

All three of these enable you to reference one element in the collection using an

index value as in this example:

total_sales(3) := 10000;

4832-8 ch09.F 7/27/01 9:02 AM Page 424

425Chapter 9 ✦ Introduction to PL/SQL

If the total_sales collection is declared as a VARRAY type, it is a variable-size array,

and when you declare it, you give it an upper bound, like this:

TYPE total_sales_typ IS VARRAY(12) of NUMBER(11,2);
total_sales total_sales_typ;

This upper bound can later be changed, so it is a variable-size array, but it is not

unbounded as the table types are:

TYPE total_sales_typ IS TABLE of NUMBER(11,2); -- nested

Or

TYPE total_sales_typ IS TABLE of NUMBER(11,2) INDEX BY
BINARY_INTEGER; -- index-by

The other main difference between VARRAY and table types is that a VARRRAY

always must be dense, whereas tables can be sparse. This means that in a VARRAY

with an upper bound of 12, elements 1 through 12 all exist, though their value may

be NULL. Nested tables can have elements that have been deleted, and index-by

tables have only the elements that have been referenced. The following example

shows some of the differences between nested and index-by tables:

DECLARE
TYPE name_nested_typ IS TABLE OF VARCHAR2(20);
first_name_table name_nested_typ;
TYPE name_index_by_typ IS TABLE OF VARCHAR2(20) INDEX BY

BINARY_INTEGER;
last_name_table name_index_by_typ;

BEGIN

first_name_table := name_nested_typ(‘John’, ‘Paul’,
‘George’);

first_name_table.EXTEND;
first_name_table(4) := ‘Ringo’;

last_name_table(3) := ‘Smith’;
END;

This example includes two tables, one nested table that holds first names and one

index-by table that holds last names.

Notice that the nested table must be initialized using the constructor method

name_nested_typ. This is the same name as the type of the nested table and is a

common structure in object-oriented programming that creates an instance of the

object with initial values. The first three elements of the nested table have index

values 1, 2, and 3. To add a fourth value, you extend the table by one element using

the EXTEND method. Then any of the four elements can be deleted or have their

values changed.

4832-8 ch09.F 7/27/01 9:02 AM Page 425

426 Part III ✦ Using PL/SQL

By contrast, the index-by table that holds last names does not need to be initial-

ized. There are no elements until the value is set for a particular element using its

index. The indexes can be any BINARY_INTEGER and do not have to start with one.

The syntax for declaring and using VARRAYs, records, and tables is covered in
detail in Chapter 11, “Interacting with the Database Using PL/SQL.”

Of the composite datatypes discussed, only records and index-by tables, also
known as PL/SQL tables, are included on the exam.

User-defined types
In addition to the composite datatypes of records, VARRAYs, nested tables, and

index-by tables, PL/SQL enables you to create your own composite datatypes called

object types. These can have one or more elements, called attributes, which are

scalars, composite datatypes, or even user-defined object types. Furthermore, you

can encapsulate the procedures and functions that work with this data in the same

object. This encapsulation of the attributes of an object and the methods that work

on it is one of the foundations of object-oriented programming, and for this reason,

object types are used for object-oriented programming in Oracle.

One of the simplest forms of object types that you can create is one with data only.

For example, the following SQL*Plus statement creates a user-defined datatype that

holds address information:

SQL> CREATE TYPE address_typ AS OBJECT
2 (StreetNo NUMBER(10),
3 StreetName VARCHAR2(100),
4 AptNo NUMBER(5),
5 City VARCHAR2(100),
6 State VARCHAR2(100),
7 ZipCode NUMBER(9),
8 Country VARCHAR2(100))
9 /

Type created.

This type exists in the schema of the user that created it and defines a new

datatype that is used in much the same way as VARCHAR2 or NUMBER or any of the

other available datatypes in the database. An example that uses this datatype to

create a database table with a column of datatype address_typ, then populates a

row of that table, follows:

SQL> CREATE TABLE people
2 (ID NUMBER(5),
3 FirstName VARCHAR2(100),

Exam Tip

Cross-
Reference

4832-8 ch09.F 7/27/01 9:02 AM Page 426

427Chapter 9 ✦ Introduction to PL/SQL

4 LastName VARCHAR2(100),
5 Address address_typ)
6 /

Table created.

SQL> INSERT INTO people
2 VALUES(10,
3 ‘John’,
4 ‘Smith’,
5 address_typ(123, ‘Happy Lane’, NULL,
6 ‘Smalltown’, ‘Alaska’, 12345, ‘USA’))
7 /

1 row created.

SQL> SELECT * FROM people;

ID FIRSTNAME LASTNAME ADDRESS(STREETNO, STREETNAME,
------ ---------- ---------- ------------------------------

10 John Smith ADDRESS_TYP(123, ‘Happy Lane’,
NULL, ‘Smalltown’, ‘Alaska’,
12345, ‘USA’)

In order to initialize the object type column, you must call the constructor method

of the object, which has the same name as the object type. Note that when the

object type column is selected, it displays like the constructor method call. You can

select, however, just one element from the object type using a “dot notation” in

much the same way as with PL/SQL records:

SQL> SELECT p.ID, p.FirstName, p.Address.City
2 FROM people p
3 /

ID FIRSTNAME ADDRESS.CITY
------ ---------- ------------------------------

10 John Smalltown

In the address_typ column example, the table alias p is used to prefix the columns
selected. Oracle requires the use of table aliases when referencing object type col-
umn attributes or methods in order to remove ambiguity. Oracle objects also have
a dot notation, which includes the schema and package names.

Reference types
In general, PL/SQL variables are the areas in memory where data is stored, and the

datatype of the variable defines what kind of data can be stored there. If instead

you want to hold the address of an area in memory, a kind of pointer to some data,

then you want to create a variable that is a reference type. It points to an area in

memory called a cursor.

Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 427

428 Part III ✦ Using PL/SQL

A cursor is an area in memory where SQL statements are parsed and executed.

These cursors are either implicitly declared by the server or explicitly declared by

you, the programmer. If you use an explicit cursor for a SELECT statement, then you

must follow several steps:

1. Declare: Give the area in memory a name and structure.

2. Open: Run the SELECT statement and hold onto the result set in that area.

3. Fetch: Retrieve one row at a time from the cursor to PL/SQL variables.

4. Close: Clear the result set from memory.

The syntax for these steps is discussed in detail in Chapter 11, “Interacting with the
Database Using PL/SQL.”

To declare a cursor, you simply specify which SELECT statement will populate the

area in memory. From this declaration, an area can be reserved that has exactly the

right number and datatype of columns. Unfortunately, this means that the cursor

can be used only in the block in which it is declared, or in a sub-block of that block.

While a cursor is the actual area in memory, a REF CURSOR is a pointer to an area

in memory. This pointer, or reference type, can then be “pointed at” at any area that

returns the right kind of values. The following example illustrates the use of a REF

CURSOR:

DECLARE
-- First, create the type of the ref cursor

TYPE course_ref_typ IS REF CURSOR RETURN courses%ROWTYPE;

-- then create a variable of that type.

course_ref course_ref_typ;

BEGIN

OPEN course_ref FOR SELECT *
FROM courses
WHERE RetailPrice > 500;

.

.

.
END;

In this example, the reference type is declared, and then you can create one or

more REF CURSOR variables of that type. These allow much more flexibility than

cursors because you can conditionally open them for different SELECT statements,

based on some criteria.

Both user-defined and reference types are beyond the scope of the exam but are
provided here in order that you may have a more complete picture of the capabil-
ities of Oracle and PL/SQL.

Exam Tip

Cross-
Reference

4832-8 ch09.F 7/27/01 9:02 AM Page 428

429Chapter 9 ✦ Introduction to PL/SQL

Executing and Testing PL/SQL Blocks
✦ Execute and test a PL/SQL block

This discussion focuses on the use SQL*Plus to execute and test PL/SQL anony-

mous blocks. The execution of a block in SQL*Plus is started simply by sending it

from the SQL*Plus buffer to the server:

SQL> DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10;
5 END;
6 /

PL/SQL procedure successfully completed.

The server then takes this anonymous block and parses it. It parses the entire

block, including any nested sub-blocks, at once. The server checks that the syntax

is correct and that the user has the appropriate privileges to carry out any SQL

statements contained within the block and, from this, creates a compiled version of

the block. That version is then run in the PL/SQL engine.

This process is slightly different for named blocks. For example, if you have a pro-

cedure named “book_class” that takes a class ID and a student number as its input

parameters, you call this procedure from SQL*Plus as follows:

SQL> BEGIN
2 book_class(51, 1008);
3 END;
4 /

PL/SQL procedure successfully completed.

Or you can use the EXECUTE command:

SQL> EXECUTE book_class(51,1008)

PL/SQL procedure successfully completed.

The process is slightly different for stored programs because they have already

been compiled, so there is less overhead before the compiled code is sent to the

PL/SQL engine.

You can send PL/SQL blocks to the Oracle server in many interactive tools, and

each tool can behave differently. Consequently, there is no native functionality for

printing data either to a screen or to a printer from within a block. Each tool has its

Objective

4832-8 ch09.F 7/27/01 9:02 AM Page 429

430 Part III ✦ Using PL/SQL

own methods of enabling you to provide information to the user during block pro-

cessing. SQL*Plus includes several methods of printing values and providing infor-

mation to the user. The two most common are:

✦ PRINT command

✦ DBMS_OUTPUT package

Print command
This method involves printing SQL*Plus variables after a PL/SQL block has run that

has populated them with data. Remember that these are host variables that come

from the OS, SQL*Plus in this case:

SQL> VARIABLE g_result VARCHAR2(100)
SQL> BEGIN
2 :g_result := ‘Hello’;
3 END;
4 /

PL/SQL procedure successfully completed.

SQL> PRINT g_result

G_RESULT
--
Hello

With this method, the bind (or host) SQL*Plus variable must be previously

declared with the VARIABLE command. Also note that within the block, the bind

variable must be prefixed with a colon (:).

Instead of using the PRINT command after each run of a PL/SQL block, you can
change the SQL*Plus environment variable called AUTOPRINT to ON, and for the
duration of the session, all SQL*Plus bind variables referenced will be printed
automatically.

DBMS_OUTPUT package
DBMS_OUTPUT is an Oracle-supplied package that contains procedures and func-

tions for performing file and screen output.

Specifically, the procedure called PUT_LINE enables you to write one line of text to

a buffer that can be printed from SQL*Plus. When set ON, the SQL*Plus environ-

ment variable SERVEROUTPUT prints to the screen any text in that buffer upon

completion of the block of code. The SQL*Plus environment variables, such as

Tip

4832-8 ch09.F 7/27/01 9:02 AM Page 430

431Chapter 9 ✦ Introduction to PL/SQL

SERVEROUTPUT, retain their setting for the duration of the SQL*Plus session.

Therefore, you need to set SERVEROUTPUT ON only once in your session. The fol-

lowing example demonstrates the usage:

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
2 DBMS_OUTPUT.PUT_LINE(‘Hello’);
3 DBMS_OUTPUT.PUT_LINE(‘there’);
4 END;
5 /

Hello
there

PL/SQL procedure successfully completed.

For more information on the use of packages, consult Chapter 13, “Introduction to
Stored Programs.”

Key Point Summary
✦ PL/SQL, as a language that incorporates procedural language processing capa-

bility with seamless SQL support, offers a number of advantages over precom-

piled languages and multiple SQL statement script files.

✦ PL/SQL is a compiled language that runs in a PL/SQL engine. That engine can

reside either on the Oracle Developer client or on the server. When using

Oracle’s development suite, this means that you can decide where a particu-

lar block should run.

✦ Blocks of PL/SQL code can either be anonymous, which are compiled at run-

time and are not persistent, or named. These named subprograms can be

stored in the database as schema objects.

✦ Anonymous blocks have three sections: the declare section where all identi-

fiers must be declared, the executable section where the main processing

occurs, and the exception section where errors are handled. The declare and

exception sections are optional.

✦ PL/SQL is free format and case insensitive. Comments and white space can be

added for readability. Comments are denoted by two dashes (--) or the multi-

line switches /* and */.

✦ Scalar variables hold data of a particular datatype. PL/SQL supports all of the

database datatypes as well as subtypes of these and the BOOLEAN datatype.

The datatype must be declared in the declare section but can be taken from

another previously defined variable or database column using the %TYPE

attribute.

Cross-
Reference

4832-8 ch09.F 7/27/01 9:02 AM Page 431

432 Part III ✦ Using PL/SQL

✦ Bind variables are placeholders for values from the calling environment, or

host. They need not be included in the declare section of the PL/SQL block in

which they are referenced. You distinguish bind variables from local scalars

by prefixing them with a colon(:).

✦ Composite datatypes hold one or more related elements as a logical unit. The

available types are records, VARRAYs, nested tables, and index-by tables.

Records are composed of elements of different datatypes, while the others are

collections of like values.

✦ Object-oriented programming is supported in PL/SQL through object types.

Reference types are also available to provide pointers to areas of memory.

✦ There are two ways of printing to the SQL*Plus screen from within a PL/SQL

block: passing values to bind variables or calling the

DBMS_OUTPUT.PUT_LINE packaged procedure.

✦ ✦ ✦

4832-8 ch09.F 7/27/01 9:02 AM Page 432

433

STUDY GUIDE

The following section will help you assess your understanding of the benefits of

PL/SQL, along with the structure of the PL/SQL block and the types of variables.

Assessment Questions
1. Which of the following SQL statements are supported in PL/SQL? (Select one

or more responses.)

A. DROP TABLE

B. INSERT

C. SELECT

D. GRANT

E. UPDATE

2. Which of the following types of PL/SQL block cannot be created as a schema

object in the database? (Choose the best answer.)

A. Procedure

B. Anonymous Block

C. Package

D. Function

3. Which of the following is not a valid PL/SQL scalar datatype? (Choose one or

more responses.)

A. DATE

B. TIME

C. BOOLEAN

D. NUMBER

E. ALPHANUMERIC

4. Evaluate this PL/SQL block:

DECLARE
v_on_hold BOOLEAN;
v_total NUMBER := 3;
v_class_min NUMBER := 4;
v_required BOOLEAN := TRUE;

433Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 433

BEGIN
v_on_hold := (v_total > v_class_min OR v_required);

END;

What value does the Boolean variable v_on_hold receive? (Choose the best

answer.)

A. NULL

B. TRUE

C. FALSE

D. None of the above

5. Evaluate this PL/SQL block:

declare x number:=100; begin x:=x+x/4; exception when
zero_divide then dbms_output.put_line(‘You cannot divide by
zero’); when value_error then dbms_output.put_line(‘Wrong
type of value’); end;

Although this is a valid block of code, it can be difficult to read and under-

stand what it accomplishes. How might the readability and understanding be

improved? (Choose one or more responses.)

A. Use a case convention for keywords and identifiers.

B. Use a separate line for each executable statement.

C. Indent the sections of the block.

D. Add comments to executable lines that explain the program flow.

E. All of the above.

6. In which sections of the anonymous block can the value of a variable be

assigned? (Choose one or more responses.)

A. Declare section

B. Executable section

C. Exception section

D. Header section

7. Which of the following declarations creates a PL/SQL record that has ele-

ments that stores the contents of one row of the students table? (Choose the

best response.)

A. student_rec student.record;

B. student_rec student.ROWTYPE;

C. student_rec student.TABLETYPE;

D. student_rec student%ROWTYPE;

E. student_rec student%RECORD;

434 Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 434

435

8. Evaluate this PL/SQL block:

BEGIN
:g_total := :g_total + 1;

END;

Which of the following terms may be used to describe the variable g_total?

(Choose the three best responses.)

A. Global variable

B. Host variable

C. Local variable

D. Bind variable

E. Boolean variable

9. Which of the following is a valid assignment of the variable? (Choose the best

response.)

A. v_total = 200;

B. v_total := 100

C. v_total := ROUND(v_total,2);

D. v_total := SUM(courses.retailprice);

E. None of the above.

10. Which of the following PL/SQL structures holds no actual data, but instead

holds a pointer towards a storage area? (Choose the best answer.)

A. Scalar variable

B. VARRAY

C. Record

D. REF CURSOR

E. Cursor

Scenarios
1. You are the IT manager of a company that has just installed a new Oracle

database to keep track of product and order information. The members of

your new development team have limited programming experience in Visual

Basic, PASCAL, and C. They are going to create a Visual Basic form-based front

end for users, but the back end must access the Oracle database. This access

will only be for data retrieval and manipulation, but some calculations of tax

often will be repeated. You have several choices in how they should do the

database access: with multiple SQL calls, precompiled PRO*C procedure calls,

or PL/SQL procedure and function calls. Which of these would you choose

and why?

435Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 435

2. Working as a developer, you have a need within a PL/SQL block of code to

hold the total sales for each month of a particular year. You can store this

information in several scalar variables, a VARRAY, a nested table, or in an

index-by table. What type of variable(s) would you use to hold these values,

and why would you choose that over the other available types?

Lab Exercises
Lab 9-1 Declaring scalar variables

1. Sign on to SQL*Plus as user Student with password oracle.

2. Create an anonymous PL/SQL block with declare and executable sections.

3. Declare a scalar variable named v_1 of datatype NUMBER(7,2) and initialize it

as zero.

4. In the executable section, set v_1 to have a value of 100.

5. Print the value of the variable using the DBMS_OUTPUT.PUT_LINE procedure.

Remember that you will not see any output unless you have SERVEROUTPUT

set ON in your SQL*Plus session.

6. Run your block and confirm that your value of 100 prints on the screen.

7. Edit the block so that you also declare a second variable named v_2 of the

exact same datatype, without “hard-coding” the datatype.

8. In the executable section, set v_2 to have a value of one billion

(1,000,000,000).

9. Run your block and confirm that the following error occurs:

ORA-06502: PL/SQL: numeric or value error: number precision
too large

10. Edit the block, change the datatype of v_1 to NUMBER(15,2), and rerun the

block. It should complete successfully because v_2 now has this new datatype

as well.

11. Save your block in a SQL*Plus script file named lab8-1.sql

Lab 9-2 Enhancing the executable section
1. Edit the PL/SQL block contained in the lab8-1.sql script.

2. Remove the lines of code that set the values of the variables by making them a

multi-line comment.

436 Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 436

437

3. Execute the block and confirm that the value printed is now zero, the default

for v_1.

4. Edit the block so that it now prints the value of v_2.

5. Execute the block. What is output to the screen and why?

Lab 9-3 Using bind variables
1. Create a numeric SQL*Plus variable named g_sum.

2. Create and execute an anonymous block that sets the value of g_sum to 100.

Does this block need a declare section?

3. Create and execute another anonymous block that sets the value of g_sum to

be five times what its value was.

4. Print the value of g_sum to the screen.

5. Make a SQL*Plus script file named lab8-3.sql that completes all of the previ-

ous steps: creates a SQL*Plus variable, sets the value of that variable in two

separate blocks, and then prints the value of it. When do you need to use a

colon (:) as a prefix to g_sum? When do you need the SQL*Plus termination

character (/)?

Answers to Chapter Questions

Chapter Pre-Test
1. The benefits of using PL/SQL instead of multiple SQL statement calls are

because it is a procedural language. As such, it is modular and has constructs

like loops, decision structures, variables, and error-handling. It is also prefer-

able to other procedural languages like Pro*C because it has support for SQL,

is portable, and allows for object-oriented programming through object types.

2. The two main types of PL/SQL blocks are anonymous and named. The named

blocks are usually used to create database objects such as procedures, func-

tions, and packages, while anonymous blocks are not schema objects.

3. There are three sections in the anonymous block: DECLARE begins the

declare section, while the executable section starts with the keyword BEGIN,

and the word EXCEPTION starts the error-handling exception section.

4. In PL/SQL, variables must be of scalar, composite, user-defined, or reference

types, and all must be declared. You may also use bind variables, but they are

not declared in PL/SQL but are inherited from the host environment.

437Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 437

5. The base types in PL/SQL are NUMBER, PLS_INTEGER, BINARY_INTEGER,

CHAR, VARCHAR2, LONG, RAW, LONG RAW, ROWID, UROWID, DATE, and

BOOLEAN. Some of these also have subtypes. In addition, PL/SQL supports

LOBs, or large objects.

6. You can use the %TYPE attribute to declare a variable as the same datatype

and size as a previously declared variable, or a database column.

7. There are two ways to denote comments in a PL/SQL block: two dashes in a

row (- -) indicate that the rest of that line is a comment, while multi-line com-

ments start with /* and end with */.

8. PL/SQL allows SELECT, INSERT, UPDATE, DELETE, COMMIT, ROLLBACK, and

SAVEPOINT statements embedded directly in the body of a block of code.

Also, there is native dynamic SQL, which further allows DDL and DCL com-

mands to be included in the code. You can also use any of the SQL datatypes

in PL/SQL.

9. One way to print the value of a PL/SQL variable in SQL*Plus is to pass it to a

SQL*Plus bind variable within the block, then PRINT the value of that variable

once the block has executed. The other way is to call DBMS_OUTPUT.PUT_LINE,

which is an Oracle-supplied packaged procedure. You pass the variable as an

input parameter to the procedure, and then it prints the results after the block is

executed, provided that the SERVEROUTPUT SQL*Plus environment variable

was set ON.

10. Both records and tables are composite PL/SQL datatypes, but records have

related elements with differing datatypes and field names, whereas tables

have many elements of the same datatype. Table elements have no name but

instead have an index value. Records are convenient for holding a database

row in memory, while tables are convenient for holding a column or other

data that is all of the same type.

Assessment Questions
1. B, C, E — The only SQL statements allowed are data retrieval (SELECT), data

manipulation (INSERT, UPDATE, DELETE), and transaction processing (COM-

MIT, ROLLBACK, SAVEPOINT). Data definition (CREATE, DROP, ALTER) state-

ments, along with data control (GRANT, REVOKE) commands, are not

supported natively in PL/SQL. Refer to the “Support for SQL” part of the “Uses

and Benefits of PL/SQL” section, earlier in this chapter.

2. B — Procedures, functions, and packages can be made into schema objects

and then be called more than once. By contrast, anonymous blocks run once

and then disappear. Refer to the “Types of PL/SQL Blocks” section, earlier in

this chapter.

3. B, E — TIME and ALPHANUMERIC are not valid datatypes. The DATE type

includes a time element, and while alphanumeric characters are allowed in

CHAR or VARCHAR2 types, ALPHANUMERIC is not a valid subtype. Refer to

the “Variables” section, earlier in this chapter.

438 Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 438

439

4. B — The OR operator has the lowest precedence, so the “greater than” opera-

tor (v_total > v_class) executes first. This returns a result of FALSE, but the

other condition, (v_required) is TRUE. This means that the expression is

(FALSE OR TRUE), which evaluates to TRUE. Refer to the logic tables in the

“Boolean Datatypes” section, earlier in this chapter.

5. E — All of the solutions provided work toward better readability by showing

clearly where each line begins and ends, and what action it performs. Refer to

the “Comments” section.

6. A, B, C — A PL/SQL variable can be assigned a value when it is declared in the

declare section or in any executable statement. Executable statements are

allowed in the executable and exception sections. Refer to the “Block

Structure” section, earlier in this chapter.

7. D — The %ROWTYPE attribute can be prefixed with a table name in order to

create a record with the same number and datatype of fields as the columns

from that table. Refer to the “Composite Datatypes” section, earlier in this

chapter.

8. A, C, D — The colon (:) before the variable name indicates that it is a bind

variable. As a bind variable, it is not declared inside this block, but instead it

is a placeholder for a value from the calling environment, or host. That is why

it is also known as a host variable. Finally, because this bind variable can be

referenced in many blocks and is not local to one, it can also be called a global
variable. Refer to the “Bind Variables” section, earlier in this chapter.

9. C — While single-row functions (such as ROUND) are allowed in PL/SQL

expressions, group functions (such as SUM) are not. The first answer is incor-

rect because the assignment operator is :=, not =. The second assignment

statement is missing the semicolon (;) at the end. This leaves only answer C

as valid. Refer to the “Executable Section” part of the “Block Structure” sec-

tion, earlier in this chapter.

10. D — The REF CURSOR is a reference type, which means that it references an

area of memory instead of actually representing that area. Refer to the

“Reference Types” section, earlier in this chapter.

Scenarios
1. In this situation, where you need to make many data retrieval and manipula-

tion statements, Pro*C is probably not a good choice. This is certainly the sit-

uation if your developers do not have extensive experience with the Pro*C

language. PL/SQL allows these types of statements natively so the access can

be easily done. As for multiple SQL calls, these lack the modularity of PL/SQL

procedures. This means that every time that you need to calculate the tax in a

SELECT statement, you have to rewrite the expression. With PL/SQL, you can

create a function that does the tax calculation and then call that function

many times. Therefore, PL/SQL functions and procedures are the best choice.

439Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 439

2. Because this data is closely related and all of the same datatype (numeric

totals), one of the collections would be preferable to 12 separate variables.

They can be treated like one logical unit and share one name. Of the collection

types, the VARRAY is best in this situation because you have a fixed number of

elements (12 months) and you won’t ever need to delete one. The ability to do

so is one of the main benefits of the table types but is not necessary in this

situation.

Lab Exercises

Lab 9-1 Declaring scalar variables
5. Your code should look like this:

SET SERVEROUTPUT ON
DECLARE
v_1 NUMBER(7,2) :=0;

BEGIN
v_1 := 100;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_1));

END;
/

Although it is not necessary, the TO_CHAR is included here. Implicit datatype

conversion takes the numeric variable and changes it to the character string

that the PUT_LINE procedure accepts, but explicitly specifying this is slightly

better from a performance standpoint.

11. Your final block should look like this:

SET SERVEROUTPUT ON
DECLARE
v_1 NUMBER(15,2) :=0;
v_2 v_1%TYPE;

BEGIN
v_1 := 100;
v_2 := 1000000000;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_1));

END;
/

Lab 9-2 Enhancing the executable section
5. The final code should look like this:

SET SERVEROUTPUT ON
DECLARE
v_1 NUMBER(15,2) :=0;
v_2 v_1%TYPE;

440 Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 440

441

BEGIN
/* v_1 := 100;
v_2 := 1000000000; */
DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_2));

END;
/

There will appear to be no output because the value of v_2 was not initialized.

In SQL*Plus a NULL value appears as a blank line.

Lab 9-3 Using bind variables
1. The declaration of the SQL*Plus variable is:

SQL> VARIABLE g_sum NUMBER

2. The block should look like this:

BEGIN
:g_sum := 100;

END;

Because no local PL/SQL variables are being used, a declare section is not

necessary.

3. The block should look like this:

BEGIN
:g_sum := :g_sum * 5;

END;

4. The output should look like this:

SQL> PRINT g_sum

G_SUM

500

5. The entire script should look like this:

VARIABLE g_sum NUMBER
BEGIN
:g_sum := 100;

END;
/
BEGIN
:g_sum := :g_sum * 5;

END;
/
PRINT g_sum

Notice that the bind variable g_sum must begin with the colon (:) only when it

appears inside a PL/SQL block. Also, the SQL*Plus termination character (/)

comes after each PL/SQL block is completed but not after the SQL*Plus com-

mands VARIABLE and PRINT.

441Chapter 9 ✦ Study Guide

4832-8 ch09.F 7/27/01 9:02 AM Page 441

4832-8 ch09.F 7/27/01 9:02 AM Page 442

Controlling Program
Execution in PL/SQL

EXAM OBJECTIVES

✦ Writing Control Structures

• Identify the uses and types of control structures

• Construct and identify different loop statements

• Control block flow using nested loops and labels

• Construct an IF statement

✦ Describe the rules of nested blocks

✦ Control transactions in PL/SQL

✦ Execute and test a PL/SQL block

1010C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch10.F 7/27/01 9:02 AM Page 443

444 Part III ✦ Using PL/SQL

CHAPTER PRE-TEST
1. How many types of loops are available in PL/SQL, and what are they

called?

2. When do you use a FOR loop?

3. How can you tell which loop will be exited with the EXIT statement?

4. How many different conditions can be tested in an IF statement?

5. What are labels used for?

6. Can you nest one block within another? Why would you want to?

7. What statements are used to control transactions within a PL/SQL
block?

8. How do you set intermediate points in a transaction so that some, but
not all, of the DML statements may be rolled back?

9. What does the ELSIF clause in an IF statement do?

10. How does a WHILE loop differ from a basic loop?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch10.F 7/27/01 9:02 AM Page 444

445Chapter 10 ✦ Controlling Program Execution in PL/SQL

Within computer languages, it is necessary to control the order in which

lines of code are executed. While some lines must be executed more than

once, others need not be executed at all, depending on certain conditions. For this

reason, PL/SQL has a variety of loops and decision structures that are similar to

those found in many other programming languages.

Loops
✦ Construct and identify different loop statements

Loops are used to execute a portion of code more than once, without having to

duplicate that code in the program. In programming, you often want to do the same

thing for each day of the week, for each order placed with your company, or for

some other event that occurs a number of times. Each of the three types of loops

available in PL/SQL has a different syntax and usage. The loop types are:

✦ Basic loop

✦ WHILE loop

✦ FOR loop

Basic loop
The basic loop is basic in its syntax. The following is an example of an anonymous

block that prints five lines to the SQL*Plus screen. Remember that the SQL*Plus

environment variable SERVEROUTPUT must be set on at some point in the

SQL*Plus session in order to view the results of the DBMS_OUTPUT.PUT_LINE

procedure.

SET SERVEROUTPUT ON
DECLARE
x NUMBER := 1;

BEGIN
LOOP
DBMS_OUTPUT.PUT_LINE(‘This loop has executed ‘

||TO_CHAR(x)||’ time(s)’);
x := x +1;
EXIT WHEN x > 5;

END LOOP;
END;

This example can work without the use of the TO_CHAR function. Oracle performs
implicit conversion of the numeric variable x to a character datatype that is
expected by the concatenation, but it is better for performance to do the conver-
sion explicitly.

Tip

Objective

4832-8 ch10.F 7/27/01 9:02 AM Page 445

446 Part III ✦ Using PL/SQL

In this example, x is a variable used in a counter that keeps track of how many

times the loop has executed. After the line has been written the fifth time, the

Boolean condition (x > 5) becomes TRUE, and the program moves to the next line

following the END LOOP. Because there are no more executable lines at this point,

the program ends. The output should look like this:

This loop has executed 1 time(s)
This loop has executed 2 time(s)
This loop has executed 3 time(s)
This loop has executed 4 time(s)
This loop has executed 5 time(s)

PL/SQL procedure successfully completed.

Within the LOOP and END LOOP statements, you may place as many executable

statements as you like, but remember that each one must end with a semicolon (;).

The complete syntax for the basic loop follows:

LOOP
statement;
.
.
.
[EXIT [WHEN condition];]

END LOOP;

Note that the EXIT statement is optional, and in fact, it can appear anywhere within

the loop. Without an EXIT statement, the loop is endless, although the program may

abort at some point when a variable becomes too large. For example, in the earlier

example that printed the number of times through the loop, the program ends in

error when the default 2,000-byte maximum for the DBMS_OUTPUT buffer is

reached.

Also note that the WHEN condition is optional in the exit statement. A loop with an

unconditional EXIT statement does not loop at all, so in practice, WHEN is always

added. The loop exits only when the condition evaluates to TRUE, not when it is

FALSE or NULL.

Refer to the logic tables section of Chapter 9, “Introduction to PL/SQL,” for more
information on Boolean expressions.

One well-used coding convention is that the LOOP and END LOOP statements
should be lined up with the contents of the loop indented.

Tip

Cross-
Reference

4832-8 ch10.F 7/27/01 9:02 AM Page 446

447Chapter 10 ✦ Controlling Program Execution in PL/SQL

WHILE loop
The WHILE loop is similar to the basic loop, but it has the exit condition built into

the first line. The syntax for the WHILE loop follows:

WHILE condition LOOP
statement;
.
.
.

END LOOP;

Notice that no EXIT statement is needed here because the program continues to

loop only as long as the WHILE condition is TRUE. You may run into a situation

where you also need to include another EXIT statement inside the loop to exit

based on some other criteria. Actually, if the WHILE condition is not TRUE when

the program first encounters the loop, the statements within the loop are never

executed.

Here is a WHILE loop implementation of the exact same program that prints five

lines:

DECLARE
v x NUMBER := 1;
BEGIN
WHILE x <= 5 LOOP
DBMS_OUTPUT.PUT_LINE(‘This has executed ‘

||TO_CHAR(x)||’ time(s)’);
x := x +1;

END LOOP;
END;

In this example, the condition has “turned around.” Instead of exiting when x is

greater than 5, you continue looping until x is no longer less than or equal to 5.

Both of these blocks should produce the exact same results.

FOR loop
In most programs where looping is required, you know how many times the loop

needs to be repeated. To repeat a portion of code with basic loops and WHILE

loops, you need to declare a numeric variable to keep track of the number of times

that the loop has executed. You also need to increment that variable, or counter,

each time through and include a statement that specifies when to leave the loop.

Because the repetition of code a set number of times is such a common practice,

there is a shortcut: the FOR loop.

4832-8 ch10.F 7/27/01 9:02 AM Page 447

448 Part III ✦ Using PL/SQL

The FOR loop has a built-in counter that need not be declared or incremented by

the programmer. Like the WHILE loop, it has the exit conditions specified at the

beginning. Here is the FOR loop implementation of the program that prints five

lines:

BEGIN
FOR x IN 1..5 LOOP
DBMS_OUTPUT.PUT_LINE(‘This has executed ‘

||TO_CHAR(x)||’ time(s)’);
END LOOP;

END;

The first thing that you should notice when comparing this example to the other

loop implementations is that it is much shorter than the other two. Because the

FOR loop implicitly declares the counter (also called an index), you need not have a

DECLARE section. Also missing here is the line of code that adds 1 to the counter

each time through the loop. Each time the program loops around to the first line, it

automatically increments the counter by 1. It then checks that the counter is still

within the range specified.

FOR loops are available in many programming languages, with the long-standing
convention of using the lowercase letter “i” as the counter, or index name. You
may use any name you choose, subject to PL/SQL variable-naming guidelines, but
code in this book reflects the generally used naming convention.

In the previous example, the lower bound for the index is the numeric literal 1,

while the upper bound is the numeric literal 5. In general, these bounds can be any

integer expressions. The next example uses an upper bound that is a variable:

DECLARE
v_upper INTEGER := 5;

BEGIN
FOR i IN 1..v_upper LOOP
DBMS_OUTPUT.PUT_LINE(‘This has executed ‘

||TO_CHAR(i)||’ time(s)’);
END LOOP;

END;

If the bounds of a FOR loop are set using variables, and a variable value happens
to change during an iteration of the loop, the loop does not change its exit condi-
tion. The value of each bound is captured when the loop first starts and does not
reflect any changes in variable values.

You also have the choice of having the index go in reverse. This means that it can

count backwards, say from 10 down to 1. Unlike other programming languages, you

may not have the counter step by any value other than 1. The full syntax for the

FOR loop follows:

Caution

Tip

4832-8 ch10.F 7/27/01 9:02 AM Page 448

449Chapter 10 ✦ Controlling Program Execution in PL/SQL

FOR counter IN [REVERSE] lower_bound .. upper_bound LOOP
statement;
.
.
.

END LOOP;
=

The FOR loop is generally used when a group of statements must be executed a set

number of times, and this number is known when the loop begins. It is possible to

leave the loop before the counter reaches the upper bound using the EXIT WHEN

statement, as in the next example. This assumes the existence of some sort of

Contributions table that holds information on pension contributions for each

instructor. The program accepts, from the user, the instructor’s ID, monthly contri-

bution, and limit for the year. It then loops through the months, adding each

month’s contribution (on the first of the month) for a particular instructor to the

table until the limit for the year has been exceeded.

DECLARE
v_id Instructors.InstructorID%TYPE := &p_id;
v_monthly_contrib NUMBER(13,2) := &p_contribution;
c_yearly_limit CONSTANT NUMBER(13,2) := &p_limit;
v_total_contrib NUMBER(13,2) := 0;

BEGIN
FOR i IN 1..12 LOOP

INSERT INTO Contributions(InstructorID,
ContDate, Amount)

VALUES(v_id, TO_DATE(TO_CHAR(i),’MM’),
v_monthly_contrib);

v_total_contrib := v_total_contrib + v_monthly_contrib;
EXIT WHEN v_total_contrib > c_yearly_limit;

END LOOP;
END;

Here is a sample run of the program with a limit that is reached before the year is

over:

SQL> /
Enter value for p_id: 450
Enter value for p_contribution: 200
Enter value for p_limit: 840

PL/SQL procedure successfully completed.

SQL> SELECT *
2 FROM Contributions;

4832-8 ch10.F 7/27/01 9:02 AM Page 449

450 Part III ✦ Using PL/SQL

INSTRUCTORID CONTDATE AMOUNT
------------ --------- ---------

450 01-JAN-01 200
450 01-FEB-01 200
450 01-MAR-01 200
450 01-APR-01 200
450 01-MAY-01 200

In the preceding example, the fifth contribution of $200 puts the instructor over the

$800 limit, so it is the last one made. If the yearly limit is never reached, then the

FOR loop finishes in its normal way — when the upper bound is reached. However,

it may leave early. These types of situations can also be handled with a basic or

WHILE loop. You must decide whether it is more advantageous to use the FOR loop

to get the implicit counter or whether you prefer the readability of the single exit

condition in the following code:

DECLARE
v_id Instructors.InstructorID%TYPE := &p_id;
v_monthly_contrib NUMBER(13,2) := &p_contribution;
c_yearly_limit CONSTANT NUMBER(13,2) := &p_limit;
v_total_contrib NUMBER(13,2) := 0;
v_counter NUMBER(2):= 1;

BEGIN
WHILE v_counter <= 12 AND

v_total_contrib <= c_yearly_limit LOOP
INSERT INTO Contributions(InstructorID,

ContDate, Amount)
VALUES(v_id, TO_DATE(TO_CHAR(v_counter),’MM’),

v_monthly_contrib);
v_total_contrib := v_total_contrib + v_monthly_contrib;
v_counter := v_counter + 1;

END LOOP;
END;

Notice that in the preceding FOR loop example, the value of the index, i, can be

used within the FOR loop. It cannot be used outside of the loop, and its value can-

not be changed anywhere but by the loop itself. The following is invalid code with

the errors that are returned:

1 BEGIN
2 FOR i IN 1..5 LOOP
3 DBMS_OUTPUT.PUT_LINE(‘This has executed ‘
4 ||TO_CHAR(i)||’ time(s)’);
5 i := 4; -- invalid
6 END LOOP;
7 DBMS_OUTPUT.PUT_LINE(‘Now the value of i is ‘
8 ||TO_CHAR(i)); -- invalid
9* END;

4832-8 ch10.F 7/27/01 9:02 AM Page 450

451Chapter 10 ✦ Controlling Program Execution in PL/SQL

SQL> /
BEGIN
*
ERROR at line 1:
ORA-06550: line 5, column 5:
PLS-00363: expression ‘I’ cannot be used as an assignment target
ORA-06550: line 5, column 5:
PL/SQL: Statement ignored
ORA-06550: line 8, column 27:
PLS-00201: identifier ‘I’ must be declared
ORA-06550: line 7, column 3:
PL/SQL: Statement ignored

The first error is in line 5 where the program attempts to change the value of i to

the number 4. In each iteration of the FOR loop, the index is treated like a constant,

so you cannot change its value. The second error is in line 8 where the index of the

loop is used outside of the loop. This fails and returns the same error as when any

undeclared variable is used.

If you need to know what the value of the index was when the loop was exited,
then within the loop, you can assign its value to a local variable that has been
declared. This variable is accessible outside of the loop. Alternatively, you could
just use a basic loop with a local variable as the counter.

Nested loops and labels
✦ Control block flow using nested loops and labels

In programming, the need often arises to nest one loop inside of another. These are

called nested loops, and PL/SQL places no restrictions on the number of levels that

you nest.

An example of when you might use nested loops is a report that loops through the

months to date, totaling the sales per day of the week. The following example cre-

ates such a report of student enrollments by day of the week and by month. To

print the month and day abbreviations in this example, PL/SQL tables are used. In

order to create the month_list and day_list tables, the table type (char4list) must

first be declared as a collection of elements that are four characters in length. Also

note that these lists are initialized in the DECLARE section using the constructor

method that shares the same name as the table type (char4list).

For more information on composite datatypes and retrieving database information
in PL/SQL, consult Chapters 9, “Introduction to PL/SQL,” and 11, “Interacting with
the Database Using PL/SQL.”

Cross-
Reference

Objective

Tip

4832-8 ch10.F 7/27/01 9:02 AM Page 451

452 Part III ✦ Using PL/SQL

DECLARE
v_current_month INTEGER := TO_CHAR(SYSDATE, ‘MM’);
v_enrollments INTEGER;
TYPE char4list IS TABLE OF CHAR(4);
month_list char4list := char4list(‘Jan’, ‘Feb’, ‘Mar’,

‘Apr’, ‘May’, ‘June’, ‘July’, ‘Aug’, ‘Sept’,
‘Oct’, ‘Nov’, ‘Dec’);

day_list char4list := char4list(‘Sun’, ‘Mon’, ‘Tues’,
‘Wed’, ‘Thur’, ‘Fri’, ‘Sat’);

BEGIN

FOR i IN 1..v_current_month LOOP
/* for months up to, and including the current one */

DBMS_OUTPUT.PUT_LINE(month_list(i));
/* print the month name */

FOR j IN 1..7 LOOP /* for each day of the week */

SELECT COUNT(*)
INTO v_enrollments
FROM ClassEnrollment
WHERE TO_CHAR(EnrollmentDate, ‘fmYYYYMMD’) =

TO_CHAR(SYSDATE,’YYYY’)||TO_CHAR(i)||TO_CHAR(j);

/* count the number of enrollments in the current
year, with month and day of the week numbers from the

respective loop indexes,(i) for months and (j) for days*/

DBMS_OUTPUT.PUT_LINE(day_list(j)||
‘ ‘||v_enrollments);

/* print the day of the week and the enrollments */
END LOOP;

END LOOP;
END;

The results of this program, assuming the current month is February and no enroll-

ments were made in the current month, looks something like the following:

Jan
Sun 0
Mon 2
Tues 1
Wed 0
Thur 0
Fri 1
Sat 0
Feb
Sun 0
Mon 0

4832-8 ch10.F 7/27/01 9:02 AM Page 452

453Chapter 10 ✦ Controlling Program Execution in PL/SQL

Tues 0
Wed 0
Thur 0
Fri 0
Sat 0

PL/SQL procedure successfully completed.

Notice that the index for the inner loop was chosen to be j. It is legal to reuse the

same index, but there is no way from inside the inner loop to reference the outer

loop’s index value. The way to avoid this confusion is to label each loop in this

fashion:

<<month_loop>>
FOR i IN 1..v_current_month LOOP

/* for months up to, and including the current one */

DBMS_OUTPUT.PUT_LINE(month_list(i));
/* print the month name */

<<day_loop>>
FOR i IN 1..7 LOOP /* for each day of the week */

SELECT COUNT(*)
INTO v_enrollments
FROM ClassEnrollment
WHERE TO_CHAR(EnrollmentDate, ‘fmYYYYMMD’) =

TO_CHAR(SYSDATE,’YYYY’)||
TO_CHAR(month_loop.i)||TO_CHAR(day_loop.i);

/* count the number of enrollments in the current
year, with month and day of the week numbers from the
respective loop indexes */

DBMS_OUTPUT.PUT_LINE(day_list(day_loop.i)||
‘ ‘||v_enrollments);

/* print the day of the week and the enrollments */
END LOOP day_loop;

END LOOP month_loop;

Labels can be used in several ways. Here the labels distinguish between the two

loops so that prefixes can be added to the index to avoid ambiguity. The index, i,

uses a “dot notation” where you name the loop followed by a period and then the

loop index. When labeling a loop, you simply enclose the label name in a set of the

symbols << and >> on the line immediately before the loop starts.

Optionally, you can include a loop’s label name in the END LOOP statement, just
before the semicolon. While it is not necessary, this can help you distinguish which
END LOOP belongs to which loop when one is nested inside of another.

Tip

4832-8 ch10.F 7/27/01 9:02 AM Page 453

454 Part III ✦ Using PL/SQL

The FOR loop is not the only type of loop that can be nested. Any type of loop can

be nested within any other type. In the following example, the EXIT condition exits

only one level out of the loop:

LOOP
statements;
LOOP
statements;
EXIT WHEN condition;

END LOOP;
statements;
EXIT WHEN condition;

END LOOP;

The GOTO statement

Labels can be added before any executable line of code in a program, and you can branch
to those labels using the GOTO statement. The syntax can often look as confusing as this:

BEGIN
<<section1>>
statement A;
GOTO section3;
<<section2>>
statement B;
<<section3>>
statement C;
IF condition THEN
GOTO section2;

END IF;
END;

You may find this code difficult to follow. Consider the following code that is equivalent,
and then go back and review the previous example; you might have a better chance of
understanding the code.

BEGIN
statement A;
statement C;
WHILE condition LOOP
statement B;
statement C;

END LOOP;
END;

4832-8 ch10.F 7/27/01 9:02 AM Page 454

455Chapter 10 ✦ Controlling Program Execution in PL/SQL

Sometimes there may be a need to leave the outer loop from inside the inner loop.

In order to do so, use labels in the EXIT statement like this:

<<outer>>
LOOP
statements;
<<inner>>
LOOP
statements;
EXIT outer WHEN condition;
EXIT WHEN condition;

END LOOP inner;
statements;
EXIT WHEN condition;

END LOOP outer;

When nesting one loop inside another, the inner loop must be completely
enclosed by the outer. It is illegal to end the outer loop before the inner, and it
results in a compile error.

Overuse of the GOTO statement is considered bad structural programming and is
frowned upon by most developers. Therefore, it is not covered on the exam and is
included here just so that you know about all of the choices available for control-
ling the flow of a PL/SQL program.

Conditional Processing
✦ Construct an IF statement

One of the main advantages of using PL/SQL instead of simply creating SQL*Plus

script files full of SQL statements is that you can decide, within the program,

whether or not a particular line of code should execute. This conditional process-

ing is accomplished using the IF statement.

IF . . . THEN
The simplest IF statement looks like this:

IF condition = TRUE THEN
statement;
.
.
.

END IF;

Objective

Exam Tip

Caution

4832-8 ch10.F 7/27/01 9:02 AM Page 455

456 Part III ✦ Using PL/SQL

In this structure, the statements execute only when the condition evaluates to

TRUE. If it evaluates to FALSE or NULL, the next line executed is the line following

the END IF. Note that the condition can be any variable or expression that returns a

Boolean (TRUE or FALSE). In fact, the “= TRUE” can be left out entirely if the condi-

tion is a complete Boolean expression on its own.

For more information on Boolean conditions, consult Chapter 9, “Introduction to
PL/SQL.”

The following example uses an expression:

IF v_num_confirmed < v_class_max THEN
INSERT INTO ClassEnrollment (ClassID, StudentNumber,

Status, EnrollmentDate, Price)
VALUES (53, 1008, ‘Hold’, SYSDATE, 1500);

END IF;

In this example, if one, or both, of the numeric variables v_num_confirmed and

v_class_max are NULL, then the Boolean condition evaluates to NULL, and the

insert is not executed. The following code is logically equivalent to the preceding:

v_room_left := v_num_confirmed < v_class_max;
IF v_room_left THEN
INSERT INTO ClassEnrollment (ClassID, StudentNumber,

Status, EnrollmentDate, Price)
VALUES (53, 1008, ‘Hold’, SYSDATE, 1500);

END IF;

The only difference between this and the previous example is that the expression is

assigned to a variable, v_room_left, of BOOLEAN datatype. This may not flow as

well as the previous code as far as readability, but if the condition is going to be

checked several times later on in the code, then the PL/SQL engine will have to

evaluate the two variables and compare them for each check. Using the second

method of storing the result of the comparison in a separate variable cuts down on

the amount of work needed for subsequent checks.

In the previous example, the row is inserted into the table if the condition is met,

but what if you want it to perform some other operation when the condition is not

met? You can use the ELSE clause for this purpose.

ELSE
You may use the ELSE clause to perform an alternative set of statements when an IF

condition is not met. The syntax looks like this:

IF condition THEN
statement A; -- Execute if the condition is TRUE

ELSE
statement B; -- Execute if the condition is FALSE or NULL

END IF;

Cross-
Reference

4832-8 ch10.F 7/27/01 9:02 AM Page 456

457Chapter 10 ✦ Controlling Program Execution in PL/SQL

No matter what the Boolean condition is, you know that exactly one of either state-

ment A or B will execute and then the program will continue on to the next line

after the END IF. Here is the student booking example with an alternative added:

v_room_left := v_num_confirmed < v_class_max;
IF v_room_left THEN
INSERT INTO ClassEnrollment (ClassID, StudentNumber,

Status, EnrollmentDate, Price)
VALUES (53, 1008, ‘Hold’, SYSDATE, 1500);

ELSE
DBMS_OUTPUT.PUT_LINE(

‘Sorry, there is no room left in that class’);
END IF;

The next question becomes, “What if you have more than two alternatives for a

condition?” For example, assuming you have three locations to hold courses (New

York, San Francisco, and Toronto) and the tax on the sale of a course depends on

the state or province in which it is held, you can calculate the total cost using

nested IF statements like this:

IF v_state = ‘CA’ THEN
v_cost := v_retailprice * 1.08;

ELSE
IF v_state = ‘NY’ THEN
v_cost := v_retailprice * 1.09;

ELSE
/* It must be ‘ON’ */
v_cost := v_retailprice * 1.15;

END IF;
END IF;

The preceding example works, but it assumes that only these three choices exist,

and it can be a little difficult to follow. Some programming languages have a CASE

statement to cope with more than two alternatives in a decision structure, but

PL/SQL does not. What it does contain is the ELSIF clause.

ELSIF
You can add as many ELSIF conditions as you need to evaluate different conditions

in a decision structure in this manner:

IF first_condition THEN
statement;

ELSIF second_condition THEN
statement;

ELSIF third_condition THEN
Statement;

.

.

.

4832-8 ch10.F 7/27/01 9:02 AM Page 457

458 Part III ✦ Using PL/SQL

ELSE
statement;

END IF;

In this structure, if the first condition is met, then the first statement is executed,

and control passes to the next line after the END IF; but if it evaluates to FALSE or

NULL, then the second condition is tested, and so on. As soon as one condition is

found to be TRUE, the others are not tested — it executes the corresponding code

and then leaves the decision structure. If all of the conditions fail, then the ELSE

statement executes. The ELSE statement is optional, and when it is left out, it is pos-

sible that no statements will be executed within the decision structure.

In Oracle, the ELSIF clause of the decision structure is spelled without an “E” after
the “S”, unlike many other programming languages, which spell it “ELSEIF”.

Here is the course tax calculation, performed with the ELSIF instead of nested IF

statements:

IF v_state = ‘CA’ THEN
v_cost := v_retailprice * 1.08;

ELSIF v_state = ‘NY’ THEN
v_cost := v_retailprice * 1.09;

ELSE
v_cost := v_retailprice * 1.15;

END IF;

Or if you prefer:

IF v_state = ‘CA’ THEN
v_cost := v_retailprice * 1.08;

ELSIF v_state = ‘NY’ THEN
v_cost := v_retailprice * 1.09;

ELSIF v_state = ‘ON’ THEN
v_cost := v_retailprice * 1.15;

END IF;

In the first of these two cases, it is assumed that the only choice other than “NY” or

“CA” is “ON”, so the ELSE can be used. The second example explicitly states each

condition, and so it deals with the NULL condition differently. If v_state has a NULL

value, the first implementation will have v_cost set to NULL, while the second

would not perform any assignment of v_cost.

Many PL/SQL developers run into problems when they overlook the condition
where a variable has a NULL value. This is probably because in most other pro-
gramming languages, BOOLEAN datatypes have only two values — TRUE or FALSE.
Always try to keep the NULL condition in mind and, if need be, test for it with the
IS NULL or IS NOT NULL operator.

Caution

Caution

4832-8 ch10.F 7/27/01 9:02 AM Page 458

459Chapter 10 ✦ Controlling Program Execution in PL/SQL

Nested Blocks
✦ Describe the rules of nested blocks

Wherever you can include an executable statement in a PL/SQL block of code, you

are allowed to include a whole block of code. This nested block, or sub-block, can

have its own declare, executable, and exception sections. There are several reasons

for doing this, but the most common is for error-handling purposes. In the example

in Figure 10-1, nested blocks are used in order to clarify which block of statements

are to be executed in each of the alternatives of an IF statement. The two inner

blocks have been shaded to distinguish them from the outer, or main block.

Figure 10-1: An example of nested blocks

When run, the block outputs the following:

1 is an odd number.
2 is an even number.
3 is an odd number.

DECLARE
 x NUMBER: = 1;
 v_odd_count NUMBER: = 0;
 v_odd_count NUMBER: = 0;
BEGIN
 WHILE x <= 10 LOOP
 IF MOD(x,2) = 0 THEN

Outer Block

Inner Block

ELSE

END IF;
x: =x +1;
END LOOP;
DBMS_OUTPUT.PUT_LINE(
 ' There are ' || TO_CHAR(v_odd_count) ||
 ' odd numbers and ' || TO_CHAR(v_even_count) ||
 ' even numbers between 1 and 10.');
END;

BEGIN
 v_even_count: =v_even_count + 1;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(x) ||
 ' is an even number.');
END;

BEGIN
 v_odd_count: =v_odd_count + 1;
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(x) ||
 ' is an odd number.');
END;

Inner Block

Objective

4832-8 ch10.F 7/27/01 9:02 AM Page 459

460 Part III ✦ Using PL/SQL

4 is an even number.
5 is an odd number.
6 is an even number.
7 is an odd number.
8 is an even number.
9 is an odd number.
10 is an even number.
There are 5 odd numbers and 5 even numbers between 1 and 10.

PL/SQL procedure successfully completed.

When you trace the program execution, you find that the code within the two inner

blocks runs only when the condition is TRUE or FALSE accordingly. This program

does not behave any differently when the BEGIN and END lines of sub-blocks are

left out. In this case, the sub-blocks are merely present for readability. You can

clearly see exactly which set of statements runs when the condition is TRUE and

which when it is FALSE.

When you nest one block inside of another, the inner block is referred to as the

nested block or sub-block. The sub-block may have its own declaresection, but this

means that there must be rules of scope to decide where a variable can be refer-

enced. The basic rule is that an identifier can be referenced anywhere within the

block that it is declared, including any sub-blocks, but not outside of that block.

The example in Figure 10-2 illustrates both legal and illegal references. Note that the

variables x and y that are declared in the outer block can be used in the inner

block, but the inner block variable z cannot be referenced outside of the inner

block.

Figure 10-2: Nested blocks and variable scope

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x: = 10;
 y: = 20;

Both x and y
can be used
anywhere
within the
outer or inner
blocks.

z can only be
referenced in
the inner
block.

Illegal reference
to inner block
variable z.

 x: = 1;
 y: = 2;
 z: = 3;
END;

DECLARE
 z NUMBER;
BEGIN
 x: = 100;
 y: = 200;
 z: = 300;
END;

4832-8 ch10.F 7/27/01 9:02 AM Page 460

461Chapter 10 ✦ Controlling Program Execution in PL/SQL

It is also possible to declare a variable in a nested block that has the same name as

one in the outer block. Then any references to that variable name within the sub-

block are to the inner block “copy” of the variable. You may use labels on the

blocks and then begin the variable names with the appropriate block labels (outer

or inner) in order to distinguish them, much like the nested loop counters seen ear-

lier in this chapter. The best practice is to avoid this duplication of variable names

in nested blocks. If unavoidable, remember that any changes made to outer block

variables inside the sub-block are actually seen by those variables once the sub-

block ends. The result from the example in Figure 10-3 may shed some light on this

idea.

Figure 10-3: Nested blocks and variable assignment

The output line from the example follows:

The value of x is 0 and the value of y is 200

PL/SQL procedure successfully completed.

As stated earlier, it is possible to assign a value to the outer block “copy” of the

variable x, but it involves labeling the blocks. It is best to avoid this situation with

ambiguous variable names in sub-blocks.

Transaction Control
✦ Controlling transactions in PL/SQL

One of the fundamental ideas in the Oracle database is that of a transaction. A trans-

action is a set of one or more SQL statements that together form a consistent

change to the database.

Objective

DECLARE
 x NUMBER: = 0;
 y NUMBER: = 1;
BEGINThis changes

the value of
the outer block
variable y,
which will be
reflected in the
output.

This changes the inner
block variable x. The
outer block variable x
is still set to zero.

DBMS_OUTPUT.PUT_LINE('The value of x is'
 || TO_CHAR(x) ||' and the value of y is' || TO_CHAR(y));
END;

DECLARE
 x NUMBER;
BEGIN
 x: = 100;
 y: = 200;
END;

4832-8 ch10.F 7/27/01 9:02 AM Page 461

462 Part III ✦ Using PL/SQL

One of the classic examples of the use of transactions comes from the world of

banking. One logical unit of work in banking is to transfer funds from one account

to another. This can be represented by an update to one account to subtract the

amount and an update to another to add it. Another table probably records all of

the transfers, so a new row must be added to that table as well. This means that the

simple transfer has now become two UPDATE statements and one INSERT. The idea

of using transactions is that these three statements either should all occur or none

should occur. If something goes wrong and the server is unable to perform all three

statements, then what has already been done must be “backed out” automatically.

The SQL statement COMMIT is used to make changes permanent, while ROLLBACK

is used to “back out,” or reverse, any uncommitted changes. Both of these state-

ments, along with the SAVEPOINT statement, are allowed in PL/SQL, within proce-

dures, functions, and anonymous blocks.

For information on the use of the COMMIT, ROLLBACK, and SAVEPOINT state-
ments, consult Chapter 5, “Adding, Updating, and Deleting Data.”

A transaction starts when the first SQL statement is issued within a user session

and ends when the COMMIT or ROLLBACK statement is issued, either implicitly or

explicitly. Implicit commits are done by all DDL and DCL commands and normal ter-

mination of a SQL*Plus session, while implicit rollbacks usually occur when an

abnormal termination of the session occurs. Otherwise, you must explicitly tell the

server to make the changes permanent or to throw away the changes. This is true

with statements entered from a command-line environment like SQL*Plus, and it is

true of PL/SQL blocks.

Beginner PL/SQL programmers often assume that the statements made inside a
block of code are automatically committed when it is executed. This is not neces-
sarily true. The statements made inside the block can still be committed or rolled
back after the block runs in SQL*Plus, while a Pro*C program must commit work —
otherwise, it is rolled back.

Here is an example that illustrates an uncommitted change being rolled back from

outside the block in SQL*Plus:

SQL> BEGIN
2 INSERT INTO Courses(CourseNumber, CourseName,
3 RetailPrice)
4 VALUES(500, ‘Java Programming’, 2500);
5 END;
6 /

PL/SQL procedure successfully completed.

SQL> SELECT CourseNumber, CourseName, RetailPrice
2 FROM Courses;

Caution

Cross-
Reference

4832-8 ch10.F 7/27/01 9:02 AM Page 462

463Chapter 10 ✦ Controlling Program Execution in PL/SQL

COURSENUMBER COURSENAME RETAILPRICE
------------ ----------------------------------- -----------

100 Basic SQL 2000
110 Advanced SQL 2000
201 Performance Tuning your Database 4000
200 Database Performance Basics 4000
210 Database Administration 4500
220 Backing up your database 3000
300 Basic PL/SQL 2500
310 Advanced PL/SQL 2000
320 Using your PL/SQLskills 1750
500 Java Programming 2500

10 rows selected.

SQL> ROLLBACK;

Rollback complete.

SQL> SELECT CourseNumber, CourseName, RetailPrice
2 FROM Courses;

COURSENUMBER COURSENAME RETAILPRICE
------------ ----------------------------------- -----------

100 Basic SQL 2000
110 Advanced SQL 2000
201 Performance Tuning your Database 4000
200 Database Performance Basics 4000
210 Database Administration 4500
220 Backing up your database 3000
300 Basic PL/SQL 2500
310 Advanced PL/SQL 2000
320 Using your PL/SQLskills 1750

9 rows selected.

When you make changes from within a PL/SQL block of code, you usually want to

have them committed or rolled back from within the same block. The following

example is a SQL*Plus script file with a PL/SQL block that takes a partial course

name and new price for the course as input, then makes a decision to either com-

mit or rollback an update, depending on how many rows are actually updated. It

makes use of the implicit cursor attribute %ROWCOUNT, which returns the number

of rows affected by the most recent SQL statement. The implicit cursor attributes

are covered in Chapter 11.

ACCEPT coursename PROMPT “Enter the partial course name: “
ACCEPT newprice NUMBER PROMPT “Enter the new price: “
BEGIN
UPDATE Courses
SET RetailPrice = &newprice

4832-8 ch10.F 7/27/01 9:02 AM Page 463

464 Part III ✦ Using PL/SQL

WHERE CourseName LIKE ‘%&coursename%’;
IF SQL%ROWCOUNT > 1 THEN
ROLLBACK;
DBMS_OUTPUT.PUT_LINE(
‘More than one course includes ‘||’&coursename’);

ELSIF SQL%ROWCOUNT = 1 THEN
COMMIT;
DBMS_OUTPUT.PUT_LINE(
‘The price has been changed’);

ELSE
DBMS_OUTPUT.PUT_LINE(
‘No course includes ‘||’&coursename’);

END IF;
END;
/
SELECT CourseNumber, CourseName, RetailPrice
FROM Courses
/

If this SQL*Plus script is named ChangePrice, then here are a couple of executions

of it:

SQL> start ChangePrice
Enter the partial course name: Tuning
Enter the new price: 3500
The price has been changed

PL/SQL procedure successfully completed.

COURSENUMBER COURSENAME RETAILPRICE
------------ ----------------------------------- -----------

100 Basic SQL 2000
110 Advanced SQL 2000
201 Performance Tuning your Database 3500
200 Database Performance Basics 4000
210 Database Administration 4500
220 Backing up your database 3000
300 Basic PL/SQL 2500
310 Advanced PL/SQL 2000
320 Using your PL/SQLskills 1750

9 rows selected.

SQL> start ChangePrice
Enter the partial course name: PL/SQL
Enter the new price: 1500
More than one course includes PL/SQL

PL/SQL procedure successfully completed.

4832-8 ch10.F 7/27/01 9:02 AM Page 464

465Chapter 10 ✦ Controlling Program Execution in PL/SQL

COURSENUMBER COURSENAME RETAILPRICE
------------ ----------------------------------- -----------

100 Basic SQL 2000
110 Advanced SQL 2000
201 Performance Tuning your Database 3500
200 Database Performance Basics 4000
210 Database Administration 4500
220 Backing up your database 3000
300 Basic PL/SQL 2500
310 Advanced PL/SQL 2000
320 Using your PL/SQLskills 1750

9 rows selected.

SQL> start ChangePrice
Enter the partial course name: DBA
Enter the new price: 4000
No course includes DBA

PL/SQL procedure successfully completed.

COURSENUMBER COURSENAME RETAILPRICE
------------ ----------------------------------- -----------

100 Basic SQL 2000
110 Advanced SQL 2000
201 Performance Tuning your Database 3500
200 Database Performance Basics 4000
210 Database Administration 4500
220 Backing up your database 3000
300 Basic PL/SQL 2500
310 Advanced PL/SQL 2000
320 Using your PL/SQLskills 1750

9 rows selected.

Note that the first test has only one course name that includes the word “Tuning”,

so it updates the RetailPrice from $4,000 to $3,500 and commits the change. In the

second test, three course names contain “PL/SQL”, so their prices appear

unchanged. In fact, the prices were updated, then rolled back. In the final example,

no course name contains “DBA”, so the update affects no rows and is neither com-

mitted nor rolled back.

Finally, the following example uses the SAVEPOINT statement to include an interme-

diate point in the transaction that can be rolled back to, without losing all of the

changes before that point.

BEGIN
UPDATE ...
INSERT ...
DELETE ...
SAVEPOINT no_update;

4832-8 ch10.F 7/27/01 9:02 AM Page 465

466 Part III ✦ Using PL/SQL

/* The next line could update more than one row, in which
caseit should be rolled back, but the previous changes should

not be */

UPDATE ...
IF SQL%ROWCOUNT > 1 THEN
ROLLBACK TO no_update;

END IF;
/* now if the update affected more than one row, it is as if

that
update was never done, so the first three SQL statements
can still be either committed or rolled back */

.

.

.
END;

Keep in mind that if you reuse the same savepoint name, it replaces (or erases)
any earlier savepoints with the same name.

Key Point Summary
In PL/SQL, as in most programming languages, you need to be able to control the

flow of statements. Some statements must run more than once, so you put them

inside a loop. Other statements need not run at all, so you conditionally execute

them in an IF statement.

✦ PL/SQL contains three different loop structures: the basic loop, FOR loop, and

WHILE loop. The basic loop must contain an EXIT statement; otherwise, it

continues to loop indefinitely. This EXIT is often conditional on the value of a

variable that is incremented each time through the loop. A shortcut for using

EXIT is to use the FOR loop, which has a built-in counter. The WHILE loop also

has a built-in conditional termination, and the condition is checked at the

beginning of each iteration of the loop.

✦ The IF statement in PL/SQL has several forms. The decision structure can be a

simple decision to execute or skip a group of statements, based on a Boolean

condition, or the structure may choose from several alternatives. The ELSE

clause is provided to group the statements that are to be run when the IF con-

dition is not met, while the ELSIF clause can be used to add additional condi-

tions to check.

✦ Both loops and decision structures in PL/SQL can be nested within other

loops or decision structures. This nesting must not be overlapping: When

one structure begins and then another one is nested within the outer, the

inner structure must end before the outer. In fact, the END LOOP statement

always ends the innermost loop, and an END IF always ends the innermost

IF statement.

Tip

4832-8 ch10.F 7/27/01 9:02 AM Page 466

467Chapter 10 ✦ Controlling Program Execution in PL/SQL

✦ When one loop is nested within another and the inner loop contains an EXIT

statement, the default functionality is to exit only the innermost loop. When

you want to exit the outer loop, you must give the loops labels and specify the

outer loop label in the EXIT statement.

✦ In the same way that one loop can be nested inside another, PL/SQL blocks

can be nested. Each block can contain its own declare, executable, and excep-

tion sections. The inner block can reference outer block variables, but when it

has a variable declared with the same name, the default functionality is to use

the inner block variable. This can be overridden by qualifying variable names

with the label associated with the outer block.

✦ The Oracle server notion of transactions still exists in PL/SQL, and one trans-

action can span across more than one PL/SQL block. Just because a block

ends, it does not necessarily mean that the changes in the block have been

committed. The SQL transaction control statements COMMIT, ROLLBACK, and

SAVEPOINT are all valid statements in PL/SQL.

✦ ✦ ✦

4832-8 ch10.F 7/27/01 9:02 AM Page 467

STUDY GUIDE

The following questions can help you assess your understanding of the different

loops and conditional processing structures available in PL/SQL. They also test

your knowledge of the concepts of nesting and transaction controls.

Assessment Questions
1. Which of the following is not a valid structure in PL/SQL? (Choose the best

answer.)

A. IF ... THEN ... ELSE ... END IF;

B. LOOP ... END LOOP;

C. CASE ... WHEN ... THEN ... END CASE;

D. WHILE ... LOOP ... END LOOP;

E. FOR i IN lower .. upper LOOP ... END LOOP;

2. Which of the following statements about the FOR loop in PL/SQL are true?

(Choose three responses.)

A. The loop has an index that is implicitly declared.

B. The statements within the loop must execute at least once.

C. The index can count by a value other than 1 when the STEP option is

added.

D. The index of the loop is available to be referenced only inside the loop.

E. The index value cannot be changed within the loop using an assignment

statement.

3. Evaluate this PL/SQL block:

DELCARE
v_over_booked BOOLEAN;

BEGIN
INSERT INTO ClassEnrollment(ClassID, StudentNumber,

Status, EnrollmentDate, Price)
VALUES(51, 1001, ‘Confirmed’, SYSDATE, 4000);
IF v_over_booked THEN
ROLLBACK;

ELSE
COMMIT;

END IF;
END;

468 Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 468

469

After this block executes, what is true of the change to the database?

(Choose the best answer.)

A. The row is not visible in the table because it has not yet been

committed.

B. The row is not visible in the table because it was inserted and then the

change was rolled back.

C. The change is visible in the table but not yet committed.

D. The change is visible in the table and committed.

4. Consider the following structure:

IF x > 1000 THEN
Statement 1;

ELSIF x > 500 THEN
Statement 2;

ELSIF x BETWEEN 1 AND 1000 THEN
Statement 3;

ELSE
Statement 4;

END IF;

If the value of x is 750, then which of the numbered statement(s) will execute?

(Choose the best answer.)

A. Statement 4 only.

B. Statement 2 only.

C. Statements 2 and 3.

D. None of the above.

5. Evaluate this PL/SQL block:

1 DECLARE
2 v_counter INTEGER := 1;
3 BEGIN
4 WHILE v_counter <= 10 LOOP
5 IF MOD(v_counter, 2) = 0
6 THEN DBMS_OUTPUT.PUT_LINE(
7 TO_CHAR(v_counter)||’ is an even number.’);
8 v_counter = v_counter + 1;
9 END WHILE;
10 DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_counter));
11 END;

469Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 469

This block of code has several syntax errors. Choose all that apply:

A. Line 4 must end with a semicolon (;).

B. The IF statement is not allowed within a WHILE loop.

C. Line 9 should be END LOOP;

D. There must be an END IF before the loop ends.

E. The variable v_counter cannot be used outside of the WHILE LOOP.

6. Given this PL/SQL block:

DECLARE
v_counter INTEGER := 1;
v_upper INTEGER := 10;

BEGIN
WHILE v_counter <= v_upper LOOP

INSERT INTO test(results)
VALUES(v_counter);
IF v_counter = 5 THEN
v_upper := 7;
END IF;
v_counter := v_counter + 2;

END LOOP;
END;

How many rows will be inserted into the test table? (Choose the best answer.)

A. 10

B. 7

C. 5

D. 3

E. 4

7. Evaluate this PL/SQL block:

BEGIN
INSERT INTO Courses(CourseNumber, CourseName,

RetailPrice)
VALUES(600,’Introduction to Unix’, 900);
SAVEPOINT itu;

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(610,’Shell Programming’, 1050);
SAVEPOINT shell;

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(620,’System Administration I’, 2000);
SAVEPOINT sysadmin;

470 Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 470

471

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(630,’System Administration II’, 2250);

ROLLBACK TO shell;
COMMIT;

END;

Which of the following new CourseNumbers will be committed? (Choose all

that apply.)

A. 600

B. 610

C. 620

D. 630

8. Given this PL/SQL block:

DECLARE
v_lower INTEGER := 1;
v_upper INTEGER := 100;

BEGIN
FOR i IN v_lower .. v_upper LOOP

INSERT INTO test(results)
VALUES(i);
IF i = 50 THEN
v_upper := 70;

END IF;
END LOOP;

END;

How many rows will be inserted into the test table? (Choose the best answer.)

A. 50

B. 70

C. 0

D. 100

E. 1

9. Evaluate this PL/SQL block:

BEGIN
INSERT INTO Courses(CourseNumber, CourseName,

RetailPrice)
VALUES(600,’Introduction to Unix’, 900);
SAVEPOINT itu;

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(610,’Shell Programming’, 1050);
SAVEPOINT shell;
ROLLBACK;

471Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 471

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(620,’System Administration I’, 2000);
SAVEPOINT sysadmin;

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(630,’System Administration II’, 2250);
SAVEPOINT sysadmin;
ROLLBACK TO sysadmin;
COMMIT;

END;

Which of the following new CourseNumbers will be committed? (Choose all

that apply.)

A. 600

B. 610

C. 620

D. 630

10. Evaluate this PL/SQL loop:

BEGIN
FOR i IN 1..12 LOOP -- month loop
FOR j IN 1..10 LOOP
EXIT WHEN TO_CHAR(SYSDATE,’MM’) = i;
total_month_ord(i, j); -- procedure call

END LOOP;
END LOOP;

END;

Assume that total_month_ord is a procedure that takes two arguments, month

number and order number (and order numbers start every month at 1). This

block is supposed to call the procedure for the first ten orders of each month

up to, and including, the current month. What, if anything, can be changed to

make the block accomplish this task? (Choose 1 or more responses.)

A. Change the EXIT WHEN condition from i to i + 1.

B. Move the EXIT WHEN statement after the inner loop ends.

C. Add a label to the outer loop and then exit the outer loop using the label.

D. Both A and C.

E. Change nothing; it already works.

472 Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 472

473

Scenarios
1. You are an application developer for Luxury Cruise Lines, Inc. You have to

build a booking application that takes the following information from a travel

agent: passenger information, cruise number, cruise date, and cabin prefer-

ence. When the booking can be made, a deposit is taken from the passenger,

the spot is held, and the travel agent is paid a commission. You have a num-

ber of PL/SQL procedures that accomplish various pieces of the

functionality — for example, CreatePassenger, CreateBooking, TakeDeposit,

and PayCommission. How can you set up this application to ensure that you

complete all of these steps only when there is room on the particular cruise

that the passenger wants?

2. Your company purchased an application that runs with an Oracle database.

From time to time, you are called upon to create ad hoc queries in SQL*Plus.

Now your manager wants you to start building applications for entering and

retrieving data, still with a SQL*Plus interface. Given that SQL has no support

for loops and conditional processing, explain why you might want to build at

least part of the application in PL/SQL.

Lab Exercise
Lab 10–1 Using loops and conditional processing to print the

multiples of an integer
1. Sign on to SQL*Plus as user Student with password oracle.

2. Create a SQL*Plus script file called PrintMultiples. Create three ACCEPT state-

ments, to retrieve integers named x, y, and n. This program is going to print to

the screen the first n multiples of the number x that are greater than the

value y.

3. Create a PL/SQL block of code with a declare section, which declares a

counter called v_mult_count. Initialize v_mult_count to be 1. Also, declare a

second integer called v_test_num and initialize it to be y+1. The program tests

all numbers greater than y to see if they are divisible by the integer x.

4. In the executable section of the block, make a WHILE loop that loops n times.

Use the variable v_mult_count as the counter.

5. Within the loop, if the value of the variable v_test_num is divisible by x, print

its value to the screen using DBMS_OUTPUT.PUT_LINE and then increment

the variable v_mult_count. Make sure that you have set ON the SQL*Plus

SERVEROUTPUT environment variable in the current session. Hint: use the

MOD function to determine divisibility.

473Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 473

6. Be sure to increment the variable v_test_num before ending the loop.

7. Save your script file and then execute it using the START command in

SQL*Plus. Try a variety of values, including zero and negative values for the

parameters.

Answers to Chapter Questions

Chapter Pre-Test
1. There are three types of loops in PL/SQL — the basic loop that starts LOOP ...

END LOOP, the FOR loop, and the WHILE loop.

2. A FOR loop is used when you have a set number of iterations to perform.

Because it has a built-in index and boundary checking, it is much simpler to

use in those situations.

3. The default functionality of the EXIT statement is to exit only the innermost

loop in which it is contained. However, if a label is given in the EXIT state-

ment, it exits all loops up to and including the level of the loop that has that

label.

4. Oracle places no limit on the number of different conditions that can be

tested with the IF statement. Each condition must be a Boolean and can be a

complex expression involving AND, OR, and NOT. There can also be as many

alternative conditions as you want by including ELSIF clauses.

5. Labels are used to identify an executable line of code, loop, or even a PL/SQL

block. When they are used to identify a line of code, you can unconditionally

jump to that line using the GOTO statement. When used to identify a loop,

they can be included in the EXIT condition to specify which loop to exit.

Finally, when used to identify a block, they can be used to qualify variable

names that are reused in a sub-block. Labels can also be used just for read-

ability — name the loop, and then label the corresponding END LOOP.

6. You can nest one block inside another wherever an executable line of code is

allowed. This is done for several reasons, including readability and error han-

dling. The readability is enhanced because you can group several lines of

code together with a BEGIN and END around them to show that they execute

together. In error handling, a sub-block can have its own exception section

that tailors error handling to the lines of code only within the sub-block.

7. The COMMIT, ROLLBACK, and SAVEPOINT statements, along with the SET

TRANSACTION statement, are allowed within a PL/SQL block and are used to

control transactions.

474 Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 474

475

8. After a transaction is started by an SQL statement, you can include the exe-

cutable line:

SAVEPOINT name;

Where name is the name of the intermediate point. Then other Data

Manipulation Language (DML) statements can occur and if the following state-

ment is issued:

ROLLBACK TO name;

then only the DML statements that have occurred after the savepoint was

issued are rolled back.

9. The ELSIF clause checks an alternative condition to the one in the IF condition

THEN ... END IF; If the preceding condition is not TRUE, it goes to the first

ELSIF and tests that condition, which has its own set of statements to run if

TRUE. There can be as many ELSIF clauses as you need to test all of the possi-

ble conditions, but at most, one of them actually runs its corresponding state-

ments. The first condition that returns TRUE runs its statements, and then

control skips to the next line after the END IF.

10. The WHILE loop has a built-in exit condition, while the basic loop does not.

The latter executes the statements only inside when the condition evaluates

to TRUE. Therefore, the basic loop may not even enter the loop if the condi-

tion is not initially met. The basic loop always executes at least once, but the

first statement inside the loop could be an EXIT statement that checks a con-

dition. When this is the case, the two loops are logically equivalent but with a

different syntax.

Assessment Questions
1. C — There is no case structure in PL/SQL. If you want to test multiple cases,

use an IF statement with one or more ELSIF clauses. Refer to the “Conditional

Processing” section, earlier in this chapter.

2. A, D, E — The FOR loop implicitly declares an index that increments by 1 or –1

each iteration. You cannot make it step by another value, and you cannot

change its value. When the loop ends, the index is no longer available. The

statements within the loop do not execute even once when the lower bound is

initially higher than the upper bound. Refer to the “FOR Loop” section, earlier

in this chapter.

3. D — Because the Boolean variable is not given a value, it has a NULL value.

After the row is inserted, the condition of the IF statement is not be met, so

the ELSE statement (COMMIT) is executed. Then the change is committed and

is visible to everyone.

4. B — With a value of 750, the first condition is not met, so it continues on to the

second, which is met. Therefore, statement 2 runs, and then control goes to

the next line of code after the END IF.

475Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 475

5. C, D — IF statements can be nested inside loops, but they must end before the

loop does. The loop ends with the END LOOP; statement, but no semicolon is

used at the beginning of the loop. Only the FOR loop implicitly declares an

index that can be referenced only inside the loop — in this example, the scope

of v_counter is the entire block in which it is declared. Refer to the “WHILE

Loop” and “Conditional Processing” sections, earlier in this chapter.

6. E — In the WHILE loop, the exit condition is checked at the beginning of every

iteration. During each iteration, the counter is incremented by 2, so instead of

running ten times, the loop runs five times, except that the upper bound

changes on the third iteration (when v_counter = 5) to 7. Hence, the values

inserted are 1, 3, 5, and 7. Refer to the “Loops” section, earlier in this chapter.

7. A, B — The ROLLBACK TO statement allows a transaction to remove some,

but not all, changes made by sending it back to a marker. In this case, it rolls

back to the point just after the first two INSERT statements and then commits

these two. Refer to the “Transaction Control” section, earlier in this chapter.

8. D — The FOR loop takes the value of the bounds when it first encounters the

loop and does not reflect any changes in them. Therefore, this loop runs from

1 to 100 because the line that tries to assign a value to the upper bound does

not affect the loop. Refer to the “FOR Loop” section, earlier in this chapter.

9. C, D — With the first ROLLBACK, the first two rows inserted are taken out.

Then the second ROLLBACK rolls back only to the last savepoint named

“sysadmin”. In fact, this rolls back no inserts because the same savepoint

name is reused in the line immediately before. Refer to the “Transaction

Control” section, earlier in this chapter.

10. B, D — The way the block currently is written, the inner loop gets exited when

it is the current month, so all months except the current one have orders pro-

cessed. By moving the EXIT WHEN to after the inner loop ends, the outer loop

exits when the current month’s orders have been processed. An alternative to

this block is to leave the EXIT WHEN in the loop but exit before it processes

the month following the current one’s orders. Hence the i + 1. However, this

change alone does not solve the problem, because you need the program to

exit the outer loop at that point. Thus, the label is necessary on the outer

loop. Refer to the section “Nested Loops and Labels,” earlier in this chapter.

Scenarios
1. Because this is an “all or nothing” kind of situation, it should be done in one

transaction. Remember that one transaction can span across more than one

PL/SQL block, so it can be started in the main block, which calls all of the pro-

cedures mentioned. That way, you can test the success of each of the steps,

and when something goes wrong (for example, no room is left on the cruise),

then a ROLLBACK occurs, and the passenger information is never entered,

and so on.

476 Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 476

477

2. Without using PL/SQL, all looping and decision making must be made by the

user of the application. For example, if a decision is based on the results of a

query, then the SQL*Plus application displays the results of the SELECT state-

ment on the screen, and the user has to initiate the next move, based on his

or her decision. In a PL/SQL program, the results of the query are held in vari-

ables, and the decision logic can be included in IF statements. Also, looping

enables you to perform a set of tasks multiple times, instead of forcing the

user to run a script a number of times.

Lab Exercise

Lab 10–1 Using loops and conditional processing to print the
multiples of an integer

The entire script file should look something like this:

SET SERVEROUTPUT ON
ACCEPT x NUMBER PROMPT “Enter any positive integer: “
ACCEPT y NUMBER PROMPT “Show multiples greater than: “
ACCEPT n NUMBER PROMPT “Number of multiples to print: “
DECLARE
v_mult_count INTEGER := 1;
v_test_num INTEGER := &y + 1;

BEGIN
WHILE v_mult_count <= &n LOOP
IF MOD(v_test_num, &x) = 0 THEN
DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_test_num)

||’ is a multiple of ‘||TO_CHAR(&x));
v_mult_count := v_mult_count + 1;

END IF;
v_test_num := v_test_num + 1;

END LOOP;
END;
/

Remember that in order for printing in SQL*Plus, the environment variable SERVER-

OUTPUT must be set ON. Here is a sample run:

SQL> START PrintMultiples
Enter any positive integer: 7
Show multiples greater than: 40
Enter the number of multiples to print: 5
42 is a multiple of 7
49 is a multiple of 7
56 is a multiple of 7
63 is a multiple of 7
70 is a multiple of 7

PL/SQL procedure successfully completed.

477Chapter 10 ✦ Study Guide

4832-8 ch10.F 7/27/01 9:02 AM Page 477

4832-8 ch10.F 7/27/01 9:02 AM Page 478

Interacting with the
Database Using
PL/SQL

EXAM OBJECTIVES

✦ Interacting with the Oracle Server

• Write a successful SELECT statement in PL/SQL

• Write DML statements in PL/SQL

• Determine the outcome of SQL DML statements

✦ Working with Composite Datatypes

• Create user-defined PL/SQL records

• Create a PL/SQL table

• Create a PL/SQL table of records

• Describe the difference between records, tables, and tables of

records

✦ Writing Explicit Cursors

• Distinguish between an implicit and an explicit cursor

• Use a PL/SQL record variable

• Write a cursor FOR loop

✦ Advanced Explicit Cursor Concepts

• Write a cursor that uses parameters

• Determine when a FOR UPDATE clause in a cursor is required

• Determine when to use the WHERE CURRENT OF clause

• Write a cursor that uses a subquery

1111C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch11.F 7/27/01 9:02 AM Page 479

480 Part III ✦ Using PL/SQL

CHAPTER PRE-TEST
1. What clause must be added to the SELECT statement in PL/SQL to

specify where to store the values returned?

2. Which cursor attributes enable you to check whether an UPDATE
statement updated any records?

3. What do you use to select multiple records from the database?

4. What is the effect of adding the FOR UPDATE clause to a cursor
declaration?

5. Which cursor attributes can you use to determine if all rows have
been fetched from an explicit cursor?

6. What is a PL/SQL table?

7. What is a cursor parameter?

8. What are the advantages to using a cursor FOR loop?

9. In what section of the PL/SQL program do you write the SELECT
statement that populates an explicit cursor?

10. Do you get an error if a SELECT statement that is not part of an
explicit cursor returns no rows?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch11.F 7/27/01 9:02 AM Page 480

481Chapter 11 ✦ Interacting with the Database Using PL/SQL

PL/SQL is a programming language designed to interact with the Oracle

database. This chapter explains how to access information stored in the

database from within a PL/SQL program. This chapter introduces the SELECT INTO

statement, which enables you to select a single row of data from a database table. It

also introduces explicit cursors, which you can use to select multiple rows of data

from the database. Explicit cursors have additional features such as the cursor FOR

loop, the FOR UPDATE clause, the WHERE CURRENT OF clause, and cursor parame-

ters. This chapter also covers using the INSERT, UPDATE, and DELETE statements

to modify the data stored in database tables.

When accessing the database in a program, you often want to retrieve multiple

rows or multiple columns from the database. To simplify storage of multiple values,

this chapter also explains how to use the composite datatypes records, PL/SQL

tables, PL/SQL tables of records, and VARRAYs.

SQL Statements
The PL/SQL language is used extensively to access the data contained in the

database. SELECT, INSERT, UPDATE, and DELETE statements can be written directly

into PL/SQL programs. PL/SQL requires a slightly different syntax from SQL*Plus for

some SQL commands and may return errors from SQL statements that would run

successfully in SQL*Plus. It is important to understand these differences so you can

successfully use SQL statements in your PL/SQL programs.

You can issue SELECT statements and Data Manipulation Language (DML) state-

ments such as INSERT, UPDATE, and DELETE from PL/SQL code. You can also issue

SAVEPOINT, COMMIT, and ROLLBACK commands from PL/SQL code. You cannot

issue Data Definition Language (DDL) statements such as CREATE and DROP or

Data Control Language (DCL) statements such as GRANT and REVOKE directly from

PL/SQL code without using either the EXECUTE IMMEDIATE statement or the

DBMS_SQL package.

SELECT
SELECT statements can be issued as implicit or explicit cursors. This section cov-

ers the SELECT statement as an implicit cursor. Later in this chapter, the section

“Explicit Cursors” covers using the SELECT statement as an explicit cursor. When

you use a SELECT statement as an implicit cursor, Oracle expects exactly one row

to be returned by the SELECT statment. If the SELECT statement returns more than

one row, or no rows, Oracle raises an exception. When programming with implicit

cursors, you should use the primary key whenever possible in the WHERE clause to

reduce the chance of returning multiple rows and raising an exception. If you wish

to return multiple rows from a SELECT statement, then you should use an explicit

cursor.

4832-8 ch11.F 7/27/01 9:02 AM Page 481

482 Part III ✦ Using PL/SQL

You can write simple or complex SELECT statements in your PL/SQL code. You

must add an INTO clause to your SELECT statement to accept the values returned

by the SELECT. The INTO is placed between the SELECT and the FROM clause. The

INTO clause must list variables to hold each of the values returned by the SELECT

statement. The variables listed in the INTO clause can be PL/SQL variables declared

in the DECLARE section or bind variables.

ACCEPT p_student NUMBER PROMPT “Enter Student Number: “
DECLARE

v_lastName VARCHAR2(30);
v_firstName VARCHAR2(30);

BEGIN
SELECT FirstName, LastName
INTO v_firstName, v_lastName
FROM students

WHERE studentNumber = &p_student;

DBMS_OUTPUT.PUT_LINE(‘Student Name is ‘||
v_firstname||’ ‘||v_lastname);

END;
/

This program produces the following output:

Enter Student Number: 1000
Student Name is John Smith

Because the variables being declared are used to store values derived from
database columns, you may want to declare the variables using %TYPE. By using
%TYPE, you reduce the chance of having to make changes to your code when
changes are made to the structure of the database.

You can write SELECT statements using table joins, single-row functions, group

functions, and subqueries in PL/SQL programs as long as you add the INTO clause

with variables that can hold the values returned by SELECT.

There are some restrictions on what you can do with SELECT statements in PL/SQL

code.

The values returned by the SELECT statement are being written to variables that

can hold only one value; therefore, Oracle returns the exception,

TOO_MANY_ROWS, if your SELECT statement returns more than one row. When

you want to fetch more than one row from the database table, you must use explicit

cursors, which are covered later in this chapter.

ORDER BY clauses may not be used in SELECT statements within PL/SQL because

you are not allowed to return multiple rows from a SELECT statement. SELECT

statements must return exactly one row; Oracle returns the exception

Tip

4832-8 ch11.F 7/27/01 9:02 AM Page 482

483Chapter 11 ✦ Interacting with the Database Using PL/SQL

NO_DATA_FOUND when a SELECT statement returns no rows. You learn how to han-

dle the NO_DATA_FOUND and TOO_MANY_ROWS exceptions in Chapter 12,

“Handling Errors and Exceptions in PL/SQL.”

DECLARE
v_lastName students.lastname%TYPE;
v_firstName students.firstname%TYPE;

BEGIN
SELECT FirstName, LastName
INTO v_firstName, v_lastName
FROM students

WHERE studentNumber = 99999;

DBMS_OUTPUT.PUT_LINE(‘Student Name is ‘||
v_firstname||’ ‘||v_lastname);

END;
/

This program returns the error message:

ORA-01403: no data found

Oracle returns an error when a SELECT statement returns more than one row.

DECLARE
v_lastName students.lastname%TYPE;
v_firstName students.firstname%TYPE;

BEGIN
SELECT FirstName, LastName
INTO v_firstName, v_lastName
FROM students;

DBMS_OUTPUT.PUT_LINE(‘Student Name is ‘||
v_firstname||’ ‘||v_lastname);

END;
/

This program returns the error message:

ORA-01422: exact fetch returns more than requested number of
rows

When executing SQL statements within PL/SQL code, it is vital that your variable

names not be the same as the database column names. Within a WHERE clause,

Oracle cannot distinguish between variable names and column names. If a variable

used in a SQL statement has the same name as a database column, Oracle assumes

that you are referring to the database column of the same name. This can cause

exceptions and unexpected results.

4832-8 ch11.F 7/27/01 9:02 AM Page 483

484 Part III ✦ Using PL/SQL

DECLARE
lastname students.lastname%TYPE;
firstname students.firstname%TYPE;
studentnumber students.studentnumber%TYPE := 1000;

BEGIN
SELECT firstname, lastname
INTO firstname, v_lastname
FROM students

WHERE studentnumber = studentnumber;

DBMS_OUTPUT.PUT_LINE(‘Student Name is ‘||
firstname||’ ‘||lastname);

END;
/

This program returns the error message:

ORA-01422: exact fetch returns more than requested number of
rows

INSERT
The INSERT statement can be used in a PL/SQL program to add rows to a table. The

syntax of the INSERT statement is the same in PL/SQL as it is in SQL*Plus. Any rows

inserted using the INSERT statement in a PL/SQL program are not permanent until a

COMMIT statement is issued. You must include COMMIT and ROLLBACK state-

ments directly in your PL/SQL code. Oracle does not perform an automatic commit

or rollback when a PL/SQL program finishes execution, so it is a good programming

habit to include COMMIT and ROLLBACK statements in your code. You should

COMMIT or ROLLBACK at the end of each transaction. If you omit the COMMIT and

ROLLBACK statements, the status of your transaction depends on the actions taken

after the program is completed. If you issue a DCL command, DDL command, or

COMMIT statement after the program completes, the transaction is saved. If you

issue a ROLLBACK, the transaction is rolled back.

ACCEPT p_coursenumber NUMBER PROMPT “Enter course number: “
ACCEPT p_name CHAR PROMPT “Enter course name: “
ACCEPT p_price NUMBER PROMPT “Enter price: “
ACCEPT p_description CHAR PROMPT “Enter description: “

BEGIN
INSERT INTO courses (coursenumber, coursename,
replacescourse, retailprice, description)
VALUES (&p_coursenumber, ‘&p_name’,
null , &p_price, ‘&p_description’);

COMMIT;
END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 484

485Chapter 11 ✦ Interacting with the Database Using PL/SQL

This program produces the following output:

Enter course number: 12345
Enter course name: mycourse
Enter price: 500
Enter description: mydescription

SQL> SELECT *
2 FROM courses
3 WHERE coursenumber = 12345;

COURSENUMBER COURSENAME REPLACESCOURSE RETAILPRICE
------------ -------------------- -------------- -----------
DESCRIPTION
--

12345 mycourse 500
mydescription

You do not have to specify the list of columns in an INSERT statement if you pro-
vide values for all columns in the table. When you list the columns in your INSERT
statement, you reduce code maintenance. By listing the columns, you may not
have to change your code when a column is added to the table or the order of the
columns on the table changes.

You can use variables such as SYSDATE and USER in your INSERT statements.

BEGIN
INSERT INTO classenrollment (classid, studentNumber,
status, enrollmentdate, price, grade, comments)
VALUES (53, 1002, ‘Hold’, SYSDATE, 1500, null, null);

END;
/

SQL> SELECT *
2 FROM classenrollment
3 WHERE classid = 53
4 AND studentnumber = 1002;

CLASSID STUDENTNUMBER STATUS ENROLLMENTDATE
---------- ------------- ---------- -----------------------
PRICE GRAD COMMENTS
---------- ---- --

53 1002 Hold 12-FEB-01
1500

Sequences can also be accessed directly from an INSERT statement in a PL/SQL pro-

gram. The following example uses a sequence called classid_seq, which would have

been created by the DBA to populate the classid column. More information on

sequences can be found in Chapter 7, “Creating and Managing Oracle Database

Objects.”

Tip

4832-8 ch11.F 7/27/01 9:02 AM Page 485

486 Part III ✦ Using PL/SQL

BEGIN
INSERT INTO scheduledclasses (classid, coursenumber,
locationid, classroomnumber, instructorid, startdate,
daysduration, status, comments)
VALUES (classid_seq.NEXTVAL, 300,
300, 1, 100, ‘01-JAN-2001’,
4, ‘Hold’,null);

END;
/

SQL> SELECT *
2 FROM scheduledclasses
3 WHERE coursenumber=300
4 AND locationid=300;

CLASSID COURSENUMBER LOCATIONID CLASSROOMNUMBER INSTRUCTORID
---------- ------------ ---------- --------------- ---------
STARTDATE DAYSDURATION STATUS
------------------------------ ------------ ----------
COMMENTS
--

54 300 300 1 100
01-JAN-01 4 Hold

UPDATE
The UPDATE statement can be used within PL/SQL programs to update a row or a

set of rows with a new value. The syntax for the UPDATE statement is the same in

PL/SQL programs as in SQL*Plus.

ACCEPT p_coursenumber NUMBER PROMPT “Enter course number: “
ACCEPT p_newprice NUMBER PROMPT “Enter new course price: “
BEGIN

UPDATE courses
SET retailprice = &p_newprice
WHERE coursenumber = &p_coursenumber;

END;
/

This program produces the following output:

Enter course number: 12345
Enter new course price: 1000

SQL> SELECT *
2 FROM courses
3 WHERE coursenumber = 12345;

4832-8 ch11.F 7/27/01 9:02 AM Page 486

487Chapter 11 ✦ Interacting with the Database Using PL/SQL

COURSENUMBER COURSENAME REPLACESCOURSE RETAILPRICE
------------ -------------------- -------------- -----------
DESCRIPTION
--

12345 mycourse 1000
mydescription

DELETE
The DELETE statement can be used within PL/SQL programs to delete a row or a set

of rows. The syntax for the DELETE statement is the same in PL/SQL programs as in

SQL*Plus.

ACCEPT p_coursenumber NUMBER PROMPT “Enter course number: “
BEGIN

DELETE FROM courses
WHERE coursenumber = &p_coursenumber;

END;
/

This program produces the following output:

Enter course number: 12345

SQL> SELECT *
2 FROM courses
3 WHERE coursenumber = 12345;

no rows selected

Implicit cursors
Whenever a SQL statement is executed in a PL/SQL program, a memory area is cre-

ated to parse the SQL statement; this area is called a cursor. This is referred to as an

implicit cursor because it is controlled by Oracle. Explicit cursors are covered in the

section “Explicit Cursors.” The implicit cursor used for SQL statements is created,

populated, and deleted by Oracle. Cursors have a set of attributes that return infor-

mation about the SQL statement. These attributes can be accessed in PL/SQL code.

The four implicit cursor attributes are:

✦ SQL%FOUND returns TRUE if SQL statement found one or more records.

✦ SQL%NOTFOUND returns TRUE if SQL statement found no records.

✦ SQL%ROWCOUNT returns number of rows affected by SQL statement.

✦ SQL%ISOPEN always returns FALSE, indicating that the implicit cursor has

been closed.

4832-8 ch11.F 7/27/01 9:02 AM Page 487

488 Part III ✦ Using PL/SQL

When you execute a DELETE or UPDATE statement in SQL*Plus, SQL*Plus returns a

message telling you how many rows were updated or deleted. In PL/SQL, you do not

receive a message, so you must examine the implicit cursor attributes after the

statement is executed to find out if any rows were updated or deleted.

ACCEPT p_coursenumber NUMBER PROMPT “Enter course number: “
ACCEPT p_newprice NUMBER PROMPT “Enter new course price: “
BEGIN

UPDATE courses
SET retailprice = &p_newprice

WHERE coursenumber = &p_coursenumber;

IF SQL%NOTFOUND THEN
DBMS_OUTPUT.PUT_LINE(‘No rows updated. ‘

||&p_coursenumber||’ does not exist’);
END IF;

END;
/

This program produces the following output:

Enter course number: 12345
Enter new course price: 2000

No rows updated. 12345 does not exist

ACCEPT p_classid NUMBER PROMPT “Enter class id: “
BEGIN

DELETE FROM ClassEnrollment
WHERE classid = &p_classid;

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT||’ rows deleted.’);
END;
/

This program produces the following output:

Enter class id: 12345
0 rows deleted.

The implicit cursor attributes should not be used to determine the number of rows

returned by a SELECT statement. In the following example, the programmer has

coded an IF statement to check the status of SQL%NOTFOUND after executing the

SELECT statement. This program will not work as intended when no rows are

selected.

ACCEPT p_coursenumber NUMBER PROMPT “Enter course number: “
ACCEPT p_newprice NUMBER PROMPT “Enter new course price: “

4832-8 ch11.F 7/27/01 9:02 AM Page 488

489Chapter 11 ✦ Interacting with the Database Using PL/SQL

BEGIN
SELECT retailprice
INTO v_retailprice
FROM courses

WHERE coursenumber = &p_coursenumber;

IF SQL%NOTFOUND THEN
DBMS_OUTPUT.PUT_LINE(‘No rows selected. ‘

||&p_coursenumber||’ does not exist’);
END IF;
END;
/

When the SELECT statement returns no rows, this program returns the error

message:

ORA-01403: no data found

When the SELECT statement returns no rows, an exception is raised that causes the

program to immediately go to the exception handling section or, if there is no

exception handling, causes the program to exit with an unhandled error. The IF

statement is never executed. If you want to determine if a SELECT statement

returns any rows, you should either use explicit cursors and explicit cursor

attributes, or use implicit cursors with exception handling, which is covered in

Chapter 12, “Handling Errors and Exceptions in PL/SQL.”

Explicit Cursors
If you want to write a program that selects multiple rows from a database table, you

have to use explicit cursors because the SELECT INTO statement generates an error

when it selects more than one row. The set of rows returned by a multiple row

query is called an active set. When you use an explicit cursor, you are creating a

pointer to keep track of the next row in the active set to be fetched. There are sev-

eral steps involved in cursor processing. You declare the cursor. You use the OPEN

command to create theactive set, and populate it with values.You use the FETCH

command to fetch the values one row at a time. When you have processed all the

rows, you use the CLOSE command to close the cursor.

Declaring explicit cursors
To create the cursor, you declare it in the declaration section of the program. In the

cursor declaration, you write the SELECT statement that will return the desired

record or records. You do not list the INTO clause in the cursor declaration.

4832-8 ch11.F 7/27/01 9:02 AM Page 489

490 Part III ✦ Using PL/SQL

The syntax of the cursor declaration is the following:

CURSOR cursorname IS select statement;

The SELECT statement used in a cursor declaration may return multiple rows, so

you can add an ORDER BY clause to the SELECT statement if you want to return the

rows in a particular order.

The following example declares a cursor to fetch a list of students enrolled in a par-

ticular class:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

/* Declaration of cursor to fetch a list of students
enrolled in a particular class and their status */

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

BEGIN
...
END;
/

Opening explicit cursors
Once the cursor is declared, you populate it using the OPEN command. The OPEN

command goes in the executable portion of the program. The OPEN command allo-

cates memory, executes the SELECT statement, populates the active set with the

row or rows selected, and sets the pointer to point before the first row.

The syntax of the OPEN command is the following:

OPEN cursorname;

The following example opens the student_enrolled cursor created in our previous

example:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

4832-8 ch11.F 7/27/01 9:02 AM Page 490

491Chapter 11 ✦ Interacting with the Database Using PL/SQL

BEGIN
/* Use the OPEN command to execute the SELECT statement
and populate the cursor with the values returned */

OPEN student_enrolled;
...

END;
/

Closing an explicit cursor
After you have fetched all the rows needed from the cursor, you close it using the

CLOSE command. The CLOSE command disables the cursor and undefines the

active set. If you try to FETCH from a cursor after it has been closed, the exception

INVALID_CURSOR is raised.

The syntax for the CLOSE command is the following:

CLOSE cursorname;

The following example closes the cursor from our previous example:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

v_studentnumber classenrollment.studentnumber%TYPE;
v_status classenrollment.status%TYPE;
BEGIN

OPEN student_enrolled;

/* Code will be added here to fetch and process the
rows in the cursor */

/* After processing all the rows in the cursor, we close
the cursor to free up the memory */

CLOSE student_enrolled;
END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 491

492 Part III ✦ Using PL/SQL

Fetching from explicit cursors
In order to access the values in the active set, you must use the FETCH command.

The first FETCH command fetches the first row contained in the active set. The sec-

ond FETCH command returns the second row in the active set, the third FETCH

returns the third row, and so on. After each FETCH, the pointer in the active set

advances to the next row. When you use the FETCH command, you must use the

INTO clause to specify which variables should be populated with the values

returned from the cursor. Your INTO clause should have one variable for each col-

umn selected in the cursor declaration. The variables must be listed in the same

order as the columns in the cursor declaration.

The syntax for the FETCH command is the following:

FETCH cursorname
INTO variable1, variable2, ... ;

The following example fetches a row from the cursor student_enrolled, created in

our previous example:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

/* Declare variables to hold values returned by the
cursor */

v_studentnumber classenrollment.studentnumber%TYPE;
v_status classenrollment.status%TYPE;

BEGIN

OPEN student_enrolled;

/* Fetch first row from the cursor into the variables
declared in the DECLARE section */

FETCH student_enrolled
INTO v_studentnumber, v_status;
...

END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 492

493Chapter 11 ✦ Interacting with the Database Using PL/SQL

You usually want to fetch all the rows in the cursor, so the FETCH statement is usu-

ally placed inside a loop that executes over and over until the last row is fetched

from the cursor. Chapter 10, “Controlling Program Execution in PL/SQL,” provides a

detailed description of loops. In order to detect when the last row in the cursor is

fetched, you must use the explicit cursor attributes. There are four explicit cursor

attributes:

✦ cursorname%FOUND returns TRUE if the last FETCH returned a row.

✦ cursorname%NOTFOUND returns TRUE if the last FETCH did not return a row.

✦ cursorname%ROWCOUNT returns the number of rows fetched so far.

✦ cursorname%ISOPEN returns TRUE if the cursor is still open.

The %ISOPEN attribute can be used to check if a cursor is open before executing a

fetch, or to check if a cursor is still open and needs to be closed before exiting a

program. The %FOUND, %NOTFOUND, and %ROWCOUNT cursor attributes can be

used to determine when a loop should be exited.

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

v_studentnumber classenrollment.studentnumber%TYPE;
v_status classenrollment.status%TYPE;

BEGIN

OPEN student_enrolled;

/* Use a basic loop to fetch rows from the cursor and
print each row on the screen until all rows are
fetched */

LOOP
FETCH student_enrolled
INTO v_studentnumber, v_status;

/* Use the %NOTFOUND cursor attribute to determine
when to exit the basic loop */

EXIT WHEN student_enrolled%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(v_studentnumber||’ ‘||v_status);
END LOOP;
CLOSE student_enrolled;

END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 493

494 Part III ✦ Using PL/SQL

%ROWTYPE
In Chapter 9, “Introduction to PL/SQL,” you learned how to use %ROWTYPE to cre-

ate a record based on the structure of a database table. The %ROWTYPE can also

be used to create a record based on the structure of a cursor. The syntax for declar-

ing this type of record is:

recordname cursorname%ROWTYPE;

Here is an example using %ROWTYPE to declare a record that will hold the values

returned by the cursor:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

/* The record declaration is now done using %ROWTYPE */
student_record student_enrolled%ROWTYPE;

BEGIN

OPEN student_enrolled;

LOOP
FETCH student_enrolled
INTO student_record;

EXIT WHEN student_enrolled%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(student_record.studentnumber||
‘ ‘||student_record.status);

END LOOP;

CLOSE student_enrolled;
END;
/

This program produces the following output:

Enter Class id: 50
1001 Confirmed
1002 Confirmed
1005 Confirmed

4832-8 ch11.F 7/27/01 9:02 AM Page 494

495Chapter 11 ✦ Interacting with the Database Using PL/SQL

The cursor FOR loop
Whenever you use an explicit cursor, you always execute the same commands. You

declare the cursor, open the cursor, fetch the rows, and close the cursor. To sim-

plify your code, you can use the cursor FOR loop.

The cursor FOR loop has the following syntax:

FOR recordname IN cursorname LOOP
...
END LOOP;

The cursor FOR loop performs a number of steps automatically, simplifying your

code. The following steps are executed by the cursor FOR loop:

1. Declares the record named in loop header.

2. Opens the cursor when the loop starts.

3. Fetches a row from cursor into the record each time through the loop.

4. Exits the loop after fetching the last record from the cursor.

5. Closes the cursor when exiting the loop.

Here is our previous example, which fetched all the students enrolled in a particu-

lar course, rewritten using the cursor FOR loop:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
DECLARE

CURSOR student_enrolled IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber;

/* No variable or record declarations required
record will be declare implicitly by cursor FOR loop */

BEGIN

/* No OPEN or FETCH cursor statements required, cursor is
opened by loop and a row is automatically fetched into the
record each time through the loop */

FOR student_record IN student_enrolled LOOP

/* No EXIT statement required, loop automatically exits
when there are no more rows to fetch */

DBMS_OUTPUT.PUT_LINE(student_record.studentnumber||
‘ ‘||student_record.status);

4832-8 ch11.F 7/27/01 9:02 AM Page 495

496 Part III ✦ Using PL/SQL

END LOOP;

/* No CLOSE statement required, loop automatically closes
the cursor when exiting */

END;
/

This program produces the following output:

Enter Class id: 50
1001 Confirmed
1002 Confirmed
1005 Confirmed

This is a much simpler program than the example where we used a traditional loop

and had to explicitly manipulate the cursor. When you use the cursor FOR loop, you

can still use the EXIT command to exit the loop under other conditions. Using the

EXIT command to exit the cursor FOR loop still closes the cursor automatically

when exiting the loop.

The code can be further simplified by specifying the SELECT statement for the cur-

sor within the cursor FOR loop.

FOR recordname IN (select_statement) LOOP
...
END LOOP;

If you specify the SELECT statement in the cursor FOR loop, the previous example

looks like the following:

ACCEPT p_classid NUMBER PROMPT “Enter Class id: “
BEGIN

/* No declare section required, because SELECT statement
is specified in Cursor For Loop */

FOR student_record IN (SELECT studentnumber, status
FROM classenrollment
WHERE classid = &p_classid
ORDER BY studentnumber)

LOOP

DBMS_OUTPUT.PUT_LINE(student_record.studentnumber||
‘ ‘||student_record.status);

END LOOP;

END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 496

497Chapter 11 ✦ Interacting with the Database Using PL/SQL

This program produces the following output:

Enter Class id: 50
1001 Confirmed
1002 Confirmed
1005 Confirmed

The drawback to specifying the SELECT statement in the cursor FOR loop is that

you no longer have access to the cursor attributes %FOUND, %NOTFOUND, %ROW-

COUNT, and %ISOPEN because your cursor does not have a name. Another draw-

back is that you cannot use the same cursor again without rewriting the query.

Cursor variables
Although cursor variables are not included in the “Introduction to Oracle SQL and

PL/SQL exam,” they are included here to provide a more complete understanding of

cursors. Cursor variables are pointers to the area in memory where the cursor data

is stored. Cursor variables enable you to create dynamic cursors. When you create

a static cursor, you specify the SELECT statement associated with the cursor when

you declare the cursor. When you create a cursor variable, you are creating a

dynamic cursor because you specify the SELECT statement when you open the cur-

sor. The same cursor variable can be reopened with a different query as often as

needed. Working with cursor variables is similar to working with cursors. You still

have to go through four steps: declaring, opening, fetching, and closing the cursor.

The first step when working with cursor variables is to declare the cursor variable.

Pointers to a cursor are of datatype REF CURSOR. To declare a cursor variable, you

must first declare a REF CURSOR type and then a variable based on the REF CUR-

SOR type.

The syntax for declaring a cursor variable is the following:

TYPE ref_cursor_type IS REF CURSOR
[RETURN record_structure];

cursor_variable ref_cursor_type;

For example, in a program you could declare a cursor variable that will be used to

fetch records from the courses table.

DECLARE
TYPE courses_ref_cursor_type IS REF CURSOR
RETURN courses%ROWTYPE;

courses_cursor courses_ref_cursor_type;
BEGIN
...
END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 497

498 Part III ✦ Using PL/SQL

After you have declared your cursor variable, you need to open the cursor. This is

done in the executable section of the program. When you open a cursor variable,

you must specify the SELECT statement that will be executed. The same cursor

variable can be opened over and over with different SELECT statements. If you

open the same cursor variable twice with different SELECT statements, the data

from the first SELECT statement is lost and replaced with the data from the second

SELECT statement.

The syntax for opening a cursor variable is the following:

OPEN cursor_variable FOR select_statement;

For example, you can open a cursor variable with a SELECT statement from the

courses table.

DECLARE
TYPE courses_ref_cursor_type IS REF CURSOR
RETURN courses%ROWTYPE;

courses_ref_cursor courses_ref_cursor_type;
BEGIN

/* Open cursor variable, specifying the SELECT statement
to be executed. */
OPEN courses_ref_cursor FOR
SELECT * FROM courses;
...
CLOSE courses_ref_cursor;

END;
/

Once the cursor has been opened, you can fetch from the cursor. The syntax for

fetching from a cursor variable is the same as the syntax for fetching from an

explicit cursor.

FETCH cursor_variable INTO record | variables

Because you usually want to fetch all the records returned by the cursor, you use a

loop to execute the fetch over and over until all records have been fetched. Use the

cursor attribute %NOTFOUND to determine when the last record has been fetched

from the cursor.

After all the records from the cursor have been fetched, you should close the

cursor using the CLOSE command. The syntax for the CLOSE command is the

following:

CLOSE cursor_variable;

You cannot use cursor FOR loops with cursor variables.Caution

4832-8 ch11.F 7/27/01 9:02 AM Page 498

499Chapter 11 ✦ Interacting with the Database Using PL/SQL

The following example fetches the records from a cursor variable that returns

course information and prints the course name on the screen:

DECLARE
TYPE courses_ref_cursor_type IS REF CURSOR
RETURN courses%ROWTYPE;

courses_ref_cursor courses_ref_cursor_type;

/* Declare a record to hold the information returned by
the cursor */
course_record courses%ROWTYPE;

BEGIN
OPEN courses_ref_cursor FOR
SELECT * FROM courses;

LOOP
/* Fetch the first record from the cursor */
FETCH courses_ref_cursor
INTO course_record;

/* Exit when last record retrieved from cursor */
EXIT WHEN courses_ref_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(‘Course name is: ‘||
course_record.coursename);

END LOOP;

CLOSE courses_ref_cursor;
END;
/

Cursors with subqueries
Cursors can be built based on SELECT statements that contain subqueries. The

subquery can be located in the WHERE clause, the HAVING clause, or the FROM

clause of the SELECT statement. The subquery must be enclosed in parentheses.

The following example uses a subquery in the FROM clause of a cursor within a cur-

sor FOR loop:

BEGIN
/* The FROM Clause of the SELECT statement contains a

subquery that select the total number of students
enrolled in each class */

FOR class_record IN
(SELECT sc.classid, sc.instructorid, cl.nbr_students
FROM scheduledclasses sc,

(SELECT COUNT(*) nbr_students, classid
FROM ClassEnrollment

4832-8 ch11.F 7/27/01 9:02 AM Page 499

500 Part III ✦ Using PL/SQL

GROUP BY classid) cl
WHERE sc.classid = cl.classid)

LOOP

DBMS_OUTPUT.PUT_LINE(class_record.classid||
‘ taught by: ‘||class_record.instructorid||
‘ total students: ‘||class_record.nbr_students);

END LOOP;
END;
/

This program produces the following output:

50 taught by: 100 total students: 3
51 taught by: 200 total students: 3
53 taught by: 110 total students: 1

Cursor parameters
When you declare a cursor, you specify a WHERE clause that determines which

rows are selected by the cursor. The WHERE clause is specified when the program

is written. Using cursor parameters, you can specify values used in the WHERE

clause at run time.

The syntax for declaring cursor parameters is the following:

CURSOR cursorname (p_parameter1 datatype,
p_parameter2 datatype, ...)
IS SELECT columns
FROM table
WHERE column1 = p_parameter1
AND column2 = p_parameter2;

The syntax for opening cursors with parameters is the following:

Using the OPEN command

OPEN cursorname(parametervalue1, parametervalue2, ...);

Using cursor FOR loops

FOR recordname IN cursorname(parametervalue1,
parametervalue2,...) LOOP

In the following example, cursor parameters are used to specify the classid for

which students are listed at runtime:

ACCEPT p_locationid NUMBER PROMPT “Enter Location id: “
DECLARE

/* Declare a cursor to get a list of all classes at a
particular location */

4832-8 ch11.F 7/27/01 9:02 AM Page 500

501Chapter 11 ✦ Interacting with the Database Using PL/SQL

CURSOR classlist IS
SELECT classid
FROM scheduledclasses
WHERE locationId = &p_locationid;

/* Declare a cursor to get all students in a particular
class, classid will be specified at runtime in a
parameter */

CURSOR student_enrolled (p_classid NUMBER) IS
SELECT studentnumber, status
FROM classenrollment
WHERE classid = p_classid;

BEGIN
/* Fetch each classid in the specified location */
FOR location_record IN classlist LOOP

/* Fetch list of students for each classid, by
passing location_record.classid to the
student_enrolled cursor */

FOR student_record IN
student_enrolled(location_record.classid) LOOP

DBMS_OUTPUT.PUT_LINE(‘Class: ‘||
location_record.classid||
‘ Student: ‘||
student_record.studentnumber||
‘ ‘||student_record.status);

END LOOP;
END LOOP;

END;
/

This program produces the following output:

Enter Location id: 300
Class: 51 Student: 1003 Cancelled
Class: 51 Student: 1004 Confirmed
Class: 51 Student: 1008 Confirmed
Class: 53 Student: 1003 Hold

FOR UPDATE and WHERE CURRENT OF
Explicit cursors are often used in batch jobs that select and update a number of

rows in one or more tables. When a cursor is opened, all the rows returned by the

SELECT statement are placed in the cursor. If the contents of the accessed table

change while the program fetches rows from the cursor, the program does not pick

up those changes. To prevent changes from being made to the records being pro-

cessed by the cursor, you can use the FOR UPDATE option. The FOR UPDATE option

4832-8 ch11.F 7/27/01 9:02 AM Page 501

502 Part III ✦ Using PL/SQL

locks the records in the database when the cursor is opened. The records remain

locked until a COMMIT or ROLLBACK is performed. This is very useful in programs

that select a set of records and later update those records. The FOR UPDATE option

is specified when the cursor is declared.

The syntax of the FOR UPDATE clause is the following:

CURSOR cursorname IS
SELECT columns FROM table WHERE condition FOR UPDATE;

If a SELECT statement fetches data from more than one table, records in all the

tables accessed will be locked when you specify FOR UPDATE. If you are only updat-

ing one or some of the tables, you can instruct Oracle to lock only the rows in those

tables by specifying the names of columns in the updated tables after the FOR

UPDATE.

In the following example, all the rows in both the classenrollment table and the stu-

dents table would be locked.

SELECT ce.studentnumber, ce.status, s.lastname
FROM classenrollment ce, students s
WHERE s.studentnumber=ce.studentnumber
FOR UPDATE;

If you are updating the classenrollment table, but not the students table, specify the

name of any column on the classenrollment table after the FOR UPDATE clause.

Specifying a column on the classenrollment table instructs Oracle to lock only the

records selected from the classenrollment table.

SELECT ce.studentnumber, ce.status, s.lastname
FROM classenrollment ce, students s
WHERE s.studentnumber=ce.studentnumber
FOR UPDATE OF ce.status;

When you specify FOR UPDATE in the cursor declaration, all the rows selected by

the cursor are locked when the cursor is opened. If one of the records being

selected for update is already locked by another user, your program waits until that

record lock is released. This can cause problems if a record is locked for an

extended period of time. If you prefer not to have the program wait until the record

is unlocked, you can specify the NOWAIT option when you declare the cursor. When

you specify NOWAIT, an exception is raised when you open the cursor, and one of

the records being selected for update is locked.

The syntax of the NOWAIT clause is the following:

CURSOR cursorname IS
SELECT columns FROM table WHERE condition FOR UPDATE NOWAIT;

CURSOR cursorname IS
SELECT columns FROM table WHERE condition FOR UPDATE OF
columnname NOWAIT;

4832-8 ch11.F 7/27/01 9:02 AM Page 502

503Chapter 11 ✦ Interacting with the Database Using PL/SQL

The FOR UPDATE cursor not only locks records, it also allows you to use the

WHERE CURRENT OF clause in UPDATE or DELETE statements.

The syntax of the WHERE CURRENT OF option is the following:

UPDATE tablename
SET columnname = newvalue
WHERE CURRENT OF cursorname;

The following example checks all the student enrollments and updates their status

based on whether their course is confirmed. This program selects all student

records and then updates their status, so you use the FOR UPDATE option to lock

the records when the cursor is opened. If any records selected by the cursor are

already locked, you raise an exception instead of waiting for the locks to be

released with the NOWAIT clause. In the UPDATE statement, you use the WHERE

CURRENT OF option to identify the record to be updated.

DECLARE

/* Declare cursor to select all enrollments
using FOR UPDATE option */

CURSOR enrollments
IS SELECT studentnumber, classid, status
FROM classenrollment FOR UPDATE of status NOWAIT;

v_status scheduledclasses.status%TYPE;
BEGIN

FOR enrollment_record IN enrollments LOOP

/* For each enrollment check the status of the class
for that enrollment */

SELECT status
INTO v_status
FROM scheduledclasses
WHERE classid = enrollment_record.classid;

/* If the class is cancelled, update the enrollment
record to indicate the class is cancelled, use the
WHERE CURRENT OF option to specify which record
should be updated */

IF v_status = ‘Cancelled’ THEN
UPDATE classenrollment

SET status = ‘Course cancelled’
WHERE CURRENT OF enrollments;

END IF;
END LOOP;

END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 503

504 Part III ✦ Using PL/SQL

Composite and Collection Datatypes
As discussed in Chapter 9, “Introduction to PL/SQL,” certain datatypes can hold

more than one value at a time. These datatypes are referred to as composite or col-
lection datatypes. If you create a variable with one of the collection datatypes, your

variable can hold more than one value. Record datatypes can hold a single value for

many different fields. Table and VARRAY datatypes can hold multiple values of a

field or a set of fields.

PL/SQL records
A PL/SQL record is a variable made up of one or more fields, each of which can hold

a different value. A record is used to hold information about an object. For example,

you can create a PL/SQL record to hold information about a particular course. The

record can contain a field for coursenumber, a field for coursename, and a field for

retailprice. Records enable you to hold related information in one record variable,

instead of creating separate scalar variables for each value you want to store.

PL/SQL records are often used to hold the values returned by a SELECT statement.

The following example creates a record to hold a student’s firstname, lastname,

city, and email address. The example specifies the datatype and size of each field

using the %TYPE clause.

DECLARE
TYPE student_rec_struct IS RECORD

(firstname students.firstname%TYPE,
lastname students.lastname%TYPE,
city students.city%TYPE,
email students.email%TYPE);

/* Create a record called student_record based on the
record structure called student_rec_struct */

student_record student_rec_struct;
BEGIN

...
END;
/

A record can also be created using the %ROWTYPE clause. This clause creates a

record based on the structure of a table. The fields within the records have the

same names and datatypes as columns in the database table. The %ROWTYPE

clause is very useful when you are selecting many columns from a database table,

because you may not have to modify the code if the database table changes.

4832-8 ch11.F 7/27/01 9:02 AM Page 504

505Chapter 11 ✦ Interacting with the Database Using PL/SQL

The syntax for creating a record using %ROWTYPE is the following:

record_name table_name%ROWTYPE;

The following example fetches all the information in the students table for a partic-

ular student number and prints the student’s first and last name on the screen:

ACCEPT p_student NUMBER PROMPT “Enter student number: “
DECLARE

student_record students%ROWTYPE
BEGIN

SELECT *
INTO student_record
FROM students
WHERE studentnumber = &p_student;

DBMS_OUTPUT.PUT_LINE(student_record.firstname||’ ‘||
student_record.lastname);

END;
/

This program produces the following output:

Enter student number: 1000
John Smith

More information on records and %ROWTYPE can be found in Chapter 9,

“Introduction to PL/SQL.”

An entire record can be populated at once using a SELECT statement. When you use

a SELECT statement to populate the record, you must list the columns in the

SELECT statement in the same order as the fields are listed in the record structure.

The syntax to populate a record with a SELECT statement is the following:

SELECT column1, column2, column3
INTO recordname
FROM table
WHERE condition;

Instead of populating the record with a SELECT statement, individual fields within

the record can be populated one by one. To reference a particular field within the

record, you must specify the record name, a period (.), and then the field name.

This syntax is used to populate individual fields within a record or to retrieve val-

ues from individual fields within a record.

The syntax to populate a field within a record is the following:

recordname.fieldname := value;

4832-8 ch11.F 7/27/01 9:02 AM Page 505

506 Part III ✦ Using PL/SQL

In the following example, a student record is populated using a SELECT statement,

and the student’s first and last names are printed on the screen:

ACCEPT p_student NUMBER PROMPT “Enter student number: “
DECLARE

TYPE student_rec_struct IS RECORD
(firstname students.firstname%TYPE,
lastname students.lastname%TYPE,
city students.city%TYPE,
email students.email%TYPE);

student_record student_rec_struct;
BEGIN

/* Specify the name of the record to be populated in the
INTO clause of the SELECT statement */

SELECT firstname, lastname, city, email
INTO student_record
FROM students
WHERE studentnumber = &p_studentnumber;

/* The student’s name is printed on the screen */

DBMS_OUTPUT.PUT_LINE(student_record.firstname||’ ‘||
student_record.lastname);

END;
/

This program produces the following output:

Enter student number: 1000
John Smith

Index-by tables
An index-by table (formerly known as a PL/SQL table) is a composite variable that

can hold multiple values of the same datatype and size. An index-by table must be

composed of a key of datatype BINARY_INTEGER and a variable. The variable may

be a scalar variable or a composite variable, such as a record. (Tables of records

are covered in the section “Tables of Records.”) An index-by table is the PL/SQL

version of an array. It is used to hold a set of values. For example, an index-by table

can be used to hold the names of all the courses offered.

An index-by table is created in two steps. First, you specify the structure of the

table and give that structure a name. When specifying the structure, you must spec-

ify the datatypes and sizes of the values you want to store in the table. You do not

need to specify the number of rows in the index-by table. Index-by tables increase

in size dynamically as you add rows.

4832-8 ch11.F 7/27/01 9:02 AM Page 506

507Chapter 11 ✦ Interacting with the Database Using PL/SQL

The syntax for declaring the structure of an index-by table is the following:

TYPE structurename IS TABLE OF datatype(size)
INDEX BY BINARY_INTEGER;

The datatype and size of the field can be listed explicitly or may be specified using

the %TYPE clause.

The following two examples create an index-by table structure for an index-by table

to hold course names. The first example specifies the datatype and size of the field

explicitly; the second example specifies the datatype and size of the field using the

%TYPE clause.

DECLARE
/* Declare a table structure and specify the datatype
and size explicitly */
TYPE course_table_struct IS TABLE OF VARCHAR2(200)

INDEX BY BINARY_INTEGER;
..
BEGIN
..
END;
/

DECLARE
/* Declare a table structure and use %TYPE to make the
field the same datatype and size as the column in the
database */
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

..
BEGIN
..
END;
/

After the table structure is declared, you create one or more index-by tables based

on the structure. The syntax for creating the table is the following

table_name structure_name;

The following example creates an index-by table to hold all the course names:

DECLARE
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

4832-8 ch11.F 7/27/01 9:02 AM Page 507

508 Part III ✦ Using PL/SQL

/* Create the index-by table based on the
course_table_struct table structure declared above */

course_table course_table_struct;
BEGIN
..
END;
/

Once the index-by table has been created, you can populate rows in the index-by

table with values. Each row in the index-by table contains a value and a key integer

that enables you to identify the row. Whenever you populate or retrieve a value

from an index-by table, you must specify which row in the index-by table you want

to access. For example, you can have a row holding the course name “Database

Administration” and the integer 5. When you want to retrieve the course name

“Database Administration”, you specify row 5. The row number is specified in

parentheses after the index-by table name. The row number can be any valid inte-

ger, including negative values. The first row populated in the array does not have to

be row 1.

tablename(rownumber);

The following example populates the first row of an index-by table with the course

name “Database Administration” and prints that course name on the screen:

DECLARE
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

course_table course_table_struct;
BEGIN

/* Populate first row of the index-by table with ‘Database
administration’ */

course_table(1) := ‘Database Administration’;

/* Print first row of the index-by table on the screen */
DBMS_OUTPUT.PUT_LINE(course_table(1));

END;
/

This program produces the following output:

Database Administration

Explicit cursors are often used to populate arrays. Each value returned by the cur-

sor is put into a different row of the index-by table.

4832-8 ch11.F 7/27/01 9:02 AM Page 508

509Chapter 11 ✦ Interacting with the Database Using PL/SQL

DECLARE
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

course_table course_table_struct;

CURSOR courses_cursor IS
SELECT coursename
FROM courses
ORDER BY coursenumber;

/* Declare a counter to specify the row of the index-by
table being accessed */
v_row NUMBER := 1;

BEGIN

OPEN courses_cursor;

LOOP
/* Fetch each row from the cursor into a different

row within the index-by table course_table */
FETCH courses_cursor
INTO course_table(v_row);

EXIT WHEN courses_cursor%NOTFOUND;

/* Print each row of the index-by table course_table
on the screen */
DBMS_OUTPUT.PUT_LINE(course_table(v_row));

/* Increment the counter, so a different row is
populated the next time through the loop */
v_row := v_row + 1;

END LOOP;

CLOSE courses_cursor;
END;
/

This program produces the following output:

Basic SQL
Advanced SQL
Database Performance Basics
Performance Tuning your Database
Database Administration
Backing up your database
Basic PL/SQL
Advanced PL/SQL
Using your PL/SQL skills

4832-8 ch11.F 7/27/01 9:02 AM Page 509

510 Part III ✦ Using PL/SQL

Tables of records
When you create an index-by table, you can create a table that holds multiple val-

ues of one field, or multiple values of more than one field. An index-by table that

holds multiple values of more than one field is called a table of records. To create a

table of records, you must execute three steps:

1. Declare a record structure.

2. Declare a table structure that can hold the record structure.

3. Declare a table based on the table structure.

The following example declares a table of student records that can hold the first

name, last name, city, and email address of one or more students:

DECLARE

/* Declare record structure to hold first name, last name
city and email address of a student */
TYPE student_rec_struct IS RECORD

(firstname students.firstname%TYPE,
lastname students.lastname%TYPE,
city students.city%TYPE,
email students.email%TYPE);

/* Declare table structure that can hold the record
structure */
TYPE student_table_struct IS TABLE OF student_rec_struct
INDEX BY BINARY_INTEGER;

/* Create PL/SQL table based on table structure */
student_table student_table_struct;

BEGIN
...

END;
/

When you want to reference or populate a value in a table of records, you must

specify which element of the record and which row in the table you want to access.

The syntax for referencing an element in a table of records is the following:

table_name(row).fieldname

The following example populates and prints the first row of an index-by table that

holds student records:

DECLARE
TYPE student_rec_struct IS RECORD

(firstname students.firstname%TYPE,

4832-8 ch11.F 7/27/01 9:02 AM Page 510

511Chapter 11 ✦ Interacting with the Database Using PL/SQL

lastname students.lastname%TYPE,
city students.city%TYPE,
email students.email%TYPE);

TYPE student_table_struct IS TABLE OF student_rec_struct
INDEX BY BINARY_INTEGER;

student_table student_table_struct;
BEGIN

/* Populate the first row of the PL/SQL table
student_table */
student_table(1).firstname := ‘John’;
student_table(1).lastname := ‘Doe’;
student_table(1).city := ‘New York’;
student_table(1).email := ‘john.doe@ecom.com’;

/* Print the values in the first row of the index-by table
student_table */
DBMS_OUTPUT.PUT_LINE(‘Name is: ‘||

student_table(1).firstname||’ ‘||
student_table(1).lastname||
‘ in city ‘||student_table(1).city||
‘ email ‘||student_table(1).email);

END;
/

This program produces the following output:

Name is: John Doe in city New York email john.doe@ecom.com

The %ROWTYPE clause may be used when creating a table of records to create an

index-by table that can hold records that match the structure of a database table. If

you use %ROWTYPE, you do not need to declare the record structure; instead, you

specify the %ROWTYPE clause in the index-by table structure declaration. The fol-

lowing example declares a table of records to hold all the information stored in the

students table:

DECLARE
TYPE student_table_struct IS TABLE OF students%ROWTYPE
INDEX BY BINARY_INTEGER;
student_table student_table_struct;

BEGIN
...

END;
/

Nested tables
In Oracle 8, a new form of PL/SQL table was added called the nested table (formerly

known as the V8 PL/SQL table). To create a nested table, omit the INDEX BY

BINARY_INTEGER clause from the table structure declaration. Nested tables

4832-8 ch11.F 7/27/01 9:02 AM Page 511

512 Part III ✦ Using PL/SQL

operate slightly differently from the index-by table. When you use a nested table,

you must initialize it by specifying an initial value for the first row or rows. When

you want to populate a row in a nested table, you must create the row first and then

populate it.

The following is the syntax for declaring a nested table:

TYPE structurename IS TABLE OF datatype(size);

tablename structurename;

The syntax for specifying an initial value for the first row or rows uses a construc-

tor method. Constructor methods are used to populate objects; they are created by

the database. The constructor method for tables has the same name as the table

structure. To use the constructor method, you specify the name of the constructor

method and then the value(s) to put in the row(s)in parentheses. The initialization

can be done when the table is declared or in the BEGIN section.

The syntax for initializing one row in a nested table in the DECLARE section is the

following:

tablename structurename := structurename(initialvalue);

The syntax for initializing one row in a nested table in the BEGIN section is the

following:

BEGIN
tablename := structurename(initialvalue);

The syntax for initializing multiple rows in a nested table in the DECLARE section is

the following:

tablename structurename := structurename(initialvalue1,
initialvalue2, initialvalue3, ...);

The syntax for initializing multiple rows in a nested table in the BEGIN section is the

following:

BEGIN
tablename := structurename(initialvalue1, initialvalue2,
initialvalue3, ...);

When you want to populate a row in a nested table, you must use the table method

EXTEND to add one or more rows to the PL/SQL table before they are populated.

The first row added will always be row one, the second row added will always be

row two, and so on. EXTEND is one of the collection methods that can be used to

examine the contents of and manipulate collections. Additional collection methods

are covered in “Collection Methods,” later in this chapter.

4832-8 ch11.F 7/27/01 9:02 AM Page 512

513Chapter 11 ✦ Interacting with the Database Using PL/SQL

DECLARE
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE;

/* Specify initial value for new rows using
constructor method */
course_table course_table_struct

:= course_table_struct(null);
BEGIN

/* Create a new row in the course_table
using the EXTEND method */
course_table.EXTEND;

/* Populate the new row of the nested table with
‘Database administration’ */
course_table(1) := ‘Database Administration’;

/* Print first row of the nested table on the screen */
DBMS_OUTPUT.PUT_LINE(course_table(1));

END;
/

This program produces the following output:

Database Administration

VARRAYs
VARRAYs are not included in the “Introduction to Oracle SQL and PL/SQL exam” but

are included here so that a complete list of the composite datatypes is provided.

The VARRAY type is a datatype that holds a fixed number of values of a particular

datatype. Unlike PL/SQL tables whose size can change dynamically, the size of a

VARRAY must be specified when it is declared, and its size remains the same at all

times. When you use a VARRAY, you must give an initial value for the first row or

rows. When you want to populate a row in a VARRAY, you must create the row first

and then populate it.

Creating a VARRAY is done in two steps. First, you specify the structure of the VAR-

RAY and give that structure a name. When specifying the structure, you must spec-

ify the datatypes and sizes of the values you want to store in the VARRAY and the

number of rows in the VARRAY.

The syntax for declaring the structure of a VARRAY is the following:

TYPE varray_structure IS VARRAY(size) OF datatype(size);

The %TYPE clause may be used to specify a datatype and size. A record structure

can also be specified instead of a datatype and size, if you want to create a VARRAY

of records.

4832-8 ch11.F 7/27/01 9:02 AM Page 513

514 Part III ✦ Using PL/SQL

After the VARRAY structure is declared, you create one or more VARRAYs based on

the structure. The syntax for creating the VARRAY is the following:

varray_name varray_structure;

The syntax for specifying an initial value for the first row or rows uses a construc-

tor method. The constructor method has the same name as the VARRAY structure.

After specifying the constructor method, you specify the initial value for new rows

in parentheses. The initialization can be done when the VARRAY is declared or in

the BEGIN section.

The syntax for initializing one row in a VARRAY table in the DECLARE section is the

following:

varray_name varray_structure :=
varray_structure(initialvalue);

The syntax for initializing one row in a V8 PL/SQL table in the BEGIN section is the

following:

BEGIN
varray_name := varray_structure(initialvalue);

The syntax for initializing multiple rows in a V8 PL/SQL table is the following:

varray_name varray_structure :=
varray_structure(initialvalue1, initialvalue2,
initialvalue3, ...);

Or

BEGIN
varray_name := varray_structure(initialvalue1,

initialvalue2, initialvalue3, ...);

When you want to populate a row in a VARRAY table, you must use the EXTEND

method to add one or more rows to the VARRAY before they are populated. The

first row added always is row one, the second row added always is row two, and so

on. The EXTEND method and other methods that can be used with VARRAYs are

explained later in this chapter in the section “Collection Methods.”

The following example creates a VARRAY that holds 12 location names. This VAR-

RAY can be used to hold the busiest sales location of each month for a particular

year.

DECLARE

/* Declare structure of VARRAY to hold the 12 location
names */
TYPE location_struct IS VARRAY(12) OF VARCHAR2(50);

4832-8 ch11.F 7/27/01 9:02 AM Page 514

515Chapter 11 ✦ Interacting with the Database Using PL/SQL

/* Declare VARRAY based on structure and initialize
first row to a NULL value*/
location_varray location_struct :=

location_struct(null);
BEGIN

...
END;
/

When you want to populate or reference a value stored in a VARRAY, you must spec-

ify which row in the VARRAY you want to access. The row you want to access is

specified in parentheses after the VARRAY name.

The following example populates and prints the first row of the VARRAY with the

highest profit location in January 2001:

DECLARE

TYPE location_struct IS VARRAY(12) OF VARCHAR2(50);

location_varray location_struct :=
location_struct(null);

v_highest_profit VARCHAR2(50);
BEGIN

...
/* create and Populate first row of VARRAY with contents of
the variable v_highest_profit */
location_varray.EXTEND;
location_varray(1) := v_highest_profit;

/* Print the first value in the VARRAY on the screen */
DBMS_OUTPUT.PUT_LINE(location_varray(1));

END;
/

Collection methods
A series of collection methods can be used to determine the size, and the rows pop-

ulated, in any collection datatype: index-by tables, VARRAYs, and nested tables.

These methods enable you to find out information about the collection and also

enable you to manipulate the collection. The following is a list of the collection

methods and their purposes:

✦ EXISTS(row) returns TRUE if the row specified exists.

✦ COUNT returns the number of rows.

✦ FIRST returns the row number of the first populated row.

✦ LAST returns the row number of the last populated row.

4832-8 ch11.F 7/27/01 9:02 AM Page 515

516 Part III ✦ Using PL/SQL

✦ PRIOR(row) returns the row number of the last row populated before the row

specified.

✦ NEXT(row) returns the row number of the next row populated after the row

specified.

✦ DELETE removes all rows.

✦ DELETE(row) removes the specified row.

✦ DELETE(start_row,end_row) removes all rows between and including the

start_row and end_row.

✦ TRIM removes the last row.

✦ TRIM(n) removes the last n rows.

✦ EXTEND adds one row.

✦ EXTEND(n) adds n rows.

✦ EXTEND(n,m) adds n copies of row m.

The TRIM and EXTEND methods apply only to nested tables and VARRAYs.

The syntax for collection methods is the following:

collection_name.method_name(arguments)

The following example uses the COUNT method to display the number of rows con-

tained in an index-by table:

DECLARE
TYPE course_table_struct IS TABLE OF
courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

course_table course_table_struct;

CURSOR courses_cursor IS
SELECT coursename
FROM courses
ORDER BY coursenumber;

v_row NUMBER := 1;
BEGIN

OPEN courses_cursor;

LOOP
FETCH courses_cursor
INTO course_table(v_row);

EXIT WHEN courses_cursor%NOTFOUND;

4832-8 ch11.F 7/27/01 9:02 AM Page 516

517Chapter 11 ✦ Interacting with the Database Using PL/SQL

DBMS_OUTPUT.PUT_LINE(course_table(v_row));

v_row := v_row + 1;
END LOOP;

CLOSE courses_cursor;

/* Use the table method COUNT to find out how many
rows are in the index-by table course_table */
DBMS_OUTPUT.PUT_LINE(‘Total rows: ‘||course_table.COUNT);

END;
/

This program produces the following output:

Basic SQL
Advanced SQL
Database Performance Basics
Performance Tuning your Database
Database Administration
Backing up your database
Basic PL/SQL
Advanced PL/SQL
Using your PL/SQL skills
Total rows: 9

The following example populates and prints the first row in a nested table with a

course name. The EXTEND method is used to create the new row in the nested

table.

DECLARE
TYPE course_table_struct IS TABLE OF

courses.coursename%TYPE;

/* Specify initial value for new rows using
constructor method */
course_table course_table_struct

:= course_table_struct(null);
BEGIN

/* Create a new row in the course_table
using the EXTEND method */
course_table.EXTEND;

/* Populate the new row of the nested table with
‘Database administration’ */
course_table(1) := ‘Database Administration’;

/* Print first row of the nested table on the screen */
DBMS_OUTPUT.PUT_LINE(course_table(1));

END;
/

4832-8 ch11.F 7/27/01 9:02 AM Page 517

518 Part III ✦ Using PL/SQL

This program produces the following output:

Database Administration

Key Point Summary
SQL statements can be embedded within PL/SQL programs enabling you to write

SELECT statements to access the data in the database and Data Manipulation

Language (DML) statements to modify the data in the database. In this chapter, you

learned how to write SQL statements in your PL/SQL programs.

✦ SELECT statements require an INTO clause in PL/SQL code.

✦ SELECT statements return an error if they do not select any rows or if they

select more than one row.

✦ INSERT, UPDATE, and DELETE statements can be executed from within PL/SQL

programs.

✦ Data Definition Language (DDL) and Data Control Language (DCL) commands

cannot be executed directly from PL/SQL programs.

✦ Implicit cursor attributes enable you to find out how many rows were affected

by DML commands.

✦ Explicit cursors can be used to select more than one row from the database.

✦ The FOR UPDATE clause can be used to lock records selected by a cursor.

✦ The WHERE CURRENT OF clause enables you to identify which row selected

by a cursor should be updated in the database.

✦ Cursor parameters can be used to affect which rows are selected by an

explicit cursor at runtime.

✦ Subqueries can be used in the SELECT statements of cursors.

A number of composite datatypes can hold more than one value. PL/SQL tables,

VARRAYs, and records are all datatypes that can hold more than one value. This

chapter discusses the differences between these datatypes and how each one is

used.

✦ The PL/SQL record can hold many fields of information about an object.

✦ The PL/SQL table can hold multiple values of a field.

✦ The PL/SQL table of records can hold multiple records.

✦ The VARRAY can hold a fixed number of values of a field.

✦ ✦ ✦

4832-8 ch11.F 7/27/01 9:02 AM Page 518

519

STUDY GUIDE

Now that you have learned about interacting with the database and composite

datatypes, you should test your understanding by reviewing the assessment ques-

tions and performing the exercises that follow.

Assessment Questions
1. The following SELECT statement is executed in a PL/SQL program as an

implicit cursor. Which of the following clauses should be added to the SELECT

statement in order for the program to execute successfully?

SELECT coursenumber, coursename
FROM courses
WHERE coursenumber = 100;

A. No clause

B. ORDER BY coursename

C. INTO v_coursenumber

D. POPULATE v_coursenumber, v_coursename

E. INTO v_coursenumber, v_coursename

2. A SELECT statement executed as an implicit cursor in a PL/SQL program

returns no rows. What happens when you execute the program?

A. An exception is raised because the SELECT statement returns no rows.

B. The program executes successfully.

C. The program cannot be executed because you get a compile error.

D. An exception is raised because the SELECT statement returns more than

one row.

E. You cannot execute a SELECT statement from within a PL/SQL program.

3. A DELETE statement in a PL/SQL program does not delete any rows. What

happens when you execute the program?

A. An exception is raised because the DELETE statement deleted no rows.

B. The program executes successfully.

C. The program cannot be executed because you get a compile error.

D. An exception is raised because the DELETE statement deletes more than

one row.

E. You cannot execute a DELETE statement from within a PL/SQL program.

519Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 519

4. You write a PL/SQL program to select the names of all the courses in the

courses table. Which of the following cursor declarations should you use?

A. coursenames IS CURSOR SELECT coursename FROM courses;

B. coursenames IS CURSOR SELECT coursename FROM courses ORDER BY

coursenumber;

C. CURSOR coursenames IS SELECT coursename INTO v_coursename

FROM courses;

D. CURSOR coursenames IS SELECT coursename INTO v_coursename

FROM courses ORDER BY coursenumber;

E. CURSOR coursenames IS SELECT coursename FROM courses;

5. You declare a cursor to select all the records in the classenrollment table.

Later in the program, you update the records, and you want them locked

when the cursor is opened. Which of the following clauses should you specify

when you declare the cursor?

A. FOR UPDATE

B. LOCK RECORDS

C. WHERE CURRENT OF

D. INTO

E. LOCK CURSOR

6. You have a loop that fetches all the rows returned by a cursor. Which of the

following cursor attributes can you use to determine when to exit the loop

because all the rows have been fetched

A. %FOUND

B. %NOTFOUND

C. %ISOPEN

D. Either A or B

E. Either A, B or C

7. You declare the following cursor in a PL/SQL program. Which of the following

commands successfully opens the cursor?

CURSOR student_cursor (p_studentid NUMBER)
IS SELECT firstname, lastname
FROM students
WHERE studentid = p_studentid;

A. OPEN student_cursor;

B. OPEN student_cursor(1000);

C. OPEN student_cursor(‘John Doe’);

520 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 520

521

D. OPEN student_cursor 1000;

E. OPEN student_cursor ‘John Doe’;

8. You create a PL/SQL table called student_names. Which of the following com-

mands populates the first row in the table with the name “James Decker”?

A. student_names = ‘James Decker’;

B. student_names := ‘James Decker’;

C. ‘James Decker’ := student_names(1);

D. student_names.name := ‘James Decker’;

E. student_names(1) := ‘James Decker’;

9. You create a record called student_record that contains the elements first-

name, middleinitial, and lastname. Which of the following commands popu-

lates the lastname of the record with the name “Decker”?

A. student_record.lastname := ‘Decker’;

B. student_record(3) := ‘Decker’;

C. student_record(1) := ‘Decker’;

D. student_record := ‘Decker’;

E. lastname := ‘Decker’;

10. Which of the following steps is performed automatically by the cursor FOR

loop. (Choose all that apply.)

A. Opens cursor.

B. Closes cursor.

C. Fetches values from cursor into a record.

D. Declares a record to hold values returned by cursor.

E. Returns an error if cursor returns no rows.

11. The SELECT statement for an explicit cursor does not return any rows. What

happens when you execute the program?

A. An exception is raised because the SELECT statement returns no rows.

B. The program executes successfully.

C. The program cannot be executed because you get a compile error.

D. An exception is raised because the SELECT statement returns more than

one row.

E. You cannot execute a SELECT statement from within a PL/SQL program.

521Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 521

12. Which of the following cursor attributes tell you the number of rows that have

been fetched from an explicit cursor:

A. %FOUND

B. %NOTFOUND

C. %ISOPEN

D. %ROWCOUNT

E. %ROWNUMBER

Scenarios
1. The company sales teams are frequently asked when a particular course is

running. You need to write a program that accepts a course ID and returns the

date or dates and locations where the course is running.

A. Write the SELECT statement that is used for the cursor.

B. Declare a cursor called coursedates_cursor using your SELECT

statement.

C. Declare a record that holds the values returned by the cursor using

%ROWTYPE.

D. Write the command that opens the cursor.

E. Write the command to fetch a record from the cursor into the record.

F. Write the command to close the cursor.

G. Use a Basic loop to fetch all the records and exit when there are no more

records. Use the %NOTFOUND cursor attribute to determine when to

exit the loop.

H. Write a command using DBMS_OUTPUT.PUT_LINE to print each course

date and location on the screen.

I. Change your basic loop to a cursor FOR loop.

J. Which commands can now be removed from your original code.

2. The company needs a program that updates the status of class enrollments

when a class is confirmed or canceled. The program should accept a class ID

and a status. The program should update all the records in the class enroll-

ment table with the specified class ID to the new status. The program should

return a message specifying how many records were updated.

A. Should you use an INSERT, UPDATE, or DELETE in this program?

B. Write the DML statement that updates the records in the class enroll-

ment table.

522 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 522

523

C. What implicit cursor attribute can you use to find out how many rows

were updated?

D. Write a program to perform the update. Use the ACCEPT command to

accept the class ID and the status.

3. The sales staff are often asked questions about a particular course. The staff

members need a program that prints the course name, price, and description

of a particular course when they specify a course number.

A. Declare a record structure called course_record_type that can hold a

course name, price, and description.

B. Declare a record called course_record based on the record structure

course_record_type.

C. Write a SELECT statement that populates the record course_record with

the values in the columns coursename, retailprice, and description for a

course ID stored in a local PL/SQL variable called v_courseid.

D. Using DBMS_OUTPUT.PUT_LINE, write a command that prints the course

name on the screen.

Lab Exercises
Lab 11-1 Cursor FOR loop and index-by table

A. Write a program that fetches all the course names, stores them in an index-by

table, and prints the course names on the screen. First, declare an index-by

table structure called coursename_table_type that can hold course names.

B. Declare an index-by table based on the table structure coursename_table.

C. Declare a cursor called courses_cursor that fetches all the course names from

the courses table.

D. Declare an integer variable called counter. This variable will be used to spec-

ify which row of the PL/SQL table is being populated. Initialize this variable to

one.

E. Using a cursor FOR loop, write code that fetches each row from the cursor

and populates a row in the index-by table. Increment the variable counter

each time through the loop, so that a different row in the PL/SQL table is pop-

ulated each time through the loop.

F. Using DBMS_OUTPUT.PUT_LINE in the cursor FOR loop, print each course

name on the screen.

G. Run your program; what is your output?

523Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 523

Lab 11-2 INSERT, UPDATE, DELETE
A. Write a PL/SQL program that inserts a row into the courses table with the fol-

lowing values: coursenumber=900, coursename=’My Course’,

replacescourse=null, retailprice=500, description=’How to insert rows’.

B. Write a SELECT statement to display the row you have just inserted.

C. Write a PL/SQL program that updates the row you just inserted with a new

course description of “How to update rows”.

D. Write a SELECT statement to display the row you have just updated.

E. Write a PL/SQL program that deletes the row you have just inserted.

F. Write a SELECT statement to ensure the row was deleted.

Lab 11-3 SELECT statements and records
A. Write a PL/SQL program that selects the first name, last name, and middle ini-

tial of student 1000 and displays the student’s full name on the screen. Fetch

each database column selected into a separate variable.

B. Modify the PL/SQL program to use a record to hold the values returned by the

SELECT statement.

C. Modify the PL/SQL program to SELECT all the columns in the student table for

student number 1000 and use a record created with the %ROWTYPE to hold

the values returned.

D. Modify the SELECT statement to return the information for student number

9999, which does not exist. What error message is returned?

E. Remove the WHERE clause from your SELECT statement. What error message

is returned?

Answers to Chapter Questions

Chapter Pre-Test
1. The INTO clause must be added to specify which variables hold the values

returned by the SELECT statement in PL/SQL.

2. SQL%ROWCOUNT returns the number of records updated; SQL%FOUND and

SQL%NOTFOUND indicate if any records were updated.

3. You must use explicit cursors to select multiple records from the database.

4. Adding the FOR UPDATE clause to a cursor declaration locks the records

when the cursor is opened and selects the ROWID of records selected

enabling you to use the WHERE CURRENT OF clause.

524 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 524

525

5. The %FOUND and %NOTFOUND attributes tell you whether all the rows have

been fetched from an explicit cursor.

6. A PL/SQL table is a composite datatype that can hold multiple values of a par-

ticular datatype.

7. A cursor parameter is a value passed to the cursor at runtime that affects the

rows selected by the cursor.

8. The cursor FOR loop opens the cursor, declares a record to hold the values

returned by the cursor, fetches the value from the cursor into the record,

loops until no more records are to be fetched, and closes the cursor without

any additional coding. With the Basic loop, you must add code to perform

that logic.

9. You write the SELECT statement to populate a cursor in the DECLARE section.

10. Yes, you get an error if a SELECT statement returns no rows.

Assessment Questions
1. E — You must add an INTO clause to specify a variable to hold each column

that is selected.

2. A — If a SELECT statement returns no rows, an exception is raised at runtime.

You may prefer to use an explicit cursor, if you do not want an exception

raised.

3. B — The program executes successfully. Oracle does not raise an exception

when a DELETE statement in a PL/SQL program does not delete any rows.

4. E — The syntax for declaring a cursor is CURSOR cursorname IS select_state-

ment. The INTO clause is specified when you FETCH from the cursor, not

when the cursor is declared.

5. A — The FOR UPDATE clause locks the records when the cursor is opened.

6. D — The %NOTFOUND or %FOUND attributes can be used to determine when

the last row has been fetched from a cursor. %ISOPEN tells you whether the

cursor is still open.

7. B — The syntax for opening a cursor with a parameter is OPEN

cursorname(parametervalue). The parameter value must be the same

datatype specified for the parameter in the cursor declaration.

8. E — The syntax to populate a row in a table is tablename(rownumber) :=

value;.

9. A — The syntax to populate a field in a record is recordname.fieldname :=

value;.

10. A + B + C + D — These steps are all performed by the cursor FOR loop. A cur-

sor FOR loop does not return an error if the cursor returns no rows.

525Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 525

11. B — The program executes successfully if a SELECT statement executed by an

explicit cursor returns no rows.

12. D — The %ROWCOUNT attribute returns the number of rows fetched from an

explicit cursor.

Scenarios
1. The company sales team is frequently asked when a particular course is run-

ning. You need to write a program that accepts a course ID and returns the

date or dates and locations where the course is running.

A. Write the SELECT statement that will be used for the cursor.

SELECT startdate, locationid
FROM scheduledclasses
WHERE coursenumber = &p_coursenumber;

B. Declare a cursor called coursedates_cursor using your SELECT

statement.

CURSOR coursedates_cursor IS
SELECT startdate, locationid
FROM scheduledclasses
WHERE coursenumber = &p_coursenumber;

C. Declare a record that holds the values returned by the cursor using

%ROWTYPE.

coursedates_record coursedates_cursor%ROWTYPE;

D. Write the command that opens the cursor.

OPEN coursedates_cursor;

E. Write the command to fetch a record from the cursor into the record.

FETCH coursedates_cursor
INTO coursedates_record;

F. Write the command to close the cursor.

CLOSE coursedates_cursor;

G. Use a Basic loop to fetch all the records and exit when there are no more

records. Use the %NOTFOUND cursor attribute to determine when to

exit the loop.

LOOP
FETCH coursedates_cursor
INTO coursedates_record;

EXIT WHEN coursedates_cursor%NOTFOUND;
END LOOP;

526 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 526

527

H. Write a command using DBMS_OUTPUT.PUT_LINE to print each course

date and location on the screen. You may need to set SERVEROUTPUT

ON in your SQL*Plus session to see the output.

DBMS_OUTPUT.PUT_LINE(‘Course date:’
||coursedates_record.startdate||’ location: ‘
||coursedates_record.locationid);

I. Change your Basic loop to a cursor FOR loop.

FOR coursedates_record IN coursedates_cursor LOOP

DBMS_OUTPUT.PUT_LINE(‘Course date:’
||coursedates_record.startdate||’ location: ‘
||coursedates_record.locationid);

END LOOP;

J. The OPEN cursor, CLOSE cursor, FETCH INTO, EXIT WHEN, and record

declaration can all be removed from the original code when you use the

cursor FOR loop, because the cursor FOR loop executes all these com-

mands implicitly.

2. You need to write a program that updates the status of class enrollments. The

program should accept a class ID and a status. The program should update all

the records in the class enrollment table with that particular class ID to the

specified status. The program should return a message specifying the number

of records that were updated.

A. Should you use an INSERT, UPDATE, or DELETE statement in this

program?

An UPDATE statement should be used.

B. Write the DML statement that updates the records in the class enroll-

ment table. Assume the status and class ID are stored in local PLSQL

variables called v_status and v_classid.

UPDATE ClassEnrollment
SET status = v_status

WHERE classid = v_classid;

C. What implicit cursor attribute can you use to find out the number of

rows that were updated?

SQL%ROWCOUNT

D. Write a program to perform the update. Use the ACCEPT command to

accept the class ID and the status.

ACCEPT p_classid NUMBER –
PROMPT “Enter the class id to be updated: “
ACCEPT p_status CHAR –
PROMPT “Enter the new class status: “

527Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 527

DECLARE
v_status classenrollment.status%TYPE

:= ‘&p_status’;
v_classid classenrollment.classid%TYPE

:= &p_classid;
BEGIN

UPDATE ClassEnrollment
SET status = v_status

WHERE classid = v_classid;

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT||
‘ class enrollment records were updated.’);

END;
/

3. The sales staff are often asked questions about a particular course. The staff

members need a program that prints the course name, price, and description

of a particular course when they specify a course number.

A. Declare a record structure called course_record_type that can hold a

course name, price, and description.

TYPE course_record_type IS RECORD
(coursename VARCHAR2(200),
retailprice INT,
description VARCHAR2);

B. Declare a record called course_record based on the record structure

course_record_type.

course_record course_record_type;

C. Write a SELECT statement that populates the record course_record with

the values in the columns coursename, retailprice, and description for a

course ID stored in a local PL/SQL variable called v_courseid.

SELECT coursename, retailprice, description
INTO course_record
FROM courses
WHERE courseid = v_courseid;

D. Using DBMS_OUTPUT.PUT_LINE, write a command that prints the course

name on the screen.

DBMS_OUTPUT.PUT_LINE(‘Course Name is :’
course_record.coursename);

Lab Exercises

Lab 11-1 Cursor FOR loop and index-by table
DECLARE

/* Create index-by table structure called
coursename_table_type */
TYPE coursename_table_type IS TABLE OF

528 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 528

529

courses.coursename%TYPE
INDEX BY BINARY_INTEGER;

/* Create index-by table called coursename table */
coursename_table coursename_table_type;

/* Declare cursor to fetch all coursenames from courses
table */
CURSOR courses_cursor IS
SELECT coursename
FROM courses;

/* Declare a counter to keep track of which row in the
index-by table is being populated */
counter PLS_INTEGER := 1;

BEGIN
/* Fetch all rows from the cursor with cursor FOR loop */
FOR course_record IN courses_cursor LOOP

/* Populate coursename_table with row fetched from
cursor */
coursename_table(counter) :=

course_record.coursename;

/* Print course name on the screen */
DBMS_OUTPUT.PUT_LINE(coursename_table(counter));

/* Increment counter so next time a new row will be
populated in the coursename table */
counter := counter+1;

END LOOP;
END;
/

This program produces the following output:

Basic SQL
Advanced SQL
Performance Tuning your Database
Database Performance Basics
Database Administration
Backing up your database
Basic PL/SQL
Advanced PL/SQL
Using your PL/SQL skills

529Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 529

Lab 11-2 INSERT, UPDATE, DELETE
A.

BEGIN
INSERT INTO courses (coursenumber, coursename,
replacescourse, retailprice, description)
VALUES (900, ‘My Course’,null, 500,
‘How to insert rows’);

END;
/

B.

SELECT *
FROM courses
WHERE coursenumber=900;

COURSENUMBER COURSENAME
------------ --
REPLACESCOURSE RETAILPRICE DESCRIPTION
-------------- ----------- ----------------------------
900 My Course

500 How to insert rows

C.

BEGIN
UPDATE courses
SET description=’How to update rows’
WHERE coursenumber=900;

END;
/

D.

SELECT *
FROM courses
WHERE coursenumber=900;

COURSENUMBER COURSENAME
------------ --
REPLACESCOURSE RETAILPRICE DESCRIPTION
-------------- ----------- ----------------------------
900 My Course

500 How to update rows

E.

BEGIN
DELETE FROM courses
WHERE coursenumber=900;

END;
/

530 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 530

531

F.

SELECT *
FROM courses
WHERE coursenumber=900;

no rows selected

Lab 11-3 SELECT statements and records
A.

DECLARE
v_firstname students.firstname%TYPE;
v_lastname students.lastname%TYPE;
v_middleinitial students.middleinitial%TYPE;

BEGIN
SELECT firstname, lastname, middleinitial
INTO v_firstname, v_lastname, v_middleinitial
FROM students
WHERE studentnumber=1000;

DBMS_OUTPUT.PUT_LINE(v_firstname||’ ‘||
v_middleinitial||’ ‘||v_lastname);
END;

B.

DECLARE
TYPE student_record_type IS RECORD

(firstname students.firstname%TYPE,
lastname students.lastname%TYPE,
middleinitial students.middleinitial%TYPE);

student_record student_record_type;
BEGIN
SELECT firstname, lastname, middleinitial
INTO student_record
FROM students
WHERE studentnumber=1000;

DBMS_OUTPUT.PUT_LINE(student_record.firstname||’ ‘||
student_record.middleinitial||
‘ ‘||student_record.lastname);

END;

C.

DECLARE
student_record students%ROWTYPE;

BEGIN
SELECT *
INTO student_record
FROM students

531Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 531

WHERE studentnumber=1000;

DBMS_OUTPUT.PUT_LINE(student_record.firstname||’ ‘||
student_record.middleinitial||
‘ ‘||student_record.lastname);

END;

D. ORA-01403: no data found

E. ORA-01422: exact fetch returns more than requested number of rows

532 Chapter 11 ✦ Study Guide

4832-8 ch11.F 7/27/01 9:02 AM Page 532

Handling Errors and
Exceptions in
PL/SQL

EXAM OBJECTIVES

✦ Handling Exceptions

• Define PL/SQL exceptions

• Recognize unhandled exceptions

• List and use different types of PL/SQL exception handlers

• Trap unanticipated errors

• Describe the effect of exception propagation in nested blocks

• Customize PL/SQL exception messages

✦ Use coding conventions

✦ Execute and test a PL/SQL block

1212C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch12.F 7/27/01 9:02 AM Page 533

534 Part III ✦ Using PL/SQL

CHAPTER PRE-TEST
1. What are compile errors, and how do you get information about them?

2. What are the three types of exceptions in PL/SQL?

3. How are exceptions raised?

4. What happens in a SQL*Plus environment when an exception is raised
in a block with no exception section?

5. What does an exception handler do?

6. What does the WHEN OTHERS clause of the exception section do?

7. How can you capture the code and message of the current error in an
exception handler?

8. How do you associate a descriptive name with an Oracle non-
predefined error number?

9. How can you pass a user-defined error message to the calling environ-
ment, just like regular Oracle errors?

10. How can you tailor error-handling statements to a particular piece of
PL/SQL code?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch12.F 7/27/01 9:02 AM Page 534

535Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

In the course of creating programs, errors are bound to occur. Sometimes your

program won’t compile, while sometimes it compiles and runs but it ends pre-

maturely because of a runtime error. Sometimes your program appears to function

correctly, but it won’t do what it is supposed to do because of errors in the pro-

gram logic. In this chapter, you will investigate how to handle the various errors

that can occur in PL/SQL.

Types of Errors
The various errors that occur in a PL/SQL program can be classified as three types:

✦ Compile errors

✦ Program logic errors

✦ Runtime errors or exceptions

Compile errors
At compile time, the PL/SQL compiler examines the code and determines whether

or not all of the references made are legal. For example, if a database table is used

in the code, the compiler must determine if the object exists in the database and if

the user has the proper privileges on it. It must also check that all of the identifiers

that are used have been declared, and that variable assignments are legal. If the

compilation is unsuccessful, you must examine the compilation errors in order to

fix them and try again.

PL/SQL anonymous blocks are compiled just before running, and if any compile

errors exist, the anonymous blocks will not execute. In SQL*Plus, these errors are

output to the screen as follows:

SQL> DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10
5 END;
6 /

END;
*
ERROR at line 5:
ORA-06550: line 5, column 1:
PLS-00103: Encountered the symbol “END” when expecting one of
the following:
* & = - + ; < / > in mod not rem an exponent (**)
<> or != or ~= >= <= <> and or like between is null is not ||
is dangling
The symbol “;” was substituted for “END” to continue.

4832-8 ch12.F 7/27/01 9:02 AM Page 535

536 Part III ✦ Using PL/SQL

This output tells you that there is an error at line 5, column 1, and it shows that line

with an asterisk under the part that the compiler believes contains an error. The

line that the compiler reports as having an error often is not really the line at fault.

In this example, the line before contains an error: it does not end with a semicolon

(;). The actual error message displayed does not clearly state the problem but indi-

cates that it reached the word END when it was expecting something else in order

to make the line before legal.

SQL*Plus handles the compilation of stored program units differently than anony-

mous blocks. Program units such as procedures and functions are compiled when

they are first created. The following function calculates the tax on an amount and

returns it, but again, a compilation error will be found due to a missing semicolon:

1 CREATE FUNCTION tax(p_amount IN NUMBER)
2 RETURN NUMBER
3 IS
4 v_tax NUMBER;
5 BEGIN
6 v_tax := p_amount * 0.07
7 RETURN v_tax;
8* END;

SQL> /

Warning: Function created with compilation errors.

Note that SQL*Plus does not show the compilation error messages but creates the

object and warns you of the errors. In order to discover what errors exist for stored

program units that you own, you can query the USER_ERRORS data dictionary view.

Even more convenient than this is to use the SQL*Plus command SHOW ERRORS,

which shows only the errors for program units that you created in this session:

SQL> SHOW ERRORS
Errors for FUNCTION TAX:

LINE/COL ERROR
-------- --
7/3 PLS-00103: Encountered the symbol “RETURN” when expecting one of

the following:
* & = - + ; < / > in mod not rem an exponent (**)
<> or != or ~= >= <= <> and or like between is null is not ||
is dangling

9/0 PLS-00103: Encountered the symbol “end-of-file” when expecting
one of the following:
begin function package pragma procedure subtype type use
<an identifier> <a double-quoted delimited-identifier> cursor
form current

4832-8 ch12.F 7/27/01 9:02 AM Page 536

537Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

Optionally, you can pass to the SHOW ERRORS command the name of a program

unit, and it will show any compilation errors for it, even if you did not create it in

your current session.

For more information on creating and using stored program units, refer to Chapter
13, “Introduction to Stored Programs.”

Program logic errors
Errors in program logic, known as bugs, are often the most difficult to find because

the program seems to run correctly. Such errors become known usually after the

program has been tested several times. Searching for these errors is the process

known as debugging. The process of debugging PL/SQL depends heavily on the envi-

ronment that you are using for developing your code.

For instance, in some PL/SQL development environments, like Oracle’s Procedure

Builder tool, you can halt the execution of a program at a specified line in order to

examine the values of variables at that point. You can then step through the code

one line at a time to watch how the program behaves. In an environment like

SQL*Plus, however, you do not have the ability to stop execution and step through

line-by-line. The only real option you have for debugging in SQL*Plus is to write the

values of variables to the screen at various points during the program using the

DBMS_OUTPUT.PUT_LINE procedure. The following is an example of a program that

completes successfully but does not do what it is supposed to. It should prompt

the user for the name and price of a new course, and then insert that course into

the table, using a course number determined by adding 10 to the highest course

number.

DECLARE
v_new_number Courses.CourseNumber%TYPE := 0;
v_new_name Courses.CourseName%TYPE := ‘&Name’;
v_new_price Courses.RetailPrice%TYPE := &Price;

BEGIN
SELECT MAX(CourseNumber) + 10
INTO v_new_price
FROM Courses;
INSERT INTO Courses(CourseNumber, CourseName,

RetailPrice)
VALUES(v_new_number, v_new_name, v_new_price);

END;

Here is a sample execution of the code, with a search for the new course:

SQL> /
Enter value for name: Intro to Shell Programming
Enter value for price: 1500

Cross-
Reference

4832-8 ch12.F 7/27/01 9:02 AM Page 537

538 Part III ✦ Using PL/SQL

PL/SQL procedure successfully completed.

SQL> SELECT CourseNumber, CourseName, RetailPrice
2 FROM Courses
3 WHERE CourseName = ‘Intro to Shell Programming’
4 AND RetailPrice = 1500;

no rows selected

In order to determine what went wrong, the last attempt is rolled back and output

lines are added to the code to show the three variables at different stages of the

program:

DECLARE
v_new_number Courses.CourseNumber%TYPE := 0;
v_new_name Courses.CourseName%TYPE := ‘&Name’;
v_new_price Courses.RetailPrice%TYPE := &Price;

BEGIN
DBMS_OUTPUT.PUT_LINE(‘Before the SELECT’);
DBMS_OUTPUT.PUT_LINE(‘Number is: ‘||TO_CHAR(v_new_number));
DBMS_OUTPUT.PUT_LINE(‘Name is: ‘||v_new_name);
DBMS_OUTPUT.PUT_LINE(‘Price is: ‘||TO_CHAR(v_new_price));

SELECT MAX(CourseNumber) + 10
INTO v_new_price
FROM Courses;

DBMS_OUTPUT.PUT_LINE(‘After the SELECT’);
DBMS_OUTPUT.PUT_LINE(‘Number is: ‘||TO_CHAR(v_new_number));
DBMS_OUTPUT.PUT_LINE(‘Name is: ‘||v_new_name);
DBMS_OUTPUT.PUT_LINE(‘Price is: ‘||TO_CHAR(v_new_price));

INSERT INTO Courses(CourseNumber, CourseName,
RetailPrice)

VALUES(v_new_number, v_new_name, v_new_price);
END;

SQL> /
Enter value for name: Intro to Shell Programming
Enter value for price: 1500
Before the SELECT
Number is: 0
Name is: Intro to Shell Programming
Price is: 1500
After the SELECT
Number is: 0
Name is: Intro to Shell Programming
Price is: 330

PL/SQL procedure successfully completed.

4832-8 ch12.F 7/27/01 9:02 AM Page 538

539Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

Upon investigating the output, you should find that the SELECT statement appears

to be populating the wrong variable — v_new_price has changed, not v_new_

number. This is the error in program logic.

Runtime errors or exceptions
Runtime errors in PL/SQL are called exceptions. An exception is a PL/SQL identifier,

meaning it must be declared in much the same way as a variable must be (although

some exceptions are declared for you by Oracle), and the exception follows the

same rules of scope as for variables: it can be referenced only within the block in

which it is declared. These exceptions are then “raised” at runtime and alter the

normal execution of your code. The rest of this chapter is devoted to the use of

exceptions.

Exception Handling
✦ List and use different types of PL/SQL exception handlers

When an error condition is encountered during the execution of a PL/SQL block of

code, an exception is raised, and the regular flow of the program is altered. Control

of the program immediately jumps to the end of the current block and searches for

an error handler in the exception section, which starts with the EXCEPTION key-

word. This is done so that the program does not continue to execute lines of code,

possibly causing even more errors to occur.

Some programming languages do not have a specific error-handling section, so they

must test after each line whether or not an error has occurred. In PL/SQL, this is all

done in the exception section, so your block will look like this:

DECLARE
declaration statements;

BEGIN
executable statements;

EXCEPTION
error handlers;

END;

The error condition can be encountered by the Oracle server, which raises an

exception, or you can raise exceptions in the code yourself, using the RAISE state-

ment. Either way, control of the program jumps to the exception section. Because

this section is optional, the error may propagate to the calling environment. This is

what is called an unhandled exception. The following example illustrates an unhan-

dled exception:

Objective

4832-8 ch12.F 7/27/01 9:02 AM Page 539

540 Part III ✦ Using PL/SQL

DECLARE
v_num1 NUMBER := &first_number;
v_num2 NUMBER := &second_number;
v_result NUMBER;

BEGIN
v_result := v_num1/v_num2;
DBMS_OUTPUT.PUT_LINE(‘The quotient is ‘||TO_CHAR(v_result));

END;

This block prompts the user for two numbers and then prints the result when the

first is divided by the second. Here are two executions of this code. The first one

works correctly and gives the proper output, while the second raises an unhandled

exception when the program attempts to divide by zero.

SQL> /
Enter value for first_number: 10
Enter value for second_number: 5
The quotient is 2

PL/SQL procedure successfully completed.

SQL> /
Enter value for first_number: 15
Enter value for second_number: 0
DECLARE
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 6

Notice that when this exception is propagated to the calling environment (in this

case, SQL*Plus), it simply outputs the error code and message to the screen. Other

calling environments deal with unhandled exceptions differently. In SQL*Plus, the

first line of the error output states that there is an error at line 1, and it shows the

asterisk under the word DECLARE. There is nothing wrong with line 1, but this out-

put is telling you that an unhandled exception is in the block that begins on line 1.

The real statement in error, along with the error code and message, are reported in

the second and third lines of output.

In order to handle raised exceptions, you must first understand the three types of

exceptions in PL/SQL:

✦ Predefined

✦ Non-predefined

✦ User-defined

4832-8 ch12.F 7/27/01 9:02 AM Page 540

541Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

Predefined exceptions
Because exceptions are identifiers like variables, constants, and cursors, they also

need to be declared before they can be used. However, a number of common excep-

tions have been declared for you in the STANDARD package. This means that you

may use them without first declaring them in the declaration section. One example

of a predefined exception is ZERO_DIVIDE. In the last example, this exception was

raised by the server when an attempt was made to divide a number by zero. In that

example, the exception was not handled and, therefore, propagated to the calling

environment. In this next example, an exception handler is included in the excep-

tion section:

DECLARE
v_num1 NUMBER := &first_number;
v_num2 NUMBER := &second_number;
v_result NUMBER;

BEGIN
v_result := v_num1/v_num2;
DBMS_OUTPUT.PUT_LINE(‘The quotient is ‘||TO_CHAR(v_result));

EXCEPTION
WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE(‘You cannot divide by zero’);

END;

Here are the results when the same values are given to the program:

SQL> /
Enter value for first_number: 10
Enter value for second_number: 5
The quotient is 2

PL/SQL procedure successfully completed.

SQL> /
Enter value for first_number: 15
Enter value for second_number: 0
You cannot divide by zero

PL/SQL procedure successfully completed.

Note that if there are no errors, the program runs until it hits the exception section,

which is skipped. However, as soon as the server encounters the division by zero,

the program jumps down to the exception section, skipping the first output state-

ment. Once the error-handling statement runs, the program leaves the block. In

fact, there is no way to return to the executable section from an error handler, not

even using the GOTO statement. In addition, because the error is handled, control

goes back to the calling environment (SQL*Plus) without an error condition, and

the feedback tells you that the block successfully completed.

4832-8 ch12.F 7/27/01 9:02 AM Page 541

542 Part III ✦ Using PL/SQL

In the previous example, there is only one error handler, and it runs only one state-

ment. In general, you may include more than one handler, and each may run any

number of statements, although only one handler will run before the block ends.

You can specify that more than one exception use the same handler, but each

exception can appear in at most only one handler. Then the exception section will

generally look like this:

EXCEPTION
WHEN exception_name [OR exception_name ...] THEN
statement;
...

[WHEN exception_name [OR exception_name ...] THEN
statement;
...]

[WHEN OTHERS THEN
statement;
...]

END;

While it is possible to define more than one handler in a block, doing so makes it
difficult to determine what Oracle will do and can cause unpredictable execution
of code. In reality, you should never define more than one exception handler in a
block, and doing so is never done.

Notice that you may include the optional WHEN OTHERS clause as the last clause.

This is a “catch-all” clause, much like the ELSE clause of an IF statement. If an

exception is raised in the executable section of the block, control jumps to the

exception section, and the program looks for the first handler associated with that

error. If it does not find a specific handler for that error, then the statements in the

WHEN OTHERS clause run. If there is no WHEN OTHERS clause, then the unhandled

exception propagates to the calling environment.

The list of predefined exceptions and their meanings is in Table 12-1.

Table 12-1
Predefined Exceptions

Exception Name Oracle Error Description
Number

ACCESS_INTO_NULL ORA-06530 When objects have not been initialized,
you cannot assign values to their
attributes, and this exception will be
raised.

COLLECTION_IS_NULL ORA-06531 Similar to the previous exception, you
cannot call methods on an uninitialized
nested table or VARRAY (except EXISTS).

In the
Real World

4832-8 ch12.F 7/27/01 9:02 AM Page 542

543Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

Exception Name Oracle Error Description
Number

CURSOR_ALREADY_OPEN ORA-06511 If a cursor is open and you try to open it
again, this exception will be raised.

DUP_VAL_ON_INDEX ORA-00001 You cannot insert duplicate values on a
unique index, which is created by adding a
PRIMARY KEY or UNIQUE constraint.

INVALID_CURSOR ORA-01001 If you try to fetch or close a cursor that has
not been declared and opened, this
exception is raised.

INVALID_NUMBER ORA-01722 You cannot convert a character string to a
number if it is not numeric. This is raised
by SQL statements, not PL/SQL executable
statements.

LOGIN_DENIED ORA-01017 When an attempt is made to log in to the
Oracle sever with an invalid username
and/or password, this exception is raised.

NO_DATA_FOUND ORA-01403 When a SELECT...INTO statement is
embedded in PL/SQL, it must fetch one
row. If none are returned, this exception is
raised.

NOT_LOGGED_ON ORA-01012 This exception is raised when you try a
database operation without being
logged in.

PROGRAM_ERROR ORA-06501 This exception is raised when an error
internal to PL/SQL is encountered. This
exception is very rare.

ROWTYPE_MISMATCH ORA-06504 This exception is raised when passing
cursor variables between a host and a
stored procedure or function with different
return types.

SELF_IS_NULL ORA-30625 In objects with member methods, this
exception is raised when the object is
NULL and a method is called.

STORAGE_ERROR ORA-06500 This exception is an out-of-memory error.

SUBSCRIPT_BEYOND_COUNT ORA-06533 For nested tables and VARRAYs, there is an
upper bound on allowable index values. If
you try to use a number past that bound,
this exception is raised.

Continued

4832-8 ch12.F 7/27/01 9:02 AM Page 543

544 Part III ✦ Using PL/SQL

Table 12-1 (continued)

Exception Name Oracle Error Description
Number

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 Similar to preceding exception, but the
index value is not even a legal value — for
example, if negative numbers were used.

SYS_INVALID_ROWID ORA-01410 This exception is raised when attempting
to convert a character string that does not
have the right format to a ROWID.

TIMEOUT_ON_RESOURCE ORA-00051 Some Oracle resources have a time-out.
When it expires, this exception is raised.

TOO_MANY_ROWS ORA-01422 The SELECT...INTO in a PL/SQL statement
cannot return more than one row, and this
exception is raised.

VALUE_ERROR ORA-06502 This exception is raised when an
assignment statement attempts to put a
value that is too large into a variable. It is
also raised when a PL/SQL statement tries
to convert a non-numeric string to a
number.

ZERO_DIVIDE ORA-01476 If the program attempts to perform a
division by zero, this exception is raised.

Although there are 20 predefined exceptions, the ones most likely to appear on
the exam are ZERO_DIVIDE, NO_DATA_FOUND, and TOO_MANY_ROWS.

Non-predefined exceptions
The majority of exceptions raised by the Oracle server are not predefined. That is,

they have an error code but do not have a name associated with them. Therefore, in

order to trap them in an error handler, you must declare them. The syntax for

declaring an exception is similar to that for a variable:

DECLARE
v_num NUMBER;
e_child_found EXCEPTION;

Just as the numeric variable v_num is defined by stating its name followed by its

datatype, the exception e_child_found is defined by stating its name and that it is

an EXCEPTION. As the name of this exception implies, it has something to do with

Exam Tip

4832-8 ch12.F 7/27/01 9:02 AM Page 544

545Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

the error that occurs when an attempt is made to delete a parent record in a foreign

key relationship. However, this exception will not automatically be associated with

that error because of the name that you have chosen for it. You must explicitly

associate that exception name with the Oracle error number. Then when Oracle

raises that error number, you will be able to trap the exception using the name you

have associated with it.

The syntax for associating an exception name to an Oracle error number involves

a compiler directive, or pragma. A pragma is followed by the compiler but is

ignored at runtime. The following examples show the use of the pragma called

EXCEPTION_INIT, which initializes (or associates) an exception with an error num-

ber. In the first case, the referential integrity constraint error ORA-02292 is unhan-

dled. In the second case, it is associated with the exception named v_child_found:

DECLARE
v_num Courses.CourseNumber%TYPE := &number;

BEGIN
DELETE FROM Courses
WHERE CourseNumber = v_num;
DBMS_OUTPUT.PUT_LINE(‘Course has been deleted’);

END;

Here is the output from an execution where the course number to be deleted is in

use in the ScheduledClasses table:

SQL> /
Enter value for number: 100
DECLARE
*
ERROR at line 1:
ORA-02292: integrity constraint
(STUDENT.FK_SCHEDCLASS_COURSENUM) violated - child record found
ORA-06512: at line 4

Now the error will be trapped by declaring an exception and associating it with the

error number –2292:

DECLARE
v_num Courses.CourseNumber%TYPE := &number;
e_child_found EXCEPTION;
PRAGMA EXCEPTION_INIT(e_child_found, -2292);

BEGIN
DELETE FROM Courses
WHERE CourseNumber = v_num;
DBMS_OUTPUT.PUT_LINE(‘Course has been deleted’);

EXCEPTION
WHEN e_child_found THEN
DBMS_OUTPUT.PUT_LINE(‘Course has already been scheduled’);
DBMS_OUTPUT.PUT_LINE(‘It cannot be deleted’);

END;

4832-8 ch12.F 7/27/01 9:02 AM Page 545

546 Part III ✦ Using PL/SQL

The output is now as follows:

SQL> /
Enter value for number: 100
Course has already been scheduled
It cannot be deleted

PL/SQL procedure successfully completed.

In order to decide which errors you are going to associate with exceptions, you
must fully test your program for all possible situations. From these tests, you
should be able to capture the error codes of the form ORA-XXXXX and then decide
what should be done in each case. Remember that for some of these codes, the
names are predefined, but for the rest of them, you have to create and associate
exception names. The exception name is associated to just the numeric part of the
code, which is of the form -XXXXX. This is a negative integer, so leading zeros need
not be included. Thus, the ORA-02292 error can be trapped with the number
-02292 or -2292.

User-defined exceptions
The last type of exception is one that is not automatically raised by the Oracle

server. It represents some sort of error according to your application’s business

rules. It must be raised within the program using the RAISE statement. For example,

the ClassEnrollment table has a column called Status. One business rule may be

that an enrollment may not be deleted if it has a status of “Confirmed”. This is not a

problem for the server, because no referential integrity (foreign key) constraints are

being violated, but it should be treated as an error in the application. Here is the

example:

DECLARE
v_class ClassEnrollment.ClassID%TYPE := &class;
v_student ClassEnrollment.StudentNumber%TYPE := &student;
v_status ClassEnrollment.Status%TYPE;
e_confirmed EXCEPTION;

BEGIN
SELECT Status
INTO v_status
FROM ClassEnrollment
WHERE ClassID = v_class
AND StudentNumber = v_student;

IF v_status = ‘Confirmed’ THEN
RAISE e_confirmed;

END IF;

DELETE FROM ClassEnrollment
WHERE ClassID = v_class
AND StudentNumber = v_student;

Tip

4832-8 ch12.F 7/27/01 9:02 AM Page 546

547Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

DBMS_OUTPUT.PUT_LINE(‘This enrollment has been deleted’);
EXCEPTION

WHEN e_confirmed THEN
DBMS_OUTPUT.PUT_LINE(‘This enrollment is already confirmed’);
DBMS_OUTPUT.PUT_LINE(‘It cannot be deleted’);

END;

The output for two executions, one with status “Hold” and one with status

“Confirmed” is as follows:

SQL> /
Enter value for class: 53
Enter value for student: 1003
This enrollment has been deleted

PL/SQL procedure successfully completed.

SQL> /
Enter value for class: 51
Enter value for student: 1008
This enrollment is already confirmed
It cannot be deleted

PL/SQL procedure successfully completed.

Note that the user-defined exception is declared in the same way as the unprede-

fined exception, but that it is not associated with an actual Oracle error number.

Therefore, it is never raised without the RAISE statement. The RAISE statement can

also be used to raise Oracle errors, whether predefined or not. Here is an example

that raises the NO_DATA_FOUND error if an UPDATE statement fails to alter any

rows. Generally, the NO_DATA_FOUND error is raised automatically by the server

when a SELECT statement retrieves no rows, but you may want to use the same

handler for both:

BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE NO_DATA_FOUND;

END IF;
...

EXCEPTION
WHEN NO_DATA_FOUND THEN
...

END;

This example then does the same error handling whether it is the SELECT or the

UPDATE statement that affects no rows.

4832-8 ch12.F 7/27/01 9:02 AM Page 547

548 Part III ✦ Using PL/SQL

WHEN OTHERS Clause
✦ Trap unanticipated errors

Even with rigorous testing, you cannot anticipate every error that can arise in the

use of your program. You need to decide which ones you will build specific han-

dlers for, and for the rest, you have two choices: build a generic handler for all

other errors using the WHEN OTHERS clause, or let the error propagate to the call-

ing environment.

The WHEN OTHERS clause is sometimes necessary to provide error-handling state-

ments for any error situation. Some examples of things that are commonly done

include rolling back transactions and closing all open cursors before leaving the

block. Note that if it is to be used, the WHEN OTHERS clause must be the last of the

error handlers in the exception section. The problem with the WHEN OTHERS

clause is that sometimes poor programmers will fall into the trap of doing the

following:

EXCEPTION
WHEN NO_DATA_FOUND THEN
...

WHEN TOO_MANY_ROWS THEN
...

WHEN OTHERS THEN
ROLLBACK;
DBMS_OUTPUT.PUT_LINE(‘Some error occurred’);

END;

If you output such a message, you must be prepared to receive support calls like

the following:

“Something went wrong with my application.”

“What does the message say?”

“Some error occurred.”

Unless you are going to provide further information in the message, or possibly in

some error table, you will not have any clue what went wrong in the application.

You can use the functions SQLCODE and SQLERRM to return the error number and

text within your exception handler. You can then either print these out to the

screen or write them to an error table. This example illustrates the latter:

DECLARE
v_code NUMBER;
v_message VARCHAR2(255);
v_num1 NUMBER := &first_number;
v_num2 NUMBER := &second_number;
v_result NUMBER;

Objective

4832-8 ch12.F 7/27/01 9:02 AM Page 548

549Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

BEGIN
v_result := v_num1/v_num2;
DBMS_OUTPUT.PUT_LINE(v_result);

EXCEPTION
WHEN OTHERS THEN
v_code := SQLCODE;
v_message := SUBSTR(SQLERRM,1,255);
DBMS_OUTPUT.PUT_LINE(‘Some error occurred’);
INSERT INTO Errors(UserName, Code, Message)
VALUES(USER, v_code, v_message);

END;

When executed, this block prompts for two numbers, and if the second is zero, then

it fails with the ZERO_DIVIDE exception. Here is what the output looks like, as well

as the new row in the Errors table:

SQL> /
Enter value for first_number: 15
Enter value for second_number: 0
Some error occurred

PL/SQL procedure successfully completed.

SQL> SELECT *
2 FROM Errors;

USERNAME CODE MESSAGE
-------------------- --------- ------------------------------
STUDENT -1476 ORA-01476: divisor is equal to

zero

Most of the Oracle errors result in a code that is simply the –XXXX portion of the

error number of the form ORA-XXXXX. There are some exceptions to this rule,

including the NO_DATA_FOUND error, which returns +100. All user-defined excep-

tions return a SQLCODE of +1 with the SQLERRM “User-Defined Exception”. If there

is no error, then SQLCODE returns zero, and the message is “ORA-0000: normal, suc-

cessful completion”.

Note that you cannot insert the values SQLCODE and SQLERRM directly into a SQL

command. You must first assign their values to local variables, and with SQLERRM,

it is a good idea to use the substring function to avoid any value errors because it is

a LONG datatype.

Error Propagation
✦ Describe the effect of exception propagation in nested blocks

In SQL*Plus, unhandled exceptions are simply printed to the screen, but what if the

calling environment for the PL/SQL block is not SQL*Plus? If the block is nested

Objective

4832-8 ch12.F 7/27/01 9:02 AM Page 549

550 Part III ✦ Using PL/SQL

within another PL/SQL block, the results are somewhat different. For example, in

the following block, an error is raised in the sub-block but is not handled:

DECLARE
x NUMBER;
BEGIN
x := 10;
BEGIN
x := 20;
RAISE INVALID_NUMBER;
END;
DBMS_OUTPUT.PUT_LINE(x);
END;

When the program looks for an exception handler, it first looks at the inner block;

then control passes out to the outer block, where it looks for a handler for

INVALID_NUMBER. If it finds no handler there, only then does it pass to the calling

environment:

SQL> /
DECLARE
*
ERROR at line 1:
ORA-01722: invalid number
ORA-06512: at line 7

Now, if there were an exception handler in the outer block, it would trap the error:

DECLARE
x NUMBER;
BEGIN
x := 10;
BEGIN
x := 20;
RAISE INVALID_NUMBER;
EXCEPTION
WHEN INVALID_NUMBER THEN
DBMS_OUTPUT.PUT_LINE(‘error handled’);

END;
DBMS_OUTPUT.PUT_LINE(x);
END;

With the error trapped in the inner block, control then passes to the next exe-

cutable line after that block ends. Therefore, the value of x is printed:

SQL> /
error handled
20

PL/SQL procedure successfully completed.

4832-8 ch12.F 7/27/01 9:02 AM Page 550

551Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

This flow of control is one of the main reasons why blocks are nested within one

another. When all statements are placed in just one block and an exception is

raised, the exception handler is processed, and then the program must end. When

certain error-prone statements are placed in a nested block, only the inner block

needs to end, so the program can continue.

The other main reason that nested blocks are used is so that error handling can be

tailored to a particular section of code. Consider the following code:

BEGIN
SELECT ...
SELECT ...
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
...

END;

In this example, no matter which of the three SELECT statements raises the

NO_DATA_FOUND exception, the one exception handler will run its statements.

What if you want different statements to run depending on which one fails? This

next example will show how each one can differ:

BEGIN

BEGIN
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
...

END;

BEGIN
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
...

END;

SELECT ...
EXCEPTION
WHEN NO_DATA_FOUND THEN
...

END;

This provides three different exception handlers. This block will work slightly dif-

ferently than the earlier one if the error is in the first or second sub-blocks. This is

because once they handle the error, they will continue with the flow of the main

block. If you were to re-raise the exception from one of the handlers, it would also

4832-8 ch12.F 7/27/01 9:02 AM Page 551

552 Part III ✦ Using PL/SQL

propagate the error to the outer block, which can sometimes be a useful technique.

In the example in Figure 12-1, nested block exception handlers take care of the mes-

sage output to the screen, then re-raise the current exception to propagate it to the

outer block, which logs the error.

Figure 12-1: An example of error propagation

Note that the syntax to re-raise the current exception from a handler is simply the

RAISE statement with no exception name given. Following are two successful and

two unsuccessful executions of the code, along with the entries in the

SearchProblems table. This block takes advantage of the fact that student numbers

start at 1,000 and go up, while all of the instructor IDs are less than 1,000:

SQL> /
Enter value for person_number: 1001
Jones

DECLARE
 v_num NUMBER: = &person_number;
 v_name Instructors.LastName%TYPE;
BEGIN
 IF v_num>=1000 THEN
 BEGIN
 SELECT LastName
 INTO v_name
 FROM Students
 WHERE StudentNumber= v_num;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid student number');
 RAISE;
 END;
 ELSE
 BEGIN
 SELECT LastName
 INTO v_name
 FROM Instructors
 WHERE InstructorID= v_num;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid instructor ID');
 RAISE;
 END;
 END IF;
 DBMS_OUTPUT.PUT_LINE(v_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO SearchProblems(UserName, ProblemDate, Description)
 VALUES(USER, SYSDATE, 'Invalid value given');
END;

If an invalid
StudentNumber
is given,
NO_DATA_FOUND
exception is raised

The RAISE
command will
re-raise the
current exception
in the outer block

4832-8 ch12.F 7/27/01 9:02 AM Page 552

553Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

PL/SQL procedure successfully completed.

SQL> /
Enter value for person_number: 300
Harrison

PL/SQL procedure successfully completed.

SQL> /
Enter value for person_number: 1302
Invalid student number

PL/SQL procedure successfully completed.

SQL> /
Enter value for person_number: 122
Invalid instructor ID

PL/SQL procedure successfully completed.

SQL> SELECT *
2 FROM SearchProblems;

USERNAME PROBLEMDATE DESCRIPTION
-------------------- ----------- --------------------

STUDENT 20-FEB-01 Invalid value given

STUDENT 20-FEB-01 Invalid value given

From an exception handler, you may also RAISE a different exception by using the

syntax:

RAISE exception_name;

This error immediately propagates to the exception section of the outer block,

regardless of whether or not a handler for this exception appears later in the same

exception section. Similarly, exceptions raised in the declare section of a block can-

not be handled within the exception section of the same block.

Because different calling environments deal with unhandled exceptions in different

ways, you may want to avoid going back to the calling environment with an unhan-

dled exception. The alternative, if you want the calling application to receive some

sort of error message, is to use the RAISE_APPLICATION_ERROR procedure from

the DBMS_STANDARDS package. It enables you to send a user-defined message

back to the calling environment in a way that is consistent with Oracle errors. That

is, if the calling environment can trap exceptions, then it will be able to trap this

user-defined error. The following three examples are similar in nature but illustrate

4832-8 ch12.F 7/27/01 9:02 AM Page 553

554 Part III ✦ Using PL/SQL

the different ways in which to propagate an error to the calling environment. The

first simply raises an unhandled exception, while the second handles that excep-

tion but also propagates it to the calling environment. The third makes use of

RAISE_APPLICATION_ERROR to propagate a user-defined message to the calling

environment:

SQL> DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10/0;
5* END;

SQL> /
DECLARE
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 4

SQL> DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10/0;
5 EXCEPTION
6 WHEN ZERO_DIVIDE THEN
7 DBMS_OUTPUT.PUT_LINE(‘Cannot divide by zero’);
8 RAISE;
9 END;
10 /
Cannot divide by zero
DECLARE
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 8

1 DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10/0;
5 EXCEPTION
6 WHEN ZERO_DIVIDE THEN
7 RAISE_APPLICATION_ERROR(-20001,’Cannot divide by zero’);
8* END;
9 /

DECLARE
*
ERROR at line 1:
ORA-20001: Cannot divide by zero
ORA-06512: at line 7

4832-8 ch12.F 7/27/01 9:02 AM Page 554

555Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

You will notice that, in the final example, the error message output in the calling

environment was user defined. It was also given an error number –200001. In the

RAISE_APPLICATION_ERROR procedure, the range of user-defined error numbers

is –20000 to –20999. This means that you have a thousand error numbers that you

can use.

Some companies use the range of 1,000 user-defined error numbers to set corpo-
rate standards for how applications pass control back to their calling programs.
Keeping a library of what each number means can simplify the error handling in
the calling programs.

The RAISE_APPLICATION_ERROR procedure also has an optional third argument. In

addition to passing the user-defined error number and message, you can pass a

BOOLEAN (TRUE or FALSE) to specify whether the user-defined message should be

placed on the existing error stack. The default is FALSE, so it replaces the stack.

Here is the last example with the error placed on the stack:

SQL> DECLARE
2 x NUMBER;
3 BEGIN
4 x := 10/0;
5 EXCEPTION
6 WHEN ZERO_DIVIDE THEN
7 RAISE_APPLICATION_ERROR(-20001,
8 ‘Cannot divide by zero’, TRUE);
9* END;

SQL> /
DECLARE
*
ERROR at line 1:
ORA-20001: Cannot divide by zero
ORA-06512: at line 7
ORA-01476: divisor is equal to zero

Here the user-defined error is shown, in addition to the regular ZERO_DIVIDE error

message, because the ZERO_DIVIDE error was raised within the program. In gen-

eral, the RAISE_APPLICATION_ERROR procedure can be called from executable sec-

tions as well as exception sections, although no previous errors in the stack are

displayed in those cases.

Coding Conventions
✦ Use coding conventions

Many different coding conventions are used in exception handling. One convention,

discussed previously, is to maintain a library of user-defined error messages and

numbers for use in RAISE_APPLICATION_ERROR calls. Then when calling a

Objective

Tip

4832-8 ch12.F 7/27/01 9:02 AM Page 555

556 Part III ✦ Using PL/SQL

subprogram developed by someone else, you can easily decide how to handle the

errors that are returned by that subprogram, because you know what the possible

outcomes are.

Another popular coding convention is to create a generic error-handling routine.

Instead of coding in every single block what to do when, say, a ZERO_DIVIDE excep-

tion is raised, why not build WHEN OTHERS clauses that simply pass the SQLCODE

and SQLERRM as parameters to a stored procedure, which will decide what to do if

it is a ZERO_DIVIDE, or some other exception?

The use of an error table that logs the username, date of the error, name of the

offending application, along with possibly the line number that caused the error,

and the SQLCODE and SQLERRM, is another way in which some developers deal

with errors. This can serve to shield the users from confusing error messages, while

the support team can investigate the error table to see what really happened.

As for the naming conventions for non-predefined or user-defined exceptions, many

people use e_name, which differentiates them from local variables that may begin

with another prefix, such as v_.

Key Point Summary
In PL/SQL, a number of different errors may arise at different points in the program-

ming process. Some of these are errors in logic, while some are syntax errors, and

others are just unavoidable. The unavoidable errors that occur at runtime can be

handled through exceptions.

✦ PL/SQL is a compiled language. That means that it must be compiled before

code can execute, but if syntax errors exist in the code, then it will not com-

pile. If a block cannot compile, you can find a listing of those compile errors

and fix them.

✦ Once a PL/SQL block of code is compiled and executed, it may appear to run

without error, but the program logic may contain errors that make it produce

the wrong results. These are called bugs, and the process of searching for

them is called debugging. There is little support for debugging in SQL*Plus,

but other tools may be better.

✦ Even when a program is compiled and bug-free, runtime errors may still arise.

Your program can run out of memory or invalid data can be provided from

another application, the database, or from the user, and so on. These errors

generally raise an exception. You can specify what to do in the event that

these errors come up by coding handlers in the exception section.

✦ Some exceptions have a predefined name and are raised by the server. In

order to trap these errors, you simply use that name in the handler in the

exception section.

4832-8 ch12.F 7/27/01 9:02 AM Page 556

557Chapter 12 ✦ Handling Errors and Exceptions in PL/SQL

✦ The vast majority of errors raised by the server do not have a name, so they

are known as non-predefined exceptions. To trap these errors, you must

declare an exception and use the pragma (compiler directive)

EXCEPTION_INIT to associate the name you have declared with the Oracle

error number that the exception produces.

✦ Sometimes you may want to raise an exception, even though the server has

not encountered an error. For this purpose, you can declare an exception and

explicitly raise it by calling the RAISE statement. You then trap it just like any

Oracle error.

✦ If errors are not trapped in the exception section of the block in which they

are raised, they propagate to the calling environment. If the calling environ-

ment is another block (so the error occurred in a sub-block), control passes

to the exception section of the outer block, looking for a handler for the error.

However, if the error is handled in the sub-block, control passes to the next

line after the sub-block, and the outer block carries on without error.

✦ If an exception is propagated to a calling environment such as SQL*Plus, then

the error code and message will simply be output to the screen.

✦ You can propagate your own user-defined error messages to the calling envi-

ronment from anywhere within a block by calling the

RAISE_APPLICATION_ERROR procedure.

✦ ✦ ✦

4832-8 ch12.F 7/27/01 9:02 AM Page 557

STUDY GUIDE

The following questions will help you assess your understanding of the different

types of errors and exceptions in PL/SQL. They will also test your knowledge of the

concept of error propagation.

Assessment Questions
1. Which of the following statements are true of error handling in PL/SQL?

(Choose the best answer.)

A. Error handling is done in-line; you must test for an error after each exe-

cutable line that could produce an error.

B. Predefined exceptions do not need to be declared in each block that

they are used.

C. Non-predefined exceptions are associated with error numbers using the

ASSOC_EXCEPTION pragma.

D. User-defined exceptions are raised automatically by the Oracle server.

E. User-defined exceptions are the only type of exceptions that can be

raised using the RAISE statement.

2. Consider the following exception section:

EXCEPTION
WHEN NO_DATA_FOUND
DBMS_OUTPUT.PUT_LINE(‘Invalid value’);

WHEN OTHERS THEN
ROLLBACK;
RAISE;

WHEN TOO_MANY_ROWS
DBMS_OUTPUT.PUT_LINE(‘More than one match’);

END;

Which of the following are errors in this exception section? (Choose two

answers.)

A. The RAISE statement must include an exception name.

B. Each handler must include the word THEN before the statements that

are to be run.

C. The WHEN OTHERS clause must be the last handler.

D. The ROLLBACK statement is not allowed in the exception section.

558 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 558

559

3. Evaluate this PL/SQL block:

DECLARE
v_num Courses.CourseNumber%TYPE;

BEGIN
SELECT CourseNumber
INTO v_num
FROM Courses
WHERE CourseName LIKE ‘%&p_name%’;

EXCEPTION
WHEN OTHERS THEN
INSERT INTO Errors
VALUES(USER, SYSDATE, SQLCODE, SQLERRM);

END;

What is the result when this block is executed? (Choose the best answer.)

A. If the partial course name provided does not match one in the database,

a new row is added to the Errors table for the NO_DATA_FOUND excep-

tion.

B. If the partial course name matches more than one course in the

database, then a new row is added to the Errors table for the

TOO_MANY_ROWS exception.

C. The block won’t execute because of a compile error — SQLCODE and

SQLERRM cannot be used in the INSERT statement.

D. A and B.

E. None of the above.

4. Consider the following PL/SQL block:

BEGIN
BEGIN
INSERT ...
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(‘Missing or invalid data’);

END;
COMMIT;

EXCEPTION
WHEN NO_DATA_FOUND THEN
ROLLBACK;

END;

What is the result if the SELECT statement returns no rows? (Choose two

answers.)

A. The DBMS_OUTPUT.PUT_LINE statement is executed.

B. The inserted row is rolled back due to the ROLLBACK statement in the

outer block exception section.

559Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 559

C. The inserted row is rolled back because the block ends without commit-

ting the change.

D. The inserted row is committed.

E. The DBMS_OUTPUT.PUT_LINE statement is not executed.

5. Consider the following PL/SQL block:

BEGIN
BEGIN
INSERT ...
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(‘Missing or invalid data’);
RAISE;

END;
COMMIT;

EXCEPTION
WHEN NO_DATA_FOUND THEN
ROLLBACK;

END;

What is the result if the SELECT statement returns no rows? (Choose the best

answer.)

A. The DBMS_OUTPUT.PUT_LINE statement is executed.

B. The inserted row is rolled back due to the ROLLBACK statement in the

outer block exception section.

C. The inserted row is rolled back because the block ends without commit-

ting the change.

D. The inserted row is committed.

E. A and B.

6. Given this PL/SQL block:

DECLARE
v_error_code NUMBER;

BEGIN
DECLARE
e_no_rows EXCEPTION;

BEGIN
INSERT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE e_no_rows;

END IF;
DBMS_OUTPUT.PUT_LINE...

560 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 560

561

EXCEPTION
WHEN e_no_rows THEN
ROLLBACK;
v_error_code := SQLCODE;
INSERT INTO Errors
VALUES(USER, SYSDATE, v_error_code);
RAISE ZERO_DIVIDE;

WHEN OTHERS THEN
v_error_code := SQLCODE;
INSERT INTO Errors
VALUES(USER, SYSDATE, v_error_code);

END;
SELECT ...
RAISE_APPLICATION_ERROR(-20001, ‘Error occurred’);

EXCEPTION
WHEN OTHERS THEN
v_error_code := SQLCODE;
INSERT INTO Errors
VALUES(USER, SYSDATE, v_error_code);

END;

If the UPDATE statement in the second executable line of the outer block fails

to affect any rows, what value(s) of error number(s) will be inserted into the

Errors table? (Choose the best answer.)

A. –1476

B. +1

C. –20001

D. A and B.

E. A, B, and C.

7. Which of the following exception declarations is legal? (Choose the best

answer.)

A. DECLARE

e_foreign_key ERROR;

PRAGMA EXCEPTION_ASSOC(e_foreign_key, -2292);

B. DECLARE

e_foreign_key EXCEPTION;

PRAGMA INIT_EXCEPTION(-2292, e_foreign_key);

C. DECLARE

e_foreign_key ERROR;

EXCEPTION_INIT(e_foreign_key, -2292);

D. DECLARE

e_foreign_key EXCEPTION;

PRAGMA EXCEPTION_INIT(e_foreign_key, -2292);

E. None of the above.

561Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 561

8. From the exception section of a block, once you have handled an error, how

can you ensure that the block will not end and return to the calling environ-

ment without an error condition? (Choose the best answer.)

A. Re-raise the same exception using the RAISE statement.

B. Raise a different error using the RAISE statement.

C. Raise a user-defined error by calling the RAISE_APPLICATION_ERROR

procedure.

D. All of the above.

E. None of the above.

9. Consider the following exception section:

EXCEPTION
WHEN NO_DATA_FOUND OR TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE(

‘Problem with the query, retrying’);
BEGIN
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(‘Nothing found’);

END;
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE(‘Be more specific’);

END;

What, if anything, is illegal with this code? (Choose the best answer.)

A. You cannot make one handler for both NO_DATA_FOUND or

TOO_MANY_ROWS.

B. You cannot have two handlers in the same block for the

TOO_MANY_ROWS exception.

C. You cannot nest a sub-block with its own exception section in an excep-

tion handler.

D. Nothing is wrong; it will run without problems.

10. Evaluate this PL/SQL block:

BEGIN
DECLARE

e_my_err EXCEPTION;
BEGIN
RAISE e_my_err;

EXCEPTION
WHEN e_my_err THEN
RAISE;

END;
EXCEPTION
WHEN e_my_err THEN
DBMS_OUTPUT.PUT_LINE(‘Error handled’);

END;

562 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 562

563

What, if anything, is illegal within this block? (Choose the best answer.)

A. The RAISE statement cannot be the first statement in a block.

B. You cannot use the RAISE statement to re-raise a user-defined exception.

C. The exception called e_my_err is out of scope in the outer block excep-

tion section.

D. Nothing is wrong.

Scenarios
1. You are in charge of a PL/SQL application that has grown over time. Initially,

you developed it and were the only support person for a small number of well-

behaved users. Unexpected errors came up from time to time, and you simply

printed these errors to a console line at the bottom of the user’s screen. The

user noted the error and got in touch with you immediately to find out what

to do. As the application grows in complexity and number of users, this situa-

tion is becoming increasingly more difficult to manage. Some users close the

application without noting the error message, and some do not even report

that anything has happened. What might you do to shield your users from this

error burden, while still enabling a support team to discover what errors are

taking place in the system?

2. You are the head of an IT department that has several small teams working on

different PL/SQL applications. These teams work independently of one

another, but the applications that make up the entire working system must

interface with one another at many points. Over time, these teams have devel-

oped different standards for coding, but this is generally not a problem, with

the one notable exception of error handling. When a PL/SQL block from one

application makes a call to another application, the developers are never sure

what to expect back in an error situation. How might you standardize this

process?

Lab Exercises
Lab 12–1 Trap a predefined exception

1. Sign on to SQL*Plus as user “student” with password “oracle”.

2. Create a SQL*Plus script file called FindCourse. Create an ACCEPT statement

to retrieve a number named p_num. This program is going to print to the

screen the name of the course with that CourseNumber.

3. Create a PL/SQL block of code with a declare section, which declares a vari-

able called v_name to hold the CourseName from the Courses table.

563Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 563

4. Use the SELECT ... INTO statement to retrieve the course name into v_name.

5. Print the value of v_name to the screen using DBMS_OUTPUT.PUT_LINE. Hint:

Make sure that the SQL*Plus environment variable SERVEROUTPUT is set ON.

6. Add an exception handler for the case when an invalid course number is

given, and print a suitable message.

7. Save your script file and then execute it using the START command in

SQL*Plus. Try a variety of values, including valid and invalid course numbers.

Lab 12–2 Trap a non-predefined exception
1. Sign on to SQL*Plus as user “student” with password “oracle”.

2. Create a SQL*Plus script file called DeleteCourse. Create an ACCEPT state-

ment to retrieve a number named p_num. This program is going to delete the

course with that CourseNumber, if it is able to. If the course has already

been scheduled, it will return a message to that effect.

3. Create a PL/SQL block of code with a declare section. Declare an exception

e_scheduled.

4. Associate the exception e_scheduled with the Oracle Error ORA-02292, which

is the error that comes up when you attempt to delete a parent record with

existing child records in a foreign key relationship.

5. Attempt to delete the course. If successful, print a message to say so using the

DBMS_OUTPUT.PUT_LINE procedure.

6. Add an exception handler for the case when the course has been scheduled

and the delete fails. Print a suitable message.

7. Save your script file and then execute it using the START command in

SQL*Plus. Try a variety of values, including scheduled and unscheduled

courses. Make sure to ROLLBACK your changes from the command line after

each test, so that your database will still have data for future tests.

Lab 12–3 Trap a user-defined exception
1. Sign on to SQL*Plus as user “student” with password “oracle”.

2. Create a SQL*Plus script file called UpdateCourse. Create two ACCEPT state-

ments: one to retrieve a number named p_num, the other to retrieve a charac-

ter string v_name. This program is going to update the course specified by

that CourseNumber, giving it a new name.

3. Create a PL/SQL block of code with a declare section. Declare an exception

e_not_found.

4. Attempt to update the course. Test for failure using SQL%NOTFOUND. If your

program does not find the row to update, then raise your error. If successful,

print a message to say so using the DBMS_OUTPUT.PUT_LINE procedure.

564 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 564

565

5. Add an exception handler for the case when the course number is invalid and

have it print a suitable message.

6. Save your script file and then execute it using the START command in

SQL*Plus. Try a variety of values for the course number, including valid and

invalid numbers. Make sure to ROLLBACK your changes from the command

line after each test, so that your database will still have data for future tests.

Answers to Chapter Questions

Chapter Pre-Test
1. When the compiler prepares a block of PL/SQL code, it has to check that the

syntax of all the statements is correct, that all references to database objects

are legal, and that all identifiers have been declared. Failure of any of these is

a compile error, and with anonymous blocks, these errors are automatically

output to the screen when you attempt to execute the block.

2. The three types of exceptions in PL/SQL are predefined, non-predefined, and

user-defined exceptions.

3. Predefined and non-predefined exceptions are raised automatically by the

Oracle server when it encounters an error condition. User-defined exceptions

must be raised explicitly with the RAISE statement. The RAISE statement can

also be used to raise predefined and non-predefined Oracle errors as well.

4. If a block has no exception section, then all exceptions raised within that

block are propagated to the calling environment.

5. An exception handler traps a particular error and contains statements that

are run when that error is raised within that block. It stops the error from

propagating to the calling environment.

6. The WHEN OTHERS clause is a generic error handler that traps any excep-

tions from the block that do not have specific exception handlers. It ensures

that the block will not return to the calling environment with any unhandled

exceptions.

7. The functions SQLCODE and SQLERRM return the number and message text

of the current exception. They can be placed into local variables and then

possibly inserted into an errors table or output to the user.

8. The pragma (which is a compiler directive) called EXCEPTION_INIT takes two

arguments — a user-declared exception name and an Oracle error number —

and associates the name with the number.

9. Passing a user-defined error number between –20000 and –20999, as well as

the text for an error message to the RAISE_APPLICATION_ERROR procedure,

causes a PL/SQL block to return to the calling environment with an exception.

That exception has the specified number and error message.

565Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 565

10. If you have a group of PL/SQL statements that need their own error handling

that is separate from that done in the exception section from the block, then

you may choose to nest those statements in a sub-block with its own excep-

tion section. You have to decide whether the program should continue to

function after the inner block deals with error situations, or whether the error

should be propagated to the exception section of the outer block for further

error handling.

Assessment Questions
1. B — Predefined exceptions are just that — predefined. You do not need to

define them again within each block. Error handling is not done in-line, but

instead the program automatically jumps to the exception section when there

is an error. Non-predefined exceptions are associated with a number using the

EXCEPTION_INIT pragma. User-defined exceptions can be raised only using

the RAISE statement, although that statement can be used to raise any error.

Refer to the section “Types of Errors,” earlier in this chapter.

2. B, C — The RAISE statement without an exception name simply re-raises the

current exception, so this is not an error. The THEN statement is missing from

the handlers, and WHEN OTHERS must be the last handler. Transaction con-

trols such as ROLLBACK are enabled in any executable lines of code, includ-

ing those in the exception section. Refer to the “Exception Handling” section.

3. C — The functions SQLCODE and SQLERRM are not allowed in SQL state-

ments, only in PL/SQL executable statements. Therefore, block will not even

compile. Refer to the “WHEN OTHERS Clause” section.

4. A, D — With the SELECT failing in the inner block, only the inner block’s

exception handler will run, so the DBMS_OUPUT.PUT_LINE statement will run.

Then control passes out to the next line after the inner block, so the insert is

committed and the program ends. Refer to the “Exception Handling” section.

5. E — The SELECT statement fails, causing the inner block exception handler for

NO_DATA_FOUND to execute the DBMS_OUTPUT.PUT_LINE statement. It then

executes a RAISE statement, which raises another NO_DATA_FOUND excep-

tion. This one is handled by the outer block exception section, so the inserted

row is rolled back. Refer to the “Error Propagation” section.

6. D — In this block, if the UPDATE affects no rows, then the SQL%NOTFOUND

will return TRUE and the user-defined exception will be raised. Part of the

handling of this exception is to insert into the table the error number from

SQLCODE, which will be +1 for user-defined exceptions. Then the

ZERO_DIVIDE exception is raised, but this immediately propagates to the

exception section of the outer block. The WHEN OTHERS handler will insert

the SQLCODE –1476 for the ZERO_DIVIDE error, and the program ends. Refer

to the “Error Propagation” section.

7. D — The pragma to associate a name to an error number is EXCEPTION_INIT,

and the first argument is the previously declared name of type EXCEPTION,

not ERROR. Refer to the “Non-predefined Exceptions” part of the “Exception

Handling” section.

566 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 566

567

8. D — Any exception raised in a handler will immediately transfer control out to

the calling environment and look for an exception handler. Similarly, the

RAISE_APPLICATION_ERROR procedure is designed to go back to the calling

environment with an error. Refer to the “Error Propagation” section.

9. B — It is legal to make one handler for more than one exception, but no excep-

tion can appear in more than one handler in the same block. Handlers in sub-

blocks are allowed, even in the exception section. Refer to the “Exception

Handling” section.

10. C — The user-defined exception e_my_err is declared in the inner block, so it

cannot be used in the outer block, but it can be re-raised from the inner block.

The RAISE statement can be used anywhere that a PL/SQL executable line of

code is allowed. Refer to the section “Exception Handling,” earlier in this

chapter.

Scenarios
1. The best way to shield users from the errors that occur is to not print them to

the screen. This generally means that you do not want any unhandled excep-

tions creeping into the PL/SQL calling environment. This goal is accomplished

by adding a WHEN OTHERS clause to each PL/SQL block called from the appli-

cation. In order to keep track of the exceptions that are raised, it might be

prudent to use the SQLCODE and SQLERRM functions to get exception infor-

mation and insert it into some sort of errors table, along with the username,

error date, and possibly the application name. Your support team can periodi-

cally check this table, or you can use database alerts in an INSERT trigger on

the table to tell you when something is added.

2. One way in which you might standardize the errors returned by calls is to

enable only top-level application code (that which may be called from another

application) to return errors via the RAISE_APPLICATION_ERROR procedure.

Then you maintain a library of the error numbers (in the range –20000 to

–20999) and messages that are sent. Whenever a developer makes a call to

another application, he or she can look in this library to see which exceptions

the developer may possibly have to build handlers for in the calling programs.

Lab Exercises

Lab 12–1 Trap a predefined exception
The whole script file should look something like this:

SET SERVEROUTPUT ON
ACCEPT p_num NUMBER PROMPT “Please enter the course number:
“DECLARE
v_name Courses.CourseName%TYPE;

567Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 567

BEGIN
SELECT CourseName
INTO v_name
FROM Courses
WHERE CourseNumber = &p_num;
DBMS_OUTPUT.PUT_LINE(‘The name of the course is:’);
DBMS_OUTPUT.PUT_LINE(v_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(‘Invalid course number’);

END;
/

Here are the sample executions:

SQL> START FindCourse
Please enter the course number: 99
Invalid course number

PL/SQL procedure successfully completed.

SQL> START FindCourse
Please enter the course number: 100
The name of the course is:
Basic SQL

PL/SQL procedure successfully completed.

Lab 12–2 Trap a non-predefined exception
The whole script file should look something like this:

SET SERVEROUTPUT ON
ACCEPT p_num NUMBER PROMPT “Please enter the course number: “

DECLARE
e_scheduled EXCEPTION;
PRAGMA EXCEPTION_INIT(e_scheduled, -2292);

BEGIN
DELETE FROM Courses
WHERE CourseNumber = &p_num;
DBMS_OUTPUT.PUT_LINE(‘The course has been deleted’);

EXCEPTION
WHEN e_scheduled THEN
DBMS_OUTPUT.PUT_LINE(‘The course has already been

scheduled’);
DBMS_OUTPUT.PUT_LINE(‘It cannot be deleted’);

END;
/

568 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 568

569

Here is the output from two executions, along with the contents of the Courses

table after the one row is deleted:

SQL> START DeleteCourse
Please enter the course number: 320
The course has been deleted

PL/SQL procedure successfully completed.

SQL> START DeleteCourse
Please enter the course number: 200
The course has already been scheduled
It cannot be deleted

PL/SQL procedure successfully completed.

SQL> SELECT CourseNumber, CourseName
2 FROM Courses;

COURSENUMBER COURSENAME
------------ --

100 Basic SQL
110 Advanced SQL
201 Performance Tuning your Database
200 Database Performance Basics
210 Database Administration
220 Backing up your database
300 Basic PL/SQL
310 Advanced PL/SQL

8 rows selected.

Lab 12–3 Trap a user-defined exception
The whole script file should look something like this:

SET SERVEROUTPUT ON
ACCEPT p_num NUMBER PROMPT “Please enter the course number: “
ACCEPT p_name PROMPT “Please enter the new course name: “

DECLARE
e_not_found EXCEPTION;

BEGIN
UPDATE Courses
SET CourseName = ‘&p_name’
WHERE CourseNumber = &p_num;
IF SQL%NOTFOUND THEN
RAISE e_not_found;

END IF;
DBMS_OUTPUT.PUT_LINE(‘The course has been updated’);

569Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 569

EXCEPTION
WHEN e_not_found THEN
DBMS_OUTPUT.PUT_LINE(‘Invalid course number’);

END;
/

Here is the output, along with the change in the database table:

SQL> START UpdateCourse
Please enter the course number: 210
Please enter the new course name: DBA I
The course has been updated

PL/SQL procedure successfully completed.

SQL> START UpdateCourse
Please enter the course number: 99
Please enter the new course name: Intro to SQL
Invalid course number

PL/SQL procedure successfully completed.

SQL> SELECT CourseNumber, CourseName
2 FROM Courses;

COURSENUMBER COURSENAME
------------ --

100 Basic SQL
110 Advanced SQL
201 Performance Tuning your Database
200 Database Performance Basics
210 DBA I
220 Backing up your database
300 Basic PL/SQL
310 Advanced PL/SQL
320 Using your PL/SQLskills

9 rows selected.

570 Chapter 12 ✦ Study Guide

4832-8 ch12.F 7/27/01 9:02 AM Page 570

Introduction to
Stored Programs

1313C H A P T E R

✦ ✦ ✦ ✦

4832-8 ch13.F 7/27/01 9:03 AM Page 571

572 Part III ✦ Using PL/SQL

CHAPTER PRE-TEST
1. Can you store a PL/SQL program in the database?

2. What is the difference between a PL/SQL procedure and a PL/SQL
function?

3. What is the purpose of parameters?

4. What is the difference between a statement trigger and a row-level
trigger?

5. Name the advantages of putting PL/SQL programs in a package.

6. Which data dictionary views provide information about PL/SQL pro-
grams stored in the database?

7. What are the two parts of a PL/SQL package?

8. What is the difference between IN and OUT parameters?

9. Can you call a PL/SQL program from within a SQL statement?

10. Can you access the values being changed in a database trigger?

✦ Answers to these questions can be found at the end of the chapter. ✦

4832-8 ch13.F 7/27/01 9:03 AM Page 572

573Chapter 13 ✦ Introduction to Stored Programs

The material covered in this chapter is not covered in the “Introduction to

Oracle: SQL and PL/SQL” exam. The material presented here is provided so

that you can apply your PL/SQL coding skills in stored programs and triggers.

This chapter outlines how to use PL/SQL in procedures and functions, database

triggers, and packages. You will learn how to pass values into a PL/SQL program

and how to call one PL/SQL program from another so that you can modularize your

code. This chapter also covers the basics of database triggers and database pack-

ages. These topics will enable you to take your PL/SQL programming skills and

apply them in real-world situations

Subprograms
Using PL/SQL code in scripts allows you to take advantage of the PL/SQL language.

When you include a block of PL/SQL code within a command file, or you execute a

block of PL/SQL code from the SQL*Plus prompt, you are executing an anonymous

block. An anonymous block is an unnamed PL/SQL program. The following is an

example of an anonymous block.

BEGIN
DBMS_OUTPUT.PUT_LINE(‘Hello World’);

END;
/

In order to take full advantage of PL/SQL, in this chapter we introduce subpro-

grams. Subprograms offer additional features that are not available in anonymous

blocks:

✦ Subprograms can be stored in the database.

✦ One subprogram can call another subprogram.

✦ Subprograms can pass values to and from other subprograms.

There are different types of subprograms: procedures, functions, triggers, and pack-

ages. Not all types of subprograms have all the capabilities listed above. This chap-

ter introduces each type of subprogram and describes where and how they are

used.

4832-8 ch13.F 7/27/01 9:03 AM Page 573

574 Part III ✦ Using PL/SQL

Procedures
Procedures are named PL/SQL programs that are written to perform a particular

task. Because the procedure is a named program, you can call one procedure from

another. This enables you to modularize your code, making it easier to maintain.

You can pass values to a procedure, and you can receive values from a procedure.

This enables you to write generic programs that can be reused.

Procedures that can be stored within the Oracle database are referred to as server-
side or stored procedures. If you have a client tool with a PL/SQL engine, such as

Procedure Builder or Oracle Forms, procedures can be stored on the client.

Compilation errors in server-side programs

When you execute a script to create a subprogram, you may have compilation errors in your
code. In the following procedure, there should be single quotes surrounding the string
“Hello World”.

CREATE OR REPLACE PROCEDURE hello_world
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(Hello World);
END;
/

If you have compilation errors in your code, you will receive the following error message:

Warning: Procedure created with compilation errors.

In order to get a complete list of your error messages, type the following command:

SQL> show errors

This gives you a listing of all the compilation errors in your program.

Errors for PROCEDURE HELLO_WORLD:

LINE/COL ERROR
-------- ---
4/28 PLS-00103: Encountered the symbol “WORLD” when expecting
one of the following: . () , * @ % & | = - + < / > at in mod not
range rem => ..<an exponent (**)> <> or != or ~= >= <= <> and or
like as between from using is null is not || is dangling

Use the show errors command to find the compilation errors in your program, then make
the necessary modifications to your SQL script so your program compiles successfully.

4832-8 ch13.F 7/27/01 9:03 AM Page 574

575Chapter 13 ✦ Introduction to Stored Programs

Client-side procedures
Most PL/SQL programs are stored in the database. If you are working with a client

tool that contains a PL/SQL engine, such as Oracle Forms, Oracle Reports, or

Procedure Builder, you can store a PL/SQL program in a file on the operating sys-

tem. When a PL/SQL program is stored in a file on the operating system, it is

referred to as a client-side procedure.

The Procedure Builder tool enables you to create PL/SQL programs and store them

either in the database or in program libraries on the file system. Procedure Builder

provides a graphical environment in which you can write your PL/SQL code, as well

as a code debugging tool.

Oracle Developer, Oracle Designer, and Oracle Financials are all tools that use or

generate Oracle Forms and Oracle Reports. In Oracle Forms, PL/SQL code is used in

form triggers to specify what actions are performed when a button is pressed or a

field is entered. In Oracle Reports, PL/SQL code is used in report triggers to com-

plete complicated calculations or to dynamically change report appearance. The

PL/SQL code can be directly specified in the form or report trigger, or the trigger

can call a PL/SQL procedure.

Server-side procedures
When a PL/SQL program is stored in the database, it is called a server-side or stored
subprogram. In order to create a stored PL/SQL procedure, you write a SQL script

to create the procedure. In the SQL script, you write the PL/SQL program code and

add a specification instructing the database to create a procedure with a specified

program name.

Let’s create a program to display the text “Hello World” on the screen.

CREATE OR REPLACE PROCEDURE hello_world
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(‘Hello World’);
END;
/

Executing a script containing the preceding code creates the program hello_world

in your database. When the procedure is created, you will see the following

message:

Procedure created.

4832-8 ch13.F 7/27/01 9:03 AM Page 575

576 Part III ✦ Using PL/SQL

Once the procedure has been successfully created, you execute it in SQL*Plus by

typing the following command:

SQL> SET SERVEROUTPUT ON
SQL> EXECUTE hello_world
Hello World

PL/SQL procedure successfully completed.

EXECUTE is an SQL*Plus command so you do not need a forward slash (/) or a
semicolon (;) after the command.

When you create stored programs and you want to declare variables, you do not

put the word “DECLARE” in the program code as was done with anonymous blocks.

Any local variables you need to declare are listed between the word “IS” and the

word “BEGIN”.

CREATE OR REPLACE PROCEDURE hello_world
IS

v_message VARCHAR2(50) := ‘Hello World’;
BEGIN

DBMS_OUTPUT.PUT_LINE(v_message);
END;
/

Parameters
You can pass values to and receive values from a procedure. If you want to pass

parameters, you must declare all the parameters to be passed in the program speci-

fication. The parameters are specified after the program name in the program

specification.

When specifying a parameter, you specify:

✦ A parameter name

✦ The datatype of the parameter

✦ The type of parameter

The parameter name is the name you use when referencing the parameter within

the program. The datatype of the parameter is any valid datatype. Unlike variables

in the declaration section, you do not specify the size, only the datatype. The type

of parameter is one of the following:

✦ IN parameters are passed to the procedure from the calling program.

✦ OUT parameters are passed from the procedure back to the calling program.

✦ IN OUT parameters have an initial value passed in by the calling program but

may return a different value back to the calling program after execution.

Tip

4832-8 ch13.F 7/27/01 9:03 AM Page 576

577Chapter 13 ✦ Introduction to Stored Programs

IN parameters
IN parameters are used to pass parameters to a program when the program is

called. IN parameters cannot be modified within the called program. IN is the

default parameter type and does not have to be specified but should be specified

for clarity.

To create a program that enables you to specify the message you would like to see

displayed on the screen, enter the following code:

CREATE OR REPLACE PROCEDURE display_message
(p_message IN VARCHAR2)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(p_message);
END;
/

You must specify a value for the parameter when you call the program. If you are

passing a character or date value to the program, you must enclose the value in sin-

gle quotes.

SQL> EXECUTE display_message(‘HELLO AGAIN!’)
HELLO AGAIN!

PL/SQL procedure successfully completed.

OUT parameters
OUT parameters are used to pass values from the called program back to the call-

ing environment.

Create a program that accepts a price and returns the tax that should be charged

for that price.

CREATE OR REPLACE PROCEDURE calculate_tax
(p_price IN NUMBER, p_tax OUT NUMBER)
IS
BEGIN

p_tax := p_price *.15;
END;
/

When you call a program with an OUT parameter, you must specify a variable name

to hold the value passed back by the program. When testing in SQL*Plus, use the

SQL*Plus VARIABLE command to create the variable and then use it as a bind vari-

able when executing the procedure. All the examples in this chapter are completed

using the SQL*Plus tool. The syntax for creating bind variables will be different if

you are calling the PL/SQL procedure from a different tool or from a programming

language, such as C or COBOL.

4832-8 ch13.F 7/27/01 9:03 AM Page 577

578 Part III ✦ Using PL/SQL

The VARIABLE command is covered in detail in chapter 6, “The SQL*Plus
Environment.”

SQL> VARIABLE v_tax NUMBER
SQL> EXECUTE calculate_tax(20,:v_tax)

PL/SQL procedure successfully completed.

SQL> PRINT v_tax

V_TAX

3

IN OUT parameters
IN OUT parameters are used to pass an initial value to the calling program but may

be updated by the called program.

Create a program that accepts a price and checks whether that price is below the

minimum price that may be charged. If the price is below the minimum, the pro-

gram returns a corrected price.

CREATE OR REPLACE PROCEDURE check_minimum_price
(p_price IN OUT NUMBER)
IS
BEGIN

IF p_price < 1000 THEN
p_price := 1000;

END IF;
END;
/

When you call a program with an IN OUT parameter, you must create a bind vari-

able, assign the variable an initial value, and then pass that variable to the program.

SQL> VARIABLE v_price NUMBER
SQL> BEGIN :v_price := 500; END;
2 /

PL/SQL procedure successfully completed.
SQL> EXECUTE check_minimum_price(:v_price)

PL/SQL procedure successfully completed.
SQL> PRINT v_price

V_PRICE

1000

Cross-
Reference

4832-8 ch13.F 7/27/01 9:03 AM Page 578

579Chapter 13 ✦ Introduction to Stored Programs

Nesting
Once you have created a stored procedure, it may be called from another program.

This is called nesting. When you call the program, any program parameters must be

passed to the program at the time it is called.

Go back to your program to display a message on the screen.

CREATE OR REPLACE PROCEDURE display_message
(p_message IN VARCHAR2)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE(p_message);
END;
/

Now call this program from another procedure as follows:

CREATE OR REPLACE PROCEDURE call_a_program
(p_language IN VARCHAR2)
IS
BEGIN

IF p_language = ‘ENGLISH’ THEN
display_message(‘Hello’);

ELSIF p_language = ‘FRENCH’ THEN
display_message(‘Bonjour’);

ELSE
display_message(‘Buenos Dias’);

END IF;
END;
/

To test the program, execute call_a_program from the command line.

SQL> EXECUTE call_a_program(‘FRENCH’)
Bonjour

PL/SQL procedure successfully completed.

If the program being called contains an OUT or an IN OUT parameter, you must cre-

ate a local variable to hold the value passed back by the called program. For IN

OUT parameters, you should also populate the variable with an initial value.

Call your calculate_tax program from another PL/SQL procedure.

CREATE OR REPLACE PROCEDURE calculate_tax
(p_price IN NUMBER, p_tax OUT NUMBER)
IS
BEGIN

p_tax := p_price *.15;
END;
/

4832-8 ch13.F 7/27/01 9:03 AM Page 579

580 Part III ✦ Using PL/SQL

CREATE OR REPLACE PROCEDURE call_tax
(p_course IN NUMBER)
IS

v_tax NUMBER;
v_price NUMBER;

BEGIN
SELECT retailprice
INTO v_price
FROM courses
WHERE coursenumber = p_course;

calculate_tax(v_price, v_tax);

DBMS_OUTPUT.PUT_LINE(
‘Tax on that course is ‘||TO_CHAR(v_price,’$9,990.00’));

END;
/

To test the call_tax program, execute it from the command line.

SQL> EXECUTE call_tax(100)
Tax on that course is $2,000.00

PL/SQL procedure successfully completed.

Deleting Procedures
You can delete a stored procedure using the DROP PROCEDURE command.

SQL> DROP PROCEDURE call_tax;
Procedure dropped.

User-Defined Functions
PL/SQL functions are PL/SQL programs that always return a value. They are very

useful for performing calculations or validation. When you create a function, you

must specify the datatype of the value that will be returned in the program specifi-

cation. Within the program code, you must include a RETURN statement that will

return the value to the calling program and exit the function.

In chapter 3, “Using Single and Multi-Row Functions,” you learned how to use func-

tions such as TO_CHAR(), ROUND() and NEXT_DAY() to manipulate the values in

a SQL statement. You can write your own user-defined PL/SQL functions and use

them to manipulate values in a SQL statement as well. There are some restrictions

on the types of functions you can use in SQL statements. How to write your own

functions for SQL statements and the restrictions on those functions are covered

later in this section.

4832-8 ch13.F 7/27/01 9:03 AM Page 580

581Chapter 13 ✦ Introduction to Stored Programs

Create a function that will accept a first name, middle initial, and last name and will

return the full name.

CREATE OR REPLACE FUNCTION full_name
(p_first IN VARCHAR2, p_middle IN VARCHAR2,
p_last IN VARCHAR2)
RETURN VARCHAR2
IS
BEGIN
RETURN (p_first||’ ‘||p_middle||’ ‘||p_last);
END;
/

When you call a function from SQL*Plus, you must create a variable to hold the

value returned by the function.

SQL> VARIABLE v_full_name VARCHAR2(100)
SQL> EXECUTE :v_full_name := full_name(‘John’,’P’,’Jones’)

PL/SQL procedure successfully completed.

SQL> PRINT v_full_name

V_FULL_NAME
--
John P Jones

When you call a function from within a PL/SQL program, you must create a local

variable to hold the value returned by the function.

The following example shows how to call a function from within a PL/SQL program.

This procedure accepts a student number. The procedure fetches the first name,

middle initial, and last name of the specified student and calls the function

full_name to concatenate the name. The procedure prints the concatenated name

on the screen.

CREATE OR REPLACE PROCEDURE student_name
(p_studentnumber IN NUMBER)
IS

v_firstname students.firstname%TYPE;
v_middleinitial students.middleinitial%TYPE;
v_lastname students.lastname%TYPE;

v_full_name VARCHAR2(100);
BEGIN

SELECT firstname, middleinitial, lastname
INTO v_firstname, v_middleinitial, v_lastname
FROM students
WHERE studentnumber = p_studentnumber;

4832-8 ch13.F 7/27/01 9:03 AM Page 581

582 Part III ✦ Using PL/SQL

-- Our function is used to assign a value to the variable
v_full_name := full_name(v_firstname,

v_middleinitial, v_lastname);

DBMS_OUTPUT.PUT_LINE(v_full_name);

END;
/

SQL> EXECUTE student_name(1000)
John H Smith

PL/SQL procedure successfully completed.

PL/SQL functions may also be called from SQL statements, enabling you to write

your very own SQL functions. Some restrictions are placed on PL/SQL functions

used within SQL statements. If you want to use your PL/SQL function in a SQL state-

ment, the function cannot perform INSERT, UPDATE, or DELETE statements, and the

function must return a datatype that is a valid datatype for a database table

(BOOLEAN, for example, could not be used). If you follow these rules, you can write

your own single-row SQL functions. You cannot create your own SQL group or

aggregate functions — that is, functions that perform a calculation on several rows

of the table to return a single value such as Oracle AVG(), MIN(), and MAX()

functions.

The full_name function does not perform any UPDATE, INSERT, or DELETE state-

ments and returns a datatype of VARCHAR2, so it may be called from a SQL state-

ment. Here is an example of how to call the function from a SELECT statement using

the table’s columns as the actual parameters for the function:

SQL> SELECT full_name(firstname, middleinitial, lastname)
2 FROM students
3 /

FULL_NAME(FIRSTNAME,MIDDLEINITIAL,LASTNAME)
--
John H Smith
Davey Jones
Jane S Massey
Trevor J Smith
...

Like all single-row SQL functions, PL/SQL functions can be called from the WHERE

clause, ORDER BY clause, HAVING clause, or SELECT list of a SQL statement.

Deleting Functions
You can delete a stored procedure using the DROP PROCEDURE command.

SQL> DROP FUNCTION full_name;

4832-8 ch13.F 7/27/01 9:03 AM Page 582

583Chapter 13 ✦ Introduction to Stored Programs

Packages
Any PL/SQL programs can be put inside a package. A package is a grouping of

PL/SQL programs stored together. By placing your PL/SQL programs inside a pack-

age, you can improve performance and increase functionality.

Performance can be improved by putting PL/SQL code in packages when you fre-

quently call a number of programs one after the other. For example, you might want

to write a program to enroll a student in a class:

1. Your program calls a check_status program that checks whether the course

has been canceled.

2. The program calls a check_max program to ensure the class is not full.

3. The program calls a create_enrollment program that creates the enrollment

record.

If you do not use a package, each of these programs is loaded into memory when it

is called. If you put all these programs into a package, all the programs will be

loaded into memory at once when the first program in the package is called.

When packages are loaded into memory, they are loaded into the shared pool. If
you are writing a lot of packages, you may need to increase the size of the shared
pool.

Increased functionality can be added when packages are used because you can cre-

ate variables in a package, and they will hold their value throughout the database

session. Without packages, you can create local variables in PL/SQL programs, but

the values contained in these variables are lost when the program execution stops.

When you create a package, values in any variables declared in the program specifi-

cation are kept in memory and may be accessed at any time throughout the

database session.

When you create a package, you must first create a package specification that lists

all the public programs and variables, and then you create a package body that

specifies all the PL/SQL code and any private variables you wish to create.

Specification
The package specification is a list of all the PL/SQL procedures and functions you

are going to include in the package that will be public. Public programs are pro-

grams that can be accessed by anyone with permissions to execute the package.

The package specification also lists any public variables you wish to create. A pub-

lic variable is a variable that can be read or modified by anyone with permissions to

execute the package.

Caution

4832-8 ch13.F 7/27/01 9:03 AM Page 583

584 Part III ✦ Using PL/SQL

To create the package specification, you must specify the following:

✦ A package name

✦ A list of programs and their parameters

✦ A list of public variables

CREATE OR REPLACE PACKAGE package_name
IS

variable_declarations;
program_declarations;

END;
/

For example, you might want to create an enrollment package that contains the

public programs CHECK_CANCELED and ENROLL_STUDENT, and a variable called

class_maximum.

CREATE OR REPLACE PACKAGE enrollment
IS

class_maximum NUMBER := 16;

FUNCTION check_canceled (p_classid IN NUMBER)
RETURN BOOLEAN;

PROCEDURE enroll_student
(p_studentnumber IN NUMBER,
p_classid IN NUMBER,
p_price IN NUMBER);

END;
/

Package body
Once you have created the package specification, you can create the package body.

The package body contains the code for all of the programs listed in the package

specification.

Additional programs can be included in the package body that are not listed in the

package specification. These are called private programs because they can be

called only by other programs within the package. Additional variables can be

included in the package body that are not listed in the package itself. These are

called private variables because they cannot be accessed from outside the package.

To create the package body, you use the CREATE PACKAGE BODY command and

specify the same package name you used for the package specification.

4832-8 ch13.F 7/27/01 9:03 AM Page 584

585Chapter 13 ✦ Introduction to Stored Programs

CREATE OR REPLACE PACKAGE BODY package_name
IS

variable_declarations;
program code;

END;
/

For example, for your enrollment package, you need three programs: the two public

programs, check_canceled, enroll_student, and check_maximum as well as,

Check_maximum, which is a private function because it was not declared in the

package specification.

CREATE OR REPLACE PACKAGE BODY enrollment
IS

--Code for the check_canceled function
FUNCTION check_canceled (p_classid IN NUMBER)
RETURN BOOLEAN
IS

--declare a variable to hold the status of the
--enrollment
v_status ScheduledClasses.status%TYPE;

BEGIN
--Fetch the status of the specified class
SELECT status
INTO v_status
FROM scheduledclasses
WHERE classid = p_classid;

--If the class is canceled, return TRUE,
--otherwise, return FALSE
IF v_status = ‘Cancelled’ THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END IF;

END check_canceled;

--Code for the check_maximum function
FUNCTION check_maximum (p_classid IN NUMBER)
RETURN BOOLEAN
IS

--declare a variable v_total to hold
--the number of students in the class
v_total NUMBER;

BEGIN
--Fetch the number of students currently
--enrolled in the specified class
SELECT COUNT(*)
INTO v_total
FROM classenrollment
WHERE classid = p_classid;

4832-8 ch13.F 7/27/01 9:03 AM Page 585

586 Part III ✦ Using PL/SQL

--Compare the number of students currently enrolled
--to the package variable ‘Class_maximum’
IF v_total >= class_maximum THEN

RETURN(TRUE);
ELSE

RETURN(FALSE);
END IF;

END check_maximum;

--Code for the enroll_student procedure
PROCEDURE enroll_student
(p_studentnumber IN NUMBER,
p_classid IN NUMBER,
p_price IN NUMBER)

IS
BEGIN

--Before enrolling student, check if class is canceled.
IF check_canceled(p_classid) THEN

RAISE_APPLICATION_ERROR
(-20002,’Course is canceled’);

END IF;

--Before enrolling student, check if class is full
IF check_maximum(p_classid) THEN

RAISE_APPLICATION_ERROR
(-20003,’Course is full’);

END IF;

--Enroll student by creating new record in
--Classenrollment
INSERT INTO ClassEnrollment
(ClassId, StudentNumber, Status, EnrollmentDate, Price,

Grade, Comments)
VALUES (p_classid, p_studentnumber, ‘Hold’,
SYSDATE, p_price, NULL, NULL);

--Save the enrollment record
COMMIT;
END enroll_student;

END enrollment;
/

Accessing programs and variables in packages
When you access a program or a variable in a package, you must qualify the pro-

gram or variable name with the name of the package where the program or variable

is located.

4832-8 ch13.F 7/27/01 9:03 AM Page 586

587Chapter 13 ✦ Introduction to Stored Programs

CREATE OR REPLACE PACKAGE enrollment
IS

class_maximum NUMBER := 16;

FUNCTION check_canceled (p_classid IN NUMBER)
RETURN BOOLEAN;

PROCEDURE enroll_student
(p_studentnumber IN NUMBER,
p_classid IN NUMBER,
p_price IN NUMBER);

END;
/

When you call a program in a package, you must begin the program name with the

package name as a prefix. For example, if I want to call the program enroll_student

in the package enrollment, I would execute the following:

SQL> EXECUTE enrollment.enroll_student(1000,51, 2000)

The only time you do not need to use the package prefix is when you are calling a

program in a package from another program within the same package.

When you want to access a variable that is declared in a package, you must begin

the variable name with the package name as a prefix. For example, if I want to

change the value of the package variable class_maximum in the package enroll-

ment, I would execute the following:

SQL> BEGIN enrollment.class_maximum := 20; END;
2 /

The only time you do not need to use the package prefix is when you are referenc-

ing a package variable from a program in the same package.

Removing Packages
After a package has been created, it can be removed with the DROP PACKAGE

command.

The following example will drop the package body and the package specification for

the package my_package:

SQL> DROP PACKAGE my_package;

The following example drops just the package body for the package my_package:

SQL> DROP_PACKAGE BODY my_package;

4832-8 ch13.F 7/27/01 9:03 AM Page 587

588 Part III ✦ Using PL/SQL

Listing Package contents
If you are using the SQL*Plus tool, you can get a list of all the public programs and

variables in a package using the DESCRIBE command.

SQL> DESCRIBE my_package

Triggers
PL/SQL code can be used to write database triggers. Database triggers are PL/SQL

programs that fire when certain actions occur within the database. They are very

useful for ensuring database integrity.

There are several types of database triggers: statement triggers, row-level triggers,

event triggers, and instead-of triggers.

Statement and row-level triggers are PL/SQL programs associated with a particular

database table. They fire when an INSERT, UPDATE, or DELETE statement is issued

on that table. Statement level triggers fire once when an INSERT, UPDATE, or

DELETE statement is run against the table. Statement level triggers are used to pre-

vent users from updating records in the table after hours. Row-level triggers fire

once for each row affected by an INSERT, UPDATE, or DELETE statement. They are

used to audit changes made to the database table, to derive column values, and to

prevent certain changes to records in the table.

Instead-of triggers are PL/SQL programs associated with a particular database view.

They fire when an INSERT, UPDATE, or DELETE is run against the view. Instead-of

triggers are used to allow users to insert, delete, or update records in a table that is

accessed through a view.

Event triggers are PL/SQL programs associated with certain commands or database

actions. They fire when that command is executed or that action is performed in

the database. Event triggers are used to audit activities in the database and to per-

form certain actions when the database starts up, shuts down, or receives an error.

All triggers are created using the CREATE TRIGGER command:

CREATE OR REPLACE TRIGGER trigger_name
BEFORE|AFTER trigger_event ON trigger_object

✦ The trigger_name is the name of the PL/SQL trigger that is created.

✦ The trigger_event is the type of command or action that will cause the PL/SQL

trigger to fire.

✦ The trigger_object is the object with which the trigger is associated.

Once a trigger is created, it will fire automatically when the triggering event occurs.

4832-8 ch13.F 7/27/01 9:03 AM Page 588

589Chapter 13 ✦ Introduction to Stored Programs

Triggering events
Different events in the database can cause database triggers to fire. The event that

fires the trigger depends on the type of trigger and the triggering events listed in

the trigger specification. Database triggers fire regardless of how the command is

issued; this is why they are useful for ensuring database integrity. For example, if

you have a Web page and an Oracle Developer application that sends updates to

the database and you have a support team that uses SQL*Plus to update the

database, the database triggers fire regardless of who or what application issues

the command.

The triggering event or events are included in the trigger specification.

A table trigger can be triggered by a DELETE, INSERT or UPDATE:

CREATE OR REPLACE TRIGGER trigger_name
BEFORE INSERT OR UPDATE OR DELETE ON table_name

If you specify UPDATE as the triggering event, you can specify that the trigger

should fire only when particular columns are updated. This is done by specifiying

the column name or names after the keyword UPDATE. If you are specifying more

than one column, separate the column names with commas:

CREATE OR REPLACE TRIGGER trigger_name
BEFORE INSERT OR DELETE OR UPDATE OF column1, column2 ON
table_name

An instead-of trigger can be triggered by a DELETE, INSERT, or UPDATE:

CREATE OR REPLACE TRIGGER add_course
INSTEAD OF DELETE ON view_name

An event trigger can be triggerd by database startup, database shutdown, server

errors, DDL and DCL commands, logon or logoff:

CREATE OR REPLACE TRIGGER trigger_name
AFTER SERVERERROR ON DATABASE

CREATE OR REPLACE TRIGGER trigger_name
AFTER LOGON ON DATABASE

Statement-level triggers
Statement-level triggers fire once for each triggering event. In the trigger code, you

can perform validation and calculations, execute SQL statements, and call other

PL/SQL programs. When you raise an error in a trigger, the triggering UPDATE,

INSERT, or DELETE is rolled back. Statement-level triggers are used to prevent users

from performing modifications to a table under specified conditions.

4832-8 ch13.F 7/27/01 9:03 AM Page 589

590 Part III ✦ Using PL/SQL

When you create a statement-level trigger, you must specify the following in the

trigger heading:

✦ Trigger name

✦ Trigger table

✦ Triggering event

✦ BEFORE or AFTER event

The trigger name is a program name you give to the trigger. The trigger table is the

name of the database table that is being updated when you want the trigger to fire.

The triggering event is INSERT, UPDATE, DELETE, or a combination of the three.

The triggering event specifies what commands on the trigger table will cause the

trigger to fire. A BEFORE or an AFTER event specifies whether the database trigger

will fire before or after the update that caused the trigger to fire.

If you are creating a trigger and it does not matter whether the trigger fires before
or after the triggering event, fire the trigger after the event for best performance
results.

All these parameters are specified in the trigger specification as follows:

CREATE OR REPLACE TRIGGER trigger_name
BEFORE|AFTER trigger_event ON trigger_table

For example, suppose you want to prevent users from updating the classenrollment

table on weekends. You want to create a database trigger that will stop users from

udpating, inserting, or deleting records from the classenrollment table when it is

Saturday or Sunday.

✦ The trigger name is check_weekend.

✦ The trigger table is classenrollment, because you want the trigger to fire when

changes are made to the classenrollment table.

✦ The trigger events are INSERT, UPDATE, and DELETE, because you do not

want the user to make any changes to the contents of the classenrollment

table on weekends.

✦ The trigger should fire before the triggering event, because you do not want to

waste time processing the INSERT, UPDATE, or DELETE if CLASS_STATUS is

running.

This code checks if the current date falls on a Saturday or Sunday. If it is Saturday

or Sunday, it will raise an error that will rollback the triggering event and prevent

the user from making changes to the classenrollment table.

CREATE OR REPLACE TRIGGER check_weekend
BEFORE INSERT OR UPDATE OR DELETE ON classenrollment
BEGIN

Tip

4832-8 ch13.F 7/27/01 9:03 AM Page 590

591Chapter 13 ✦ Introduction to Stored Programs

IF TO_CHAR(sysdate,’DY’) IN (‘SAT’,’SUN’) THEN
RAISE_APPLICATION_ERROR (-20001,’Error: updates are not
allowed on weekends.’);

END IF;

END;
/

If you attempt to update the classenrollment table on a Saturday or Sunday, you will

get an error, and the update will be rolled back.

SQL> UPDATE classenrollment
2 SET status = ‘Confirmed’
3 WHERE classid = 53
4 AND studentnumber = 1003
5 /

UPDATE classenrollment
*

ERROR at line 1:
ORA-20001: Error: updates are not allowed on weekends.
ORA-06512: at “STUDENT3.CHECK_WEEKEND”, line 4
ORA-04088: error during execution of trigger
‘STUDENT3.CHECK_WEEKEND’

Row-level triggers
Row-level triggers fire once for each record updated, deleted, or inserted. They are

often used to perform complex validation or calculations, to populate default val-

ues, to modify data in related tables, or to modify data values.

Row-level triggers are created by adding the statement FOR EACH ROW to the trig-

ger specification.

CREATE OR REPLACE TRIGGER trigger_name
BEFORE|AFTER trigger_event ON trigger_table
FOR EACH ROW

Correlation Names
Because row-level triggers fire for each actual record being updated, you can access

the values contained in those records. To access the values in the record, you spec-

ify the name of the column whose value you wish to access with the prefixes :OLD

or :NEW:

✦ If you are updating a record, :OLD returns the values of the original record in

the database, and :NEW returns the new values being sent to the database for

update.

✦ If you are deleting a record, :OLD returns the values contained in the record

about to be deleted, and :NEW returns NULL.

4832-8 ch13.F 7/27/01 9:03 AM Page 591

592 Part III ✦ Using PL/SQL

✦ If you are inserting a record, :OLD returns NULL, and :NEW returns the values

about to be inserted into the database.

You can change the prefixes used to reference :OLD and :NEW by adding the REFER-

ENCING clause to your trigger specification before the FOR EACH ROW clause.

CREATE OR REPLACE TRIGGER trigger_name
BEFORE|AFTER trigger_event ON trigger_table
REFERENCING OLD AS original NEW AS changed
FOR EACH ROW

The following example is a trigger that will ensure that the state column in the stu-

dents table is always entered in uppercase letters:

✦ The trigger name is upper_state.

✦ The trigger table is students, because you want the trigger to fire when

changes are made to the students table.

✦ The trigger column to check on UPDATE is state.

✦ The triggering events are INSERT and UPDATE of state, because you want the

trigger to fire when new records are inserted or updates to the state column

are made.

✦ The trigger will fire BEFORE the triggering event, because you will modify the

actual value being inserted or updated.

✦ The default prefixes will be used.

CREATE OR REPLACE TRIGGER upper_state
BEFORE INSERT OR UPDATE OF state ON students
FOR EACH ROW
BEGIN

:NEW.state := UPPER(:NEW.state);
END;
/

SQL> UPDATE students
2 SET city = ‘Boston’, state = ‘ma’
3 WHERE studentnumber = 1005
4 /

1 row updated.

SQL> SELECT studentnumber, city, state
2 FROM students
3 WHERE studentnumber = 1005
4 /

STUDENTNUMBER CITY ST
------------- ------------------------------ --

1005 Boston MA

4832-8 ch13.F 7/27/01 9:03 AM Page 592

593Chapter 13 ✦ Introduction to Stored Programs

WHEN clause
The WHEN clause can be used on row-level triggers to prevent unnecessary firing of

a database trigger. A condition is specified in the WHEN clause. If that condition is

not met, the database trigger code will not be executed. The WHEN clause is added

to the trigger specification after the FOR EACH ROW clause.

CREATE OR REPLACE TRIGGER trigger_name
BEFORE|AFTER trigger_event ON trigger_table
FOR EACH ROW
WHEN (condition)

For example, U.S. zip codes are numeric, and Canadian postal codes are alphanu-

meric. If a Canadian record is entered, you want to ensure the postal code is all

uppercase. This is unnecessary in the United States, because only numbers are

specified. To avoid wasting processing time when entering U.S. records in the stu-

dents table, you add a WHEN clause so the trigger only peforms the check of postal-

code when the student is Canadian:

✦ The trigger name is canada_postal_code.

✦ The trigger table is students, because you want the trigger to fire when

changes are made to the students table.

✦ The triggering events are INSERT and UPDATE of postalcode, because you

want the trigger to fire when new records are inserted or updates to the

postalcode column are made.

✦ The trigger will fire BEFORE the triggering event, because you will modify the

actual value being inserted or updated.

✦ The default prefixes will be used.

✦ The trigger should check the value for postalcode only when the record has a

country of “Canada”, because you do not need to convert U.S. zip codes to

uppercase.

CREATE OR REPLACE TRIGGER canada_postal_code
BEFORE INSERT OR UPDATE OF postalcode ON students
FOR EACH ROW
WHEN (new.country = ‘Canada’)
BEGIN

:NEW.postalcode := UPPER(:NEW.postalcode);
END;
/

When referencing the :NEW and :OLD prefixes in the WHEN clause, you do not
use the colon (:) in front of the prefix.

SQL> UPDATE students
2 SET postalcode = ‘m5h 5f6’
3 WHERE studentnumber = 1003
4 /

Caution

4832-8 ch13.F 7/27/01 9:03 AM Page 593

594 Part III ✦ Using PL/SQL

1 row updated.

SQL> SELECT studentnumber, postalcode
2 FROM students
3 WHERE studentnumber = 1003
4 /

STUDENTNUMBER POSTALCODE
------------- ----------

1003 M5H 5F6

Trigger predicates
When you have a trigger that fires for multiple triggering events, such as INSERT

and UPDATE, you may wish to perform different actions depending on which event

actually caused the trigger to fire. Trigger predicates enable you to check which

action was performed from within the trigger. There are four trigger predicates:

✦ INSERTING: Returns TRUE if INSERT statement fired trigger.

✦ DELETING: Returns TRUE if DELETE statement fired trigger.

✦ UPDATING: Returns TRUE if UPDATE statement fired trigger.

✦ UPDATING(column_name): Returns TRUE if UPDATE statement, which

updates the specified column, fired trigger.

These predicates are referenced within the database trigger code. They return

TRUE or FALSE depending on the action that caused the trigger to fire.

For example, you might want to use a database trigger to keep an audit of changes

to the courses table. You need to track when new courses are added and deleted

and when course prices are changed.

CREATE OR REPLACE TRIGGER audit_courses
AFTER INSERT OR UPDATE OF RetailPrice OR DELETE ON courses
FOR EACH ROW
BEGIN

IF INSERTING THEN
INSERT INTO courseaudit
(coursenumber,change,price,changedby,datechanged)
VALUES
(:NEW.coursenumber, ‘INSERT’, :NEW.retailprice, USER,

SYSDATE);

ELSIF DELETING THEN
INSERT INTO courseaudit
(coursenumber,change,price,changedby,datechanged)
VALUES
(:OLD.coursenumber,’DELETE’,:OLD.retailprice,
USER, SYSDATE);

4832-8 ch13.F 7/27/01 9:03 AM Page 594

595Chapter 13 ✦ Introduction to Stored Programs

ELSIF UPDATING THEN
INSERT INTO courseaudit
(coursenumber,change,price,changedby,datechanged)
VALUES
(:OLD.coursenumber, ‘UPDATE PRICE’, :OLD.retailprice,

USER, SYSDATE);

END IF;
END;
/

SQL> INSERT INTO COURSES (coursenumber, coursename,
replacescourse, retailprice, description)
2 VALUES (400,’Database Concepts’,null,1000,
3 ‘A course which gives an overview of database concepts and

capabilities’);

1 row created.

SQL> UPDATE courses
2 SET retailprice = 1500
3 WHERE coursenumber = 400
4 /

1 row updated.

SQL> DELETE FROM courses
2 WHERE coursenumber = 400
3 /

1 row deleted.

SQL> SELECT *
2 FROM courseaudit;

COURSENUMBER CHANGE DATECHANGED PRICE CHANGEDBY
------------ -------------- -------------- ----- ---------

400 INSERT 10-JAN-01 1000 STUDENT3
400 UPDATE PRICE 10-JAN-01 1000 STUDENT3
400 DELETE 10-JAN-01 1500 STUDENT3

Restrictions on triggers
Triggers can be very useful for maintaining database integrity, but there are restric-

tions on what you can do within database triggers.

COMMIT and ROLLBACK
COMMIT and ROLLBACK statements are not permitted inside database triggers. If

you have an INSERT, UPDATE, or DELETE statement inside the database trigger, it is

committed when the statement that triggered the database trigger is committed, or

rolled back when the statement that triggered the database trigger is rolled back.

4832-8 ch13.F 7/27/01 9:03 AM Page 595

596 Part III ✦ Using PL/SQL

Mutating tables
Because database triggers can fire when data contained in a table is changing, the

table a database trigger is assigned to is said to be mutating when the database trig-

ger fires. You are not allowed to write SQL statements that access mutating tables

inside database triggers. In addition, tables with foreign keys pointing to the trigger

table are also said to be mutating and cannot be updated by the trigger.

The following example demonstrates the mutating table concept. When a user

updates the perdiemcost for an instructor, you might want to limit the perdiemcost

so that it cannot exceed the highest perdiemcost already in the database by more

than 20 percent. In order to do this, you create a trigger on the instructors table

that fires when the perdiemcost is updated. The code selects the highest perdiem-

cost in the instructors table, adds 20 percent, and compares it to the perdiemcost

specified in the update. Unfortunately, the instructors table is the trigger table and

is therefore mutating. You cannot execute a SQL statement against a mutating table,

so you cannot use a database trigger to solve this problem.

Here is an example where the foreign key restricts a trigger. When you update a

coursenumber in the courses table, you might want to automatically update all the

ScheduledClasses records to reflect the new coursenumber. The trigger on the

courses table would fire when coursenumber is updated. The trigger would execute

an update on ScheduledClasses with the new coursenumber. Unfortunately,

ScheduledClasses has a foreign key on coursenumber that points to the courses

table. This means ScheduledClasses is a mutating table, so no update statements

can be executed against the ScheduledClasses table within a trigger on the courses

table. You cannot use a database trigger to solve this problem unless you remove

the foreign key between Courses and ScheduledClasses.

Order of firing
When you create database triggers, it is important to understand when database

triggers fire with respect to each other and with respect to the triggering event. The

following shows the order in which triggers and events are executed:

1. User executes a DML statement (INSERT, UPDATE, or DELETE).

2. Oracle fires any BEFORE statement-level triggers.

3. Oracle fires any BEFORE row-level triggers.

4. Oracle executes DML on that row.

5. Oracle fires any AFTER row-level triggers.

6. If more than one row is modified, steps 3 through 5 are repeated until all rows

have been processed.

7. Oracle fires any AFTER statement-level triggers.

4832-8 ch13.F 7/27/01 9:03 AM Page 596

597Chapter 13 ✦ Introduction to Stored Programs

If multiple database triggers on the same table are triggered by the same triggering

event, the order in which those triggers will be fired cannot be determined. When

you require the commands in one trigger to be fired before another, you should

combine the code into one database trigger and list the code in the order you want

it executed.

One database table can have many database triggers, and one database trigger can

perform many actions.

A useful guideline for determining whether to create separate triggers or to com-
bine them into one trigger is to ask yourself how many different business rules you
are enforcing. Create one database trigger for each business rule.

INSTEAD OF triggers
If you are using complex views (that is, views that are based on more than one

table) in your database, you may not be able to use UPDATE, DELETE, and INSERT

statements on the view to update the tables accessed by the view. The INSTEAD OF

trigger enables you to update the tables accessed by any view, including complex

views. INSTEAD OF triggers can be placed only on views and always fire for

each row.

You might have a view that shows all the ScheduledClasses and course information.

SQL> CREATE OR REPLACE VIEW CourseSchedule
2 AS SELECT sc.classid, sc.coursenumber, sc.locationid,
3 c.coursename, c.retailprice
4 FROM ScheduledClasses sc, Courses c
5 WHERE sc.coursenumber = c.coursenumber;

If you try to add a new course through the view, you will get an error because

mandatory columns in the scheduledclass table were not included in the view.

SQL> INSERT INTO CourseSchedule (classid, coursenumber,
2 locationid, coursename, retailprice)
3 VALUES (50, 500, 200,
4 ‘SQL for beginners’, 3000);

ORA-01400: mandatory (NOT NULL) column is missing or NULL
during insert

Oracle will not insert into the Courses table because the primary key of the Courses

table is not selected. Using an INSTEAD OF trigger, you can tell Oracle how to add a

record to the courses table when a user INSERTS into the view.

SQL> CREATE OR REPLACE TRIGGER add_course
2 INSTEAD OF INSERT ON CourseSchedule
3 FOR EACH ROW

Tip

4832-8 ch13.F 7/27/01 9:03 AM Page 597

598 Part III ✦ Using PL/SQL

4 INSERT INTO Courses (CourseNumber, CourseName,
5 ReplacesCourse, RetailPrice, Description)
6 VALUES (:NEW.CourseNumber, :NEW.CourseName, null,
7 :NEW.retailprice, null);
8 END;
9 /

Now when you insert a row into the CourseSchedule view, a record is created in the

Courses table.

SQL> INSERT INTO CourseSchedule (classid, coursenumber,
2 locationid, coursename, retailprice)
3 VALUES (50, 500, 200,
4 ‘SQL for beginners’, 3000)
5 /

SQL> SELECT *
2 FROM courses
3 WHERE coursenumber = 500
4 /

COURSENUMBER COURSENAME REPLACESCOURSE
RETAILPRICE
------------ ------------------------------ --------------
DESCRIPTION
--

500 SQL for beginners 3000

Event triggers
In addition to creating triggers that fire when an INSERT, UPDATE, or DELETE is exe-

cuted on a particular table or view, you can create triggers that fire when certain

events occur in the database. These are called event triggers. There are two types

of event triggers.

The first type of event triggers are resource manager, or system event, triggers.

These triggers can fire after database startup, before database shutdown, and after

server errors. For example, you can create a trigger that writes error information to

a table whenever a server error occurs.

SQL> CREATE OR REPLACE TRIGGER track_errors
2 AFTER SERVERERROR
3 ON DATABASE
4 INSERT INTO error_log (username, errortime, error)
5 VALUES (ora_login_user, SYSDATE,
6 ‘Error – ‘||ora_server_error(1))
7 END
7 /

Each event trigger has a number of attribute functions that can provide information

about the triggering event. In the preceding example, ora_login_user returns the

4832-8 ch13.F 7/27/01 9:03 AM Page 598

599Chapter 13 ✦ Introduction to Stored Programs

username of the person who caused the triggering event. ora_server_error accepts

a position number and returns the error number with that position in the stack.

Position one is the top of the stack.

The second type of event triggers are client event triggers, which can fire after

LOGON, before LOGOFF, or before and after most DDL and DCL commands.

For example, if you want to track when a user accesses your database, you could

fire a trigger whenever a user logs on to add a record to an audit table.

SQL> CREATE OR REPLACE TRIGGER Track_logon
2 AFTER LOGON
3 ON DATABASE
4 BEGIN
5 INSERT INTO audit_logon (username, logontime)
6 VALUES (ora_login_user, SYSDATE);
7 END;
8 /

Auditing can also be performed using Oracle’s auditing functions. Using Oracle’s

built-in auditing function has the advantage that it does not require you to build

your own set of auditing tables and triggers to populate them. Using event triggers

to perform auditing allows you to control exactly what information you keep.

Event triggers are available only in Oracle 8i and higher.

You can also create triggers that log the creation, modification, or deletion of tables

or views, or other database objects in your schema. For example, to log an event

whenever an object in your schema is altered, you could create the following

trigger:

SQL> CREATE OR REPLACE TRIGGER Track_alter
2 AFTER ALTER
3 ON SCHEMA
4 BEGIN
5 INSERT INTO audit_logon (username, logontime, action)
6 VALUES (ora_login_user, SYSDATE, ‘ALTER’);
7 END;
8 /

Enabling and disabling triggers
Once a database trigger has been created, it can be disabled and reenabled using

the ALTER TRIGGER command. When a trigger is created, it is automatically

enabled. A disabled trigger does not fire when the triggering event takes place. A

disabled trigger remains disabled until it is reenabled using the ALTER TRIGGER

command.

Caution

4832-8 ch13.F 7/27/01 9:03 AM Page 599

600 Part III ✦ Using PL/SQL

SQL> ALTER TRIGGER my_trig disable;
SQL> ALTER TRIGGER my_trig enable;

You can also use the ALTER TABLE command to enable or disable all triggers on a

particular table.

SQL> ALTER TABLE students ENABLE ALL TRIGGERS;
SQL> ALTER TABLE students DISABLE ALL TRIGGERS;

Removing triggers
After a database trigger has been created, you can remove the trigger using the

DROP TRIGGER command.

SQL> DROP TRIGGER my_trig;

Only use the DROP TRIGGER command if you are permanently removing the trigger

or planning to rewrite the trigger. If you want to disable the trigger temporarily, use

the ALTER TRIGGER command.

Data Dictionary Views
A number of data dictionary views can provide information about your stored

PL/SQL programs and triggers.

USER_SOURCE
The data dictionary view USER_SOURCE contains the source code for all stored

procedures, functions, and packages that are part of your schema — that is, those

that you have created.

SQL> desc user_source
Name Null? Type
------------------------------- -------- ----
NAME VARCHAR2(30)
TYPE VARCHAR2(12)
LINE NUMBER
TEXT VARCHAR2(4000)

✦ NAME is the name of the procedure, function, or package.

✦ TYPE is the type of program: FUNCTION, PROCEDURE, PACKAGE, or PACKAGE

BODY.

✦ LINE is the line number of the source code.

✦ TEXT contains the source code.

4832-8 ch13.F 7/27/01 9:03 AM Page 600

601Chapter 13 ✦ Introduction to Stored Programs

You can use the USER_SOURCE view to get a list of all procedures, functions, and

packages. You can also use the USER_SOURCE view to see the source code for a

procedure, function, or package.

SQL> SELECT text
2 FROM user_source
3 WHERE name = ‘HELLO_WORLD’
4 ORDER BY line
5 /

TEXT

PROCEDURE hello_world
IS BEGIN
DBMS_OUTPUT.PUT_LINE(‘Hello World’);
END;

USER_TRIGGERS
The data dictionary view USER_TRIGGERS contains information about database

triggers in your schema. Both row-level and statement-level trigger information is

stored in the USER_TRIGGERS view.

SQL> desc user_triggers
Name Null? Type
------------------------------- -------- ----
TRIGGER_NAME VARCHAR2(30)
TRIGGER_TYPE VARCHAR2(16)
TRIGGERING_EVENT VARCHAR2(216)
TABLE_OWNER VARCHAR2(30)
BASE_OBJECT_TYPE VARCHAR2(16)
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
REFERENCING_NAMES VARCHAR2(128)
WHEN_CLAUSE VARCHAR2(4000)
STATUS VARCHAR2(8)
DESCRIPTION VARCHAR2(4000)
ACTION_TYPE VARCHAR2(11)
TRIGGER_BODY LONG
GENERATED VARCHAR2(1)
SECONDARY VARCHAR2(1)

The most useful columns in the view and their contents are the following:

✦ TRIGGER_NAME contains the trigger name.

✦ TRIGGER_TYPE indicates whether the trigger fires BEFORE or AFTER and

whether the trigger is statement or row-level.

✦ TRIGGERING_EVENT lists the events that cause the trigger to fire.

4832-8 ch13.F 7/27/01 9:03 AM Page 601

602 Part III ✦ Using PL/SQL

✦ TABLE_OWNER contains the username of the owner of the table with the

trigger.

✦ TABLE_NAME contains the name of the table with the trigger.

✦ REFERENCING_NAMES contains the prefixes for referencing old and new

values.

✦ WHEN_CLAUSE contains the WHEN clause specified in the trigger.

✦ STATUS indicates whether the trigger is enabled or disabled.

✦ DESCRIPTION contains the full trigger specification.

✦ TRIGGER_BODY contains the PL/SQL code executed when the trigger fires.

The USER_TRIGGERS view can be used to get a list of all the database triggers on a

particular table. It can be used to see what triggers have been disabled. It can also

be used to see the specification and source code for a trigger.

SQL> SELECT description, trigger_body
2 FROM user_triggers
3 WHERE trigger_name = ‘MY_TRIG’
4 /

DESCRIPTION
--
my_trig
BEFORE UPDATE OF lastname ON instructors
FOR EACH ROW
TRIGGER_BODY
--
BEGIN

:NEW.lastname := UPPER(:NEW.lastname);
END;

SQL> ALTER TRIGGER my_trig disable;

Trigger altered.

SQL> select trigger_name, status
2 FROM user_triggers
3 WHERE trigger_name = ‘MY_TRIG’
4 /

TRIGGER_NAME STATUS
------------------------------ --------
MY_TRIG DISABLED

USER_OBJECTS
The data dictionary view USER_OBJECTS contains information about all the

database objects contained in the database that are in your schema, including

PL/SQL programs.

4832-8 ch13.F 7/27/01 9:03 AM Page 602

603Chapter 13 ✦ Introduction to Stored Programs

SQL> desc user_objects
Name Null? Type
------------------------------- -------- ----
OBJECT_NAME VARCHAR2(128)
SUBOBJECT_NAME VARCHAR2(30)
OBJECT_ID NUMBER
DATA_OBJECT_ID NUMBER
OBJECT_TYPE VARCHAR2(18)
CREATED DATE
LAST_DDL_TIME DATE
TIMESTAMP VARCHAR2(19)
STATUS VARCHAR2(7)
TEMPORARY VARCHAR2(1)

The most useful columns in the view and their contents are the following:

✦ OBJECT_NAME contains the name of the database object.

✦ OBJECT_ID contains a unique identifier assigned to each database object.

✦ OBJECT_TYPE indicates the type of database object.

✦ CREATED indicates when the database object was created.

✦ LAST_DDL_TIME indicates the last time the database object was modified.

✦ STATUS indicates whether the database object is VALID or INVALID.

Of particular interest in the USER_OBJECTS view is the STATUS column. This col-

umn indicates if a program is VALID or INVALID. A program with a status of INVALID

must be recompiled. This can occur when you make a structural change to a table

that is called by a stored program, or when you change the program specification of

a program that is called by a stored program.

For example, when you add a new column to the ScheduledClasses table, the

ENROLL_STUDENT program that inserts records to that table will be marked as

INVALID. If you do not recompile the program yourself, Oracle attempts to recom-

pile the program the next time the program is called. Depending on the change

made to the database table, the program may or may not recompile successfully.

You should check the USER_OBJECTS view whenever you change the structure of a

database table or the specification of a program and recompile any programs that

are marked as INVALID.

SQL> SELECT object_name, object_type, status
2 FROM user_objects
3 WHERE status = ‘INVALID’
4 /

4832-8 ch13.F 7/27/01 9:03 AM Page 603

604 Part III ✦ Using PL/SQL

Key Point Summary
This chapter showed how to use PL/SQL in procedures and functions, database

triggers, and packages. You saw how to pass values into a PL/SQL program and how

to call one PL/SQL program from another. This chapter also introduced the basics

of database triggers and database packages.

✦ PL/SQL programs can be stored in the database.

✦ You can name your PL/SQL programs and call one PL/SQL program from

another.

✦ Parameters can be passed to and from PL/SQL programs.

✦ PL/SQL procedures are programs that can accept and return parameters.

PL/SQL functions are programs that can accept parameters and always return

a value.

✦ You can create statement-level and row-level triggers in the database that will

fire when you perform updates to records. Statement-level triggers fire once

for each DML statement executed. Row-level triggers fire once for each record

modified by the DML statement.

✦ PL/SQL programs can be combined into packages and stored together in the

database.

✦ The data dictionary views USER_SOURCE and USER_OBJECTS provide useful

information about stored PL/SQL programs.

✦ The data dictionary view USER_TRIGGERS provides useful information about

database triggers.

✦ ✦ ✦

4832-8 ch13.F 7/27/01 9:03 AM Page 604

605

STUDY GUIDE

Now that you have learned about stored programs, you should test your under-

standing by reviewing the assessment questions and performing the exercises that

follow.

Assessment Questions
1. Which data dictionary view contains the source code for PL/SQL procedures?

A. USER_SOURCE

B. USER_PROCEDURES

C. USER_PROGRAMS

D. USER_CODE

E. USER_OBJECTS

2. When you create a database trigger with the following specification, when will

it fire?

CREATE OR REPLACE TRIGGER change_enrollment

BEFORE INSERT, UPDATE OF classid ON ClassEnrollment

A. When you delete a record from the ClassEnrollment table.

B. When you update the Price of a record in the ClassEnrollment table.

C. When you update the classid in the ScheduledClasses table.

D. When you insert a record into the ClassEnrollment table.

E. When you create the ClassEnrollment table.

3. When you include a user-defined a function in a SQL statement, which of the

following is not allowed?

A. Executing a SELECT statement in the function

B. Executing an UPDATE statement in the function

C. Passing parameters to the function

D. Using an array in the function

E. Storing the function in the database

605Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 605

4. When you create a package called ENROLLMENT that contains a program
called ADD_STUDENT, which of the following commands will run the program
ADD_STUDENT?

A. RUN ADD_STUDENT

B. RUN ENROLLMENT.ADD_STUDENT

C. START ENROLLMENT.ADD_STUDENT

D. EXECUTE ADD_STUDENT

E. EXECUTE ENROLLMENT.ADD_STUDENT

5. When you have the following two triggers defined and you insert a record into
the students table, which triggers will fire and in what order?

CREATE OR REPLACE TRIGGER all_changes

BEFORE INSERT, UPDATE, DELETE OF students

CREATE OR REPLACE TRIGGER row_updated

AFTER UPDATE of students

FOR EACH ROW

A. Statement-level trigger fires, then row-level trigger fires,

B. Only the statement-level trigger fires.

C. Only the rowleveltrigger fires.

D. Row-level trigger fires, then statement-level trigger fires.

E. No triggers fire.

6. You want to reference the record values in a row-level trigger with the prefixes
BEFORE and AFTER. Which of the following clauses should you add to your
trigger specification?

A. REFERENCING OLD AS :OLD NEW AS :NEW.

B. REFERENCING :BEFORE AND :AFTER.

C. REFERENCING PREVIOUS AS :BEFORE AND :NEW AS :AFTER.

D. REFERENCING OLD AS :BEFORE AND NEW AS :AFTER.

E. No changes required, :BEFORE and :AFTER are the default prefixes.

7. You want to create a procedure called ENROLL_STUDENT that accepts stu-
dentid and classid and returns a flag indicating success or failure. What type
of parameters should you use for each parameter?

A. studentid IN NUMBER, classid IN NUMBER, flag OUT BOOLEAN

B. studentid IN NUMBER, classid OUT NUMBER, flag OUT BOOLEAN

C. studentid OUT NUMBER, classid OUT NUMBER, flag OUT BOOLEAN

D. studentid IN OUT NUMBER, classid IN OUT NUMBER, flag IN BOOLEAN

E. studentid IN NUMBER, classid IN NUMBER, flag IN BOOLEAN

606 Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 606

607

8. You want to create a package that contains two public procedures called
ADD_COURSE and SCHEDULE_COURSE and one private procedure called
CHECK_LOCATION. Which procedures should be listed in the package
specification?

A. ADD_COURSE, SCHEDULE_COURSE and CHECK_LOCATION

B. ADD_COURSE and SCHEDULE_COURSE

C. ADD_COURSE and CHECK_LOCATION

D. SCHEDULE_COURSE and CHECK_LOCATION

E. CHECK_LOCATION

9. Which data dictionary view tells you whether a program needs to be recom-
piled with a status of VALID or INVALID?

A. USER_SOURCE

B. USER_OBJECTS

C. USER_CODE

D. USER_PROGRAMS

E. USER_COMPILE

10. You want to call the procedure CHECK_STATUS from a PL/SQL program.
CHECK_STATUS has two parameters. You pass in a classid, and the program
returns a status of canceled, hold, or confirmed. Which line of code will call
the CHECK_STATUS program successfully?

A. EXECUTE CHECK_STATUS(v_studentid, v_status)

B. v_status := CHECK_STATUS(v_studentid)

C. CHECK_STATUS(v_studentid)

D. RUN CHECK_STATUS(v_studentid, v_status)

E. CHECK_STATUS(v_studentid, v_status)

Scenarios
1. You need to write a PL/SQL program called INSTRUCTOR_AVAILABILITY that

will accept an instructor ID and class date. This program will check the
ScheduledClasses table to see if the instructor is available to teach a class on
the given data and will return an availability flag and the per diem cost for
that instructor.

A. Should INSTRUCTOR_AVAILABILITY be a procedure or a function?

B. What parameters should be passed to the program?

C. For each parameter, determine if the parameters should be IN, IN OUT,
or OUT?

607Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 607

2. Your manager has found some inconsistencies in the financial report. The sta-

tus of certain classes in the ScheduledClasses table is being updated after the

class has run. She has asked you to write a database trigger that will prevent

anyone from updating the status column in the ScheduledClasses table after

the class has run (that is, the StartDate column of the class being updated is

less than SYSDATE).

A. On which table should you put the trigger?

B. Should this trigger be a statement-level trigger or a row-level trigger?

C. What event(s) should fire the trigger?

D. What command should you use in the trigger to stop the user from

changing a status and to return an error message to the user explaining

why they cannot make the change?

3. You have been asked to make code changes to a procedure called

STUDENT_ADDRESS. Unfortunately, the original SQL script used to create the

program is nowhere to be found.

A. Which data dictionary view contains the source code for the program?

B. Write a SELECT statement that will return the program code for

STUDENT_ADDRESS from that view.

Lab Exercises
Lab 13-1 Creating functions

1. Write the specification for a function called INSTRUCTOR_COST. The function

will calculate the amount owed to an instructor for teaching a class. The func-

tion should accept an instructorid and a classid and should return a numeric

value.

2. Add a SELECT statement to get the perdiemcost and the perdiemexpenses for

the instructor.

3. Add a SELECT statement to get the daysduration of the class.

4. Add a calculation to determine total cost. Assume that totalcost = daysdura-

tion * perdiemcost + daysduration * perdiemexpenses.

5. Return the totalcost.

6. Call the function from the command line.

7. Call the function from a SQL statement.

608 Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 608

609

Lab 13-2 Creating triggers
1. Write the specification for a trigger called CHECKDATE. CHECKDATE will pre-

vent users from scheduling classes more than four months in advance. The

trigger should go on the ScheduledClasses table. The trigger should fire

before records are inserted or the StartDate column is updated. The trigger

should be a row-level trigger

2. Use the ADD_MONTHS FUNCTION to return the date four months in the

future.

3. Compare the date being added to the date four months in the future. If the

new date is more than four months in the future, use RAISE_APPLICATION_

ERROR to raise an error and prevent the change.

4. Write an UPDATE statement to UPDATE classid 53 with a startdate one year in

the future.

5. What error message is returned?

Lab 13-3 Querying data dictionary views
1. Write a SELECT statement to return the specification and the code for the trig-

ger CHECKDATE using the data dictionary view USER_TRIGGERS.

2. Write a SELECT statement to return the code for the function

INSTRUCTOR_COST.

Answers to Chapter Questions

Chapter Pre-Test
1. Yes, PL/SQL programs can be stored in the database.

2. PL/SQL procedures can accept parameters and can return parameters.

PL/SQL functions must always return a value.

3. Parameters enable you to pass values to and from your PL/SQL programs.

4. Statement-level triggers fire only once for each INSERT, UPDATE, or DELETE

statement. Row-level triggers fire once for each record modified by the

INSERT, UPDATE, or DELETE statement.

5. Putting programs into a package can improve performance and increase

functionality.

6. The data dictionary views USER_SOURCE and USER_OBJECTS provide infor-

mation about programs stored in the database.

7. A PL/SQL package is made up of a package specification and a package body.

609Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 609

8. IN parameters are passed to a program; OUT parameters are passed back

from a program.

9. Yes, PL/SQL functions can be called from within SQL statements if they do not

perform any updates, deletions, or insertions and they return a datatype rec-

ognized by SQL.

10. Yes, when you create a row-level trigger, you can access the values in the

records being changed.

Assessment Questions
1. A — The data dictionary view USER_SOURCE contains the code for all PL/SQL

programs stored in the database.

2. D — This trigger will fire when you insert a record into the ClassEnrollment

table or when you update the classid of a record in the ClassEnrollment table.

3. B — UPDATE statements are not allowed in functions that are called from

within SQL statements.

4. E — To call the program ADD_STUDENT within the package ENROLLMENT,

you must use the EXECUTE command and begin the program name with the

package name as a prefix.

5. B — Only the statement-level trigger will fire if you insert a record into the stu-

dents table. The row-level trigger fires only when rows are updated.

6. D — You must change the default prefixes from :OLD and :NEW to :BEFORE

and :AFTER using the REFERENCING clause.

7. A — Studentid and classid should be IN parameters because they are passing

values in to the program; flag should be an OUT parameter because it is pass-

ing values back out from the program.

8. B — ADD_COURSE and SCHEDULE_COURSE should be listed in the package

specification because they are public procedures. Private procedures are not

listed in the package specification.

9. B — The USER_OBJECTS data dictionary view contains a column that gives

you a status of VALID or INVALID, indicating whether the program should be

recompiled.

10. E — You call the program by specifying the program name and passing two

variables to the program: one to pass the studentid, one to receive the status.

Scenarios
1. INSTRUCTOR_AVAILABILITY should be a procedure because functions can

return only one value, and this program must return two values: Availability

flag and per diem cost. This program will have four parameters: InstructorId,

ClassDate, AvailabilityFlag, and PerDiemCost. InstructorId and ClassDate are

IN parameters. AvailabilityFlag and PerDiemCost are OUT parameters.

610 Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 610

611

2. The database trigger should be on the ScheduledClasses table. This trigger

must be a row-level trigger because you need to know information about the

record being changed. This trigger should fire when the status column is

updated. Within the code, you should use the RAISE_APPLICATION_ERROR

command to prevent the user from making the change and return your speci-

fied error message.

3. The USER_SOURCE view contains the source code for the procedure

STUDENT_ ADDRESS. The SELECT statement that will return the code for that

procedure is

SELECT text
FROM user_source
WHERE name = ‘STUDENT_ADDRESS’
ORDER BY line
/

Lab Exercises

Lab 13-1 Creating functions
Write the function INSTRUCTOR_COST:

CREATE OR REPLACE FUNCTION INSTRUCTOR_COST
(p_instructorid IN NUMBER, p_classid IN NUMBER)
RETURN NUMBER
IS

v_perdiemcost instructors.perdiemcost%TYPE;
v_perdiemexpenses instructors.perdiemexpenses%TYPE;
v_daysduration scheduledclasses.daysduration%TYPE;
v_totalcost NUMBER;

BEGIN
/* SELECT instructor perdiemcost and perdiemexpenses */
SELECT perdiemcost, perdiemexpenses
INTO v_perdiemcost, v_perdiemexpenses
FROM instructors
WHERE instructorid = p_instructorid;

/* SELECT class duration */
SELECT daysduration
INTO v_daysduration
FROM scheduledclasses
WHERE classid = p_classid;

/* Calculate total instructor cost */
v_totalcost := v_daysduration * NVL(v_perdiemcost,0) +

v_daysduration * NVL(v_perdiemexpenses,0);

/* Return total instructor cost */
RETURN (v_totalcost);

END;
/

611Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 611

Execute the program from SQL*Plus:

SQL> VARIABLE totalcost NUMBER
SQL> EXECUTE :totalcost := INSTRUCTOR_COST(100,50);

PL/SQL procedure successfully completed.

SQL> PRINT totalcost

TOTALCOST

3200

Execute the function from a SQL statement:

SQL> SELECT classid, instructorid,
INSTRUCTOR_COST(instructorid, classid)
2 FROM scheduledclasses
3 WHERE startdate > ‘01-JAN-2000’
4 /

CLASSID INSTRUCTORID INSTRUCTOR_COST(INSTRUCTORID,CLASSID)
--------- ------------ -------------------------------------

50 100 3200
51 200 5000
53 110 2800

Lab 13-2 Creating triggers
Write the trigger CHECKDATE:

CREATE OR REPLACE TRIGGER checkdate
BEFORE INSERT OR UPDATE OF startdate ON ScheduledClasses
FOR EACH ROW
DECLARE

v_date_limit DATE;
BEGIN

v_date_limit := ADD_MONTHS(sysdate,4);
IF :NEW.startdate > v_date_limit THEN

RAISE_APPLICATION_ERROR(-20001,’Cannot schedule class
more than 4 months in future.’);

END IF;
END;
/

Try to update scheduledclasses class 53 to a date one year in the future:

SQL> UPDATE scheduledclasses
2 SET startdate = ‘01-JAN-2004’
3 WHERE classid = 53
4 /

612 Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 612

613

UPDATE scheduledclasses
*

ERROR at line 1:
ORA-20001: Cannot schedule class more than 4 months in future.
ORA-06512: at “STUDENT3.CHECKDATE”, line 6
ORA-04088: error during execution of trigger
‘STUDENT3.CHECKDATE’

Lab 13-3 Querying data dictionary views
1. Write a SELECT statement to get the code and specification for the trigger

CHECKDATE:

SQL> SELECT description, trigger_body
2 FROM user_triggers
3 WHERE trigger_name = ‘CHECKDATE’
4 /

DESCRIPTION

checkdate
BEFORE INSERT OR UPDATE OF startdate ON ScheduledClasses
FOR EACH ROW

TRIGGER_BODY

DECLARE
v_date_limit DATE;
BEGIN
v_date_limit := ADD_MONTHS(sysdate,4);
IF :NEW.startdate > v_date_limit THEN

RAISE_APPLICATION_ERROR(-20001,’Cannot schedule class more
than 4 months in future.’);

END IF;
END;

2. Write a SELECT statement to get the code for the function

INSTRUCTOR_COST:

SQL> SELECT text
2 FROM user_source
3 WHERE name = ‘INSTRUCTOR_COST’
4 ORDER BY line
5 /

TEXT

FUNCTION INSTRUCTOR_COST
(p_instructorid IN NUMBER, p_classid IN NUMBER)
RETURN NUMBER

613Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 613

IS
v_perdiemcost instructors.perdiemcost%TYPE;
v_perdiemexpenses instructors.perdiemexpenses%TYPE;
v_daysduration scheduledclasses.daysduration%TYPE;
v_totalcost NUMBER;

BEGIN
/* SELECT instructor perdiemcost and perdiemexpenses */
SELECT perdiemcost, perdiemexpenses
INTO v_perdiemcost, v_perdiemexpenses
FROM instructors

WHERE instructorid = p_instructorid;

/* SELECT class duration */
SELECT daysduration
INTO v_daysduration
FROM scheduledclasses
WHERE classid = p_classid;

/* Calculate total instructor cost */
v_totalcost := v_daysduration * NVL(v_perdiemcost,0) +

v_daysduration * NVL(v_perdiemexpenses,0);

/* Return total instructor cost */
RETURN (v_totalcost);

END;

614 Chapter 13 ✦ Study Guide

4832-8 ch13.F 7/27/01 9:03 AM Page 614

AAA P P E N D I X

What’s on the
CD-ROM?

This appendix provides information on the contents of the

CD-ROM that accompanies this book.

The CD contains 12 programs. Some of the applications are

full working versions of software, while many others are

evaluation or trial versions of some of the most useful

Oracle utilities.

The software included on the CD-ROM is:

✦ Adobe Acrobat Reader 5.0

✦ Bible Series Certification Test Engine and “Introduction

to Oracle: SQL & PL/SQL” sample exam from Hungry

Minds

✦ Introduction to Oracle: SQL & PL/SQL (1Z0-001) Prep

Exam from Self Test Software (Trial Version)

✦ Aria ZIM 2.1 and Oracle SAM from ZIM Technologies

(Evaluation Version)

✦ ER/Studio 4.21 from Embarcadero Technologies (Trial

Version)

✦ Rapid/SQL 5.6 from Embarcadero Technologies (Trial

Version)

✦ PL/Formatter 3.1.2 from RevealNet (Trial Version)

✦ Knowledge Base for Active PL/SQL from RevealNet,

which includes Instant Message for Oracle v2.4 (Trial

Version)

✦ SQL Programmer 2001 from Sylvain Faust International

(Trial Version)

Also included are scripts and source code examples from the

book and an electronic, searchable version of the book that

can be viewed with Adobe Acrobat Reader.

✦ ✦ ✦ ✦

4832-8 appA.F 7/27/01 9:03 AM Page 615

616 Appendixes

The CD-ROM does not include Oracle 8i. If you do not have a copy of Oracle 8i
Enterprise Edition, which is recommended to successfully complete the labs, you

can download a trial copy from Oracle’s Web site after joining the Oracle

Technology Network at http://technet.oracle.com. The link to the download loca-

tion is http://technet.oracle.com/software/content.html. You can also

order a trial copy of Oracle 8i Enterprise Edition for free (if you live in the United

States) from the Oracle Store at http://store.oracle.com. Finally, if you do not want

to download the software or want to receive free updates for a year and CD-ROMs

with the Oracle software on them, you can order a Technology Track through the

Oracle Technology network at http://technet.oracle.com/software/
track.html. Technology Tracks cost $200 each (at the time of writing) and are

available for Windows NT/2000, Linux, and Sun SPARC platforms.

System Requirements
Make sure that your computer meets the minimum system requirements listed in

this section. If your computer doesn’t match up to most of these requirements, you

may have a problem using the contents of the CD.

For Microsoft Windows NT (Service Pack 4 or later) or Windows 2000:

✦ PC with a Pentium II processor running at 300 MHz or faster

✦ At least 64MB of RAM

✦ At least 2GB of free hard disk space

✦ A CD-ROM drive

Although many of the software products included on the CD work with Windows 98

or Windows ME, if you want to install them and Oracle 8i Enterprise Edition on the

same computer, you need either Windows NT or Windows 2000.

For Linux:

✦ PC with a Pentium II processor running at 300 MHz or faster

✦ At least 64MB of RAM

✦ At least 2GB of free hard disk space

✦ A CD-ROM drive

Even though the software included on the CD-ROM runs in Windows environments

only, you can make use of the scripts and sample code on a Linux computer that

has Oracle 8i Enterprise Edition for Linux installed.

4832-8 appA.F 7/27/01 9:03 AM Page 616

617Appendix A ✦ What’s on the CD-ROM?

Using the CD with Microsoft Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Click Start ➪ Run.

3. In the dialog box that appears, type d:\setup.exe, where d is the letter of your

CD-ROM drive.

4. Click OK.

Using the CD with Linux
To install the items from the CD to your hard drive, follow these steps:

1. Log in as root.

2. Insert the CD into your computer’s CD-ROM drive.

3. Mount the CD-ROM.

4. Launch a graphical file manager.

What’s on the CD
The CD-ROM contains source code examples, applications, and an electronic ver-

sion of the book. Following is a summary of the contents of the CD-ROM arranged

by category.

Source code
The scripts required to create the Student schema, used by the labs in each chapter

of the book, in your database can be found in the SCRIPTS folder at the root of the

CD-ROM. In the SCRIPTS folder, you will also find a SOLUTIONS folder, which lists

the solutions for some of the more complex lab questions. In some cases, labs also

require that you run specific scripts, which can be found in the SCRIPTS folder.

4832-8 appA.F 7/27/01 9:03 AM Page 617

618 Appendixes

Applications
The SOFTWARE folder contains all of the trial and other software referenced earlier

in this appendix. Each application is housed in its own folder within the SOFTWARE

folder, as follows (product descriptions are provided by the respective vendor):

✦ SELFTEST: Introduction to Oracle: SQL & PL/SQL (1Z0-001) Prep Exam from

Self Test Software (Trial Version). This program enables you to closely simu-

late the experience of taking the exam. The version provided is an evaluation

of a version of the exam that you can purchase from the vendor and includes

a smaller number of questions than the actual retail product.

✦ ACROBAT: Adobe Acrobat Reader 5.0. This is a fully functional version of the

Adobe Acrobat Reader 5.0 that can be used to read the electronic version of

this book provided on the CD-ROM in the HUNGRYMINDS folder.

✦ TESTEXAM: Bible Series Certification Test Engine and “Introduction to Oracle:

SQL & PL/SQL” sample exam from Hungry Minds. This test engine and exam

include 300 questions that can be used to prepare for the exam. This software

is a fully working version.

✦ ARIAZIM: Aria ZIM 2.1 and Oracle SAM from ZIM Technologies (Evaluation

Version). The Oracle Server Access Module (SAM) is in the ORASAM folder

within the ARIAZIM folder of the CD-ROM. ZIM is a powerful and flexible envi-

ronment for developing and deploying all types of database applications.

ZIM’s entity-relationship model and fully integrated Object Dictionary permit

progressive program development, whether your information processing sys-

tem is among the simplest or the most complex. The straightforward, English-

like syntax of the Application Development Language and its provision for

customized user interfaces and programs, permit you to make any application

easy to use.

ZIM has the added capability of manipulating and retrieving data from third-

party data sources as well as ZIM’s own database. Client applications for SQL

database servers are designed and developed as complete ZIM application

systems. The objective of the ZIM product is 100 percent source code porta-

bility of applications including seamless access to databases being managed

by SQL relational database management systems (SQL servers) supplied by

independent vendors. A ZIM client/server database application may consist of

an arbitrary mixture of tables managed by an SQL server and entity sets and

data relationships managed by ZIM. The Oracle SAM enables you to use ZIM

with an Oracle database.

After you install the software, you must contact ZIM Technologies to activate

it. Instructions are provided in the ARIAZIM folder on the CD-ROM.

✦ ERSTUDIO: ER/Studio 4.21 from Embarcadero Technologies (Trial Version).

ER/Studio is a data modeling application for logical and physical database

design and construction. Its powerful, multi-level design environment

addresses the everyday needs of database administrators (DBAs), developers,

and data architects who build and maintain large, complex database

applications.

4832-8 appA.F 7/27/01 9:03 AM Page 618

619Appendix A ✦ What’s on the CD-ROM?

ER/Studio’s progressive interface and processes have been logically organized

to effectively address the ease-of-use issues that have plagued data modeling

tools for the past decade. The application equips the user to create, under-

stand, and manage mission-critical database designs within an enterprise. It

offers strong logical design capabilities, bi-directional synchronization of logi-

cal and physical designs, automatic database construction, Java application

generation, accurate reverse-engineering of databases, and powerful HTML-

based documentation and reporting facilities.

✦ RAPIDSQL: Rapid/SQL 5.6 from Embarcadero Technologies (Trial Version).

Rapid SQL is an integrated development environment that enables developers

to create, edit, version, tune, and deploy server-side objects residing on

Oracle, Microsoft SQL Server, IBM DB2, and Sybase databases. Its HTML and

Java programming facilities create a unified development environment for

database and web programming, while its extensive graphical facilities simplify

SQL scripting, object management, reverse-engineering, database project man-

agement, version control, and schema deployment. With Rapid SQL, program-

mers can develop and maintain high-quality, high-performance client/server

and Web-based applications in less time and with greater accuracy.

✦ PLFORMAT: PL/Formatter 3.1.2 from RevealNet (Trial Version). Formatter Plus

is a powerful and flexible tool for analyzing and formatting entire PL/SQL

applications. You get instant code formatting for an entire application or just a

single file. You get instant code reviews — while you code — with best-practice

recommendations for code correctness, maintainability, efficiency, readability,

and program structure. You get best-practice technical knowledge, coupled

with real-world examples.

✦ PLSQLKNOW: Knowledge Base for Active PL/SQL from RevealNet (Trial

Version). RevealNet’s Knowledge Base for Active PL/SQL combines 1,600 top-

ics on PL/SQL with an extensive code library of over 1,000 PL/SQL functions. It

merges expert knowledge of PL/SQL with a vast library of best-practice func-

tions — with source code — that extend the power of the PL/SQL language.

Now with V2001.1, the Knowledge Base for Active PL/SQL extends its compre-

hensive coverage to give you code advice and recommendations. And it’s all

only a keystroke away while you are developing your applications.

Knowledge Base for Active PL/SQL includes Instant Message for Oracle v2.4.

RevealNet’s Instant Message lookup is the fastest way to access over 25,000

Oracle messages — including Oracle 8i error messages. Within seconds of

encountering an error message, you can access the full description with

recommended actions.

✦ SQLPROG: SQL Programmer 2001 from Sylvain Faust International (Trial

Version). SQL-Programmer 2001 provides a complete development environment

for Oracle PL/SQL, Sybase, and Microsoft Transact-SQL programmers. Its intu-

itive user interface and extensive toolset enable easy creation, management,

and testing of all programmable objects such as stored procedures, triggers,

functions, views, and indexes. With SQL Programmer 2001, database developers

and DBAs are more productive, can find and fix bugs faster, improve the quality

of applications, and better manage business-critical information.

4832-8 appA.F 7/27/01 9:03 AM Page 619

620 Appendixes

Shareware programs are fully functional, free trial versions of copyrighted pro-

grams. If you like particular programs, register with their authors for a nominal fee

and receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities. You can

copy them to as many PCs as you like — free — but they do not provide technical

support.

GNU software is governed by its own license, which is included inside the folder of

the GNU software. Distribution of this software is unrestricted. See the GNU license

for more details.

Trial, demo, or evaluation versions are usually limited either by time or functionality

(such as being unable to save projects).

Electronic version of Oracle8i DBA: SQL and
PL/SQL Certification Bible
The complete (and searchable) text of this book is on the CD-ROM in Adobe’s

Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also

included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following

solutions:

✦ Turn off any anti-virus software that you may have running. Installers

sometimes mimic virus activity and can make your computer incorrectly

believe that it is being infected by a virus. (Be sure to turn the anti-virus soft-

ware back on later.)

✦ Close all running programs. The more programs you’re running, the less

memory is available to other programs. Installers also typically update files

and programs; if other programs are running, installation may not work

properly.

If you still have trouble with the CD, call the Hungry Minds Worldwide Customer

Service phone number: (800) 762-2974; outside the United States, call (317)

572-3993. Hungry Minds provides technical support only for installation and other

general quality-control issues; for technical support on the applications them-

selves, consult the program’s vendor or author.

✦ ✦ ✦

4832-8 appA.F 7/27/01 9:03 AM Page 620

BBA P P E N D I X

Practice Exam

The “Introduction to Oracle: SQL and PL/SQL” exam has 57

questions. You have 120 minutes to answer all the ques-

tions. All the questions are multiple choice. To answer certain

questions you are given extra information that can be brought

up in a separate window by pressing a button. Read the entire

question, review any extra information, and read all answers

before selecting your answer. When you take the exam, you

can skip over questions and return to answer them later., You

can also return to review questions you have already

answered. This practice exam will help you gauge how well

prepared you are to take the “Introduction to Oracle: SQL and

PL/SQL” exam. Answers to the practice exam and explana-

tions are provided at the end of this appendix.

1. The boss is giving all employees a 20 percent raise on

their annual salary and a $200 bonus. The employee

table stores monthly salaries and contains the following

columns:

EMPLOYEE
Name Null? Type
------------------------------- --------
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)

Which of the following SELECT statements will return a

list of each employee’s ID, name, and total compensation

for the year including raise and bonus.

A. SELECT id,name,(salary+200)+(salary*.2) “Total

compensation”

FROM employee;

B. SELECT id, name, salary*.2+200 “Total

compensation”

FROM employee;

✦ ✦ ✦ ✦

4832-8 AppB.F 7/27/01 9:03 AM Page 621

622 Appendixes

C. SELECT id, name, (salary*12*.2)+200 “Total compensation”

FROM employee;

D. SELECT id, name, (salary*12*.2) + (salary*12+200) “Total compensation

FROM employee;

E. SELECT id, name, salary*12*.2+salary*(12+200) “Total compensation”

FROM employee;

2. The email address column in the employee table should be a NOT NULL

column. If all the existing records in the table have a value specifed for email

address, which of the following commands will make the email address

column NOT NULL?

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)
EMAIL VARCHAR2(50)

A. ALTER TABLE employee(email) NOT NULL;

B. MODIFY TABLE employee ADD CONSTRAINT employee_email_nn NOT

NULL(email);

C. ALTER TABLE employee ADD CONSTRAINT employee_email_nn NOT

NULL(email);

D. ALTER TABLE employee ADD NOT NULL(email);

E. ALTER TABLE employee MODIFY (email NOT NULL);

3. The following statements are executed in order:

INSERT INTO dept VALUES (10,’Admin’, null);
SAVEPOINT A;
INSERT INTO dept VALUES (20,’Finance’,’USA’);
SAVEPOINT B;
INSERT INTO emp VALUES (45, ‘Smith’, 500,
‘smith@produce.com’);
ROLLBACK TO SAVEPOINT B;
SAVEPOINT C;
INSERT INTO emp VALUES (51, ‘Jones’, 400, null);
COMMIT;
INSERT INTO dept VALUES(30,’Billing’,’USA’);
ROLLBACK;
COMMIT;

4832-8 AppB.F 7/27/01 9:03 AM Page 622

623Appendix B ✦ Practice Exam

Which of these rows will be saved to the database? Select all that apply.

A. INSERT INTO dept VALUES (10,‘Admin’, null);

B. INSERT INTO dept VALUES (20,‘Finance’,‘USA’);

C. INSERT INTO emp VALUES (45, ‘Smith’, 500, ‘smith@produce.com’);

D. INSERT INTO emp VALUES (51, ‘Jones’, 400, null);

E. INSERT INTO dept VALUES(30,‘Billing’,‘USA’);

4. Employee names are stored in mixed case in the database.

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)
EMAIL VARCHAR2(50)

Which of the following SELECT statements will return the employee with the

name “Smith”?

A. SELECT * FROM employee WHERE UPPER(name) = ‘SMITH’;

B. SELECT * FROM employee WHERE name LIKE ‘%SMITH%’;

C. SELECT * FROM employee WHERE name = UPPER(‘SMITH’);

D. SELECT * FROM employee WHERE name = ‘SMITH’

E. SELECT * FROM employee WHERE name = “Smith”

5. Which two of the following PL/SQL variable declarations are invalid?

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)

EMAIL VARCHAR2(50)

A. v_id NUMBER(9) := 0;

B. name VARCHAR2(40);

C. v_salary employee.salary%TYPE;

D. v_email VARCHAR2(50) NOT NULL;

E. v_name name.employee%TYPE;

4832-8 AppB.F 7/27/01 9:03 AM Page 623

624 Appendixes

6. What will be the value of the Boolean variable v_flag after the following

PL/SQL code is executed?

DECLARE
v_flag BOOLEAN;
v_sold BOOLEAN := TRUE;
v_paid BOOLEAN;

BEGIN
v_flag := v_sold AND v_paid;

END;

A. TRUE

B. FALSE

C. NULL

D. 0

7. Which of the following SELECT statements will select all the employees with a

NULL salary?

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)
EMAIL VARCHAR2(50)

A. SELECT * FROM employee WHERE salary = NULL;

B. SELECT * FROM employee WHERE salary IS NULL;

C. SELECT * FROM employee WHERE salary IS ‘NULL’;

D. SELECT * FROM employee WHERE salary = 0;

E. SELECT * FROM employee WHERE salary = ‘NULL’;

8. What will happen when you execute the following subquery?

SELECT ename, salary
FROM employee
WHERE salary IN (SELECT salary

FROM employee
WHERE ename = ‘SMITH’);

A. You will get an error because you should not have parentheses around

the subquery.

B. The query will give you an error if there is more than one employee with

the name “Smith.”

C. The query will execute successfully and list the names and salaries of all

employees with the same salary as anyone named “Smith.”

D. The query will execute successfully and list the names and salaries of all

employees with the same salary as anyone named “Smith” except

“Smith” himself.

4832-8 AppB.F 7/27/01 9:03 AM Page 624

625Appendix B ✦ Practice Exam

E. The query will give you an error if there is only one employee named

“Smith” because you are using a multi-row operator.

9. Which of these commands will create a variable called “p_id” and will allow

the user to enter a value for the variable?

A. ACCEPT p_id NUMBER PROMPT “Enter a value for p_id: ”

B. DEFINE p_id PROMPT “Enter a value for p_id: ”

C. ACCEPT p_id NUMBER MESSAGE “Enter a value for p_id”

D. DEFINE p_id MESSAGE “Enter a value for p_id”

10. When will this PL/SQL program exit the loop?

DECLARE
CURSOR dept_cursor IS
SELECT id, name FROM dept;

BEGIN
FOR dept_record IN dept_cursor LOOP

EXIT WHEN dept_cursor%ROWCOUNT =5;
DBMS_OUTPUT.PUT_LINE(dept_record.name);

END LOOP;
END;

A. After all the rows in the cursor are processed.

B. Never, it is an infinite loop.

C. After five rows in the cursor are processed.

D. It will exit the loop immediately if the cursor contains exactly five rows.

E. After all the rows in the cursor are processed, or five rows are processed,

whichever comes first.

11. Which two messages will be printed on the screen if the SELECT statement in

the following PL/SQL program returns no rows?

DECLARE
v_name employee.name%TYPE;

BEGIN
BEGIN

SELECT name
INTO v_name
FROM employee
WHERE id = 10;

EXCEPTION
WHEN no_data_found THEN

DBMS_OUTPUT.PUT_LINE(‘No data found’);
WHEN too_many_rows THEN

DBMS_OUTPUT.PUT_LINE(‘too many rows’);
END;

DBMS_OUTPUT.PUT_LINE(‘No errors’);

4832-8 AppB.F 7/27/01 9:03 AM Page 625

626 Appendixes

EXCEPTION
WHEN no_data_found THEN

DBMS_OUTPUT.PUT_LINE(‘Still no data found’);
WHEN others THEN

DBMS_OUTPUT.PUT_LINE(‘An error occurred’);
END;

A. No data found.

B. Still no data found.

C. An error occurred.

D. No errors.

E. Too many rows.

12. Which command will give the user DAVE the ability to write a SELECT state-

ment to return data from the employee table in SCOTT’s schema?

A. GRANT SELECT ON dave.employee TO scott;

B. CREATE SYNONYM employee FOR scott.employee;

C. CREATE PUBLIC SYNONYM employee FOR scott.employee;

D. GRANT READ ON scott.employee TO dave WITH GRANT OPTION;

E. GRANT SELECT on scott.employee TO dave;

13. Which of the following SELECT statements will list the total salary of employ-

ees in each department with total salaries over $5,000?

A. SELECT SUM(salary), dept_id

FROM employee

HAVING SUM(salary) > 5000;

B. SELECT SUM(salary), dept_id

FROM employee

GROUP BY dept_id

WHERE SUM(salary) > 5000;

C. SELECT SUM(salary), dept_id

FROM employee

WHERE SUM(salary) > 5000

GROUP BY dept_id;

D. SELECT SUM(salary), dept_id

FROM employee

GROUP BY dept_id

HAVING SUM(salary) > 5000;

4832-8 AppB.F 7/27/01 9:03 AM Page 626

627Appendix B ✦ Practice Exam

E. SELECT SUM(salary), dept_id

FROM employee

WHERE SUM(salary) > 5000;

14. Which of the following SELECT statements will list all the departments and the

employees in each department including departments with no employees?

A. SELECT d.name, e.name

FROM employee e, dept d

WHERE e.dept_id = d.id

B. SELECT d.name, e.name

FROM employee e, dept d

WHERE e.dept_id = d.id (+)

C. SELECT d.name, e.name

FROM employee e, dept d

WHERE e.dept_id (+) = d.id

D. SELECT d.name, e.name

FROM employee e, dept d

WHERE e.dept_id (+) = d.id (+)

E. SELECT d.name, e.name

FROM employee e, dept d

WHERE e.dept_id IN d.id

15. Which of the following commands will successfully create the following table?

The ID column should be the primary key of the table.

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)

EMAIL VARCHAR2(50)

A. CREATE TABLE employee

(id NUMBER(9)

name VARCHAR2(40)

salary NUMBER(10,2)

email VARCHAR2(50)

CONSTRAINT employee_id_pk PRIMARY KEY(id));

4832-8 AppB.F 7/27/01 9:03 AM Page 627

628 Appendixes

B. CREATE TABLE employee

(id NUMBER(9),

name VARCHAR2(40),

salary NUMBER(10,2),

email VARCHAR2(50),

CONSTRAINT employee_id_pk PRIMARY KEY(id));

C. CREATE TABLE employee

(id NUMBER(9),

CONSTRAINT employee_id_pk PRIMARY KEY

name VARCHAR2(40),

salary NUMBER(10,2),

email VARCHAR2(50));

D. CREATE TABLE employee

(id NUMBER(9)

CONSTRAINT employee_id_pk PRIMARY KEY(id)

name VARCHAR2(40),

salary NUMBER(10,2),

email VARCHAR2(50));

E. CREATE TABLE employee

(id NUMBER(9)

name VARCHAR2(40),

salary NUMBER(10,2),

email VARCHAR2(50),

CONSTRAINT employee_id_pk PRIMARY KEY);

16. Which of the following commands or set of commands will create the record

emp_record used in the following PL/SQL program? The SELECT statement

selects from the following table:

EMPLOYEE
Name Null? Type
------------------------------- -------- ----
ID NOT NULL NUMBER(9)
NAME VARCHAR2(40)
SALARY NUMBER(10,2)

EMAIL VARCHAR2(50)

4832-8 AppB.F 7/27/01 9:03 AM Page 628

629Appendix B ✦ Practice Exam

BEGIN
SELECT name, salary

INTO emp_record
FROM employee
WHERE id = 500;
END;

A. TYPE emp_record IS RECORD

(name employee.name%TYPE,

salary employee.salary%TYPE);

B. emp_record employee%ROWTYPE;

C. emp_record employee%TYPE;

D. TYPE emp_record_type IS RECORD

(salary employee.salary%TYPE,

name employee.name%TYPE);

emp_record emp_record_type;

E. TYPE emp_record IS RECORD

(name employee.name%TYPE,

salary employee.salary%TYPE);

emp_record emp_record_type;

17. Which of these statements is true about the following DELETE statement?

DELETE FROM employee;

A. The statement cannot be rolled back.

B. All rows in the employee table will be deleted.

C. The employee table will be dropped.

D. The statement will not execute without a WHERE clause.

E. This statement will be automatically committed to the database.

18. Which message will be printed on the screen if the UPDATE statement in the

following PL/SQL program updates no rows?

DECLARE
v_name employee.name%TYPE := ‘Davis’

BEGIN
UPDATE employee
SET name = v_name
WHERE id = 10;

IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR

(-20001,’NOTFOUND is true’);
END IF;

4832-8 AppB.F 7/27/01 9:03 AM Page 629

630 Appendixes

DBMS_OUTPUT.PUT_LINE(‘No errors’);
EXCEPTION

WHEN no_data_found THEN
DBMS_OUTPUT.PUT_LINE(‘No data found’);

WHEN too_many_rows THEN
DBMS_OUTPUT.PUT_LINE(‘Too many rows’);

END;

A. NOTFOUND is true.

B. No errors.

C. No data found.

D. Too many rows.

E. No message is displayed.

19. Which of the following ORDER BY clauses will sort the data returned by the

SELECT statement by department ID in descending order and by salary in

descending order for employees in the same department?

SELECT id, name, salary, dept_id AS department
FROM employee

A. ORDER BY dept_id, salary

B. ORDER BY dept_id, salary DESC

C. ORDER BY department, salary DESC

D. ORDER BY department DESC, salary DESC

E. ORDER BY salary DESC, dept_id DESC

20. What number will be returned by the SELECT orderid_seq.CURRVAL

statement, if the following statements are executed in order?

CREATE OR REPLACE SEQUENCE orderid_seq
START WITH 10
INCREMENT BY 1
MAXVALUE 999
MINVALUE 1
CACHE 5;

SELECT orderid_seq.NEXTVAL
FROM dual;

SELECT orderid_seq.CURRVAL
FROM dual;

A. 1

B. 10

C. 11

D. 12

E. 15

4832-8 AppB.F 7/27/01 9:03 AM Page 630

631Appendix B ✦ Practice Exam

21. How many times will the statement “I am in the loop” be displayed on the

screen when you execute the following PL/SQL code?

DECLARE
v_counter NUMBER :=1;

BEGIN
WHILE v_counter <1 LOOP

DBMS_OUTPUT.PUT_LINE(‘I am in the loop’);
v_counter := v_counter + 1;
EXIT WHEN v_counter >5;

END LOOP;
END;

A. Zero

B. Once

C. Four times

D. Five times

E. Infinitely

22. Which of the following statements will return today’s date in the following

format: 12 June, 2001?

A. SELECT currentdate

FROM DUAL;

B. SELECT sysdate;

C. SELECT TO_CHAR(sysdate,‘fmdd Month, YYYY’)

FROM dual;

D. SELECT TO_DATE(sysdate,‘fmdd Month, YYYY’)

FROM dual;

E. SELECT FORMAT sysdate ‘fmdd Month, YYYY’

FROM dual;

23. What is the maximum size of a column declared as VARCHAR2 in an Oracle 8i

database?

A. 100 characters

B. 1000 characters

C. 2000 characters

D. 4000 characters

E. 2 gigabytes

4832-8 AppB.F 7/27/01 9:03 AM Page 631

632 Appendixes

24. Which data dictionary view lists only the tables you own?

A. USER_TABLES

B. ALL_TABLES

C. DBA_TABLES

D. USER_VIEWS

E. ALL_VIEWS

25. Which of the following statements will successfully create a column alias for

salary*12? Pick two.

A. SELECT id, salary*12 AS ANNUAL SALARY FROM emp;

B. SELECT id, salary*12 ANNUAL SALARY FROM emp;

C. SELECT id, salary*12 ‘ANNUAL SALARY’ FROM emp;

D. SELECT id, salary*12 AS Annual_Salary FROM emp;

E. SELECT id, salary*12 “ANNUAL SALARY” FROM emp;

26. What datatype should you choose for a column called “notes” that will hold

up to 10,000 characters of data?

A. CHAR

B. VARCHAR2

C. BLOB

D. CLOB

E. BFILE

27. Which of the following commands will change the password for the user scott

to “newpass”?

A. ALTER USER scott MODIFY PASSWORD newpass;

B. ALTER USER scott IDENTIFIED BY newpass;

C. MODIFY USER scott ALTER PASSWORD newpass;

D. UPDATE scott SET PASSWORD = ‘newpass’;

E. UPDATE USER_PASSWORDS SET PASSWORD = ‘newpass’ WHERE USER =

‘SCOTT’

28. Which of the following keywords are not required in a PL/SQL program?

Choose all that apply.

A. DECLARE

B. BEGIN

C. EXCEPTION

D. END

4832-8 AppB.F 7/27/01 9:03 AM Page 632

633Appendix B ✦ Practice Exam

29. In the following program, which lines of code can be removed because their

functions are performed by the cursor FOR loop? Choose all that apply.

DECLARE
CURSOR emp_cursor
IS SELECT id, name, salary
FROM emp
ORDER BY salary DESC;

emp_record emp_cursor%ROWTYPE;
BEGIN

OPEN emp_cursor

FOR emp_record IN emp_cursor LOOP
FETCH emp_cursor INTO emp_record;

EXIT WHEN emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(emp_record.ename);
END LOOP;

END;

A. emp_record emp_cursor%ROWTYPE;

B. OPEN emp_cursor;

C. FETCH emp_cursor INTO emp_record;

D. EXIT WHEN emp_cursor%NOTFOUND;

E. END LOOP;

30. Which of the following are SQL*Plus commands? Choose all that apply.

A. DESCRIBE

B. SELECT

C. SPOOL

D. RUN

E. UPDATE

31. The following SELECT statement is executed against a table containing the fol-

lowing data. How many rows will be returned by the SELECT statement?

SELECT id, name
FROM emp
WHERE deptno = 10

OR deptno = 20
AND salary > 1000;

4832-8 AppB.F 7/27/01 9:03 AM Page 633

634 Appendixes

ID NAME SALARY DEPTNO
---- --------- --------- -------
1 JONES 1000 10
2 SMITH 1000 20
3 DAVIS 2000 10
4 CUTLER 500 10
5 MICHAELS 2000 20

A. One row

B. Two rows

C. Three rows

D. Four rows

E. Five rows

32. What will be displayed for employee SMITH when the following SELECT

statement is executed?

SELECT id, name, NVL(salary,’No Salary’) “Salary”
FROM emp;

ID NAME SALARY DEPTNO
---- --------- --------- -------
1 JONES 1000 10
2 SMITH 20
3 DAVIS 2000 10
4 CUTLER 500 10
5 MICHAELS 2000 20

A. 2 SMITH 0

B. 2 SMITH

C. 2 SMITH No Salary

D. 2 SMITH Salary

E. This select statement will return an error.

33. What will be returned by the following SELECT statement?

SELECT id, name,
TO_CHAR(ADD_MONTHS(hiredate,3),’dd/mm/yyyy’)
FROM emp
WHERE id = 1;

ID NAME SALARY HIREDATE
---- --------- --------- -------
1 JONES 1000 01-DEC-2001
2 SMITH 03-FEB-2000

A. 1 JONES 01/12/2001

B. 1 JONES 04/12/2001

C. 1 JONES 01/03/2001

4832-8 AppB.F 7/27/01 9:03 AM Page 634

635Appendix B ✦ Practice Exam

D. 1 JONES 01/03/2002

E. This select statement will return an error.

34. What will be returned by the following SELECT statement?

SELECT AVG(salary)
FROM emp;

ID NAME SALARY
---- --------- ---------
1 JONES 1000
2 SMITH
3 MICHAELS 2000

A. 1000

B. 1500

C. 2000

D. 3000

E. NULL

35. Consider the data in the following tables:

EMPLOYEE

ID NAME SALARY DEPT_ID
---- --------- --------- -------
1 JONES 1000 10
2 SMITH 1000 20
3 DAVIS 2000 10
4 CUTLER 500 10
5 MICHAELS 2000 20

DEPARTMENT

ID NAME
---- ---------
10 FINANCE
20 ADMINISTRATION
30 HUMAN RESOURCES
40 TRAINING

Which of the SELECT statements would return the following data?

ID DEPT_NAME EMP_NAME
---- ------------ ---------
10 FINANCE JONES
10 FINANCE DAVIS
10 FINANCE CUTLER
20 ADMINISTRATION SMITH
20 ADMINISTRATION MICHAELS
30 HUMAN RESOURCES
40 TRAINING

4832-8 AppB.F 7/27/01 9:03 AM Page 635

636 Appendixes

A. SELECT d.id, d.name DEPT_NAME, e.name EMP_NAME

FROM employee e, department d

WHERE e.id (+) = d.id;

B. SELECT d.id, d.name DEPT_NAME, e.name EMP_NAME

FROM employee e, department d

WHERE e.id = d.id (+);

C. SELECT d.id, d.name DEPT_NAME, e.name EMP_NAME

FROM employee e, department d

WHERE e.dept_id = d.id (+);

D. SELECT d.id, d.name DEPT_NAME, e.name EMP_NAME

FROM employee e, department d

WHERE e.dept_id (+) = d.id;

36. How many rows will be returned by the following query if the table contains

the following data?

SELECT id, name, salary, commission
FROM employee
WHERE commission = (SELECT commission

FROM employee
WHERE name = ‘SMITH’);

EMPLOYEE

ID NAME SALARY COMMISSION DEPTNO
---- --------- --------- ---------- -------
1 JONES 1000 15 10
2 SMITH 1000 20
3 DAVIS 2000 10 10
4 CUTLER 500 10
5 MICHAELS 2000 10 20

A. None

B. One

C. Two

D. Three

E. Five

37. How many times will the word “Hi” appear on the screen if you execute the

following code?

DECLARE
x NUMBER := 0;

4832-8 AppB.F 7/27/01 9:03 AM Page 636

637Appendix B ✦ Practice Exam

BEGIN
FOR i IN 1..4 LOOP

WHILE x < 3 LOOP
DBMS_OUTPUT.PUT_LINE(‘Hi’);
x := x+1;

END LOOP;
END LOOP;

END;

A. Three times

B. Four times

C. Eight times

D. Twelve times

E. An infinite number of times

38. Which line of code in the following program will cause an error?

DECLARE
TYPE emp_table_type IS TABLE OF VARCHAR2(30)
INDEX BY BINARY_INTEGER;

emp_table emp_table_type;
BEGIN

FOR i IN 1..4 LOOP
emp_table_type(i) := ‘A name’;

END LOOP;

DBMS_OUTPUT.PUT_LINE(emp_table(4));
END;

A. TYPE emp_table_type IS TABLE OF VARCHAR2(30)

INDEX BY BINARY_INTEGER;

B. emp_table emp_table_type;

C. emp_table_type(i) := ‘A name’;

D. DBMS_OUTPUT.PUT_LINE(emp_table(4));

E. There are no errors in this program

39. Which of the following implicit cursor attributes can be used to determine if a

DELETE statement in a PL/SQL program deleted any rows? Choose three.

A. SQL%FOUND

B. SQL%NOTFOUND

C. SQL%DELETED

D. SQL%SUCCESS

E. SQL%ROWCOUNT

4832-8 AppB.F 7/27/01 9:03 AM Page 637

638 Appendixes

40. Which of the following statements regarding the FOR UPDATE clause is false?

A. You can specify the names of the columns that will be updated in the

FOR UPDATE clause.

B. The FOR UPDATE clause allows you to use the WHERE CURRENT OF

clause in subsequent update statements.

C. The FOR UPDATE clause automatically updates all the records selected

by the cursor.

D. The FOR UPDATE clause will lock all the records selected so no other

users can update the records selected by the cursor.

41. Which statement below regarding primary keys is false?

A. A column identified as a primary key must contain unique values.

B. A column identified as a primary key cannot contain a NULL value.

C. You can identify a combination of columns as a primary key.

D. You cannot create a table without a primary key.

E. When you identify a column as the primary key, an index is automatically

created based on that column.

42. Which of the following statements are Data Manipulation Language

commands?

A. INSERT

B. UPDATE

C. GRANT

D. TRUNCATE

E. CREATE

43. What will be returned for employee SMITH if you execute the following

SELECT statement?

SELECT id, name, DECODE(contract,1,’Yes’,0,’No’) CONTRACT
FROM employee;

EMPLOYEE

ID NAME CONTRACT
---- ---------- ---------
1 JONES 1
2 SMITH 2
3 DAVIS 0

4832-8 AppB.F 7/27/01 9:03 AM Page 638

639Appendix B ✦ Practice Exam

A. 2 SMITH Yes

B. 2 SMITH No

C. 2 SMITH 2

D. 2 SMITH 0

E. 2 SMITH

44. Which of the following statements will add the following row to the employee

table?

EMPLOYEE

ID NAME SALARY COMMISSION DEPTNO
---- --------- --------- ---------- -------
1 JONES 1000 10

A. INSERT INTO employee

VALUES (1,JONES,1000,10);

B. INSERT INTO employee

VALUES (1,‘JONES’,1000’,10);

C. INSERT INTO employee

VALUES (id=1,name=‘JONES’,salary=1000,commission=null, deptno=10)

D. INSERT INTO employee (id, name, salary, deptno)

VALUES (1,‘JONES’,1000,10);

E. INSERT INTO employee (name, id, salary, commission, deptno)

VALUES (1,‘JONES’,1000,null,10);

45. Which of the following statements will not lock a row in the database? Choose

two.

A. SELECT ...FROM table;

B. INSERT INTO table VALUES (...);

C. UPDATE table SET column = value;

D. DELETE FROM table;

E. CREATE TABLE (...)

46. Which of the following SQL*Plus commands will ensure that a message is

always displayed saying how many rows were selected?

A. SET FEEDBACK ON

B. SET FEEDBACK 0

C. SET FEEDBACK 1

D. SET FEEDBACK TRUE

4832-8 AppB.F 7/27/01 9:03 AM Page 639

640 Appendixes

47. How many SQL commands are stored in the SQL buffer?

A. 0

B. 1

C. 5

D. 10

E. Depends on SQL*Plus environment variable.

48. Consider the following database table and SELECT statement:

EMPLOYEE

ID NAME SAL
---- --------- ---------
1 JONES 5321.6
2 SMITH 1000
3 DAVIS 200
4 CUTLER .50

SELECT id, name, sal
FROM employee;

Which of the following SQL*Plus commands will format the salary column so

the output appears as follows?

ID NAME SALARY
---- --------- ---------
1 JONES $5,321.60
2 SMITH $1,000.00
3 DAVIS $200.00
4 CUTLER $0.50

A. COLUMN salary FORMAT $9,990.00

B. COLUMN sal FORMAT $9,990.00

C. COLUMN sal HEADING salary FORMAT $9,990.00

D. COLUMN sal HEADING salary FORMAT $0,000.00

49. Which of the following commands will execute the script myscript.sql?

Choose two.

A. START myscript

B. /

C. RUN myscript.sql

D. @myscript.sql

E. EXECUTE myscript.sql

4832-8 AppB.F 7/27/01 9:03 AM Page 640

641Appendix B ✦ Practice Exam

50. What message(s) will be displayed on the screen if the following program

selects a record with a salary that is less than zero?

DECLARE
e_neg_salary EXCEPTION;
v_sal emp.sal%TYPE;

BEGIN
SELECT sal
INTO v_sal

FROM emp
WHERE id = 1;

IF v_sal < 0 THEN
RAISE_APPLICATION_ERROR(

-20001,’Negative salary’);
END IF;

DBMS_OUTPUT.PUT_LINE(‘Program completed’);
EXCEPTION
WHEN e_neg_salary THEN

DBMS_OUTPUT.PUT_LINE
(‘Employee has negative salary’);
END;

A. Negative salary

B. Program completed

C. Employee has negative salary

D. Negative salary

Employee has negative salary

E. Negative salary

Program completed

51. If the following code is executed, what is printed on the screen?

DECLARE
v_name VARCHAR2(30) := ‘Smith’;

BEGIN
v_name := ‘Jones’;

DECLARE
v_name VARCHAR2(30) := ‘Davis’;

BEGIN
v_name := ‘Morris’;

END;

DBMS_OUTPUT.PUT_LINE(‘v_name is ‘||v_name);
END;

4832-8 AppB.F 7/27/01 9:03 AM Page 641

642 Appendixes

A. v_name is Smith

B. v_name is Jones

C. v_name is Davis

D. v_name is Morris

52. Which of the following commands will cause any pending transactions to be

committed. Choose all that apply.

A. COMMIT

B. EXIT

C. SAVE

D. GRANT CREATE TABLE TO scott

E. CREATE VIEW my_emp_view AS SELECT * FROM emp;

53. If you create the following view on the employee table, which of the following

commands will execute successfully?

DESC employee
Name Null? Type
-------------------- -------- ----
ID NOT NULL NUMBER(10)
NAME NOT NULL VARCHAR2(20)
SALARY NOT NULL NUMBER(9,2)
DEPARTMENT NOT NULL NUMBER(4)

CREATE VIEW emp_view AS
SELECT id emp_id, name emp_name, department
FROM employee
WHERE department = 10 WITH CHECK OPTION;

A. SELECT id, name, department

FROM emp_view;

B. INSERT INTO emp_view

VALUES (99,‘Smith’,10);

C. UPDATE emp_view

SET department = 20

WHERE emp_id = 1;

D. SELECT emp_id, emp_name, department

FROM employee;

E. DELETE FROM emp_view;

4832-8 AppB.F 7/27/01 9:03 AM Page 642

643Appendix B ✦ Practice Exam

54. Which condition is an argument for creating an index on a table?

A. The table contains a small amount of data.

B. The SELECT statement will return more than 20 percent of the rows in

the table.

C. You are doing a lot of inserts, updates, and deletions on the table.

D. The column contains many NULL values.

E. The column is not used in the WHERE clause of a SELECT statement.

55. Which of the following commands will insert a row and use the default value

for the salary column of the employee table?

DESC employee
Name Null? Type Default
-------------------- -------- ---- ---------
ID NOT NULL NUMBER(10)
NAME NOT NULL VARCHAR2(20)
SALARY NUMBER(9,2) 1000
DEPARTMENT NUMBER(4)

A. INSERT INTO employee

VALUES (1,‘Smith’,10);

B. INSERT INTO employee (id, name, department)

VALUES (1,‘Smith’,10);

C. INSERT INTO employee

VALUES (1,‘Smith’,null, 10);

D. INSERT INTO employee (id, name, salary, department)

VALUES (1,‘Smith’,null, 10);

56. Which of the following PL/SQL programs will fail? Choose two.

EMPLOYEE

ID NAME
---- ----------
1 JONES
2 SMITH
3 DAVIS

A. BEGIN

CREATE TABLE persons (id NUMBER(4), name VARCHAR2(30));

END;

4832-8 AppB.F 7/27/01 9:03 AM Page 643

644 Appendixes

B. BEGIN

COMMIT;

END;

C. DECLARE

v_id employee.id%TYPE;

v_name employee.name%TYPE;

BEGIN

SELECT id, name

INTO v_id, v_name

FROM employee

WHERE id = 1;

END;

D. BEGIN

INSERT INTO employee (id, name)

VALUES(5,‘Morris’);

END;

E. BEGIN

GRANT SELECT ON employee TO public;

END;

57. Which of the following SELECT statements will execute successfully in your

PL/SQL program?

DECLARE
v_id employee.id%TYPE;
v_name employee.name%TYPE;
v_dept employee.dept%TYPE;

BEGIN
select_statement;

END;

A. SELECT id, name, dept

FROM employee

WHERE id =1;

B. SELECT id, name, dept

INTO v_id, v_name, v_dept

FROM employee;

4832-8 AppB.F 7/27/01 9:03 AM Page 644

645Appendix B ✦ Practice Exam

C. SELECT id, name, dept

INTO v_id, v_name, v_dept

FROM employee

WHERE id = 1;

D. SELECT id, name, dept

FROM employee

INTO v_id, v_name, v_dept

WHERE id = 1;

Answers
1. D — Because the salary stored in the employee table is a monthly salary, you

must multiply the values in the salary column by 12. To get the total compen-

sation, you need the annual salary (salary*12), added to the raise

(salary*12*.2), added to the bonus (200). For more information, see the sec-

tion on arithmetic operations in Chapter 2, “Retrieving Data Using Basic SQL

Statements.”

2. E — You use the ALTER TABLE command to change the structure of a table.

You cannot make a column NOT NULL if there is data in the table and that col-

umn already contains NULL values. Since all the existing records in the table

have values specified for email address, use the MODIFY option to make the

column NOT NULL. You can also use the MODIFY option to change the

datatype of a column, or add a default value to a columnFor more information

on the ALTER TABLE command, see the section on creating and managing

tables in Chapter 7, “Creating and Managing Oracle Database Objects.”

3. A, B, and D will be saved to the database. The ROLLBACK to SAVEPOINT B

rolls back employee “Smith.” The COMMIT after ‘Jones’ saves employee

“Jones” and departments “Admin” and “Finance.” The ROLLBACK after

‘Billing’ rolls back the “Billing” department. The final commit has no effect.

For more information on COMMIT and ROLLBACK, see the section on

transaction controls in Chapter 5, “Adding, Updating, and Deleting Data.”

4. A — The name in the database is stored in mixed case, but the UPPER function

converts the name to uppercase before comparing the name to the string

“SMITH”, which is entirely in uppercase. The name must also be enclosed in

single quotes because it is a character string. For more information on the

UPPER function, see the section on single-row functions in Chapter 3, “Using

Single- and Multi-Row Functions.”

4832-8 AppB.F 7/27/01 9:03 AM Page 645

646 Appendixes

5. D and E — D is invalid because you cannot declare a variable as NOT NULL

without providing an initial value. E is invalid because when using the %TYPE

option, you specify the table name first and the column name second. B is in

fact valid because although using column names as variable names is not

recommended, it is valid. For more information on declaring PL/SQL variables,

see the section on variables in Chapter 9, “Introduction to PL/SQL.”

6. C — The initial value of v_sold is TRUE; because no initial value is specified for

v_paid, it will be NULL. With an AND condition, when one condition is TRUE

and the other is NULL, the expression returns NULL. For more information on

IF statements, see the section on conditional processing in Chapter 10,

“Controlling Program Execution in PL/SQL.”

7. B — When searching for a NULL value in a column, you must use the keyword

IS. No quotes are required around the keyword NULL. For more information,

see the section on the WHERE clause in Chapter 2, “Retrieving Data Using

Basic SQL Statements.”

8. C — The query will execute successfully and list all the names and salaries of

all employee with the same salary as anyone named “Smith.” “Smith” will be

included in the list of employee names, and the query will execute success-

fully regardless of how many rows are returned by the subquery because the

IN operator will accept one or more values. For more information, see the sec-

tion on subqueries in Chapter 4, “Advanced SELECT Statements.”

9. A — Use the ACCEPT command to create a variable in SQL*Plus and prompt

the user for a value. The DEFINE command will create a variable but will not

prompt the user for a value. The clause for specifying the message prompt is

PROMPT. For more information, see the section on substitution variables in

Chapter 6, “The SQL*Plus Environment.”

10. E — The cursor FOR loop will exit automatically when all rows in the cursor

have been processed. The EXIT statement will also cause you to exit the loop

when five rows have been processed. %ROWCOUNT increments each time a

row is fetched from the cursor. For more information, see the section on

explicit cursor attributes in Chapter 11, “Interacting with the Database Using

PL/SQL.”

11. A and D — If the SELECT statement returns no rows, the exception

NO_DATA_FOUND will be raised and trapped in the sub-block, which displays

the message “No data found”. After the sub-block handles the error, the code

continues to execute where the sub-block ends, and the message “No errors”

will be displayed just before the program ends. For more information, see the

section on nested blocks in Chapter 12, “Handling Errors and Exceptions in

PL/SQL.”

12. E — The SELECT privilege must be granted to Dave on the table

scott.employee. Creating a synonym does not give a user privileges to read

from a table. For more information, see the section on object privileges in

Chapter 8, “Configuring Security in Oracle Databases.”

4832-8 AppB.F 7/27/01 9:03 AM Page 646

647Appendix B ✦ Practice Exam

13. D — Because you have a group function and a column in the SELECT state-

ment, you must have a GROUP BY clause. When you want to restrict the val-

ues displayed and your condition involves a group function, you must use the

HAVING clause. For more information, see the section on the HAVING clause in

Chapter 3, “Using Single- and Multi-Row Functions.”

14. C — In order to list departments that have no employees, you must use an

outer join. The plus sign (+) goes on the side of the WHERE clause that refer-

ences the table that has no records to join to — in this case, the employee

table. You cannot specify two outer joins on either side of the WHERE clause.

For more information, see the section on outer joins in Chapter 4, “Advanced

SELECT Statements.”

15. B — You should have a comma after each column declaration. If you have a

column-level constraint, the comma comes after the column-level constraint.

If you have a table-level constraint, you put a comma after the last column and

then list the table-level constraints. When using table-level constraints, you

must specify in parentheses the name of the column upon which the con-

straint is being placed. For more information, see the section on creating

tables in Chapter 7, “Creating and Managing Oracle Database Objects.”

16. D — You must declare a record structure and then the actual record based on

the record structure. The structure of the record must have fields that match

in order the datatypes and sizes of the columns selected. You cannot use

%ROWTYPE in this example because %ROWTYPE creates a record that

matches the structure of the entire table, and this table has additional

columns that are not selected. For more information, see the section on

records in Chapter 11, “Interacting with the Database Using PL/SQL.”

17. B — All rows in the employee table will be deleted because no WHERE clause

is specified. The statement can be rolled back and is not committed automati-

cally. The DELETE statement deletes rows from a table without dropping the

actual table. For more information, see the section on the DELETE statement

in Chapter 5, “Adding, Updating, and Deleting Data.”

18. A — “NOTFOUND is true” will be displayed because the UPDATE statement

will not automatically raise an exception when no rows are updated, but the

code checks to see if SQL%NOTFOUND is true after the update is executed.

SQL%NOTFOUND will be true if no rows were updated so the RAISE_APPLICA-

TION_ERROR will display the message “NOTFOUND is true”. For more infor-

mation, see the section on user-defined exceptions in Chapter 12, “Handling

Errors and Exceptions in PL/SQL.”

19. D — You must specify DESC to change the default sort order from ascending

to descending for each column you want sorted in descending order. You

must list the columns in the order in which you want them sorted. You can

use column aliases in the ORDER BY clause. For more information, see the

section on the ORDER BY clause in Chapter 2, “Retrieving Data Using Basic

SQL Statements.”

4832-8 AppB.F 7/27/01 9:03 AM Page 647

648 Appendixes

20. B — 10. The SELECT orderid.NEXTVAL statement will return the number 10,

the first value handed out by the sequence. The SELECT orderid_seq.CUR-

RVAL will return the last number handed out by the sequence that was 10. For

more information, see the section on sequences in Chapter 7, “Creating and

Managing Oracle Database Objects.”

21. A — The variable v_counter is equal to one when the program starts, so you

never enter the WHILE loop because the WHILE condition is FALSE the first

time you reach the loop. For more information, see the section on loops in

Chapter 10, “Controlling Program Execution in PL/SQL.”

22. C — To return the current date, you select SYSDATE from the table dual. To

format the date, you must use the TO_CHAR function. For more information,

see the section on single-row functions in Chapter 3, “Using Single- and Multi-

Row Functions.”

23. D — In Oracle 8i, a VARCHAR2 column can hold up to 4,000 characters. For

more information, see the section on datatypes in Chapter 7, “Creating and

Managing Oracle Database Objects.”

24. A — The USER_TABLES data dictionary view lists all the tables you own. The

ALL_TABLES view lists all tables you have access to, and the DBA_TABLES

view lists all the tables in the database. USER_VIEWS and ALL_VIEWS list

information about views. For more information, see the section on data dictio-

nary views in Chapter 7, “Creating and Managing Oracle Database Objects.”

25. D and E — The AS keyword is optional when specifying a column alias. You

must enclose the column alias in double quotes when the alias contains a

space or lowercase letters. If you specify an alias in lowercase letters without

double quotes, the alias will appear in uppercase. For more information, see

the section on aliases in Chapter 2, “Retrieving Data Using Basic SQL

Statements.”

26. D — CLOB can hold up to 4 gigabytes of character data. You cannot use CHAR

or VARCHAR because they can only hold up to 4,000 characters. BFILE and

BLOB are for binary, not character, data. For more information, see the sec-

tion on datatypes in Chapter 7, “Creating and Managing Oracle Database

Objects.”

27. B — The ALTER USER command with the IDENTIFIED BY option is used to

change a user’s password. For more information, see the section on changing

passwords in Chapter 8, “Configuring Security in Oracle Databases.”

28. A and C — Not all PL/SQL programs require a DECLARE or EXCEPTION sec-

tion, so these keywords are not required in a PL/SQL program. For more infor-

mation, see the section on block structure in Chapter 9, “Introduction to

PL/SQL.”

29. A, B, C, and D — The cursor FOR loop will open the cursor, declare the

emp_record record, fetch a row from the cursor each time through the loop,

exit when all rows are fetched, and close the cursor after exiting the loop. For

more information, see the section on cursor FOR loops in Chapter 11,

“Interacting with the Database Using PL/SQL.”

4832-8 AppB.F 7/27/01 9:03 AM Page 648

649Appendix B ✦ Practice Exam

30. A, C, and D are SQL*Plus commands. DESCRIBE, SPOOL, and RUN are all

SQL*Plus commands; SELECT and UPDATE are SQL commands. For more

information, see the section on SQL*Plus commands in Chapter 6, “The

SQL*Plus Environment.”

31. D — Four rows will be returned. The AND statement will be executed before

the OR statement; therefore, all the employees with deptno=20 and a salary

greater than 1000 will be returned as well as all employees with deptno=10.

If you wanted to return a list of all employees with a salary greater than 1000

who work in departments 10 or 20, you need to use parentheses to ensure the

OR statement is evaluated before the AND statement.

SELECT id, name
FROM emp
WHERE (deptno = 10

OR deptno = 20)
AND salary > 1000;

For more information, see the section on the WHERE clause in Chapter 2,

“Retrieving Data Using Basic SQL Statements.”

32. E — This SELECT statement will return an error because, when you use the

NVL function, the value passed to the NVL function must be the same

datatype as the column passed to the NVL function. In this case, salary is a

NUMBER column, and “No salary” is a character string. If you want to display

the string “No salary” when the salary value is NULL, you must use the

TO_CHAR function to convert the salary a character string.

SELECT id, name, NVL(TO_CHAR(salary),’No Salary’) “Salary”
FROM emp;

For more information, see the section on NULLS in Chapter 2, “Retrieving Data

Using Basic SQL Statements.”

33. D — This SELECT statement will add three months to the hire date of “01-DEC-

2001”, which will return “01-MAR-2002”, then format the date to appear as

“01/03/2002”. For more information, see the sections on date and character

functions in Chapter 3, “Using Single- and Multi-Row Functions.”

34. B — The SELECT statement will return 1,500 because the AVG function will

return an average and will ignore any NULL values. For more information, see

the section on group and multi-row functions in Chapter 3, “Using Single- and

Multi-Row Functions.”

35. D — You must use an outer join to list the departments with no employees.

Because it is the employee table that has no records to join with, you must put

the plus sign (+)on the side of the join that references the employee table. The

JOIN statement itself should compare the dept_id column in the employee

table to the id column in the department table. For more information, see the

section on outer joins in Chapter 4, “Advanced SELECT Statements.”

4832-8 AppB.F 7/27/01 9:03 AM Page 649

650 Appendixes

36. A — No rows will be returned by the query because the subquery will return a

commission of NULL. The main query will return no rows because you cannot

use an equal sign (=) to check for NULL values in a WHERE clause. For more

information, see the section on NULL behavior in Chapter 4, “Advanced

SELECT Statements.”

37. A — The word “Hi” will appear on the screen three times. You enter the FOR

loop, and i equals one. When you first enter the WHILE loop, x equals zero,

the word “Hi” is printed, and x is incremented to one. The WHILE loop re-

executes, prints “Hi”, and increments x to two. The WHILE loop re-executes,

prints “Hi”, and increments x to three. At this point, you exit the WHILE loop

because x is no longer less than three. The FOR loop executes a second time,

but you never re-enter the WHILE loop because x is not less than three. For

more information, see the section on loops in Chapter 10, “Controlling

Program Execution in PL/SQL.”

38. C — This line of code will cause an error because the table name (emp_table),

not the table type name (emp_table_type), should be used when trying to

populate a PL/SQL table. For more information, see the section on PL/SQL

tables in Chapter 11, “Interacting with the Database Using PL/SQL.”

39. A, B, and E — SQL%FOUND will be TRUE if any rows were deleted, SQL%NOT-

FOUND will be false if any rows were deleted, SQL%ROWCOUNT will be

greater than zero if any rows were deleted. For more information, see the sec-

tion on implicit cursor attributes in Chapter 11, “Interacting with the Database

Using PL/SQL.”

40. C — The FOR UPDATE clause will not automatically update all the records

selected by the cursor. For more information, see the section on the FOR

UPDATE clause in Chapter 11, “Interacting with the Database Using PL/SQL.”

41. D — Although identifying a primary key on every table you create is recom-

mended, you can create and populate a table without identifying a primary

key. For more information, see the section on constraints in Chapter 1, “The

Oracle Database,” or Chapter 7, “Creating and Managing Oracle Database

Objects.”

42. A and B— The INSERT and UPDATE statements are Data Manipulation Language

(DML) commands. GRANT is a Data Control Language (DCL) command.

TRUNCATE and CREATE are Data Definition Language (DDL) commands. For

more information, see Chapter 2, “Retrieving Data Using Basic SQL Statements.”

43. E — Employee SMITH has a contract value of two. Because that value does not

match any of the choices listed in the DECODE function, and no default for

other values is specified in the DECODE function, a default value of NULL is

used. For more information, see the section on DECODE in Chapter 3, “Using

Single- and Multi-Row Functions.”

4832-8 AppB.F 7/27/01 9:03 AM Page 650

651Appendix B ✦ Practice Exam

44. D — The name column is a character value and must be specified in single

quotes. If no column names are specified, then values for all columns must be

specified in the order in which they appear in the table. If column names are

specified after the table name, values for each of the column names must be

provided in the order in which they appear, any columns not listed will have a

NULL value. For more information, see the section on inserts in Chapter 5,

“Adding, Updating, and Deleting Data.”

45. A and E — The SELECT statement will not lock a row in the database unless

you specify the FOR UPDATE clause. The CREATE TABLE command does not

lock any rows. For more information, see the section on locks in Chapter 5,

“Adding, Updating, and Deleting Data.”

46. C — Setting the FEEDBACK to 1 ensures that if one or more rows are selected,

you see a message telling you how many records are displayed. For more

information, see the section on customizing the SQL*Plus environment in

Chapter 6, “The SQL*Plus Environment.”

47. B — Only one SQL command is stored in the SQL buffer. For more information,

see the section on the SQL buffer in Chapter 6, “The SQL*Plus Environment.”

48. C — The COLUMN command should reference the column name “sal”. The

HEADING option should specify the new column title “salary”. The FORMAT

option should use nines in the format mask to suppress leading zeros. For

more information, see the section on formatting in Chapter 6, “The SQL*Plus

Environment.”

49. A and D — The START command and the at sign (@) are used to execute

scripts. The file extension will be defaulted to .sql if it is not specified. For

more information, see the section on scripts in Chapter 6, “The SQL*Plus

Environment.”

50. A — “Negative salary” will be displayed on the screen. When negative salary is

selected, the IF statement will be true, and the RAISE_APPLICATION_ERROR

statement will be executed. RAISE_APPLICATION_ERROR will cause the pro-

gram to jump to exception handling, and because the error raised is not han-

dled in exception handling, the error is passed back to SQL*Plus, and the

message passed to RAISE_APPLICATION_ERROR is displayed on the screen.

For more information, see the section on RAISE_APPLICATION_ERROR in

Chapter 12, “Handling Errors and Exceptions in PL/SQL.”

51. B — v_name will be equal to “Jones” when the code is executed. The sub-

block modifies a local copy of a variable called “v_name” and not the variable

v_name owned by the parent block. For more information, see the section on

nested blocks in Chapter 10, “Controlling Program Execution in PL/SQL.”

52. A, B, D, and E — A COMMIT statement will be issued to the database if you

type the command COMMIT, if you exit normally with the EXIT command, if

you issue a Data Control Language (DCL) statement such as GRANT, or if you

issue a Data Definition Language (DDL) command such as CREATE. The SAVE

command does not exist. For more information, see the section on transaction

controls in Chapter 5, “Adding, Updating, and Deleting Data.”

4832-8 AppB.F 7/27/01 9:03 AM Page 651

652 Appendixes

53. E — The DELETE statement will execute successfully. The first SELECT state-

ment will fail because the column names in the view are emp_id and

emp_name not id and name. The INSERT statement will fail because no value

is provided for the salary column in the employee table, and the salary col-

umn cannot be NULL. The UPDATE statement will fail because the CHECK

OPTION was specified, which prevents you from updating a row in a view to a

value that can no longer be seen though the view, and the view only shows

records with a department id of 10. The last SELECT statement will fail

because you are using the column names from the view but you are selecting

from the table. For more information, see the section on views in Chapter 7,

“Creating and Managing Oracle Database Objects.”

54. D — If the column contains many NULL values, then an index may speed up

queries using that column. For more information, see the section on indexes

in Chapter 7, “Creating and Managing Oracle Database Objects.”

55. B — To use the default value for a column when inserting a row, you must not

specify any value for that column. If you are not going to specify for all the

columns in the table, you must list the columns you are populating after the

table name. For more information, see the section on DEFAULT values in

Chapter 7, “Creating and Managing Oracle Database Objects,” and the section

on the INSERT statement in Chapter 5, “Adding, Updating, and Deleting Data.”

56. A and E — Data Definition Language (DDL) commands such as CREATE TABLE

and Data Control Language (DCL) commands such as GRANT cannot be

issued directly from PL/SQL programs. For more information, see Chapter 11,

“Interacting with the Database Using PL/SQL.”

57. C — You must specify an INTO clause after the SELECT clause that lists vari-

ables to hold the values returned. The SELECT statement should contain a

WHERE clause because if a SELECT statement returns more than one row, you

will get an exception. For more information, see the section on SELECT state-

ments in Chapter 11, “Interacting with the Database Using PL/SQL.”

✦ ✦ ✦

4832-8 AppB.F 7/27/01 9:03 AM Page 652

CCA P P E N D I X

Objective Mapping

The Oracle 8i “Introduction to Oracle: SQL and PL/SQL”

exam has a clear set of defined objectives. This book cov-

ers all of the material that is required for the exam, with a lit-

tle extra, such as the coverage of stored procedures, triggers,

and other PL/SQL program units in Chapter 13, “Introduction

to Stored Programs.” Generally, the knowledge you gain by

reading this book and working through the exercises should

place you in good stead when it comes time to take the exam.

This book can also serve as a reference as you continue to

work with Oracle, since the use of functions, PL/SQL,

advanced SQL syntax, and the like will always be needed.

Table C-1 can assist you in ensuring that you have properly

prepared for the exam by outlining which sections of the book

cover which parts of the exam. Use this table as a guideline to

ensure that you have covered all the bases. It can also be used

to help you determine which parts of the book to review in

case you may have to take the exam again.

✦ ✦ ✦ ✦

4832-8 appC.F 7/27/01 9:03 AM Page 653

654 Appendixes

Table C-1
Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

Overview of Relational Chapter 1: “The Oracle Database”
Databases, SQL, and PL/SQL

✦ Discuss the theoretical Chapter 1: “The Oracle Database” “Overview”
and physical aspects
of a relational database

✦ Describe the Oracle Chapter 1: “The Oracle Database” “Overview”
implementation of
RDBMS and ORDBMS

✦ Describe the use and Chapter 9: “Introduction to PL/SQL” “Uses and Benefits
benefits of PL/SQL of PL/SQL”

Write Basic SQL Statements Chapter 2: “Retrieving Data Using
Basic SQL Statements”

✦ List the capabilities of Chapter 2: “Retrieving Data Using “Basic SELECT
SQL SELECT statements Basic SQL Statements” Statement”

✦ Execute a basic SELECT Chapter 2: “Retrieving Data Using “Basic SELECT
statement Basic SQL Statements” Statement”

✦ Differentiate between SQL Chapter 6: “The SQL*Plus “SQL*Plus
statements and Environment” Commands”
SQL*Plus commands

Restrict and Sort Data Chapter 2: “Retrieving Data Using
Basic SQL Statements”

✦ Limit the rows retrieved Chapter 2: “Retrieving Data Using “WHERE Clause”
by a query Basic SQL Statements”

✦ Sort the rows retrieved Chapter 2: “Retrieving Data Using “Ordering Data in
by a query Basic SQL Statements” the SELECT

Statement”

Single-Row Functions Chapter 3: “Using Single- and
Multi-Row Functions”

✦ Describe various types of Chapter 3: “Using Single- and
functions available in SQL Multi-Row Functions”

✦ Use character, number, Chapter 3: “Using Single- and “Single-Row
and date functions in Multi-Row Functions” Functions”
SELECT statements

✦ Describe the use of Chapter 3: “Using Single- and “Single-Row
conversion functions Multi-Row Functions” Functions”

4832-8 appC.F 7/27/01 9:03 AM Page 654

655Appendix C ✦ Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

Displaying Data from Chapter 4: “Advanced
Multiple tables SELECT Statements”

✦ Write SELECT statements Chapter 4: “Advanced “Joins”
to access data from more SELECT Statements”
than one table using
equality and nonequality
joins

✦ View data that generally Chapter 4: “Advanced
does not meet a join SELECT Statements” “Joins”
condition by using outer
joins

✦ Join a table to itself Chapter 4: “Advanced “Joins”
SELECT Statements”

Aggregating Data Chapter 3: “Using Single-
Using Group Functions and Multi-Row Functions”

✦ Identify the available Chapter 3: “Using Single- “Group/Aggregate
group functions and Multi-Row Functions” Functions”

✦ Describe the use of Chapter 3: “Using Single- “Group/Aggregate
group functions and Multi-Row Functions” Functions”

✦ Group data using the Chapter 3: “Using Single-
GROUP BY clause and Multi-Row Functions” “GROUP BY Clause”

✦ Include or exclude Chapter 3: “Using Single-
grouped rows by using and Multi-Row Functions” “GROUP BY Clause”
the HAVING clause

Subqueries Chapter 4: “Advanced “Subqueries”
SELECT Statements”

✦ Describe the types of Chapter 4: “Advanced
problems that subqueries SELECT Statements” “Subqueries”
can solve

✦ Define subqueries Chapter 4: “Advanced “Subqueries”
SELECT Statements”

✦ List the types of Chapter 4: “Advanced “Subqueries”
subqueries SELECT Statements”

✦ Write single-row and Chapter 4: “Advanced “Subqueries”
multiple-row subqueries SELECT Statements”

Continued

4832-8 appC.F 7/27/01 9:03 AM Page 655

656 Appendixes

Table C-1 (continued)

Exam Objective Chapter Covering Objective Section Covering
Objective

Multiple-Column Chapter 4: “Advanced “Subqueries”
Subqueries SELECT Statements”

✦ Write multiple-column Chapter 4: “Advanced “Subqueries”
subqueries SELECT Statements”

✦ Describe and explain the Chapter 4: “Advanced “Subqueries”
behavior of subqueries when SELECT Statements”
null values are retrieved

✦ Write subqueries in Chapter 4: “Advanced “Subqueries”
a FROM clause SELECT Statements”

Producing Readable Chapter 6: “The SQL*Plus
Output with SQL*Plus Environment”

✦ Produce queries that Chapter 4: “Advanced “Using Substitution
require an input variable SELECT Statements” Variables”

Chapter 6: “The SQL*Plus “Defining Variables”
Environment”

✦ Customize the Chapter 6: “The SQL*Plus “Customizing SQL*
SQL*Plus environment Environment” Plus with SET

Commands”

✦ Produce more Chapter 6: “The SQL*Plus “Formatting Output
readable output Environment” with SQL*Plus”

✦ Create and execute Chapter 6: “The SQL*Plus “Scripts”
script files Environment”

✦ Save customizations Chapter 6: “The SQL*Plus “Customizing
Environment” SQL*Plus with SET

Commands”

Chapter 6: “The SQL*Plus “PRODUCT_USER_
Environment” PROFILE”

Manipulating Data Chapter 5: “Adding, Updating,
and Deleting Data”

✦ Describe each DML statement Chapter 5: “Adding, Updating, “DML Statements”
and Deleting Data”

✦ Insert rows into a table Chapter 5: “Adding, Updating “DML Statements:
and Deleting Data” Inserting Data into

Tables”

✦ Update rows in a table Chapter 5: “Adding, Updating, “DML Statements
and Deleting Data” Modifying Existing

Data”

4832-8 appC.F 7/27/01 9:03 AM Page 656

657Appendix C ✦ Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

✦ Delete rows from a table Chapter 5: “Adding, Updating, “DML Statements:
and Deleting Data” Removing Data

from Tables”

✦ Control transactions Chapter 5: “Adding, Updating, “Controlling
and Deleting Data” Transactions”

Creating and Managing Tables Chapter 7: “Creating and “Creating and
Managing Oracle Database Managing Tables”
Objects”

✦ Describe the main Chapter 1: “The Oracle Database” “Database Objects”
database objects

✦ Create tables Chapter 7: “Creating and “Creating and
Managing Oracle Database Managing Tables”
Objects”

✦ Describe the datatypes that Chapter 1: “The Oracle Database” “Database Objects”
can be used when specifying
column definitions

✦ Alter table definitions Chapter 7: “Creating and “Creating and
Managing Oracle Database Managing Tables”
Objects”

✦ Drop, rename, and Chapter 7: “Creating and “Creating and
truncate tables Managing Oracle Database Managing Tables”

Objects”

Including Constraints Chapter 7: “Creating and “Data Integrity
Managing Oracle Database Using Constraints”
Objects”

✦ Describe constraints Chapter 1: “The Oracle Database” “Database Objects”

Chapter 7: “Creating and “Data Integrity
Managing Oracle Database Using Constraints”
Objects”

✦ Create and maintain Chapter 7: “Creating and “Data Integrity
constraints Managing Oracle Database Using Constraints”

Objects”

Continued

4832-8 appC.F 7/27/01 9:03 AM Page 657

658 Appendixes

Table C-1 (continued)

Exam Objective Chapter Covering Objective Section Covering
Objective

Creating Views Chapter 7: “Creating and Managing “Creating Other
Oracle Database Objects” Database Objects,”

“Views”

✦ Describe a view Chapter 1: “The Oracle Database” “Database Objects”

Chapter 7: Creating and Managing “Creating Other
Oracle Database Objects” Database Objects,”

“Views”

✦ Create a view Chapter 7: “Creating and Managing “Creating Other
Oracle Database Objects” Database Objects,”

“Views”

✦ Retrieve data Chapter 7: “Creating and Managing “Creating Other
through a view Oracle Database Objects” Database Objects,”

“Views”

✦ Insert, update, and Chapter 7: “Creating and Managing “Creating Other
delete data through Oracle Database Objects” Database Objects,”
a view “Views”

Chapter 5: “Adding, Updating
and Deleting Data”

✦ Drop a view Chapter 7: “Creating and “Creating Other
Managing Oracle Database Objects” Database Objects,”

“Views”

Oracle Data Dictionary Chapter 1: “The Oracle Database” “The Oracle Data
Dictionary”

Appendix F: “Data Dictionary Views”

✦ Describe the data Chapter 1: “The Oracle Database” “The Oracle Data
dictionary views a Dictionary”
user may access

Appendix F: “Data Dictionary Views”

This information is also presented in each appropriate chapter.
For example, when discussing creating and maintaining tables,
you will be shown the views that will tell you how to get
information on tables.

4832-8 appC.F 7/27/01 9:03 AM Page 658

659Appendix C ✦ Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

✦ Query data from Chapter 1: “The Oracle Database” “Oracle’s Data
the data dictionary Dictionary”

This information is also presented in each appropriate chapter.
For example, when discussing creating and maintaining tables,
you will be shown the views that will tell you how to get
information on tables.

Oracle Database Objects Chapter 1: “The Oracle Database” “Database Objects”

Chapter 7: “Creating and Managing
Oracle Database Objects”

✦ Describe database Chapter 1: “The Oracle Database” “Database Objects”
objects and their uses

Chapter 7: “Creating and Managing
Oracle Database Objects”

✦ Create, maintain, and
use sequences Chapter 7: “Creating and Managing “Creating Other

Oracle Database Objects” Database Objects,”
“Sequences”

✦ Create and Chapter 7: “Creating and Managing “Creating Other
maintain indexes Oracle Database Objects” Database Objects,”

“Indexes”

✦ Create private and Chapter 7: “Creating and Managing “Creating Other
public synonyms Oracle Database Objects” Database Objects,”

“Synonyms”

Controling User Access Chapter 8: “Configuring Security
in Oracle Databases”

✦ Create users Chapter 8: “Configuring Security “Users and
in Oracle Databases” Schemas”

✦ Create roles to ease Chapter 8: “Configuring Security “Roles”
setup and maintenance in Oracle Databases”
of the security model

✦ Use the GRANT and Chapter 8: “Configuring Security “Object Privileges”
REVOKE statements to in Oracle Databases”
grant and revoke object
privileges

Continued

4832-8 appC.F 7/27/01 9:03 AM Page 659

660 Appendixes

Table C-1 (continued)

Exam Objective Chapter Covering Objective Section Covering
Objective

Declaring Variables Chapter 9: “Introduction to PL/SQL” “Variables”

Chapter 4: “Advanced SELECT “Runtime Variables”
Statements”

✦ List the benefits
of PL/SQL Chapter 9: “Introduction to PL/SQL” “Uses and Benefits

of PL/SQL”

✦ Describe the basic Chapter 9: “Introduction to PL/SQL” “Block Structure”
PL/SQL block and
its structure

✦ Describe the Chapter 9: “Introduction to PL/SQL” “Variables”
significance of
variables in PL/SQL

✦ Declare PL/SQL Chapter 9: “Introduction to PL/SQL” “Variables”
variables

✦ Execute a PL/SQL block Chapter 9: “Introduction to PL/SQL” “Block Structure”

Writing Executable Chapter 9: “Introduction to PL/SQL” “Block Structure”
Statements

✦ Describe the Chapter 9: “Introduction to PL/SQL” “Block Structure”
significance of the
executable section

✦ Write statements in Chapter 9: “Introduction to PL/SQL” “Block Structure”
the executable section

✦ Describe the rules Chapter 10: “Controlling Program “Nesting Blocks”
of nested blocks Execution in PL/SQL”

✦ Execute and test Chapter 9: “Introduction to PL/SQL”
a PL/SQL block

Chapter 10: “Controlling Program
Execution in PL/SQL”

Chapter 11: “Interacting with the
Database Using PL/SQL”

Chapter 12: “Handling Errors
and Exceptions in PL/SQL”

✦ Use coding Chapter 9: “Introduction to PL/SQL”
conventions

Chapter 12: “Handling Errors and “Coding Standards”
Exceptions in PL/SQL”

4832-8 appC.F 7/27/01 9:03 AM Page 660

661Appendix C ✦ Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

Interacting with the Chapter 11: “Interacting with the
Oracle Server Database Using PL/SQL”

✦ Write a successful Chapter 11: “Interacting with the
SELECT statement in Database Using PL/SQL”
PL/SQL

✦ Declare the datatype Chapter 11: “Interacting with the “Composite
and size of a PL/SQL Database Using PL/SQL” Datatypes”
variable dynamically

Chapter 11: “Interacting with the “Cursor Variables”
Database Using PL/SQL”

Chapter 9: “Introduction to PL/SQL” “Variables”

✦ Write DML statements Chapter 11: “Interacting with the “DML”
in PL/SQL Database Using PL/SQL”

✦ Control transactions Chapter 10: “Controlling Program “Transaction
in PL/SQL Execution in PL/SQL” Control”

✦ Determine the Chapter 11: “Interacting with the
outcome of SQL DML Database Using PL/SQL” “DML”
statements

Writing Control Chapter 10: “Controlling Program
Structures Execution in PL/SQL”

✦ Identify the use and Chapter 10: “Controlling Program
type of control Execution in PL/SQL”
structures

✦ Construct an IF Chapter 10: “Controlling Program “Conditional
statement Execution in PL/SQL” Processing”

✦ Construct and identify Chapter 10: “Controlling Program “Loops”
different loop Execution in PL/SQL”
statements

✦ Use logic tables Chapter 10: “Controlling Program “Conditional
Execution in PL/SQL” Processing”

✦ Control block flow Chapter 10: “Controlling Program “Loops”
using nested loops and Execution in PL/SQL”
labels

Continued

4832-8 appC.F 7/27/01 9:03 AM Page 661

662 Appendixes

Table C-1 (continued)

Exam Objective Chapter Covering Objective Section Covering
Objective

Working with Chapter 9: “Introduction to PL/SQL” “Variables”
Composite Datatypes

Chapter 11: “Interacting with “Composite
the Database Using PL/SQL” Datatypes”

✦ Create user-defined
PL/SQL records Chapter 11: “Interacting with the “Composite

Database Using PL/SQL” Datatypes,”
“PL/SQL Records”

✦ Create a record with Chapter 9: “Introduction to PL/SQL” “Variables,”
the %ROWTYPE “%ROWTYPE”
attribute

Chapter 11: “Interacting with the “Composite
Database Using PL/SQL” Datatypes,”

“PL/SQL Records”

✦ Create a PL/SQL table Chapter 11: “Interacting with “Composite
the Database Using PL/SQL” Datatypes,”

“PL/SQL Tables”

✦ Create a PL/SQL Chapter 11: “Interacting with the “Composite
table of records Database Using PL/SQL” Datatypes,”

“PL/SQL Table of
Records”

✦ Describe the Chapter 11: “Interacting with the “Composite
differences between Database Using PL/SQL” Datatypes”
records, tables, and
tables of records

Write Explicit cursors Chapter 11: “Interacting with the “Cursors”
Database Using PL/SQL”

✦ Distinguish between Chapter 11: “Interacting with the “Cursors”
an implicit and an Database Using PL/SQL”
explicit cursor

✦ Use a PL/SQL Chapter 11: “Interacting with the “PL/SQL Records”
record variable Database Using PL/SQL”

Chapter 11: “Interacting with the “Cursors”
Database Using PL/SQL”

✦ Write a cursor FOR loop “Cursor FOR Loops”

4832-8 appC.F 7/27/01 9:03 AM Page 662

663Appendix C ✦ Objective Mapping

Exam Objective Chapter Covering Objective Section Covering
Objective

Advanced Explicit Chapter 11: “Interacting with the
Cursor Concepts Database Using PL/SQL”

✦ Write a cursor that Chapter 11: “Interacting with the “DML,” “Cursor
uses parameters Database Using PL/SQL” Parameters”

✦ Determine when a Chapter 11: “Interacting with “DML,” “Cursor
FOR UPDATE clause the Database Using PL/SQL” Parameters”
in a cursor is required

✦ Determine when to Chapter 11: “Interacting with the “DML,” “Cursor
use the WHERE Database Using PL/SQL” Parameters”
CURRENT OF clause

✦ Write a cursor that Chapter 11: “Interacting with the “Cursors”
uses a subquery Database Using PL/SQL”

✦ Handling exceptions Chapter 12: “Handling Errors and
Exceptions in PL/SQL”

✦ Define PL/SQL Chapter 12: “Handling Errors and
exceptions Exceptions in PL/SQL”

✦ Recognize Chapter 12: “Handling Errors and “Debugging”
unhandled exceptions Exceptions in PL/SQL”

✦ List and use different
types of PL/SQL Chapter 12: “Handling Errors and “Defining, Trapping,
exception handlers Exceptions in PL/SQL” and Handling

Errors”

✦ Trap unanticipated Chapter 12: “Handling Errors and “Defining, Trapping,
errors Exceptions in PL/SQL” and Handling

Errors”

✦ Describe the effect Chapter 12: “Handling Errors and “Defining, Trapping,
of exception Exceptions in PL/SQL” and Handling
propagation in Errors”
nested blocks

✦ Customize PL/SQL Chapter 12: “Handling Errors and “Defining, Trapping,
exception messages Exceptions in PL/SQL” and Handling

Errors”

✦ ✦ ✦

4832-8 appC.F 7/27/01 9:03 AM Page 663

4832-8 appC.F 7/27/01 9:03 AM Page 664

DDA P P E N D I X

Exam Tips

Before you sit down and take the “Introduction to Oracle:

SQL & PL/SQL” exam, it is important to understand

what to expect and how to approach the exam with the high-

est probability of success.

This appendix provides pointers to help you prepare for the

exam. This appendix also outlines the processes for register-

ing to take the exam, as well as what happens if you do not

succeed on your first attempt.

Preparing to the Exam
While some of the points that are outlined in this section may

seem common sense, they are included here to remind you of

what others have used to successfully prepare to pass the

“Introduction to Oracle: SQL & PL/SQL” exam. In preparing for

the exam, follow these steps:

✦ Read the material in this book. This book was designed

to act as a study guide to prepare you to take and pass

the exam. All of the information that you will be tested

on can be found in this book. While there are no guaran-

tees, being completely familiar with the contents of this

book will go a long way to help you pass the exam.

✦ Get a copy of Oracle. Appendix A outlines where you

can acquire the Oracle software if you do not currently

own it. Passing the exam without working with the prod-

uct is possible, but extremely difficult and quite unlikely.

Not only is it important to work with the Oracle software

in preparation for the exam, but you’ll also need this

kind of experience when you are asked to work on a real

live database.

✦ Do the labs. The best way to prepare to perform any

task well is to do it over and over again. It has been

proven that performing a task many times reinforces the

concepts associated with the task. The labs in this book

are designed to reinforce the lessons presented in each

chapter.

✦ ✦ ✦ ✦

4832-8 appD.F 7/27/01 9:03 AM Page 665

666 Appendixes

✦ Hit a few roadblocks. When doing the labs in this book, or when actually

working with the Oracle software, and you hit a roadblock and do not know

how to proceed, try to figure it out on your own before turning to the lab

answers, the book text, or the Oracle manuals. The way most database admin-

istrators (DBAs) learn how to overcome a problem is by running into it at

least once, and sometimes a few more times than that and then figuring out

the solution.

✦ Test yourself. Each chapter starts with questions to test your knowledge.

Each chapter has exam-style assessment questions. Each chapter also has

scenarios in which you are required to solve a problem. Review these ques-

tions and scenarios and test your knowledge continuously, not just before you

take the exam. If you find you are weak in a certain area, review the material

and test again.

✦ Take the practice exams. This book has a practice exam in Appendix B, as

well as one on the CD-ROM. Self Test software also publishes practice exams

for Oracle certification exams. Exposure to many questions will better prepare

your test-taking abilities.

✦ Understand the material. The goal is not just to pass the exam but also to

understand the material. Passing the exam is easy if you are comfortable with

the subject matter of the exam

✦ Work with it. Practice makes perfect, so work with Oracle every chance you

get. Ask your friends and colleagues to give you assignments that you can

solve with Oracle, SQL, and PL/SQL. The more you do work with these assign-

ments, the easier it gets. This method works for improving your golf swing or

understanding Oracle.

Registering for the Exam
Oracle certification exams are offered through Sylvan Prometric testing centers

worldwide. Consult the Oracle Certified Professional Program Candidate Guide avail-

able on Oracle’s Web site at www.oracle.com/education/certification/
index.html?ocpguides.html or the Oracle Certification Web site at www.oracle.
com/education/certification/index.html?content.html.

Taking the Exam
When your day to take the exam arrives, get to the testing center at least a few min-

utes early. This gives you some time to relax before going into the test room. You

need to bring two types of identification with you (one with a photo and signature

and the other with your signature). You will be asked to sign in and then be

escorted to the computer you will use to take the test. You will also get a brief ori-

entation to the testing process if you are new to it.

4832-8 appD.F 7/27/01 9:03 AM Page 666

667Appendix D ✦ Exam Tips

When taking the test, keep these points in mind:

✦ Pace yourself. The exam is timed to allow you about a minute or so to answer

each question. Take the time to read each question completely and then

select your answers. Do not rush. Finishing the exam in record time and failing

is obviously not as good as taking all the time allowed and passing.

✦ Read the entire question and all the answers. This may seem like a common

sense thing to do, but it is amazing how many people do not follow this simple

rule. Before jumping to answer a question, make sure you have read it com-

pletely and have read each of the possible answers.

✦ Mark questions. The exam allows you to mark questions whose answers you

are unsure of and come back to them later. Use this feature. Even if you are 90

percent sure of an answer, mark the question and come back to it. Who

knows? The answer to the question you marked may be found later in the test

or be triggered by something later in the test.

✦ Don’t get bogged down. Do not spend too much time trying to answer a sin-

gle question. You still have many more to answer, so mark the question and

move on.

✦ Relax. Stress and panic work against you. Take a deep breath and relax.

After the Test
After you have taken the test, you will know your results right away. When you con-

firm that you want to end the test, your score and pass or fail grade is presented

on the screen and a hard copy is printed for you to take home. If you passed,

CONGRATULATIONS!!

If you were not successful, don’t despair. While this book is designed to help you

pass the exam, it is not guaranteed. Use the information on your test score report

to identify the areas where you are weak, and focus on those before retaking the

exam. Don’t neglect other areas though, because the exam will still test your knowl-

edge of the complete set of objectives outlined in Appendix C.

Oracle has a mandatory waiting period of 30 days before you can retake the exam.

Use this time to make yourself even more comfortable with the material.

Good luck!!

✦ ✦ ✦

4832-8 appD.F 7/27/01 9:03 AM Page 667

4832-8 appD.F 7/27/01 9:03 AM Page 668

EEA P P E N D I X

Database Schema
for Labs

Throughout this book, you have been working with a num-

ber of Oracle database objects. The labs and the exam-

ples within the various chapters of the book call for a number

of tables and other objects. This appendix provides informa-

tion about the structure of the objects being used, as well as a

hard copy of the scripts found in the DBSETUP folder on the

CD-ROM that you can use to create this same structure in

your database.

Table Structures
The tables used in the book are as follows:

✦ ✦ ✦ ✦

4832-8 appE.F 7/27/01 9:03 AM Page 669

670 Appendixes

Table E-1
Courses Table

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

CourseNumber number(5) No Yes

CourseName varchar2 (200) No No

ReplacesCourse number(5) Yes No

RetailPrice number (9,2) No No

Description varchar2 (2000) Yes No

Table E-2
Instructors Table

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

InstructorID number(5) No Yes

Salutation char (4) Yes No

LastName varchar2 (30) No No

FirstName varchar2 (30) No No

MiddleInitial varchar2 (5) Yes No

Address1 varchar2 (50) Yes No

Address2 varchar2 (50) Yes No

City varchar2 (30) Yes No

State char (2) Yes No

Country varchar2 (30) Yes No

PostalCode char (10) Yes No

OfficePhone char (15) Yes No

HomePhome char (15) Yes No

CellPhone char (15) Yes No

EMail varchar2 (50) Yes No

InstructorType char (10) No No

PerDiemCost number (9,2) Yes No

PerDiemExpenses number (9,2) Yes No

Comments varchar2 (2000) Yes No

4832-8 appE.F 7/27/01 9:03 AM Page 670

671Appendix E ✦ Database Schema for Labs

Table E-3
Locations Table

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

LocationID number(5) No Yes

LocationName varchar2 (50) No No

Address1 varchar2 (50) Yes No

Address2 varchar2 (50) Yes No

City varchar2 (30) Yes No

State char (2) Yes No

Country varchar2 (30) Yes No

PostalCode char (10) Yes No

Telephone char (15) Yes No

Fax char (15) Yes No

Contact varchar2 (50) Yes No

Description varchar2 (2000) Yes No

Table E-4
Students Table

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

StudentNumber number(5) No Yes

Salutation char (4) Yes No

LastName varchar2 (30) No No

FirstName varchar2 (30) No No

MiddleInitial varchar2 (5) Yes No

Address1 varchar2 (50) Yes No

Address2 varchar2 (50) Yes No

City varchar2 (30) Yes No

State char (2) Yes No

Continued

4832-8 appE.F 7/27/01 9:03 AM Page 671

672 Appendixes

Table E-4 (continued)

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

Country varchar2 (30) Yes No

PostalCode char (10) Yes No

HomePhone char (15) Yes No

WorkPhome char (15) Yes No

EMail varchar2 (50) Yes No

Comments varchar2 (2000) Yes No

Table E-5
Scheduled Classes Table

Column Name Datatype and Null? Primary Foreign Table/
Length Key? Key? Column

ClassID number(5) No Yes

CourseNumber number(5) No No Courses
(CourseNumber)

LocationID number(5) No No Locations
(LocationID)

ClassRoomNumber number(3) No No

InstructorID number(5) No No Instructors
(InstructorID)

StartDate date No No

DaysDuration number(3) No No

Status char (10) No No

Comments varchar2 (2000) Yes No

4832-8 appE.F 7/27/01 9:03 AM Page 672

673Appendix E ✦ Database Schema for Labs

Table E-6
Class Enrollment Table

Column Name Datatype and Null? Primary Foreign Key? Table/
Length Key? Column

ClassID number(5) No Yes ScheduledClasses
(ClassID)

StudentNumber number(5) No Yes Students
(StudentNumber)

Status char (10) No No

EnrollmentDate date No No

Price number (9,2) No No

Grade char (40) Yes No

Comments varchar2 (2000) Yes No

Table E-7
Batch Jobs Table

Column Name Datatype and Null? Primary Foreign Table/Column
Length Key? Key?

JobId number (6) No Yes

JobName varchar2 (30) No No

Status varchar2 (30) No No

LastUpdated date No No

4832-8 appE.F 7/27/01 9:03 AM Page 673

674 Appendixes

Table E-8
Course Audit Table

Column Name Datatype and Null? Primary Foreign Table/
Length Key? Key? Column

CourseNumber number(5) No Yes Courses
(CourseNumber)

Change varchar2 (30) No Yes

DateChanged date No Yes

Price number (9,2) Yes No

ChangedBy varchar2 (15) Yes No

Scripts Used to Create Database Objects
The CD-ROM accompanying this book has a number of scripts in the DBSETUP

folder that can be used to create the tables and load sample data into them. The

scripts and their purposes are:

✦ CREATEUSER.SQL: Creates the STUDENT user and the CERTDB tablespace.

✦ CERTDBOBJ.SQL: Creates the tables and adds constraints.

✦ INSERT_DATA.SQL: Adds sample data to the database.

Before Running the scripts
In order to successfully run the scripts, ensure that the following tasks have been

completed:

1. You have installed, according to the installation instructions provided by

Oracle, Oracle 8i version 8.1.6 or later, on the computer that you will use to

perform the lab exercises and other steps in the book.

The book assumes you are running Oracle 8.1.6 Enterprise Edition or later because
this is what the Oracle exam is based on. Although most labs will work with Oracle
8.1.6 Server or later, it is recommended that you download the latest version of
Oracle 8i Enterprise Edition for your platform by joining the Oracle Technology
Network at http://otn.oracle.com and going to the Download section. Oracle
8i Personal Edition is not recommended or supported.

2. You have created a database to hold the objects and data that the scripts will

create, and configured Net8 to be able to connect to the server.

Caution

4832-8 appE.F 7/27/01 9:03 AM Page 674

675Appendix E ✦ Database Schema for Labs

3. You have been granted the DBA role in the database, or you know the pass-

word for the SYSTEM user in the database.

4. You have created a directory on your C: drive (for Windows NT/2000/9x) or off

your root (for Linux) to hold the Oracle datafile that will be created by the

scripts. (See the scripts for the actual folder name.)

5. You are not running these scripts on a production database used for other

critical purposes in your organization.

The scripts themselves are simply ASCII files that may be modified. To ensure that

they will work properly in your environment, you should verify their contents and

make any necessary changes. It is recommended that you copy the script files from

the DBSETUP folder of the CD-ROM to a new folder you create called CERTDB on

your hard drive (this is the folder where the datafile will be created by default).

Before running the scripts, check their contents for the following:

1. The CREATEUSER.SQL script will connect to the default instance as the user

SYSTEM with a password of “manager”. If this is not correct, or you wish to

connect as another user who has been assigned the DBA role, or you wish to

connect to a different instance, change the appropriate line in the script.

2. The CREATEUSER.SQL script will first delete and then create a tablespace

called CERTDB and place the datafile in a folder called CERTDB on your hard

disk. If you want to place the datafile in a different location, change the appro-

priate lines in the script — the line that deletes the data file, as well as the one

that creates the tablespace.

3. The CREATEUSER.SQL script will create an Oracle user called STUDENT with a

password of “oracle”. If you already have a user called STUDENT created in

the database, that user will be dropped by the script before being re-created.

Modify the appropriate lines of the script to drop and create a user with a dif-

ferent name.

4. The CERTDBOBJ.SQL script will connect to the database as the user STUDENT

by default. If you changed the username in the CREATEUSER.SQL script, mod-

ify the appropriate line of CERTDBOBJ.SQL to have the objects created by the

user you specified.

Running the scripts
To run the scripts, perform the following tasks:

1. Log on to the computer that you will be running Oracle from as an administra-

tor (preferred).

2. If you are running WindowsNT/2000/9x, create a folder off of the root of your

C: drive called CERTDB. If you are running Linux or another Unix variant, cre-

ate a folder off the root called CERTDB. In the Linux/Unix world, the folder

must be named with all uppercase letters.

4832-8 appE.F 7/27/01 9:03 AM Page 675

676 Appendixes

3. Insert the CD into your CD-ROM drive and locate the DBSETUP folder. Copy

the contents of the DBSETUP folder to the CERTDB folder you created.

4. Invoke Server Manager line mode from the command line and execute the

scripts in the following order:

CREATEUSER.SQL: To create the user and tablespace.

CERTDBOBJ.SQL: To create the database objects.

INSERT_DATA.SQL: To load the sample data.

To execute the scripts, at the command prompt, issue the following commands:

C:\CERTDB> svrmgrl

Oracle Server Manager Release 3.1.7.0.0 - Production

Copyright (c) 1997, 1999, Oracle Corporation. All Rights
Reserved.

Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
With the Partitioning option
JServer Release 8.1.7.0.0 – Production

SVRMGRL> @createuser.sql;
...
SVRMGRL> @certdbobj.sql;
...
SVRMGRL> @insert_data.sql;
...
SVRMGRL> quit
Server Manager Complete

C:\CERTDB>

Text of scripts used to create the database objects
This section provides the source code for the preceding scripts. You can use this

source code in case the CD-ROM that came with the book is not easily available.

You can enter the commands in these scripts into SVRMGRL or SQL*Plus and then

perform the same tasks.

This information is also useful if you modified the scripts and want to see what the

original looked like. Having a print version of the original may make it easier to

undo your changes.

CREATEUSER.SQL
This script creates the STUDENT user and CERTDB tablespace.
#
The script first connects as system/manager and then drops the objects,

4832-8 appE.F 7/27/01 9:03 AM Page 676

677Appendix E ✦ Database Schema for Labs

after which it creates them. If you have errors on dropping the objects,
these are normal the first time you run the script because the objects
do not yet exist.
#
REVISION HISTORY:
#
25-jan-2001 Initial Creation Damir Bersinic
#
#
#
Connect to the default instance
connect system/manager;
#
Drop the user STUDENT, if it exists
DROP USER Student CASCADE;
#
Drop the CERTDB tablespace, if it exists
DROP TABLESPACE CERTDB INCLUDING CONTENTS;
#
Delete the file from the hard drive (for Windows).
Comment out for running on Unix.
Change the path if required.
HOST “DEL C:\CERTDB\CERTDB01.DBF”;
#
Delete the file from the hard drive (for Linux/Unix).
Uncomment the HOST command to run on Unix.
Change the path if required.
HOST “rm /CERTDB/CERTDB01.DBF”;
#
Create the tablespace (for Windows)
Comment out for running on Unix.
Change the path if required.
CREATE TABLESPACE CERTDB DATAFILE ‘C:\CERTDB\CERTDB01.DBF’ SIZE 10M;
#
Create the tablespace (for Linux/Unix)
Uncomment the CREATE TABLESPACE command to run on Unix.
Change the path if required.
CREATE TABLESPACE CERTDB DATAFILE ‘/CERTDB/CERTDB01.DBF’ SIZE 10M;
#
Create the USER and grant a quota on the CERTDB tablespace.
Make sure a TEMP tablespace already exists in your database.
CREATE USER Student IDENTIFIED BY oracle

DEFAULT TABLESPACE CERTDB
TEMPORARY TABLESPACE TEMP
QUOTA UNLIMITED ON CERTDB;

#
Allow the STUDENT user to connect and logon to the instance.
GRANT CONNECT,RESOURCE TO Student;

CERTDBOBJ.SQL
This script creates the tables in the STUDENT user schema.
#
The script first connects as student/oracle and then drops the objects,

4832-8 appE.F 7/27/01 9:03 AM Page 677

678 Appendixes

after which it creates them. If you have errors on dropping the objects,
these are normal the first time you run the script because the objects
do not yet exist.
#
REVISION HISTORY:
#
25-jan-2001 Initial Creation Damir Bersinic
#
#
Connect to the default instance as user STUDENT.
connect student/oracle;
#
#
Drop all tables and cascade constraints
DROP TABLE Courses CASCADE CONSTRAINTS;
DROP TABLE Instructors CASCADE CONSTRAINTS;
DROP TABLE Locations CASCADE CONSTRAINTS;
DROP TABLE Students CASCADE CONSTRAINTS;
DROP TABLE ScheduledClasses CASCADE CONSTRAINTS;
DROP TABLE ClassEnrollment CASCADE CONSTRAINTS;
DROP TABLE BatchJobs CASCADE CONSTRAINTS;
DROP TABLE CourseAudit CASCADE CONSTRAINTS;
#
#
Create each table in the appropriate order on the CERTDB
tablespace. All tables will be owned by STUDENT.
#
CREATE TABLE Courses (

CourseNumber number(5) NOT NULL
CONSTRAINT PK_CourseNumber PRIMARY KEY ,

CourseName varchar2 (200) NOT NULL ,
ReplacesCourse number(5) NULL ,
RetailPrice number (9,2) NOT NULL ,
Description varchar2 (2000) NULL

) TABLESPACE CERTDB;

CREATE TABLE Instructors (
InstructorID number(5) NOT NULL

CONSTRAINT PK_InstructorID PRIMARY KEY,
Salutation char (4) NULL ,
LastName varchar2 (30) NOT NULL ,
FirstName varchar2 (30) NOT NULL ,
MiddleInitial varchar2 (5) NULL ,
Address1 varchar2 (50) NULL ,
Address2 varchar2 (50) NULL ,
City varchar2 (30) NULL ,
State char (2) NULL ,
Country varchar2 (30) NULL ,
PostalCode char (10) NULL ,
OfficePhone char (15) NULL ,
HomePhone char (15) NULL ,
CellPhone char (15) NULL ,
EMail varchar2 (50) NULL ,
InstructorType char(10) NOT NULL,

4832-8 appE.F 7/27/01 9:03 AM Page 678

679Appendix E ✦ Database Schema for Labs

PerDiemCost number (9,2) NULL ,
PerDiemExpenses number (9,2) NULL ,
Comments varchar2 (2000) NULL

) TABLESPACE CERTDB;

CREATE TABLE Locations (
LocationID number(5) NOT NULL

CONSTRAINT PK_LocationID PRIMARY KEY ,
LocationName varchar2 (50) NOT NULL ,
Address1 varchar2 (50) NULL ,
Address2 varchar2 (50) NULL ,
City varchar2 (30) NULL ,
State char (2) NULL ,
Country varchar2 (30) NULL ,
PostalCode char (10) NULL ,
Telephone char (15) NULL ,
Fax char (15) NULL ,
Contact varchar2 (50) NULL ,
Description varchar2 (2000) NULL

) TABLESPACE CERTDB;

CREATE TABLE Students (
StudentNumber number(5) NOT NULL

CONSTRAINT PK_StudentNumber PRIMARY KEY,
Salutation char (4) NULL ,
LastName varchar2 (30) NOT NULL ,
FirstName varchar2 (30) NOT NULL ,
MiddleInitial varchar2 (5) NULL ,
Address1 varchar2 (50) NULL ,
Address2 varchar2 (50) NULL ,
City varchar2 (30) NULL ,
State char (2) NULL ,
Country varchar2 (30) NULL ,
PostalCode char (10) NULL ,
HomePhone char (15) NULL ,
WorkPhone char (15) NULL ,
EMail varchar2 (50) NULL ,
Comments varchar2 (2000) NULL

) TABLESPACE CERTDB;

CREATE TABLE ScheduledClasses (
ClassID number(5) NOT NULL

CONSTRAINT PK_ClassID PRIMARY KEY,
CourseNumber number(5) NOT NULL ,
LocationID number(5) NOT NULL ,
ClassRoomNumber number(3) NOT NULL ,
InstructorID number(5) NOT NULL ,
StartDate date NOT NULL ,
DaysDuration number(3) NOT NULL ,
Status char (10) NOT NULL ,
Comments varchar2 (2000) NULL

) TABLESPACE CERTDB;

4832-8 appE.F 7/27/01 9:03 AM Page 679

680 Appendixes

CREATE TABLE ClassEnrollment (
ClassID number(5) NOT NULL ,
StudentNumber number(5) NOT NULL ,
Status char (10) NOT NULL ,
EnrollmentDate date NOT NULL,
Price number (9,2) NOT NULL ,
Grade char (4) NULL ,
Comments varchar2 (2000) NULL

) TABLESPACE CERTDB;

CREATE TABLE BatchJobs (
JobId number (6) NOT NULL,
JobName varchar2 (30) NOT NULL,
Status varchar2 (30) NOT NULL,
LastUpdated date NOT NULL

) TABLESPACE CERTDB;

CREATE TABLE CourseAudit (
CourseNumber number(5) NOT NULL,
Change varchar2 (30) NOT NULL,
DateChanged date NOT NULL,
Price number (9,2),
ChangedBy varchar2 (15)

) TABLESPACE CERTDB;
#
#
#
Alter the tables to include foreign keys and composite primary keys

ALTER TABLE ClassEnrollment ADD
(CONSTRAINT PK_ClassID_StudentNumber

PRIMARY KEY (ClassID, StudentNumber)) ;

ALTER TABLE ScheduledClasses ADD
(CONSTRAINT FK_SchedClass_CourseNum

FOREIGN KEY (CourseNumber) REFERENCES Courses (CourseNumber));

ALTER TABLE ScheduledClasses ADD
(CONSTRAINT FK_SchedClasses_LocationID

FOREIGN KEY (LocationID) REFERENCES Locations (LocationID));

ALTER TABLE ScheduledClasses ADD
(CONSTRAINT FK_SchedClasses_InstID

FOREIGN KEY (InstructorID)
REFERENCES Instructors (InstructorID));

ALTER TABLE ClassEnrollment ADD
(CONSTRAINT FK_ClassEnrollment_ClassID

FOREIGN KEY (ClassID) REFERENCES ScheduledClasses (ClassID));

ALTER TABLE ClassEnrollment ADD
(CONSTRAINT FK_ClassEnrollment_StudentNum

FOREIGN KEY (StudentNumber) REFERENCES Students (StudentNumber));

4832-8 appE.F 7/27/01 9:03 AM Page 680

681Appendix E ✦ Database Schema for Labs

ALTER TABLE BatchJobs ADD
(CONSTRAINT BatchJobs_JobId_pk PRIMARY KEY(JobId));

ALTER TABLE CourseAudit ADD
(CONSTRAINT CourseAudit_PK

PRIMARY KEY(CourseNumber, Change, DateChanged));

ALTER TABLE CourseAudit ADD
(CONSTRAINT FK_CourseAudit_CourseNumber

FOREIGN KEY (CourseNumber) REFERENCES Courses(CourseNumber));

INSERT_DATA.SQL
This script populates the tables in the STUDENT user schema.
#
This script assumes you are connected as student/oracle.
#
The script first deletes data from each of the tables and then performs
inserts
to load the sample data.
#
#
REVISION HISTORY:
#
25-jan-2001 Initial Creation Damir Bersinic
11-feb-2001 New instructors/Updates Damir Bersinic
#
#
#
#
Disable foreign key constraints to ensure TRUNCATE works.
#
ALTER TABLE ScheduledClasses DISABLE CONSTRAINT FK_SchedClass_CourseNum;

ALTER TABLE ScheduledClasses DISABLE CONSTRAINT FK_SchedClasses_LocationID;

ALTER TABLE ScheduledClasses DISABLE CONSTRAINT FK_SchedClasses_InstID;

ALTER TABLE ClassEnrollment DISABLE CONSTRAINT FK_ClassEnrollment_ClassID;

ALTER TABLE ClassEnrollment DISABLE CONSTRAINT FK_ClassEnrollment_StudentNum;

ALTER TABLE CourseAudit DISABLE CONSTRAINT FK_CourseAudit_CourseNumber;
#
#
Truncate all tables in the appropriate order.
This is required to ensure primary keys are not violated.
#
TRUNCATE TABLE BatchJobs;
TRUNCATE TABLE ClassEnrollment;
TRUNCATE TABLE ScheduledClasses;
TRUNCATE TABLE CourseAudit;
TRUNCATE TABLE Locations;
TRUNCATE TABLE Courses;

4832-8 appE.F 7/27/01 9:03 AM Page 681

682 Appendixes

TRUNCATE TABLE Instructors;
TRUNCATE TABLE Students;
#
#
Enable foreign key constraints to ensure proper data load
#
ALTER TABLE ScheduledClasses ENABLE CONSTRAINT FK_SchedClass_CourseNum;

ALTER TABLE ScheduledClasses ENABLE CONSTRAINT FK_SchedClasses_LocationID;

ALTER TABLE ScheduledClasses ENABLE CONSTRAINT FK_SchedClasses_InstID;

ALTER TABLE ClassEnrollment ENABLE CONSTRAINT FK_ClassEnrollment_ClassID;

ALTER TABLE ClassEnrollment ENABLE CONSTRAINT FK_ClassEnrollment_StudentNum;

ALTER TABLE CourseAudit ENABLE CONSTRAINT FK_CourseAudit_CourseNumber;
#
#
Insert sample data into the Students table.
#
INSERT INTO STUDENTS VALUES
(1000,’Mr’,’Smith’,’John’,’H’,’34 Anystreet’,null, ‘Victoria’,’BC’,’Canada’,’V5F
3E8’,
‘904-567-8889’,’904-787-8888’,’james@emailrus.com’,null);

INSERT INTO STUDENTS VALUES
(1001,’Mr’,’Jones’,’Davey’,null,’10 Main St’,null, ‘New
York’,’NY’,’USA’,’87653’,
‘312-334-8889’,’312-642-5134’,’djones@hitech.com’,null);

INSERT INTO STUDENTS VALUES
(1002,’Mrs’,’Massey’,’Jane’,’S’,’723 Church St’,null, ‘New
York’,’NY’,’USA’,’87654’,
‘412-324-0880’,’412-887-7489’,’jmassey@hitech.com’,null);

INSERT INTO STUDENTS VALUES
(1003,’Mr’,’Smith’,’Trevor’,’J’,’13 Crosswood Cres’,null,
‘Toronto’,’ON’,’Canada’,’M5T 5F6’,
‘416-456-7890’,null,’trevorsmtih@comptel.com’,null);

INSERT INTO STUDENTS VALUES
(1004,null,’Hogan’,’Mike’,null,’49 Bentbrook Cres’,null,
‘Ottawa’,’ON’,’Canada’,’K4M 1Y5’,
‘613-765-4321’,’613-567-1234’,’mhogan@consulters.com’,null);

INSERT INTO STUDENTS VALUES
(1005,’Mr’,’Hee’,’John’,’K’,’Apt 7’,’90th Street’, ‘New
York’,’NY’,’USA’,’76990’,
‘412-567-8673’,’412-747-6543’,’johnhee@emailrus.com’,null);

INSERT INTO STUDENTS VALUES
(1006,’Mrs’,’Andrew’,’Susan’,’M’,’15 King St’,null, ‘Dallas’,’TX’,’USA’,’87654’,
‘492-667-8889’,’492-875-9876’,’sandrew@bigtime.com’,null);

4832-8 appE.F 7/27/01 9:03 AM Page 682

683Appendix E ✦ Database Schema for Labs

INSERT INTO STUDENTS VALUES
(1007,’Mrs’,’Holland’,’Roxanne’,null,’212 Lorne St’,null, ‘San
Francisco’,’CA’,’USA’,’77765’,
‘721-557-8567’,’721-787-5538’,’rholland@bigtime.com’,null);

INSERT INTO STUDENTS VALUES
(1008,’Mr’,’Jones’,’Gordon’,null,’17 Nisku’,null, ‘Toronto’,’ON’,’Canada’,’T2L
4R8’,
‘416-663-5689’,’416-645-5246’,’gordonjones@wesell.ca’,null);

INSERT INTO STUDENTS VALUES
(1009,’Mrs’,’Colter’,’Sue’,’J’,’1112 Queen St’,null, ‘San
Francisco’,’CA’,’USA’,’56443’,
‘721-566-8645’,’721-744-4756’,’suecolter@compstore.com’,null);

INSERT INTO STUDENTS VALUES
(1010,’Mr’,’Patterson’,’Chris’,’M’,’72 Regent St’,null, ‘San
Fransisco’,’CA’,’USA’,
‘57572’,’721-445-5239’,’721-547-3256’,’cpatterson@emailrus.com’,null);
#
#
Insert sample data into the Courses table.
#
INSERT INTO COURSES VALUES
(100,’Basic SQL’,null,2000,’An introduction to basic SQL statements and
commands’);

INSERT INTO COURSES VALUES
(110,’Advanced SQL’,null,2000,
‘Advanced SQL statements and commands for exerienced users’);

INSERT INTO COURSES VALUES
(201,’Performance Tuning your Database’,200,4000,
‘Concepts and tricks to tune your database for optimum performance’);

INSERT INTO COURSES VALUES
(200,’Database Performance Basics’,null,4000,
‘How to tune your database for maximum performance’);

INSERT INTO COURSES VALUES
(210,’Database Administration’,null,4500,
‘Everything the DBA needs to know to start building a database’);

INSERT INTO COURSES VALUES
(220,’Backing up your database’,null,3000,
‘The essentials for backing up and recovering the database after a failure’);

INSERT INTO COURSES VALUES
(300,’Basic PL/SQL’,null,2500,
‘An introduction to the PL/SQL programming language’);

INSERT INTO COURSES VALUES
(310,’Advanced PL/SQL’,null,2000,

4832-8 appE.F 7/27/01 9:03 AM Page 683

684 Appendixes

‘A follow-up to the basic PL/SQL course that introduces complicated PL/SQL
programming techniques’);

INSERT INTO COURSES VALUES
(320,’Using your PL/SQLskills’,null,1750,
‘Introduces database triggers and database packages’);
#
#
Insert sample data into the Locations table.
#
INSERT INTO locations VALUES
(100,’New York Park Ave’,’80 Park Ave’,null,’New York’,’NY’,’USA’,’66578’,
‘412-389-8889’,’412-389-8859’,’Charlene Moore’,
‘Beautiful location overlooking fabulous central park, easy access to subway’);

INSERT INTO locations VALUES
(200,’San Francisco Downtown’,’40 Bay St’,null,’San
Francisco’,’CA’,’USA’,’85763’,
‘721-765-0987’,’721-765-9421’,’James Madison’,
‘Located in downtown San Francisco, you can see Alcatraz on a clear day’);

INSERT INTO locations VALUES
(300,’Downtown Toronto’,’40 Yonge Street’,null,’Toronto’,’ON’,’Canada’,’M6H
5K8’,
‘416-543-8768’,’416-544-3965’,’Joanne Matthews’,
‘Convenient downtown location, easy access to subway’);
#
#
Insert sample data into the Instructors table.
#
INSERT INTO instructors VALUES
(300,’Mr’,’Harrison’,’Michael’,’H’,’8899 Eglinton
Ave’,null,’Toronto’,’ON’,’Canada’,’M7H 6H5’,
‘416-543-8769’,’416-778-5366’,null,’michaelharrison@trainers.com’,’ORACLE’,500,2
00,null);

INSERT INTO instructors VALUES
(310,’Mrs’,’Keele’,’Susan’,’J’,’42 Bloor St’,null,’Toronto’,’ON’,’Canada’,’M5T
5F7’,
‘416-543-8775’,’416-857-9876’,null,’susankeele@trainers.com’,’UNIX’,450,200,null
);

INSERT INTO instructors VALUES
(100,’Mr’,’Ungar’,’David’,’J’,’995 White Plains Ave’,null,’New
York’,’NY’,’USA’,’98750’,
‘412-389-6557’,’412-345-6543’,null,’davidungar@trainers.com’,’ORACLE’,600,200,nu
ll);

INSERT INTO instructors VALUES
(110,’Mr’,’Jamieson’,’Kyle’,’L’,’Apt 86’,’95 Cornerbrook St’,’New
York’,’NY’,’USA’,’87653’,
‘412-389-7683’,’412-889-0987’,’412-987-0423’,’kylejamieson@trainers.com’,’ORACLE
’,500,200,null);

4832-8 appE.F 7/27/01 9:03 AM Page 684

685Appendix E ✦ Database Schema for Labs

INSERT INTO instructors VALUES
(200,’Miss’,’Cross’,’Lisa’,’M’,’45 Sunny Drive’,null,’Palo
Alto’,’CA’,’USA’,’89075’,
‘721-765-9985’,’721-649-0944’,null,’lisacross@trainers.com’,’UNIX’,750,250,null)
;

INSERT INTO instructors VALUES
(210, ‘Mr.’, ‘Williams’, ‘Geoff’, ‘R’, ‘432 Main St.’, null, ‘Toronto’, ‘ON’,
‘Canada’,’M3A 1W1’,
‘416-543-8778’, ‘416 555-1345’ , null, ‘gwilliams@trainers.com’, ‘UNIX’, 400,
null,
‘Has extensive real world experience with Borne Shell scripting’);

INSERT INTO Instructors VALUES
(410, ‘Ms.’, ‘Chiu’, ‘Lana’, ‘’, ‘30 High Gate’, null, ‘New York’, ‘NY’,
‘USA’,’07653’,
‘212-555-8744’, ‘212 555-7345’ , null, ‘LChiu@trainers.com’, ‘Prog’, 400, null,
‘Has 10 years experience with C and C++.’);

INSERT INTO Instructors VALUES
(450, ‘Ms.’, ‘LaPoint’, ‘Adele’, ‘S’, ‘1435 Redwood Dr.’, ‘Apt 1212’, ‘New
York’, ‘NY’, ‘USA’,
‘07653’,’212-555-8754’, ‘212 555-7546’ , null, ‘ALapoint@trainers.com’, ‘Prog’,
450, 200,
‘Is fluent in French’);

#
#
Insert sample data into the ScheduledClasses table.
#
INSERT INTO scheduledclasses VALUES
(50,100,100,4,100,’06-jan-2001’,4,’Confirmed’,null);

INSERT INTO scheduledclasses VALUES
(51,200,300,1,200,’13-jan-2001’,5,’Confirmed’,null);

INSERT INTO scheduledclasses VALUES
(53,100,300,2,110,’14-feb-2001’,4,’Hold’,null);
#
#
Insert sample data into the ClassEnrollment table.
#
INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (50, 1001, ‘Confirmed’,’01-JAN-2001’,2000, ‘B’, null);

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (50, 1002, ‘Confirmed’,’12-DEC-2000’,1750, ‘A’, null);

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (50, 1005, ‘Confirmed’,’21-DEC-2000’,2000, ‘F’,
‘Missed last two days of class - will resit in March’);

4832-8 appE.F 7/27/01 9:03 AM Page 685

686 Appendixes

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (51, 1003, ‘Cancelled’,’01-JAN-2001’,4000, null, null);

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (51, 1004, ‘Confirmed’,’5-JAN-2001’,4000, ‘A’, null);

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (51, 1008, ‘Confirmed’,’02-DEC-2000’,3500, ‘A’, null);

INSERT INTO classenrollment (ClassId, StudentNumber, Status, EnrollmentDate,
Price, Grade, Comments)
VALUES (53, 1003, ‘Hold’,’02-JAN-2001’,1500, null, null);
#
#
Insert sample data into the BatchJobs table.
#
INSERT INTO BatchJobs (JobId, JobName, Status, LastUpdated)
VALUES (100, ‘CLASS_STATUS’,’RUNNING’,’01-MAR-2001’);

INSERT INTO BatchJobs (JobId, JobName, Status, LastUpdated)
VALUES (101, ‘PRINT_REGISTRATION’,’COMPLETED’,’12-MAR-2001’);

INSERT INTO BatchJobs (JobId, JobName, Status, LastUpdated)
VALUES (102, ‘CALCULATE_REVENUE’,’COMPLETED’,’01-MAR-2001’);
#
#
Perform some updates to the data required in chapter 2.
UPDATE Students
SET City = ‘San Francisco’
WHERE StudentNumber = 1010;

UPDATE Instructors
SET Comments = ‘Has experience with Solaris and HP-UX’
WHERE InstructorID = 200;

UPDATE Instructors
SET Comments = ‘Has extensive shell scripting experience. Has also programmed
with C and C++’
WHERE InstructorID = 210;
#
#
Commit the changes to the database.
COMMIT;

✦ ✦ ✦

4832-8 appE.F 7/27/01 9:03 AM Page 686

FFA P P E N D I X

Data Dictionary
Views

Oracle 8i includes a number of data dictionary views that

can be used to get information from the data dictionary

about the various objects created and their properties.

Throughout this book, you have seen how to extract informa-

tion about these objects using USER_ views. Table F-1 lists

these views, followed by their structure.

Table F-1 does not list all of the USER_ views that are available

but concentrates on those views mentioned in the book or

that are in other ways useful. Not all of the views listed in the

table were mentioned in the text because many objects may

be created in Oracle in addition to the ones to which you were

introduced. For more information on the objects not covered

in the book, refer to the Oracle documentation.

✦ ✦ ✦ ✦

4832-8 appF.F 7/27/01 9:03 AM Page 687

688 Appendixes

Table F-1
USER_ Views in Oracle 8i

View Description

USER_ALL_TABLES Lists the names and additional attributes of all tables in the
user’s schema, i.e., all tables owned by the user. This view has
the same structure as USER_TABLES.

USER_ARGUMENTS Displays arguments for parts of a package in the user’s
schema.

USER_CATALOG Lists all tables, sequences, and views in the user’s schema.

USER_CLUSTERS Lists all clusters and additional attributes of clusters in the
user’s schema.

USER_CLUSTER_ Lists the code used to calculate the hash value for a
HASH_EXPRESSIONS hash cluster in the user’s schema when a user-defined hash

expression is used.

USER_CLU_COLUMNS Lists the cluster columns for all clusters in the user’s schema,
as well as the corresponding column names that map to the
cluster column for all tables on the cluster.

USER_COL_COMMENTS Lists the comments added to the dictionary for all columns in
all tables in the user’s schema.

USER_COL_PRIVS Lists the privileges granted to the user by others or granted by
the user to others on columns for a table.

USER_COL_PRIVS_MADE Lists the privileges granted by the user on columns for a table.

USER_COL_PRIVS_RECD Lists the privileges granted to the user on columns for a table
in other user’s schemas.

USER_CONSTRAINTS Displays information about all constraints created by the user
in any schema.

USER_CONS_COLUMNS Displays information about the columns on which the user has
created constraints.

USER_ERRORS Lists errors for PL/SQL blocks executed by the user. This
includes anonymous PL/SQL blocks as well as stored programs
like procedures, functions, and packages.

USER_EXTENTS Lists information on the extents allocated to segments created
by the user. Segments include tables, indexes, clusters,
partitions, and materialized views.

USER_FREE_SPACE Lists the free space available to the user on the tablespaces to
which he/she has been granted a quota.

USER_INDEXES Lists information on all indexes created by the user on objects
in the database.

USER_IND_COLUMNS Lists the columns and the position (in a composite index) of
objects in the database on which the user created indexes.

4832-8 appF.F 7/27/01 9:03 AM Page 688

689Appendix F ✦ Data Dictionary Views

View Description

USER_IND_EXPRESSIONS For function-based indexes, lists the column, its position in the
index, and expression applied for the index created by the
user.

USER_IND_PARTITIONS Displays information about the partitions for partitioned
indexes created by in the user.

USER_IND_SUBPARTITIONS Displays information about the subpartitions for subpartitioned
indexes created by the user.

USER_LIBRARIES Displays information on the PL/SQL code libraries created by
the user. Libraries are used to store common pieces of code
that may be used in different parts of the application.

USER_LOBS Displays information on LOB columns (i.e., those with a
datatype of BLOB, CLOB, NCLOB, or BFILE) belonging to tables
created in the user’s schema.

USER_LOB_PARTITIONS Displays information on partitions of tables in the user schema
containing LOBs.

USER_LOB_SUBPARTITIONS Displays information on sub partitions of tables in the user’s
schema containing LOBs.

USER_METHOD_PARAMS Lists information on parameters for methods on objects
created in the user’s schema. Methods are PL/SQL or Java
program units that belong to the object.

USER_METHOD_RESULTS Lists information on results for methods on objects created in
the user’s schema.

USER_NESTED_TABLES Displays the parent table and other information for nested
tables within tables created in the user’s schema.

USER_OBJECTS Displays information about all objects in the user’s schema.

USER_OBJECT_SIZE Displays information on the size of source code, parsed code,
compiled code, and error code for program units created in
the user’s schema.

USER_OBJECT_TABLES Displays information on tables in the user’s schema that are
based on user-defined objects.

USER_PART_ Displays information on statistics for partition columns in the
COL_STATISTICS user’s schema as calculated by running the ANALYZE

command.

USER_PART_HISTOGRAMS Displays information on histograms calculated by the ANALYZE
command on partitions in the user’s schema.

Continued

4832-8 appF.F 7/27/01 9:03 AM Page 689

690 Appendixes

Table F-1 (continued)

View Description

USER_PART_INDEXES Displays information on partitioned indexes in the user’s
schema.

USER_PART_ Displays information on the key columns for partitioned tables
KEY_COLUMNS in the user’s schema.

USER_PART_LOBS Displays information on storage parameters of LOBs contained
in partitioned tables in the user’s schema.

USER_PART_TABLES Displays information on storage parameters for partitioned
tables in the user’s schema.

USER_PASSWORD_LIMITS Lists the current password management limits in effect for the
user.

USER_RESOURCE_LIMITS Lists the current resource limits (CPU, I/O, etc.) in effect for
the user.

USER_ROLE_PRIVS Lists the roles and their options currently available for the
user.

USER_SEGMENTS Displays storage properties of segments created by the user.
Segments may include tables, indexes, materialized views,
partitions, and LOBs.

USER_SEQUENCES Displays information on sequences created in the user’s
schema.

USER_SOURCE Displays the lines for the source code of procedures,
functions, triggers, methods, and other PL/SQL stored objects
in the user’s schema.

USER_SUBPART_ Displays information on statistics for subpartition columns in
COL_STATISTICS the user’s schema as calculated by running the ANALYZE

command.

USER_SUBPART_ Displays information on histograms calculated by the ANALYZE
HISTOGRAMS command on subpartitions in the user’s schema.

USER_SUBPART_ Displays information on the key columns for subpartitioned
KEY_COLUMNS tables in the user’s schema

USER_SYNONYMS Lists synonyms in the user’s schema and the objects to which
they refer.

USER_SYS_PRIVS Lists the system privileges granted to the users and their
options.

USER_TABLES Displays information on tables created in the user’s schema
and, if an ANALYZE has been performed, statistics for them.

USER_TABLESPACES Displays information on tablespaces to which the user has
access and their default characteristics.

4832-8 appF.F 7/27/01 9:03 AM Page 690

691Appendix F ✦ Data Dictionary Views

View Description

USER_TAB_COLUMNS Displays information on columns in tables created in the
user’s schema. May also provide statistical information if an
ANALYZE has been performed.

USER_TAB_COL_STATISTICS Displays statistics on columns of tables created in the user’s
schema after an ANALYZE has been performed.

USER_TAB_COMMENTS Displays comments added to the data dictionary for tables in
the user’s schema.

USER_TAB_HISTOGRAMS Displays the results after histograms have been created for
columns on a table by running ANALYZE.

USER_TAB_MODIFICATIONS Displays information on the number of changes of each type
made to tables in the user’s schema since the last time the
ANALYZE command was run.

USER_TAB_PARTITIONS Displays information on table partitions in the user’s schema,
including statistics if an ANALYZE was run.

USER_TAB_PRIVS Lists all permissions that were granted on tables to others by
the user, granted on tables by others to the user, or granted
on tables in the user’s schema. This includes tables owned
by the user, those owned by the others to which the user has
been given permissions, or those tables to which the user
has granted others permissions.

USER_TAB_PRIVS_MADE Lists permissions granted to others by the user for tables in
the user’s schema.

USER_TAB_PRIVS_RECD Lists permissions granted to the user by others for tables not
in the user’s schema.

USER_TAB_SUBPARTITIONS Displays information on the subpartitions on tables owned
by the user.

USER_TRIGGERS Displays information on triggers created by the user, as well
as the trigger source code.

USER_TRIGGER_COLS Lists the columns, and their usage, specified in triggers in the
user’s schema.

USER_TS_QUOTAS Displays information on tablespaces in which the user has
been granted a quota (i.e., storage space).

USER_TYPES Displays information on object types in the user’s schema.

USER_TYPE_ATTRS Displays information on attributes of object types in the
user’s schema.

Continued

4832-8 appF.F 7/27/01 9:03 AM Page 691

692 Appendixes

Table F-1 (continued)

View Description

USER_TYPE_METHODS Displays information on object type methods for object
types created in the user’s schema.

USER_UNUSED_COL_TABS Lists the number of unused columns for tables in the user’s
schema. Unused columns are those that have been marked
unused in the table but not yet deleted from the table.

USER_UPDATABLE_COLUMNS Lists the columns in a join view that can be updated by the
user and the types of operations that can be performed (e.g,
INSERT, UPDATE, DELETE).

USER_USERS Displays information on the current user such as default and
temporary tablespace settings and password expiration date.

USER_VARRAYS Displays information on all VARRAYs in the user’s schema.

USER_VIEWS Displays information on all views created in the user’s
schema.

Structure of USER_ Views in Oracle
USER_ALL_TABLES

Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
TABLESPACE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
IOT_NAME VARCHAR2(30)
PCT_FREE NUMBER
PCT_USED NUMBER
INI_TRANS NUMBER
MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
BACKED_UP VARCHAR2(1)
NUM_ROWS NUMBER
BLOCKS NUMBER
EMPTY_BLOCKS NUMBER
AVG_SPACE NUMBER
CHAIN_CNT NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 692

693Appendix F ✦ Data Dictionary Views

AVG_ROW_LEN NUMBER
AVG_SPACE_FREELIST_BLOCKS NUMBER
NUM_FREELIST_BLOCKS NUMBER
DEGREE VARCHAR2(10)
INSTANCES VARCHAR2(10)
CACHE VARCHAR2(5)
TABLE_LOCK VARCHAR2(8)
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
PARTITIONED VARCHAR2(3)
IOT_TYPE VARCHAR2(12)
OBJECT_ID_TYPE VARCHAR2(16)
TABLE_TYPE_OWNER VARCHAR2(30)
TABLE_TYPE VARCHAR2(30)
TEMPORARY VARCHAR2(1)
SECONDARY VARCHAR2(1)
NESTED VARCHAR2(3)
BUFFER_POOL VARCHAR2(7)
ROW_MOVEMENT VARCHAR2(8)
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
DURATION VARCHAR2(15)
SKIP_CORRUPT VARCHAR2(8)
MONITORING VARCHAR2(3)
CLUSTER_OWNER VARCHAR2(30)

USER_ARGUMENTS
Column Name Null? Type
------------------------------ -------- ----
OBJECT_NAME VARCHAR2(30)
PACKAGE_NAME VARCHAR2(30)
OBJECT_ID NOT NULL NUMBER
OVERLOAD VARCHAR2(40)
ARGUMENT_NAME VARCHAR2(30)
POSITION NOT NULL NUMBER
SEQUENCE NOT NULL NUMBER
DATA_LEVEL NOT NULL NUMBER
DATA_TYPE VARCHAR2(30)
DEFAULT_VALUE LONG
DEFAULT_LENGTH NUMBER
IN_OUT VARCHAR2(9)
DATA_LENGTH NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
RADIX NUMBER
CHARACTER_SET_NAME VARCHAR2(44)
TYPE_OWNER VARCHAR2(30)
TYPE_NAME VARCHAR2(30)
TYPE_SUBNAME VARCHAR2(30)
TYPE_LINK VARCHAR2(128)
PLS_TYPE VARCHAR2(30)

4832-8 appF.F 7/27/01 9:03 AM Page 693

694 Appendixes

USER_CATALOG
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11)

USER_CLUSTERS
Column Name Null? Type
------------------------------ -------- ----
CLUSTER_NAME NOT NULL VARCHAR2(30)
TABLESPACE_NAME NOT NULL VARCHAR2(30)
PCT_FREE NUMBER
PCT_USED NOT NULL NUMBER
KEY_SIZE NUMBER
INI_TRANS NOT NULL NUMBER
MAX_TRANS NOT NULL NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NOT NULL NUMBER
MAX_EXTENTS NOT NULL NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
AVG_BLOCKS_PER_KEY NUMBER
CLUSTER_TYPE VARCHAR2(5)
FUNCTION VARCHAR2(15)
HASHKEYS NUMBER
DEGREE VARCHAR2(10)
INSTANCES VARCHAR2(10)
CACHE VARCHAR2(5)
BUFFER_POOL VARCHAR2(7)
SINGLE_TABLE VARCHAR2(5)

USER_CLUSTER_HASH_EXPRESSIONS
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
CLUSTER_NAME NOT NULL VARCHAR2(30)
HASH_EXPRESSION LONG

USER_CLU_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
CLUSTER_NAME NOT NULL VARCHAR2(30)
CLU_COLUMN_NAME NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
TAB_COLUMN_NAME VARCHAR2(4000)

4832-8 appF.F 7/27/01 9:03 AM Page 694

695Appendix F ✦ Data Dictionary Views

USER_COL_COMMENTS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
COMMENTS VARCHAR2(4000)

USER_COL_PRIVS
Column Name Null? Type
------------------------------ -------- ----
GRANTEE NOT NULL VARCHAR2(30)
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_COL_PRIVS_MADE
Column Name Null? Type
------------------------------ -------- ----
GRANTEE NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_COL_PRIVS_RECD
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_CONSTRAINTS
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)
CONSTRAINT_TYPE VARCHAR2(1)
TABLE_NAME NOT NULL VARCHAR2(30)
SEARCH_CONDITION LONG
R_OWNER VARCHAR2(30)
R_CONSTRAINT_NAME VARCHAR2(30)
DELETE_RULE VARCHAR2(9)

4832-8 appF.F 7/27/01 9:03 AM Page 695

696 Appendixes

STATUS VARCHAR2(8)
DEFERRABLE VARCHAR2(14)
DEFERRED VARCHAR2(9)
VALIDATED VARCHAR2(13)
GENERATED VARCHAR2(14)
BAD VARCHAR2(3)
RELY VARCHAR2(4)
LAST_CHANGE DATE

USER_CONS_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
POSITION NUMBER

USER_DEPENDENCIES
Column Name Null? Type
------------------------------ -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
REFERENCED_OWNER VARCHAR2(30)
REFERENCED_NAME VARCHAR2(64)
REFERENCED_TYPE VARCHAR2(12)
REFERENCED_LINK_NAME VARCHAR2(128)
SCHEMAID NUMBER
DEPENDENCY_TYPE VARCHAR2(4)

USER_ERRORS
Column Name Null? Type
------------------------------ -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
SEQUENCE NOT NULL NUMBER
LINE NOT NULL NUMBER
POSITION NOT NULL NUMBER
TEXT NOT NULL VARCHAR2(4000)

USER_EXTENTS
Column Name Null? Type
------------------------------ -------- ----
SEGMENT_NAME VARCHAR2(81)
PARTITION_NAME VARCHAR2(30)
SEGMENT_TYPE VARCHAR2(18)
TABLESPACE_NAME VARCHAR2(30)
EXTENT_ID NUMBER
BYTES NUMBER
BLOCKS NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 696

697Appendix F ✦ Data Dictionary Views

USER_FREE_SPACE
Column Name Null? Type
------------------------------ -------- ----
TABLESPACE_NAME VARCHAR2(30)
FILE_ID NUMBER
BLOCK_ID NUMBER
BYTES NUMBER
BLOCKS NUMBER
RELATIVE_FNO NUMBER

USER_INDEXES
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME NOT NULL VARCHAR2(30)
INDEX_TYPE VARCHAR2(27)
TABLE_OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11)
UNIQUENESS VARCHAR2(9)
COMPRESSION VARCHAR2(8)
PREFIX_LENGTH NUMBER
TABLESPACE_NAME VARCHAR2(30)
INI_TRANS NUMBER
MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
PCT_THRESHOLD NUMBER
INCLUDE_COLUMN NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
PCT_FREE NUMBER
LOGGING VARCHAR2(3)
BLEVEL NUMBER
LEAF_BLOCKS NUMBER
DISTINCT_KEYS NUMBER
AVG_LEAF_BLOCKS_PER_KEY NUMBER
AVG_DATA_BLOCKS_PER_KEY NUMBER
CLUSTERING_FACTOR NUMBER
STATUS VARCHAR2(8)
NUM_ROWS NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
DEGREE VARCHAR2(40)
INSTANCES VARCHAR2(40)
PARTITIONED VARCHAR2(3)
TEMPORARY VARCHAR2(1)

4832-8 appF.F 7/27/01 9:03 AM Page 697

698 Appendixes

GENERATED VARCHAR2(1)
SECONDARY VARCHAR2(1)
BUFFER_POOL VARCHAR2(7)
USER_STATS VARCHAR2(3)
DURATION VARCHAR2(15)
PCT_DIRECT_ACCESS NUMBER
ITYP_OWNER VARCHAR2(30)
ITYP_NAME VARCHAR2(30)
PARAMETERS VARCHAR2(1000)
GLOBAL_STATS VARCHAR2(3)
DOMIDX_STATUS VARCHAR2(12)
DOMIDX_OPSTATUS VARCHAR2(6)
FUNCIDX_STATUS VARCHAR2(8)

USER_IND_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
COLUMN_POSITION NUMBER
COLUMN_LENGTH NUMBER
DESCEND VARCHAR2(4)

USER_IND_EXPRESSIONS
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
COLUMN_EXPRESSION LONG
COLUMN_POSITION NUMBER

USER_IND_PARTITIONS
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME VARCHAR2(30)
COMPOSITE VARCHAR2(3)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_COUNT NUMBER
HIGH_VALUE LONG
HIGH_VALUE_LENGTH NUMBER
PARTITION_POSITION NUMBER
STATUS VARCHAR2(8)
TABLESPACE_NAME VARCHAR2(30)
PCT_FREE NUMBER
INI_TRANS NUMBER
MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENT NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 698

699Appendix F ✦ Data Dictionary Views

MAX_EXTENT NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(7)
COMPRESSION VARCHAR2(8)
BLEVEL NUMBER
LEAF_BLOCKS NUMBER
DISTINCT_KEYS NUMBER
AVG_LEAF_BLOCKS_PER_KEY NUMBER
AVG_DATA_BLOCKS_PER_KEY NUMBER
CLUSTERING_FACTOR NUMBER
NUM_ROWS NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
BUFFER_POOL VARCHAR2(7)
USER_STATS VARCHAR2(3)
PCT_DIRECT_ACCESS NUMBER
GLOBAL_STATS VARCHAR2(3)

USER_IND_SUBPARTITIONS
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME NOT NULL VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
SUBPARTITION_POSITION NOT NULL NUMBER
STATUS VARCHAR2(8)
TABLESPACE_NAME NOT NULL VARCHAR2(30)
PCT_FREE NOT NULL NUMBER
INI_TRANS NOT NULL NUMBER
MAX_TRANS NOT NULL NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENT NOT NULL NUMBER
MAX_EXTENT NOT NULL NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
BLEVEL NUMBER
LEAF_BLOCKS NUMBER
DISTINCT_KEYS NUMBER
AVG_LEAF_BLOCKS_PER_KEY NUMBER
AVG_DATA_BLOCKS_PER_KEY NUMBER
CLUSTERING_FACTOR NUMBER
NUM_ROWS NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
BUFFER_POOL VARCHAR2(7)
USER_STATS VARCHAR2(3)
GLOBAL_STATS VARCHAR2(3)

4832-8 appF.F 7/27/01 9:03 AM Page 699

700 Appendixes

USER_LIBRARIES
Column Name Null? Type
------------------------------ -------- ----
LIBRARY_NAME NOT NULL VARCHAR2(30)
FILE_SPEC VARCHAR2(2000)
DYNAMIC VARCHAR2(1)
STATUS VARCHAR2(7)

USER_LOBS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
SEGMENT_NAME NOT NULL VARCHAR2(30)
INDEX_NAME NOT NULL VARCHAR2(30)
CHUNK NUMBER
PCTVERSION NOT NULL NUMBER
CACHE VARCHAR2(10)
LOGGING VARCHAR2(3)
IN_ROW VARCHAR2(3)

USER_LOB_PARTITIONS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
LOB_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
LOB_PARTITION_NAME VARCHAR2(30)
LOB_INDPART_NAME VARCHAR2(30)
PARTITION_POSITION NUMBER
COMPOSITE VARCHAR2(3)
CHUNK NUMBER
PCTVERSION NUMBER
CACHE VARCHAR2(10)
IN_ROW VARCHAR2(3)
TABLESPACE_NAME VARCHAR2(30)
INITIAL_EXTENT VARCHAR2(40)
NEXT_EXTENT VARCHAR2(40)
MIN_EXTENTS VARCHAR2(40)
MAX_EXTENTS VARCHAR2(40)
PCT_INCREASE VARCHAR2(40)
FREELISTS VARCHAR2(40)
FREELIST_GROUPS VARCHAR2(40)
LOGGING VARCHAR2(7)
BUFFER_POOL VARCHAR2(7)

4832-8 appF.F 7/27/01 9:03 AM Page 700

701Appendix F ✦ Data Dictionary Views

USER_LOB_SUBPARTITIONS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
LOB_NAME NOT NULL VARCHAR2(30)
LOB_PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
LOB_SUBPARTITION_NAME VARCHAR2(30)
LOB_INDSUBPART_NAME VARCHAR2(30)
SUBPARTITION_POSITION NOT NULL NUMBER
CHUNK NUMBER
PCTVERSION NOT NULL NUMBER
CACHE VARCHAR2(10)
IN_ROW VARCHAR2(3)
TABLESPACE_NAME NOT NULL VARCHAR2(30)
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NOT NULL NUMBER
MAX_EXTENTS NOT NULL NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
BUFFER_POOL VARCHAR2(7)

USER_METHOD_PARAMS
Column Name Null? Type
------------------------------ -------- ----
TYPE_NAME NOT NULL VARCHAR2(30)
METHOD_NAME NOT NULL VARCHAR2(30)
METHOD_NO NOT NULL NUMBER
PARAM_NAME NOT NULL VARCHAR2(30)
PARAM_NO NOT NULL NUMBER
PARAM_MODE VARCHAR2(6)
PARAM_TYPE_MOD VARCHAR2(7)
PARAM_TYPE_OWNER VARCHAR2(30)
PARAM_TYPE_NAME VARCHAR2(30)
CHARACTER_SET_NAME VARCHAR2(44)

USER_METHOD_RESULTS
Column Name Null? Type
------------------------------ -------- ----
TYPE_NAME NOT NULL VARCHAR2(30)
METHOD_NAME NOT NULL VARCHAR2(30)
METHOD_NO NOT NULL NUMBER
RESULT_TYPE_MOD VARCHAR2(7)
RESULT_TYPE_OWNER VARCHAR2(30)
RESULT_TYPE_NAME VARCHAR2(30)
CHARACTER_SET_NAME VARCHAR2(44)

4832-8 appF.F 7/27/01 9:03 AM Page 701

702 Appendixes

USER_NESTED_TABLES
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
TABLE_TYPE_OWNER VARCHAR2(30)
TABLE_TYPE_NAME VARCHAR2(30)
PARENT_TABLE_NAME VARCHAR2(30)
PARENT_TABLE_COLUMN VARCHAR2(4000)
STORAGE_SPEC VARCHAR2(30)
RETURN_TYPE VARCHAR2(20)

USER_OBJECTS
Column Name Null? Type
------------------------------ -------- ----
OBJECT_NAME VARCHAR2(128)
SUBOBJECT_NAME VARCHAR2(30)
OBJECT_ID NUMBER
DATA_OBJECT_ID NUMBER
OBJECT_TYPE VARCHAR2(18)
CREATED DATE
LAST_DDL_TIME DATE
TIMESTAMP VARCHAR2(19)
STATUS VARCHAR2(7)
TEMPORARY VARCHAR2(1)
GENERATED VARCHAR2(1)
SECONDARY VARCHAR2(1)

USER_OBJECT_SIZE
Column Name Null? Type
------------------------------ -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(13)
SOURCE_SIZE NUMBER
PARSED_SIZE NUMBER
CODE_SIZE NUMBER
ERROR_SIZE NUMBER

USER_OBJECT_TABLES
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
TABLESPACE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
IOT_NAME VARCHAR2(30)
PCT_FREE NUMBER
PCT_USED NUMBER
INI_TRANS NUMBER
MAX_TRANS NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 702

703Appendix F ✦ Data Dictionary Views

INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
BACKED_UP VARCHAR2(1)
NUM_ROWS NUMBER
BLOCKS NUMBER
EMPTY_BLOCKS NUMBER
AVG_SPACE NUMBER
CHAIN_CNT NUMBER
AVG_ROW_LEN NUMBER
AVG_SPACE_FREELIST_BLOCKS NUMBER
NUM_FREELIST_BLOCKS NUMBER
DEGREE VARCHAR2(10)
INSTANCES VARCHAR2(10)
CACHE VARCHAR2(5)
TABLE_LOCK VARCHAR2(8)
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
PARTITIONED VARCHAR2(3)
IOT_TYPE VARCHAR2(12)
OBJECT_ID_TYPE VARCHAR2(16)
TABLE_TYPE_OWNER NOT NULL VARCHAR2(30)
TABLE_TYPE NOT NULL VARCHAR2(30)
TEMPORARY VARCHAR2(1)
SECONDARY VARCHAR2(1)
NESTED VARCHAR2(3)
BUFFER_POOL VARCHAR2(7)
ROW_MOVEMENT VARCHAR2(8)
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
DURATION VARCHAR2(15)
SKIP_CORRUPT VARCHAR2(8)
MONITORING VARCHAR2(3)
CLUSTER_OWNER VARCHAR2(30)

USER_PART_COL_STATISTICS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
NUM_DISTINCT NUMBER
LOW_VALUE RAW(32)
HIGH_VALUE RAW(32)
DENSITY NUMBER
NUM_NULLS NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 703

704 Appendixes

NUM_BUCKETS NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
AVG_COL_LEN NUMBER

USER_PART_HISTOGRAMS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
BUCKET_NUMBER NUMBER
ENDPOINT_VALUE NUMBER
ENDPOINT_ACTUAL_VALUE VARCHAR2(1000)

USER_PART_INDEXES
Column Name Null? Type
------------------------------ -------- ----
INDEX_NAME NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
PARTITIONING_TYPE VARCHAR2(7)
SUBPARTITIONING_TYPE VARCHAR2(7)
PARTITION_COUNT NOT NULL NUMBER
DEF_SUBPARTITION_COUNT NUMBER
PARTITIONING_KEY_COUNT NOT NULL NUMBER
SUBPARTITIONING_KEY_COUNT NUMBER
LOCALITY VARCHAR2(6)
ALIGNMENT VARCHAR2(12)
DEF_TABLESPACE_NAME VARCHAR2(30)
DEF_PCT_FREE NOT NULL NUMBER
DEF_INI_TRANS NOT NULL NUMBER
DEF_MAX_TRANS NOT NULL NUMBER
DEF_INITIAL_EXTENT VARCHAR2(40)
DEF_NEXT_EXTENT VARCHAR2(40)
DEF_MIN_EXTENTS VARCHAR2(40)
DEF_MAX_EXTENTS VARCHAR2(40)
DEF_PCT_INCREASE VARCHAR2(40)
DEF_FREELISTS NOT NULL NUMBER
DEF_FREELIST_GROUPS NOT NULL NUMBER
DEF_LOGGING VARCHAR2(7)
DEF_BUFFER_POOL VARCHAR2(7)

USER_PART_KEY_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
NAME VARCHAR2(30)
OBJECT_TYPE VARCHAR2(11)
COLUMN_NAME VARCHAR2(4000)
COLUMN_POSITION NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 704

705Appendix F ✦ Data Dictionary Views

USER_PART_LOBS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
LOB_NAME NOT NULL VARCHAR2(30)
LOB_INDEX_NAME NOT NULL VARCHAR2(30)
DEF_CHUNK NOT NULL NUMBER
DEF_PCTVERSION NOT NULL NUMBER
DEF_CACHE VARCHAR2(10)
DEF_IN_ROW VARCHAR2(3)
DEF_TABLESPACE_NAME VARCHAR2(30)
DEF_INITIAL_EXTENT VARCHAR2(40)
DEF_NEXT_EXTENT VARCHAR2(40)
DEF_MIN_EXTENTS VARCHAR2(40)
DEF_MAX_EXTENTS VARCHAR2(40)
DEF_PCT_INCREASE VARCHAR2(40)
DEF_FREELISTS VARCHAR2(40)
DEF_FREELIST_GROUPS VARCHAR2(40)
DEF_LOGGING VARCHAR2(7)
DEF_BUFFER_POOL VARCHAR2(7)

USER_PART_TABLES
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
PARTITIONING_TYPE VARCHAR2(7)
SUBPARTITIONING_TYPE VARCHAR2(7)
PARTITION_COUNT NUMBER
DEF_SUBPARTITION_COUNT NUMBER
PARTITIONING_KEY_COUNT NUMBER
SUBPARTITIONING_KEY_COUNT NUMBER
DEF_TABLESPACE_NAME VARCHAR2(30)
DEF_PCT_FREE NUMBER
DEF_PCT_USED NUMBER
DEF_INI_TRANS NUMBER
DEF_MAX_TRANS NUMBER
DEF_INITIAL_EXTENT VARCHAR2(40)
DEF_NEXT_EXTENT VARCHAR2(40)
DEF_MIN_EXTENTS VARCHAR2(40)
DEF_MAX_EXTENTS VARCHAR2(40)
DEF_PCT_INCREASE VARCHAR2(40)
DEF_FREELISTS NUMBER
DEF_FREELIST_GROUPS NUMBER
DEF_LOGGING VARCHAR2(7)
DEF_BUFFER_POOL VARCHAR2(7)

4832-8 appF.F 7/27/01 9:03 AM Page 705

706 Appendixes

USER_PASSWORD_LIMITS
Column Name Null? Type
------------------------------ -------- ----
RESOURCE_NAME NOT NULL VARCHAR2(32)
LIMIT VARCHAR2(40)

USER_RESOURCE_LIMITS
Column Name Null? Type
------------------------------ -------- ----
RESOURCE_NAME NOT NULL VARCHAR2(32)
LIMIT VARCHAR2(40)

USER_ROLE_PRIVS
Column Name Null? Type
------------------------------ -------- ----
USERNAME VARCHAR2(30)
GRANTED_ROLE VARCHAR2(30)
ADMIN_OPTION VARCHAR2(3)
DEFAULT_ROLE VARCHAR2(3)
OS_GRANTED VARCHAR2(3)

USER_SEGMENTS
Column Name Null? Type
------------------------------ -------- ----
SEGMENT_NAME VARCHAR2(81)
PARTITION_NAME VARCHAR2(30)
SEGMENT_TYPE VARCHAR2(18)
TABLESPACE_NAME VARCHAR2(30)
BYTES NUMBER
BLOCKS NUMBER
EXTENTS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
BUFFER_POOL VARCHAR2(7)

USER_SEQUENCES
Column Name Null? Type
------------------------------ -------- ----
SEQUENCE_NAME NOT NULL VARCHAR2(30)
MIN_VALUE NUMBER
MAX_VALUE NUMBER
INCREMENT_BY NOT NULL NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 706

707Appendix F ✦ Data Dictionary Views

CYCLE_FLAG VARCHAR2(1)
ORDER_FLAG VARCHAR2(1)
CACHE_SIZE NOT NULL NUMBER
LAST_NUMBER NOT NULL NUMBER

USER_SOURCE
Column Name Null? Type
------------------------------ -------- ----
NAME VARCHAR2(30)
TYPE VARCHAR2(12)
LINE NUMBER
TEXT VARCHAR2(4000)

USER_SUBPART_COL_STATISTICS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
NUM_DISTINCT NUMBER
LOW_VALUE RAW(32)
HIGH_VALUE RAW(32)
DENSITY NUMBER
NUM_NULLS NUMBER
NUM_BUCKETS NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
AVG_COL_LEN NUMBER

USER_SUBPART_HISTOGRAMS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
BUCKET_NUMBER NUMBER
ENDPOINT_VALUE NUMBER
ENDPOINT_ACTUAL_VALUE VARCHAR2(1000)

USER_SUBPART_KEY_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
NAME VARCHAR2(30)
OBJECT_TYPE VARCHAR2(11)
COLUMN_NAME VARCHAR2(4000)
COLUMN_POSITION NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 707

708 Appendixes

USER_SYNONYMS
Column Name Null? Type
------------------------------ -------- ----
SYNONYM_NAME NOT NULL VARCHAR2(30)
TABLE_OWNER VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
DB_LINK VARCHAR2(128)

USER_SYS_PRIVS
Column Name Null? Type
------------------------------ -------- ----
USERNAME VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
ADMIN_OPTION VARCHAR2(3)

USER_TABLES
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
TABLESPACE_NAME VARCHAR2(30)
CLUSTER_NAME VARCHAR2(30)
IOT_NAME VARCHAR2(30)
PCT_FREE NUMBER
PCT_USED NUMBER
INI_TRANS NUMBER
MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
BACKED_UP VARCHAR2(1)
NUM_ROWS NUMBER
BLOCKS NUMBER
EMPTY_BLOCKS NUMBER
AVG_SPACE NUMBER
CHAIN_CNT NUMBER
AVG_ROW_LEN NUMBER
AVG_SPACE_FREELIST_BLOCKS NUMBER
NUM_FREELIST_BLOCKS NUMBER
DEGREE VARCHAR2(10)
INSTANCES VARCHAR2(10)
CACHE VARCHAR2(5)
TABLE_LOCK VARCHAR2(8)
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
PARTITIONED VARCHAR2(3)
IOT_TYPE VARCHAR2(12)
TEMPORARY VARCHAR2(1)

4832-8 appF.F 7/27/01 9:03 AM Page 708

709Appendix F ✦ Data Dictionary Views

SECONDARY VARCHAR2(1)
NESTED VARCHAR2(3)
BUFFER_POOL VARCHAR2(7)
ROW_MOVEMENT VARCHAR2(8)
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
DURATION VARCHAR2(15)
SKIP_CORRUPT VARCHAR2(8)
MONITORING VARCHAR2(3)
CLUSTER_OWNER VARCHAR2(30)

USER_TABLESPACES
Column Name Null? Type
------------------------------ -------- ----
TABLESPACE_NAME NOT NULL VARCHAR2(30)
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENTS NOT NULL NUMBER
MAX_EXTENTS NUMBER
PCT_INCREASE NUMBER
MIN_EXTLEN NUMBER
STATUS VARCHAR2(9)
CONTENTS VARCHAR2(9)
LOGGING VARCHAR2(9)
EXTENT_MANAGEMENT VARCHAR2(10)
ALLOCATION_TYPE VARCHAR2(9)

USER_TAB_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
DATA_TYPE VARCHAR2(106)
DATA_TYPE_MOD VARCHAR2(3)
DATA_TYPE_OWNER VARCHAR2(30)
DATA_LENGTH NOT NULL NUMBER
DATA_PRECISION NUMBER
DATA_SCALE NUMBER
NULLABLE VARCHAR2(1)
COLUMN_ID NOT NULL NUMBER
DEFAULT_LENGTH NUMBER
DATA_DEFAULT LONG
NUM_DISTINCT NUMBER
LOW_VALUE RAW(32)
HIGH_VALUE RAW(32)
DENSITY NUMBER
NUM_NULLS NUMBER
NUM_BUCKETS NUMBER
LAST_ANALYZED DATE
SAMPLE_SIZE NUMBER
CHARACTER_SET_NAME VARCHAR2(44)
CHAR_COL_DECL_LENGTH NUMBER

4832-8 appF.F 7/27/01 9:03 AM Page 709

710 Appendixes

GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
AVG_COL_LEN NUMBER

USER_TAB_COL_STATISTICS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
NUM_DISTINCT NUMBER
LOW_VALUE RAW(32)
HIGH_VALUE RAW(32)
DENSITY NUMBER
NUM_NULLS NUMBER
NUM_BUCKETS NUMBER
LAST_ANALYZED DATE
SAMPLE_SIZE NUMBER
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)
AVG_COL_LEN NUMBER

USER_TAB_COMMENTS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
TABLE_TYPE VARCHAR2(11)
COMMENTS VARCHAR2(4000)

USER_TAB_HISTOGRAMS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
ENDPOINT_NUMBER NUMBER
ENDPOINT_VALUE NUMBER
ENDPOINT_ACTUAL_VALUE VARCHAR2(1000)

USER_TAB_MODIFICATIONS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
INSERTS NUMBER
UPDATES NUMBER
DELETES NUMBER
TIMESTAMP DATE
TRUNCATED VARCHAR2(3)

4832-8 appF.F 7/27/01 9:03 AM Page 710

711Appendix F ✦ Data Dictionary Views

USER_TAB_PARTITIONS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME VARCHAR2(30)
COMPOSITE VARCHAR2(3)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_COUNT NUMBER
HIGH_VALUE LONG
HIGH_VALUE_LENGTH NUMBER
PARTITION_POSITION NUMBER
TABLESPACE_NAME VARCHAR2(30)
PCT_FREE NUMBER
PCT_USED NUMBER
INI_TRANS NUMBER
MAX_TRANS NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENT NUMBER
MAX_EXTENT NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(7)
NUM_ROWS NUMBER
BLOCKS NUMBER
EMPTY_BLOCKS NUMBER
AVG_SPACE NUMBER
CHAIN_CNT NUMBER
AVG_ROW_LEN NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
BUFFER_POOL VARCHAR2(7)
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)

USER_TAB_PRIVS
Column Name Null? Type
------------------------------ -------- ----
GRANTEE NOT NULL VARCHAR2(30)
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_TAB_PRIVS_MADE
Column Name Null? Type
------------------------------ -------- ----
GRANTEE NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)

4832-8 appF.F 7/27/01 9:03 AM Page 711

712 Appendixes

GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_TAB_PRIVS_RECD
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
GRANTOR NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)

USER_TAB_SUBPARTITIONS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
SUBPARTITION_NAME VARCHAR2(30)
SUBPARTITION_POSITION NOT NULL NUMBER
TABLESPACE_NAME NOT NULL VARCHAR2(30)
PCT_FREE NOT NULL NUMBER
PCT_USED NOT NULL NUMBER
INI_TRANS NOT NULL NUMBER
MAX_TRANS NOT NULL NUMBER
INITIAL_EXTENT NUMBER
NEXT_EXTENT NUMBER
MIN_EXTENT NOT NULL NUMBER
MAX_EXTENT NOT NULL NUMBER
PCT_INCREASE NUMBER
FREELISTS NUMBER
FREELIST_GROUPS NUMBER
LOGGING VARCHAR2(3)
NUM_ROWS NUMBER
BLOCKS NUMBER
EMPTY_BLOCKS NUMBER
AVG_SPACE NUMBER
CHAIN_CNT NUMBER
AVG_ROW_LEN NUMBER
SAMPLE_SIZE NUMBER
LAST_ANALYZED DATE
BUFFER_POOL VARCHAR2(7)
GLOBAL_STATS VARCHAR2(3)
USER_STATS VARCHAR2(3)

USER_TRIGGERS
Column Name Null? Type
------------------------------ -------- ----
TRIGGER_NAME VARCHAR2(30)
TRIGGER_TYPE VARCHAR2(16)
TRIGGERING_EVENT VARCHAR2(216)

4832-8 appF.F 7/27/01 9:03 AM Page 712

713Appendix F ✦ Data Dictionary Views

TABLE_OWNER VARCHAR2(30)
BASE_OBJECT_TYPE VARCHAR2(16)
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
REFERENCING_NAMES VARCHAR2(128)
WHEN_CLAUSE VARCHAR2(4000)
STATUS VARCHAR2(8)
DESCRIPTION VARCHAR2(4000)
ACTION_TYPE VARCHAR2(11)
TRIGGER_BODY LONG

USER_TRIGGER_COLS
Column Name Null? Type
------------------------------ -------- ----
TRIGGER_OWNER VARCHAR2(30)
TRIGGER_NAME VARCHAR2(30)
TABLE_OWNER VARCHAR2(30)
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
COLUMN_LIST VARCHAR2(3)
COLUMN_USAGE VARCHAR2(17)

USER_TS_QUOTAS
Column Name Null? Type
------------------------------ -------- ----
TABLESPACE_NAME NOT NULL VARCHAR2(30)
BYTES NUMBER
MAX_BYTES NUMBER
BLOCKS NOT NULL NUMBER
MAX_BLOCKS NUMBER

USER_TYPES
Column Name Null? Type
------------------------------ -------- ----
TYPE_NAME NOT NULL VARCHAR2(30)
TYPE_OID NOT NULL RAW(16)
TYPECODE VARCHAR2(30)
ATTRIBUTES NUMBER
METHODS NUMBER
PREDEFINED VARCHAR2(3)
INCOMPLETE VARCHAR2(3)

USER_TYPE_ATTRS
Column Name Null? Type
------------------------------ -------- ----
TYPE_NAME NOT NULL VARCHAR2(30)
ATTR_NAME NOT NULL VARCHAR2(30)
ATTR_TYPE_MOD VARCHAR2(7)
ATTR_TYPE_OWNER VARCHAR2(30)
ATTR_TYPE_NAME VARCHAR2(30)

4832-8 appF.F 7/27/01 9:03 AM Page 713

714 Appendixes

LENGTH NUMBER
PRECISION NUMBER
SCALE NUMBER
CHARACTER_SET_NAME VARCHAR2(44)
ATTR_NO NOT NULL NUMBER

USER_TYPE_METHODS
Column Name Null? Type
------------------------------ -------- ----
TYPE_NAME NOT NULL VARCHAR2(30)
METHOD_NAME NOT NULL VARCHAR2(30)
METHOD_NO NOT NULL NUMBER
METHOD_TYPE VARCHAR2(6)
PARAMETERS NOT NULL NUMBER
RESULTS NOT NULL NUMBER

USER_UNUSED_COL_TABS
Column Name Null? Type
------------------------------ -------- ----
TABLE_NAME NOT NULL VARCHAR2(30)
COUNT NUMBER

USER_UPDATABLE_COLUMNS
Column Name Null? Type
------------------------------ -------- ----
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME NOT NULL VARCHAR2(30)
UPDATABLE VARCHAR2(3)
INSERTABLE VARCHAR2(3)
DELETABLE VARCHAR2(3)

USER_USERS
Column Name Null? Type
------------------------------ -------- ----
USERNAME NOT NULL VARCHAR2(30)
USER_ID NOT NULL NUMBER
ACCOUNT_STATUS NOT NULL VARCHAR2(32)
LOCK_DATE DATE
EXPIRY_DATE DATE
DEFAULT_TABLESPACE NOT NULL VARCHAR2(30)
TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30)
CREATED NOT NULL DATE
INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30)
EXTERNAL_NAME VARCHAR2(4000)

4832-8 appF.F 7/27/01 9:03 AM Page 714

715Appendix F ✦ Data Dictionary Views

USER_VARRAYS
Column Name Null? Type
------------------------------ -------- ----
PARENT_TABLE_NAME VARCHAR2(30)
PARENT_TABLE_COLUMN VARCHAR2(4000)
TYPE_OWNER VARCHAR2(30)
TYPE_NAME VARCHAR2(30)
LOB_NAME VARCHAR2(30)
STORAGE_SPEC VARCHAR2(30)
RETURN_TYPE VARCHAR2(20)

USER_VIEWS
Column Name Null? Type
------------------------------ -------- ----
VIEW_NAME NOT NULL VARCHAR2(30)
TEXT_LENGTH NUMBER
TEXT LONG
TYPE_TEXT_LENGTH NUMBER
TYPE_TEXT VARCHAR2(4000)
OID_TEXT_LENGTH NUMBER
OID_TEXT VARCHAR2(4000)
VIEW_TYPE_OWNER VARCHAR2(30)
VIEW_TYPE VARCHAR2(30)

✦ ✦ ✦

4832-8 appF.F 7/27/01 9:03 AM Page 715

4832-8 appF.F 7/27/01 9:03 AM Page 716

GGA P P E N D I X

Suggested
Readings, Web
Sites, and Other
Resources

This appendix provides information on books, Web sites,

and other resources, such as periodicals, that can be

used to better prepare yourself for the “Introduction to

Oracle: SQL & PL/SQL” exam. Although you are not expected

or required to read all the books and visit every Web site,

working with Oracle and being completely familiar with the

contents of this book are necessary to prepare you for taking

the exam.

Suggested Readings
Additional research and preparation before taking the

“Introduction to Oracle: SQL & PL/SQL” exam can always be

beneficial. The books listed here provide additional informa-

tion on relational database management systems in general,

as well as Oracle and PL/SQL.

Books
Christopher Allen, Oracle PL/SQL 101 (McGraw-Hill, 2000).

E.F. Codd, The Relational Model for Database Management
Version 2 (Addison-Wesley, 1999).

C.J. Date, The Database Relational Model: A Retrospective
Review and Analysis (Addison-Wesley, 2001).

✦ ✦ ✦ ✦

4832-8 appG.F 7/27/01 9:03 AM Page 717

718 Appendixes

C.J. Date, An Introduction to Database Systems, 7th Edition (Addison-Wesley, 1999).

Gary Dodge et al., Essential Oracle8i Data Warehousing: Designing, Building, and
Managing Oracle Data Warehouses (John Wiley & Sons, 2000).

David Ensor and Tim Stevenson, Oracle Design (O’Reilly & Associates, 1997).

Steven Feuerstein, Oracle PL/SQL Programming, 2nd Edition (O’Reilly & Associates,

1997).

Jonathan Gennick, et al., Oracle SQL*Plus: The Definitive Guide (O’Reilly &

Associates, 1999).

Michael J. Hernandez, Database Design for Mere Mortals : A Hands-On Guide to
Relational Database Design (Addison-Wesley, 1997).

Ralph Kimball et al., The Data Warehouse Lifecycle Toolkit : Expert Methods for
Designing, Developing, and Deploying Data Warehouses (John Wiley & Sons, 1998).

David C. Kreines and Ken Jacobs, Oracle SQL: The Essential Reference (O’Reilly &

Associates, 2000).

Oracle documentation manuals
Oracle8i Administrators Guide

Oracle8i Concepts

Oracle8i SQL Reference

SQL*Plus User’s Guide and Reference

4832-8 appG.F 7/27/01 9:03 AM Page 718

719Appendix G ✦ Suggested Readings, Web Sites, and Other Resources

Web Sites
The Web sites in Table G-1 are useful in acquiring Oracle software and getting infor-

mation about Oracle and the Oracle Certified Professional (OCP) program.

Table G-1
Suggested Sites

URL Description

http://www.oracle.com Oracle Corporation home page.

http://education.oracle.com Oracle Education home page. Includes information on the
Oracle Certified Professional program, as well as Oracle
course offerings.

http://technet.oracle.com Oracle Technology Network home page. Provides
information on Oracle products, as well as copies of
Oracle database and other tools. Membership is free.

http://technet.oracle.com/ Oracle documentation on TechNet. This URL provides
docs/content.html links to all the Oracle documentation sets for Oracle 8i —

in case you don’t have the hard copies or CD handy.

http://www.certcities.com CertCities home page. This site offers information on
certifications, as well as columns and feature articles on
Oracle and the Oracle Certified Professional (OCP)
program.

http://www.orafaq.com/ Underground Oracle FAQ. This site provides links and
faq.htm information on Oracle products and features.

✦ ✦ ✦

4832-8 appG.F 7/27/01 9:03 AM Page 719

4832-8 appG.F 7/27/01 9:03 AM Page 720

Numbers & Symbols
& (ampersand), 172–175, 231, 233–235

* (asterisk), 41, 413, 540

\ (backslash), 290

: (colon), 422, 430, 593

, (comma), 41, 49, 50, 242, 248, 274

- (dash), 413

. (decimal point), 93, 106

$ (dollar sign), 94, 95, 248, 270, 414

“ (double quotes), 50, 414

/ (forward slash), 230, 253, 413, 576

- (hyphen), 236

() (parentheses), 44, 45, 47, 298, 202, 512

% (percent sign), 69–70

. (period), 248, 505

| (pipe symbol), 45, 249

(pound sign), 270, 414

; (semicolon), 253, 409, 410, 446, 453, 536

‘ (single quote), 46, 59, 69, 173, 193, 196, 290, 411

_ (underscore), 69, 270, 414

@ command, 239, 254

A
ACCEPT command, 175, 235–236

ACCESS_INTO_NULL exception, 542

ACID test, 206–207

ACROBAT folder, 618

Acrobat Reader, 615, 618

active sets, 489, 491–493

add (+) operator, 42, 43, 44–45

ADD_MONTHS function, 108

Address1 column, 198, 670, 671

Address2 column, 670, 671

AddressType datatype, 19

ADMIN directory, 306

Adobe Acrobat Reader, 615, 618

aggregate functions, 482

Aggregate BY clause and, 119–122

assessment questions, 126–128, 132–133

basic description of, 114–119

DISTINCT keyword and, 118

HAVING clause and, 122–123

identifying available, 119

lab exercises, 129–131, 135–137

pre-test, 90, 131–132

scenarios, 129, 133–135

using the WHERE clause with, 119

alias(es)

adding, 47–48

basic description of, 48

column, 47–48

comparison operators and, 62–63

errors and, 62–63

joins and, 144, 150

naming, 50

in the ORDER BY statement, 63

PL/SQL and, 427

ALL keyword, 372

ALL operator, 153–155

Allen, Christopher, 717

ALL_views, 22, 280–283. See also ALL_views (listed by

name)

comments and, 290

querying, 290

synonyms and, 335–336

ALL_views (listed by name). See also ALL_views

ALL_CATALOG view, 283

ALL_COL_COMMENTS view, 290

ALL_CONSTRAINTS view, 307–308

ALL_SEQUENCES view, 331–332

ALL_SYNONYMS view, 336

ALL_TAB_COMMENTS view, 290

ALTER ANY TABLE privilege, 367

ALTER privilege, 373

ALTER SEQUENCE command, 332–333

ALTER TABLE command, 210, 283–287, 293, 301,

303–304, 306–307

ALTER TRIGGER command, 599–600

ALTER USER command, 365–366

ALTER USER privilege, 367

ALTER VIEW command, 373

American National Standards Institute (ANSI), 11, 37,

58, 162, 282

American Standard Code for Information Interchange

(ASCII), 117, 238, 674

ampersand (&), 172–175, 231, 233–235

AND operator, 63–64, 143–144, 147, 172, 418–420

annual_sales column, 147

anonymous blocks. See blocks

ANSI. See American National Standards Institute

(ANSI)

anti-virus software, 620

ANY operator, 153–155

APPEND option, 238

Aria ZIM, 615, 618

ARIAZIM folder, 618

arithmetic operations, 41–52, 411

arrays, 500, 508

ARRAYSIZE option, 241

AS keyword, 49

AS operator, 49

AS SELECT clause, 312

Index

4832-8 Index.F 7/27/01 9:03 AM Page 721

722 Index ✦ A–C

ASCII. See American Standard Code for Information

Interchange (ASCII)

assignment operators, 411, 414, 415

asterisk (*), 41, 413, 540

@ command, 239, 254

atomicity, 206

ATTRIBUTE column, 255

attributes. See also attributes (listed by name)

basic description of, 426

cursor, 487–488

%TYPE, 421–422

attributes (listed by name). See also attributes

%FOUND attribute, 487, 493, 497

%ISOPEN attribute, 487, 493, 497

%NOTFOUND attribute, 487, 488, 493, 497, 498

%ROWCOUNT attribute, 463, 487, 493, 497

%ROWTYPE attribute, 424, 494, 504–505, 511

%TYPE attribute, 421–424, 482, 504, 507, 513

auditing, 599

AUTOPRINT environment variable, 430

AVG function, 114–115, 120, 161, 251, 582

B
backslash (\), 290

BACKUP ANY TABLE privilege, 367

backup copies, of databases, 365

base

datatypes, 416

tables, 22–23, 309–310

Batch Jobs table, 673

BEGIN keyword, 411

BEGIN section, 512, 514

BETWEEN operator, 147

BETWEEN...AND operator, 66, 67–68

BFILE datatype, 15, 275

binary format, 5

BINARY_INTEGER datatype, 416, 426, 506

bind variables, 236, 414, 422, 430, 482, 577

BirthDate column, 284

bitmap indexes, 319. See also index(es)

BLOB datatype, 10, 15, 116, 275, 417

block(s)

basic description of, 407, 573

basic loops and, 445

bind variables and, 236, 422

declare section of, 410–411

error handling and, 535, 539, 540, 542, 548–549

exception section of, 412

executable section of, 411

executing, 411, 429–421

loading, into the Database Buffer Cache, 204

named, 408–409

nested, 459–461

parsing, 429

stored programs and, 576

structure of, 409–412

testing, 429–421

Bonus table, 146

book_class procedure, 429

Boolean datatype, 415, 418–420, 456–458, 555

BREAK command, 250–252

BTITLE command, 244, 246

buffer(s), 229–230

caches, 204

commands stored in, executing, 230

contents, saving, 237–239

editing, 230, 237–239, 241

redo, 204–205

writing lines of text to, 430–431

bugs, basic description of, 537. See also error(s);

exception(s)

business rules, 292

C
C (high-level language), 577

C++ (high-level language), 69, 71

CACHE parameter, 328

caches, 203–204, 328, 331, 332. See also memory

capitalization, 50–51, 97, 675. See also case-sensitivity

cardinality columns, high, 320–321

carriage returns, 39

Cartesian Product. See cross-joins

CASCADE clause, 305

CASCADE CONSTRAINTS option, 288, 377

CASCADE keyword, 303

CASCADE option, 364–365

CASE statement, 457

case-conversion functions, 99–101

case-sensitivity, 39–40, 59, 70–71, 105, 412. See also

capitalization

CD-ROM (Oracle SQL and PS/SQL Certification Bible)

applications on, list of, 618–620

contents of, basic description of, 615–620

copying scripts from, 674, 675–676

installing, 617

problems with, troubleshooting, 620

system requirements for, 616

technical support for, 620

CellPhone column, 670

CE[NTER] option, 246

CertCities Web site, 719

CERTDB folder, 674, 676

CERTDB tablespace, 674

CERTDBOBJ.SQL, 674, 676–681

Change column, 674

ChangedBy column, 674, 301–303

“change_on_install” password, 361, 362

ChangePrice script, 464

CHAR datatype, 235, 285

character(s). See also character datatype; character

functions

controlling the number of, 243–244

leading/trailing, removing, 103–104

-manipulation functions, 101–105

padding, 93

values, how Oracle determines, 117

wildcard, 69–70, 255

4832-8 Index.F 7/27/01 9:03 AM Page 722

723Index ✦ C–C

character datatype, 46–47, 249. See also character(s)

PL/SQL and, 415, 417–418, 445

using comparison operators with, 59–62

character functions. See also character(s)

basic description of, 99–110

case-conversion functions, 99–101

character-manipulation functions, 101–102

CHAR(n) datatype, 417

CHAR(size) datatype, 14, 15, 275

CHAR_VALUE column, 255

CHECK constraint, 16, 292, 299–308

Checkpoint process, 203

City column, 670, 671

ClassEnrollment table, 164, 196, 277, 294–295, 300, 335,

374–375, 379, 502, 546, 673

Classes table, 291

ClassID column, 295, 297, 672, 673

classid_seq sequence, 485–486

class_maximum variable, 584, 587

ClassRoomNumber column, 672

CLEAR BREAKS command, 251

CLEAR COMPUTES command, 252

CLE[AR] option, 248–249

client(s). See also server(s)

programs, abnormal termination of, 210

-server environments, 406–407, 619

-side procedures, 575

CLOB datatype, 15, 116, 275, 417

CLOSE command, 491, 498

COBOL, 577

Codd, E. F., 6, 7, 717

collection datatypes, 504–518

collection methods, 512, 515–518

COLLECTION_IS_NULL exception, 542

colon (:), 422, 430, 593

COLSEP option, 241

column(s). See also pseudo-columns

adding, 284–285

aliases, 47–48

basic description of, 13–14

cardinality, 320–321

concatenating, 45–46

constraints (in-line constraints), 293–294

definitions, 274

deleting, 286–287

documenting, 289–291

dropping, 286–287

formatting, 247–249

level, granting object privileges at, 374

lists, 195–196, 249, 485

lowest and highest values in, returning, 116–117

modifying, 285–286

names, 278, 279, 483

ownership of, specifying, 272

in the PRODUCT_USER_PROFILE table, 255

properties of, 13–14

UNUSED, marking, 286, 287

used in join conditions, 320

viewing all, 41

COLUMN command, 247–249, 253

Colx variable, 174

comma (,), 41, 49, 50, 242, 248, 274

comma-delimited files, 242

command(s). See also specific commands

disabling, 255

files, executing the contents of, 239

lists, displaying, 241

rules/conventions for, 39–40

stored in buffers, re-executing, 230

terminators, 253

comments, 69, 289–290, 413

Comments column, 672, 673

COMMIT statement, 205, 207–210, 462, 484, 502

sequences and, 331

triggers and, 595

comparison operators, 66–72, 146, 147

subqueries and, 152, 155

used with character and date data, 59–62

used with expressions, 62–63

WHERE clause and, 58–63

compiler(s). See also compiling

comments and, 413

directives, 545

PL/SQL and, 407, 413

processing of blocks by, 407

compiling. See also compiler(s)

basic description of, 407

errors, 535–537, 545, 574

subprograms and, 408

composite datatypes, 423–426, 504–518

COMPUTE command, 251–252

CONCAT function, 101, 102–103

concatenation (||) operator, 91–92, 102, 411

basic description of, 45–46

NULL values and, 52–53

conditional processing, 455–458

CONNECT BY PRIOR clause, 172

CONNECT command, 209, 363

CONNECT PRIOR statement, 169

connect time, maximum, 365

consistency, 206

constraint(s)

adding, to tables, 301–302

basic description of, 15–17, 291–292

conditions, finding rows not meeting, 306

creating, 373

data dictionary views and, 22

data integrity using, 291–308

defining, 293–294

disabling, 304–306

dropping, 302–303

enabling, 304–307

exceptions and, 546

indexes and, 319, 322, 324

in-line, 293–294

managing, 300–308

naming, 293

out-of-line, 293–294

Continued

4832-8 Index.F 7/27/01 9:03 AM Page 723

724 Index ✦ C–D

constraint(s) (continued)

referential integrity, 546

sequences and, 325, 330–331

types of, 16–17, 295–296

using, instead of repeating values, 415

viewing information about, 307–308

CONSTRAINT clause, 312

CONSTRAINT keyword, 294

constructor methods, 512, 514

Contact column, 671

control structures, 406

conventions

for indexes, 320–321

for keywords, 39–40

for objects, 269–272

for SQL statements, 39–40

conversion functions, 91–99, 197

correlated subqueries, 159–161

correlation names, 591–592

COU[NT] function, 251

COUNT(*) function, 115–116, 117

COUNT(column) function, 114, 115–116

COUNT method, 515, 516

counters, 448

Country column, 144, 670, 671, 672

CourseAudit table, 301–302, 674

CourseEnrollment table, 200

CourseID column, 6–9

CourseName column, 374, 670

CourseNumber column, 295, 299–300, 331, 670, 672, 674

Courses table, 6–8, 9, 13, 41, 199, 204, 290, 295, 372,

374, 424, 598, 670

crashes, 205, 209, 326, 331

CREATE ANY INDEX privilege, 323

CREATE INDEX command, 319

CREATE option, 238

CREATE PACKAGE BODY command, 584

CREATE PROCEDURE privilege, 367

CREATE PUBLIC SYNONYM permission, 335, 367

CREATE ROLL command, 378–379

CREATE SEQUENCE command, 326–328

CREATE SEQUENCE privilege, 367

CREATE SESSION privilege, 364, 367–369

CREATE statement, 269

CREATE SYNONYM privilege, 367

CREATE TABLE privilege, 367

CREATE TABLE statement, 273–283

CREATE TRIGGER command, 588

CREATE USER command, 363–364

CREATE USER privilege, 367

CREATE VIEW privilege, 367

CREATE VIEW statement, 157, 310–311

CREATED column, 603

CREATEUSER.SQL, 674, 676–677

cross-joins, 145–146. See also join(s)

currency settings, 94

CURRVAL pseudo-column, 300, 329–330

cursor(s), 427–428, 463

attributes, 487–488, 493

basic description of, 487

closing, 491, 498

declaring, 489–490

disabling, 491

fetching from, 492–494

FOR loop, 495–497, 499–500

FOR UPDATE option and, 501–503

opening, 490–491, 501

parameters, 500–501

state information, storage of, in the PGA, 203

subqueries and, 499–500

values returned by, declaring records that will

hold, 494

variables, 497–499

CURSOR_ALREADY_OPEN exception, 543

CustomerID column, 271

Customers table, 271

CYCLE option, 325–326

CYCLE/NOCYCLE parameter, 328

D
dash (-), 413

Data Control Language (DCL), 407, 462

basic description of, 9, 37–38

INSERT statement and, 484

transactions and, 209

triggers and, 589, 599

Data Definition Language (DDL), 407, 462, 481

basic description of, 8, 37, 38

creating objects and, 269

DROP TABLE command and, 289

DROP USER command and, 364–365

INSERT statement and, 484

security and, 364–365

transactions and, 209

triggers and, 589, 599

TRUNCATE TABLE command and, 289

data dictionaries. See also data dictionary views

basic description of, 21–23

caches for, 203–204

getting information on tables from, 279–283

reconciling object names in, 144

removing table definitions from, 288–289

data dictionary views, 22, 600–603, 687–715. See also

views (listed by name)

describing roles, 380–381

for object privileges, 375–376

Data Manipulation Language (DML), 406–408, 481

adding data with, 193–198

basic description of, 8, 37, 38–40

controlling transactions with, 205–211

FEEDBACK option and, 242–243

indexes and, 322

modifying existing data with, 198–199

statements, how Oracle processes, 203–205

triggers and, 596

4832-8 Index.F 7/27/01 9:03 AM Page 724

725Index ✦ D–D

Data Segment, 204

Data Warehouse Lifecycle Toolkit, The: Expert Methods

for Designing, Developing, and Deploying Data

Warehouses (Kimball, et al.), 273, 718

Database Buffer Cache, 204

Database Design for Mere Mortals: A Hands-On Guide

to Relational Database Design (Hernandez),

273, 718

database management system (DBMS), 6

database objects. See object(s)

Database Relational Model, The: A Retrospective

Review and Analysis (Date), 7, 717

datatype(s). See also specific datatypes

base, 416

basic description of, 13–14, 274–276

conversion, 420–421, 445

PL/SQL and, 418–427

sub-, 416

date(s). See also date formats

determining the number of months between,

108–109

of errors, 556

expiration, for passwords, 23

functions, 107–110

returning current, from the system, 112

returning new, 108

returning the last, of a month, 109–110

returning the next occurrence of, 109

rounding to the nearest, 110

truncating to the nearest, 110

values, adding a number of months to, 108

Date, C. J., 7, 717–718

DATE datatype, 14, 235, 415, 417–418

date formats, 96–99, 194–197, 420–421. See also date(s)

ACCEPT command and, 235–236

arithmetic operations and, 43–44

NLS (National Language Support), 61, 96–98,

194, 197

PL/SQL and, 411, 415, 417–418

TO_CHAR function and, 96–98

using comparison operators with, 59–62

DateChanged column, 674

DATE_VALUE column, 255

DaysDuration column, 43, 672

DB Writer (DBWR), 203

DB2 (IBM), 619

DBA_views, 22, 280, 335–336

DBMS. See database management system (DBMS)

DBMS_OUTPUT package, 430–431, 446

DBMS_OUTPUT.PUT_LINE procedure, 445, 537

DBMS_STANDARDS package, 553

DBSETUP folder, 674, 676

DBWR. See DB Writer (DBWR)

DCL. See Data Control Language (DCL)

DDL. See Data Definition Language (DDL)

debugging. See also error(s)

basic description of, 537

modularity and, 406

program logic errors, 537

stored programs and, 575

DEC datatype, 416

DECIMAL datatype, 416

decimal point (.), 93, 106

DECLARE keyword, 409–411, 540

DECLARE section, 512, 514

DECODE function, 112–113

DEFAULT clause, 277–278, 283, 315

adding, to a column, 285

sequences and, 330

DEFAULT keyword, 414, 415, 423

DEFINE command, 234–235

DELETE ANY TABLE privilege, 368

DELETE method, 516

DELETE privilege, 373

DELETE statement, 199–205, 208–209, 487–488

database objects and, 289, 310, 314, 317, 318

preventing the execution of, 255

server processes and, 204

subqueries in, 202–203

triggers and, 588, 589, 590, 594, 595

views and, 310, 314, 317

WHERE CURRENT OF clause and, 503

DELETE(row) method, 516

DELETE(start_row,end_row) method, 516

deleting. See also DELETE statement

columns, 286–287

with DML statements, 199–205

procedures, 580

rows, 199–205, 289, 487

triggers, 600

using subqueries, 200–203

variables, 234, 235

delimited identifiers, 50

demo (demonstration) software, 620

DESC[RIBE] command, 99, 194, 237,

282, 284, 287, 313, 588

Description column, 670, 671

DISCONNECT command, 209

DISTINCT keyword, 53–55, 118, 315

divide (/) operator, 42, 43, 44–45

DML. See Data Manipulation Language (DML)

Dodge, Gary, 718

dollar sign ($), 94, 95, 248, 270, 414

dot notation, 426, 453

double quotes (“), 50, 414

DROP ANY TABLE privilege, 288, 367

DROP COLUMN command, 286, 287

DROP INDEX command, 325

DROP PACKAGE command, 587

DROP PROCEDURE command, 580

DROP PUBLIC SYNONYM permission, 336–337

4832-8 Index.F 7/27/01 9:03 AM Page 725

726 Index ✦ D–E

DROP SEQUENCE command, 333

DROP statement, 269

DROP SYNONYM command, 336–337

DROP TABLE command, 210, 288–289

DROP TRIGGER command, 600

DROP USER command, 364–365

DROP VIEW command, 318

DUAL table, 99

DUPLICATES option, 251

DUP_VAL_ON_INDEX exception, 543

durability, 206–207

dynamic cursors, 497. See also cursor(s)

E
e_child_found exception, 544

EDIT command, 40, 230, 238, 252–254

ELSE clause, 456–457, 542

ELSIF conditions, 457–458

EMail column, 302, 670, 672

Embarcadero Technologies, 615, 618

Employees table, 18, 309

END IF statement, 457, 458

END keyword, 536

END LOOP statement, 446, 453

EnrollmentDate column, 277, 673

enrollmenthistory.sql, 164

Ensor, David, 273, 718

entity sets, 13

environment

settings, 252

variables, 430–431, 445

= (equal sign), 146, 202, 411

equal to (=) operator, 58–59

equijoins. See also join(s)

basic description of, 142–143

non-, 146–148

working with, 142–145

error(s). See also debugging; error handling;

exception(s)

ARRAYSIZE option and, 241

coding conventions and, 555–556

compile, 535–537, 545, 574

constraints and, 306

database objects and, 270–272, 306, 316–318,

329–330, 335

date of, 556

DML and, 193, 195–196, 201–202, 208

forward slashes and, 253

INSERT statement and, 195–196, 201

joins and, 143

logging, 552

messages, 536, 556

missing semicolons and, 536

multi-row functions and, 119–122

numbers, 542–543, 545, 547, 548, 555

PL/SQL and, 406, 412, 450–451

program logic, 537–539

propagation, 549–555

security and, 364, 369, 377

sequences and, 329–330

single-row functions and, 93, 98, 99, 107, 111, 112

SQL and, 39, 41, 50, 59, 61, 62

stored programs and, 574, 589–591, 598

subqueries and, 155, 159, 202

substitution variables and, 173

synonyms and, 335

syntax, 39

tables, 548–549, 556

trapping, 545, 548–549, 550

types of, 535–538

views and, 316, 317

error handling, 406, 409, 412. See also error(s);

exception(s)

assessment questions, 558–563, 566–567

lab exercises, 563–565, 567–570

PL/SQL and, 533–750

pre-test, 534, 565–566

scenarios, 563, 567

Errors table, 549

ER/Studio, 615, 618–619

ERSTUDIO folder, 618

Essential Oracle8i Data Warehousing: Designing,

Building, and Managing Oracle Data

Warehouses (Dodge, et al.), 718

evaluation versions, of software, 620

event triggers, 588, 589, 598–599. See also trigger(s)

exams

practice, 615, 618, 622–652

preparing for, 665–667

registering for, 666

retaking, 667

tips for taking, 666–667

Excel (Microsoft), 242

exception(s), 414, 489. See also debugging; error(s)

assessment questions, 558–563, 566–567

basic description of, 539

coding conventions and, 555–556

cursors and, 491

declaring, 544

handling, 412, 539–547

implicit cursors and, 481–483

lab exercises, 563–565, 567–570

names, 546

non-predefined, 540, 544–546

NOTWAIT option and, 502

predefined, 540, 541–544

pre-test, 534, 565–566

propagation, in nested blocks, 549–555

scenarios, 563, 567

unhandled, 539–540, 542, 553–554

user-defined, 540, 546–547

variable names and, 483

EXCEPTION keyword, 409, 539

Exceptions table, 306

EXECUTE command, 576

EXECUTE privilege, 373

4832-8 Index.F 7/27/01 9:03 AM Page 726

727Index ✦ E–F

execution

of blocks, 429–421

of commands stored in buffers, 230

of the contents of command files, 239

controlling, 443–447

halting, at a specified line, 537

order of statements, 123

phase, 204

privileges, 373

of the UPDATE statement, preventing, 255

EXISTS method, 515

EXISTS operator, 160–161

EXIT statement, 446, 447, 454–455

EXIT WHEN statement, 449

explicit cursors. See also cursor(s)

basic description of, 489–503

closing, 491

declaring, 489–490

fetching from, 492–493

opening, 490–491

using, to populate arrays, 508

expressions

PL/SQL and, 411–412, 456

using comparison operators with, 62–63

EXTEND method, 425, 512, 514, 516

EXTEND(n) method, 516

EXTEND(n,m) method, 516

F
Fax column, 671

FEEDBACK option, 242–243

FETCH command, 489, 491, 492–493

fetch phase, 205

Feuerstein, Steven, 718

file(s). See also .sql files

cabinets, as simple databases, 5–6

comma-delimited, 242

command, executing the contents of, 239

-name extensions, 237–238, 240, 253

saving buffer contents in, 237–239

sending screen output to, 239–240

synchronization of, 203

FIRST method, 515

FirstName column, 59, 199, 296, 670–671

fixed-length character datatype, 93

FLOAT datatype, 416

FLOATING POINT datatype, 416

folders

adding/creating, 245–247, 674

naming, 675

FOR loop, 447–451, 454, 495–497, 499–500

FOR UPDATE option, 501–503

FORCE clause, 311

foreign key(s). See also FOREIGN KEY constraint

basic description of, 8

DELETE command and, 200

dropping tables and, 288

self-referential keys and, 149

TRUNCATE TABLE command and, 289

FOREIGN KEY constraint, 16, 288–303, 373, 377, 546.

See also foreign key(s)

dropping, 302–303

disabling, 305

indexes and, 320, 322

viewing information about, 307–308

foreign languages. See multilingual environments

FOR[MAT] option, 246, 248

formatting

columns, 247–249

footers, 245–247

headers, 245–247

reports, 245–252

forward slash (/), 230, 253, 413, 576

%FOUND attribute, 487, 493, 497

freeware programs, 620

FROM clause, 40–41, 57, 59, 99

advanced SELECT statements and, 141, 143–145,

157, 158, 159

implicit cursors and, 481

positioning of the INTO clause relative to, 482

SET operators and, 162

subqueries and, 157, 158, 159, 499–500

full_name function, 582

fully qualified object names, 270–272, 362

function(s). See also functions (listed by name)

-based indexes, 322–323

basic description of, 408

calling, 581–582

case-conversion, 99–101

character-manipulation, 101–102

creating, 581

date, 107–110

deleting, 582

nested, 113–114

functions (listed by name). See also function(s)

ADD_MONTHS function, 108

AVG function, 114–115, 120, 161, 251, 582

CONCAT function, 101, 102–103

COU[NT] function, 251

COUNT(*) function, 115–116, 117

COUNT(column) function, 114, 115–116

DECODE function, 112–113

full_name function, 582

INITCAP function, 100

INSTR function, 101, 105

LAST_DAY function, 108, 109–110

LENGTH function, 101, 105

LOWER function, 100

LPAD function, 101, 103, 170–171

LTRIM function, 104

MAX[IMUM] function, 115, 116–117,

157–158, 251, 582

MIN function, 115, 116–117, 251, 582

MOD function, 106

MONTHS_BETWEEN function, 108–109

NEXT_DAY function, 108, 109

NVL function, 112–113, 118, 151

ROUND function, 106, 108, 110

Continued

4832-8 Index.F 7/27/01 9:03 AM Page 727

728 Index ✦ F–I

functions (listed by name) (continued)

RPAD function, 103

RTRIM function, 104

SQLCODE function, 548, 549, 556

SQLERRM function, 548, 549, 556

STD function, 251

SUBSTR function, 101–102, 114

SUM function, 114, 251, 279

SYSDATE function, 112, 277, 300

TO_CHAR function, 93–96, 98–99, 248, 420–421, 445

TO_DATE function, 194, 197–198, 420–421

TO_NUMBER function, 92–93, 420–421

TRIM function, 101, 103–104, 516

TRUNC function, 106, 108, 110

UID function, 300

UPPER function, 100, 199

USER function, 300

USERENV function, 300

VAR[IANCE] function, 251

G
genealogical databases, 5

Gennick, Johnathan, 718

GET command, 238–239

GLOBAL QUERY REWRITE privilege, 323

GLOBAL TEMPORARY clause, 276

global variables, 422. See also variable(s)

GNU software, 620

GOTO statement, 454, 455, 541

GRANT command, 38, 372, 373–374

Gray, Jim, 206

greater than (>) operator, 58–59

greater than or equal to (>=) operator, 58–59

GROUP BY clause, 119–122, 310, 315

indexes and, 321, 322

sequences and, 330

subqueries and, 157

groups. See also GROUP BY clause

creating, with the BREAK command, 250–251

performing calculations on, 251–252

H
hard disk space requirements, for the CD, 616

HAVING clause, 122–123, 330, 499, 582

headers

adding, 245–247

display of, controlling, 243

PAGESIZE option and, 244

HEA[DING] option, 243, 248

“Hello World” program, 574–576

Hernandez, Michael J., 718, 273

HIDE option, 236

hierarchical queries. See also hierarchy

basic description of, 166–172

LEVEL pseudo-column and, 170–171

hierarchy. See also hierarchical queries

basic description of, 6

limiting rows in, 171–172

re-creating, 167

starting queries in, establishing a location for, 167

tree, “walking,” 167

HomePhone column, 670, 672

HOST command, 255

host variables (bind variables), 236, 414, 422, 430,

482, 577

HTML. See HyperText Markup Language (HTML)

Hungry Minds Worldwide Customer Service, 620

HUNGRYMINDS folder, 619

HyperText Markup Language (HTML)

ER/Studio and, 610

Rapid SQL and, 619

hyphen (-), 236

I
IBM (International Business Machines), 619

identifiers

basic description of, 410

exceptions as, 539, 541

declaration of, 410–411

IF statement, 459, 488–489, 542

IF...THEN statement, 455–456

implicit cursors, 481–484, 487–489. See also cursor(s)

IN operator, 66, 68–69

IN OUT parameters, 20, 576, 578, 579

IN parameters, 20, 576–577

INCREMENT BY parameter, 332, 327

indents, 39

index(es). See also counters

basic description of, 18

bitmap, 319

B-tree, 319, 320–322

-by tables (PL/SQL tables), 424–426, 506–509, 515

creating, 318–325

data dictionary views and, 22, 23

dropping, 288, 304, 325

function-based, 322–323

having too many, problems with, 18

information in, viewing, 324

names, 319

negative conditions and, 65

rules for, 320–321

security and, 323, 368–369

INDEX BY BINARY_INTEGER clause, 511

INDEX privilege, 373

INITCAP function, 100

initialization, of rows, 512

inline views

basic description of, 157

correlated subqueries and, 161

SELECT statement and, 157–159

input/output (I/O) operations, 321

INSERT ANY TABLE privilege, 367

INSERT_DATA.SQL, 674, 676, 681–686

INSERT privilege, 373

4832-8 Index.F 7/27/01 9:03 AM Page 728

729Index ✦ I–L

INSERT statement, 462, 484–486

DML and, 193–194, 196, 201, 204

preventing the execution of, 255

sequences and, 329–330, 333

server processes and, 204

subqueries in, 201

triggers and, 588, 589, 590, 592, 593, 595

UNUSED columns and, 286

variables in, 485

views and, 310, 314, 317

installing

the CD, 616–617

Oracle databases, 28–29

Oracle8i, 616

instances, connecting to, 363

Instant Message for Oracle v2.5, 615

INSTEAD OF triggers, 312–313, 315, 316, 597–598

INSTR function, 101, 105

InstructorClasses view, 317

InstructorCost index, 325

InstructorID column, 113–114, 142–143, 145–146, 160,

301, 303, 331, 670, 672

Instructors table, 113–114, 116, 143, 198, 296, 670

InstructorType column, 670

INT datatype, 416

INTEGER datatype, 416

integrity, of data, 254, 291–308, 595. See also referential

integrity constraint

INTERSECT operator, 165–166

INTO clause, 482, 489–490, 492–493

Introduction to Database Systems, An,

7th Edition (Date), 718

INVALID_CURSOR exception, 491, 543

INVALID_NUMBER exception, 543, 550

IS NULL operator, 66, 71–72

isolation, 206, 210

%ISOPEN attribute, 487, 493, 497

J
Jacobs, Ken, 718

Java, 20, 21

JobID column, 673

JobName column, 673

join(s)

condition, basic description of, 9

correlated subqueries and, 161

cross-, 145–146

indexes and, 320

nested subqueries and, 152

outer, 148–149

self-, 149–151, 167

using table aliases in, 144

working with, 141–151

writing SELECT statements using, 482

join (+) operator, 147

JUS[TIFY] option, 248

K
keys. See also foreign key(s); primary keys

indexes and, 18

self-referential, 149

use of the term, 318

keywords. See also keywords (listed by name)

including, as alias names, 50

rules for, 39–40

keywords (listed by name). See also keywords

ALL keyword, 372

AS keyword, 49

BEGIN keyword, 411

CASCADE keyword, 303

CONSTRAINT keyword, 294

DECLARE keyword, 409–411, 540

DEFAULT keyword, 414, 415, 423

DISTINCT keyword, 53–55, 118, 315

END keyword, 536

EXCEPTION keyword, 409, 539

ON keyword, 372

PUBLIC keyword, 372

SELECT keyword, 54

VALUES keyword, 193, 201

Kimball, Ralph, 273, 718

Knowledge Base for Active SQL*Plus, 615, 619

Kreines, David C., 718

L
labels, nested, 451–455

LABS folder, 617

languages, foreign. See multilingual environments

LAST_DAY function, 108, 109–110

LAST_DDL_TIME column, 603

LastName column, 59, 296, 320, 670, 671

LastUpdated column, 673

LE[FT] option, 246

LENGTH function, 101, 105

less than (<) operator, 58–59

less than or equal to (<=) operator, 58–59

LEVEL pseudo-column, 170–171, 300

LGWR (Log Writer), 203, 205

Library Cache, 203

LIKE operator, 66, 69–71

lines, controlling the number of, on a single page, 244

LINESIZE option, 243–244, 253

Linux, 616, 617, 675

lira symbol (L), 94

LIST command, 230

LOB datatype, 12, 23

local variables, 556. See also variable(s)

LocationID column, 271, 288, 290, 298, 320, 331, 671, 672

LocationName column, 671

Locations table, 144, 149, 194, 202–203, 288, 298,

320, 671

locks, 205, 206, 210–211

logic. See also logical operators

conditional, 112

controlling transactions and, 205–206

DECODE function and, 112–113

errors, 537–539

4832-8 Index.F 7/27/01 9:03 AM Page 729

730 Index ✦ L–N

logical operators

AND operator, 63–64, 143–144, 147, 172, 418–420

NOT operator, 65, 418–420

OR operator, 64, 418–420

login. See logon

LOGIN_DENIED exception, 543

login.sql, 252

logoff, 599

logon, 252, 365, 543, 599

logs

error, 552

redo, 203–204, 206

triggers and, 599

LONG datatype, 14, 116, 274, 417, 549

LONG option, 244

LONG RAW datatype, 14, 116, 275, 417

LONG_VALUE column, 255

loop(s)

basic, 445–446

control structures and, 406

nested, 451–455

overview of, 445–455

LOOP statement, 446

LOWER function, 100

LPAD function, 101, 103, 170–171

LTRIM function, 104

M
maintenance tasks, 203

Management table, 149–151, 167, 168

Manager column, 149–151, 167–168

MAX[IMUM] function, 115, 116–117, 157–158, 251, 582

MAXVALUE parameter, 327, 332

memory. See also memory buffer(s)

areas in, referred to as cursors, 427–428

caches, 203–204, 331, 332

packages and, 21, 583

pointers, 428, 497–499

requirements for the CD, 616

resources, preserving, 416

sequences and, 326, 331

shared pool, 583

storage of cursor state information in, 203

variables and, 410, 416, 427

memory buffer(s). See also memory

commands stored in, executing, 230

contents, saving, 237–239

editing, 230, 237–239, 241

redo long, 204–205

writing lines of text to, 430–431

metadata, basic description of, 21

Mgr.ID column, 150

Microsoft Excel, 242

Microsoft SQL Server, 610

Microsoft Windows 9x, 616, 675

Microsoft Windows 2000, 616, 675

Microsoft Windows ME, 616

Microsoft Windows NT, 616, 675

MiddleInitial column, 670, 671

MIN function, 115, 116–117, 251, 582

MINUS operator, 166

MINVALUE parameter, 327, 332

MOD function, 106

modularity, 405–406

MONTHS_BETWEEN function, 108–109

multi-line comments, 413. See also comments

multilingual environments, 94, 417

multimedia, 10

multiply (*) operator, 42, 43, 44–45

multi-row functions, 411, 482

assessment questions, 126–128, 132–133

basic description of, 114–119

DISTINCT keyword and, 118

GROUP BY clause and, 119–122

HAVING clause and, 122–123

identifying available, 119

lab exercises, 129–131, 135–137

pre-test, 90, 131–132

scenarios, 129, 133–135

using the WHERE clause with, 119

mutating tables, 596

N
Name column, 150

National Language Support (NLS)

character sets, 15, 417

currency settings, 94

date format, 61, 96–98, 194, 197

NATURAL datatype, 416

NATURALN datatype, 416

NCHAR(n) datatype, 417

NCHAR(size) datatype, 15, 275

NCLOB datatype, 15, 275, 417

negative conditions, avoiding, 65

nested

blocks, 459–461, 549–555

functions, 113–114

labels, 451–455

loops, 451–455

tables, 424–426, 511–513, 515–516

network model, for databases, 6

NEXT method, 516

NEXT_DAY function, 108, 109

NEXTVAL pseudo-column, 300, 329–331

NLS. See National Language Support (NLS)

NLS_currency parameter, 94

“no rows selected” message, 59

NOCACHE parameter, 328

NO_DATA_FOUND exception, 483, 543, 544, 547, 549,

551

NO_DISTINCT column, 118

NODUP[LICATES] option, 250

NOFORCE clause, 311

NOMAXVALUE parameter, 327

4832-8 Index.F 7/27/01 9:03 AM Page 730

731Index ✦ N–O

NOMINVALUE parameter, 327

nonequijoins, 146–148. See also join(s)

nonpairwise condition, 156

nonschema users, 361, 362

NOPRI[NT] option, 248

not equal to (<> or !=) operator, 58–59, 156

NOT EXISTS operator, 160–161

NOT NULL constraint, 16, 195, 292, 295, 300–301, 521

CREATE TABLE statement and, 274, 277

dropping, 302–303

views and, 308, 315

NOT operator, 65, 418–420

Notepad, 238, 252

%NOTFOUND attribute, 487, 488, 493, 497, 498

NOVALIDATE constraint, 304

NOWAIT option, 502–503

NULL constraint, 274, 277, 295–296, 321

NULL operator, 196

NUMBER datatype, 235–236, 248, 416, 426

number functions, 105–107, 251

NUMBER(p,s) datatype, 14, 274

NUMERIC datatype, 115, 415–416, 445

NUMERIC_VALUE column, 255

NVARCHAR2(n) datatype, 417

NVARCHAR2(size) datatype, 14, 15, 274

NVL function, 112–113, 118, 151

O
object(s). See also object-oriented programming

(OOP)

assessment questions, 339–342, 347–349

basic description of, 11–23, 267–358

compile errors and, 535, 536

creating, ground rules for, 269–272

extensions, 10

hierarchical queries and, 167

lab exercises, 343–345, 351–358

naming, 270–271

orphan, 364

pre-test, 268, 345–346

privileges, 366, 372–377, 379

scenarios, 342–343, 349–350

scripts used to create, text of, 676–686

security and, 361, 364, 366, 372–377, 379

types, 407, 426

Object Relational Database Management System

(ORDBMS), 9–10

OBJECT_ID column, 603

OBJECT_NAME column, 603

object-oriented programming (OOP), 407, 424, 426.

See also object(s)

OBJECT_TYPE column, 603

OfficePhone column, 296, 670

ON keyword, 372

OOP. See object-oriented programming (OOP)

OPEN command, 489–491

operators. See also operators (listed by name)

available in PL/SQL expressions, 411–412

basic description of, 47

order of precedence for, 44–45, 65–66

operators (listed by name). See also operators

add (+) operator, 42, 43, 44–45

ALL operator, 153–155

AND operator, 63–64, 143–144, 147, 172, 418–419

ANY operator, 153–155

AS operator, 49

BETWEEN operator, 147

BETWEEN...AND operator, 66, 67–68

concatenation (||) operator, 45–46, 52–53, 91–92,

102, 411

divide (/) operator, 42, 43, 44–45

equal to (=) operator, 58–59

EXISTS operator, 160–161

greater than (>) operator, 58–59

greater than or equal to (>=) operator, 58–59

IN operator, 66, 68–69

INTERSECT operator, 165–166

IS NULL operator, 66, 71–72

join (+) operator, 147

less than (<) operator, 58–59

less than or equal to (<=) operator, 58–59

LIKE operator, 66, 69–71

MINUS operator, 166

multiply (*) operator, 42, 43, 44–45

NOPRI[NT] option, 248

not equal to (<> or !=) operator, 58–59, 156

NOT EXISTS operator, 160–161

NOT operator, 65, 418–420

NULL operator, 196

OR operator, 64, 418–420

subtract (-) operator, 42, 43, 44–45

UNION ALL operator, 165

UNION operator, 162–164, 166

OR operator, 64, 418–420

Oracle Certified Professional program, 66, 719

Oracle Certified Professional Program Candidate

Guide, 666

Oracle Design (Ensor and Stevenson), 273, 718

Oracle Developer, 407, 575, 589

Oracle Forms, 20, 574, 575

Oracle PL/SQL 101 (Allen), 717

Oracle PL/SQL Programming, 2nd Edition

(Feuerstein), 718

Oracle SAM, 615, 618

Oracle SQL*Plus: The Definitive Guide (Gennick), 718

Oracle Technical Network, 28, 616

Oracle Web site, 28, 616, 719

Oracle8i

Administrators Companion, 369

Administrators Guide, 365, 366, 718

Data Warehousing Guide, 323

Enterprise Edition, 616

SQL Reference, 270, 363, 365, 718

trial copy of, downloading, 616

4832-8 Index.F 7/27/01 9:03 AM Page 731

732 Index ✦ O–P

Oracle9i, 11

ORDBMS. See Object Relational Database Management

System (ORDBMS)

ORDER BY clause, 55–57, 63, 74, 159, 233

cursor declarations and, 490

indexes and, 321, 322

PL/SQL functions and, 582

SELECT statements and, 482

sequences and, 330

SET operators and, 162, 163

subqueries and, 152

order of precedence, 44–45, 65–66

OrderDetails table, 276

OrderEntry role, 379

Orders table, 276, 362

orphan objects, 364

OUT parameters, 20, 577–579

P
package(s)

accessing programs and variables in, 586–587

basic description of, 21, 408, 583–588

body of, 584–586

contents, listing, 588

data dictionary views and, 22

names, 584

removing, 587

specification, 583–584

padding characters, 93

PAGESIZE option, 244

pair-wise operations, 202

parameter(s)

cursor, 500–501

declaring, 576–577

names, 576–577

passing, 576

parent/child relationships, 167, 299

parentheses, 44, 45, 47, 202, 298, 512

parse phase, 204

passwords. See also privileges; security

changing, 365–366

connecting to instances and, 363

expiration dates, 23

scripts and, 674

SYS users and, 361, 362

unencrypted, specification of, 363

PAUSE option, 244–245

Pentium II processors, 616

percent sign (%), 69–70

PerDiemCost column, 199, 202, 670

PerDiemExpenses column, 52, 72, 111, 116, 202, 670

PerDiemExpenses field, 111

performance issues, 161, 406, 420–421

period (.), 248, 505

permissions, 9, 23, 271. See also privileges

CREATE PUBLIC SYNONYM permission, 335, 367

deleting, 376–377

DROP PUBLIC SYNONYM permission, 336–337

granting, 362–366, 378–380

packages and, 583

synonyms and, 335, 336

PGA. See Private Global Area (PGA)

PhoneNumber datatype, 10

pipe symbol (|), 45, 249

PL/Formatter, 615, 619

portability, 407

POSITIVE datatype, 416

POSITIVEN datatype, 416

PostalCode column, 670, 671, 672

pound sign (#), 270, 414

pragma, 545

Price column, 673, 674

PRIMARY KEY constraint, 16–18, 288–297, 301–305. See

also primary keys

disabling/enabling, 304–305, 307

dropping, 302–303

indexes and, 319, 322, 324

sequences and, 325, 329, 330–331

TRUNCATE TABLE command and, 289

viewing information about, 308

primary keys. See also PRIMARY KEY constraint

basic description of, 7–8

dropping tables and, 288

implicit cursors and, 481

PRINT command, 236, 422, 430

printspec clause, 246–247

PRIOR command, 169

PRIOR method, 516

Private Global Area (PGA), 203, 204

private programs, 584

private variables, 584. See also variable(s)

privileges. See also permissions; security

for creating indexes, 323

dropping tables and, 288

granted, determining, 371–372, 375–377, 380–381

granting/administering, 366–372

object, 372–377, 379

revoking, 370–371, 376–377

system, 366–372, 379

procedure(s)

basic description of, 408, 574–576

client-side, 575

data dictionary views and, 22

debugging and, 537

deleting, 580

error handling and, 553–555

executing blocks and, 429

nesting, 579–580

parameters and, 576–578

server-side, 574, 575–576

writing lines of text to buffers with, 430–431

Procedure Builder, 20, 537, 574

Process Monitor, 203, 210

processors, 616

PRODUCT column, 255

4832-8 Index.F 7/27/01 9:03 AM Page 732

733Index ✦ P–R

PRODUCT_USER_PROFILE table, 254–255

program units, 20–21

PROGRAM_ERROR exception, 543

pseudo-columns

CURRVAL pseudo-column, 300, 329–330

LEVEL pseudo-column, 170–171, 300

NEXTVAL pseudo-column, 300, 329–331

ROWID pseudo-column, 176

ROWNUM pseudo-column, 300, 315

PUBLIC keyword, 372

public programs, 583

public variables, 584. See also variable(s)

PUPBLD.SQL, 254

PUT_LINE procedure, 430

Q
QUERY REWRITE privilege, 323

R
RAISE statement, 539, 546–547, 552, 553

RAISE_APPLICATION_ERROR procedure, 553–555

RAM (random-access memory). See memory

Rapid/SQL, 615, 619

RAPIDSQL folder, 619

RAW datatype, 116, 417

RAW(size) datatype, 14, 275

RDBMS. See relational database management

system (RDBMS)

read consistency, 205

READ ONLY option, 316, 317–318

readability, of code, 39–40, 409, 414, 619

REAL datatype, 416

record(s)

basic description of, 423

composite datatypes and, 423–324, 504–506

creating, 504–506

cursor FOR loop and, 495–497

declaring, that will hold the values returned by a

cursor, 494

fitting, on one line, 243–244

locking, 503

populating, with a SELECT statement, 505

returned by cursors, fetching, 498–499

recoverability, 205

Redo Log Buffer, 204–205

Redo Log Files, 205

REF CURSOR variable, 428, 497–498

reference types, 427–428

REFERENCES privilege, 373, 377

REFERENCING clause, 592

REFERENCING_NAMES column, 602

referential integrity constraint, 297, 546. See also

FOREIGN KEY constraint

REHEADER command, 246

relational database management system (RDBMS)

advanced SELECT statements and, 141

basic description of, 6–9, 37

characteristics of, 6–9

database objects and, 11–23

modifying data and, 193

Oracle as a, 6–7

ORDBMS and, 10

Relational Model for Database Management, Version 2

(Codd), 7, 717

“Relational Model of Data for Large Shared Data Banks,

A” (Codd), 6

relational operators, 411

REPFOOTER command, 246–247

REPHEADER command, 246

REPLACE option, 238

ReplacesCourse column, 196, 670

report(s)

formatting, 245–252

titles, 246

triggers and, 575

result sets

eliminating duplication in, 53–55

joins and, 143, 147

MINUS operator and, 166

RetailPrice column, 286, 670

RETURN statement, 580

Reuter, Andreas, 206

RevealNet, 615, 619

REVOKE command, 38, 370–371, 377

R[IGHT] option, 246

role(s)

basic description of, 377–382

creating/granting, 378–380

granted, determining, 380–381

revoking, 381–382

ROLE_SYS_PRIVS view, 380

ROLE_TAB_PRIVS view, 380

Rollback Segment, 204–206, 210

ROLLBACK statement, 462, 484, 502

DML and, 205, 207–209

sequences and, 331

triggers and, 595

ROUND function, 106, 108, 110

row(s)

adding, 193–198, 484–486

deleting, 199–205, 289, 487

fetching, 492–493

initializing, 512

-level triggers, 588, 591–594, 596, 601

limiting, using the WHERE clause, 57–75

not meeting constraint conditions, 306

number of, passed into functions, 115–116

populating, in index-by tables, 508

searching for specific, 306

sorting, 55–57

subqueries that return multiple, 152–155

updating, 198–199, 486–487

%ROWCOUNT attribute, 463, 487, 493, 497

ROWID datatype, 14, 18, 275, 277, 318, 417–418

ROWID pseudo-column, 176

ROWNUM pseudo-column, 72–75, 300, 315

%ROWTYPE attribute, 424, 494, 504–505, 511

4832-8 Index.F 7/27/01 9:03 AM Page 733

734 Index ✦ R–S

ROWTYPE_MISMATCH exception, 543

RPAD function, 103

RTRIM function, 104

rules

business, 292

for indexes, 320–321

for keywords, 39–40

for objects, 269–272

for SQL statements, 39–40

RUN command, 230, 231, 238–239

runtime. See also runtime errors (exceptions)

variables, 172, 173, 175

writing SQL statements at, 407

runtime errors (exceptions), 414, 489. See also error(s)

assessment questions, 558–563, 566–567

basic description of, 539

coding conventions and, 555–556

cursors and, 491

declaring, 544

handling, 412, 539–547

implicit cursors and, 481–483

lab exercises, 563–565, 567–570

names, 546

non-predefined, 540, 544–546

NOTWAIT option and, 502

predefined, 540, 541–544

pre-test, 534, 565–566

propagation, in nested blocks, 549–555

scenarios, 563, 567

unhandled, 539–540, 542, 553–554

user-defined, 540, 546–547

variable names and, 483

S
Sales table, 146–147

Sales_record table, 92

Salutation column, 670, 671

SAVE command, 237–238, 253

SAVEPOINT statement, 331, 462, 465–466

savepoints, 208, 331, 462, 465–466

scalar datatypes, 13–15, 19, 274–275, 413–423, 500

scalar variables, 413–423, 500

ScheduledClasses table, 43, 141–148, 288, 303, 307–308,

320, 334, 545, 596–597, 603, 672

schema(s)

basic description of, 13

data dictionary views and, 22, 23

owners, 361, 362

security and, 361–366

users, 13, 361

scientific notation, 411

scope, 460, 539

screen output, sending, to a file, 239–240

script(s). See also scripts (listed by name)

copying, from the CD, 674, 675–676

creating, 252–254

executing, 252–254, 675–676

display options for, 245

tasks which must be completed before running,

674–675

titles, 253

used to create database objects, 674–686

scripts (listed by name). See also script(s)

CERTDBOBJ.SQL, 674, 676–681

CREATEUSER.SQL, 674, 676–677

enrollmenthistory.sql, 164

INSERT_DATA.SQL, 674, 676, 681–686

login.sql, 252

PUPBLD.SQL, 254

selfjoin.sql, 149

UTLEXCPT.SQL, 306

SCRIPTS folder, 617

scrolling, through data returned by SELECT

statements, 244–245

security. See also permissions; privileges; user(s)

assessment questions, 384–387, 390–391

basic Oracle model for, 361

lab exercises, 387–389, 392–396

passwords, 23, 361–363, 365–366, 674

policy, 365

pre-test, 360, 389–390

for the PRODUCT_USER_PROFILE table, 254

scenarios, 387, 391–392

schemas and, 361–366

SELECT ANY TABLE privilege, 367

SELECT INTO statement, 489

SELECT keyword, 54

SELECT list

advanced SELECT statements and, 141, 144, 151,

157

arithmetic operations and, 41–42

basic description of, 40–41

creating an alias for columns in, 51–52

DISTINCT keyword and, 118

GROUP BY clause and, 120–121

INSERT statement and, 201

joins and, 141

multi-row functions and, 115

placing DISTINCT keywords in, 54

placing string values in, 46

PL/SQL functions and, 582

referencing pseudo-columns as part of, 72–75

subqueries and, 151, 157, 201–202

SELECT privilege, 373, 375, 376

SELECT statement

advanced, 139–190

arithmetic operations and, 41–55

ARRAYSIZE option and, 241

assessment questions, 179–182, 185–187

basic description of, 37, 40–57

calling functions from, 582

COLSEP option and, 241–242

column aliases and, 47–52

concatenating columns and, 45–46

cursors and, 428, 481–484, 488–490, 496–501

date values and, 43–44

4832-8 Index.F 7/27/01 9:03 AM Page 734

735Index ✦ S–S

duplication in result sets and, 53–55

error handling and, 547, 551

fetch phase and, 205

hierarchical queries and, 166–172

indexes and, 320, 323

inline views and, 157–159

joins and, 141–151

lab exercises, 183–184, 188–190

order of precedence and, 44–45

ordering data in, 55–57

PL/SQL records and, 504–506

pre-test, 140, 185

scenarios, 182–183, 187–188

scrolling through data returned by, 244–245

sequences and, 330

server processes and, 204

single-row functions and, 91

SQL buffer and, 229–230

subqueries and, 151–161

substitution variables and, 172–176, 233

UNUSED columns and, 286

views and, 17–18, 309–310, 313–315

Self Test Software, 615, 618

SELF_IS_NULL exception, 543

self-joins, 149–151, 167

selfjoin.sql, 149

self-referential keys, 149–151

SELFTEST folder, 618

semicolon (;), 253, 409, 410, 446, 453, 536

sequence(s)

basic description of, 17

benefits of, 325–326

caching, 326, 331, 332

creating, 325–328

cycle status for, 332

data dictionary views and, 22

dropping, 333

getting information on, 331–332

modifying, 332–333

using, 329–331

values, non-cached, 332

server(s). See also client(s)

errors and, 406, 539

internal clocks for, 112

monitoring, 203

parsing of blocks by, 429

PL/SQL and, 406, 407, 412, 429–430

process, 203–205

running scripts and, 674

sending blocks to, 429–430

-side procedures, 574, 575–576

triggers and, 589

SERVEROUTPUT environment variable, 430–431, 445

SET clause, 199, 201–202

SET commands, 240–245

SET operators, 161–166

SET PAUSE OFF option, 245

SET PAUSE ON option, 245

SET VERIFY OFF command, 173

setup.exe, 617

Shared Pool, 203, 583

Shared SQL Areas, 203, 204

shareware programs, 620

SHOW ERRORS command, 536–537

SIGNTYPE datatype, 416

single quote (’), 46, 59, 69, 173, 193, 196, 290, 411

single-line comments, 413. See also comments

single-row functions. See also single-row functions

(listed by name)

assessment questions, 126–128, 132–133

basic description of, 91

character functions, 99–110

conversion functions, 91–98

date functions, 107–110

lab exercises, 129–131, 135–137

nesting functions, 113–114

number functions, 105–107

PL/SQL and, 411

pre-test, 90, 131–132

scenarios, 129, 133–135

using, with date values, 96–98

using, with numeric data, 93–96

writing SELECT statements using, 482

single-row functions (listed by name). See also single-

row functions

ADD_MONTHS function, 108

CONCAT function, 101, 102–103

DECODE function, 112–113

INITCAP function, 100

INSTR function, 101, 105

LAST_DAY function, 108, 109–110

LENGTH function, 101, 105

LOWER function, 100

LPAD function, 101, 103, 170–171

MOD function, 106

MONTHS_BETWEEN function, 108–109

NEXT_DAY function, 108, 109

NVL function, 112–113, 118, 151

ROUND function, 106, 108, 110

SUBSTR function, 101–102, 114

SYSDATE function, 112, 277, 300

TO_CHAR function, 93–96, 98–99, 248, 420–421, 445

TO_NUMBER function, 92–93, 420–421

TRIM function, 101, 103–104, 516

TRUNC function, 106, 108, 110

UPPER function, 100, 199

SKI[P] option, 246, 250

SMALLINT datatype, 416

SOFTWARE folder, 618

SOLUTIONS folder, 617

SPOOL command, 239–240

SPOOL OFF command, 240

SPOOL OUT command, 240

SQL. See Structured Query Language (SQL)

4832-8 Index.F 7/27/01 9:03 AM Page 735

736 Index ✦ S–S

.sql files

CERTDBOBJ.SQL, 674, 676–681

CREATEUSER.SQL, 674, 676–677

enrollmenthistory.sql, 164

INSERT_DATA.SQL, 674, 676, 681–686

login.sql, 252

PUPBLD.SQL, 254

selfjoin.sql, 149

UTLEXCPT.SQL, 306

SQL Programmer 2001, 615, 619

SQL Server (Microsoft), 610

SQL-92 standard, 58

SQL-99 standard, 11, 58

SQLCODE function, 548, 549, 556

SQLERRM function, 548, 549, 556

SQL.LNO variable, 247

SQL*Plus, 426, 429–431, 445, 455, 462–464

assessment questions, 257–259, 262

basic description of, 40

buffer, editing, 237–239, 241

commands, 237–240

creating scripts with, 252–254

customizing, 240–245, 254–255

DELETE statement and, 488

environment, 227–266

error handling and, 535–536, 540, 541

executing blocks/scripts in, 252–254, 429–431

footers and, 245–247

formatting output with, 245–252

headers and, 245–247

lab exercises, 260–261, 263–266

pre-test, 228, 261

repeating values and, 174

runtime variables and, 172–173, 174

saving environment settings with, 252

scenarios, 259–260, 262–263

security and, 363

SQL buffer and, 229–230

substitution variables and, 172–173

user-defined types and, 426

User’s Guide and Reference, 718, 254

using, as your SQL editor, 209

variables, printing, 430

SQL.PNP variable, 247

SQLPROG folder, 619

STANDARD package, 541

START command, 239, 254

StartDate column, 43, 672

State column, 316, 670, 671

statement(s). See also statements (listed by name)

execution order of, 123

-level triggers, 588–591, 596, 601

preventing the execution of, 255

statements (listed by name). See also DELETE

statement; INSERT statement; SELECT

statement; UPDATE statement

CASE statement, 457

COMMIT statement, 205, 207–210, 331, 462, 484,

502, 595

CONNECT PRIOR statement, 169

CREATE statement, 269

CREATE TABLE statement, 273–283

CREATE VIEW statement, 157, 310–311

DROP statement, 269

END IF statement, 457, 458

END LOOP statement, 446, 453

EXIT statement, 446, 447, 454–455

EXIT WHEN statement, 449

GOTO statement, 454, 455, 541

IF statement, 459, 488–489, 542

IF...THEN statement, 455–456

LOOP statement, 446

RAISE statement, 539, 546–547, 552, 553

RETURN statement, 580

ROLLBACK statement, 205, 207–209, 331, 462, 484,

502, 595

SAVEPOINT statement, 462, 331, 465–466

SELECT INTO statement, 489

STATUS column, 602, 603, 672, 673

STD function, 251

Stevenson, Tim, 273, 718

STORAGE_ERROR exception, 543

stored programs. See also specific types

assessment questions, 605–607, 610

basic description of, 571–614

lab exercises, 608–609, 611–614

pre-test, 572, 609–610

scenarios, 607–608, 610–611

STRING datatype, 417

Structured Query Language (SQL)

arithmetic operations and, 41–55

assessment questions, 77–79, 83–85

basic description of, 8–9

buffer, 229–230

column aliases and, 47–52

comparison operators in, 58–63, 66–72

duplication in result sets and, 53–55

lab exercises, 80–82, 86–88

logical operators and, 63–66

nesting functions and, 113–114

overview, 37–40

PL/SQL support for, 406–407

pre-test, 36, 82–83

scenarios, 80, 85–86

standards, 11

statements, basic description of, 481–489

statements, general rules for, 39–40

wild card operators and, 69–70

STUDENT user, 674

student_enrolled cursor, 490–493

StudentID column, 8

StudentNumber column, 295, 297, 329, 331, 671, 673

StudentNumber constraint, 293

Students table, 6–8, 13, 200–201, 271, 293, 320,

333, 421–422, 671

4832-8 Index.F 7/27/01 9:03 AM Page 736

737Index ✦ S–T

subprograms. See also specific types

basic description of, 573

server-side, 575

stored, 575, 408–409

subqueries

basic, 151–157

correlated, 159–161

creating tables using, 278–279

cursors with, 499–500

deleting data with, 200–203

in DML statements, 200–203

in INSERT statements, 201

multi-column, 155–157

nested, 152

performance issues with, 161

that return multiple rows, 152–155

in UPDATE statements, 201–202

using, 200–203

working with, 151–161

writing SELECT statements using, 482

SUBSCRIPT_BEYOND_COUNT exception, 543

SUBSCRIPT_OUTSIDE_LIMIT exception, 544

substitution variables, 172–176, 231–234

ACCEPT command and, 175

repeating values and, 174

SUBSTR function, 101–102, 114

subtract (-) operator, 42, 43, 44–45

SUM function, 114, 251, 279

Sun SPARC, 616

Sybase, 619

Sylvain Faust International, 615, 619

Sylvan Prometric testing centers, 666

synonyms

basic description of, 19

creating, 333–335

dropping, 336–338

getting information on, 335–336

marking definitions as INVALID in, 288

public, 335

SYS user, 22, 270–271, 361–363

SYSDATE command, 196, 197

SYSDATE function, 112, 277, 300

SYSDATE variable, 485

system

crashes, 205, 209, 326, 331

privileges, 366–372, 379

requirements, for the CD, 616

returning the current date from, 112

System Global Area (SGA), 203–204

SYSTEM user, 254, 270–271, 361–363, 674

T
tab characters, 39

table(s). See also column(s); row(s)

adding constraints to, 301–302

base, 22–23, 309–310

basic description of, 13

creating, 28–29, 272–291

documenting, 289–291

dropping, 288–289

lists, displaying, 280–281

locking, 299

managing, 272–291

modifying, 283–286

physical location of, on disk, 9

relational databases and, relationship of, 7–9

truncating, 289–291

TABLE_NAME column, 602

TABLE_OWNER column, 602

tablespaces, 369, 674

Technology Track, 616

Telephone column, 671

TERMOUT option, 245

TESTEXAM folder, 618

text editors, 230, 238, 252

thousands separator, 93

time. See also date(s)

connect, maximum, 365

-stamps, 205

TIMEOUT_ON_RESOURCE exception, 544

TITLE command, 246

titles

for reports, 246

for scripts, 253

TO_CHAR function, 93–96, 98–99, 248, 420–421, 445

TO_DATE function, 98, 194, 197–198, 420–421

TO_MANY_ROWS exception, 482–483

TO_NUMBER function, 92–93, 420–421

total_sales collection, 425

transactions

ACID test and, 206–207

basic description of, 461–462

controlling, 205–212, 461–466

indexes and, 322

locks and, 210–211

rollback of, 207–210

savepoints and, 208, 462, 465–466

tree, “walking the,” 167. See also hierarchy

trial software, 620

trigger(s)

basic description of, 21, 408, 588

deleting, 600

enabling/disabling, 599–600, 602

event, 588, 589, 598–599

firing order for, 596–597

INSTEAD OF, 312–313, 315, 316, 597–598

mutating, 596

predicates, 594–595

report, 575

resource manager, 598–599

restrictions on, 595–596

row-level, 588, 591–594, 596, 601

statement-level, 588–591, 596, 601

system event, 598–599

views and, 312–313, 315, 316

WHEN clause and, 593–584

4832-8 Index.F 7/27/01 9:03 AM Page 737

738 Index ✦ T–U

TRIGGER_BODY column, 602

TRIGGERING_EVENT column, 601

TRIGGER_NAME column, 601

TRIGGER_TYPE column, 601

TRIM function, 101, 103–104, 516

troubleshooting, problems with the CD, 620

TRUNC function, 106, 108, 110

TRUNCATE command, 200

TRUNCATE TABLE command, 289–291

TTITLE command, 244, 246, 253

%TYPE attribute, 421–422, 482, 504, 507, 513

U
UID function, 300

UNDEFINE command, 175, 234, 235

underscore (_), 69, 270, 414

unhandled exceptions, 539–540, 542, 553–554

UNION ALL operator, 165

UNION operator, 162–164, 166

UNIQUE constraint, 16–18, 288–289, 292, 295–297

disabling/enabling, 304–305, 307

dropping, 302–303

indexes and, 319, 322, 324

sequences and, 325

viewing information about, 308

Unix, 675

UPDATE ANY TABLE privilege, 368

UPDATE privilege, 373

UPDATE statement, 198–199, 205–209, 462. See also

updating data

controlling transactions and, 205–206

DEFAULT clause and, 277

exceptions and, 547

fetch phase and, 205

PL/SQL and, 486–487, 488, 503, 547

preventing the execution of, 255

server processes and, 204

subqueries in, 201–202

triggers and, 588–590, 592–595

UNUSED columns and, 286

views and, 310, 314, 316–317

WHERE CURRENT OF clause and, 503

updating data. See also UPDATE statement

assessment questions, 213–216, 221–222

with DML statements, 198–199

lab exercises, 218, 223–224

pre-test, 182, 220

scenarios, 216–217, 222–223

UPPER function, 100, 199

UROWID datatype, 14, 275, 417–418

user(s). See also privileges

basic description of, 13, 361

creating, 362–366

-defined datatypes, 10, 12–14, 19, 426–427

-defined exceptions, 540, 546–547

-defined functions, 20, 580–582

managing, 362–366

privileges, granting/administering, 366–372

removing, from databases, 364

schemas and, 13, 361–366

two types of, 361

USER function, 300

USER variable, 485

USERENV function, 300

USERID column, 255

USER_views. See also USER_views (listed by name)

comments and, 290

querying, 279–280, 290

synonyms and, 335–336

USER_views (listed by name). See also USER_views

USER_ALL TABLES view, 688, 692–693

USER_ARGUMENTS view, 688, 693

USER_CATALOG view, 22, 282, 688, 694

USER_CLU_COLUMNS view, 688, 694

USER_CLUSTER_HASH_EXPRESSIONS view, 688,

694

USER_CLUSTERS view, 688, 694

USER_COL_COMMENTS view, 290, 688, 695

USER_COL_PRIVS view, 688, 695

USER_COL_PRIVS_MADE view, 375–376, 688, 695

USER_COL_PRIVS_RECD view, 375–376, 688, 695

USER_CONS_COLUMNS view, 22, 302, 305, 307–308,

688, 696

USER_CONSTRAINTS view, 22, 688, 695–696, 302,

305, 307–308

USER_DEPENDENCIES view, 696

USER_ERRORS view, 22, 688, 696

USER_EXTENTS view, 688, 696

USER_FREE_SPACE view, 688, 697

USER_IND_COLUMNS view, 23, 324, 688, 698

USER_INDEXES view, 22, 324, 688, 697–698

USER_IND_EXPRESSIONS view, 23, 689, 698

USER_IND_PARTITIONS view, 689, 698–699

USER_IND_SUBPARTITONS view, 689, 699

USER_LIBRARIES view, 689, 700

USER_LOB_PARTITIONS view, 689, 700

USER_LOBS view, 689, 700

USER_LOB_SUBPARTITIONS view, 689, 701

USER_METHOD_PARAMS view, 689, 701

USER_METHOD_RESULTS view, 689, 701

USER_NESTED_TABLES view, 689, 702

USER_OBJECTS view, 23, 602–603, 689, 702

USER_OBJECT_SIZE view, 689, 702

USER_OBJECT_TABLES view, 689, 702–703

USER_PART_COL_STATISTICS view, 689, 703–704

USER_PART_HISTOGRAMS view, 689, 704

USER_PART_INDEXES view, 690, 704

USER_PART_KEY_COLUMNS view, 690, 704

USER_PART_LOBS view, 690, 705

USER_PART_TABLES view, 690, 705

USER_PASSWORD_LIMITS view, 690, 706

USER_RESOURCE_LIMITS view, 690, 706

USER_ROLE_PRIVS view, 380, 690, 706

USER_SEGMENTS view, 23, 690, 706

USER_SEQUENCES view, 23, 331–332, 690, 706–707

USER_SOURCE view, 600–601, 690, 707

4832-8 Index.F 7/27/01 9:03 AM Page 738

739Index ✦ U–V

USER_SUBPART_COL_STATISTICS view, 690, 707

USER_SUBPART_HISTOGRAMS view, 690, 707

USER_SUBPART_KEY_COLUMNS view, 690, 707

USER_SYNONYMS view, 23, 335–336, 690, 708

USER_SYS_PRIVS view, 372, 690, 708

USER_TAB_COLUMNS view, 280–281, 691, 709–710

USER_TAB_COL_STATISTICS view, 691, 710

USER_TAB_COMMENTS view, 290, 691, 710

USER_TAB_HISTOGRAMS view, 691, 710

USER_TABLES view, 23, 690, 708–709

USER_TABLESPACES view, 690, 709

USER_TAB_MODIFICATIONS view, 691, 710

USER_TAB_PARTITIONS view, 691, 711

USER_TAB_PRIVS view, 23, 691, 711

USER_TAB_PRIVS_MADE view, 23, 375–376, 691,

711–723

USER_TAB_PRIVS_RECD view, 23, 375–376, 691, 712

USER_TAB_SUBPARTITIONS view, 691, 712

USER_TRIGGER_COLS view, 691, 713

USER_TRIGGERS view, 601–602, 691, 712–713

USER_TS_QUOTAS view, 691, 713

USER_TYPE_ATTRS view, 691, 713–714

USER_TYPE_METHODS view, 692, 714

USER_TYPES view, 691, 713

USER_UNUSED_COL_TABS view, 692, 714

USER_UPDATABLE_COLUMNS view, 692, 714

USER_USERS view, 23, 692, 714

USER_VARRAYS view, 692, 715

USER_VIEWS view, 23, 692, 715

UTLEXCPT.SQL, 306

V
VALIDATE constraint, 304

VALUE_ERROR exception, 544

VALUES command, 330

VALUES keyword, 193, 201

VALUES list, 194–195

VARCHAR datatype, 417

VARCHAR2 datatype, 285, 416, 426, 582

VARCHAR2(n) datatype, 417

VARCHAR2(size) datatype, 14, 15, 274

variable(s). See also variables (listed by name)

bind, 236, 414, 422, 430, 482, 577

character datatype, 92

creating, 581

cursors, 497–499

declaring, 231–236, 411–418, 461, 497–498

deleting, 234, 235

environment, 430–431, 445

errors and, 412, 535, 537

global, 422

index-by tables and, 500

local, 556

names, 173, 414, 422, 483

placing single quotes around, 173

PL/SQL and, 406, 410, 413–428

printing, 430

private, 584

public, 584

runtime, 172, 173, 175

scalar, 413–423, 500

scope, 460, 539

specifying a precision and scale for, 416

substitution, 172–176, 231–234

undefining, 175

VARIABLE command, 236, 422, 430, 577

variables (listed by name). See also variable(s)

AUTOPRINT variable, 430

class_maximum variable, 584, 587

Colx variable, 174

REF CURSOR variable, 428, 497–498

SERVEROUTPUT variable, 430–431, 445

SQL.LNO variable, 247

SQL.PNP variable, 247

SYSDATE variable, 485

USER variable, 485

VAR[IANCE] function, 251

VARRAY datatype, 513–516, 424–426, 513–515

vi (text editor), 252. See also text editors

view(s). See also views (listed by name)

advantages of, 309

base tables and, 309–310

basic description of, 17–18, 157

creating, 309–318

dropping, 318

inline, 157–159

INVALID, 288, 318

views (listed by name)

ALL_CATALOG view, 283

ALL_COL_COMMENTS view, 290

ALL_CONSTRAINTS view, 307–308

ALL_SEQUENCES view, 331–332

ALL_SYNONYMS view, 336

ALL_TAB_COMMENTS view, 290

DBA_views, 22, 280, 335–336

InstructorClasses view, 317

ROLE_SYS_PRIVS view, 380

ROLE_TAB_PRIVS view, 380

USER_ALL TABLES view, 688, 692–693

USER_ARGUMENTS view, 688, 693

USER_CATALOG view, 22, 282, 688, 694

USER_CLU_COLUMNS view, 688, 694

USER_CLUSTER_HASH_EXPRESSIONS view, 688, 694

USER_CLUSTERS view, 688, 694

USER_COL_COMMENTS view, 290, 688, 695

USER_COL_PRIVS view, 688, 695

USER_COL_PRIVS_MADE view, 375–376, 688, 695

USER_COL_PRIVS_RECD view, 375–376, 688, 695

USER_CONS_COLUMNS view, 22, 302, 305, 307–308,

688, 696

USER_CONSTRAINTS view, 22, 688, 695–696, 302,

305, 307–308

USER_DEPENDENCIES view, 696

USER_ERRORS view, 22, 688, 696

USER_EXTENTS view, 688, 696

USER_FREE_SPACE view, 688, 697

Continued

4832-8 Index.F 7/27/01 9:03 AM Page 739

740 Index ✦ V–Z

views (listed by name) (continued)

USER_IND_COLUMNS view, 23, 324, 688, 698

USER_INDEXES view, 22, 324, 688, 697–698

USER_IND_EXPRESSIONS view, 23, 689, 698

USER_IND_PARTITIONS view, 689, 698–699

USER_IND_SUBPARTITONS view, 689, 699

USER_LIBRARIES view, 689, 700

USER_LOB_PARTITIONS view, 689, 700

USER_LOBS view, 689, 700

USER_LOB_SUBPARTITIONS view, 689, 701

USER_METHOD_PARAMS view, 689, 701

USER_METHOD_RESULTS view, 689, 701

USER_NESTED_TABLES view, 689, 702

USER_OBJECTS view, 23, 602–603, 689, 702

USER_OBJECT_SIZE view, 689, 702

USER_OBJECT_TABLES view, 689, 702–703

USER_PART_COL_STATISTICS view, 689, 703–704

USER_PART_HISTOGRAMS view, 689, 704

USER_PART_INDEXES view, 690, 704

USER_PART_KEY_COLUMNS view, 690, 704

USER_PART_LOBS view, 690, 705

USER_PART_TABLES view, 690, 705

USER_PASSWORD_LIMITS view, 690, 706

USER_RESOURCE_LIMITS view, 690, 706

USER_ROLE_PRIVS view, 380, 690, 706

USER_SEGMENTS view, 23, 690, 706

USER_SEQUENCES view, 23, 331–332, 690, 706–707

USER_SOURCE view, 600–601, 690, 707

USER_SUBPART_COL_STATISTICS view, 690, 707

USER_SUBPART_HISTOGRAMS view, 690, 707

USER_SUBPART_KEY_COLUMNS view, 690, 707

USER_SYNONYMS view, 23, 335–336, 690, 708

USER_SYS_PRIVS view, 372, 690, 708

USER_TAB_COL_STATISTICS view, 691, 710

USER_TAB_COLUMNS view, 280–281, 691, 709–710

USER_TAB_COMMENTS view, 290, 691, 710

USER_TAB_HISTOGRAMS view, 691, 710

USER_TABLES view, 23, 690, 708–709

USER_TABLESPACES view, 690, 709

USER_TAB_MODIFICATIONS view, 691, 710

USER_TAB_PARTITIONS view, 691, 711

USER_TAB_PRIVS view, 23, 691, 711

USER_TAB_PRIVS_MADE view, 23, 375–376, 691,

711–723

USER_TAB_PRIVS_RECD view, 23, 375–376, 691, 712

USER_TAB_SUBPARTITIONS view, 691, 712

USER_TRIGGER_COLS view, 691, 713

USER_TRIGGERS view, 601–602, 691, 712–713

USER_TS_QUOTAS view, 691, 713

USER_TYPE_ATTRS view, 691, 713–714

USER_TYPE_METHODS view, 692, 714

USER_TYPES view, 691, 713

USER_UNUSED_COL_TABS view, 692, 714

USER_UPDATABLE_COLUMNS view, 692, 714

USER_USERS view, 23, 692, 714

USER_VARRAYS view, 692, 715

USER_VIEWS view, 23, 692, 715

viruses, 620

W
Wages table, 117–118

“walking the tree,” 167

Web sites, recommended, 28, 616, 719

WHEN condition, 446, 593

WHEN OTHERS clause, 542, 548–549

WHEN_CLAUSE column, 602

WHERE clause

advanced SELECT statements and, 143, 144, 145

case-conversion functions and, 100

comparison operators and, 66–72

constraints and, 300

DELETE statement and, 200

GROUP BY clause and, 121–122

HAVING clause and, 122–123

hierarchical queries and, 171–172

implicit cursors and, 481

indexes and, 320–322

joins and, 148–149

limiting rows using, 57–75

logical operators in, 63–66

PL/SQL functions and, 582

ROWNUM pseudo-column in, 72–75

SET operators and, 162

specifying values used in, at run time, 500–501

subqueries and, 154–155, 159, 201, 499–501

substitution variables and, 173

TRUNCATE TABLE command and, 289

UPDATE statement and, 198, 199

variable names and, 483

views and, 316

WHERE CURRENT OF option, 501–503

WHILE loop, 447, 450

white space, 412

wild card operators, 69–70, 255

Windows 9x (Microsoft), 616, 675

Windows 2000 (Microsoft), 616, 675

Windows ME (Microsoft), 616

Windows NT (Microsoft), 616, 675

WITH ADMIN OPTION privilege, 369–370, 372, 374, 376

WITH CHECK OPTION clause, 312, 315–316

WITH GRANT OPTION privilege, 374–375, 376

WITH READ ONLY option, 312, 318

WITH_DISTINCT column, 118

WordPad, 238

working directory, 252

WorkPhone column, 672

WRA[PPED] option, 248

Z
ZERO_DIVIDE exception, 541, 544, 549, 555, 556

zeros, leading, 546

ZIM Technologies, 615, 618

4832-8 Index.F 7/27/01 9:03 AM Page 740

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening

the software packet(s) included with this book (“Book”). This is a license agree-

ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the

accompanying software packet(s), you acknowledge that you have read and accept

the following terms and conditions. If you do not agree and do not want to be

bound by such terms and conditions, promptly return the Book and the unopened

software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclu-

sive license to use one copy of the enclosed software program(s) (collectively,

the “Software”) solely for your own personal or business purposes on a single

computer (whether a standard computer or a workstation component of a

multi-user network). The Software is in use on a computer when it is loaded

into temporary memory (RAM) or installed into permanent memory (hard

disk, CD-ROM, or other storage device). HMI reserves all rights not expressly

granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copy-

right, in and to the compilation of the Software recorded on the disk(s) or CD-

ROM (“Software Media”). Copyright to the individual programs recorded on

the Software Media is owned by the author or other authorized copyright

owner of each program. Ownership of the Software and all proprietary rights

relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival

purposes, or (ii) transfer the Software to a single hard disk, provided

that you keep the original for backup or archival purposes. You may not

(i) rent or lease the Software, (ii) copy or reproduce the Software

through a LAN or other network system or through any computer sub-

scriber system or bulletin-board system, or (iii) modify, adapt, or create

derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.

You may transfer the Software and user documentation on a permanent

basis, provided that the transferee agrees to accept the terms and condi-

tions of this Agreement and you retain no copies. If the Software is an

update or has been updated, any transfer must include the most recent

update and all prior versions.

4832-8 EULA.F 7/27/01 9:03 AM Page 741

4. Restrictions on Use of Individual Programs. You must follow the individual

requirements and restrictions detailed for each individual program in

Appendix A of this Book. These limitations are also contained in the individual

license agreements recorded on the Software Media. These limitations may

include a requirement that after using the program for a specified period of

time, the user must pay a registration fee or discontinue use. By opening the

Software packet(s), you will be agreeing to abide by the licenses and restric-

tions for these individual programs that are detailed in Appendix A and on the

Software Media. None of the material on this Software Media or listed in this

Book may ever be redistributed, in original or modified form, for commercial

purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects

in materials and workmanship under normal use for a period of sixty

(60) days from the date of purchase of this Book. If HMI receives notifica-

tion within the warranty period of defects in materials or workmanship,

HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-

RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE

PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE

TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT

THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET

YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-

WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have

other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials

and workmanship shall be limited to replacement of the Software Media,

which may be returned to HMI with a copy of your receipt at the following

address: Software Media Fulfillment Department, Attn.: Oracle8i™DBA: SQL
and PL/SQL Certification Bible, Hungry Minds, Inc., 10475 Crosspoint Blvd.,

Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six

weeks for delivery. This Limited Warranty is void if failure of the Software

Media has resulted from accident, abuse, or misapplication. Any replace-

ment Software Media will be warranted for the remainder of the original

warranty period or thirty (30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatso-

ever (including without limitation damages for loss of business profits,

business interruption, loss of business information, or any other pecu-

niary loss) arising from the use of or inability to use the Book or the

Software, even if HMI has been advised of the possibility of such

damages.

4832-8 EULA.F 7/27/01 9:03 AM Page 742

(c) Because some jurisdictions do not allow the exclusion or limitation of

liability for consequential or incidental damages, the above limitation or

exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the

Software for or on behalf of the United States of America, its agencies and/or

instrumentalities (the "U.S. Government") is subject to restrictions as stated

in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the

Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,

and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties

and revokes and supersedes all prior agreements, oral or written, between

them and may not be modified or amended except in a writing signed by both

parties hereto that specifically refers to this Agreement. This Agreement shall

take precedence over any other documents that may be in conflict herewith. If

any one or more provisions contained in this Agreement are held by any court

or tribunal to be invalid, illegal, or otherwise unenforceable, each and every

other provision shall remain in full force and effect.

4832-8 EULA.F 7/27/01 9:03 AM Page 743

CD Installation
Instructions

Each software item on the Oracle8i™DBA: SQL and PL/SQL Certification Bible

CD-ROM is located in its own folder. To install a particular piece of software,

open its folder with My Computer or Internet Explorer. What you do next depends

on what you find in the software's folder:

1. First, look for a ReadMe.txt file or a .doc or .htm document. If this is pre-

sent, it should contain installation instructions and other useful information.

2. If the folder contains an executable (.exe) file, this is usually an installation

program. Often it will be called Setup.exe or Install.exe, but in some

cases the filename reflects an abbreviated version of the software's name and

version number. Run the .exe file to start the installation process.

The ReadMe.txt file in the CD-ROM's root directory may contain additional installa-

tion information, so be sure to check it.

For a listing of the software on the CD-ROM, see Appendix A.

4832-8 Install.F 7/27/01 9:03 AM Page 744

The only guide you need for Oracle8i DBA SQL
and PL/SQL exam success . . .
You’re holding in your hands the most comprehensive and effective guide available for the first exam on
the Oracle8i DBA track. An outstanding team of database professionals and trainers delivers crystal-clear
explanations of every topic covered on the exam, highlighting critical concepts and offering hands-on tips that
can help you in your real-world DBA career.

About the Authors
Damir Bersinic, an Oracle Certified DBA as well as an MCSE
and MCDBA, has worked with Oracle and SQL Server for nearly
two decades. He is the founder and president of Bradley Systems Inc., a
Microsoft certified partner specializing in database, Internet, and system
integration consulting and training. Stephen Giles, creator of a
customized SQL course, Susan Ibach, an application developer, and
Myles Brown, a database programming specialist, all teach the Oracle
curriculum at TMI-Lernix, a leading training company based in Canada.

Get complete coverage of SQL
and PL/SQL exam objectives
• Get a handle on Oracle database basics
• Retrieve data using basic SQL statements
• Find out how to use single and multi-row functions
• Delve into advanced select statements
• Create and manage Oracle database objects
• Get in-depth explanations of security configurations
• Understand PL/SQL basics
• Take control of program execution in PL/SQL
• Master PL/SQL database interactions
• Handle errors and exceptions in PL/SQL
• Get the scoop on stored programs

Figures and code examples
illustrate critical concepts,
such as how a join works

Test-Prep Tools on CD-ROM

Turn in: .75 Board: 7.125 .5

• Hungry Minds test engine powered by top-rated Boson Software
• Trial versions of Knowledge Base for Active PL/SQL and ER/Studio

Rapid SQL and the Introduction to
Oracle: SQL and PL/SQL Prep Exam

• Plus an e-version of the book

Customized test engine provides
a different experience each time

you take the exam.

Oracle8i ™ DBA:
SQL and PL/SQLOracle8i ™ DBA:
SQL and PL/SQL

Master the
material for the
Oracle8i DBA Exam
1Z0-001

Test your knowledge
with assessment
questions, scenarios,
and lab exercises

Practice on state-
of-the-art test-
preparation software

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Damir Bersinic, Stephen Giles,
Susan Ibach, and Myles Brown

Board: 7.125 Turn in: .75.5

BERSINIC, GILES,
IBACH & BROWN

100%
C O M P R E H E N S I V E

Covers Exam 1Z0-001

O
racle8i

™D
BA:

SQ
L

andPL/SQ
L

O
racle8i

™D
BA:

SQ
L

andPL/SQ
L

VISIBLE SPINE = 1.875

Bible
Boson Software—

powered
test engine
on CD-ROM

Certification

Hungry Minds Test
Engine powered by

Shelving Category:
Certification

Reader Level:
Beginning to Advanced

System Requirements: PC running Windows
NT Service Pack 4 or later; 64 MB RAM. See the
What’s on the CD-ROM? Appendix for details and
complete system requirements.

ISBN 0-7645-4832-8

$59.99 USA
$89.99 Canada
£44.99 UK incl. VAT

,!7IA7G4-feidcb!:p;p;T;T;tw w w . h u n g r y m i n d s . c o m

*85555-AIBFHe

	Oracle8i DBA: SQLand PL/SQL Certification Bible
	Front of Book
	General Book Information
	About the Authors
	Credits
	Dedication
	Preface
	About Certifications
	How this Book is Organized
	How to Use this Book
	Using this book's icons
	Conventions

	Acknowledgments
	Contents at a Glance
	Contents

	Part I: The Oracle SQL Language
	Ch01: The Oracle Database
	Overview of Database Concepts
	Relational Database Management System (RDBMS)
	Object Relational Database Management System (ORDBMS)

	Database Objects
	Tables
	Columns and datatypes
	Constraints
	Sequences
	Views
	Indexes
	Synonyms
	User-defined datatypes
	Program units

	The Oracle Data Dictionary
	Key Point Summary
	Assessment Questions
	Scenario
	Lab Exercise
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenario

	Ch02: Retrieving Data Using Basic SQL Statements
	A Quick SQL Overview
	Data Definition Language statements
	Data Control Language statements
	Data Manipulation Language statements

	The Basic SELECT Statement
	Arithmetic operations
	Ordering data in the SELECT statement

	Limiting Rows Using the WHERE Clause
	Using logical operators in WHERE clauses
	Additional comparison operators in the WHERE clause
	Including the ROWNUM pseudo-column in the WHERE clause

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch03: Using Single- and Multi- Row Functions
	Single-Row Functions
	Conversion functions
	The TO_DATE function
	Character functions
	Number functions
	Date functions
	Additional functions

	Group/Aggregate Functions
	Using the GROUP BY Clause
	Using the HAVING Clause
	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch04: Advanced SELECT Statements
	Working with Joins
	Working with equijoins
	Cross-joins
	Nonequijoins
	Outer joins
	Self-joins

	Working with Subqueries
	Working with basic subqueries
	Working with inline views
	Working with correlated subqueries

	Working with SET Operators
	Using the UNION operator
	Using the UNION ALL operator
	Using the INTERSECT operator
	Using the MINUS operator

	Using Hierarchical Queries
	Using Substitution Variables
	The ROWID pseudo-column

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch05: Adding, Updating, and Deleting Data
	DML Statements: Inserting Data into Tables
	Using the column list
	Inserting values using additional language elements

	DML Statements: Modifying Existing Data
	DML Statements: Removing Data from Tables
	Using subqueries in DML statements

	How Oracle Processes DML Statements
	Controlling Transactions
	The ACID test
	Transaction control statements
	Controlling concurrent operations with locking

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Part II: Managing Database Objects
	Ch06: The SQL*Plus Environment
	The SQL Buffer
	Defining Variables
	Substitution variables
	DEFINE
	ACCEPT
	Bind variables

	SQL*Plus Commands
	DESCRIBE
	SAVE
	EDIT
	GET
	START
	@
	SPOOL
	EXIT

	Customizing SQL*Plus with SET Commands
	ARRAYSIZE
	COLSEP
	FEEDBACK
	HEADING
	LINESIZE
	LONG
	PAGESIZE
	PAUSE
	TERMOUT

	Formatting Output with SQL*Plus
	Headers and footers
	COLUMN
	BREAK
	COMPUTE

	Saving Environment Settings
	Scripts
	PRODUCT_USER_PROFILE
	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch07: Creating and Managing Oracle Database Objects
	The Ground Rules for Creating Objects
	Data Definition Language (DDL)
	Oracle naming conventions
	Fully qualified object names

	Creating and Managing Tables
	The CREATE TABLE statement
	The ALTER TABLE command
	The DROP TABLE command
	The TRUNCATE TABLE command
	Documenting tables and columns

	Data Integrity Using Constraints
	Naming constraints
	Defining constraints
	A little more about constraint types
	Managing constraints

	Creating Other Database Objects
	Views
	Indexes
	Sequences
	Synonyms

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre- Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch08: Configuring Security in Oracle Databases
	Users and Schemas
	Creating and managing users

	Granting and Administering User Privileges
	System privileges
	Object privileges

	Roles
	Creating and granting roles
	Determining privileges and roles granted
	Revoking roles

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Part III: Using PL/SQL
	Ch09: Introduction to PL/ SQL
	Uses and Benefits of PL/SQL
	Modularity
	Variables
	Control structures
	Superior performance
	Error handling
	Support for SQL
	Portability

	The PL/SQL Engine and Statement Processing
	Types of PL/SQL blocks
	Block structure
	Comments

	Variables
	Scalar variables
	Bind variables
	Composite datatypes
	User-defined types
	Reference types

	Executing and Testing PL/SQL Blocks
	Print command
	DBMS_OUTPUT package

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch10: Controlling Program Execution in PL/ SQL
	Loops
	Basic loop
	WHILE loop
	FOR loop
	Nested loops and labels

	Conditional Processing
	IF . . . THEN
	ELSE
	ELSIF

	Nested Blocks
	Transaction Control
	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercise
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercise

	Ch11: Interacting with the Database Using PL/ SQL
	SQL Statements
	SELECT
	INSERT
	UPDATE
	DELETE
	Implicit cursors

	Explicit Cursors
	Declaring explicit cursors
	Opening explicit cursors
	Closing an explicit cursor
	Fetching from explicit cursors
	%ROWTYPE
	The cursor FOR loop
	Cursor variables
	Cursors with subqueries
	Cursor parameters
	FOR UPDATE and WHERE CURRENT OF

	Composite and Collection Datatypes
	PL/SQL records
	Index-by tables
	Tables of records
	Nested tables
	VARRAYs
	Collection methods

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Ch12: Handling Errors and Exceptions in PL/ SQL
	Types of Errors
	Compile errors
	Program logic errors
	Runtime errors or exceptions

	Exception Handling
	Predefined exceptions
	Non-predefined exceptions
	User-defined exceptions

	WHEN OTHERS Clause
	Error Propagation
	Coding Conventions
	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	CH13: Introduction to Stored Programs
	Subprograms
	Procedures
	Client-side procedures
	Server-side procedures
	Parameters
	Nesting
	Deleting Procedures

	User-Defined Functions
	Deleting Functions

	Packages
	Specification
	Package body
	Accessing programs and variables in packages
	Removing Packages
	Listing Package contents

	Triggers
	Triggering events
	Statement-level triggers
	Row-level triggers
	Trigger predicates
	Restrictions on triggers
	Order of firing
	INSTEAD OF triggers
	Event triggers
	Enabling and disabling triggers
	Removing triggers

	Data Dictionary Views
	USER_SOURCE
	USER_TRIGGERS
	USER_OBJECTS

	Key Point Summary
	Assessment Questions
	Scenarios
	Lab Exercises
	Answers to Chapter Questions
	Chapter Pre-Test
	Assessment Questions
	Scenarios
	Lab Exercises

	Appendixes
	Appendix A: What's on the CD- ROM?
	System Requirements
	Using the CD with Microsoft Windows
	Using the CD with Linux
	Whats on the CD
	Source code
	Applications
	Electronic version of Oracle8i DBA: SQL and PL/ SQL Certification Bible

	Troubleshooting

	Appendix B: Practice Exam
	Answers

	Appendix C: Objective Mapping
	Appendix D: Exam Tips
	Preparing to the Exam
	Registering for the Exam
	Taking the Exam
	After the Test

	Appendix E: Database Schema for Labs
	Table Structures
	Scripts Used to Create Database Objects
	Before Running the scripts
	Running the scripts
	Text of scripts used to create the database objects

	Appendix F: Data Dictionary Views
	Structure of USER_ Views in Oracle

	Appendix G: Suggested Readings,Web Sites, and Other Resources
	Suggested Readings
	Books
	Oracle documentation manuals

	Web Sites

	Back of Book
	Index
	End- User License Agreement
	CD Installation Instructions
	back cover

