The J2EE™ 1.4 Tutorial

Eric Armstrong
Jennifer Ball
Stephanie Bodoff
Debbie Bode Carson
|an Evans

Dale Green

Kim Haase

Eric Jendrock

June 17, 2004

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise Java-
Beans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run
Anywhere”, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc. inthe U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals listsis
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS'" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de laFAR [(Federal Acquisition Regulations) et des suppléments a celles-ci.

Cette distribution peut comprendre des composants dével oppés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise Java-
Beans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once, Run
Anywhere”, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’ autres pays.

A moins qu’ autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
clesy compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font I’ objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
|égidation américaine en matiére de controle des exportations et peuvent étre soumis au droit d’ autres
pays dans |e domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’ exclusion d exportation américaines,
y compris, mais de maniére non exclusive, laliste de personnes qui font objet d’ un ordre de ne pas partic-
iper, d’'une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
|égislation américaine en matiére de contrdle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cialy Designated Nationals and Blocked Persons"),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

Chapter 1:

Contents'

Foreword..............cuvn..

About ThisTutorial.

Who Should Use This Tutorial
Prerequisites

How to Read This Tutorial
About the Examples

Further Information

How to Buy This Tutorial
How to Print This Tutorial
Typographical Conventions
Acknowledgments

Feedback

overview. iiii i i

Distributed Multitiered Applications
J2EE Components
J2EE Clients
Web Components
Business Components
Enterprise Information System Tier
J2EE Containers
Container Services
Container Types
Web Services Support
XML
SOAP Transport Protocol
WSDL Standard Format
UDDI and ebXML Standard Formats

XXXiii
XXXiii
XXXiii
XXXV
XXXVi
XXXIX
XXXiX

xl
x|
x|
xli

© 0000w h~WwWN

el
NN RO

CONTENTS

Packaging Applications 13
Development Roles 15
J2EE Product Provider 15
Tool Provider 15
Application Component Provider 16
Application Assembler 16
Application Deployer and Administrator 17
J2EE 1.4 APIs 18
Enterprise JavaBeans Technology 18
Java Servlet Technology 19
JavaServer Pages Technology 19
Java Message Service AP 19
Java Transaction AP 19
JavaMail API 20
JavaBeans Activation Framework 20
Java APl for XML Processing 20
Java APl for XML-Based RPC 20
SOAP with Attachments API for Java 21
Java APl for XML Registries 21
J2EE Connector Architecture 22
JDBC API 22
Java Naming and Directory Interface 22
Java Authentication and Authorization Service 23
Simplified Systems Integration 24
Sun Java System Application Server Platform Edition 8 24
Technologies 25
Tools 26
Starting and Stopping the Application Server 27
Starting the Admin Console 28
Starting the deploytool Utility 29
Starting and Stopping the PointBase Database Server 29
Debugging J2EE Applications 30
Chapter2: UnderstandingXML.......................... 33
Introduction to XML 33
What Is XML? 33
Why Is XML Important? 38
How Can You Use XML? 40
Generating XML Data 43

Writing a Simple XML File 43

Chapter 3:

CONTENTS

Defining the Root Element
Writing Processing Instructions
Introducing an Error
Substituting and Inserting Text
Creating a Document Type Definition
Documents and Data
Defining Attributes and Entitiesinthe DTD
Referencing Binary Entities
Defining Parameter Entities and Conditional Sections
Resolving a Naming Conflict
Using Namespaces
Designing an XML Data Structure
Saving Y ourself Some Work
Attributes and Elements
Normalizing Data
Normalizing DTDs
Summary

Getting Started with Web Applications

Web Application Life Cycle
Web Modules
Packaging Web Modules
Deploying Web Modules
Listing Deployed Web Modules
Updating Web Modules
Undeploying Web Modules
Configuring Web Applications
Mapping URLs to Web Components
Declaring Welcome Files
Setting Initialization Parameters
Mapping Errors to Error Screens
Declaring Resource References
Duke's Bookstore Examples
Accessing Databases from Web Applications
Populating the Example Database
Creating a Data Source in the Application Server
Specifying a Web Application’s Resource Reference
Mapping the Resource Reference to a Data Source
Further Information

5& K

50

59
59
66
68
72
73
76
77
77
79
81
81

86
88
90
92
95
96
98
99
99
101
102
103
103
103
104
105
106
106
107
108

Vi

Chapter 4:

Chapter 5:

CONTENTS

Java APl for XML Processing

The JAXP APIs

An Overview of the Packages

The Simple API for XML APIs
The SAX Packages

The Document Object Model APIs
The DOM Packages

The Extensible Stylesheet L anguage Transfor mations APIs
The XSLT Packages

Using the JAXP Libraries

Where Do You Go from Here?

Simple APIforXMLi....

When to Use SAX
Echoing an XML Filewith the SAX Par ser
Creating the Skeleton
Importing Classes
Setting Up for 11O
Implementing the ContentHandler Interface
Setting up the Parser
Writing the Output
Spacing the Output
Handling Content Events
Compiling and Running the Program
Checking the Output
| dentifying the Events
Compressing the Output
Inspecting the Output
Documents and Data
Adding Additional Event Handlers
I dentifying the Document’ s Location
Handling Processing Instructions
Summary
Handling Errorswith the Nonvalidating Par ser
Displaying Special Charactersand CDATA
Handling Special Characters
Handling Text with XML-Style Syntax
Handling CDATA and Other Characters
Parsing withaDTD
DTD’s Effect on the Nonvalidating Parser

109
110
111
114
114
116
117
118
118
118

122
123
124
124
125
125
127
128
128
129
134
135
136
138
140
141
141
142
144
145
145
153
153
154
155
156
156

Chapter 6:

CONTENTS

Tracking Ignorable Whitespace
Cleanup
Empty Elements, Revisited
Echoing Entity References
Echoing the External Entity
Summarizing Entities
Choosing Your Parser | mplementation
Using the Validating Par ser
Configuring the Factory
Validating with XML Schema
Experimenting with Validation Errors
Error Handling in the Validating Parser
Parsing a Parameterized DTD
DTD Warnings
Handling Lexical Events
How the LexicalHandler Works
Working with a LexicalHandler
Using the DTDHandler and EntityResolver
The DTDHandler API
The EntityResolver API
Further Information

Document ObjectModel

When to Use DOM
Documents Versus Data
Mixed-Content Model
A Simpler Model
Increasing the Complexity
Choosing Y our Model

Reading XML Dataintoa DOM
Creating the Program
Additional Information
Looking Ahead

Displaying a DOM Hierarchy
Convert DomEcho to aGUI App
Create Adaptersto Display the DOM in a JTree
Finishing Up

Examining the Structure of a DOM
Displaying a Simple Tree
Displaying a More Complex Tree

157
159
159
160
160
161
161
162
162
163
166
168
168
170
170
171
172
177
178
179
179

182
182
183
184
185
187
188
188
192
194
195
195
201
211
211
211
214

Vi

viii

Chapter 7:

CONTENTS

Finishing Up
Constructing a User-Friendly JTree from a DOM
Compressing the Tree View
Acting on Tree Selections
Handling Modifications
Finishing Up
Creating and Manipulating a DOM
Obtaining a DOM from the Factory
Normalizing the DOM
Other Operations
Finishing Up
Validating with XML Schema
Overview of the Validation Process
Configuring the DocumentBuilder Factory
Validating with Multiple Namespaces
Further Information

220
221
221
227
237
237
237
237
241
243
246
246
247
247
249
252

Extensible Stylesheet Language Transformations 253

Introducing XSL, XSLT, and XPath
The JAXP Transformation Packages
How XPath Works
XPath Expressions
The XSLT/XPath Data Model
Templates and Contexts
Basic XPath Addressing
Basic XPath Expressions
Combining Index Addresses
Wildcards
Extended-Path Addressing
XPath Data Types and Operators
String-Value of an Element
XPath Functions
Summary
Writing Out aDOM asan XML File
Reading the XML
Creating a Transformer
Writing the XML
Writing Out a Subtree of the DOM
Summary
Generating XML from an Arbitrary Data Structure

254
254
255
255
256
257
257
258
259
259
260
261
261
262
265
265
266
267
270
271
272
272

Chapter 8:

CONTENTS

Creating a Simple File 273
Creating a Simple Parser 275
Modifying the Parser to Generate SAX Events 277
Using the Parser as a SAX Source 284
Doing the Conversion 286
Transforming XML Datawith XSLT 287
Defining a Simple <article> Document Type 287
Creating a Test Document 289
Writing an XSLT Transform 290
Processing the Basic Structure Elements 291
Writing the Basic Program 295
Trimming the Whitespace 297
Processing the Remaining Structure Elements 300
Process Inline (Content) Elements 304
Printing the HTML 309
What Else Can XSLT Do? 309
Transforming from the Command Line with Xalan 311
Concatenating Transformationswith a Filter Chain 311
Writing the Program 311
Understanding How the Filter Chain Works 315
Testing the Program 316
Further Information 318
Building Web Services with JAX-RPC 319
Setting the Port 320
Creating a Simple Web Service and Client with JAX-RPC 320
Coding the Service Endpoint Interface and Implementation Class 322
Building the Service 323
Packaging and Deploying the Service 324
Static Stub Client 327
Types Supported by JAX-RPC 330
J2SE SDK Classes 331
Primitives 331
Arrays 332
Value Types 332
JavaBeans Components 332
Web Service Clients 333
Dynamic Proxy Client 333
Dynamic Invocation Interface Client 336

Application Client 340

Chapter 9:

Chapter 10:

CONTENTS

More JAX-RPC Clients

Web Services | nteroperability and JAX-RPC

Further Information

SOAP with Attachments APl forJava

Overview of SAAJ
Messages
Connections

Tutorial

Creating and Sending a Simple Message

Adding Content to the Header

Adding Content to the SOAPPart Object
Adding a Document to the SOAP Body
Manipulating Message Content Using SAAJor DOM APIs

Adding Attachments
Adding Attributes
Using SOAP Faults
Code Examples
Request.java
MyUddiPing.java
HeaderExample.java

DOM Examplejava and DOM SrcExample.java

Attachments.java
SOAPFaultTest.java
Further Information

Java API for XML Registries

Overview of JAXR
What Is a Registry?
What Is JAXR?
JAXR Architecture
Implementing a JAXR Client
Establishing a Connection
Querying a Registry
Managing Registry Data
Using Taxonomiesin JAXR Clients
Running the Client Examples
Before Y ou Compile the Examples
Compiling the Examples

346
346
350
352
353
362
363
364
364
365
368
373
378
378
380
387
389
393
394
396

397
397
398
399
401
402
407
412
420
425
426
428

Chapter 11:

CONTENTS

Running the Examples

Using JAXR Clientsin J2EE Applications
Coding the Application Client: MyAppClient.java
Coding the PubQuery Session Bean
Compiling the Source Files
Importing Certificates
Starting the Application Server
Creating JAXR Resources
Creating and Packaging the Application
Deploying the Application
Running the Application Client

Further Information

Java Servlet Technology

What Isa Servlet?
The Example Servlets
Troubleshooting
Servlet Life Cycle
Handling Servlet Life-Cycle Events
Handling Errors
Sharing Information
Using Scope Objects
Controlling Concurrent Access to Shared Resources
Accessing Databases
Initializing a Servlet
Writing Service Methods
Getting Information from Requests
Constructing Responses
Filtering Requests and Responses
Programming Filters
Programming Customized Requests and Responses
Specifying Filter Mappings
Invoking Other Web Resources
Including Other Resources in the Response
Transferring Control to Another Web Component
Accessing the Web Context
Maintaining Client State
Accessing a Session
Associating Objects with a Session
Session Management

428
434
434
435
436
436
437
437
438
a41
a41
442

452
452
453

455
456
457
458
460
463
463
465
468
469
470
472
473
474
474
474
475

Xi

Xii

Chapter 12:

CONTENTS

Session Tracking
Finalizing a Servlet
Tracking Service Requests
Notifying Methods to Shut Down
Creating Polite Long-Running Methods
Further Information

JavaServer Pages Technology

What |sa JSP Page?
Example
The Example JSP Pages
TheLife Cycle of a JSP Page
Translation and Compilation
Execution
Creating Static Content
Response and Page Encoding
Creating Dynamic Content
Using Objects within JSP Pages
Expression Language
Deactivating Expression Evaluation
Using Expressions
Variables
Implicit Objects
Literals
Operators
Reserved Words
Examples
Functions
JavaBeans Components
JavaBeans Component Design Conventions
Creating and Using a JavaBeans Component
Setting JavaBeans Component Properties
Retrieving JavaBeans Component Properties
Using Custom Tags
Declaring Tag Libraries
Including the Tag Library Implementation
Reusing Content in JSP Pages
Transferring Control to Another Web Component
jsp:param Element
Including an Applet

476
477
478
478
479
480

481
482
486
493
493
495
497
497
498
498
499
500
501
502
502
504
504
505
505
506
507
508
509
510
513
513
514
516
517
518
519
519

Chapter 13:

Chapter 14:

Chapter 15:

CONTENTS

Setting Propertiesfor Groups of JSP Pages
Further Information

JavaServer Pages Documents

The Example JSP Document
Creating a JSP Document
Declaring Tag Libraries
Including Directivesin a JSP Document
Creating Static and Dynamic Content
Using the jsp:root Element
Using the jsp:output Element
| dentifying the JSP Document to the Container

JavaServer Pages Standard Tag Library

The Example JSP Pages
Using JSTL
Tag Collaboration
CoreTag Library
Variable Support Tags
Flow Control Tags
URL Tags
Miscellaneous Tags
XML Tag Library
Core Tags
Flow Control Tags
Transformation Tags
Internationalization Tag Library
Setting the Locale
Messaging Tags
Formatting Tags
SQL TagLibrary
query Tag Result Interface
Functions
Further Information

CustomTagsinJSPPages..............

What |sa Custom Tag?
The Example JSP Pages
Types of Tags

550
553
555
556
556
557
560
561
562
564
565
566
566
567
568
568
569
571
574
575

Xiii

Xiv

Chapter 16:

CONTENTS

Tags with Attributes

Tags with Bodies

Tags That Define Variables

Communication between Tags
Encapsulating Reusable Content Using Tag Files

Tag File Location

Tag File Directives

Evaluating Fragments Passed to Tag Files

Examples
Tag Library Descriptors

Top-Level Tag Library Descriptor Elements

Declaring Tag Files

Declaring Tag Handlers

Declaring Tag Attributes for Tag Handlers

Declaring Tag Variablesfor Tag Handlers
Programming Simple Tag Handlers

Including Tag Handlers in Web Applications

How Isa Simple Tag Handler Invoked?

Tag Handlers for Basic Tags

Tag Handlers for Tags with Attributes

Tag Handlers for Tags with Bodies

Tag Handlers for Tags That Define Variables

Cooperating Tags

Examples

ScriptinginJSPPages

The Example JSP Pages
Using Scripting
Disabling Scripting
Declarations
Initializing and Finalizing a JSP Page
Scriptlets
Expressions
Programming Tags That Accept Scripting Elements
TLD Elements
Tag Handlers
Tags with Bodies
Cooperating Tags
Tags That Define Variables

583
586
587
587
588
590
591
599
600
604
605
606
609
611
612
614
615
615
615
616
618
619
622
624

634
635
636
637
637
638
638
639
640
640
642
644
646

Chapter 17:

Chapter 18:
691

CONTENTS

JavaServer Faces Technology 649
JavaServer Faces Technology Benefits 651
What Isa JavaServer Faces Application? 652
Framework Roles 653
A Simple JavaServer Faces Application 654
Steps in the Development Process 654
Creating the Pages 657
Defining Page Navigation 660
Developing the Beans 661
Adding Managed Bean Declarations 663
User Interface Component Model 664
User Interface Component Classes 665
Component Rendering Model 666
Conversion Model 671
Event and Listener Model 672
Validation Model 673
Navigation M odel 674
Backing Bean M anagement 676
How the Pieces Fit Together 679
The Life Cycle of a JavaServer Faces Page 682
Request Processing Life Cycle Scenarios 683
Standard Request Processing Life Cycle 684
Further Information 689

Using JavaServer Faces Technology in JSP Pages . .

The Example JavaServer Faces Application 692

Setting Up a Page
Using the Core Tags
Usingthe HTML Component Tags
Ul Component Tag Attributes
The UlIForm Component
The UIColumn Component
The UICommand Component
The UlData Component
The UlGraphic Component
The Ullnput and Ul Output Components
The UlPanel Component
The Ul SelectBoolean Component

696
699
701
702
704
705
706
708
711
712
716
719

XV

XVi

Chapter 19:

CONTENTS

The Ul SelectMany Component 719
The UlMessage and UIM essages Components 720
The Ul SelectOne Component 721

The Ul Selectltem, Ul Selectltems, and Ul Sel ectitemGroup Components
722

Using L ocalized M essages 726
Referencing a ResourceBundle from a Page 726
Referencing a Localized Message 727

Using the Standard Converters 728
Using DateTimeConverter 729
Using NumberConverter 731

Registering Listenerson Components 733
Registering a Value-Change Listener on a Component 733
Registering an Action Listener on a Component 734

Using the Standard Validators 734
Requiring aValue 736
Using the LongRangeV alidator 736

Binding Component Values and Instancesto External Data Sources
737

Binding a Component Value to a Property 738
Binding a Component VValue to an Implicit Object 740
Binding a Component Instance to a Bean Property 741
Referencing a Backing Bean M ethod 743
Referencing a Method That Performs Navigation 743
Referencing a Method That Handles an Action Event 744
Referencing a Method That Performs Validation 745
Referencing a Method That Handles a Va ue-change Event 745
Using Custom Objects 746
Using a Custom Converter 747
Using a Custom Validator 748
Using a Custom Component 749

Developing with JavaServer Faces Technology .751

Writing Component Properties 752
Writing Properties Bound to Component Values 752
Writing Properties Bound to Component Instances 761

Performing L ocalization 763
Creating a Resource Bundle 763
Localizing Dynamic Data 764

Localizing Messages 764

Chapter 20:

CONTENTS

Creating a Custom Converter 766
Implementing an Event Listener 769
Implementing Vaue-Change Listeners 770
Implementing Action Listeners 771
Creating a Custom Validator 772
Implementing the Validator Interface 773
Creating a Custom Tag 77
Writing Backing Bean Methods 779
Writing a Method to Handle Navigation 779
Writing a Method to Handle an Action Event 781
Writing a Method to Perform Validation 781
Writing a Method to Handle a Value-Change Event 782
Creating Custom Ul Components 785

Determining Whether You Need a Custom Component or Renderer
786

When to Use a Custom Component 786
When to Use a Custom Renderer 787
Component, Renderer, and Tag Combinations 788
Under standing the Image M ap Example 789

Why Use JavaServer Faces Technology to Implement an Image Map?
790

Understanding the Rendered HTML 790
Understanding the JSP Page 791
Configuring Model Data 793
Summary of the Application Classes 794
Stepsfor Creating a Custom Component 796
Creating the Component Tag Handler 797
Defining the Custom Component Tag in a Tag Library Descriptor 802
Creating Custom Component Classes 803
Specifying the Component Family 806
Performing Encoding 806
Performing Decoding 808
Enabling Vaue-Binding of Component Properties 809
Saving and Restoring State 810
Delegating Rendering to a Renderer 812
Creating the Renderer Class 812
I dentifying the Renderer Type 814

Handling Eventsfor Custom Components 814

XVii

XViii

Chapter 21:

Chapter 22:
847

Chapter 23:

CONTENTS

Configuring JavaServer Faces Applications

Application Configuration Resource File
Configuring Beans
Using the managed-bean Element
Initializing Properties using the managed-property Element
Initializing Maps and Lists
Registering M essages
Registering a Custom Validator
Registering a Custom Converter
Configuring Navigation Rules
Registering a Custom Renderer with a Render Kit
Registering a Custom Component
Basic Requirements of a JavaServer Faces Application
Configuring an Application Using deploytool
Including the Required JAR Files
Including the Classes, Pages, and Other Resources

....817

818
819
820
821
827
829
830
830
831
835
837
839
840
845
845

Internationalizing and Localizing Web Applications.

Java Platform Localization Classes
Providing L ocalized M essages and L abels
Establishing the Locale
Setting the Resource Bundle
Retrieving Localized Messages
Date and Number For matting
Character Setsand Encodings
Character Sets
Character Encoding
Further Information

EnterpriseBeans

What Isan Enterprise Bean?
Benefits of Enterprise Beans
When to Use Enterprise Beans
Types of Enterprise Beans

What |Isa Session Bean?

State Management Modes
When to Use Session Beans
What Isan Entity Bean?

847
848
849
849
850
851
851
851
852
855

857
857
858
859
859
859
860
861

Chapter 24:

CONTENTS

What Makes Entity Beans Different from Session Beans?
Container-Managed Persistence
When to Use Entity Beans

What Isa Message-Driven Bean?

861
863
866
866

What Makes Message-Driven Beans Different from Session and Entity

Beans?

When to Use Message-Driven Beans
Defining Client Accesswith I nterfaces

Remote Clients

Local Clients

Local Interfaces and Container-Managed Relationships

Deciding on Remote or Local Access

Web Service Clients

Method Parameters and Access
The Contents of an Enterprise Bean
Naming Conventions for Enterprise Beans
TheLife Cycles of Enterprise Beans

The Life Cycle of a Stateful Session Bean

The Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean

The Life Cycle of a Message-Driven Bean
Further Information

Getting Started with Enterprise Beans

Creating the J2EE Application
Creating the Enterprise Bean

Coding the Enterprise Bean

Compiling the Source Files

Packaging the Enterprise Bean
Creating the Application Client

Coding the Application Client

Compiling the Application Client

Packaging the Application Client

Specifying the Application Client’ s Enterprise Bean Reference
Creating the Web Client

Coding the Web Client

Compiling the Web Client

Packaging the Web Client

Specifying the Web Client’ s Enterprise Bean Reference
Mapping the Enterprise Bean References

867
868
868
869
870
870
871
872
872
873
874
875
875
877
877
879
880

882
882
883
884
885
886
887
889
890
891
891
891
893
893
894
895

XiX

XX

Chapter 25:

Session Bean Examples

CONTENTS

Specifying the Web Client’s Context Root
Deploying the J2EE Application
Running the Application Client
Running the Web Client
M odifying the J2EE Application
Modifying a Class File
Adding aFile
Modifying a Deployment Setting

The CartBean Example
Session Bean Class
Home Interface
Remote Interface
Helper Classes
Building the CartBean Example
Creating the Application
Packaging the Enterprise Bean
Packaging the Application Client
A Web Service Example: HelloServiceBean
Web Service Endpoint Interface
Statel ess Session Bean Implementation Class
Building HelloServiceBean
Building the Web Service Client
Running the Web Service Client
Other Enterprise Bean Features
Accessing Environment Entries
Comparing Enterprise Beans
Passing an Enterprise Bean's Object Reference
Using the Timer Service
Creating Timers
Canceling and Saving Timers
Getting Timer Information
Transactions and Timers
The TimerSessionBean Example
Building TimerSessionBean
Handling Exceptions

896
897
897
898
899
899
900
900

901
902
906
908
908
908
909
909
910
913
913
913
914
917
918
918
918
919
920
921
921
922
923
923
923
925
930

Chapter 26:

Chapter 27:

CONTENTS

Bean-Managed Persistence Examples 933
The SavingsAccountBean Example 933
Entity Bean Class 934
Home Interface 945
Remote Interface 947
Running the SavingsAccountBean Example 948
M apping Table Relationshipsfor Bean-M anaged Persistence 949
One-to-One Relationships 950
One-to-Many Relationships 953
Many-to-Many Relationships 961
Primary Keysfor Bean-M anaged Persistence 964
The Primary Key Class 965
Primary Keysin the Entity Bean Class 966
Getting the Primary Key 967

deploytool Tipsfor Entity Beanswith Bean-Managed Persistence 967

Container-Managed Persistence Examples 969
Overview of the Roster App Application 969
The Player Bean Code 971
Entity Bean Class 971
Local Home Interface 976
Local Interface 977
Method Invocationsin Roster App 977
Creating a Player 978
Adding aPlayer to a Team 979
Removing a Player 980
Dropping a Player from a Team 981
Getting the Players of a Team 982
Getting a Copy of a Team'’s Players 984
Finding the Players by Position 986
Getting the Sports of a Player 987
Building and Running the Roster App Example 989
Creating the Database Tables 989
Creating the Data Source 990
Capturing the Table Schema 990
Building the Enterprise Beans 991
Creating the Enterprise Application 991
Packaging the Enterprise Beans 991
Packaging the Enterprise Application Client 1000

Deploying the Enterprise Application 1001

XXi

XXii

Chapter 28:

CONTENTS

Running the Client Application

A Guided Tour of the Roster App Settings
RosterApp
RosterClient
RosterJAR
TeamJAR

Primary Keysfor Container-Managed Per sistence
The Primary Key Class

Advanced CMP Topics. The Order App Example
Structure of OrderApp
Bean Relationshipsin OrderApp
Primary Keysin OrderApp’s Entity Beans
Entity Bean Mapped to More Than One Database Table
Finder and Selector Methods
Using Home Methods
Cascade Deletesin OrderApp
BLOB and CLOB Database Typesin OrderApp
Building and Running the OrderApp Example

1002
1003
1003
1005
1005
1006
1012
1013
1015
1015
1016
1018
1020
1021
1021
1022
1022
1023

deploytool Tipsfor Entity Beanswith Container-Managed Per sistence

1032

Selecting the Persistent Fields and Abstract Schema Name
Defining EJB QL Queries for Finder and Select Methods

Defining Rel ationships

Creating the Database Tables at Deploy Time in deploytool

A Message-Driven Bean Example

Example Application Overview
The Application Client
The M essage-Driven Bean Class
The onMessage Method
The gjbCreate and gfbRemove Methods
Deploying and Running SimpleM essageApp
Creating the Administered Objects
Deploying the Application
Running the Client
Removing the Administered Objects
deploytool Tipsfor Message-Driven Beans
Specifying the Bean's Type
Setting the Message-Driven Bean' s Characteristics
deploytool Tipsfor Components That Send M essages

1032
1033
1033
1034

Chapter 29:

CONTENTS

Setting the Resource References
Setting the Message Destination References
Setting the Message Destinations

Enterprise JavaBeans

Query Language1047

Chapter 30:

Terminology
Simplified Syntax
Example Queries
Simple Finder Queries
Finder Queries That Navigate to Related Beans
Finder Queries with Other Conditional Expressions
Select Queries
Full Syntax
BNF Symbols
BNF Grammar of EJB QL
FROM Clause
Path Expressions
WHERE Clause
SELECT Clause
ORDER BY Clause
EJB QL Restrictions

Transactionsc i iieieenn

What Isa Transaction?
Container-M anaged Transactions
Transaction Attributes
Rolling Back a Container-Managed Transaction
Synchronizing a Session Bean' s Instance Variables
Compiling the BankBean Example
Packaging the BankBean Example
Methods Not Allowed in Container-Managed Transactions
Bean-M anaged Transactions
JDBC Transactions
Deploying and Running the WarehouseBean Example
Compiling the WarehouseBean Example
Packaging the WarehouseBean Example
JTA Transactions
Deploying and Running the TellerBean Example

1044
1044
1045

1048
1048
1049
1049
1051
1052
1054
1054
1055
1055
1059
1062
1064
1073
1076
1077

XXiii

XXiV

Chapter 31:

Chapter 32:

CONTENTS

Compiling the TellerBean Example

Packaging the TellerBean Example

Returning without Committing

Methods Not Allowed in Bean-Managed Transactions
Summary of Transaction Optionsfor Enterprise Beans
Transaction Timeouts
I solation Levels
Updating M ultiple Databases
Transactionsin Web Components

Resource Connections.

JNDI Naming
DataSour ce Objects and Connection Pools
Database Connections
Coding a Database Connection
Specifying a Resource Reference
Creating a Data Source
Mail Session Connections
Running the ConfirmerBean Example
URL Connections
Running the HTML ReaderBean Example
Further Information

Security

Overview
Realms, Users, Groups, and Roles

Managing Users

Setting Up Security Roles

Mapping Roles to Users and Groups
Web-Tier Security

Protecting Web Resources

Setting Security Requirements Using deploytool

Specifying a Secure Connection

Using Programmatic Security in the Web Tier
Under standing L ogin Authentication

Using HTTP Basic Authentication

Using Form-Based Authentication

Using Client-Certificate Authentication

Using Mutual Authentication

CONTENTS

Using Digest Authentication
Configuring Authentication

Example: Using Form-Based Authentication
Installing and Configuring SSL Support
What |s Secure Socket Layer Technology?

Understanding Digital Certificates
Configuring the SSL Connector
XML and Web Services Security

Example: Basic Authentication with JAX-RPC
Example: Client-Certificate Authentication over HTTP/SSL with

JAX-RPC

EJB-Tier Security
Declaring Method Permissions
Configuring IOR Security

Using Programmatic Security in the EJB Tier

Unauthenticated User Name
Application Client-Tier Security
EIS-Tier Security

Container-Managed Sign-On

Component-Managed Sign-On

Configuring Resource Adapter Security

Propagating Security Identity

Configuring a Component’ s Propagated Security |dentity

Configuring Client Authentication

What | s Java Authorization Contract for Containers?

Further Information

Chapter 33: The Java Message Service API

Overview
What |s Messaging?
What Isthe IMS API?
When Can You Usethe IMS API?

How Does the IMS APl Work with the J2EE Platform?

Basic JMS API Concepts
JMS API Architecture
Messaging Domains
Message Consumption
TheJMS API Programming Model
Administered Objects
Connections

1139
1140
1140
1149
1149
1150
1157
1160
1161

1169
1178
1178
1179
1180
1181
1181
1182
1182
1183
1184
1185
1185
1186
1187
1187

XXV

XXVi

Chapter 34:

CONTENTS

Sessions 1201
Message Producers 1202
Message Consumers 1203
Messages 1205
Exception Handling 1209
Writing Simple JM S Client Applications 1209
A Simple Example of Synchronous Message Receives 1210
A Simple Example of Asynchronous Message Consumption 1221
Running JM S Client Programs on Multiple Systems 1225
Creating Robust JM S Applications 1230
Using Basic Reliability Mechanisms 1231
Using Advanced Reliability Mechanisms 1238
Using the IMS API in a J2EE Application 1250
Using Session and Entity Beans to Produce and to Synchronously Re-
ceive Messages 1250
Using Message-Driven Beans 1252
Managing Distributed Transactions 1255
Using the IMS API with Application Clients and Web Components1257
Further Information 1257
J2EE Examples Using the IMS APl 1259
A J2EE Application That Usesthe IMS API with a Session Bean 1260
Writing the Application Components 1261
Creating and Packaging the Application 1263
Deploying the Application 1267
Running the Application Client 1268
A J2EE Application That Usesthe JMS API with an Entity Bean 1269
Overview of the Human Resources Application 1269
Writing the Application Components 1271
Creating and Packaging the Application 1273
Deploying the Application 1275
Running the Application Client 1276
An Application Example That Consumes M essages from a Remote
J2EE Server 1277
Overview of the Applications 1278
Writing the Application Components 1279
Creating and Packaging the Applications 1279
Deploying the Applications 1282
Running the Application Client 1283

An Application Example That DeploysaM essage-Driven Bean on Two

Chapter 35:

CONTENTS

J2EE Servers
Overview of the Applications
Writing the Application Components
Creating and Packaging the Applications
Deploying the Applications
Running the Application Client

The Coffee Break Application.

Common Code
JAX-RPC Coffee Supplier Service
Service Interface
Service Implementation
Publishing the Service in the Registry
Deleting the Service From the Registry
SAAJ Coffee Supplier Service
SAAJClient
SAAJ Service
Coffee Break Server
JSP Pages
JavaBeans Components
Retail PriceListServlet

JavaServer Faces Version of Coffee Break Server

JSP Pages
JavaBeans Components
Resource Configuration

Building, Packaging, Deploying, and Running the Application

Setting the Port

Setting Up the Registry Server
Using the Provided WARs
Building the Common Classes

Building, Packaging, and Deploying the JAX-RPC Service
Building, Packaging, and Deploying the SAAJ Service
Building, Packaging, and Deploying the Coffee Break Server

1284
1284
1286
1287
1290
1291

1328
1329
1329
1330
1330
1331
1331
1333
1334

Building, Packaging, and Deploying the JavaServer Faces Technology

Coffee Break Server
Running the Coffee Break Client
Removing the Coffee Break Application

1336
1337
1340

XXVii

XXViii

Chapter 36:

Appendix A:

Appendix B:
Soup

CONTENTS

The Duke’s Bank Application. 1343
Enterprise Beans 1344
Session Beans 1345
Entity Beans 1348
Helper Classes 1349
Database Tables 1350
Protecting the Enterprise Beans 1351
Application Client 1352
The Classes and Their Relationships 1353
BankAdmin Class 1354
EventHandle Class 1356
DataModel Class 1357
Web Client 1359
Design Strategies 1361
Client Components 1362
Request Processing 1365
Protecting the Web Client Resources 1367
I nternationalization 1369
Building, Packaging, Deploying, and Running the Application 1370
Setting Up the Servers 1371
Compiling the Duke’'s Bank Application Code 1372
Packaging and Deploying the Duke's Bank Application 1372
Reviewing INDI Names 1378
Running the Clients 1381
Running the Application Client 1381
Running the Web Client 1382
Java EncodingSchemes 1383
Further Information 1384

XML and Related Specs: Digesting the Alphabet
1385

Basic Standards 1386
SAX 1386
StAX 1387
DOM 1387
JDOM and dom4j 1387
DTD 1388

Namespaces 1389

Appendix C:

Appendix D:

CONTENTS

XSL
XSLT (+XPath)
Schema Standards
XML Schema
RELAX NG
SOX
Schematron
Linking and Presentation Standards
XML Linking
XHTML
Knowledge Standards
RDF
RDF Schema
XT™M
Standards That Build on XML
Extended Document Standards
e-Commerce Standards
Summary

HTTP Overview

HTTP Requests
HTTP Responses

J2EE Connector Architecture

About Resource Adapters
Resource Adapter Contracts
Management Contracts
Outbound Contracts
Inbound Contracts
Common Client Interface
Further Information

Glossary

About the Authors

1389
1389
1390
1391
1391
1391
1392
1392
1392
1393
1393
1393
1394
1394
1394
1395
1395
1396

XXiX

XXX CONTENTS

Foreword

When the first edition of The J2EE™ Tutorial was released, the Java™ 2 Plat-
form, Enterprise Edition (J2EE) was the new kid on the block. Modeled after its
forerunner, the Java 2 Platform, Standard Edition (J2SE™), the J2EE platform
brought the benefits of “Write Once, Run Anywhere™” API compatibility to
enterprise application servers. Now at version 1.4 and with widespread conform-
ance in the application server marketplace, the J2EE platform has firmly estab-
lished its position as the standard for enterprise application servers.

The J2EE™ Tutorial, Second Edition covers the J2EE 1.4 platform and more. If
you have used the first edition of The J2EE™ Tutorial you may notice that the
second edition istriple the size. Thisreflects amajor expansion in the J2EE plat-
form and the availability of two upcoming J2EE technologies in the Sun Java
System Application Server Platform Edition 8, the software on which the tutorial
is based.

One of the most important additions to the J2EE 1.4 platform is substantial sup-
port for Web services with the JAX-RPC 1.1 API, which enables Web service
endpoints based on servlets and enterprise beans. The platform also contains
Web services support APIs for handling XML data streams directly (SAAJ) and
for accessing Web services registries (JAXR). In addition, the J2EE 1.4 platform
requires WS- Basic Profile 1.0. This means that in addition to platform indepen-
dence and complete Web services support, the J2EE 1.4 platform offers Web ser-
vices interoperability.

The J2EE 1.4 platform contains major enhancements to the Java servlet and Jav-
aServer Pages (JSP) technologies that are the foundation of the Web tier. The
tutorial also showcases two exciting new technologies, not required by the 2EE
1.4 platform, that simplify the task of building J2EE application user interfaces:
JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces. These new

XXXi

XXXii

FOREWORD

technologies are available in the Sun Java System Application Server. They will
soon be featured in new developer tools and are strong candidates for inclusion
in the next version of the J2EE platform.

Readers conversant with the core J2EE platform enterprise bean technology will
notice major upgrades with the addition of the previously mentioned Web ser-
vice endpoints, as well as a timer service, and enhancements to EJB QL and
message-driven beans.

With all of these new features, | believe that you will find it well worth your time
and energy to take on the J2EE 1.4 platform. You can increase the scope of the
J2EE applications you develop, and your applications will run on the widest pos-
sible range of application server products.

To help you to learn al about the J2EE 1.4 platform, The J2EE™ Tutorial, Sec-
ond Edition follows the familiar Java Series tutorial model of concise descrip-
tions of the essentia features of each technology with code examples that you
can deploy and run on the Sun Java System Application Server. Read thistutorial
and you will become part of the next wave of J2EE application developers.

Jeff Jackson

Vice President, 2EE Platform and Application Servers
Sun Microsystems

Santa Clara, CA

June 17, 2004

About This Tutorial

T HE J2EE™ 1.4 Tutoria is a guide to developing enterprise applications for
the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here we cover all the
things you need to know to make the best use of thistutorial.

Who Should Use This Tutorial

This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.

Prerequisites

Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et a., (Addison-Wesley, 2000). In particular, you should be familiar
with relational database and security features described in the trails listed in
Table 1.

Table1l Prerequisite Trailsin The Java™ Tutorial

Trail URL
JDBC http://java.sun.com/docs/books/tutorial/jdbc
Security http://java.sun.com/docs/books/tutorial/securityl.?2

XXXiii

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2

XXXiV

ABOUT THIS TUTORIAL

How 1o Read This Tutorial

The J2EE 1.4 platform is quite large, and this tutorial reflects this. However, you
don't have to digest everything in it at once.

This tutorial opens with three introductory chapters, which you should read
before proceeding to any specific technology area. Chapter 1 coversthe J2EE 1.4
platform architecture and APIs along with the Sun Java System Application
Server Platform Edition 8. Chapters 2 and 3 cover XML basics and getting
started with Web applications.

When you have digested the basics, you can delve into one or more of the four
main technology areas listed next. Because there are dependencies between
some of the chapters, Figure 1 contains a roadmap for navigating through the
tutorial.

» TheJavaXML chapters cover the technol ogiesfor devel oping applications
that process XML documents and implement Web services component.:
» TheJavaAPI for XML Processing (JAXP)
» TheJavaAPI for XML-based RPC (JAX-RPC)
» SOAP with Attachments API for Java (SAAJ)
» TheJavaAPI for XML Registries (JAXR)
» The Web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-al one Web application:
» Java Servlet
» JavaServer Pages (JSP)
o JavaServer Pages Standard Tag Library (JSTL)
» JavaServer Faces
» Web application internationalization and localization
» The Enterprise JavaBeans (EJB) technology chapters cover the compo-
nents used in developing the business logic of a J2EE application:
* Session beans
» Entity beans
» Message-driven beans

ABOUT THIS TUTORIAL XXXV

¢ Enterprise JavaBeans Query Language
¢ The platform services chapters cover the system services used by al the
J2EE component technologies:
« Transactions
* Resource connections
e Security
* JavaMessage Service

Overview ()

P

Endas i Transactions (30)

Beans (23-29)

Getting Started with Understanding
Web Applications (3) XML (2)

Resource

Connections (31)
Building Web . !l
Services with JAXP (4-7)
JAX-RPC (8
P, Am— —_—

Servlets (11) Security (32)

SAAJ (9) | JAXR (10 P— —
f—_- _j -J)
JSP (12-16)

p———

JSF (17-21)

Y ¥ ¥ __
Duke’s Bank
Case Study (36)

P, S— Coffee Break
118n and Case Study (35)

L10n (22)

Figure1l Roadmap to This Tutorial

XXXV

ABOUT THIS TUTORIAL

After you have become familiar with some of the technology areas, you are
ready to tackle the case studies, which tie together severa of the technologies
discussed in the tutorial. The Coffee Break Application (Chapter 35) describes
an application that uses the Web application and Web services APIs. The Duke's
Bank Application (Chapter 36) describes an application that employs Web appli-
cation technologies and enterprise beans.

Finally, the appendixes contain auxiliary information helpful to the J2EE appli-
cation devel oper along with abrief summary of the J2EE Connector architecture:
» Javaencoding schemes (Appendix A)
» XML Standards (Appendix B)
e HTTP overview (Appendix C)
» J2EE Connector architecture (Appendix D)

About the Examples

This section tells you everything you need to know to instal, build, and run the
examples.

Required Software

Tutorial Bundle

The tutorial example source is contained in the tutorial bundle. If you are view-
ing this online, you need to download tutorial bundle from:

http://java.sun.com/j2ee/1.4/download.html#tutorial

After you have installed the tutoria bundle, the example source code is in the
<INSTALL>/j2eetutoriall4/examples/ directory, with subdirectories for each
of the technologies discussed in the tutorial.

Application Server

The Sun Java System Application Server Platform Edition 8 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and
run the examples, you need a copy of the Application Server and the Java 2 Soft-

http://java.sun.com/j2ee/1.4/download.html#tutorial

ABOUT THIS TUTORIAL

ware Development Kit, Standard Edition (J2SE SDK) 1.4.2 04 or higher. If you
already have a copy of the J2SE SDK, you can download the Application Server
from:

http://java.sun.com/j2ee/1.4/download.html#sdk

You can also download the J2EE 1.4 SDK—which contains the Application
Server and the 2SE SDK—from the same site.

Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,

» Select the Don't Prompt for Admin User Name radio button. Thiswill save
the user name and password so that you won't need to provide them when
performing administrative operations with asadmin and deploytool. You
will still haveto provide the user name and password tolog into the Admin
Console.

* Notethe HTTP port at which the server isinstalled. Thistutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port or if you decide to
change it yourself, you will need to update the common build properties
file (described in the next section) and the configuration files for some of
the tutorial examples to reflect the correct port.

In the Installation Options pane, check the Add Bin Directory to PATH checkbox
so that Application Server scripts (asadmin, asant, deploytool, and wscom-
pile) override other installations.

Registry Server

You need aregistry server to run the examples discussed in Chapters 10 and 35.
Directions for obtaining and setting up a registry server are provided in those
chapters.

Building the Examples

Most of the tutorial examples are distributed with a configuration file for asant,
a portable build tool contained in the Application Server. This tool is an exten-
sion of the Ant tool developed by the Apache Software Foundation
(http://ant.apache.org). The asant utility contains additional tasks that

XXXVii

http://ant.apache.org
http://java.sun.com/j2ee/1.4/download.html#sdk

XXXViii

ABOUT THIS TUTORIAL

invoke the Application Server administration utility asadmin. Directions for
building the examples are provided in each chapter.

Build properties and targets common to all the examples are specified in thefiles
<INSTALL>/j2eetutoriall4/examples/common/build.properties and
<INSTALL>/j2eetutoriall4d/examples/common/targets.xml. Build proper-
ties and targets common to a particular technology are specified in the files
<INSTALL>/j2eetutoriall4/examples/tech/common/build.properties
and <INSTALL>/j2eetutoriall4/examples/tech/common/targets.xml.

To run the asant scripts, you must set common build properties in the file
<INSTALL>/j2eetutoriall4/examples/common/build.properties as fol-
lows:

e Set the j2ee.home property to the location of your Application Server
installation. The build process uses the j2ee. home property to include the
librariesin <J2EE_HOME>/11ib/ in the classpath. All examples that run on
the Application Server include the J2EE library archive—
<J2EE_HOME>/1ib/j2ee.jar—inthe build classpath. Some examples use
additional libraries in <J2EE_HOME>/11ib/ and
<J2EE_HOME>/T11ib/endorsed/; the required libraries are enumerated in
the individual technology chapters. <J2EE_HOME> refers to the directory
where you have installed the Application Server or the J2EE 1.4 SDK.

Note: On Windows, you must escape any backslashes in the j2ee.home property
with another backslash or use forward sl ashes as a path separator. So, if your Appli-
cation Server installationisC:\Sun\AppServer, you must set j2ee. home asfollows:
j2ee.home = C:\\Sun\\AppServer

or

j2ee.home=C:/Sun/AppServer

» If you did not use the default value (admin) for the admin user, set the
admin.user property to the value you specified when you installed the
Application Server.

* Set the admin.password property to the value you specified when you
installed the Application Server.

* |If you did not use port 8080, set the domain.resources.port property to
the value specified when you installed the Application Server.

ABOUT THIS TUTORIAL XXXiX

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examplesis stored in the follow-
ing structure under each application directory:

* build.xml: asant build file

» src: Javasource of servlets and JavaBeans components; tag libraries

» web: JSP pagesand HTML pages, tag files, and images

The asant build files (bui1d.xm1) distributed with the examples contain targets
to create abuild subdirectory and to copy and compile files into that directory.

Further Information

This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
seethe man pagesat http://docs.sun.com/db/doc/817-6092.

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide a http://docs.sun.com/db/doc/817-6087 for information about
devel oper features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about
administering the Application Server.

For information about the PointBase database included with the Application
Server see the PointBase Web site at www. pointbase. com.

How to Buy This Tutorial

This tutoria has been published in the Java Series by Addison-Wedley as The
Java Tutorial, Second Edition. For information on the book and links to online
booksdllers, go to

http://java.sun.com/docs/books/j2eetutorial/index.html#second

http://docs.sun.com/db/doc/817-6088
http://www.pointbase.com
http://java.sun.com/docs/books/j2eetutorial/index.html#second
http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6087

xl

ABOUT THIS TUTORIAL

How 1o Print This Tutorial

To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader isinstalled on your system.
2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions

Table 2 lists the typographical conventions used in thistutorial.

Table2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

URLSs, code examples, file names, path names, tool hames,
monospace application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variablesin code, file paths, and URLs

<italic monospace> User-sel ected file path components

Menu selections indicated with the right-arrow character —, for example, First -
Second, should beinterpreted as. select the First menu, then choose Second from
the First submenu.

Acknowledgments

The J2EE tutorial team would like to thank the J2EE specification leads: Bill
Shannon, Pierre Delisle, Mark Roth, Yutaka Yoshida, Farrukh Najmi, Phil Good-
win, Joseph Fiali, Kate Stout, and Ron Monzillo and the J2EE 1.4 SDK team
members: Vivek Nagar, Tony Ng, Qingging Ouyang, Ken Saks, Jean-Francois

J2EETutorial.pdf

ABOUT THIS TUTORIAL xli

Arcand, Jan Luehe, Ryan Lubke, Kathy Walsh, Binod P G, Alejandro Murillo,
and Manveen Kaur.

The chapters on custom tags and the Coffee Break and Duke's Bank applications
use a template tag library that first appeared in Designing Enterprise Applica-
tions with the J2EE™ Platform, Second Edition, Inderjeet Singh et al., (Addi-
son-Wesley, 2002).

The JavaServer Faces technology and JSP Documents chapters benefited greatly
from the invaluable documentation reviews and example code contributions of
these engineers. Ed Burns, Justyna Horwat, Roger Kitain, Jan Luehe, Craig
McClanahan, Raj Premkumar, Mark Roth, and especially Jayashri Visvanathan.

The OrderApp example application described in the Container-Managed Persis-
tence chapter was coded by Marina Vatkina with contributions from Markus
Fuchs, Rochelle Raccah, and Deepa Singh. Ms. Vatkina's JIDO/CMP team pro-
vided extensive feedback on the tutorial’s discussion of CMP.

The security chapter writers are indebted to Raja Perumal, who was a key con-
tributor both to the chapter and to the examples.

Monica Pawlan and Beth Stearns wrote the Overview and J2EE Connector chap-
tersin the first edition of The J2EE Tutorial and much of that content has been
carried forward to the current edition.

We are extremely grateful to the many interna and external reviewers who pro-
vided feedback on the tutorial. Their feedback helped improve the technical
accuracy and presentation of the chapters and eliminate bugs from the examples.

We would like to thank our manager, Alan Sommerer, for his support and steady-
ing influence.

We also thank Duarte Design, Inc., and Zana Vartanian for developing the illus-
trations in record time. Thanks are also due to our copy editor, Betsy Hardinger,
for helping this multi-author project achieve a common style.

Finally, we would like to express our profound appreciation to Ann Sellers, Eliz-
abeth Ryan, and the production team at Addison-Wesley for graciously seeing
our large, complicated manuscript to publication.

Feedback

To send comments, broken link reports, errors, suggestions, and questions about
this tutoria to the tutorial team, please use the feedback form at

xlii ABOUT THIS TUTORIAL

http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendus-
mail.html.

http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html
http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html

Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and thereby leverage the speed, security, and reli-
ability of server-side technology. If you are already working in this area, you
know that in the fast-moving and demanding world of e-commerce and informa-
tion technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, the Java™ 2
Platform, Enterprise Edition (J2EE™) provides a component-based approach to
the design, development, assembly, and deployment of enterprise applications.
The J2EE platform offers a multitiered distributed application model, reusable
components, a unified security model, flexible transaction control, and Web ser-
vices support through integrated data interchange on Extensible Markup Lan-
guage (XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than ever,
but also your platform-independent J2EE component-based solutions are not tied
to the products and application programming interfaces (APIs) of any one ven-
dor. Vendors and customers enjoy the freedom to choose the products and com-
ponents that best meet their business and technological requirements.

This tutorial uses examples to describe the features and functionalities available
in the J2EE platform version 1.4 for devel oping enterprise applications. Whether
you are a new or an experienced developer, you should find the examples and
accompanying text a valuable and accessible knowledge base for creating your
own solutions.

OVERVIEW

If you are new to J2EE enterprise application devel opment, this chapter is agood
place to start. Here you will review development basics, learn about the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distributed Multitiered Applications

The J2EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1-1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1-1 are presented in
J2EE Components (page 3).

 Client-tier components run on the client machine.

» Web-tier components run on the J2EE server.

» Business-tier components run on the J2EE server.

 Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in
Figure 1-1, J2EE multitiered applications are generally considered to be three-
tiered applications because they are distributed over three locations: client
machines, the J2EE server machine, and the database or legacy machines at the
back end. Three-tiered applications that run in this way extend the standard two-
tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

J2EE COMPONENTS

J2EE J2EE
Application 1 Application 2
Application Dynamic Client Client
Client HTML Pages Tier Machine

' JSP Pages Web
Tier JZEE
. Server
/—\ /_\ ; Machine
Enterprise Enterprise Business
Beans Beans Tier
/"'_'"_ /-'"'__“-._ —
EIS Database
Database Database Tier Server
Machine

Figure1-1 Multitiered Applications

J2EE Components

J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The
J2EE specification defines the following J2EE components:

» Application clients and appl ets are components that run on the client.

» Java Servlet and JavaServer Pages™ (JSP™) technology components are
Web components that run on the server.

» Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-
ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, are verified to be well formed and in compli-
ance with the J2EE specification, and are deployed to production, where they are
run and managed by the J2EE server.

OVERVIEW

J2EE Clients

A J2EE client can be aWeb client or an application client.

Web Clients

A Web client consists of two parts: (1) dynamic Web pages containing various
types of markup language (HTML, XML, and so on), which are generated by
Web components running in the Web tier, and (2) a Web browser, which renders
the pages received from the server.

A Web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.
When you use athin client, such heavyweight operations are off-loaded to enter-
prise beans executing on the J2EE server, where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies.

Applets

A Web page received from the Web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine ingtalled in the Web browser. However,
client systemswill likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the Web browser.

Web components are the preferred API for creating a Web client program
because no plug-ins or security policy files are needed on the client systems.
Also, Web components enable cleaner and more modular application design
because they provide a way to separate applications programming from Web
page design. Personnel involved in Web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to
handle tasks that require aricher user interface than can be provided by amarkup
language. It typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line inter-
faceis certainly possible.

J2EE CLIENTS

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open
an HTTP connection to establish communication with a servlet running in the
Web tier.

The JavaBeans™ Component Architecture

The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans components) to manage the data flow
between an application client or applet and components running on the J2EE
server, or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have properties and have get and set methods for
accessing the properties. JavaBeans components used in this way are typically
simple in design and implementation but should conform to the naming and
design conventions outlined in the JavaBeans component architecture.

J2EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, as in the case of aclient running in a browser, by going through JSP
pages or servlets running in the Web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

OVERVIEW

Client Tier

Web Browser

Web Pages, —

Applets, and
Optional JavaBeans .
Components Web Tier Business

Tier

Application Client
and Optional
JavaBeans
Components

J2EE Server

Figure1-2 Server Communications

Web Components

J2EE Web components are either servlets or pages created using JSP technol ogy
(JSP pages). Serviets are Java programming language classes that dynamically
process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static con-
tent.

Static HTML pages and applets are bundled with Web components during appli-
cation assembly but are not considered Web components by the J2EE specifica-
tion. Server-side utility classes can also be bundled with Web components and,
like HTML pages, are not considered Web components.

As shown in Figure 1-3, the Web tier, like the client tier, might include a Java-
Beans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components

Business code, which islogic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1-4 shows how an enterprise bean receives
data from client programs, processes it (if necessary), and sends it to the enter-

BusINESS COMPONENTS

prise information system tier for storage. An enterprise bean aso retrieves data
from storage, processesit (if necessary), and sends it back to the client program.

Web Tier

Web Browser y (é
Web Pages,
Applets, and /

Optional JavaBeans JSP Pages
Components Servlets

OEVELELE :
Components Bu.sr'."ess
(Optional) er

Application Client
and Optional
JavaBeans
Components

J2EE Server

Figure 1-3 Web Tier and J2EE Applications

Business
Tier EIS Tier
Web Browser '
Web Pages,
Applets, and .
Op‘lIO'I"Igl JavaBeans JSP Pages JavaB / Entity Beans Database
Components Servlets DUlESIS Session Beans and

Cfb&g%r:g{:)ts Message-Driven sl.egacy
Application Client Beans ystems
and Optional
JavaBeans

Components

/———--..

J2EE Server

Figure14 Businessand EIS Tiers

There are three kinds of enterprise beans. session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with acli-
ent. When the client finishes executing, the session bean and its data are gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean data is saved. A message-driven bean combines fea-

OVERVIEW

tures of a session bean and a Java Message Service (JMS) message listener,
allowing a business component to receive JM S messages asynchronously.

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enter-
prise infrastructure systems such as enterprise resource planning (ERP), main-
frame transaction processing, database systems, and other legacy information
systems. For example, J2EE application components might need access to enter-
prise information systems for database connectivity.

J2EE Containers

Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applicea-
tions easy to write because business logic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a Web, enterprise
bean, or application client component can be executed, it must be assembled into
a J2EE module and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, including ser-
vices such as security, transaction management, Java Naming and Directory

CONTAINER TYPES

Interface™ (INDI) lookups, and remote connectivity. Here are some of the high-
lights:

» The J2EE security model lets you configure a Web component or enter-
prise bean so that system resources are accessed only by authorized users.

» The J2EE transaction model lets you specify relationships among methods
that make up asingle transaction so that all methods in one transaction are
treated as a single unit.

» JINDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access haming and directory services.

» The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it asif it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application com-
ponents within the same J2EE application can behave differently based on where
they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environ-
ment and another level of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in section JREE 1.4
APIs (page 18). Although data persistence is a nonconfigurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

Container Types

The deployment process ingtalls J2EE application components in the J2EE con-
tainersillustrated in Figure 1-5.

OVERVIEW

J2EE Server
(—_.
/‘ /—

’ | Serviet JSP Page

Web Container.

/—\.

Application

lient Database

Application /— - /— :
Client Enterprise |/ Enterprise
Container. Bean Bean

Client Machine EJB Container

Figure 1-5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
Web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. Web components and their container run on the J2EE server.

Application client container
Manages the execution of application client components. Application clients
and their container run on the client.

Applet container
Manages the execution of applets. Consists of a Web browser and Java Plug-
in running on the client together.

Web Services Support

Web services are Web-based enterprise applications that use open, XML -based
standards and transport protocolsto exchange datawith calling clients. The J2EE

XML

platform provides the XML APIs and tools you need to quickly design, develop,
test, and deploy Web services and clients that fully interoperate with other Web
services and clients running on Java-based or non-Java-based platforms.

To write Web services and clients with the 2EE XML APIs, all you do is pass
parameter data to the method calls and process the data returned; or for docu-
ment-oriented Web services, you send documents containing the service data
back and forth. No low-level programming is needed because the XML API
implementations do the work of tranglating the application data to and from an
XML-based data stream that is sent over the standardized XM L-based transport
protocols. These XML -based standards and protocols are introduced in the fol-
lowing sections.

The trandation of data to a standardized XML -based data stream is what makes
Web services and clients written with the J2EE XML APIs fully interoperable.
This does not necessarily mean that the data being transported includes XML
tags because the transported data can itself be plain text, XML data, or any kind
of binary data such as audio, video, maps, program files, computer-aided design
(CAD) documents and the like. The next section introduces XML and explains
how parties doing business can use XML tags and schemas to exchange datain a
meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data.
When XML datais exchanged between parties, the parties are free to create their
own tags to describe the data, set up schemas to specify which tags can be used
in a particular kind of XML document, and use XML stylesheets to manage the
display and handling of the data.

For example, a Web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own
stylesheets to handle the datain away that best suits their needs. Here are exam-
ples.
» One company might put XML pricing information through a program to
translatethe XML to HTML so that it can post the priceliststo itsintranet.

A partner company might put the XML pricing information through a tool
to create a marketing presentation.

» Another company might read the XML pricing information into an appli-
cation for processing.

11

12

OVERVIEW

SOAP Transport Protocol

Client requests and Web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and Web services, al running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request-and
response standard for sending messages over the Internet, and SOAPisan XML-
based protocol that follows the HT TP request-and-response model .

The SOAP portion of atransported message handles the following:

» Defines an XML-based envelope to describe what is in the message and
how to process the message

* Includes XML-based encoding rules to express instances of application-
defined data types within the message

» Defines an XML-based convention for representing the request to the
remote service and the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) isastandardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and ways to communicate with the service.
WSDL service descriptions can be stored in UDDI registries or published on the
Web (or both). The Sun Java System Application Server Platform Edition 8 pro-
vides a tool for generating the WSDL specification of a Web service that uses
remote procedure calls to communicate with clients.

UDDI and ebXML Standard Formats

Other XM L-based standards, such as Universal Description, Discovery and Inte-
gration (UDDI) and ebXML, make it possible for businesses to publish informa-
tion on the Internet about their products and Web services, where the information
can be readily and globally accessed by clients who want to do business.

PACKAGING APPLICATIONS

Packaging Applications

A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard
Java Archive (JAR) file with an .ear extension. Using EAR files and modules
makes it possible to assemble a number of different J2EE applications using
some of the same components. No extra coding is needed; it is only a matter of
assembling (or packaging) various J2EE modules into J2EE EAR files.

An EAR file (see Figure 1-6) contains J2EE modules and deployment descrip-
tors. A deployment descriptor isan XML document with an .xm1 extension that
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed
without the need to modify the source code. At runtime, the J2EE server reads
the deployment descriptor and acts upon the application, module, or component
accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE
deployment descriptor is defined by a J2EE specification and can be used to con-
figure deployment settings on any J2EE-compliant implementation. A runtime
deployment descriptor is used to configure J2EE implementation-specific
parameters. For example, the Sun Java System Application Server Platform Edi-
tion 8 runtime deployment descriptor contains information such as the context
root of a Web application, the mapping of portable names of an application’s
resources to the server’'s resources, and Application Server implementation-spe-
cific parameters, such as caching directives. The Application Server runtime
deployment descriptors are named sun-moduTleType.xm1 and are located in the
same directory as the J2EE deployment descriptor.

13

14

OVERVIEW

.
Assembly
Root

s B B

META-INF Web Module EJB Module

Application Resource
Client Module Adapter Module

application.xml
sun-application.xml

Figure1-6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. An enterprise bean
module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A J2EE module without an appli-
cation deployment descriptor can be deployed as a stand-alone module. The four
types of J2EE modules are as follows:

EJB modules, which contain class files for enterprise beans and an EJB
deployment descriptor. EJB modules are packaged asJAR fileswitha. jar
extension.

Web modules, which contain servlet classfiles, JSP files, supporting class
files, GIF and HTML files, and a Web application deployment descriptor.
Web modules are packaged as JAR fileswith a .war (Web archive) exten-
sion.

Application client modules, which contain class files and an application
client deployment descriptor. Application client modules are packaged as
JAR fileswith a . jar extension.

Resource adapter modules, which contain all Java interfaces, classes,
native libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 22) for a particular EIS.
Resource adapter modules are packaged as JAR files with an .rar
(resource adapter archive) extension.

DEVELOPMENT ROLES

Development Roles

Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

Thefirst two roles involve purchasing and installing the J2EE product and tools.
After softwareis purchased and installed, J2EE components can be devel oped by
application component providers, assembled by application assemblers, and
deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works
because each of the earlier roles outputs a portable file that is the input for a sub-
sequent role. For example, in the application component development phase, an
enterprise bean software developer delivers EJB JAR files. In the application
assembly role, another developer combines these EJB JAR files into a J2EE
application and savesit in an EAR file. In the application deployment role, a sys-
tem administrator at the customer site uses the EAR fileto install the J2EE appli-
cation into a J2EE server.

The different roles are not always executed by different people. If you work for a
small company, for example, or if you are prototyping a sample application, you
might perform the tasks in every phase.

J2EE Product Provider

The J2EE product provider is the company that designs and makes available for
purchase the J2EE platform APIs, and other features defined in the J2EE specifi-
cation. Product providers are typically operating system, database system, appli-
cation server, or Web server vendors who implement the J2EE platform
according to the Java 2 Platform, Enterprise Edition specification.

Tool Provider

The tool provider isthe company or person who creates development, assembly,
and packaging tools used by component providers, assemblers, and deployers.

15

16

OVERVIEW

Application Component Provider

The application component provider is the company or person who creates Web
components, enterprise beans, applets, or application clients for use in J2EE
applications.

Enterprise Bean Developer

An enterprise bean devel oper performsthe following tasks to deliver an EJB JAR
file that contains the enterprise bean(s):

» Writes and compiles the source code

 Specifies the deployment descriptor

» Packagesthe . class filesand deployment descriptor into the EJB JAR file

Web Component Developer

A Web component developer performs the following tasks to deliver a WAR file
containing the Web component(s):

» Writes and compiles servlet source code

» WritesJSP and HTML files

 Specifies the deployment descriptor

» Packagesthe .class, . jsp, and. htm1 filesand deployment descriptor into
the WAR file

Application Client Developer

An application client devel oper performs the following tasksto deliver aJAR file
containing the application client:

» Writes and compiles the source code
» Specifies the deployment descriptor for the client
» Packagesthe . class filesand deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application
modules from component providers and assembles them into a J2EE application

APPLICATION DEPLOYER AND ADMINISTRATOR

EAR file. The assembler or deployer can edit the deployment descriptor directly
or can use tools that correctly add XML tags according to interactive selections.
A software developer performs the following tasks to deliver an EAR file
containing the J2EE application:

» Assembles EJB JAR and WAR files created in the previous phases into a
J2EE application (EAR) file
» Specifies the deployment descriptor for the J2EE application

» Verifiesthat the contents of the EAR file are well formed and comply with
the J2EE specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who con-
figures and deploys the J2EE application, administers the computing and net-
working infrastructure where J2EE applications run, and oversees the runtime
environment. Duties include such things as setting transaction controls and secu-
rity attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the applica-
tion component provider to resolve external dependencies, specify security set-
tings, and assign transaction attributes. During installation, the deployer moves
the application components to the server and generates the container-specific
classes and interfaces.

A deployer or system administrator performs the following tasks to install and
configure a J2EE application:

» Addsthe J2EE application (EAR) file created in the preceding phaseto the
J2EE server

» Configures the J2EE application for the operational environment by mod-
ifying the deployment descriptor of the J2EE application

» Verifiesthat the contents of the EAR file are well formed and comply with
the J2EE specification

» Deploys (installs) the J2EE application EAR file into the J2EE server

17

18

OVERVIEW

J2EE 1.4 APIs

Figure 1-7 illustrates the availability of the JREE 1.4 platform APIs in each
J2EE container type. The following sections give a brief summary of the tech-
nologies required by the J2EE platform and the J2SE enterprise APIs that would
be used in J2EE applications.

Applet Web Container EJB Container
Container

4sP 7 serviet

'/;\.;;;let

£ Application

Client Container

-/A/p;Ii_cation

Client

JAX-
RPC

= £

Database

SINIS g3
[=
= L=]
2|32

I New in J2EE 1.4
Figure1-7 J2EE Platform APIs

Enterprise JavaBeans Technology

An Enterprise JavaBeans™ (EJB ™) component, or enterprise bean, is abody of
code having fields and methods to implement modules of business logic. You
can think of an enterprise bean as a building block that can be used aone or with
other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans. session beans,
entity beans, and message-driven beans. Enterprise beans often interact with
databases. One of the benefits of entity beansisthat you do not have to write any
SQL code or use the JDBC™ API (see IDBC API, page 22) directly to perform

JAVA SERVLET TECHNOLOGY

database access operations; the EJB container handles this for you. However, if
you override the default container-managed persistence for any reason, you will
need to use the JIDBC API. Also, if you choose to have a session bean access the
database, you must use the JDBC API.

Java Servlet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A serviet
class extends the capabilities of servers that host applications that are accessed
by way of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend the applica-
tions hosted by Web servers.

JavaServer Pages Technology

JavaServer Pages™ (JSP™) technology lets you put snippets of servliet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static data (which can be expressed in any text-based
format such as HTML, WML, and XML) and JSP elements, which determine
how the page constructs dynamic content.

Java Message Service API

The Java Message Service (IMS) API is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that isloosely coupled, reliable, and asynchronous.

Java Transaction API

The Java Transaction APl (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cationsthat are viewing datawill see the updated data after each database read or
write operation. However, if your application performs two separate database
access operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

19

20

OVERVIEW

JavaMail API

J2EE applications use the JavaMail™ API to send email notifications. The Java
Mail APl has two parts: an application-level interface used by the application
components to send mail, and a service provider interface. The J2EE platform
includes JavaMail with a service provider that allows application components to
send Internet mail.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. JAF provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML (SAX),
and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP aso provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser or XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
thisURL: http://www.w3.0org/XML/Schema.

Java API for XML-Based RPC

The Java APl for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTR, so client programs can make X ML-based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL, so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Javabased or non-Java-based platforms
such as .NET. For example, based on the WSDL document, a Visua Basic .NET
client can be configured to use a Web service implemented in Java technology, or
aWeb service can be configured to recognize a Visual Basic .NET client.

http://www.w3.org/XML/Schema

SOAP WITH ATTACHMENTS APl FOR JAVA

JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HT TP with a Java technol-
ogy version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocolsto establish basic or mutual authentication. SSL and TLS ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is ameasured way to verify whether aparty is eligible and able to
access certain information as away to protect against the fraudulent use of a sys-
tem or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
it'svery important to configure a JAX-RPC Web service to protect datain transit.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is alow-level API on which
JAX-RPC depends. SAAJ enables the production and consumption of messages
that conform to the SOAP 1.1 specification and SOAP with Attachments note.
Most developers do not use the SAAJ AP, instead using the higher-level JAX-
RPC API.

Java API for XML Registries

The Java APl for XML Registries (JAXR) lets you access business and general-
purpose registries over the Web. JAXR supports the ebXML Registry and Repos-
itory standards and the emerging UDDI specifications. By using JAXR, develop-
ers can learn a single APl and gain access to both of these important registry
technologies.

Additionally, businesses can submit material to be shared and search for material
that others have submitted. Standards groups have devel oped schemas for partic-
ular kinds of XML documents; two businesses might, for example, agree to use
the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
accessiit.

21

22

OVERVIEW

J2EE Connector Architecture

The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systemsthat can be plugged in to any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager of the EIS. Because a resource adapter is
specific to its resource manager, typically there is a different resource adapter for
each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based Web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector architecture
into the J2EE platform can be exposed as XML-based Web services by using
JAX-RPC and J2EE component models. Thus JAX-RPC and the J2EE Connec-
tor architecture are complementary technologies for enterprise application inte-
gration (EAI) and end-to-end business integration.

JDBC API

The JDBC API lets you invoke SQL commands from Java programing language
methods. You use the JDBC API in an enterprise bean when you override the
default container-managed persistence or have a session bean access the data-
base. With container-managed persistence, database access operations are han-
dled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JIDBC API from aservlet or
a JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts. an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Naming and Directory Interface

The Java Naming and Directory Interface™ (JNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for

JAVA AUTHENTICATION AND AUTHORIZATION SERVICE

objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of named Java object.

J2EE naming services provide application clients, enterprise beans, and Web
components with access to a INDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment
and provides it to the component as a INDI naming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access hamed system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects,
are stored in the environment naming context, java:comp/env. The J2EE plat-
form alows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontext java:comp/env/ejb, and JDBC DataSource references in the sub-
context java:comp/env/jdbc.

Because JNDI is independent of any specific implementation, applications can
use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
J2EE applications to coexist with legacy applications and systems. For more
information on INDI, see The INDI Tutorial:

http://java.sun.com/products/jndi/tutorial/index.html

Java Authentication and Authorization
Service

The Java Authentication and Authorization Service (JAAS) provides away for a
J2EE application to authenticate and authorize a specific user or group of users
torunit.

23

http://java.sun.com/products/jndi/tutorial/index.html

OVERVIEW

JAAS s aJava programing language version of the standard Pluggable Authenti-
cation Module (PAM) framework, which extends the Java 2 Platform security
architecture to support user-based authorization.

Simplified Systems Integration

The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but instead by trying to outdo each other in
providing products and services that benefit customers, such as better perfor-
mance, better tools, or better customer support.
The J2EE APIs enable systems and applications integration through the foll ow-
ing:

 Unified application model across tiers with enterprise beans

» Simplified request-and-response mechanism with JSP pages and servlets

* Reliable security model with JAAS

» XML-based datainterchange integration with JAXP, SAAJ, and JAX-RPC

» Simplified interoperability with the J2EE Connector architecture

 Easy database connectivity with the JDBC API

» Enterprise application integration with message-driven beans and JMS,

JTA, and INDI

You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice, by Rick Cattell and Jim
Inscore (Addison-Wesley, 2001):

http://java.sun.com/j2ee/inpractice/aboutthebook.htm]l

Sun Java System Application Server
Platform Edition 8

The Sun Java System Application Server Platform Edition 8 isafully compliant
implementation of the J2EE 1.4 platform. In addition to supporting al the APIs
described in the previous sections, the Application Server includes a number of

http://java.sun.com/j2ee/inpractice/aboutthebook.html

TECHNOLOGIES

J2EE technologies and tools that are not part of the J2EE 1.4 platform but are
provided as a convenience to the devel oper.

This section briefly summarizes the technologies and tools that make up the
Application Server, and instructions for starting and stopping the Application
Server, starting the Admin Console, starting deploytool, and starting and stop-
ping the PointBase database server. Other chapters explain how to use the
remaining tools.

Technologies

The Application Server includes two user interface technologies—JavaServer
Pages Standard Tag Library and JavaServer™ Faces—that are built on and used
in conjunction with the J2EE 1.4 platform technol ogies Java servlet and JavaSer-

ver Pages.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ a single, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL hasiterator and conditional tags for handling flow control, tags for manip-
ulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

JavaServer Faces

JavaServer Faces technology is a user interface framework for building Web
applications. The main components of JavaServer Faces technology are as fol-
lows:

* A GUI component framework.

» A flexible model for rendering components in different kinds of HTML or
different markup languages and technologies. A Renderer object gener-
ates the markup to render the component and converts the data stored in a
model object to types that can be represented in aview.

25

26

OVERVIEW

» A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

* Input validation
Event handling

» Data conversion between model objects and components
» Managed model object creation
» Page navigation configuration

All thisfunctionality is available via standard Java APIs and XML -based config-

uration files.

Tools

The Application Server contains the tools listed in Table 1-1. Basic usage infor-
mation for many of the tools appears throughout the tutorial. For detailed infor-
mation, see the online help in the GUI tools and the man pages at http://
docs.sun.com/db/doc/817-6092 for the command-line tools.

Table1-1 Application Server Tools

Component

Description

Admin Console

A Web-based GUI Application Server administration utility. Used to
stop the Application Server and manage users, resources, and appli-
cations.

asadmin

A command-line Application Server administration utility. Used to
start and stop the Application Server and manage users, resources,
and applications.

asant

A portable command-line build tool that is an extension of the Ant
tool developed by the Apache Software Foundation (seehttp://

ant.apache.org/). asant contains additional tasks that interact
with the Application Server administration utility.

appclient

A command-line tool that launches the application client container
and invokes the client application packaged in the application client
JARfile.

http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6092
http://ant.apache.org/
http://ant.apache.org/

STARTING AND STOPPING THE APPLICATION SERVER

Table1-1 Application Server Tools

Component Description

A command-linetool to extract schemainformation from a database,
capture-schema producing a schema file that the Application Server can use for con-
tainer-managed persistence.

A GUI tool to package applications, generate deployment descrip-

deploytoo] tors, and deploy applications on the Application Server.

A command-line tool to package the application client container

package-appclient | | iec and JAR files.

PointBase database An evaluation copy of the PointBase database server.

verifier A command-line tool to validate J2EE deployment descriptors.

A command-line tool to generate stubs, ties, serializers, and WSDL

wscompile filesused in JAX-RPC clients and services.

A command-line tool to generate implementation-specific, ready-to-

wsdeploy deploy WAR files for Web service applications that use JAX-RPC.

Starting and Stopping the Application
Server

To start and stop the Application Server, you use the asadmin utility. To start the
Application Server, open a terminal window or command prompt and execute
the following:

asadmin start-domain --verbose domainl
A domain is a set of one or more Application Server instances managed by one
administration server. Associated with a domain are the following:

» The Application Server’s port number. The default is 8080.
» The administration server’s port number. The default is 4848.
* An administration user name and password.

You specify these values when you install the Application Server. The examples
in this tutorial assume that you choose the default ports.

27

28

OVERVIEW

With no arguments, the start-domain command initiates the default domain,
which is domainl. The --verbose flag causes all logging and debugging output
to appear on the terminal window or command prompt (it will aso go into the
server log, which is located in <J2EE_HOME>/domains/domainl/logs/
server.log).

Or, on Windows, you can choose
Programs-Sun Microsystems—J2EE 1.4 SDK —Start Default Server

After the server has completed its startup sequence, you will see the following
output:

Domain domainl started.

To stop the Application Server, open aterminal window or command prompt and
execute

asadmin stop-domain domainl

Or, on Windows, choose
Programs-Sun Microsystems—J2EE 1.4 SDK —Stop Default Server

When the server has stopped you will see the following output:

Domain domainl stopped.

Starting the Admin Console

To administer the Application Server and manage users, resources, and J2EE
applications, you use the Admin Console tool. The Application Server must be
running before you invoke the Admin Console. To start the Admin Console,
open a browser at the following URL.:

http://localhost:4848/asadmin/

On Windows, from the Start menu, choose
Programs—-Sun Microsystems ~J2EE 1.4 SDK ~Admin Console

http://java.sun.com/j2ee/inpractice/aboutthebook.html

STARTING THE DEPLOYTOOL UTILITY 29

Starting the deploytool Utility

To package J2EE applications, specify deployment descriptor elements, and
deploy applications on the Application Server, you use the deploytool Uutility.
To start depToytool, open aterminal window or command prompt and execute

deploytool

On Windows, from the Start menu, choose
Programs—-Sun Microsystems—J2EE 1.4 SDK —Deploytool

Starting and Stopping the PointBase
Database Server

The Application Server includes an evaluation copy of the PointBase database.
To start the PointBase database server, follow these steps.

1. Inaterminal window, goto <J2EE_HOME>/pointbase/tools/serverop-
tion.

2. Execute the startserver script.
On Windows, from the Start menu, choose

Programs—-Sun Microsystems—J2EE 1.4 SDK —Start PointBase
To stop the PointBase server, follow these steps.

1. Inaterminal window, goto <J2EE_HOME>/pointbase/tools/serverop-
tion.

2. Execute the stopserver script.
On Windows, from the Start menu, choose
Programs—Sun Microsystems —J2EE 1.4 SDK —Stop PointBase

For information about the PointBase database included with the Application
Server see the PointBase Web site at www. pointbase. com.

http://www.pointbase.com

30

OVERVIEW

Debugging J2EE Applications

This section describes how to determine what is causing an error in your applica
tion deployment or execution.

Using the Server Log

One way to debug applications is to look at the server log in <J2EE_HOME>/
domains/domainl/Togs/server.log. The log contains output from the Appli-
cation Server and your applications. You can log messages from any Javaclassin
your application with System.out.println and the Java Logging APIs (docu-
mented at http://java.sun.com/j2se/1.4.2/docs/guide/util/Togging/
index.htm1) and from Web components with the ServletContext.10og method.

If you start the Application Server with the --verbose flag, al logging and
debugging output will appear on the terminal window or command prompt and
the server log. If you start the Application Server in the background, debugging
information is only available in the log. You can view the server log with a text
editor or with the Admin Console log viewer. To use the log viewer:

1. Select the Application Server node.

2. Select the Logging tab.

3. Click the Open Log Viewer button. The log viewer will open and display

the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

Using a Debugger

The Application Server supports the Java Platform Debugger Architecture
(JPDA). With JPDA, you can configure the Application Server to communicate
debugging information via a socket. In order to debug an application using a
debugger:

1. Enable debugging in the Application Server using the Admin Console as
follows:

a. Select the Application Server node.

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)

DEBUGGING J2EE APPLICATIONS

b. Select the WM Settings tab. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,
suspend=n,address=1044

Asyou can see, the default debugger socket port is 1044. You can change
it to aport not in use by the Application Server or another service.
¢. Check the Enabled box of the Debug field.
d. Click the Save button.
2. Stop the Application Server and then restart it.
3. Compile your Java source with the -g flag.
4, Package and deploy your application.

5. Start a debugger and connect to the debugger socket at the port you set
when you enabled debugging.

31

32

OVERVIEW

2
Understanding XML

THIS chapter describes Extensible Markup Language (XML) and its related
specifications. It aso gives you practice in writing XML data so that you can
become comfortably familiar with XML syntax.

Note: The XML files mentioned in this chapter can be found in
<INSTALL>/j2eetutoriall4/examples/xml/samples/.

Infroduction to XML

This section coversthe basics of XML. The goal isto give you just enough infor-
mation to get started so that you understand what XML isall about. (You'll learn
more about XML in later sections of the tutorial.) We then outline the major fea-
tures that make XML great for information storage and interchange, and give
you a general idea of how XML can be used.

What Is XML?

XML is atext-based markup language that is fast becoming the standard for data
interchange on the Web. Aswith HTML, you identify data using tags (identifiers
enclosed in angle brackets: <. . .>). Collectively, the tags are known as markup.

But unlike HTML, XML tags identify the data rather than specify how to display
it. Whereas an HTML tag says something like, “Display this data in bold font”

33

UNDERSTANDING XML

(...), an XML tag actslike afield namein your program. It puts alabel
on apiece of datathat identifiesit (for example, <message>. . .</message>).

Note: Because identifying the data gives you some sense of what it means (how to
interpret it, what you should do with it), XML is sometimes described as a mecha-
nism for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, for mul-
tiple applications to use the same XML data, they must agree on the tag names
they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool</subject>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to be in bold!

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. Asin HTML, the <to>
tag has a matching end tag: </to>. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
<to> tag is contained entirely within the scope of the <message>. .</message>
tag. It isthis ability for one tag to contain others that lets XML represent hierar-
chical data structures.

Again, aswith HTML, whitespace is essentially irrelevant, so you can format the
datafor readability and yet still processit easily with a program. Unlike HTML,
however, in XML you can easily search a data set for messages containing, say,
“cool” in the subject, because the XML tags identify the content of the data
rather than specify its representation.

WHAT IS XML?

Tags and Attributes

Tags can also contain attributes—additional information included as part of the
tag itself, within the tag's angle brackets. The following example shows an email
message structure that uses attributes for the to, from, and subject fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

As in HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored; if present, they generate an
error.

Because you can design a data structure such as <message> equally well using
either attributes or tags, it can take a considerable amount of thought to figure
out which design is best for your purposes. Designing an XML Data
Structure (page 76), includes ideas to help you decide when to use attributes and
when to use tags.

Empty Tags

One big difference between XML and HTML is that an XML document is
always constrained to be well formed. There are severa rules that determine
when a document is well formed, but one of the most important is that every tag
hasaclosing tag. So, in XML, the </to> tag is not optional. The <to> element is
never terminated by any tag other than </to>.

Note: Another important aspect of awell-formed document isthat all tags are com-
pletely nested. So you can have <message>. . <to>. .</to>. .</message>, but never
<message>. .<to>..</message>..</to>. A complete list of requirementsis con-
tained in the list of XML frequently asked questions (FAQ) at
http://www.ucc.ie/xml/#FAQ-VALIDWF. (This FAQ is on the W3C “Recom-
mended Reading” list at http://www.w3.0org/XML/.)

Sometimes, though, it makes sense to have atag that stands by itself. For exam-
ple, you might want to add a tag that flags the message as important: <flag/>.

35

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

36 UNDERSTANDING XML

Thiskind of tag does not enclose any content, so it's known as an empty tag. You
create an empty tag by ending it with /> instead of >. For example, the following
message contains an empty flag tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<flag/>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Using the empty tag saves you from having to code <fl1ag></f1ag> in order
to have a well-formed document. You can control which tags are allowed to be
empty by creating a schema or a document type definition, or DTD (page 1388). If
there isno DTD or schema associated with the document, then it can contain any
kinds of tags you want, as long as the document is well formed.

Comments in XML Files

XML commentslook just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<!-- This is a comment -->
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

The XML Prolog

To complete this basic introduction to XML, note that an XML file always starts
with a prolog. The minimal prolog contains a declaration that identifies the doc-
ument as an XML document:

<?xm1 version="1.0"7>
The declaration may also contain additional information:

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes"?>

WHAT IS XML?

The XML declaration is essentially the same as the HTML header, <html>,
except that it uses <?..7> and it may contain the following attributes:

» version: ldentifies the version of the XML markup language used in the
data. This attribute is not optional.

» encoding: ldentifies the character set used to encode the data. IS0-8859-
1isLatin-1, the Western European and English language character set.
(The default is 8-bit Unicode: UTF-8.)

* standalone: Tells whether or not this document references an external
entity or an external data type specification. If there are no external refer-
ences, then “yes’ is appropriate.

The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are valid in the document. Both declared in a document type definition
(DTD, page 1388) that can be defined directly within the prolog, as well as with
pointers to external specification files. But those are the subject of later tutorials.
For more information on these and many other aspects of XML, see the Recom-
mended Reading list on the W3C XML pageat http://www.w3.org/XML/.

Note: The declaration is actually optional, but it's a good idea to include it when-
ever you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future and if the data ever needsto be localized for
different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

Processing Instructions

An XML file can also contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

<?target instructions?>

target is the name of the application that is expected to do the processing, and
instructions is a string of characters that embodies the information or com-
mands for the application to process.

37

http://www.w3.org/XML/

38

UNDERSTANDING XML

Because the instructions are application-specific, an XML file can have multiple
processing instructions that tell different applications to do similar things,
athough in different ways. The XML file for a slide show, for example, might
have processing instructions that let the speaker specify a technical- or execu-
tive-level version of the presentation. If multiple presentation programs were
used, the program might need multiple versions of the processing instructions
(although it would be nicer if such applications recognized standard instruc-
tions).

Note: The target name “xml” (in any combination of upper- or lowercase |etters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you're working with the parser later,
you'll see that the method for handling processing instructions never sees the dec-
laration.)

Why Is XML Important?

There are anumber of reasons for XML's surging acceptance. This section listsa
few of the most prominent.

Plain Texi

Because XML is not abinary format, you can create and edit files using anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and it makes XML useful for storing small
amounts of data. At the other end of the spectrum, an XML front end to a data-
base makes it possible to efficiently store large amounts of XML dataaswell. So
XML provides scalability for anything from small configuration files to a com-
pany wide data repository.

Data Identification

XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break the datainto parts, an email pro-
gram can process it, a search program can look for messages sent to particular
people, and an address book can extract the address information from the rest of
the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

WHY IS XML |MPORTANT?

Stylability

When display is important, the stylesheet standard, XSL (page 1389), lets you
dictate how to portray the data. For example, consider this XML:

<to>you@yourAddress.com</to>

The stylesheet for this data can say

1. Start anew line.
2. Display “To:” in bold, followed by a space
3. Display the destination data.

This set of instructions produces:
To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, because XML is inherently style-free, you can
use a completely different stylesheet to produce output in Postscript, TEX, PDF,
or some new format that hasn’t even been invented. That flexibility amounts to
what one author described as “future proofing” your information. The XML doc-
uments you author today can be used in future document-delivery systems that
haven't even been imagined.

Inline Reusability

One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can beincluded “inline” in adocument. The
included sections look like a normal part of the document: you can search the
whole document at one time or download it in one piece. That lets you modular-
ize your documents without resorting to links. You can single-source a section so
that an edit to it is reflected everywhere the section is used, and yet a document
composed from such pieces looks for al the world like a one-piece document.

Linkability

Thanksto HTML, the ability to define links between documents is now regarded
as a necessity. Appendix B discusses the link-specification initiative. Thisinitia-

UNDERSTANDING XML

tive lets you define two-way links, multiple-target links, expanding links (where
clicking a link causes the targeted information to appear inline), and links
between two existing documents that are defined in athird.

Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be delim-
ited by </dt>, another <dt>, <dd>, or </d1>. That makes for some difficult pro-
gramming. But in XML, the <dt> tag must always have a </dt> terminator, or it
must be an empty tag such as <dt/>. That restriction is acritical part of the con-
straints that make an XML document well formed. (Otherwise, the XML parser
won't be able to read the data.) And because XML is a vendor-neutral standard,
you can choose among several XML parsers, any one of which takes the work
out of processing XML data.

Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, as if you were stepping through a table of contents. They
are also easier to rearrange, because each piece is delimited. In a document, for
example, you could move a heading to a new location and drag everything under
it along with the heading, instead of having to page down to make a selection,
cut, and then paste the selection into a new location.

How Can You Use XML?

There are severa basic waysto use XML.:

 Traditional dataprocessing, where XML encodesthe datafor a program to
process

» Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components

» Archiving—the foundation for document-driven programming—where
the customized version of acomponent is saved (archived) so that it can be
used later

How CAN You Use XML?

» Binding, where the DTD or schemathat defines an XML data structureis
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing

XML isfast becoming the data representation of choice for the Web. It’s terrific
when used in conjunction with network-centric Java platform programs that send
and retrieve information. So a client-server application, for example, could trans-
mit XM L-encoded data back and forth between the client and the server.

In the future, XML is potentialy the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an email program expect to see tags named <FIRST> and <LAST>, or
<FIRSTNAME> and <LASTNAME>?) The need for common standards will generate a
lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “trandate” the tags in an XML document will be
important. Such mechanisms include projects such as the Resource Description
Framework initiative (RDF, page 1393), which defines meta tags, and the Exten-
sible Stylesheet Language specification (XSL, page 1389), which lets you trans-
late XML tagsinto other XML tags.

Document-Driven Programming

The newest approach to using XML is to construct a document that describes
what an application page should look like. The document, rather than simply
being displayed, consists of references to user interface components and busi-
ness-logic components that are “hooked together” to create an application on-
the-fly.

Of course, it makes sense to use the Java platform for such components. To con-
struct such applications, you can use JavaBeans components for interfaces and
Enterprise JavaBeans components for the business logic. Although none of the
efforts undertaken so far is ready for commercial use, much preliminary work
has been done.

Note: The Java programming language is also excellent for writing XML-process-
ing toolsthat are as portable as XML. Several visual XML editors have been written
for the Java platform. For alisting of editors, see http://www.xm1.com/pub/pt/3.

41

http://www.xml.com/pub/pt/3

42

UNDERSTANDING XML

For processing tools and other XML resources, see Robin Cover's SGML/XML
Web page at http://xml.coverpages.org/software.html.

Binding

After you have defined the structure of XML data using either aDTD or one of
the schema standards, a large part of the processing you need to do has already
been defined. For example, if the schema says that the text datain a <date> ele-
ment must follow one of the recognized date formats, then one aspect of the val-
idation criteria for the data has been defined; it only remains to write the code.
Although a DTD specification cannot go the same level of detail, aDTD (like a
schema) provides a grammar that tells which data structures can occur and in
what sequences. That specification tells you how to write the high-level code that
processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That process is
known as binding—creating classes that recognize and process different data
elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, and you can focus on the programming that is unigue to
your application.

Archiving

The Holy Grail of programming is the construction of reusable, modular compo-
nents. Ideally, you'd like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it and instantiate it using its saved parameters. (For example, if
you saved a table component, its parameters might be the number of rows and
columns to display.) Archived components can also be shuffled around the Web
and used in avariety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classesif you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that's

http://xml.coverpages.org/software.html

GENERATING XML DATA

hard to do with a binary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object's state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “ Search and replace.”

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For al these reasons, thereis alot of
interest in XML-based archiving.

Summary

XML is pretty simple and very flexible. It has many uses yet to be discovered,
and we are only beginning to scratch the surface of its potential. It is the founda-
tion for a great many standards yet to come, providing a common language that
different computer systems can use to exchange data with one another. As each
industry group comes up with standards for what it wants to say, computers will
begin to link to each other in ways previously unimaginable.

Generating XML Data

This section takes you step by step through the process of constructing an XML
document. Along the way, you'll gain experience with the XML components
you'll typically use to create your data structures.

Writing a Simple XML File

You'll start by writing the kind of XML datayou can use for aslide presentation.
To become comfortable with the basic format of an XML file, you'll use your
text editor to create the data. You'll use thisfile and extend it in later exercises.

Creating the File

Using a standard text editor, create afile called s1ideSample.xm1.

Note: Hereisaversion of it that already exists: s1ideSamp1e01.xm1. (The brows-
able version is s1ideSample0l-xml.html1.) YOu can use this version to compare
your work or just review it as you read this guide.

43

../examples/xml/samples/slideSample01-xml.html
../examples/xml/samples/slideSample01.xml

UNDERSTANDING XML

Writing the Declaration

Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters <?, which is aso the standard XML identi-
fier for a processing instruction. (You'll see processing instructions later in this
tutorial.)

<?xm1 version='1.0"' encoding='utf-8'?>

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Appendix A.)

Because the document has not been specified as standalone, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as standalone, see The XML Prolog (page 36).

Adding a Comment

Comments are ignored by XML parsers. A program will never see them unless
you activate special settings in the parser. To put acomment into thefile, add the
following highlighted text.

<?xml version='1.0' encoding="utf-8'?>

<!-- A SAMPLE set of slides -->

Defining the Root Element

After the declaration, every XML file defines exactly one element, known asthe
root element. Any other elements in the file are contained within that element.
Enter the following highlighted text to define the root element for this file,
sTideshow:

<?xm1 version='1.0"' encoding="utf-8'?>
<!-- A SAMPLE set of slides -->
<s1ideshow>

</s1ideshow>

DEFINING THE ROOT ELEMENT 45

Note: XML element names are case-sensitive. The end tag must exactly match the
start tag.

Adding Attributes to an Element

A dlide presentation has a number of associated data items, none of which
requires any structure. So it is natural to define these data items as attributes of
the s1ideshow element. Add the following highlighted text to set up some
attributes:

<s1lideshow
title="Sample S1lide Show"
date="Date of publication"
author="Yours Truly"
>

</s1ideshow>

When you create a nhame for a tag or an attribute, you can use hyphens (-),
underscores (_), colons (:), and periods (.) in addition to characters and num-
bers. Unlike HTML, values for XML attributes are always in quotation marks,
and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided, because they are used when
defining the namespace for an XML document.

Adding Nested Elements

XML allowsfor hierarchically structured data, which means that an element can
contain other elements. Add the following highlighted text to define a slide ele-
ment and atitle element contained within it:

<sTideshow
>

<!-- TITLE SLIDE -->
<slide type="all">

46

UNDERSTANDING XML

<title>Wake up to WonderWidgets!</title>
</s1lide>

</sTideshow>

Here you have also added a type attribute to the dide. The idea of this attribute
is that you can earmark dlides for a mostly technical or mostly executive audi-
ence using type="tech" or type="exec", or identify them as suitable for both
audiences using type="all".

More importantly, this example illustrates the difference between things that are
more usefully defined as elements (the tit1e element) and things that are more
suitable as attributes (the type attribute). The visibility heuristic is primarily at
work here. The title is something the audience will see, so it is an element. The
type, on the other hand, is something that never gets presented, so it is an
attribute. Another way to think about that distinction is that an element is a con-
tainer, like a bottle. The type is a characteristic of the container (tall or short,
wide or narrow). Thetitle is a characteristic of the contents (water, milk, or ted).
These are not hard-and-fast rules, of course, but they can help when you design
your own XML structures.

Adding HTML-Style Text

Because XML letsyou define any tags you want, it makes sense to define a set of
tagsthat look like HTML. In fact, the XHTML standard does exactly that. You'll
see more about that toward the end of the SAX tutorial. For now, type the follow-
ing highlighted text to define a slide with a couple of list item entries that use an
HTML-style tag for emphasis (usually rendered asitalicized text):

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</sTide>

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item>Who buys WonderWidgets</item>
</s1lide>

</s1ideshow>

DEFINING THE ROOT ELEMENT 47

Note that defining atitle element conflicts with the XHTML element that uses
the same name. Later in this tutorial, we discuss the mechanism that produces
the conflict (the DTD), along with possible solutions.

Adding an Empty Element

One mgjor difference between HTML and XML is that all XML must be well
formed, which means that every tag must have an ending tag or be an empty tag.
By now, you're getting pretty comfortable with ending tags. Add the following
highlighted text to define an empty list item element with no contents:

<!-- OVERVIEW -->
<s1lide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</sTide>

</s1ideshow>

Note that any element can be an empty element. All it takes is ending the tag
with /> instead of >. You could do the same thing by entering <item></1item>,
which is equivalent.

Note: Another factor that makes an XML file well formed is proper nesting. So
<i>some_text</i> is well formed, because the <i>...</i> sequence is
completely nested within the . . tag. This sequence, on the other hand, is
not well formed: <i>some_text</i>.

UNDERSTANDING XML

The Finished Product

Here is the completed version of the XML file:
<?xml version='1.0' encoding="utf-8'?>
<!-- A SAMPLE set of slides -->

<s1lideshow
title="Sample S1lide Show"
date="Date of publication™
author="Yours Truly"
>

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</sTide>

<!-- OVERVIEW -->
<s1lide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</sTide
</sTideshow>

Save a copy of thisfile as s1ideSample01.xm1 so that you can use it as the ini-
tial data structure when experimenting with XML programming operations.

Writing Processing Instructions

It sometimes makes sense to code application-specific processing instructionsin
the XML data. In this exercise, you'll add a processing instruction to your
s1lideSample.xml file.

Note: The fileyou'll create in this section is s1ideSamp1e02.xm1. (The browsable
version is s1ideSample02-xm1.htm1.)

As you saw in Processing Instructions (page 37), the format for a processing
instructionis<?target data?>, where target isthe application that is expected
to do the processing, and data is the instruction or information for it to process.

../examples/xml/samples/slideSample02.xml
../examples/xml/samples/slideSample02-xml.html

INTRODUCING AN ERROR

Add the following highlighted text to add a processing instruction for a mythical
dlide presentation program that will query the user to find out which slidesto dis-
play (technical, executive-level, or al):

<sTideshow
>
<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

<!-- TITLE SLIDE -->

Notes:

» The data portion of the processing instruction can contain spaces or it can
even be null. But there cannot be any space between the initial <? and the
target identifier.

» The data begins after the first space.

It makes sense to fully qualify the target with the complete Web-unique
package prefix, to preclude any conflict with other programs that might
process the same data.

 For readability, it seems like a good idea to include a colon (:) after the
name of the application:

<?my.presentation.Program: QUERY="..."7>

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, even though the W3C spec
allows a colon in atarget name, some versions of Internet Explorer 5 (IE5)
consider it an error. For this tutorial, then, we avoid using a colon in the tar-
get name.

Save a copy of this file as s1ideSamp1e02.xm1 so that you can use it when
experimenting with processing instructions.

Infroducing an Error

The parser can generate three kinds of errors: afatal error, an error, and awarn-
ing. In this exercise, you'll make a simple modification to the XML file to intro-
duce afatal error. Later, you'll see how it’s handled in the Echo app.

49

50

UNDERSTANDING XML

Note: The XML structureyou'll createinthisexerciseisin s1ideSampleBadl.xml.
(The browsable versionis sT1ideSampTeBadl-xm1.htm1.)

One easy way to introduce a fatal error is to remove the final / from the empty
item element to create a tag that does not have a corresponding end tag. That
constitutes afatal error, because all XML documents must, by definition, be well
formed. Do the following:

1. Copy s1ideSampT1e02.xm1 t0 s1ideSampleBadl.xm1.
2. Edit s1ideSampleBadl.xm1 and remove the character shown here:

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<items>
<item>Who buys WonderWidgets</item>
</slide>

This change produces the following:

<item>Why WonderWidgets are great</item>
<item>
<item>Who buys WonderWidgets</item>

Now you have afile that you can use to generate an error in any parser, any time.
(XML parsers are required to generate a fatal error for thisfile, because the lack
of an end tag for the <item> element means that the XML structure is no longer
well formed.)

Substituting and Inserting Text

In this section, you'll learn about

» Handling specia characters (<, & and so on)
» Handling text with XML-style syntax

../examples/xml/samples/slideSampleBad1.xml
../examples/xml/samples/slideSampleBad1-xml.html

SUBSTITUTING AND INSERTING TEXT

Handling Special Characters

In XML, an entity isan XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

&entityName;

Later, when you learn how to write a DTD, you'll see that you can define your
own entities so that &yourEntityName; expands to al the text you defined for
that entity. For now, though, we'll focus on the predefined entities and character
references that don’t require any special definitions.

Predefined Entities

An entity reference such as & contains a name (in this case, amp) between
the start and end delimiters. Thetext it refersto (&) is substituted for the name, as
with amacro in a programming language. Table 2-1 shows the predefined enti-
tiesfor specia characters.

Table2-1 Predefined Entities

Char acter Name Reference
& ampersand &
< less than <
> greater than >
quote "
! apostrophe '

Character References

A character reference such as “ contains a hash mark (#) followed by a
number. The number is the Unicode value for a single character, such as 65 for
the letter A, 147 for the left curly quote, or 148 for the right curly gquote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

51

52 UNDERSTANDING XML

Note: XML expects valuesto be specified in decimal. However, the Unicode charts
at http://www.unicode.org/charts/ specify values in hexadecimal! So you'll
need to do a conversion to get the right value to insert into your XML data set.

Using an Entity Reference in an XML
Document

Suppose you want to insert aline like thisin your XML document:

Market Size < predicted

The problem with putting that line into an XML file directly is that when the
parser sees the left angle bracket (<), it starts looking for atag name, throws off
the parse. To get around that problem, you put &1t; in thefile instead of <.

Note: The results of the next modifications are contained in s1ideSamp1e03.xm1.

Add the following highlighted text to your sTideSample.xm1 file, and save a
copy of it for future use as s1ideSample03.xm1:

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>

</sﬁ%ae>

<slide type="exec'">
<title>Financial Forecast</title>
<item>Market Size < predicted</item>
<item>Anticipated Penetration</item>
<item>Expected Revenues</item>
<item>Profit Margin</item>

</s1lide>

</s1ideshow>
When you use an XML parser to echo this data, you will see the desired output:

Market Size < predicted

http://www.unicode.org/charts/
../examples/xml/samples/slideSample03.xml

SUBSTITUTING AND INSERTING TEXT

You see an angle bracket (<) where you coded &1t ;, because the XML parser
converts the reference into the entity it represents and passes that entity to the
application.

Handling Text with XML-Style Syntax

When you are handling large blocks of XML or HTML that include many spe-
cia characters, it is inconvenient to replace each of them with the appropriate
entity reference. For those situations, you can use a CDATA section.

Note: Theresults of the next modifications are contained in s1ideSamp1e04.xm1.

A CDATA section works like <pre>...</pre> in HTML, only more so: al
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <! [CDATA[and endswith 1]>.

Add the following highlighted text to your sTideSample.xm1 file to define a
CDATA section for a fictitious technical dlide, and save a copy of the file as
sTlideSamp1e04.xml:

<slide type="tech">
<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>
<item><![CDATA[Diagram:

frobmorten <-----————————-- fuznaten
[<3> A
| <1> | <1> = fozzle
Vv | <2> = framboze

staten-----——————— + <3> = frenzle

<2>
11></item>
</slide>

</sTideshow>

53

../examples/xml/samples/slideSample04.xml

UNDERSTANDING XML

When you echo this file with an XML parser, you see the following output:

Diagram:
frobmorten <--————————————- fuznaten
| <3> A
| <1> | <1> = fozzle
\Y | <2> = framboze
staten---—————————— - + <3> = frenzle

The point here is that the text in the CDATA section arrives as it was written.
Because the parser doesn't treat the angle brackets as XML, they don’t generate
the fatal errors they would otherwise cause. (If the angle brackets weren't in a
CDATA section, the document would not be well formed.)

Creating a Document Type Definition

After the XML declaration, the document prolog can include a DTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it seesis sig-
nificant or ignorable.

Basic DTD Definitions

To begin learning about DTD definitions, let's start by telling the parser where
text is expected and where any text (other than whitespace) would be an error.
(Whitespace in such locationsis ignorable.)

Note: The DTD defined in this section is contained in s1ideshowla.dtd. (The
browsable version is s1ideshowla-dtd.html.)

Start by creating a file named s1ideshow.dtd. Enter an XML declaration and a
comment to identify the file:

<?xm1 version='1.0"' encoding="utf-8'?>

<!--
DTD for a simple "slide show"
-—>

../examples/xml/samples/slideshow1a.dtd
../examples/xml/samples/slideshow1a-dtd.html

CREATING A DOCUMENT TYPE DEFINITION

Next, add the following highlighted text to specify that a s1ideshow element
contains s11de elements and nothing el se:

<!-- DTD for a simple "slide show" -->

<!ELEMENT slideshow (slide+)>

Asyou can see, the DTD tag starts with <! followed by the tag name (ELEMENT).
After the tag name comes the name of the element that is being defined (s11ide-
show) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a s1ideshow consists of one or
more s11de elements.

Without the plus sign, the definition would be saying that a s1ideshow consists
of asingle s1ide element. The qualifiers you can add to an element definition
arelisted in Table 2-2.

Table2—2 DTD Element Qualifiers

Qualifier Name Meaning

? Question mark Optional (zero or one)
Asterisk Zero or more

+ Plussign One or more

You can include multiple elements inside the parentheses in a comma-separated
list and use a qualifier on each element to indicate how many instances of that
element can occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after
defining an image element (discussed shortly), you can specify ((image,
title)+) to declare that every image element in a slide must be paired with a
title element. Here, the plus sign applies to the image/title pair to indicate
that one or more pairs of the specified items can occur.

55

56

UNDERSTANDING XML

Defining Text and Nested Elements

Now that you have told the parser something about where not to expect text, let’s
see how to tell it where text can occur. Add the following highlighted text to
definethe s1ide, title, item, and 1ist elements:

<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!'ELEMENT -+item (#PCDATA | item)* >

Thefirst line you added says that a slide consists of atit1e followed by zero or
more item elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (PCDATA). That's known as “text” in most parts
of the country, but in XML-speak it's called “ parsed character data.” (That distin-
guishes it from CDATA sections, which contain character data that is not parsed.)
The # that precedes PCDATA indicates that what follows is a special word rather
than an element name.

The last line introduces the vertical bar (), which indicates an or condition. In
this case, either PCDATA or an item can occur. The asterisk at the end says that
either element can occur zero or more times in succession. The result of this
specification is known as a mixed-content model, because any number of +item
elements can be interspersed with the text. Such models must always be defined
with #PCDATA specified first, followed by some number of aternate items
divided by vertical bars(|), and an asterisk (*) at the end.

Save a copy of this DTD as slideSamplela.dtd for use when you experiment with
basic DTD processing.

Limitations of DTDs

It would be nice if we could specify that an item contains either text, or text fol-
lowed by one or more list items. But that kind of specification turns out to be
hard to achieve in aDTD. For example, you might be tempted to define an 1 tem
thisway:

<!ELEMENT item (#PCDATA | (#PCDATA, item+)) >

That would certainly be accurate, but as soon as the parser sees #PCDATA and the
vertical bar, it requires the remaining definition to conform to the mixed-content
model. This specification doesn’t, so you get can error that says I11egal mixed

CREATING A DOCUMENT TYPE DEFINITION

content model for 'item'. Found (..., wherethe hex character 28
is the angle bracket that ends the definition.

Trying to double-define the item element doesn’t work either. Suppose you try a
specification like this:

<!ELEMENT item (#PCDATA) >
<!ELEMENT item (#PCDATA, item+) >

This sequence produces a “duplicate definition” warning when the validating
parser runs. The second definition is, in fact, ignored. So it seems that defining a
mixed-content model (which allows item elements to be interspersed in text) is
the best we can do.

In addition to the limitations of the mixed-content model we've mentioned, there
is no way to further qualify the kind of text that can occur where PCDATA has
been specified. Should it contain only numbers? Should it be in a date format, or
possibly a monetary format? There is no way to specify such thingsinaDTD.

Finally, note that the DTD offers no sense of hierarchy. The definition of the
title element applies equally to a s1ide title and to an 1item title. When we
expand the DTD to allow HTML-style markup in addition to plain text, it would
make sense to, for example, restrict the size of an item title compared with that
of aslide title. But the only way to do that would be to give one of them a dif-
ferent name, such as item-title. The bottom lineisthat the lack of hierarchy in
the DTD forces you to introduce a “ hyphenation hierarchy” (or its equivalent) in
your namespace. All these limitations are fundamental motivations behind the
development of schema-specification standards.

Special Element Values in the DTD

Rather than specify a parenthesized list of elements, the element definition can
use one of two special values. ANY or EMPTY. The ANY specification says that the
element can contain any other defined element, or PCDATA. Such a specification
isusually used for the root element of a general-purpose XML document such as
you might create with aword processor. Textual elements can occur in any order
in such adocument, so specifying ANY makes sense.

The EMPTY specification says that the element contains no contents. So the DTD
for email messages that let you flag the message with <f1ag/> might have aline
likethisin the DTD:

<!ELEMENT flag EMPTY>

57

58

UNDERSTANDING XML

Referencing the DTD

In this case, the DTD definition is in a separate file from the XML document.
With this arrangement, you reference the DTD from the XML document, and
that makesthe DTD file part of the external subset of the full document type def-
inition for the XML file. Asyou'll see later on, you can aso include parts of the
DTD within the document. Such definitions constitute the local subset of the
DTD.

Note: The XML written in this section is contained in s1ideSamp1e05.xm1. (The
browsable version is s1ideSamp1e05-xm1.htm1.)

To reference the DTD file you just created, add the following highlighted line to
your s1ideSample.xm1 file, and save a copy of the file as s1ideSamp1e05.xm1:

<!-— A SAMPLE set of slides -->
<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

<sTideshow

Again, the DTD tag starts with <!. In this case, the tag name, DOCTYPE, says that
the document is a s1ideshow, which means that the document consists of the
s1ideshow element and everything within it;

<sTideshow>
</s'| ideshow>

This tag defines the s1ideshow element as the root element for the document.
An XML document must have exactly one root element. This is where that ele-
ment is specified. In other words, this tag identifies the document content as a
sTideshow.

The DOCTYPE tag occurs after the XML declaration and before the root element.
The SYSTEM identifier specifies the location of the DTD file. Because it does not
start with a prefix such ashttp:/ or file:/, the path is relative to the location
of the XML document. Remember the setDocumentLocator method? The
parser is using that information to find the DTD file, just as your application
would useit to find afile relative to the XML document. A PUBLIC identifier can
also be used to specify the DTD file using a unique name, but the parser would
have to be able to resolveit.

../examples/xml/samples/slideSample05.xml
../examples/xml/samples/slideSample05-xml.html

DOCUMENTS AND DATA

The DOCTYPE specification can also contain DTD definitions within the XML
document, rather than refer to an external DTD file. Such definitions are con-
tained in square brackets:

<!DOCTYPE slideshow SYSTEM "sTideshowl.dtd" [
...local subset definitions here...

1>

You'll take advantage of that facility in amoment to define some entities that can
be used in the document.

Documents and Data

Earlier, you learned that one reason you hear about XML documents, on the one
hand, and XML data, on the other, is that XML handles both comfortably,
depending on whether text is or is not allowed between elementsin the structure.

In the sample file you have been working with, the s1ideshow element is an
example of adata element: it contains only subelements with no intervening text.
The item element, on the other hand, might be termed a document element,
because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of
the title element to include HTML-style markup, which will turn it into a docu-
ment element as well.

Defining Attributes and Entities in the DTD

The DTD you've defined so far isfine for use with a nonvalidating parser. It tells
where text is expected and where it isn't, and that is all the nonvalidating parser
pays attention to. But for use with the validating parser, the DTD must specify
the valid attributes for the different elements. You'll do that in this section, and
then you'll define one internal entity and one external entity that you can refer-
encein your XML file.

Defining Attributes in the DTD

Let’'s start by defining the attributes for the elements in the slide presentation.

59

UNDERSTANDING XML

Note: The XML written in this section is contained in s1ideshowlb.dtd. (The
browsable version is s1ideshowlb-dtd.htm1.)

Add the following highlighted text to define the attributes for the s1ideshow ele-
ment:

<!ELEMENT slideshow (sTide+)>
<!ATTLIST slideshow
title CDATA #REQUIRED
date CDATA #IMPLIED
author CDATA "unknown"
>
<!ELEMENT sTlide (title, item*)>

The DTD tag ATTLIST begins the series of attribute definitions. The name that
follows ATTLIST specifies the element for which the attributes are being defined.
In this case, the element is the s11ideshow element. (Note again the lack of hier-
archy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas
and other separators are not allowed, so formatting the definitions as shown here
is helpful for readability. The first element in each line is the name of the
attribute: title, date, or author, in this case. The second element indicates the
type of the data: CDATA is character data—unparsed data, again, in which a left
angle bracket (<) will never be construed as part of an XML tag. Table 2-3 pre-
sents the valid choices for the attribute type.

Table 2-3 Attribute Types

Attribute Type Specifies...

(valuel | value2 | ...) | Alistof values separated by vertical bars

CDATA Unparsed character data (a text string)

D A name that no other ID attribute shares

IDREF A referenceto an ID defined el sewhere in the document
IDREFS A space-separated list containing one or more ID references
ENTITY The name of an entity defined inthe DTD

../examples/xml/samples/slideshow1b.dtd
../examples/xml/samples/slideshow1b-dtd.html

DEFINING ATTRIBUTES AND ENTITIESIN THE DTD

Table 2-3 Attribute Types

Attribute Type Specifies...
ENTITIES A space-separated list of entities
NMTOKEN A valid XML name composed of letters, numbers, hyphens,

underscores, and colons

NMTOKENS A space-separated list of names

The name of a DTD-specified notation, which describes a
non-XML dataformat, such as those used for image files.

NOTATION (Thisisarapidly obsolescing specification which will be dis-

cussed in greater length towards the end of this section.)

When the attribute type consists of a parenthesized list of choices separated by
vertical bars, the attribute must use one of the specified values. For an example,
add the following highlighted text to the DTD:

<!ELEMENT sTide (title, item*)>
<!ATTLIST slide

type (tech | exec | al1) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT 1item (#PCDATA | item)* >

This specification says that the s1ide element’s type attribute must be given as
type="tech", type="exec", Or type="all". No other values are acceptable.
(DTD-aware XML editors can use such specifications to present a pop-up list of
choices.)

The last entry in the attribute specification determines the attribute’s default
value, if any, and tells whether or not the attribute is required. Table 2—4 shows
the possible choices.

Table 2—4 Attribute-Specification Parameters

Specification Specifies...

#REQUIRED The attribute value must be specified in the document.

61

UNDERSTANDING XML

Table 2—4 Attribute-Specification Parameters

Specification Specifies...

The value need not be specified in the document. If itisn't, the

#IMPLIED L . .
application will have a default value it uses.

The default value to use if avalueis not specified in the docu-

“defaultvValue”
ment.

The value to use. If the document specifies any value at al, it

#FIXED “fixedValue must be the same.

Finally, save a copy of the DTD as s1ideshowlb.dtd for use when you experi-
ment with attribute definitions.

Defining Entities in the DTD

So far, you've seen predefined entities such as & and you've seen that an
attribute can reference an entity. It’s time now for you to learn how to define enti-
ties of your own.

Note: The XML you'll create here is contained in s1ideSample06.xm1. (The
browsable version is s1ideSamp1e06-xm1.htm1.)

Add the following highlighted text to the DOCTYPE tag in your XML file:

<!DOCTYPE slideshow SYSTEM "sTideshow.dtd" [
<!ENTITY product '"WonderWidget">
<!ENTITY products "WonderWidgets'>

1>

The ENTITY tag name says that you are defining an entity. Next comes the name
of the entity and its definition. In this case, you are defining an entity named
product that will take the place of the product name. Later when the product
name changes (as it most certainly will), you need only change the name in one
place, and all your slides will reflect the new value.

Thelast part is the substitution string that replaces the entity name whenever it is
referenced in the XML document. The substitution string is defined in quotes,
which are not included when the text is inserted into the document.

../examples/xml/samples/slideSample06.xml
../examples/xml/samples/slideSample06-xml.html

DEFINING ATTRIBUTES AND ENTITIESIN THE DTD 63

Just for good measure, we defined two versions—one singular and one plural—
so that when the marketing mavens come up with “Wally” for a product name,
you will be prepared to enter the plura as “Wallies’ and have it substituted cor-
rectly.

Note: Truth betold, thisisthe kind of thing that really belongsin an external DTD
so that al your documents can reference the new name when it changes. But, hey,
thisis only an example.

Now that you have the entities defined, the next step is to reference them in the
dlide show. Make the following highlighted changes:

<sTideshow

title="WonderWidget&product; Slide Show"

<!-— TITLE SLIDE -->
<s1lide type="all">
<title>Wake up to WenderWidgets&products;!</title>

</slide>

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>

<item>Why WenderWidgets&products; are

great</item>
<item/>
<item>Who buys WenderWidgets&products;</item>
</sTide>

Notice two points. Entities you define are referenced with the same syntax
(&entityName;) that you use for predefined entities, and the entity can be refer-
enced in an attribute value aswell asin an element’s contents.

When you echo this version of the file with an XML parser, here is the kind of
thing you'll see:

Wake up to WonderWidgets!

Note that the product name has been substituted for the entity reference.

To finish, save a copy of the file as s1ideSamp1e06.xm1.

UNDERSTANDING XML

Additional Useful Entities

Here are severa other examples for entity definitions that you might find useful
when you write an XML document:

<!ENTITY ldquo "“"> <!-- Left Double Quote -->
<!ENTITY rdquo "”"> <!-- Right Double Quote -->
<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->
<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->
<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing External Entities

You can also use the SYSTEM or PUBLIC identifier to name an entity that is
defined in an external file. You'll do that now.

Note: The XML defined here is contained in s1ideSamp1e07.xm1 and in copy-
right.xml1. (The browsable versions are s1lideSample07-xml1.htm1l and copy-
right-xml.html.)

To reference an external entity, add the following highlighted text to the DOCTYPE
statement in your XML file:

<!DOCTYPE slideshow SYSTEM "sTideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">
<!ENTITY copyright SYSTEM "copyright.xml">
1>

This definition references a copyright message contained in a file named copy-
right.xm1. Createthat file and put someinteresting text in it, perhaps something
likethis:

<!-- A SAMPLE copyright -->

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
Tlap...

../examples/xml/samples/slideSample07.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/slideSample07-xml.html
../examples/xml/samples/copyright-xml.html
../examples/xml/samples/copyright-xml.html

DEFINING ATTRIBUTES AND ENTITIESIN THE DTD

Finally, add the following highlighted text to your s1ideSample.xm1 file to ref-
erence the external entity, and save a copy of thefile as s1ideSamp1e07.htm1:

<!-- TITLE SLIDE -->
</slide>

<!-- COPYRIGHT SLIDE -->
<slide type="all">

<item>©right;</item>
</slide>

You could also use an external entity declaration to access a servlet that produces
the current date using a definition something like this:

<!ENTITY currentDate SYSTEM
"http://www.example.com/serviet/Today?fmt=dd-MMM-yyyy">

You would then reference that entity the same as any other entity:
Today's date 1is ¤tDate;.

When you echo the latest version of the dide presentation with an XML parser,
hereiswhat you'll see:

<slide type="all">

<item>
This 1is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
Tlap...

</1item>
</slide>

You'll notice that the newline that follows the comment in the file is echoed as a
character, but that the comment itself isignored. This newline is the reason that
the copyright message appears to start on the next line after the <item> element
instead of on the same line: the first character echoed is actually the newline that
follows the comment.

65

66

UNDERSTANDING XML

Summarizing Entities

An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity that contains XML (text and markup), and is therefore parsed, is
known as a parsed entity. An entity that contains binary data (such asimages) is
known as an unparsed entity. (By its nature, it must be external.) In the next sec-
tion, we discuss references to unparsed entities.

Referencing Binary Entities

This section discusses the options for referencing binary files such asimage files
and multimedia datafiles.

Using a MIME Data Type

There are two ways to reference an unparsed entity such as a binary image file.
One is to use the DTD’s NOTATION specification mechanism. However, that
mechanism is a complex, unintuitive holdover that exists mostly for compatibil-
ity with SGML documents.

Note: SGML stands for Standard Generalized Markup Language. It was extremely
powerful but so general that a program had to read the beginning of a document just
tofind out how to parsethe remainder of it. Some very large document-management
systems were built using it, but it was so large and complex that only the largest
organizations managed to deal with it. XML, on the other hand, chose to remain
small and simple—more like HTML than SGML—and, as a result, it has enjoyed
rapid, widespread deployment. This story may well hold a moral for schema stan-
dards aswell. Time will tell.

We will have occasion to discuss the subject in a bit more depth when we look at
the DTDHand1er API, but suffice it for now to say that the XML namespaces
standard, in conjunction with the MIME data types defined for electronic mes-
saging attachments, together provide a much more useful, understandable, and
extensible mechanism for referencing unparsed external entities.

REFERENCING BINARY ENTITIES

Note: The XML described hereisin s1ideshowlb.dtd. (The browsable versionis
slideshowlb-dtd.htm1.) It shows how binary references can be made, assuming
that the application that will process the XML data knows how to handle such ref-
erences.

To set up the slide show to use image files, add the following highlighted text to
your s1ideshowlb.dtd file:

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT -item (#PCDATA | item)* >
<!ELEMENT -+image EMPTY>
<!ATTLIST image

alt CDATA #IMPLIED

src CDATA #REQUIRED

type CDATA "image/gif"
>

These modifications declare image as an optiona element in as1ide, defineit as
empty element, and define the attributes it requires. The image tag is patterned
after the HTML 4.0 img tag, with the addition of an image type specifier, type.
(The img tag is defined in the HTML 4.0 specification.)

The image tag's attributes are defined by the ATTLIST entry. The a1t attribute,
which defines alternative text to display in case the image can’t be found, accepts
character data (CDATA). It has an implied value, which means that it is optional
and that the program processing the data knows enough to substitute something
such as“Image not found.” On the other hand, the src attribute, which namesthe
image to display, isrequired.

The type attribute is intended for the specification of a MIME data type, as
defined at http://www.iana.org/assignments/media-types/. It hasadefault
value: image/gif.

Note: Itisunderstood herethat the character data (CDATA) used for the type attribute
will be one of the MIME data types. The two most common formats are image/gif
and image/jpeg. Given that fact, it might be nice to specify an attribute list here,
using something like

type ("image/gif", "image/jpeg")

../examples/xml/samples/slideshow1b-dtd.html
http://www.iana.org/assignments/media-types
../examples/xml/samples/slideshow1b.dtd

68

UNDERSTANDING XML

That won't work, however, because attribute lists are restricted to name tokens. The
forward slash isn't part of the valid set of name-token characters, so this declaration
fails. Also, creating an attribute list in the DTD would limit the valid MIME types
to those defined today. Leaving it as CDATA |eaves things more open-ended so that
the declaration will continue to be valid as additional types are defined.

In the document, a reference to an image named “intro-pic” might look some-
thing like this:

<image src="image/intro-pic.gif", alt="Intro Pic",
type="1image/gif" />

The Alternative: Using Entity References

Using a MIME data type as an attribute of an element is a flexible and expand-
able mechanism. To create an external ENTITY reference using the notation
mechanism, you need DTD NOTATION elements for JPEG and GIF data. Those
can, of course, be obtained from a central repository. But then you need to define
a different ENTITY element for each image you intend to reference! In other
words, adding a new image to your document always requires both a new entity
definition in the DTD and a reference to it in the document. Given the antici-
pated ubiquity of the HTML 4.0 specification, the newer standard is to use the
MIME data types and a declaration such as image, which assumes that the appli-
cation knows how to process such elements.

Defining Parameter Entities and
Conditional Sections

Just as a genera entity lets you reuse XML datain multiple places, a parameter
entity lets you reuse parts of a DTD in multiple places. In this section you'll see
how to define and use parameter entities. You'll also see how to use parameter
entities with conditiona sectionsinaDTD.

Creating and Referencing a Parameter Entity

Recall that the existing version of the slide presentation can not be validated
because the document uses tags, and they are not part of the DTD. In gen-
eral, we'd like to use a variety of HTML-style tags in the text of a slide, and not

DEFINING PARAMETER ENTITIES AND CONDITIONAL SECTIONS

just one or two, so using an existing DTD for XHTML makes more sense than
defining such tags ourselves. A parameter entity isintended for exactly that kind
of purpose.

Note: The DTD specifications shown here are contained in s1ideshow2.dtd and
xhtm1.dtd. The XML filethat referencesit iss1ideSamp1e08.xm1. (The browsable
versons are slideshow2-dtd.html, xhtml-dtd.html, and slideSample08-
xm1.html.)

Open your DTD file for the dide presentation and add the following highlighted
text to define a parameter entity that references an external DTD file:

<!ELEMENT slide (image?, title?, item*)>
<!ATTLIST slide

>

<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml ;

<!ELEMENT title ...

Here, you use an <! ENTITY> tag to define a parameter entity, just asfor a general
entity, but you use a somewhat different syntax. You include a percent sign (%)
before the entity name when you define the entity, and you use the percent sign
instead of an ampersand when you reference it.

Also, note that there are always two steps to using a parameter entity. The first is
to define the entity name. The second is to reference the entity name, which actu-
ally does the work of including the externa definitions in the current DTD.
Because the uniform resource identifier (URI) for an externa entity could con-
tain dashes (/) or other characters that are not valid in an XML name, the defini-
tion step allows a valid XML name to be associated with an actual document.
(This same technique is used in the definition of namespaces and anywhere else
that XML constructs need to reference external documents.)

Notes:

» The DTD file referenced by this definition is xhtm1.dtd. (The browsable
version isxhtml-dtd.htm1.) You can either copy that file to your system or
modify the SYSTEM identifier in the <!ENTITY> tag to point to the correct
URL.

../examples/xml/samples/slideshow2.dtd
../examples/xml/samples/xhtml-dtd.html
../examples/xml/samples/xhtml-dtd.html
../examples/xml/samples/xhtml.dtd
../examples/xml/samples/slideSample08.xml
../examples/xml/samples/slideshow2-dtd.html
../examples/xml/samples/slideSample08-xml.html
../examples/xml/samples/slideSample08-xml.html
../examples/xml/samples/xhtml.dtd

70

UNDERSTANDING XML

» Thisfileisasmall subset of the XHTML specification, loosely modeled
after the Modularized XHTML draft, which aims at breaking up the DTD
for XHTML into bite-sized chunks, which can then be combined to create
different XHTML subsets for different purposes. When work on the mod-
ularized XHTML draft has been completed, this version of the DTD
should be replaced with something better. For now, thisversion will suffice
for our purposes.

The point of using an XHTML-based DTD is to gain access to an entity it
defines that covers HTML-style tags like and . Looking through
xhtm1.dtd reveals the following entity, which does exactly what we want:

<!ENTITY % inline "#PCDATA|em|blal|img|br">

This entity is a simpler version of those defined in the Modularized XHTML
draft. It defines the HTML-style tags we are most likely to want to use—empha-
sis, bold, and break—plus a couple of others for images and anchors that we may
or may not use in aslide presentation. To use the in11ne entity, make the follow-
ing highlighted changesin your DTD file:

<!ELEMENT title (#PCBATA %inline;)*>
<!ELEMENT item (#RCDATA %inline; | item)* >

These changes replace the simple #PCDATA item with the inline entity. It is
important to notice that #PCDATA is first in the in1ine entity and that inline is
first wherever we use it. That sequence is required by XML's definition of a
mixed-content model. To be in accord with that model, you also must add an
asterisk at the end of the tit1e definition.

Savethe DTD as s1ideshow2.dtd for use when you experiment with parameter
entities.

Note: The Modularized XHTML DTD defines both in1ine and Inline entities,
and does so somewhat differently. Rather than specify #PCDATA|em|b|a|img|br,
the definitions are more like (#PCDATA|em|b|alimg|br)*. Using one of those def-
initions, therefore, looks more like this;

<!ELEMENT title %Inline; >

DEFINING PARAMETER ENTITIES AND CONDITIONAL SECTIONS

Conditional Sections

Before we proceed with the next programming exercise, it is worth mentioning
the use of parameter entities to control conditional sections. Although you can-
not conditionalize the content of an XML document, you can define conditional
sectionsin a DTD that become part of the DTD only if you specify include. If
you specify ignore, on the other hand, then the conditiona section is not
included.

Suppose, for example, that you wanted to use dlightly different versions of a
DTD, depending on whether you were treating the document as an XML docu-
ment or as a SGML document. You can do that with DTD definitions such as the
following:

someExternal.dtd:

<![INCLUDE [
... XML-onTy definitions
11>

<![IGNORE [
... SGML-only definitions
11>

. common definitions

The conditional sections are introduced by <! [, followed by the INCLUDE or
IGNORE keyword and another [. After that comes the contents of the conditional
section, followed by the terminator: 1]1>. In this case, the XML definitions are
included, and the SGML definitions are excluded. That's fine for XML docu-
ments, but you can’t use the DTD for SGML documents. You could change the
keywords, of course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the INCLUDE
and IGNORE keywords:

someExternal.dtd:

<![%XML; [
... XML-onTy definitions
11>

<!'[%SGML; [
... SGML-only definitions
11>

. common definitions

71

72

UNDERSTANDING XML

Then each document that uses the DTD can set up the appropriate entity defini-
tions:

<!DOCTYPE foo SYSTEM "someExternal.dtd" [
<!ENTITY % XML "INCLUDE" >
<!ENTITY % SGML "IGNORE" >

1>

<foo>

</%66>
This procedure puts each document in control of the DTD. It also replaces the
INCLUDE and IGNORE keywords with variable names that more accurately reflect

the purpose of the conditional section, producing a more readable, self-docu-
menting version of the DTD.

Resolving a Naming Conflict

The XML structures you have created thus far have actually encountered a small
naming conflict. It seemsthat xhtm1.dtd definesatitle element that isentirely
different from the tit1e element defined in the slide-show DTD. Because there
is no hierarchy in the DTD, these two definitions conflict.

Note: TheModularized XHTML DTD aso definesatit1e element that isintended
to be the document title, so we can’t avoid the conflict by changing xhtm1.dtd. The
problem would only come back to haunt us later.

You can use XML namespaces to resolve the conflict. You'll take alook at that
approach in the next section. Alternatively, you can use one of the more hierar-
chical schema proposals described in Schema Standards (page 1390). The sim-
plest way to solve the problem for now is to rename the title element in
sTideshow.dtd.

Note: The XML shown here is contained in slideshow3.dtd and
sTideSampl1e09.xm1, which references copyright.xm1 and xhtml.dtd. (The
browsable versions are s1ideshow3-dtd.htm1, s1ideSamp1e09-xm1.html, copy-
right-xml1.html, and xhtm1-dtd.htm1.)

../examples/xml/samples/copyright-xml.html
../examples/xml/samples/copyright-xml.html
../examples/xml/samples/slideshow3.dtd
../examples/xml/samples/slidesample09.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/xhtml.dtd
../examples/xml/samples/slideshow3-dtd.html
../examples/xml/samples/slideSample09-xml.html
../examples/xml/samples/xhtml-dtd.html

USING NAMESPACES

To keep the two title elements separate, you'll create a hyphenation hierarchy.
Make the following highlighted changes to change the name of the title ele-
ment in s1ideshow.dtd to sTide-title

<!ELEMENT sl1ide (image?, slide-title?, item*)>
<IATTLIST slide
type (tech | exec | all) #IMPLIED

>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT slide-title (%inline;)*>

SavethisDTD as s1ideshow3.dtd.

The next step isto modify the XML file to use the new element name. To do that,
make the following highlighted changes:

<slide type="all">
<slide-title>Wake up to ... </slide-title>
</slide>

<!-- OVERVIEW -->

<s1lide type="all">
<slide-title>0Overview</slide-title>
<item>...

Save acopy of thisfile as s1ideSamp1e09.xm1.

Using Namespaces

As you saw earlier, one way or another it is necessary to resolve the conflict
between the title element defined in s1ideshow.dtd and the one defined in
xhtm1.dtd when the same nameis used for different purposes. In the preceding
exercise, you hyphenated the name in order to put it into a different namespace.
In this section, you'll see how to use the XML namespace standard to do the
same thing without renaming the element.

73

74

UNDERSTANDING XML

The primary goal of the namespace specification is to let the document author
tell the parser which DTD or schema to use when parsing a given element. The
parser can then consult the appropriate DTD or schemafor an element definition.
Of coursg, it is also important to keep the parser from aborting when a “dupli-
cate” definition isfound and yet still generate an error if the document references
an element such as title without qualifying it (identifying the DTD or schema
to use for the definition).

Note: Namespaces apply to attributesaswell asto elements. In this section, we con-
sider only elements. For more information on attributes, consult the namespace
specification at http://www.w3.org/TR/REC-xm1-names/.

Defining a Namespace in a DTD

In a DTD, you define a namespace that an element belongs to by adding an
attribute to the element’s definition, where the attribute name is xmins (“xml
namespace”). For example, you can do that in s1ideshow.dtd by adding an
entry such as the following in the title element’s attribute-list definition:

<!ELEMENT title (%inline;)*>
<!ATTLIST title

xmlns CDATA #FIXED "http://www.example.com/sT1ideshow"
>

Declaring the attribute as FIXED has severa important features:

* It prevents the document from specifying any honmatching value for the
xm1ns attribute.

» The element defined in this DTD is made unique (because the parser
understands the xm1ns attribute), so it does not conflict with an element
that has the same nhamein another DTD. That allows multiple DTDsto use
the same element name without generating a parser error.

» When a document specifies the xmins attribute for a tag, the document
sel ects the element definition that has a matching attribute.

To be thorough, every element name in your DTD would get exactly the same
atribute, with the same value. (Here, though, we're concerned only about the
title element.) Note, too, that you are using a CDATA string to supply the URI.
In this case, we've specified a URL. But you could also specify a universal
resource name (URN), possibly by specifying a prefix such as urn: instead of

http://www.w3.org/TR/REC-xml/names/

USING NAMESPACES

http:. (URNSs are currently being researched. They're not seeing a lot of action
at the moment, but that could change in the future.)

Referencing a Namespace

When a document uses an element name that exists in only one of the DTDs or
schemas it references, the name does not need to be qualified. But when an ele-
ment name that has multiple definitions is used, some sort of qualification is a
necessity.

Note: In fact, an element name is always qualified by its default namespace, as
defined by the name of the DTD file it residesin. Aslong as there is only one defi-
nition for the name, the qualification isimplicit.

You qualify areference to an element name by specifying the xm1ns attribute, as
shown here:

<title xmlns="http://www.example.com/s1ideshow">
Overview
</title>

The specified namespace applies to that element and to any elements contained
within it.

Defining a Namespace Prefix

When you need only one namespace reference, it's not a big deal. But when you
need to make the same reference several times, adding xm1ns attributes becomes
unwieldy. It also makes it harder to change the name of the namespace later.

The alternative is to define a namespace prefix, which is as simple as specifying
xmlns, acolon (:), and the prefix name before the attribute value:

<SL:sTideshow xmlns:SL="http:/www.example.com/s1lideshow’
. >

</SL:s1ideshow>

This definition sets up SL as a prefix that can be used to qualify the current ele-
ment name and any element within it. Because the prefix can be used on any of

75

76

UNDERSTANDING XML

the contained elements, it makes the most sense to define it on the XML docu-
ment’s root element, as shown here.

Note: The namespace URI can contain characters that are not valid in an XML
name, so it cannot be used directly as a prefix. The prefix definition associates an
XML namewith the URI, and that allowsthe prefix name to be used instead. It also
makes it easier to change references to the URI in the future.

When the prefix is used to qualify an e ement name, the end tag also includes the
prefix, as highlighted here:

<SL:sTideshow xmlns:SL="http:/www.example.com/s1ideshow’
L

<slide>
<SL:title>Overview</SL:title>
</sTide>

</éL;s1ideshow>
Finally, note that multiple prefixes can be defined in the same element:

<SL:s1lideshow xmlns:SL="http:/www.example.com/s1ideshow’

xmlns:xhtml="urn:..."'>
</SL:s1ideshows

With thiskind of arrangement, all the prefix definitions are together in one place,
and you can use them anywhere they are needed in the document. This example
also suggests the use of aURN instead of a URL to define the xhtm1 prefix. That
definition would conceivably allow the application to reference alocal copy of
the XHTML DTD or some mirrored version, with a potentially beneficial impact
on performance.

Designing an XML Data Structure

This section covers some heuristics you can use when making XML design deci-
sions.

SAVING YOURSELF SOME WORK

Saving Yourself Some Work

Whenever possible, use an existing schema definition. It's usually alot easier to
ignore the things you don’'t need than to design your own from scratch. In addi-
tion, using a standard DTD makes data interchange possible, and may make it
possible to use data-aware tools devel oped by others.

So if an industry standard exists, consider referencing that DTD by using an
external parameter entity. One place to look for industry-standard DTDsis at the
Web site created by the Organization for the Advancement of Structured Infor-
mation Standards (OASIS). You can find a list of technical committees at
http://www.oasis-open.org/ or check its repository of XML standards at
http://www.XML.org.

Note: Many more good thoughts on the design of XML structures are at the OASIS
page http://www.oasis-open.org/cover/elementsAndAttrs.html.

Atiributes and Elements

One of the issues you will encounter frequently when designing an XML struc-
tureiswhether to model agiven dataitem as a subelement or as an attribute of an
existing element. For example, you can model the title of a dlide thisway:

<slide>
<title>This is the title</title>
</sTide>

Or you can do it thisway:
<sTide title="This 1is the title">...</slide>

In some cases, the different characteristics of attributes and elements make it
easy to choose. Let’s consider those cases first and then move on to the cases
where the choice is more ambiguous.

77

http://www.oasis-open.org/
http://www.XML.org
http://www.oasis-open.org/cover/elementsAndAttrs.html

78

UNDERSTANDING XML

Forced Choices

Sometimes, the choice between an attribute and an element is forced on you by
the nature of attributes and elements. Let’s look at afew of those considerations:

Thedata containssubstructures. Inthiscase, the dataitem must be mod-
eled as an element. It can't be modeled as an attribute, because attributes
take only simple strings. So if the title can contain emphasized text (The
Best Choice) then the title must be an element.

The data contains multiplelines. Here, it also makes sense to use an ele-
ment. Attributes need to be simple, short strings or else they become
unreadable, if not unusable.

Multiple occurrences are possible: Whenever an item can occur multiple
times, such as paragraphsin an article, it must be modeled as an element.
The element that containsit can have only one attribute of a particular kind,
but it can have many subelements of the same type.

The data changes frequently: When the datawill be frequently modified
with an editor, it may make sense to model it as an element. Many XML-
aware editors make it easy to modify element data, whereas attributes can
be somewhat harder to get to.

The data is a small, simple string that rarely if ever changes. Thisis
data that can be modeled as an attribute. However, just because you can
does not mean that you should. Check the Stylistic Choices section next,
to be sure.

Thedataisconfined to asmall number of fixed choices: If you are using
aDTD, it really makes sense to use an attribute. A DTD can prevent an
attribute from taking on any value that is not in the preapproved list, but it
cannot similarly restrict an element. (With a schema, on the other hand,
both attributes and elements can be restricted, so you could use either ele-
ment or an attribute.)

Stylistic Choices

As often as not, the choices are not as cut-and-dried as those just shown. When
the choice is not forced, you need a sense of “style” to guide your thinking. The
guestion to answer, then, is what makes good XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as
defining style when it comes to art or music. There are, however, a few ways to

NORMALIZING DATA

approach it. The goal of this section is to give you some useful thoughts on the
subject of XML style.

One heuristic for thinking about XML elements and attributes uses the concept
of visibility. If the datais intended to be shown—to be displayed to an end user—
then it should be modeled as an element. On the other hand, if the information
guides XML processing but is never seen by a user, then it may be better to
model it as an attribute. For example, in order-entry data for shoes, shoe size
would definitely be an element. On the other hand, a manufacturer’s code num-
ber would be reasonably modeled as an attribute.

Another way of thinking about the visibility heuristic is to ask, who is the con-
sumer and the provider of the information? The shoe size is entered by a human
sales clerk, so it's an element. The manufacturer’s code number for a given shoe
model, on the other hand, may be wired into the application or stored in a data-
base, so that would be an attribute. (If it were entered by the clerk, though, it
should perhaps be an element.)

Perhaps the best way of thinking about elements and attributes is to think of an
element as a container. To reason by analogy, the contents of the container
(water or milk) correspond to XML data modeled as elements. Such data is
essentialy variable. On the other hand, the characteristics of the container
(whether a blue or a white pitcher) can be modeled as attributes. That kind of
information tends to be more immutable. Good XML style separates each con-
tainer’s contents from its characteristics in a consistent way.

To show these heuristics at work, in our slide-show example the type of the dlide
(executive or technical) isbest modeled as an attribute. It is a characteristic of the
dlide that letsit be selected or rejected for aparticular audience. The title of the
dlide, on the other hand, is part of its contents. The visibility heuristic is also sat-
isfied here. When the slide is displayed, the title is shown but the type of the
dideisn’t. Finally, in this example, the consumer of the title informationisthe
presentation audience, whereas the consumer of the type information is the pre-
sentation program.

Normalizing Data

In Saving Yourself Some Work (page 77), you saw that it isa good ideato define
an external entity that you can reference in an XML document. Such an entity
has all the advantages of a modularized routine: changing that one copy affects
every document that references it. The process of eliminating redundancies is

79

80

UNDERSTANDING XML

known as normalizing, and defining entities is one good way to normalize your
data.

In an HTML file, the only way to achieve that kind of modularity is to use
HTML links, but then the document is fragmented rather than whole. XML enti-
ties, on the other hand, suffer no such fragmentation. The entity reference acts
like amacro: the entity’s contents are expanded in place, producing a whole doc-
ument rather than a fragmented one. And when the entity is defined in an exter-
nal file, multiple documents can reference it.

The considerations for defining an entity reference, then, are pretty much the
same as those you would apply to modularized program code:

» Whenever you find yourself writing the same thing more than once, think
entity. That letsyou writeit in one place and referenceit in multiple places.

 If the information is likely to change, especialy if it is used in more than
one place, definitely think in terms of defining an entity. An example is
defining productName as an entity so that you can easily change the docu-
ments when the product name changes.

« If the entity will never be referenced anywhere except in the current file,
define it in the local subset of the document’s DTD, much as you would
define amethod or inner classin a program.

 If the entity will be referenced from multiple documents, define it as an
external entity, in the same way that you would define any generally usable
class as an external class.

External entities produce modular XML that is smaller, easier to update, and eas-
ier to maintain. They can also make the resulting document somewhat more dif-
ficult to visualize, much as a good object-oriented design can be easy to change,
after you understand it, but harder to wrap your head around at first.

You can also go overboard with entities. At an extreme, you could make an entity
reference for the word the. It wouldn't buy you much, but you could do it.

Note: The larger an entity is, the more likely it is that changing it will have the
expected effect. For example, when you define an external entity that coversawhole
section of adocument, such asinstallation instructions, then any changes you make
will likely work out fine wherever that sectionisused. But small inline substitutions
can be more problematic. For example, if productName isdefined as an entity and
if the name changesto adifferent part of speech, the results can be unfortunate. Sup-
pose the product name is something like HtmlIEdit. That's a verb. So you write a
sentence like, “You can HtmIEdit your file...”, using the productName entity. That
sentence works, because a verb fits in that context. But if the name is eventually

NORMALIZING DTDs 81

changed to “HtmlEditor”, the sentence becomes “ You can HtmlEditor your file...”,
which clearly doesn’'t work. Still, even if such simple substitutions can sometimes
get you into trouble, they also have the potential to save alot of time. (One way to
avoid the problem would be to set up entities named productNoun, productVerb,
productAdj, and productAdverb.)

Normalizing DTDs

Just as you can normalize your XML document, you can also normalize your
DTD declarations by factoring out common pieces and referencing them with a
parameter entity. Factoring out the DTDs (also known as modularizing) givesthe
same advantages and disadvantages as normalized XML—easier to change,
somewhat more difficult to follow.

You can also set up conditionalized DTDs. If the number and size of the condi-
tional sections are small relative to the size of the DTD as awhole, conditionaliz-
ing can let you single-source the same DTD for multiple purposes. If the number
of conditional sections gets large, though, the result can be a complex document
that is difficult to edit.

Summary

Congratulations! You have now created a number of XML files that you can use
for testing purposes. Table 2-5 describes the files you have constructed.

Table2-5 Listing of Sample XML Files

File Contents
s1ideSamp1e01.xm1 A basicfile containing afew elements and attributes aswell as
comments.
sTideSampT1e02.xml Includes a processing instruction.
STideSampTleBadl.xml A filethat is not well formed.
s1ideSample03.xm1 Includes asimple entity reference (&1t ;).
s1ideSample04.xml Contains a CDATA section.

82

UNDERSTANDING XML

Table2-5 Listing of Sample XML Files

File

Contents

sTideSamp1e05.xml

References either asimple external DTD for elements
(sTideshowla.dtd) for use with a nonvalidating parser, or
elseaDTD that defines attributes (s1ideshowlb.dtd) for
use with a validating parser.

sTideSamp1e06.xm1l

Defines two entities locally (product and products) and
references s1ideshowlb.dtd.

sTlideSamp1e07.xml

References an external entity defined locally (copy-
right.xm1) and references s1ideshowlb.dtd.

sTlideSamp1e08.xml

References xhtm1. dtd using a parameter entity in
s1ideshow2.dtd, producing a naming conflict because
title isdeclared in both.

s1ideSamp1e09.xml

Changesthe tit1e elementto sT1ide-title sothat it can
reference xhtm1.dtd using a parameter entity in
s1ideshow3.dtd without conflict.

3

‘Getting Started with
Web Applications

A Web application is a dynamic extension of a Web or application server.
There are two types of Web applications:

» Presentation-oriented: A presentation-oriented Web application generates
interactive Web pages containing various types of markup language
(HTML, XML, and so on) and dynamic content in response to requests.
Chapters 11 through 22 cover how to develop presentation-oriented Web
applications.

» Service-oriented: A service-oriented Web application implements the end-
point of aWeb service. Presentation-oriented applications are often clients
of service-oriented Web applications. Chapters 8 and 9 cover how to
devel op service-oriented Web applications.

In the Java 2 platform, Web components provide the dynamic extension capabili-
ties for a Web server. Web components are either Java servlets, JSP pages, or
Web service endpoints. The interaction between a Web client and a Web applica-
tion isillustrated in Figure 3-1. The client sends an HTTP request to the Web
server. A Web server that implements Java Servlet and JavaServer Pages technol-
ogy converts the request into an HTTPServletRequest object. This object is
delivered to a Web component, which can interact with JavaBeans components
or a database to generate dynamic content. The Web component can then gener-
ate an HTTPServiletResponse Or it can pass the request to another Web compo-
nent. Eventually a Web component generates a HTTPServletResponse object.

83

GETTING STARTED WITH WEB APPLICATIONS

The Web server converts this object to an HTTP response and returnsit to the cli-
ent.

Web Server

HTTP P —

Request HTTPServiet 5 L
Request
Web >
Client (" web
—

. Components

HTTP HTTPServiet
Response Response

JavaBeans
Components

Figure3-1 JavaWeb Application Request Handling

Servlets are Java programming language classes that dynamically process
reguests and construct responses. JSP pages are text-based documents that exe-
cute as servlets but allow a more natural approach to creating static content.
Although servlets and JSP pages can be used interchangeably, each has its own
strengths. Servlets are best suited for service-oriented applications (Web service
endpoints are implemented as servlets) and the control functions of a presenta-
tion-oriented application, such as dispatching requests and handling nontextual
data. JSP pages are more appropriate for generating text-based markup such as
HTML, Scaable Vector Graphics (SVG), Wireless Markup Language (WML),
and XML.

Since the introduction of Java Servlet and JSP technology, additional Java tech-
nologies and frameworks for building interactive Web applications have been

developed. These technologies and their relationships areillustrated in Figure 3—
2.

JavaServer Pages

Standard Tag Library JavaServer Faces

e —
JavaServer Pages

Java Servlet

Figure 3-2 JavaWeb Application Technologies

Notice that Java Servlet technology is the foundation of all the Web application
technologies, so you should familiarize yourself with the material in Chapter 11
even if you do not intend to write servlets. Each technology adds a level of
abstraction that makes Web application prototyping and development faster and
the Web applications themselves more maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a
Web container. A Web container provides services such as request dispatching,
security, concurrency, and life-cycle management. It also gives Web components
access to APIs such as naming, transactions, and email.

Certain aspects of Web application behavior can be configured when the applica
tion is installed, or deployed, to the Web container. The configuration informa-
tion is maintained in a text file in XML format caled a Web application
deployment descriptor (DD). A DD must conform to the schema described in the
Java Servlet Specification.

Most Web applications use the HTTP protocol, and support for HTTP isamajor
aspect of Web components. For a brief summary of HTTP protocol features see
Appendix C.

This chapter gives a brief overview of the activities involved in developing Web
applications. First we summarize the Web application life cycle. Then we
describe how to package and deploy very simple Web applications on the Sun
Java System Application Server Platform Edition 8. We move on to configuring
Web applications and discuss how to specify the most commonly used configu-
ration parameters. We then introduce an example—Duke's Bookstore—that we

85

http://java.sun.com/products/servlet/download.html#specs

86

GETTING STARTED WITH WEB APPLICATIONS

useto illustrate all the J2EE Web-tier technologies and we describe how to set up
the shared components of this example. Finally we discuss how to access data-
bases from Web applications and set up the database resources needed to run
Duke's Bookstore.

Web Application Life Cycle

A Web application consists of Web components, static resource files such as
images, and helper classes and libraries. The Web container provides many sup-
porting services that enhance the capabilities of Web components and make them
easier to develop. However, because a Web application must take these services
into account, the process for creating and running a Web application is different
from that of traditional stand-alone Java classes. The process for creating,
deploying, and executing a Web application can be summarized as follows:

1. Develop the Web component code.

2. Develop the Web application deployment descriptor.

3. Compilethe Web application components and helper classesreferenced by
the components.

4. Optionally package the application into a deployable unit.
5. Deploy the application into a Web container.
6. Access a URL that references the Web application.
Developing Web component code is covered in the later chapters. Steps 2

through 4 are expanded on in the following sections and illustrated with a Hello,
World-style presentation-oriented application. This application allows a user to

WEB APPLICATION LIFE CYCLE

enter aname into an HTML form (Figure 3-3) and then displays a greeting after
the name is submitted (Figure 3-4).

®iHello - Netscape =I0jx|

. File Edit Yiew Go Bookmarks Tools Window Help

N @Q Q @ @ |% http:fflocalhost:8080/helloly | dgc @
» [
&% Hello |]

Y-

Hello, my name is Duke. What's yours?

| I
Submit | Feset |

= & & B [pone = == [

Figure 3-3 Greeting Form

& Hello - Netscape —|o] x|

. File Edit %iew Go Bookmarks Tools Window Help

= Y
Ai @0 Q @ Q |% hitp:fflocalhost:8080/hellol?usemame=Charlie | ‘:IEZQ @
]

&% Hello | X

e

Hello, my name is Duke. What's yours?

|
Submit | Feset |

Hello, Charlie!

§ = & & B [pone = == [

Figure 34 Response

88

GETTING STARTED WITH WEB APPLICATIONS

The Hello application contains two Web components that generate the greeting
and the response. This chapter discusses two versions of the application: a JSP
version caled hellol, in which the components are implemented by two JSP
pages (index.jsp and response.jsp) and a servlet version caled hello2, in
which the components are implemented by two servlet classes (GreetingServ-
Tet.java and ResponseServiet.java). The two versions are used to illustrate
tasks involved in packaging, deploying, configuring, and running an application
that contains Web components. The section About the Examples (page xxxvi)
explains how to get the code for these examples. After you install the tutorial
bundle, the source code for the examples is in <INSTALL>/j2eetutoriall4/
examples/web/hellol/ and <INSTALL>/j2eetutoriall4/examples/web/
hello2/.

Web Modules

In the J2EE architecture, Web components and static Web content files such as
images are called Web resources. A Web module is the smallest deployable and
usable unit of Web resources. A J2EE Web module corresponds to a \eb appli-
cation as defined in the Java Servlet specification.

In addition to Web components and Web resources, a Web module can contain
other files:

» Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.
» Client-side classes (applets and utility classes).
A Web module has a specific structure. The top-level directory of a Web module
is the document root of the application. The document root is where JSP pages,

client-side classes and archives, and static Web resources, such as images, are
stored.

The document root contains a subdirectory named /WEB-INF/, which contains
the following files and directories:

» web.xm1: The Web application deployment descriptor

» Tag library descriptor files (see Tag Library Descriptors, page 604)

» classes: A directory that contains server-side classes. servlets, utility
classes, and JavaBeans components

» tags: A directory that containstag files, which are implementations of tag
libraries (see Tag File Location, page 590)

../examples/web/hello1/web/index.txt
../examples/web/hello1/web/response.txt
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/ResponseServlet.java

WEB MODULES

* Tib: A directory that contains JAR archives of libraries called by server-
side classes

You can aso create application-specific subdirectories (that is, package directo-
ries) in either the document root or the /WEB-INF/classes/ directory.

A Web module can be deployed as an unpacked file structure or can be packaged
in aJAR file known as a Web archive (WAR) file. Because the contents and use
of WAR files differ from those of JAR files, WAR file names use a .war exten-
sion. The Web module just described is portable; you can deploy it into any Web
container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain aruntime
deployment descriptor. The runtime deployment descriptor is an XML file that
contains information such as the context root of the Web application and the
mapping of the portable names of an application’s resources to the Application
Server’s resources. The Application Server Web application runtime DD is
named sun-web.xm1 and islocated in /WEB-INF/ aong with the Web application
DD. The structure of a Web module that can be deployed on the Application
Server is shown in Figure 3-5.

89

90

GETTING STARTED WITH WEB APPLICATIONS

—_—

Assembly
Root

WEB-INF

]

1
B \/.I
-

JSP pages,
static HTML pages,
applet classes, etc.

i
]
3 J
-
web.xml
sun-web.xml Ry R -
*.“d fl \,J \/J
- - -
- - -
Library All server-side All .tag files
archive files .class files for this for this
Web module Web module

Figure 3-5 Web Module Structure

Packaging Web Modules

A Web module must be packaged into a WAR in certain deployment scenarios
and whenever you want to distribute the Web module. You package a Web mod-
ule into a WAR using the Application Server deploytool utility, by executing
the jar command in a directory laid out in the format of a Web module, or by
using the asant utility. This tutorial allows you to use use either the first or the
third approach. To build the he1101 application, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutoriall4/examples/

web/hello0l/.

2. Run asant build. Thistarget will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutoriall4/examples/web/

hellol/build/ directory.

PACKAGING WEB MODULES

To package the application into aWAR named hellol.war using asant, use the
following command:

asant create-war

This command uses web.xm1 and sun-web.xml files in the <INSTALL>/
j2eetutoriall4/examples/web/hellol directory.

To learn how to configure this Web application, package the application using
deploytool by following these steps:

1. Start depToytool.

2. Create aWeb application called he1101 by running the New Web Compo-
nent wizard. Select File-New \Web Component.

In the New Web Component wizard:
a. Select the Create New Stand-Alone WAR Module radio button.

3.

b.

In the WAR Location field, enter <INSTALL>/j2eetutoriall4/exam-
ples/web/helTol/helTol.war.

In the WAR Namefield, enter hello1.

d. Click Edit Contentsto add the content files.
e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutoriall4/examples/web/hellol/build/. Select duke.wav-
ing.gif, index.jsp, and response.jsp and click Add. Click OK.

f. Click Next.
g.
h. Click Next.

Select the No Component radio button.

Click Finish.

4. Select File—Save.

A sample hellol.war is provided in <INSTALL>/j2eetutoriall4/examples/
web/provided-wars/. To open this WAR with deploytooT, follow these steps:
1. Select File—Open.
2. Navigate to the provided-wars directory.
3. Select the WAR.
4, Click Open Module.

91

92

GETTING STARTED WITH WEB APPLICATIONS

Deploying Web Modules

You can deploy a Web module to the Application Server in several ways:

» By pointing the Application Server at an unpackaged Web module direc-
tory structure using asadmin or the Admin Console.

» By packaging the Web module and

» Copying the WAR into the <J2EE_HOME>/domains/domainl/autode-
ploy/ directory.

» Using the Admin Console, asadmin, asant, or deploytool to deploy
the WAR.

All these methods are described briefly in this chapter; however, throughout the
tutorial, we use deploytool or asant for packaging and deploying.

Setting the Context Root

A context root identifies a Web application in a J2EE server. You specify the con-
text root when you deploy a Web module. A context root must start with a for-
ward dlash (/) and end with a string.

In a packaged Web module for deployment on the Application Server, the con-
text root is stored in sun-web.xm1. If you package the Web application with
deploytool, then sun-web.xm1 is created automatically.

Deploying an Unpackaged Web Module

It is possible to deploy a Web module without packaging it into a WAR. The
advantage of this approach is that you do not need to rebuild the package every
time you update a file contained in the Web module. In addition, the Application
Server automatically detects updates to JSP pages, so you don’t even have to
redeploy the Web module when they change.

However, to deploy an unpackaged Web maodule, you must create the Web mod-
ule directory structure and provide the Web application deployment descriptor
web.xm1. Because this tutorial uses deploytool for generating deployment

DEPLOYING WEB MODULES

descriptors, it does not document how to develop descriptors from scratch. You
can view the structure of deployment descriptorsin three ways.

* In deploytool, select Tools—Descriptor Viewer _Descriptor Viewer to
view web .xm1 and Tools-Descriptor Viewer —Application Server Descrip-
tor to view sun-web.xm1.

» Useatext editor to view theweb.xm1 and sun-web.xm1 filesin the exam-
ple directories.

» Unpackage one of the WARS in <INSTALL>/j2eetutoriall4/examples/
web/provided-wars/ and extract the descriptors.

Since you explicitly specify the context root when you deploy an unpackaged
Web module, usually it is not necessary to provide sun-web . xm1.

Deploying with the Admin Console

1. Expand the Applications node.

2. Select the Web Applications node.

. Click the Deploy button.

. Select the No radio button next to Upload File.

. Type the full path to the Web module directory in the File or Directory
field. Although the GUI gives you the choice to browse to the directory,
this option applies only to deploying a packaged WAR.

. Click Next.

. Type the application name.

. Type the context root.

9. Select the Enabled box.

10.Click the OK button.

62~ OV]

0o N O

Deploying with asadmin
To deploy an unpackaged Web module with asadmin, open aterminal window or
command prompt and execute

asadmin deploydir full-path-to-web-module-directory

93

GETTING STARTED WITH WEB APPLICATIONS

The build task for the he11o01 application creates a build directory (including
web.xm1) in the structure of a Web module. To deploy hellol using asadmin
deploydir, execute:

asadmin deploydir --contextroot /hellol
<INSTALL>/j2eetutoriall4/examples/web/hellol/build

After you deploy the hellol application, you can run the Web application by
pointing a browser at

http://localhost:8080/hellol

You should see the greeting form depicted earlier in Figure 3-3.

A Web module is executed when a Web browser references a URL that contains
the Web modul€’s context root. Because ho Web component appearsin http://
Tocalhost:8080/hell0l/, the Web container executes the default component,
index.jsp. The section Mapping URLs to Web Components (page 99)
describes how to specify Web componentsin a URL.

Deploying a Packaged Web Module

If you have deployed the hello1l application, before proceeding with this sec-
tion, undeploy the application by following one of the procedures described in
Undeploying Web Modules (page 98).

Deploying with deploytool
To deploy the he11o1 Web module with depToytoo1:
1. Selectthehe1101 WAR you created in Packaging Web Modul es (page 90).
2. Select the General tab.
3. Type /hellol inthe Context Root field.
4. Select File—Save.
5. Select Tools-Deploy.
6. Click OK.

LISTING DEPLOYED WEB MODULES

You can use one of the following methodsto deploy the WAR you packaged with
deploytool, or one of the WARs contained in <INSTALL>/j2eetutoriall4/
examples/web/provided-wars/.

Deploying with the Admin Console

1. Expand the Applications node.

2. Select the Web Applications node.

. Click the Deploy button.

Select the No radio button next to Upload File.

. Typethe full path to the WAR file (or click on Browse to find it), and then
click the OK button.

. Click Next.

. Type the application name.
. Type the context root.

9. Select the Enabled box.
10.Click the OK button.

oA W

o N O

Deploying with asadmin
To deploy a WAR with asadmin, open aterminal window or command prompt
and execute

asadmin deploy full-path-to-war-file
Deploying with asant

To deploy a WAR with asant, open aterminal window or command prompt in
the directory where you built and packaged the WAR, and execute

asant deploy-war

Listing Deployed Web Modules

The Application Server provides three ways to view the deployed Web modules:

« deploytool
a. Select localhost:4848 from the Servers list.

95

GETTING STARTED WITH WEB APPLICATIONS

b. View the Deployed Objects list in the General tab.

* Admin Console
a Openthe URL http://Tocalhost:4848/asadmin in abrowser.
b. Expand the nodes Applications-\Web Applications.

e asadmin
a. Execute

asadmin 1ist-components

Updating Web Modules

A typical iterative development cycle involves deploying a Web module and then
making changes to the application components. To update a deployed Web mod-
ule, you must do the following:

1. Recompile any modified classes.

2. If you have deployed a packaged Web module, update any modified com-
ponents in the WAR.

3. Redeploy the module.
4. Reload the URL in the client.

Updating an Unpackaged Web Module

To update an unpackaged Web module using either of the methods discussed in
Deploying an Unpackaged Web Module (page 92), reexecute the deploydir
operation. If you have changed only JSP pages in the Web module directory, you
do not have to redeploy; simply reload the URL in the client.

Updating a Packaged Web Module

This section describes how to update the he1101 Web module that you packaged
with depTloytool.

First, change the greeting in the file <INSTALL>/j2eetutoriall4/examples/
web/hellol/web/index.jsp to

<h2>Hi, my name is Duke. What's yours?</h2>

UPDATING WEB MODULES 97

Run asant build to copy the modified JSP page into the build directory. To
update the Web module using deploytoo1 follow these steps:
1. Select thehe1101 WAR.

2. Select Tools-Update Module Files. A popup dialog box will display the
modified file. Click OK.

3. Select Tools-Deploy. A popup dialog box will query whether you want to
redeploy. Click Yes.

4. Click OK.
To view the modified module, reload the URL in the browser.

You should see the screen in Figure 3-6 in the browser.

& Hello - Netscape —|o] x|
. File Edit %iew Go Bookmarks Tools Window Help |

i GOO O O [httpiflocalhostns/hellaly | Cgo g
]

[
4 [% Hello | x|

Y

Hi, my name is Duke. What's yours?

|
Submit | Feset |

E & A &F B | Done == < [

Figure 3-6 New Greeting

Dynamic Reloading

If dynamic reloading is enabled, you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do
is copy the changed JSP or classfilesinto the deployment directory for the appli-
cation or module. The deployment directory for a Web module named
context_root IS <J2EE_HOME>/domains/domainl/applications/j2ee-mod-

98

GETTING STARTED WITH WEB APPLICATIONS

ules/context_root. The server checks for changes periodically and redeploys
the application, automatically and dynamically, with the changes.

This capability is useful in a development environment, because it allows code
changes to be tested quickly. Dynamic reloading is not recommended for a pro-
duction environment, however, because it may degrade performance. In addition,
whenever areload is done, the sessions at that time become invalid and the client
must restart the session.

To enable dynamic reloading, use the Admin Console:

1. Select the Applications node.
2. Check the Reload Enabled box to enable dynamic reloading.

3. Enter anumber of secondsin the Reload Poll Interval field to set the inter-
val at which applications and modules are checked for code changes and
dynamically reloaded.

4. Click the Save button.

In addition, to load new servlet files or reload deployment descriptor changes,
you must do the following:

1. Create an empty file named . reload at the root of the module:

<J2EE_HOME>/domains/domainl/applications/j2ee-modules/
context_root/.reload

2. Explicitly update the . reload file's time stamp each time you make these
changes. On UNIX, execute

touch .reload

For JSP pages, changes are reloaded automatically at a frequency set in the
Reload Poal Interval. To disable dynamic reloading of JSP pages, set the reload-
interval property to -1.

Undeploying Web Modules

You can undeploy Web modulesin four ways.
o deploytool
a. Select localhost:4848 from the Serverslist.
b. Select the Web module in the Deployed Objects list of the General tab.

CONFIGURING WEB APPLICATIONS

c. Click the Undeploy button.

» Admin Console
a. Openthe URL http://Tocalhost:4848/asadmin in abrowser.
b. Expand the Applications node.
c. Select Web Applications.
d. Click the checkbox next to the module you wish to undeploy.
e. Click the Undeploy button.
e asadmin
a. Execute
asadmin undeploy context_root
e asant
a. Inthe directory where you built and packaged the WAR, execute
asant undeploy-war

Configuring Web Applications

Web applications are configured via elements contained in the Web application
deployment descriptor. The deploytool utility generates the descriptor when
you create a WAR and adds elements when you create Web components and
associated classes. You can modify the elements via the inspectors associated
with the WAR.

The following sections give a brief introduction to the Web application features
you will usually want to configure. A number of security parameters can be
specified; these are covered in Web-Tier Security (page 1126).

In the following sections, examples demonstrate procedures for configuring the
Hello, World application. If Hello, World does not use a specific configuration
feature, the section gives references to other examples that illustrate how to spec-
ify the deployment descriptor element and describes generic procedures for
specifying the feature using deploytool. Extended examples that demonstrate
how to use deploytool appear in later tutorial chapters.

Mapping URLs to Web Components

When arequest is received by the Web container it must determine which Web
component should handle the request. It does so by mapping the URL path con-

99

100

GETTING STARTED WITH WEB APPLICATIONS

tained in the request to a Web application and a Web component. A URL path
contains the context root and an alias.

http://host:port/context_root/alias

Setting the Component Alias

The alias identifies the Web component that should handle a request. The alias
path must start with a forward slash (/) and end with a string or a wildcard
expression with an extension (for example, *.jsp). Since Web containers auto-
matically map an alias that ends with *. jsp, you do not have to specify an alias
for a JSP page unless you wish to refer to the page by a name other than itsfile
name. To set up the mappings for the serviet version of the hello application
with deploytoo1, first packageit:

1. In a termina window, go to <INSTALL>/j2eetutoriall4/examples/
web/hell102/.

2. Run asant build. Thistarget will compile the servletsto the <INSTALL>/
j2eetutoriall4/examples/web/hell02/build/ directory.

3. Start deploytool.

4, Create aWeb application called he1102 by running the New Web Compo-
nent wizard. Select File-New -\Web Component.

5. In the New Web Component wizard:
a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR Location field, enter <INSTALL>/j2eetutoriall4/exam-
ples/web/hello2/hell02.war.

. Inthe WAR Name field, enter he1lo2.
. In the Context Root field, enter /hell1o2.
. Click Edit Contentsto add the content files.

In the Edit Contents dialog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/hel102/build/. Select duke.wav-
ing.gif andthe serviets package and click Add. Click OK.

g. Click Next.

h. Select the Servlet radio button.

i. Click Next.

j- Select GreetingServlet from the Servlet Class combo box.
k. Click Finish.

I B o R)

DECLARING WELCOME FILES

6. Select File-New “Web Component.

a. Click the Add to Existing WAR Module radio button and select he1102
from the combo box. Because the WAR contains all the servlet classes,
you do not have to add any more content.

b. Click Next.

. Select the Servlet radio button.

d. Click Next.

e. Select ResponseServlet from the Servlet Class combo box.
f. Click Finish.

Then, to set the aliases, follow these steps:

. Select the GreetingServilet Web component.
. Select the Aliases tab.

. Click Add to add a new mapping.

. Type /greeting in the aliases list.

. Select the ResponseServiet Web component.
. Click Add.

. Type /response in the aliases list.

8. Select File-Save.

~N O o WDN PP

To run the application, first deploy the Web module, and then open the URL
http://localhost:8080/hell02/greeting in abrowser.

Declaring Welcome Files

The welcome files mechanism alows you to specify alist of files that the Web
container will use for appending to a request for a URL (called a valid partial
request) that is not mapped to a Web component.

For example, suppose you define a welcome file welcome.htm1. When a client
requests aURL such as host:port/webapp/directory, where directoryisnot
mapped to a servlet or JSP page, the file host:port/webapp/directory/wel-
come.html isreturned to the client.

If a Web container receives a valid partia request, the Web container examines
the welcome file list and appends to the partial request each welcome file in the
order specified and checks whether a static resource or servlet in the WAR is

101

102

GETTING STARTED WITH WEB APPLICATIONS

mapped to that request URL. The Web container then sends the request to the
first resource in the WAR that matches.

If no welcome file is specified, the Application Server will use a file named
index. XXX, where XXX can be htm1 or jsp, asthe default welcomefile. If thereis
no welcome file and no file named index. XxX, the Application Server returns a
directory listing.

To specify welcome files with depToytoo1, follow these steps:

1. Select the WAR.

2. Select the File Ref’s tab in the WAR inspector.
3. Click Add File in the Welcome Files pane.

4. Select the welcome file from the drop-down list.

The example discussed in Encapsulating Reusable Content Using Tag
Files (page 588) has a welcomefile.

Setting Initialization Parameters

The Web components in a Web module share an object that represents their
application context (see Accessing the Web Context, page 473). You can pass
initialization parameters to the context or to a Web component.

To add a context parameter with deploytoo1, follow these steps:

1. Select the WAR.
2. Select the Context tab in the WAR inspector.
3. Click Add.

For a sample context parameter, see the example discussed in The Example JSP
Pages (page 486).
To add a Web component initialization parameter with deploytooT, follow these
steps:

1. Select the Web component.

2. Select the Init. Parameters tab in the Web component inspector.

3. Click Add.

MAPPING ERRORS TO ERROR SCREENS 103

Mapping Errors to Error Screens

When an error occurs during execution of a Web application, you can have the
application display a specific error screen according to the type of error. In par-
ticular, you can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any Web com-
ponent (see Handling Errors, page 452) and any type of error screen. To set up
error mappings with deploytool:

1. Select the WAR.

2. Select the File Ref’s tab in the WAR inspector.
3. Click Add Error in the Error Mapping pane.
4

. Enter the HT TP status code (see HT TP Responses, page 1398) or the fully
gualified class hame of an exception in the Error/Exception field.

5. Enter the name of a Web resource to be invoked when the status code or
exception is returned. The name should have a leading forward slash (/).

Note: You can also define error screensfor a JSP page contained in aWAR. If error
screens are defined for both the WAR and a JSP page, the JSP page’s error page
takes precedence. See Handling Errors (page 495).

For a sample error page mapping, see the example discussed in The Example
Servlets (page 444).

Declaring Resource References

If your Web component uses objects such as databases and enterprise beans, you
must declare the references in the Web application deployment descriptor. For a
sample resource reference, see Specifying a Web Application’s Resource
Reference (page 106). For a sample enterprise bean reference, see Specifying the
Web Client’s Enterprise Bean Reference (page 894).

Duke’s Bookstore Examples

In Chapters 11 through 22 a common example—Duke's Bookstore—is used to
illustrate the elements of Java Servlet technology, JavaServer Pages technology,
the JSP Standard Tag Library, and JavaServer Faces technology. The example

GETTING STARTED WITH WEB APPLICATIONS

emulates a simple online shopping application. It provides a book catalog from
which users can select books and add them to a shopping cart. Users can view
and modify the shopping cart. When users are finished shopping, they can pur-
chase the books in the cart.

The Duke's Bookstore examples share common classes and a database schema.
Thesefiles are located in the directory <INSTALL>/j2eetutoriall4/examples/
web/bookstore/. The common classes are packaged into a JAR. To create the
bookstore library JAR, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutoriall4/examples/
web/bookstore/.

2. Run asant build to compile the bookstore files.

3. Run asant package-bookstore to createalibrary named bookstore. jar
in <INSTALL>/j2eetutoriall4/examples/bookstore/dist/.

The next section describes how to create the bookstore database tables and
resources required to run the examples.

Accessing Databases from Web
Applications

Data that is shared between Web components and is persistent between invoca
tions of a Web application is usually maintained in a database. Web applications
use the JDBC API to access relationa databases. For information on this API,
see

http://java.sun.com/docs/books/tutorial/jdbc

In the JDBC API, databases are accessed via DataSource objects. A Data-
Source has a set of properties that identify and describe the real world data
source that it represents. These properties include information such as the loca-
tion of the database server, the name of the database, the network protocol to use
to communicate with the server, and so on.

Web applications access a data source using a connection, and a DataSource
object can be thought of as afactory for connectionsto the particular data source
that the DataSource instance represents. In abasic DataSource implementation,
acall to the getConnection method returns a connection object that is a physical
connection to the data source. In the Application Server, adata sourceisreferred
to as a JDBC resource. See DataSource Objects and Connection

http://java.sun.com/docs/books/tutorial/jdbc

POPULATING THE EXAMPLE DATABASE

Pools (page 1111) for further information about data sources in the Application
Server.

If aDataSource object is registered with a INDI naming service, an application
can use the INDI API to access that DataSource object, which can then be used
to connect to the data source it represents.

To maintain the catalog of books, the Duke's Bookstore examples described in
Chapters 11 through 22 use the PointBase evaluation database included with the
Application Server.

This section describes how to

» Populate the database with bookstore data
» Create adata source in the Application Server
» Specify aWeb application’s resource reference

» Map the resource reference to the data source defined in the Application
Server

Populating the Example Database

To popul ate the database for the Duke's Bookstore examples, follow these steps:

1. In a termina window, go to <INSTALL>/j2eetutoriall4/examples/
web/bookstore/.

2. Start the PointBase database server. For instructions, see Starting and Stop-
ping the PointBase Database Server (page 29).

3. Run asant create-db_common. This task runs a PointBase commander
tool command to read the filebooks.sq1 and execute the SQL commands
contained in the file.

4. At the end of the processing, you should see the following output:

[java]l SQL> INSERT INTO books VALUES('207', 'Thrilled', 'Ben',
[javal 'The Green Project: Programming for Consumer Devices',
[javal] 30.00, false, 1998, 'What a cool book', 20);

[javal 1 row(s) affected

[java]l SQL> INSERT INTO books VALUES('208', 'Tru', 'Itzal',
[javal 'Duke: A Biography of the Java Evangelist',

[javal 45.00, true, 2001, 'What a cool book.', 20);

[javal 1 row(s) affected

105

106

GETTING STARTED WITH WEB APPLICATIONS

Creating a Data Source in the
Application Server

Data sources in the Application Server implement connection pooling. To define
the Duke's Bookstore data source, you use the installed PointBase connection
pool named PointBasePool.

You create the data source using the Application Server Admin Console, follow-
ing this procedure:

1. Expand the JDBC node.

2. Select the IDBC Resources hode.

3. Click the New... button.

4. Type jdbc/BookDB in the INDI Name field.

5. Choose PointBasePool for the Pool Name.

6. Click OK.

Specifying a Web Application’s
Resource Reference

To access a database from a Web application, you must declare a resource refer-
ence in the application’s Web application deployment descriptor (see Declaring
Resource References, page 103). The resource reference specifies a INDI name,
the type of the data resource, and the kind of authentication used when the
resource is accessed. To specify a resource reference for a Duke's Bookstore
example using deploytool, follow these steps:

1. Select the WAR (created in Chapters 11 through 22).

2. Select the Resource Ref’s tab.

3. Click Add.

4, Type jdbc/BookDB in the Coded Name field.

5. Accept the default type javax.sql.DataSource.

6. Accept the default authorization Container.

7. Accept the default Sharable selected.

MAPPING THE RESOURCE REFERENCE TO A DATA SOURCE 107

To create the connection to the database, the data access object data-
base.BookDBAO |ooks up the INDI name of the bookstore data source object:

public BookDBAO () throws Exception {
try {
Context initCtx = new InitialContext();
Context envCtx = (Context)
initCtx.lookup("java:comp/env");
DataSource ds = (DataSource) envCtx.lookup("jdbc/BookDB™);
con = ds.getConnection();
System.out.printin("Created connection to database.");
} catch (Exception ex) {
System.out.printin("Couldn't create connection." +
ex.getMessage());
throw new
Exception("Couldn't open connection to database:
+ ex.getMessage());

Mapping the Resource Reference to a
Data Source

Both the Web application resource reference and the data source defined in the
Application Server have JINDI names. See JINDI Naming (page 1109) for a dis-
cussion of the benefits of using INDI naming for resources.

To connect the resource reference to the data source, you must map the JNDI
name of the former to the latter. This mapping is stored in the Web application
runtime deployment descriptor. To create this mapping using deploytool, fol-
low these steps:

1. Select localhost:4848 inthe Serverslist to retrieve the data sources defined
in the Application Server.

2. Select the WAR in the Web WARSs ist.

. Select the Resource Ref’s tab.

4, Select the Resource Reference Name, jdbc/BookDB, defined in the previ-
ous section.

5. In the Sun-specific Settings frame, select jdbc/BookDB from the JNDI
Name drop-down list.

w

108 GETTING STARTED WITH WEB APPLICATIONS

Further Information

For more information about Web applications, refer to the following:
 Java Servlet specification:
http://java.sun.com/products/servlet/download.html#specs

» The Java Servlet Web site:
http://java.sun.com/products/serviet

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

A

Java API for XML
Processing

T HE Java APl for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards Simple APl for XML Parsing (SAX) and Document Object
Model (DOM) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP aso supports the Extensible
Stylesheet Language Transformations (XSLT) standard, giving you control over
the presentation of the data and enabling you to convert the data to other XML
documents or to other formats, such as HTML. JAXP also provides namespace
support, allowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP alows you to use any XML-compliant parser
from within your application. It does thiswith what is called a pluggability layer,
which lets you plug in an implementation of the SAX or DOM API. The plugga-
bility layer also allows you to plug in an XSL processor, |etting you control how
your XML dataisdisplayed.

The JAXP APIs

The main JAXP APIs are defined in the javax.xml.parsers package. That
package contains vendor-neutral factory classes—SAXParserFactory, Docu-
109

110

JAVA APl FOR XML PROCESSING

mentBuilderFactory, and TransformerFactory—which give you a SAX-
Parser, a DocumentBuilder, and an XSLT transformer, respectively.
DocumentBuilder, inturn, creates a DOM-compliant Document object.

The factory APIs let you plug in an XML implementation offered by another
vendor without changing your source code. The implementation you get depends
on the setting of the javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, and javax.xml.trans-
form.TransformerFactory sSystem properties, using System.setProper-
ties() inthecode, <sysproperty key="..." value="..."/>inan Ant build
script, or -DpropertyName="..." on the command line. The default vaues
(unless overridden at runtime on the command line or in the code) point to Sun’s
implementation.

Note: When you're using J2SE platform version 1.4, it is aso necessary to use the
endorsed standards mechanism, rather than the classpath, to make the implementa-
tion classes available to the application. This procedure is described in detail ir
Compiling and Running the Program (page 134).

Now let's look at how the various JAXP APIs work when you write an applica-
tion.

An Overview of the Packages

The SAX and DOM APIs are defined by the XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are as follows:

* javax.xml.parsers: The JAXP APIs, which provide acommon interface
for different vendors' SAX and DOM parsers

* org.w3c.dom: Defines the Document class (a DOM) as well as classes for
all the components of a DOM

e org.xml.sax: Definesthe basic SAX APls

* javax.xml.transform: Defines the XSLT APIs that let you transform
XML into other forms

The Simple APl for XML (SAX) is the event-driven, serial-access mechanism
that does element-by-element processing. The API for thislevel reads and writes
XML to a data repository or the Web. For server-side and high-performance
applications, you will want to fully understand this level. But for many applica-
tions, aminimal understanding will suffice.

THE SIMPLE APl FOR XML APIs 111

The DOM API isgenerally an easier API to use. It provides afamiliar tree struc-
ture of objects. You can use the DOM API to manipulate the hierarchy of appli-
cation objects it encapsulates. The DOM API isideal for interactive applications
because the entire object model is present in memory, where it can be accessed
and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU- and mem-
ory-intensive. For that reason, the SAX API tends to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in javax.xml.transform let you write XML
datato afile or convert it into other forms. And, as you'll seein the XSLT sec-
tion of this tutorial, you can even use it in conjunction with the SAX APIs to
convert legacy datato XML.

The Simple API for XML APIs

The basic outline of the SAX parsing APIs are shown in Figure 4-1. To start the
process, an instance of the SAXParserFactory class is used to generate an
instance of the parser.

112 JAVA APl FOR XML PROCESSING

SAXParser

Content
4 ‘" Handler

[L

' / Error
SAXParser § Handler

. SAX
/_ 9 Reader

Factory

_/'J DTD

Handler

/ Entity

Resolver

Figure4-1 SAX APIs

The parser wraps a SAXReader object. When the parser’s parse() method is
invoked, the reader invokes one of several callback methods implemented in the
application. Those methods are defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Hereisasummary of the key SAX APIs:

SAXParserFactory
A SAXParserFactory object creates an instance of the parser determined by
the system property, javax.xm1.parsers.SAXParserFactory

SAXParser
The SAXParser interface defines several kinds of parse() methods. In gen-
eral, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methodsin the
handler object.

SAXReader
The SAXParser wraps a SAXReader. Typically, you don’t care about that, but
every once in awhile you need to get hold of it using SAXParser’s getXML-
Reader () so that you can configureit. It isthe SAXReader that carries on the
conversation with the SAX event handlers you define.

THE SIMPLE APl FOR XML APIs

DefaultHandler
Not shown in the diagram, a DefaultHandler implements the Con-
tentHandler, ErrorHandler, DTDHandTer, and EntityResolver interfaces
(with null methods), so you can override only the ones you're interested in.

ContentHandler
Methods such as startDocument, endDocument, startElement, and
endElement areinvoked when an XML tag isrecognized. Thisinterface also
defines the methods characters and processingInstruction, which are
invoked when the parser encounters the text in an XML element or an inline
processing instruction, respectively.

ErrorHandler
Methods error, fatalError, and warning are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That's one rea-
son you need to know something about the SAX parser, evenif you are using
the DOM. Sometimes, the application may be able to recover from avalida-
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you'll need to supply your own error handler to the parser.

DTDHandler
Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

EntityResolver
The resolveEntity method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is smply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by aURN—a public identifier, or name, that is unique in the Web space.
The public identifier may be specified in addition to the URL. The Entity-
Resolver can then use the public identifier instead of the URL to find the
document—for example, to access a local copy of the document if one
exists.

A typical application implements most of the ContentHandler methods, a a

minimum. Because the default implementations of the interfaces ignore all

inputs except for fatal errors, a robust implementation may also want to imple-

ment the ErrorHand1er methods.

113

114

JAVA APl FOR XML PROCESSING

The SAX Packages

The SAX parser is defined in the packages listed in Table 4-1.

Table4-1 SAX Packages

Package

Description

org.xml.sax

Definesthe SAX interfaces. The name org. xm1 is the pack-
age prefix that was settled on by the group that defined the
SAX API.

org.xml.sax.ext

Defines SAX extensionsthat are used for doing more sophisti-
cated SAX processing—for example, to process a document
type definition (DTD) or to see the detailed syntax for afile.

org.xml.sax.helpers

Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null methods
for al the interfaces, so that you only need to override the
ones you actually want to implement.

javax.xml.parsers

Definesthe SAXParserFactory class, which returns the
SAXParser. Also defines exception classes for reporting
errors.

The Document Object Model APls

Figure 4-2 shows the DOM APIsin action.

THE DOCUMENT OBJECT MODEL APIS

DocumentBuilder
Factory

Document (DOM)'

Document

Builder 2jad

Greet Grjec

Figure4-2 DOM APIs

You use the javax.xm1.parsers.DocumentBuilderFactory classto get aDoc-
umentBuilder instance, and you use that instance to produce a Document object
that conforms to the DOM specification. The builder you get, in fact, is deter-
mined by the system property javax.xml.parsers.DocumentBuilderFactory,
which selects the factory implementation that is used to produce the builder.
(The platform’s default value can be overridden from the command line.)

You can aso use the DocumentBuilder newDocument() method to create an
empty Document that implements the org.w3c.dom.Document interface. Alter-
natively, you can use one of the builder’'s parse methods to create a Document
from existing XML data. TheresultisaDOM tree like that shown in Figure 4-2.

Note: Although they are called objects, the entries in the DOM tree are actually
fairly low-level data structures. For example, consider this structure:
<color>blue</color>. Thereis an element node for the color tag, and under that
thereisatext nodethat containsthe data, bTue! Thisissuewill be explored at length
in the DOM section of the tutorial, but developers who are expecting objects are
usually surprised to find that invoking getNodevalue () on the element node returns
nothing! For a truly object-oriented tree, see the JDOM APl at
http://www.jdom.org.

115

http://www.jdom.org

116 JAVA APl FOR XML PROCESSING

The DOM Packages

The Document Object Model implementation is defined in the packages listed in
Table 4-2.

Table4-2 DOM Packages

Package Description

Defines the DOM programming interfaces for XML (and, option-

org.w3c.dom ally, HTML) documents, as specified by the W3C.

Defines the DocumentBuilderFactory class and the Docu-
mentBuilder class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the javax.xm1.parsers system prop-
erty, which can be set from the command line or overridden when
invoking thenew Instance method. This package also defines
the ParserConfigurationException classfor reporting
errors.

javax.xml.parsers

THE EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS APIS 117

The Extensible Stylesheet Language
Transformations APIs

Figure 4-3 showsthe XSLT APIsin action.

Transformer
Factory

Transformation
Instructions

Figure4-3 XSLT APIs

A TransformerFactory object isinstantiated and used to create a Transformer.
The source object is the input to the transformation process. A source object can
be created from a SAX reader, from aDOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, aDOM, or an output stream.

When the transformer is created, it can be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.

118

JAVA APl FOR XML PROCESSING

The XSLT Packages

The XSLT APIs are defined in the packages shown in Table 4-3.

Table4-3 XSLT Packages

Package

Description

javax.xml.transform

Definesthe TransformerFactory and
Transformer classes, which you use to get
an object capable of doing transformations.
After creating atransformer object, you
invokeitstransform() method, providing it
with an input (source) and output (result).

javax.xml.transform.dom

Classes to create input (source) and output
(result) objects from aDOM.

javax.xml.transform.sax

Classesto create input (source) objectsfrom a
SAX parser and output (result) objectsfrom a
SAX event handler.

javax.xml.transform.stream

Classes to create input (source) objects and
output (result) objects from an 1/O stream.

Using the JAXP Libraries

In the Application Server, the JAXP libraries are distributed in the directory
<J2EE_HOME>/11ib/endorsed. To run the sample programs, you use the Java 2
platform’s endorsed standards mechanism to access those libraries. For details,
see Compiling and Running the Program (page 134).

Where Do You Go from Here?

At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step depends on what you want to accom-
plish. You might want to go to any of these chapters:

WHERE Do You GO FROM HERE?

Chapter 5
If the data structures have already been determined, and you are writing a

server application or an XML filter that needs to do fast processing.

Chapter 6
If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objectsto XML.

Chapter 7
If you need to transform XML tagsinto some other form, if you want to gen-
erate XML output, or (in combination with the SAX API) if you want to
convert legacy data structuresto XML.

119

120 JAVA APl FOR XML PROCESSING

o
Simple API for XML

I N this chapter we focus on the Simple API for XML (SAX), an event-driven,
serial-access mechanism for accessing XML documents. This protocol is fre-
guently used by servlets and network-oriented programs that need to transmit
and receive XML documents, because it’s the fastest and |east memory-intensive
mechanism that is currently available for dealing with XML documents, other
than StAX.

Note: In anutshell, SAX is oriented towards state independent processing, where
the handling of an element does not depend on the elementsthat camebefore. StAX,
on the other hand, is oriented towards state dependent processing. For a more
detailed comparison, see SAX and StAX in Basic Standards (page 1386) and When
to Use SAX (page 122).

Setting up a program to use SAX requires a bit more work than setting up to use
the Document Object Model (DOM). SAX is an event-driven model (you pro-
vide the calback methods, and the parser invokes them as it reads the XML
data), and that makes it harder to visualize. Finally, you can’'t “back up” to an
earlier part of the document, or rearrange it, any more than you can back up a
serial data stream or rearrange characters you have read from that stream.

For those reasons, developers who are writing a user-oriented application that
displays an XML document and possibly modifies it will want to use the DOM
mechanism described in Chapter 6.

121

122

SIMPLE APl FOR XML

However, even if you plan to build DOM applications exclusively, there are sev-
eral important reasons for familiarizing yourself with the SAX model:

» SameError Handling: The samekinds of exceptions are generated by the
SAX and DOM APIs, so the error handling code is virtually identical.

» Handling Validation Errors: By default, the specifications require that
validation errors (which you’ Il learn more about in this part of the tutorial)
areignored. If you want to throw an exception in the event of avalidation
error (and you probably do), then you need to understand how SAX error
handling works.

» Converting Existing Data: Asyou'll see in Chapter 6, there is a mecha-

nism you can use to convert an existing data set to XML. However, taking
advantage of that mechanism requires an understanding of the SAX model.

Note: The XML files used in this chapter can be found in
<INSTALL>/j2eetutoriall4/examples/xml/samples/.

The programs and output lisings can be found in
<INSTALL>/j2eetutoriall4/examples/jaxp/sax/samples/.

When to Use SAX

It is helpful to understand the SAX event model when you want to convert exist-
ing data to XML. As you'll see in Generating XML from an Arbitrary Data
Structure (page 272), the key to the conversion process is to modify an existing
application to deliver SAX events as it reads the data.

SAX isfast and efficient, but its event model makes it most useful for such state-
independent filtering. For example, aSAX parser calls one method in your appli-
cation when an element tag is encountered and calls a different method when text
is found. If the processing you're doing is state-independent (meaning that it
does not depend on the elements have come before), then SAX worksfine.

On the other hand, for state-dependent processing, where the program needs to
do one thing with the data under element A but something different with the data
under element B, then a pull parser such asthe Streaming APl for XML (StAX)
would be a better choice. With a pull parser, you get the next node, whatever it
happensto be, at any point in the code that you ask for it. So it's easy to vary the
way you process text (for example), because you can process it multiple places
in the program. (For more detail, see Further Information, page 179.)

ECHOING AN XML FILE WITH THE SAX PARSER 123

SAX requires much less memory than DOM, because SAX does hot construct an
internal representation (tree structure) of the XML data, asa DOM does. Instead,
SAX simply sends data to the application asit is read; your application can then
do whatever it wants to do with the data it sees.

Pull parsers and the SAX API both act like a seria 1/0 stream. You see the data
asit streamsin, but you can’'t go back to an earlier position or leap ahead to a dif-
ferent position. In general, such parsers work well when you simply want to read
data and have the application act on it.

But when you need to modify an XML structure—especially when you need to
modify it interactively—an in-memory structure makes more sense. DOM isone
such model. However, athough DOM provides many powerful capabilities for
large-scale documents (like books and articles), it also requires alot of complex
coding. The details of that process are highlighted in When to Use
DOM (page 182).

For simpler applications, that complexity may well be unnecessary. For faster
development and simpler applications, one of the object-oriented XML-pro-
gramming standards, such as JDOM and domdj (page 1387), may make more
sense.

Echoing an XML File with the SAX
Parser

In red life, you will have little need to echo an XML file with a SAX parser.
Usually, you'll want to process the data in some way in order to do something
useful with it. (If you want to echo it, it's easier to build a DOM tree and use that
for output.) But echoing an XML structure is a great way to see the SAX parser
in action, and it can be useful for debugging.

In this exercise, you'll echo SAX parser events to System.out. Consider it the
“Hello World” version of an XM L-processing program. It shows you how to use
the SAX parser to get at the data and then echoes it to show you what you have.

Note: The code discussed in this section isin Echo01. java. Thefile it operates on
iSsTideSample01.xm1, asdescribed in Writinga Simple XML File (page 43). (The
browsable version is s1ideSample01-xm1.htm1.)

../examples/jaxp/sax/samples/Echo01.java
../examples/xml/samples/slideSample01.xml
../examples/xml/samples/slideSample01-xml.html

124

SIMPLE APl FOR XML

Creating the Skeleton

Start by creating a file named Echo. java and enter the skeleton for the applica
tion:

public class Echo

{

public static void main(String argv[])

{
}
}

Because you'll run it standalone, you need a main method. And you need com-
mand-line arguments so that you can tell the application which file to echo.

Importing Classes
Next, add the import statements for the classes the application will use:

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo

{

The classes in java.io, of course, are needed to do output. The org.xm1.sax
package defines all the interfaces we use for the SAX parser. The SAX-
ParserFactory class creates the instance we use. It throws a ParserConfigu-
rationException if it cannot produce a parser that matches the specified
configuration of options. (Later, you'll see more about the configuration
options.) The SAXParser is what the factory returns for parsing, and the
DefaultHandler defines the class that will handle the SAX events that the
parser generates.

SETTING UP FOR |/O

Setting Up for 1/O

The first order of business is to process the command-line argument, get the
name of the file to echo, and set up the output stream. Add the following high-
lighted text to take care of those tasks and do a bit of additional housekeeping:

public static void main(String argv[])

{
if (argv.length !'= 1) {
System.err.printin("Usage: cmd filename');
System.exit(1l);

}
try {

// Set up output stream

out = new OutputStreamWriter(System.out, "UTF8'");
}

catch (Throwable t) {
t.printStackTrace(Q);
}

System.exit(0);
}

static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character
encoding. We could also have chosen US-ASCII or UTF-16, which the Java plat-
form also supports. For more information on these character sets, see Java
Encoding Schemes (page 1383).

Implementing the ContentHandler
Interface

The most important interface for our current purposes is ContentHandler. This
interface requires a number of methods that the SAX parser invokes in response
to various parsing events. The major event-handling methods are; startDocu-
ment, endDocument, startElement, endElement, and characters.

The easiest way to implement this interface is to extend the DefaultHandler
class, defined in the org.xm1.sax.helpers package. That class provides do-

126

SIMPLE API FOR XML
nothing methods for al the ContentHandler events. Enter the following high-
lighted code to extend that class:

public class Echo extends DefaultHandler

{
}

Note: DefaultHandler aso defines do-nothing methods for the other major events,
defined in the DTDHandTer, EntityResolver, and ErrorHandler interfaces. You'll
learn more about those methods as we go aong.

Each of these methods is required by the interface to throw a SAXException. An
exception thrown here is sent back to the parser, which sends it on to the code
that invoked the parser. In the current program, this sequence means that it winds
up back at the Throwable exception handler at the bottom of the main method.

When a start tag or end tag is encountered, the name of the tag is passed as a
String tothe startElement or the endElement method, as appropriate. When a
start tag is encountered, any attributes it defines are also passed in an
Attributes list. Characters found within the element are passed as an array of
characters, along with the number of characters (1ength) and an offset into the
array that points to the first character.

SETTING UP THE PARSER 127

Setting up the Parser

Now (at last) you're ready to set up the parser. Add the following highlighted
code to set it up and get it started:

public static void main(String argv[])
{
if (argv.length != 1) {
System.err.printin("Usage: cmd filename");
System.exit(l);
3

// Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo(Q);

// Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newInstance();

try {
// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

// Parse the 1input
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(argv[0]), handler);

} catch (Throwable t) {
t.printStackTrace();
3

System.exit(0);
}

With these lines of code, you create a SAXParserFactory instance, as deter-
mined by the setting of the javax.xml.parsers.SAXParserFactory System
property. You then get a parser from the factory and give the parser an instance
of this class to handle the parsing events, telling it which input file to process.

Note: Thejavax.xml.parsers.SAXParser classisawrapper that defines anumber
of convenience methods. It wraps the (somewhat less friendly)
org.xml.sax.Parser object. If needed, you can obtain that parser using the SAX-
Parser'sgetParser() method.

For now, you are simply catching any exception that the parser might throw.
You'll learn more about error processing in a later section of this chapter, Han-
dling Errors with the Nonvalidating Parser (page 145).

128

SIMPLE APl FOR XML

Writing the Output

The ContentHandler methods throw SAXExceptions but not IOExceptions,
which can occur while writing. The SAXException can wrap another exception,
though, so it makes sense to do the output in a method that takes care of the
exception-handling details. Add the following highlighted code to define an
emit method that does that:

static private Writer out;

private void emit(String s)
throws SAXException
{
try {
out.write(s);
out.flushQ;
} catch (IOException e) {
throw new SAXException("I/O error", e);
}
}

When emit is called, any I/O error is wrapped in SAXException along with a
message that identifies it. That exception is then thrown back to the SAX parser.
You'll learn more about SAX exceptions later. For now, keep in mind that emit
isasmall method that handles the string output. (You'll seeit called ofteninlater
code.)

Spacing the Output

Here is another bit of infrastructure we need before doing some real processing.
Add the following highlighted code to define an n1() method that writes the
kind of line-ending character used by the current system:

private void emit(String s)
}

private void n1(Q)

throws SAXException

{
String TineEnd = System.getProperty("line.separator');
try {

HANDLING CONTENT EVENTS 129

out.write(lineEnd);
} catch (IOException e) {
throw new SAXException("I/0 error", e);
}
}

Note: Although it seems like a bit of a nuisance, you will be invoking n1() many
timesin later code. Defining it now will simplify the code later on. It also provides
aplace to indent the output when we get to that section of the tutorial.

Handling Content Events

Finally, let's write some code that actually processes the ContentHandler
events.

Document Events

Add the following highlighted code to handle the start-document and end-docu-
ment events:

static private Writer out;

public void startDocument()

throws SAXException

{
emit("<?xml version='1].0' encoding='UTF-8'?>");
n1Q;

}

public void endDocument()
throws SAXException
{
try {
n1Q;
out.flushQ;
} catch (IOException e) {
throw new SAXException("I/O error", e);
}
}

private void echoText()

130

SIMPLE APl FOR XML

Here, you are echoing an XML declaration when the parser encounters the start
of the document. Because you set up OutputStreamwriter using UTF-8 encod-
ing, you include that specification as part of the declaration.

Note: However, the 10 classes don’t understand the hyphenated encoding names,
so you specified UTF8 for the QutputStreamWriter rather than UTF-8.

At the end of the document, you simply put out afinal newline and flush the out-
put stream. Not much going on there.

Element Events

Now for the interesting stuff. Add the following highlighted code to process the
start-element and end-element events:

public void startElement(String namespaceURI,
String sName, // simple name
String gName, // qualified name
Attributes attrs)
throws SAXException
{
String eName = sName; // element name
if ("".equals(eName)) eName = gName; // not namespace-aware
emit("<"+eName);
if (attrs !'= null) {
for (int i = 0; i < attrs.getLength(Q; i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);
emit(" ");
emit(aName+"=\""+attrs.getValue(i)+"\"");
}
}
emit(">");

}

public void endElement(String namespaceURI,
String sName, // simple name
String gName // qualified name
)

throws SAXException

{

HANDLING CONTENT EVENTS

String eName = sName; // element name
if ("".equals(eName)) eName = gName; // not namespace-aware
emit("</"+eName+">");

}

private void emit(String s)

With this code, you echo the element tags, including any attributes defined in the
start tag. Note that when the startElement () method is invoked, if namespace
processing is not enabled, then the ssimple name (local name) for elements and
attributes could turn out to be the empty string. The code handles that case by
using the qualified name whenever the simple name is the empty string.

Character Events

To finish handling the content events, you need to handle the characters that the
parser deliversto your application.

Parsers are not required to return any particular number of charactersat onetime.
A parser can return anything from a single character at a time up to several thou-
sand and ill be a standard-conforming implementation. So if your application
needs to process the charactersit sees, it is wise to accumulate the charactersin a
buffer and operate on them only when you are sure that al of them have been
found.

Add the following highlighted line to define the text buffer:

public class Echo0l extends DefaultHandler

{
StringBuffer textBuffer;

public static void main(String argv[])

{

131

132 SIMPLE API FOR XML

Then add the following highlighted code to accumulate the characters the parser
deliversin the buffer:

public void endElement(...)
throws SAXException
{

}

public void characters(char buf[], int offset, int len)
throws SAXException

{
String s = new String(buf, offset, len);
if (textBuffer == null) {
textBuffer = new StringBuffer(s);
} else {
textBuffer.append(s);

}
}

private void emit(String s)

Next, add the following highlighted method to send the contents of the buffer to
the output stream.

public void characters(char buf[], int offset, int len)
throws SAXException
{

}

private void echoText()
throws SAXException

{
if (textBuffer == null) return;
String s = ""+textBuffer;
emit(s);
textBuffer = null;

}

private void emit(String s)

HANDLING CONTENT EVENTS 133

When this method is called twice in arow (which will happen at times, asyou'll
see next), the buffer will be null. In that case, the method simply returns. When
the buffer is not null, however, its contents are sent to the output stream.

Finally, add the following highlighted code to echo the contents of the buffer
whenever an element starts or ends:

public void startElement(...)
throws SAXException

{
echoText();
String eName = sName; // element name

}

public void endElement(...)
throws SAXException

{
echoText();
String eName = sName; // element name

}

You're finished accumulating text when an element ends, of course. So you echo
it a that point, and that action clears the buffer before the next element starts.

But you also want to echo the accumulated text when an element starts! That's
necessary for document-style data, which can contain XML elements that are
intermixed with text. For example, consider this document fragment:

<para>This paragraph contains <bold>important</bold>
ideas.</para>

The initial text, This paragraph contains, isterminated by the start of the
<bol1d> element. Thetext important isterminated by the end tag, </bo1d>, and
thefinal text, ideas., isterminated by the end tag, </para>.

Note: Most of the time, though, the accumulated text will be echoed when an
endElement () event occurs. When a startElement() event occurs after that, the
buffer will be empty. Thefirst linein the echoText () method checks for that case,
and simply returns.

Congratulations! At this point you have written a complete SAX parser applica
tion. The next step is to compile and run it.

134

SIMPLE APl FOR XML

Note: To be drictly accurate, the character handler should scan the buffer for
ampersand characters (&) ; and |eft-angle bracket characters (<) and replace them
with the strings & or &1t ;, as appropriate. You'll find out more about that kind
of processing when we discuss entity references in Displaying Special Characters
and CDATA (page 153).

Compiling and Running the Program

In the Application Server, the JAXP libraries are in the directory
<J2EE_HOME>/T11ib/endorsed. These are newer versions of the standard JAXP
libraries than those that are part of the Java 2 platform, Standard Edition versions
14.x.

The Application Server automatically uses the newer libraries when a program
runs. So you don’t have to be concerned with where they reside when you deploy
an application. And because the JAXP APIs are identical in both versions, you
don’t need to be concerned at compile time either. So compiling the program you
created is as simple asissuing this command:

javac Echo.java

But to run the program outside the server container, you must be sure that the
java runtime finds the newer versions of the JAXP libraries. That situation can
occur, for example, when you're unit-testing parts of your application outside of
server, aswell as here, when you're running the XML tutorial examples.

There are two ways to make sure that the program uses the latest version of the
JAXP libraries:

» Copy the <J2EE_HOME>/1ib/endorsed directory to
<J2EE_HOME>/jdk/jre/1ib/endorsed (if you are using the Java 2 SDK
that comes with the Application Server) or
<JAVA_HOME>/jre/1ib/endorsed (if you are using aversion of the Java2
SDK that you haveinstalled separately) You can then run the program with
this command:

<J2SE SDK installation>/bin/java Echo sTideSample.xml
Thelibraries will then be found in the endorsed standards directory.

» Usethe endorsed directories system property to specify the location of the
libraries, by specifying this option on the java command line:

CHECKING THE OUTPUT 135

-D"java.endorsed.dirs=<J2EE_HOME>/T1ib/endorsed"
or
-D"java.endorsed.dirs=<JAVA_HOME>/jre/1ib/endorsed

Note: Because the JAXP APIs are already built into the Java 2 platform, Standard
Edition, they don’'t need to be specified at compile time. However, when the JAXP
factories instantiate an implementation, the endorsed directories mechanism is
employed to make sure that the desired implementation is instantiated.

Checking the Output

Here is part of the program’s output, showing some of its weird spacing:

<sTideshow title="Sample STide Show" date="Date of publication”
author="Yours Truly">

<s1lide type="all">
<title>Wake up to WonderWidgets!</title>
</slide>

Note: The program’s output is contained in Echo01-01. txt. (The browsable ver-
Sion iSEcho01-01.htm1.)

When we look at this output, a number of questions arise. Where is the excess
vertical whitespace coming from? And why are the elements indented properly,
when the code isn’t doing it? We'll answer those questions in a moment. First,
though, there are afew points to note about the output:

» The comment defined at the top of the file
<!-- A SAMPLE set of slides -->
does not appear in the listing. Comments are ignored unless you imple-

ment a LexicalHandler. You'll see more on that subject later in this tuto-
rial.

» Element attributes are listed al together on a single line. If your window
isn't really wide, you won't see them all.

../examples/jaxp/sax/samples/Echo01-01.txt
../examples/jaxp/sax/samples/Echo01-01.html

136

SIMPLE APl FOR XML

» Thesingle-tag empty element you defined (<item/>) istreated exactly the
same as atwo-tag empty element (<item></1item>). Itis, for al intentsand
purposes, identical. (It'sjust easier to type and consumes less space.)

Identifying the Events

This version of the echo program might be useful for displaying an XML file,
but it doesn’t tell you much about what’s going on in the parser. The next step is
to modify the program so that you see where the spaces and vertical lines are
coming from.

Note: The code discussed in this section isin Echo02 . java. The output it produces
isshownin Echo02-01. txt. (The browsable version is Echo02-01.htm1.)

Make the following highlighted changes to identify the events as they occur:

public void startDocument()
throws SAXException
{
n1Q;
n1Q;
emit("START DOCUMENT™);
n1Q;
emit("<?xml version='1.0' encoding="UTF-8'?>");
) O

public void endDocument()
throws SAXException
{
n1Q;
emit("END DOCUMENT");
try {
}

public void startElement(...)
throws SAXException
{
echoText();
n1Q;
emit("ELEMENT: ");
String eName = sName; // element name

../examples/jaxp/sax/samples/Echo02.java
../examples/jaxp/sax/samples/Echo02-01.txt
../examples/jaxp/sax/samples/Echo02-01.html

IDENTIFYING THE EVENTS 137

if ("".equals(eName)) eName = gName; // not namespac-aware
emit("<"+eName);
if (attrs != null) {
for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);

emit—+

n1Q;
emit(" ATTR:);
emit(aName) ;

em_i t("\t\"") ;
emit(attrs.getValue(i));
em_i t(ll\llll) ;

}
}
if (attrs.getLengthQ) > 0) n1Q;
emit(">");

}

public void endElement(...)
throws SAXException

{
echoText();
n1Q;
emit("END_ELM: '");
String eName = sName; // element name
if ("".equals(eName)) eName = gName; // not namespace-aware
emit("<"+eName+">");
}

private void echoText()
throws SAXException
{
if (textBuffer == null) return;
nlQ;
emit("CHARS: |'");
String s = ""+textBuffer;
emit(s);
emit("[");
textBuffer = null;
3

Compile and run this version of the program to produce a more informative out-
put listing. The attributes are now shown one per line, and that is nice. But, more

138 SIMPLE APl FOR XML

importantly, output lines such as the following show that both the indentation
space and the newlines that separate the attributes come from the data that the
parser passes to the characters () method.

CHARS: |

Note: The XML specification requires al input line separators to be normalized to
asingle newline. The newline character is specified asin Java, C, and UNIX sys-
tems, but goes by the alias “linefeed” in Windows systems.

Compressing the Output

To make the output more readable, modify the program so that it outputs only
characters whose values are something other than whitespace.

Note: The code discussed in this section isin Echo03. java.

Make the following changes to suppress output of characters that are all
whitespace:

public void echoText()
throws SAXException

{
n1QO;
N2 T
emit("CHARS: ");
String s = ""+textBuffer;
if (Us.trimQ).equals("™)) emit(s);
}
Next, add the following highlighted code to echo each set of characters delivered
by the parser:

public void characters(char buf[], int offset, int len)
throws SAXException

{
if (textBuffer != null) {

echoText();

../examples/jaxp/sax/samples/Echo03.java

COMPRESSING THE OUTPUT 139

textBuffer = null;

}
String s = new String(buf, offset, Ten);

}

If you run the program now, you will see that you have also eliminated the inden-
tation, because the indent space is part of the whitespace that precedes the start
of an element. Add the following highlighted code to manage the indentation:

static private Writer out;

private String indentString = " "s // Amount to indent
private 1int indentLevel = 0;

public void startElement(...)
throws SAXException
{

indentLevel++;

n1Q;
emit("ELEMENT: ");

}

public void endElement(...)
throws SAXException
{
n1Q;
emit("END_ELM: ");
emit("</"+sName+">");
indentLevel --;

}

private void n1(Q)
throws SAXException
{
try {
out.write(lineEnd);
for (int i=0; i < indentLevel; 1i++)
out.write(indentString);
} catch (IOException e) {

140

SIMPLE APl FOR XML

This code sets up an indent string, keeps track of the current indent level, and
outputs the indent string whenever the n1 method is called. If you set the indent
string to ", the output will not be indented. (Try it. You'll see why it's worth the
work to add the indentation.)

You'll be happy to know that you have reached the end of the “mechanical” code
in the Echo program. From this point on, you'll be doing things that give you
more insight into how the parser works. The steps you've taken so far, though,
have given you a lot of insight into how the parser sees the XML data it pro-
cesses. You have also gained a helpful debugging tool that you can use to see
what the parser sees.

Inspecting the Output
Hereis part of the output from this version of the program:

ELEMENT: <slideshow
>
CHARS:

CHARS:
ELEMENT: <sTide

END_ELM: </slide>
CHARS:
CHARS:

Note: The complete output is Echo03-01.txt. (The browsable version is
Echo03-01.htm1.)

Note that the characters method is invoked twice in a row. Inspecting the
source file s1ideSamp1e01.xm1 shows that there is a comment before the first
dide. Thefirst call to characters comes before that comment. The second call
comes after. (Later, you'll see how to be notified when the parser encounters a
comment, although in most cases you won't need such notifications.)

Note, too, that the characters method isinvoked after the first slide element, as
well as before. When you are thinking in terms of hierarchically structured data,
that seems odd. After al, you intended for the s1ideshow element to contain
s1ide elements and not text. Later, you'll see how to restrict the s1ideshow ele-
ment by using aDTD. When you do that, the characters method will no longer
be invoked.

../examples/xml/samples/slideSample01.xml
../examples/jaxp/sax/samples/Echo03-01.txt
../examples/jaxp/sax/samples/Echo03-01.html

DOCUMENTS AND DATA 141

In the absence of aDTD, though, the parser must assume that any element it sees
contains text such as that in the first item element of the overview slide:

<item>Why WonderWidgets are great</item>
Here, the hierarchical structure looks like this;

ELEMENT: <item>
CHARS: Why
ELEMENT:
CHARS: WonderWidgets
END_ELM:
CHARS: are great
END_ELM: </item>

Documents and Data

In this example, it's clear that there are characters intermixed with the hierarchi-
cal structure of the elements. The fact that text can surround elements (or be pre-
vented from doing so with a DTD or schema) helps to explain why you
sometimes hear talk about “XML data’ and other times hear about “XML docu-
ments.” XML comfortably handles both structured data and text documents that
include markup. The only difference between the two is whether or not text is
allowed between the elements.

Note: In a later section of this tutorial, you will work with the ignorable-
Whitespace method in the ContentHandler interface. This method can be invoked
only when a DTD is present. If a DTD specifies that s1ideshow does not contain
text, then all the whitespace surrounding the s14ide elementsis by definition ignor-
able. On the other hand, if s1ideshow can contain text (which must be assumed to
be true in the absence of aDTD), then the parser must assume that spaces and lines
it sees between the s1ide elements are significant parts of the document.

Adding Additional Event Handlers

In addition to ignorableWhitespace, there are two other ContentHandler
methods that can find uses in even simple applications. setDocumentLocator
and processingInstruction. In thissection, you’'ll implement those two event
handlers.

142

SIMPLE APl FOR XML

Identifying the Document’s Location

A locator is an object that contains the information necessary to find a docu-
ment. The Locator class encapsulates a system ID (URL) or a public identifier
(URN) or both. You would need that information if you wanted to find some-
thing relative to the current document—in the same way, for example, that an
HTML browser processes an href="anotherFile" attribute in an anchor tag.
The browser uses the location of the current document to find anotherFiTle.

You could aso use the locator to print good diagnostic messages. In addition to
the document’s location and public identifier, the locator contains methods that
give the column and line number of the most recently processed event. The set-
DocumentLocator method, however, is called only once: at the beginning of the
parse. To get the current line or column number, you would save the locator
when setDocumentLocator is invoked and then use it in the other event-han-
dling methods.

Note: The code discussed in thissectionisin Echo04.java. Itsoutput isin Echo04-
01.txt. (The browsable version is Echo04-01.htm1.)

Start by removing the extra character-echoing code you added for the last exam-
ple:

public void characters(char buf[], int offset, int len)
throws SAXException

String s = new String(buf, offset, Ten);

../examples/jaxp/sax/samples/Echo04.java
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.html

IDENTIFYING THE DOCUMENT'S LOCATION

Next, add the following highlighted method to the Echo program to get the docu-
ment locator and use it to echo the document’s system ID.

private String indentString = " " // Amount to indent
private int indentLevel = 0;

public void setDocumentLocator(Locator 1)
{
try {
out.write("LOCATOR");
out.write("SYS ID: " + 1.getSystemId());
out.flushQ;
} catch (IOException e) {
// Ignore errors
}
}

public void startDocument()

Notes:

» Thismethod, in contrast to every other ContentHandler method, does not
return aSAXException. Sorather than use emit for output, this codewrites
directly to System.out. (This method is generally expected to simply save
the Locator for later use rather than do the kind of processing that gener-
ates an exception, as here.)

» Thespelling of these methodsisId, not ID. So you have getSystemId and
getPublicId.

When you compile and run the program on s1ideSamp1e01.xm1, hereisthe sig-
nificant part of the output:

LOCATOR
SYS ID: file:<path>/../samples/s1ideSample0l.xm]

START DOCUMENT
<?xml version="'1.0"' encoding='UTF-8'?>

Here, it is apparent that setDocumentLocator is called before startDocument.
That can make a difference if you do any initialization in the event-handling
code.

143

144

SIMPLE APl FOR XML

Handling Processing Instructions

It sometimes makes sense to code application-specific processing instructionsin
the XML data. In this exercise, you'll modify the Echo program to display a pro-
cessing instruction contained in s1ideSamp1e02.xm1.

Note: The code discussed in this section isin Echo05. java. Thefile it operates on
iSslideSample02.xm1, as described in Writing Processing Instructions (page 48). The
output is in Echo05-02.txt. (The browsable versions are slideSample02-
xm1.htm1 and Echo05-02.htm1.)

As you saw in Writing Processing Instructions (page 48), the format for a pro-
cessing instruction is <?target data?>, where target isthe application that is
expected to do the processing, and data is the instruction or information for it to
process. The sample file s1ideSamp1e02.xm1 contains a processing instruction
for amythical slide presentation program that queries the user to find out which
dlidesto display (technical, executive-level, or all):

<sTideshow

>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all1"?>

<!-- TITLE SLIDE -->

../examples/jaxp/sax/samples/Echo05.java
../examples/xml/samples/slideSample02.xml
../examples/jaxp/sax/samples/Echo05-02.txt
../examples/xml/samples/slideSample02-xml.html
../examples/xml/samples/slideSample02-xml.html
../examples/jaxp/sax/samples/Echo05-02.html

SUMMARY

To display that processing instruction, add the following highlighted code to the
Echo app:

public void characters(char buf[], int offset, int Ten)

i.-

public void processingInstruction(String target, String data)
throws SAXException

{
n1Q;
emit("PROCESS: '");
emit("<?"+target+" "+data+"?>");

}

private void echoText()

When your edits are complete, compile and run the program. The relevant part of
the output should look like this:

ELEMENT: <slideshow
>

PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
CHARS:

Summary

With the minor exception of ignorableWhitespace, you have used most of the
ContentHandler methods that you need to handle the most commonly useful
SAX events. You'll seeignorablewhitespace alittlelater. Next, though, you'll
get deeper insight into how you handle errorsin the SAX parsing process.

Handling Errors with the Nonvalidating
Parser

The parser can generate three kinds of errors: afatal error, an error, and awarn-
ing. In thisexercise, you'll see how the parser handles afatal error.

145

146

SIMPLE APl FOR XML

This version of the Echo program uses the nonvalidating parser. So it can't tell
whether the XML document contains the right tags or whether those tags are in
the right sequence. In other words, it can’t tell you whether the document is
valid. It can, however, tell whether or not the document is well formed.

In this section, you'll modify the slide-show file to generate various kinds of
errors and see how the parser handles them. You'll also find out which error con-
ditions are ignored by default, and you'll see how to handle them.

Note: The XML fileused in thisexerciseis s1ideSampleBadl.xm1, asdescribed in
Introducing an Error (page 49). The output is in Echo05-Badl.txt. (The browsable
versions are s1ideSampleBadl-xm1.htm1 and Echo05-Badl.htm1.)

When you created s1ideSampleBadl.xm1, you deliberately created an XML file
that was not well formed. Run the Echo program on that file now. The output
now gives you an error message that looks like this (after formatting for readabil-

ity):
org.xml.sax.SAXParseException:
The element type "item" must be terminated by the
matching end-tag “</item>".

at org.apache.xerces.parsers.AbstractSAXParser...

at Echo.main(...)

Note: The foregoing message was generated by Xerces, the XML parser that is part
of the JAXP 1.2 implementation libraries. If you are using a different parser, the
error message is likely to be somewhat different.

When afatal error occurs, the parser cannot continue. So if the application does
not generate an exception (which you'll see how to do a moment), then the
default error-event handler generates one. The stack trace is generated by the
Throwable exception handler in your main method:

} catch (Throwable t) {
t.printStackTrace();
}

../examples/xml/samples/slideSampleBad1.xml
../examples/xml/samples/slideSampleBad1-xml.html
../examples/jaxp/sax/samples/Echo05-Bad1.txt
../examples/jaxp/sax/samples/Echo05-Bad1.html

HANDLING ERRORS WITH THE NONVALIDATING PARSER 147

That stack trace is not very useful. Next, you'll see how to generate better diag-
nostics when an error occurs.

Handling a SAXParseException

When the error was encountered, the parser generated a SAXParseException—a
subclass of SAXException that identifies the file and location where the error
occurred.

Note: The code you'll create in this exercise is in Echo06.java. The output isin
Echo06-Badl.txt. (The browsable versionis Echo06-Badl.htm1.)

Add the following highlighted code to generate a better diagnostic message
when the exception occurs:

} catch (SAXParseException spe) {
// Error generated by the parser
System.out.println('"\n** Parsing error"
+ ", line " + spe.getLineNumber()
" + spe.getSystemId());
" + spe.getMessage());

+ ", uri
System.out.printin("

} catch (Throwable t) {
t.printStackTrace();
}

Running this version of the program on s1ideSampleBadl.xm1 generates an
error message that is abit more helpful:

** Parsing error, Tine 22, uri file:<path>/sTideSampTeBadl.xm]l
The element type "item" must be ...

Note: Thetext of the error message depends on the parser used. This message was
generated using JAXP 1.2.

Note: Catching all throwablesis not generally a great idea for production applica-
tions. We're doing it now so that we can build up to full error handling gradually. In
addition, it acts as a catch-all for null pointer exceptions that can be thrown when
the parser is passed anull value.

../examples/jaxp/sax/samples/Echo06.java
../examples/jaxp/sax/samples/Echo06-Bad1.txt
../examples/jaxp/sax/samples/Echo06-Bad1.html

148 SIMPLE API FOR XML

Handling a SAXException

A more general SAXException instance may sometimes be generated by the
parser, but it more frequently occurs when an error originates in one of applica-
tion’s event-handling methods. For example, the signature of the startDocument
method in the ContentHandler interface is defined as returning a SAXExcep-
tion:

public void startDocument() throws SAXException

All the ContentHandler methods (except for setDocumentLocator) have that
signature declaration.

A SAXException can be constructed using a message, another exception, or
both. So, for example, when Echo.startDocument outputs a string using the
emit method, any /O exception that occurs is wrapped in a SAXException and
sent back to the parser:

private void emit(String s)
throws SAXException
{
try {
out.write(s);
out.flush(Q);
} catch (IOException e) {
throw new SAXException("I/O error", e);
}
}

Note: If you saved the Locator object when setDocumentLocator was invoked,
you could use it to generate a SAXParseException, identifying the document and
location, instead of generating a SAXException.

When the parser delivers the exception back to the code that invoked the parser,
it makes sense to use the original exception to generate the stack trace. Add the
following highlighted code to do that:

} catch (SAXParseException err) {
System.out.printin("\n** Parsing error"
+ ", Tine " + err.getLineNumber()
" " + err.getSystemId());

+ ", uri
System.out.println(" " + err.getMessage());

HANDLING ERRORS WITH THE NONVALIDATING PARSER

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() !'= null)
X = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();
}

This code tests to see whether the SAXException iswrapping another exception.
If it is, it generates a stack trace originating where the exception occurred to
make it easier to pinpoint the responsible code. If the exception contains only a
message, the code prints the stack trace starting from the location where the
exception was generated.

Improving the SAXParseException Handler

Because the SAXParseException can aso wrap another exception, add the fol-
lowing highlighted code to use the contained exception for the stack trace:

} catch (SAXParseException err) {
System.out.printIn("\n** Parsing error"

+ ", 1ine " + err.getLineNumber()
+ ", uri " + err.getSystemId());
System.out.printin(" " + err.getMessage());

// Use the contained exception, if any

149

150

SIMPLE APl FOR XML

Exception x = spe;

if (spe.getException() != null)
x = spe.getException();

X.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exceptionx = sxe;
if (sxe.getException() != null)
X = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();
3

The program is now ready to handle any SAX parsing exceptions it sees. You've
seen that the parser generates exceptions for fatal errors. But for nonfatal errors
and warnings, exceptions are never generated by the default error handler, and no
messages are displayed. In a moment, you'll learn more about errors and warn-
ings and will find out how to supply an error handler to process them.

Handling a ParserConfigurationException

Recall that the SAXParserFactory class can throw an exception if it cannot cre-
ate aparser. Such an error might occur if the factory cannot find the class needed
to create the parser (class not found error), is not permitted to access it (illegal
access exception), or cannot instantiate it (instantiation error).

Add the following highlighted code to handle such errors:

} catch (SAXException sxe) {
Exceptionx = sxe;
if (sxe.getException() != null)
X = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

HANDLING ERRORS WITH THE NONVALIDATING PARSER

Admittedly, there are quite afew error handlers here. But at least now you know
the kinds of exceptions that can occur.

Note: A javax.xml.parsers.FactoryConfigurationError can also be thrown if
the factory class specified by the system property cannot be found or instantiated.
That is a nontrappable error, because the program is not expected to be able to
recover from it.

Handling an IOException

Whilewe're at it, let's add a handler for I0Exceptions:

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// 1/0 error
joe.printStackTrace(Q);

}

} catch (Throwable t) {

WE'll leave the handler for Throwab1es to catch null pointer errors, but note that
at this point it is doing the same thing as the I0Exception handler. Here, we're
merely illustrating the kinds of exceptions that can occur, in case there are some
that your application could recover from.

Handling NonFatal Errors

A nonfatal error occurs when an XML document fails avalidity constraint. If the
parser finds that the document is not valid, then an error event is generated. Such
errors are generated by a validating parser, given aDTD or schema, when a doc-
ument has an invalid tag, when atag is found where it is not allowed, or (in the
case of a schema) when the element contains invalid data.

You won't deal with validation issues until later in this tutorial. But because
we're on the subject of error handling, you'll write the error-handling code now.

The most important principle to understand about nonfatal errorsis that they are
ignored by default. But if a validation error occurs in a document, you probably

151

152

SIMPLE APl FOR XML

don’t want to continue processing it. You probably want to treat such errors as
fatal. In the code you write next, you'll set up the error handler to do just that.

Note: The code for the program you'll createin this exerciseisin Echo07.java.

To take over error handling, you override the DefaultHandler methods that han-
die fatal errors, nonfatal errors, and warnings as part of the ErrorHandler inter-
face. The SAX parser delivers a SAXParseException to each of these methods,
SO generating an exception when an error occursis as simple as throwing it back.

Add the following highlighted code to override the handler for errors:

public void processingInstruction(String target, String data)
throws SAXException
{

}

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;

}

Note: It can be instructive to examine the error-handling methods defined in
org.xml.sax.helpers.DefaultHandler. You'll see that the error() and warn-
ing() methods do nothing, whereas fatalError() throwsan exception. Of course,
you could always overridethe fataltError () method to throw adifferent exception.
But if your code doesn’t throw an exception when afatal error occurs, then the SAX
parser will. The XML specification requiresit.

Handling Warnings

Warnings, too, are ignored by default. Warnings are informative can only be gen-
erated in the presence of aDTD or schema. For example, if an element is defined
twiceinaDTD, awarning is generated. It'snot illegal, and it doesn’t cause prob-
lems, but it's something you might like to know about because it might not have
been intentional .

../examples/jaxp/sax/samples/Echo07.java

DISPLAYING SPECIAL CHARACTERS AND CDATA 153

Add the following highlighted code to generate a message when a warning
OCCUrs:

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException

{

throw e;

}

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException

{
System.out.println("** Warning"
+ ", 1line " + err.getLineNumber()
" + err.getSystemId());
" + err.getMessage());

+ ", uri
System.out.printin("
}

Because there is no good way to generate a warning without a DTD or schema,
you won’'t be seeing any just yet. But when one does occur, you're ready!

Displaying Special Characters and
CDATA

The next thing we will do with the parser isto customize it a bit so that you can
see how to get information it usually ignores. In this section, you'll learn how the
parser handles

e Specia characters (<, & and so on)

» Text with XML-style syntax

Handling Special Characters

In XML, an entity isan XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, you surround the entity name with
an ampersand and a semicolon:

&entityName;

SIMPLE APl FOR XML

Earlier, you put an entity reference into your XML document by coding

Market Size < predicted

Note: The file containing this XML is s1ideSamp1e03.xm1, as described in Using
an Entity Reference in an XML Document (page 52). The results of processing it
are shown in Echo07-03.txt. (The browsable versions are slideSample03-
xm1.htm1 and Echo07-03.htm1.)

When you run the Echo program on s1ideSamp1e03.xm1, you see the following
output:

ELEMENT: <item>

CHARS: Market Size < predicted
END_ELM: </item>

The parser has converted the referenceinto the entity it represents and has passed
the entity to the application.

Handling Text with XML-Style Syntax

When you are handling large blocks of XML or HTML that include many spe-
cial characters, you use a CDATA section.

Note: The XML file used in this example is s1ideSample04.xm1. The results of
processing it are shown in Echo07-04.txt. (The browsable versions are
sTideSample04-xm1.htm1 and Echo07-04.htm1.)

A CDATA section works like <pre>...</pre> in HTML, only more so: all
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <! [CDATA[and ends with 11>. The
file s1TideSamp1e04.xm1 contains this CDATA section for a fictitious technical
dide:

<slide type="tech">
<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>

../examples/xml/samples/slideSample03.xml
../examples/jaxp/sax/samples/Echo07-03.txt
../examples/xml/samples/slideSample03-xml.html
../examples/xml/samples/slideSample03-xml.html
../examples/jaxp/sax/samples/Echo07-03.html
../examples/xml/samples/slideSample04.xml
../examples/jaxp/sax/samples/Echo07-04.txt
../examples/xml/samples/slideSample04-xml.html
../examples/jaxp/sax/samples/Echo07-04.html

HANDLING CDATA AND OTHER CHARACTERS

<item><![CDATA[Diagram:

frobmorten <-----————————-- fuznaten
[<3> A
| <1> | <1> = fozzle
Vv | <2> = framboze

staten---—--——-——— -~ + <3> = frenzle

<2>
11></item>
</slide>

</sTideshow>
When you run the Echo program on the new file, you see the following outpuit:

ELEMENT: <item>
CHARS: Diagram:

frobmorten <---———————————- fuznaten
| <3> A
| <1> | <1> = fozzle
\Y | <2> = framboze
staten--————————— -~ + <3> = frenzle
<2>

END_ELM: </item>

You can see here that the text in the CDATA section arrived as it was written.
Because the parser didn’t treat the angle brackets as XML, they didn’t generate
the fatal errors they would otherwise cause. (If the angle brackets weren't in a
CDATA section, the document would not be well formed.)

Handling CDATA and Other Characters

The existence of CDATA makes the proper echoing of XML abit tricky. If the text
to be output is not in a CDATA section, then any angle brackets, ampersands, and
other special charactersin the text should be replaced with the appropriate entity
reference. (Replacing left angle brackets and ampersands is most important,
other characters will be interpreted properly without misleading the parser.)

But if the output text is in a CDATA section, then the substitutions should not
occur, resulting in text like that in the earlier example. In a simple program such
as our Echo application, it's not abig deal. But many XML-filtering applications
will want to keep track of whether the text appears in a CDATA section, so that
they can treat special characters properly. (Later, you will see how to use aLex-
icalHandler to find out whether or not you are processing a CDATA section.)

155

156

SIMPLE APl FOR XML

One other area to watch for is attributes. The text of an attribute value can aso
contain angle brackets and semicolons that need to be replaced by entity refer-
ences. (Attribute text can never be in a CDATA section, though, so there is never
any question about doing that substitution.)

Parsing with a DTD

After the XML declaration, the document prolog can include a DTD, reference
an external DTD, or both. In this section, you'll see the effect of the DTD on the
datathat the parser delivers to your application.

DTD’s Effect on the Nonvalidating Parser

In this section, you'll use the Echo program to see how the data appears to the
SAX parser when the datafile referencesa DTD.

Note: The XML file used in this section is s1ideSamp1e05.xm1, which references
slideshowla.dtd. The output is shown in Echo07-05.txt. (The browsable ver-
sions are slideshowla-dtd.html, slideSample05-xml1.html, and Echo07-
05.htm1.)

Running the Echo program on your latest version of sT1ideSample.xm1 shows
that many of the superfluous calls to the characters method have now disap-
peared.

Before, you saw this:

>
PROCESS:
CHARS:
ELEMENT: <slide
ATTR:
>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>
END_ELM: </slide>
CHARS:

../examples/xml/samples/slideSample05.xml
../examples/xml/samples/slideshow1a.dtd
../examples/xml/samples/slideshow1a-dtd.html
../examples/xml/samples/slideSample05-xml.html
../examples/jaxp/sax/samples/Echo07-05.txt
../examples/jaxp/sax/samples/Echo07-05.html
../examples/jaxp/sax/samples/Echo07-05.html

TRACKING | GNORABLE WHITESPACE

ELEMENT: <slide
ATTR: ...
>

Now you see this:

>
PROCESS: ...
ELEMENT: <sTide
ATTR: ...
>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>
END_ELM: </sTide>
ELEMENT: <sTide
ATTR: ...
>

It is evident that the whitespace characters that were formerly being echoed
around the s11ide elements are no longer being delivered by the parser, because
the DTD declares that s1ideshow consists solely of s1ide elements:

<!ELEMENT slideshow (slide+)>

Tracking Ignorable Whitespace

Now that the DTD is present, the parser is no longer calling the characters
method with whitespace that it knows to be irrelevant. From the standpoint of an
application that is interested in processing only the XML data, that is great. The
application is never bothered with whitespace that exists purely to make the
XML filereadable.

On the other hand, if you were writing an application that was filtering an XML
datafile and if you wanted to output an equally readable version of thefile, then
that whitespace would no longer beirrelevant: it would be essential. To get those
characters, you add the ignorablewhitespace method to your application.
You'll do that next.

157

158 SIMPLE APl FOR XML

Note: The code written in this section is contained in Echo08. java. The output is
in Echo08-05. txt. (The browsable version is Echo08-05.htm1.)

To process the (generally) ignorable whitespace that the parser is seeing, add the
following highlighted code to implement the ignorableWhitespace event han-
dler in your version of the Echo program:

public void characters (char buf[], int offset, int len)

public void ignorableWhitespace (char buf[], int offset, int
Len)
throws SAXException

{
n1Q;
emit("IGNORABLE");

}

public void processingInstruction(String target, String data)

This code simply generates a message to let you know that ignorable whitespace
was seen.

Note: Again, not all parsers are created equal. The SAX specification does not
require that this method be invoked. The Java XML implementation does so when-
ever the DTD makesit possible.

When you run the Echo application now, your output looks like this:

ELEMENT: <slideshow
ATTR:
>
IGNORABLE
IGNORABLE
PROCESS: ...
IGNORABLE
IGNORABLE
ELEMENT: <slide
ATTR:
>
IGNORABLE

../examples/jaxp/sax/samples/Echo08.java
../examples/jaxp/sax/samples/Echo08-05.txt
../examples/jaxp/sax/samples/Echo08-05.html

CLEANUP 159

ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>
IGNORABLE
END_ELM: </sTide>
IGNORABLE
IGNORABLE
ELEMENT: <slide
ATTR:
>

Here, it is apparent that the ignorableWhitespace is being invoked before and
after comments and slide elements, whereas characters was being invoked
before therewasaDTD.

Cleanup

Now that you have seen ignorable whitespace echoed, remove that code from
your version of the Echo program. You won't need it any more in the exercises
that follow.

Note: That change has been madein Echo09. java.

Empty Elements, Revisited

Now that you understand how certain instances of whitespace can be ignorable,
it is time revise the definition of an empty element. That definition can now be
expanded to include

<foo> </foo>

where there is whitespace between the tags and the DTD says that the
whitespace isignorable.

../examples/jaxp/sax/samples/Echo09.java

160

SIMPLE APl FOR XML

Echoing Entity References

When you wrote sTideSamp1e06.xm1, you defined entities for the singular and
plural versions of the product name in the DTD:

<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">

You referenced them in the XML this way:
<title>Wake up to &products;!</title>

Now it's time to see how they're echoed when you process them with the SAX
parser.

Note: The XML used here is contained in s1ideSamp1e06.xm1, which references
slideshowlb.dtd, as described in Defining Attributes and Entities in the
DTD (page 59). The output is shown in Echo09-06.txt. (The browsable versions
are slideSample06-xml.html, sTideshowlb-dtd.htm1, and Echo09-06.htm1.)

When you run the Echo program on s1ideSamp1e06.xm1, here is the kind of
thing you see:

ELEMENT: <title>
CHARS: Wake up to WonderWidgets!
END_ELM: </title>

Note that the product name has been substituted for the entity reference.

Echoing the External Entity

In sTideSamp1e07.xm1, you defined an external entity to reference a copyright
file.

Note: The XML used here is contained in s1ideSample07.xm1 and in copy-
right.xml1. The output is shown in Echo09-07.txt. (The browsable versions are
slideSampl1e07-xm1.html, copyright-xml.htm1, and Echo09-07.htm1.)

../examples/xml/samples/slideSample06.xml
../examples/xml/samples/slideshow1b.dtd
../examples/jaxp/sax/samples/Echo09-06.txt
../examples/xml/samples/slideSample06-xml.html
../examples/xml/samples/slideshow1b-dtd.html
../examples/jaxp/sax/samples/Echo09-06.html
../examples/xml/samples/slideSample07.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/Echo09-07.txt
../examples/xml/samples/slideSample07-xml.html
../examples/jaxp/sax/samples/copyright-xml.html
../examples/jaxp/sax/samples/Echo09-07.html

SUMMARIZING ENTITIES 161

When you run the Echo program on that version of the slide presentation, here is
what you see:

END_ELM: </slide>
ELEMENT: <sTide

ATTR: type'"all"
>

ELEMENT: <item>

CHARS:
This 1is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
Tlap...

END_ELM: </item>
END_ELM: </sTide>

Note that the newline that follows the comment in the file is echoed as a charac-
ter, but the comment itself isignored. That is why the copyright message appears
to start on the next line after the CHARS: label instead of immediately after the
label: the first character echoed is actually the newline that follows the comment.

Summarizing Entities

An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity that contains XML (text and markup), and is therefore parsed, is
known as a parsed entity. An entity that contains binary data (such asimages) is
known as an unparsed entity. (By its nature, it must be external.) We'll discuss
references to unparsed entities later, in Using the DTDHandler and
EntityResolver (page 177).

Choosing Your Parser Implementation

If no other factory class is specified, the default SAXParserFactory class is
used. To use a parser from a different manufacturer, you can change the value of

162

SIMPLE APl FOR XML

the environment variable that points to it. You can do that from the command
line:

java -Djavax.xml.parsers.SAXParserFactory=yourFactoryHere ...

The factory name you specify must be a fully qualified class name (al package
prefixes included). For more information, see the documentation in the newIn-
stance() method of the SAXParserFactory class.

Using the Validating Parser

By now, you have done alot of experimenting with the nonvalidating parser. It's
time to have alook at the validating parser to find out what happens when you
use it to parse the sample presentation.

You need to understand about two things about the validating parser at the outset:

» A schemaor document type definition (DTD) is required.

» Because the schema or DTD is present, the ignorableWhitespace
method isinvoked whenever possible.

Configuring the Factory

Thefirst step is to modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

Note: The code in this section iscontained in Echo10.java.

To use the validating parser, make the following highlighted changes:

public static void main(String argv[])

{
if (argv.length != 1) {

}

z lefault ¢ Tidating:

// Use the validating parser

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

try {

../examples/jaxp/sax/samples/Echo10.java

VALIDATING WITH XML SCHEMA

Here, you configure the factory so that it will produce a validating parser when
newSAXParser is invoked. To configure it to return a namespace-aware parsef,
you can aso use setNamespaceAware(true). Sun’'s implementation supports
any combination of configuration options. (If a combination is not supported by
a particular implementation, it is required to generate a factory configuration
error.)

Validating with XML Schema

Although a full treatment of XML Schema is beyond the scope of this tutorial,
this section shows you the steps you take to validate an XML document using an
existing schema written in the XML Schema language. (To learn more about
XML Schema, you can review the online tutorial, XML Schema Part O: Primer,
at http://www.w3.org/TR/xmlschema-0/. You can also examine the sample
programs that are part of the JAXP download. They use a simple XML Schema
definition to validate personnel data stored in an XML file.)

Note: There are multiple schema-definition languages, including RELAX NG,
Schematron, and the W3C “XML Schema” standard. (Even a DTD qualifies as a
“schema,” athough it is the only one that does not use XML syntax to describe
schema constraints.) However, “XML Schema’ presents us with a terminology
challenge. Although the phrase“ XML Schema schema” would be precise, we'll use
the phrase “XML Schema definition” to avoid the appearance of redundancy.

To be notified of validation errors in an XML document, the parser factory must
be configured to create a validating parser, as shown in the preceding section. In
addition, the following must be true:

» The appropriate properties must be set on the SAX parser.

» The appropriate error handler must be set.

» The document must be associated with a schema.

163

http://www.w3.org/TR/xmlschema-0/

164

SIMPLE APl FOR XML

Setting the SAX Parser Properties

It's helpful to start by defining the constants you'll use when setting the proper-
ties:

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml1/jaxp/properties/schemaLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.0rg/2001/XMLSchema";

Next, you configure the parser factory to generate a parser that is namespace-
aware aswell as validating:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);

You'll learn more about namespaces in Validating with XML
Schema (page 246). For now, understand that schema validation is a namespace-
oriented process. Because JAXP-compliant parsers are not namespace-aware by
default, it is necessary to set the property for schema validation to work.

The last step is to configure the parser to tell it which schema language to use.
Here, you use the constants you defined earlier to specify the W3C's XML
Schema language:

saxParser.setProperty (JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA) ;

In the process, however, there is an extra error to handle. You'll take a look at
that error next.

Setting Up the Appropriate Error Handling

In addition to the error handling you've aready learned about, there is one error
that can occur when you are configuring the parser for schema-based validation.
If the parser is not 1.2-compliant and therefore does not support XML Schema, it
can throw a SAXNotRecognizedException

VALIDATING WITH XML SCHEMA 165

To handle that case, you wrap the setProperty() statement in a try/catch
block, as shown in the code highlighted here:

SAXParser saxParser = factory.newSAXParser();

try {
saxParser.setProperty (JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

}
catch (SAXNotRecognizedException x) {
// Happens 1if the parser does not support JAXP 1.2

Associating a Document with a Schema

Now that the program is ready to validate the data using an XML Schema defini-
tion, it is only necessary to ensure that the XML document is associated with
one. There are two ways to do that:

» By including a schema declaration in the XML document

» By specifying the schemato usein the application

Note: When the application specifies the schema to use, it overrides any schema
declaration in the document.

To specify the schema definition in the document, you create XML such as this:

<documentRoot
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:noNamespaceSchemaLocation="YourSchemaDefinition.xsd'
>

Thefirst attribute defines the XML namespace (xm1ns) prefix, xsi, which stands
for XML Schema instance. The second line specifies the schema to use for ele-
ments in the document that do not have a namespace prefix—that is, for the ele-
ments you typically define in any simple, uncomplicated XML document.

Note: You'll learn about namespacesin Validating with XML Schema (page 246).
For now, think of these attributes as the “magic incantation” you use to validate a
simple XML file that doesn’'t use them. After you've learned more about

166 SIMPLE APl FOR XML

namespaces, you'll see how to use XML Schema to validate complex documents
that use them. Those ideas are discussed in Validating with Multiple

Namespaces (page 249).

You can also specify the schemafile in the application:

static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml1/jaxp/properties/schemaSource";

SAXParser saxParser = spf.newSAXParser();

saxParser.setProperty (JAXP_SCHEMA_SOURCE,
new File(schemaSource));

Now that you know how to use an XML Schema definition, we'll turn to the
kinds of errors you can see when the application is validating its incoming data.
To do that, you'll use a document type definition (DTD) as you experiment with
validation.

Experimenting with Validation Errors

To see what happens when the XML document does not specify aDTD, remove
the DOCTYPE statement from the XML file and run the Echo program onit.

Note: The output shown here is contained in Echo10-01. txt. (The browsable ver-
SioNiSEcho10-01.htm1.)

The result you see looks like this:

<?xm1 version='1.0"' encoding="UTF-8'?>

** Parsing error, line 9, uri .../slideSample0l.xm]l
Document root element "slideshow", must match DOCTYPE root
"null"

Note: This message was generated by the JAXP 1.2 libraries. If you are using a dif-
ferent parser, the error message is likely to be somewhat different.

This message says that the root element of the document must match the element
specified in the DOCTYPE declaration. That declaration specifies the document’s

../examples/jaxp/sax/samples/Echo10-01.txt
../examples/jaxp/sax/samples/Echo10-01.html

EXPERIMENTING WITH VALIDATION ERRORS

DTD. Because you don’t yet have one, it's valueis null. In other words, the mes-
sageis saying that you are trying to validate the document, but no DTD has been
declared, because no DOCTYPE declaration is present.

So now you know that aDTD is arequirement for avalid document. That makes
sense. What happens when you run the parser on your current version of the slide
presentation, with the DTD specified?

Note: The output shown here is produced using s1ideSamp1e07.xm1, as described
in Referencing Binary Entities (page 66). The output is contained in Echol0-
07.txt. (The browsable version is Echo10-07.htm1.)

Thistime, the parser gives a different error message:

* Parsing error, line 29, uri file:...
The content of element type "slide" must match
"(image?,title,item*)

This message says that the element found at line 29 (<item>) does not match the
definition of the <s1ide> element in the DTD. The error occurs because the def-
inition says that the s1ide element requires a title. That element is not
optional, and the copyright dide does not have one. To fix the problem, add a
guestion mark to make tit1e an optional element:

<!ELEMENT slide (image?, title?, item*)>

Now what happens when you run the program?

Note: You could also remove the copyright slide, producing the same result shown
next, asreflected in Echo10-06. txt. (The browsable version is Echo10-06.htm1.)

The answer is that everything runs fine until the parser runs into the tag
contained in the overview slide. Because that tag is not defined in the DTD, the
attempt to validate the document fails. The output looks like this:

ELEMENT: <title>
CHARS: Overview
END_ELM: </titTle>
ELEMENT: <item>

167

../examples/xml/samples/slideSample07.xml
../examples/jaxp/sax/samples/Echo10-07.txt
../examples/jaxp/sax/samples/Echo10-07.txt
../examples/jaxp/sax/samples/Echo10-07.html
../examples/jaxp/sax/samples/Echo10-06.txt
../examples/jaxp/sax/samples/Echo10-06.html

168

SIMPLE APl FOR XML

CHARS: Why ** Parsing error, 1line 28, uri: ...
Element "em" must be declared.
org.xml.sax.SAXParseException: ...

The error message identifies the part of the DTD that caused validation to fail. In
this caseit isthe line that defines an i tem element as (#PCDATA | item).

As an exercise, make a copy of the file and remove all occurrences of from
it. Can the file be validated now? (In the next section, you'll learn how to define
parameter entries so that we can use XHTML in the elements we are defining as
part of the slide presentation.)

Error Handling in the Validating Parser

It isimportant to recognize that the only reason an exception is thrown when the
file fails validation is as a result of the error-handling code you entered in the
early stages of thistutorial. That codeis reproduced here:

public void error(SAXParseException e)
throws SAXParseException

{

throw e;

}

If that exception is not thrown, the validation errors are simply ignored. Try com-
menting out the line that throws the exception. What happens when you run the
parser now?

In general, a SAX parsing error isavalidation error, although you have seen that
it can also be generated if the file specifies a version of XML that the parser is
not prepared to handle. Remember that your application will not generate a vali-
dation exception unless you supply an error handler such as the one here.

Parsing a Parameterized DTD

This section uses the Echo program to see what happens when you reference
xhtm1.dtd in slideshow2.dtd. It also covers the kinds of warnings that are
generated by the SAX parser when aDTD is present.

PARSING A PARAMETERIZED DTD

Note: The XML file used here is slideSample08.xm1, which references
slideshow2.dtd. The output is contained in Echo10-08. txt. (The browsable ver-
sions are slideSample08-xml.html, slideshow2-dtd.html, and Echol0-
08.htm1.)

When you try to echo the slide presentation, you will find that it now contains a
new error. The relevant part of the output is shown here (formatted for readabil-

ity):

<?xm1 version='1.0"' encoding='UTF-8'?>
** Parsing error, line 22, uri: .../slideshow.dtd
Element type "title" must not be declared more than once.

Note: The foregoing message was generated by the JAXP 1.2 libraries. If you are
using a different parser, the error message is likely to be somewhat different.

The problem isthat xhtm1.dtd definesa title element that is entirely different
from the tit1e element defined in the slideshow DTD. Because thereis no hier-
archy inthe DTD, these two definitions conflict.

The s1ideSamp1e09.xm1 version solves the problem by changing the name of
the dide title. Run the Echo program on that version of the slide presentation. It
should run to completion and display output like that shown in Echo10-09.

Congratulations! You have now read a fully validated XML document. The
change in that version of the file has the effect of putting the DTD’s title ele-
ment into a s1ideshow “namespace’ that you artificially constructed by hyphen-
ating the name, so the title element in the “s1ideshow namespace’ (s1ide-
title, realy) isnolonger in conflict with the title element in xhtm1. dtd.

Note: As mentioned in Using Namespaces (page 73), hamespaces let you accom-
plish the same goal without having to rename any elements.

Next, we'll take a look at the kinds of warnings that the validating parser can
produce when processing the DTD.

../examples/xml/samples/slideshow2.dtd
../examples/xml/samples/slideSample08.xml
../examples/xml/samples/slideshow2-dtd.html
../examples/xml/samples/slideSample08-xml.html
../examples/jaxp/sax/samples/Echo10-08.txt
../examples/jaxp/sax/samples/Echo10-08.html
../examples/jaxp/sax/samples/Echo10-08.html

170

SIMPLE APl FOR XML

DTD Warnings

As mentioned earlier, warnings are generated only when the SAX parser is pro-
cessing a DTD. Some warnings are generated only by the validating parser. The
nonvalidating parser’s main goal is operate as rapidly as possible, but it too gen-
erates some warnings. (The explanations that follow tell which does what.)

The XML specification suggests that warnings should be generated as aresult of
the following:

» Providing additional declarations for entities, attributes, or notations.
(Such declarations areignored. Only thefirst isused. Also, note that dupli-
cate definitions of elements always produce a fatal error when validating,
asyou saw earlier.)

» Referencing an undeclared element type. (A validity error occurs only if
the undeclared type is actually used in the XML document. A warning
results when the undeclared element is referenced inthe DTD.)

» Declaring attributes for undeclared element types.
The Java XML SAX parser also emits warnings in other cases.

* NO <!DOCTYPE ...>when validating.

» References to an undefined parameter entity when not validating. (When
validating, an error results. Although nonvalidating parsers are not
required to read parameter entities, the Java XML parser does so. Because
it is not a requirement, the Java XML parser generates a warning, rather
than an error.)

» Certain cases where the character-encoding declaration does not ook
right.

At this point, you have digested many XML concepts, including DTDs and
external entities. You have also learned your way around the SAX parser. The
remainder of this chapter covers advanced topics that you will need to under-
stand only if you are writing SAX-based applications. If your primary goal isto
write DOM-based applications, you can skip ahead to Chapter 6.

Handling Lexical Events

You saw earlier that if you are writing text out as XML, you need to know
whether you are in a CDATA section. If you are, then angle brackets (<) and
ampersands (&) should be output unchanged. But if you're not in a CDATA sec-

How THE LEXICALHANDLER WORKS 171

tion, they should be replaced by the predefined entities&1t; and & ;. But how
do you know whether you're processing a CDATA section?

Then again, if you are filtering XML in some way, you want to pass comments
along. Normally the parser ignores comments. How can you get comments so
that you can echo them?

Finally, there are the parsed entity definitions. If an XML-filtering app sees
&myEntity; it needs to echo the same string, and not the text that is inserted in
its place. How do you go about doing that?

This section answers those questions. It shows you how to use
org.xml.sax.ext.LexicalHandler to identify comments, CDATA sections, and
references to parsed entities.

Comments, CDATA tags, and references to parsed entities congtitute lexical infor-
mation—that is, information that concerns the text of the XML itself, rather than
the XML'’s information content. Most applications, of course, are concerned only
with the content of an XML document. Such applications will not use the
LexicalEventListener API. But applications that output XML text will find it
invaluable.

Note: Lexical event handling is an optional parser feature. Parser implementations
are not required to support it. (The reference implementation does so.) This discus-
sion assumes that your parser does so.

How the LexicalHandler Works

To be informed when the SAX parser sees lexical information, you configure the
Xm1Reader that underlies the parser with a LexicalHandler. The LexicalHan-
dler interface defines these event-handling methods:

comment(String comment)
Passes comments to the application
startCDATA(), endCDATAQ
Tells when a CDATA section is starting and ending, which tells your applica-
tion what kind of characters to expect the next time characters() iscalled
startEntity(String name), endEntity(String name)
Gives the name of a parsed entity
startDTD(String name, String publicId, String systemId), endDTD(Q)
Tellswhen aDTD is being processed, and identifies it

172

SIMPLE APl FOR XML

Working with a LexicalHandler

In the remainder of this section, you'll convert the Echo app into a lexical han-
dler and play with its features.

Note: The code shown in this section is in Echoll.java. The output is shown in
Echol11-09.txt. (The browsable version isEcho11-09.htm1.)

To start, add the following highlighted code to implement the LexicalHandler
interface and add the appropriate methods.

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.LexicalHandler;

public class Echo extends HandlerBase
implements LexicalHandler

{
public static void main(String argv[])

{

// Use an instance of ourselves as the SAX event handler
DefaultHandlerhandler=newEcho O
Echo handler = new Echo(Q);

At this point, the Echo class extends one class and implements an additional
interface. You have changed the class of the handler variable accordingly, so you
can use the same instance as either abefaultHandler or aLexicalHandler, as
appropriate.

Next, add the following highlighted code to get the XMLReader that the parser
delegates to, and configure it to send lexical eventsto your lexical handler:

public static void main(String argv[])

{
try {
// Parse the input
SAXParser saxParser = factory.newSAXParser();
XMLReader xmlReader = saxParser.getXMLReader();

xm1Reader.setProperty(
"http://xml.org/sax/properties/lexical-handler",

../examples/jaxp/sax/samples/Echo11.java
../examples/jaxp/sax/samples/Echo11-09.txt
../examples/jaxp/sax/samples/Echo11-09.html

WORKING WITH A LEXICALHANDLER 173

handler
);
saxParser.parse(new File(argv[0]), handler);
} catch (SAXParseException spe) {

Here, you configure the XMLReader using the setProperty () method defined in
the XMLReader class. The property name, defined as part of the SAX standard, is
the URN, http://xml.org/sax/properties/lexical-handler.

Finally, add the following highlighted code to define the appropriate methods
that implement the interface.

public void warning(SAXParseException err)

}

public void comment(char[] ch, int start, int length)
throws SAXException

{

}

public void startCDATAQ
throws SAXException

{

}

pubic void endCDATAQ)
throws SAXException

{

}

public void startEntity(String name)
throws SAXException

{

}

public void endEntity(String name)
throws SAXException

{

}

public void startDTD(
String name, String publicId, String systemId)
throws SAXException
{
}

174 SIMPLE APl FOR XML

public void endDTD(Q)
throws SAXException
{
}

private void echoText()

You have now turned the Echo class into a lexical handler. In the next section,
you'll start experimenting with lexical events.

Echoing Comments

The next step is to do something with one of the new methods. Add the follow-
ing highlighted code to echo comments in the XML file:

public void comment(char[] ch, int start, int length)
throws SAXException

{
String text = new String(ch, start, length);
nlQ;
emit("COMMENT: "+text);

3

When you compile the Echo program and run it on your XML file, the result
looks something like this:

COMMENT : A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT :

DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT :

Theline endingsin the comments are passed as part of the comment string, again
normalized to newlines. You can also see that commentsin the DTD are echoed
along with comments from the file. (That can pose problems when you want to
echo only commentsthat are in the datafile. To get around that problem, you can
use the startDTD and endDTD methods.)

WORKING WITH A LEXICALHANDLER 175

Echoing Other Lexical Information

To finish learning about lexical events, you'll exercise the remaining Lexical-
HandTler methods.

Note: The code shown in this section isin Echol2.java. Thefile it operates on is
slideSampl1e09.xm1. The results of processing arein Echo12-09. txt. (The brows-
able versions are s1ideSamp1e09-xm1.htm1 and Echo12-09.htm1.)

Make the following highlighted changes to remove the comment echo (you no
longer need that) and echo the other events, along with any characters that have
been accumul ated when an event occurs:

public void comment(char[] ch, int start, int length)
throws SAXException
{

. ; " "
}

public void startCDATA(Q)
throws SAXException
{

echoText();

nlQ;

emit("START CDATA SECTION');
}

public void endCDATA(Q)
throws SAXException
{

echoText();

n1Q;

emit("END CDATA SECTION);
}

public void startEntity(String name)
throws SAXException
{
echoText();
n1Q;
emit("START ENTITY: "+name);
}

../examples/jaxp/sax/samples/Echo12-09.txt
../examples/xml/samples/slideSample09-xml.html
../examples/jaxp/sax/samples/Echo12-09.html
../examples/jaxp/sax/samples/Echo12.java
../examples/xml/samples/slideSample09.xml

176 SIMPLE API FOR XML

public void endEntity(String name)
throws SAXException

{
echoText();
n1Q;
emit("END ENTITY: "+name);
3
public void startDTD(String name, String publicId, String
systemId)
throws SAXException
{
n1Q;
emit("START DTD: "+name
+" publicId=" + publicId
+" systemId=" + systemId);
}

public void endDTD()
throws SAXException
{

n1Q;
emit("END DTD");

}
Here is what you see when the DTD is processed:

START DTD: slideshow
publicId=null
systemId=s1ideshow3.dtd

START ENTITY:

END DTD

Note: To see events that occur while the DTD is being processed, use
org.xml.sax.ext.DeclHandTer.

Here is some of the additional output you see when the internally defined prod-
ucts entity is processed with the latest version of the program:

START ENTITY: products
CHARS: WonderWidgets
END ENTITY: products

USING THE DTDHANDLER AND ENTITYRESOLVER 177

And here is the additional output you see as a result of processing the external
copyright entity:

START ENTITY: copyright

CHARS:
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
Tlap...

END ENTITY: copyright
Finally, you get output that shows when the CDATA section was processed:

START CDATA SECTION
CHARS: Diagram:

frobmorten <--———————————- fuznaten
| <3> A
| <1> | = fozzle
Vv | <2> = framboze
staten------——————————————- + <3> = frenzle
<2>

END CDATA SECTION

In summary, the LexicalHandler gives you the event natifications you need to
produce an accurate reflection of the original XML text.

Note: To accurately echo the input, you would modify the characters() method
to echo the text it sees in the appropriate fashion, depending on whether or not the
program wasin CDATA mode.

Using the DTDHandler and
EntityResolver

In this section, we discuss the two remaining SAX event handlers: DTDHandler
and EntityResolver. The DTDHandler isinvoked when the DTD encounters an
unparsed entity or a notation declaration. The EntityResolver comesinto play
when a URN (public ID) must be resolved to a URL (system ID).

178

SIMPLE APl FOR XML

The DTDHandler API

In Choosing Your Parser Implementation (page 161) you saw amethod for refer-
encing afile that contains binary data, such as an image file, using MIME data
types. That is the simplest, most extensible mechanism. For compatibility with
older SGML-style data, though, it is also possible to define an unparsed entity.

The NDATA keyword defines an unparsed entity:
<!ENTITY myEntity SYSTEM "..URL.." NDATA gif>

The NDATA keyword says that the data in this entity is not parsable XML data but
instead is data that uses some other notation. In this case, the notation is named
gif. The DTD must then include a declaration for that notation, which would
look something like this:

<!NOTATION gif SYSTEM "..URL..">

When the parser sees an unparsed entity or a notation declaration, it does nothing
with the information except to pass it along to the application using the DTDHan-
dler interface. That interface defines two methods:

notationDecl1(String name, String publicId, String systemId)

unparsedEntityDec1 (String name, String publicld,
String systemId, String notationName)

ThenotationDecl method is passed the name of the notation and either the pub-
lic or the system identifier, or both, depending on which is declared in the DTD.
The unparsedEntityDecl method is passed the name of the entity, the appropri-
ate identifiers, and the name of the notation it uses.

Note: The DTDHand1er interface isimplemented by the DefaultHandler class.

Notations can also be used in attribute declarations. For example, the following
declaration requires notations for the GIF and PNG image-file formats:

<!ENTITY image EMPTY>
<!ATTLIST 1image

type NOTATION (gif | png) "gif"

THE ENTITYRESOLVER API 179

Here, the type is declared as being either gif or png. The default, if neither is
specified, isgif.

Whether the notation reference is used to describe an unparsed entity or an
attribute, it is up to the application to do the appropriate processing. The parser
knows nothing at all about the semantics of the notations. It only passes on the
declarations.

The EntityResolver API

The EntityResolver API lets you convert apublic ID (URN) into a system ID
(URL). Your application may need to do that, for example, to convert something
like href="urn:/someName" into "http://someURL".

The EntityResolver interface defines a single method:
resolveEntity(String publicId, String systemId)

This method returns an InputSource object, which can be used to access the
entity’s contents. Converting a URL into an InputSource is easy enough. But
the URL that is passed as the system ID will be the location of the original docu-
ment which is, as likely as not, somewhere out on the Web. To access a local
copy, if there is one, you must maintain a catalog somewhere on the system that
maps names (public IDs) into local URLSs.

Further Information

For further information on the SAX standard, see
» The SAX standard page: http://www.saxproject.org/
For more information on the StAX pull parser, see:

» The Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

 Elliot Rusty Harold's introduction at
http://www.xml.com/pub/a/2003/09/17/stax.html.

http://jcp.org/en/jsr/detail?id=173
http://www.xml.com/pub/a/2003/09/17/stax.html
http://www.saxproject.org/

180 SIMPLE APl FOR XML

For more information on schema-based validation mechanisms, see

* The W3C standard validation mechanism, XML Schema
http://www.w3c.org/XML/Schema

» RELAX NG’sregular-expression-based validation mechanism;
http://www.oasis-open.org/committees/relax-ng/

» Schematron’s assertion-based validation mechanism:
http://www.ascc.net/xml/resource/schematron/schematron.html

http://www.w3c.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html

6

Document Objecf
Model

I N Chapter 5, you wrote an XML file that contains slides for a presentation.
You then used the SAX API to echo the XML to your display.

In this chapter, you'll use the Document Object Model (DOM) to build a small
application caled SlideShow. You'll start by constructing and inspecting a
DOM. Then see how to write a DOM as an XML structure, display it in a GUI,
and manipulate the tree structure.

A DOM is a garden-variety tree structure, where each node contains one of the
components from an XML structure. The two most common types of nodes are
element nodes and text nodes. Using DOM functions lets you create nodes,
remove nodes, change their contents, and traverse the node hierarchy.

In this chapter, you'll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into adisplay-friendly JTree,
and explore the syntax of namespaces. You'll also create a DOM from scratch,
and see how to use some of the implementation-specific features in Sun's JAXP
implementation to convert an existing data set to XML.

First though, we'll make sure that DOM is the most appropriate choice for your
application.

181

182

DOCUMENT OBJECT MODEL

Note: The examplesin this chapter can be found in <INSTALL>/j2eetutoriall4/
examples/jaxp/dom/samples/.

When to Use DOM

The Document Object Model standard is, above all, designed for documents (for
example, articles and books). In addition, the JAXP 1.2 implementation supports
XML Schema, something that may be an important consideration for any given
application.

On the other hand, if you are dealing with simple data structures and if XML
Schema isn't a big part of your plans, then you may find that one of the more
object-oriented standards, such as JDOM and domdj (page 1387), is better suited
for your purpose.

From the start, DOM was intended to be language-neutral. Because it was
designed for use with languages such as C and Perl, DOM does not take advan-
tage of Java's object-oriented features. That fact, in addition to the distinction
between documents and data, also helps to account for the ways in which pro-
cessing a DOM differs from processing a JDOM or domdj structure.

In this section, we'll examine the differences between the models underlying
those standards to help you choose the one that is most appropriate for your
application.

Documents Versus Data

The major point of departure between the document model used in DOM and the
data model used in JIDOM or dom4j liesin

» Thekind of node that existsin the hierarchy
» The capacity for mixed content

It is the difference in what congtitutes a “node” in the data hierarchy that prima-
rily accounts for the differences in programming with these two models. How-
ever, the capacity for mixed content, more than anything else, accounts for the
difference in how the standards define a node. So we start by examining DOM’s
mixed-content model.

MIXED-CONTENT MODEL

Mixed-Content Model

Recall from the discussion of Documents and Data (page 141) that text and ele-
ments can be freely intermixed in a DOM hierarchy. That kind of structure is
dubbed mixed content in the DOM model.

Mixed content occurs frequently in documents. For example, suppose you
wanted to represent this structure:

<sentence>This is an <bold>important</bold> idea.</sentence>

The hierarchy of DOM nodes would look something like this, where each line
represents one node:

ELEMENT: sentence
+ TEXT: This is an
+ ELEMENT: bold
+ TEXT: important
+ TEXT: idea.

Note that the sentence element contains text, followed by a subelement, followed
by additional text. It is the intermixing of text and elements that defines the
mixed-content model.

Kinds of Nodes

To provide the capacity for mixed content, DOM nodes are inherently very sim-
ple. In the foregoing example, the “content” of the first element (its value) sim-
ply identifies the kind of nodeit is.

First-time users of aDOM are usually thrown by thisfact. After navigating to the
<sentence> node, they ask for the node's “ content”, and expect to get something
useful. Instead, all they can find is the name of the element, sentence.

Note: The DOM Node API defines nodevalue(), nodeType(), and nodeName ()
methods. For the first element node, nodeName () returns sentence, while node-
Value() returns null. For the first text node, nodeName () returns #text, and node-
Value() returnsThis is an . The important point is that the value of an element
is not the same as its content.

183

184

DOCUMENT OBJECT MODEL

Instead, obtaining the content you care about when processing a DOM means
inspecting the list of subelements the node contains, ignoring those you aren’t
interested in and processing the ones you do care about.

In our example, what does it mean if you ask for the “text” of the sentence? Any
of the following could be reasonable, depending on your application:

e Thisisan

e Thisisanidea

» Thisisan important idea.

e Thisisan <bold>important</bo1d> idea.

A Simpler Model

With DOM, you are free to create the semantics you need. However, you are also
required to do the processing necessary to implement those semantics. Standards
such as JDOM and domdj, on the other hand, make it easier to do simple things,
because each node in the hierarchy is an object.

Although JDOM and domd4j make alowances for elements having mixed con-
tent, they are not primarily designed for such situations. Instead, they are tar-
geted for applications where the XML structure contains data.

As described in Documents and Data (page 59), the elements in a data structure
typically contain either text or other elements, but not both. For example, here is
some XML that represents a simple address book:

<addressbook>
<entry>
<name>Fred</name>
<email>fred@home</email>
</entry>

</addressbook>

Note: For very simple XML data structureslike thisone, you could also use the reg-
ular-expression package (java.util.regex) built into version 1.4 of the Java plat-
form.

In JDOM and domdj, after you navigate to an element that contains text, you
invoke a method such as text() to get its content. When processing a DOM,

INCREASING THE COMPLEXITY

though, you must inspect the list of subelements to “put together” the text of the
node, as you saw earlier -- even if that list contains only one item (a TEXT node).

So for simple data structures such as the address book, you can save yourself a
bit of work by using JDOM or dom4j. It may make sense to use one of those
models even when the data is technically “mixed” but there is always one (and
only one) segment of text for a given node.

Here is an example of that kind of structure, which would also be easily pro-
cessed in JDOM or dom4j:

<addressbook>
<entry>Fred
<email>fred@home</email>
</entry>

</ada}éssbook>

Here, each entry has a bit of identifying text, followed by other elements. With
this structure, the program could navigate to an entry, invoke text () to find out
whom it belongs to, and process the <email> subelement if it is at the correct
node.

Increasing the Complexity

But for you to get a full understanding of the kind of processing you need to do
when searching or manipulating a DOM, it is important to know the kinds of
nodes that aDOM can conceivably contain.

Hereis an example that tries to bring the point home. It is a representation of this
data:

<sentence>
The &projectName; <![CDATA[<i>project</i>]]> is
<?editor: red><bold>important</bold><?editor: normal>.
</sentence>

This sentence contains an entity reference — a pointer to an entity that is defined
elsaewhere. In this case, the entity contains the name of the project. The example
also contains a CDATA section (uninterpreted data, like <pre> datain HTML) as

which color to use when rendering the text.

185

186

DOCUMENT OBJECT MODEL

Here is the DOM structure for that data. It's fairly representative of the kind of
structure that a robust application should be prepared to handle:

+ ELEMENT: sentence

+ TEXT: The

+ ENTITY REF: projectName
+ COMMENT: The Tlatest name we're using
+ TEXT: Eagle

+ CDATA: <i>project</i>

+ TEXT: is

+ PI: editor: red

+ ELEMENT: bold
+ TEXT: important

+ PI: editor: normal

This example depicts the kinds of nodes that may occur in a DOM. Although
your application may be able to ignore most of them most of the time, a truly
robust implementation needs to recognize and deal with each of them.

Similarly, the process of navigating to a node involves processing subelements—
ignoring the ones you don’t care about and inspecting the ones you do care
about—until you find the node you are interested in.

A program that works on fixed, internally generated data can afford to make sim-
plifying assumptions: that processing instructions, comments, CDATA nodes, and
entity references will not exist in the data structure. But truly robust applications
that work on avariety of data—especially data coming from the outside world—
must be prepared to deal with all possible XML entities.

(A “simple” application will work only as long as the input data contains the
simplified XML structures it expects. But there are no validation mechanisms to
ensure that more complex structures will not exist. After all, XML was specifi-
cally designed to allow them.)

To be more robust, a DOM application must do these things:

1. When searching for an element:
a. Ignore comments, attributes, and processing instructions.

b. Allow for the possibility that subelements do not occur in the expected
order.

c. Skip over TEXT nodes that contain ignorable whitespace, if not validat-
ing.
2. When extracting text for a node:
a Extract text from CDATA nodes as well as text nodes.

CHOOSING YOUR MODEL

b. Ignore comments, attributes, and processing instructions when gather-
ing the text.

c. If an entity reference node or another element node is encountered,
recurse (that is, apply the text-extraction procedure to all subnodes).

Note: The JAXP 1.2 parser does not insert entity reference nodes into the
DOM. Instead, it inserts a TExT node containing the contents of the refer-
ence. The JAXP 1.1 parser which is built into the 1.4 platform, on the other
hand, does insert entity reference nodes. So arobust implementation that is
parser-independent needs to be prepared to handle entity reference nodes.

Of course, many applications won’t have to worry about such things, because the
kind of data they see will be strictly controlled. But if the data can come from a
variety of external sources, then the application will probably need to take these
possibilities into account.

The code you need to carry out these functionsis given near the end of the DOM
tutorial in Searching for Nodes(page243) and Obtaining Node
Content (page 244). Right now, the goal is simply to determine whether DOM is
suitable for your application.

Choosing Your Model

Asyou can see, when you are using DOM, even a simple operation such as get-
ting the text from a node can take a bit of programming. So if your programs
handle simple data structures, then JDOM, domdj, or even the 1.4 regular-
expression package (java.util.regex) may be more appropriate for your
needs.

For full-fledged documents and complex applications, on the other hand, DOM
gives you a lot of flexibility. And if you need to use XML Schema, then again
DOM isthe way to go—for now, at least.

If you process both documents and data in the applications you develop, then
DOM may still be your best choice. After all, after you have written the code to
examine and process a DOM structure, it isfairly easy to customize it for a spe-
cific purpose. So choosing to do everything in DOM means that you'll only have
to deal with one set of APIs, rather than two.

In addition, the DOM standard is a codified standard for an in-memory docu-
ment model. It's powerful and robust, and it has many implementations. That isa

187

188

DOCUMENT OBJECT MODEL

significant decision-making factor for many large installations, particularly for
large-scale applications that need to minimize costs resulting from API changes.

Finally, even though the text in an address book may not permit bold, italics, col-
ors, and font sizes today, someday you may want to handle these things. Because
DOM will handle virtually anything you throw at it, choosing DOM makes it
easier to future proof your application.

Reading XML Data info a DOM

In this section, you'll construct a Document Object Model by reading in an exist-
ing XML file. In the following sections, you'll see how to display the XML in a
Swing tree component and practice manipulating the DOM.

Note: In Chapter 7, you'll see how to write out aDOM asan XML file. (You'll al'so
see how to convert an existing datafileinto XML with relative ease.)

Creating the Program

The Document Object Model provides APIs that let you create, modify, delete,
and rearrange nodes. So it is relatively easy to create a DOM, asyou'll see later
in Creating and Manipulating aDOM (page 237).

Before you try to create aDOM, however, it is helpful to understand how a DOM
is structured. This series of exercises will make DOM internas visible by dis-
playing them in a Swing JTree.

Create the Skeleton

Now let’s build a ssmple program to read an XML document into a DOM and
then write it back out again.

Note: The code discussed in this section isin DomEcho01. java. Thefileit operates
onis s1lideSample0l.xm1. (The browsableversionis s1ideSample01-xm1.html.)

../examples/jaxp/dom/samples/DomEcho01.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html

CREATING THE PROGRAM 189

Start with the normal basic logic for an app, and check to make sure that an argu-
ment has been supplied on the command line:

public class DomEcho {
public static void main(String argv[])

{
if (argv.length != 1) {
System.err.println(
"Usage: java DomEcho filename");
System.exit(l);
}
}// main
}// DomEcho

Import the Required Classes

In this section, all the classes individually named so you that can see where each
class comes from when you want to reference the APl documentation. In your
own applications, you may well want to replace the import statements shown
here with the shorter form, such as javax.xml.parsers.*

Add these lines to import the JAXP APIsyou'll use:
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

Add these lines for the exceptions that can be thrown when the XML document
is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.IOException;

Finally, import the W3C definition for aDOM and DOM exceptions:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

190

DOCUMENT OBJECT MODEL

Note: A DOMException is thrown only when traversing or manipulating a DOM.
Errors that occur during parsing are reported using a different mechanism that is
covered later.

Declare the DOM

The org.w3c.dom.Document class is the W3C name for a DOM. Whether you
parse an XML document or create one, a Document instance will result. You'll
want to reference that object from another method later, so define it as a global
object here:

public class DomEcho

{

static Document document;

public static void main(String argv[])

{

It needsto be static because you'll generate its contents from the main method
in afew minutes.

Handle Errors

Next, put in the error-handling logic. Thislogic is basically the same as the code
you saw in Handling Errors with the Nornvalidating Parser (page 145) in
Chapter 5, so we don’t go into it in detail here. The mgjor point is that a JAXP-
conformant document builder is required to report SAX exceptions when it has
trouble parsing the XML document. The DOM parser does not have to actually
use a SAX parser internally, but because the SAX standard is already there, it
makes sense to use it for reporting errors. Asaresult, the error-handling code for
DOM applications are very similar to that for SAX applications:

public static void main(String argv[])
¢ if (argv.length != 1) {

o

try {

} catch (SAXParseException spe) {
// Error generated by the parser

CREATING THE PROGRAM 191

System.out.printIn("\n** Parsing error"

+ ", Tine " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());
System.out.printin(" " + spe.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() !'= null)

x = spe.getException();
X.printStackTrace();

} catch (SAXException sxe) {
// Error generated during parsing
Exception x = sxe;
if (sxe.getException() !'= null)
x = sxe.getException();
Xx.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// 1I/0 error
ioe.printStackTrace();

}
}// main

Instantiate the Factory

Next, add the following highlighted code to obtain an instance of a factory that
can give us a document builder:

public static void main(String argv[])

{
if (argv.length != 1) {

}
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {

192 DoCUMENT OBJECT MODEL

Get a Parser and Parse the File

Now, add the following highlighted code to get an instance of a builder, and use
it to parse the specified file:

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));

} catch (SAXParseException spe) {

Note: By now, you should be getting the idea that every JAXP application startsin
pretty much the same way. You're right! Save this version of the file as atemplate.
You'll useit later on as the basis for XSLT transformation application.

Run the Program

Throughout most of the DOM tutorial, you'll use the sample slide shows you
saw in the Chapter 5. In particular, you'll use s1ideSample01.xm1, a simple
XML file with nothing much in it, and s1ideSamp1e10.xm1, a more complex
example that includes a DTD, processing instructions, entity references, and a
CDATA section.

For instructions on how to compile and run your program, see Compiling and
Running the Program (page 134) from Chapter 5. Substitute DomEcho for Echo as
the name of the program, and you're ready to roll.

For now, just run the program on s1ideSamp1e01.xm1. If it runs without error,
you have successfully parsed an XML document and constructed a DOM. Con-
gratulations!

Note: You'll haveto take my word for it, for the moment, because at this point you
don't have any way to display the results. But that feature is coming shortly...

Additional Information

Now that you have successfully read in aDOM, there are one or two more things
you need to know in order to use DocumentBuilder effectively. You need to
know about:

» Configuring the factory

ADDITIONAL | NFORMATION

» Handling validation errors

Configuring the Factory

By default, the factory returns a nonvalidating parser that knows nothing about
namespaces. To get a validating parser, or one that understands namespaces (or
both), you configure the factory to set either or both of those options using fol-
lowing highlighted commands:

public static void main(String argv[])

{
if (argv.length != 1) {

}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setValidating(true);

factory.setNamespaceAware(true);

try {

Note: JAXP-conformant parsers are not required to support all combinations of
those options, even though the reference parser does. If you specify an invalid com-
bination of options, the factory generatesaParserConfigurationException when
you attempt to obtain a parser instance.

You'll learn more about how to use namespaces in Validating with XML
Schema (page 246). To complete this section, though, you'll want to learn some-
thing about handling validation errors.

Handling Validation Errors

Remember when you were wading through the SAX tutorial in Chapter 5, and all
you really wanted to do was construct a DOM? Well, now that information
beginsto pay off.

Recall that the default response to a validation error, as dictated by the SAX stan-
dard, isto do nothing. The JAXP standard requires throwing SAX exceptions, so
you use exactly the same error-handling mechanisms as you use for a SAX appli-
cation. In particular, you use the DocumentBuilder’s setErrorHandler method
to supply it with an object that implements the SAX ErrorHandler interface.

194

DOCUMENT OBJECT MODEL

Note: DocumentBuilder aso hasasetEntityResolver method you can use.

The following code uses an anonymous inner class to define that ErrorHandler.
The highlighted code makes sure that validation errors generate an exception.

builder.setErrorHandler(
new org.xml.sax.ErrorHandler() {

}
);

// ignore fatal errors (an exception is guaranteed)
public void fatalError(SAXParseException exception)
throws SAXException {
}
// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{
throw e;

}

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{
System.out.printIn("** Warning"
+ ", Tine " + err.getLineNumber()
+ ", uri " + err.getSystemId());
System.out.println(" " + err.getMessage());

}

This code uses an anonymous inner classto generate an instance of an object that
implements the ErrorHandler interface. It's “anonymous’ because it has no
class name. You can think of it as an “ErrorHandler” instance, although techni-
caly it's ano-name instance that implements the specified interface. The codeis
substantially the same as that described in Handling Errors with the Nonvalidat-
ing Parser (page 145). For a more complete background on validation issues,
refer to Using the Validating Parser (page 162).

Looking Ahead

In the next section, you'll display the DOM structure in a JTree and begin to
explore its structure. For example, you'll see what entity references and CDATA

DISPLAYING A DOM HIERARCHY 195

sections look like in the DOM. And perhaps most importantly, you’'ll see how
text nodes (which contain the actual data) reside under element nodesin aDOM.

Displaying a DOM Hierarchy

To create or manipulate aDOM, it helps to have a clear idea of how the nodesin
a DOM are structured. In this section of the tutorial, you'll expose the internal
structure of aDOM.

At this point you need a way to expose the nodes in a DOM so that you can see
what it contains. To do that, you'll convert a DOM into a JTreeModel and dis-
play the full DOM in a JTree. It takes a bit of work, but the end result will be a
diagnostic tool you can use in the future, as well as something you can use to
learn about DOM structure now.

Note: In this section, we build a Swing GUI that can display a DOM. The code is
inDomEcho02. java. If you have no interest in the Swing details, you can skip ahead
to Examining the Structure of aDOM (page 211) and copy DomEcho02 . java to pro-
ceed from there. (But be sureto look at Table 6-1, Node Types, page 202.)

Convert DomEcho to a GUI App

Because the DOM is atree and because the Swing JTree component is all about
displaying trees, it makes sense to stuff the DOM into a JTree S0 that you can
look at it. The first step isto hack up the DomEcho program so that it becomes a
GUI application.

Add Import Statements

Start by importing the GUI components you’ Il need to set up the application and
display aJTree:

// GUI components and Tayouts
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

../examples/jaxp/dom/samples/DomEcho02.java

196

DOCUMENT OBJECT MODEL

Later, you'll tailor the DOM display to generate a user-friendly version of the
JTree display. When the user selects an element in that tree, you'll display sub-
elements in an adjacent editor pane. So while you're doing the setup work here,
import the components you need to set up a divided view (JSp1itPane) and to
display the text of the subelements (JEdi torPane):

import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

Next, add a few support classes you'll need to get this thing off the ground:

// GUI support classes

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

And, import some classes to make a fancy border:

// For creating borders

import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

(These are optional. You can skip them and the code that depends on them if you
want to simplify things.)

Create the GUI Framework

The next step isto convert the application into a GUI application. To do that, you
make the static main method create an instance of the class, which will have
become a GUI pane.

Start by converting the class into a GUI pane by extending the Swing JPane]l
class:

public class DomEcho02 extends JPanel

{
// Global value so it can be ref'd by the tree adapter
static Document document;

CONVERT DOMECHO TO A GUI APP 197

While you're there, define afew constants you' I use to control window sizes:

public class DomEcho02 extends JPanel

{
// Global value so it can be ref'd by the tree adapter
static Document document;

static final int windowHeight = 460;

static final int leftWidth = 300;

static final int rightWidth = 340;

static final int windowWidth = TeftWidth + rightWidth;

Now, in the main method, invoke a method that will create the outer frame that
the GUI pane will sit in:

public static void main(String argv[])

{

DocumentBuilderFactory factory ...

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(Cargv[0]));
makeFrame() ;

} catch (SAXParseException spe) {

Next, you'll define the makeFrame method itself. It contains the standard code to
create a frame, handle the exit condition gracefully, give it an instance of the
main panel, sizeit, locate it on the screen, and make it visible:

} // main

public static void makeFrame()
{
// Set up a GUI framework
JFrame frame = new JFrame(''DOM Echo");
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e)
{System.exit(0);}
D

// Set up the tree, the views, and display it all
final DomEcho02 echoPanel = new DomEcho02();
frame.getContentPane() .add("Center", echoPanel);

198

DOCUMENT OBJECT MODEL

frame.pack(Q);

Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();

int w = windowWidth + 10;

int h = windowHeight + 10;

frame.setlLocation(screenSize.width/3 - w/2,

screenSize.height/2 - h/2);
frame.setSize(w, h);
frame.setVisible(true)

} // makeFrame

Add the Display Components

The only thing left in the effort to convert the program to a GUI applicationisto
create the class constructor and make it create the pandl’s contents. Here is the
constructor:

public class DomEcho02 extends JPanel

{

static final int windowWidth = leftWidth + rightWidth;

public DomEcho02()

{
} // Constructor

Here, you use the border classes you imported earlier to make a regal border
(optional):

pub1ic DomEcho02()

{

// Make a nice border

EmptyBorder eb = new EmptyBorder(5,5,5,5);

BevelBorder bb = new BevelBorder(BevelBorder.LOWERED) ;
CompoundBorder cb = new CompoundBorder(eb,bb) ;
this.setBorder(new CompoundBorder(cb,eb));

} // Constructor

Next, create an empty tree and put it into a JScrol11Pane S0 that users can seeits
contents as it gets large:

pub1ic DomEcho02(

{

CoNVERT DOMECHO TO A GUI APP 199

// Set up the tree
JTree tree = new JTree();

// Build left-side view
JScrol1Pane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

} // Constructor

Now create a noneditable JEditPane that will eventually hold the contents
pointed to by selected JTree nodes:

pub1ic DomEcho02(
{

// Build right-side view

JEditorPane htm1Pane = new JEditorPane('"text/html1","");
htm1Pane.setEditable(false);

JScrol1Pane htm1View = new JScrollPane(Chtm1Pane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

} // Constructor

With the left-side JTree and the right-side JEditorPane constructed, create a
JSp1itPane to hold them:

pub1ic DomEcho02()
{

// Build split-pane view
JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

treeView, htmlView);

splitPane.setContinuousLayout(true);
splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

} // Constructor

With this code, you set up the JSp11tPane with avertical divider. That produces
a horizontal split between the tree and the editor pane. (It's really more of a hori-
zontal layout.) You also set the location of the divider so that the tree gets the

200

DOCUMENT OBJECT MODEL

width it prefers, with the remainder of the window width alocated to the editor

pane.

Finally, specify the layout for the panel and add the split pane:

public DomEcho02()

{

}

// Add GUI components
this.setlLayout(new BorderLayout());
this.add("Center", splitPane);

// Constructor

Congratulations! The program is now a GUI application. You can run it now to
see what the general layout will ook like on the screen. For reference, hereisthe
completed constructor:

public DomEcho02()

{

// Make a nice border

EmptyBorder eb = new EmptyBorder(5,5,5,5);

BevelBorder bb = new BevelBorder(BevelBorder.LOWERED) ;
CompoundBorder CB = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(CB,eb));

// Set up the tree
JTree tree = new JTree(Q);

// Build left-side view
JScrol1Pane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrol1Pane htmlView = new JScroll1Pane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

// Build split-pane view
JSplitPane splitPane =
new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
treeView, htmlView)
splitPane.setContinuousLayout(true);

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE

splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(
new Dimension(windowWidth + 10, windowHeight+10));

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Create Adapters to Display the DOM in
a JTree

Now that you have a GUI framework to display a JTree in, the next step isto get
the JTree to display the DOM. But a JTree wants to display a TreeModel. A
DOM is atree, but it's not a TreeModel. So you'll create an adapter class that
makes the DOM look like aTreeModel to a JTree.

Now, when the TreeMode1 passes nodes to the JTree, JTree uses the toString
function of those nodes to get the text to display in the tree. The value returned
by the standard toString function isn't very pretty, so you'll wrap the DOM
nodes in an AdapterNode that returns the text we want. What the TreeModel
gives to the JTree, then, will in fact be AdapterNode objects that wrap DOM
nodes.

Note: The classesthat follow are defined asinner classes. If you are coding for the
1.1 platform, you will need to define these classes as external classes.

Define the AdapterNode Class

Start by importing the tree, event, and utility classes you'll need to make this
work:

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho extends JPanel

{

201

202

DOCUMENT OBJECT MODEL

Moving back down to the end of the program, define a set of strings for the node
element types:

} // makeFrame

//
//

An array of names for DOM node types
(Array indexes = nodeType() values.)

static final String[] typeName = {

}s

"none",
"Element",
"Attr",
"Text",
"CDATA",
"EntityRef",
"Entity",
"ProcInstr",
"Comment",
"Document",
"DocType",
"DocFragment",
"Notation",

} // DomEcho

These are the strings that will be displayed in the JTree. The specification of
these node types can be found in the DOM Level 2 Core Specification at http:/
/www.w3.0rg/TR/2000/REC-DOM-Level-2-Core-20001113, under the specifi-
cation for Node. Table 6-1 is adapted from that specification.

Table 6-1 Node Types

Node nodeName() | nodeValueg() | Attributes nodeType()
Attr Name of Value of ull 2
attribute attribute
scdat Content of
CDATASection t:foi a-S€C~ | the CDATA null 4
section

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE

Table 6-1 Node Types (Continued)

Node nodeName() | nodeValue() | Attributes nodeType()
Comment #comment Content of the null 8
comment
Document #document null null 9
DocumentFragment idocument_ null null 11
ragment
DocumentType Document null null 10
type name
Element Tag name null NamedNodeMap 1
Entity Entity name null null 6
Name of
EntityReference entity refer- null null 5
enced
Notation Notation name | null null 12
ProcessingIn Entire content
>1ngAn- Target excluding the | null 7
struction
target
Text #text Contentofthe | 3
text node

Note: Print thistable and keep it handy! You need it when working with the DOM,
because all these types are intermixed in aDOM tree. So your code is forever ask-
ing, “Isthisthe kind of node I'm interested in?’

Next, define the AdapterNode wrapper for DOM nodes as an inner class:

static final String[] typeName = {

};...

public class AdapterNode

{

org.w3c.dom.Node domNode;

203

204

DOCUMENT OBJECT MODEL

// Construct an Adapter node from a DOM node

public AdapterNode(org.w3c.dom.Node node) {
domNode = node;

}

// Return a string that identifies this node
// in the tree
public String toString() {
String s = typeName[domNode.getNodeType()];
String nodeName = domNode.getNodeName() ;
if (! nodeName.startsWith("#")) {
s += ": " + nodeName;
}
if (domNode.getNodeValue() !'= null) {
if (s.startsWith("ProcInstr"))
s +=",";
else
s +=": "3

// Trim the value to get rid of NL's
// at the front
String t = domNode.getNodeValue().trim(Q;
int x = t.index0f("\n");
if (x >= 0) t = t.substring(0, x);
s += t;
}

return s;

}
} // AdapterNode

} // DomEcho

This class declares a variable to hold the DOM node and requires it to be speci-
fied as a constructor argument. It then defines the toString operation, which
returns the node type from the String array, and then adds more information
from the node to further identify it.

As you can see Table 6-1, every node has a type, a name, and a value, which
may or may not be empty. Where the node name starts with #, that field dupli-
cates the node type, so there is no point in including it. That explains the lines
that read

if (! nodeName.startsWith("#")) {

S +=": + nodeName;

}

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE

The remainder of the toString method deserves a couple of notes. For example
these lines merely provide alittle syntactic sugar:

if (s.startsWith("ProcInstr"))

s+=", "
else
S += " : II;

The type field for processing instructions ends with a colon (:) anyway, so those
lines keep the code from doubling the colon.

The other interesting lines are

String t = domNode.getNodeValue().trim(Q);
int x = t.index0f("\n");

if (x >= 0) t = t.substring(0, x);

S 4= t;

These lines trim the value field down to the first newline (linefeed) character in
the field. If you omit these lines, you will see some funny characters (sguare
boxes, typicaly) in the JTree.

Note: Recall that XML stipulates that al line endings are normalized to newlines,
regardless of the system the data comes from. That makes programming quite a bit
simpler.

Wrapping a DomNode and returning the desired string are the AdapterNode’s
major functions. But because the TreeMode1 adapter must answer questions such
as “How many children does this node have?’ and must satisfy commands such
as “Give me this node's Nth child,” it will be helpful to define a few additional
utility methods. (The adapter can always access the DOM node and get that
information for itself, but this way things are more encapsulated.)

205

206 DOCUMENT OBJECT MODEL

Next, add the following highlighted code to return the index of a specified child,
the child that corresponds to a given index, and the count of child nodes:

public class AdapterNode
{

public String toString() {
}

public int index(AdapterNode child) {
//System.err.printin(''Looking for index of " + child);
int count = childCount(Q);
for (int i=0; di<count; i++) {
AdapterNode n = this.child(i);
if (child == n) return 1i;
}

return -1; // Should never get here.

}

public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.
org.w3c.dom.Node node =
domNode.getChildNodes () . item(searchIndex);
return new AdapterNode(node);

}

public int childCount() {
return domNode.getChildNodes() .getLength(Q);

}

} // AdapterNode

} // DomEcho

Note: During devel opment, it was only after | started writing the TreeMode1 adapter
that | realized these were needed and went back to add them. In a moment, you'll
see why.

Define the TreeModel Adapter

Now, at last, you are ready to write the TreeMode1 adapter. One of thereally nice
things about the JTree model is the ease with which you can convert an existing
tree for display. One reason for that is the clear separation between the display-

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE

able view, which JTree uses, and the modifiable view, which the application
uses. For more on that separation, see “ Understanding the TreeModel” at http:/
/java.sun.com/products/jfc/tsc/articles/jtree/index.html. For now,
the important point is that to satisfy the TreeMode1 interface we need only (a)
provide methods to access and report on children and (b) register the appropriate
JTree listener so that it knows to update its view when the underlying model
changes.

Add the following highlighted code to create the TreeMode1 adapter and specify
the child-processing methods:

} // AdapterNode

// This adapter converts the current Document (a DOM) 1into
// a JTree model.
public class DomToTreeModelAdapter implements
javax.swing. tree.TreeModel
{
// Basic TreeModel operations
public Object getRoot() {
//System.err.println("'Returning root:
return new AdapterNode(document);

+document) ;

}

public boolean isLeaf(Object aNode) {
// Determines whether the icon shows up to the left.
// Return true for any node with no children
AdapterNode node = (AdapterNode) aNode;
if (node.childCount() > 0) return false;
return true;

}

public int getChildCount(Object parent)
AdapterNode node = (AdapterNode) parent;
return node.childCount(Q);

}

public Object getChild(Object parent, int index) {
AdapterNode node = (AdapterNode) parent;
return node.child(index);

}

public 1int getIndex0fChild(Object parent, Object child) {
AdapterNode node = (AdapterNode) parent;
return node.index((AdapterNode) child);

207

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

208

DOCUMENT OBJECT MODEL

public void valueForPathChanged(
TreePath path, Object newValue)

{
// Null. We won't be making changes in the GUI
// If we did, we would ensure the new value was
// really new and then fire a TreeNodesChanged event.

}
} // DomToTreeModelAdapter

} // DomEcho

In this code, the getRoot method returns the root node of the DOM, wrapped as
an AdapterNode object. From this point on, all nodes returned by the adapter
will be AdapterNodes that wrap DOM nodes. By the same token, whenever the
JTree asksfor the child of agiven parent, the number of children that parent has,
and so on, the JTree will pass us an AdapterNode. We know that, because we
control every node the JTree sees, starting with the root node.

JTree usestheisLeaf method to determine whether or not to display aclickable
expand/contract icon to the left of the node, so that method returns true only if
the node has children. In this method, we see the cast from the generic object
JTree sends us to the AdapterNode object we know it must be. We know it is
sending us an adapter object, but the interface, to be general, defines objects, so
we must do the casts.

The next three methods return the number of children for a given node, the child
that lives at a given index, and the index of a given child, respectively. That's all
straightforward.

The last method isinvoked when the user changes avalue stored inthe JTree. In
this app, we won't support that. But if we did, the application would have to
make the change to the underlying model and then inform any listeners that a
change has occurred. (The JTree might not be the only listener. In many applica
tions, itisn't.)

To inform listeners that a change has occurred, you'll need the ability to register
them. That brings us to the last two methods required to implement the Tree-
Model interface. Add the following highlighted code to define them:

public class DomToTreeModelAdapter ...
{

public void valueForPathChanged(
TreePath path, Object newValue)

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE

{
}

private Vector listenerList = new Vector();
public void addTreeModelListener(
TreeModelListener listener) {
if (Tistener !'= null
&& ! TistenerList.contains(listener)) {
TistenerList.addElement(listener);
}
}

public void removeTreeModelListener(
TreeModelListener listener)

{
if (1istener !'= null) {
TistenerList.removeElement(Tistener);
}

}

} // DomToTreeModelAdapter

Because this application won't be making changes to the tree, these methods will
go unused for now. However, they’ll be there in the future when you need them.

Note: Thisexample uses Vector so that it will work with 1.1 applications. If cod-
ing for 1.2 or later, though, I'd use the excellent collections framework instead:
private LinkedList listenerList = new LinkedList();

The operations on the Li st are then add and remove. To iterate over the list, asin
the following operations, you would use

Iterator it = listenerList.iterator();
while (it.hasNext()) {
TreeModelListener listener = (TreeModelListener) it.next();

}

Here, too, are some optional methods you won't use in this application. At this
point, though, you have constructed a reasonable template for a TreeModel
adapter. In the interest of completeness, you might want to add the following

209

210 DoCUMENT OBJECT MODEL

highlighted code. You can then invoke them whenever you need to notify JTree
listeners of a change:

public void removeTreeModelListener(
TreeModelListener 1listener)
{

}

public void fireTreeNodesChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (Tisteners.hasMoreElements()) {
TreeModelListener listener =
(TreeModelListener) listeners.nextElement();
Tistener.treeNodesChanged(e);
}
}

public void fireTreeNodesInserted(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {
TreeModelListener listener =
(TreeModelListener) listeners.nextElement();
Tlistener.treeNodesInserted(e);
}
}

public void fireTreeNodesRemoved(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (Tisteners.hasMoreElements()) {
TreeModelListener listener =
(TreeModelListener) 1listeners.nextElement();
Tlistener.treeNodesRemoved(e);
}
}

public void fireTreeStructureChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {
TreeModelListener listener =
(TreeModelListener) listeners.nextElement();
Tistener.treeStructureChanged(e);
}
}

} // DomToTreeModelAdapter

FINISHING UP 211

Note: These methods are taken from the TreeModelSupport class described in
“Understanding the TreeModel.” That architecture was produced by Tom Santos
and Steve Wilson and is a lot more elegant than the quick hack going on here. It
seemed worthwhile to put them here, though, so that they would be immediately at
hand when and if they’re needed.

Finishing Up

At this point, you are basically finished constructing the GUI. All you need to do
is to jump back to the constructor and add the code to construct an adapter and
deliver it to the JTree asthe TreeMode1:

// Set up the tree
JTree tree = new JTree(new DomToTreeModelAdapter());

You can now compile and run the code on an XML file. In the next section, you
will do that, aswell as explore the DOM structures that result.

Examining the Structure of a DOM

In this section, you'll use the GUIfied DomEcho application created in the pre-
ceding section to visually examine a DOM. You'll see what nodes make up the
DOM and how they are arranged. With the understanding you acquire, you'll be
well prepared to construct and modify Document Object Model structuresin the
future.

Displaying a Simple Tree

We'll start by displaying a simple file so that you get an idea of basic DOM
structure. Then we'll look at the structure that results when you include some
advanced XML elements.

Note: The code used to create the figuresin this sectionisin DomEcho02. java. The
file displayed is s1ideSamp1e01.xm1. (The browsable version is s1ideSample01-
xm1.html.)

../examples/jaxp/dom/samples/DomEcho02.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/slideSample01-xml.html

212 DoCUMENT OBJECT MODEL

Figure 6-1 shows the tree you see when you run the DomEcho program on the
first XML file you created, s1ideSamp1e0l.xm1.

] Document
D Comment; A SAMPLE set of slides
@=] Elermnent: slideshow

Figure 61 Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element type. After
that comes the element name, if any, and then the element value. This view
shows three element types. Document, Comment, and ETement. There isonly one
node of Document type for the whole tree, the root node. The Comment node dis-
plays the value attribute, and the ETlement node displays the element name,
sTideshow.

Compare Figure 6-1 with the code in the AdapterNode’s toString method to
see whether the name or the valueis being displayed for a particular node. If you
need to make it more clear, modify the program to indicate which property is
being displayed (for example, with N: name, V: value).

DISPLAYING A SIMPLE TREE 213

Expanding the s11ideshow element brings up the display shown in Figure 6-2.

] Docurnent
D Cormment: A SAMPLE sst of slides
@ [Elernent: slideshow

D Text:

[} comment: TITLE SLIDE

D Text:

@ 3 Element: slide

D Text:

[} comment: OWYERVIEW

D Text:

& [Element; slide

D Text:

Figure 6-2 Element Node Expanded, No Attribute Nodes Showing

Here, you can see the Text nodes and Comment nodes, which are interspersed
between s1ide elements. The empty Text nodes exist because thereis no DTD
to tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be Element and Text hodes.)

Note: Important! Text nodes exist under element nodes in a DOM, and data is
always stored in text nodes. Perhaps the most common error in DOM processing is
to navigate to an element node and expect it to contain the datathat is stored in that
element. Not so! Even the simplest element node has a text node under it that con-
tains the data. For example, given <size>12</size>, there is an element node
(size), and a text node under it that contains the actual data (12).

Notably absent from this picture are the Attribute nodes. An inspection of the
tablein org.w3c.dom.Node shows that there isindeed an Attribute node type.
But they are not included as children in the DOM hierarchy. They are instead
obtained viathe Node interface getAttributes method.

214 DoCUMENT OBJECT MODEL

Note: The display of the text nodes is the reason for including the following lines
in the AdapterNode’s toString method. If you remove them, you'll see the funny
characters (typicaly square blocks) that are generated by the newline characters
that are in the text.

String t = domNode.getNodeValue().trim(Q);
int x = t.index0f("\n");

if (x >= 0) t = t.substring(0, x);

s += t;

Displaying a More Complex Tree

Here, you'll display the example XML file you created at the end of Chapter 5 to
see what entity references, processing instructions, and CDATA sections look like
inthe DOM.

Note: The file displayed in this section is slideSamplel0.xml. The
sT1ideSampTle10.xm1 file references s1ideshow3.dtd, which, in turn, references
copyright.xm1 and a (very simplistic) xhtm1.dtd. (The browsable versions are
sTideSamplel0-xml.html, slideshow3-dtd.html, copyright-xml.html, and
xhtml-dtd.html.)

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideshow3.dtd
../examples/jaxp/dom/samples/copyright.xml
../examples/jaxp/dom/samples/xhtml.dtd
../examples/jaxp/dom/samples/slideSample10-xml.html
../examples/jaxp/dom/samples/slideshow3-dtd.html
../examples/jaxp/dom/samples/copyright-xml.html
../examples/jaxp/dom/samples/xhtml-dtd.html

DISPLAYING A MORE COMPLEX TREE

Figure 6-3 shows the result of running the DomEcho application on
s1ideSamplel0.xm1, which includes a DOCTYPE entry that identifies the docu-

ment'sDTD.

[Document

D Comment: A SAMPLE set of slides
D DocType: slideshow

[Comment: SUBSTITUTIONS WORK IN ATT] -

&] Element: slideshow

o

1 [EE

Figure 6-3 DocType Node Displayed

The DocType interface is actualy an extension of w3c.org.dom.Node. It defines
agetEntities method, which you use to obtain Entity nodes—the nodes that
define entities such as the product entity, which has the value WonderWidgets.
Like Attribute nodes, Entity nodes do not appear as children of DOM nodes.

215

216 DoCUMENT OBJECT MODEL

When you expand the s11ideshow node, you get the display shown in Figure 6-4.

[Document ~|z
D Comment: A SAMPLE set of slides
D DocType: slideshow
D Comment: SUBSTITUTIONS WORK IM
@ [JElement: slideshow

D Text:

D Comrent: PROCESSING INSTRUCT

D Text:

D Preclnstr: my. presentation. Program:,

D Text:

[} comment: TITLE SLIDE

D Text:

&] Element: slide

D Text:

[y cemment: TITLE SLIDE

D Text:

@] Element: slide

D Text:

[} comment: OVERVIEW

D Text:

-

B] [»]

Figure 64 Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do
appear in the tree. The name property contains the target specification, which
identifies the application that the instruction is directed to. The value property
contains the text of the instruction.

Note that empty text nodes are also shown here, even though the DTD specifies
that a s1ideshow can contain s1ide elements only, never text. Logically, then,
you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated ignorableWhitespace events
rather than character events.)

DISPLAYING A MORE COMPLEX TREE

Moving down to the second s1ide element and opening the item element under
it brings up the display shown in Figure 6-5.

@ [J Element: slideshow

[Text:

D Comment: PEOCESSING INSTRUCTIO

[y Text:

D Froclnstr: my presentation.Program, QL :

[Text:

[} Comment: TITLE SLIDE
[y Text:

@ [Element; slide
[y Text:

[} Comment: TITLE SLIDE

[Text:

@ [Element: slide

[Text:

@ [CJ Element: item
[} Comment A SAMPLE copyright |
[y Text: This is the standard copyri

[Test:
[y Text:

[Comment: OVERVIEW -

| »

B

Figure6-5 JAXP 1.2 DOM: Item Text Returned from an Entity Reference

Here, you can see that a text node containing the copyright text (rather than the
entity reference that points to it) was inserted into the DOM.

For most applications, the insertion of the text is exactly what you want. In that
way, when you're looking for the text under a node, you don’t have to worry
about any entity references it might contain. For other applications, though, you
may need the ability to reconstruct the original XML. For example, an editor

217

218

DOCUMENT OBJECT MODEL

application would need to save the result of user modifications without throwing
away entity references in the process.

Various DocumentBuilderFactory APIsgive you control over the kind of DOM
structure that is created. For example, add the following highlighted line to pro-
duce the DOM structure shown in Figure 6-6.

public static void main(String argv[])

{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
factory.setExpandEntityReferences(false);

[T oo T T T O T T T
9 3 Element: slideshow

D Text:

D Cormment: PROCESSING INSTRUGCTI

D Text:

D Frocinstr my.presentation. Program:,

D Text:

[y comment: TITLE SLIDE

D Text:

& [Element; slide

D Text:

[y cornment: TITLE SLIDE

D Text:

@ [Elemnent: slide
D Text:
@ [J Element: itern
@ [EntityRef: copyright
D Comment: A SAMPLE copy
D Text: This is the standard co

D Text:
D Te:

-

[4]

B [¥]

Figure6-6 JAXP1.1in 1.4 Platform: Entity Reference Node Displayed

Here, the entity reference node is highlighted. Note that the entity reference con-
tains multiple nodes under it. This example shows only comment and text nodes,
but the entity could conceivably contain other element nodes.

DISPLAYING A MORE COMPLEX TREE

Moving down to the last i tem element under the last s11de brings up the display
shown in Figure 6-7.

L] Text:
(o] Ij Elerment: slide

D Text:

[Corment: OVERVIEW

D Text:

@] Element: slide

D Text:

9 3 Element: slide

D Text:

@] Elsmant: slide-titls

D Text:

& [Element: item

D Text:

@] Elsment: item

D Text:

Lo Ij Element: item
D Text:
@ [Element: item
[COATA: Diagrar:

D Text:
[Text:

| »

(]

Figure 6-7 CDATA Node Displayed

Here, the CDATA node is highlighted. Note that there are no nodes under it.
Because a CDATA section is entirely uninterpreted, all its contents are contained
in the node’s value property.

Summary of Lexical Controls

Lexical information is the information you need to reconstruct the original syn-
tax of an XML document. As discussed earlier, preserving lexical information is
important in editing applications, where you want to save a document that is an
accurate reflection of the original—complete with comments, entity references,
and any CDATA sections it may have included at the outset.

Most applications, however, are concerned only with the content of the XML
structures. They can afford to ignore comments, and they don’t care whether data
was coded in a CDATA section or as plain text, or whether it included an entity ref-
erence. For such applications, a minimum of lexical information is desirable,

219

220

DOCUMENT OBJECT MODEL

because it ssimplifies the number and kind of DOM nodes that the application

must be prepared to examine.

Thefollowing DocumentBuilderFactory methods give you control over the lex-

ical information you seein the DOM:

* setCoalescing(): To convert CDATA nodes to Text nodes and append to

an adjacent Text node (if any)

» setExpandEntityReferences(): To expand entity reference nodes

e setIgnoringComments(): To ignOI’e comments
* setIgnoringElementContentWhitespace(): To ignore whitespace that

isnot asignificant part of element content

The default values for all these propertiesis false, which preserves al the lexi-
cal information necessary to reconstruct the incoming document in its original
form. Setting them to true lets you construct the simplest possible DOM so that
the application can focus on the data’s semantic content without having to worry
about lexical syntax details. Table 6-2 summarizes the effects of the settings.

Table6-2 Configuring DocumentBuilderFactory

API Preserve Lexical Info | Focuson Content
setCoalescing() false true
setExpandEntityRefer- false true
ences()
setIgnoringComments () false true
setIgnoringElement

ContentWhitespace() false true

Finishing Up

At this point, you have seen most of the nodes you will ever encounter inaDOM
tree. There are one or two more that we'll mention in the next section, but you

now know what you need to know to create or modify a DOM structure.

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 221

Constructing a User-Friendly JTree from
a DOM

Now that you know what a DOM looks like internally, you'll be better prepared
to modify a DOM or construct one from scratch. Before we go on to that,
though, this section presents some modifications to the JTreeMode that let you
produce a more user-friendly version of the JTree suitable for usein a GUI.

Note: Inthis section, we modify the Swing GUI to improve the display, culminating
inDomEcho04 . java. If you have no interest in the Swing details, you can skip ahead
to Creating and Manipulating a DOM (page 237) and use DomEcho04. java to
proceed from there.

Compressing the Tree View

Displaying the DOM in tree form is all very well for experimenting and for
learning how a DOM works. But it’s not the kind of friendly display that most
users want to see in a JTree. However, it turns out that very few modifications
are needed to turn the TreeModel1 adapter into something that presents a user-
friendly display. In this section, you'll make those modifications.

Note: The code discussed inthissectionisin DomEcho03. java. Thefilethe program
operates on is s1ideSample0l.xml1. (The browsable version is s1ideSample01-
xm1.html.)

Make the Operation Selectable

When you modify the adapter, you're going to compress the view of the DOM,
eliminating all but the nodes you really want to display. Start by defining a bool-

../examples/jaxp/dom/samples/DomEcho03.java
../examples/jaxp/dom/samples/DomEcho04.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/DomEcho04.java

222 DoCUMENT OBJECT MODEL

ean variable that controls whether you want the compressed or the uncompressed
view of the DOM:

public class DomEcho extends JPanel

{
static Document document;
boolean compress = true;
static final int windowHeight = 460;

Identify Tree Nodes

The next step isto identify the nodes you want to show up in the tree. To do that,
add the following highlighted code:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public class DomEcho extends JPanel

{

public static void makeFrame() {

}

// An array of names for DOM node type
static final String[] typeName = {

};
static final int ELEMENT_TYPE = Node.ELEMENT_NODE;

// The Tist of elements to display in the tree
static String[] treeElementNames = {

"s1ideshow",

"slide",

"title", // For slide show #1
"slide-title", // For slide show #10
||_item|| ,

};

boolean treeElement(String elementName) {
for (int i=0; di<treeElementNames.length; i++) {

COMPRESSING THE TREE VIEW

if (elementName.equals(treeElementNames[i]))
return true;

}

return false;

}

This code sets up a constant you can use to identify the ELEMENT node type,
declares the names of the elements you want in the tree, and creates a method
that tells whether or not a given element name is a tree element. Because
s1ideSample0l.xm1 has title elements and because s1ideSamplel0.xm1 has
s1lide-title elements, you set up the contents of this array so that it will work
with either datafile.

Note: The mechanism you are creating here depends on the fact that structure nodes
like s1ideshow and s1ide never contain text, whereas text usually does appear in
content nodes like i tem. Although those “content” nodes may contain subelements
in sT1ideShow10.xm1, the DTD constrains those subelements to be XHTML nodes.
Because they are XHTML nodes (an XML version of HTML that is constrained to
be well formed), the entire substructure under an 1item node can be combined into
a single string and displayed in the htm1Pane that makes up the other half of the
application window. In the second part of this section, you'll do that concatenation,
displaying the text and XHTML as content in the htm1Pane.

Although you could simply reference the node types defined in the class
org.w3c.dom.Node, defining the ELEMENT_TYPE constant keeps the code a little
more readable. Each node in the DOM has a name, atype, and (potentially) alist
of subnodes. The functions that return these values are getNodeName (), getNo-
deType, and getChildNodes(). Defining our own constants will let us write
code likethis:

Node node = nodelList.item(i);
int type = node.getNodeType();
if (type == ELEMENT_TYPE) {

Asastylistic choice, the extra constants help us keep the reader (and ourselves!)
clear about what we're doing. Here, it isfairly clear when we are dealing with a
node abject, and when we are dealing with a type constant. Otherwise, it would
be tempting to code something like if (node == ELEMENT_NODE), which of
course would not work at all.

223

224 DoCUMENT OBJECT MODEL

Control Node Visibility

The next step is to modify the AdapterNode’s childCount function so that it
counts only tree element nodes—nodes that are designated as displayable in the
JTree. Make the following highlighted modifications to do that:

public class DomEcho extends JPanel

{

public class AdapterNode
{

public AdapterNode child(int searchIndex) {

}
public int childCount() {
if ('compress) {
// Indent this
return domNode.getChiTldNodes().getLength(Q);
}
int count = 0;
for (int 1i=0;
i<domNode.getChildNodes() .getLength(Q); i++)

{
org.w3c.dom.Node node =
domNode.getChildNodes() .item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName()))
{
++count;
}
}
return count;

}
} // AdapterNode

The only tricky part about this code is checking to make sure that the node is an
element node before comparing the node. The DocType node makes that neces-
sary, because it has the same name (s11ideshow) asthe s1ideshow element.

COMPRESSING THE TREE VIEW 225

Control Child Access

Finally, you need to modify the AdapterNode’s chi1d function to return the Nth
item from thelist of displayable nodes, rather than the Nth item from all nodesin
the list. Add the following highlighted code to do that:

public class DomEcho extends JPanel

{

public class AdapterNode
{

public int index(AdapterNode child) {

}
public AdapterNode child(int searchIndex) {

//Note: JTree index is zero-based.
org.w3c.dom.Node node =

domNode.getChildNodes () Item(searchIndex);
if (compress) {

// Return Nth displayable node

int elementNodeIndex = 0;

for (int i=0;

i<domNode.getChildNodes() .getLength(Q); i++)

{
node = domNode.getChildNodes()Item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName())
&& elementNodeIndex++ == searchIndex) {
break;
}
}
}
return new AdapterNode(nhode);
} // child

} // AdapterNode

There's nothing special going on here. It's a dlightly modified version of the
same logic you used when returning the child count.

Check the Results

When you compile and run this verson of the application on
sTideSamp1e01.xm1 and then expand the nodes in the tree, you see the results

226

DOCUMENT OBJECT MODEL

shown in Figure 6-8. The only nodes remaining in the tree are the high-level
“structure” nodes.

[~ Docurnent
@ 3 Elernent: slideshow
@ [JElement: slide
[y Elemert: title
@ [JElemant: slide
[Elemnent: titie
D Elernent: iterm
D Elerment: itern
D Elernent: iterm

Figure 6-8 Tree View with a Collapsed Hierarchy

Extra Credit

The way the application stands now, the information that tells the application
how to compress the tree for display is hardcoded. Here are some ways you can
consider extending the app:

» Use a command-line argument: Whether you compress or don’t compress
the tree could be determined by a command-line argument rather than
being ahardcoded Boolean variable. On the other hand, thelist of elements
that goesinto thetreeis still hardcoded, so maybe that option doesn’t make
much sense, unless...

» Read the treeETement list from a file: If you read the list of elements to
include in the tree from an externa file, that would make the whole appli-
cation command-driven. That would be good. But wouldn't it be realy
nice to derive that information from the DTD or schema instead? So you
might want to consider...

 Automatically build the list: Watch out, though! Asthings stand right now,
there are no standard DTD parsers! If you useaDTD, then, you'll need to
write your parser to make sense out of its somewhat arcane syntax. You'll

ACTING ON TREE SELECTIONS

probably have better luck if you use a schemainstead of aDTD. The nice
thing about schemas is that they use XML syntax, so you can use an XML
parser to read the schemain the sameway you useit to read any other XML
file.

Asyou anayze the schema, note that the JTree-displayable structure nodes
are those that have no text, whereas the content nodes may contain text and,
optionally, XHTML subnodes. That distinction works for this example and
will likely work for alarge body of real world applications. It's easy to con-
struct cases that will create a problem, though, so you'll have to be on the
lookout for schema/DTD specifications that embed non-XHTML elements
in text-capable nodes, and take the appropriate action.

Acting on Tree Selections

Now that the tree is being displayed properly, the next step is to concatenate the
subtrees under selected nodes to display them in the htm1Pane. While you're at
it, you'll use the concatenated text to put node-identifying information back in
the JTree.

Note: The code discussed in this section isin DomEcho04. java.

Identify Node Types

When you concatenate the subnodes under an element, the processing you do
depends on the type of node. So thefirst thing to do isto define constants for the
remaining node types. Add the following highlighted code:

public class DomEcho extends JPanel

{

// An array of names for DOM node types
static final String[] typeName = {

};

static final int ELEMENT_TYPE = 1;

static final int ATTR_TYPE Node.ATTRIBUTE_NODE;

static final int TEXT_TYPE Node.TEXT_NODE;

static final int CDATA_TYPE = Node.CDATA_SECTION_NODE;

static final int ENTITYREF_TYPE =
Node.ENTITY_REFERENCE_NODE;

227

../examples/jaxp/dom/samples/DomEcho04.java

228 DoCUMENT OBJECT MODEL

static final int ENTITY_TYPE = Node.ENTITY_NODE;
static final int PROCINSTR_TYPE =
Node . PROCESSING_INSTRUCTION_NODE;
static final int COMMENT_TYPE = Node.COMMENT_NODE;
static final int DOCUMENT_TYPE = Node.DOCUMENT_NODE;
static final int DOCTYPE_TYPE = Node.DOCUMENT_TYPE_NODE;
static final int DOCFRAG_TYPE = Node.DOCUMENT_FRAGMENT_NODE;
static final int NOTATION_TYPE = Node.NOTATION_NODE;

Concatenate Subnodes to Define Element
Content

Next, you define the method that concatenates the text and subnodes for an ele-
ment and returns it as the element’s content. To define the content method,
you'll add the following big chunk of highlighted code, but this is the last big
chunk of code in the DOM tutorial.

public class DomEcho extends JPanel

{

public class AdapterNode
{

public String toString() {

}
public String content() {
String s = "";
org.w3c.dom.NodeList nodeList =
domNode.getChildNodes() ;
for (int i=0; i<nodeList.getLength(); i++) {
org.w3c.dom.Node node = nodeList.item(i);
int type = node.getNodeType(Q);
AdapterNode adpNode = new AdapterNode(node);
if (type == ELEMENT_TYPE) {
if (treeElement(node.getNodeName()))
continue;
s += "<" + node.getNodeName() + ">";
s += adpNode.content();
s += "</" + node.getNodeName() + ">";
} else if (type == TEXT_TYPE) {
s += node.getNodeValue(Q);
} else if (type == ENTITYREF_TYPE) {
// The content 1is in the TEXT node under it
s += adpNode.content();
} else if (type == CDATA_TYPE) {

ACTING ON TREE SELECTIONS

StringBuffer sb = new StringBuffer(
node.getNodevValue());
for (int j=0; j<sb.length(Q; j++) {
if (sb.charAt(j) == '<") {
sb.setCharAt(j, '&');
sb.insert(j+1, "1t;");
Jj+=3;
} else if (sb.charAt(j) == '&") {
sb.setCharAt(j, '&');
sb.insert(j+1, "amp;");

J+=4;
}
}
s += "<pre>" + sb + "</pre>";
}
}
return s;

}

Y // AagpterNode

Note: Thiscode collapsesEntityRef hodes, asinserted by the JAXP 1.1 parser that
isincluded in the Java 1.4 platform. With JAXP 1.2, that portion of the codeis not
necessary because entity references are converted to text nodes by the parser. Other
parsers may insert such nodes, however, so including this code future proofs your
application, should you use a different parser in the future.

Although this code is not the most efficient that anyone ever wrote, it works and
will do fine for our purposes. In this code, you are recognizing and dealing with
the following data types:

Element
For elements with names such asthe XHTML em node, you return the node's
content sandwiched between the appropriate and tags. However,
when processing the content for the s1ideshow element, for example, you
don't include tags for the s1ide elements it contains, so when returning a
node's content, you skip any subelements that are themselves displayed in
the tree.

Text
No surprise here. For atext node, you simply return the node’s value.

Entity Reference
Unlike CDATA nodes, entity references can contain multiple subelements. So
the strategy here isto return the concatenation of those subelements.

229

230

DOCUMENT OBJECT MODEL

CDATA
Aswith atext node, you return the node’s value. However, because the text
in this case may contain angle brackets and ampersands, you need to convert
them to a form that displays properly in an HTML pane. Unlike the XML
CDATA tag, the HTML <pre> tag does not prevent the parsing of character-
format tags, break tags, and the like. So you must convert |eft angle brackets
(<) and ampersands (&) to get them to display properly.

On the other hand, there are quite a few node types you are not processing with

the preceding code. It's worth a moment to examine them and understand why:

Attribute
These nodes do not appear in the DOM but are obtained by invoking getAt-
tributes on element nodes.

Entity
These nodes a so do not appear in the DOM. They are obtained by invoking
getEntities on DocType nodes.

Processing I nstruction
These nodes don’t contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document

Thisisthe root node for the DOM. There's no datato display for that.
DocType

The DocType node contains the DTD specification, with or without external

pointers. It appears only under the root node and has no datato display in the
tree.

Document Fragment
This node is equivalent to a document node. It’s a root node that the DOM
specification intends for holding intermediate results during operations such
as cut-and-paste. As with a document node, there's no data to display.
Notation
We're just ignoring this one. These nodes are used to include binary data in
the DOM. As discussed earlier in Choosing Your Parser
Implementation (page 161) and Using the DTDHandler and
EntityResolver (page 177), the MIME types (in conjunction with
namespaces) make a better mechanism for that.

ACTING ON TREE SELECTIONS 231

Display the Content in the JTree

With the content concatenation out of the way, only a few small programming
steps remain. The first is to modify toString so that it uses the first line of the
node's content for identifying information. Add the following highlighted code:

public class DomEcho extends JPanel

{

public class AdapterNode
{

public String toString() {
if (! nodeName.startsWith("#")) {

s += ": " + nodeName;
}
if (compress) {
String t = content(Q).trimQ);
int x = t.index0f("\n");
if (x >= 0) t = t.substring(0, x);
s +="" + t;
return s;

}
if (domNode.getNodeValue() !'= null) {

}

return s;

Wire the JTree to the JEditorPane

Returning now to the app’s constructor, create a tree selection listener and use it
to wirethe JTree to the JEditorPane:

public class DomEcho extends JPanel

{

public DomEcho()
{

// Build right-side view

JEditorPane htmlPane = new JEditorPane("text/html","");
htm1Pane.setEditable(false);

JScrol1Pane htmlView = new JScroll1Pane(htmlPane);
htmlView.setPreferredSize(

232 DoCUMENT OBJECT MODEL

new Dimension(rightWidth, windowHeight));

tree.addTreeSelectionListener(
new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e)
{
TreePath p = e.getNewlLeadSelectionPath();
if (p '= null) {
AdapterNode adpNode =
(AdapterNode)
p.getLastPathComponent();
htm1Pane.setText(adpNode.content());
}
}
}
);

Now, when aJTree nodeis selected, its contents are delivered to the htm1Pane.

Note: TheTreeSelectionListener inthisexampleis created using an anonymous
inner-class adapter. If you are programming for the 1.1 version of the platform,
you'll need to define an external class for this purpose.

If you compile this version of the app, you'll discover immediately that the htm-
1Pane needs to be specified as final to be referenced in an inner class, so add
the following highlighted keyword:

public DomEcho04()
{

// Build right-side view
final JEditorPane htmlPane = new
JEditorPane("text/html1","");
htmlPane.setEditable(false);
JScrol1Pane htmlView = new JScroll1Pane(htmlPane);
htmlView.setPreferredSize(
new Dimension(rightWidth, windowHeight));

Run the App

When you compile the application and run it on slideSamplel0.xm1 (the
browsable version is s1ideSamplel0-xm1.htm1), you get a display like that

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10-xml.html

ACTING ON TREE SELECTIONS 233

shown in Figure 6-9. Expanding the hierarchy shows that the JTree now
includes identifying text for a node whenever possible.

Ij Document
@ [JElernent: slideshow
® [Element: slide
@ [Elemant: slide
@] Element: slide
D Elemesnt: slide-title Overview :
D Element: itern ¥Why WonderWidg
D Elernent: item
D Element: itemn Who buys
@ [Elemant: slide :

4 |§:§: | 3

Figure6-9 Collapsed Hierarchy Showing Text in Nodes

DOCUMENT OBJECT MODEL

Selecting an item that includes XHTML subel ements produces a display like that
shown in Figure 6-10:

[Docurment Why Forder Brdpeicare great
@ [Element: slideshow
@] Element: slide
@ [Element: slide
@ [JElement: slide
[Element: slide-title Overvigw :
D Element: itern Why Wondenidg
D Element: itern
D Element: item ¥Who buys<iem>
[ﬁ Elermsnt: slide i

& ok

Figure 6-10 Node with Tag Selected

ACTING ON TREE SELECTIONS 235

Selecting a node that contains an entity reference causes the entity text to be
included, as shown in Figure 6-11.

[Docurment
@ [JElernent: slideshow
@ [Element: slide
@ [Elernent: slide
D Element: item This is the standamd cog -
@[] Element: slide :
@[] Element: slide

i| This is the standard copyright message that our
wyers make us put everywhere so we don't
we to shell out a million bucks every time
omeone spills hot coffee in their lap...

e o

Figure6-11 Node with Entity Reference Selected

236 DOCUMENT OBJECT MODEL

Finally, selecting a node that includes a CDATA section produces results like those
shown in Figure 6-12:

7 Document | .
Q@ [Elerment: slideshow Diagram:
& 9 Element; slide
@ [Element: slids frobmorten <------------ fuzn
&] Element: slide [<3> "~
@ [Element: slide | <1l= |
D Element: slide-title How it Works : ¥ |
[} Element: itemn First we fozzle the frob - staten-—------------------ +
D Element: itern Then we framboze the <2z
D Elermnent; iter Finally, we frenzle the f
D Element; itern <pre=Diagram: :
< D]] D

Figure6-12 Node with CDATA Component Selected

Extra Credit

Now that you have the application working, here are some ways you might think
about extending it in the future:

» Usetitle text to identify slides. Special case the s1ide element so that the
contents of the t1i t1e node are used asthe identifying text. When sel ected,
convert the title node's contents to a centered H1 tag, and ignorethe title
element when constructing the tree.

» Convert item elementsto lists: Remove item elementsfrom the JTree and
convert them to HTML lists using , <1i>, and tags, including
them in the dide's content when the slide is selected.

HANDLING MODIFICATIONS 237

Handling Modifications

A full discussion of the mechanisms for modifying the JTree’s underlying data
model is beyond the scope of this tutorial. However, a few words on the subject
arein order.

Most importantly, note that if you allow the user to modify the structure by
manipulating the JTree, you must take the compression into account when you
figure out where to apply the change. For example, if you are displaying text in
the tree and the user modifies that, the changes would have to be applied to text
subelements and perhaps would require a rearrangement of the XHTML subtree.

When you make those changes, you'll need to understand more about the inter-
actions between a JTree, its TreeModel, and an underlying data model. That
subject is covered in depth in the Swing Connection article, “ Understanding the
TreeModel” at http://java.sun.com/products/jfc/tsc/articles/jtree/
index.html.

Finishing Up

You now understand what there is to know about the structure of a DOM, and
you know how to adapt a DOM to create a user-friendly display in a JTree. It
has taken quite a bit of coding, but in return you have obtained valuable tools for
exposing aDOM’s structure and atemplate for GUI applications. In the next sec-
tion, you'll make a couple of minor modifications to the code that turn the appli-
cation into a vehicle for experimentation, and then you'll experiment with
building and manipulating a DOM.

Creating and Manipulating a DOM

By now, you understand the structure of the nodes that make up a DOM. Creat-
ing a DOM is easy. This section of the DOM tutoria is going to take much less
work than anything you've seen up to now. All the foregoing work, however, has
generated the basic understanding that will make this section a piece of cake.

Obtaining a DOM from the Factory

In this version of the application, you'll still create a document builder factory,
but this time you'll tell it to create a new DOM instead of parsing an existing

http://java.sun.com/products/jfc/tsc/articles/jtree/
http://java.sun.com/products/jfc/tsc/articles/jtree/

238

DOCUMENT OBJECT MODEL

XML document. You'll keep all the existing functionality intact, however, and
add the new functionality in such a way that you can flick a switch to get back
the parsing behavior.

Note: The code discussed in this section isin DomEcho05. java.

Modify the Code

Start by turning off the compression feature. As you work with the DOM in this
section, you'll want to see all the nodes:

public class DomEcho05 extends JPanel

{

boolean compress = false;

Next, you create a buildDom method that creates the document object. The easi-
est way is to create the method and then copy the DOM-construction section
from the main method to create the buildbom. The modifications shown next
show you the changes needed to make that code suitable for the buildDom
method.

public class DomEcho05 extends JPanel

{

public static void makeFrame() {

3
public static void buildDom()
{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {
DocumentBuilder builder =
factory.newDocumentBuilder();
document—=—builder-parsetnewFitelargvto b+
document = builder.newDocument();

+}—ecateh(SAXException—sxe)—{f

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace(Q);

../examples/jaxp/dom/samples/DomEcho05.java

OBTAINING A DOM FROM THE FACTORY 239

: h—CIOE on—ioe){
}_
}

In this code, you replace the line that does the parsing with one that creates a
DOM. Then, because the code is no longer parsing an existing file, you remove
exceptions that are no longer thrown: SAXException and IOException.

And because you will be working with ETement objects, add the statement to
import that class at the top of the program:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

Create Element and Text Nodes

Now, for your first experiment, add the Document operations to create a root
node and several children:

public class DomEchoO5 extends JPanel

{

public static void buildDom()
{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {
DocumentBuilder builder =
factory.newDocumentBuilder();
document = builder.newDocument();
// Create from whole cloth
Element root =
(Element)
document.createElement("rootElement");
document.appendChild(root);
root.appendChild(
document.createTextNode('"'Some"));
root.appendChild(
document.createTextNode(" "));
root.appendChild(
document.createTextNode("text"));
} catch (ParserConfigurationException pce) {

240 DoCUMENT OBJECT MODEL

// Parser with specified options can't be built
pce.printStackTrace(Q);
}
}

Finally, modify the argument-list checking code at the top of the main method so
that you invoke bui1dDom and makeFrame instead of generating an error:

public class DomEchoO5 extends JPanel

{

public static void main(String argv[])
{
if (argv.length != 1) {

Systemerrprintinl—"+
System—exit+
buildDom();
makeFrame(Q) ;
return;

}

That's al there is to it! Now if you supply an argument the specified file is
parsed, and if you don’'t, the experimental code that buildsa DOM is executed.

Run the App

Compile and run the program with no arguments, producing the result shown in
Figure 6-13:

NORMALIZING THE DOM 241

ﬁ Docurnent
@ [J Element: rootElement
D Text: Some

[Text:

[Text: text

Figure 6-13 Element Node and Text Nodes Created

Normalizing the DOM

In this experiment, you'll manipulate the DOM you created by normalizing it
after it has been constructed.

Note: The code discussed in this section isin DomEcho06. java.

Add the following highlighted code to normalize the DOM:

public static void buildDom()
{
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {

root.appendChild(document.createTextNode("Some"));
root.appendChild(document.createTextNode(" "));
root.appendChild(document.createTextNode("text"));
document.getDocumentElement() .normalize();

} catch (ParserConfigurationException pce) {

../examples/jaxp/dom/samples/DomEcho06.java

242 DoCUMENT OBJECT MODEL

In this code, getDocumentElement returns the document’s root node, and the
normalize operation manipulates the tree under it.

When you compile and run the application now, the result looks like Figure 6—
14

3 cocument
L] 3 Elernent: rootElement
D Text: Some text

Figure 6-14 Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single
node. The normalize operation is one that you typically use after making modifi-
cationsto a DOM, to ensure that the resulting DOM is as compact as possible.

Note: Now that you have this program to experiment with, see what happens to
other combinations of CDATA, entity references, and text nodes when you normalize
thetree.

OTHER OPERATIONS 243

Other Operations

To complete this section, we'll take a quick look at some of the other operations
you might want to apply to a DOM:

» Traversing nodes

» Searching for nodes

» Obtaining node content

» Creating attributes

» Removing and changing nodes
* Inserting nodes

Traversing Nodes

The org.w3c.dom.Node interface defines a number of methods you can use to
traverse nodes, including getFirstChild, getLastChild, getNextSibling,
getPreviousSibling, and getParentNode. Those operations are sufficient to
get from anywhere in the tree to any other location in the tree.

Searching for Nodes

When you are searching for a node with a particular name, there is a bit more to
take into account. Although it is tempting to get the first child and inspect it to
see whether it is the right one, the search must account for the fact that the first
child in the sublist could be a comment or a processing instruction. If the XML
data hasn't been validated, it could even be a text node containing ignorable
whitespace.

In essence, you need to look through the list of child nodes, ignoring the ones
that are of no concern and examining the ones you care about. Here is an exam-
ple of the kind of routine you need to write when searching for nodesin a DOM
hierarchy. It is presented here in its entirety (complete with comments) so that
you can use it as atemplate in your applications.

/7‘: %*

* Find the named subnode in a node's subTist.

* <1i>Ignores comments and processing instructions.

* <Ti>Ignores TEXT nodes (likely to exist and contain
ignorable whitespace, if not validating.

* <1i>Ignores CDATA nodes and EntityRef nodes.
Examines element nodes to find one with

244

DOCUMENT OBJECT MODEL

the specified name.
*
* @param name the tag name for the element to find
* @param node the element node to start searching from
* @return the Node found
% /
public Node findSubNode(String name, Node node) {
if (node.getNodeType() != Node.ELEMENT_NODE) {
System.err.println(
"Error: Search node not of element type");
System.exit(22);
}

if (! node.hasChildNodes()) return null;

NodeList 1list = node.getChildNodes();
for (int i=0; i < Tist.getLength(Q); i++) {
Node subnode = Tist.item(i);
if (subnode.getNodeType() == Node.ELEMENT_NODE) {
if (subnode.getNodeName() .equals(name)) return subnode;
}
}

return null;

}

For a deeper explanation of this code, see Increasing the Complexity (page 185)
in When to Use DOM (page 182).

Note, too, that you can use APIs described in Summary of Lexica
Controls (page 219) to modify the kind of DOM the parser constructs. The nice
thing about this code, though, isthat it will work for amost any DOM.

Obtaining Node Content

When you want to get the text that a node contains, you again need to look
through the list of child nodes, ignoring entries that are of no concern and accu-
mulating the text you find in TEXT nodes, CDATA nodes, and Ent1ityRef nodes.

Here is an example of the kind of routine you can use for that process.

/ Yoo
* Return the text that a node contains. This routine:
* <1i>Ignores comments and processing instructions.
* <Ti>Concatenates TEXT nodes, CDATA nodes, and the results of
* recursively processing EntityRef nodes.
* <Ti>Ignores any element nodes in the sublist.

OTHER OPERATIONS

(Other possible options are to recurse into element
sublists or throw an exception.)

*

* @param node a DOM node

* @return a String representing its contents
e /

public String getText(Node node) {
StringBuffer result = new StringBuffer();
if (! node.hasChildNodes()) return "";

NodeList 1ist = node.getChildNodes();
for (int i=0; i < list.getLength(Q); i++) {
Node subnode = Tist.item(i);
if (subnode.getNodeType() == Node.TEXT_NODE) {
result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node . CDATA_SECTION_NODE)
{

result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node.ENTITY_REFERENCE_NODE)
{

// Recurse into the subtree for text
// (and ignore comments)
result.append(getText(subnode));
}
}

return result.toString(Q;

}

For a deeper explanation of this code, see Increasing the Complexity (page 185)
in When to Use DOM (page 182).

Again, you can simplify this code by using the APIs described in Summary of
Lexical Controls (page 219) to modify the kind of DOM the parser constructs.
But the nice thing about this code isthat it will work for aimost any DOM.

Creating Aftributes

The org.w3c.dom.Element interface, which extends Node, defines a setAt-
tribute operation, which adds an attribute to that node. (A better name from the
Java platform standpoint would have been addAttribute. The attribute is not a
property of the class, and anew object is created.)

246

DOCUMENT OBJECT MODEL

You can aso use the Document’s createAttribute operation to create an
instance of Attribute and then usethe setAttributeNode method to add it.

Removing and Changing Nodes

To remove anode, you use its parent Node’s removeCh1ild method. To changeit,
you can use either the parent node’'s replaceChi1d operation or the node’s set-
NodeValue operation.

Inserting Nodes

The important thing to remember when creating new nodes is that when you cre-
ate an element node, the only data you specify is a name. In effect, that node
gives you a hook to hang things on. You hang an item on the hook by adding to
itslist of child nodes. For example, you might add a text node, a CDATA node, or
an attribute node. As you build, keep in mind the structure you examined in the
exercises you've seen in this tutorial. Remember: Each node in the hierarchy is
extremely simple, containing only one data element.

Finishing Up

Congratulations! You've learned how a DOM is structured and how to manipu-
late it. And you now have a DomEcho application that you can use to display a
DOM'’s structure, condense it to GUI-compatible dimensions, and experiment
with to see how various operations affect the structure. Have fun with it!

Validating with XML Schema

You're now ready to take a deeper look at the process of XML Schema valida-
tion. Although afull treatment of XML Schemais beyond the scope of this tuto-
rial, this section shows you the steps you take to validate an XML document
using an XML Schema definition. (To learn more about XML Schema, you can
review the online tutorial, XML Schema Part O: Primer, at http://www.w3.0org/
TR/xmlschema-0/. You can also examine the sample programs that are part of
the JAXP download. They use asimple XML Schema definition to validate per-
sonnel data stored in an XML file.)

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

OVERVIEW OF THE VALIDATION PROCESS

At the end of this section, you'll also learn how to use an XML Schema defini-
tion to validate a document that contains elements from multiple namespaces.

Overview of the Validation Process

To be notified of validation errorsin an XML document, the following must be
true:

» The factory must configured, and the appropriate error handler set.

» The document must be associated with at least one schema, and possibly
more.

Configuring the DocumentBuilder
Factory

It's helpful to start by defining the constants you'll use when configuring the fac-
tory. (These are the same constants you define when using XML Schema for
SAX parsing.)

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemalLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.0rg/2001/XMLSchema";

Next, you configure DocumentBuilderFactory to generate a namespace-awvare,
validating parser that uses XML Schema:

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance()
factory.setNamespaceAware(true);
factory.setValidating(true);
try {
factory.setAttribute (JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA) ;
}
catch (I1legalArgumentException x) {
// Happens if the parser does not support JAXP 1.2

}

247

248

DOCUMENT OBJECT MODEL

Because JAXP-compliant parsers are not namespace-aware by default, it is nec-
essary to set the property for schema validation to work. You also set a factory
attribute to specify the parser language to use. (For SAX parsing, on the other
hand, you set a property on the parser generated by the factory.)

Associating a Document with a Schema

Now that the program is ready to validate with an XML Schema definition, it is
necessary only to ensure that the XML document is associated with (at |east)
one. There are two ways to do that:

» With aschemadeclaration in the XML document

» By specifying the schema(s) to use in the application

Note: When the application specifies the schema(s) to use, it overrides any schema
declarations in the document.

To specify the schema definition in the document, you create XML like this:

<documentRoot
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:noNamespaceSchemalLocation="'YourSchemaDefinition.xsd'
>

Thefirgt attribute defines the XML namespace (xm1ns) prefix, xsi, which stands
for “XML Schemainstance.” The second line specifies the schemato usefor ele-
ments in the document that do not have a namespace prefix—that is, for the ele-
ments you typically define in any simple, uncomplicated XML document.
(You'll see how to deal with multiple namespaces in the next section.)

You can also specify the schemafile in the application:

static final String schemaSource = "YourSchemaDefinition.xsd";
static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml1/jaxp/properties/schemaSource";

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance()

factory.setAttribute (JAXP_SCHEMA_SOURCE,
new File(schemaSource));

VALIDATING WITH MULTIPLE NAMESPACES

Here, too, there are mechanisms at your disposal that will let you specify multi-
ple schemas. We'll take alook at those next.

Validating with Multiple Namespaces

Namespaces let you combine elements that serve different purposes in the same
document without having to worry about overlapping names.

Note: The material discussed in this section also applies to validating when using
the SAX parser. You're seeing it here, because at this point you've learned enough
about namespaces for the discussion to make sense.

To contrive an example, consider an XML data set that keeps track of personnel
data. The data set may include information from the W2 tax form as well as
information from the employee's hiring form, with both elements named <form>
in their respective schemas.

If a prefix is defined for the tax namespace, and another prefix defined for the
hi ring namespace, then the personnel data could include segments like this:
<employee id="...">
<name>....</nhame>
<tax: form>
...w2 tax form data...
</tax: form>
<hiring: form>
...employment history, etc....
</hiring: form>
</employee>

The contents of the tax:form element would obviously be different from the
contents of the hiring: form and would have to be validated differently.

Note, too, that in this example there is a default namespace that the unqualified
element names employee and name belong to. For the document to be properly
validated, the schema for that namespace must be declared, as well as the sche-
mas for the tax and hi ring namespaces.

Note: The default” namespace is actually a specific namespace. It is defined asthe
“namespace that has no name.” So you can’'t simply use one namespace as your
default this week, and another namespace as the default later. This “unnamed

249

250

DOCUMENT OBJECT MODEL

namespace” (or “ null namespace”) islikethe number zero. It doesn’t have any value
to speak of (no name), but it isstill precisely defined. So anamespace that does have
aname can never be used as the default namespace.

When parsed, each element in the data set will be validated against the appropri-
ate schema, as long as those schemas have been declared. Again, the schemas
can be declared either as part of the XML data set or in the program. (It is also
possible to mix the declarations. In general, though, it is a good idea to keep all
the declarations together in one place.)

Declaring the Schemas in the XML Data Set

To declare the schemas to use for the preceding example in the data set, the XML
code would look something like this:

<documentRoot
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:noNamespaceSchemalLocation="employeeDatabase.xsd"
xs1i:schemalLocation=
“http://www.irs.gov/ fullpath/w2TaxForm.xsd
http://www.ourcompany.com/ relpath/hiringForm.xsd"
xmlns:tax="http://www.irs.gov/"
xmlns:hiring="http://www.ourcompany.com/"

The noNamespaceSchemalLocation declaration is something you've seen before,
as are the last two entries, which define the namespace prefixes tax and hiring.
What's new is the entry in the middle, which defines the | ocations of the schemas
to use for each namespace referenced in the document.

The xsi:schemaLocation declaration consists of entry pairs, where the first
entry in each pair is afully qualified URI that specifies the namespace, and the
second entry contains a full path or a relative path to the schema definition. (In
general, fully qualified paths are recommended. In that way, only one copy of the
schemawill tend to exist.)

Note that you cannot use the namespace prefixes when defining the schemaloca
tions. The xsi : schemaLocat1ion declaration understands only namespace hames
and not prefixes.

VALIDATING WITH MULTIPLE NAMESPACES 251

Declaring the Schemas in the Application

To declare the equivalent schemas in the application, the code would ook some-
thing like this:

static final String employeeSchema = "employeeDatabase.xsd";
static final String taxSchema = "w2TaxForm.xsd";
static final String hiringSchema = "hiringForm.xsd";

static final String[] schemas = {
employeeSchema,
taxSchema,
hiringSchema,

¥
static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml1/jaxp/properties/schemaSource";
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()

factory.setAttribute(JAXP_SCHEMA_SOURCE, schemas);

Here, the array of strings that points to the schema definitions (. xsd files) is
passed as the argument to the factory.setAttribute method. Note the differ-
ences from when you were declaring the schemas to use as part of the XML data

» Thereisno special declaration for the default (unnamed) schema.

* You don't specify the namespace name. Instead, you only give pointers to
the . xsd files.

To make the namespace assignments, the parser reads the . xsd files, and findsin
them the name of the target namespace they apply to. Because the files are spec-
ified with URIs, the parser can use an EntityResolver (if one has been defined)
to find alocal copy of the schema.

If the schema definition does not define a target namespace, then it appliesto the
default (unnamed, or null) namespace. So, in our example, you would expect to
see these target namespace declarations in the schemas:

e employeeDatabase.xsd: none
e w2TaxForm.xsd: http://www.irs.gov/

* hiringForm.xsd: http://www.ourcompany.com

252

DOCUMENT OBJECT MODEL

At this point, you have seen two possible values for the schema source property
when invoking the factory.setAttribute() method: a File object in fac-
tory.setAttribute (JAXP_SCHEMA_SOURCE, new File(schemaSource)) and
an array of strings in factory.setAttribute (JAXP_SCHEMA_SOURCE, sche-
mas). Hereisacomplete list of the possible values for that argument:

» A string that points to the URI of the schema

e An InputStream with the contents of the schema

e A SAX InputSource

e AFile

* Anarray of Objects, each of which is one of the types defined here.

Note: Anarray of Objectscan be used only when the schemalanguage (likehttp: /
/java.sun.com/xm1/jaxp/properties/schemaLanguage) has the ahility to
assemble aschema at runtime. Also, when an array of Objectsispasseditisille-
gal to have two schemas that share the same namespace.

Further Information

For further information on the TreeMode1, see

e “Understanding the TreeModel”: http://java.sun.com/products/
jfc/tsc/articles/jtree/index.html

For further information on the W3C Document Object Model (DOM), see
e The DOM standard page: http://www.w3.org/DOM/
For more information on schema-based validation mechanisms, see

e The W3C standard vaidation mechanism, XML Schema http://
www.w3.org/XML/Schema

* RELAX NG's regular-expression based validation mechanism: http://
www.oasis-open.org/committees/relax-ng/

e Schematron's assertion-based validation mechanism: http://
www.ascc.net/xml/resource/schematron/schematron.html

http://www.w3.org/DOM/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.ascc.net/xml/resource/schematron/schematron.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

v

Extensible Stylesheef
Language
Transformations

T HE Extensible Stylesheet Language Transformations (XSLT) standard
defines mechanisms for addressing XML data (XPath) and for specifying trans-
formations on the data in order to convert it into other forms. JAXP includes an
interpreting implementation of XSLT called Xaan (“ZAY-lahn”).

Note: The term Xalan doesn’t appear to be stand for anything. It is said to be the
name of arare musical instrument, but the only instrument that comes close is the
Xalam (“zah-LAHM”) -- an early precursor to the banjo.

In this chapter, you'll learn how to use Xaan. You'll write out a Document
Object Model as an XML file, and you'll see how to generate a DOM from an
arbitrary datafilein order to convert it to XML. Finaly, you'll convert XML data
into a different form, unlocking the mysteries of the XPath addressing mecha-
nism along the way.

Note: The examples in this chapter can be found in
<INSTALL>/j2eetutoriall4/examples/jaxp/xs1t/samples/.

253

254

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Intfroducing XSL, XSLT, and XPath

The Extensible Stylesheet Language (XSL) has three major subcomponents:

XSL-FO
The Formatting Objects standard. By far the largest subcomponent, this stan-
dard gives mechanisms for describing font sizes, page layouts, and other
aspects of object rendering. This subcomponent is not covered by JAXP, nor
isit included in thistutorial.

XSLT

This is the transformation language, which lets you define a transformation
from XML into some other format. For example, you might use XSLT to
produce HTML or a different XML structure. You could even use it to pro-
duce plain text or to put the information in some other document format.
(And as you'll see in Generating XML from an Arbitrary Data
Structure (page 272), aclever application can pressit into service to manipu-
late non-XML dataas well.)

XPath

At bottom, XSLT is alanguage that lets you specify what sorts of things to
do when a particular element is encountered. But to write a program for dif-
ferent parts of an XML data structure, you need to specify the part of the
structure you are talking about at any given time. XPath is that specification
language. It is an addressing mechanism that lets you specify a path to an
element so that, for example, <article><title> can be distinguished from
<person><title>. In that way, you can describe different kinds of tranda
tionsfor the different <title> elements.

The remainder of this section describes the packages that make up the JAXP
Transformation APIs.

The JAXP Transformation Packages

Here is a description of the packages that make up the JAXP Transformation
APIs:

javax.xml.transform
This package defines the factory class you use to get a Transformer object.
You then configure the transformer with input (source) and output (result)
objects, and invoke its transform() method to make the transformation
happen. The source and result objects are created using classes from one of
the other three packages.

How XPATH WORKS 255

javax.xml.transform.dom
Defines the DOMSource and DOMResu1t classes, which let you use aDOM as
an input to or output from atransformation.

javax.xml.transform.sax
Defines the SAXSource and SAXResult classes, which let you use a SAX
event generator asinput to atransformation, or deliver SAX events as output
to a SAX event processor.

javax.xml.transform.stream
Defines the StreamSource and StreamResult classes, which let you use an
I/O stream as an input to or output from atransformation.

How XPath Works

The XPath specification is the foundation for a variety of specifications, includ-
ing XSLT and linking/addressing specifications such as XPointer. So an under-
standing of XPath is fundamental to alot of advanced XML usage. This section
provides a thorough introduction to XPath in the context of XSLT so that you
can refer to it as needed.

Note: Inthistutorial, you won't actually use X Path until later, in the section, Trans-
forming XML Datawith XSLT (page 287). So, if you like, you can skip this section
and go on ahead to the next section, Writing Out a DOM as an XML
File (page 265). (When you get to the end of that section, there will be a note that
refers you back here so that you don’t forget!)

XPath Expressions

In general, an XPath expression specifies a pattern that selects a set of XML
nodes. XSLT templates then use those patterns when applying transformations.
(XPointer, on the other hand, adds mechanisms for defining a point or arange so
that X Path expressions can be used for addressing.)

256

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

The nodes in an XPath expression refer to more than just el ements. They aso
refer to text and attributes, among other things. In fact, the XPath specification
defines an abstract document model that defines seven kinds of nodes:

* Root

» Element

o Text

o Attribute

« Comment

» Processing instruction

» Namespace

Note: Theroot element of the XML datais modeled by an element node. The XPath
root node contains the document’sroot el ement aswell asother information relating
to the document.

The XSLT/XPath Data Model

Like the Document Object Model, the X SLT/XPath data model consists of atree
containing a variety of nodes. Under any given element node, there are text
nodes, attribute nodes, element nodes, comment nodes, and processing instruc-
tion nodes.

In this abstract model, syntactic distinctions disappear, and you are left with a
normalized view of the data. In atext node, for example, it makes no difference
whether the text was defined in a CDATA section or whether it included entity ref-
erences. The text node will consist of normalized data, as it exists after all pars-
ing is complete. So the text will contain a < character, whether or not an entity
reference such as &1t; or a CDATA section was used to include it. (Similarly, the
text will contain an & character, whether it was delivered using & or it wasin
a CDATA section.)

In this section, we'll deal mostly with element nodes and text nodes. For the
other addressing mechanisms, see the XPath specification.

http://www.w3.org/TR/xpath

TEMPLATES AND CONTEXTS

Templates and Contexts

An XSLT template is a set of formatting instructions that apply to the nodes
selected by an XPath expression. In a stylesheet, an XSLT template would look
something like this:

<xsT:template match="//LIST">
</xsT1:template>

The expression //LIST selects the set of LIST nodes from the input stream.
Additional instructions within the template tell the system what to do with them.

The set of nodes selected by such an expression defines the context in which
other expressions in the template are evaluated. That context can be considered
as the whole set—for example, when determining the number of the nodes it
contains.

The context can also be considered as a single member of the set, as each mem-
ber is processed one by one. For example, inside the LIST-processing template,
the expression @type refersto the type attribute of the current LIST node. (Sim-
ilarly, the expression @* refersto all the attributes for the current LIST element.)

Basic XPath Addressing

An XML document is a tree-structured (hierarchical) collection of nodes. As
with a hierarchical directory structure, it is useful to specify a path that points to
a particular node in the hierarchy (hence the name of the specification: XPath).
In fact, much of the notation of directory pathsis carried over intact:

» Theforward slash (/) is used as a path separator.

» An absolute path from the root of the document starts with a/.

» A relative path from a given location starts with anything else.

* A double period (. .) indicates the parent of the current node.

» A single period (.) indicates the current node.
For example, In an Extensible HTML (XHTML) document (an XML document
that looks like HTML but is well formed according to XML rules), the path
/h1/h2/ would indicate an h2 element under an h1l. (Recal that in XML, ele-

ment names are case-sensitive, so this kind of specification works much better in
XHTML than it would in plain HTML, because HTML is case-insensitive.)

257

258

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

In a pattern-matching specification such as XPath, the specification /h1/h2
selects all h2 elements that lie under an h1 element. To select a specific h2 e
ment, you use square brackets [] for indexing (like those used for arrays). The
path /h1[4]/h2[5] would therefore select the fifth h2 element under the fourth
h1 element.

Note: InXHTML, all element namesareinlowercase. That isafairly common con-
vention for XML documents. However, uppercase namesare easier to read in atuto-
rial likethisone. Sofor theremainder of the XSLT tutoria, all XML element names
will beinuppercase. (Attribute names, on the other hand, will remainin lowercase.)

A name specified in an XPath expression refers to an element. For example, h1
in /h1/h2 refersto an hl element. To refer to an attribute, you prefix the attribute
name with an @ sign. For example, @type refers to the type attribute of an ele-
ment. Assuming that you have an XML document with LIST elements, for exam-
ple, the expression LIST/@type selectsthe type attribute of the LIST element.

Note: Because the expression does not begin with /, the reference specifiesaTist
node relative to the current context—whatever position in the document that hap-
pensto be.

Basic XPath Expressions

The full range of XPath expressions takes advantage of the wildcards, operators,
and functions that X Path defines. You'll learn more about those shortly. Here, we
look at a couple of the most common XPath expressions simply to introduce
them.

The expression @type="unordered" specifies an attribute named type whose
value is unordered. As you know, an expression such as LIST/@type sSpecifies
the type attribute of aLIST element.

You can combine those two notations to get something interesting! In XPath, the
square-bracket notation ([]) normally associated with indexing is extended to
specify selection criteria. So the expression LIST[@type="unordered"] selects
al LIST elements whose type value isunordered.

Similar expressions exist for elements. Each element has an associated string-
value, which is formed by concatenating all the text segments that lie under the

COMBINING | NDEX ADDRESSES

element. (A more detailed explanation of how that processworksiscoming upin
String-Value of an Element, page 261.)

Suppose you model what's going on in your organization using an XML struc-
ture that consists of PROJECT elements and ACTIVITY elements that have a text
string with the project name, multiple PERSON elements to list the people
involved and, optionally, a STATUS element that records the project status. Here
are other examples that use the extended square-bracket notation:

e /PROJECT[.="MyProject"]: SelectsaPROJECT named "MyProject"

* /PROJECT[STATUS]: Selectsall projectsthat have a STATUS child element

e /PROJECT[STATUS="Critical"]: Selects all projects that have a STATUS
child element with the string-value Critical

Combining Index Addresses

The XPath specification defines quite a few addressing mechanisms, and they
can be combined in many different ways. As a result, XPath delivers a lot of
expressive power for a relatively simple specification. This section illustrates
other interesting combinations:

e LIST[@type="ordered"][3]: Selectsal LIST elements of type ordered,
and returns the third

e LIST[3][@type="ordered"]: Selectsthethird LIST element, but only if it
isof type ordered

Note: Many more combinations of address operators are listed in section 2.5 of the
XPath specification. Thisisarguably the most useful section of the spec for defining
an XSLT transform.

Wildcards

By definition, an unqualified X Path expression selects a set of XML nodes that
matches that specified pattern. For example, /HEAD matches all top-level HEAD
entries, whereas /HEAD[1] matches only the first. Table 7-1 lists the wildcards

259

http://www.w3.org/TR/xpath

260

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

that can be used in X Path expressions to broaden the scope of the pattern match-
ing.

Table 7-1 XPath Wildcards

Wildcard Meaning

Matches any element node (not attributes or text)

Matches any node of any kind: element node, text node, attribute node,

node () processing instruction node, namespace node, or comment node
@* Matches any attribute node

In the project database example, /*/PERSON[.="Fred"] matches any PROJECT
or ACTIVITY element that names Fred.

Extended-Path Addressing

So far, al the patterns you've seen have specified an exact number of levelsin
the hierarchy. For example, /HEAD specifies any HEAD element at thefirst level in
the hierarchy, whereas /*/* specifies any element at the second level in the hier-
archy. To specify an indeterminate level in the hierarchy, use a double forward
dlash (//). For example, the XPath expression //PARA selects all paragraph ele-
ments in a document, wherever they may be found.

The // pattern can also be used within a path. So the expression
/HEAD/LIST//PARA indicates all paragraph elements in a subtree that begins
from /HEAD/LIST.

XPATH DATA TYPES AND OPERATORS

XPath Data Types and Operators

XPath expressions yield either a set of nodes, a string, a Boolean (a true/false
value), or a number. Table 7-2 lists the operators that can be used in an Xpath
expression

Table 7—2 XPath Operators

Operator Meaning

Alternative. For example, PARA|LIST selectsall PARA and LIST
elements.

or, and Returns the or/and of two Boolean values.

=, I= Equal or not equal, for Booleans, strings, and numbers.

Lessthan, greater than, less than or equal to, greater than or equal
to, for numbers.

Add, subtract, multiply, floating-point divide, and modulus
(remainder) operations (e.g., 6 mod 4 = 2)

Expressions can be grouped in parentheses, so you don’t have to worry about
operator precedence.

Note: Operator precedenceis aterm that answersthe question, “If you specify a +
b * c, doesthat mean (a+b) * cora + (b*c)? (The operator precedence is
roughly the same as that shown in the table.)

String-Value of an Element

The string-value of an element is the concatenation of all descendent text nodes,
no matter how deep. Consider this mixed-content XML data:

<PARA>This paragraph contains a bold word</PARA>

The string-value of the <PARA> element isThis paragraph contains a bold
word. In particular, note that is a child of <PARA> and that the text bold isa

261

262

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

child of . The point is that al the text in all children of a node joins in the
concatenation to form the string-value.

Also, it isworth understanding that the text in the abstract data model defined by
XPath isfully normalized. So whether the XML structure contains the entity ref-
erence &1t; or < in aCDATA section, the element’s string-value will contain the <
character. Therefore, when generating HTML or XML with an XSLT styleshest,
you must convert occurrences of < to &1t; or enclose them in a CDATA section.
Similarly, occurrences of & must be converted to & ;.

XPath Functions

This section ends with an overview of the XPath functions. You can use XPath
functions to select a collection of nodes in the same way that you would use an
element specification such as those you have already seen. Other functions return
a string, a number, or a Boolean value. For example, the expression
/PROJECT/text () getsthe string-value of PROJECT nodes.

Many functions depend on the current context. In the preceding example, the
context for each invocation of the text() function is the PROJECT node that is
currently selected.

There are many XPath functions—too many to describe in detail here. This sec-
tion provides a brief listing that shows the available X Path functions, along with
asummary of what they do.

Note: Skimthelist of functionsto get an ideaof what'sthere. For moreinformation,
see section 4 of the XPath specification.

Node-Set Functions

Many XPath expressions select a set of hodes. In essence, they return a node-set.
One function does that, too.

* jd(...): Returnsthe node with the specified ID.

(Elements have an ID only when the document has a DTD, which specifies
which attribute has the 1D type.)

http://www.w3.org/TR/xpath

XPATH FUNCTIONS

Positional Functions

These functions return positionally based numeric values.

last(): Returns the index of the last element. For example,
/HEAD[Tast ()] selects the last HEAD element.

position(): Returnstheindex position. For example, /HEAD [position()
<= 5] selectsthefirst five HEAD elements.

count(...): Returns the count of eements. For example,
/HEAD[count (HEAD)=0] selects all HEAD elements that have no subheads.

String Functions

These functions operate on or return strings.

concat(string, string, ...).Concatenatesthe string values.
starts-with(stringl, string2):. Returns true if stringl starts with
string2.

contains(stringl, string2). Returns true if stringl contains
string?2.

substring-before(stringl, string2): Returns the start of stringi
before string2 occursin it.

substring-after(stringl, string2): Returns the remainder of
stringl after string2 occursin it.

substring(string, idx): Returnsthe substring from the index position
to the end, where the index of the first char = 1.

substring(string, idx, Ten): Returns the substring of the specified
length from the index position.

string-Tength(): Returnsthe size of the context node’s string-value; the
context node isthe currently selected node—the node that was sel ected by
an XPath expression in which a function such as string-Tength() is
applied.

string-length(string): Returnsthe size of the specified string.
normalize-space(): Returns the normalized string-value of the current
node (no leading or trailing whitespace, and sequences of whitespace char-
acters converted to a single space).

normalize-space(string): Returns the normalized string-value of the
specified string.

263

264

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

* translate(stringl, string2, string3):. Convertsstringl, replacing

occurrences of characters in string2 with the corresponding character

from string3.

Note: XPath defines three ways to get the text of an element: textQ,
string(object), and the string-value implied by an element name in an expression
likethis: /PROJECT[PERSON="Fred"].

Boolean Functions

These functions operate on or return Boolean values.

not(...): Negates the specified Boolean value.
true(): Returnstrue.
false(): Returnsfalse.

lang(string) . Returnstrueif the language of the context node (specified
by xm1: Lang attributes) is the same as (or a sublanguage of) the specified
language; for example, Lang("en™) is true for
<PARA_xm1:Lang="en">...</PARA>.

Numeric Functions

These functions operate on or return numeric values.

sum(...): Returnsthe sum of the numeric value of each node in the spec-
ified node-set.

floor (N): Returns the largest integer that is not greater than N.
ceiling(N): Returnsthe smallest integer that is not less than N.
round (M) : Returns the integer that is closest to N.

Conversion Functions

These functions convert one data type to another.

string(...): Returnsthe string value of a number, Boolean, or node-set.

boolean(...): Returns a Boolean value for a number, string, or node-set
(a non-zero number, a nonempty node-set, and a nonempty string are all
true).

SUMMARY

* number(...): Returnsthe numeric value of a Boolean, string, or node-set
(trueisl, falseis0, astring containing anumber becomesthat number, the
string-value of a node-set is converted to a number).

Namespace Functions

These functions et you determine the namespace characteristics of anode.

e Tocal-name(): Returns the name of the current node, minus the
namespace prefix.

* Tocal-name(...): Returnsthe name of thefirst nodein the specified node
set, minus the namespace prefix.

* namespace-uri(): Returns the namespace URI from the current node.

* namespace-uri(...): Returns the namespace URI from the first node in
the specified node-set.

» name(): Returns the expanded name (URI plus local name) of the current
node.

* name(...): Returnsthe expanded name (URI pluslocal name) of the first
node in the specified node-set.

Summary

XPath operators, functions, wildcards, and node-addressing mechanisms can be
combined in wide variety of ways. The introduction you've had so far should
give you a good head start at specifying the pattern you need for any particular
purpose.

Writing Out a DOM as an XML File

After you have constructed a DOM—either by parsing an XML file or building it
programmatically—you frequently want to save it as XML. This section shows
you how to do that using the Xalan transform package.

Using that package, you'll create a transformer object to wire a DOMSource to a
StreamResult. You'll then invoke the transformer’s transform() method to
write out the DOM as XML data.

265

266 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Reading the XML

The first step is to create a DOM in memory by parsing an XML file. By now,
you should be getting comfortable with the process.

Note: The code discussed in this section isin TransformationApp01.java.

Thefollowing code provides a basic template to start from. (It should be familiar.
It's basically the same code you wrote at the start of Chapter 6. If you saved it
then, that version should be essentially equivalent to what you see here.)

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

import java.io.*;

public class TransformationApp

{

static Document document;

public static void main(String argv[])
{
if (argv.length != 1) {
System.err.printin (
"Usage: java TransformationApp filename");
System.exit (1);
}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

//factory.setNamespaceAware(true);

//factory.setValidating(true);

try {
File f = new File(argv[0]);
DocumentBuilder builder =
factory.newDocumentBuilder();

../examples/jaxp/xslt/samples/TransformationApp01.java

CREATING A TRANSFORMER 267

document = builder.parse(f);

} catch (SAXParseException spe) {

// Error generated by the parser
System.out.println("\n** Parsing error"
+ ", Tine " + spe.getLineNumber()

+ ", uri " + spe.getSystemId());
System.out.println(" " + spe.getMessage());
// Use the contained exception, 1if any
Exception x = spe;
if (spe.getException() != null)

X = spe.getException();
x.printStackTrace(Q);

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)
X = sxe.getException();
X.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException 1ioe) {
// I/0 error
ioe.printStackTrace();
3
} // main
}

Creating a Transformer

The next step isto create atransformer you can use to transmit the XML to Sys-
tem.out.

Note: The codediscussed inthissectionisin TransformationApp02.java. Thefile
it runs on is s1ideSample0l.xml1. The output iS in TransformationLog02.txt.
(The browsable versions are slideSample01l-xml.htm] and
TransformationlLog02.html.)

../examples/jaxp/xslt/samples/TransformationApp02.java
../examples/jaxp/xslt/samples/slideSample01.xml
../examples/jaxp/xslt/samples/TransformationLog02.txt
../examples/jaxp/xslt/samples/slideSample01-xml.html
../examples/jaxp/xslt/samples/TransformationLog02.html

268 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Start by adding the following highlighted import statements:

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import java.io.*;

Here, you add a series of classes that should now be forming a standard pattern:
an entity (Transformer), the factory to create it (TransformerFactory), and the
exceptions that can be generated by each. Because atransformation always has a
source and a result, you then import the classes necessary to use a DOM as a
source (DOMSource) and an output stream for the result (StreamResult).

Next, add the code to carry out the transformation:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

// Use a Transformer for output
TransformerFactory tFactory =
TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();

DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you create a transformer object, use the DOM to construct a source object,
and use System.out to construct a result object. You then tell the transformer to
operate on the source object and output to the result object.

In this case, the “transformer” isn’t actually changing anything. In XSLT termi-
nology, you are using the identity transform, which means that the “transforma-
tion” generates a copy of the source, unchanged.

Note: You can specify a variety of output properties for transformer objects, as
defined in the W3C specification at http://www.w3.org/TR/xs1t#output. For

http://www.w3.org/TR/xslt#output

CREATING A TRANSFORMER 269

example, to get indented output, you can invoke
transformer.setOutputProperty(OutputKeys.INDENT, "yes");

Finally, add the following highlighted code to catch the new errors that can be
generated:

} catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error');
System.out.println(" " + tce.getMessage());

// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() !'= null)

x = tce.getException();
x.printStackTrace();

} catch (TransformerException te) {
// Error generated by the parser
System.out.println ("* Transformation error'");
System.out.println(" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
X.printStackTrace();

} catch (SAXParseException spe) {

Notes:

* TransformerExceptionsare thrown by the transformer object.

* TransformerConfigurationExceptionsarethrown by the factory.

» To preserve the XML document’s DOCTYPE setting, it is also necessary to
add the following code:
import javax.xml.transform.OutputKeys;

if (document.getDoctype() != null){
String systemValue = (new
File(document.getDoctype().getSystemId())) .getName();
transformer.setOutputProperty(
OutputKeys.DOCTYPE_SYSTEM, systemValue

270 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

);
}

Writing the XML

For instructions on how to compile and run the program, see Compiling and
Running the Program (page 134) from the SAX tutorial, Chapter 5. (If you're
working along, substitute TransformationApp for Echo as the name of the pro-
gram. If you are compiling the sample code, use TransformationApp02.) When
you run the program on s1ideSamp1e01.xm1, thisis the output you see:

<?xm1 version="1.0" encoding="UTF-8"7>

<!-- A SAMPLE set of slides -->

<s1lideshow author="Yours Truly" date="Date of publication”
title="Sample Slide Show">

<!-- TITLE SLIDE -->
<s1lide type="all">

<title>Wake up to WonderWidgets!</title>
</sTide>

<!-- OVERVIEW -->
<s1lide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</slide>

</s1ideshow>

Note: The order of the attributes may vary, depending on which parser you are
using.

To find out more about configuring the factory and handling validation errors,
see Reading XML Data into a DOM (page188), and Additiona
Information (page 192).

WRITING OUT A SUBTREE OF THE DOM

Writing Out a Subtree of the DOM

It is also possible to operate on a subtree of a DOM. In this section, you'll exper-
iment with that option.

Note: The code discussed in this section is in TransformationApp03.java. The
output is in TransformationLog03.txt. (The browsable version is
TransformationLog03.htm1.)

The only differencein the processisthat now you will create aDOMSource using
a node in the DOM, rather than the entire DOM. The first step is to import the
classes you need to get the node you want. Add the following highlighted code to
do that:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

The next step isto find a good node for the experiment. Add the following high-
lighted code to select thefirst <s1ide> element:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

// Get the first <slide> element in the DOM
NodeList Tist = document.getElementsByTagName("slide");
Node node = Tist.item(0);

Then make the following changes to construct a source object that consists of the
subtree rooted at that node:

DOMSource—source=new—DOMSourceldocument)
DOMSource source = new DOMSource(node);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

271

../examples/jaxp/xslt/samples/TransformationApp03.java
../examples/jaxp/xslt/samples/TransformationLog03.txt
../examples/jaxp/xslt/samples/TransformationLog03.html

272

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Now run the app. Your output should look like this:

<?xm1 version="1.0" encoding="UTF-8"7>
<s1lide type="all">
<title>Wake up to WonderWidgets!</title>
</sTide>

Cleaning Up

Because it will be easiest to do now, make the following changes to back out the
additions you made in this section. (TransformationApp04.java contains these
changes.)

Import org.w3c.dom.DOMException;

try {

DOMSource source =new-DOMSourcelnoded)+
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Summary

At this point, you've seen how to use a transformer to write out a DOM and how
to use a subtree of a DOM as the source object in a transformation. In the next
section, you'll see how to use a transformer to create XML from any data struc-
ture you are capable of parsing.

Generating XML from an Arbitrary Data
Structure

In this section, you'll use XSLT to convert an arbitrary data structureto XML.

../examples/jaxp/xslt/samples/TransformationApp04.java

CREATING A SIMPLE FILE

Hereis an outline of the process:

1. You'll modify an existing program that reads the data, to make it generate
SAX events. (Whether that program isareal parser or simply a data filter
of some kind isirrelevant for the moment.)

2. You'll then use the SAX “parser” to construct a SAXSource for the trans-
formation.

3. You'll use the same StreamResult object you created in the last exercise
so that you can see the results. (But note that you could just as easily create
aDOMResult object to create a DOM in memory.)

4, You'll wirethe sourceto theresult using the transformer object to makethe
conversion.

For starters, you need a data set you want to convert and a program capable of
reading the data. In the next two sections, you'll create a simple data file and a
program that readsiit.

Creating a Simple File

We'll start by creating a data set for an address book. You can duplicate the pro-
cess, if you like, or ssimply use the data stored in PersonalAddressBook. 1di f.

The file shown here was produced by creating a new address book in Netscape
Messenger, giving it some dummy data (one address card), and then exporting it
in LDIF format.

Note: LDIF stands for LDAP Data Interchange Format. LDAP, in turn, stands for
Lightweight Directory Access Protocol. | prefer to think of LDIF as the “Line
Delimited Interchange Format”, because that is pretty much what it is.

Figure 7—1 shows the address book entry that was created.

273

274 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

L Ix

Add card to: IPersonal&ddressBoDk

Hame |E0ntact| Motes |

First Marme: |Fred

Last Wame: IFIintstnne

Dizplay Name: IFred Flirkztore

Email: Ifred@bameys.hnuse

Mickname: IFTEd
[v Prefers to receive rich text (HTAL) mail

ok IEIE!S-Quarr_I,J

Home: ISSS-BedmckLane

Fax: [86-5 quavik

Pager: |?‘?‘.T"-|:-ager

Cellular: |555-c:e||

k. I Cancel Help

Figure 7-1 Address Book Entry

Exporting the address book produces a file like the one shown next. The parts of
the file that we care about are shown in bold.

dn: cn=Fred Flintstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z

cn: Fred Flintstone
xmozillanickname: Fred

mail: Fred@barneys.house
xmozillausehtmlmail: TRUE

givenname: Fred

sn: Flintstone

telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager

CREATING A SIMPLE PARSER

cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

Note that each line of the file contains a variable name, a colon, and a space fol-
lowed by a value for the variable. The sn variable contains the person’s surname
(last name) and the variable cn contains the DisplayName field from the address
book entry.

Creating a Simple Parser

The next step isto create a program that parses the data.

Note: The code discussed in this section is in AddressBookReader01.java. The
output isin AddressBookReaderLog01. txt.

The text for the program is shown next. It's an absurdly simple program that
doesn’'t even loop for multiple entries because, after al, it's only a demo!

import java.io.*;

public class AddressBookReader

{

public static void main(String argv[])

{

}

/7‘: %

// Check the arguments
if (argv.length != 1) {
System.err.println (
"Usage: java AddressBookReader filename");
System.exit (1);
}
String filename = argv[0];
File f = new File(filename);
AddressBookReader0l reader = new AddressBookReader01();
reader.parse(f);

Parse the input */

public void parse(File f)

{

try {

275

../examples/jaxp/xslt/samples/AddressBookReader01.java
../examples/jaxp/xslt/samples/AddressBookReaderLog01.txt

276 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

// Get an efficient reader for the file
FileReader r = new FileReader(f);
BufferedReader br = new BufferedReader(r);

// Read the file and display its contents.
String line = br.readLine();
while (null != (line = br.readLine())) {
if (line.startsWith('"xmozillanickname: ™))

break;

}
output("nickname", "xmozillanickname", 1ine);
Tine = br.readLine();
output("email", "mail", Tine);
Tine = br.readLine();
output("html", "xmozilTlausehtmImail™, 1ine);
Tine = br.readlLine();
output("firstname","givenname", Tine);
Tine = br.readLine();
output("lastname", "sn", Tine);
Tine = br.readLine();
output("work", "telephonenumber", T1ine);
1ine = br.readlLine();
output("home", "homephone", Tine);
Tine = br.readLine();
output("fax", "facsimiletelephonenumber",

Tine);
1ine = br.readlLine();
output("pager", "pagerphone", Tine);
Tine = br.readlLine();
output("cell”, "cellphone™, Tine);

}
catch (Exception e) {
e.printStackTrace();
}
3

void output(String name, String prefix, String Tine)
{
int startIndex = prefix.length() + 2;
// 2=length of ": "
String text = line.substring(startIndex);
System.out.println(name + ": " + text);
3
}

This program contains three methods:

MODIFYING THE PARSER TO GENERATE SAX EVENTS

main

The main method gets the name of the file from the command line, creates
an instance of the parser, and sets it to work parsing the file. This method
will be going away when we convert the program into a SAX parser. (That's
one reason for putting the parsing code into a separate method.)

parse

This method operates on the File object sent to it by the main routine. As
you can seg, it's about as simple as it can get. The only nod to efficiency is
the use of a BufferedReader, which can become important when you start
operating on largefiles.

output

The output method contains the logic for the structure of a line. It takes
three arguments. The first argument gives the method a name to display, so
we can output htm1 as a variable name, instead of xmozillausehtmlmail.
The second argument gives the variable name stored in the file (xmozi1-
lausehtmImail). The third argument gives the line containing the data. The
routine then strips off the variable name from the start of the line and outputs
the desired name, plus the data.

Running this program on PersonalAddressBook. 1dif produces this output:

nickname: Fred

email: Fred@barneys.house
htm1: TRUE

firstname: Fred

Tastname: Flintstone
work: 999-Quarry

home: 999-BedrockLane
fax: 888-Squawk

pager: 777-pager

cell: 555-cell

| think we can all agree that thisis abit more readable.

Modifying the Parser to Generate SAX
Events

The next step is to modify the parser to generate SAX events so that you can use

it asthe basis for a SAXSource object inan XSLT transform.

277

278 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Note: The code discussed in this section isin AddressBookReader02. java.

Start by importing the additional classes you'll need:
import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.AttributesImpl;

Next, modify the application so that it extends Xm1Reader. That change converts
the application into a parser that generates the appropriate SAX events,

public class AddressBookReader
implements XMLReader

{

Now remove the main method. You won't need it any more.

}

Add some global variablesthat will come in handy in afew minutes:

public class AddressBookReader
implements XMLReader

{

ContentHandler handler;

// We're not doing namespaces, and we have no
// attributes on our elements.
String nsu = ""; // NamespaceURI

../examples/jaxp/xslt/samples/AddressBookReader02.java

MODIFYING THE PARSER TO GENERATE SAX EVENTS

Attributes atts = new AttributesImpl1();
String rootElement = "addressbook";

String indent = "\n "y // for readability!

The SAX ContentHandler is the object that will get the SAX events generated
by the parser. To make the application into an Xm1Reader, you'll define a set-
ContentHandler method. The handler variable will hold a reference to the
object that is sent when setContentHandler isinvoked.

And when the parser generates SAX element events, it will need to supply
namespace and attribute information. Because thisis asimple application, you're
defining null values for both of those.

You're also defining aroot element for the data structure (addressbook) and set-
ting up an indent string to improve the readability of the output.

Next, modify the parse method so that it takes an InputSource (rather than a
File) as an argument and account for the exceptionsit can generate:

public void parse(Filte—InputSource input)
throws IOException, SAXException

Now make the following changes to get the reader encapsulated by the Input-
Source object:

try {
// Get an efficient reader for the file
FileRoad _ FileReadere):
java.io.Reader r = input.getCharacterStream();
BufferedReader Br = new BufferedReader(r);

Note: In the next section, you'll create the input source object and what you put in
it will, in fact, be a buffered reader. But the AddressBookReader could be used
by someone else, somewhere down the line. This step makes sure that the process-
ing will be efficient, regardless of the reader you are given.

279

280

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

The next step isto modify the parse method to generate SAX events for the start
of the document and the root element. Add the following highlighted code to do
that:

/** Parse the input */
public void parse(InputSource input)

%..
try {

// Read the file and display its contents.
String line = br.readLine();
while (null != (line = br.readLine())) {
if (line.startsWith("xmozillanickname: ")) break;

}

if (handler==null) {
throw new SAXException('"No content handler');

}

handler.startDocument();
handler.startElement(nsu, rootElement,
rootElement, atts);

output("nickname", "xmozillanickname", Tine);
output("cell", "cellphone", Tine);

handler.ignorableWhitespace('"\n".toCharArray(),

0, // start index

1 // length

);
handler.endElement(nsu, rootElement, rootElement);
handler.endDocument();

}
catch (Exception e) {

Here, you check to make sure that the parser is properly configured with a Con-
tentHandler. (For this app, we don’t care about anything else.) You then gener-
ate the events for the start of the document and the root element, and you finish
by sending the end event for the root element and the end event for the docu-
ment.

MODIFYING THE PARSER TO GENERATE SAX EVENTS

A couple of items are noteworthy at this point:

» We haven't bothered to send the setDocumentLocator event, because that
isoptional. Were it important, that event would be sent immediately before
the startDocument event.

» We've generated an ignorableWhitespace event before the end of the
root element. This, too, isoptional, but it drastically improves the readabil -
ity of the output, as you'll see in a few moments. (In this case, the
whitespace consists of asingle newline, which is sent in the same way that
characters are sent to the characters method: as a character array, a start-
ing index, and alength.)

Now that SAX events are being generated for the document and the root element,
the next step isto modify the output method to generate the appropriate element
events for each data item. Make the following changes to do that:

void output(String name, String prefix, String Tine)
throws SAXException

{
int startIndex = prefix.length() + 2; // 2=length of ": "
String text = line.substring(startIndex);

System—outprintintrame+—"+" 4+ text)+

int textLength = Tine.length() - startIndex;
handler.ignorableWhitespace(indent.toCharArray(),
0, // start index
indent.length()
);
handler.startElement(nsu, name, name /*"qName"*/, atts);
handler.characters(1ine.toCharArray(Q,
startIndex,
textLength);
handler.endElement(nsu, name, name);

}

Because the ContentHandler methods can send SAXExceptions back to the
parser, the parser must be prepared to deal with them. In this case, we don’t
expect any, sowe'll ssimply alow the application to fail if any occur.

You then calculate the length of the data, again generating some ignorable
whitespace for readability. In this case, thereisonly one level of data, so we can
use a fixed-indent string. (If the data were more structured, we would have to
calculate how much space to indent, depending on the nesting of the data.)

281

282

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Note: The indent string makes no difference to the data but will make the output a
lot easier to read. When everything isworking, try generating the result without that
string! All the elements will wind up concatenated end to end:
<addressbook><n1ickname>Fred</nickname><email>...

Next, add the method that configures the parser with the ContentHandler that is
to receive the events it generates:

void output(String name, String prefix, String Tine)
throws SAXException
{

}

/**% Allow an application to register a content event handler. */
public void setContentHandler(ContentHandler handler) {
this.handler = handler;

}

/** Return the current content handler. */
public ContentHandler getContentHandler() {
return this.handler;

}

Severa other methods must be implemented in order to satisfy the Xm1Reader
interface. For the purpose of this exercise, we'll generate null methods for all of
them. For a production application, though, you may want to consider imple-
menting the error handler methods to produce a more robust app. For now, add
the following highlighted code to generate null methods for them:

/** Allow an application to register an error event handler. */
public void setErrorHandler(ErrorHandler handler)

i}

/** Return the current error handler. */
public ErrorHandler getErrorHandler()
{ return null; }

MODIFYING THE PARSER TO GENERATE SAX EVENTS 283

Then add the following highlighted code to generate null methods for the
remainder of the Xm1Reader interface. (Most of them are of valueto areal SAX
parser but have little bearing on a data-conversion application like this one.)

/** Parse an XML document from a system identifier (URI). */
public void parse(String systemId)

throws IOException, SAXException

{1}

/** Return the current DTD handler. */
public DTDHandler getDTDHandler()
{ return null; }

/** Return the current entity resolver. */
public EntityResolver getEntityResolver()
{ return null; }

/** Allow an application to register an entity resolver. */
public void setEntityResolver(EntityResolver resolver)

i}

/** Allow an application to register a DTD event handler. */
public void setDTDHandler(DTDHandler handler)
{1

/** Look up the value of a property. */
public Object getProperty(String name)
{ return null; }

/** Set the value of a property. */
public void setProperty(String name, Object value)

{1

/** Set the state of a feature. */
public void setFeature(String name, boolean value)

i}

/** Look up the value of a feature. */
public boolean getFeature(String name)
{ return false; }

Congratulations! You now have a parser you can use to generate SAX events. In
the next section, you'll use it to construct a SAX source object that will let you
transform the datainto XML.

284

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Using the Parser as a SAXSource

Given aSAX parser to use as an event source, you can (easily!) construct atrans-
former to produce a result. In this section, you'll modify the TransformerApp
you've been working with to produce a stream output result, although you could
just as easily produce a DOM result.

Note: The code discussed in this section is in TransformationApp04.java. The
results of running it arein TransformationLog04. txt.

Make sure that you put the AddressBookReader aside and open the Transfor-
mationApp. The work you do in this section affects the TransformationApp!
(They look similar, so it's easy to start working on the wrong one.)

Start by making the following changes to import the classes you’ll need to con-
struct a SAXSource object. (You won't need the DOM classes at this point, so
they are discarded here, athough leaving them in doesn’'t do any harm.)

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.ContentHandler;

import org.xml.sax.InputSource;
import—erg-w3c-dom-Document;
impert—oerg-w3c-dom-DOMExceptions
import—Javax—xmi—transform-dom-DOMSource;—
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.stream.StreamResult;

Next, remove afew other holdovers from our DOM-processing days, and add the
code to create an instance of the AddressBookReader:

public class TransformationApp

{
AA—Glebalvalueso—it-can-be ref'd by the tree—adapter
staticDocumentdocument;—

public static void main(String argv[])

../examples/jaxp/xslt/samples/TransformationApp04.java
../examples/jaxp/xslt/samples/TransformationLog04.txt

USING THE PARSER AS A SAXSOURCE

// Create the sax "parser".
AddressBookReader saxReader = new AddressBookReader();

try {
File f = new File(Cargv[0]);
! Builderbuild

Guess what—you're almost finished. Just a couple of steps to go. Add the fol-
lowing highlighted code to construct a SAXSource object:

// Use a Transformer for output
Transformer transformer = tFactory.newTransformer();

// Use the parser as a SAX source for -input

FileReader fr = new FileReader(f);

BufferedReader br = new BufferedReader(fr);

InputSource inputSource = new InputSource(br);

SAXSource source = new SAXSource(saxReader, inputSource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you construct a buffered reader (as mentioned earlier) and encapsulateit in
an input source object. You then create a SAXSource object, passing it the reader
and the InputSource object, and pass that to the transformer.

When the application runs, the transformer configures itself as the Con-
tentHandler for the SAX parser (the AddressBookReader) and tells the parser
to operate on the inputSource object. Events generated by the parser then go to
the transformer, which does the appropriate thing and passes the data on to the
result object.

Finally, remove the exceptions you no longer need to worry about, because the
TransformationApp no longer generates them:

286 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

} catch (IOException ioe) {

You're finished! You have now created a transformer that uses a SAXSource as
input and produces a StreamResult as output.

Doing the Conversion

Now run the application on the address book file. Your output should look like
this:

<?xm1 version="1.0" encoding="UTF-8"7>

<addressbook>
<nickname>Fred</nickname>
<email>fred@barneys.house</email>
<htm1>TRUE</htm1>
<firstname>Fred</firstname>
<lastname>Flintstone</lastname>
<work>999-Quarry</work>
<home>999-BedrockLane</home>
<fax>888-Squawk</fax>
<pager>777-pager</pager>
<cel1>555-cell</cell>

</addressbook>

You have now successfully converted an existing data structure to XML. And it
wasn't even very hard. Congratulations!

TRANSFORMING XML DATAWITH XSLT 287

Transforming XML Data with XSLT

The Extensible Stylesheet Language Transformations (XSLT) APIs can be used
for many purposes. For example, with a sufficiently intelligent stylesheet, you
could generate PDF or PostScript output from the XML data. But generally,
XSLT is used to generate formatted HTML output, or to create an alternative
XML representation of the data.

In this section, you'll use an XSLT transform to translate XML input data to
HTML output.

Note: The XSLT specification islarge and complex, so thistutorial can only scratch
the surface. It will give you enough background to get started so that you can under-
take simple XSLT processing tasks. It should also give you a head start when you
investigate XSLT further. For amore thorough grounding, consult a good reference
manual, such as Michael Kay’s XSLT: Programmer's Reference (Wrox, 2001).

Defining a Simple <article> Document
Type
We'll start by defining avery simple document type that can be used for writing
articles. Our <article> documents will contain these structure tags:

e <TITLE>: Thetitle of thearticle

» <SECT>: A section, consisting of a heading and a body

* <PARA>: A paragraph

o <LIST>:Alist

e <ITEM>: Anentryinalist

* <NOTE>: An aside, that is offset from the main text
The dlightly unusual aspect of this structure is that we won't create a separate
element tag for a section heading. Such elements are commonly created to dis-

tinguish the heading text (and any tags it contains) from the body of the section
(that is, any structure elements underneath the heading).

Instead, we'll allow the heading to merge seamlessly into the body of a section.
That arrangement adds some complexity to the stylesheet, but it will give us a
chance to explore XSLT's template-selection mechanisms. It also matches our
intuitive expectations about document structure, where the text of a heading is

288

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

followed directly by structure elements, an arrangement that can ssimplify out-

line-oriented editing.

Note: Thiskind of structure is not easily validated, because XML'’s mixed-content
model allowstext anywherein a section, whereaswe want to confinetext and inline
elements so that they appear only before the first structure element in the body of
the section. The assertion-based validator (Schematron, page 1392) can do it, but
most other schema mechanisms can’'t. So we'll dispense with defining a DTD for
the document type.

In this structure, sections can be nested. The depth of the nesting will determine
what kind of HTML formatting to use for the section heading (for example, h1 or
h2). Using a plain SECT tag (instead of numbered sections) is also useful with
outline-oriented editing, because it lets you move sections around at will without
having to worry about changing the numbering for any of the affected sections.

For lists, we'll use a type attribute to specify whether the list entries are unor-
dered (bulleted), alpha (enumerated with lowercase |etters), ALPHA (enumerated

with uppercase letters), or numbered.
We'll also alow for someinline tags that change the appearance of the text:

e :Bold

e <I>: Italics

* <U>: Underline

e <DEF>: Definition

e <LINK>:LinktoaURL

Note: An inlinetag does not generate a line break, so a style change caused by an
inline tag does not affect the flow of text on the page (although it will affect the
appearance of that text). A structure tag, on the other hand, demarcates a new seg-
ment of text, so at aminimum it always generates a line break in addition to other

format changes.

The <DEF> tag will be used for terms that are defined in the text. Such terms will
be displayed in italics, the way they ordinarily are in a document. But using a
special tag in the XML will allow an index program to find such definitions and
add them to an index, along with keywords in headings. In the preceding Note,
for example, the definitions of inline tags and structure tags could have been
marked with <DEF> tags for future indexing.

CREATING A TEST DOCUMENT 289

Finally, the LINK tag serves two purposes. First, it will let us create alink to a
URL without having to put the URL in twice; so we can code
<link>http//...</1ink> instead of http//....
Of course, we'll also want to alow a form that looks like <1ink tar-
get="...">...name...</1ink>. That |leadsto the second reason for the <1ink>
tag. It will give us an opportunity to play with conditional expressionsin XSLT.

Note: Although the article structure is exceedingly simple (consisting of only 11
tags), it raises enough interesting problemsto give us agood view of XSLT's basic
capabilities. But we'll still leave large areas of the specification untouched. In What
Else Can XSLT Do? (page 309), we'll point out the major features we skipped.

Creating a Test Document

Here, you'll create a simple test document using nested <SECT> elements, a few
<PARA> elements, a <NOTE> element, a <LINK>, and a <LIST type="unor-
dered">. Theideaisto create a document with one of everything so that we can
explore the more interesting translation mechanisms.

Note: The sample data described here is contained in articlel.xml. (The brows-
ableversionisarticlel-xml.html.)

To make the test document, create a file called article.xml1 and enter the fol-
lowing XML data.

<?xml version="1.0"7>
<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section
<PARA>This section will introduce a subsection.</PARA>
<SECT>The Subsection Heading
<PARA>This 1is the text of the subsection.
</PARA>
</SECT>
</SECT>
</ARTICLE>

Note that in the XML file, the subsection is totally contained within the major
section. (In HTML, on the other hand, headings do not contain the body of a sec-

../examples/jaxp/xslt/samples/article1.xml
../examples/jaxp/xslt/samples/article1-xml.html

290

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

tion.) The result is an outline structure that is harder to edit in plain-text form,
likethis, but is much easier to edit with an outline-oriented editor.

Someday, given a tree-oriented XML editor that understands inline tags such as
 and <I>, it should be possible to edit an article of this kind in outline form,
without requiring a complicated stylesheet. (Such an editor would allow the
writer to focus on the structure of the article, leaving layout until much later in
the process.) In such an editor, the article fragment would look something like
this:

<ARTICLE>
<TITLE>A Sample Article
<SECT>The First Major Section
<PARA>This section will introduce a subsection.
<SECT>The Subheading
<PARA>This is the text of the subsection. Note that ...

Note: At the moment, tree-structured editors exist, but they treat inline tags such as
 and <I> in the same way that they treat structure tags, and that can make the
“outling” abit difficult to read.

Writing an XSLT Transform

Now it's time to begin writing an XSLT transform that will convert the XML
articleand render itin HTML.

Note: The transform described in this section is contained in articlela.xs1. (The
browsable versionisarticlela-xs1.html.)

Start by creating anormal XML document:

<?xml version="1.0" encoding="IS0-8859-1"7>

../examples/jaxp/xslt/samples/article1a.xsl
../examples/jaxp/xslt/samples/article1a-xsl.html

PROCESSING THE BASIC STRUCTURE ELEMENTS 291

Then add the following highlighted linesto create an XSL stylesheet:

<?xml version="1.0" encoding="IS0-8859-1"7>
<xs1:stylesheet
xmIns:xs1="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"
>

</xs1:stylesheet>
Now set it up to produce HTML-compatible output:
<xs1:stylesheet
>

<xs1:output method="html"/>

</xs1:stylesheet>

WEe'll get into the detailed reasons for that entry later in this section. For now,
note that if you want to output anything other than well-formed XML, then
you'll need an <xs1:output> tag like the one shown, specifying either text or
htm1. (The default valueis xm1.)

Note: When you specify XML output, you can add the indent attribute to produce
nicely indented XML output. The specification looks like this:
<xs1:output method="xml" indent="yes"/>.

Processing the Basic Structure Elements

You'll start filling in the stylesheet by processing the elements that go into creat-
ing atable of contents: the root element, the title element, and headings. You'll
also process the PARA element defined in the test document.

Note: If onfirst reading you skipped the section that discussesthe X Path addressing
mechanisms, How XPath Works (page 255), now is a good time to go back and
review that section.

292 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Begin by adding the main instruction that processes the root element:

<xs1:template match="/">
<htm1><body>
<xs1:apply-templates/>
</body></htm1>
</xs1:template>

</xs1:stylesheet>

The new XSL commands are shown in bold. (Note that they are defined in the
xs1 namespace.) The instruction <xs1:apply-templates> processes the chil-
dren of the current node. In this case, the current node is the root node.

Degspite its simplicity, this example illustrates a number of important ideas, so
it's worth understanding thoroughly. The first concept is that a stylesheet con-
tains a number of templates, defined with the <xs1:template> tag. Each tem-
plate contains a match attribute, which uses the XPath addressing mechanisms
described in How XPath Works (page 255) to select the elements that the tem-
plate will be applied to.

Within the template, tags that do not start with the xs1: namespace prefix are
simply copied. The newlines and whitespace that follow them are also copied,
and that helps to make the resulting output readable.

Note: When a newline is not present, whitespace is generally ignored. To include
whitespace in the output in such cases, or to include other text, you can use the
<xs1:text> tag. Basically, an XSLT stylesheet expects to process tags. So every-
thing it sees needs to be either an <xs1: . .> tag, some other tag, or whitespace.

In this case, the non-XSL tags are HTML tags. So when the root tag is matched,
XSLT outputs the HTML start tags, processes any templates that apply to chil-
dren of the root, and then outputs the HTML end tags.

Process the <TITLE> Element

Next, add atemplate to process the articletitle:

<xs1:template match="/ARTICLE/TITLE">
<hl align="center"> <xs1:apply-templates/> </hl>
</xs1:template>

</xs1:stylesheet>

PROCESSING THE BASIC STRUCTURE ELEMENTS

In this case, you specify a complete path to the TITLE element and output some
HTML to makethetext of thetitleinto alarge, centered heading. In this case, the
apply-templates tag ensures that if the title contains any inline tags such as
italics, links, or underlining, they also will be processed.

More importantly, the app1y-templates instruction causes the text of thetitle to
be processed. Like the DOM data model, the XSLT data model is based on the
concept of text nodes contained in element nodes (which, in turn, can be con-
tained in other element nodes, and so on). That hierarchical structure constitutes
the source tree. Thereis also aresult tree, which contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the
result of XSLT operations, it is helpful to understand the structure of those trees,
and their contents. (For more on this subject, see The XSLT/XPath Data
Model, page 256.)

Process Headings

To continue processing the basic structure elements, add a template to process
the top-level headings:

<xs1:template match="/ARTICLE/SECT">
<h2> <xs1:apply-templates
select="text() |B|I|U|DEF|LINK"/> </h2>
<xs1:apply-templates select="SECT|PARA|LIST|NOTE"/>
</xs1:template>

</xs1:stylesheet>

Here, you specify the path to the topmost sect elements. But thistime, you apply
templates in two stages using the select attribute. For the first stage, you select
text nodes, aswell asinline tags such as bold and italics, using the X Path text ()
function. (The vertical pipe (]) is used to match multiple items: text or a bold tag
or an italics tag, etc.) In the second stage, you select the other structure elements
contained in the file, for sections, paragraphs, lists, and notes.

Using the select attribute lets you put the text and inline elements between the
<h2>...</h2> tags, while making sure that all the structure tags in the section
are processed afterward. In other words, you make sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, a dis-
tinction that is important for HTML output.

293

294

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

In general, using the select clause letsyou apply all templatesto a subset of the
information available in the current context. As another example, this template
selects al attributes of the current node:

<xs1:apply-templates select="0@*"/></attributes>

Next, add the virtualy identical template to process subheadings that are nested
one level deeper:

<xs1:template match="/ARTICLE/SECT/SECT">
<h3> <xsl:apply-templates
select="text() |B|I|U|DEF|LINK"/> </h3>
<xs1:apply-templates select="SECT|PARA|LIST|NOTE"/>
</xs1:template>

</xs1:stylesheet>

Generate a Runtime Message

You could add templates for deeper headings, too, but at some point you must
stop, if only because HTML goes down only to five levels. For this example,
you'll stop at two levels of section headings. But if the XML input happens to
contain athird level, you'll want to deliver an error message to the user. This sec-
tion shows you how to do that.

Note: We could continue processing SECT elementsthat are further down, by select-
ing them with the expression /SECT/SECT//SECT. The // selectsany SECT elements,
at any depth, as defined by the X Path addressing mechanism. But instead we' |l take
the opportunity to play with messaging.

Add the following template to generate an error when a section is encountered
that is nested too deep:

<xs1:template match="/ARTICLE/SECT/SECT/SECT">
<xs1:message terminate="yes">
Error: Sections can only be nested 2 deep.
</xs1:message>
</xs1:template>

</xs1:stylesheet>

WRITING THE BASIC PROGRAM 295

The terminate="yes" clause causes the transformation process to stop after the
message is generated. Without it, processing could still go on, with everything in
that section being ignored.

As an additional exercise, you could expand the stylesheet to handle sections
nested up to four sections deep, generating <h2>. . . <h5> tags. Generate an error
on any section nested five levels deep.

Finally, finish the stylesheet by adding a template to process the PARA tag:
<xs1:template match="PARA">
<p><xsl1:apply-templates/></p>
</xs1:template>

</xs1:stylesheet>

Writing the Basic Program

Now you'll modify the program that uses XSLT to echo an XML file unchanged,
changing it so that it uses your stylesheet.

Note: The code shown in this section is contained in Stylizer.java. Theresult is
stylizerla.html. (The browser-displayable version of the HTML source is
stylizerla-src.html.)

Start by copying TransformationApp02, which parses an XML file and writes
to System.out. Saveit asStylizer.java.

Next, modify occurrences of the class hame and the usage section of the pro-
gram:

public class FransformationAppStylizer
{
if (argv.length = 1 2) {
System.err.printin (

"Usage: java Stylizer stylesheet xmlfile");
System.exit (1);
}

../examples/jaxp/xslt/samples/Stylizer.java
../examples/jaxp/xslt/samples/stylizer1a.html
../examples/jaxp/xslt/samples/stylizer1a-src.html

296 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Then modify the program to use the stylesheet when creating the Transformer
object.

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

public class Stylizer

{

public static void main (String argv[])

{
try {
File stylesheet = new File(argv[0]);
File datafile = new File(argv[1l]);

DocumentBuilder builder =
factory.newDocumentBuilder();
document = builder.parse(f datafile);

StreamSource stylesource =
new StreamSource(stylesheet);
Transformer transformer =
Factory.newTransformer(stylesource);

This code uses the file to create a StreamSource object and then passes the
source object to the factory classto get the transformer.

Note: You can simplify the code somewhat by eliminating the boMSource class.
Instead of creating a DOMSource object for the XML file, create a StreamSource
object for it, aswell asfor the stylesheet.

Now compile and run the program using articlela.xs1 to transform
articlel.xml. The results should look like this:

<html>
<body>

<hl align="center">A Sample Article</h1l>

TRIMMING THE WHITESPACE

<h2>The First Major Section

</h2>
<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading

</h3>
<p>This is the text of the subsection.

</p>

</body>
</html>

At this point, there is quite a bit of excess whitespace in the output. In the next
section, you'll see how to eliminate most of it.

Trimming the Whitespace

Recall that when you look at the structure of a DOM, there are many text nodes
that contain nothing but ignorable whitespace. Most of the excess whitespace in
the output comes from these nodes. Fortunately, XSL gives you a way to elimi-
nate them. (For more about the node structure, see The XSLT/XPath Data
Model, page 256.)

Note: The stylesheet described here is articlelb.xs1. The result is
stylizerlb.html. (The browser-displayable versions are articlelb-xs1.html
and stylizerlb-src.html.)

To remove some of the excess whitespace, add the following highlighted line to
the stylesheet.

<xsTl:stylesheet ...
>
<xs1:output method="html"/>
<xs1:strip-space elements="SECT"/>

This instruction tells XSL to remove any text nodes under SECT elements that
contain nothing but whitespace. Nodes that contain text other than whitespace
will not be affected, nor will other kinds of nodes.

297

../examples/jaxp/xslt/samples/article1b.xsl
../examples/jaxp/xslt/samples/stylizer1b.html
../examples/jaxp/xslt/samples/article1b-xsl.html
../examples/jaxp/xslt/samples/stylizer1b-src.html

298

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Now, when you run the program the result looks like this:

<html>
<body>

<hl align="center">A Sample Article</hl>

<h2>The First Major Section
</h2>
<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading
</h3>
<p>This is the text of the subsection.
</p>

</body>
</htm1>

That's quite an improvement. There are till newline characters and whitespace
after the headings, but those come from the way the XML is written:

<SECT>The First Major Section
__ <PARA>This section will introduce a subsection.</PARA>
AAAA

Here, you can see that the section heading ends with a newline and indentation
space, before the PARA entry starts. That's not a big worry, because the browsers
that will process the HTML compress and ignore the excess space routinely. But
there is till one more formatting tool at our disposal.

Note: The stylesheet described here is articlelc.xs1. The result is
stylizerlc.html. (The browser-displayable versions are articlelc-xs1.html
and stylizerlc-src.html.)

To get rid of that last little bit of whitespace, add this template to the stylesheet:

<xs1:template match="text(Q">
<xs1:value-of select="normalize-space(Q)'"/>
</xs1:template>

</xs1:stylesheet>

../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/stylizer1c.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/stylizer1c-src.html

TRIMMING THE WHITESPACE

The output now looks like this:

<html>

<body>

<hl align="center">A Sample Article</h1l>

<h2>The First Major Section</h2>

<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading</h3>

<p>This is the text of the subsection.</p>
</body>

</html>

That is quite abit better. Of course, it would be nicer if it were indented, but that
turns out to be somewhat harder than expected. Here are some possible avenues
of attack, along with the difficulties:

Indent option
Unfortunately, the indent="yes" option that can be applied to XML output
is not available for HTML output. Even if that option were available, it
wouldn’t help, because HTML elements are rarely nested! Although HTML
source is frequently indented to show the implied structure, the HTML tags
themselves are not nested in away that creates areal structure.

Indent variables

The <xs1:text> function lets you add any text you want, including
whitespace. So it could conceivably be used to output indentation space. The
problem is to vary the amount of indentation space. XSLT variables seem
like a good idea, but they don't work here. The reason is that when you
assign avalueto avariable in atemplate, the value is known only within that
template (statically, at compile time). Even if the variable is defined globally,
the assigned value is not stored in away that letsit be dynamically known by
other templates at runtime. When <apply-templates/> invokes other tem-
plates, those templates are unaware of any variable settings made elsewhere.

Parameterized templates
Using a parameterized template is another way to modify a template’s
behavior. But determining the amount of indentation space to pass as the
parameter remains the crux of the problem.

At the moment, then, there does not appear to be any good way to control the
indentation of HTML formatted output. That would be inconvenient if you
needed to display or edit the HTML as plain text. But it's not a problem if you do
your editing on the XML form, using the HTML version only for display in a
browser. (When you view stylizerlc.html, for example, you see the results
you expect.)

299

300

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Processing the Remaining Structure
Elements

In this section, you'll process the LIST and NOTE elements, which add more
structure to an article.

Note: The sample document described in this section is article2.xm1, and the
stylesheet used to manipulate it is article2.xs1. Theresult is stylizer2.html.
(The browser-displayable versions are article2-xml.html, article2-xs1.html,
and stylizer2-src.html.)

Start by adding some test data to the sample document:

<?xml version="1.0"7>
<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section
</SECT>
<SECT>The Second Major Section
<PARA>This section adds a LIST and a NOTE.
<PARA>Here is the LIST:
<LIST type="ordered">
<ITEM>Pears</ITEM>
<ITEM>Grapes</ITEM>
</LIST>
</PARA>
<PARA>And here is the NOTE:
<NOTE>Don't forget to go to the hardware store
on your way to the grocery!
</NOTE>
</PARA>
</SECT>
</ARTICLE>

Note: Although the list and note in the XML file are contained in their respective
paragraphs, it really makes no difference whether they are contained or not; the gen-
erated HTML will be the same either way. But having them contained will make
them easier to deal with in an outline-oriented editor.

../examples/jaxp/xslt/samples/article2.xml
../examples/jaxp/xslt/samples/article2.xsl
../examples/jaxp/xslt/samples/stylizer2.html
../examples/jaxp/xslt/samples/article2-xml.html
../examples/jaxp/xslt/samples/article2-xsl.html
../examples/jaxp/xslt/samples/stylizer2-src.html

PROCESSING THE REMAINING STRUCTURE ELEMENTS

Modify <PARA> Handling

Next, modify the PARA template to account for the fact that we are now allowing
some of the structure elements to be embedded with a paragraph:

<xsT:tempTlate match="PARA">

<p><xstapphyr—templates/></p>
<p> <xsl:apply-templates select="text() |B|I|U|DEF|LINK"/>
</p>
<xs1:apply-templates select=""PARA|LIST|NOTE"/>
</xsT1:template>

This modification uses the same technique you used for section headings. The
only differenceisthat SECT elements are not expected within a paragraph. (How-
ever, a paragraph could easily exist inside another paragraph—for example, as
guoted material.)

Process <LIST> and <ITEM> Elements

Now you're ready to add a template to process LIST elements:

<xs1:template match="LIST">
<xs1:if test="@type="'ordered'">
<ol1>
<xs1:apply-templates/>

</xs1:if>
<xs1:if test="@type='unordered'">

<xs1:apply-templates/>

</xs1:1if>
</xs1:template>

</xs1:stylesheet>

The <xs1:1f> tag uses the test=""" attribute to specify a Boolean condition. In
this case, the value of the type attribute is tested, and the list that is generated
changes depending on whether the value is ordered or unordered.

Note two important things in this example:

» Thereisnoelse clause, noristhereareturn or exit statement, soit takes
two <xs1:1if> tags to cover the two options. (Or the <xs1:choose> tag
could have been used, which provides case-statement functionality.)

301

302

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

» Single quotes are required around the attribute values. Otherwise, the
XSLT processor attempts to interpret the word ordered as an X Path func-
tion instead of as a string.

Now finish LIST processing by handling ITEM elements:

<xs1:template match="ITEM">
<xs1:apply-templates/>
</T11i>

</xs1:template>

</xs1:stylesheet>

Ordering Templates in a Stylesheet

By now, you should have the idea that templates are independent of one ancther,
so it doesn’t generaly matter where they occur in afile. So from this point on,
we'll show only the template you need to add. (For the sake of comparison,
they're always added at the end of the exampl e stylesheet.)

Order does make a difference when two templates can apply to the same node. In
that case, the one that is defined last is the one that is found and processed. For
example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify a template pattern that looks like this: //LIST//LIST. In that
template, you would use the HTML option to generate an alphabetic enumera-
tion, instead of a numeric one.

But such an element could a'so be identified by the pattern //LIST. To make sure
that the proper processing is done, the template that specifies //LIST would have
to appear before the template that specifies //LIST//LIST.

Process <NOTE> Elements

The last remaining structure element is the NOTE element. Add the following
template to handle that.

<xs1:template match=""NOTE">
<blockquote>Note:

<xs1:apply-templates/>
</p></blockquote>
</xs1:template>

</xs1:stylesheet>

PROCESSING THE REMAINING STRUCTURE ELEMENTS

This code brings up an interesting issue that results from the inclusion of the

 tag. For the file to be well-formed XML, the tag must be specified in the
stylesheet as
, but that tag is not recognized by many browsers. And
although most browsers recogni ze the sequence
</br>, they al treat it like a
paragraph break instead of asingle line break.

In other words, the transformation must generate a
 tag, but the stylesheet
must specify
. That brings us to the major reason for that special output tag
we added early in the stylesheet:

<xsl:stylesheet ... >
<xs1:output method="html"/>

</xs1:stylesheet>

That output specification converts empty tags such as
 to their HTML
form,
, on output. That conversion is important, because most browsers do
not recognize the empty tags. Hereisalist of the affected tags.

area frame isindex
base hr Tink
basefont 1img meta

br input param
col

To summarize, by default XSLT produces well-formed XML on output. And
because an XSL stylesheet is well-formed XML to start with, you cannot easily
put atag such as
 in the middle of it. The <xs1:output method="htm1"/>
tag solves the problem so that you can code
 in the stylesheet but get

in the output.

The other major reason for specifying <xs1:output method="htm1"/> isthat,
as with the specification <xs1:output method="text"/>, generated text is not
escaped. For example, if the stylesheet includes the &1t ; entity reference, it will
appear as the < character in the generated text. When XML is generated, on the
other hand, the &1t ; entity reference in the stylesheet would be unchanged, so it
would appear as&1t; in the generated text.

Note: If you actually want &1t ; to be generated as part of the HTML output, you'll
need to encode it as &1t;. That sequence becomes &1t; on output, because
only the & is converted to an & character.

303

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Run the Program

Hereisthe HTML that is generated for the second section when you run the pro-
gram now:

<h2>The Second Major Section</h2>

<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

<o1>

<1i>Pears</1i>

<1i>Grapes</1i>

</o1>

<p>And here is the NOTE:</p>

<blockquote>

Note:

Don't forget to go to the hardware store on your way to the
grocery!

</bTockquote>

Process Inline (Content) Elements

The only remaining tags in the ARTICLE type are the inline tags—the ones that
don’t create a line break in the output, but instead are integrated into the stream
of text they are part of.

Inline elements are different from structure elements in that inline elements are
part of the content of atag. If you think of an element as a hode in a document
tree, then each node has both content and structure. The content is composed of
the text and inline tags it contains. The structure consists of the other elements
(structure elements) under the tag.

Note: The sample document described in this section is article3.xml1, and the
stylesheet used to manipulate it is article3.xs1. The result is stylizer3.html.
(The browser-displayable versions are article3-xml1.html, article3-xs1.html,
and stylizer3-src.html.)

Start by adding one more bit of test data to the sample document:

<?xml version="1.0"7>

<ARTICLE>
<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

../examples/jaxp/xslt/samples/article3.xml
../examples/jaxp/xslt/samples/article3.xsl
../examples/jaxp/xslt/samples/stylizer3.html
../examples/jaxp/xslt/samples/article3-xml.html
../examples/jaxp/xslt/samples/article3-xsl.html
../examples/jaxp/xslt/samples/stylizer3-src.html

PROCESS INLINE (CONTENT) ELEMENTS 305

</SECT>
<SECT>The Second Major Section
</SECT>
<SECT>The <I>Third</I> Major Section
<PARA>In addition to the inline tag in the heading,
this section defines the term <DEF>inline</DEF>,
which 1iterally means "no 1line break". It also
adds a simple Tink to the main page for the Java
platform (<LINK>http://java.sun.com</LINK>),
as well as a 1ink to the
<LINK target="http://java.sun.com/xml">XML</LINK>
page.
</PARA>
</SECT>
</ARTICLE>

Now process the inline <DEF> elements in paragraphs, renaming them to HTML
italics tags:

<xs1:template match="DEF'">
<i> <xsl:apply-templates/> </1i>
</xs1:template>

Next, comment out the text-node normalization. It has served its purpose, and
now you're to the point that you need to preserve important spaces.

<!l--
<xs1:template match="text()">
<xs1:value-of select="normalize-space()"/>
</xs1:template>
-—>

This modification keeps us from losing spaces before tags such as <I> and
<DEF>. (Try the program without this modification to see the result.)

Now process basic inline HTML elements such as , <I>, and <U> for bold,
italics, and underlining.

<xs1:template match="B|I|U">
<xs1:element name="{name()}">
<xs1:apply-templates/>
</xs1:element>
</xs1:template>

306

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

The <xs1:element> tag lets you compute the element you want to generate.
Here, you generate the appropriate inline tag using the name of the current ele-
ment. In particular, note the use of curly braces ({}) in the name=".." expres-
sion. Those curly braces cause the text inside the quotes to be processed as an
XPath expression instead of being interpreted as aliteral string. Here, they cause
the XPath name () function to return the name of the current node.

Curly braces are recognized anywhere that an attribute value template can occur.
(Attribute value templates are defined in section 7.6.2 of the XSLT specification,
and they appear several places in the template definitions.). In such expressions,
curly braces can also be used to refer to the value of an attribute, {@foo}, or to
the content of an element {foo}.

Note: You can also generate attributes using <xs1:attribute>. For moreinforma-
tion, see section 7.1.3 of the XSLT Specification.

The last remaining element is the LINK tag. The easiest way to process that tag
will beto set up a named template that we can drive with a parameter:

<xs1:template name="htmLink">
<xs1:param name="dest" select="UNDEFINED"/>
<xs1:element name="a">
<xs1:attribute name="href">
<xs1:value-of select="$dest'"/>
</xs1:attribute>
<xs1:apply-templates/>
</xs1:element>
</xs1:template>

The major difference in this template is that, instead of specifying a match
clause, you give the template a name using the name="" clause. So this template
gets executed only when you invokeit.

Within the template, you also specify a parameter named dest using the
<xs1:param> tag. For a bit of error checking, you use the select clauseto give
that parameter a default value of UNDEFINED. To reference the variable in the
<xs1:value-of> tag, you specify $dest.

Note: Recall that an entry in quotesis interpreted as an expression unlessit is fur-
ther enclosed in single quotes. That's why the single quotes were needed earlier in
"@type="ordered"'"—t0 make sure that ordered was interpreted as a string.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

PROCESS INLINE (CONTENT) ELEMENTS

The <xs1:element> tag generates an element. Previoudly, you have been able to
simply specify the element we want by coding something like <htm1>. But here
you are dynamically generating the content of the HTML anchor (<a>) in the
body of the <xs1:element> tag. And you are dynamically generating the href
attribute of the anchor using the <xs1:attribute> tag.

The last important part of the template is the <apply-templates> tag, which
inserts the text from the text node under the LINK element. Without it, there
would be no text in the generated HTML link.

Next, add the template for the LINK tag, and call the named template from within
it:

<xs1:template match="LINK">
<xs1:if test="@target'">
<!--Target attribute specified.-->
<xsl:call-template name="htmLink'">
<xs1:with-param name="dest" select="@target"/>
</xs1:call-template>
</xs1:if>
</xs1:template>

<xsT:template name="htmLink">

The test="@target" clause returns true if the target attribute exists in the
LINK tag. So this <xs1-1if> tag generates HTML links when the text of the link
and the target defined for it are different.

The <xsl:call-template> tag invokes the named template, whereas
<xs1:with-param> specifies a parameter using the name clause and specifies its
value using the select clause.

Asthevery last step in the stylesheet construction process, add the <xs1-1f> tag
to process LINK tagsthat do not have a target attribute.

<xsT:tempTlate match="LINK">
<xs1:if test="@target">

</xs1:if>

<xs1:if test="not(@target)'>
<xs1:call-template name="htmLink'">
<xs1:with-param name="dest">
<xs1:apply-templates/>

307

308

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

</xs1:with-param>
</xs1:call-template>
</xsl:if>
</xsT1:template>

The not(...) clause inverts the previous test (remember, there is no else
clause). So this part of the template is interpreted when the target attribute is
not specified. This time, the parameter value comes not from a select clause,
but from the contents of the <xs1:with-param> €lement.

Note: Just to make it explicit: Parameters and variables (which are discussed in a
few moments in What Else Can XSLT Do? (page 309) can have their value speci-
fied either by aselect clause, which lets you use X Path expressions, or by the con-
tent of the element, which lets you use XSLT tags.

In this case, the content of the parameter is generated by the <xs1:apply-tem-
plates/> tag, which inserts the contents of the text node under the LINK ele-
ment.

Run the Program

When you run the program now, the results should ook something like this:

<h2>The <I>Third</I> Major Section
</h2>

<p>In addition to the inline tag in the heading, this section
defines the term <i>inline</i>, which Titerally means
"no Tine break". It also adds a simple Tink to the
main page for the Java platform (<a href="http://java.
sun.com">http://java.sun.com),
as well as a 1link to the
XML page.

</p>

Good work! You have now converted a rather complex XML fileto HTML. (As
simple asit appears at first, it certainly provides a lot of opportunity for explora-
tion.)

PRINTING THE HTML

Printing the HTML

You have now converted an XML fileto HTML. One day, someone will produce
an HTML-aware printing engine that you'll be able to find and use through the
Java Printing Service API. At that point, you'll have ability to print an arbitrary
XML file by generating HTML. All you'll have to do isto set up a stylesheet and
use your browser.

What Else Can XSLT Do?

As lengthy as this section has been, it has only scratched the surface of XSLT's
capabilities. Many additional possibilities await you in the XSLT specification.
Here are afew things to look for:

import (Section 2.6.2) and include (section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The
include statement simply inserts any definitions from the included file. The
import statement lets you override definitions in the imported file with defi-
nitionsin your own stylesheet.

for-each loops (section 8)
L oop over a collection of items and process each onein turn.

choose (case statement) for conditional processing (section 9.2)
Branch to one of multiple processing paths depending on an input value.

Generating numbers (section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric
literals. XSLT provides three numbering modes:

e Single: Numbers items under a single heading, like an ordered list in
HTML.

e Multiple: Produces multilevel numbering such as“A.1.3".

» Any: Consecutively numbersitemswherever they appear, aswith footnotes
in a chapter.

Formatting numbers (section 12.3)
Control enumeration formatting so that you get numerics (format="1"),
uppercase alphabetics (format="A"), lowercase aphabetics (format="a"),
or compound numbers, like “A.1,” as well as numbers and currency amounts
suited for a specific international locale.

Sorting output (section 10)
Produce output in adesired sorting order.

309

http://www.w3.org/TR/xslt

310

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Mode-based templates (section 5.7)
Process an element multiple times, each time in a different “mode.” You add
a mode attribute to templates and then specify <apply-templates
mode="..."> to apply only the templates with a matching mode. Combine
with the <apply-templates select="..."> attribute to apply mode-based
processing to a subset of the input data.

Variables (section 11)
Variables are something like method parameters, in that they let you control
atemplate's behavior. But they are not as valuable as you might think. The
value of avariable is known only within the scope of the current template or
<xs1:if> tag (for example) in which it is defined. You can't pass a value
from one template to ancther, or even from an enclosed part of atemplate to
another part of the same template.

These statements are true even for a “global” variable. You can change its
value in atemplate, but the change applies only to that template. And when
the expression used to define the global variable is evaluated, that evaluation
takes place in the context of the structure’s root node. In other words, global
variables are essentially runtime constants. Those constants can be useful for
changing the behavior of atemplate, especially when coupled with include
and import statements. But variables are not a general-purpose data-man-
agement mechanism.

The Trouble with Variables

It is tempting to create a single template and set a variable for the destination of
the link, rather than go to the trouble of setting up a parameterized template and
calling it two different ways. The idea is to set the variable to a default value
(say, the text of the LINK tag) and then, if the target attribute exists, set the des-
tination variable to the value of the target attribute.

That would be agood idea—if it worked. But again, the issueisthat variables are
known only in the scope within which they are defined. So when you code an
<xs1:1if> tag to change the value of the variable, the value is known only within
the context of the <xs1:1f> tag. Once </xs1:1f> is encountered, any change to
the variable's setting is | ost.

A smilarly tempting idea is the possbility of replacing the
text() |B|I|U|DEF|LINK specification with a variable ($in1ine). But because
the value of the variable is determined by where it is defined, the value of aglo-
bal in1ine variable consists of text nodes, hodes, and so on, that happen to

TRANSFORMING FROM THE COMMAND LINE WITH XALAN 311

exist at theroot level. In other words, the value of such avariable, in thiscase, is
null.

Transforming from the Command Line
with Xalan

To run atransform from the command line, you initiate a Xalan Process class
using the following command:

java org.apache.xalan.xs1t.Process
-IN article3.xml -XSL article3.xs]

Note: Remember to use the endorsed directories mechanism to access the Xalan
libraries, as described in Compiling and Running the Program (page 134).

With this command, the output goesto System.out. The -OUT option can also be
used to output to afile.

The Process command also allows for avariety of other options. For details, see
http://xml.apache.org/xalan-j/commandline.html.

Concatenating Transformations with a
Filter Chain

It is sometimes useful to create afilter chain: a concatenation of XSLT transfor-
mations in which the output of one transformation becomes the input of the next.
This section shows you how to do that.

Writing the Program

Start by writing a program to do thefiltering. This example shows the full source
code, but to make things easier you can use one of the programs you've been
working on as abasis.

Note: The code described hereis contained in FilterChain.java.

http://xml.apache.org/xalan-j/commandline.html
../examples/jaxp/xslt/samples/FilterChain.java

312 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

The sample program includes the import statements that identify the package
locations for each class:

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;

import org.xml.sax.XMLFilter;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

The program also includes the standard error handlers you're used to. They're
listed here, al gathered together in one place:

}

catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.printin(" " + tce.getMessage());

// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)
X = tce.getException();

x.printStackTrace();

3

catch (TransformerException te) {
// Error generated by the parser
System.out.println ("* Transformation error");
System.out.printin(" " + te.getMessage());

WRITING THE PROGRAM

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)
X = te.getException();

x.printStackTrace();

3

catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

X = sxe.getException();

x.printStackTrace();

}

catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace(Q);

3

catch (IOException ioe) {
// I/0 error
ioe.printStackTrace();

}

Between the import statements and the error handling, the core of the program
consists of the following code.

public static void main (String argv[])
{
if (argv.length != 3) {
System.err.println (
"Usage: java FilterChain stylel style2 xmlfile");
System.exit (1);
}

try {
// Read the arguments
File stylesheetl = new File(argv[0]);
File stylesheet2 = new File(argv[1l]);
File datafile = new File(argv[2]);

// Set up the input stream

BufferedInputStream bis = new
BufferedInputStream(newFileInputStream(datafile));

InputSource input = new InputSource(bis);

// Set up to read the input file (see Note #1)
SAXParserFactory spf = SAXParserFactory.newInstance();

313

314

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

spf.setNamespaceAware(true);
SAXParser parser = spf.newSAXParser();
XMLReader reader = parser.getXMLReader();

// Create the filters (see Note #2)

SAXTransformerFactory stf =

(SAXTransformerFactory)
TransformerFactory.newInstance();

XMLFilter filterl = stf.newXMLFilter(
new StreamSource(stylesheetl));

XMLFilter filter2 = stf.newXMLFilter(
new StreamSource(stylesheet2));

// Wire the output of the reader to filterl (see Note #3)
// and the output of filterl to filter2
filterl.setParent(reader);

filter2.setParent(filterl);

// Set up the output stream
StreamResult result = new StreamResult(System.out);

// Set up the transformer to process the SAX events

generated

Notes:
1.

2.

// by the last filter in the chain
Transformer transformer = stf.newTransformer();
SAXSource transformSource = new SAXSource(
filter2, input);
transformer.transform(transformSource, result);
} catch (...) {

The Xalan transformation engine currently requires a namespace-aware
SAX parser.

Thisweird bit of code is explained by the fact that SAXTransformerFac-
tory extends TransformerFactory, adding methods to obtain filter
objects. The newInstance() method isastatic method (defined in Trans-
formerFactory), which (naturaly enough) returns a TransformerFac-
tory object. Inreality, though, it returnsa SAXTransformerFactory. Soto
get at the extra methods defined by SAXTransformerFactory, the return
value must be cast to the actual type.

. An XMLFiTter object isboth a SAX reader and aSAX content handler. As

aSAX reader, it generates SAX eventsto whatever object hasregistered to
receive them. As a content handler, it consumes SAX events generated by

UNDERSTANDING HOwW THE FILTER CHAIN WORKS

its “parent” object—which is, of necessity, a SAX reader aswell. (Calling
the event generator a“ parent” must make sense when looking at the inter-
nal architecture. From an external perspective, the name doesn’t appear to
be particularly fitting.) The fact that filters both generate and consume
SAX events allows them to be chained together.

Understanding How the Filter Chain
Works

The code listed earlier shows you how to set up the transformation. Figure 7-2
should help you understand what’s happening when it executes.

Transformer

P

Input
Source
p(i-s)

2
G P
filter 2

transform RES u "f

Legend
r = reader (generates SAX events)
¢ = content handler (consumes SAX events)
pli-s) = parse{inputSource) instruction

Figure 7-2 Operation of Chained Filters

When you create the transformer, you pass it a SAXSource object, which encap-
sulates a reader (in this case, filter2) and an input stream. You aso passit a
pointer to the result stream, where it directs its output. Figure 7—2 shows what
happens when you invoke transform() on the transformer. Here is an explana-
tion of the steps:

1. The transformer sets up an internal object as the content handler for
filter2 and tellsit to parse the input source.

2. filter2,inturn, setsitself up asthe content handler for filterl andtells
it to parse the input source.

315

316

EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

3. filterl, inturn, tellsthe parser object to parse the input source.
4. The parser does so, generating SAX events, which it passesto filterl.

5. filterl, acting in its capacity as a content handler, processes the events
and does its transformations. Then, acting in its capacity as a SAX reader
(XMLReader), it sends SAX eventsto filter2.

6. filter2 does the same, sending its events to the transformer’s content
handler, which generates the output stream.

Testing the Program

To try out the program, you'll create an XML file based on atiny fraction of the
XML DocBook format, and convert it to the ARTICLE format defined here. Then
you'll apply the ARTICLE stylesheet to generate an HTML version. (The DocBook
specification is large and complex. For other simplified formats, see Further
Information, page 318.)

Note: This example processes small-docbook-article.xml USing docbookToAr-
ticle.xs1 and articlelc.xs1. Theresult is filterout.html (The browser-dis-
playable versions are small-docbook-article-xml.html, docbookToArticle-
xs1.htm1, articlelc-xs1.html, and filterout-src.html.)

Start by creating a small article that uses a minute subset of the XML DocBook
format:

<?xml version="1.0"7>
<Article>
<ArtHeader>
<Title>Title of my (Docbook) article</Title>
</ArtHeader>
<Sectl>
<Title>Title of Section 1l.</Title>
<Para>This is a paragraph.</Para>
</Sectl>
</Article>

Next, create a stylesheet to convert it into the ARTICLE format:

<xsT:stylesheet
xmlns:xs1="http://www.w3.0rg/1999/XSL/Transform"
version="1.0"
>

../examples/jaxp/xslt/samples/small-docbook-article.xml
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/filterout.html
../examples/jaxp/xslt/samples/small-docbook-article-xml.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/filterout-src.html

TESTING THE PROGRAM

<xs1:output method="xm1"/> (see Note 1)

<xs1:template match="/">
<ARTICLE>
<xsT:apply-templates/>
</ARTICLE>
</xs1:template>

<!-- Lower Tlevel titles strip element tag --> (see Note 2)

<l-- Top-Tevel title -->

<xs1:template match="/Article/ArtHeader/Title"> (Note 3)
<TITLE> <xsl:apply-templates/> </TITLE>

</xs1:template>

<xs1:template match="//Sectl"> (see Note 4)
<SECT><xs1:apply-templates/></SECT>
</xs1:template>

<xs1:template match="Para">
<PARA><xs1:apply-templates/></PARA> (see Note 5)
</xsT1:template>

</xs1:stylesheet>

Notes:

1. Thistime, the stylesheet is generating XML output.

2. Thetemplate that follows (for the top-level title element) matches only the
main title. For section titles, the TITLE tag gets stripped. (Because no tem-
plate conversion governs those title elements, they are ignored. The text
nodes they contain, however, are still echoed asaresult of XSLT's built-in
template rules—so only the tag isignored, not the text.)

3. Thetitle from the DocBook article header becomes the ARTICLE title.
4. Numbered section tags are converted to plain SECT tags.
5. Thistemplate carries out a case conversion, so Para becomes PARA.

Although it hasn’'t been mentioned explicitly, XSLT defines a number of built-in
(default) template rules. The complete set islisted in section 5.8 of the specifica-
tion. Mainly, these rules provide for the automatic copying of text and attribute
nodes and for skipping comments and processing instructions. They also dictate
that inner elements are processed, even when their containing tags don't have
templates. That is why the text node in the section title is processed, even though
the section title is not covered by any template.

317

318 EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS

Now run the FilterChain program, passing it the stylesheet (docbookToArti-
cle.xs1), the ARTICLE stylesheet (articlelc.xs1), and the small DocBook file
(smal11-docbook-article.xml), in that order. The result should like this:

<html>

<body>

<hl align="center">Title of my (Docbook) article</hl>
<h2>Title of Section 1.</h2>

<p>This is a paragraph.</p>

</body>

</htm1>

Note: This output was generated using JAXP 1.0. However, with some later ver-
sions of JAXP, the first filter in the chain does not translate any of the tags in the
input file. If you have one of those versions, the output you see will consist of con-
catenated plain textinthe HTML output, likethis: “Title of my (Docbook) arti-
cle Title of Section 1. This is a paragraph.”.

Further Information

For more information on XSL stylesheets, XSLT, and transformation engines,
see

» A great introduction to XSLT that starts with a simple HTML page and
uses XSLT to customize it, one step a a time
http://www.xfront.com/rescuing-xs1t.html

» Extensible Stylesheet Language (XSL):
http://www.w3.0rg/Style/XSL/

e The XML Path Language: http://www.w3.org/TR/xpath

» The Xalan transformation engine: http://xml.apache.org/xalan-j/

» OQutput properties that can be programmatically specified on transformer
objects: http://www.w3.0org/TR/xs1t#output.

* DocBookLite, a smaller, more lightweight version of DocBook used for
O'Reilly’s books and supported by several editors. http://www.doc-
book.org/wiki/moin.cgi/DocBookLite.

e Simplified DocBook, intended for articles. http://www.doc-
book.org/specs/wd-docbook-simple-1.1bl.htm]l

» Using Xalan from the command line: http://xml.apache.org/xalan-
j/commandline.html

http://www.docbook.org/wiki/moin.cgi/DocBookLite
http://www.docbook.org/wiki/moin.cgi/DocBookLite
http://www.docbook.org/specs/wd-docbook-simple-1.1b1.html
http://www.docbook.org/specs/wd-docbook-simple-1.1b1.html
../examples/jaxp/xslt/samples/small-docbook-article.xml
../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xpath
http://xml.apache.org/xalan-j/commandline.html
http://xml.apache.org/xalan-j/commandline.html
http://xml.apache.org/xalan-j/
http://www.xfront.com/rescuing-xslt.html
http://www.xfront.com/rescuing-xslt.html
http://www.w3.org/TR/xslt#output

8

Building Web Services
with JAX-RPC

JAX-RPC stands for Java API for XML-based RPC. JAX-RPC is a technology
for building Web services and clients that use remote procedure calls (RPC) and
XML. Often used in a distributed client-server model, an RPC mechanism
enables clients to execute procedures on other systems.

In JAX-RPC, aremote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines the envelope structure, encoding
rules, and conventions for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages (XML files) over
HTTP.

Although SOAP messages are complex, the JAX-RPC API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy (alocal object representing the service) and then simply invokes methods
on the proxy. With JAX-RPC, the developer does not generate or parse SOAP
messages. It is the JAX-RPC runtime system that converts the API calls and
responses to and from SOA P messages.

With JAX-RPC, clients and Web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a Web service that is not running on the 319

320

BuILDING WEB SERVICES WITH JAX-RPC

Java platform, and vice versa. This flexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTPR, SOAR,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

Setting the Port

Severd files in the JAX-RPC examples depend on the port that you specified
when you installed the Sun Java Systeam Application Server Platform Edition 8.
The tutorial examples assume that the server runs on the default port, 8080. If
you have changed the port, you must update the port number in the following
files before building and running the JAX-RPC examples:

* <INSTALL>/j2eetutoriall4/examples/jaxrpc/staticstub/
config-wsdT.xml

* <INSTALL>/j2eetutoriall4/examples/jaxrpc/
dynamicproxy/config-wsdl.xml

* <INSTALL>/j2eetutoriall4/examples/jaxrpc/appclient/
config-wsdl.xml

* <INSTALL>/j2eetutoriall4/examples/jaxrpc/webclient/
config-wsdl.xml

* <INSTALL>/j2eetutoriall4/examples/jaxrpc/
webcTient/web/response.jsp

* <INSTALL>/j2eetutoriall4/examples/security/
basicauthclient/SecureHello.wsdl

* <INSTALL>/j2eetutoriall4/examples/security/
mutualauthclient/SecureHello.wsdl

Creating a Simple Web Service and
Client with JAX-RPC

This section shows how to build and deploy a simple Web service and client. A
later section, Web Service Clients (page 333), provides examples of additional
JAX-RPC clients that access the service. The source code for the service is in
<INSTALL>/j2eetutoriall4/examples/jaxrpc/helloservice/ and theclient
iSin <INSTALL>/j2eetutoriall4/examples/jaxrpc/staticstub/.

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC

Figure 8-1 illustrates how JAX-RPC technology manages communication
between a Web service and client.

o —

HelloClient

Program HelloService

Stubs Ties

JAX-RPC ’W JAX-RPC

Runtime Runtime

Message

Figure8-1 Communication Between a JAX-RPC Web Service and a Client

The starting point for developing a JAX-RPC Web serviceis the service endpoint
interface. A service endpoint interface (SEI) is a Javainterface that declares the
methods that a client can invoke on the service.

You use the SEI, the wscompi Te tool, and two configuration files to generate the
WSDL specification of the Web service and the stubs that connect a Web service
client to the JAX-RPC runtime. For reference documentation on wscompile, see
the Application Server man pagesat http://docs.sun.com/db/doc/817-6092.

Together, thewscompile tool, the deploytool utility, and the Application Server
provide the Application Server’s implementation of JAX-RPC.

These are the basic steps for creating the Web service and client:

1. Code the SEI and implementation class and interface configuration file.
2. Compile the SEI and implementation class.

. Usewscompile to generate the files required to deploy the service.

. Use deploytool to package the filesinto aWAR file.

. Deploy the WAR file. Thetie classes (which are used to communicate with
clients) are generated by the Application Server during deployment.

. Code the client class and WSDL configuration file.

. Usewscompile to generate and compile the stub files.
. Compilethe client class.

. Runthe client.

g~ W

© 00 N O

321

http://docs.sun.com/db/doc/817-6092

322

BuILDING WEB SERVICES WITH JAX-RPC

The sections that follow cover these stepsin greater detail.

Coding the Service Endpoint Interface
and Implementation Class

In this example, the service endpoint interface declares a single method named
sayHello. This method returns a string that is the concatenation of the string
He1To with the method parameter.

A service endpoint interface must conform to afew rules:

It extends the java.rmi.Remote interface.
It must not have constant declarations, such as public final static.

The methods must throw the java. rmi.RemoteException or one of its
subclasses. (The methods may also throw service-specific exceptions.)

Method parameters and return types must be supported JAX-RPC types
(see Types Supported by JAX-RPC, page 330).

In this example, the service endpoint interface is named He110IF:

package helloservice;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extends Remote {

}

public String sayHello(String s) throws RemoteException;

In addition to the interface, you'll need the class that implements the interface. In
this example, the implementation classis called He11oImp1:

package helloservice;

public class HelloImpl implements HelloIF {

public String message ="Hello";

public String sayHello(String s) {
return message + s;
3

BUILDING THE SERVICE

Building the Service

To build MyHelloService, in a termina window go to the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/helloservice/ directory and
type the following:

asant build

The bui1d task command executes these asant subtasks:

e compile-service

* generate-wsdl

The compile-service Task

This asant task compilesHe110IF.java and HelloImp1.java, writing the class
filesto the bui1d subdirectory.

The generate-wsdl Task

The generate-wsd1 task runs wscompile, which creates the WSDL and map-
ping files. The WSDL file describes the Web service and is used to generate the
client stubsin Static Stub Client (page 327). The mapping file contains informa-
tion that correlates the mapping between the Javainterfaces and the WSDL defi-
nition. It is meant to be portable so that any J2EE-compliant deployment tool can
use thisinformation, along with the WSDL file and the Java interfaces, to gener-
ate stubs and ties for the deployed Web services.

The files created in this example are MyHe11oService.wsd1 and mapping.xm1.
The generate-wsd1 task runswscompile with the following arguments:

wscompile -define -mapping build/mapping.xml -d build -nd build
-classpath build config-interface.xml

The -classpath flag instructs wscompi1e to read the SEI in the bui 1d directory,
and the -define flag instructs wscompile to create WSDL and mapping files.
The -mapp1ing flag specifies the mapping file name. The -d and -nd flagstell the
tool to write class and WSDL filesto the bui1d subdirectory.

323

324 BUILDING WEB SERVICES WITH JAX-RPC

The wscompile tool reads an interface configuration file that specifies informa
tion about the SEI. In this example, the configuration file is named config-
interface.xml and contains the following:

<?xml version="1.0" encoding="UTF-8"7>
<configuration
xmIns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<service
name="MyHelloService"
targetNamespace="urn:Foo"
typeNamespace="urn:Foo"
packageName="helloservice">
<interface name="helloservice.HelloIF"/>
</service>
</configuration>

This configuration file tellswscompiTe to create aWSDL file named MyHe110
Service.wsd1 with the following information:
* TheservicenameisMyHelloService.

» The WSDL target and type namespaceisurn: Foo. The choice for what to
use for the namespaces is up to you. Therole of the namespacesis similar
to the use of Java package names—to distinguish names that might other-
wise conflict. For example, a company can decide that all its Java code
should be in the package com.wombat.*. Similarly, it can also decide to
use the namespace http: //wombat. com.

e TheSEl ishelloservice.HelloIF.

The packageName attribute instructs wscompile to put the service classes into
the helloservice package.

Packaging and Deploying the Service

You can package and deploy the service using either deploytool OF asant.

Packaging and Deploying the Service with
deploytool

Behind the scenes, a JAX-RPC Web serviceisimplemented as a servlet. Because
a servlet is a Web component, you run the New Web Component wizard of the

PACKAGING AND DEPLOYING THE SERVICE

deploytool utility to package the service. During this process the wizard per-
forms the following tasks:
 Creates the Web application deployment descriptor
* CreatesaWARfile
« Adds the deployment descriptor and service files to the WAR file
To start the New Web Component wizard, select File-New Web Component.
The wizard displays the following dialog boxes.
1. Introduction dialog box
a. Read the explanatory text for an overview of the wizard’s features.
b. Click Next.

2. WAR File dialog box
a. Select the button labeled Create New Stand-Alone WAR Module.

b. In the WAR Location field, click Browse and navigate to
<INSTALL>/j2eetutoriall4/examples/jaxrpc/helloservice/.

c. Inthe File Name field, enter MyHe11oService.

d. Click Create Module File.

e. Click Edit Contents.

f. In the tree under Available Files, locate the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/helloservice/
directory.

g. Select the bui1d subdirectory.

h. Click Add.

i. Click OK.

j. Click Next.

3. Choose Component Type dialog box
a. Select the Web Services Endpoint button.
b. Click Next.

4. Choose Service dialog box

a In the WSDL File combo box, select WEB-INF/wsd1/MyHelloSer-
vice.wsdl.

b. Inthe Mapping File combo box, select build/mapping.xml.
c. Click Next.

325

326 BuILDING WEB SERVICES WITH JAX-RPC

5. Component General Properties dialog box
a. In the Service Endpoint Implementation combo box, select helloser-

vice.HelloImpT.
b. Click Next.

6. Web Service Endpoint dialog box
a In the Service Endpoint Interface combo box, select helloser-
vice.HelToIF.
b. In the Namespace combo box, select urn: Foo.
c. Inthe Local Part combo box, select He11oIFPort.

d. Thedeploytool utility will enter adefault Endpoint Address URI He1l-
ToImp1 inthisdialog. Thisendpoint address must be updated in the next
section.

e. Click Next.
f. Click Finish.

Specifying the Endpoint Address

To access MyHe11oService, the tutorial clients will specify this service endpoint
address URI:

http://Tocalhost:8080/hello-jaxrpc/hello

The /hello-jaxrpc string is the context root of the servlet that implements
MyHelloService. The /hello string is the servlet adias. To specify the endpoint
address, you set the context root and alias as follows:

. In depToytool, select MyHe1loService inthetree.

. Select the General tab.

. In the Context Root field, enter /hello-jaxrpc.

. Inthetree, select He11oImpl.

. Select the Aliases tab.

. In the Component Aliases table, add /hel7o.

. Inthe Endpoint tab, select he11o for the Endpoint Addressin the Sun-spe-
cific Settings frame.

8. Select File -Save.

N o o 0N PP

STATIC STUB CLIENT

Deploying the Service
In deploytool, perform these steps:
1. Inthetree, select MyHeTloService.
2. Select Tools-Deploy.
You can view the WSDL file of the deployed service by requesting the URL

http://localhost:8080/hello-jaxrpc/hel1o?WSDL in a Web browser. Now
you are ready to create a client that accesses this service.

Packaging and Deploying the Service with
asant

To package and deploy the helloservice example, follow these steps:
1. In a terminal window, go to
<INSTALL>/j2eetutorialld/examples/jaxrpc/helloservice/.
2. Run asant create-war.
3. Make sure the Application Server is started.

4. Set your admin username and password in
<INSTALL>/j2eetutoriall4/examples/common/build.properties.
5. Run asant deploy-war.
You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/hello-jaxrpc/hel1o?WSDL in a Web browser. Now
you are ready to create a client that accesses this service.

Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by typing this command:

asant undeploy

Static Stub Client

HelloClient is a stand-alone program that calls the sayHe11o method of the
MyHelloService. It makes this call through a stub, a local object that acts as a
proxy for the remote service. Because the stub is created by wscompile at devel-
opment time (as opposed to runtime), it is usually called a static stub.

327

BuILDING WEB SERVICES WITH JAX-RPC

Coding the Static Stub Client

Before it can invoke the remote methods on the stub, the client performs these
steps:
1. Creates a Stub object:
(Stub) (new MyHelloService_Impl().getHelloIFPort())

The code in this method is implementation-specific because it relies on a
MyHe1loService_Imp1 object, which is not defined in the specifications.
The MyHe1loService_Imp1 class will be generated by wscompile in the
following section.

2. Setsthe endpoint address that the stub uses to access the service:

stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

At runtime, the endpoint addressis passed to He11oClient in args[0] as
a command-line parameter, which asant gets from the end-
point.address property in the build.properties file. This address
must match the one you set for the service in Specifying the Endpoint
Address (page 326).

3. Casts stub to the service endpoint interface, He110IF:
Hel10IF hello = (HelloIF)stub;

Here is the full source code listing for the HelloClient.java file, which is
|ocated in the directory <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/staticstub/src/:

package staticstub;
import javax.xml.rpc.Stub;
public class HelloClient {
private String endpointAddress;

public static void main(String[] args) {
System.out.println("Endpoint address = " + args[0]);
try {
Stub stub = createProxy(Q);
stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
args[0]);
HeT1oIF hello = (HelloIF)stub;

STATIC STUB CLIENT

System.out.printlnChello.sayHello("Duke!™));
} catch (Exception ex) {
ex.printStackTrace();
}
}

private static Stub createProxy() {
// Note: MyHelloService_Impl is implementation-specific.
return
(Stub) (new MyHelloService_Imp1().getHelloIFPort());

Building and Running the Static Stub Client

To build and package the client, go to the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/staticstub/ directory and type the following

asant build

The build task invokes three asant subtasks:

* generate-stubs
e compile-client
* package-client

The generate-stubs task runs the wscompile tool with the following argu-
ments:

wscompile -gen:client -d build -classpath build config-wsdl.xml

Thiswscompile command reads the MyHe1loService.wsd1 file that was gener-
ated in Building the Service (page 323). The command generates files based on
the information in the WSDL file and the command-line flags.

The -gen:client flag instructs wscompile to generate the stubs, other runtime
files such as serializers, and value types. The -d flag tells the tool to write the
generated output to the build/staticstub subdirectory.

330

BuILDING WEB SERVICES WITH JAX-RPC

The wscompile tool reads a WSDL configuration file that specifies the location
of the WSDL file. In this example, the configuration file is named config-
wsd1.xm1, and it contains the following:

<configuration
xmIns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<wsd1 Tocation="http://localhost:8080/hello-
jaxrpc/helTo?WSDL" packageName="staticstub"/>
</configuration>

The packageName attribute specifies the Java package for the generated stubs.
Notice that the location of the WSDL fileis specified as a URL. This causes the
wscompile command to request the WSDL file from the Web service, and this
means that the Web service must be correctly deployed and running in order for
the command to succeed. If the Web serviceis not running or if the port at which
the service is deployed is different from the port in the configuration file, the
command will fail.

The compile-client task compiles src/HelloClient.java and writes the
classfiletothe build subdirectory.

The package-client task packages the files created by the generate-stubs
and compile-client tasksinto the dist/client.jar file. Except for the Hel-
loClient.class, al thefilesin client.jar were created by wscompile. Note
that wscompile generated the He11oIF.class based on the information it read
from the MyHeT11oService.wsd1 file.

To run the client, type the following:
asant run

Thistask invokes the Web service client, passing the string Duke for the Web ser-
vice method parameter. When you run this task, you should get the following
output:

Hello Duke!

Types Supported by JAX-RPC

Behind the scenes, JAX-RPC maps types of the Java programming language to
XML/WSDL definitions. For example, JAX-RPC maps the java.lang.String
class to the xsd:string XML data type. Application developers don’t need to

know the details of these mappings, but they should be aware that not every class
in the Java 2 Platform, Standard Edition (J2SE) can be used as a method parame-
ter or return type in JAX-RPC.

J2SE SDK Classes

J2SE SDK CLASSES

JAX-RPC supports the following J2SE SDK classes.

java.
java.
java.
java.
java.
java.
java.
java.

java.
java.

java.

java.
java.

Tang.
Tlang.
Tlang.
Tlang.
Tlang.
Tlang.
Tlang.
Tlang.

math.

math

Boolean
Byte
Double
Float
Integer
Long
Short
String

BigDecimal

.BigInteger

net.URI

util.
util.

Calendar
Date

Primitives

JAX-RPC supports the following primitive types of the Java programming lan-

guage:

boole
byte
doubl
float
int
Tong
short

an

e

331

332

BuILDING WEB SERVICES WITH JAX-RPC

Arrays

JAX-RPC also supports arrays that have members of supported JAX-RPC types.
Examples of supported arrays are int[] and String[]. Multidimensional
arrays, such asBigDecimal[][], are also supported.

Value Types

A value type is a class whose state can be passed between a client and a remote
service as a method parameter or return value. For example, in an application for
a university library, a client might call a remote procedure with a value type
parameter named Book, a class that contains the fields Tit1e, Author, and Pub-
Tisher.

To be supported by JAX-RPC, avalue type must conform to the following rules:

It must have a public default constructor.

It must not implement (either directly or indirectly) the java. rmi.Remote
interface.

* Itsfields must be supported JAX-RPC types.

The value type can contain public, private, or protected fields. The field of a
value type must meet these requirements:

» A public field cannot be final or transient.
» A nonpublic field must have corresponding getter and setter methods.

JavaBeans Components

JAX-RPC aso supports JavaBeans components, which must conform to the
same set of rules as application classes. In addition, a JavaBeans component
must have a getter and a setter method for each bean property. The type of the
bean property must be a supported JAX-RPC type. For an example of using a
JavaBeans component in a Web service, see JAX-RPC Coffee Supplier
Service (page 1295).

WEB SERVICE CLIENTS 333

Web Service Clients

This section shows how to create and run these types of clients:
* Dynamic proxy
» Dynamic invocation interface (DII)
» Application client
When you run these client examples, they will access the MyHe11oService that

you deployed in Creating a Simple Web Service and Client with JAX-
RPC (page 320).

Dynamic Proxy Client

This example resides in the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/dynamicproxy/ directory.

The client in the preceding section uses a static stub for the proxy. In contrast,
the client example in this section calls a remote procedure through a dynamic
proxy, a class that is created during runtime. Although the source code for the
static stub client relies on an implementation-specific class, the code for the
dynamic proxy client does not have this limitation.

Coding the Dynamic Proxy Client
The DynamicProxyHel1o program constructs the dynamic proxy as follows:

1. Createsa Service object named helloService:

Service helloService =
serviceFactory.createService(helloWsdlUr1,
new QName(nameSpaceUri, serviceName));
A Service object is a factory for proxies. To create the Service object
(helloService), the program calls the createService method on
another type of factory, a ServiceFactory object.

The createService method has two parameters. the URL of the WSDL
file and a QName object. At runtime, the client gets information about the
service by looking up its WSDL. In this example, the URL of the WSDL
file points to the WSDL that was deployed with MyHe1T1oService:

http://localhost:8080/hello-jaxrpc/hel1o?WSDL

334

BuILDING WEB SERVICES WITH JAX-RPC

A QName object is a tuple that represents an XML qualified name. The
tuple is composed of a namespace URI and the local part of the qualified
name. In the QName parameter of the createService invocation, the local
part is the service name, MyHe1loService.

2. The program creates aproxy (myProxy) with atype of the service endpoint
interface (He110IF):

dynamicproxy.HelloIF myProxy =
(dynamicproxy.HelloIF)helloService.getPort(
new QName(nameSpaceUri, portName),
dynamicproxy.HelloIF.class);

The helloService object is a factory for dynamic proxies. To create
myProxy, the program calls the getPort method of helloService. This
method has two parameters. a QName object that specifies the port name
and a java.lang.Class object for the service endpoint interface (Hel-
10IF). The HelloIF class is generated by wscompile. The port name
(He110IFPort) is specified by the WSDL file.

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/dynamicproxy/src/ direc-
tory:

package dynamicproxy;

import java.net.URL;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import dynamicproxy.HelloIF;

public class HelloClient {

public static void main(String[] args) {

try {
String Url1String = args[0] + "7?WSDL";
String nameSpaceUri = "urn:Foo";
String serviceName = "MyHelloService";

String portName = "HelloIFPort";

System.out.printIn("Url1String = " + UrlString);
URL helloWsdlUr1l = new URL(Url1String);

ServiceFactory serviceFactory =

DYNAMIC PROXY CLIENT

ServiceFactory.newInstance();

Service helloService =
serviceFactory.createService(helToWsdlUr1,
new QName(nameSpaceUri, serviceName));

dynamicproxy.Hel1oIF myProxy =
(dynamicproxy.HelToIF)
helloService.getPort(
new QName(nameSpaceUri, portName),
dynamicproxy.HelloIF.class);

System.out.println(myProxy.sayHello("Buzz"));

} catch (Exception ex) {
ex.printStackTrace();

}

Building and Running the Dynamic Proxy
Client

Before performing the steps in this section, you must first create and deploy
MyHelloService asdescribed in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build and package the client, go to the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/dynamicproxy/ directory and type the following:

asant build

The preceding command runs these tasks:

» generate-interface

« compile-client

» package-dynamic
The generate-interface task runs wscompile with the -import option. The
wscompile command reads the MyHelloService.wsd1 file and generates the
service endpoint interface class (HelloIF.class). Although this wscompile
invocation aso creates stubs, the dynamic proxy client does not use these stubs,
which are required only by static stub clients.

The compile-client task compilesthe src/HelloClient. java file.

335

336

BuILDING WEB SERVICES WITH JAX-RPC

The package-dynamic task creates the dist/client.jar file, which contains
HelloIF.class and HelloClient.class.

To run the client, type the following:
asant run
The client should display the following line:

Hello Buzz

Dynamic Invocation Interface Client

This example resides in the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/dii/ directory.

With the dynamic invocation interface (DlI1), aclient can call aremote procedure
even if the signature of the remote procedure or the name of the service is
unknown until runtime. In contrast to a static stub or dynamic proxy client, aDI|
client does not require runtime classes generated by wscompile. However, as
you'll seein the following section, the source code for a DIl client is more com-
plicated than the code for the other two types of clients.

This example is for advanced users who are familiar with WSDL documents.
(See Further Information, page 344.)

Coding the DIl Client

The DIIHell0 program performs these steps.

1. Creates a Service object:
Service service =
factory.createService(new QName(gnameService));
To get aService object, the program invokes the createService method
of a ServiceFactory object. The parameter of the createService
method is a QName object that represents the name of the service, MyHel-
loService. The WSDL file specifies this name as follows:

<service name="MyHelloService">

2. From the Service object, createsaCal1 object:

QName port = new QName(gnamePort);
Call call = service.createCall(port);

DYNAMIC |NVOCATION INTERFACE CLIENT 337

A Cal1 object supports the dynamic invocation of the remote procedures
of a service. To get a Call object, the program invokes the Service
object’s createCall method. The parameter of createCall is a QName
object that represents the service endpoint interface, MyHe11oServiceRPC.
In the WSDL file, the name of this interface is designated by the port-
Type element:

<portType name="HelloIF">

3. Setsthe service endpoint address on the Cal11 object:
call.setTargetEndpointAddress(endpoint);

In the WSDL file, this address is specified by the <soap:address> ele-
ment.

4. Setsthese properties on the Cal11 object:

SOAPACTION_USE_PROPERTY
SOAPACTION_URI_PROPERTY
ENCODING_STYLE_PROPERTY

To learn more about these properties, refer to the SOAP and WSDL docu-
ments listed in Further Information (page 344).

5. Specifies the method’s return type, name, and parameter:

QName QNAME_TYPE_STRING = new QName(NS_XSD, "string");
call.setReturnType (QNAME_TYPE_STRING) ;

call.setOperationName(new QName (BODY_NAMESPACE_VALUE,
"sayHel10"));

call.addParameter("String_1", QNAME_TYPE_STRING,
ParameterMode.IN);

To specify the return type, the program invokes the setReturnType
method on the Cal11 object. The parameter of setReturnType iS aQName
object that represents an XML string type.

The program designates the method name by invoking the setOpera-
tionName method with a QName object that represents sayHe11o.

To indicate the method parameter, the program invokes the addParameter
method on the Ca11 object. The addParameter method has three argu-
ments: a String for the parameter name (String_1), a QName object for
the XML type, and a ParameterMode object to indicate the passing mode
of the parameter (IN).

6. Invokes the remote method on the Cal11 object:

338 BuILDING WEB SERVICES WITH JAX-RPC

String[] params = { "Murphy" };
String result = (String)call.invoke(params);

The program assigns the parameter value (Murphy) to a String array
(params) and then executes the invoke method with the String array as
an argument.

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/dii/src/ directory:

package dii;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

public class HelloClient {

private static String gnameService = "MyHelloService";
private static String gnamePort = "HelloIF";

private static String BODY_NAMESPACE_VALUE =
"urn:Foo";

private static String ENCODING_STYLE_PROPERTY =
"javax.xml.rpc.encodingstyle.namespace.uri";

private static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";

private static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

public static void main(String[] args) {

System.out.println("Endpoint address = + args[0]);

try {
ServiceFactory factory =
ServiceFactory.newInstance();
Service service =
factory.createService(
new QName(gnameService));

QName port = new QName(gnamePort);

Call call = service.createCall(port);
call.setTargetEndpointAddress(args[0]);

DYNAMIC INVOCATION |NTERFACE CLIENT 339

call.setProperty(Call.SOAPACTION_USE_PROPERTY,
new Boolean(true));
call.setProperty(Call.SOAPACTION_URI_PROPERTY

llll) ;
call.setProperty (ENCODING_STYLE_PROPERTY,

URI_ENCODING) ;
QName QNAME_TYPE_STRING =
new QName(NS_XSD, "string");
call.setReturnType (QNAME_TYPE_STRING) ;

call.setOperationName(
new QName (BODY_NAMESPACE_VALUE, "sayHel10"));
call.addParameter("String_1", QNAME_TYPE_STRING,
ParameterMode.IN);
String[] params = { "Murph!" };

String result = (String)call.invoke(params);
System.out.printin(result);

} catch (Exception ex) {
ex.printStackTrace();

}

Building and Running the DIl Client

Before performing the steps in this section, you must first create and deploy
MyHelloService asdescribed in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build and package the client, go to the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/dii/ directory and type the following:

asant build

This build task compiles HelloClient and packages it into the dist/cl1i-
ent.jar file. Unlike the previous client examples, the DIl client does not require
files generated by wscompile.

To run the client, type this command:

asant run

340

BuILDING WEB SERVICES WITH JAX-RPC

The client should display thisline:

Hello Murph!

Application Client

Unlike the stand-alone clients in the preceding sections, the client in this section
isan application client. Because it’s a J2EE component, an application client can
locate alocal Web service by invoking the INDI Tookup method.

J2EE Application HelloClient Listing

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/appclient/src/ directory:

package appclient;

import javax.xml.rpc.Stub;
import javax.naming.*;

public class HelloClient {
private String endpointAddress;

public static void main(String[] args) {

System.out.println("Endpoint address = " + args[0]);

try {
Context ic = new InitialContext();
MyHelloService myHelloService = (MyHelloService)
ic.lTookup("java:comp/env/service/MyJAXRPCHelT10");

appclient.HelloIF helloPort =
myHelloService.getHelloIFPort();

((Stub)helloPort)._setProperty
(Stub.ENDPOINT_ADDRESS_PROPERTY,args[0]);

System.out.printlnChelloPort.sayHello("Jake!"));
System.exit(0);

} catch (Exception ex) {
ex.printStackTrace();

APPLICATION CLIENT

System.exit(1);

Building the Application Client

Before performing the steps in this section, you must first create and deploy
MyHe1loService asdescribed in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build the client, go to the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/appclient/ directory and type the following:

asant build

As with the static stub client, the preceding command compiles Hel11oC11-
ent.java and runswscompile by invoking the generate-stubs target.

Packaging the Application Client
Packaging this client is a two-step process:

1. Create an EAR filefor a J2EE application.
2. Create a JAR file for the application client and add it to the EAR file.

To create the EAR file, follow these steps:

1. In deploytool, select File_New -Application.
2. Click Browse.
3. In the file chooser, navigate to <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/appclient.
4. Inthe File Namefield, enter HelloServiceApp.
5. Click New Application.
6. Click OK.
To start the New Application Client wizard, select File-New -Application Cli-
ent. The wizard displays the following dial og boxes.
1. Introduction dialog box
a. Read the explanatory text for an overview of the wizard's features.
b. Click Next.

342

2.

BuILDING WEB SERVICES WITH JAX-RPC

JAR File Contents dialog box

a. Select the button labeled Create New AppClient Modulein Application.
b. In the combo box below this button, select He1loServiceApp.

c. Inthe AppClient Display Namefield, enter He11oClient.

d. Click Edit Contents.
e

. In the tree under Available Files, locate the
<INSTALL>/j2eetutoriall4/examples/jaxrpc/appclient direc-
tory.

Select the bui1d directory.
. Click Add.
. Click OK.
i. Click Next.

ooQ

. General dialog box

a. Inthe Main Class combo box, select appclient.HelloClient.
b. Click Next.
c. Click Finish.

Specifying the Web Reference

When it invokes the Tookup method, the He11oClient refers to the Web service
asfollows:

MyHelloService myHelloService = (MyHelTloService)
ic.lookup("java:comp/env/service/MyJAXRPCHello™);

You specify this reference as follows.

o O A WDN PP

o

. Inthetree, select He11oClient.

. Select the Web Service Refs tab.

. Click Add.

. In the Coded Name field, enter service/MyJAXRPCHello.

. In the Service Interface combo box, select appclient.MyHelloService.

. In the WSDL File combo box, select META-INF/wsd1/MyHelloSer-
vice.wsdl.

. In the Namespace field, enter urn: Foo.

. Inthe Local Part field, enter MyHel1oService.

MoRre JAX-RPC CLIENTS 343

9. In the Mapping File combo box, select mapping.xml.
10.Click OK.

Deploying and Running the Application Client

To deploy the application client, follow these steps:

1. Select theHe11oServiceApp application.
2. Select Tools-Deploy.

3. Inthe Deploy Module dialog box select the checkbox labeled Return Cli-
ent JAR.

4. Inthe field below the checkbox, enter this directory:
<INSTALL>/j2eetutorial14/examples/jaxrpc/appclient
5. Click OK.
To run the client follow these steps:
1. In a termina window, go to the <INSTALL>/j2eetutoriall4/exam-
ples/jaxrpc/appclient/ directory.
2. Typethefollowing on asingle line:

appclient -client HelloServiceAppClient.jar
http://localhost:8080/hello-jaxrpc/hello

The client should display thisline:

Hello Jake!

More JAX-RPC Clients

Other chaptersin this book aso have JAX-RPC client examples:

» Chapter 16 shows how a JSP page can be a static stub client that accesses
aremote Web service. See The Example JSP Pages (page 634).

» Chapter 32 includes a static stub client that demonstrates basic authentica-
tion. See Example: Basic Authentication with JAX-RPC (page 1161).

» Chapter 32 includes a static stub client that demonstrates mutual authenti-
cation. See Example: Client-Certificate Authentication over HTTP/SSL
with JAX-RPC (page 1169).

BuILDING WEB SERVICES WITH JAX-RPC

Web Services Interoperability and JAX-
RPC

JAX-RPC 1.1 supports the Web Services Interoperability (WS-1) Basic Profile
Version 1.0, Working Group Approval Draft. The WS-I Basic Profile is a docu-
ment that clarifies the SOAP 1.1 and WSDL 1.1 specifications in order to pro-
mote SOAP interoperability. For links related to WS-, see Further
Information (page 344).

To support WS-, JAX-RPC has the following features:

* Whenrunwiththe -f:wsi option, wscompile verifiesthat aWSDL isWS-
[-compliant or generates classes needed by JAX-RPC services and clients
that are WS-1-compliant.

» The JAX-RPC runtime supports doc/literal and rpc/literal encodings for
services, static stubs, dynamic proxies, and DI .

Further Information

For more information about JAX-RPC and related technologies, refer to the fol-
lowing:

» Java APl for XML-based RPC 1.1 specification
http://java.sun.com/xml/downloads/jaxrpc.html

» JAX-RPC home
http://java.sun.com/xml/jaxrpc/

» Simple Object Access Protocol (SOAP) 1.1 W3C Note
http://www.w3.0org/TR/SOAP/

» Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.0org/TR/wsd1

* WS- Basic Profile 1.0
http://www.ws-1.org

http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

9

SOAP with
Attachmentis API for
Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP
messaging that goes on behind the scenes in JAX-RPC and JAXR implementa-
tions. Secondarily, it isan API that devel opers can use when they choose to write
SOAP messaging applications directly rather than use JAX-RPC. The SAAJAPI
allows you to do XML messaging from the Java platform: By simply making
method calls using the SAAJ AP, you can read and write SOAP-based XML
messages, and you can optionally send and receive such messages over the Inter-
net (some implementations may not support sending and receiving). This chapter
will help you learn how to use the SAAJAPI.

The SAAJ APl conforms to the Simple Object Access Protocol (SOAP) 1.1
specification and the SOAP with Attachments specification. The SAAJ 1.2 spec-
ification definesthe javax.xm1.soap package, which contains the API for creat-
ing and populating a SOAP message. This package has al the API necessary for
sending request-response messages. (Request-response messages are explained
in SOAPConnection Objects, page 351.)

345

346

SOAP wWiTH ATTACHMENTS APl FOR JAVA

Note: The javax.xml1.messaging package, defined in the Java APl for XML Mes-
saging (JAXM) 1.1 specification, is not part of the J2EE 1.4 platform and isnot dis-
cussed in this chapter. The JAXM API is available as a separate download from
http://java.sun.com/xml/jaxm/.

This chapter starts with an overview of messages and connections, giving some
of the conceptual background behind the SAAJAPI to help you understand why
certain things are done the way they are. Next, the tutorial shows you how to use
the basic SAAJ AP, giving examples and explanations of the commonly used
features. The code examplesin the last part of the tutorial show you how to build
an application. The case study in Chapter 35 includes SAAJ code for both send-
ing and consuming a SOAP message.

Overview of SAAJ

This section presents a high-level view of how SAAJ messaging works and
explains concepts in generd terms. Its goal isto give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at SAAJ from two perspectives: messages and connections.

Messages

SAAJ messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the SAAJ API, you can create XML messages that conform to the SOAP
1.1 and WS-I Basic Profile 1.0 specifications ssimply by making Java API calls.

The Structure of an XML Document

Note: For more information on XML documents, see Chapters 2 and 4.

An XML document has a hierarchical structure made up of elements, subele-
ments, subsubelements, and so on. You will notice that many of the SAAJ

http://java.sun.com/xml/jaxm/

MESSAGES

classes and interfaces represent XML elements in a SOAP message and have the
word element or SOAP (or both) in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which is the base class for all the classes and interfaces that rep-
resent XML elements in a SOAP message. There are aso methods such as
SOAPETement.addTextNode, Node.detachNode, and Node.getValue, which
you will see how to use in the tutorial section.

What Is in a Message?

The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments

The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, al the parts listed are required
to bein every SOAP message.

I. SOAP message
A. SOAP part
1. SOAP envelope
a. SOAP header (optional)
b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message,
the SOAPPart class to represent the SOAP part, the SOAPEnvelope interface to
represent the SOAP envelope, and so on. Figure 9-1 illustrates the structure of a
SOAP message with no attachments.

Note: Many SAAJAPI interfaces extend DOM interfaces. In a SAAJ message, the
SOAPPart class is also a DOM document. See SAAJ and DOM (page 350) for
details.

When you create a new SOAPMessage object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage
object has a SOAPPart object that contains a SOAPEnveTope object. The SOAPEn-
velope object in turn automatically contains an empty SOAPHeader object fol-

347

348

SOAP WITH ATTACHMENTS API FOR JAVA

lowed by an empty SOAPBody object. If you do not need the SOAPHeader abject,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

The SOAPHeader object can include one or more headers that contain metadata
about the message (for example, information about the sending and receiving
parties). The SOAPBody object, which aways follows the SOAPHeader object if
there is one, contains the message content. If there is a SOAPFault object (see
Using SOAP Faults, page 373), it must be in the SOAPBody object.

SOAPMessage (an XML document)
SOAPPart

SOAPEnvelope
—_—
SOAPHeader (optional)
——

Header

SRS
Header

SOAPBody

—————

XML Content
or SOAPFault

Figure 9-1 SOAPMessage Object with No Attachments

Messages with Attachments

A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part must contain only XML content; as aresult, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So if, for example, you want your message to contain a binary file, your
message must have an attachment part for it. Note that an attachment part can

MESSAGES

contain any kind of content, so it can contain datain XML format aswell. Figure
9-2 shows the high-level structure of a SOAP message that has two attachments.

SOAPMessage (an XML document)
SOAPPart

SOAPEnvelope

—
SOAPHeader (optional)
Headers (if any)

R
SOAPBody

—_—————

XML Content
or SOAPFault

AttachmentPart

MIME Headers

Content (XML or non-XML)

AttachmentPart

MIME Headers

Content (XML or non-XML)

Figure9-2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJ API provides the AttachmentPart class to represent an attachment
part of a SOAP message. A SOAPMessage object automatically has a SOAPPart
object and its required subelements, but because AttachmentPart objects are

349

350

SOAP wWiTH ATTACHMENTS APl FOR JAVA

optional, you must create and add them yourself. The tutorial section walks you
through creating and populating messages with and without attachment parts.

If a SOAPMessage object has one or more attachments, each AttachmentPart
object must have a MIME header to indicate the type of data it contains. It may
also have additional MIME headers to identify it or to give its location. These
headers are optiona but can be useful when there are multiple attachments.
When a SOAPMessage object has one or more AttachmentPart objects, its SOAP-
Part object may or may not contain message content.

SAAJ and DOM

In SAAJ 1.2, the SAAJAPIsextend their counterpartsin the org.w3c.dom pack-
age:

» TheNode interface extends the org.w3c.dom.Node interface.

 The SOAPElement interface extends both the Node interface and the
org.w3c.dom.Element interface.

* The SOAPPart classimplementsthe org.w3c.dom.Document interface.
* The Text interface extendsthe org.w3c.dom. Text interface.

Moreover, the SOAPPart of a SOAPMessage isalso aDOM Level 2 Document and
can be manipulated as such by applications, tools, and libraries that use DOM.
See Chapter 6 for details about DOM. For details on how to use DOM docu-
ments with the SAAJ API, see Adding Content to the SOAPPart
Object (page 363) and Adding a Document to the SOAP Body (page 364).

Connections

All SOAP messages are sent and received over a connection. With the SAAJ
API, the connection is represented by a SOAPConnection object, which goes
from the sender directly to its destination. This kind of connection is caled a
point-to-point connection because it goes from one endpoint to another endpoint.
Messages sent using the SAAJ API are called request-response messages. They
are sent over a SOAPConnection object with the call method, which sends a
message (a request) and then blocks until it receives the reply (aresponse).

CONNECTIONS

SOAPConnection Objects

The following code fragment creates the SOAPConnection object connection
and then, after creating and populating the message, uses connection to send
the message. As stated previously, all messages sent over a SOAPConnection
object are sent with the cal1 method, which both sends the message and blocks
until it receives the response. Thus, the return value for the cal1 method is the
SOAPMessage object that is the response to the message that was sent. The
request parameter is the message being sent; endpoint represents where it is
being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();
SOAPConnection connection = factory.createConnection();

.// create a request message and give it content

java.net.URL endpoint =
new URL("http://fabulous.com/gizmo/order");
SOAPMessage response = connection.call(request, endpoint);

Note that the second argument to the cal1 method, which identifies where the
message is being sent, can be a String object or a URL object. Thus, the last two
lines of code from the preceding example could also have been the following:

String endpoint = "http://fabulous.com/gizmo/order";
SOAPMessage response = connection.call(request, endpoint);

A Web service implemented for request-response messaging must return a
response to any message it receives. The response is a SOAPMessage object, just
as the request is a SOAPMessage object. When the request message is an update,
the response is an acknowledgment that the update was received. Such an
acknowledgment implies that the update was successful. Some messages may
not require any response at all. The service that gets such a message is ill
required to send back a response because one is needed to unblock the call
method. In this case, the response is not related to the content of the message; it
is simply a message to unblock the ca11 method.

Now that you have some background on SOAP messages and SOAP connec-
tions, in the next section you will see how to use the SAAJAPI.

351

352

SOAP wWiTH ATTACHMENTS APl FOR JAVA

Tutorial

This tutorial walks you through how to use the SAAJ API. Firgt, it covers the
basics of creating and sending a simple SOAP message. Then you will learn
more details about adding content to messages, including how to create SOAP
faults and attributes. Finally, you will learn how to send a message and retrieve
the content of the response. After going through this tutorial, you will know how
to perform the following tasks:

» Creating and sending a simple message

» Adding content to the header

* Adding content to the SOAPPart object

» Adding adocument to the SOAP body

» Manipulating message content using SAAJor DOM APIs

» Adding attachments

» Adding attributes

» Using SOAP faults
In the section Code Examples (page 378), you will see the code fragments from
earlier parts of the tutorial in runnable applications, which you can test yourself.
To see how the SAAJ API can be used in server code, see the SAAJ part of the
Coffee Break case study (SAAJ Coffee Supplier Service, page 1303), which

shows an example of both the client and the server code for a Web service appli-
cation.

A SAAJ client can send request-response messages to Web services that are
implemented to do request-response messaging. This section demonstrates how
you can do this.

CREATING AND SENDING A SIMPLE MESSAGE

Creating and Sending a Simple
Message

This section covers the basics of creating and sending a simple message and
retrieving the content of the response. It includes the following topics:

» Creating a message

» Parts of amessage

» Accessing elements of amessage

» Adding content to the body

» Getting a SOAPConnection object

* Sending amessage

» Getting the content of a message

Creating a Message

Thefirst step is to create a message using aMessageFactory object. The SAAJ
API provides a default implementation of the MessageFactory class, thus mak-
ing it easy to get an instance. The following code fragment illustrates getting an
instance of the default message factory and then using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

Asistrue of the newInstance method for SOAPConnectionFactory, the newIn-
stance method for MessageFactory is static, so you invoke it by calling Mes-
sageFactory.newInstance.

Parts of a Message

A SOAPMessage object is required to have certain elements, and, as stated previ-
oudy, the SAAJ API simplifies things for you by returning a new SOAPMessage
object that already contains these elements. So message, which was created in
the preceding line of code, automatically has the following:

I. A SOAPPart object that contains
A. A SOAPEnvelope object that contains
1. Anempty SOAPHeader object

353

354

SOAP wWiTH ATTACHMENTS APl FOR JAVA

2. An empty SOAPBody object

The SOAPHeader object is optional and can be deleted if it is not needed. How-
ever, if there is one, it must precede the SOAPBody object. The SOAPBody object
can hold either the content of the message or a fault message that contains status
information or details about a problem with the message. The section Using
SOAP Faults (page 373) walks you through how to use SOAPFault objects.

Accessing Elements of a Message

The next step in creating a message is to access its parts so that content can be
added. There are two ways to do this. The SOAPMessage object message, created
in the preceding code fragment, is the place to start.

Thefirst way to access the parts of the message is to work your way through the
structure of the message. The message contains a SOAPPart object, so you use
the getSOAPPart method of message to retrieve it:

SOAPPart soapPart = message.getSOAPPart();

Next you can use the getEnvelope method of soapPart to retrieve the SOAPEn-
velope object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use the getHeader and getBody methods of envelope to retrieve
its empty SOAPHeader and SOAPBody objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message
header and body directly, without retrieving the SOAPPart or SOAPEnvelope. TO
do so, use the getSOAPHeader and getSOAPBody methods of SOAPMessage:

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can deleteit.
(You will see more about headers later) Because all SOAPElement objects,

CREATING AND SENDING A SIMPLE MESSAGE

including SOAPHeader objects, are derived from the Node interface, you use the
method Node . detachNode to delete header.

header.detachNode();

Adding Content to the Body

The SOAPBody object contains either content or a fault. To add content to the
body, you normally create one or more SOAPBodyETement objects to hold the
content. You can also add subelementsto the SOAPBodyE1ement objects by using
the addChi1dETement method. For each element or child element, you add con-
tent by using the addTextNode method.

When you create any new element, you also need to create an associated Name
object so that it is uniquely identified. One way to create Name objectsis by using
SOAPEnveTlope methods, so you can use the envelope variable from the earlier
code fragment to create the Name object for your new element. Another way to
create Name objects is to use SOAPFactory methods, which are useful if you do
not have access to the SOAPEnvelope.

Note: The SOAPFactory class also lets you create XML elements when you are not
creating an entire message or do not have access to a complete SOAPMessage object.
For example, JAX-RPC implementations often work with XML fragments rather
than complete SOAPMessage Objects. Consequently, they do not have access to a
SOAPEnvelope Object, and this makes using a SOAPFactory object to create Name
objects very useful. In addition to amethod for creating Name objects, the SOAPFac-
tory class provides methods for creating Detai1 objects and SOAP fragments. You
will find an explanation of Detai1 objectsin Overview of SOAP Faults (page 373)
and Creating and Populating a SOAPFault Object (page 375).

Name objects associated with SOAPBodyETement or SOAPHeaderElement objects
must be fully qualified; that is, they must be created with alocal name, a prefix
for the namespace being used, and a URI for the namespace. Specifying a
namespace for an element makes clear which one is meant if more than one ele-
ment has the same local name.

355

356

SOAP wWiTH ATTACHMENTS APl FOR JAVA

The following code fragment retrieves the SOAPBody object body from message,
uses a SOAPFactory to create aName object for the element to be added, and adds
anew SOAPBodyETement object to body.

SOAPBody body = message.getSOAPBody();
SOAPFactory soapFactory = SOAPFactory.newInstance();
Name bodyName = soapFactory.createName("GetLastTradePrice",

m", "http://wombat.ztrade.com™);
SOAPBodyElement bodyElement = body.addBodyElement(bodyName) ;

At this point, body contains a SOAPBodyETement object identified by the Name
object bodyName, but thereisstill no content in bodyETement. Assuming that you
want to get a quote for the stock of Sun Microsystems, Inc., you need to create a
child element for the symbol using the addChildETement method. Then you
need to give it the stock symbol using the addTextNode method. The Name object
for the new SOAPETement object symbol is initialized with only a local name
because child elements inherit the prefix and URI from the parent element.

Name name = soapFactory.createName("symbol");
SOAPETement symbol = bodyETement.addChiTldElement(name);
symboTl.addTextNode("SUNW") ;

You might recall that the headers and content in a SOAPPart object must be in
XML format. The SAAJ API takes care of thisfor you, building the appropriate
XML constructs automatically when you call methods such as addBodyE1ement,
addChildElement, and addTextNode. Note that you can call the method
addTextNode only on an element such as bodyElement or any child elements
that are added to it. You cannot call addTextNode on a SOAPHeader Or SOAPBody
object because they contain elements and not text.

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV: Body>
<m:GetlLastTradePrice xmlns:m="http://wombat.ztrade.com">
<symbo1>SUNW</symbo1>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let's examine this XML excerpt line by line to see how it relates to your SAAJ
code. Note that an XML parser does not care about indentations, but they are

CREATING AND SENDING A SIMPLE MESSAGE

generally used to indicate element levels and thereby make it easier for a human
reader to understand.

Here is the SAAJ code;

SOAPMessage message = messageFactory.createMessage();
SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

Hereisthe XML it produces.

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV: Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Note that Envelope is the name of the ele-
ment, and SOAP-ENV is the namespace prefix. The interface SOAPEnvelope repre-
sents a SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line is an example of an attribute for the SOAP envelope element.
Because a SOAP envelope element always contains this attribute with this value,
a SOAPMessage object comes with it automatically included. xmins stands for
“XML namespace,” and its value is the URI of the namespace associated with
Envelope.

The next line is an empty SOAP header. We could remove it by caling
header.detachNode after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in
SAAJ by aS0APBody object. The next step isto add content to the body.

Hereisthe SAAJ code:

Name bodyName = soapFactory.createName("GetLastTradePrice",

m", "http://wombat.ztrade.com");
SOAPBodyElement bodyElement = body.addBodyElement(bodyName) ;

357

358

SOAP wWiTH ATTACHMENTS APl FOR JAVA

Hereisthe XML it produces:

<m:GetlLastTradePrice
xmIns:m="http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyElement bodyElement in your code repre-
sents. GetlLastTradePrice is its local hame, m is its namespace prefix, and
http://wombat.ztrade.com isits namespace URI.

Hereisthe SAAJ code:

Name name = soapFactory.createName("symbol");
SOAPETement symbol = bodyETement.addChildETement(name) ;
symbol.addTextNode ("SUNW") ;

Hereisthe XML it produces:
<symbo1>SUNW</symbol>

The String "SUNW" is the text node for the element <symbol>. This String
object is the message content that your recipient, the stock quote service,
receives.

The following example shows how to add multiple SOAPET1ement objects and add
text to each of them. The code first creates the SOAPBodyElement object
purchaseLineItems, which has a fully qualified name associated with it. That
is, the Name object for it has alocal hame, a namespace prefix, and a namespace
URI. Asyou saw earlier, a SOAPBodyETement object is required to have a fully
gualified name, but child elements added to it, such as SOAPETement objects, can
have Name objects with only the local name.

SOAPBody body = message.getSOAPBody();

Name bodyName = soapFactory.createName("PurchaselLineItems",
"PO", "http://sonata.fruitsgalore.com");

SOAPBodyETement purchaselLineltems =
body.addBodyElement (bodyName) ;

Name childName = soapFactory.createName("Order");
SOAPElement order =
purchaselLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPETement product = order.addChildElement(childName);
product.addTextNode("Apple");

CREATING AND SENDING A SIMPLE MESSAGE

childName = soapFactory.createName("Price");
SOAPETement price = order.addChiTldElement(childName);
price.addTextNode("1.56");

childName = soapFactory.createName("Order");
SOAPETement order2 =
purchaselLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPETement product2 = order2.addChildETement(childName) ;
product2.addTextNode("Peach");

childName = soapFactory.createName("Price");
SOAPETement price2 = order2.addChildElement(childName);
price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaselLineltems
xmlns:PO="http://sonata.fruitsgalore.com">
<Order>
<Product>Apple</Product>
<Price>1.56</Price>
</Order>

<Order>
<Product>Peach</Product>
<Price>1.48</Price>
</Order>
</PO:PurchaselLineItems>

Getting a SOAPConnection Object

The SAAJAPI isfocused primarily on reading and writing messages. After you
have written a message, you can send it using various mechanisms (such as JIMS
or JAXM). The SAAJ APl does, however, provide a simple mechanism for

request-response messaging.
To send a message, a SAAJ client can use a SOAPConnection object. A SOAP-

Connection object is a point-to-point connection, meaning that it goes directly
from the sender to the destination (usually a URL) that the sender specifies.

The first step isto obtain a SOAPConnectionFactory object that you can use to
create your connection. The SAAJ APl makes this easy by providing the SOAP-

360

SOAP wWiTH ATTACHMENTS APl FOR JAVA

ConnectionFactory class with a default implementation. You can get an
instance of thisimplementation using the following line of code.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

Now you can use soapConnectionFactory to create a SOAPConnection object.

SOAPConnection connection =
soapConnectionFactory.createConnection();

You will use connection to send the message that you created.

Sending a Message

A SAAJ client calls the SOAPConnection method call on a SOAPConnection
object to send a message. The cal1l method takes two arguments: the message
being sent and the destination to which the message should go. This message is
going to the stock quote service indicated by the URL object endpoint.

java.net.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes");

SOAPMessage response = connection.call(message, endpoint);

The content of the message you sent is the stock symbol SUNW; the SOAPMes -
sage object response should contain the last stock price for Sun Microsystems,
which you will retrieve in the next section.

A connection uses afair amount of resources, so it isagood ideato close a con-
nection as soon as you are finished using it.

connection.close();

Getting the Content of a Message

Theinitia steps for retrieving a message's content are the same as those for giv-
ing content to a message: Either you use the Message object to get the SOAPBody
object, or you access the SOAPBody object through the SOAPPart and SOAPEnve-
Tope Objects.

Then you access the SOAPBody object’s SOAPBodyE1ement object, because that is
the element to which content was added in the example. (In alater section you

CREATING AND SENDING A SIMPLE MESSAGE

will see how to add content directly to the SOAPPart object, in which case you
would not need to access the SOAPBodyElement object to add content or to
retrieveit.)

To get the content, which was added with the method SOAPET1ement.addText-
Node, you call the method Node . getValue. Note that getvalue returnsthe value
of theimmediate child of the element that calls the method. Therefore, in the fol-
lowing code fragment, the getvalue method is called on bodyElement, the ele-
ment on which the addTextNode method was called.

To access bodyETement, you call the getChildETements method on soapBody.
Passing bodyName to getChildETlements returns a java.util.Iterator object
that contains all the child elements identified by the Name object bodyName. You
already know that there is only one, so calling the next method on it will return
the SOAPBodyETement you want. Note that the Iterator.next method returns a
Java Object, S0 you need to cast the Object it returns to a SOAPBodyElement
object before assigning it to the variable bodyET1ement.

SOAPBody soapBody = response.getSOAPBody();

java.util.Iterator iterator =
soapBody.getChildElements (bodyName);

SOAPBodyElement bodyElement =
(SOAPBodyElement)iterator.next();

String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW 1is ");

System.out.println(lastPrice);

If more than one element had the name bodyName, you would have to use a
while loop using the Iterator.hasNext method to make sure that you got all of
them.

while (iterator.hasNext()) {
SOAPBodyElement bodyElement =
(SOAPBodyETement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.printin(lastPrice);
3

At this point, you have seen how to send a very basic request-response message
and get the content from the response. The next sections provide more detail on
adding content to messages.

361

362

SOAP wWiTH ATTACHMENTS APl FOR JAVA

Adding Content to the Header

To add content to the header, you create a SOAPHeaderElement object. As with
al new elements, it must have an associated Name object, which you can create
using the message’'s SOAPEnveTlope object or a SOAPFactory object.

For example, suppose you want to add a conformance claim header to the mes-
sage to state that your message conforms to the WS-1 Basic Profile. The follow-
ing code fragment retrieves the SOAPHeader object from message and adds a
new SOAPHeaderElement object to it. This SOAPHeaderETlement object contains
the correct qualified name and attribute for a WS-1 conformance claim header.

SOAPHeader header = message.getSOAPHeader();

Name headerName = soapFactory.createName("Claim",
"wsi", "http://ws-i.org/schemas/conformanceClaim/");

SOAPHeaderElement headerElement =
header.addHeaderElement (headerName) ;

headerElement.addAttribute(soapFactory.createName(
"conformsTo"), "http://ws-1i.org/profiles/basicl.0/");

At this point, header contains the SOAPHeaderETement object headerElement
identified by the Name object headerName. Note that the addHeaderElement
method both creates headerElement and adds it to header.

A conformance claim header has no content. This code produces the following
XML header:

<SOAP-ENV:Header>
<wsi:Claim conformsTo="http://ws-i.org/profiles/basicl.0/"
xmIns:wsi="http://ws-1i.org/schemas/conformanceClaim/"/>
</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-I, see
the Messaging section of the WS-I Basic Profile.

For adifferent kind of header, you might want to add content to headerETlement.
Thefollowing line of code uses the method addTextNode to do this.

headerElement.addTextNode("order™);

Now you have the SOAPHeader object header that contains a SOAPHeaderETe-
ment object whose content is "order".

http://www.ws-i.org/Profiles/Basic/2003-01/BasicProfile-1.0-WGAD.html#messaging

ADDING CONTENT TO THE SOAPPART OBJECT

Adding Content to the SOAPPart Object

If the content you want to send isin afile, SAAJ provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody
object and build the XML content yourself, as you did in the preceding section.

To add a file directly to the SOAPPart object, you use a javax.xml.trans-
form. Source object from JAXP (the Java API for XML Processing). There are
three types of Source objects. SAXSource, DOMSource, and StreamSource. A
StreamSource object holds an XML document in text form. SAXSource and
DOMSource objects hold content along with the instructions for transforming the
content into an XML document.

The following code fragment uses the JAXP API to build a DOMSource object
that is passed to the SOAPPart.setContent method. Thefirst three lines of code
get a DocumentBuilderFactory object and use it to create the Document-
Builder object builder. Because SOAP messages use namespaces, you should
set the NamespaceAware property for the factory to true. Then builder parses
the content file to produce aDocument object.

DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance();

dbFactory.setNamespaceAware(true);

DocumentBuilder builder = dbFactory.newDocumentBuilder();

Document document =
builder.parse("file:///music/order/soap.xml");

DOMSource domSource = new DOMSource(document);

The following two lines of code access the SOAPPart object (using the SOAPMes -
sage object message) and set the new Document object asits content. The SOAP-
Part.setContent method not only sets content for the SOAPBody object but aso
sets the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

363

364

SOAP wWiTH ATTACHMENTS APl FOR JAVA

The XML file you use to set the content of the SOAPPart object must include
Envelope and Body € ements:

<SOAP-ENV:Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections Adding a
Document to the SOAP Body (page 364) and Adding Attachments (page 365).

Adding a Document to the SOAP Body

In addition to setting the content of the entire SOAP message to that of a DOM-
Source object, you can add a DOM document directly to the body of the mes-
sage. This capability means that you do not have to create a
javax.xml.transform.Source object. After you parse the document, you can
add it directly to the message body:

SOAPBody body = message.getSOAPBody();
SOAPBodyElement docElement = body.addDocument(document) ;

Manipulating Message Content Using
SAAJ or DOM APIs

Because SAAJ nodes and elements implement the DOM Node and Element
interfaces, you have many options for adding or changing message content:

* Useonly DOM APIs.

* Useonly SAAJAPIs.

» Use SAAJAPIs and then switch to using DOM APIs.

* Use DOM APIsand then switch to using SAAJAPIs.
The first three of these cause no problems. After you have created a message,

whether or not you have imported its content from another document, you can
start adding or changing nodes using either SAAJor DOM APIs.

But if you use DOM APIsand then switch to using SAAJ APIsto manipulate the
document, any references to objects within the tree that were obtained using

ADDING ATTACHMENTS

DOM APIs are no longer valid. If you must use SAAJ APIs after using DOM
APIs, you should set all your DOM typed references to null, because they can
become invalid. For more information about the exact cases in which references
becomeinvalid, see the SAAJ APl documentation.

The basic rule is that you can continue manipulating the message content using
SAAJ APIs as long as you want to, but after you start manipulating it using
DOM, you should no longer use SAAJAPIs.

Adding Aftachments

An AttachmentPart object can contain any type of content, including XML.
And because the SOAP part can contain only XML content, you must use an
AttachmentPart object for any content that isnot in XML format.

Creating an AttachmentPart Object and
Adding Content

The SOAPMessage object creates an AttachmentPart object, and the message
also must add the attachment to itself after content has been added. The SOAP-
Message class has three methods for creating an AttachmentPart object.

The first method creates an attachment with no content. In this case, an Attach-
mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment by using the AttachmentPart method setCon-
tent. This method takes two parameters. a Java Object for the content, and a
String object for the MIME content type that is used to encode the object. Con-
tent in the SOAPBody part of a message automatically has a Content-Type header
with the value "text/xm1" because the content must bein XML. In contrast, the
type of content in an AttachmentPart object must be specified because it can be

any type.

Each AttachmentPart object has one or more MIME headers associated with it.
When you specify a type to the setContent method, that type is used for the
header Content-Type. Note that Content-Type is the only header that is
required. You may set other optional headers, such as Content-Id and Content-
Location. For convenience, SAAJ provides get and set methods for the head-
ers Content-Type, Content-Id, and Content-Location. These headers can be

365

366

SOAP wWiTH ATTACHMENTS APl FOR JAVA

helpful in accessing a particular attachment when a message has multiple attach-
ments. For example, to access the attachments that have particular headers, you
can call the SOAPMessage method getAttachments and pass it a MIMEHeaders
object containing the MIME headers you are interested in.

The following code fragment shows one of the ways to use the method setCon-
tent. The Java Object in the first parameter can be a String, a stream, a
javax.xml.transform.Source object, or a javax.activation.DataHandler
object. The JavaObject being added in the following code fragment isaString,
which is plain text, so the second argument must be "text/plain". The code
also sets a content identifier, which can be used to identify this AttachmentPart
object. After you have added content to attachment, you must add it to the
SOAPMessage object, something that is done in the last line.

String stringContent = "Update address for Sunny Skies " +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain');
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that con-
tains the string stringContent and has a header that contains the string "text/
plain". It also has a Content-Id header with "update_address" asits value.
And attachment isnow part of message.

The other two SOAPMessage.createAttachment methods create an Attach-
mentPart object complete with content. One is very similar to the Attachment-
Part.setContent method in that it takes the same parameters and does
essentially the same thing. It takes a Java Object containing the content and a
String giving the content type. As with AttachmentPart.setContent, the
Object can beaString, astream, a javax.xml.transform.Source object, or a
javax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a
DataHandler object, which is part of the JavaBeans Activation Framework
(JAF). Using a DataHandler object is fairly straightforward. First, you create a

ADDING ATTACHMENTS

java.net.URL abject for the file you want to add as content. Then you create a
DataHandler object initialized with the URL object:

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment =
message.createAttachmentPart(dataHandler);
attachment.setContentId("attached_image");

message.addAttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for
Content-ID using the method setContentId. This method takes a String that
can be whatever you like to identify the attachment. Second, unlike the other
methods for setting content, this one does not take a String for Content-Type.
This method takes care of setting the Content-Type header for you, something
that is possible because one of the things aDataHandler object doesis to deter-
mine the data type of thefileit contains.

Accessing an AttachmentPart Object

If you receive a message with attachments or want to change an attachment to a
message you are building, you need to access the attachment. The SOAPMessage
class provides two versions of the getAttachments method for retrieving its
AttachmentPart objects. When it is given no argument, the method SOAPMes -
sage.getAttachments returns a java.util.Iterator object over al the
AttachmentPart objectsin a message. When getAttachments is given aMime-
Headers object, which is a list of MIME headers, getAttachments returns an
iterator over the AttachmentPart objects that have a header that matches one of
the headersin the list. The following code uses the getAttachments method that
takes no arguments and thus retrieves all the AttachmentPart objects in the
SOAPMessage object message. Then it printsthe content ID, the content type, and
the content of each AttachmentPart object.

java.util.Iterator iterator = message.getAttachments();
while (iterator.hasNext()) {
AttachmentPart attachment =
(AttachmentPart)iterator.next();
String id = attachment.getContentId();
String type = attachment.getContentType();
System.out.print("Attachment " + id +
" has content type " + type);
if (type == "text/plain™) {

367

368

SOAP wWiTH ATTACHMENTS APl FOR JAVA

Object content = attachment.getContent();

System.out.println("Attachment " +
"contains:\n" + content);

Adding Attributes

An XML element can have one or more attributes that give information about
that element. An attribute consists of a name for the attribute followed immedi-
ately by an equal sign (=) and its value.

The S0APETement interface provides methods for adding an attribute, for getting
the value of an attribute, and for removing an attribute. For example, in the fol-
lowing code fragment, the attribute named id is added to the SOAPETement
object person. Because person is a SOAPETement object rather than a SOAP-
BodyElement object or SOAPHeaderETlement object, it islegal for its Name object
to contain only alocal name.

Name attributeName = envelope.createName("id");
person.addAttribute(attributeName, "Person7");

These lines of code will generate the first line in the following XML fragment.
<person id="Person7">
</éé;son>

Thefollowing line of code retrieves the value of the attribute whose nameis id.

String attributeValue =
person.getAttributeValue(attributeName);

If you had added two or more attributes to person, the preceding line of code
would have returned only the value for the attribute named 1id. If you wanted to
retrieve the values for all the attributes for person, you would use the method
getAlT1Attributes, which returns an iterator over all the values. The following
lines of code retrieve and print each value on a separate line until there are no
more attribute values. Note that the Iterator.next method returns a Java
Object, which is cast to a Name object so that it can be assigned to the Name

ADDING ATTRIBUTES

object attributeName. (The examples in DOMExamplejava and
DOM SrcExample.java (page 389) use code similar to this.)

Iterator iterator = person.getAllAttributes();
while (iterator.hasNext()){
Name attributeName = (Name) iterator.next();

System.out.printin("Attribute name is " +
attributeName.getQualifiedName());

System.out.printIn("Attribute value is " +
element.getAttributeValue(attributeName));

}

The following line of code removes the attribute named id from person. The
variable successful will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This
information is general in that it applies to any element. The next section dis-
cusses attributes that can be added only to header elements.

Header Atiributes

Attributesthat appear in a SOAPHeaderE1ement object determine how arecipient
processes a message. You can think of header attributes as offering a way to
extend a message, giving information about such things as authentication, trans-
action management, payment, and so on. A header attribute refines the meaning
of the header, whereas the header refines the meaning of the message contained
in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAP-
HeaderElement objects: actor and mustUnderstand. The next two sections dis-
cuss these attributes.

See HeaderExample.java (page 387) for an example that uses the code shown in
this section.

The Actor Attribute

The actor attribute is optional, but if it isused, it must appear in a SOAPHeader -
ETement object. Its purpose is to indicate the recipient of a header element. The
default actor is the message’s ultimate recipient; that is, if no actor attribute is
supplied, the message goes directly to the ultimate recipient.

369

370

SOAP wWiTH ATTACHMENTS APl FOR JAVA

An actor is an application that can both receive SOAP messages and forward
them to the next actor. The ability to specify one or more actors as intermediate
recipients makes it possible to route a message to multiple recipients and to sup-
ply header information that applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. I1ts SOAP-
Header object might have SOAPHeaderETlement objects with actor attributes that
route the message to applications that function as the order desk, the shipping
desk, the confirmation desk, and the billing department. Each of these applica-
tions will take the appropriate action, remove the SOAPHeaderETlement objects
relevant to it, and send the message on to the next actor.

Note: Although the SAAJAPI providesthe API for adding these attributes, it does
not supply the API for processing them. For example, the actor attribute requires
that there be an implementation such as a messaging provider service to route the
message from one actor to the next.

An actor is identified by its URI. For example, the following line of code, in
which orderHeader is a SOAPHeaderElement object, sets the actor to the given
URI.

orderHeader.setActor("http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The fol-
lowing code fragment first usesthe SOAPMessage object message to get its SOAP-
Header object header. Then header creates four SOAPHeaderElement objects,
each of which setsits actor attribute.

SOAPHeader header = message.getSOAPHeader();
SOAPFactory soapFactory = SOAPFactory.newInstance();
String nameSpace = "ns";

String nameSpaceURI = "http://gizmos.com/NSURI";

Name order = soapFactory.createName("orderDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement orderHeader =
header.addHeaderElement(order);

orderHeader.setActor("http://gizmos.com/orders");

Name shipping =
soapFactory.createName("shippingDesk",
nameSpace, nameSpaceURI);

ADDING ATTRIBUTES

SOAPHeaderETlement shippingHeader =
header.addHeaderETement(shipping);
shippingHeader.setActor("http://gizmos.com/shipping");

Name confirmation =
soapFactory.createName("confirmationDesk",
nameSpace, nameSpaceURI);
SOAPHeaderElement confirmationHeader =
header.addHeaderElement(confirmation);
confirmationHeader.setActor(
"http://gizmos.com/confirmations");

Name billing = soapFactory.createName("biT1TingDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement billingHeader =
header.addHeaderElement(billing);

billingHeader.setActor("http://gizmos.com/billing");

The SOAPHeader interface provides two methods that return a java.util.Iter-
ator object over al the SOAPHeaderElement objects that have an actor that
matches the specified actor. The first method, examineHeaderElements, returns
an iterator over all the elements that have the specified actor.

java.util.Iterator headerElements =
header.examineHeaderElements ("http://gizmos.com/orders™);

The second method, extractHeaderElements, hot only returns an iterator over
all the SOAPHeaderETlement objects that have the specified actor attribute but
also detaches them from the SOAPHeader object. So, for example, after the order
desk application did its work, it would call extractHeaderElements to remove
all the SOAPHeaderElement objects that applied to it.

java.util.Iterator headerElements =
header.extractHeaderElements("http://gizmos.com/orders");

Each SOAPHeaderETement object can have only one actor attribute, but the same
actor can be an attribute for multiple SOAPHeaderE1ement objects.

Two additional SOAPHeader methods—examineAlTHeaderElements and
extractAl1HeaderElements—allow you to examine or extract all the header

371

372 SOAP WITH ATTACHMENTS APl FOR JAVA

elements, whether or not they have an actor attribute. For example, you could use
the following code to display the values of all the header elements:

Iterator allHeaders =
header.examineAlTHeaderElements();
while (allHeaders.hasNext()) {
SOAPHeaderElement headerElement =
(SOAPHeaderETement)allHeaders.next();
Name headerName =
headerElement.getElementName();
System.out.printin("\nHeader name is " +
headerName.getQualifiedName());

System.out.printin("Actor is " +
headerElement.getActor());

The mustUnderstand Attribute

The other attribute that must be added only to a SOAPHeaderElement object is
mustUnderstand. This attribute says whether or not the recipient (indicated by
the actor attribute) is required to process a header entry. When the value of the
mustUnderstand attribute is true, the actor must understand the semantics of
the header entry and must process it correctly to those semantics. If the value is
false, processing the header entry is optional. A SOAPHeaderElement object
with no mustUnderstand attribute is equivalent to one with a mustUnderstand
attribute whose value is false.

ThemustUnderstand attribute is used to call attention to the fact that the seman-
ticsin an element are different from the semanticsin its parent or peer elements.
This allows for robust evolution, ensuring that a change in semantics will not be
silently ignored by those who may not fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot
process the header, it must send a SOAP fault back to the sender. (See Using
SOAP Faults, page 373.) The actor must not change state or cause any side
effects, so that, to an outside observer, it appears that the fault was sent before
any header processing was done.

The following code fragment creates a SOAPHeader object with a SOAPHeader-
Element object that has amustUnderstand attribute.

SOAPHeader header = message.getSOAPHeader();

Name name = soapFactory.createName("Transaction", "t",
"http://gizmos.com/orders");

USING SOAP FAULTS

SOAPHeaderETement transaction = header.addHeaderElement(name) ;
transaction.setMustUnderstand(true);
transaction.addTextNode("5");

This code produces the following XML:

<SOAP-ENV:Header>
<t:Transaction
xmlns:t="http://gizmos.com/orders"
SOAP-ENV:mustUnderstand="1">
5
</t:Transaction>
</SOAP-ENV:Header>

You can use the getMustUnderstand method to retrieve the value of the mus-
tUnderstand attribute. For example, you could add the following to the code
fragment at the end of the preceding section:

System.out.printin("mustUnderstand is " +
headerElement.getMustUnderstand());

Using SOAP Faults

In this section, you will see how to use the API for creating and accessing a
SOAP fault element in an XML message.

Overview of SOAP Faults

If you send a message that was not successful for some reason, you may get back
aresponse containing a SOAP fault element, which gives you status information,
error information, or both. There can be only one SOAP fault element in ames-
sage, and it must be an entry in the SOAP body. Furthermore, if thereisa SOAP
fault element in the SOAP body, there can be no other elements in the SOAP
body. This means that when you add a SOAP fault element, you have effectively
completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJ
API, is similar to an Exception object in that it conveys information about a
problem. However, a SOAPFault object is quite different in that it is an element
in a message’'s SOAPBody object rather than part of the try/catch mechanism
used for Exception objects. Also, as part of the SOAPBody object, which pro-

373

374

SOAP wWiTH ATTACHMENTS APl FOR JAVA

vides a simple means for sending mandatory information intended for the ulti-
mate recipient, a SOAPFault object only reports status or error information. It
does not halt the execution of an application, as an Exception object can.

If you are a client using the SAAJ API and are sending point-to-point messages,
the recipient of your message may add a SOAPFault object to the response to
alert you to a problem. For example, if you sent an order with an incomplete
address for where to send the order, the service receiving the order might put a
SOAPFault object in the return message telling you that part of the address was
missing.

Another example of who might send a SOAP fault is an intermediate recipient,
or actor. As stated in the section Adding Attributes (page 368), an actor that can-
not process a header that has a mustUnderstand attribute with a value of true
must return a SOAP fault to the sender.

A SOAPFault object contains the following elements:

» A fault code: Always required. The fault code must be a fully qualified
name: it must contain a prefix followed by a local name. The SOAP 1.1
specification defines a set of fault code local name valuesin section 4.4.1,
which a developer can extend to cover other problems. The default fault
code local names defined in the specification relate to the SAAJAPI asfol-
lows:

* VersionMismatch: The namespace for a SOAPEnvelope object was
invalid.

* MustUnderstand: Animmediate child element of a SOAPHeader object
had its mustUnderstand attribute set to true, and the processing party
did not understand the element or did not obey it.

* Client: The SOAPMessage object was not formed correctly or did not
contain the information needed to succeed.

* Server: The SOAPMessage object could not be processed because of a
processing error, not because of a problem with the message itself.

» A fault string: Always required. A human-readable explanation of the
fault.

» A fault actor: Required if the SOAPHeader object contains one or more
actor attributes; optiona if no actors are specified, meaning that the only
actor is the ultimate destination. The fault actor, which is specified as a
URI, identifies who caused the fault. For an explanation of what an actor
is, see The Actor Attribute, page 369.

USING SOAP FAULTS

» A Detail object: Required if the fault is an error related to the SOAPBody
object. If, for example, the fault code is Client, indicating that the mes-
sage could not be processed because of a problem in the SOAPBody object,
the SOAPFaul+t object must contain aDetai1 object that gives detail s about
the problem. If aSOAPFauTlt object doesnot contain aDetail object, it can
be assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object

You have seen how to add content to a SOAPBody object; this section walks you
through adding a SOAPFault object to a SOAPBody object and then adding its
constituent parts.

Aswith adding content, the first step isto access the SOAPBody object.
SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault
object. The following line of code creates a SOAPFault object and adds it to
body.

SOAPFault fault = body.addFault();

The SOAPFault interface provides convenience methods that create an element,
add the new element to the SOAPFault object, and add a text node, al in one
operation. For example, in the following lines of code, the method setFault-
Code creates a faultcode element, adds it to fault, and adds a Text node with
the value "SOAP-ENV: Server" by specifying a default prefix and the namespace
URI for a SOAP envelope.

Name faultName =
soapFactory.createName("Server",

""" SOAPConstants.URI_NS_SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultActor("http://gizmos.com/orders™);
fault.setFaultString("Server not responding");

The SOAPFault object fault, created in the preceding lines of code, indicates
that the cause of the problem is an unavailable server and that the actor at http:/
/gizmos.com/orders is having the problem. If the message were being routed
only to its ultimate destination, there would have been no need to set a fault
actor. Also note that fault does not have a Detail object because it does not
relate to the SOAPBody object.

375

376

SOAP wWiTH ATTACHMENTS APl FOR JAVA

The following code fragment creates a SOAPFault object that includes aDetai
object. Note that a SOAPFault object can have only one Detail object, which is
simply a container for DetailEntry objects, but the Detail object can have
multiple DetailEntry objects. The Detail object in the following lines of code
has two Detai1Entry objects added to it.

SOAPFault fault = body.addFault(Q);

Name faultName = soapFactory.createName("Client",

""" SOAPConstants.URI_NS_SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail(Q);

Name entryName = soapFactory.createName("order",

"PO", "http://gizmos.com/orders/");
DetailEntry entry = detail.addDetailEntry(entryName);
entry.addTextNode("Quantity element does not have a value");

Name entryName2 = soapFactory.createName("confirmation",
"PO", "http://gizmos.com/confirm");

DetailEntry entry2 = detail.addDetailEntry(entryName2);

entry2.addTextNode("Incomplete address: no zip code");

See SOAPFaultTest.java (page 394) for an example that uses code like that
shown in this section.

Retrieving Fault Information

Just as the SOAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.
The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newMessage is the
SOAPMessage object that has been sent to you. Because a SOAPFault object must
be part of the SOAPBody object, the first step is to access the SOAPBody object.
Then the code tests to see whether the SOAPBody object contains a SOAPFault
object. If it does, the code retrieves the SOAPFault object and uses it to retrieve

USING SOAP FAULTS

its contents. The convenience methods getFaultCode, getFaultString, and
getFaultActor make retrieving the values very easy.

SOAPBody body = newMessage.getSOAPBody();

if (body.hasFault()) {
SOAPFault newFault = body.getFault(Q);
Name code = newFault.getFaultCodeAsName();
String string = newFault.getFaultString(Q);
String actor = newFault.getFaultActor(Q);

Next the code printsthe valuesit has just retrieved. Not all messages are required
to have a fault actor, so the code tests to see whether there is one. Testing
whether the variable actor is nul11 works because the method getFaultActor
returnsnull if afault actor has not been set.

System.out.printIn("SOAP fault contains: ");

System.out.printin(" Fault code = " +
code.getQualifiedName());
System.out.printin(" Fault string = " + string);

if (actor != null) {
System.out.printin(" Fault actor = " + actor);

}

The final task is to retrieve the Detail object and get its DetailEntry objects.
The code uses the SOAPFault object newFault to retrieve the Detail object
newDetail, and then it uses newDetail to call the method getDetailEntries.
This method returns the java.util.Iterator object entries, which contains
all the DetailEntry objects in newDetail. Not al SOAPFault objects are
required to have aDetail object, so the code tests to see whether newDetail is
null. If itisnot, the code prints the values of the DetailEntry objectsaslong as
there are any.

Detail newDetail = newFault.getDetail();
if (newDetail != null) {
Iterator entries = newDetail.getDetailEntries();
while (entries.hasNext()) {
DetailEntry newEntry =
(DetailEntry)entries.next();
String value = newEntry.getValue();
System.out.printin(" Detail entry = " + value);

}

377

378

SOAP wWiTH ATTACHMENTS APl FOR JAVA

In summary, you have seen how to add a SOAPFault object and its contentsto a
message as well as how to retrieve the contents. A SOAPFault object, which is
optional, is added to the SOAPBody object to convey status or error information. It
must always have a fault code and a String explanation of the fault. A SOAP-
Fault object must indicate the actor that is the source of the fault only when
there are multiple actors, otherwise, it is optional. Similarly, the SOAPFault
object must contain aDetai1 object with one or more DetailEntry objects only
when the contents of the SOAPBody object could not be processed successfully.

See SOAPFaultTest.java (page 394) for an example that uses code like that
shown in this section.

Code Examples

Thefirst part of thistutorial uses code fragments to walk you through the funda
mentals of using the SAAJ API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Request. java.
Then you will see how to run the programs MyUddiPing.java, HeaderExam-
ple.java, DOMExample.java, DOMSrcExample.java, Attachments.java, and
SOAPFaultTest.java.

You do not have to start the Sun Java System Application Server Platform Edi-
tion 8 in order to run these examples.

Request.java

The class Request. java puts together the code fragments used in the section
Tutoria (page 352) and adds what is needed to make it a complete example of a
client sending a request-response message. In addition to putting al the code
together, it adds import statements, amain method, and a try/catch block with
exception handling.

import javax.xml.soap.*;
import java.util.®;
import java.net.URL;

public class Request {
public static void main(String[] args){
try {
SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

REQUEST.JAVA 379

SOAPConnection connection =
soapConnectionFactory.createConnection();

SOAPFactory soapFactory =
SOAPFactory.newInstance();

MessageFactory factory =
MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

Name bodyName = soapFactory.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

SOAPBodyElement bodyElement =
body.addBodyE1ement (bodyName) ;

Name name = soapFactory.createName("symbol");

SOAPElement symbol =
bodyETement.addChiTdElement(name);

symboTl.addTextNode ("SUNW") ;

URL endpoint = new URL
("http://wombat.ztrade.com/quotes™);
SOAPMessage response =
connection.call(message, endpoint);
connection.close();

SOAPBody soapBody = response.getSOAPBody();

Iterator iterator
soapBody.getChildElements (bodyName);

bodyElement = (SOAPBodyElement)iterator.next();

String lastPrice = bodyElement.getValue(Q);

System.out.print("The last price for SUNW 1is ");
System.out.printin(lastPrice);

} catch (Exception ex) {
ex.printStackTrace(Q);
}

}
}

380

SOAP wWiTH ATTACHMENTS APl FOR JAVA

For Request.java to be runnable, the second argument supplied to the call
method would have to be a valid existing URI, and this is not true in this case.
However, the application in the next section is one that you can run.

MyUddiPing.java

The program MyUdd1iPing. java isanother example of a SAAJ client application.
It sends arequest to a Universal Description, Discovery and Integration (UDDI)
service and gets back the response. A UDDI service is a business registry and
repository from which you can get information about businesses that have regis-
tered themselves with the registry service. For this example, the MyUddiPing
application is not actually accessing a UDDI service registry but rather a test
(demo) version. Because of this, the number of businesses you can get informa-
tion about is limited. Nevertheless, MyUddiPing demonstrates a request being
sent and a response being received.

Setting Up
The MyUddiPing example isin the following directory:

<INSTALL>/j2eetutoriall4d/examples/saaj/myuddiping/

Note: <INSTALL> isthe directory where you installed the tutorial bundle.

In the myuddiping directory, you will find two files and the src directory. The
src directory contains one source file, MyUddiPing. java.

Thefileuddi.properties containsthe URL of the destination (a UDDI test reg-
istry) and the proxy host and proxy port of the sender. By default, the destination
isthe IBM test registry; the Microsoft test registry is commented out.

If you access the Internet from behind a firewall, edit the uddi . properties file
to supply the correct proxy host and proxy port. If you are not sure what the val-
ues for these are, consult your system administrator or another person with that
information. The typical value of the proxy port is 8080. You can also edit the
file to specify another registry.

The file build.xm1 is the asant build file for this example. It includes the file
<INSTALL>/j2eetutoriall4/examples/saaj/common/targets.xml, which
contains a set of targets common to all the SAAJ examples.

MYUDDIPING.JAVA

The prepare target creates adirectory named bui1d. To invoke the prepare tar-
get, you type the following at the command line:

asant prepare

The target named bui1d compiles the source file MyUddiPing. java and puts the
resulting . class file in the build directory. So to do these tasks, you type the
following at the command line:

asant build

Examining MyUddiPing

We will go through the file MyuddiPing.java afew lines at a time, concentrat-
ing on the last section. This is the part of the application that accesses only the
content you want from the XML message returned by the UDDI registry.

Thefirst few lines of code import the packages used in the application.

import javax.xml.soap.*;
import java.net.*;
import java.util.*;
import java.io.*;

The next few lines begin the definition of the class MyuddiPing, which starts
with the definition of itsmain method. The first thing it does is to check to see
whether two arguments were supplied. If they were nat, it prints a usage message
and exits. The usage message mentions only one argument; the other is supplied
by the build.xm1 target.

public class MyUddiPing {
public static void main(String[] args) {
try {

if (args.length != 2) {

System.err.println("Usage: asant run " +
"-Dbusiness-name=<name>") ;

System.exit(l);

}

381

382 SOAP WITH ATTACHMENTS APl FOR JAVA

The following lines create a java.util.Properties object that contains the
system properties and the properties from the file uddi . properties, whichisin
the myuddiping directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[0]));

Properties props = System.getProperties();

Enumeration enum = myprops.propertyNames();
while (enum.hasMoreETements()) {
String s = (String)enum.nextElement();
props.setProperty(s, myprops.getProperty(s));
3

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and usesit to create a connection. Then it gets an
instance of MessageFactory and uses it to create a message.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection =
soapConnectionFactory.createConnection();

MessageFactory messageFactory =
MessageFactory.newInstance();

SOAPMessage message =
messageFactory.createMessage();

The next lines of code retrieve the SOAPHeader and SOAPBody objects from the
message and remove the header.

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

The following lines of code create the UDDI find_business message. The first
line gets a SOAPFactory instance that we will use to create names. The next line
adds the SOAPBodyETement with a fully qualified name, including the required
namespace for a UDDI version 2 message. The next lines add two attributes to
the new element: the required attribute generic, with the UDDI version number
2.0, and the optional attribute maxRows, with the value 100. Then the code adds a
child element that has the Name object name and adds text to the element by using

MYUDDIPING.JAVA 383

the method addTextNode. The added text is the business name you will supply at
the command line when you run the application.

SOAPFactory soapFactory =
SOAPFactory.newInstance();

SOAPBodyETement findBusiness =
body.addBodyElement (soapFactory.createName(

"find_business", ,
"urn:uddi-org:api_v2"));
findBusiness.addAttribute(soapFactory.createName(
"generic"), "2.0");
findBusiness.addAttribute(soapFactory.createName(
"maxRows"), "100");
SOAPETement businessName =
findBusiness.addChildETement(
soapFactory.createName("name"));
businessName.addTextNode(args[1]);

The next line of code saves the changes that have been made to the message.
This method will be called automatically when the message is sent, but it does
not hurt to call it explicitly.

message.saveChanges();
Thefollowing lines display the message that will be sent:

System.out.println("\n--- Request Message ---\n");
message.writeTo(System.out);

The next line of code creates the java.net.URL object that represents the desti-
nation for this message. It gets the value of the property named URL from the sys-
tem property file.

URL endpoint = new URL(
System.getProperties().getProperty("URL"));

Next, the message message is sent to the destination that endpoint represents,
which isthe UDDI test registry. The ca11 method will block until it gets a SOAP-
Message object back, at which point it returns the reply.

SOAPMessage reply =
connection.call(message, endpoint);

384

SOAP wWiTH ATTACHMENTS APl FOR JAVA

In the next lines of code, the first line prints aline giving the URL of the sender
(the test registry), and the others display the returned message.

System.out.printIn("\n\nReceived reply from: +
endpoint);

System.out.printin("\n---- Reply Message ----\n");

reply.writeTo(System.out);

The returned message is the complete SOAP message, an XML document, as it
looks when it comes over the wire. It isabusinessList that follows the format
specified in http://uddi.org/pubs/DataStructure-V2.03-Published-
20020719.htm#_Toc25130802

Asinteresting asit isto seethe XML that is actually transmitted, the XML docu-
ment format does not make it easy to see the text that is the message's content.
To remedy this, the last part of MyUddiPing.java contains code that prints only
the text content of the response, making it much easier to see the information you
want.

Because the content is in the SOAPBody object, the first step is to access it, as
shown in the following line of code.

SOAPBody replyBody = reply.getSOAPBody();

Next, the code displays a message describing the content:

System.out.printIn("\n\nContent extracted from " +
"the reply message:\n");

To display the content of the message, the code uses the known format of the
reply message. First, it gets al the reply body’s child elements named busi-
nessList:

Iterator businesslListIterator =
replyBody.getChildETlements(
soapFactory.createName("businessList",
""" "urn:uddi-org:api_v2"));

The method getChildElements returns the elements in the form of a
java.util.Iterator object. You access the child elements by caling the
method next on the Iterator object. An immediate child of a SOAPBody object
isa SOAPBodyETement object.

We know that the reply can contain only one businessList element, so the code
then retrieves this one element by calling the iterator’s next method. Note that

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802

MYUDDIPING.JAVA

the method Iterator.next returns an Object, which must be cast to the spe-
cific kind of object you are retrieving. Thus, the result of caling
businessListIterator.next iScast to a SOAPBodyETement object:

SOAPBodyElement businessList =
(SOAPBodyETement)businessListIterator.next();

The next element in the hierarchy is a single businessInfos element, so the
code retrieves this element in the same way it retrieved the businessList. Chil-
dren of SOAPBodyE1ement objects and all child elements from this point forward
are SOAPETement objects.

Iterator businessInfosIterator =
businessList.getChildElements(
soapFactory.createName("businessInfos",
""", "urn:uddi-org:api_v2"));

SOAPETement businessInfos =
(SOAPETement)businessInfosIterator.next();

The businessInfos element contains zero or more businessInfo elements. If
the query returned no businesses, the code prints a message saying that none
were found. If the query returned businesses, however, the code extracts the
name and optiona description by retrieving the child elements that have those
names. The method Iterator.hasNext can be used in awhile loop because it
returns true as long as the next call to the method next will return a child ele-
ment. Accordingly, the loop ends when there are no more child elements to
retrieve.

Iterator businessInfolterator =
businessInfos.getChildElements(
soapFactory.createName("businessInfo",
""", "urn:uddi-org:api_v2"));

if (! businessInfolterator.hasNext()) {
System.out.printin("No businesses found " +
"matching the name '" + args[1] +
")
} else {
while (businessInfoIterator.hasNext()) {
SOAPETlement businessInfo = (SOAPElement)
businessInfoIterator.next();
// Extract name and description from the
// businessInfo
Iterator namelterator =

385

386

SOAP wWiTH ATTACHMENTS APl FOR JAVA

businessInfo.getChildElements(
soapFactory.createName("name",
"', "urn:uddi-org:api_v2"));
while (nameIterator.hasNext()) {
businessName =
(SOAPETement)namelterator.next();
System.out.println("Company name: " +
businessName.getValue());
}
Iterator descriptionIterator =
businessInfo.getChildETlements(
soapFactory.createName(
"description", "",
"urn:uddi-org:api_v2"));
while (descriptionIterator.hasNext()) {
SOAPE1ement businessDescription =
(SOAPETement)
descriptionIterator.next();
System.out.println("Description: " +
businessDescription.getValue());
}
System.out.println("");

Running MyUddiPing

Make sure you have edited the uddi .properties file and compiled MyuddiP-
ing.java asdescribed in Setting Up (page 380).

With the code compiled, you are ready to run MyUddiPing. The run target takes
two arguments, but you need to supply only one of them. The first argument is
the file uddi.properties, which is supplied by a property set in build.xml.
The other argument is the name of the business for which you want to get a
description, and you need to supply this argument on the command line. Note
that any property set on the command line overrides any value set for that prop-
erty inthe build.xm1 file.

Use the following command to run the example:

asant run -Dbusiness-name=food

HEADEREXAMPLE.JAVA

Output similar to the following will appear after the full XML message:

Content extracted from the reply message:

Company name: Food
Description: Test Food

Company name: Food Manufacturing

Company name: foodCompanyA
Description: It is a food company sells biscuit

If you want to run MyUddiPing again, you may want to start over by deleting the
build directory and the . c1ass fileit contains. You can do this by typing the fol-
lowing at the command line:

asant clean

HeaderExample.java

The example HeaderExample. java, based on the code fragments in the section
Adding Attributes (page 368), creates a message that has several headers. It then
retrieves the contents of the headers and prints them. You will find the code for
HeaderExample in the following directory:

<INSTALL>/j2eetutoriall4/examples/saaj/headers/src/

Running HeaderExample

To run HeaderExample, you use the file build.xm1 that is in the directory
<INSTALL>/j2eetutoriall4d/examples/saaj/headers/.

To run HeaderExample, use the following command:
asant run

This command executes the prepare, build, and run targets in the build.xm1
and targets.xm1 files,

387

388 SOAP WITH ATTACHMENTS APl FOR JAVA

When you run HeaderExample, you will see output similar to the following:

————— Request Message ----

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>

<ns:orderDesk SOAP-ENV:actor="http://gizmos.com/orders"
xmlns:ns="http://gizmos.com/NSURI" />

<ns:shippingDesk SOAP-ENV:actor="http://gizmos.com/shipping’
xmlns:ns="http://gizmos.com/NSURI" />

<ns:confirmationDesk
SOAP-ENV:actor="http://gizmos.com/confirmations"
xmlns:ns="http://gizmos.com/NSURI" />

<ns:billingDesk SOAP-ENV:actor="http://gizmos.com/billing"
xmlns:ns="http://gizmos.com/NSURI" />

<t:Transaction SOAP-ENV:mustUnderstand="1" xmlns:t="http://
gizmos.com/orders">5</t:Transaction>
</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envelope>
Header name 1is ns:orderDesk

Actor is http://gizmos.com/orders

mustUnderstand is false

Header name is ns:shippingDesk
Actor is http://gizmos.com/shipping
mustUnderstand is false

Header name 1is ns:confirmationDesk
Actor is http://gizmos.com/confirmations
mustUnderstand is false

Header name is ns:billingDesk
Actor is http://gizmos.com/billing
mustUnderstand is false

Header name 1is t:Transaction
Actor is null
mustUnderstand is true

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

DOMExample.java and
DOMSrcExample.java

The examples DOMExample. java and DOMSrcExample.java show how to add a
DOM document to a message and then traverse its contents. They show two
waysto do this:

* DOMExample.java creates a DOM document and adds it to the body of a
message.

* DOMSrcExample.java createsthe document, usesit to create aDOMSource
object, and then sets the DOMSource object as the content of the message’s
SOAP part.

You will find the code for DOM Example and DOM SrcExample in the following
directory:

<INSTALL>/j2eetutoriall4/examples/saaj/dom/src/

Examining DOMExample

DOMExample first creates a DOM document by parsing an XML document,
amost exactly like the JAXP example DomEchoOl.java in the directory
<INSTALL>/j2eetutoriall4/examples/jaxp/dom/samples/. Thefileit parses
is one that you specify on the command line.

static Document document;

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

try {
DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(new File(Cargs[0]));

Next, the example creates a SOAP message in the usual way. Then it adds the
document to the message body:

SOAPBodyETement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displaysthe
message content and then uses a recursive method, getContents, to traverse the

389

390 SOAP WITH ATTACHMENTS APl FOR JAVA

element tree using SAAJ APIs and display the message contents in a readable
form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {
Node node = (Node) iterator.next(Q;
SOAPET1ement element = null;
Text text = null;
if (node instanceof SOAPETement) {
element = (SOAPElement)node;
Name name = element.getElementName();
System.out.println(indent + "Name is " +
name.getQualifiedName());
Iterator attrs = element.getAllAttributes();
while (attrs.hasNext()){
Name attrName = (Name)attrs.next();
System.out.println(indent +
" Attribute name is " +
attrName.getQualifiedName());
System.out.println(indent +
" Attribute value is " +
element.getAttributeValue(attrName));
3
Iterator iter2 = element.getChildElements();
getContents(iter2, indent + " ");
} else {
text = (Text) node;
String content = text.getValue();
System.out.println(indent +
"Content is: " + content);
}
}

}

Examining DOMSrcExample

DOMSrcExample differs from DOMExample in only a few ways. First, after it
parses the document, DOM SrcExample uses the document to create a DOM-
Source object. This code is the same as that of DOM Example except for the last
line:

static DOMSource domSource;

try {
DocumentBuilder builder =

DOMEXAMPLE.JAVA AND DOM SRCEXAMPLE.JAVA

factory.newDocumentBuilder();
document = builder.parse(new File(Cargs[0]));
domSource = new DOMSource(document);

Then, after DOM SrcExample creates the message, it does not get the header and
body and add the document to the body, as DOMExample does. Instead, DOM-
SrcExample gets the SOAP part and sets the DOMSource object as its content:

// Create a message
SOAPMessage message =
messageFactory.createMessage();

// Get the SOAP part and set its content to domSource
SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both
the header (if it exists) and the body of the message.

The most important difference between these two examples is the kind of docu-
ment you can use to create the message. Because DOM Exampl e adds the docu-
ment to the body of the SOAP message, you can use any valid XML fileto create
the document. But because DOM SrcExample makes the document the entire
content of the message, the document must already be in the form of a valid
SOAP message, and not just any XML document.

Running DOMExample and DOMSrcExample

To run DOM Example and DOM SrcExample, you use the file build.xm1 that is
in the directory <INSTALL>/j2eetutoriall4/examples/saaj/dom/. This
directory also contains several sample XML files you can use:

e domsrcl.xml, an example that has a SOAP header (the contents of the
HeaderExample output) and the body of a UDDI query

» domsrc2.xml, an example of areply to aUDDI query (specifically, some
sample output from the MyUddiPing example), but with spaces added for
readability

* uddimsg.xml, similar to domsrc2.xm1 except that it is only the body of the
message and contains no spaces

e slide.xml, sSimilar to the sTideSample0l.xm1 file in <INSTALL>/
j2eetutoriall4/examples/jaxp/dom/samples/

391

392 SOAP WITH ATTACHMENTS APl FOR JAVA

To run DOM Example, use acommand like the following:
asant run-dom -Dxml1-fiTle=uddimsg.xm]l
After running DOM Example, you will see output something like the following:

Running DOMExample.

Name 1is businessList

Attribute name 1is generic

Attribute value is 2.0

Attribute name 1is operator

Attribute value is www.ibm.com/services/uddi
Attribute name 1is truncated

Attribute value is false

Attribute name 1is xmlns

Attribute value 1is urn:uddi-org:api_v2

To run DOM SrcExample, use acommand like the following:
asant run-domsrc -Dxml-file=domsrc2.xml

When you run DOM SrcExample, you will see output that begins like the follow-
ing:

run-domsrc:
Running DOMSrcExample.
Body contents:
Content is:

Name 1is businessList

Attribute name is generic

Attribute value is 2.0

Attribute name 1is operator

Attribute value is www.ibm.com/services/uddi
Attribute name 1is truncated

Attribute value is false

Attribute name is xmlns

Attribute value is urn:uddi-org:api_v2

If you run DOM SrcExample with the file uddimsg.xm1 or s1ide.xm1, you will
see runtime errors.

ATTACHMENTS.JAVA

Attachments.java

The example Attachments. java, based on the code fragments in the sections
Creating an AttachmentPart Object and Adding Content (page 365) and Access-
ing an AttachmentPart Object (page 367), creates a message that has a text
attachment and an image attachment. It then retrieves the contents of the attach-
ments and prints the contents of the text attachment. You will find the code for
Attachments in the following directory:

<INSTALL>/j2eetutoriall4/examples/saaj/attachments/src/

Attachments first creates a message in the usual way. It then creates an Attach-
mentPart for the text attachment:

AttachmentPart attachmentl = message.createAttachmentPart();

After it reads input from a file into a string named stringContent, it Sets the
content of the attachment to the value of the string and the type to text/plain
and also sets a content 1D.

attachmentl.setContent(stringContent, "text/plain');
attachmentl.setContentId("attached_text");

It then adds the attachment to the message:
message.addAttachmentPart(attachmentl);

The example usesa javax.activation.DataHandler object to hold areference
to the graphic that constitutes the second attachment. It creates this attachment
using the form of the createAttachmentPart method that takes aDataHandler
argument.

// Create attachment part for image

URL url = new URL("file:///../xml-pic.jpg");

DataHandler dataHandler = new DataHandler(url);

AttachmentPart attachment2 =
message.createAttachmentPart(dataHandler);

attachment2.setContentId("attached_image");

message.addAttachmentPart(attachment2);

393

394

SOAP wWiTH ATTACHMENTS APl FOR JAVA

The example then retrieves the attachments from the message. It displays the
contentId and contentType attributes of each attachment and the contents of
the text attachment.

Running Attachments

To run Attachments, you use the file build.xm1 that is in the directory
<INSTALL>/j2eetutoriall4/examples/saaj/attachments/.

To run Attachments, use the following command:
asant run -Dfile=path_name

Specify any text file as the path_name argument. The attachments directory
contains afile named addr. txt that you can use:

asant run -Dfile=addr.txt

When you run Attachments using this command line, you will see output like the
following:

Running Attachments.

Attachment attached_text has content type text/plain
Attachment contains:

Update address for Sunny Skies, Inc., to

10 Upbeat Street

Pleasant Grove, CA 95439

Attachment attached_image has content type image/jpeg

SOAPFauliTest.java

The example SOAPFaultTest. java, based on the code fragmentsin the sections
Creating and Populating a SOAPFault Object (page 375) and Retrieving Fault
Information (page 376), creates a message that has a SOAPFault object. It then
retrieves the contents of the SOAPFault object and prints them. You will find the
code for SOAPFaultTest in the following directory:

<INSTALL>/j2eetutoriall4d/examples/saaj/fault/src/

SOAPFAULTTEST.JAVA 395

Running SOAPFauliTest

To run SOAPFaultTest, you use the file build.xm1 that is in the directory
<INSTALL>/j2eetutoriall4/examples/saaj/fault/.

To run SOAPFaultTest, use the following command:
asant run

When you run SOAPFaultTest, you will see output like the following (line
breaks have been inserted in the message for readability):

Here is what the XML message Tooks Tike:

<SOAP-ENV:Envelope
xmTns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/><SOAP-ENV:Body>
<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Message does not have necessary info</faultstring>
<faultactor>http://gizmos.com/order</faultactor>

<detail>

<PO:order xmlns:PO="http://gizmos.com/orders/">

Quantity element does not have a value</PO:order>
<P0O:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>
</detail></SOAP-ENV:Fault>
</SOAP-ENV:Body></SOAP-ENV: Envelope>

SOAP fault contains:
Fault code = SOAP-ENV:Client
Local name = Client
Namespace prefix = SOAP-ENV, bound to
http://schemas.xmlsoap.org/soap/envelope/
Fault string = Message does not have necessary info
Fault actor = http://gizmos.com/order
Detail entry = Quantity element does not have a value
Detail entry = Incomplete address: no zip code

396 SOAP WITH ATTACHMENTS APl FOR JAVA

Further Information

For more information about SAAJ, SOAP, and WS1, see the following:

» SAAJ1.2 specification, available from
http://java.sun.com/xml/downloads/saaj.html

 SAAJWeb site:
http://java.sun.com/xml/saaj/

* WS- Basic Profile:

http://www.ws-1.0org/Profiles/Basic/2003-08/
BasicProfile-1.0a.html

« JAXM Web site:
http://java.sun.com/xml/jaxm/

http://java.sun.com/xml/saaj/
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html
http://java.sun.com/xml/jaxm/
http://java.sun.com/xml/downloads/saaj.html

10

Java API for XML
Registries

THE Java API for XML Registries (JAXR) provides a uniform and standard
Java API for accessing various kinds of XML registries.

After providing a brief overview of JAXR, this chapter describes how to imple-
ment a JAXR client to publish an organization and its Web services to aregistry
and to query aregistry to find organizations and services. Finaly, it explains how
to run the examples provided with this tutorial and offers links to more informa-
tion on JAXR.

Overview of JAXR

This section provides a brief overview of JAXR. It covers the following topics:

* What isaregistry?
« WhatisJAXR?
* JAXR architecture

What Is a Registry?

An XML registry is an infrastructure that enables the building, deployment, and
discovery of Web services. It is a neutral third party that facilitates dynamic and

397

398

JAVA APl FOR XML REGISTRIES

loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of a Web-based service.

Currently there are a variety of specifications for XML registries. These include

» TheebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport (U.N./
CEFACT)

» The Universal Description, Discovery, and Integration (UDDI) project,
which is being developed by avendor consortium

A registry provider isan implementation of abusiness registry that conformsto a
specification for XML registries.

What Is JAXR?

JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across various target registries. JAXR also enables value-added capabilities
beyond those of the underlying registries.

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the eébXML Registry and the
UDDI version 2 specifications. You can find the latest version of the specifica
tion at

http://java.sun.com/xml/downloads/jaxr.html

At this release of the J2EE platform, JAXR implements the level O capability
profile defined by the JAXR specification. Thislevel allows access to both UDDI
and ebXML registries at abasic level. At thisrelease, JAXR supports access only
to UDDI version 2 registries.

Currently several public UDDI version 2 registries exist.

The Java Web Services Developer Pack (Java WSDP) Registry Server provides a
UDDI version 2 registry that you can use to test your JAXR applicationsin a pri-
vate environment. You can download the Java WSDP from http://

http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/webservices/downloads/

JAXR ARCHITECTURE

java.sun.com/webservices/downTloads/. The Registry Server includes adata-
base based on the native XML database Xindice, which is part of the Apache
XML project. This database provides the repository for registry data. The Regis-
try Server does not support messages defined in the UDDI Version 2.0 Replica-
tion Specification.

To use the Java WSDP Registry Server, follow these steps.

. Stop the Application Server.
. Start the Java WSDP ingtall program.
. Choose the Custom install option.

. When the install program requests that you choose which features to
install, deselect everything except the Java WSDP Registry Server.

5. Select the Sun Java System Application Server Platform Edition 8 for the
Web container. The Registry Server and its backing repository Xindice are
installed into the Application Server as Web applications.

6. Start the Application Server.

7. Confirm that the Registry Server and Xindice Web applications are run-
ning using the Admin Console or deploytool.

A W DN P

Severad ebXML registries are under development, and one is available at the
Center for E-Commerce Infrastructure Development (CECID), Department of
Computer Science Information Systems, The University of Hong Kong (HKU).
For information, see http://www.cecid.hku.hk/Release/PRO9APR2002.htm1.

A JAXR provider for ebXML registries is available in open source at http://
ebxmlrr.sourceforge.net/jaxr/.

JAXR Architecture

The high-level architecture of JAXR consists of the following parts:

* A JAXRclient: Thisisaclient program that uses the JAXR API to access
abusiness registry viaa JAXR provider.

» AJAXRprovider: Thisisanimplementation of the JAXR API that provides
access to a specific registry provider or to aclass of registry providers that
are based on a common specification.

A JAXR provider implements two main packages:

e javax.xml.registry, which consists of the API interfaces and classes
that define the registry access interface.

399

http://www.cecid.hku.hk/Release/PR09APR2002.html
http://ebxmlrr.sourceforge.net
http://ebxmlrr.sourceforge.net
http://java.sun.com/webservices/downloads/

400

JAVA APl FOR XML REGISTRIES

* javax.xml.registry.infomodel, which consistsof interfacesthat define
the information model for JAXR. These interfaces define the types of
objectsthat residein aregistry and how they relate to each other. The basic
interfacein this packageistheRegistryObject interface. Itssubinterfaces
include Organization, Service, and ServiceBinding.

The most basic interfaces in the javax.xm1. registry package are

* Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use aregistry.

* RegistryService. Theclient obtains aRegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, aso part of the javax.xm1.registry package, are

* BusinessQueryManager, which allows the client to search a registry for
information in accordance with the javax.xml.registry.infomodel
interfaces. An optional interface, DeclarativeQueryManager, alows the
client to use SQL syntax for queries. (The implementation of JAXR in the
Application Server does not implement DeclarativeQueryManager.)

* BusinesslLifeCycleManager, which allowsthe client to modify the infor-
mation in aregistry by either saving it (updating it) or deleting it.

When an error occurs, JAXR APl methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR APl use a Collection object as an argument or a
returned value. Using a Collection object allows operations on severa registry
objects at atime.

Figure 10-1 illustrates the architecture of JAXR. In the Application Server, a
JAXR client uses the capability level 0 interfaces of the JAXR API to access the
JAXR provider. The JAXR provider in turn accesses aregistry. The Application
Server suppliesa JAXR provider for UDDI registries.

IMPLEMENTING A JAXR CLIENT 401

[JAXR Client)

o ~vo Dl
, JAXR API
Capability-Specific Interfaces
i Y~ Y Registry-
ebXML Provider | UDDI Provider Other Provider Specific
JAXR Provider

Diverse
Registries

Figure10-1 JAXR Architecture

Implementing a JAXR Client

This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updates to a UDDI registry. A JAXR client is
aclient program that can access registries using the JAXR API. This section cov-
ers the following topics:

 Establishing a connection

* Querying aregistry
* Managing registry data
» Using taxonomiesin JAXR clients

Thistutoria does not describe how to implement a JAXR provider. A JAXR pro-
vider provides an implementation of the JAXR specification that allows accessto
an existing registry provider, such asaUDDI or ebXML registry. Theimplemen-
tation of JAXR in the Application Server itself is an example of a JAXR pro-
vider.

The Application Server provides JAXR in the form of a resource adapter using
the J2EE Connector architecture. The resource adapter is in the directory
<J2EE_HOME>/11ib/install/applications/jaxr-ra. (<J2EE_HOME> is the
directory where the Application Server isinstalled.)

402

JAVA APl FOR XML REGISTRIES

This tutorial includes several client examples, which are described in Running
the Client Examples (page 425), and a J2EE application example, described in
Using JAXR Clients in J2EE Applications (page 434). The examples are in the
directory <INSTALL>/j2eetutoriall4/examples/jaxr/. (<INSTALL> is the
directory where you installed the tutorial bundle.) Each example directory has a
build.xm1 file (which refers to a targets.xm1 file) and a build.properties
filein the directory <INSTALL>/j2eetutoriall4/examples/jaxr/common/.

Establishing a Connection

Thefirst task a JAXR client must complete isto establish aconnection to aregis-
try. Establishing a connection involves the following tasks:

» Preliminaries. Getting access to aregistry

 Creating or looking up a connection factory

» Creating a connection

 Setting connection properties

e Obtaining and using aRegistryService object

Preliminaries: Getting Access to a Registry

Any user of a JAXR client can perform queries on aregistry. To add data to the
registry or to update registry data, however, a user must obtain permission from
the registry to access it. To register with one of the public UDDI version 2 regis-
tries, go to one of the following Web sites and follow the instructions:

* http://test.uddi.microsoft.com/ (Microsoft)
* http://uddi.ibm.com/testregistry/registry.html (IBM)
* http://udditest.sap.com/ (SAP)
These UDDI version 2 registries are intended for testing purposes. When you

register, you will obtain a user name and password. You will specify this user
name and password for some of the JAXR client example programs.

You do not have to register with the Java WSDP Registry Server in order to add
or update data. You can use the default user name and password: testuser and
testuser.

http://test.uddi.microsoft.com/
http://uddi.ibm.com/testregistry/registry.html
http://udditest.sap.com/

ESTABLISHING A CONNECTION 403

Note: The JAXR API has been tested with the Microsoft and IBM registries and
with the Java WSDP Registry Server, but not with the SAP registry.

Creating or Looking Up a Connection Factory

A client creates a connection from a connection factory. A JAXR provider can
supply one or more preconfigured connection factories. Clients can obtain these
factories by looking them up using the Java Naming and Directory Interface
(JNDI) API.

At this release of the Application Server, JAXR supplies a connection factory
through the JAXR RA, but you need to create a connector resource whose JNDI
nameis eis/JAXR to access this connection factory from a J2EE application. To
look up this connection factory in a J2EE component, use code like the follow-

ing:

import javax.xml.registry.*;
import javax.naming.*;

Context context = new InitialContext();

ConnectionFactory connFactory = (ConnectionFactory)
context.lookup("java:comp/env/eis/JAXR");

Later in this chapter you will learn how to create this connector resource.

To use JAXR in a stand-alone client program, you must create an instance of the
abstract class ConnectionFactory:

import javax.xml.registry.*;

ConnectionFactory connFactory =
ConnectionFactory.newInstance();

Creating a Connection

To create a connection, a client first creates a set of properties that specify the
URL or URLSs of the registry or registries being accessed. For example, the fol-

JAVA APl FOR XML REGISTRIES

lowing code provides the URLSs of the query service and publishing service for
the IBM test registry. (There should be no line break in the strings.)

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
"http://uddi.ibm.com/testregistry/inquiryapi");

props.setProperty("javax.xml.registry.1ifeCycleManagerURL",
"https://uddi.ibm.com/testregistry/publishapi");

With the Application Server implementation of JAXR, if the client is accessing a
registry that is outside afirewall, it must also specify proxy host and port infor-
mation for the network on which it is running. For queriesit may need to specify
only the HTTP proxy host and port; for updates it must specify the HTTPS proxy
host and port.

props.setProperty("com.sun.xml.registry.http.proxyHost",
"myhost.mydomain") ;

props.setProperty("com.sun.xml.registry.http.proxyPort",
"8080");

props.setProperty("com.sun.xml.registry.https.proxyHost",
"myhost.mydomain");

props.setProperty("com.sun.xml.registry.https.proxyPort",
"8080");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

Setting Connection Properties

The implementation of JAXR in the Application Server alows you to set a num-
ber of properties on a JAXR connection. Some of these are standard properties
defined in the JAXR specification. Other properties are specific to the implemen-

ESTABLISHING A CONNECTION

tation of JAXR inthe Application Server. Tables 10-1 and 10-2 list and describe

these properties.

Table10-1 Standard JAXR Connection Properties

default postal address scheme. See Specifying Postal
Addresses (page 423) for an example.

Data
Property Name and Description Type | Default Value
javax.xml.registry.queryManagerURL
Specifies the URL of the query manager service within String | None
the target registry provider.
javax.xml.registry.1ifeCycleManagerURL Same as the ified
Specifiesthe URL of the life-cycle manager service String q;e ryManagerURL
within the target registry provider (for registry updates). value
javax.xml.registry.semanticEquivalences
Specifies semantic equivalences of concepts as one or
more tuples of the ID values of two equivalent concepts | String | None
separated by acomma. Thetuples are separated by verti-
cal bars:
idl,id2|id3,id4
javax.xml.registry.security.authentica-
tionMethod None;

Stri UDDI_GET_AUTHTOKEN
Provides a hint to the JAXR provider on the authentica- M9 | isthe only supported
tion method to be used for authenticating with the regis- value
try provider.
javax.xml.registry.uddi.maxRows
The maximum number of rowsto be returned by find Integer | None
operations. Specific to UDDI providers.
javax.xml.registry.postalAddressScheme
ThelD of aClassificationSchemetobeusedasthe | String | None

405

JAVA APl FOR XML REGISTRIES

Table 102 Implementation-Specific JAXR Connection Properties

Data
Property Name and Description Type Default Value

com.sun.xml.registry.http.proxyHost

Specifies the HTTP proxy host to be used for access- | "9 None

ing external registries.

com.sun.xml.registry.http.proxyPort

Specifies the HTTP proxy port to be used for access- String None

ing external registries; usually 8080.

com.sun.xml.registry.https.proxyHost
Same as HTTP proxy

String host value

Specifiesthe HTTPS proxy host to be used for
accessing external registries.

com.sun.xml.registry.https.proxyPort
Same as HTTP proxy

String port value

Specifiesthe HTTPS proxy port to be used for
accessing external registries; usually 8080.

com.sun.xml.registry.http.proxyUserName

Specifies the user name for the proxy host for HTTP String None

proxy authentication, if oneisrequired.

com.sun.xml.registry.http.proxyPassword

Specifies the password for the proxy host for HTTP String None

proxy authentication, if oneisrequired.

com.sun.xml.registry.useCache
Boolean,
Tells the JAXR implementation to |ook for registry passedin | True
objects in the cache first and then to look in theregis- | as String
try if not found.

com.sun.xml.registry.userTaxonomyFile-
names

String None
For details on setting this property, see Defining a
Taxonomy (page 420).

QUERYING A REGISTRY

You set these propertiesin a JAXR client program. Here is an example:

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
"http://uddi.ibm.com/testregistry/inquiryapi");

props.setProperty("javax.xml.registry.1ifeCycleManagerURL",
"https://uddi.ibm.com/testregistry/publishapi");

ConnectionFactory factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

Obtaining and Using a RegistryService Object

After creating the connection, the client uses the connection to obtain a Regis-
tryService object and then the interface or interfaces it will use:

RegistryService rs = connection.getRegistryService();

BusinessQueryManager bgm = rs.getBusinessQueryManager();

BusinessLifeCycleManager blcm =
rs.getBusinessLifeCycleManager();

Typically, a client obtains both a BusinessQueryManager object and a Busi-
nessLifeCycleManager object from the RegistryService object. If it is using
the registry for simple queries only, it may need to obtain only a BusinessQue-
ryManager object.

Querying a Registry

The simplest way for aclient to use aregistry isto query it for information about
the organizations that have submitted data to it. The BusinessQueryManager
interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a BuTkRe-
sponse (a collection of abjects) that meets a set of criteria specified in the
method arguments. The most useful of these methods are as follows:

» findOrganizations, which returns a list of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

» findServices, which returns aset of services offered by a specified orga-
nization

407

408

JAVA APl FOR XML REGISTRIES

» findServiceBindings, which returns the service bindings (information
about how to access the service) that are supported by a specified service

The JAXRQuery program illustrates how to query aregistry by organization name
and display the data returned. The JAXRQueryByNAICSClassification and
JAXRQueryByWSDLClassification programs illustrate how to query a registry
using classifications. All JAXR providers support at least the following taxono-
mies for classifications:

» TheNorth American Industry Classification System (NAICS). Seehttp:/
/www . census.gov/epcd/www/naics.html for details.

» The Universal Standard Products and Services Classification (UNSPSC).
See http://www.eccma.org/unspsc/ for details.

» ThelSO 3166 country codes classification system maintained by the Inter-
nationa Organization for Standardization (1SO). See http://
www.iso.org/iso/en/prods-services/iso3166ma/
index.html for details.

The following sections describe how to perform some common queries:

» Finding organizations by name
+ Finding organizations by classification
* Finding services and service bindings

Finding Organizations by Name

To search for organizations by name, you normally use a combination of find
gualifiers (which affect sorting and pattern matching) and name patterns (which
specify the strings to be searched). The findOrganizations method takes a col-
lection of findQualifier objects asits first argument and takes a collection of
namePattern objects as its second argument. The following fragment shows
how to find all the organizations in the registry whose names begin with a speci-
fied string, qString, and sort them in alphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
Collection namePatterns = new ArraylList();
namePatterns.add(gString);

// Find using the name

http://www.census.gov/epcd/www/naics.html
http://www.census.gov/epcd/www/naics.html
http://www.eccma.org/unspsc/
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

QUERYING A REGISTRY

BulkResponse response =
bgm.findOrganizations(findQualifiers,
namePatterns, null, null, null, null);
Collection orgs = response.getCollection();

A client can use percent signs (%) to specify that the query string can occur any-
where within the organization name. For example, the following code fragment
performs a case-sensitive search for organizations whose names contain
gString

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArraylList();
namePatterns.add("%" + gString + "%");

// Find orgs with name containing qString
BulkResponse response =
bgm.findOrganizations(findQualifiers, namePatterns, nulT,
null, null, null);
Collection orgs = response.getCollection();

Finding Organizations by Classification

To find organizations by classification, you establish the classification within a
particular classification scheme and then specify the classification as an argu-
ment to the findOrganizations method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the NAICS taxonomy. (You can find the NAICS codes at
http://www.census.gov/epcd/naics/naicscod. txt.)

ClassificationScheme cScheme =
bgm. findClassificationSchemeByName(null,

"ntis-gov:naics:1997");

Classification classification =
blcm.createClassification(cScheme,

"Snack and Nonalcoholic Beverage Bars", "722213");
Collection classifications = new ArrayList();
classifications.add(classification);

// make JAXR request

BulkResponse response = bgm.findOrganizations(null,
null, classifications, null, null, null);

Collection orgs = response.getCollection();

http://www.census.gov/epcd/naics/naicscod.txt

410

JAVA APl FOR XML REGISTRIES

You can also use classifications to find organizations that offer services based on
technical specifications that take the form of WSDL (Web Services Description
Language) documents. In JAXR, a concept is used as a proxy to hold the infor-
mation about a specification. The steps are a little more complicated than in the
preceding example, because the client must first find the specification concepts
and then find the organizations that use those concepts.

The following code fragment finds all the WSDL specification instances used
within a given registry. You can see that the code is similar to the NAICS query
code except that it ends with acall to findConcepts instead of findOrganiza-
tions.

String schemeName = "uddi-org:types";
ClassificationScheme uddiOrgTypes =
bgm.findClassificationSchemeByName(null, schemeName);

/-k
* Create a classification, specifying the scheme
* and the taxonomy name and value defined for WSDL
* documents by the UDDI specification.
7‘:/
Classification wsdlSpecClassification =
blcm.createClassification(uddiOrgTypes,

"wsd1Spec", "wsdlSpec");

Collection classifications = new ArrayList();
classifications.add(wsd1SpecClassification);

// Find concepts
BulkResponse br = bgm.findConcepts(null, null,
classifications, null, null);

To narrow the search, you could use other arguments of the findConcepts
method (search qualifiers, names, external identifiers, or external links).

The next step is to go through the concepts, find the WSDL documents they cor-
respond to, and display the organizations that use each document:

// Display information about the concepts found
Collection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
if (liter.hasNext()) {

System.out.printin("No WSDL specification concepts found");
} else {

while (iter.hasNext()) {

Concept concept = (Concept) iter.next();

}

QUERYING A REGISTRY

String name = getName(concept);

Collection 1links = concept.getExternalLinks();

System.out.println("\nSpecification Concept:\n\tName:

name + "\n\tKey: " +
concept.getKey().getId() +
"\n\tDescription: " +

getDescription(concept));
if (links.size() > 0) {
ExternalLink Tink =
(ExternalLink) Tlinks.iterator().next(Q);
System.out.println("\tURL of WSDL document: '" +
Tink.getExternalURI(Q) + "'");
}

// Find organizations that use this concept

Collection specConceptsl = new ArrayList();

specConceptsl.add(concept);

br = bgm.findOrganizations(null, null, null,
specConceptsl, null, null);

// Display information about organizations

411

If you find an organization that offers a service you wish to use, you can invoke
the service using the JAX-RPC API.

Finding Services and Service Bindings

After aclient has located an organization, it can find that organization’s services
and the service bindings associated with those services.

Iterator orglter = orgs.iterator();
while (orgIter.hasNext()) {

Organization org = (Organization) orglIter.next();
Collection services = org.getServices(Q);

Iterator svclter = services.iterator();

while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();
Collection serviceBindings =
svc.getServiceBindings(Q);
Iterator sblter = serviceBindings.iterator();
while (sbIter.hasNext()) {
ServiceBinding sb =

412

JAVA APl FOR XML REGISTRIES

(ServiceBinding) sbIter.next();

Managing Registry Data

If aclient has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the BusinessLifeCycleManager interface to perform
these tasks.

Registries usually alow a client to modify or remove data only if the data is
being modified or removed by the same user who first submitted the data.

Managing registry data involves the following tasks:

 Getting authorization from the registry

 Creating an organization

» Adding classifications

» Adding services and service bindings to an organization
* Publishing an organization

 Publishing a specification concept

* Removing data from the registry

Getting Authorization from the Registry

Before it can submit data, the client must send its user name and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

String username
String password

= "myUserName";
= "myPassword";
// Get authorization from the registry
PasswordAuthentication passwdAuth =
new PasswordAuthentication(username,
password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth) ;
connection.setCredentials(creds);

MANAGING REGISTRY DATA

Creating an Organization

The client creates the organization and populates it with data before publishing
it.

An Organization object is one of the more complex data items in the JAXR
API. It normally includes the following:

* A Name object.
* A Description object.

» A Key object, representing the ID by which the organization is known to
the registry. This key is created by the registry, not by the user, and is
returned after the organization is submitted to the registry.

* A PrimaryContact object, which isaUser object that refersto an autho-
rized user of the registry. A User object normally includes a PersonName
object and collections of TelephoneNumber, EmailAddress, and Postal-
Address objects.

» A collection of Classification objects.
* Service objects and their associated ServiceBinding objects.

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organization
to be published to a UDDI registry, it does not include a key; the registry returns
the new key when it accepts the newly created organization. The b1cm object in
the following code fragment is the BusinessLifeCycleManager object returned
in Obtaining and Using a RegistryService Object (page 407). An Internation-
alString object isused for string values that may need to be localized.

// Create organization name and description
Organization org =
bTcm.createOrganization("The Coffee Break");
InternationalString s =
blcm.createInternationalString("Purveyor of " +
"the finest coffees. Established 1914");
org.setDescription(s);

// Create primary contact, set name

User primaryContact = blcm.createUser();

PersonName pName = blcm.createPersonName("Jane Doe");
primaryContact.setPersonName(pName) ;

// Set primary contact phone number
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber (" (800) 555-1212");

413

414

JAVA APl FOR XML REGISTRIES

Collection phoneNums = new ArrayList();
phoneNums . add (tNum) ;
primaryContact.setTelephoneNumbers (phoneNums) ;

// Set primary contact email address

EmailAddress emailAddress =
blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com™);

Collection emailAddresses = new ArrayList();

emailAddresses.add(emailAddress);

primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

Adding Classifications

Organizations commonly belong to one or more classifications based on one or
more classification schemes (taxonomies). To establish a classification for an
organization using a taxonomy, the client first locates the taxonomy it wants to
use. It uses the BusinessQueryManager to find the taxonomy. The
findClassificationSchemeByName method takes a set of FindQualifier
objects asits first argument, but this argument can be null.

// Set classification scheme to NAICS
ClassificationScheme cScheme =
bgm.findClassificationSchemeByName(null, "ntis-gov:naics");

The client then creates a classification using the classification scheme and a con-
cept (a taxonomy element) within the classification scheme. For example, the
following code sets up a classification for the organization within the NAICS
taxonomy. The second and third arguments of the createClassification
method are the name and the value of the concept.

// Create and add classification
Classification classification =
blcm.createClassification(cScheme,

"Snack and Nonalcoholic Beverage Bars", "722213");
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Services also use classifications, so you can use similar code to add a classifica
tion to a Service object.

MANAGING REGISTRY DATA

Adding Services and Service Bindings to an
Organization

Most organizations add themselves to aregistry in order to offer services, so the
JAXR API hasfacilities to add services and service bindings to an organization.

Like an Organization object, a Service object has a hame, a description, and a
unique key that is generated by the registry when the service is registered. It may
also have classifications associated with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice by using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, and then add the services to the organization. It
specifies an access URI but not a specification link. Because the access URI is
not real and because JAXR by default checks for the validity of any published
URI, the binding setsits validateURI property to false.

// Create services and service
Collection services = new ArrayList();
Service service = blcm.createService("My Service Name");
InternationalString is =

blcm.createlnternationalString("My Service Description™);
service.setDescription(is);

// Create service bindings

Collection serviceBindings = new ArrayList();

ServiceBinding binding = blcm.createServiceBinding();

is = blcm.createInternationalString("My Service Binding " +
"Description");

binding.setDescription(is);

// allow us to publish a fictitious URI without an error

binding.setValidateURI(false);

binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");

serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

415

416

JAVA APl FOR XML REGISTRIES

Publishing an Organization

The primary method aclient usesto add or modify organization dataisthe save-
Organizations method, which creates one or more new organizationsin aregis-
try if they did not exist previously. If one of the organizations exists but some of
the data have changed, the saveOrganizations method updates and replaces the
data

After a client populates an organization with the information it wants to make
public, it saves the organization. The registry returns the key in its response, and
the client retrievesit.

// Add organization and submit to registry

// Retrieve key if successful

Collection orgs = new ArrayList();

orgs.add(org);

BulkResponse response = blcm.saveOrganizations(orgs);

Collection exceptions = response.getException();

if (exceptions == null) {
System.out.println("Organization saved");

Collection keys = response.getCollection();

Iterator keyIter = keys.iterator();

if (keyIter.hasNext()) {
javax.xml.registry.infomodel.Key orgKey =

(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId(Q);
System.out.println("Organization key is " + id);

3

3

Publishing a Specification Concept

A service binding can have a technical specification that describes how to access
the service. An example of such a specification isaWSDL document. To publish
the location of a service's specification (if the specification is a WSDL docu-
ment), you create a Concept object and then add the URL of the WSDL docu-
ment to the Concept object as an ExternalLink object. The following code
fragment shows how to create a concept for the WSDL document associated
with the simple Web service example in Creating a Simple Web Service and Cli-
ent with JAX-RPC (page 320). First, you cal the createConcept method to cre-
ate a concept named HelloConcept. After setting the description of the concept,

MANAGING REGISTRY DATA 417

you create an external link to the URL of the He11o service’'s WSDL document,
and then add the external link to the concept.

Concept specConcept =
blcm.createConcept(null, "HelloConcept", "");

InternationalString s =
bTcm.createInternationalString(
"Concept for Hello Service");
specConcept.setDescription(s);
ExternallLink wsdlLink =
blcm.createExternalLink(
"http://Tocalhost:8080/hello-jaxrpc/hello?WSDL",

"HeTllo WSDL document");
specConcept.addExternalLink(wsdTLink);

Next, you classify the Concept object as a WSDL document. To do this for a
UDDI registry, you search the registry for the well-known classification scheme
uddi-org:types. (The UDDI term for a classification scheme is tModel.) Then
you create a classification using the name and value wsd1Spec. Finally, you add

the classification to the concept.

String schemeName = "uddi-org:types";
ClassificationScheme uddiOrgTypes =
bgm.findClassificationSchemeByName(null, schemeName);

Classification wsd1SpecClassification =
bTcm.createClassification(uddiOrgTypes,

"wsd1Spec", "wsdlSpec");
specConcept.addClassification(wsdlSpecClassification);

Finally, you save the concept using the saveConcepts method, similarly to the
way you save an organization:

Collection concepts = new ArraylList();

concepts.add(specConcept);
BuTlkResponse concResponse = blcm.saveConcepts(concepts);

After you have published the concept, you normally add the concept for the
WSDL document to a service binding. To do this, you can retrieve the key for the

418 JAvA APl FOR XML REGISTRIES

concept from the response returned by the saveConcepts method; you use a
code sequence very similar to that of finding the key for a saved organization.

String conceptKeyId = null;
Collection concExceptions = concResponse.getExceptions();
javax.xml.registry.infomodel.Key concKey = null;
if (concExceptions == null) {
System.out.printIn("WSDL Specification Concept saved");

Collection keys = concResponse.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {
concKey =
(javax.xml.registry.infomodel.Key) keyIter.next();
conceptKeyId = concKey.getId();
System.out.printin("Concept key is
3

+ conceptKeyId);

}

Then you can call the getRegistryObject method to retrieve the concept from
the registry:

Concept specConcept =
(Concept) bgm.getRegistryObject(conceptKeyld,
LifeCycleManager.CONCEPT);

Next, you create a SpecificationLink object for the service binding and set the
concept as the value of its SpecificationObject:

SpecificationLink specLink =
blcm.createSpecificationLink();

specLink.setSpecificationObject(specConcept);

binding.addSpecificationLink(specLink);

Now when you publish the organization with its service and service bindings,
you have also published a link to the WSDL document. Now the organization
can be found via queries such as those described in Finding Organizations by
Classification (page 409).

If the concept was published by someone else and you don’'t have access to the
key, you can find it using its name and classification. The code looks very similar
to the code used to search for a WSDL document in Finding Organizations by

MANAGING REGISTRY DATA

Classification (page 409), except that you also create a collection of name pat-
terns and include that in your search. Here is an example:

// Define name pattern
Collection namePatterns = new ArrayList();
namePatterns.add("HelloConcept");

BulkResponse br = bgm.findConcepts(null, namePatterns,
classifications, null, null);

Removing Data from the Registry

A registry alows you to remove from it any data that you have submitted to it.
You use the key returned by the registry as an argument to one of the Business-
LifeCycleManager delete methods. deleteOrganizations, deleteServices
deleteServiceBindings, deleteConcepts, and others.

The JAXRDelete sample program deletes the organization created by the JAXR-
Pub1ish program. It deletes the organization that corresponds to a specified key
string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId(Q);
System.out.printin("Deleting organization with id " + id);
Collection keys = new ArrayList();
keys.add(key) ;
BulkResponse response = blcm.deleteOrganizations(keys);
Collection exceptions = response.getException();
if (exceptions == null) {
System.out.printin("Organization deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {
orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();
id = orgKey.getId(Q);
System.out.println("Organization key was " + id);
}
}

A client can use a similar mechanism to delete concepts, services, and service
bindings.

419

420

JAVA APl FOR XML REGISTRIES

Using Taxonomies in JAXR Clients

In the JAXR API, a taxonomy is represented by a ClassificationScheme
object. This section describes how to use the implementation of JAXR in the
Application Server

» To define your own taxonomies
» To specify postal addresses for an organization

Defining a Taxonomy

The JAXR specification requires that a JAXR provider be able to add user-
defined taxonomies for use by JAXR clients. The mechanisms clients use to add
and administer these taxonomies are implementati on-specific.

The implementation of JAXR in the Application Server uses a simple file-based
approach to provide taxonomies to the JAXR client. These files are read at runt-
ime, when the JAXR provider starts up.

The taxonomy structure for the Application Server is defined by the JAXR Pre-
defined Concepts DTD, which is declared both in the file jaxrconcepts.dtd
and, in XML schema form, in the file jaxrconcepts.xsd. The file jaxrcon-
cepts.xml contains the taxonomies for the implementation of JAXR in the
Application Server. All thesefiles are contained in the <J2EE_HOME>/11ib/jaxr-
imp1.jar file. ThisJAR file also includesfiles that define the well-known taxon-
omies used by the implementation of JAXR in the Application Server:
naics.xml, 1s03166.xm1, and unspsc.xm].

Theentriesin the jaxrconcepts.xm1 filelook like this:

<PredefinedConcepts>

<JAXRClassificationScheme id="schId" name="schName">
<JAXRConcept id="schId/conCode" name="conName"
parent="parentId" code="conCode"></JAXRConcept>

</JAXRClassificationScheme>
</PredefinedConcepts>

The taxonomy structure is a containment-based structure. The element Pre-
definedConcepts is the root of the structure and must be present. The JAXR-
ClassificationScheme element is the parent of the structure, and the
JAXRConcept elements are children and grandchildren. A JAXRConcept element
may have children, but it is not required to do so.

USING TAXONOMIES IN JAXR CLIENTS 421

In all element definitions, attribute order and case are significant.

To add a user-defined taxonomy, follow these steps.

1. Publish the JAXRClassificationScheme element for the taxonomy as a
ClassificationScheme object in the registry that you will be accessing.
For example, you can publish the ClassificationScheme object to the
Java WSDP Registry Server. To publish aClassificationScheme object,
you must set its name. You aso give the scheme a classification within a
known classification scheme such as uddi-org:types. In the following
code fragment, the name is the first argument of the LifeCycleMan-
ager.createClassificationScheme method cal

ClassificationScheme cScheme =
blcm.createClassificationScheme("MyScheme",
"A Classification Scheme");
ClassificationScheme uddiOrgTypes =
bgm. findClassificationSchemeByName(null,
"uddi-org:types");
if (uddiOrgTypes != null) {

Classification classification =
blcm.createClassification(uddiOrgTypes,
"postalAddress", "postalAddress");
postalScheme.addClassification(classification);

ExternallLink externallLink =
bTcm.createExternalLink(

"http://www.mycom.com/myscheme.html",

"My Scheme");
postalScheme.addExternalLink(externalLink);
Collection schemes = new ArrayList();
schemes.add(cScheme);

BulkResponse br =
blcm.saveClassificationSchemes(schemes);
3
The BulkResponse object returned by the saveClassificationSchemes
method contains the key for the classification scheme, which you need to

retrieve:

if (br.getStatus() == JAXRResponse.STATUS_SUCCESS) {
System.out.printin("Saved ClassificationScheme™);
Collection schemeKeys = br.getCollection();
Iterator keysIter = schemeKeys.iterator();
while (keysIter.hasNext()) {
javax.xml.registry.infomodel.Key key =
(javax.xml.registry.infomodel.Key)
keysIter.next();
System.out.printin("The postalScheme key is " +
key.getId());

422

JAVA APl FOR XML REGISTRIES

System.out.println("Use this key as the scheme" +
" uuid in the taxonomy file");
}
}

2. In an XML file, define a taxonomy structure that is compliant with the

JAXR Predefined Concepts DTD. Enter the ClassificationScheme ele-
ment in your taxonomy XML file by specifying the returned key 1D value
as the id attribute and the name as the name attribute. For the foregoing
code fragment, for example, the opening tag for the JAXRClassifica-
tionScheme element looks something like this (all on oneline):
<JAXRClassificationScheme
id="uuid:nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn"
name="MyScheme">

The ClassificationScheme id must be a universaly unique identifier
(UUID).

. Enter each JAXRConcept element in your taxonomy XML file by specify-

ing the following four attributes, in this order:

a idisthe JAXRClassificationScheme id value, followed by a / sepa-
rator, followed by the code of the JAXRConcept element.

b. name isthe name of the JAXRConcept €lement.

C. parent isthe immediate parent id (either the ClassificationScheme
id or that of the parent JAXRConcept).

d. code isthe JAXRConcept element code value.

The first JAXRConcept element in the naics.xm1 file looks like this (all
ononeline):

<JAXRConcept
id="uuid:COB9FE13-179F-413D-8A5B-5004DB8E5BB2/11"
name="Agriculture, Forestry, Fishing and Hunting"
parent="uuid:COB9FE13-179F-413D-8A5B-5004DB8E5BB2"
code="11"></JAXRConcept>

. To add the user-defined taxonomy structure to the JAXR provider, specify

the connection property com.sun.xml.registry.userTaxonomyFilena-

mes in your client program. You set the property as follows:

props.setProperty

("com.sun.xml.registry.userTaxonomyFilenames",
"c:\mydir\xxx.xml|c:\mydir\xxx2.xml");

Use the vertical bar (|) as a separator if you specify more than one file

name.

USING TAXONOMIES IN JAXR CLIENTS

Specifying Postal Addresses

The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the
other hand, defines a postal address as a free-form collection of address lines,
each of which can aso be assigned a meaning. To map the JAXR PostalAd-
dress format to aknown UDDI address format, you specify the UDDI format as
a ClassificationScheme object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the com-
mentsin the JAXR PostalAddress classification scheme. The JAXR PostalAd-
dress classification scheme is provided by the implementation of JAXR in the
Application Server.

Inthe JAXR API, aPostalAddress object hasthefields streetNumber, street,
city, state, postalCode, and country. In the implementation of JAXR in the
Application Server, these are predefined concepts in the jaxrconcepts.xml
file, within the ClassificationScheme named PostalAddressAttributes.

To specify the mapping between the JAXR postal address format and another
format, you set two connection properties.

* Thejavax.xml.registry.postalAddressScheme property, which spec-
ifies a postal address classification scheme for the connection

 The javax.xml.registry.semanticEquivalences property, which
specifies the semantic equivalences between the JAXR format and the
other format

For example, suppose you want to use a scheme named MyPostalAddressS-
cheme, which you published to aregistry with the UUID uuid:f7922839-f1f7-
9228-c97d-ce0b4594736c¢.

<JAXRClassificationScheme id="uuid:f7922839-f1f7-9228-c97d-
ce0b4594736¢c" name="MyPostalAddressScheme">

First, you specify the postal address scheme using the id value from the JAXR-
ClassificationScheme element (the UUID). Case does not matter:

props.setProperty("javax.xml.registry.postalAddressScheme",
"uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c™) ;

423

424 JAvA APl FOR XML REGISTRIES

Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the scheme
you published:

props.setProperty("javax.xml.registry.semanticEquivalences",
"urn:uuid:PostalAddressAttributes/StreetNumber," +
"uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/

StreetAddressNumber|" +
"urn:uuid:PostalAddressAttributes/Street,”" +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/

StreetAddress|" +
"urn:uuid:PostalAddressAttributes/City," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/City|" +
"urn:uuid:PostalAddressAttributes/State," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/State|" +
"urn:uuid:PostalAddressAttributes/PostalCode," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/ZipCode|" +
"urn:uuid:PostalAddressAttributes/Country," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736¢c/Country");

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you pub-
lish the organization:

String streetNumber = "99";

String street = "Imaginary Ave. Suite 33";

String city = "Imaginary City";

String state = "NY";

String country = "USA";

String postalCode = "00000";

String type = "";

PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,

country, postalCode, type);

Collection postalAddresses = new ArrayList();

postalAddresses.add(postAddr) ;

primaryContact.setPostalAddresses(postalAddresses);

If the postal address scheme and semantic equivalences for the query are the
same as those specified for the publication, a JAXR query can then retrieve the
postal address using PostalAddress methods. To retrieve postal addresses when
you do not know what postal address scheme was used to publish them, you can
retrieve them as a collection of STot objects. The JAXRQueryPostal.java sam-
ple program shows how to do this.

RUNNING THE CLIENT EXAMPLES 425

In general, you can create a user-defined postal address taxonomy for any Post-
alAddress tModels that use the well-known categorization in the uddi-
org:types taxonomy, which has the tModel UUID uuid:clacf26d-9672-
4404-9d70-39b756e62ab4 with avalue of postalAddress. You can retrieve the
tModel overviewDoc, which points to the technical detail for the specification of
the scheme, where the taxonomy structure definition can be found. (The JAXR
equivalent of an overviewDoc isan ExternalLink.)

Running the Client Examples

The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. They allow you to specify
the IBM registry, the Microsoft registry, or the Java WSDP Registry Server for
gueries and updates; you can specify any other UDDI version 2 registry.

The client examples, inthe <INSTALL>/j2eetutoriall4/examples/jaxr/sim-
ple/src/ directory, are asfollows:
* JAXRQuery.java shows how to search aregistry for organizations.

* JAXRQueryByNAICSClassification.java showshow to search aregistry
using a common classification scheme.

* JAXRQueryByWSDLClassification.java shows how to search aregistry
for Web servicesthat describe themselves by means of aWSDL document.

* JAXRPublish.java shows how to publish an organization to aregistry.
» JAXRDelete.java shows how to remove an organization from aregistry.

* JAXRSave(ClassificationScheme.java shows how to publish a classifi-
cation scheme (specifically, a postal address scheme) to aregistry.

* JAXRPublishPostal.java shows how to publish an organization with a
postal address for its primary contact.

* JAXRQueryPostal.java showshow to retrieve postal addressdatafrom an
organization.

* JAXRDeleteScheme.java shows how to delete a classification scheme
from aregistry.

* JAXRPublishConcept.java shows how to publish a concept for aWSDL
document.

* JAXRPublishHel1o0rg.java shows how to publish an organization with
a service binding that refersto a WSDL document.

» JAXRDeleteConcept.java shows how to delete a concept.

../examples/jaxr/simple/src/JAXRQuery.java
../examples/jaxr/simple/src/JAXRQueryByNAICSClassification.java
../examples/jaxr/simple/src/JAXRQueryByWSDLClassification.java
../examples/jaxr/simple/src/JAXRPublish.java
../examples/jaxr/simple/src/JAXRDelete.java
../examples/jaxr/simple/src/JAXRSaveClassificationScheme.java
../examples/jaxr/simple/src/JAXRPublishPostal.java
../examples/jaxr/simple/src/JAXRQueryPostal.java
../examples/jaxr/simple/src/JAXRDeleteScheme.java
../examples/jaxr/simple/src/JAXRPublishConcept.java
../examples/jaxr/simple/src/JAXRPublishHelloOrg.java
../examples/jaxr/simple/src/JAXRDeleteConcept.java

426

JAVA APl FOR XML REGISTRIES

* JAXRGetMyObjects.java listsall the objects that you own in aregistry.

The <INSTALL>/j2eetutoriall4/examples/jaxr/simple/ directory also con-
tains the following:

e A build.xml filefor the examples

* A JAXRExamples.properties file, in the src subdirectory, that supplies
string values used by the sample programs

» Afilecdled postalconcepts.xml that serves asthe taxonomy file for the
postal address examples

You do not have to have the Application Server running in order to run these cli-
ent examples with the IBM or Microsoft registries. You do need to have it run-
ning in order to run them with the Registry Server.

Before You Compile the Examples

Before you compile the examples, edit the file <INSTALL>/j2eetutoriall4/
examples/jaxr/simple/src/JAXRExamples.properties asfollows.

1. Edit thefollowing lines to specify the registry you wish to access. For both
the queryURL and the pub1ishURL assignments, comment out all but the
registry you wish to access. The default isthe Java WSDP Registry Server.

Uncomment one pair of query and publish URLs.

IBM:

#query.url=http://uddi.ibm.com/testregistry/inquiryapi
#publish.url=https://uddi.ibm.com/testregistry/publishapi

Microsoft:

#query.url=http://test.uddi.microsoft.com/inquire
#pubTlish.url=https://test.uddi.microsoft.com/publish

Registry Server:

query.url=http://localhost:8080/RegistryServer/
publish.url=http://localhost:8080/RegistryServer/

If you are using the Java WSDP Registry Server and if it isrunning on a
system other than your own, specify the fully qualified host name instead
of Tocalhost. Do not use https: for the pub1ishURL. If you specified a
nondefault HTTP port when you installed the Application Server, change

8080 to the correct value for your system.

The IBM and Microsoft registries both contain a considerable amount of
data that you can perform queries on. Moreover, you do not have to regis-
ter if you are only going to perform queries.

We have not included the URL s of the SAP registry; feel freeto add them.

../examples/jaxr/simple/src/JAXRGetMyObjects.java
../examples/jaxr/simple/src/JAXRExamples.properties

BEFORE YOUu COMPILE THE EXAMPLES

If you want to publish to any of the public registries, the registration pro-
cess for obtaining access to them is not difficult (see Preliminaries. Get-
ting Access to a Registry, page 402). Each of them, however, alows you
to have only one organization registered at atime. If you publish an orga-
nization to one of them, you must delete it before you can publish another.
Because the organization that the JAXRPub11ish example publishesisficti-
tious, you will want to delete it immediately anyway.

Be aware also that because the public registries are test registries, they do
not always behave reliably.

The Java WSDP Registry Server gives you more freedom to experiment
with JAXR. You can publish as many organizations, concepts, and classi-
fication schemes to it as you wish. However, this registry comes with an
empty database, so you must publish data to it yourself before you can
perform queries on the data.

. To use a public registry, edit the following lines to specify the user name
and password you obtained when you registered with the registry. Do not
change the lines if you will use the Registry Server.

To use a public registry, edit user name and password.

To use the Registry Server, use testuser/testuser.
registry.username=testuser

registry.password=testuser

. If you will be using a public registry, edit the following lines, which con-
tain empty strings for the proxy hosts, to specify your own proxy settings.
The proxy host is the system on your network through which you access
the Internet; you usualy specify it in your Internet browser settings. You
can leave this value empty to use the Java WSDP Registry Server.

HTTP and HTTPS proxy host and port;

ignored by Registry Server

http.proxyHost=

http.proxyPort=8080

https.proxyHost=

https.proxyPort=8080

The proxy ports have the value 8080, which is the usual one; change this
string if your proxy uses a different port.

For apublic registry, your entries usualy follow this pattern:

http.proxyHost=proxyhost.mydomain
http.proxyPort=8080
https.proxyHost=proxyhost.mydomain
https.proxyPort=8080

427

428

JAVA APl FOR XML REGISTRIES

4, If you are running the Application Server on a system other than your own
or if it isusing a nondefault HTTP port, change the following lines:

Tink.uri=http://localhost:8080/hello-jaxrpc/hell1o?WSDL

wsdlorg.svcbnd.uri=http://localhost:8080/hello-jaxrpc/hello

Specify the fully qualified host name instead of 1ocalhost, or change
8080 to the correct value for your system.

5. Feel freeto change any of the organization datain the remainder of thefile.
Thisdatais used by the publishing and postal address examples. If you will
be using a public registry, try to make the organization hames unusual so
that queries will return relatively few results.

You can edit the src/JAXRExamples.properties file at any time. The asant
targets that run the client examples will use the latest version of thefile.

Compiling the Examples

To compile the programs, go to the <INSTALL>/j2eetutoriall4/examples/
jaxr/simple/ directory. A build.xml file allows you to use the following com-
mand to compile all the examples:

asant compile

The asant tool creates a subdirectory called build.

The runtime classpath setting in the build.xm1 file lists several JAR filesin the
Application Server 1ib directory. If you will run the examples with the Java
WSDP Registry Server, edit this classpath (named jaxr.classpath) to contain
only one include line

<include name="*.jar"/>

Running the Examples

If you are running the examples with the Java WSDP Registry Server, start the
Application Server as described in Starting and Stopping the Application
Server (page 27).

The Registry Server is a Web application that is loaded when the Application
Server starts.

RUNNING THE EXAMPLES

You do not need to start the Application Server in order to run the examples
against public registries.

Running the JAXRPublish Example

To run the JAXRPub1ish program, use the run-publish target with no com-
mand-line arguments.

asant run-publish

The program output displays the string value of the key of the new organization,
which is named The Coffee Break.

After you run the JAXRPub1ish program but before you run JAXRDelete, you
can run JAXRQuery to look up the organization you published.

Running the JAXRQuery Example

To run the JAXRQuery example, use the asant target run-query. Specify a
query-string argument on the command line to search the registry for organi-
zations whose names contain that string. For example, the following command
line searches for organizations whose names contain the string "coff" (search-
ing is not case-sensitive):

asant -Dquery-string=coff run-query

Running the JAXRQueryByNAICSClassification
Example

After you run the JAXRPub11sh program, you can also run the JAXRQueryByNA-
ICSClassification example, which looks for organizations that use the Snack
and Nonal coholic Beverage Bars classification, the same one used for the organi-
zation created by JAXRPublish. To do so, use the asant target run-query-
naics.

asant run-query-naics

429

430

JAVA APl FOR XML REGISTRIES

Running the JAXRDelete Example

To run the JAXRDelete program, specify the key string displayed by the JAXR-
Pub1ish program as input to the run-delete target:

asant -Dkey-string=keyString run-delete

Publishing a Classification Scheme

To publish organizations with postal addresses to public registries, you must first
publish a classification scheme for the postal address.

To run the JAXRSaveClassificationScheme program, use the target run-save-
scheme:

asant run-save-scheme

The program returns a UUID string, which you will use in the next section.

You do not have to run this program if you are using the Java WSDP Registry
Server, because it does not validate these objects.

The public registries allow you to own more than one classification scheme at a
time (the limit is usually atotal of about 10 classification schemes and concepts
put together).

Running the Postal Address Examples

Before you run the postal address examples, open the file src/postalcon-
cepts.xml in an editor. Wherever you see the string uuid-from-save, replace it
with the UUID string returned by the run-save-scheme target (including the
uuid: prefix). For the Java WSDP Registry Server, you can use any string that is
formatted as a UUID.

For a given registry, you only need to publish the classification scheme and edit
postalconcepts.xml once. After you perform those two steps, you can run the
JAXRPublishPostal and JAXRQueryPostal programs multiple times.

1. Run the JAXRPub1ishPostal program. Specify the string you entered in
the postalconcepts.xml file, including the uuid: prefix, asinput to the
run-publish-postal target:

asant -Duuid-string=uuidstring run-publish-postal
The uuidstring would look something like this (case is not significant):

RUNNING THE EXAMPLES

uuid:938d9ccd-a74a-4c7e-864a-e6e2c6822519

The program output displays the string value of the key of the new organi-
zation.

2. Run the JAXRQueryPostal program. The run-query-postal target spec-
ifiesthe postalconcepts.xml filein a<sysproperty> tag.

As input to the run-query-postal target, specify both a query-string
argument and a uuid-string argument on the command line to search
the registry for the organization published by the run-publish-postal
target:

asant -Dquery-string=coffee

-Duuid-string=uuidstring run-query-postal

The postal address for the primary contact will appear correctly with the
JAXR PostalAddress methods. Any postal addresses found that use
other postal address schemeswill appear as S1ot lines.

3. If you are using a public registry, make sure to follow the instructions in
Running the JAXRDelete Example (page 430) to delete the organization
you published.

Deleting a Classification Scheme

To delete the classification scheme you published after you have finished using
it, run the JAXRDeleteScheme program using the run-delete-scheme target:

asant -Duuid-string=uuidstring run-delete-scheme

For the public UDDI registries, deleting a classification scheme removes it from
the registry logically but not physically. The classification scheme will still be
visible if, for example, you call the method QueryManager.getRegisteredOb-
jects. However, you can no longer use the classification scheme. Therefore, you
may prefer not to delete the classification scheme from the registry, in case you
want to use it again. The public registries normally allow you to own up to 10 of
these objects.

Publishing a Concept for a WSDL Document

To publish the location of the WSDL document for the JAX-RPC Hello service,
first deploy the service as described in Creating a Simple Web Service and Client
with JAX-RPC (page 320).

431

432

JAVA APl FOR XML REGISTRIES

Then run the JAXRPub1ishConcept program using the run-publish-concept
target:

asant run-publish-concept

The program output displays the UUID string of the new specification concept,
which is named HelloConcept. You will use this string in the next section.

After you run the JAXRPub1ishConcept program, you can run JAXRPub1ish-
He1100rg to publish an organization that uses this concept.

Publishing an Organization with a WSDL
Document in Its Service Binding

To run the JAXRPub1ishHe1100rg example, use the asant target run-publish-
hello-org. Specify the string returned from JAXRPub1ishConcept (including
the uuid: prefix) asinput to this target:

asant -Duuid-string=uuidstring run-publish-hello-org
The uuidstring would look something like this (case is not significant):
UUID:A499E230-5296-11D8-B936-000629DCOA53

The program output displays the string value of the key of the new organization,
which is named Hello Organization.

After you publish the organization, run the JAXRQueryByWSDLClassification
example to search for it. To deleteit, run JAXRDelete.

Running the JAXRQueryByWSDLClassification
Example

To run the JAXRQueryByWSDLClassification example, use the asant target
run-query-wsdl. Specify a query-string argument on the command line to
search the registry for specification concepts whose names contain that string.
For example, the following command line searches for concepts whose names
contain the string "helloconcept" (searching is not case-sensitive):

asant -Dquery-string=helloconcept run-query-wsdl

RUNNING THE EXAMPLES

This example finds the concept and organization you published. A common
string such as "hello" returns many results from the public registries and is
likely to run for several minutes.

Deleting a Concept

To run the JAXRDeTleteConcept program, specify the UUID string displayed by
the JAXRPub11ishConcept program asinput to the run-delete-concept target:

asant -Duuid-string=uuidString run-delete-concept

Deleting a concept from a public UDDI registry is similar to deleting a classifi-
cation scheme: The concept is removed logically but not physicaly. Do not
delete the concept until after you have deleted any organizations that refer toit.

Getting a List of Your Registry Objects

To get alist of the objects you own in the registry—organizations, classification
schemes, and concepts—run the JAXRGetMyObjects program by using the run-
get-objects target:

asant run-get-objects

If you run this program with the Java WSDP Registry Server, it returns al the
standard UDDI taxonomies provided with the Registry Server and not just the
objects you have created.

Other Targets

To remove the bui1d directory and class files, use the command
asant clean
To obtain a syntax reminder for the targets, use the command

asant -projecthelp

433

JAVA APl FOR XML REGISTRIES

Using JAXR Clients in J2EE Applications

You can create J2EE applications that use JAXR clients to access registries. This
section explains how to write, compile, package, deploy, and run a J2EE applica
tion that uses JAXR to publish an organization to a registry and then query the
registry for that organization. The application in this section uses two compo-
nents: an application client and a statel ess session bean.

The section covers the following topics:
» Coding the application client: MyAppClient.java
» Coding the PubQuery session bean
e Compiling the sourcefiles
 Importing certificates
» Starting the Application Server
» Creating JAXR resources
 Creating and packaging the application
» Deploying the application
» Running the application client
You will find the source files for this section in the directory <INSTALL>/

j2eetutoriall4/examples/jaxr/clientsession. Path names in this section
arerelative to this directory.

Thefollowing directory contains a built version of this application:
<INSTALL>/j2eetutoriall4/examples/jaxr/provided-ears

If you run into difficulty at any time, you can open the EAR file in deploytool
and compare that file to your own version.

Coding the Application Client:
MyAppClient.java

The application client class, src/MyAppClient.java, obtains a handle to the
PubQuery enterprise bean's remote home interface, using the INDI APl naming
context java:comp/env. The program then creates an instance of the bean and
calls the bean’s two business methods: executePub1ish and executeQuery.

../examples/jaxr/clientsession/src/MyAppClient.java

CODING THE PUBQUERY SESSION BEAN

Before you compile the application, edit the PubQueryBeanExamples.proper-
ties filein the same way you edited the JAXRExamples.properties fileto run
the smple examples.

1. If you are using the Java WSDP Registry Server, specify the correct host
and port values for the queryManagerURL and 11ifeCycleManagerURL
entries. To use another registry, comment out the property that specifiesthe
Registry Server, and remove the comment from the other registry.

2. If you are using a public registry, change the values for the regis-
try.username and registry.password properties to specify the user
name and password you obtained when you registered with the registry.
Changethe valuesfor the http.proxyHost and https.proxyHost entries
so that they specify the system on your network through which you access
the Internet.

Coding the PubQuery Session Bean

The PubQuery bean is a stateless session bean that has one create method and
two business methods. The bean uses remote interfaces rather than local inter-
faces because it is accessed from the application client.

The remote home interface source file is src/PubQueryHome . java.

The remote interface, src/PubQueryRemote. java, declares two business meth-
ods. executePublish and executeQuery. The bean class, src/PubQuery-
Bean.java, implements the executePublish and executeQuery methods and
their helper methods getName, getDescription, and getKey. These methods are
very similar to the methods of the same name in the simple examples JAXRQu-
ery.java and JAXRPublish.java. The executePub1ish method uses informa-
tion in the file PubQueryBeanExample.properties tO create an organization
named The Coffee Enterprise Bean Break. The executeQuery method uses the
organization name, specified in the application client code, to locate this organi-
zation.

The bean class also implements the required methods ejbCreate, setSession-
Context, ejbRemove, ejbActivate, and ejbPassivate.

The ejbCreate method of the bean class allocates resources—in this case, by
looking up the ConnectionFactory and creating the Connection.

The ejbRemove method must deall ocate the resources that were alocated by the
ejbCreate method. In this case, the ejbRemove method closes the Connection.

435

../examples/jaxr/clientsession/src/PubQueryHome.java
../examples/jaxr/clientsession/src/PubQueryRemote.java
../examples/jaxr/clientsession/src/PubQueryBean.java
../examples/jaxr/clientsession/src/PubQueryBean.java

436

JAVA APl FOR XML REGISTRIES

Compiling the Source Files

To compile the application source files, go to the directory <INSTALL>/
j2eetutoriall4/examples/jaxr/clientsession. Use the following com-
mand:

asant compile

The compile target places the properties file and the class files in the build
directory.

Importing Certificates
If you will be using the Java WSDP Registry Server, skip this section.

In order to run the ClientSessionApp application against the Microsoft or IBM
registry, you need to import certificates from your version of the Java 2, Standard
Edition Software Development Kit (J2SE SDK) into the Application Server. The
simple client programs use the J2SE SDK certificates, but the Application Server
does not have these certificates, so running a J2EE application that uses JAXR
against an external registry requires special steps.
1. Verify the alias names of the Certificate Authorities (CA) you want to
migrate by running the following command:
keytool -Tist -v -keystore J2SE_SDK_truststore_file

The default location for J2SE_SDK_truststore_file iS <JAVA_HOME>/
jre/1ib/security/cacerts.

To access the Microsoft registry, you need the CA with the alias hame
verisignclass3ca. To access the IBM registry, you need the CA with
the alias name verisignserverca.

2. Export the CA with the desired alias name from the J2SE SDK truststore
to afilein the current directory:

keytool -export -alias alias_name -keystore
J2SE_SDK_truststore_file -file export_CA_file

When you are asked for a password, type changeit.

For example, you could type the following (all on one line) to export the
Microsoft CA:

keytool -export -alias verisignclass3ca -keystore
C:\j2sdkl.4.2_04\jre\Tib\security\cacerts -file ca_for_ms

STARTING THE APPLICATION SERVER 437

3. Import the export_CA_file into the Application Server truststore:

keytool -import -alias alias_name -storepass changeit
-keystore <INSTALL>/domains/domainl/config/cacerts.jks
-file export_CA_file

When you are asked, “Trust this certificate?’, type yes.
For example, you could type the following (all on one line) to import the
CA you just exported:

keytool -import -alias verisignclass3ca -storepass changeit
-keystore
C:\Sun\AppServer\domains\domainl\config\cacerts. jks

-file ca_for_ms

4. If the Application Server was running, stop and restart it.

Starting the Application Server

To run this example, you need to start the Application Server. Follow the instruc-
tionsin Starting and Stopping the Application Server (page 27).

Creating JAXR Resources

To use JAXR in a J2EE application that uses the Application Server, you need to
access the JAXR resource adapter (see Implementing a JAXR Client, page 401)
through a connector connection pool and a connector resource. You can create
these resources in the Admin Console.

If you have not done so, start the Admin Console as described in Starting the
Admin Console (page 28).

To create the connector connection pool, perform the following steps:

1. Expand the Connectors node, and then click Connector Connection Pools.
2. Click New.
3. On the Create Connector Connection Pool page:

a. Type jaxr-pool in the Name field.

b. Choose jaxr-ra from the Resource Adapter combo box.

c. Click Next.

4. Onthenext page, choose javax.xml.registry.ConnectionFactory (the
only choice) from the Connection Definition combo box, and click Next.

438

JAVA APl FOR XML REGISTRIES

5. On the next page, click Finish.
To create the connector resource, perform the following steps:

1. Under the Connectors node, click Connector Resources.
2. Click New. The Create Connector Resource page appears.
3. Inthe INDI Namefield, type eis/JAXR.

4, Choose jaxr-pool from the Pool Name combo box.

5. Click OK.

If you arein ahurry, you can create these objects using the following asant tar-
get inthe build.xm1 file for this example:

asant create-resource

Creating and Packaging the Application
Creating and packaging this application involve four steps:

1. Starting deploytool and creating the application
2. Packaging the session bean

3. Packaging the application client

4, Checking the INDI names

Starting deploytool and Creating the
Application

1. Start deploytool. On Windows systems, choose Start -Programs-Sun
Microsystems—-J2EE 1.4 SDK —Deploytool. On UNIX systems, use the
deploytool command.

2. Choose File-New -Application.

3. Click Browse (next to the Application File Name field), and use the file
chooser to locate the directory clientsession.

4. Inthe File Namefield, type ClientSessionApp.
5. Click New Application.
6. Click OK.

CREATING AND PACKAGING THE APPLICATION

Packaging the Session Bean

1

2.

Choose File-New -Enterprise Bean to start the Enterprise Bean wizard.

Then click Next.

Inthe EJB JAR General Settings screen:

a. Select Create New JAR Module in Application, and make sure that the
application isClientSessionApp.

b. Inthe JAR Namefield, type PubQueryJAR.

c. Click Edit Contents.

d. In the dialog box, locate the clientsession/build directory. Select
PubQueryBean.class, PubQueryHome.class, PubQueryRe-
mote.class, and PubQueryBeanExample.properties from the Avail-
able Filestree area. Click Add, and then OK.

. In the Bean Genera Settings screen:

a. From the Enterprise Bean Class menu, choose PubQueryBean.

b. Verify that the Enterprise Bean Name is PubQueryBean and that the
Enterprise Bean Type is Stateless Session.

c. In the Remote Interfaces area, choose PubQueryHome from the Remote
Home Interface menu, and choose PubQueryRemote from the Remote
Interface menu.

After you finish the wizard, perform the following steps:

1

2.

Click the PubQueryBean node, and then click the Transactions tab. In the
inspector pane, select the Container-Managed radio button.

Click the PubQueryBean node, and then click the Resource Ref’stab. Inthe
inspector pane:

a. Click Add.

b. In the Coded Namefield, type eis/JAXR.

c. From the Type menu, choose javax.xml.registry.ConnectionFac-
tory.

d. Inthe Deployment Settings area, type eis/JAXR inthe INDI namefield,
and type j2ee in both the User Name and the Password fields.

Packaging the Application Client

1

Choose File-New -Application Client to start the Application Client Wiz-
ard. Then click Next.

439

440

2.

3.

JAVA APl FOR XML REGISTRIES

In the JAR File Contents screen:

a. Make sure that Create New AppClient Module in Application is
selected and that the application is C1ientSessionApp.

b. Inthe AppClient Name field, type MyAppClient.
c. Click Edit Contents.

d. In the dialog box, locate the clientsession/build directory. Select
MyAppClient.class from the Available Filestree area. Click Add, and
then OK.

In the General screen, select MyAppClient inthe Main Class combo box.

After you finish the wizard, click the EJB Ref’s tab, and then click Add in the
inspector pane. In the dialog box, follow these steps.

1

Type ejb/remote/PubQuery in the Coded Name field.

2. Choose Session from the EJB Type menu.

o 01~ W

. Choose Remote from the Interfaces menu.

. Type PubQueryHome in the Home Interface field.

. Type PubQueryRemote in the Local/Remote Interface field.

. In the Target EJB area, select INDI Name and type PubQueryBean in the

field. The session bean uses remote interfaces, so the client accesses the
bean through the INDI name rather than the bean name.

Checking the JNDI Names

Select the application, click Sun-specific Settings on the General page, and ver-
ify that the INDI names for the application components are correct. They should
appear as shown in Tables 10-3 and 10-4.

Table 10-3 Application Panefor CT1ientSessionApp

Component Type Component JNDI Name

EJB

PubQueryBean PubQueryBean

DEPLOYING THE APPLICATION

Table 104 References Pane for C1ientSessionApp

Ref. Type Referenced By Reference Name JNDI Name
EJB Ref MyAppClient ejb/remote/PubQuery PubQueryBean
Resource PubQueryBean eis/JAXR eis/JAXR

Deploying the Application

1. Save the application.
2. Choose Tools-Deploy.

3. Inthedialog box, type your administrative user name and password (if they

are not aready filled in), and click OK.

4. In the Application Client Stub Directory area, select the Return Client Jar

checkbox, and make sure that the directory is clientsession.
5. Click OK.

6. In the Distribute Module dialog box, click Close when the process com-
pletes. You will find a file named ClientSessionAppClient.jar in the

specified directory.

Running the Application Client

To run the client, use the following command:

appclient -client ClientSessionAppClient.jar

The program output in the terminal window looks like this:

Looking up EJB reference
Looked up home
Narrowed home
Got the EJB

See server log for bean output

In the server log, you will find the output from the executePublish and exe-

cuteQuery methods, wrapped in logging information.

After you run the example using a public registry, use the run-delete target in

the simple directory to delete the organization that was published.

441

JAVA APl FOR XML REGISTRIES

Further Information

For more information about JAXR, registries, and Web services, see the follow-
ing:
» Java Specification Request (JSR) 93: JAXR 1.0:
http://jcp.org/jsr/detail/093.jsp
* JAXR home page:
http://java.sun.com/xml/jaxr/
» Universal Description, Discovery and Integration (UDDI) project:
http://www.uddi.org/
* ebXML:
http://www.ebxml.org/
» Open Source JAXR Provider for ebXML Registries:
http://ebxmlrr.sourceforge.net/jaxr/
» Java2 Platform, Enterprise Edition:
http://java.sun.com/j2ee/
» JavaTechnology and XML:
http://java.sun.com/xml/
» Java Technology and Web Services:
http://java.sun.com/webservices/

http://jcp.org/jsr/detail/093.jsp
http://java.sun.com/xml/jaxr/
http://www.uddi.org/
http://www.ebxml.org/
http://java.sun.com/j2ee/
http://java.sun.com/xml/
http://java.sun.com/webservices/
http://ebxmlrr.sourceforge.net/jaxr/

11

Java Servlet
Technology

AS soon as the Web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts
toward this goal, focused on using the client platform to deliver dynamic user
experiences. At the same time, devel opers also investigated using the server plat-
form for this purpose. Initially, Common Gateway Interface (CGI) scripts were
the main technology used to generate dynamic content. Although widely used,
CGI scripting technology has a number of shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java servlet
technology was created as a portable way to provide dynamic, user-oriented con-
tent.

What Is a Servlet?

A serviet is a Java programming language class that is used to extend the capa-
bilities of servers that host applications access via a request-response program-
ming model. Although serviets can respond to any type of request, they are
commonly used to extend the applications hosted by Web servers. For such
applications, Java Servlet technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and
classes for writing servlets. All servlets must implement the Servlet interface,

443

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html

JAVA SERVLET TECHNOLOGY

which defines life-cycle methods. When implementing a generic service, you
can use or extend the GenericServlet class provided with the Java Servlet API.
The HttpServiet class provides methods, such as doGet and doPost, for han-
dling HT TP-specific services.

This chapter focuses on writing serviets that generate responses to HTTP
requests. Some knowledge of the HTTP protocal is assumed; if you are unfamil-
iar with this protocol, you can get a brief introduction to HTTP in Appendix C.

The Example Serviets

This chapter uses the Duke's Bookstore application to illustrate the tasks
involved in programming servlets. Table 11-1 lists the servlets that handle each
bookstore function. Each programming task is illustrated by one or more serv-
lets. For example, BookDetailsServlet illustrates how to handle HTTP GET
reguests, BookDetailsServlet and CatalogServlet show how to construct
responses, and CatalogServlet illustrates how to track session information.

Table 11-1 Duke's Bookstore Example Servlets

Function Servlet

Enter the bookstore BookStoreServilet
Creste the bookstore banner BannerServiet
Browse the bookstore catalog CatalogServiet

CatalogServiet,

Put abook in ashopping cart BookDetailsServiet

Get detailed information on a specific book BookDetailsServlet
Display the shopping cart ShowCartServlet
Remove one or more books from the shopping cart ShowCartServlet
Buy the books in the shopping cart CashierServiet

Send an acknowledgment of the purchase ReceiptServilet

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServlet.html

THE EXAMPLE SERVLETS

The data for the bookstore application is maintained in a database and accessed
through the database access class database.BookDBAO. The database package
also contains the class BookDetai 1s, which represents a book. The shopping cart
and shopping cart items are represented by the classes cart.ShoppingCart and
cart.ShoppingCartItem, respectively.

The source code for the bookstore application is located in the <INSTALL>/
j2eetutoriall4/examples/web/bookstorel/ directory, which is created
when you unzip the tutorial bundle (see Building the Examples, page xxxvii). A
sample bookstorel.war is provided in <INSTALL>/j2eetutoriall4/exam-
ples/web/provided-wars/. To build the application, follow these steps:

1. Build and package the bookstore common files as described in Duke's
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutoriall4/examples/
web/bookstorel/.

3. Run asant build. Thistarget will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutoriall4/examples/web/
bookstorel/build/ directory.

4. Start the Application Server.
5. Perform al the operations described in Accessing Databases from Web
Applications (page 104).
To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.
To learn how to configure the example, use deploytool to package and deploy
it:

1. Start depTloytool.

2. Create a Web application called bookstorel by running the New Web
Component wizard. Select File-New -\WWeb Component.

3. In the New Web Component wizard:
a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR Location field, enter <INSTALL>/j2eetutoriall4/exam-
ples/web/bookstorel/bookstorel.war.

c. Inthe WAR Namefield, enter bookstorel.
d. In the Context Root field, enter /bookstorel.
e. Click Edit Contents.

445

446

JAVA SERVLET TECHNOLOGY

f. In the Edit Archive Contents dialog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/bookstorel/build/. Select
errorpage.html, duke.books.gif, and the servlets, database,
filters, Tisteners, and util packages. Click Add.

g. Add the shared bookstore library. Navigate to <INSTALL>/
j2eetutoriall4/examples/web/bookstore/dist/. Select book-
store.jar and click Add.

h. Click OK.
i. Click Next.
j. Select the Servlet radio button.
k. Click Next.
|. Select BannerServlet from the Servlet Class combo box.
m.Click Finish.
4. Add therest of the Web componentslisted in Table 11-2. For each servlet:
a. Select File-New “\Web Component.

b. Click the Add to Existing WAR Moduleradio button. Because the WAR
containsall the servlet classes, you do not have to add any more content.

Click Next.

. Select the Servlet radio button.

Click Next.

Select the servlet from the Servlet Class combo box.
. Click Finish.

Q@ o o o0

Table 11-2 Duke's Bookstore Web Components

Web Component Name Servlet Class Alias
BannerServilet BannerServiet /banner
BookStoreServlet BookStoreServilet /bookstore
CatalogServiet CatalogServiet /bookcatalog
BookDetailsServilet BookDetailsServiet /bookdetails
ShowCartServlet ShowCartServlet /bookshowcart
CashierServlet CashierServlet /bookcashier

THE EXAMPLE SERVLETS

Table 11-2 Duke's Bookstore Web Components (Continued)

Web Component Name Servlet Class Alias

ReceiptServiet ReceiptServiet /bookreceipt

5. Set the alias for each Web component.
a. Select the component.
b. Select the Aliases tab.
c. Click the Add button.
d. Enter the alias.
6. Add the listener class Tisteners.ContextlListener (described in Han-
dling Servlet Life-Cycle Events, page 450).
a. Select the Event Listeners tab.
b. Click Add.
C. Select the Tlisteners.ContextListener class from the drop-down
field in the Event Listener Classes pane.
7. Add an error page (described in Handling Errors, page 452).
a. Select the File Ref’s tab.
b. In the Error Mapping pane, click Add Error.

C. Enter exception.BookNotFoundException in the Error/Exception
field.

d. Enter /errorpage.html in the Resource to be Called field.
€. Repeat for exception.BooksNotFoundException and javax.serv-
Tet.UnavailableException.
8. Add the filters filters.HitCounterFilter and filters.OrderFilter
(described in Filtering Requests and Responses, page 463).
a. Select the Filter Mapping tab.
b. Click Edit Filter List.
c. Click Add Filter.

d. Select filters.HitCounterFilter from the Filter Class column.
deploytool will automatically enter HitCounterFilter inthe Display
Name column.

e. Click Add Filter.

JAVA SERVLET TECHNOLOGY

f. Select filters.OrderFilter from the Filter Class column. deploy-
tool will automatically enter OrderFilter in the Display Name col-
umn.

g. Click OK.
h. Click Add.
i. Select HitCounterFilter from the Filter Name drop-down menu.
j. Select the Filter this Servlet radio button in the Filter Target frame.
k. Select BookStoreServlet from the Servliet Name drop-down menu.
[. Click OK.
m.Repeat for OrderFilter. Select ReceiptServiet from the Serviet
Name drop-down menu.
9. Add aresource reference for the database.
a Select the Resource Ref’s tab.
b. Click Add.
. Enter jdbc/BookDB in the Coded Name field.
. Accept the default type javax.sql.DataSource.
. Accept the default authorization Container.
Accept the default selected Shareable.
. Enter jdbc/BookDB in the INDI name field of the Sun-specific Settings
frame.
10.Select File—Save.
11.Deploy the application.
a. Select Tools-Deploy.

b. Inthe Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

c. Click OK.

Q -~ O Qo 0

To run the application, open the bookstore URL http://Tocalhost:8080/
bookstorel/bookstore.

Troubleshooting

The Duke's Bookstore database access object returns the following exceptions:

* BookNotFoundException: Returned if abook can’t belocated in the book-
store database. This will occur if you haven't loaded the bookstore data-

SERVLET LIFE CYCLE

base with data by running asant create-db_common or if the database
server hasn't been started or it has crashed.

* BooksNotFoundException: Returned if the bookstore data can’'t be
retrieved. This will occur if you haven't loaded the bookstore database
with data or if the database server hasn’t been started or it has crashed.

* UnavailableException: Returned if aserviet can't retrieve the Web con-
text attribute representing the bookstore. This will occur if the database
server hasn't been started.

Because we have specified an error page, you will see the message
The application is unavailable. Please try later.

If you don’t specify an error page, the Web container generates a default page
containing the message

A Servlet Exception Has Occurred

and a stack trace that can help you diagnose the cause of the exception. If you
use errorpage.html, you will have to look in the server log to determine the
cause of the exception.

Servlet Life Cycle

The life cycle of aservlet is controlled by the container in which the servlet has
been deployed. When arequest is mapped to a servlet, the container performsthe
following steps.
1. If an instance of the servlet does not exist, the Web container
a. Loadsthe servlet class.
b. Creates an instance of the servlet class.

c. Initializesthe servlet instance by calling the i nit method. Initialization
iscovered in Initializing a Servlet (page 456).

2. Invokes the service method, passing request and response objects. Ser-
vice methods are discussed in Writing Service M ethods (page 457).

If the container needs to remove the servlet, it finalizes the servlet by calling the
sarvlet's destroy method. Findlization is discussed in Findizing a
Servlet (page 477).

449

450

JAVA SERVLET TECHNOLOGY

Handling Serviet Life-Cycle Events

You can monitor and react to eventsin a servlet’s life cycle by defining listener
objects whose methods get invoked when life-cycle events occur. To use these
listener objects you must define and specify the listener class.

Defining the Listener Class

You define alistener class as an implementation of alistener interface. Table 11—
3 lists the events that can be monitored and the corresponding interface that must
be implemented. When a listener method is invoked, it is passed an event that
contains information appropriate to the event. For example, the methods in the
HttpSessionListener interface are passed an HttpSessionEvent, which con-
tains an HttpSession.

Table 11-3 Servlet Life-Cycle Events

Session
(See Maintaining Cli-
ent State, page 474)

passivation, and
timeout

Object Event Listener Interface and Event Class
Initializationand | Javax-serviet. |

Web context destruction ervletContextListener an

. ServletContextEvent

(see Accessing the

Web : .

Context e473) Attribute added, javax.servlet.

»Pag removed, or ServletContextAttributelListener and

replaced ServletContextAttributeEvent
Creation, javax.servlet.http.
invalidation, HttpSessionListener,
activation, javax.servlet.http.

HttpSessionActivationListener, and
HttpSessionEvent

Attribute added,
removed, or
replaced

javax.servlet.http.
HttpSessionAttributelistener and
HttpSessionBindingEvent

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingEvent.html

HANDLING SERVLET LIFE-CYCLE EVENTS

Table 11-3 Servlet Life-Cycle Events (Continued)

Object Event Listener Interface and Event Class

A servlet request
e javax.servlet.

has started being ServietR tlist and
processed by Web ervletRequestListener
ServletRequestEvent
R components
equest
Attribute added, javax.servlet.
removed, or ServletRequestAttributelistener and
replaced ServiletRequestAttributeEvent

The listeners.ContextListener class creates and removes the database
access and counter objects used in the Duke's Bookstore application. The meth-
ods retrieve the Web context object from ServletContextEvent and then store
(and remove) the objects as servlet context attributes.

import database.BookDBAO;
import javax.servlet.¥;
import util.Counter;

public final class ContextListener
implements ServletContextListener {
private ServletContext context = null;
public void contextInitialized(ServletContextEvent event) {
context = event.getServletContext();
try {
BookDBAO bookDB = new BookDBAO(Q);
context.setAttribute("bookDB", bookDB) ;
} catch (Exception ex) {
System.out.println(
"Couldn't create database:

+ ex.getMessage());
}

Counter counter = new Counter();
context.setAttribute("hitCounter", counter);

counter = new Counter();
context.setAttribute("orderCounter", counter);

}

public void contextDestroyed(ServietContextEvent event) {
context = event.getServletContext();
BookDBAO bookDB = context.getAttribute("bookDB™);
bookDB. remove() ;
context.removeAttribute("bookDB");

451

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestListener.html
../examples/web/bookstore1/src/listeners/ContextListener.java
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeEvent.html

452

JAVA SERVLET TECHNOLOGY

context.removeAttribute("hitCounter™);
context.removeAttribute("orderCounter");
}
}

Specifying Event Listener Classes

You specify an event listener class in the Event Listener tab of the WAR inspec-
tor. Review step 6. in The Example Servlets (page 444) for the deploytool pro-
cedure for specifying the ContextListener listener class.

Handling Errors

Any number of exceptions can occur when a servlet is executed. When an excep-
tion occurs, the Web container will generate a default page containing the mes-

sage
A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for
a given exception. Review step 7. in The Example Servlets (page 444) for
deploytool procedures for mapping the exceptions exception.BookNotFound,
exception.BooksNotFound, and exception.OrderException returned by the
Duke's Bookstore application to errorpage . html.

Sharing Information

Web components, like most objects, usualy work with other objects to accom-
plish their tasks. There are severa ways they can do this. They can use private
helper objects (for example, JavaBeans components), they can share objects that
are attributes of a public scope, they can use a database, and they can invoke
other Web resources. The Java servlet technology mechanisms that allow a Web
component to invoke other Web resources are described in Invoking Other Web
Resources (page 469).

USING ScorPe OBJECTS 453

Using Scope Objects

Collaborating Web components share information via objects that are maintained
as attributes of four scope objects. You access these attributes using the
[get|set]Attribute methods of the class representing the scope. Table 114
lists the scope objects.

Table 114 Scope Objects

Scope

Object Class Accessible From

\Web context javax.servlet. Web components within a Web context. See
ServletContext Accessing the Web Context (page 473).
. Web components handling a request that belongs to

. javax.servilet. - P .
Session http.HttpSession the session. See Maintaining Client
) State (page 474).

subtype of

Request javax.servlet. Web components handling the request.
ServletRequest

Page javax.servlet. The JSP page that creates the object. See Using
jsp.JspContext Implicit Objects (page 498).

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html

JAVA SERVLET TECHNOLOGY

Figure 11-1 shows the scoped attributes maintained by the Duke's Bookstore
application.

F.

ookStoreServiet

Session

Attribute //'——\
B (i
hitCounterFilter
(£ Web Context

Attributes

r Ses'sion hitCounter
Attribute _ bookDB

currency ookDetailsServlet

l _ cart - ¢ ShowCartServlet orderCounter)

CashierServlet orderFilter

Figure11-1 Duke's Bookstore Scoped Attributes

Controlling Concurrent Access to Shared
Resources

In a multithreaded server, it is possible for shared resources to be accessed con-
currently. In addition to scope object attributes, shared resources include in-
memory data (such as instance or class variables) and external objects such as
files, database connections, and network connections. Concurrent access can
arise in several situations:

» Multiple Web components accessing objects stored in the Web context.
» Multiple Web components accessing objects stored in a session.

» Multiple threads within a Web component accessing instance variables. A
Web container will typically create athread to handle each request. If you
want to ensure that a servlet instance handles only one request at atime, a
servlet can implement the SingleThreadModel interface. If a serviet
implementsthisinterface, you are guaranteed that no two threads will exe-
cute concurrently in the servlet’s service method. A Web container can

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/SingleThreadModel.html

ACCESSING DATABASES

implement this guarantee by synchronizing access to a single instance of
the servlet, or by maintaining a pool of Web component instances and dis-
patching each new request to a free instance. This interface does not pre-
vent synchronization problemsthat result from Web components accessing
shared resources such as static class variables or external objects. In addi-
tion, the Servlet 2.4 specification deprecates the SingleThreadModel
interface.

When resources can be accessed concurrently, they can be used in an inconsis-
tent fashion. To prevent this, you must control the access using the synchroniza-
tion techniques described in the Threads lesson in The Java Tutorial, by Mary
Campione et a. (Addison-Wesley, 2000).

In the preceding section we show five scoped attributes shared by more than one
servlet: bookDB, cart, currency, hitCounter, and orderCounter. The bookDB
attribute is discussed in the next section. The cart, currency, and counters can be
set and read by multiple multithreaded servlets. To prevent these objects from
being used inconsistently, access is controlled by synchronized methods. For
example, hereistheutil.Counter class:

public class Counter {

private int counter;

public Counter() {
counter = 0;

}

public synchronized int getCounter() {
return counter;

3

public synchronized int setCounter(int c) {
counter = c;
return counter;

3

public synchronized int incCounter() {
return(++counter);

}

}

Accessing Databases

Data that is shared between Web components and is persistent between invoca-
tions of aWeb application is usually maintained by a database. Web components
use the JDBC API to access relational databases. The data for the bookstore
application is maintained in a database and is accessed through the database

455

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial
../examples/web/bookstore1/src/util/Counter.java

456

JAVA SERVLET TECHNOLOGY

access class database.BookDBAO. For example, ReceiptServlet invokes the
BookDBAO. buyBooks method to update the book inventory when a user makes a
purchase. The buyBooks method invokes buyBook for each book contained in the
shopping cart. To ensure that the order is processed in its entirety, the calls to
buyBook are wrapped in a single JDBC transaction. The use of the shared data-
base connection is synchronized viathe [get | release]Connection methods.

public void buyBooks(ShoppingCart cart) throws OrderException {
Collection items = cart.getItems();
Iterator i = items.iterator();
try {
getConnection();
con.setAutoCommit(false);
while (i.hasNext()) {
ShoppingCartItem sci = (ShoppingCartItem)i.next();
BookDetails bd = (BookDetails)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity(Q);
buyBook(id, quantity);
}
con.commit();
con.setAutoCommit(true);
releaseConnection();
} catch (Exception ex) {
try {
con.rollback(Q;
releaseConnection();
throw new OrderException("Transaction failed: +
ex.getMessage());
} catch (SQLException sqx) {
releaseConnection();
throw new OrderException("Rollback failed: +
sgx.getMessage());

Initializing a Servlet

After the Web container loads and instantiates the servlet class and before it
delivers requests from clients, the Web container initializes the servlet. To cus-
tomize this process to allow the servlet to read persistent configuration data, ini-
tialize resources, and perform any other one-time activities, you override the

../examples/web/bookstore1/src/database/BookDBAO.java
../examples/web/bookstore1/src/servlets/ReceiptServlet.java

WRITING SERVICE METHODS 457

init method of the Serviet interface. A servlet that cannot completeitsinitial-
ization process should throw UnavailableException.

All the servlets that access the bookstore database (BookStoreServlet, Cata-
lTogServlet, BookDetailsServlet, and ShowCartServlet) initialize avariable
in their init method that points to the database access object created by the Web
context listener:

public class CatalogServlet extends HttpServlet {
private BookDBAO bookDB;
public void init() throws ServletException {
bookDB = (BookDBAO)getServletContext().
getAttribute("bookDB");
if (bookDB == null) throw new
UnavailableException("Couldn't get database.™);

Writing Service Methods

The service provided by a servlet is implemented in the service method of a
GenericServlet, in the doMethod methods (where Method can take the value
Get, Delete, Options, Post, Put, Or Trace) of an HttpServlet object, or in any
other protocol-specific methods defined by a class that implements the Servilet
interface. In the rest of this chapter, the term service method is used for any
method in a servlet classthat provides a service to aclient.

The general pattern for a service method is to extract information from the
request, access external resources, and then populate the response based on that
information.

For HTTP servlets, the correct procedure for populating the response is to first
retrieve an output stream from the response, then fill in the response headers, and
finaly write any body content to the output stream. Response headers must
always be set before the response has been committed. Any attempt to set or add
headers after the response has been committed will be ignored by the Web con-
tainer. The next two sections describe how to get information from requests and
generate responses.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html
../examples/web/bookstore1/src/servlets/BookStoreServlet.java
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/BookDetailsServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java

458

JAVA SERVLET TECHNOLOGY

Getting Information from Requests

A request contains data passed between a client and the serviet. All requests
implement the ServletRequest interface. This interface defines methods for
accessing the following information:

» Parameters, which are typically used to convey information between cli-
ents and servlets

» Object-valued attributes, which are typically used to pass information
between the servlet container and a servlet or between collaborating serv-
lets

 Information about the protocol used to communicate the request and about
the client and server involved in the request

* |Information relevant to localization

For example, in CatalogServlet the identifier of the book that a customer
wishes to purchase is included as a parameter to the request. The following code
fragment illustrates how to use the getParameter method to extract the identi-
fier:

String bookId = request.getParameter("Add");
if (bookId !'= null) {
BookDetails book = bookDB.getBookDetails(bookId);

You can aso retrieve an input stream from the request and manually parse the
data. To read character data, use the BufferedReader object returned by the
reguest’s getReader method. To read binary data, use the ServletInputStream
returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServietRequest, which
contains the request URL, HT TP headers, query string, and so on.

AnHTTP regquest URL contains the following parts:
http://[host]:[port][request path]?[query string]

The request path is further composed of the following elements:
» Context path: A concatenation of aforward slash (/) with the context root
of the servlet’s Web application.

» Servlet path: The path section that corresponds to the component alias that
activated this request. This path starts with aforward slash (/).

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html
../examples/web/bookstore1/src/servlets/CatalogServlet.java
http://java.sun.com/j2se/1.4/docs/api/java/io/BufferedReader.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletInputStream.html

GETTING INFORMATION FROM REQUESTS

» Pathinfo: The part of the request path that is not part of the context path or
the servlet path.

If the context path is /catalog and for the aliaseslisted in Table 11-5, Table 11—
6 gives some examples of how the URL will be parsed.

Table 11-5 Aliases

Pattern Servlet
/Tawn/* LawnServlet
/*.jsp JSPServlet

Table 11-6 Request Path Elements

Request Path Servlet Path Path Info
/catalog/Tawn/index.htm]l /Tawn /index.html
/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual param-
eters are retrieved from arequest by using the getParameter method. There are
two ways to generate query strings:

» A query string can explicitly appear in aWeb page. For example, an HTML
page generated by the CatalogServiet could containthelink <a href="/
bookstorel/catalog?Add=101">Add To Cart. CatalogServiet
extracts the parameter named Add as follows:

String bookId = request.getParameter("Add");

* A query string is appended to a URL when a form with a GET HTTP
method is submitted. In the Duke’s Bookstore application, CashierServ-
Tet generates aform, then auser nameinput to theform is appended to the
URL that mapsto ReceiptServiet, and finally ReceiptServilet extracts
the user name using the getParameter method.

459

../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java
../examples/web/bookstore1/src/servlets/ReceiptServlet.java

460

JAVA SERVLET TECHNOLOGY

Constructing Responses

A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface defines methods that
alow you to:

» Retrieve an output stream to use to send data to the client. To send charac-
ter data, use the PrintWriter returned by the response’s getWriter
method. To send binary data in a MIME body response, use the Serv-
letOutputStream returned by getOutputStream. To mix binary and text
data, for example—to create amultipart response—use aServletOutput-
Stream and manage the character sections manually.

* Indicate the content type (for example, text/htm1) being returned by the
response with the setContentType (String) method. This method must
be called before the response is committed. A registry of content type
names is kept by the Internet Assigned Numbers Authority (IANA) at:

http://www.iana.org/assignments/media-types/

* Indicate whether to buffer output with the setBufferSize(int) method.
By default, any content written to the output stream isimmediately sent to
the client. Buffering allows content to be written before anything is actu-
ally sent back to the client, thus providing the servlet with more time to set
appropriate status codes and headers or forward to another Web resource.
The method must be called before any content is written or before the
response is committed.

» Set localization information such as locale and character encoding. See
Chapter 22 for details.

HTTP response objects, HttpServletResponse, have fields representing HTTP
headers such as the following:

 Statuscodes, which are used to indicate the reason arequest is not satisfied
or that a request has been redirected.

» Cookies, which are used to store application-specific information at the cli-
ent. Sometimes cookies are used to maintain an identifier for tracking a
user’'s session (see Session Tracking, page 476).

In Duke's Bookstore, BookDetailsServiet generates an HTML page that dis-
plays information about a book that the servlet retrieves from a database. The
servlet first sets response headers: the content type of the response and the buffer
size. The servlet buffers the page content because the database access can gener-
ate an exception that would cause forwarding to an error page. By buffering the
response, the servlet prevents the client from seeing a concatenation of part of a

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponse.html
http://java.sun.com/j2se/1.4/docs/api/java/io/PrintWriter.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletOutputStream.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletOutputStream.html
http://www.iana.org/assignments/media-types/
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
../examples/web/bookstore1/src/servlets/BookDetailsServlet.java

CONSTRUCTING RESPONSES

Duke's Bookstore page with the error page should an error occur. The doGet
method then retrieves a PrintWri ter from the response.

To fill in the response, the servlet first dispatches the request to BannerServlet,
which generates a common banner for al the servlets in the application. This
process is discussed in Including Other Resources in the Response (page 470).
Then the servlet retrieves the book identifier from a request parameter and uses
the identifier to retrieve information about the book from the bookstore database.
Finally, the serviet generates HTML markup that describes the book information
and then commits the response to the client by calling the c1ose method on the
PrintWriter.

public class BookDetailsServlet extends HttpServlet {
pubTlic void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// set headers before accessing the Writer
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the response
out.printin("<html>" +
"<head><title>+
messages.getString("TitleBookDescription")
+</title></head>");

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =
getServletContext().
getRequestDispatcher("/banner");
if (dispatcher != null)
dispatcher.include(request, response);

// Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {
// and the information about the book
try {
BookDetails bd =
bookDB.getBookDetails (bookId);

// Print the information obtained
out.printin("<h2>" + bd.getTitle() + "</h2>" +

} catch (BookNotFoundException ex) {
response.resetBuffer();

461

462 JAVA SERVLET TECHNOLOGY

throw new ServletException(ex);

}

}
out.printin("</body></htm1>");

out.close();
3
3

BookDetailsServiet generates a page that looks like Figure 11-2.

X Book Description - Netscape
. File Edit %iew Go Bookmarks Tools Window Help

@ Q @ @ |% http:fflocalhost:8080/bookstore] fhookdetails Yhookld=202

& 69

=lolx|

_[% Book De{}gcnptmn]

Duke's ‘?@% Bookstore

Web Servers for Fun and Profit

by Jeeves (2000)

Here's what the critics say:
What a cool book,
Qur Price: $40.75

Addto Cart Continue Shopping

E=E=EE]

== ==] 4

Figure11-2 Book Details

FILTERING REQUESTS AND RESPONSES 463

Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a
reguest or response. Filters differ from Web components in that filters usually do
not themselves create a response. Instead, afilter provides functionality that can
be “attached” to any kind of Web resource. Consequently, afilter should not have
any dependencies on a Web resource for which it is acting as a filter; this way it
can be composed with more than one type of Web resource. The main tasks that
afilter can perform are asfollows:

* Query the request and act accordingly.

 Block the request-and-response pair from passing any further.

» Modify the request headers and data. You do this by providing a custom-
ized version of the request.

» Modify the response headers and data. You do this by providing a custom-
ized version of the response.

* Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a Web resource to be filtered by a chain of zero, one, or more
filters in a specific order. This chain is specified when the Web application con-
taining the component is deployed and is instantiated when a Web container
|oads the component.

In summary, the tasks involved in using filters are

» Programming the filter
* Programming customized requests and responses
» Specifying thefilter chain for each Web resource

Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig
interfaces in the javax.serviet package. You define afilter by implementing
the Filter interface. The most important method in this interface is doFilter,

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html

JAVA SERVLET TECHNOLOGY

which is passed request, response, and filter chain objects. This method can per-
form the following actions:

» Examine the request headers.

» Customize the request object if the filter wishesto modify request headers
or data.

» Customizetheresponse object if the filter wishesto modify response head-
ersor data.

» |Invoke the next entity in the filter chain. If the current filter isthe last filter
in the chain that ends with the target Web component or static resource, the
next entity is the resource at the end of the chain; otherwise, it is the next
filter that was configured in the WAR. Thefilter invokes the next entity by
calling the doFil1ter method on the chain object (passing in the request
and response it was called with, or the wrapped versions it may have cre-
ated). Alternatively, it can choose to block the request by not making the
call to invoke the next entity. In the latter case, thefilter is responsible for
filling out the response.

» Examine response headers after it has invoked the next filter in the chain.
e Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods.
The init method is called by the container when the filter is instantiated. If you
wish to pass initialization parameters to the filter, you retrieve them from the
FilterConfig object passed to init.

The Duke's Bookstore application uses the filters HitCounterFilter and
OrderFilter to increment and log the value of counters when the entry and
receipt servlets are accessed.

In the doFi1ter method, both filters retrieve the serviet context from the filter
configuration object so that they can access the counters stored as context
attributes. After the filters have completed application-specific processing, they
invoke doFilter on the filter chain object passed into the origina doFilter
method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServletException {
this.filterConfig = filterConfig;

}

public void destroy() {

../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/OrderFilter.java

PROGRAMMING CUSTOMIZED REQUESTS AND RESPONSES

this.filterConfig = null;

public void doFilter(ServletRequest request,
ServiletResponse response, FilterChain chain)
throws IOException, ServletException {
if (filterConfig == null)
return;
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
Counter counter = (Counter)filterConfig.
getServletContext().
getAttribute("hitCounter");
writer.printin(Q);

writer.printin(" ");

writer.printin("The number of hits is: " +
counter.incCounter());

writer.printin(" "3

// Log the resulting string
writer.flush(Q;
System.out.printin(sw.getBuffer().toString());

chain.doFilter(request, wrapper);

Programming Customized Requests and
Responses

There are many ways for afilter to modify arequest or response. For example, a
filter can add an attribute to the request or can insert data in the response. In the
Duke's Bookstore example, HitCounterFilter inserts the value of the counter
into the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. To do this, you pass a stand-in stream to the servlet that
generates the response. The stand-in stream prevents the servlet from closing the
original response stream when it completes and allows the filter to modify the
servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper
that overridesthe getWriter or getOutputStream method to return this stand-in
stream. The wrapper is passed to the doFi1ter method of the filter chain. Wrap-
per methods default to calling through to the wrapped request or response object.

465

466

JAVA SERVLET TECHNOLOGY

This approach follows the well-known Wrapper or Decorator pattern described
in Design Patterns, Elements of Reusable Object-Oriented Software, by Erich
Gamma et al. (Addison-Wesley, 1995). The following sections describe how the
hit counter filter described earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper Or HttpServietRequestWrapper. To override
response methods, you wrap the response in an object that extends ServletRe-
sponseWrapper Or HttpServletResponseWrapper

HitCounterFilter wraps the response in a CharResponseWrapper. The
wrapped response is passed to the next object in the filter chain, which is Book-
StoreServilet. Then BookStoreServlet writes its response into the stream
created by CharResponseWrapper. When chain.doFilter returns, Hit-
CounterFilter retrieves the servlet’'s response from PrintWriter and writes it
to a buffer. The filter inserts the value of the counter into the buffer, resets the
content length header of the response, and then writes the contents of the buffer
to the response stream.

PrintWriter out = response.getWriter();
CharResponseWrapper wrapper = new CharResponseWrapper(
(HttpServletResponse)response);
chain.doFilter(request, wrapper);
CharArrayWriter caw = new CharArrayWriter();
caw.write(wrapper.toString() .substring(0,
wrapper.toString() .index0f("</body>")-1));
caw.write("<p>\n<center>" +
messages.getString("Visitor") + "" +
counter.getCounter() + "</center>");
caw.write("\n</body></html>");
response.setContentLength(caw.toString() .getBytes().length);
out.write(caw.toString());
out.close();

public class CharResponseWrapper extends

HttpServletResponseWrapper {

private CharArrayWriter output;

public String toString() {
return output.toString(Q);

}

public CharResponseWrapper (HttpServletResponse response){
super(response);
output = new CharArrayWriter();

}

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequestWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponseWrapper.html
../examples/web/bookstore1/src/filters/CharResponseWrapper.java

PROGRAMMING CUSTOMIZED REQUESTS AND RESPONSES 467

public PrintWriter getWriter(){
return new PrintWriter(output);
}
}

Figure 11-3 shows the entry page for Duke’s Bookstore with the hit counter.

) Duke's Bookstore - Netscape : ol x|
. File Edit %iew Go Bookmarks Tools Window Help

=7 R
N @QQ @ @ |% http:fflocalhost:8080/bookstore thookstore | d:ga@
» [
[X]

ﬂ[% Duke's Bookstare]

A

Duke's ‘?@% Bookstore

What We're Reading

Wieh Components for Wieh Developers talks about how web components can transform
the way you develop applications for the web. This is a must read for any self respecting
wieh developerl

Start Shopping

You are visitor number 2

DA & B oo - = e
Figure11-3 Duke's Bookstore with Hit Counter

468

JAVA SERVLET TECHNOLOGY

Specifying Filter Mappings

A Web container uses filter mappings to decide how to apply filters to Web
resources. A filter mapping matches afilter to a Web component by name, or to
Web resources by URL pattern. The filters are invoked in the order in which fil-
ter mappings appear in the filter mapping list of a WAR. You specify a filter
mapping list for aWAR by using depToytool or by coding the list directly inthe
Web application deployment descriptor as follows:

1. Declare the filter. This element creates a name for the filter and declares
the filter's implementation class and initialization parameters.

2. Map thefilter to a Web resource by name or by URL pattern.

3. Constrain how the filter will be applied to requests by choosing one of the
enumerated dispatcher options:

* REQUEST: Only when the request comes directly from the client

* FORWARD: Only when the request has been forwarded to a component
(see Transferring Control to Another Web Component, page 472)

» INCLUDE: Only when therequest isbeing processed by acomponent that
has been included (see Including Other Resources in the
Response, page 470)

* ERROR: Only when the request is being processed with the error page
mechanism (see Handling Errors, page 452)

You can direct thefilter to be applied to any combination of the preceding
situations by including multiple dispatcher elements. If no elements are
specified, the default option is REQUEST.

If you want to log every request to a Web application, you map the hit counter
filter to the URL pattern /*. Step 8. in The Example Servlets (page 444) shows
how to create and map the filters for the Duke's Bookstore application. Table 11—
7 summarizes the filter definition and mapping list for the Duke's Bookstore
application. The filters are matched by servlet name, and each filter chain con-
tains only onefilter.

Table 11-7 Duke's Bookstore Filter Definition and Mapping List

Filter Class Serviet

HitCounterFilter | filters.HitCounterFilter BookStoreServlet

OrderFilter filters.OrderFilter ReceiptServiet

INVOKING OTHER WEB RESOURCES 469

You can map afilter to one or more Web resources and you can map more than
one filter to a Web resource. Thisisillustrated in Figure 114, wherefilter F1 is
mapped to servlets S1, S2, and S3, filter F2 is mapped to servlet S2, and filter F3
is mapped to servlets S1 and S2.

Figure 114 Filter-to-Servlet Mapping

Recall that afilter chain is one of the objects passed to the doFi1ter method of a
filter. This chain is formed indirectly viafilter mappings. The order of the filters
in the chain is the same as the order in which filter mappings appear in the Web
application deployment descriptor.

When afilter is mapped to servlet S1, the Web container invokes the doFilter
method of F1. The doFi1ter method of each filter in S1'sfilter chain is invoked
by the preceding filter in the chain via the chain.doFilter method. Because
S1'sfilter chain containsfilters F1 and F3, F1's call to chain.doFilter invokes
the doFilter method of filter F3. When F3's doFilter method completes,
control returnsto F1's doFi1ter method.

Invoking Other Web Resources

Web components can invoke other Web resources in two ways: indirectly and
directly. A Web component indirectly invokes another Web resource when it
embeds a URL that points to another Web component in content returned to a

470

JAVA SERVLET TECHNOLOGY

client. In the Duke's Bookstore application, most Web components contain
embedded URLs that point to other Web components. For example, ShowCart-
Servlet indirectly invokesthe CatalogServlet through the embedded URL
/bookstorel/catalog.

A Web component can also directly invoke another resource while it is execut-
ing. There are two possibilities: The Web component can include the content of
another resource, or it can forward a request to another resource.

To invoke a resource available on the server that is running a Web component,
you must first obtain a RequestDispatcher object using the getRequestDis-
patcher("URL") method.

You can get aRequestDispatcher object from either a request or the Web con-
text; however, the two methods have slightly different behavior. The method
takes the path to the requested resource as an argument. A request can take arel-
ative path (that is, one that does not begin with a /), but the Web context requires
an absolute path. If the resource is not available or if the server has not imple-
mented a RequestDispatcher object for that type of resource, getRequestDis-
patcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the
Response

It is often useful to include another Web resource—for example, banner content
or copyright information—in the response returned from a Web component. To
include another resource, invoke the include method of a RequestDispatcher
object:

include(request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a Web component, the effect of the method is to send
the request to the included Web component, execute the Web component, and
then include the result of the execution in the response from the containing serv-
let. Anincluded Web component has access to the request object, but it islimited
in what it can do with the response object:

* It can write to the body of the response and commit a response.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html

INCLUDING OTHER RESOURCES IN THE RESPONSE

It cannot set headers or call any method (for example, setCookie) that
affects the headers of the response.

The banner for the Duke’'s Bookstore application is generated by BannerServ-
Tet. Note that both doGet and doPost are implemented because BannerServlet
can be dispatched from either method in acalling servlet.

public class BannerServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
output(request, response);

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
output(request, response);

}

private void output(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();
out.printin("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<hl>" +
"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +
"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}
}

Each servlet in the Duke's Bookstore application includes the result from Ban-
nerServlet using the following code:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/banner™);
if (dispatcher != null)
dispatcher.include(request, response);

}

471

../examples/web/bookstore1/src/servlets/BannerServlet.java
../examples/web/bookstore1/src/servlets/BannerServlet.java

472

JAVA SERVLET TECHNOLOGY

Transferring Control to Another Web
Component

In some applications, you might want to have one Web component do prelimi-
nary processing of a request and have another component generate the response.
For example, you might want to partially process a request and then transfer to
another component depending on the nature of the request.

To transfer control to another Web component, you invoke the forward method
of aRequestDispatcher. When arequest isforwarded, the request URL is set to
the path of the forwarded page. The original URI and its constituent parts are
saved as request attributes javax.servlet.forward. [request_uri|context-
path|servlet_path|path_info|query_string]. The Dispatcher servlet
used by aversion of the Duke's Bookstore application described in The Example
JSP Pages (page 578), saves the path information from the original URL,
retrieves a RequestDispatcher from the request, and then forwards to the JSP
page template.jsp.

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
RequestDispatcher dispatcher = request.
getRequestDispatcher("/template.jsp™);
if (dispatcher != null)
dispatcher.forward(request, response);
}

public void doPost(HttpServletRequest request,

}

The forward method should be used to give another resource responsibility for
replying to the user. If you have aready accessed a ServletOutputStream or
PrintWriter object within the servlet, you cannot use this method; doing so
throwsan I1legalStateException.

../examples/web/bookstore2/src/Dispatcher.java
../examples/web/bookstore3/web/template/template.txt

ACCESSING THE WEB CONTEXT 473

Accessing the Web Context

The context in which Web components execute is an object that implements the
ServletContext interface. You retrieve the Web context using the getServilet-
Context method. The Web context provides methods for accessing:

* |nitialization parameters

» Resources associated with the Web context
» Object-valued attributes

» Logging capabilities

The Web context is used by the Duke's Bookstore filters filters.HitCounter-
Filter and OrderFilter, which are discussed in Filtering Requests and
Responses (page 463). Each filter stores a counter as a context attribute. Recall
from Controlling Concurrent Access to Shared Resources (page 454) that the
counter’s access methods are synchronized to prevent incompatible operations
by servlets that are running concurrently. A filter retrieves the counter object
using the context’s getAttribute method. The incremented value of the counter
isrecorded in the log.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;
public void doFilter(ServletRequest request,
ServiletResponse response, FilterChain chain)
throws IOException, ServletException {

StringWriter sw = new StringWriter(Q);

PrintWriter writer = new PrintWriter(sw);

ServletContext context = filterConfig.
getServletContext();

Counter counter = (Counter)context.
getAttribute("hitCounter");

writer.printin("The number of hits is: " +
counter.incCounter());

System.out.printin(sw.getBuffer().toString());

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/HitCounterFilter.java

474

JAVA SERVLET TECHNOLOGY

Maintaining Client State

Many applications require that a series of requests from a client be associated
with one another. For example, the Duke's Bookstore application saves the state
of auser’s shopping cart across requests. Web-based applications are responsible
for maintaining such state, called a session, because HTTP is stateless. To sup-
port applications that need to maintain state, Java servlet technology provides an
API for managing sessions and allows several mechanisms for implementing
Sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by
calling the getSession method of arequest object. This method returns the cur-
rent session associated with this request, or, if the request does not have a ses-
sion, it creates one.

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such
attributes are accessible by any Web component that belongs to the same Web
context and is handling a request that is part of the same session.

The Duke's Bookstore application stores a customer’s shopping cart as a session
attribute. This allows the shopping cart to be saved between requests and also
allows cooperating servletsto accessthe cart. CatalogServiet addsitemsto the
cart; ShowCartServiet displays, deletes items from, and clears the cart; and
CashierServiet retrieves the total cost of the booksin the cart.

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart =

(ShoppingCart)session.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java

SESSION MANAGEMENT

getAttribute("cart");

// Determine the total price of the user's books
double total = cart.getTotal();

Notifying Objects That Are Associated with a
Session

Recall that your application can notify Web context and session listener objects
of servlet life-cycle events (Handling Servlet Life-Cycle Events, page 450). You
can also notify objects of certain events related to their association with a session
such as the following:

» When the object is added to or removed from a session. To receive this
notification, your object must implement the javax.http.HttpSession-
BindingListener interface.

» When the session to which the object is attached will be passivated or acti-
vated. A session will be passivated or activated when it is moved between
virtual machines or saved to and restored from persistent storage. To
receive this notification, your object must implement the
javax.http.HttpSessionActivationListener interface.

Session Management

Because there is no way for an HTTP client to signal that it no longer needs a
session, each session has an associated timeout so that its resources can be
reclaimed. The timeout period can be accessed by using a session’s
[get|set]MaxInactiveInterval methods. You can aso set the timeout period
using deploytool:

1. Select the WAR.
2. Select the General tab.
3. Click the Advanced Setting button.
4. Enter the timeout period in the Session Timeout field.
To ensure that an active session is not timed out, you should periodically access

the session via service methods because this resets the session’s time-to-live
counter.

When a particular client interaction is finished, you use the session’s invali-
date method to invalidate a session on the server side and remove any session

475

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html

476 JAVA SERVLET TECHNOLOGY

data. The bookstore application’s ReceiptServiet isthe last servlet to access a
client’s session, so it has the responsibility to invalidate the session:

public class ReceiptServlet extends HttpServlet {
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// Get the user's session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();

Session Tracking

A Web container can use several methods to associate a session with auser, all of
which involve passing an identifier between the client and the server. The identi-
fier can be maintained on the client as a cookie, or the Web component can
include the identifier in every URL that is returned to the client.

If your application uses session objects, you must ensure that session tracking is
enabled by having the application rewrite URLs whenever the client turns off
cookies. You do this by calling the response’s encodeURL (URL) method on all
URLSs returned by a servlet. This method includes the session ID in the URL
only if cookies are disabled; otherwise, it returns the URL unchanged.

The doGet method of ShowCartServiet encodes the three URLS at the bottom
of the shopping cart display page as follows:

out.printin("<p> <p><a href=\"" +
response.encodeURL(request.getContextPath() +
"/bookcatalog") +
"\">" + messages.getString("ContinueShopping") +
" " +
"<a href=\"" +
response.encodeURL(request.getContextPath() +
"/bookcashier™) +
"\">" + messages.getString("Checkout") +
" " +
"<a href=\"" +
response.encodeURL(request.getContextPath() +
"/bookshowcart?Clear=clear™) +
"\">" + messages.getString("ClearCart") +
"");

../examples/web/bookstore1/src/servlets/ReceiptServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java

FINALIZING A SERVLET 477

If cookies are turned off, the session is encoded in the Check Out URL as fol-
lows:

http://localhost:8080/bookstorel/cashier;
jsessionid=c0o7fszebl

If cookies are turned on, the URL is simply

http://localhost:8080/bookstorel/cashier

Finalizing a Serviet

When a servlet container determines that a servlet should be removed from ser-
vice (for example, when a container wants to reclaim memory resources or when
it is being shut down), the container calls the destroy method of the Servilet
interface. In this method, you release any resources the servlet is using and save
any persistent state. The following destroy method rel eases the database object
created in the init method described in Initializing a Servlet (page 456):

public void destroy() {
bookDB = nulT;
}

All of aservlet's service methods should be complete when a servlet is removed.
The server tries to ensure this by calling the destroy method only after all ser-
vice requests have returned or after a server-specific grace period, whichever
comes first. If your servlet has operations that take a long time to run (that is,
operations that may run longer than the server's grace period), the operations
could still be running when destroy is called. You must make sure that any
threads <till handling client requests complete; the remainder of this section
describes how to do the following:

» Keeptrack of how many threads are currently running the service method

» Provide a clean shutdown by having the destroy method notify long-run-
ning threads of the shutdown and wait for them to complete

» Have the long-running methods poll periodically to check for shutdown
and, if necessary, stop working, clean up, and return

478

JAVA SERVLET TECHNOLOGY

Tracking Service Requests

To track service requests, include in your servlet class a field that counts the
number of service methods that are running. The field should have synchronized
access methods to increment, decrement, and return its value.

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {
serviceCounter++;

3
protected synchronized void leavingServiceMethod() {
serviceCounter--;

}

protected synchronized int numServices() {
return serviceCounter;

3

}

The service method should increment the service counter each time the method
is entered and should decrement the counter each time the method returns. This
is one of the few times that your HttpServlet subclass should override the ser-
vice method. The new method should call super.service to preserve the func-
tionality of the origina service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();

try {
super.service(req, resp);
} finally {
TeavingServiceMethod();
}

}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared
resources until al the service requests have completed. One part of doing thisis
to check the service counter. Another part is to notify the long-running methods

CREATING POLITE LONG-RUNNING METHODS 479

that it is time to shut down. For this notification, another field is required. The
field should have the usua access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {
shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {
return shuttingDown;
3

}

Here is an example of the destroy method using these fields to provide a clean
shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);
3

/* Wait for the service methods to stop. */
whiTle(numServices() > 0) {

try {

Thread.sTeep(interval);

} catch (InterruptedException e) {

3
}

}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running meth-
ods behave politely. Methods that might run for a long time should check the
value of thefield that notifies them of shutdowns and should interrupt their work,
if necessary.

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
1isShuttingDown()); i++) {

480

JAVA SERVLET TECHNOLOGY

try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}
}
}

Further Information

For further information on Java Servlet technology, see

» Java Servlet 2.4 specification:
http://java.sun.com/products/servlet/download.html#specs

* The Java Servlet Web site:
http://java.sun.com/products/serviet

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

12

JavaServer Page§
Technology

JAVASERVER Pages (JSP) technology allows you to easily create Web content
that has both static and dynamic components. JSP technology makes available
all the dynamic capabilities of Java Servlet technology but provides a more natu-
ral approach to creating static content. The main features of JSP technology are
asfollows:

A language for developing JSP pages, which are text-based documents that
describe how to process arequest and construct a response

» An expression language for accessing server-side objects

» Mechanisms for defining extensions to the JSP language

JSP technology also contains an API that is used by developers of Web contain-
ers, but this APl is not covered in thistutorial .

What Is a JSP Page?

A JSP page is atext document that contains two types of text: static data, which
can be expressed in any text-based format (such as HTML, SVG, WML, and
XML), and JSP elements, which construct dynamic content.

The recommended file extension for the source file of a JSP page is .jsp. The

page can be composed of atop file that includes other files that contain either a 481

http://www.w3.org/MarkUp
http://www.w3.org/TR/SVG
http://www.oasis-open.org/cover/wap-wml.html
http://www.w3.org/TR/REC-xml

482

JAVASERVER PAGES TECHNOLOGY

compl ete JSP page or afragment of a JSP page. The recommended extension for
the source file of afragment of a JSP pageis . jspf.

The JSP elementsin a JSP page can be expressed in two syntaxes—standard and
XML—though any given file can use only one syntax. A JSP page in XML syn-
tax is an XML document and can be manipulated by tools and APIs for XML
documents. This chapter and Chapters 14 through 16 document only the standard
syntax. The XML syntax is covered in Chapter 13. A syntax card and reference
that summarizes both syntaxesis available at

http://java.sun.com/products/jsp/docs.html#syntax

Example

The Web page in Figure 12-1 isaform that allows you to select alocale and dis-
plays the date in a manner appropriate to the locale.

&) Localized Dates - Netscap o] x|
. File Edit View Go Bookmarks Tools Window Help

A @QO Q Q | % http:localhosta0B0/datefindexjsp £ ng @
2
3

;.;:l[% Localized Dates]

Locale: ILithuanian {Lithuania) | GetDats |
Date: Antradienis, 2004, Kovo 16

Figure12-1 Localized Date Form

The source code for this example isin the <INSTALL>/j2eetutoriall4/exam-
ples/web/date/ directory. The JSP page, index.jsp, used to create the form
appearsin amoment; it isatypical mixture of static HTML markup and JSP ele-
ments. If you have developed Web pages, you are probably familiar with the
HTML document structure statements (<head>, <body>, and so on) and the
HTML statements that create aform (<form>) and amenu (<select>).

http://java.sun.com/products/jsp/docs.html#syntax
../examples/web/date/web/index.txt

EXAMPLE

The lines in bold in the example code contain the following types of JSP con-
structs:

» A page directive (<%@page ... %>) Setsthe content type returned by the
page.
» Tag library directives (<%@taglib ... %>)import custom tag libraries.

* jsp:useBean creates an object containing a collection of locales and ini-
tializes an identifier that points to that object.

» JSP expression language expressions (${ }) retrieve the value of object
properties. The values are used to set custom tag attribute values and create
dynamic content.

e Custom tags set a variable (c:set), iterate over a collection of locale
names (c: forEach), and conditionally insert HTML text into the response
(c:if, c:choose, c:when, c:otherwise).

* jsp:setProperty Setsthe value of an object property.

» A function (f:equals) tests the equality of an attribute and the current
item of a collection. (Note: A built-in == operator is usually used to test

equality).
Here isthe JSP page:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="http://java.sun.com/jsp/jst1/core"
prefix="c" %>

<%@ taglib uri="/functions" prefix="f" %>

<html>

<head><title>Localized Dates</title></head>

<body bgcolor="white">

<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

<form name="TocaleForm™ action="1index.jsp" method="post">
<c:set var="selectedLocaleString" value="${param.locale}" />
<c:set var="selectedFlag"
value="${!empty selectedLocaleString}" />
Locale:
<select name=locale>
<c:forEach var="1localeString" items="${locales.localeNames}" >
<c:choose>
<c:when test="${selectedFlag}">
<c:choose>
<c:when
test="${f:equals(selectedLocaleString,
localeString)}" >

483

JAVASERVER PAGES TECHNOLOGY

<option selected>${localeString}</option>
</c:when>
<c:otherwise>
<option>${localeString}</option>
</c:otherwise>
</c:choose>
</c:when>
<c:otherwise>
<option>${localeString}</option>
</c:otherwise>
</c:choose>
</c:forEach>
</select>
<input type="submit" name="Submit" value="Get Date">
</form>

<c:if test="${selectedFlag}" >
<jsp:setProperty name="locales"
property="selectedlLocaleString"
value="${selectedLocaleString}" />
<jsp:useBean id="date" class="mypkg.MyDate"/>
<jsp:setProperty name="date" property="Tlocale"
value="${locales.selectedLocale}"/>
Date: ${date.date}
</c:if>
</body>
</html>

A sample date.war is provided in <INSTALL>/j2eetutoriall4/examples/
web/provided-wars/. To build this example, perform the following steps:

1. In a terminal window, go to <INSTALL>/j2eetutoriall4/examples/
web/date/.

2. Run asant build. Thistarget will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutoriall4/examples/web/date/
build/ directory.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.
2. Start the Application Server.
3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start the Application Server.

EXAMPLE

2. Start deploytool.

3. Create aWeb application called date by running the New Web Component
wizard. Select File-New -\Web Component.

4. In the New Web Component wizard:

a
b.

o B NN o)

g.
h.

I
j.

Select the Create New Stand-Alone WAR Module radio button.

In the WAR Location field, enter <INSTALL>/docs/tutorial/exam-
ples/web/date/date.war.

In the WAR Name field, enter date.

. In the Context Root field, enter /date.

Click Edit Contents.

In the Edit Contents dialog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/date/build/. Select index.jsp,
functions.t1d, and the mypkg directory and click Add, then click OK.

Click Next.

Select the No Component radio button.
Click Next.

Click Finish.

5. Select File-Save.
6. Deploy the application.
a. Select Tools-Deploy.

b. Inthe Connection Settingsframe, enter the user name and password you

C.
d. A pop-up dialog box will display the results of the deployment. Click

specified when you installed the Application Server.
Click OK.

Close.

To run the example, perform these steps:

1. Set the character encoding in your browser to UTF-8.
2. Openthe URL http://Tocalhost:8080/date in abrowser.

You will see acombo box whose entries are locales. Select alocale and click Get

Date. You will seethe date expressed in a manner appropriate for that locale.

485

JAVASERVER PAGES TECHNOLOGY

page (see Table 12-1).

The Example JSP Pages

To illustrate JSP technology, this chapter rewrites each servlet in the Duke's
Bookstore application introduced in The Example Servlets (page 444) as a JSP

Table 12-1 Duke's Bookstore Example JSP Pages

Function JSP Pages
Enter the bookstore. bookstore.jsp
Create the bookstore banner. banner.jsp

Browse the books offered for sale.

bookcatalog.jsp

Add a book to the shopping cart.

bookcatalog.jsp and bookdetails.jsp

Get detailed information on a specific
book.

bookdetails.jsp

Display the shopping cart.

bookshowcart.jsp

Remove one or more books from the
shopping cart.

bookshowcart.jsp

Buy the books in the shopping cart.

bookcashier.jsp

Receive an acknowledgment for the
purchase.

bookreceipt.jsp

The data for the bookstore application is still maintained in a database and is
accessed through database.BookDBAO. However, the JSP pages access BookD-
BAO through the JavaBeans component database.BookDB. This class alows the
JSP pages to use JSP elements designed to work with JavaBeans components

(see JavaBeans Component Design Conventions, page 508).

../examples/web/bookstore2/src/database/BookDBAO.java
../examples/web/bookstore2/src/database/BookDB.java

THE EXAMPLE JSP PAGES

The implementation of the database bean follows. The bean has two instance
variables. the current book and the data access object.

package database;

public class BookDB {
private String bookId = "0";
private BookDBAO database = null;

public BookDB () throws Exception {

}
public void setBookId(String bookId) {
this.bookId = bookId;

public void setDatabase(BookDAO database) {
this.database = database;

}
public BookDetails getBookDetails()

throws Exception {

return (BookDetails)database.getBookDetails(bookId);
}

}

This version of the Duke's Bookstore application is organized along the Model-
View-Controller (MVC) architecture. The MV C architecture is a widely used
architectural approach for interactive applications that distributes functionality
among application objects so as to minimize the degree of coupling between the
objects. To achieve this, it divides applications into three layers. model, view,
and controller. Each layer handles specific tasks and has responsibilities to the
other layers.

» The model represents business data, along with business logic or opera-
tions that govern access and modification of this business data. The model
notifies views when it changes and | ets the view query the model about its
state. It also lets the controller access application functionality encapsu-
lated by the model. In the Duke's Bookstore application, the shopping cart
and database access object contain the business logic for the application.

» The view renders the contents of amodel. It gets data from the model and
specifies how that data should be presented. It updates data presentation
when the model changes. A view also forwards user input to a controller.
The Duke's Bookstore JSP pages format the data stored in the session-
scoped shopping cart and the page-scoped database bean.

» Thecontroller defines application behavior. It dispatches user requests and
selects views for presentation. It interprets user inputs and maps them into

487

488

JAVASERVER PAGES TECHNOLOGY

actionsto be performed by the model. In aWeb application, user inputsare
HTTP GET and POST requests. A controller selects the next view to display
based on the user interactions and the outcome of the model operations. In
the Duke's Bookstore application, the Di spatcher servlet isthe controller.
It examines the request URL, creates and initializes a session-scoped Jav-
aBeans component—the shopping cart—and dispatches requests to view
JSP pages.

Note: When employed in aWeb application, the MV C architecture is often referred
to as a Model-2 architecture. The bookstore example discussed in Chapter 11,
which intermixes presentation and business logic, follows what is known as a
Model-1 architecture. The Model-2 architecture is the recommended approach to
designing Web applications.

In addition, this version of the application uses several custom tags from the Jav-
aServer Pages Standard Tag Library (JSTL), described in Chapter 14:

e c:if, c:choose, c:when, and c:otherwise for flow control
» c:set for setting scoped variables
» c:url for encoding URLS

e fmt:message, fmt:formatNumber, and fmt:formatDate for providing
locale-sensitive messages, numbers, and dates

Custom tags are the preferred mechanism for performing a wide variety of
dynamic processing tasks, including accessing databases, using enterprise ser-
vices such as email and directories, and implementing flow control. In earlier
versions of JSP technology, such tasks were performed with JavaBeans compo-
nentsin conjunction with scripting elements (discussed in Chapter 16). Although
till available in JSP 2.0 technology, scripting elements tend to make JSP pages
more difficult to maintain because they mix presentation and logic, something
that is discouraged in page design. Custom tags are introduced in Using Custom
Tags (page 513) and described in detail in Chapter 15.

Finally, this version of the example contains an applet to generate a dynamic dig-
ital clock in the banner. See Including an Applet (page 519) for a description of
the JSP element that generates HTML for downloading the appl et.

The source code for the application is located in the <INSTALL>/
j2eetutoriall4/examples/web/bookstore2/ directory (see Building the
Examples, page xxxvii). A sample bookstore2.war is provided in <INSTALL>/

THE EXAMPLE JSP PAGES

j2eetutoriall4/examples/web/provided-wars/. To build the example, fol-
low these steps:

1

Build and package the bookstore common files as described in Duke's
Bookstore Examples (page 103).

. In a terminal window, go t0 <INSTALL>/j2eetutoriall4/examples/

web/bookstore2/.

. Run asant build. Thistarget will spawn any necessary compilations and

will copy files to the <INSTALL>/j2eetutoriall4/examples/web/
bookstore2/build/ directory.

. Start the Application Server.
. Perform &l the operations described in Accessing Databases from Web

Applications (page 104).

To package and deploy the example using asant, follow these steps.

1
2.

Run asant create-bookstore-war.

Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy

it:

1
2.

3.

Start deploytool.

Create a Web application called bookstore2 by running the New Web

Component wizard. Select File-New -\Web Component.

In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. Click Browse.

c. Inthe WAR Location field, enter <INSTALL>/j2eetutoriall4/exam-
ples/web/bookstore2/bookstore2.war.

. Inthe WAR Name field, enter bookstore?2.

. In the Context Root field, enter /bookstore2.
Click Edit Contents.

.In the Edit Contents dialog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/bookstore2/build/. Select the JSP
pages bookstore.jsp, bookdetails.jsp, bookcatalog.jsp, book-
showcart.jsp, bookcashier.jsp, bookordererror.jsp, bookre-
ceipt.jsp, duke.books.gif, andthe clock, dispatcher, database,
Tisteners, and template directories and click Add.

Q ™ 0 Qo

489

490

JAVASERVER PAGES TECHNOLOGY

h. Move /WEB-INF/classes/clock/ to the root directory of the WAR. By default,
deploytool packagesall classesin /WEB-INF/classes/. Because clock/Digital-
Clock.class isaclient-side class, it must be packaged in the root directory. To do
this, simply drag the clock directory from /WEB-INF/classes/ to the root directory
in the pane labeled Contents of bookstore2.

i. Add the shared bookstore library. Navigateto <INSTALL>/j2eetutoriall4/exam-
ples/web/bookstore/dist/. Select bookstore.jar, and click Add.

j. Click OK.

k. Click Next.

|. Select the Servlet radio button.

m.Click Next.

n. Select dispatcher.Dispatcher from the Servlet class combo box.
0. Click Finish.

. Add the listener class Tisteners.ContextListener (described in Handling Servlet

Life-Cycle Events, page 450).
a. Select the Event Listeners tab.
b. Click Add.

c. Select the Tisteners.ContextListener class from drop-down field in the Event
Listener Classes pane.

. Add the aliases.

a. Select the Dispatcher Web component.
b. Select the Aliasestab.

c. Click Add and then type /bookstore inthe Aliases field. Repeat to add the aliases
/bookcatalog, /bookdetails, /bookshowcart, /bookcashier, /bookorderer-
ror, and /bookreceipt.

. Add the context parameter that specifies the JSTL resource bundle base name.

a. Select the Web module.
b. Select the Context tab.
c. Click Add.

d. Enter javax.servlet.jsp.jst].fmt.TocalizationContext inthe Coded Param-
eter field.

€. Enter messages.BookstoreMessages in the Valuefield.

. Set the prelude and coda for all JSP pages.

a. Select the JSP Propertiestab.

SQ &0 a0 T

j.
K.
l.
m.

THE EXAMPLE JSP PAGES 491

Click the Add button next to the Name list.
Enter bookstore?2.

. Click the Add button next to the URL Pattern list.

Enter *.jsp.
Click the Edit button next to the Include Preludes list.

. Click Add.
. Enter /template/prelude. jspf.
. Click OK.

Click the Edit button next to the Include Codas list.
Click Add.

Enter /template/coda. jspf.

Click OK.

8. Add aresource reference for the database.

a
b.

«Q S 0O o 0

Select the Resource Ref’s tab.
Click Add.

. Enter jdbc/BookDB in the Coded Name field.
. Accept the default type javax.sql.DataSource.
. Accept the default authorization Container.

Accept the default selected Shareable.

. Enter jdbc/BookDB in the INDI name field of the Sun-specific Settings

frame.

9. Select File—Save.
10.Deploy the application.

a
b.

Select Tools-Deploy.
Click OK.

To run the application, open the bookstore URL http://localhost:8080/
bookstore2/bookstore. Click on the Start Shopping link and you will see the

screenin

Figure 12-2.

492 JAVASERVER PAGES TECHNOLOGY

=1o] x|

& Duke's Bookstore - Netscape ;
. File Edit View Go Bookmarks Tools Help |

@QO O O ‘%hnpf,"IDCﬁIhDstEDEDIhDDRsmreZ,thDkCﬁtalng?Add= | ':go @
»

;\j[% Duke's Bookstore] =

Duke's ‘?@% Bookstore

Tuesday, March 16, 2004 10:04:43 Ak

Please choose from our selections:

Duke: A Biography of the Java Evangelist
by itzal Tru
From Oak to Java: The Revolution of a Language
by Kevin Movalion
Java Intermediate Bytecodes
by James Gosling
My Early Years: Growing up on *7
by Duike
The Green Project: Programming for Consumer Devices
by Ben Thriflsd
Web Components for Web Developers
by Webster Masterson
Web Servers for Fun and Profit
hy Jesves

$45.00 _Addto Cart

$1075 _Addto Cart

$30.95 _Addto Cart

$30.75 _Addto Cart

$30.00 _Addto Cart

$27.75 _Addto Cart

$40.75 _Addto Cart

Copynght € 2003-2004 Sun Microsystems, inc

SR8 S == *E

Figure 12—2 Book Catalog

See Troubleshooting (page 448) for help with diagnosing common problems related to the
database server. If the messagesin your pages appear as strings of theform ??? Key 777, the
likely causeisthat you have not provided the correct resource bundle base name as a context
parameter.

THE LIFE CYCLE OF A JSP PAGE 493

The Life Cycle of a JSP Page

A JSP page services requests as a servlet. Thus, the life cycle and many of the
capabilities of JSP pages (in particular the dynamic aspects) are determined by
Java Servlet technology. You will notice that many sections in this chapter refer
to classes and methods described in Chapter 11.

When arequest is mapped to a JSP page, the Web container first checks whether
the JSP page's servlet is older than the JSP page. If the servlet is older, the Web
container translates the JSP page into a servlet class and compiles the class. Dur-
ing development, one of the advantages of JSP pages over servlets is that the
build process is performed automatically.

Translation and Compilation

During the translation phase each type of datain a JSP page istreated differently.
Static data is transformed into code that will emit the data into the response
stream. JSP elements are treated as follows:

» Directives are used to control how the Web container translates and exe-
cutes the JSP page.

e Scripting elements are inserted into the JSP page's serviet class. See
Chapter 16 for details.

» Expression language expressions are passed as parameters to cals to the
JSP expression evaluator.

* jsp:[set|get]Property elementsare converted into method callsto Jav-
aBeans components.

* jsp:[include|forward] elements are converted into invocations of the
Java Servlet API.

* The jsp:plugin element is converted into browser-specific markup for
activating an applet.

» Custom tags are converted into callsto the tag handler that implementsthe
custom tag.

If you would like the Sun Java System Application Server Platform Edition 8 to
keep the generated servlets for a Web module in deploytool, perform these

steps:
1. Select the WAR.
2. Select the General tab.

494

JAVASERVER PAGES TECHNOLOGY

3. Click the Sun-specific Settings button.

4. Select the Servlet/JSP Settings option from the View combo box.
5. Click the Add button in the JSP Configuration frame.

6. Select keepgenerated from the Name column.

7. Select true from the Value column.

8. Click Close.

In the Application Server, the source for the servlet created from a JSP page
named pageName isin thisfile:

<J2EE_HOME>/domains/domainl/generated/
jsp/WAR_NAME/pageName_jsp.java

For example, the source for the index page (named index.jsp) for the date
localization example discussed at the beginning of the chapter would be named

<J2EE_HOME>/domains/domainl/generated/
jsp/date/index_jsp.java

Both the trandation and the compilation phases can yield errors that are
observed only when the page is requested for the first time. If an error is encoun-
tered during either phase, the server will return JasperException and a message
that includes the name of the JSP page and the line where the error occurred.

After the page has been translated and compiled, the JSP page’s servlet (for the
most part) follows the serviet life cycle described in Servlet Life
Cycle (page 449):
1. If an instance of the JSP page’s servlet does not exist, the container
a. Loadsthe JSP page's servlet class
b. Instantiates an instance of the servlet class
c. Initializes the servlet instance by calling the jspInit method

2. The container invokes the _jspService method, passing request and
response objects.

If the container needs to remove the JSP page's servlet, it calls the jspDestroy
method.

EXECUTION

Execution

You can control various JSP page execution parameters by using page directives.
The directives that pertain to buffering output and handling errors are discussed
here. Other directives are covered in the context of specific page-authoring tasks
throughout the chapter.

Buffering

When a JSP page is executed, output written to the response object is automati-
cally buffered. You can set the size of the buffer using the following page direc-
tive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent
back to the client, thus providing the JSP page with more time to set appropriate
status codes and headers or to forward to another Web resource. A smaller buffer
decreases server memory load and allows the client to start receiving data more
quickly.

Handling Errors

Any number of exceptions can arise when a JSP page is executed. To specify that
the Web container should forward control to an error page if an exception occurs,
include the following page directive at the beginning of your JSP page:

<%@ page errorPage="f7le_name" %>
The Duke's Bookstore application page prelude. jspf contains the directive
<%@ page errorPage="errorpage.jsp"%>

The following page directive at the beginning of errorpage. jsp indicatesthat it
is serving as an error page

<%@ page isErrorPage="true" %>

This directive makes an object of type javax.servlet.jsp.ErrorData avail-
able to the error page so that you can retrieve, interpret, and possibly display
information about the cause of the exception in the error page. You access the

495

../examples/web/bookstore2/web/template/prelude.txt
../examples/web/bookstore2/web/template/errorpage.txt
http://java.sun.com/j2ee/1.4/docs/api/index.htmlapi/javax/servlet/jsp/ErrorData.html

496

JAVASERVER PAGES TECHNOLOGY

error data object in an expression language (see Expression Language, page 499)
expression via the page context. Thus, ${pageContext.errorData.status-
Code} is used to retrieve the status code, and ${pageContext.error-
Data.throwable} retrieves the exception. If the exception is generated during
the evaluation of an EL expression, you can retrieve the root cause of the excep-
tion using this expression:

${pageContext.errorData.throwable.rootCause}
For example, the error page for Duke's Bookstore is as follows:

<%@ page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jsp/jst1l/core"
prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
prefix="fmt" %>
<html1>
<head>
<title><fmt:message key="ServerError"/></title>
</head>
<body bgcolor="white">
<h3>
<fmt:message key="ServerError"/>
</h3>
<p>
${pageContext.errorData.throwable}
<c:choose>
<c:when test="${!empty
pageContext.errorData.throwable.cause}">
: ${pageContext.errorData.throwable.cause}
</c:when>
<c:when test="${!empty
pageContext.errorData.throwable.rootCause}">
: ${pageContext.errorData.throwable.rootCause}
</c:when>
</c:choose>
</body>
</html>

Note: You can a'so define error pages for the WAR that contains a JSP page. If error
pages are defined for both the WAR and a JSP page, the JSP page's error page takes
precedence.

CREATING STATIC CONTENT 497

Creating Static Content

You create static content in a JSP page simply by writing it asif you were creat-
ing a page that consisted only of that content. Static content can be expressed in
any text-based format, such as HTML, Wireless Markup Language (WML), and
XML. The default format is HTML. If you want to use a format other than
HTML, at the beginning of your JSP page you include a page directive with the
contentType attribute set to the content type. The purpose of the contentType
directive isto alow the browser to correctly interpret the resulting content. So if
you wanted a page to contain data expressed in WML, you would include the
following directive:

<%@ page contentType="text/vnd.wap.wml"%>
A registry of content type namesis kept by the IANA at

http://www.iana.org/assignments/media-types/

Response and Page Encoding

You also use the contentType attribute to specify the encoding of the response.
For example, the date application specifies that the page should be encoded
using UTF-8, an encoding that supports amost all locales, using the following
page directive:

<%@ page contentType="text/html; charset=UTF-8" %>

If the response encoding weren't set, the localized dates would not be rendered
correctly.

To set the source encoding of the page itself, you would use the following page
directive.

<%@ page pageEncoding="UTF-8" %>

You can aso set the page encoding of a set of JSP pages. The value of the page
encoding varies depending on the configuration specified in the JSP configura-
tion section of the Web application deployment descriptor (see Declaring Page
Encodings, page 524).

http://www.iana.org/assignments/media-types/

498

JAVASERVER PAGES TECHNOLOGY

Creating Dynamic Content

You create dynamic content by accessing Java programming language object
properties.

Using Objects within JSP Pages

You can access a variety of objects, including enterprise beans and JavaBeans
components, within a JSP page. JSP technology automatically makes some
objects available, and you can also create and access application-specific abjects.

Using Implicit Objects

Implicit objects are created by the Web container and contain information related
to a particular request, page, session, or application. Many of the objects are
defined by the Java servlet technology underlying JSP technology and are dis-
cussed at length in Chapter 11. The section Implicit Objects (page 502) explains
how you access implicit objects using the JSP expression language.

Using Application-Specific Objects

When possible, application behavior should be encapsulated in objects so that
page designers can focus on presentation issues. Objects can be created by devel-
opers who are proficient in the Java programming language and in accessing
databases and other services. The main way to create and use application-spe-
cific objects within a JSP page is to use JSP standard tags (discussed in Java-
Beans Components, page 507) to create JavaBeans components and set their
properties, and EL expressions to access their properties. You can also access
JavaBeans components and other objects in scripting elements, which are
described in Chapter 16.

Using Shared Objects

The conditions affecting concurrent access to shared objects (described in Con-
trolling Concurrent Access to Shared Resources, page 454) apply to objects
accessed from JSP pages that run as multithreaded servlets. You can use the fol-

EXPRESSION LANGUAGE 499

lowing page directive to indicate how a Web container should dispatch multiple
client requests

<%@ page isThreadSafe="true|false" %>

When the isThreadSafe attribute is set to true, the Web container can choose
to dispatch multiple concurrent client requests to the JSP page. This is the
default setting. If using true, you must ensure that you properly synchronize
access to any shared objects defined at the page level. Thisincludes objects cre-
ated within declarations, JavaBeans components with page scope, and attributes
of the page context object (see Implicit Objects, page 502).

If isThreadSafe is set to false, requests are dispatched one at a time in the
order they were received, and access to page-level objects does not have to be
controlled. However, you still must ensure that access is properly synchronized
to attributes of the application or session scope objects and to JavaBeans
components with application or session scope. Furthermore, it is not recom-
mended to set isThreadSafe to false: The JSP page's generated serviet will
implement the javax.servlet.SingleThreadModel interface, and because the
Servlet 2.4 specification deprecates SingleThreadModel, the generated serviet
will contain deprecated code.

Expression Language

A primary feature of JSP technology version 2.0 is its support for an expression
language (EL). An expression language makes it possible to easily access appli-
cation data stored in JavaBeans components. For example, the JSP expression
language allows a page author to access a bean using simple syntax such as
${name} for asimplevariable or ${name.foo.bar} for anested property.

The test attribute of the following conditional tag is supplied with an EL
expression that compares the number of items in the session-scoped bean hamed
cart with O:

<c:if test="${sessionScope.cart.numberOfItems > 0}">

</c:if>

500

JAVASERVER PAGES TECHNOLOGY

The JSP expression evaluator is responsible for handling EL expressions, which
are enclosed by the ${ } charactersand can include literals. Here's an example:

<c:if test="${beanl.a < 3}" >
</c:if>

Any value that does not begin with ${ is treated as a literal and is parsed to the
expected type using the PropertyEditor for the type:

<c:if test="true" >
</ciif>
Literal valuesthat contain the ${ characters must be escaped as follows:

<mytags:example attrl="an expression is ${'${'}true}" />

Deactivating Expression Evaluation

Because the pattern that identifies EL expressions—${ }—was not reserved in
the JSP specifications before JSP 2.0, there may be applications where such a
pattern is intended to pass through verbatim. To prevent the pattern from being
evaluated, you can deactivate EL evaluation.

To deactivate the evaluation of EL expressions, you specify the isELIgnored
attribute of the page directive:

<%@ page isELIgnored ="true|false" %>

The valid values of this attribute are true and false. If it is true, EL expres-
sions are ignored when they appear in static text or tag attributes. If it is false,
EL expressions are evaluated by the container.

The default value varies depending on the version of the Web application deploy-
ment descriptor. The default mode for JSP pages delivered using a Servlet 2.3 or
earlier descriptor is to ignore EL expressions; this provides backward compati-
bility. The default mode for JSP pages delivered with a Servlet 2.4 descriptor is
to evaluate EL expressions; this automatically provides the default that most
applications want. You can also deactivate EL expression evaluation for a group
of JSP pages (see Deactivating EL Expression Evaluation, page 523).

USING EXPRESSIONS

Using Expressions

EL expressions can be used:

* Instatic text

* Inany standard or custom tag attribute that can accept an expression
The value of an expression in static text is computed and inserted into the current
output. If the static text appears in a tag body, note that an expression will not be

evaluated if the body is declared to be tagdependent (see body-content
Attribute, page 593).

There are three ways to set atag attribute value:

» With asingle expression construct:
<some:tag value="${expr}"/>

The expression is evaluated and the result is coerced to the attribute’s
expected type.

» With one or more expressions separated or surrounded by text:
<some:tag value="some${expr}${expr}itext${expr}"/>
The expressions are evaluated from left to right. Each expression is

coerced to a String and then concatenated with any intervening text. The
resulting String isthen coerced to the attribute’s expected type.

» With text only:
<some:tag value="sometext"/>

In this case, the attribute’'s String value is coerced to the attribute’s
expected type.

Expressions used to set attribute values are evaluated in the context of an
expected type. If the result of the expression evaluation does not match the
expected type exactly, a type conversion will be performed. For example, the
expression ${1.2E4 + 1.4} provided as the value of an attribute of type float
will result in the following conversion:

Float.valueOf("1.2E4 + 1.4").floatValue()

See section JSP2.8 of the JSP 2.0 specification for the complete type conversion
rules.

501

http://java.sun.com/products/jsp/download.html#specs

502

JAVASERVER PAGES TECHNOLOGY

Variables

The Web container evaluates a variable that appears in an expression by looking
up its value according to the behavior of PageContext.findAt-
tribute(String). For example, when evaluating the expression ${product},
the container will look for product in the page, request, session, and application
scopes and will returnitsvalue. If product isnot found, nu11 isreturned. A vari-
able that matches one of the implicit objects described in Implicit
Objects (page 502) will return that implicit object instead of the variable’s value.

Properties of variables are accessed using the . operator and can be nested arbi-
trarily.

The JSP expression language unifies the treatment of the . and [] operators.
expr-a.expr-b is equivaent to a["expr-b"]; that is, the expression expr-b is
used to congtruct aliteral whose value is the identifier, and then the [] operator
is used with that value.

To evaluate expr-a[expr-b], evaluate expr-a into value-a and evaluate expr-
b into value-b. If ether value-a or value-b isnull, return null.

e |f value-a is aMap, return value-a.get(value-b). If !value-a.con-
tainsKey(value-b), then return null.

* If value-a isalList or array, coerce value-b to int and return value-
a.get(value-b) or Array.get(value-a, value-b), as appropriate. If
the coercion couldn’t be performed, an error is returned. If the get call
returns an IndexOutOfBoundsException, null isreturned. If the get call
returns another exception, an error is returned.

» If value-aisaJavaBeansobject, coercevalue-b to String. If value-bis
areadable property of value-a, then return the result of a get call. If the
get method throws an exception, an error is returned.

Implicit Objects
The JSP expression language defines a set of implicit objects:
» pageContext: The context for the JSP page. Provides access to various
objectsincluding:
» servletContext: The context for the JSP page’s serviet and any Web

components contained in the same application. See Accessing the Web
Context (page 473).

IMPLICIT OBJECTS

» session: The session object for the client. See Maintaining Client
State (page 474).

» request: Thereguest triggering the execution of the JSP page. See Get-
ting Information from Requests (page 458).

* response: The response returned by the JSP page. See Constructing
Responses (page 460).

In addition, severa implicit objects are available that allow easy access to the
following objects:

param: Maps a request parameter name to asingle value

paramValues: Maps arequest parameter name to an array of values
header: Maps a request header nameto a single value

headervValues: Maps arequest header name to an array of values
cookie: Maps a cookie name to asingle cookie

initParam: Mapsacontext initialization parameter nameto asinglevalue

Finally, there are objects that allow access to the various scoped variables
described in Using Scope Objects (page 453).

pageScope: Maps page-scoped variable names to their values
requestScope: Maps request-scoped variable namesto their values
sessionScope: Maps session-scoped variable names to their values

applicationScope: Maps application-scoped variable names to their val-
ues

When an expression references one of these abjects by name, the appropriate
object is returned instead of the corresponding attribute. For example, ${page-
Context} returns the PageContext object, even if there is an existing pageCon-
text attribute containing some other value.

503

504

JAVASERVER PAGES TECHNOLOGY

Literals

The JSP expression language defines the following literals:

Boolean: true and false

Integer: asin Java

Floating point: asin Java

String: with single and double quotes; " is escaped as\", ' isescaped as
\', and \ is escaped as \\.

Null: nu11

Operators

In addition to the . and [] operators discussed in Variables (page 502), the JSP
expression language provides the following operators:

Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

Logical: and, &&, or, | |, not, !

Relational: ==, eq, !=, ne, <, 1t, >, gt, <=, ge, >=, Te. Comparisons can be
made against other values, or against boolean, string, integer, or floating
point literals.

Empty: The empty operator is a prefix operation that can be used to deter-
mine whether avalueis nu11 or empty.

Conditional: A ? B : C. Evaluate B or C, depending on the result of the
eva uation of A.

The precedence of operators highest to lowest, left to right is as follows:

1.
O - Used to change the precedence of operators.

- (unary) not ! empty
* / div % mod

+ - (binary)

<> <=>= 1t gt le ge
== |= eq ne

&& and

|| or
?

RESERVED WORDS

Reserved Words

The following words are reserved for the JSP expression language and should
not be used as identifiers.

and eq gt true instanceof
or ne Tle false empty
not 1t ge null div mod

Note that many of these words are not in the language now, but they may be in
the future, so you should avoid using them.

Examples

Table 12—2 contains example EL expressions and the result of evaluating them.

Table 12-2 Example Expressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true
${(10%10) ne 100} false

${'a' < 'b"} true

${"hip' gt "hit'} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${!empty param.Add} :;Llljle; ;f:]ee:;e](;ttjﬁﬁar;meter named Add is
${pageContext.request.contextPath} The context path

505

506 JAVASERVER PAGES TECHNOLOGY

Table 12-2 Example Expressions (Continued)

EL Expression Result

The vaue of the number0OfItems property

i . . fI . -
${sessionScope.cart.numberOfItems} of the on-scoped attribute named cart

The value of the request parameter named

${param["'mycom.productId']} mycom. productId

${header["host"]} The host

The vaue of the entry named deptName in

${departments[deptName]} the depar-tments map

The value of the request-scoped attribute
named javax.servlet.
forward.servlet_path

${requestScope['javax.servlet.
forward.servlet_path']}

Functions

The JSP expression language allows you to define a function that can be invoked
in an expression. Functions are defined using the same mechanisms as custom
tags (See Using Custom Tags, page 513 and Chapter 15).

Using Functions

Functions can appear in static text and tag attribute values.

To use a function in a JSP page, you use a taglib directive to import the tag
library containing the function. Then you preface the function invocation with
the prefix declared in the directive.

For example, the date example page index. jsp imports the /functions library
and invokes the function equals in an expression:

<%@ taglib prefix="f" uri="/functions"%>
<c:when

test="${f:equals(selectedLocaleString,
TocaleString)}" >

JAVABEANS COMPONENTS

Defining Functions

To define a function you program it as a public static method in a public class.
Themypkg.MyLocales classin the date example defines a function that teststhe
equality of two Stringsasfollows:

package mypkg;
public class MyLocales {

public static boolean equals(String 11, String 12) {
return 11.equals(12);
}
}

Then you map the function name as used in the EL expression to the defining
class and function signature in a TLD. The following functions.t1d filein the
date example maps the equals function to the class containing the implementa-
tion of the function equals and the signature of the function:

<function>
<name>equals</name>
<function-class>mypkg.MyLocales</function-class>
<function-signature>boolean equals(java.lang.String,
java.lang.String)</function-signature>
</function>

A tag library can have only one function element that has any given name ele-
ment.

JavaBeans Components

JavaBeans components are Java classes that can be easily reused and composed
together into applications. Any Java class that follows certain design conventions
is a JavaBeans component.

JavaServer Pages technology directly supports using JavaBeans components
with standard JSP language elements. You can easily create and initialize beans
and get and set the values of their properties.

508

JAVASERVER PAGES TECHNOLOGY

JavaBeans Component Design
Conventions

JavaBeans component design conventions govern the properties of the class and
govern the public methods that give access to the properties.

A JavaBeans component property can be

» Read/write, read-only, or write-only

» Simple, which means it contains a single value, or indexed, which means
it represents an array of values

A property does not have to be implemented by an instance variable. It must sim-
ply be accessible using public methods that conform to the following conven-
tions:

 For each readable property, the bean must have a method of the form
PropertyClass getProperty() { ... }

» For each writable property, the bean must have a method of the form
setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a con-
structor that takes no parameters.

The Duke's Bookstore application JSP pages bookstore.jsp, bookde-
tails.jsp, catalog.jsp, and showcart.jsp use the database.BookDB and
database.BookDetails JavaBeans components. BookDB provides a JavaBeans
component front end to the access object database.BookDBAO. The JSP pages
showcart.jsp and cashier.jsp access the bean cart.ShoppingCart, which
represents a user’s shopping cart.

The BookDB bean has two writable properties, bookId and database, and three
readable properties. bookDetails, numberOfBooks, and books. These latter
properties do not correspond to any instance variables but rather are a function of
the bookId and database properties.

package database;

public class BookDB {
private String bookId = "0";
private BookDBAO database = null;
public BookDB () {
}

../examples/web/bookstore2/src/database/BookDB.java
../examples/web/bookstore/src/database/BookDetails.java
../examples/web/bookstore/src/cart/ShoppingCart.java

CREATING AND USING A JAVABEANS COMPONENT 509

public void setBookId(String bookId) {
this.bookId = bookId;

}
public void setDatabase(BookDBAO database) {
this.database = database;

public BookDetails getBookDetails() throws
BookNotFoundException {
return (BookDetails)database.getBookDetails(bookId);

}
public List getBooks() throws BooksNotFoundException {
return database.getBooks();

public void buyBooks(ShoppingCart cart)
throws OrderException {
database.buyBooks(cart);

}
pubTlic int getNumberOfBooks() throws BooksNotFoundException {
return database.getNumberOfBooks();

}
}

Creating and Using a JavaBeans
Component

To declare that your JSP page will use a JavaBeans component, you use a
jsp:useBean e ement. There are two forms;

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope"/>

and

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second form is used when you want to include jsp:setProperty State-
ments, described in the next section, for initializing bean properties.

The jsp:useBean element declares that the page will use a bean that is stored
within and is accessible from the specified scope, which can be application,
session, request, Or page. |f no such bean exists, the statement creates the bean

510

JAVASERVER PAGES TECHNOLOGY

and stores it as an attribute of the scope object (see Using Scope
Objects, page 453). The value of the id attribute determines the name of the
bean in the scope and the identifier used to reference the bean in EL expressions,
other JSP elements, and scripting expressions (see Chapter 16). The value sup-
plied for the c1ass attribute must be afully qualified class name. Note that beans
cannot be in the unnamed package. Thus the format of the value must be
package_name.class_name.

The following element creates an instance of mypkg.myLocales if none exists,
stores it as an attribute of the application scope, and makes the bean available
throughout the application by the identifier Tocales:

<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

Setting JavaBeans Component
Properties

The standard way to set JavaBeans component properties in a JSP page is by
using the jsp:setProperty element. The syntax of the jsp:setProperty ee
ment depends on the source of the property value. Table 12—3 summarizes the
various ways to set a property of a JavaBeans component using the jsp:set-
Property element.

Table 12-3 Valid Bean Property Assignments from String Values

Value Source Element Syntax

<jsp:setProperty name="beanName"

String constant property="propName" value="string constant"/>

<jsp:setProperty name="beanName"

Request parameter property="propName" param="paramName" />

<jsp:setProperty name="beanName'

Request parameter name property="propName" />

that matches bean property

<jsp:setProperty name="beanName'
property="*"/>

SETTING JAVABEANS COMPONENT PROPERTIES

Table 12-3 Valid Bean Property Assignments from String Values (Continued)

Value Source Element Syntax
<jsp:setProperty name="beanName"
property="propName" value="expression"/>
<jsp:setProperty name="beanName"
Expression property="propName" >

<jsp:attribute name="value">

expression

</jsp:attribute>
</jsp:setProperty>

1. beanName must be the same as that specified for the id
attribute in auseBean element.

2. There must be a setPropName method in the JavaBeans
component.

3. paramName must be arequest parameter name.

A property set from a constant string or request parameter must have one of the
types listed in Table 12—4. Because constants and request parameters are strings,
the Web container automatically converts the value to the property’s type; the

conversion applied is shown in the table.

String values can be used to assign values to a property that has a PropertyEd-
itor class. When that is the case, the setAsText(String) method is used. A
conversion failure arises if the method throws an I11egalArgumentException.

The value assigned to an indexed property must be an array, and the rules just

described apply to the elements.

Table 124 Valid Property Value Assignments from String Values

Property Type

Conversion on String Value

Bean Property

Uses setAsText(string-Tliteral)

boolean or Boolean

Asindicated in java.lang.Boolean.valueOf(String)

byte or Byte

Asindicated in java.lang.Byte.valueOf(String)

char or Character

Asindicated in java.Tlang.String.charAt(0)

511

512 JAVASERVER PAGES TECHNOLOGY

Table 124 Valid Property Value Assignments from String Values (Continued)

Property Type Conversion on String Value

double or Double Asindicatedin java.lang.Double.valueOf(String)
int or Integer Asindicated in java.lang.Integer.valueOf(String)
float or Float Asindicated in java.lang.Float.valueOf(String)
Tong or Long Asindicated in java.lang.Long.valueOf(String)
short or Short Asindicated in java.lang.Short.valueOf(String)
Object new String(string-Tliteral)

You use an expression to set the value of a property whose type is a compound
Java programming language type. The type returned from an expression must
match or be castable to the type of the property.

The Duke's Bookstore application demonstrates how to use the setProperty
element to set the current book from a request parameter in the database bean in
bookstore2/web/bookdetails.jsp

<c:set var="bid" value="${param.bookId}"/>
<jsp:setProperty name="bookDB" property="bookId"
value="${bid}" />

The following fragment from the page bookstore2/web/bookshowcart.jsp
illustrates how to initialize a BookDB bean with a database object. Because the
initialization is nested in auseBean element, it is executed only when the bean is
created.

<jsp:useBean id="bookDB" class="database.BookDB" scope="page'>
<jsp:setProperty name="bookDB" property="database"
value="${bookDBAO}" />
</jsp:useBean>

../examples/web/bookstore2/web/bookdetails.txt
../examples/web/bookstore2/web/bookshowcart.txt

RETRIEVING JAVABEANS COMPONENT PROPERTIES 513

Retrieving JavaBeans Component
Properties

The main way to retrieve JavaBeans component properties is by using the JSP
EL expressions. Thus, to retrieve a book title, the Duke's Bookstore application
uses the following expression:

${bookDB.bookDetails.title}

Another way to retrieve component properties is to use the jsp:getProperty
element. This element converts the value of the property into a String and
inserts the value into the response stream:

<jsp:getProperty name="beanName" property="propName" />

Note that beanName must be the same as that specified for the id attribute in a
useBean element, and there must be a getPropName method in the JavaBeans
component. Although the preferred approach to getting properties is to use an
EL expression, the getProperty element is available if you need to disable
expression evaluation.

Using Custom Tags

Custom tags are user-defined JSP language elements that encapsulate recurring
tasks. Custom tags are distributed in atag library, which defines a set of related
custom tags and contains the objects that implement the tags.

Custom tags have the syntax
<prefix:tag attrl="value" ... attrN="value" />
or
<prefix:tag attrl="value" ... attrN="value" >
body

</prefix:tag>

where prefix distinguishestags for alibrary, tag isthetag identifier, and attrl
. attrN are attributes that modify the behavior of the tag.

514

JAVASERVER PAGES TECHNOLOGY

To use a custom tag in a JSP page, you must

» Declarethetag library containing the tag
» Makethetag library implementation available to the Web application

See Chapter 15 for detailed information on the different types of tags and how to
implement tags.

Declaring Tag Libraries

To declare that a JSP page will use tags defined in a tag library, you include a
taglib directive in the page before any custom tag from that tag library is used.
If you forget to include the tag1ib directive for atag library in a JSP page, the
JSP compiler will treat any invocation of a custom tag from that library as static
data and will simply insert the text of the custom tag call into the response.

<%@ taglib prefix="tt" [tagdir=/WEB-INF/tags/dir | uri=URI] %>

The prefix attribute defines the prefix that distinguishes tags defined by a given
tag library from those provided by other tag libraries.

If the tag library is defined with tag files (see Encapsulating Reusable Content
Using Tag Files, page 588), you supply the tagdir attribute to identify the loca-
tion of the files. The value of the attribute must start with /WEB-INF/tags/. A
tranglation error will occur if the value points to a directory that doesn’t exist or
if it isused in conjunction with the uri attribute.

The uri attribute refersto a URI that uniquely identifies the tag library descrip-
tor (TLD), a document that describes the tag library (see Tag Library
Descriptors, page 604).

Tag library descriptor file names must have the extension .t1d. TLD files are
stored in the WEB-INF directory or subdirectory of the WAR file or in the META-
INF/ directory or subdirectory of atag library packaged in a JAR. You can refer-
encea TLD directly or indirectly.

Thefollowing taglib directive directly referencesa TLD file name:
<%@ taglib prefix="t1t" uri="/WEB-INF/iterator.tld"%>
This tag1ib directive uses a short logical name to indirectly reference the TLD:

<%@ taglib prefix="t1t" uri="/t1t"%

DECLARING TAG LIBRARIES

The iterator example defines and uses a simple iteration tag. The JSP pages
use alogical nameto referencethe TLD. A sample iterator.war isprovided in
<INSTALL>/j2eetutoriall4/examples/web/provided-wars/. To build the
example, follow these steps:

1. In a termina window, go to <INSTALL>/j2eetutoriall4/examples/
web/1iterator/.

2. Run asant build. Thistarget will spawn any necessary compilations and
will copy filesto the <INSTALL>/j2eetutoriall4/examples/web/iter-
ator/build/ directory.

To package and deploy the example using asant, follow these steps.

1. Run asant create-war.

2. Run asant deploy-war.
To learn how to configure the example, use deploytool to package and deploy
it:

1. Start depToytool.

2. Create aWeb application called i terator by running the New Web Com-
ponent wizard. Select File-New “Web Component.

3. In the New Web Component wizard:
a. Select the Create New Stand-Alone WAR Module radio button.
b. Click Browse.

c. In the WAR Location field, enter <INSTALL>/docs/tutorial/exam-
ples/web/iterator/iterator.war.

. Inthe WAR Name field, enter iterator.
In the Context Root field, enter /iterator.
Click Edit Contents.

. In the Edit Contents dialog box, navigate to <INSTALL>/docs/tuto-
rial/examples/web/iterator/build/. Select the index.jsp and
Tist.jsp JSP pages and iterator.tld and click Add. Notice that
iterator.tldisputinto /WEB-INF/.

h. Click Next.

i. Select the No Component radio button.
j. Click Next.

k. Click Finish.

Q@ & o0 o

515

516

JAVASERVER PAGES TECHNOLOGY

You map alogical name to an absolute location in the Web application deploy-
ment descriptor. For the iterator example, map the logical name /t1t to the abso-
lute location /WEB-INF/iterator.tld using deploytool by following these

steps:
1. Select the File Ref’s tab.
2. Click the Add Tag Library button in the JSP Tag Libraries tab.
3. Enter therelative URI /t1t in the Coded Reference field.
4, Enter the absolute location /WEB-INF/iterator.t1d in the Tag Library
field.

You can aso reference a TLD in a taglib directive by using an absolute URI.
For example, the absolute URIs for the JSTL library are as follows:

e Core: http://java.sun.com/jsp/jstl/core

XML: http://java.sun.com/jsp/jst1/xml

* Internationalization: http://java.sun.com/jsp/jst1/fmt
e L: http://java.sun.com/jsp/jst1/sql

* Functions: http://java.sun.com/jsp/jst1/functions

When you reference atag library with an absolute URI that exactly matches the
URI declared in the taglib element of the TLD (see Tag Library
Descriptors, page 604), you do not have to add the taglib element to web.xm1;
the JSP container automatically locates the TLD inside the JSTL library imple-
mentation.

Including the Tag Library
Implementation

In addition to declaring the tag library, you also must make the tag library imple-
mentation available to the Web application. There are several ways to do this.
Tag library implementations can be included in a WAR in an unpacked format:
Tag files are packaged in the /WEB-INF/tag/ directory, and tag handler classes
are packaged in the /WEB-INF/classes/ directory of the WAR. Tag libraries
aready packaged into aJJAR file areincluded in the /WEB-INF/11ib/ directory of
the WAR. Finally, an application server can load a tag library into all the Web
applications running on the server. For example, in the Application Server, the
JSTL TLDs and libraries are distributed in the archive appserv-jstl1.jar in
<J2EE_HOME>/11ib/. Thislibrary isautomatically loaded into the classpath of all

REUSING CONTENT IN JSP PAGES 517

Web applications running on the Application Server so you don’t need to add it
to your Web application.

To package the i terator tag library implementation in the /WEB-INF/classes/
directory and deploy the iterator example with deploytool, follow these

steps:
1. Select the General tab.
2. Click Edit Contents.
3. Add theiterator tag library classes.

a. In the Edit Contents dialog box, navigate to <INSTALL>/docs/tuto-
rial/examples/web/iterator/build/.

b. Select theiterator andmyorg packagesand click Add. Noticethat the
tag library implementation classes are packaged into /WEB-INF/
classes/.

. Click OK.
. Select File-Save.
. Start the Application Server.
. Deploy the application.
a. Select Tools-Deploy.
b. Click OK.

To run the iterator application, open the URL http://localhost:8080/
iterator in abrowser.

~N o O~

Reusing Content in JSP Pages

There are many mechanisms for reusing JSP content in a JSP page. Three mech-
anisms that can be categorized as direct reuse—the include directive, preludes
and codas, and the jsp:include eement—are discussed here. An indirect
method of content reuse occurs when atag file is used to define a custom tag that
is used by many Web applications. Tag files are discussed in the section Encap-
sulating Reusable Content Using Tag Files (page 588) in Chapter 15.

The include directiveis processed when the JSP page istrandated into a servlet
class. The effect of the directive is to insert the text contained in another file—
either static content or another JSP page—into the including JSP page. You
would probably use the include directive to include banner content, copyright

518

JAVASERVER PAGES TECHNOLOGY

information, or any chunk of content that you might want to reuse in another
page. The syntax for the include directiveis asfollows:

<%@ include file="filename" %>

For example, all the Duke's Bookstore application pages could include the file
banner.jspf, which contains the banner content, by using the following direc-
tive:

<%@ include file="banner.jspf" %>

Another way to do a static include is to use the prelude and coda mechanisms
described in Defining Implicit Includes (page 524). This s the approach used by
the Duke's Bookstore application.

Because you must put an include directive in each file that reuses the resource
referenced by the directive, this approach hasits limitations. Preludes and codas
can be applied only to the beginnings and ends of pages. For a more flexible
approach to building pages out of content chunks, see A Template Tag
Library (page 626).

The jsp:include element is processed when a JSP page is executed. The
include action allows you to include either a static or a dynamic resource in a
JSP file. The results of including static and dynamic resources are quite different.
If the resource is static, its content is inserted into the calling JSP file. If the
resource is dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response from the calling
JSP page. The syntax for the jsp:include element is

<jsp:include page="includedPage" />

The hello1 application discussed in Packaging Web Modules (page 90) uses the
following statement to include the page that generates the response:

<jsp:include page="response.jsp"/>

Transferring Control to Another Web
Component

The mechanism for transferring control to another Web component from a JSP
page uses the functionality provided by the Java Servlet APl as described in

../examples/web/bookstore2/web/template/banner.txt

JSP:PARAM ELEMENT 519

Transferring Control to Another Web Component (page 472). You access this
functionality from a JSP page by using the jsp: forward € ement:

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the jsp: forward ele-
ment will fail with an I11egalStateException.

jsp:param Element

When an include or forward element is invoked, the original request object is
provided to the target page. If you wish to provide additional data to that page,
you can append parameters to the request object by using the jsp:param ele-
ment:

<jsp:include page="..." >
<jsp:param name="paraml" value="valuel"/>
</jsp:include>

When jsp:include or jsp:forward is executed, the included page or for-
warded page will see the original request object, with the original parameters
augmented with the new parameters and new values taking precedence over
existing values when applicable. For example, if the request has a parameter
A=foo and aparameter A=bar is specified for forward, the forwarded request will
have A=bar, foo. Note that the new parameter has precedence.

The scope of the new parametersisthe jsp:include or jsp:forward cal; that
is, in the case of an jsp:include the new parameters (and values) will not apply
after the include.

Including an Applet

You can include an applet or a JavaBeans component in a JSP page by using the
jsp:plugin element. This element generates HTML that contains the appropri-
ate client-browser-dependent construct (<object> or <embeds>) that will result in
the download of the Java Plug-in software (if required) and the client-side com-

520

JAVASERVER PAGES TECHNOLOGY

ponent and in the subsequent execution of any client-side component. The syn-
tax for the jsp:plugin element isasfollows:

<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
align="alignment" }
archive="archivelist" }
height="height" }
hspace="hspace" }
jreversion="jreversion" }
name="componentName" }
vspace="vspace" }
width="width" }
nspluginurl="url" }
iepluginurl="url" 3} >
<jsp:params>
{ <jsp:param name="paramName" value= paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

e e e e e e Naa)

The jsp:plugin tag is replaced by either an <object> or an <embed> tag as
appropriate for the requesting client. The attributes of the jsp:plugin tag pro-
vide configuration data for the presentation of the element as well as the version
of the plug-in required. The nspluginurl and iepluginurl attributes override
the default URL where the plug-in can be downloaded.

The jsp:params element specifies parameters to the applet or JavaBeans com-
ponent. The jsp:fallback element indicates the content to be used by the client
browser if the plug-in cannot be started (either because <object> or <embed> is
not supported by the client or because of some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found or
started, a plug-in-specific message will be presented to the user, most likely a
pop-up window reporting a ClassNotFoundException.

INCLUDING AN APPLET 521

The Duke's Bookstore page /template/prelude.jspf creates the banner that
displays a dynamic digital clock generated by DigitalClock (see Figure 12-3).

X Duke's Bookstore - Netscape ol x|
. File Edit %iew Go Bookmarks Tools Window Help |

4 ?Q ®Q® O |% http:#/localhost:8080/bookstare2/hookstore | C:’gof e
13

ﬂ[% Duke's Bookstore] |

Duke's ‘?@?* Bookstore

Tuesday, March 16, 2004 10:18:45 AM

What We're Reading

Wieh Components for Web Developers, talks about how web components can transform
the way you develop applications for the web. This is a must read for any self respecting
wieh developerl

Start Shopping
Copyright @ 2003-2004 Sun Microsysiems, inc.
@ =) & S E) | Applet clock!DigitalClack started S <= =

Figure 12-3 Duke's Bookstore with Applet

Hereisthe jsp:plugin element that is used to download the applet:

<jsp:plugin
type="applet"
code="DigitalClock.class"
codebase="/bookstore2"
jreversion="1.4"
align="center" height="25" width="300"
nspluginurl="http://java.sun.com/j2se/1.4.2/download.html"
iepluginurl="http://java.sun.com/j2se/1.4.2/download.html" >
<jsp:params>
<jsp:param name="language"

../examples/web/bookstore2/web/template/prelude.txt

522

JAVASERVER PAGES TECHNOLOGY

value="${pageContext.request.locale.language}" />
<jsp:param name="country"
value="${pageContext.request.locale.country}" />
<jsp:param name="bgcolor" value="FFFFFF" />
<jsp:param name="fgcolor" value="CC0066" />
</jsp:params>
<jsp:fallback>
<p>Unable to start plugin.</p>
</jsp:fallback>
</jsp:plugin>

Setting Properties for Groups of JSP
Pages

It is possible to specify certain properties for agroup of JSP pages:

» Expression language evaluation

» Treatment of scripting elements (see Disabling Scripting, page 636)

» Page encoding

» Automatic prelude and coda includes
A JSP property group is defined by naming the group and specifying one or
more URL patterns; all the properties in the group apply to the resources that
match any of the URL patterns. If aresource matches URL patternsin more than
one group, the pattern that is most specific applies. To define a property group
using deploytoo]l, follow these steps:

1. Select the WAR.

2. Select the JSP Properties tab.

3. Click the Add button next to the Name list.

4. Enter the name of the property group.

5. Click the Add button next to the URL Pattern list.

6. Enter the URL pattern (aregular expression, such as *. jsp).
The following sections discuss the properties and explain how they are inter-

preted for various combinations of group properties, individual page directives,
and Web application deployment descriptor versions.

SETTING PROPERTIES FOR GROUPS OF JSP PAGES

Deactivating EL Expression Evaluation

Each JSP page has a default mode for EL expression evaluation. The default
value varies depending on the version of the Web application deployment
descriptor. The default mode for JSP pages delivered using a Servlet 2.3 or ear-
lier descriptor isto ignore EL expressions; this provides backward compatibility.
The default mode for JSP pages delivered with a Servlet 2.4 descriptor isto eval-
uate EL expressions; this automatically provides the default that most applica-
tions want. For tag files (see Encapsulating Reusable Content Using Tag
Files, page 588), the default is to always eval uate expressions.

You can override the default mode through the isELIgnored attribute of the
page directive in JSP pages and through the isELIgnored attribute of the tag
directive in tag files. You can also explicitly change the default mode by setting
the value of the EL Evaluation Ignored checkbox in the JSP Properties tab. Table
12-5 summarizes the EL evaluation settings for JSP pages and their meanings.

Table 12-5 EL Evaluation Settings for JSP Pages

Page Directive

JSP Configuration isELIgnored EL Encountered

Unspecified Unspecified Evaluated if 2.4 web.xm1
Ignored if <= 2.3 web.xml

false Unspecified Evaluated

true Unspecified Ignored

Overridden by page false Evaluated

directive

Overridden by page true Ignored

directive

523

524

JAVASERVER PAGES TECHNOLOGY

Table 12—6 summarizes the EL evaluation settings for tag files and their mean-
ings.

Table12-6 EL Evaluation Settings for Tag Files

Tag Directive isELIgnored | EL Encountered
Unspecified Evaluated

false Evaluated

true Ignored

Declaring Page Encodings

You set the page encoding of a group of JSP pages by selecting a page encoding
from the Page Encoding drop-down list. Valid values are the same as those of the
pageEncoding attribute of the page directive. A translation-time error results if
you define the page encoding of a JSP page with one value in the JSP configura-
tion element and then give it adifferent value in a pageEncoding directive.

Defining Implicit Includes

You can implicitly include preludes and codas for a group of JSP pages by add-
ing items to the Include Preludes and Codas lists. Their values are context-rela-
tive paths that must correspond to elements in the Web application. When the
elements are present, the given paths are automatically included (as in an
include directive) at the beginning and end, respectively, of each JSP page in
the property group. When there is more than one include or coda element in a
group, they are included in the order they appear. When more than one JSP prop-
erty group applies to a JSP page, the corresponding elements will be processed
in the same order as they appear in the JSP configuration section.

For example, the Duke's Bookstore application uses the files /template/pre-
Tude.jspf and /template/coda.jspf to include the banner and other boiler-
plate in each screen. To add these files to the Duke's Bookstore property group
using deploytool, follow these steps:

1. Define a property group with name bookstore2 and URL pattern *. jsp.
2. Click the Edit button next to the Include Preludes list.

FURTHER |NFORMATION 525

. Click Add.

. Enter /template/prelude.jspf.

. Click OK.

. Click the Edit button next to the Include Codas list.
. Click Add.

. Enter /template/coda. jspf.

9. Click OK.

0 N O O AW

Preludes and codas can put the included code only at the beginning and end of
each file. For a more flexible approach to building pages out of content chunks,
see A Template Tag Library (page 626).

Further Information

For further information on JavaServer Pages technology, see the following:
» JavaServer Pages 2.0 specification:
http://java.sun.com/products/jsp/download.html#specs

» The JavaServer Pages Web site:
http://java.sun.com/products/jsp

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/jsp

526 JAVASERVER PAGES TECHNOLOGY

13

JavaServer Pages
Documents

A JSP document is a JSP page written in XML syntax as opposed to the stan-
dard syntax described in Chapter 12. Because it is written in XML syntax, a JSP
document is aso an XML document and therefore gives you all the benefits
offered by the XML standard:

* You can author a JSP document using one of the many XML -aware tools
on the market, enabling you to ensure that your JSP document is well-
formed XML.

* You can validate the JSP document against a document type definition
(DTD).
* You can nest and scope hamespaces within a JSP document.

* You can use a JSP document for data interchange between Web applica-
tions and as part of acompile-time XML pipeline.

In addition to these benefits, the XML syntax gives the JSP page author less
complexity and more flexibility. For example, a page author can use any XML
document as a JSP document. Also, elementsin XML syntax can be used in JSP
pages written in standard syntax, allowing agradual transition from JSP pages to
JSP documents.

This chapter gives you detail s on the benefits of JSP documents and uses a sim-
ple example to show you how easy it is to create a JSP document.

527

528 JAVASERVER PAGES DOCUMENTS

You can also write tag filesin XML syntax. This chapter covers only JSP docu-
ments. Writing tag filesin XML syntax will be addressed in a future release of
the tutorial.

The Example JSP Document

This chapter uses the Duke's Bookstore and books applications to demonstrate
how to write JSP pagesin XML syntax. The JSP pages of the bookstore5 appli-
cation use the JSTL XML tags (see XML Tag Library, page 562) to manipulate
the book data from an XML stream. The books application contains the JSP doc-
ument books. jspx, which accesses the book data from the database and con-
verts it into the XML stream. The bookstore5 application accesses this XML
stream to get the book data.

These applications show how easy it is to generate XML data and stream it
between Web applications. The books application can be considered the applica-
tion hosted by the book warehouse's server. The bookstore5 application can be
considered the application hosted by the book retailer’s server. In this way, the
customer of the bookstore Web site sees the list of books currently available,
according to the warehouse's database.

The source for the Duke's Bookstore application is located in the <INSTALL>/
j2eetutoriall4/examples/web/bookstore5/ directory, which is created
when you unzip the tutorial bundle (see About the Examples, page xxxvi). Sam-
ple bookstore5.war and books.war files are provided in <INSTALL>/
j2eetutoriall4/examples/web/provided-wars/.

To build the Duke's Bookstore application, follow these steps.
1. Build and package the bookstore common files as described in Duke's

Bookstore Examples (page 103).

2. In a terminal window, go t0 <INSTALL>/j2eetutoriall4/examples/
web/bookstore5/.

3. Start the Application Server.
4. Perform all the operations described in Accessing Databases from Web
Applications (page 104).
To package and deploy the application using asant, follow these steps.

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

THE EXAMPLE JSP DOCUMENT

To learn how to configure the application, use deploytool to package and
deploy it:
1. Start depTloytool.

2. Create a Web application called bookstore5 by running the New Web
Application Wizard. Select File-New -\WWeb Component.

3.

In
a

oK —f 0o o 0o

i
K.
.
m.
n.
0.

the New Web Component wizard:

Inthe WAR File screen, select the Create New Stand-Alone WAR Mod-
ule radio button.

. Click Browse and in the file chooser, navigate to <INSTALL>/

j2eetutoriall4/examples/web/bookstore5/.

. Inthe File Name field, enter bookstore5.
. Click Create Module File.
. In the WAR Name field, enter bookstore5.

In the Context Root field, enter /bookstore5.

. Click Edit Contents.
.In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutoriall4/examples/web/bookstore5/build/. Select every-
thing in the bui1d directory and click Add. Click OK.

. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutoriall4/examples/web/bookstore/dist/. Select book-
store.jar and Click Add.

Click OK.

Click Next.

Select the JSP Page radio button.

Click Next.

Select /bookstore. jsp from the JSP Filename combo box.
Click Finish.

. Add each of the Web components listed in Table 13-1. For each compo-

nent:

a
b.

C.
d.

Select File-New JWeb Component.

In the WAR File screen, click the Add to Existing WAR Module radio
button. The WAR file contains all the JSP pages, so you do not have to
add any more content.

Click Next.
Select the JSP Page radio button.

529

530

JAVASERVER PAGES DOCUMENTS

e. Click Next.

f. Select the page from the JSP Filename combo box.

g. Click Finish.

h. From the tree, select the Web component you added.
i. Select the Aliases tab.
j. Click Add. Enter the dias as shown in Table 13-1.

Table 13-1 Duke's Bookstore Web Components

Web Component Name

JSP Page

Component Alias

bookcashier

bookcashier.jsp

/bookcashier

bookcatalog

bookcatalog. jsp

/bookcatalog

bookdetails

bookdetails.jsp

/bookdetails

bookreceipt

bookreceipt.jsp

/bookreceipt

bookshowcart

bookshowcart. jsp

/bookshowcart

bookstore

bookstore.jsp

/bookstore

5. Add the context parameter that specifies the JSTL resource bundle base

name.

a. Select the bookstore5 WAR file from the tree.

b. Select the Context tab.

c. Click Add.

d. Enter javax.servlet.jsp.jst1.fmt.localizationContext in the

Coded Parameter field.
€. Enter messages.BookstoreMessages for the Vaue field.

. Add the context parameter that identifies the context path to the XML

stream.

a. On the Context tab, again click Add.

b. Enter booksURL for the Coded Parameter.

c. Enter http://localhost:8080/books/books.jspx inthe Vauefield.

THE EXAMPLE JSP DOCUMENT 531

7. Set the prelude and coda for all JSP pages.

a
b.
C.
d.
e.
f.
g
h

l.
i
K.
.
m.

Select the JSP Properties tab.

Click the Add button next to the Namellist.

Enter bookstore5s.

Click the Add URL button next to the URL Pattern list.

Enter *.jsp.

Click the Edit Preludes button next to the Include Preludes list.

. Click Add.
. Enter /template/prelude. jspf.

Click OK.

Click the Edit Codas button next to the Include Codas list.
Click Add.

Enter /template/coda. jspf.

Click OK.

8. Select File-Save.
9. Deploy the application.

a
b.

Select Tools-Deploy.
Click OK.

c. A pop-up dialog box will display the results of the deployment. Click

Close.

To build the books application, follow these steps:

1. In

a termina window, go to <INSTALL>/j2eetutoriall4/examples/

web/books/.

2. Run asant build. Thistarget will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutoriall4/examples/web/books/
build/ directory.

To package and deploy the application using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn
deploy it:

how to configure the application, use deploytool to package and

1. Create a Web application called books by running the New Web Compo-
nent wizard. Select File -New Web Component.

532

JAVASERVER PAGES DOCUMENTS

2. In the New Web Component wizard:

a. Inthe WAR File screen, select the Create New Stand-Alone WAR M od-
ule radio button.

b. Click Browse and in the file chooser, navigate to <INSTALL>/
j2eetutoriall4/examples/web/books/.

. Inthe File Name field, enter books.

. Click Create Module File.

. In the WAR Name field, enter books.
In the Context Root field, enter /books.

. Click Edit Contents.

.In the Edit Contents didog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/books/build/. Select the JSP docu-
ment books.jspx and the database and 1isteners directories and
click Add.

i. Add the shared bookstore library. Navigate to <INSTALL>/
j2eetutoriall4/examples/build/web/bookstore/dist/. Select
bookstore.jar and click Add. Click OK.

j. Click Next.

k. Select the JSP Page radio button.

I. Click Next.

m. Select /books . jspx from the JSP Filename combo box.
n. Click Finish.

oDOQ &f 0o o 0

. ldentify books . jspx asan XML document.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

c. Enter books.

d. Click the Add URL button next to the URL Pattern list.
e. Enter *.jspx.

f. Select the s XML Document checkbox.

. Add the listener class Tisteners.ContextListener (described in Han-

dling Servlet Life-Cycle Events, page 450).
a. Select the Event Listeners tab.
b. Click Add.

CREATING A JSP DOCUMENT 533

C. Select the listeners.ContextListener class from the drop-down
field in the Event Listener Classes pane.
5. Add aresource reference for the database.
a. Select the Resource Ref’s tab.
b. Click Add.
. Enter jdbc/BookDB in the Coded Name field.
. Accept the default type javax.sql.DataSource.
. Accept the default authorization Container.
Accept the default selected Shareable.
. Enter jdbc/BookDB in the INDI name field of the Sun-specific Settings
for jdbc/BookDB frame.
6. Select File-Save.
7. Deploy the application.
a. Select the books WAR file from the tree.
b. Select Tools-Deploy.
c. Click OK.

d. A pop-up dialog box will display the results of the deployment. Click
Close.

Q - O Qo 0

To run the applications, open the bookstore URL http://localhost:8080/
bookstore5/bookstore.

Creating a JSP Document

A JSP document isan XML document and therefore must comply with the XML
standard. Fundamentally, this means that a JSP document must be well formed,
meaning that each start tag must have a corresponding end tag and that the docu-
ment must have only one root element. In addition, JSP elementsincluded in the
JSP document must comply with the XML syntax.

Much of the standard JSP syntax is aready XML-compliant, including all the
standard actions. Those €l ements that are not compliant are summarized in Table
13-2 aong with the equivalent elements in XML syntax. As you can see, JSP
documents are not much different from JSP pages. If you know standard JSP

534

JAVASERVER PAGES DOCUMENTS

syntax, you will find it easy to convert your current JSP pages to XML syntax
and to create new JSP documents.

Table 13-2 Standard Syntax Versus XML Syntax

Syntax

Elements Standard Syntax XML Syntax

Comments <%--.. -=%> <l-— .. -

Declarations | <%! ..%> <jsp:declaration> .. </jsp:declaration>
<%@ include .. %> | <jsp:directive.include .. />

Directives <%@ page .. %> <jsp:directive.page .. />

<%@ taglib .. %> xmlns:prefix="tag library URL"

Expressions | <%= ..%> <jsp:expression> .. </jsp:expression>
Scriptlets <% . .%> <jsp:scriptlet> .. </jsp:scriptlet>

To illustrate how simple it is to transition from standard syntax to XML syntax,
let’s convert a simple JSP page to a JSP document. The standard syntax version
isasfollows:

<%@ taglib uri="http://java.sun.com/jsp/jst1/core"
prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jst1/functions"
prefix="fn" %>
<html1>
<head><title>Hello</title></head>
<body bgcolor="white">

<h2>My name 1is Duke. What is yours?</h2>
<form method="get">
<input type="text" name="username" size="25">
<p></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<jsp:useBean id="userNameBean" class="hello.UserNameBean"
scope="request"/>
<jsp:setProperty name="userNameBean" property="name"
value="${param.username}" />

CREATING A JSP DOCUMENT 535

<c:if test="${fn:length(userNameBean.name) > 0}" >
<%@include file="response.jsp" %>
</c:if>
</body>

</html>

Here isthe same page in XML syntax:

<html

xmlns:c="http://java.sun.com/jsp/jst1/core"

xmlns:fn="http://java.sun.com/jsp/jst1l/functions” >

<head><title>Hello</title></head>

<body bgcolor="white" />

<h2>My name 1is Duke. What 1is yours?</h2>

<form method="get">
<input type="text" name="username" size="25" />
<p></p>
<input type="submit" value="Submit" />
<input type="reset" value="Reset" />

</form>

<jsp:useBean id="userNameBean" class="hello.UserNameBean"
scope="request"/>

<jsp:setProperty name="userNameBean" property="name"
value="${param.username}" />

<c:if test="${fn:1ength(userNameBean.name) gt 0}" >
<jsp:directive.include="response.jsp" />

</c:if>

</body>

</html>

As you can see, a number of constructs that are legal in standard syntax have
been changed to comply with XML syntax:

The tag1ib directives have been removed. Tag libraries are now declared
using XML namespaces, as shown in the htm1 element.

The img and input tags did not have matching end tags and have been
made XM L-compliant by the addition of a/ to the start tag.

The > symbol in the EL expression has been replaced with gt.

The include directive has been changed to the XML-compliant
jsp:directive.include tag.

With only these few small changes, when you save the file with a . jspx exten-
sion, this page is a JSP document.

536

JAVASERVER PAGES DOCUMENTS

Using the example described in The Example JSP Document (page 528), the rest
of this chapter gives you more details on how to transition from standard syntax
to XML syntax. It explains how to use XML namespaces to declare tag libraries,
include directives, and create static and dynamic content in your JSP documents.
It also describes jsp:root and jsp:output, two elements that are used exclu-
sively in JSP documents.

Declaring Tag Libraries

This section explains how to use XML namespaces to declare tag libraries.

In standard syntax, the tag1ib directive declares tag libraries used in a JSP page.
Hereis an example of ataglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jst1l/core"
prefix="c" %>

This syntax is not alowed in JSP documents. To declare a tag library in a JSP
document, you use the xmlns attribute, which is used to declare namespaces
according to the XML standard:

xmlns:c="http://java.sun.com/jsp/jst1/core"

The value that identifies the location of the tag library can take three forms:

» A plain URI that is a unique identifier for the tag library. The container
tries to match it against any <taglib-uri> elementsin the application’s
web . xm1 fileor the <uri> element of tag library descriptors (TLDs) in JAR
filesin WEB-INF/1ib or TLDs under WEB-INF.

* A URN of theformurn:jsptid:path.
* A URN of theformurn:jsptagdir:path.

The URN of theform urn:jsptld:path pointsto onetag library packaged with
the application:

xmlns:u="urn:jsptld: /WEB-INF/t1ds/my.t1d"

DECLARING TAG LIBRARIES

The URN of the form urn:jsptagdir:path must start with /WEB-INF/tags/
and identifies tag extensions (implemented as tag files) installed in the WEB-INF/
tags/ directory or asubdirectory of it:

xmlns:u="urn:jsptagdir:/WEB-INF/tags/mytaglibs/"

You can include the xm1ns attribute in any element in your JSP document, just as
you can in an XML document. This capability has many advantages:

|t follows the XML standard, making it easier to use any XML document
as a JSP document.

* It allowsyou to scope prefixes to an element and override them.

It allows you to use xm1ns to declare other namespaces and not just tag
libraries.

The books . jspx page declares the tag libraries it uses with the xm1ns attributes
in the root element, books:

<books
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jst1/core"
>

In thisway, all e ementswithin the books element have access to these tag librar-
ies.

As an aternative, you can scope the namespaces.
<books>

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="bookDB"
class="database.BookDB"
scope="page'>
<jsp:setProperty name="bookDB"
property="database" value="${bookDBAO}" />
</jsp:useBean>
<c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"
var="book" begin="0" 1items="${bookDB.books}">

</c:forEach>
</books>

537

538

JAVASERVER PAGES DOCUMENTS

In this way, the tag library referenced by the jsp prefix is available only to the
jsp:useBean element and its subelements. Similarly, the tag library referenced
by the c prefix is only available to the c: forEach element.

Scoping the namespaces also allows you to override the prefix. For example, in
another part of the page, you could bind the c prefix to a different namespace or
tag library. In contrast, the jsp prefix must aways be bound to the JSP
namespace: http://java.sun.com/JISP/Page.

Including Directives in a JSP Document

Directives are elements that relay messages to the JSP container and affect how it
compiles the JSP page. The directives themselves do not appear in the XML out-
put.

There are three directives: include, page, and taglib. The taglib directive is
covered in the preceding section.

The jsp:directive.page element defines a number of page-dependent proper-
ties and communicates these to the JSP container. This element must be a child
of the root element. Itssyntax is

<jsp:directive.page page_directive_attr_list />

The page_directive_attr_list isthe same list of attributes that the <@ page
...> directive has. These are described in Chapter 12. All the attributes are
optional. Except for the import and pageEncoding attributes, there can be only
one instance of each attribute in an element, but an element can contain more
than one attribute.

An example of apage directive is one that tells the JSP container to load an error
page when it throws an exception. You can add this error page directive to the
books . jspx page

<books xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:directive.page errorPage="errorpage.jsp" />

</666ks>
If there is an error when you try to execute the page (perhaps when you want to
see the XML output of books. jspx), the error page is accessed.

CREATING STATIC AND DYNAMIC CONTENT

The jsp:directive.include eement is used to insert the text contained in
another file—either static content or another JSP page—into the including JSP
document. You can place this element anywhere in adocument. Its syntax is:

<jsp:directive.include file="relativeURLspec" />

The XML view of a JSP document does not contain jsp:directive.include
elements; rather the included file is expanded in place. This is done to simplify
validation.

Suppose that you want to use an include directive to add a JSP document con-
taining magazine data inside the JSP document containing the books data. To do
this, you can add the following include directive to books . jspx, assuming that
magazines.jspx generates the magazine XML data.

<jsp:root version="2.0" >

<books ...>

</books>

<jsp:directive.include file="magazine.jspx" />
</jsp:root>

Note that jsp:root isrequired because otherwise books. jspx would have two
root elements. <books> and <magazines>. The output generated from
books. jspx will be a sequence of XML documents. one with <books> and the
other with <magazines> asitsroot e ement.

The output of this example will not be well-formed XML because of the two root
elements, so the client might refuse to process it. However, it is still alegal JSP
document.

In addition to including JSP documents in JSP documents, you can also include
JSP pages written in standard syntax in JSP documents, and you can include JSP
documents in JSP pages written in standard syntax. The container detects the
page you are including and parsesit as either a standard syntax JSP page or a JSP
document and then placesit into the XML view for validation.

Creating Static and Dynamic Content

This section explains how to represent static text and dynamic content in a JSP
document. You can represent static text in a JSP document using uninterpreted
XML tags or the jsp:text element. The jsp:text element passes its content
through to the outpui.

539

540

JAVASERVER PAGES DOCUMENTS

If you use jsp:text, al whitespace is preserved. For example, consider this
example using XML tags:

<books>
<book>
Web Servers for Fun and Profit
</book>
</books>

The output generated from this XML has all whitespace removed:

<books><book>
Web Servers for Fun and Profit
</book></books>

If you wrap the example XML with a <jsp:text> tag, al whitespace is pre-
served. The whitespace characters are #x20, #x9, #xD,and #xA.

You can aso use jsp:text to output static data that is not well formed. The
${counter} expression in the following example would beillegal in a JSP docu-
ment if it were not wrapped in a jsp: text tag.

<c:forEach var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>
</c:forEach>

This example will output
123

The jsp: text tag must not contain any other elements. Therefore, if you need to
nest atag inside jsp: text, you must wrap the tag inside CDATA.

You also need to use CDATA if you need to output some elements that are not
well-formed. The following example requires CDATA wrappers around the
blockquote start and end tags because the blockquote element is not well

CREATING STATIC AND DYNAMIC CONTENT

formed. Thisis because the blockquote element overlaps with other elementsin
the example.

<c:forEach var="1i" begin="1" end="${x}">
<! [CDATA[<blockquote>]]>
</c:forEach>

<c:forEach var="1i" begin="1" end="${x}">
<! [CDATA[</blockquote>]]>
</c:forEach>

Just like JSP pages, JSP documents can generate dynamic content using expres-
sions language (EL) expressions, scripting elements, standard actions, and cus-
tom tags. The books.jspx document uses EL expressions and custom tags to
generate the XML book data.

As shown in this snippet from books.jspx, the c:forEach JSTL tag iterates
through the list of books and generates the XML data stream. The EL expres-
sions access the JavaBeans component, which in turn retrieves the data from the
database:

<c:forEach var="book" begin="0" items="${bookDB.books}">
<book id="${book.bookId}" >
<surname>${book.surname}</surname>
<firstname>${book.firstName}</firstname>
<title>${book.title}</title>
<price>${book.price}</price>
<year>${book.year}</year>
<description>${book.description}</description>
<inventory>${book.inventory}</inventory>
</book>
</c:forEach>

When using the expression language in your JSP documents, you must substitute
alternative notation for some of the operators so that they will not be interpreted
as XML markup. Table 13-3 enumerates the more common operators and their
alternative syntax in JSP documents.

Table 13-3 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation

< 1t

541

542

JAVASERVER PAGES DOCUMENTS

Table 13-3 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation
> gt
<= le
>= ge
= ne

You can also use EL expressionswith jsp:element to generate tags dynamically
rather than hardcode them. This example could be used to generate an HTML
header tag with a 1ang attribute:

<jsp:element name="${content.headerName}"
xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:attribute name="Tlang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

The name attribute identifies the generated tag's name. The jsp:attribute tag
generates the Tang attribute. The body of the jsp:attribute tag identifies the
value of the Tang attribute. The jsp:body tag generates the body of the tag. The
output of this example jsp:element could be

<hl Tang="fr">Heading in French</hl>

As shown in Table 13-2, scripting elements (described in Chapter 16) are repre-
sented as XML elements when they appear in a JSP document. The only excep-
tion is a scriptlet expression used to specify a request-time attribute value.
Instead of using <%=expr %>, a JSP document uses %= expr % to represent a
request-time attribute value.

The three scripting elements are declarations, scriptlets, and expressions.

A jsp:declaration element declares a scripting language construct that is
available to other scripting elements. A jsp:declaration element has no
attributes and its body isthe declaration itself. Its syntax is

<jsp:declaration> declaration goes here </jsp:declaration>

USING THE JSP:ROOT ELEMENT

A jsp:scriptlet element contains a Java program fragment called a scriptlet.
This element has no attributes, and its body is the program fragment that consti-
tutes the scriptlet. Its syntax is

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

The jsp:expression element inserts the value of a scripting language expres-
sion, converted into a string, into the data stream returned to the client. A
jsp:expression element has no attributes and its body is the expression. Its
syntax is

<jsp:expression> expression goes here </jsp:expression>

Using the jsp:root Element

The jsp:root element represents the root element of a JSP document. A
jsp:root element is not required for JSP documents. You can specify your own
root element, enabling you to use any XML document as a JSP document. The
root element of the books . jspx example JSP document is books.

Although the jsp: root element is not required, it is still useful in these cases:

* When you want to identify the document as a JSP document to the JSP
container without having to add any configuration attributes to the deploy-
ment descriptor or name the document with a . jspx extension

* When you want to generate—from a single JSP document—more than one
XML document or XML content mixed with non-XML content

The version attribute is the only required attribute of the jsp: root element. It
specifies the JSP specification version that the JSP document is using.

The jsp:root element can also include xmlins attributes for specifying tag
libraries used by the other elementsin the page.

The books . jspx page does not need a jsp:root element and therefore doesn’t
include one. However, suppose that you want to generate two XML documents
from books. jspx: one that lists books and another that lists magazines (assum-
ing magazines are in the database). This exampleis similar to the one in the sec-

543

JAVASERVER PAGES DOCUMENTS

tion Including Directives in a JSP Document (page 538). To do this, you can use
this jsp: root e ement:

<jsp:root
xmIns:jsp="http://java.sun.com/JSP/Page" version="2.0" >
<books>. . .</books>
<magazines>...</magazines>

</jsp:root>

Notice in this example that jsp: root defines the JSP namespace because both
the books and the magazines elements use the elements defined in this
namespace.

Using the jsp:output Element

The jsp:output element specifies the XML declaration or the document type
declaration in the request output of the JSP document. For more information on
the XML declaration, see The XML Prolog (page 36). For more information on
the document type declaration, see Referencing the DTD (page 58).

The XML declaration and document type declaration that are declared by the
jsp:output element are not interpreted by the JSP container. Instead, the con-
tainer simply directs them to the request output.

To illustrate this, here is an example of specifying a document type declaration
with jsp:output:

<jsp:output doctype-root-element="books"
doctype-system="books.dtd" />

Theresulting output is:
<!IDOCTYPE books SYSTEM "books.dtd" >

Specifying the document type declaration in the jsp:output element will not
cause the JSP container to validate the JSP document against the books . dtd.

If you want the JSP document to be validated against the DTD, you must manu-
aly include the document type declaration within the JSP document, just as you
would with any XML document.

Table 13-4 shows al the jsp:output attributes. They are al optional, but some
attributes depend on other attributes occurring in the same jsp:output element,

USING THE JSP:OUTPUT ELEMENT

as shown in the table. The rest of this section explains more about using
jsp:output to generate an XML declaration and a document type declaration.

Table 134 jsp:output Attributes

Attribute What It Specifies

A value of true or yes omitsthe XML declaration. A

omit-xml-declaration value of false or no generates an XML declaration.

Indicates the root el ement of the XML document in the
doctype-root-element DOCTYPE. Can be specified only if doctype-systemis
specified.

Specifiesthat aDOCTYPE is generated in output and

doctype-system givesthe SYSTEM literal.

Specifies the value for the Public ID of the generated
doctype-public DOCTYPE. Can be specified only if doctype-systemis
specified.

Generating XML Declarations

Hereis an example of an XML declaration:
<?xml version="1.0" encoding="UTF-8" 7>

This declaration is the default XML declaration. It means that if the JSP con-
tainer is generating an XML declaration, this is what the JSP container will
include in the output of your JSP document.

Neither a JSP document nor its request output is required to have an XML decla-
ration. In fact, if the JSP document is not producing XML output then it
shouldn’t have an XML declaration.

The JSP container will not include the XML declaration in the output when
either of the following is true:

* You set the omit-xml-declaration attribute of the jsp:output element
to either true or yes.

* Youhaveajsp:root e ementinyour JSP document, and you do not spec-
ify omit-xm1-declaration="false" in jsp:output.

546

JAVASERVER PAGES DOCUMENTS

The JSP container will include the XML declaration in the output when either of
the following istrue:

* You set the omit-xml-declaration attribute of the jsp:output element
to either false or no.

* Youdo not havea jsp: root action in your JSP document, and you do not
specify the omit-xml-declaration atributein jsp:output.

The books.jspx JSP document does not include a jsp:root action nor a
jsp:output. Therefore, the default XML declaration is generated in the output.

Generating a Document Type Declaration

A document type declaration (DTD) defines the structural rules for the XML
document in which the document type declaration occurs. XML documents are
not required to have a DTD associated with them. In fact, the books example
does not include one.

This section shows you how to use the jsp:output element to add a document
type declaration to the XML output of books.jspx. It also shows you how to
enter the document type declaration manually into books. jspx so that the JSP
container will interpret it and validate the document against the DTD.

As shown in Table 13-4, the jsp:output element has three attributes that you
use to generate the document type declaration:
* doctype-root-element: Indicatestheroot element of the XML document
* doctype-system: Indicates the URI referenceto the DTD

* doctype-public: A more flexible way to reference the DTD. Thisidenti-
fier gives more information about the DTD without giving a specific loca
tion. A public identifier resolves to the same actual document on any
system even though the location of that document on each system may
vary. Seethe XML 1.0 specification for more information.

Therules for using the attributes are as follows:

» The doctype attributes can appear in any order

» The doctype-root attribute must be specified if the doctype-system
attribute is specified

* Thedoctype-pubTic attribute must not be specified unlessdoctype-sys-
tem is specified

http://www.w3.org/XML/

USING THE JSP:OUTPUT ELEMENT

This syntax notation summarizes these rules.

<jsp:output (omit-xmldeclaration=
"yes"|"no"|"true"|"false") {doctypeDecl1} />

doctypeDecl:=(doctype-root-element="rootETlement"
doctype-public="PublicLiteral"
doctype-system="SystemLiteral")
| (doctype-root-element="rootElement"
doctype-system="SystemLiteral")

Suppose that you want to reference aDTD, called books .DTD, from the output of
the books . jspx page. The DTD would look like this:

<!ELEMENT books (book+) >

<!ELEMENT book (surname, firstname, title, price, year,
description, inventory) >

<!ATTLIST book id CDATA #REQUIRED >

<!ELEMENT surname (#PCDATA) >

<!ELEMENT firstname (#PCDATA) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT price (#PCDATA) >

<!ELEMENT year (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<!ELEMENT -1inventory (#PCDATA) >

To add a document type declaration that references the DTD to the XML request
output generated from books.jspx, include this jsp:output element in
books. jspx:

<jsp:output doctype-root-element="books"
doctype-system="books.DTD" />

With this jsp:output action, the JSP container generates this document type
declaration in the request output:

<!DOCTYPE books SYSTEM "books.DTD" />

The jsp:output need not be located before the root element of the document.
The JSP container will automatically place the resulting document type declara-
tion before the start of the output of the JSP document.

Note that the JSP container will not interpret anything provided by jsp:output.
This means that the JSP container will not validate the XML document against
the DTD. It only generates the document type declaration in the XML request

547

JAVASERVER PAGES DOCUMENTS

output. To see the XML output, run http://localhost:8080/books/
books. jspx in your browser after you have updated books .WAR with books .DTD
and the jsp:output element. When using some browsers, you might need to
view the source of the page to actually see the output.

Directing the document type declaration to output without interpreting it is use-
ful in situations when another system receiving the output expects to see it. For
example, two companies that do business viaa Web service might use a standard
DTD, against which any XML content exchanged between the companiesis val-
idated by the consumer of the content. The document type declaration tells the
consumer what DTD to use to validate the XML datathat it receives.

For the JSP container to validate books . jspx against book . DTD, you must manu-
aly include the document type declaration in the books . j spx file rather than use
jsp:output. However, you must add definitions for all tags in your DTD,
including definitions for standard elements and custom tags, such as jsp:use-
Bean and c:forEach. You also must ensure that the DTD is located in the
<J2EE_HOME>/domains/domainl/config/ directory so that the JSP container
will validate the JSP document against the DTD.

Identifying the JSP Document to the
Container

A JSP document must be identified as such to the Web container so that the con-
tainer interpretsit as an XML document. There are three waysto do this:

* In your application’s web.xm1 file, set the is-xm1 element of the jsp-
property-group €lement to true. Step 3. in The Example JSP
Document (page 528) explains how to do thisif you are using depToytooT
to build the application WAR file.

» UseaJavaServlet Specification version 2.4 web . xm1 fileand give your JSP
document the . jspx extension.

* Includea jsp:root element in your JSP document. This method is back-
ward-compatible with JSP 1.2.

14

JavaServer Page§
Standard Tag Library

T HE JavaServer Pages Standard Tag Library (JSTL) encapsulates core func-
tionality common to many JSP applications. Instead of mixing tags from numer-
ous vendors in your JSP applications, JSTL allows you to employ a single,
standard set of tags. This standardization allows you to deploy your applications
on any JSP container supporting JSTL and makes it more likely that the imple-
mentation of the tags is optimized.

JSTL has tags such as iterators and conditionals for handling flow control, tags
for manipulating XML documents, internationalization tags, tags for accessing
databases using SQL, and commonly used functions.

This chapter demonstrates JSTL through excerpts from the JSP version of the
Duke's Bookstore application discussed in the earlier chapters. It assumes that
you are familiar with the material in the Using Custom Tags (page 513) section
of Chapter 12.

This chapter does not cover every JSTL tag, only the most commonly used ones.
Please refer to the reference pages at http://java.sun.com/products/jsp/
jst1/1.1/docs/t1ddocs/index.html for a complete list of the JSTL tags and
their attributes.

549

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

550

JAVASERVER PAGES STANDARD TAG LIBRARY

The Example JSP Pages

This chapter illustrates JSTL using excerpts from the JSP version of the Duke's
Bookstore application discussed in Chapter 12. Here, they are rewritten to
replace the JavaBeans component database access object with direct calls to the
database viathe JSTL SQL tags. For most applications, it is better to encapsulate
callsto adatabase in abean. JSTL includes SQL tags for situations where a new
application is being prototyped and the overhead of creating a bean may not be
warranted.

The source for the Duke's Bookstore application is located in the <INSTALL>/
j2eetutoriall4/examples/web/bookstore4/ directory created when you
unzip the tutorial bundle (see About the Examples, page xxxvi). A sample
bookstore4.war is provided in <INSTALL>/j2eetutoriall4/examples/web/
provided-wars/. To build the example, follow these steps:

1. Build and package the bookstore common files as described in Duke's
Bookstore Examples (page 103).

2. In a termina window, go t0 <INSTALL>/j2eetutoriall4/examples/
web/bookstore4/.

3. Run asant build. This target will copy files to the <INSTALL>/
j2eetutoriall4/examples/web/bookstore4/build/ directory.

4, Start the Application Server.
5. Perform all the operations described in Accessing Databases from Web
Applications, page 104.
To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.
To learn how to configure the example, use deploytool to package and deploy
it:

1. Start depToytool.

2. Create a Web application caled bookstore4 by running the New Web
Component wizard. Select File-New -\Web Component.

3. In the New Web Component wizard:
a. Select the Create New Stand-Alone WAR Modul e radio button.

b. In the WAR Location field, enter <INSTALL>/j2eetutoriall4/exam-
ples/web/bookstore4/bookstore4.war.

THE EXAMPLE JSP PAGES 551

. Inthe WAR Name field, enter bookstore4.
. In the Context Root field, enter /bookstore4.
. Click Edit Contents.

In the Edit Contents dialog box, navigate to <INSTALL>/
j2eetutoriall4/examples/web/bookstore4/build/. Select the JSP
pages bookstore.jsp, bookdetails.jsp, bookcatalog.jsp, book-
showcart. jsp, bookcashier.jsp, and bookreceipt.jsp andthe tem-
plate directory and click Add.

g. Add the shared bookstore library. Navigate to <INSTALL>/
j2eetutoriall4/examples/web/bookstore/dist/. Select book-
store.jar and click Add.

h. Click OK.

i. Click Next.

j. Select the JSP Page radio button.

k. Click Next.

|. Select bookstore. jsp from the JSP Filename combo box.
m.Click Next.

n. Click Add. Enter the dlias /bookstore.

0. Click Finish.

. Add each of the Web components listed in Table 14-1. For each compo-
nent:

a. Select File-New JWeb Component.

b. Click the Add to Existing WAR Module radio button. Because the WAR
contains all the JSP pages, you do not have to add any more content.

c. Click Next.

d. Select the JSP Page radio button and the Component Aliases checkbox.
e. Click Next.

f. Select the page from the JSP Filename combo box.

I I o R)

552 JAVASERVER PAGES STANDARD TAG LIBRARY

g. Click Finish.

Table 14-1 Duke's Bookstore Web Components

Web Component Name JSP Page Alias
bookcatalog bookcatalog. jsp /bookcatalog
bookdetails bookdetails.jsp /bookdetails
bookshowcart bookshowcart. jsp /bookshowcart
bookcashier bookcashier.jsp /bookcashier
bookreceipt bookreceipt.jsp /bookreceipt

5. Set the alias for each Web component.
a. Select the component.
b. Select the Aliases tab.
c. Click the Add button.
d. Enter the dias.
6. Add the context parameter that specifies the JSTL resource bundle base
name.
a. Select the Web module.
b. Select the Context tab.
c. Click Add.

d. Enter javax.servlet.jsp.jstl.fmt.localizationContext in the
Coded Parameter field.

€. Enter messages.BookstoreMessages inthe Valuefield.

7. Set the prelude and coda for all JSP pages.
a. Select the JSP Properties tab.
b. Click the Add button next to the Name list.
c. Enter bookstore4.
d. Click the Add button next to the URL Pattern list.
e. Enter *.jsp.
f. Click the Edit button next to the Include Preludes list.

USING JSTL 553

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click the Edit button next to the Include Codas list.
k. Click Add.

|. Enter /template/coda.jspf.

m.Click OK.

8. Add aresource reference for the database.
a. Select the Resource Ref’s tab.
b. Click Add.
. Enter jdbc/BookDB in the Coded Name field.
. Accept the default type javax.sql.DataSource.
. Accept the default authorization Container.
Accept the default selected Shareable.
. Enter jdbc/BookDB in the INDI name field of the Sun-specific Settings
frame.
9. Select File-Save.
10.Deploy the application.
a. Select Tools-Deploy.
b. Click OK.

To run the application, open the bookstore URL http://localhost:8080/
bookstore4/bookstore.

Q -~ 0O Qo 0

See Troubleshooting (page 448) for help with diagnosing common problems.

Using JSTL

JSTL includes a wide variety of tags that fit into discrete functional areas. To
reflect this, as well as to give each area its own namespace, JSTL is exposed as
multiple tag libraries. The URIsfor the libraries are as follows:

e Core http://java.sun.com/jsp/jst1/core

e XML: http://java.sun.com/jsp/jst1/xml

* Internationalization: http://java.sun.com/jsp/jst1/fmt

* QL: http://java.sun.com/jsp/jst1/sql

554 JAVASERVER PAGES STANDARD TAG LIBRARY

* Functions: http://java.sun.com/jsp/jst1/functions

Table 14-2 summarizes these functional areas along with the prefixes used in
this tutorial.

Table14-2 JSTL Tags

Area Subfunction Prefix
Variable support
Flow control

Core C

URL management

Miscellaneous

Core

XML Flow control X

Transformation

Locae

118n M essage formatting fmt

Number and date formatting

Database SQL sql

Collection length
Functions fn
String manipulation

Thus, thetutorial referencesthe JSTL coretagsin JSP pages by using the foll ow-
ing taglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

In addition to declaring the tag libraries, tutorial examples access the JSTL API
and implementation. In the Sun Java System Application Server Platform Edi-
tion 8, the JISTL TLDsand libraries are distributed in the archive <J2EE_HOME>/

TAG COLLABORATION

1ib/appserv-jst1.jar. Thislibrary is automatically loaded into the classpath
of all Web applications running on the Application Server, so you don’t need to
add it to your Web application.

Tag Collaboration

Tags usually collaborate with their environment in implicit and explicit ways.
Implicit collaboration is done via a well-defined interface that alows nested tags
to work seamlessly with the ancestor tag that exposes that interface. The JSTL
conditional tags employ this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environ-
ment. JSTL tags expose information as JSP EL variables; the convention fol-
lowed by JSTL is to use the name var for any tag attribute that exports
information about the tag. For example, the forEach tag exposes the current item
of the shopping cart it isiterating over in the following way:

<c:forEach var="1item" items="${sessionScope.cart.items}">

</c:forEach>

In situations where a tag exposes more than one piece of information, the name
var isused for the primary piece of information being exported, and an appropri-
ate name is selected for any other secondary piece of information exposed. For
example, iteration status information is exported by the forEach tag via the
attribute status.

When you want to use an EL variable exposed by a JSTL tag in an expression in
the page's scripting language (see Chapter 16), you use the standard JSP element
jsp:useBean to declare a scripting variable.

For example, bookshowcart. jsp removes a book from a shopping cart using a
scriptlet. The ID of the book to be removed is passed as a request parameter. The
value of the request parameter isfirst exposed as an EL variable (to be used later
by the JSTL sql:query tag) and then is declared as a scripting variable and
passed to the cart. remove method:

<c:set var="bookId" value="${param.Remove}"/>
<jsp:useBean id="bookId" type="java.lang.String" />
<% cart.remove(bookId); %>

<sql:query var="books"

555

../examples/web/bookstore4/web/bookshowcart.txt

556 JAVASERVER PAGES STANDARD TAG LIBRARY

dataSource="${applicationScope.bookDS}">

select * from PUBLIC.books where id = ?

<sqgl:param value="${bookId}" />
</sql:query>

Core Tag Library

Table 14-3 summarizes the core tags, which include those related to variables
and flow control, aswell as a generic way to access URL -based resources whose
content can then be included or processed within the JSP page.

Table 14-3 Core Tags

Area Function Tags Prefix

remove

Variable support set

choose
when
otherwise
forEach
forTokens
if
Core C
import
param
redirect
param
url
param

Flow control

URL management

catch

Miscellaneous
out

Variable Support Tags

The set tag sets the value of an EL variable or the property of an EL variable in
any of the JSP scopes (page, request, session, or application). If the variable does
not already exist, it is created.

FLow CONTROL TAGS

The JSP EL variable or property can be set either from the attribute value:
<c:set var="foo" scope="session" value="..."/>

or from the body of the tag:
<c:set var="foo">
</é;éet>

For example, the following sets an EL variable named bookID with the value of
the request parameter named Remove:

<c:set var="bookId" value="${param.Remove}"/>

To remove an EL variable, you usethe remove tag. When the bookstore JSP page
bookreceipt.jsp isinvoked, the shopping session is finished, so the cart ses-
sion attribute is removed as follows:

<c:remove var="cart" scope="session"/>

Flow Control Tags

To execute flow control logic, a page author must generally resort to using script-
lets. For example, the following scriptlet is used to iterate through a shopping
cart:

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {
ShoppingCartItem item =
(ShoppingCartItem)i.next();

<tr>

<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>

../examples/web/bookstore4/web/bookreceipt.txt

558

JAVASERVER PAGES STANDARD TAG LIBRARY

Flow control tags eliminate the need for scriptlets. The next two sections have
examples that demonstrate the conditional and iterator tags.

Conditional Tags

The i f tag allows the conditional execution of its body according to the value of
the test attribute. The following example from bookcatalog. jsp tests whether
the request parameter Add is empty. If the test evaluates to true, the page queries
the database for the book record identified by the request parameter and adds the
book to the shopping cart:

<c:if test="${!empty param.Add}">
<c:set var="bid" value="${param.Add}"/>
<jsp:useBean id="bid" type="java.lang.String" />
<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sqgl:param value="${bid}" />
</sql:query>
<c:forEach var="bookRow" begin="0" items="${books.rows}">
<jsp:useBean id="bookRow" type="java.util.Map" />
<jsp:useBean id="addedBook"
class="database.BookDetails" scope="page" />

<% cart.add(bid, addedBook); %
<Jciif>
The choose tag performs conditional block execution by the embedded when
subtags. It rendersthe body of the first when tag whose test condition eval uatesto

true. If none of the test conditions of nested when tags evaluates to true, then
the body of an otherwise tag is evaluated, if present.

For example, the following sample code shows how to render text based on a
customer’s membership category.

<c:choose>

<c:when test="${customer.category == 'trial'}" >
</c:when>
<c:when test="${customer.category == 'member'}" >
</c:when>

<c:when test="${customer.category == 'preferred'}" >

../examples/web/bookstore4/web/bookcatalog.txt

FLow CONTROL TAGS

</c:when>
<c:otherwise>

</c:otherwise>
</c:choose>

The choose, when, and otherwise tags can be used to construct an i f-then-
else statement as follows:

<c:choose>

<c:when test="${count == 0}" >
No records matched your selection.
</c:when>

<c:otherwise>
${count} records matched your selection.
</c:otherwise>
</c:choose>

Iterator Tags

The forEach tag allows you to iterate over a collection of objects. You specify
the collection viathe items attribute, and the current item is available through a
variable named by the var attribute.

A large number of collection types are supported by forEach, including all
implementations of java.util.Collection and ja