FROM 10 PORTS TO PROCESS MANAGEMENT

Understanding the

O’REILLY" DANIEL P. BOVET & MARCO CESATI

Understanding the Linux Kernel

Daniel P. Bovet
Marco Cesati

Publisher: O'Reilly

First Edition October 2000
ISBN: 0-596-00002-2, 702 pages

Understanding the Linux Kernel helps readers understand how Linux performs best and how
it meets the challenge of different environments. The authors introduce each topic by
explaining its importance, and show how kernel operations relate to the utilities that are

familiar to Unix programmers and users.

Table of Contents

Preface e 1
The Audience for This Book i i i 1
Organization of the Material i 1
Overview of the Book e 3
Background Information e 4
Conventions in This Book 4
HowtoContact Us et e e 4
Acknowledgments e 5

1. Introduction e 6
1.1 Linux Versus Other Unix-Like Kernels 6
1.2 Hardware Dependencyuuiiiiiini ittt 10
L3 Linux VEISIONS . . .ottt et et e 11
1.4 Basic Operating System CONCeptso o oo v vttt it ettt et e e e eeenn. 12
1.5 An Overview of the Unix Filesystem 16
1.6 An Overview of Unix Kernels 22

2. Memory Addressing ittt e 36
2.1 Memory Addresses vv it ettt e e e e e 36
2.2 Segmentation in Hardware 37
2.3 Segmentation in Linux 41
2.4 Paging in Hardware i e 44
2.5 Paging in LINUXottt e 52
2.6 Anticipating Linux 2.4 e 63

3. ProCesSSeS e 64
3.1 Process Descriptorottt e e 64
3.2 Process SWItChINg e e e e 78
3.3 Creating ProCesses . . .ottt et e e e e e e e e e e e e e 86
3.4 Destroying ProCessesttt ittt e 93
3.5 Anticipating Linux 2.4 94

4. Interrupts and Exceptions e 926
4.1 The Role of Interrupt Signals e 96
4.2 Interrupts and EXceptionsttt e 97
4.3 Nested Execution of Exception and Interrupt Handlers 106
4.4 Initializing the Interrupt Descriptor Table 107
4.5 Exception Handling i 109
4.6 Interrupt Handling e 112
4.7 Returning from Interrupts and Exceptions 126
4.8 Anticipating Linux 2.4 e 129

5. Timing Measurementsttt eenneeenneenneenn. 131
5.1 Hardware Clocks e e e e et e 131
5.2 The Timer Interrupt Handler 133
5.3 PIT's Interrupt Service Routine iiiinnnnnn... 134
5.4 The TIMER BH Bottom Half Functions 136
5.5 System Calls Related to Timing Measurementsc.... 145

5.6 Anticipating Linux 2.4 148

6. Memory Managementttt 149

6.1 Page Frame Managementttt ineenneennnnnn 149
6.2 Memory Area Managementovtnnttne e tin et 160
6.3 Noncontiguous Memory Area Managementccuueuun... 176
6.4 Anticipating Linux 2.4 e e 181
7. Process Address Spacettt 183
7.1 The Process's Address SPace . .. oo vttt iiie et ettt e e e iieaeeen 183
7.2 The Memory DescCriptor vu ittt ittt ettt e et ieeeeeen 185
7.3 Memory Regionsttt ittt e 186
7.4 Page Fault Exception Handler i, 201
7.5 Creating and Deleting a Process Address Space 212
7.6 Managingthe Heap ittt e it 214
7.7 Anticipating Linux 2.4 e e e 216
8.System Calls i e e 217
8.1 POSIX APIsand System Calls 217
8.2 System Call Handler and Service Routines 218
8.3 Wrapper Routinesottt ittt et e 229
8.4 Anticipating Linux 2.4 e e 230
0. Signals e e e e 231
9.1 The Role of Signals ittt 231
9.28SendingaSignal i e 239
9.3 Receiving a Signal i e e 242
9.4 Real-Time Signalsttt e e 251
9.5 System Calls Related to Signal Handling 252
0.6 Anticipating Linux 2.4 e 257
10. Process Scheduling i 258
10.1 Scheduling Policyt e e i e 258
10.2 The Scheduling Algorithm 261
10.3 System Calls Related to Scheduling 272
10.4 Anticipating Linux 2.4ttt e e 276
11. Kernel Synchronization 277
11.1 Kernel Control Paths i . 277
11.2 Synchronization Techniques 278
11.3 The SMP Architecturettt 286
11.4 The Linux/SMP Kernel e 290
11.5 Anticipating Linux 2.4 e 302
12. The Virtual Filesystem 303
12.1 The Role of the VES i 303
12.2 VEFS Data Structureso oottt et et et 308
12.3 Filesystem Mountingiuuitiunnttnneeeneeennnnn 324
12.4 Pathname Lookupttt it e ettt 329
12.5 Implementations of VFS System Calls 333
126 File LoCKIng . . . oo vttt ittt e e ettt e ettt 337

12.7 Anticipating Linux 2.4 e 342

13. Managing I/O Devicesttt ittt 343

13.1 /O Architecturettt ettt e e e e e e e e e 343
13.2 Associating Files with I/O Devices, 348
13.3 Device DIIVELS . . oo v ittt et e e e e e et e 353
13.4 Character Device Handling 360
13.5Block Device Handling ittt ittt 361
13.6 Page I/O Operations cvuu ettt ettt eee e et teeeeneeenn 377
13.7 Anticipating Linux 2.4t e 380
14. Disk Caches e 382
14.1 The Buffer Cache i it 383
142 The Page Cache it it e i 396
14.3 Anticipating Linux 2.4t e e 398
15. Accessing Regular Files 400
15.1 Reading and Writing a Regular File 400
[5.2 Memory Mapping ov v v ii ettt et ettt et e et e e 408
15.3 Anticipating Linux 2.4t e e e 416
16. Swapping: Methods for Freeing Memory 417
16.1 What Is SWapping?ttt ettt e et i e 417
L16.2 SWaP ATCa . . ot ittt et et e e e e 420
163 TheSwap Cache it it e ettt iie e 429
16.4 Transferring Swap Pagesottt et 433
16.5Page Swap-Outottt it e e 437
16.6 Page Swap-In o e 442
16.7 Freeing Page Frames it eieeenn 444
16.8 Anticipating Linux 2.4t e 450
17. The Ext2 Filesystem it 451
17.1 General CharacteriStiCs . . . v v v v v vttt eeen 451
17.2 Disk Data Structuresottt et ettt e e e e e e e 453
17.3 Memory Data Structuresuiitintiinn et 459
17.4 Creating the Filesystemttt 463
17.5 Ext2 Methodso 464
17.6 Managing Disk Spacet e 466
17.7 Reading and Writing an Ext2 Regular File 473
17.8 Anticipating Linux 2.4t e e e 475
18. Process Communication it 476
L8 L PIPS vttt e e e e e e 477
18,2 FIFOS ..t e e e e e e e e e e e e e 483
183 System V IPC e e e 486
18.4 Anticipating Linux 2.4t e 499
19. Program Execution ittt 500
19.1 Executable Files 500
19.2 Executable Formatst e 512
19.3 Execution Domainso i e 514
19.4 The exec-like Functionsouiiiiuiinn e iinnnnnennn. 515

19.5 Anticipating Linux 2.4 e 519

A.System Startup e 520

A.1 Prehistoric Age: The BIOS 520
A.2 Ancient Age: The Boot Loader i nnnn.. 521
A.3 Middle Ages: The setup() Functiono iiiinnn... 523
A.4 Renaissance: The startup 32() Functions 523
A.5 Modern Age: The start kernel() Function 524
B. Modules e e 526
B.1 ToBe (aModule)or NottoBe? 526
B.2 Module Implementation 00ttt innnnnennnn 527
B.3 Linking and Unlinking Modules 529
B.4 Linking Moduleson Demand, 531
C. Source Code Structure ittt 533

Understanding the Linux Kernel

Preface

In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0.
The idea was to encourage students to read the source code. To achieve this, we assigned term
projects consisting of making changes to the kernel and performing tests on the modified
version. We also wrote course notes for our students about a few critical features of Linux like
task switching and task scheduling.

We continued along this line in the spring semester of 1998, but we moved on to the Linux
2.1 development version. Our course notes were becoming larger and larger. In July, 1998 we
contacted O'Reilly & Associates, suggesting they publish a whole book on the Linux kernel.
The real work started in the fall of 1998 and lasted about a year and a half. We read thousands
of lines of code, trying to make sense of them. After all this work, we can say that it was
worth the effort. We learned a lot of things you don't find in books, and we hope we have
succeeded in conveying some of this information in the following pages.

The Audience for This Book

All people curious about how Linux works and why it is so efficient will find answers here.
After reading the book, you will find your way through the many thousands of lines of code,
distinguishing between crucial data structures and secondary ones—in short, becoming a true
Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the significant data
structures and many algorithms and programming tricks used in the kernel are discussed; in
many cases, the relevant fragments of code are discussed line by line. Of course, you should
have the Linux source code on hand and should be willing to spend some effort deciphering
some of the functions that are not, for sake of brevity, fully described.

On another level, the book will give valuable insights to people who want to know more about
the critical design issues in a modern operating system. It is not specifically addressed to
system administrators or programmers; it is mostly for people who want to understand how
things really work inside the machine! Like any good guide, we try to go beyond superficial
features. We offer background, such as the history of major features and the reasons they were
used.

Organization of the Material

When starting to write this book, we were faced with a critical decision: should we refer to a
specific hardware platform or skip the hardware-dependent details and concentrate on the
pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided to adopt
the former one for the following reasons:

o Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, processor
control registers, and so on. If we want to convince you that the kernel indeed does

Understanding the Linux Kernel

quite a good job in performing a specific task, we must first tell what kind of support
comes from the hardware.

e Even if a large portion of a Unix kernel source code is processor-independent and
coded in C language, a small and critical part is coded in assembly language. A
thorough knowledge of the kernel thus requires the study of a few assembly language
fragments that interact with the hardware.

When covering hardware features, our strategy will be quite simple: just sketch the features
that are totally hardware-driven while detailing those that need some software support. In fact,
we are interested in kernel design rather than in computer architecture.

The next step consisted of selecting the computer system to be described: although Linux is
now running on several kinds of personal computers and workstations, we decided to
concentrate on the very popular and cheap IBM-compatible personal computers—thus, on the
Intel 80x86 microprocessors and on some support chips included in these personal computers.
The term Intel 80x86 microprocessor will be used in the forthcoming chapters to denote the
Intel 80386, 80486, Pentium, Pentium Pro, Pentium II, and Pentium III microprocessors or
compatible models. In a few cases, explicit references will be made to specific models.

One more choice was the order followed in studying Linux components. We tried to follow a
bottom-up approach: start with topics that are hardware-dependent and end with those that are
totally hardware-independent. In fact, we'll make many references to the Intel 80x86
microprocessors in the first part of the book, while the rest of it is relatively hardware-
independent. Two significant exceptions are made in Chapter 11, and Chapter 13. In practice,
following a bottom-up approach is not as simple as it looks, since the areas of memory
management, process management, and filesystem are intertwined; a few forward
references—that is, references to topics yet to be explained—are unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is then
presented according to the bottom-up approach. We start with the data structures needed to
support the functionalities described in the chapter. Then we usually move from the lowest
level of functions to higher levels, often ending by showing how system calls issued by user
applications are supported.

Level of Description

Linux source code for all supported architectures is contained in about 4500 C and Assembly
files stored in about 270 subdirectories; it consists of about 2 million lines of code, which
occupy more than 58 megabytes of disk space. Of course, this book can cover a very small
portion of that code. Just to figure out how big the Linux source is, consider that the whole
source code of the book you are reading occupies less than 2 megabytes of disk space.
Therefore, in order to list all code, without commenting on it, we would need more than 25
books like this!™

I Nevertheless, Linux is a tiny operating system when compared with other commercial giants. Microsoft Windows 2000, for example, reportedly has
more than 30 million lines of code. Linux is also small when compared to some popular applications; Netscape Communicator 5 browser, for example,
has about 17 million lines of code.

So we had to make some choices about the parts to be described. This is a rough assessment
of our decisions:

Understanding the Linux Kernel

e We describe process and memory management fairly thoroughly.

e We cover the Virtual Filesystem and the Ext2 filesystem, although many functions are
just mentioned without detailing the code; we do not discuss other filesystems
supported by Linux.

e We describe device drivers, which account for a good part of the kernel, as far as the
kernel interface is concerned, but do not attempt analysis of any specific driver,
including the terminal drivers.

e We do not cover networking, since this area would deserve a whole new book by
itself.

In many cases, the original code has been rewritten in an easier to read but less efficient way.
This occurs at time-critical points at which sections of programs are often written in a mixture
of hand-optimized C and Assembly code. Once again, our aim is to provide some help in
studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many familiar
features that Unix programmers have heard of and about which they may be curious (shared
and mapped memory, signals, pipes, symbolic links).

Overview of the Book

To make life easier, Chapter 1 presents a general picture of what is inside a Unix kernel and
how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2 explains how Intel 80x86
processors include special circuits to address data in memory and how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3.
Here we also explain how each process runs either in an unprivileged User Mode or in a
privileged Kernel Mode. Transitions between User Mode and Kernel Mode happen only
through well-established hardware mechanisms called interrupts and exceptions, which are
introduced in Chapter 4. One type of interrupt is crucial for allowing Linux to take care of
elapsed time; further details can be found in Chapter 5.

Next we focus again on memory: Chapter 6 describes the sophisticated techniques required to
handle the most precious resource in the system (besides the processors, of course), that is,
available memory. This resource must be granted both to the Linux kernel and to the user
applications. Chapter 7 shows how the kernel copes with the requests for memory issued by
greedy application programs.

Chapter 8 explains how a process running in User Mode makes requests to the kernel, while
Chapter 9 describes how a process may send synchronization signals to other processes.
Chapter 10 explains how Linux executes, in turn, every active process in the system so that all
of them can progress toward their completions. Synchronization mechanisms are needed by
the kernel too: they are discussed in Chapter 11 for both uniprocessor and multiprocessor
systems.

Now we are ready to move on to another essential topic, that is, how Linux implements the
filesystem. A series of chapters covers this topic: Chapter 12 introduces a general layer that
supports many different filesystems. Some Linux files are special because they provide

Understanding the Linux Kernel

trapdoors to reach hardware devices; Chapter 13 offers insights on these special files and on
the corresponding hardware device drivers. Another issue to be considered is disk access
time; Chapter 14 shows how a clever use of RAM reduces disk accesses and thus improves
system performance significantly. Building on the material covered in these last chapters, we
can now explain in Chapter 15, how user applications access normal files. Chapter 16
completes our discussion of Linux memory management and explains the techniques used by
Linux to ensure that enough memory is always available. The last chapter dealing with files is
Chapter 17, which illustrates the most-used Linux filesystem, namely Ext2.

The last two chapters end our detailed tour of the Linux kernel: Chapter 18 introduces
communication mechanisms other than signals available to User Mode processes; Chapter 19
explains how user applications are started.

Last but not least are the appendixes: Appendix A sketches out how Linux is booted, while
Appendix B describes how to dynamically reconfigure the running kernel, adding and
removing functionalities as needed. Appendix C is just a list of the directories that contain the
Linux source code. The Source Code Index includes all the Linux symbols referenced in the
book; you will find here the name of the Linux file defining each symbol and the book's page
number where it is explained. We think you'll find it quite handy.

Background Information

No prerequisites are required, except some skill in C programming language and perhaps
some knowledge of Assembly language.

Conventions in This Book
The following is a list of typographical conventions used in this book:
Constant Width

Is used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

[talic

Is used for file and directory names, program and command names, command-line
options, URLSs, and for emphasizing new terms.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of
the book. Please let us know of any errors that you find, as well as suggestions for future
editions, by writing to:

O'Reilly & Associates, Inc. 101 Morris St. Sebastopol, CA 95472 (800) 998-9938 (in the U.S.
or Canada) (707) 829-0515 (international/local) (707) 829-0104 (fax)

Understanding the Linux Kernel

You can also send messages electronically. To be put on our mailing list or to request a
catalog, send email to:

info@oreilly.com
To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list reader reviews, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/linuxkernel/

We also have an additional web site where you will find material written by the authors about
the new features of Linux 2.4. Hopefully, this material will be used for a future edition of this
book. You can access this page at:

http://www.oreilly.com/catalog/linuxkernel/updates/
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/
Acknowledgments

This book would not have been written without the precious help of the many students of the
school of engineering at the University of Rome "Tor Vergata" who took our course and tried
to decipher the lecture notes about the Linux kernel. Their strenuous efforts to grasp the
meaning of the source code led us to improve our presentation and to correct many mistakes.

Andy Oram, our wonderful editor at O'Reilly & Associates, deserves a lot of credit. He was
the first at O'Reilly to believe in this project, and he spent a lot of time and energy
deciphering our preliminary drafts. He also suggested many ways to make the book more
readable, and he wrote several excellent introductory paragraphs.

Many thanks also to the O'Reilly staff, especially Rob Romano, the technical illustrator, and
Lenny Muellner, for tools support.

We had some prestigious reviewers who read our text quite carefully (in alphabetical order by
first name): Alan Cox, Michael Kerrisk, Paul Kinzelman, Raph Levien, and Rik van Riel.
Their comments helped us to remove several errors and inaccuracies and have made this book
stronger.

—Daniel P. Bovet, Marco Cesati

September 2000

Understanding the Linux Kernel

Chapter 1. Introduction

Linux is a member of the large family of Unix-like operating systems. A relative newcomer
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such
well-known commercial Unix operating systems as System V Release 4 (SVR4) developed by
AT&T, which is now owned by Novell; the 4.4 BSD release from the University of California
at Berkeley (4.4BSD), Digital Unix from Digital Equipment Corporation (now Compaq); AIX
from IBM; HP-UX from Hewlett-Packard; and Solaris from Sun Microsystems.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for IBM-
compatible personal computers based on the Intel 80386 microprocessor. Linus remains
deeply involved with improving Linux, keeping it up-to-date with various hardware
developments and coordinating the activity of hundreds of Linux developers around the
world. Over the years, developers have worked to make Linux available on other
architectures, including Alpha, SPARC, Motorola MC680x0, PowerPC, and IBM
System/390.

One of the more appealing benefits to Linux is that it isn't a commercial operating system: its
source code under the GNU Public License" is open and available to anyone to study, as we
will in this book; if you download the code (the official site is http://www kernel.org/) or
check the sources on a Linux CD, you will be able to explore from top to bottom one of
the most successful, modern operating systems. This book, in fact, assumes you have
the source code on hand and can apply what we say to your own explorations.

I The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org/); its aim is to implement a whole operating system
freely usable by everyone. The availability of a GNU C compiler has been essential for the success of the Linux project.

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating
system, because it does not include all the applications such as filesystem utilities, windowing
systems and graphical desktops, system administrator commands, text editors, compilers, and
so on. However, since most of these programs are freely available under the GNU General
Public License, they can be installed into one of the filesystems supported by Linux.

Since Linux is a kernel, many Linux users prefer to rely on commercial distributions,
available on CD-ROM, to get the code included in a standard Unix system. Alternatively,
the code may be obtained from several different FTP sites. The Linux source code is usually
installed in the /usr/src/linux directory. In the rest of this book, all file pathnames will refer
implicitly to that directory.

1.1 Linux Versus Other Unix-Like Kernels

The various Unix-like systems on the market, some of which have a long history and may
show signs of archaic practices, differ in many important respects. All commercial variants
were derived from either SVR4 or 4.4BSD; all of them tend to agree on some common
standards like IEEE's POSIX (Portable Operating Systems based on Unix) and X/Open's CAE
(Common Applications Environment).

Understanding the Linux Kernel

The current standards specify only an application programming interface (API)—that is,
a well-defined environment in which user programs should run. Therefore, the standards do
not impose any restriction on internal design choices of a compliant kernel.”

121 As a matter of fact, several non-Unix operating systems like Windows NT are POSIX-compliant.

In order to define a common user interface, Unix-like kernels often share fundamental design
ideas and features. In this respect, Linux is comparable with the other Unix-like operating
systems. What you read in this book and see in the Linux kernel, therefore, may help you
understand the other Unix variants too.

The 2.2 version of the Linux kernel aims to be compliant with the IEEE POSIX standard.
This, of course, means that most existing Unix programs can be compiled and executed on
a Linux system with very little effort or even without the need for patches to the source code.
Moreover, Linux includes all the features of a modern Unix operating system, like virtual
memory, a virtual filesystem, lightweight processes, reliable signals, SVR4 interprocess
communications, support for Symmetric Multiprocessor (SMP) systems, and so on.

By itself, the Linux kernel is not very innovative. When Linus Torvalds wrote the first kernel,
he referred to some classical books on Unix internals, like Maurice Bach's The Design of
the Unix Operating System (Prentice Hall, 1986). Actually, Linux still has some bias toward
the Unix baseline described in Bach's book (i.e., SVR4). However, Linux doesn't stick to any
particular variant. Instead, it tries to adopt good features and design choices of several
different Unix kernels.

Here is an assessment of how Linux competes against some well-known commercial Unix
kernels:

e The Linux kernel is monolithic. It is a large, complex do-it-yourself program,
composed of several logically different components. In this, it is quite conventional,
most commercial Unix variants are monolithic. A notable exception is Carnegie-
Mellon's Mach 3.0, which follows a microkernel approach.

e Traditional Unix kernels are compiled and linked statically. Most modern kernels can
dynamically load and unload some portions of the kernel code (typically, device
drivers), which are usually called modules. Linux's support for modules is very good,
since it is able to automatically load and unload modules on demand. Among the main
commercial Unix variants, only the SVR4.2 kernel has a similar feature.

o Kernel threading. Some modern Unix kernels, like Solaris 2.x and SVR4.2/MP, are
organized as a set of kernel threads. A kernel thread is an execution context that can
be independently scheduled; it may be associated with a user program, or it may run
only some kernel functions. Context switches between kernel threads are usually much
less expensive than context switches between ordinary processes, since the former
usually operate on a common address space. Linux uses kernel threads in a very
limited way to execute a few kernel functions periodically; since Linux kernel threads
cannot execute user programs, they do not represent the basic execution context
abstraction. (That's the topic of the next item.)

o Multithreaded application support. Most modern operating systems have some kind of
support for multithreaded applications, that is, user programs that are well designed in
terms of many relatively independent execution flows sharing a large portion of the
application data structures. A multithreaded user application could be composed of
many lightweight processes (LWP), or processes that can operate on a common

Understanding the Linux Kernel

address space, common physical memory pages, common opened files, and so on.
Linux defines its own version of lightweight processes, which is different from the
types used on other systems such as SVR4 and Solaris. While all the commercial Unix
variants of LWP are based on kernel threads, Linux regards lightweight processes as
the basic execution context and handles them via the nonstandard clone () system
call.

Linux is a nonpreemptive kernel. This means that Linux cannot arbitrarily interleave
execution flows while they are in privileged mode. Several sections of kernel code
assume they can run and modify data structures without fear of being interrupted and
having another thread alter those data structures. Usually, fully preemptive kernels are
associated with special real-time operating systems. Currently, among conventional,
general-purpose Unix systems, only Solaris 2.x and Mach 3.0 are fully preemptive
kernels. SVR4.2/MP introduces some fixed preemption points as a method to get
limited preemption capability.

Multiprocessor support. Several Unix kernel variants take advantage of multiprocessor
systems. Linux 2.2 offers an evolving kind of support for symmetric multiprocessing
(SMP), which means not only that the system can use multiple processors but also that
any processor can handle any task; there is no discrimination among them. However,
Linux 2.2 does not make optimal use of SMP. Several kernel activities that could be
executed concurrently—like filesystem handling and networking—must now be
executed sequentially.

Filesystem. Linux's standard filesystem lacks some advanced features, such as
journaling. However, more advanced filesystems for Linux are available, although not
included in the Linux source code; among them, IBM AIX's Journaling File System
(JES), and Silicon Graphics Irix's XFS filesystem. Thanks to a powerful object-
oriented Virtual File System technology (inspired by Solaris and SVR4), porting
a foreign filesystem to Linux is a relatively easy task.

STREAMS. Linux has no analog to the STREAMS I/O subsystem introduced in
SVR4, although it is included nowadays in most Unix kernels and it has become the
preferred interface for writing device drivers, terminal drivers, and network protocols.

This somewhat disappointing assessment does not depict, however, the whole truth. Several
features make Linux a wonderfully unique operating system. Commercial Unix kernels often
introduce new features in order to gain a larger slice of the market, but these features are not
necessarily useful, stable, or productive. As a matter of fact, modern Unix kernels tend to be
quite bloated. By contrast, Linux doesn't suffer from the restrictions and the conditioning
imposed by the market, hence it can freely evolve according to the ideas of its designers
(mainly Linus Torvalds). Specifically, Linux offers the following advantages over its
commercial competitors:

Linux is free.

You can install a complete Unix system at no expense other than the hardware (of
course).

Understanding the Linux Kernel

Linux is fully customizable in all its components.

Thanks to the General Public License (GPL), you are allowed to freely read and
modify the source code of the kernel and of all system programs."

131 Several commercial companies have started to support their products under Linux, most of which aren't distributed under a GNU Public License.
Therefore, you may not be allowed to read or modify their source code.

Linux runs on low-end, cheap hardware platforms.

You can even build a network server using an old Intel 80386 system with 4 MB of
RAM.

Linux is powerful.

Linux systems are very fast, since they fully exploit the features of the hardware
components. The main Linux target is efficiency, and indeed many design choices of
commercial variants, like the STREAMS I/O subsystem, have been rejected by Linus
because of their implied performance penalty.

Linux has a high standard for source code quality.

Linux systems are usually very stable; they have a very low failure rate and system
maintenance time.

The Linux kernel can be very small and compact.

Indeed, it is possible to fit both a kernel image and full root filesystem, including all
fundamental system programs, on just one 1.4 MB floppy disk! As far as we know,
none of the commercial Unix variants is able to boot from a single floppy disk.

Linux is highly compatible with many common operating systems.

It lets you directly mount filesystems for all versions of MS-DOS and MS Windows,
SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP, many BSD variants, and so on.
Linux is also able to operate with many network layers like Ethernet, Fiber Distributed
Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IBM's Token
Ring, AT&T WaveLAN, DEC RoamAbout DS, and so forth. By using suitable
libraries, Linux systems are even able to directly run programs written for other
operating systems. For example, Linux is able to execute applications written for MS-
DOS, MS Windows, SVR3 and R4, 4.4BSD, SCO Unix, XENIX, and others on the
Intel 80x86 platform.

Linux is well supported.

Believe it or not, it may be a lot easier to get patches and updates for Linux than for
any proprietary operating system! The answer to a problem often comes back within
a few hours after sending a message to some newsgroup or mailing list. Moreover,
drivers for Linux are usually available a few weeks after new hardware products have
been introduced on the market. By contrast, hardware manufacturers release device
drivers for only a few commercial operating systems, usually the Microsoft ones.

Understanding the Linux Kernel

Therefore, all commercial Unix variants run on a restricted subset of hardware
components.

With an estimated installed base of more than 12 million and growing, people who are used to
certain creature features that are standard under other operating systems are starting to expect
the same from Linux. As such, the demand on Linux developers is also increasing. Luckily,

though, Linux has evolved under the close direction of Linus over the years, to accommodate
the needs of the masses.

1.2 Hardware Dependency
Linux tries to maintain a neat distinction between hardware-dependent and hardware-
independent source code. To that end, both the arch and the include directories include nine
subdirectories corresponding to the nine hardware platforms supported. The standard names
of the platforms are:
arm

Acorn personal computers
alpha

Compaq Alpha workstations

1386

IBM-compatible personal computers based on Intel 80x86 or Intel 80x86-compatible
MiCroprocessors

m68k

Personal computers based on Motorola MC680x0 microprocessors
mips

Workstations based on Silicon Graphics MIPS microprocessors
ppc

Workstations based on Motorola-IBM PowerPC microprocessors
sparc

Workstations based on Sun Microsystems SPARC microprocessors
sparc64

Workstations based on Sun Microsystems 64-bit Ultra SPARC microprocessors

10

Understanding the Linux Kernel

s390
IBM System/390 mainframes
1.3 Linux Versions

Linux distinguishes stable kernels from development kernels through a simple numbering
scheme. Each version is characterized by three numbers, separated by periods. The first two
numbers are used to identify the version; the third number identifies the release.

As shown in Figure 1-1, if the second number is even, it denotes a stable kernel; otherwise, it
denotes a development kernel. At the time of this writing, the current stable version of the
Linux kernel is 2.2.14, and the current development version is 2.3.51. The 2.2 kernel, which is
the basis for this book, was first released in January 1999, and it differs considerably from the
2.0 kernel, particularly with respect to memory management. Work on the 2.3 development
version started in May 1999.

Figure 1-1. Numbering Linux versions

Stalle release Deveiopment
numbar ralgase number
Varsion Version
number numbear
2.:|2.14 2.3.51
Even number Odd number denotes
danofes sfable develapment kermal
kel

New releases of a stable version come out mostly to fix bugs reported by users. The main
algorithms and data structures used to implement the kernel are left unchanged.

Development versions, on the other hand, may differ quite significantly from one another;
kernel developers are free to experiment with different solutions that occasionally lead to
drastic kernel changes. Users who rely on development versions for running applications may
experience unpleasant surprises when upgrading their kernel to a newer release. This book
concentrates on the most recent stable kernel that we had available because, among all
the new features being tried in experimental kernels, there's no way of telling which will
ultimately be accepted and what they'll look like in their final form.

At the time of this writing, Linux 2.4 has not officially come out. We tried to anticipate the
forthcoming features and the main kernel changes with respect to the 2.2 version by looking
at the Linux 2.3.99-pre8 prerelease. Linux 2.4 inherits a good deal from Linux 2.2: many
concepts, design choices, algorithms, and data structures remain the same. For that reason, we
conclude each chapter by sketching how Linux 2.4 differs from Linux 2.2 with respect to
the topics just discussed. As you'll notice, the new Linux is gleaming and shining; it should
appear more appealing to large corporations and, more generally, to the whole business
community.

11

Understanding the Linux Kernel

1.4 Basic Operating System Concepts

Any computer system includes a basic set of programs called the operating system. The most
important program in the set is called the kernel. It is loaded into RAM when the system boots
and contains many critical procedures that are needed for the system to operate. The other
programs are less crucial utilities; they can provide a wide variety of interactive experiences
for the user—as well as doing all the jobs the user bought the computer for—but the essential
shape and capabilities of the system are determined by the kernel. The kernel, then, is where
we fix our attention in this book. Hence, we'll often use the term "operating system" as
a synonym for "kernel."

The operating system must fulfill two main objectives:

e Interact with the hardware components servicing all low-level programmable elements
included in the hardware platform.

e Provide an execution environment to the applications that run on the computer system
(the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS). In contrast, a Unix-like operating system hides
all low-level details concerning the physical organization of the computer from applications
run by the user. When a program wants to make use of a hardware resource, it must issue
a request to the operating system. The kernel evaluates the request and, if it chooses to grant
the resource, interacts with the relative hardware components on behalf of the user program.

In order to enforce this mechanism, modern operating systems rely on the availability of
specific hardware features that forbid user programs to directly interact with low-level
hardware components or to access arbitrary memory locations. In particular, the hardware
introduces at least two different execution modes for the CPU: a nonprivileged mode for user
programs and a privileged mode for the kernel. Unix calls these User Mode and Kernel Mode,
respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the design of
Unix over the past two decades, as well as Linux and other operating systems. While the
concepts are probably familiar to you as a Linux user, these sections try to delve into them
a bit more deeply than usual to explain the requirements they place on an operating system
kernel. These broad considerations refer to Unix-like systems, thus also to Linux. The other
chapters of this book will hopefully help you to understand the Linux kernel internals.

1.4.1 Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently execute
several applications belonging to two or more users. "Concurrently" means that applications
can be active at the same time and contend for the various resources such as CPU, memory,
hard disks, and so on. "Independently" means that each application can perform its task with
no concern for what the applications of the other users are doing. Switching from one
application to another, of course, slows down each of them and affects the response time seen
by the users. Many of the complexities of modern operating system kernels, which we will
examine in this book, are present to minimize the delays enforced on each program and to
provide the user with responses that are as fast as possible.

12

Understanding the Linux Kernel

Multiuser operating systems must include several features:

e An authentication mechanism for verifying the user identity

e A protection mechanism against buggy user programs that could block other
applications running in the system

e A protection mechanism against malicious user programs that could interfere with, or
spy on, the activity of other users

e An accounting mechanism that limits the amount of resource units assigned to each
user

In order to ensure safe protection mechanisms, operating systems must make use of the
hardware protection associated with the CPU privileged mode. Otherwise, a user program
would be able to directly access the system circuitry and overcome the imposed bounds. Unix
is a multiuser system that enforces the hardware protection of system resources.

1.4.2 Users and Groups

In a multiuser system, each user has a private space on the machine: typically, he owns some
quota of the disk space to store files, receives private mail messages, and so on. The operating
system must ensure that the private portion of a user space is visible only to its owner. In
particular, it must ensure that no user can exploit a system application for the purpose of
violating the private space of another user.

All users are identified by a unique number called the User ID , or UID. Usually only a
restricted number of persons are allowed to make use of a computer system. When one of
these users starts a working session, the operating system asks for a login name and a
password. If the user does not input a valid pair, the system denies access. Since the password
is assumed to be secret, the user's privacy is ensured.

In order to selectively share material with other users, each user is a member of one or more
groups, which are identified by a unique number called a Group ID , or GID. Each file is also
associated with exactly one group. For example, access could be set so that the user owning
the file has read and write privileges, the group has read-only privileges, and other users on
the system are denied access to the file.

Any Unix-like operating system has a special user called root, superuser, or supervisor. The
system administrator must log in as root in order to handle user accounts, perform
maintenance tasks like system backups and program upgrades, and so on. The root user can
do almost everything, since the operating system does not apply the usual protection
mechanisms to her. In particular, the root user can access every file on the system and can
interfere with the activity of every running user program.

1.4.3 Processes

All operating systems make use of one fundamental abstraction: the process . A process can
be defined either as "an instance of a program in execution," or as the "execution context" of a
running program. In traditional operating systems, a process executes a single sequence of
instructions in an address space ; the address space is the set of memory addresses that the
process is allowed to reference. Modern operating systems allow processes with multiple

13

Understanding the Linux Kernel

execution flows, that is, multiple sequences of instructions executed in the same address
space.

Multiuser systems must enforce an execution environment in which several processes can be
active concurrently and contend for system resources, mainly the CPU. Systems that allow
concurrent active processes are said to be multiprogramming or multiprocessing.” It is
important to distinguish programs from processes: several processes can execute the same
program concurrently, while the same process can execute several programs sequentially.

I Some multiprocessing operating systems are not multiuser; an example is Microsoft's Windows 98.

On uniprocessor systems, just one process can hold the CPU, and hence just one execution
flow can progress at a time. In general, the number of CPUs is always restricted, and therefore
only a few processes can progress at the same time. The choice of the process that can
progress is left to an operating system component called the scheduler. Some operating
systems allow only nonpreemptive processes, which means that the scheduler is invoked only
when a process voluntarily relinquishes the CPU. But processes of a multiuser system must be
preemptive ; the operating system tracks how long each process holds the CPU and
periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptive processes. Indeed, the process
abstraction is really fundamental in all Unix systems. Even when no user is logged in and no
application is running, several system processes monitor the peripheral devices. In particular,
several processes listen at the system terminals waiting for user logins. When a user inputs a
login name, the listening process runs a program that validates the user password. If the user
identity is acknowledged, the process creates another process that runs a shell into which
commands are entered. When a graphical display is activated, one process runs the window
manager, and each window on the display is usually run by a separate process. When a user
creates a graphics shell, one process runs the graphics windows, and a second process runs the
shell into which the user can enter the commands. For each user command, the shell process
creates another process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model. Each process has the illusion that
it's the only process on the machine and it has exclusive access to the operating system
services. Whenever a process makes a system call (i.e., a request to the kernel), the hardware
changes the privilege mode from User Mode to Kernel Mode, and the process starts the
execution of a kernel procedure with a strictly limited purpose. In this way, the operating
system acts within the execution context of the process in order to satisfy its request.
Whenever the request is fully satisfied, the kernel procedure forces the hardware to return to
User Mode and the process continues its execution from the instruction following the system
call.

1.4.4 Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the
whole kernel program and runs in Kernel Mode on behalf of the current process. In contrast,
microkernel operating systems demand a very small set of functions from the kernel,
generally including a few synchronization primitives, a simple scheduler, and an interprocess
communication mechanism. Several system processes that run on top of the microkernel
implement other operating system-layer functions, like memory allocators, device drivers,
system call handlers, and so on.

14

Understanding the Linux Kernel

Although academic research on operating systems is oriented toward microkernels, such
operating systems are generally slower than monolithic ones, since the explicit message
passing between the different layers of the operating system has a cost. However, microkernel
operating systems might have some theoretical advantages over monolithic ones.
Microkernels force the system programmers to adopt a modularized approach, since any
operating system layer is a relatively independent program that must interact with the other
layers through well-defined and clean software interfaces. Moreover, an existing microkernel
operating system can be fairly easily ported to other architectures, since all hardware-
dependent components are generally encapsulated in the microkernel code. Finally,
microkernel operating systems tend to make better use of random access memory (RAM) than
monolithic ones, since system processes that aren't implementing needed functionalities might
be swapped out or destroyed.

Modules are a kernel feature that effectively achieves many of the theoretical advantages of
microkernels without introducing performance penalties. A module is an object file whose
code can be linked to (and unlinked from) the kernel at runtime. The object code usually
consists of a set of functions that implements a filesystem, a device driver, or other features at
the kernel's upper layer. The module, unlike the external layers of microkernel operating
systems, does not run as a specific process. Instead, it is executed in Kernel Mode on behalf
of the current process, like any other statically linked kernel function.

The main advantages of using modules include:

Modularized approach
Since any module can be linked and unlinked at runtime, system programmers must
introduce well-defined software interfaces to access the data structures handled by
modules. This makes it easy to develop new modules.

Platform independence
Even if it may rely on some specific hardware features, a module doesn't depend on a
fixed hardware platform. For example, a disk driver module that relies on the SCSI
standard works as well on an IBM-compatible PC as it does on Compaq's Alpha.

Frugal main memory usage
A module can be linked to the running kernel when its functionality is required and
unlinked when it is no longer useful. This mechanism also can be made transparent to
the user, since linking and unlinking can be performed automatically by the kernel.

No performance penalty
Once linked in, the object code of a module is equivalent to the object code of the

statically linked kernel. Therefore, no explicit message passing is required when the
functions of the module are invoked."

1A small performance penalty occurs when the module is linked and when it is unlinked. However, this penalty can be compared to the penalty
caused by the creation and deletion of system processes in microkernel operating systems.

15

Understanding the Linux Kernel

1.5 An Overview of the Unix Filesystem

The Unix operating system design is centered on its filesystem, which has several interesting
characteristics. We'll review the most significant ones, since they will be mentioned quite
often in forthcoming chapters.

1.5.1 Files

A Unix file is an information container structured as a sequence of bytes; the kernel does not
interpret the contents of a file. Many programming libraries implement higher-level
abstractions, such as records structured into fields and record addressing based on keys.
However, the programs in these libraries must rely on system calls offered by the kernel.
From the user's point of view, files are organized in a tree-structured name space as shown in
Figure 1-2.

Figure 1-2. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node contains
information about the files and directories just beneath it. A file or directory name consists of
a sequence of arbitrary ASCII characters, with the exception of / and of the null character \0.
Most filesystems place a limit on the length of a filename, typically no more than 255
characters. The directory corresponding to the root of the tree is called the root directory . By
convention, its name is a slash (/). Names must be different within the same directory, but the
same name may be used in different directories.

1/ Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit extended coding of graphical characters such
as Unicode.

Unix associates a current working directory with each process (see Section 1.6.1 later in this
chapter); it belongs to the process execution context, and it identifies the directory currently
used by the process. In order to identify a specific file, the process uses a pathname, which
consists of slashes alternating with a sequence of directory names that lead to the file. If the
first item in the pathname is a slash, the pathname is said to be absolute, since its starting
point is the root directory. Otherwise, if the first item is a directory name or filename, the
pathname is said to be relative, since its starting point is the process's current directory.

While specifying filenames, the notations "." and ".." are also used. They denote the current

working directory and its parent directory, respectively. If the current working directory is the
root directory, "." and ".." coincide.

16

Understanding the Linux Kernel

1.5.2 Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply a /ink. The same
file may have several links included in the same directory or in different ones, thus several
filenames.

The Unix command:

$ 1In f1 f£2

is used to create a new hard link that has the pathname £2 for a file identified by the pathname
£1.

Hard links have two limitations:

e Users are not allowed to create hard links for directories. This might transform the
directory tree into a graph with cycles, thus making it impossible to locate a file
according to its name.

e Links can be created only among files included in the same filesystem. This is a
serious limitation since modern Unix systems may include several filesystems located
on different disks and/or partitions, and users may be unaware of the physical
divisions between them.

In order to overcome these limitations, soft links (also called symbolic links) have been
introduced. Symbolic links are short files that contain an arbitrary pathname of another file.
The pathname may refer to any file located in any filesystem; it may even refer to a
nonexistent file.

The Unix command:

$ 1In -s f1 f2

creates a new soft link with pathname £2 that refers to pathname £1. When this command is
executed, the filesystem creates a soft link and writes into it the £1 pathname. It then inserts—
in the proper directory—a new entry containing the last name of the £2 pathname. In this way,
any reference to £2 can be translated automatically into a reference to f1.

1.5.3 File Types
Unix files may have one of the following types:

e Regular file

e Directory

e Symbolic link

o Block-oriented device file

e Character-oriented device file

e Pipe and named pipe (also called FIFO)
e Socket

17

Understanding the Linux Kernel

The first three file types are constituents of any Unix filesystem. Their implementation will be
described in detail in Chapter 17.

Device files are related to I/O devices and device drivers integrated into the kernel. For
example, when a program accesses a device file, it acts directly on the I/O device associated
with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see Section 1.6.5
later in this chapter and Chapter 18).

1.5.4 File Descriptor and Inode

Unix makes a clear distinction between a file and a file descriptor. With the exception of
device and special files, each file consists of a sequence of characters. The file does not
include any control information such as its length, or an End-Of-File (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data structure called
an inode. Each file has its own inode, which the filesystem uses to identify the file.

While filesystems and the kernel functions handling them can vary widely from one Unix
system to another, they must always provide at least the following attributes, which are
specified in the POSIX standard:

o File type (see previous section)

e Number of hard links associated with the file

o File length in bytes

e Device ID (i.e., an identifier of the device containing the file)

e Inode number that identifies the file within the filesystem

e User ID of the file owner

e Group ID of the file

o Several timestamps that specify the inode status change time, the last access time, and
the last modify time

e Access rights and file mode (see next section)

1.5.5 Access Rights and File Mode
The potential users of a file fall into three classes:

e The user who is the owner of the file
e The users who belong to the same group as the file, not including the owner
e All remaining users (others)

There are three types of access rights, Read, Write, and Execute, for each of these three
classes. Thus, the set of access rights associated with a file consists of nine different binary
flags. Three additional flags, called suid (Set User ID), sgid (Set Group ID), and sticky define
the file mode. These flags have the following meanings when applied to executable files:

18

Understanding the Linux Kernel

suid

A process executing a file normally keeps the User ID (UID) of the process owner.
However, if the executable file has the suid flag set, the process gets the UID of the
file owner.

sgid

A process executing a file keeps the Group ID (GID) of the process group. However,
if the executable file has the sgid flag set, the process gets the ID of the file group.

sticky

An executable file with the sticky flag set corresponds to a request to the kernel to
keep the program in memory after its execution terminates.”

"I This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 7).

When a file is created by a process, its owner ID is the UID of the process. Its owner group ID
can be either the GID of the creator process or the GID of the parent directory, depending on
the value of the sgid flag of the parent directory.

1.5.6 File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually accesses
some data stored in a hardware block device. In this sense, a filesystem is a user-level view of
the physical organization of a hard disk partition. Since a process in User Mode cannot
directly interact with the low-level hardware components, each actual file operation must be
performed in Kernel Mode.

Therefore, the Unix operating system defines several system calls related to file handling.
Whenever a process wants to perform some operation on a specific file, it uses the proper
system call and passes the file pathname as a parameter.

All Unix kernels devote great attention to the efficient handling of hardware block devices in
order to achieve good overall system performance. In the chapters that follow, we will
describe topics related to file handling in Linux and specifically how the kernel reacts to file-
related system calls. In order to understand those descriptions, you will need to know how the
main file-handling system calls are used; they are described in the next section.

1.5.6.1 Opening a file

Processes can access only "opened" files. In order to open a file, the process invokes the
system call:

fd = open(path, flag, mode)

The three parameters have the following meanings:

19

Understanding the Linux Kernel

path

Denotes the pathname (relative or absolute) of the file to be opened.
flag

Specifies how the file must be opened (e.g., read, write, read/write, append). It can
also specify whether a nonexisting file should be created.

mode
Specifies the access rights of a newly created file.

This system call creates an "open file" object and returns an identifier called file descriptor .
An open file object contains:

e Some file-handling data structures, like a pointer to the kernel buffer memory area
where file data will be copied; an offset field that denotes the current position in the
file from which the next operation will take place (the so-called file pointer); and so
on.

e Some pointers to kernel functions that the process is enabled to invoke. The set of
permitted functions depends on the value of the £1ag parameter.

We'll discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing
some general properties specified by the POSIX semantics:

o A file descriptor represents an interaction between a process and an opened file, while
an open file object contains data related to that interaction. The same open file object
may be identified by several file descriptors.

e Several processes may concurrently open the same file. In this case, the filesystem
assigns a separate file descriptor to each file, along with a separate open file object.
When this occurs, the Unix filesystem does not provide any kind of synchronization
among the I/O operations issued by the processes on the same file. However, several
system calls such as flock() are available to allow processes to synchronize
themselves on the entire file or on portions of it (see Chapter 12).

In order to create a new file, the process may also invoke the create () system call, which is
handled by the kernel exactly like open ().

1.5.6.2 Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device files and
named pipes are usually accessed sequentially (see Chapter 13). In both kinds of access, the
kernel stores the file pointer in the open file object, that is, the current position at which the
next read or write operation will take place.

Sequential access is implicitly assumed: the read () and write () system calls always refer
to the position of the current file pointer. In order to modify the value, a program must
explicitly invoke the 1seek() system call. When a file is opened, the kernel sets the file
pointer to the position of the first byte in the file (offset 0).

20

Understanding the Linux Kernel

The 1seek () system call requires the following parameters:
newoffset = lseek(fd, offset, whence);
which have the following meanings:
fd
Indicates the file descriptor of the opened file

offset

Specifies a signed integer value that will be used for computing the new position of
the file pointer

whence

Specifies whether the new position should be computed by adding the offset value to
the number (offset from the beginning of the file), the current file pointer, or the
position of the last byte (offset from the end of the file)

The read () system call requires the following parameters:

nread = read(fd, buf, count);

which have the following meaning:

fd
Indicates the file descriptor of the opened file

buf
Specifies the address of the buffer in the process's address space to which the data will
be transferred

count

Denotes the number of bytes to be read

When handling such a system call, the kernel attempts to read count bytes from the file
having the file descriptor £d, starting from the current value of the opened file's offset field. In
some cases—end-of-file, empty pipe, and so on—the kernel does not succeed in reading all
count bytes. The returned nread value specifies the number of bytes effectively read. The file
pointer is also updated by adding nread to its previous value. The write() parameters are
similar.

21

Understanding the Linux Kernel

1.5.6.3 Closing a file

When a process does not need to access the contents of a file anymore, it can invoke the
system call:

res = close(fd);

which releases the open file object corresponding to the file descriptor £d. When a process
terminates, the kernel closes all its still opened files.

1.5.6.4 Renaming and deleting a file

In order to rename or delete a file, a process does not need to open it. Indeed, such operations
do not act on the contents of the affected file, but rather on the contents of one or more
directories. For example, the system call:

res = rename (oldpath, newpath);

changes the name of a file link, while the system call:

res = unlink (pathname) ;

decrements the file link count and removes the corresponding directory entry. The file is
deleted only when the link count assumes the value 0.

1.6 An Overview of Unix Kernels

Unix kernels provide an execution environment in which applications may run. Therefore, the
kernel must implement a set of services and corresponding interfaces. Applications use those
interfaces and do not usually interact directly with hardware resources.

1.6.1 The Process/Kernel Model

As already mentioned, a CPU can run either in User Mode or in Kernel Mode. Actually, some
CPUs can have more than two execution states. For instance, the Intel 80x86 microprocessors
have four different execution states. But all standard Unix kernels make use of only Kernel
Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data structures
or the kernel programs. When an application executes in Kernel Mode, however, these
restrictions no longer apply. Each CPU model provides special instructions to switch from
User Mode to Kernel Mode and vice versa. A program executes most of the time in User
Mode and switches to Kernel Mode only when requesting a service provided by the kernel.
When the kernel has satisfied the program's request, it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the system. The
task of creating, eliminating, and synchronizing the existing processes is delegated to a group

of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model assumes
that processes that require a kernel service make use of specific programming constructs

22

Understanding the Linux Kernel

called system calls. Each system call sets up the group of parameters that identifies the
process request and then executes the hardware-dependent CPU instruction to switch from
User Mode to Kernel Mode.

Besides user processes, Unix systems include a few privileged processes called kernel threads
with the following characteristics:

e They run in Kernel Mode in the kernel address space.

e They do not interact with users, and thus do not require terminal devices.

e They are usually created during system startup and remain alive until the system is
shut down.

Notice how the process/ kernel model is somewhat orthogonal to the CPU state: on a
uniprocessor system, only one process is running at any time and it may run either in User or
in Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine.
Figure 1-3 illustrates examples of transitions between User and Kernel Mode. Process 1 in
User Mode issues a system call, after which the process switches to Kernel Mode and the
system call is serviced. Process 1 then resumes execution in User Mode until a timer interrupt
occurs and the scheduler is activated in Kernel Mode. A process switch takes place, and
Process 2 starts its execution in User Mode until a hardware device raises an interrupt. As a
consequence of the interrupt, Process 2 switches to Kernel Mode and services the interrupt.

Figure 1-3. Transitions between User and Kernel Mode

Process 1 Process Process 2 Process 2

USER MODE
KERNEL MODE
System call Scheduler Interrupt
handler handier
Systern call Timer interrupt Device interrupt

Unix kernels do much more than handle system calls; in fact, kernel routines can be activated
in several ways:

e A process invokes a system call.

e The CPU executing the process signals an exception, which is some unusual condition
such as an invalid instruction. The kernel handles the exception on behalf of the
process that caused it.

e A peripheral device issues an interrupt signal to the CPU to notify it of an event such
as a request for attention, a status change, or the completion of an I/O operation. Each
interrupt signal is dealt by a kernel program called an interrupt handler. Since
peripheral devices operate asynchronously with respect to the CPU, interrupts occur at
unpredictable times.

e A kernel thread is executed; since it runs in Kernel Mode, the corresponding program
must be considered part of the kernel, albeit encapsulated in a process.

23

Understanding the Linux Kernel

1.6.2 Process Implementation

To let the kernel manage processes, each process is represented by a process descriptor that
includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of several
processor registers in the process descriptor. These include:

e The program counter (PC) and stack pointer (SP) registers

o The general-purpose registers

e The floating point registers

e The processor control registers (Processor Status Word) containing information about
the CPU state

e The memory management registers used to keep track of the RAM accessed by the
process

When the kernel decides to resume executing a process, it uses the proper process descriptor
fields to load the CPU registers. Since the stored value of the program counter points to the
instruction following the last instruction executed, the process resumes execution from where
it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix kernels
distinguish many wait states, which are usually implemented by queues of process
descriptors; each (possibly empty) queue corresponds to the set of processes waiting for a
specific event.

1.6.3 Reentrant Kernels

All Unix kernels are reentrant : this means that several processes may be executing in Kernel
Mode at the same time. Of course, on uniprocessor systems only one process can progress,
but many of them can be blocked in Kernel Mode waiting for the CPU or the completion of
some I/O operation. For instance, after issuing a read to a disk on behalf of some process, the
kernel will let the disk controller handle it and will resume executing other processes.
An interrupt notifies the kernel when the device has satisfied the read, so the former process
can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local variables
and do not alter global data structures. Such functions are called reentrant functions. But
a reentrant kernel is not limited just to such reentrant functions (although that is how some
real-time kernels are implemented). Instead, the kernel can include nonreentrant functions and
use locking mechanisms to ensure that only one process can execute a nonreentrant function
at a time. Every process in Kernel Mode acts on its own set of memory locations and cannot
interfere with the others.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running
process even if that process is in Kernel Mode. This capability is very important, since it
improves the throughput of the device controllers that issue interrupts. Once a device has
issued an interrupt, it waits until the CPU acknowledges it. If the kernel is able to answer
quickly, the device controller will be able to perform other tasks while the CPU handles
the interrupt.

24

Understanding the Linux Kernel

Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel
control path denotes the sequence of instructions executed by the kernel to handle a system
call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the first
instruction to the last. When one of the following events occurs, however, the CPU interleaves
the kernel control paths:

A process executing in User Mode invokes a system call and the corresponding kernel
control path verifies that the request cannot be satisfied immediately; it then invokes
the scheduler to select a new process to run. As a result, a process switch occurs. The
first kernel control path is left unfinished and the CPU resumes the execution of some
other kernel control path. In this case, the two control paths are executed on behalf of
two different processes.

The CPU detects an exception—for example, an access to a page not present in
RAM-—while running a kernel control path. The first control path is suspended, and
the CPU starts the execution of a suitable procedure. In our example, this type of
procedure could allocate a new page for the process and read its contents from disk.
When the procedure terminates, the first control path can be resumed. In this case, the
two control paths are executed on behalf of the same process.

A hardware interrupt occurs while the CPU is running a kernel control path with the
interrupts enabled. The first kernel control path is left unfinished and the CPU starts
processing another kernel control path to handle the interrupt. The first kernel control
path resumes when the interrupt handler terminates. In this case the two kernel control
paths run in the execution context of the same process and the total elapsed system
time is accounted to it. However, the interrupt handler doesn't necessarily operate on
behalf of the process.

Figure 1-4 illustrates a few examples of noninterleaved and interleaved kernel control paths.
Three different CPU states are considered:

Running a process in User Mode (User)
Running an exception or a system call handler (Excp)
Running an interrupt handler (Intr)

Figure 1-4. Interleaving of kernel control paths

= = =)

TIME

25

Understanding the Linux Kernel

1.6.4 Process Address Space

Each process runs in its private address space. A process running in User Mode refers to
private stack, data, and code areas. When running in Kernel Mode, the process addresses the
kernel data and code area and makes use of another stack.

Since the kernel is reentrant, several kernel control paths—each related to a different
process—may be executed in turn. In this case, each kernel control path refers to its own
private kernel stack.

While it appears to each process that it has access to a private address space, there are times
when part of the address space is shared among processes. In some cases this sharing is
explicitly requested by processes; in others it is done automatically by the kernel to reduce
memory usage.

If the same program, say an editor, is needed simultaneously by several users, the program
will be loaded into memory only once, and its instructions can be shared by all of the users
who need it. Its data, of course, must not be shared, because each user will have separate data.
This kind of shared address space is done automatically by the kernel to save memory.

Processes can also share parts of their address space as a kind of interprocess communication,
using the "shared memory" technique introduced in System V and supported by Linux.

Finally, Linux supports the mmap () system call, which allows part of a file or the memory
residing on a device to be mapped into a part of a process address space. Memory mapping
can provide an alternative to normal reads and writes for transferring data. If the same file is
shared by several processes, its memory mapping is included in the address space of each of
the processes that share it.

1.6.5 Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization: if a kernel control path is
suspended while acting on a kernel data structure, no other kernel control path will be allowed
to act on the same data structure unless it has been reset to a consistent state. Otherwise, the
interaction of the two control paths could corrupt the stored information.

For example, let's suppose that a global variable V contains the number of available items of
some system resource. A first kernel control path A reads the variable and determines that
there is just one available item. At this point, another kernel control path B is activated and
reads the same variable, which still contains the value 1. Thus, B decrements V and starts
using the resource item. Then A resumes the execution; because it has already read the value
of V, it assumes that it can decrement V and take the resource item, which B already uses. As
a final result, V contains -1, and two kernel control paths are using the same resource item
with potentially disastrous effects.

When the outcome of some computation depends on how two or more processes are
scheduled, the code is incorrect: we say that there is a race condition.

In general, safe access to a global variable is ensured by using afomic operations. In the
previous example, data corruption would not be possible if the two control paths read and

26

Understanding the Linux Kernel

decrement V with a single, noninterruptible operation. However, kernels contain many data
structures that cannot be accessed with a single operation. For example, it usually isn't
possible to remove an element from a linked list with a single operation, because the kernel
needs to access at least two pointers at once. Any section of code that should be finished by
each process that begins it before another process can enter it is called a critical region.”

I¥1' Synchronization problems have been fully described in other works; we refer the interested reader to books on the Unix operating systems (see the
bibliography near the end of the book).

These problems occur not only among kernel control paths but also among processes sharing
common data. Several synchronization techniques have been adopted. The following section
will concentrate on how to synchronize kernel control paths.

1.6.5.1 Nonpreemptive kernels

In search of a drastically simple solution to synchronization problems, most traditional Unix
kernels are nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily
suspended and substituted with another process. Therefore, on a uniprocessor system all
kernel data structures that are not updated by interrupts or exception handlers are safe for the
kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case it
must ensure that all data structures are left in a consistent state. Moreover, when it resumes its
execution, it must recheck the value of any previously accessed data structures that could be
changed.

Nonpreemptability is ineffective in multiprocessor systems, since two kernel control paths
running on different CPUs could concurrently access the same data structure.

1.6.5.2 Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling all
hardware interrupts before entering a critical region and reenabling them right after leaving it.
This mechanism, while simple, is far from optimal. If the critical region is large, interrupts
can remain disabled for a relatively long time, potentially causing all hardware activities to
freeze.

Moreover, on a multiprocessor system this mechanism doesn't work at all. There is no way to
ensure that no other CPU can access the same data structures updated in the protected critical
region.

1.6.5.3 Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies
on the use of semaphores. A semaphore is simply a counter associated with a data structure;
the semaphore is checked by all kernel threads before they try to access the data structure.
Each semaphore may be viewed as an object composed of:

e An integer variable

e A list of waiting processes
o Two atomic methods: down () and up ()

27

Understanding the Linux Kernel

The down () method decrements the value of the semaphore. If the new value is less than 0,
the method adds the running process to the semaphore list and then blocks (i.e., invokes the
scheduler). The up () method increments the value of the semaphore and, if its new value is
greater than or equal to 0, reactivates one or more processes in the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1. When a
kernel control path wishes to access the data structure, it executes the down () method on the
proper semaphore. If the value of the new semaphore isn't negative, access to the data
structure is granted. Otherwise, the process that is executing the kernel control path is added
to the semaphore list and blocked. When another process executes the up () method on that
semaphore, one of the processes in the semaphore list is allowed to proceed.

1.6.5.4 Spin locks

In multiprocessor systems, semaphores are not always the best solution to the synchronization
problems. Some kernel data structures should be protected from being concurrently accessed
by kernel control paths that run on different CPUs. In this case, if the time required to update
the data structure is short, a semaphore could be very inefficient. To check a semaphore, the
kernel must insert a process in the semaphore list and then suspend it. Since both operations
are relatively expensive, in the time it takes to complete them, the other kernel control path
could have already released the semaphore.

In these cases, multiprocessor operating systems make use of spin locks. A spin lock is very
similar to a semaphore, but it has no process list: when a process finds the lock closed by
another process, it "spins" around repeatedly, executing a tight instruction loop until the lock
becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel control path
tries to access a locked data structure, it starts an endless loop. Therefore, the kernel control
path that is updating the protected data structure would not have a chance to continue the
execution and release the spin lock. The final result is that the system hangs.

1.6.5.5 Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may easily enter in
a deadlocked state. The simplest case of deadlock occurs when process p/ gains access to data
structure a and process p2 gains access to b, but p/ then waits for b and p2 waits for a. Other
more complex cyclic waitings among groups of processes may also occur. Of course, a
deadlock condition causes a complete freeze of the affected processes or kernel control paths.

As far as kernel design is concerned, deadlock becomes an issue when the number of kernel
semaphore types used is high. In this case, it may be quite difficult to ensure that no deadlock
state will ever be reached for all possible ways to interleave kernel control paths. Several
operating systems, including Linux, avoid this problem by introducing a very limited number
of semaphore types and by requesting semaphores in an ascending order.

28

Understanding the Linux Kernel

1.6.6 Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each event has
its own signal number, which is usually referred to by a symbolic constant such as STGTERM.
There are two kinds of system events:

Asynchronous notifications

For instance, a user can send the interrupt signal sTGTERM to a foreground process by
pressing the interrupt keycode (usually, CTRL-C) at the terminal.

Synchronous errors or exceptions

For instance, the kernel sends the signal sIGSEGV to a process when it accesses a
memory location at an illegal address.

The POSIX standard defines about 20 different signals, two of which are user-definable and
may be used as a primitive mechanism for communication and synchronization among
processes in User Mode. In general, a process may react to a signal reception in two possible
ways:

e Ignore the signal.
e Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default action
that depends on the signal number. The five possible default actions are:

e Terminate the process.

e Write the execution context and the contents of the address space in a file (core dump)
and terminate the process.

e Ignore the signal.

e Suspend the process.

e Resume the process's execution, if it was stopped.

Kernel signal handling is rather elaborate since the POSIX semantics allows processes to
temporarily block signals. Moreover, a few signals such as SIGKILL cannot be directly
handled by the process and cannot be ignored.

AT&T's Unix System V introduced other kinds of interprocess communication among
processes in User Mode, which have been adopted by many Unix kernels: semaphores,
message queues, and shared memory. They are collectively known as System V IPC.

The kernel implements these constructs as IPC resources: a process acquires a resource by
invoking a shmget (), semget (), or msgget () system call. Just like files, IPC resources
are persistent: they must be explicitly deallocated by the creator process, by the current
owner, or by a superuser process.

Semaphores are similar to those described in Section 1.6.5 earlier in this chapter, except that
they are reserved for processes in User Mode. Message queues allow processes to exchange

29

Understanding the Linux Kernel

messages by making use of the msgsnd() and msgget () system calls, which respectively
insert a message into a specific message queue and extract a message from it.

Shared memory provides the fastest way for processes to exchange and share data. A process
starts by issuing a shmget () system call to create a new shared memory having a required
size. After obtaining the IPC resource identifier, the process invokes the shmat () system
call, which returns the starting address of the new region within the process address space.
When the process wishes to detach the shared memory from its address space, it invokes the
shmdt () system call. The implementation of shared memory depends on how the kernel
implements process address spaces.

1.6.7 Process Management

Unix makes a neat distinction between the process and the program it is executing. To that
end, the fork () and exit () system calls are used respectively to create a new process and
to terminate it, while an exec ()-like system call is invoked to load a new program. After
such a system call has been executed, the process resumes execution with a brand new
address space containing the loaded program.

The process that invokes a fork () is the parent while the new process is its child . Parents
and children can find each other because the data structure describing each process includes a
pointer to its immediate parent and pointers to all its immediate children.

A naive implementation of the fork () would require both the parent's data and the parent's
code to be duplicated and assign the copies to the child. This would be quite time-consuming.
Current kernels that can rely on hardware paging units follow the Copy-On-Write approach,
which defers page duplication until the last moment (i.e., until the parent or the child is
required to write into a page). We shall describe how Linux implements this technique in
Section 7.4.4 in Chapter 7.

The exit() system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a SIGCHLD
signal, which is ignored by default.

1.6.7.1 Zombie processes

How can a parent process inquire about termination of its children? The wait () system call
allows a process to wait until one of its children terminates; it returns the process ID (PID) of
the terminated child.

When executing this system call, the kernel checks whether a child has already terminated. A
special zombie process state is introduced to represent terminated processes: a process
remains in that state until its parent process executes a wait () system call on it. The system
call handler extracts some data about resource usage from the process descriptor fields; the
process descriptor may be released once the data has been collected. If no child process has
already terminated when the wait () system call is executed, the kernel usually puts the
process in a wait state until a child terminates.

Many kernels also implement a waitpid() system call, which allows a process to wait for a
specific child process. Other variants of wait () system calls are also quite common.

30

Understanding the Linux Kernel

It's a good practice for the kernel to keep around information on a child process until the
parent issues its wait () call, but suppose the parent process terminates without issuing that
call? The information takes up valuable memory slots that could be used to serve living
processes. For example, many shells allow the user to start a command in the background and
then log out. The process that is running the command shell terminates, but its children
continue their execution.

The solution lies in a special system process called init that is created during system
initialization. When a process terminates, the kernel changes the appropriate process
descriptor pointers of all the existing children of the terminated process to make them become
children of init. This process monitors the execution of all its children and routinely issues
wait () system calls, whose side effect is to get rid of all zombies.

1.6.7.2 Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a "job"
abstraction. For example, in order to execute the command line:

$ 1s | sort | more

a shell that supports process groups, such as bash, creates a new group for the three processes
corresponding to 1s, sort, and more. In this way, the shell acts on the three processes as if
they were a single entity (the job, to be precise). Each process descriptor includes a process
group ID field. Each group of processes may have a group leader, which is the process whose
PID coincides with the process group ID. A newly created process is initially inserted into the
process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session contains all
processes that are descendants of the process that has started a working session on a specific
terminal—usually, the first command shell process created for the user. All processes in a
process group must be in the same login session. A login session may have several process
groups active simultaneously; one of these process groups is always in the foreground, which
means that it has access to the terminal. The other active process groups are in the
background. When a background process tries to access the terminal, it receives a SIGTTIN or
sIGTTOUT signal. In many command shells the internal commands bg and £g can be used to
put a process group in either the background or the foreground.

1.6.8 Memory Management
Memory management is by far the most complex activity in a Unix kernel. We shall dedicate
more than a third of this book just to describing how Linux does it. This section illustrates

some of the main issues related to memory management.

1.6.8.1 Virtual memory
All recent Unix systems provide a useful abstraction called virtual memory. Virtual memory

acts as a logical layer between the application memory requests and the hardware Memory
Management Unit (MMU). Virtual memory has many purposes and advantages:

31

Understanding the Linux Kernel

o Several processes can be executed concurrently.

e It is possible to run applications whose memory needs are larger than the available
physical memory.

e Processes can execute a program whose code is only partially loaded in memory.

o Each process is allowed to access a subset of the available physical memory.

e Processes can share a single memory image of a library or program.

e Programs can be relocatable, that is, they can be placed anywhere in physical memory.

e Programmers can write machine-independent code, since they do not need to be
concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address space.
The set of memory references that a process can use is different from physical memory
addresses. When a process uses a virtual address,” the kernel and the MMU cooperate to
locate the actual physical location of the requested memory item.

%I These addresses have different nomenclatures depending on the computer architecture. As we'll see in Chapter 2, Intel 80x86 manuals refer to them
as "logical addresses."

Today's CPUs include hardware circuits that automatically translate the virtual addresses into
physical ones. To that end, the available RAM is partitioned into page frames 4 or 8§ KB in
length, and a set of page tables is introduced to specify the correspondence between virtual
and physical addresses. These circuits make memory allocation simpler, since a request for a
block of contiguous virtual addresses can be satisfied by allocating a group of page frames
having noncontiguous physical addresses.

1.6.8.2 Random access memory usage

All Unix operating systems clearly distinguish two portions of the random access memory
(RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel code and
the kernel static data structures). The remaining portion of RAM is usually handled by the
virtual memory system and is used in three possible ways:

o To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

e To satisfy process requests for generic memory areas and for memory mapping of files

o To get better performance from disks and other buffered devices by means of caches

Each request type is valuable. On the other hand, since the available RAM is limited, some
balancing among request types must be done, particularly when little available memory is left.
Moreover, when some critical threshold of available memory is reached and a page-frame-
reclaiming algorithm is invoked to free additional memory, which are the page frames most
suitable for reclaiming? As we shall see in Chapter 16, there is no simple answer to this
question and very little support from theory. The only available solution lies in developing
carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation . Ideally, a memory request should fail only when the number of free page
frames is too small. However, the kernel is often forced to use physically contiguous memory
areas, hence the memory request could fail even if there is enough memory available but it is
not available as one contiguous chunk.

32

Understanding the Linux Kernel

1.6.8.3 Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for
memory areas from all parts of the system. Some of these requests will come from other
kernel subsystems needing memory for kernel use, and some requests will come via system
calls from user programs to increase their processes' address spaces. A good KMA should
have the following features:

o It must be fast. Actually, this is the most crucial attribute, since it is invoked by all
kernel subsystems (including the interrupt handlers).

e It should minimize the amount of wasted memory.

e It should try to reduce the memory fragmentation problem.

e It should be able to cooperate with the other memory management subsystems in order
to borrow and release page frames from them.

Several kinds of KMAs have been proposed, which are based on a variety of different
algorithmic techniques, including:

e Resource map allocator

o Power-of-two free lists

o McKusick-Karels allocator
e Buddy system

e Mach's Zone allocator

e Dynix allocator

o Solaris's Slab allocator

As we shall see in Chapter 6, Linux's KMA uses a Slab allocator on top of a Buddy system.
1.6.8.4 Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the process is
allowed to reference. The kernel usually stores a process virtual address space as a list of
memory area descriptors. For example, when a process starts the execution of some program
via an exec ()-like system call, the kernel assigns to the process a virtual address space that
comprises memory areas for:

e The executable code of the program

e The initialized data of the program

e The uninitialized data of the program

e The initial program stack (that is, the User Mode stack)

o The executable code and data of needed shared libraries

e The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand paging.
With demand paging, a process can start program execution with none of its pages in physical
memory. As it accesses a nonpresent page, the MMU generates an exception; the exception
handler finds the affected memory region, allocates a free page, and initializes it with the
appropriate data. In a similar fashion, when the process dynamically requires some memory
by using malloc() or the brk() system call (which is invoked internally by malloc()),
the kernel just updates the size of the heap memory region of the process. A page frame is

33

Understanding the Linux Kernel

assigned to the process only when it generates an exception by trying to refer its virtual
memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy-On-Write
strategy mentioned earlier. For example, when a new process is created, the kernel just
assigns the parent's page frames to the child address space, but it marks them read only. An
exception is raised as soon the parent or the child tries to modify the contents of a page. The
exception handler assigns a new page frame to the affected process and initializes it with the
contents of the original page.

1.6.8.5 Swapping and caching

In order to extend the size of the virtual address space usable by the processes, the Unix
operating system makes use of swap areas on disk. The virtual memory system regards the
contents of a page frame as the basic unit for swapping. Whenever some process refers to a
swapped-out page, the MMU raises an exception. The exception handler then allocates a new
page frame and initializes the page frame with its old contents saved on disk.

On the other hand, physical memory is also used as cache for hard disks and other block
devices. This is because hard drives are very slow: a disk access requires several milliseconds,
which is a very long time compared with the RAM access time. Therefore, disks are often the
bottleneck in system performance. As a general rule, one of the policies already implemented
in the earliest Unix system is to defer writing to disk as long as possible by loading into RAM
a set of disk buffers corresponding to blocks read from disk. The sync() system call forces
disk synchronization by writing all of the "dirty" buffers (i.e., all the buffers whose contents
differ from that of the corresponding disk blocks) into disk. In order to avoid data loss, all
operating systems take care to periodically write dirty buffers back to disk.

1.6.9 Device Drivers

The kernel interacts with I/O devices by means of device drivers. Device drivers are included
in the kernel and consist of data structures and functions that control one or more devices,
such as hard disks, keyboards, mouses, monitors, network interfaces, and devices connected
to a SCSI bus. Each driver interacts with the remaining part of the kernel (even with other
drivers) through a specific interface. This approach has the following advantages:

e Device-specific code can be encapsulated in a specific module.

e Vendors can add new devices without knowing the kernel source code: only the
interface specifications must be known.

e The kernel deals with all devices in a uniform way and accesses them through the
same interface.

e [t is possible to write a device driver as a module that can be dynamically loaded in the
kernel without requiring the system to be rebooted. It is also possible to dynamically
unload a module that is no longer needed, thus minimizing the size of the kernel image
stored in RAM.

Figure 1-5 illustrates how device drivers interface with the rest of the kernel and with the
processes. Some user programs (P) wish to operate on hardware devices. They make requests
to the kernel using the usual file-related system calls and the device files normally found in
the /dev directory. Actually, the device files are the user-visible portion of the device driver

34

Understanding the Linux Kernel

interface. Each device file refers to a specific device driver, which is invoked by the kernel in
order to perform the requested operation on the hardware component.

Figure 1-5. Device driver interface

Davice driver interface

System call interface

i | Virtual File System | :
Kernel |[character device files | | block device files)

Tape Disk
driver driver

[v f | w | [rae | | osk | | Disk |

It is worth mentioning that at the time Unix was introduced graphical terminals were
uncommon and expensive, and thus only alphanumeric terminals were handled directly by
Unix kernels. When graphical terminals became widespread, ad hoc applications such as the
X Window System were introduced that ran as standard processes and accessed the I/O ports
of the graphics interface and the RAM video area directly. Some recent Unix kernels, such as
Linux 2.2, include limited support for some frame buffer devices, thus allowing a program to
access the local memory inside a video card through a device file.

35

Understanding the Linux Kernel

Chapter 2. Memory Addressing

This chapter deals with addressing techniques. Luckily, an operating system is not forced to
keep track of physical memory all by itself; today's microprocessors include several hardware
circuits to make memory management both more efficient and more robust in case of
programming errors.

As in the rest of this book, we offer details in this chapter on how Intel 80x86
microprocessors address memory chips and how Linux makes use of the available addressing
circuits. You will find, we hope, that when you learn the implementation details on Linux's
most popular platform you will better understand both the general theory of paging and how
to research the implementation on other platforms.

This is the first of three chapters related to memory management: Chapter 6, discusses how
the kernel allocates main memory to itself, while Chapter 7, considers how linear addresses
are assigned to processes.

2.1 Memory Addresses

Programmers casually refer to a memory address as the way to access the contents of
a memory cell. But when dealing with Intel 80x86 microprocessors, we have to distinguish
among three kinds of addresses:

Logical address

Included in the machine language instructions to specify the address of an operand or
of an instruction. This type of address embodies the well-known Intel segmented
architecture that forces MS-DOS and Windows programmers to divide their programs
into segments. Each logical address consists of a segment and an offset (or
displacement) that denotes the distance from the start of the segment to the actual
address.

Linear address
A single 32-bit unsigned integer that can be used to address up to 4 GB, that is, up to
4,294,967,296 memory cells. Linear addresses are usually represented in hexadecimal
notation; their values range from 0x00000000 to Oxffffffff.

Physical address
Used to address memory cells included in memory chips. They correspond to the
electrical signals sent along the address pins of the microprocessor to the memory bus.
Physical addresses are represented as 32-bit unsigned integers.

The CPU control unit transforms a logical address into a linear address by means of a

hardware circuit called a segmentation unit; successively, a second hardware circuit called a
paging unit transforms the linear address into a physical address (see Figure 2-1).

36

Understanding the Linux Kernel

Figure 2-1. Logical address translation

Lagical address SEG["'}EHI'TM'QN Linear address P‘E‘Iﬁllr#g Phiysical address

2.2 Segmentation in Hardware

Starting with the 80386 model, Intel microprocessors perform address translation in two
different ways called real mode and protected mode. Real mode exists mostly to maintain
processor compatibility with older models and to allow the operating system to bootstrap (see
Appendix A, for a short description of real mode). We shall thus focus our attention on
protected mode.

2.2.1 Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that specifies the
relative address within the segment. The segment identifier is a 16-bit field called Segment
Selector, while the offset is a 32-bit field.

To make it easy to retrieve segment selectors quickly, the processor provides segmentation
registers whose only purpose is to hold Segment Selectors; these registers are called cs, ss,
ds, es, fs, and gs. Although there are only six of them, a program can reuse the same
segmentation register for different purposes by saving its content in memory and then
restoring it later.

Three of the six segmentation registers have specific purposes:

cs
The code segment register, which points to a segment containing program instructions

ss
The stack segment register, which points to a segment containing the current program
stack

ds

The data segment register, which points to a segment containing static and external
data

The remaining three segmentation registers are general purpose and may refer to arbitrary
segments.

The cs register has another important function: it includes a 2-bit field that specifies the
Current Privilege Level (cpr) of the CPU. The value denotes the highest privilege level, while
the value 3 denotes the lowest one. Linux uses only levels and 3, which are respectively called
Kernel Mode and User Mode.

37

Understanding the Linux Kernel

2.2.2 Segment Descriptors
Each segment is represented by an 8-byte Segment Descriptor (see Figure 2-2) that describes
the segment characteristics. Segment Descriptors are stored either in the Global Descriptor

Table (GDT) or in the Local Descriptor Table (LDT).

Figure 2-2. Segment Descriptor format

Data Segment Descriptor
B3 52 61 G0 53 56 57 55 55 54 53 52 51 50 49 4B 47 45 45 44 43 42 41 403938 37 36 35 34 33 32
LIMIT 0|5 .
BASE(24-31) ‘G‘B‘G‘\n" {16-19) ‘I‘ E ‘T TYPE | BASE (16-23)
BASEID-15) ‘ LIMIT {0-15)

30292527 26252423 2221 20191817 1615141312110 9 8 7T 6 5 4 3 210

Code Segment Descripior
B3 62 61 60 59 56 57 55 55 54 53 52 51 50 49 46 47 45 45 44 43 42 41 403038 37 36 35 34 33 32

LIMIT 5)
ol [e | oo

BASEID-15) ‘ LIMIT {0-15)

BASE(24-31)

NE0292527 202423 2221 201918171615 1413121110 9 8 7T 6 5 4 3 210

System Segment Descriptor
63 62 61 G0 5% 6B 57 56 55 54 61 52 51 50 49 46 47 46 45 44 43 42 41 40 39 35 37 36 35 34 33 32
LIMIT D |8)
BASE(24-31) ‘G‘ ‘n‘ ‘“5_,93 H f ‘3 TYPE | BASE {16-23)
BASE(0-15) ‘ LIMIT {0-15)

NI0PEG2TIHICA 2221 20190EITIE 4 1FENM0 9 T 6 S 4 3 210

Usually only one GDT is defined, while each process may have its own LDT. The address of
the GDT in main memory is contained in the gdtr processor register and the address of the
currently used LDT is contained in the 1dtr processor register.

Each Segment Descriptor consists of the following fields:

e A 32-bit Base field that contains the linear address of the first byte of the segment.

e A G granularity flag: if it is cleared, the segment size is expressed in bytes; otherwise,
it is expressed in multiples of 4096 bytes.

e A 20-bit Limit field that denotes the segment length in bytes. If G is set to 0, the size
of a non-null segment may vary between 1 byte and 1 MB; otherwise, it may vary
between 4 KB and 4 GB.

e An s system flag: if it is cleared, the segment is a system segment that stores kernel
data structures; otherwise, it is a normal code or data segment.

e A 4-bit Type field that characterizes the segment type and its access rights. The
following Segment Descriptor types are widely used:

Code Segment Descriptor

Indicates that the Segment Descriptor refers to a code segment; it may be included
either in the GDT or in the LDT. The descriptor has the s flag set.

38

Understanding the Linux Kernel

Data Segment Descriptor

Indicates that the Segment Descriptor refers to a data segment; it may be included
either in the GDT or in the LDT. The descriptor has the s flag set. Stack segments are
implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)

Indicates that the Segment Descriptor refers to a Task State Segment (TSS), that is,
a segment used to save the contents of the processor registers (see Section 3.2.2 in
Chapter 3); it can appear only in the GDT. The corresponding Type field has the value
11 or 9, depending on whether the corresponding process is currently executing on the
CPU. The s flag of such descriptors is set to 0.

Local Descriptor Table Descriptor (LDTD)

Indicates that the Segment Descriptor refers to a segment containing an LDT; it can
appear only in the GDT. The corresponding Type field has the value 2. The s flag of
such descriptors is set to 0.

e A ppL (Descriptor Privilege Level) 2-bit field used to restrict accesses to the segment.
It represents the minimal CPU privilege level requested for accessing the segment.
Therefore, a segment with its DPL set to is accessible only when the cpL is 0, that is, in
Kernel Mode, while a segment with its DPL set to 3 is accessible with every cpL value.

e A segment-pPresent flag that is set to if the segment is currently not stored in main
memory. Linux always sets this field to 1, since it never swaps out whole segments to
disk.

e An additional flag called p or B depending on whether the segment contains code or
data. Its meaning is slightly different in the two cases, but it is basically set if the
addresses used as segment offsets are 32 bits long and it is cleared if they are 16 bits
long (see the Intel manual for further details).

e A reserved bit (bit 53) always set to 0.

e An avL flag that may be used by the operating system but is ignored in Linux.

2.2.3 Segment Selectors

To speed up the translation of logical addresses into linear addresses, the Intel processor
provides an additional nonprogrammable register—that is, a register that cannot be set by a
programmer—for each of the six programmable segmentation registers. Each
nonprogrammable register contains the 8-byte Segment Descriptor (described in the previous
section) specified by the Segment Selector contained in the corresponding segmentation
register. Every time a Segment Selector is loaded in a segmentation register, the
corresponding Segment Descriptor is loaded from memory into the matching
nonprogrammable CPU register. From then on, translations of logical addresses referring to
that segment can be performed without accessing the GDT or LDT stored in main memory;
the processor can just refer directly to the CPU register containing the Segment Descriptor.
Accesses to the GDT or LDT are necessary only when the contents of the segmentation
register change (see Figure 2-3). Each Segment Selector includes the following fields:

39

Understanding the Linux Kernel

e A 13-bit index (described further in the text following this list) that identifies the
corresponding Segment Descriptor entry contained in the GDT or in the LDT

e A 11 (Table Indicator) flag that specifies whether the Segment Descriptor is included
in the GDT (1 =0) or in the LDT (t1 =1)

e An RrRpPL (Requestor Privilege Level) 2-bit field, which is precisely the Current
Privilege Level of the CPU when the corresponding Segment Selector is loaded into
the cs register"

' The RPL field may also be used to selectively weaken the processor privilege level when accessing data segments; see Intel documentation for
details.

Figure 2-3. Segment Selector and Segment Descriptor

Descriptor Table Segment
f A g - P T — "

segment | .
Descriptor

| S

Ssomentation Register Moenprogrammable Register
Segmenl Selector | |Sngmen| Descriptor |/ ----- i

Since a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT is
obtained by multiplying the most significant 13 bits of the Segment Selector by 8. For
instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and the index
specified by the Segment Selector is 2, the address of the corresponding Segment Descriptor
1S 0x00020000 + (2 X 8), 0r 0x00020010.

The first entry of the GDT is always set to 0: this ensures that logical addresses with a null
Segment Selector will be considered invalid, thus causing a processor exception. The
maximum number of Segment Descriptors that can be stored in the GDT is thus 8191, that is,
2P-1.

2.2.4 Segmentation Unit

Figure 2-4 shows in detail how a logical address is translated into a corresponding linear
address. The segmentation unit performs the following operations:

o Examines the T1 field of the Segment Selector, in order to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is either
in the GDT (in which case the segmentation unit gets the base linear address of the
GDT from the gdtr register) or in the active LDT (in which case the segmentation
unit gets the base linear address of that LDT from the 1dtr register).

o Computes the address of the Segment Descriptor from the index field of the Segment
Selector. The index field is multiplied by 8 (the size of a Segment Descriptor), and the
result is added to the content of the gdtr or 1dtr register.

e Adds to the Base field of the Segment Descriptor the offset of the logical address, thus
obtains the linear address.

40

Understanding the Linux Kernel

Figure 2-4. Translating a logical address

it or kdt Lingar Address
T
—

Descriptor -—-é
]

I

Selmﬂr offset
index | T | 3 | |

Logical Address

Notice that, thanks to the nonprogrammable registers associated with the segmentation
registers, the first two operations need to be performed only when a segmentation register has
been changed.

2.3 Segmentation in Linux

Segmentation has been included in Intel microprocessors to encourage programmers to split
their applications in logically related entities, such as subroutines or global and local data
areas. However, Linux uses segmentation in a very limited way. In fact, segmentation and
paging are somewhat redundant since both can be used to separate the physical address spaces
of processes: segmentation can assign a different linear address space to each process while
paging can map the same linear address space into different physical address spaces. Linux
prefers paging to segmentation for the following reasons:

e Memory management is simpler when all processes use the same segment register
values, that is, when they share the same set of linear addresses.

e One of the design objectives of Linux is portability to the most popular architectures;
however, several RISC processors support segmentation in a very limited way.

The 2.2 version of Linux uses segmentation only when required by the Intel 80x86
architecture. In particular, all processes use the same logical addresses, so the total number of
segments to be defined is quite limited and it is possible to store all Segment Descriptors in
the Global Descriptor Table (GDT). This table is implemented by the array gdt table
referred by the gdt variable. If you look in the Source Code Index, you can see that these
symbols are defined in the file arch/i386/kernel/head.S. Every macro, function, and other
symbol in this book is listed in the appendix so you can quickly find it in the source code.

Local Descriptor Tables are not used by the kernel, although a system call exists that allows

processes to create their own LDTs. This turns out to be useful to applications such as Wine
that execute segment-oriented Microsoft Windows applications.

41

Understanding the Linux Kernel

Here are the segments used by Linux:

e A kernel code segment. The fields of the corresponding Segment Descriptor in the
GDT have the following values:
o Base=0x00000000
Limit = Oxfffff
G (granularity flag) = 1, for segment size expressed in pages
s (system flag) = 1, for normal code or data segment
Type = Oxa, for code segment that can be read and executed
ppL (Descriptor Privilege Level) = 0, for Kernel Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

O O O O O O

Thus, the linear addresses associated with that segment start at and reach the
addressing limit of 2** - 1. The s and Type fields specify that the segment is a code
segment that can be read and executed. Its DpL value is 0, thus it can be accessed only
in Kernel Mode. The corresponding Segment Selector is defined by the KERNEL cCs
macro: in order to address the segment, the kernel just loads the value yielded by the
macro into the cs register.

e A kernel data segment. The fields of the corresponding Segment Descriptor in the
GDT have the following values:

Base = 0x00000000

Limit = Oxfffff

G (granularity flag) = 1, for segment size expressed in pages

s (system flag) = 1, for normal code or data segment

Type = 2, for data segment that can be read and written

ppPL (Descriptor Privilege Level) = 0, for Kernel Mode

D/B (32-bit address flag) = 1, for 32-bit offset addresses

O O O O O O O

This segment is identical to the previous one (in fact, they overlap in the linear address
space) except for the value of the Type field, which specifies that it is a data segment
that can be read and written. The corresponding Segment Selector is defined by the
__KERNEL_DS macro.

e A user code segment shared by all processes in User Mode. The fields of the
corresponding Segment Descriptor in the GDT have the following values:

Base = 0x00000000

Limit = Oxfffff

G (granularity flag) = 1, for segment size expressed in pages

s (system flag) = 1, for normal code or data segment

Type = Oxa, for code segment that can be read and executed

ppL (Descriptor Privilege Level) = 3, for User Mode

D/B (32-bit address flag) = 1, for 32-bit offset addresses

O O 0O 0O O O O

The s and ppL fields specify that the segment is not a system segment and that its
privilege level is equal to 3; it can thus be accessed both in Kernel Mode and in User
Mode. The corresponding Segment Selector is defined by the USER cs macro.

42

Understanding the Linux Kernel

e A user data segment shared by all processes in User Mode. The fields of the
corresponding Segment Descriptor in the GDT have the following values:
o0 Base =0x00000000
Limit = Oxfffff
G (granularity flag) = 1, for segment size expressed in pages
s (system flag) = 1, for normal code or data segment
Type = 2, for data segment that can be read and written
ppL (Descriptor Privilege Level) = 3, for User Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

O O O O O O

This segment overlaps the previous one: they are identical, except for the value of
Type. The corresponding Segment Selector is defined by the USER Ds macro.

e A Task State Segment (TSS) segment for each process. The descriptors of these
segments are stored in the GDT. The Base field of the TSS descriptor associated with
each process contains the address of the tss field of the corresponding process
descriptor. The G flag is cleared, while the Limit field is set to Oxeb, since the TSS
segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit TSS), and
the ppL is set to 0, since processes in User Mode are not allowed to access TSS
segments.

e A default LDT segment that is usually shared by all processes. This segment is stored
in the default 1dt variable. The default LDT includes a single entry consisting of a
null Segment Descriptor. Each process has its own LDT Segment Descriptor, which
usually points to the common default LDT segment. The Base field is set to the
address of default 1dt and the rLimit field is set to 7. If a process requires a real
LDT, a new 4096-byte segment is created (it can include up to 511 Segment
Descriptors), and the default LDT Segment Descriptor associated with that process is
replaced in the GDT with a new descriptor with specific values for the Base and
Limit fields.

For each process, therefore, the GDT contains two different Segment Descriptors: one for the
TSS segment and one for the LDT segment. The maximum number of entries allowed in the
GDT 1is 12+2xnr_TASKS, where, in turn, NR TASKS denotes the maximum number of
processes. In the previous list we described the six main Segment Descriptors used by Linux.
Four additional Segment Descriptors cover Advanced Power Management (APM) features,
and four entries of the GDT are left unused, for a grand total of 14.

As we mentioned before, the GDT can have at most 2> = 8192 entries, of which the first is
always null. Since 14 are either unused or filled by the system, NR_TASKS cannot be larger
than 8180/2 = 4090.

The TSS and LDT descriptors for each process are added to the GDT as the process is
created. As we shall see in Section 3.3.2 in Chapter 3, the kernel itself spawns the first
process: process running init task . During kernel initialization, the trap init()
function inserts the TSS descriptor of this first process into the GDT using the statement:

set tss desc(0, &init task.tss);

The first process creates others, so that every subsequent process is the child of some existing
process. The copy thread() function, which is invoked from the clone() and fork()

43

Understanding the Linux Kernel

system calls to create new processes, executes the same function in order to set the TSS of the
New process:

set tss desc(nr, &(task[nr]->tss));

Since each TSS descriptor refers to a different process, of course, each Base field has a
different value. The copy thread() function also invokes the set 1dt desc() function
in order to insert a Segment Descriptor in the GDT relative to the default LDT for the new
process.

The kernel data segment includes a process descriptor for each process. Each process
descriptor includes its own TSS segment and a pointer to its LDT segment, which is also
located inside the kernel data segment.

As stated earlier, the Current Privilege Level of the CPU reflects whether the processor is in
User or Kernel Mode and is specified by the rpL field of the Segment Selector stored in the
cs register. Whenever the Current Privilege Level is changed, some segmentation registers
must be correspondingly updated. For instance, when the cpL is equal to 3 (User Mode), the
ds register must contain the Segment Selector of the user data segment, but when the cpL is
equal to 0, the ds register must contain the Segment Selector of the kernel data segment.

A similar situation occurs for the ss register: it must refer to a User Mode stack inside the
user data segment when the cprL is 3, and it must refer to a Kernel Mode stack inside the
kernel data segment when the cpr is 0. When switching from User Mode to Kernel Mode,
Linux always makes sure that the ss register contains the Segment Selector of the kernel data
segment.

2.4 Paging in Hardware

The paging unit translates linear addresses into physical ones. It checks the requested access
type against the access rights of the linear address. If the memory access is not valid, it
generates a page fault exception (see Chapter 4, and Chapter 6).

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages;
contiguous linear addresses within a page are mapped into contiguous physical addresses. In
this way, the kernel can specify the physical address and the access rights of a page instead of
those of all the linear addresses included in it. Following the usual convention, we shall use
the term "page" to refer both to a set of linear addresses and to the data contained in this group
of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames (they are
sometimes referred to as physical pages). Each page frame contains a page, that is, the length
of a page frame coincides with that of a page. A page frame is a constituent of main memory,
and hence it is a storage area. It is important to distinguish a page from a page frame: the
former is just a block of data, which may be stored in any page frame or on disk.

The data structures that map linear to physical addresses are called page tables; they are

stored in main memory and must be properly initialized by the kernel before enabling the
paging unit.

44

Understanding the Linux Kernel

In Intel processors, paging is enabled by setting the pG flag of the cro register. When pG = 0,
linear addresses are interpreted as physical addresses.

2.4.1 Regular Paging

Starting with the 180386, the paging unit of Intel processors handles 4 KB pages. The 32 bits
of a linear address are divided into three fields:

Directory

The most significant 10 bits
Table

The intermediate 10 bits
Offset

The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a type of
translation table. The first translation table is called Page Directory and the second is called
Page Table.

The physical address of the Page Directory in use is stored in the cr3 processor register. The
Directory field within the linear address determines the entry in the Page Directory that points
to the proper Page Table. The address's Table field, in turn, determines the entry in the Page
Table that contains the physical address of the page frame containing the page. The Offset
field determines the relative position within the page frame (see Figure 2-5). Since it is 12 bits
long, each page consists of 4096 bytes of data.

Figure 2-5. Paging by Intel 80x86 processors
Lingar Address

3 22 M 12 1 0
DIRECTORY TABLE OFFSET

Page

Page Table

FPage Directory X
O .

o1

o3

45

Understanding the Linux Kernel

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables
can include up to 1024 entries. It follows that a Page Directory can address up to 1024 x 1024
x 4096=2? memory cells, as you'd expect in 32-bit addresses.

The entries of Page Directories and Page Tables have the same structure. Each entry includes
the following fields:

Present flag
If it is set, the referred page (or Page Table) is contained in main memory; if the flag is
0, the page is not contained in main memory and the remaining entry bits may be used
by the operating system for its own purposes. (We shall see in Chapter 16, how Linux
makes use of this field.)

Field containing the 20 most significant bits of a page frame physical address
Since each page frame has a 4 KB capacity, its physical address must be a multiple of
4096, so the 12 least significant bits of the physical address are always equal to 0. If
the field refers to a Page Directory, the page frame contains a Page Table; if it refers to
a Page Table, the page frame contains a page of data.

Accessed flag
Is set each time the paging unit addresses the corresponding page frame. This flag may
be used by the operating system when selecting pages to be swapped out. The paging
unit never resets this flag; this must be done by the operating system.

Dirty flag
Applies only to the Page Table entries. It is set each time a write operation is
performed on the page frame. As in the previous case, this flag may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/Write flag

Contains the access right (Read/Write or Read) of the page or of the Page Table (see
Section 2.4.3 later in this chapter).

User/Supervisor flag

Contains the privilege level required to access the page or Page Table (see Section
2.4.3).

Two flags called PCD and PWT

Control the way the page or Page Table is handled by the hardware cache (see Section
2.4.6 later in this chapter).

46

Understanding the Linux Kernel

Page Size flag

Applies only to Page Directory entries. If it is set, the entry refers to a 4 MB long page
frame (see the following section).

If the entry of a Page Table or Page Directory needed to perform an address translation has
the present flag cleared, the paging unit stores the linear address in the cr2 processor
register and generates the exception 14, that is, the "Page fault" exception.

2.4.2 Extended Paging

Starting with the Pentium model, Intel 80x86 microprocessors introduce extended paging ,
which allows page frames to be either 4 KB or 4 MB in size (see Figure 2-6).

Figure 2-6. Extended paging

Linear Address
N 28 1]
DIRECTORY OFFSET

4 M8 Page

Page Directory
T

o .

crd

As we have seen in the previous section, extended paging is enabled by setting the Page Size
flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of a linear
address into two fields:
Directory
The most significant 10 bits
Offset
The remaining 22 bits
Page Directory entries for extended paging are the same as for normal paging, except that:
e The page Size flag must be set.
e Only the first 10 most significant bits of the 20-bit physical address field are

significant. This is because each physical address is aligned on a 4 MB boundary, so
the 22 least significant bits of the address are 0.

47

Understanding the Linux Kernel

Extended paging coexists with regular paging; it is enabled by setting the psEt flag of the cr4
processor register. Extended paging is used to translate large intervals of contiguous linear
addresses into corresponding physical ones; in these cases, the kernel can do without
intermediate Page Tables and thus save memory.

2.4.3 Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit. While Intel
processors allow four possible privilege levels to a segment, only two privilege levels are
associated with pages and Page Tables, because privileges are controlled by the
User/supervisor flag mentioned in Section 2.4.1. When this flag is 0, the page can be
addressed only when the cpL is less than 3 (this means, for Linux, when the processor is in
Kernel Mode). When the flag is 1, the page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, Execute) associated with
segments, only two types of access rights (Read, Write) are associated with pages. If the
Read/Write flag of a Page Directory or Page Table entry is equal to 0, the corresponding
Page Table or page can only be read; otherwise it can be read and written.

2.4.4 An Example of Paging
A simple example will help in clarifying how paging works.

Let us assume that the kernel has assigned the linear address space between 0x20000000 and
0x2003ffff to a running process. This space consists of exactly 64 pages. We don't care
about the physical addresses of the page frames containing the pages; in fact, some of them
might not even be in main memory. We are interested only in the remaining fields of the page
table entries.

Let us start with the 10 most significant bits of the linear addresses assigned to the process,
which are interpreted as the Directory field by the paging unit. The addresses start with a 2
followed by zeros, so the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus
the Directory field in all the addresses refers to the 129th entry of the process Page Directory.
The corresponding entry must contain the physical address of the Page Table assigned to the
process (see Figure 2-7). If no other linear addresses are assigned to the process, all the
remaining 1023 entries of the Page Directory are filled with zeros.

Figure 2-7. An example of paging

Page Directory Page Tabig

1023 [(e3if) ™ 1023 {31} Y
64 (D040}
63 (0x03F)

128 (0x080)
—

----""—\-___ I:I

0 e TreewN_

48

Understanding the Linux Kernel

The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range
from to 0x03f, or from to 63 decimal. Thus, only the first 64 entries of the Page Table are
significant. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This address is
handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which
points to the Page Table associated with the process's pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to
the page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired
page frame.

If the present flag of the 0x21 entry of the Page Table is cleared, the page is not present in
main memory; in this case, the paging unit issues a page exception while translating the linear
address. The same exception is issued whenever the process attempts to access linear
addresses outside of the interval delimited by 0x20000000 and 0x2003f£ff since the Page
Table entries not assigned to the process are filled with zeros; in particular, their Present
flags are all cleared.

2.4.5 Three-Level Paging

Two-level paging is used by 32-bit microprocessors. But in recent years, several
microprocessors (such as Compaq's Alpha, and Sun's UltraSPARC) have adopted a 64-bit
architecture. In this case, two-level paging is no longer suitable and it is necessary to move up
to three-level paging. Let us use a thought experiment to see why.

Start by assuming about as large a page size as is reasonable (since you have to account for
pages being transferred routinely to and from disk). Let's choose 16 KB for the page size.
Since 1 KB covers a range of 210 addresses, 16 KB covers 21 addresses, so the Offset field
would be 14 bits. This leaves 50 bits of the linear address to be distributed between the Table
and the Directory fields. If we now decide to reserve 25 bits for each of these two fields, this
means that both the Page Directory and the Page Tables of a process would include 2%
entries, that is, more than 32 million entries.

Even if RAM is getting cheaper and cheaper, we cannot afford to waste so much memory
space just for storing the page tables.

The solution chosen for Compagq's Alpha microprocessors is the following:

o Page frames are 8 KB long, so the Offset field is 13 bits long.

e Only the least significant 43 bits of an address are used. (The most significant 21 bits
are always set 0.)

o Three levels of page tables are introduced so that the remaining 30 bits of the address
can be split into three 10-bit fields (see Figure 2-9 later in this chapter). So the Page
Tables include 2'° = 1024 entries as in the two-level paging schema examined
previously.

49

Understanding the Linux Kernel

As we shall see in Section 2.5 later in this chapter, Linux's designers decided to implement a
paging model inspired by the Alpha architecture.

2.4.6 Hardware Cache

Today's microprocessors have clock rates approaching gigahertz, while dynamic RAM
(DRAM) chips have access times in the range of tens of clock cycles. This means that the
CPU may be held back considerably while executing instructions that require fetching
operands from RAM and/or storing results into RAM.

Hardware cache memories have been introduced to reduce the speed mismatch between CPU
and RAM. They are based on the well-known locality principle, which holds both for
programs and data structures: because of the cyclic structure of programs and the packing of
related data into linear arrays, addresses close to the ones most recently used have a high
probability of being used in the near future. It thus makes sense to introduce a smaller and
faster memory that contains the most recently used code and data. For this purpose, a new unit
called the /ine has been introduced into the Intel architecture. It consists of a few dozen
contiguous bytes that are transferred in burst mode between the slow DRAM and the fast on-
chip static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines. At one extreme the cache can be direct mapped,
in which case a line in main memory is always stored at the exact same location in the cache.
At the other extreme, the cache is fully associative, meaning that any line in memory can be
stored at any location in the cache. But most caches are to some degree N-way associative,
where any line of main memory can be stored in any one of N lines of the cache. For instance,
a line of memory can be stored in two different lines of a 2-way set of associative cache.

As shown in Figure 2-8, the cache unit is inserted between the paging unit and the main
memory. It includes both a hardware cache memory and a cache controller. The cache
memory stores the actual lines of memory. The cache controller stores an array of entries, one
entry for each line of the cache memory. Each entry includes a fag and a few flags that
describe the status of the cache line. The tag consists of some bits that allow the cache
controller to recognize the memory location currently mapped by the line. The bits of the
memory physical address are usually split into three groups: the most significant ones
correspond to the tag, the middle ones correspond to the cache controller subset index, the
least significant ones to the offset within the line.

Figure 2-8. Processor hardware cache

CPU
SRAM Paging
cache unit
DRAM
| Main memory

Cache controller

When accessing a RAM memory cell, the CPU extracts the subset index from the physical
address and compares the tags of all lines in the subset with the high-order bits of the physical

50

Understanding the Linux Kernel

address. If a line with the same tag as the high-order bits of the address is found, the CPU has
a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently depending on access type.
For a read operation, the controller selects the data from the cache line and transfers it into a
CPU register; the RAM is not accessed and the CPU achieves the time saving for which the
cache system was invented. For a write operation, the controller may implement one of two
basic strategies called write-through and write-back. In a write-through, the controller always
writes into both RAM and the cache line, effectively switching off the cache for write
operations. In a write-back, which offers more immediate efficiency, only the cache line is
updated, and the contents of the RAM are left unchanged. After a write-back, of course, the
RAM must eventually be updated. The cache controller writes the cache line back into RAM
only when the CPU executes an instruction requiring a flush of cache entries or when a
FLUSH hardware signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the correct
line is fetched from RAM into the cache entry.

Multiprocessor systems have a separate hardware cache for every processor, and therefore
they need additional hardware circuitry to synchronize the cache contents. See Section 11.3.2
in Chapter 11.

Cache technology is rapidly evolving. For example, the first Pentium models included a single
on-chip cache called the L1-cache. More recent models also include another larger and slower
on-chip cache called the L2-cache. The consistency between the two cache levels is
implemented at the hardware level. Linux ignores these hardware details and assumes there is
a single cache.

The cp flag of the cr0 processor register is used to enable or disable the cache circuitry. The
nw flag, in the same register, specifies whether the write-through or the write-back strategy is
used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system associate a
different cache management policy with each page frame. For that purpose, each Page
Directory and each Page Table entry includes two flags: pcD specifies whether the cache must
be enabled or disabled while accessing data included in the page frame; pwT specifies whether
the write-back or the write-through strategy must be applied while writing data into the page
frame. Linux clears the pcp and pwT flags of all Page Directory and Page Table entries: as a
result, caching is enabled for all page frames and the write-back strategy is always adopted for
writing.

The 11 _cacrE BYTES macro yields the size of a cache line on a Pentium, that is, 32 bytes. In
order to optimize the cache hit rate, the kernel adopts the following rules:

e The most frequently used fields of a data structure are placed at the low offset within
the data structure so that they can be cached in the same line.

e When allocating a large set of data structures, the kernel tries to store each of them in
memory so that all cache lines are uniformly used.

51

Understanding the Linux Kernel

2.4.7 Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, Intel 80x86 processors include other caches called
translation lookaside buffers or TLB to speed up linear address translation. When a linear
address is used for the first time, the corresponding physical address is computed through
slow accesses to the page tables in RAM. The physical address is then stored in a TLB entry,
so that further references to the same linear address can be quickly translated.

The invlpg instruction can be used to invalidate (that is, to free) a single entry of a TLB. In
order to invalidate all TLB entries, the processor can simply write into the cr3 register that
points to the currently used Page Directory.

Since the TLBs serve as caches of page table contents, whenever a Page Table entry is
modified, the kernel must invalidate the corresponding TLB entry. To do this, Linux makes
use of the flush tlb page (addr) function, which invokes flush tlb one(). The latter
function executes the invlpg Assembly instruction:

movl Saddr, $eax
invlpg (%eax)

Sometimes it is necessary to invalidate all TLB entries, such as during kernel initialization. In
such cases, the kernel invokes the flush t1b() function, which rewrites the current value
of cr3 back into it:

movl %cr3, %eax
movl %eax, %cr3

2.5 Paging in Linux

As we explained in Section 2.4.5, Linux adopted a three-level paging model so paging is
feasible on 64-bit architectures. Figure 2-9 shows the model, which defines three types of
paging tables:

o Page Global Directory
e Page Middle Directory
o Page Table

The Page Global Directory includes the addresses of several Page Middle Directories, which
in turn include the addresses of several Page Tables. Each Page Table entry points to a page
frame. The linear address is thus split into four parts. Figure 2-9 does not show the bit
numbers because the size of each part depends on the computer architecture.

52

Understanding the Linux Kernel

Figure 2-9. The Linux paging model

Lingar Addrass
GLOBAL DIR MIDDLE DIR TABLE] OFFSET

Page

Page Table 0“

Y

Page Midale
[Hractony r
. r' ™

Page Glohal

Dirgctory 1 9 -
™

crad
N

Linux handling of processes relies heavily on paging. In fact, the automatic translation of
linear addresses into physical ones makes the following design objectives feasible:

e Assign a different physical address space to each process, thus ensuring an efficient
protection against addressing errors.

o Distinguish pages, that is, groups of data, from page frames, that is, physical addresses
in main memory. This allows the same page to be stored in a page frame, then saved to
disk, and later reloaded in a different page frame. This is the basic ingredient of the
virtual memory mechanism (see Chapter 16).

As we shall see in Chapter 7, each process has its own Page Global Directory and its own set
of Page Tables. When a process switching occurs (see Section 3.2 in Chapter 3), Linux saves
in a TSS segment the contents of the cr3 control register and loads from another TSS segment
a new value into cr3. Thus, when the new process resumes its execution on the CPU, the
paging unit refers to the correct set of page tables.

What happens when this three-level paging model is applied to the Pentium, which uses only
two types of page tables? Linux essentially eliminates the Page Middle Directory field by
saying that it contains zero bits. However, the position of the Page Middle Directory in the
sequence of pointers is kept so that the same code can work on 32-bit and 64-bit architectures.
The kernel keeps a position for the Page Middle Directory by setting the number of entries in
it to 1 and mapping this single entry into the proper entry of the Page Global Directory.

Mapping logical to linear addresses now becomes a mechanical task, although somewhat
complex. The next few sections of this chapter are thus a rather tedious list of functions and
macros that retrieve information the kernel needs to find addresses and manage the tables;
most of the functions are one or two lines long. You may want to just skim these sections
now, but it is useful to know the role of these functions and macros because you'll see them
often in discussions in subsequent chapters.

53

Understanding the Linux Kernel

2.5.1 The Linear Address Fields
The following macros simplify page table handling:

PAGE SHIFT

Specifies the length in bits of the Offset field; when applied to Pentium processors it
yields the value 12. Since all the addresses in a page must fit in the Offset field, the
size of a page on Intel 80x86 systems is 2'* or the familiar 4096 bytes; the
PAGE SHIFT of 12 can thus be considered the logarithm base 2 of the total page size.
This macro is used by PAGE SIZE to return the size of the page. Finally, the
PAGE_MASK macro is defined as the value 0xf££££000; it is used to mask all the bits of
the Offset field.

PMD SHIFT

Determines the number of bits in an address that are mapped by the second-level page
table. It yields the value 22 (12 from Offset plus 10 from Table). The PMD_SIzE macro
computes the size of the area mapped by a single entry of the Page Middle Directory,
that is, of a Page Table. Thus, pMD_sTzE yields 2** or 4 MB. The PMD MASK macro
yields the value 0xffc00000; it is used to mask all the bits of the Offset and Table
fields.

PGDIR SHIFT

Determines the logarithm of the size of the area a first-level page table can map. Since
the Middle Directory field has length 0, this macro yields the same value yielded by
pMD SHIFT, which is 22. The pGDIR SIzE macro computes the size of the area
mapped by a single entry of the Page Global Directory, that is, of a Page Directory.
PGDIR sIZE therefore yields 4 MB. The pGDIR MASK macro yields the value
0x£ffc00000, the same as PMD MASK.

PTRS PER PTE, PTRS PER PMD, and PTRS PER PGD

Compute the number of entries in the Page Table, Page Middle Directory, and Page
Global Directory; they yield the values 1024, 1, and 1024, respectively.

2.5.2 Page Table Handling

pte t, pmd_t, and pgd t are 32-bit data types that describe, respectively, a Page Table, a
Page Middle Directory, and a Page Global Directory entry. pgprot_t is another 32-bit data
type that represents the protection flags associated with a single entry.

Four type-conversion macros (pte val(), pmd val(), pgd val(), and pgprot val())
cast a 32-bit unsigned integer into the required type. Four other type-conversion macros (_
pte(), pmd(), pgd(),and pgprot())perform the reverse casting from one of

the four previously mentioned specialized types into a 32-bit unsigned integer.

The kernel also provides several macros and functions to read or modify page table entries:

54

Understanding the Linux Kernel

o The pte none(), pmd none(), and pgd none() macros yield the value 1 if the
corresponding entry has the value 0; otherwise, they yield the value 0.
e The pte present(), pmd present(), and pgd _present () mMacros yield the value

1 if the present flag of the corresponding entry is equal to 1, that is, if the
corresponding page or Page Table is loaded in main memory.

e The pte clear(), pmd clear(), and pgd clear() macros clear an entry of the
corresponding page table.

The macros pmd bad() and pgd bad() are used by functions to check Page Global
Directory and Page Middle Directory entries passed as input parameters. Each macro yields
the value 1 if the entry points to a bad page table, that is, if at least one of the following
conditions applies:

e The page is not in main memory (Present flag cleared).

o The page allows only Read access (Read/write flag cleared).

e FEither Accessed or Dirty is cleared (Linux always forces these flags to be set for

every existing page table).

No pte bad() macro is defined because it is legal for a Page Table entry to refer to a page
that is not present in main memory, not writable, or not accessible at all. Instead, several
functions are offered to query the current value of any of the flags included in a Page Table
entry:
pte read()

Returns the value of the User/Supervisor flag (indicating whether the page is
accessible in User Mode).

pte write()

Returns 1 if both the Present and Read/write flags are set (indicating whether the
page is present and writable).

pte exec()
Returns the value of the User/Supervisor flag (indicating whether the page is
accessible in User Mode). Notice that pages on the Intel processor cannot be protected
against code execution.

pte dirty()

Returns the value of the pirty flag (indicating whether or not the page has been
modified).

pte young()

Returns the value of the Accessed flag (indicating whether the page has been
accessed).

Another group of functions sets the value of the flags in a Page Table entry:

55

Understanding the Linux Kernel

pte wrprotect ()
Clears the Read/write flag
pte rdprotect and pte exprotect ()
Clear the user/Supervisor flag
pte mkwrite()
Sets the Read/mirite flag
pte mkread() and pte mkexec()
Set the User/Supervisor flag
pte mkdirty() andpte mkclean()

Set the pirty flag to 1 and to 0, respectively, thus marking the page as modified or
unmodified

pte mkyoung() and pte mkold()

Set the Accessed flag to 1 and to 0, respectively, thus marking the page as accessed
(young) or nonaccessed (old)

pte modify (p,v)

Sets all access rights in a Page Table entry p to a specified value v
set pte

Writes a specified value into a Page Table entry
Now come the macros that combine a page address and a group of protection flags into a 32-
bit page entry or perform the reverse operation of extracting the page address from a page
table entry:

mk pte()

Combines a linear address and a group of access rights to create a 32-bit Page Table
entry.

mk pte phys

Creates a Page Table entry by combining the physical address and the access rights of
the page.

56

Understanding the Linux Kernel

pte page() andpmd page()

Return the linear address of a page from its Page Table entry, and of a Page Table
from its Page Middle Directory entry.

pgd offset (p,a)

Receives as parameters a memory descriptor p (see Chapter 6) and a linear address a.
The macro yields the address of the entry in a Page Global Directory that corresponds
to the address a; the Page Global Directory is found through a pointer within the
memory descriptor p. The pgd offset k(o) macro is similar, except that it refers to
the memory descriptor used by kernel threads (see Section 3.3.2 in Chapter 3).

pmd offset (p,a)

Receives as parameter a Page Global Directory entry p and a linear address a; it yields
the address of the entry corresponding to the address a in the Page Middle Directory
referenced by p. The pte offset(p,a) macro is similar, but p is a Page Middle
Directory entry and the macro yields the address of the entry corresponding to a in the
Page Table referenced by p.

The last group of functions of this long and rather boring list were introduced to simplify the
creation and deletion of page table entries. When two-level paging is used, creating or
deleting a Page Middle Directory entry is trivial. As we explained earlier in this section, the
Page Middle Directory contains a single entry that points to the subordinate Page Table. Thus,
the Page Middle Directory entry is the entry within the Page Global Directory too. When
dealing with Page Tables, however, creating an entry may be more complex, because the Page
Table that is supposed to contain it might not exist. In such cases, it is necessary to allocate a
new page frame, fill it with zeros and finally add the entry.

Each page table is stored in one page frame; moreover, each process makes use of several
page tables. As we shall see in Section 6.1 in Chapter 6, the allocations and deallocations of
page frames are expensive operations. Therefore, when the kernel destroys a page table, it
adds the corresponding page frame to a software cache. When the kernel must allocate a new
page table, it takes a page frame contained in the cache; a new page frame is requested from
the memory allocator only when the cache is empty.

The Page Table cache is a simple list of page frames. The pte quicklist macro points to the
head of the list, while the first 4 bytes of each page frame in the list are used as a pointer to
the next element. The Page Global Directory cache is similar, but the head of the list is
yielded by the pgd quicklist macro. Of course, on Intel architecture there is no Page
Middle Directory cache.

Since there is no limit on the size of the page table caches, the kernel must implement a
mechanism for shrinking them. Therefore, the kernel introduces high and low watermarks,
which are stored in the pgt cache water array; the check pgt cache() function checks
whether the size of each cache is greater than the high watermark and, if so, deallocates page
frames until the cache size reaches the low watermark. The check pgt cache() is invoked
either when the system is idle or when the kernel releases all page tables of some process.

57

Understanding the Linux Kernel

Now comes the last round of functions and macros:

pgd alloc()

Allocates a new Page Global Directory by invoking the get pgd fast() function,
which takes a page frame from the Page Global Directory cache; if the cache is empty,
the page frame is allocated by invoking the get pgd slow() function.

pmd _alloc (p,a)

Defined so three-level paging systems can allocate a new Page Middle Directory for
the linear address a. On Intel 80x86 systems, the function simply returns the input
parameter p, that is, the address of the entry in the Page Global Directory.

pte alloc(p,a)

Receives as parameters the address of a Page Middle Directory entry p and a linear
address a, and it returns the address of the Page Table entry corresponding to a. If the
Page Middle Directory entry is null, the function must allocate a new Page Table. To
accomplish this, it looks for a free page frame in the Page Table cache by invoking the
get pte fast() function. If the cache is empty, the page frame is allocated by
invoking get pte slow(). If a new Page Table is allocated, the entry
corresponding to a is initialized and the User/supervisor flag is set.
pte alloc kernel () is similar, except that it invokes the get pte kernel slow(
) function instead of get pte slow() for allocating a new page frame; the
get pte kernel slow() function clears the User/Supervisor flag of the new
Page Table.

pte free() ,pte free kernel(), and pgd free()

Release a page table and insert the freed page frame in the proper cache. The
pmd free() and pmd free kernel() functions do nothing, since Page Middle
Directories do not really exist on Intel 80x86 systems.

free one pmd()
Invokes pte free() to release a Page Table.

free one pgd()
Releases all Page Tables of a Page Middle Directory; in the Intel architecture, it just
invokes free one pmd() once. Then it releases the Page Middle Directory by
invoking pmd free().

SET_PAGE_DIR
Sets the Page Global Directory of a process. This is accomplished by placing the
physical address of the Page Global Directory in a field of the TSS segment of the

process; this address is loaded in the cr3 register every time the process starts or
resumes its execution on the CPU. Of course, if the affected process is currently in

58

Understanding the Linux Kernel

execution, the macro also directly changes the cr3 register value so that the change
takes effect right away.

new page tables()

Allocates the Page Global Directory and all the Page Tables needed to set up a process
address space. It also invokes SET PAGE DIR in order to assign the new Page Global
Directory to the process. This topic will be covered in Chapter 7.

clear page tables()

Clears the contents of the page tables of a process by iteratively invoking free one
pgd().

free page tables()

Is very similar to clear page tables() , but it also releases the Page Global
Directory of the process.

2.5.3 Reserved Page Frames

The kernel's code and data structures are stored in a group of reserved page frames. A page
contained in one of these page frames can never be dynamically assigned or swapped to disk.

As a general rule, the Linux kernel is installed in RAM starting from physical address
0x00100000, that is, from the second megabyte. The total number of page frames required
depends on how the kernel has been configured: a typical configuration yields a kernel that
can be loaded in less than 2 MBs of RAM.

Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC
architecture has several peculiarities that must be taken into account:

e Page frame is used by BIOS to store the system hardware configuration detected
during the Power-On Self-Test (POST).

e Physical addresses ranging from 0x000a0000 to 0x000fffff are reserved to BIOS
routines and to map the internal memory of ISA graphics cards (the source of the well-
known 640 KB addressing limit in the first MS-DOS systems).

e Additional page frames within the first megabyte may be reserved by specific
computer models. For example, the IBM ThinkPad maps the 0xa0 page frame into the
0x9f one.

In order to avoid loading the kernel into groups of noncontiguous page frames, Linux prefers
to skip the first megabyte of RAM. Clearly, page frames not reserved by the PC architecture

will be used by Linux to store dynamically assigned pages.

Figure 2-10 shows how the first 2 MB of RAM are filled by Linux. We have assumed that the
kernel requires less than one megabyte of RAM (this is a bit optimistic).

59

Understanding the Linux Kernel

Figure 2-10. The first 512 page frames (2 MB) in Linux 2.2

o1 Q100 ki

i386_endbase _text _etext _adata _end

Il Unavailabie page frames
[Availabie page frames
[kernel code

[initiatized kernel data
[uninitialized kernel data

The symbol text, which corresponds to physical address 0x00100000, denotes the address
of the first byte of kernel code. The end of the kernel code is similarly identified by the
symbol etext. Kernel data is divided into two groups: initialized and uninitialized. The
initialized data starts right after etext and ends at edata. The uninitialized data follows
and ends up at end.

The symbols appearing in the figure are not defined in Linux source code; they are produced
while compiling the kernel.”

121'You can find the linear address of these symbols in the file System.map, which is created right after the kernel is compiled.

The linear address corresponding to the first physical address reserved to the BIOS or to a
hardware device (usually, 0x0009£000) is stored in the i386 endbase variable. In most
cases, this variable is initialized with a value written by the BIOS during the POST phase.

2.5.4 Process Page Tables
The linear address space of a process is divided into two parts:

e Linear addresses from 0x00000000 to PAGE OFFSET -1 can be addressed when the
process is in either User or Kernel Mode.

e Linear addresses from PAGE OFFSET to Oxffffffff can be addressed only when the
process is in Kernel Mode.

Usually, the pAGE OFFSET macro yields the value 0xc0000000: this means that the fourth
gigabyte of linear addresses is reserved for the kernel, while the first three gigabytes are
accessible from both the kernel and the user programs. However, the value of PAGE OFFSET
may be customized by the user when the Linux kernel image is compiled. In fact, as we shall
see in the next section, the range of linear addresses reserved for the kernel must include a
mapping of all physical RAM installed in the system; moreover, as we shall see in Chapter 7,
the kernel also makes use of the linear addresses in this range to remap noncontiguous page
frames into contiguous linear addresses. Therefore, if Linux must be installed on a machine
having a huge amount of RAM, a different arrangement for the linear addresses might be
necessary.

The content of the first entries of the Page Global Directory that map linear addresses lower
than PAGE OFFSET (usually the first 768 entries) depends on the specific process. Conversely,

60

Understanding the Linux Kernel

the remaining entries are the same for all processes; they are equal to the corresponding
entries of the swapper pg dir kernel Page Global Directory (see the following section).

2.5.5 Kernel Page Tables

We now describe how the kernel initializes its own page tables. This is a two-phase activity.
In fact, right after the kernel image has been loaded into memory, the CPU is still running in
real mode; thus, paging is not enabled.

In the first phase, the kernel creates a limited 4 MB address space, which is enough for it to
install itself in RAM.

In the second phase, the kernel takes advantage of all of the existing RAM and sets up the
paging tables properly. The next section examines how this plan is executed.

2.5.5.1 Provisional kernel page tables

Both the Page Global Directory and the Page Table are initialized statically during the kernel
compilation. We won't bother mentioning the Page Middle Directories any more since they
equate to Page Global Directory entries.

The Page Global Directory is contained in the swapper pg dir variable, while the Page
Table that spans the first 4 MB of RAM is contained in the pg0 variable.

The objective of this first phase of paging is to allow these 4 MB to be easily addressed in
both real mode and protected mode. Therefore, the kernel must create a mapping from both
the linear addresses 0x00000000 through 0x003fffff and the linear addresses PAGE OFFSET
through PAGE OFFSET+0x3fffff into the physical addresses 0x00000000 through
0x003f£££f. In other words, the kernel during its first phase of initialization can address the
first 4 MB of RAM (0x00000000 through 0x003£££££) either using linear addresses identical
to the physical ones or using 4 MB worth of linear addresses starting from PAGE OFFSET.

Assuming that pAGE OFFSET yields the value 0xc0000000, the kernel creates the desired
mapping by filling all the swapper pg dir entries with zeros, except for entries and 0x300
(decimal 768); the latter entry spans all linear addresses between 0xc0000000 and
0xc03fffff. The and 0x300 entries are initialized as follows:

o The address field is set to the address of pg0.
e The Present, Read/Write, and User/Supervisor flags are set.
e The accessed, Dirty, PCD, PWD, and Page Size flags are cleared.

The single pg0 Page Table is also statically initialized, so that the i th entry addresses the i th
page frame.

The paging unit is enabled by the startup 32() Assembly-language function. This is

achieved by loading in the cr3 control register the address of swapper pg dir and by setting
the pG flag of the cr0 control register, as shown in the following excerpt:

61

Understanding the Linux Kernel

movl $0x101000, $eax

movl %eax,%cr3 /* set the page table pointer.. */
movl %cr0, $Seax

orl $0x80000000, $eax

movl %eax, %cr0 /* ..and set paging (PG) bit */

2.5.5.2 Final kernel page table

The final mapping provided by the kernel page tables must transform linear addresses starting
from PAGE OFFSET into physical addresses starting from 0.

The pa macro is used to convert a linear address starting from PAGE OFFSET to the
corresponding physical address, while the va macro does the reverse.

The final kernel Page Global Directory is still stored in swapper pg dir. It is initialized by
the paging init () function. This function acts on two input parameters:

start mem

The linear address of the first byte of RAM right after the kernel code and data areas.

end mem

The linear address of the end of memory (this address is computed by the BIOS
routines during the POST phase).

Linux exploits the extended paging feature of the Pentium processors, enabling 4 MB page
frames: it allows a very efficient mapping from PAGE OFFSET into physical addresses by
making kernel Page Tables superfluous."

BI'We'll see in Section 6.3 in Chapter 6 that the kernel may set additional mappings for its own use based on 4 KB pages; when this happens, it makes
use of Page Tables.

The swapper pg dir Page Global Directory is reinitialized by a cycle equivalent to the
following:

address = 0;
pg _dir = swapper pg dir;
pgd_val (pg_dir[0]) = O;

pg_dir += (PAGE_OFFSET >> PGDIR_SHIFT);
while (address < end mem) {
pgd val (*pg dir) = PAGE PRESENT+ PAGE RW+ PAGE ACCESSED
+ PAGE DIRTY + PAGE 4M+ pa (address);
pg_dir++;
address += 0x400000;

As you can see, the first entry of the Page Global Directory is zeroed out, hence removing the
mapping between the first 4 MB of linear and physical addresses. The first Page Table is thus
available, so User Mode processes can also use the range of linear addresses between and
4194303.

62

Understanding the Linux Kernel

The user/supervisor flags in all Page Global Directory entries referencing linear addresses
above PAGE OFFSET are cleared, thus denying to processes in User Mode access to the kernel
address space.

The pg0 provisional Page Table is no longer used once swapper pg dir has been
initialized.

2.6 Anticipating Linux 2.4

Linux 2.4 introduces two main changes. The TSS Segment Descriptor associated with all
existing processes is no longer stored in the Global Descriptor Table. This change removes
the hard-coded limit on the number of existing processes. The limit thus becomes the number
of available PIDs. In short, you will not find anymore the Nk Tasks macro inside the kernel
code, and all data structures whose size was depending on it have been replaced or removed.

The other main change is related to physical memory addressing. Recent Intel 80x86
microprocessors include a feature called Physical Address Extension (PAE), which adds four
extra bits to the standard 32-bit physical address. Linux 2.4 takes advantage of PAE and
supports up to 64 GB of RAM. However, a linear address is still composed by 32 bits, so that
only 4 GB of RAM can be "permanently mapped" and accessed at any time. Linux 2.4 thus
recognizes three different portions of RAM: the physical memory suitable for ISA Direct
Memory Access (DMA), the physical memory not suitable for ISA DMA but permanently
mapped by the kernel, and the "high memory," that is, the physical memory that is not
permanently mapped by the kernel.

63

Understanding the Linux Kernel

Chapter 3. Processes

The concept of a process is fundamental to any multiprogramming operating system.
A process is usually defined as an instance of a program in execution; thus, if 16 users are
running vi at once, there are 16 separate processes (although they can share the same
executable code). Processes are often called "tasks" in Linux source code.

In this chapter, we will first discuss static properties of processes and then describe how
process switching is performed by the kernel. The last two sections investigate dynamic
properties of processes, namely, how processes can be created and destroyed. This chapter
also describes how Linux supports multithreaded applications: as mentioned in Chapter 1, it
relies on so-called lightweight processes (LWP).

3.1 Process Descriptor

In order to manage processes, the kernel must have a clear picture of what each process is
doing. It must know, for instance, the process's priority, whether it is running on the CPU or
blocked on some event, what address space has been assigned to it, which files it is allowed to
address, and so on. This is the role of the process descriptor , that is, of a task_struct type
structure whose fields contain all the information related to a single process. As the repository
of so much information, the process descriptor is rather complex. Not only does it contain
many fields itself, but some contain pointers to other data structures that, in turn, contain
pointers to other structures. Figure 3-1 describes the Linux process descriptor schematically.

64

Understanding the Linux Kernel

Figure 3-1. The Linux process descriptor

state
flags
need_resched
counter
priority
next_task e
prev_task ing
next_run o
prEy_run Ihy_struct
:' premmrem e
p_optr T ty Associated with the Process
0_pot weramererlae
- fs_struct
Current Directory
R files_struct
- —
— Pointers to Filg
v DNESCHPIONS
|
! mm_struct
55 P pee ;
Pl - Pointars 1o Mamory
wom Reglons Descriplors
o —_—
s signal_struct
files T
mm e Signals Recelved
signal_lock
i)

The five data structures on the right side of the figure refer to specific resources owned by the
process. These resources will be covered in future chapters. This chapter will focus on two
types of fields that refer to the process state and to process parent/child relationships.

3.1.1 Process State

As its name implies, the state field of the process descriptor describes what is currently
happening to the process. It consists of an array of flags, each of which describes a possible
process state. In the current Linux version these states are mutually exclusive, and hence
exactly one flag of state is set; the remaining flags are cleared. The following are the
possible process states:

TASK RUNNING
The process is either executing on the CPU or waiting to be executed.

TASK INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a
hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process, that is,
put its state back to TASK RUNNING.

65

Understanding the Linux Kernel

TASK UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process leaves
its state unchanged. This process state is seldom used. It is valuable, however, under
certain specific conditions in which a process must wait until a given event occurs
without being interrupted. For instance, this state may be used when a process opens a
device file and the corresponding device driver starts probing for a corresponding
hardware device. The device driver must not be interrupted until the probing is
complete, or the hardware device could be left in an unpredictable state.

TASK STOPPED

Process execution has been stopped: the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being monitored
by another (such as when a debugger executes a ptrace () system call to monitor a
test program), any signal may put the process in the TASK STOPPED state.

TASK ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait ()-
like system call (wait(), wait3(), wait4(), Or waitpid()) to return
information about the dead process. Before the wait ()-like call is issued, the kernel
cannot discard the data contained in the dead process descriptor because the parent
could need it. (See Section 3.4.2 near the end of this chapter.)

3.1.2 Identifying a Process

Although Linux processes can share a large portion of their kernel data structures—an
efficiency measure known as lightweight processes—each process has its own process
descriptor. Each execution context that can be independently scheduled must have its own
process descriptor.

Lightweight processes should not be confused with user-mode threads, which are different
execution flows handled by a user-level library. For instance, older Linux systems
implemented POSIX threads entirely in user space by means of the pthread library; therefore,
a multithreaded program was executed as a single Linux process. Currently, the pthread
library, which has been merged into the standard C library, takes advantage of lightweight
processes.

The very strict one-to-one correspondence between the process and process descriptor makes
the 32-bit process descriptor address’ a convenient tool to identify processes. These addresses
are referred to as process descriptor pointers. Most of the references to processes that the
kernel makes are through process descriptor pointers.

! Technically speaking, these 32 bits are only the offset component of a logical address. However, since Linux makes use of a single kernel data
segment, we can consider the offset to be equivalent to a whole logical address. Furthermore, since the base addresses of the code and data segments
are set to 0, we can treat the offset as a linear address.

Any Unix-like operating system, on the other hand, allows users to identify processes by
means of a number called the Process ID (or PID). The PID is a 32-bit unsigned integer
stored in the pid field of the process descriptor. PIDs are numbered sequentially: the PID of

66

Understanding the Linux Kernel

a newly created process is normally the PID of the previously created process incremented by
one. However, for compatibility with traditional Unix systems developed for 16-bit hardware
platforms, the maximum PID number allowed on Linux is 32767. When the kernel creates the
32768th process in the system, it must start recycling the lower unused PIDs.

At the end of this section, we'll show you how it is possible to derive a process descriptor
pointer efficiently from its respective PID. Efficiency is important because many system calls
like ki11 () use the PID to denote the affected process.

3.1.2.1 The task array

Processes are dynamic entities whose lifetimes in the system range from a few milliseconds to
months. Thus, the kernel must be able to handle many processes at the same time. In fact, we
know from the previous chapter that Linux is able to handle up to NrR Tasks processes. The
kernel reserves a global static array of size NR Tasks called task in its own address space.
The elements in the array are process descriptor pointers; a null pointer indicates that
a process descriptor hasn't been associated with the array entry.

3.1.2.2 Storing a process descriptor

The task array contains only pointers to process descriptors, not the sizable descriptors
themselves. Since processes are dynamic entities, process descriptors are stored in dynamic
memory rather than in the memory area permanently assigned to the kernel. Linux stores two
different data structures for each process in a single 8 KB memory area: the process descriptor
and the Kernel Mode process stack.

In Section 2.3 in Chapter 2, we learned that a process in Kernel Mode accesses a stack
contained in the kernel data segment, which is different from the stack used by the process in
User Mode. Since kernel control paths make little use of the stack—even taking into account
the interleaved execution of multiple kernel control paths on behalf of the same process—only
a few thousand bytes of kernel stack are required. Therefore, 8 KB is ample space for the
stack and the process descriptor.

Figure 3-2 shows how the two data structures are stored in the memory area. The process
descriptor starts from the beginning of the memory area and the stack from the end.

67

Understanding the Linux Kernel

Figure 3-2. Storing the process descriptor and the process kernel stack

(01 Sk
STACK
(%01 Si000
P E 0015878
0x0158a3ch
PROCESS
DESCRIPTOR

CUFTE—m- (01 5000

The esp register is the CPU stack pointer, which is used to address the stack's top location.
On Intel systems, the stack starts at the end and grows toward the beginning of the memory
area. Right after switching from User Mode to Kernel Mode, the kernel stack of a process is
always empty, and therefore the esp register points to the byte immediately following
the memory area.

The C language allows such a hybrid structure to be conveniently represented by means of
the following union construct:

union task union {
struct task struct task;
unsigned long stack[2048];
i

After switching from User Mode to Kernel Mode in Figure 3-2, the esp register contains the
address 0x015fc000. The process descriptor is stored starting at address 0x015fa000. The
value of the esp is decremented as soon as data is written into the stack. Since the process
descriptor is less than 1000 bytes long, the kernel stack can expand up to 7200 bytes.

3.1.2.3 The current macro

The pairing between the process descriptor and the Kernel Mode stack just described offers
a key benefit in terms of efficiency: the kernel can easily obtain the process descriptor pointer
of the process currently running on the CPU from the value of the esp register. In fact, since
the memory area is 8 KB (2" bytes) long, all the kernel has to do is mask out the 13 least
significant bits of esp to obtain the base address of the process descriptor. This is done by the
current macro, which produces some Assembly instructions like the following:

movl S$Oxffffe000, %ecx
andl %esp, %ecx
movl %Secx, p

68

Understanding the Linux Kernel

After executing these three instructions, the local variable p contains the process descriptor
pointer of the process running on the CPU."”

12l One drawback to the shared-storage approach is that, for efficiency reasons, the kernel stores the 8 KB memory area in two consecutive page frames
with the first page frame aligned to a multiple of 2'. This may turn out to be a problem when little dynamic memory is available.

Another advantage of storing the process descriptor with the stack emerges on multiprocessor
systems: the correct current process for each hardware processor can be derived just by
checking the stack as shown previously. Linux 2.0 did not store the kernel stack and the
process descriptor together. Instead, it was forced to introduce a global static variable called
current to identify the process descriptor of the running process. On multiprocessor systems,
it was necessary to define current as an array—one element for each available CPU.

The current macro often appears in kernel code as a prefix to fields of the process descriptor.
For example, current->pid returns the process ID of the process currently running on the
CPU.

A small cache consisting of EXTRA TASK STRUCT memory areas (where the macro is usually
set to 16) is used to avoid unnecessarily invoking the memory allocator. To understand
the purpose of this cache, assume for instance that some process is destroyed and that, right
afterward, a new process is created. Without the cache, the kernel would have to release
an 8§ KB memory area to the memory allocator and then, immediately afterward, request
another memory area of the same size. This is an example of memory cache, a software
mechanism introduced to bypass the Kernel Memory Allocator. You will find many other
examples of memory caches in the following chapters.

The task struct stack array contains the pointers to the process descriptors in the cache.
Its name comes from the fact that process descriptor releases and requests are implemented
respectively as "push" and "pop" operations on the array:

free task struct()

This function releases the 8 KB task union memory areas and places them in
the cache unless it is full.

alloc task struct()

This function allocates 8 KB task union memory areas. The function takes memory
areas from the cache if it is at least half-full or if there isn't a free pair of consecutive
page frames available.

3.1.2.4 The process list

To allow an efficient search through processes of a given type (for instance, all processes in
a runnable state) the kernel creates several lists of processes. Each list consists of pointers to
process descriptors. A list pointer (that is, the field that each process uses to point to the next
process) is embedded right in the process descriptor's data structure. When you look at
the C-language declaration of the task struct structure, the descriptors may seem to turn in
on themselves in a complicated recursive manner. However, the concept is no more
complicated than any list, which is a data structure containing a pointer to the next instance of
itself.

69

Understanding the Linux Kernel

A circular doubly linked list (see Figure 3-3) links together all existing process descriptors;
we will call it the process list. The prev task and next task fields of each process
descriptor are used to implement the list. The head of the list is the init task descriptor
referenced by the first element of the task array: it is the ancestor of all processes, and it is
called process 0 or swapper (see Section 3.3.2 later in this chapter). The prev task field of
init_ task points to the process descriptor inserted last in the list.

Figure 3-3. The process list

I
prev_task L nexi_task prev_task next_task prev_task next_task

L — —_— —
init_task [T Y]
- -— ——

The seT LINKSs and REMOVE LINKS macros are used to insert and to remove a process
descriptor in the process list, respectively. These macros also take care of the parenthood
relationship of the process (see Section 3.1.3 later in this chapter).

Another useful macro, called for each task , scans the whole process list. It is defined as:

#define for each task(p) \
for (p = &init task ; (p = p->next task) != &init task ;)

The macro is the loop control statement after which the kernel programmer supplies the loop.
Notice how the init task process descriptor just plays the role of list header. The macro
starts by moving past init task to the next task and continues until it reaches init task
again (thanks to the circularity of the list).

3.1.2.5 The list of TASK_RUNNING processes

When looking for a new process to run on the CPU, the kernel has to consider only the
runnable processes (that is, the processes in the TASK_RUNNING state). Since it would be rather
inefficient to scan the whole process list, a doubly linked circular list of TASK RUNNING
processes called runqueue has been introduced. The process descriptors include the next run
and prev_run fields to implement the runqueue list. As in the previous case, the init task
process descriptor plays the role of list header. The nr running variable stores the total
number of runnable processes.

The add to runqueue() function inserts a process descriptor at the beginning of the list,
while del from runqueue() removes a process descriptor from the list. For scheduling
purposes, two functions, move first runqueue() and move last rungueue(), are
provided to move a process descriptor to the beginning or the end of the runqueue,
respectively.

Finally, the wake up process() function is used to make a process runnable. It sets the
process state to TASK RUNNING, invokes add to runqueue() to insert the process in the
runqueue list, and increments nr running. It also forces the invocation of the scheduler when
the process is either real-time or has a dynamic priority much larger than that of the current
process (see Chapter 10).

70

Understanding the Linux Kernel

3.1.2.6 The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor pointer
corresponding to a PID. This occurs, for instance, in servicing the ki11 () system call: when
process P1 wishes to send a signal to another process, P2, it invokes the ki11 () system call
specifying the PID of P2 as the parameter. The kernel derives the process descriptor pointer
from the PID and then extracts the pointer to the data structure that records the pending
signals from P2's process descriptor.

Scanning the process list sequentially and checking the pid fields of the process descriptors
would be feasible but rather inefficient. In order to speed up the search, a pidhash hash table
consisting of PIDHASH Sz elements has been introduced (PIDHASH Sz is usually set to
NR TASKS/4). The table entries contain process descriptor pointers. The PID is transformed
into a table index using the pid hashfn macro:

#define pid hashfn(x) \
((((x) >> 8) "~ (x))

& (PIDHASH Sz - 1))

As every basic computer science course explains, a hash function does not always ensure a
one-to-one correspondence between PIDs and table indexes. Two different PIDs that hash into
the same table index are said to be colliding.

Linux uses chaining to handle colliding PIDs: each table entry is a doubly linked list of
colliding process descriptors. These lists are implemented by means of the pidhash next and
pidhash pprev fields in the process descriptor. Figure 3-4 illustrates a pidhash table with
two lists: the processes having PIDs 228 and 27535 hash into the 101st element of the table,
while the process having PID 27536 hashes into the 124th element of the table.

Figure 3-4. The pidhash table and chained lists

pidhash

+ PID ceeeoa piohash_next
12 e LT L N ® pidhash_pprev

127

Hashing with chaining is preferable to a linear transformation from PIDs to table indexes,
because a PID can assume any value between and 32767. Since NR_TASKS, the maximum
number of processes, is usually set to 512, it would be a waste of storage to define a table
consisting of 32768 entries.

The hash pid() and unhash pid() functions are invoked to insert and remove a
process in the pidhash table, respectively. The find task by pid() function searches the
hash table and returns the process descriptor pointer of the process with a given PID (or a null
pointer if it does not find the process).

71

Understanding the Linux Kernel

3.1.2.7 The list of task free entries

The task array must be updated every time a process is created or destroyed. As with the
other lists shown in previous sections, a list is used here to speed additions and deletions.
Adding a new entry into the array is done efficiently: instead of searching the array linearly
and looking for the first free entry, the kernel maintains a separate doubly linked, noncircular
list of free entries. The tarray freelist variable contains the first element of that list; each
free entry in the array points to another free entry, while the last element of the list contains a

null pointer. When a process is destroyed, the corresponding element in task is added to the
head of the list.

In Figure 3-5, if the first element is counted as 0, the tarray freelist variable points to
element 4 because it is the last freed element. Previously, the processes corresponding to
elements 2 and 1 were destroyed, in that order. Element 2 points to another free element of
tasks not shown in the figure.

Figure 3-5. An example of task array with free entries

task

tarray_pir

Process Descriptor

G
. B .‘.....[.E.Fr.é.b.I:.F.l:r.l..............E
Process Dascriptor

Deleting an entry from the array is also done efficiently. Each process descriptor p includes a
tarray ptr field that points to the task entry containing the pointer to p.

The get free taskslot() and add free taskslot() functions are used to get a free
entry and to free an entry, respectively.

3.1.3 Parenthood Relationships Among Processes

Processes created by a program have a parent/child relationship. Since a process can create
several children, these have sibling relationships. Several fields must be introduced in a
process descriptor to represent these relationships. Processes and 1 are created by the kernel;
as we shall see later in the chapter, process 1 (init) is the ancestor of all other processes. The
descriptor of a process P includes the following fields:

p_opptr (original parent)
Points to the process descriptor of the process that created P or to the descriptor of
process 1 (init) if the parent process no longer exists. Thus, when a shell user starts a

background process and exits the shell, the background process becomes the child of
init.

72

Understanding the Linux Kernel

p_pptr (parent)
Points to the current parent of P; its value usually coincides with that of p opptr. It
may occasionally differ, such as when another process issues a ptrace () system call
requesting that it be allowed to monitor P (see Section 19.1.5 in Chapter 19).

p_cptr (child)

Points to the process descriptor of the youngest child of P, that is, of the process
created most recently by it.

p_ysptr (younger sibling)

Points to the process descriptor of the process that has been created immediately after
P by P's current parent.

p_osptr (older sibling)

Points to the process descriptor of the process that has been created immediately
before P by P's current parent.

Figure 3-6 illustrates the parenthood relationships of a group of processes. Process PO
successively created P1, P2, and P3. Process P3, in turn, created process P4. Starting with
p_cptr and using the p osptr pointers to siblings, PO is able to retrieve all its children.

Figure 3-6. Parenthood relationships among five processes

—_— [ppir
p_ysptr
B S (11114

— e [N

3.1.4 Wait Queues

The runqueue list groups together all processes in a TASK_RUNNING state. When it comes to
grouping processes in other states, the various states call for different types of treatment, with
Linux opting for one of the following choices:

e Processes in a TASK _STOPPED Or in a TASK_ZOMBIE state are not linked in specific lists.
There is no need to group them, because either the process PID or the process
parenthood relationships may be used by the parent process to retrieve the child
process.

73

Understanding the Linux Kernel

e Processes in a TASK INTERRUPTIBLE Of TASK UNINTERRUPTIBLE state are subdivided
into many classes, each of which corresponds to a specific event. In this case, the
process state does not provide enough information to retrieve the process quickly, so it
is necessary to introduce additional lists of processes. These additional lists are called
wait queues.

Wait queues have several uses in the kernel, particularly for interrupt handling, process
synchronization, and timing. Because these topics are discussed in later chapters, we'll just
say here that a process must often wait for some event to occur, such as for a disk operation to
terminate, a system resource to be released, or a fixed interval of time to elapse. Wait queues
implement conditional waits on events: a process wishing to wait for a specific event places
itself in the proper wait queue and relinquishes control. Therefore, a wait queue represents a
set of sleeping processes, which are awakened by the kernel when some condition becomes
true.

Wait queues are implemented as cyclical lists whose elements include pointers to process
descriptors. Each element of a wait queue list is of type wait queue:

struct wait queue {
struct task struct * task;
struct wait gqueue * next;

b

Each wait queue is identified by a wait queue pointer, which contains either the address of the
first element of the list or the null pointer if the list is empty. The next field of the
wait queue data structure points to the next element in the list, except for the last element,
whose next field points to a dummy list element. The dummy's next field contains the
address of the variable or field that identifies the wait queue minus the size of a pointer (on
Intel platforms, the size of the pointer is 4 bytes). Thus, the wait queue list can be considered
by kernel functions as a truly circular list, since the last element points to the dummy wait
queue structure whose next field coincides with the wait queue pointer (see Figure 3-7).

Figure 3-7. The wait queue data structure

; KEY: I:I Wit quewe pointer
.| ; |:| task figld

Plusll wait queue Initialized null wait queus - next figlh

L i

1-glament wait queus

2-glement wait queus

74

Understanding the Linux Kernel

The init waitqueue () function initializes an empty wait queue; it receives the address g of
a wait queue pointer as its parameter and sets that pointer to g - 4. The add wait queue(q,
entry) function inserts a new element with address entry in the wait queue identified by the
wait queue pointer g. Since wait queues are modified by interrupt handlers as well as by major
kernel functions, the function executes the following operations with disabled interrupts (see
Chapter 4):

if (*g != NULL)
entry->next = *q;
else
entry->next = (struct wait queue *) (g-1);

*q = entry;

Since the wait queue pointer is set to entry, the new element is placed in the first position of
the wait queue list. If the wait queue was not empty, the next field of the new element is set
to the address of the previous first element. Otherwise, the next field is set to the address of
the wait queue pointer minus 4, and thus points to the dummy element.

The remove wait queue() function removes the element pointed to by entry from a wait
queue. Once again, the function must disable interrupts before executing the following
operations:

next = entry->next;

head = next;

while ((tmp = head->next) != entry)
head = tmp;

head->next = next;

The function scans the circular list to find the element head that precedes entry. It then
detaches entry from the list by letting the next field of head point to the element that follows
entry. The peculiar format of the wait queue circular list simplifies the code. Moreover, it is
very efficient for the following reasons:

e Most wait queues have just one element, which means that the body of the while loop
is never executed.

e While scanning the list, there is no need to distinguish the wait queue pointer (the
dummy wait queue element) from wait queue data structures.

A process wishing to wait for a specific condition can invoke any of the following functions:

e The sieep on() function operates on the current process, which we'll call P:

void sleep on(struct wait queue **p)
{
struct wait queue wait;
current->state = TASK UNINTERRUPTIBLE;
wait.task = current;
add wait queue(p, &wait);
schedule();
remove wait queue (p, &wait);

75

Understanding the Linux Kernel

e The function sets P's state to TASK UNINTERRUPTIBLE and inserts P into the wait
queue whose pointer was specified as the parameter. Then it invokes the scheduler,
which resumes the execution of another process. When P is awakened, the scheduler

resumes execution of the sleep on() function, which removes P from the wait
queue.
e The interruptible sleep on() function is identical to sleep on(),exceptthat

it sets the state of the current process P to TASk INTERRUPTIBLE instead of
TASK UNINTERRUPTIBLE so that P can also be awakened by receiving a signal.

e The sleep on_timeout() and interruptible sleep on timeout() functions
are similar to the previous ones, but they also allow the caller to define a time interval
after which the process will be woken up by the kernel. In order to do this, they invoke
the schedule timeout() function instead of schedule() (see Section 5.4.7 in
Chapter 5).

Processes inserted in a wait queue enter the TASK _RUNNING state by using either the wake up
or the wake up interruptible macros. Both macros use the wake up() function, which
receives as parameters the address g of the wait queue pointer and a bitmask mode specifying
one or more states. Processes in the specified states will be woken up; others will be left
unchanged. The function essentially executes the following instructions:

if (g && (next = *q)) {

head = (struct wait queue *) (g-1);
while (next != head) {

p = next->task;

next = next->next;

if (p->state & mode)
wake up process (p);

The function checks the state p->state of each process against mode to determine whether
the caller wants the process woken up. Only those processes whose state is included in the
mode bitmask are actually awakened. The wake up macro specifies both the
TASK INTERRUPTIBLE and the TASK UNINTERRUPTIBLE flags in mode, so it wakes up all
sleeping processes. Conversely, the wake up interruptible macro wakes up only the
TASK INTERRUPTIBLE processes by specifying only that flag in mode. Notice that awakened
processes are not removed from the wait queue. A process that has been awakened does not
necessarily imply that the wait condition has become true, so the processes could suspend
themselves again.

3.1.5 Process Usage Limits

Processes are associated with sets of wusage [limits, which specify the amount of system
resources they can use. Specifically, Linux recognizes the following usage limits:

RLIMIT CPU

Maximum CPU time for the process. If the process exceeds the limit, the kernel sends
it a sTGxcPU signal, and then, if the process doesn't terminate, a STGKILL signal (see
Chapter 9).

76

Understanding the Linux Kernel

RLIMIT FSIZE

Maximum file size allowed. If the process tries to enlarge a file to a size greater than
this value, the kernel sends it a sTGxFsz signal.

RLIMIT DATA

Maximum heap size. The kernel checks this value before expanding the heap of the
process (see Section 7.6 in Chapter 7).

RLIMIT STACK

Maximum stack size. The kernel checks this value before expanding the User Mode
stack of the process (see Section 7.4 in Chapter 7).

RLIMIT CORE

Maximum core dump file size. The kernel checks this value when a process is aborted,
before creating a core file in the current directory of the process (see Section 9.1.1 in
Chapter 9). If the limit is 0, the kernel won't create the file.

RLIMIT RSS

Maximum number of page frames owned by the process. Actually, the kernel never
checks this value, so this usage limit is not implemented.

RLIMIT NPROC

Maximum number of processes that the user can own (see Section 3.3.1 later in this
chapter).

RLIMIT NOFILE

Maximum number of open files. The kernel checks this value when opening a new file
or duplicating a file descriptor (see Chapter 12).

RLIMIT MEMLOCK

Maximum size of nonswappable memory. The kernel checks this value when the
process tries to lock a page frame in memory using the mlock() or mlockall()
system calls (see Section 7.3.4 in Chapter 7).

RLIMIT AS

Maximum size of process address space. The kernel checks this value when the
process uses malloc() or a related function to enlarge its address space (see Section
7.1 in Chapter 7).

The usage limits are stored in the r1im field of the process descriptor. The field is an array of
elements of type struct rlimit, one for each usage limit:

77

Understanding the Linux Kernel

struct rlimit {
long rlim cur;
long rlim max;

b

The rlim cur field is the current usage limit for the resource. For example, current-
>rlim[RLIMIT CPU].rlim cur represents the current limit on the CPU time of the running
process.

The rlim max field is the maximum allowed value for the resource limit. By using the
getrlimit() and setrlimit() system calls, a user can always increase the rlim cur
limit of some resource up to rlim max. However, only the superuser can change the
rlim max field or set the r1im cur field to a value greater than the corresponding r1im max
field.

Usually, most usage limits contain the value RLIMIT INFINITY (0x7fffff£f), which means
that no limit is imposed on the corresponding resource. However, the system administrator
may choose to impose stronger limits on some resources. Whenever a user logs into the
system, the kernel creates a process owned by the superuser, which can invoke setrlimit ()
to decrease the r1im max and rlim cur fields for some resource. The same process later
executes a login shell and becomes owned by the user. Each new process created by the user
inherits the content of the r1im array from its parent, and therefore the user cannot override
the limits enforced by the system.

3.2 Process Switching

In order to control the execution of processes, the kernel must be able to suspend the
execution of the process running on the CPU and resume the execution of some other process
previously suspended. This activity is called process switching , task switching, or context
switching. The following sections describe the elements of process switching in Linux:

e Hardware context

e Hardware support

e Linux code

o Saving the floating point registers

3.2.1 Hardware Context

While each process can have its own address space, all processes have to share the CPU
registers. So before resuming the execution of a process, the kernel must ensure that each such
register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its execution
on the CPU is called the hardware context. The hardware context is a subset of the process
execution context, which includes all information needed for the process execution. In Linux,
part of the hardware context of a process is stored in the TSS segment, while the remaining
part is saved in the Kernel Mode stack. As we learned in Section 2.3 in Chapter 2, the TSS
segment coincides with the tss field of the process descriptor.

78

Understanding the Linux Kernel

We will assume the prev local variable refers to the process descriptor of the process being
switched out and next refers to the one being switched in to replace it. We can thus define
process switching as the activity consisting of saving the hardware context of prev and
replacing it with the hardware context of next. Since process switches occur quite often, it is
important to minimize the time spent in saving and loading hardware contexts.

Earlier versions of Linux took advantage of the hardware support offered by the Intel
architecture and performed process switching through a far jmp instruction® to the selector
of the Task State Segment Descriptor of the next process. While executing the instruction,
the CPU performs a hardware context switch by automatically saving the old hardware
context and loading a new one. But for the following reasons, Linux 2.2 uses software to
perform process switching:

Bl far Jmp instructions modify both the CS and € 1 registers, while simple JMp instructions modify only € 1 .

e Step-by-step switching performed through a sequence of mov instructions allows better
control over the validity of the data being loaded. In particular, it is possible to check
the values of segmentation registers. This type of checking is not possible when using
a single far jmp instruction.

e The amount of time required by the old approach and the new approach is about the
same. However, it is not possible to optimize a hardware context switch, while the
current switching code could perhaps be enhanced in the future.

Process switching occurs only in Kernel Mode. The contents of all registers used by a process
in User Mode have already been saved before performing process switching (see Chapter 4).
This includes the contents of the ss and esp pair that specifies the User Mode stack pointer
address.

3.2.2 Task State Segment

The Intel 80x86 architecture includes a specific segment type called the Task State Segment
(TSS), to store hardware contexts. As we saw in Section 2.3 in Chapter 2, each process
includes its own TSS segment with a minimum length of 104 bytes. Additional bytes are
needed by the operating system to store registers that are not automatically saved by the
hardware and to store the /O Permission bitmap. That map is needed because the ioperm()
and iopl() system calls may grant a process in User Mode direct access to specific I/O
ports. In particular, if the 10PL field in the eflags register is set to 3, the User Mode process
is allowed to access any of the I/O ports whose corresponding bit in the I/O Permission Bit
Map is cleared.

The thread struct structure describes the format of the Linux TSS. An additional area is
introduced to store the tr and cr2 registers, the floating point registers, the debug registers,
and other miscellaneous information specific to Intel 80x86 processors.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This Descriptor
includes a 32-bit Base field that points to the TSS starting address and a 20-bit Limit field
whose value cannot be smaller than 0x67 (decimal 103, determined by the minimum TSS
segment length mentioned earlier). The s flag of a TSSD is cleared to denote the fact that the
corresponding TSS is a System Segment.

79

Understanding the Linux Kernel

The Type field is set to 11 if the TSSD refers to the TSS of the process currently running on
the CPU; otherwise it is set to 9. The second least significant bit of the Type field is called
the Busy bit since it discriminates between the values 9 and 11.7

" Linux does not make use of a hardware feature that uses the Type field in a peculiar way to allow the automatic reexecution of a previously
suspended process. Further details may be found in the Pentium manuals.

1 Since the processor performs a "bus lock" before modifying this bit, a multitasking operating system may test the bit in order to check whether a
CPU is trying to switch to a process that's already executing. However, Linux does not make use of this hardware feature (see Chapter 11).

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base
address is stored in the gdtr register. The tr register contains the TSSD Selector of the
process currently running on the CPU. It also includes two hidden, nonprogrammable fields:
the Base and rLimit fields of the TSSD. In this way, the processor can address the TSS
directly without having to retrieve the TSS address from the GDT.

As stated earlier, Linux stores part of the hardware context in the tss field of the process
descriptor. This means that when the kernel creates a new process, it must also initialize the
TSSD so that it refers to the tss field. Even though the hardware context is saved via
software, the TSS segment still plays an important role because it may contain the I/O
Permission Bit Map. In fact, when a process executes an in or out I/O instruction in User
Mode, the control unit performs the following operations:

1. Tt checks the IOPL field in the eflags register. If it is set to 3 (User Mode process
enabled to access I/O ports), it performs the next check; otherwise, it raises a "General
protection error" exception.

2. It accesses the tr register to determine the current TSS, and thus the proper 1/O
Permission Bit Map.

3. It checks the bit corresponding to the I/O port specified in the I/O instruction. If it is
cleared, the instruction is executed; otherwise, the control unit raises a "General
protection error" exception.

3.2.3 The switch_to Macro

The switch to macro performs a process switch. It makes use of two parameters denoted as
prev and next: the first is the process descriptor pointer of the process to be suspended, while
the second is the process descriptor pointer of the process to be executed on the CPU. The
macro is invoked by the schedule () function to schedule a new process on the CPU (see
Chapter 10).

The switch to macro is one of the most hardware-dependent routines of the kernel. Here is a
description of what it does on an Intel 80x86 microprocessor:

1. Saves the values of prev and next in the eax and edx registers, respectively (these
values were previously stored in ebx and ecx):

movl %ebx, %eax
movl %ecx, %edx

80

Understanding the Linux Kernel

Saves the contents of the esi, edi, and ebp registers in the prev Kernel Mode stack.
They must be saved because the compiler assumes that they will stay unchanged until
the end of switch to:

pushl %esi
pushl %edi
pushl %ebp

Saves the content of esp in prev->tss.esp so that the field points to the top of the
prev Kernel Mode stack:

movl %esp, 532 (%ebx)

Loads next->tss.esp in esp. From now on, the kernel operates on the Kernel Mode
stack of next, so this instruction performs the actual context switch from prev to
next. Since the address of a process descriptor is closely related to that of the Kernel
Mode stack (as explained in Section 3.1.2 earlier in this chapter), changing the kernel
stack means changing the current process:

movl 532 (%ecx), %esp

Saves the address labeled 1 (shown later in this section) in prev->tss.eip. When the
process being replaced resumes its execution, the process will execute the instruction
labeled as 1:

movl $1f, 508 (%ebx)

On the Kernel Mode stack of next, pushes the next->tss.eip value, in most cases
the address labeled 1:

pushl 508 (%ecx)

Jumps to the switch to() C function:
jmp switch to

This function acts on the prev and next parameters that denote the former process and
the new process. This function call is different from the average function call, though,
because switch to() takes the prev and next parameters from the eax and edx
where we saw earlier they were stored, not from the stack like most functions. To
force the function to go to the registers for its parameters, the kernel makes use of
__attribute _ and regparm keywords, which are nonstandard extensions of the C
language implemented by the gcc compiler. The switch to() function is declared
as follows in the include /asm-i386 /system.h header file:

__switch to(struct task struct *prev,
struct task struct *next)
___attribute (regparm(3))

The function completes the process switch started by the switch to() macro. It

includes extended inline Assembly language code that makes for rather complex
reading, because the code refers to registers by means of special symbols. In order to

81

Understanding the Linux Kernel

simplify the following discussion, we will describe the Assembly language
instructions yielded by the compiler:

a. Saves the contents of the esi and ebx registers in the Kernel Mode stack of
next, then loads ecx and ebx with the parameters prev and next, respectively:

pushl %esi
pushl %ebx
movl %eax, %ecx
movl %edx, %ebx

b. Executes the code yielded by the unlazy fpu() macro (see Section 3.2.4
later in this chapter) to optionally save the contents of the mathematical
coprocessor registers. As we shall see later, there is no need to load the floating
point registers of next while performing the context switch:

unlazy fpu(prev);

c. Clears the Busy bit (see Section 3.2.2 earlier in this chapter) of next and load
its TSS selector in the tr register:

movl 712 (%ebx), %eax

andb $0xf8, %al

andl SOxfffffdff, gdt table+4 (%eax)
ltr 712 (%ebx)

The preceding code is fairly dense. It operates on:
The process's TSSD selector, which is copied from next->tss.tr to eax.

The 8 least significant bits of the selector, which are stored in a1.” The 3 least
significant bits of a1 contain the rpL and the T1 fields of the TSSD.

1 The ax register consists of the 16 least significant bits of €aX. Moreover, the @1 register consists of the 8 least significant bits of @ X, while
ah consists of the 8 most significant bits of @ X. Similar notations apply to the €0 X, eCX, and €dX registers. The 13 most significant bits of 2 X
specify the TSSD index within the GDT.

Clearing the 3 least significant bits of a1 leaves the TSSD index shifted to the
left 3 bits (that is, multiplied by 8). Since the TSSDs are 8 bytes long, the
index value multiplied by 8 yields the relative address of the TSSD within the
GDT. The gdt_table+4 (3eax) notation refers to the address of the fifth byte
of the TSSD. The and1 instruction clears the Busy bit in the fifth byte, while
the 1tr instruction places the next->tss.tr selector in the tr register and
again sets the Busy bit."”

7 Linux must clear the Bus y bit before loading the value in £ T, or the control unit will raise an exception.

d. Stores the contents of the fs and gs segmentation registers in prev->tss. fs
and prev->tss.gs, respectively:

movl %fs, 564 (%ecx)
movl %gs, 568 (%ecx)

82

Understanding the Linux Kernel

e. Loads the 1dtr register with the next->tss.1dt value. This needs to be done
only if the Local Descriptor Table used by prev differs from the one used by

next:

movl 920 (%ebx), %edx
movl 920 (%ecx), $Seax
movl 112 (%eax), %e
cmpl %eax, 112 (%edx
Je 2f

11dt 572 (%ebx)

In practice, the check is made by referring to the tss.segments field (at offset
112 in the process descriptor) instead of the tss.1dt field.

f. Loads the cr3 register with the next->tss.cr3 value. This can be avoided if
prev and next are lightweight processes that share the same Page Global
Directory. Since the PGD address of prev is never changed, it doesn't need to
be saved.

movl 504 (%ebx), $eax
cmpl %eax, 504 (%ecx)
je 3f
movl %eax, %$cr3

g. Load the fs and gs segment registers with the values contained in next-
>tss.fs and next->tss.gs, respectively. This step logically complements the
actions performed in step 7d.

movl 564 (%ebx), %fs
movl 568 (%ebx), %gs

The code is actually more intricate, as an exception might be raised by the
CPU when it detects an invalid segment register value. The code takes this
possibility into account by adopting a "fix-up" approach (see Section 8.2.6 in
Chapter 8).

h. Loads the eight debug registers® with the next->tss.debugreg(i] values (0

<i £7). This is done only if next was using the debug registers when it was
suspended (that is, field next->tss.debugreg[7] is not 0). As we shall see in
Chapter 19, these registers are modified only by writing in the TSS, thus there
is no need to save them:

*I The Intel 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas may be defined. Whenever a
monitored process issues a linear address included in one of the breakpoints, an exception occurs.

cmpl $0,760 (%ebx)
je 4f

movl 732 (%ebx), %esi
movl %esi, $db0

movl 736 (%ebx),%esi
movl %esi, $dbl

movl 740 (%ebx), %esi

83

Understanding the Linux Kernel

movl %esi, $db2
movl 744 (%ebx),%esi
movl %esi, $db3
movl 756 (%ebx), %esi
movl %esi, $db6
movl 760 (%ebx), $ebx
movl %ebx, $db7

i. The function ends up by restoring the original values of the ebx and esi
registers, pushed on the stack in step 7a:

popl S%Sebx
popl %esi
ret

When the ret instruction is executed, the control unit fetches the value to be
loaded in the eip program counter from the stack. This value is usually the
address of the instruction shown in the following item and labeled 1, which
was stored in the stack by the switch to macro. If, however, next was never
suspended before because it is being executed for the first time, the function
will find the starting address of the ret from fork() function (see Section
3.3.1 later in this chapter).

8. The remaining part of the switch to macro includes a few instructions that restore
the contents of the esi, edi, and ebp registers. The first of these three instructions is
labeled 1:

1: popl %ebp
popl %edi
popl S%Sesi

Notice how these pop instructions refer to the kernel stack of the prev process. They
will be executed when the scheduler selects prev as the new process to be executed on
the CPU, thus invoking switch to with prev as second parameter. Therefore, the esp
register points to the prev 's Kernel Mode stack.

3.2.4 Saving the Floating Point Registers

Starting with the Intel 80486, the arithmetic floating point unit (FPU) has been integrated into
the CPU. The name mathematical coprocessor continues to be used in memory of the days
when floating point computations were executed by an expensive special-purpose chip. In
order to maintain compatibility with older models, however, floating point arithmetic
functions are performed by making use of ESCAPE instructions, which are instructions with
some prefix byte ranging between 0xds8 and 0xdf. These instructions act on the set of floating
point registers included in the CPU. Clearly, if a process is using ESCAPE instructions, the
contents of the floating point registers belong to its hardware context.

Recently, Intel introduced a new set of Assembly instructions into its microprocessors. They
are called MMX instructions and are supposed to speed up the execution of multimedia
applications. MMX instructions act on the floating point registers of the FPU. The obvious
disadvantage of this architectural choice is that programmers cannot mix floating point

84

Understanding the Linux Kernel

instructions and MMX instructions. The advantage is that operating system designers can
ignore the new instruction set, since the same facility of the task-switching code for saving the
state of the floating point unit can also be relied upon to save the MMX state.

The Intel 80x86 microprocessors do not automatically save the floating point registers in the
TSS. However, they include some hardware support that enables kernels to save these
registers only when needed. The hardware support consists of a Ts (Task-Switching) flag in
the cro register, which obeys the following rules:

e Every time a hardware context switch is performed, the Ts flag is set.
e Every time an ESCAPE or an MMX instruction is executed when the Ts flag is set, the
control unit raises a "Device not available" exception (see Chapter 4).

The TS flag allows the kernel to save and restore the floating point registers only when really
needed. To illustrate how it works, let's suppose that a process A is using the mathematical
coprocessor. When a context switch occurs, the kernel sets the TS flag and saves the floating
point registers into the TSS of process A. If the new process B does not make use of the
mathematical coprocessor, the kernel won't need to restore the contents of the floating point
registers. But as soon as B tries to execute an ESCAPE or MMX instruction, the CPU raises a
"Device not available" exception, and the corresponding handler loads the floating point
registers with the values saved in the TSS of process B.

Let us now describe the data structures introduced to handle selective saving of floating point
registers. They are stored in the tss.i387 subfield, whose format is described by the
1387 hard struct structure. The process descriptor also stores the value of two additional
flags:

e The pr useDprFpU flag included in the f1ags field. It specifies whether the process used
the floating point registers when it was last executing on the CPU.

e The used math field. This flag specifies whether the contents of the tss.i387
subfield are significant. The flag is cleared (not significant) in two cases:

o When the process starts executing a new program by invoking an execve ()
system call (see Chapter 19). Since control will never return to the former
program, the data currently stored in tss.1i387 will never be used again.

o When a process that was executing a program in User Mode starts executing a
signal handler procedure (see Chapter 9). Since signal handlers are
asynchronous with respect to the program execution flow, the floating point
registers could be meaningless to the signal handler. However, the kernel saves
the floating point registers in tss. 1387 before starting the handler and restores
them after the handler terminates. Therefore, a signal handler is allowed to
make use of the mathematical coprocessor, but it cannot carry on a floating
point computation started during the normal program execution flow.

As stated earlier, the switch to() function executes the unlazy fpu macro. This macro
yields the following code:

if (prev->flags & PF USEDFPU) {
/* save the floating point registers */
asm("fnsave %0" : "=m" (prev->tss.i387));
/* wait until all data has been transferred */
asm("fwait") ;

85

Understanding the Linux Kernel

prev->flags &= ~PF USEDFPU;
/* set the TS flag of cr0 to 1 */
stts()

The stts() macro sets the Ts flag of cro. In practice, it yields the following Assembly
language instructions:

movl %cr0, %eax
orb $8, %al
movl %eax, %cr0

The contents of the floating point registers are not restored right after a process resumes
execution. However, the Ts flag of cr0 has been set by unlazy fpu(). Thus, the first time
the process tries to execute an ESCAPE or MMX instruction, the control unit raises a "Device
not available" exception, and the kernel (more precisely, the exception handler involved by
the exception) runs the math state restore() function:

void math state restore(void) {

asm("clts"); /* clear the TS flag of cr0 */

if (current->used math)
/* load the floating point registers */
asm("frstor %0": :"m" (current->tss.i387));

else {
/* initialize the floating point unit */
asm("fninit");
current->used math = 1;

}
current->flags |= PF USEDFPU;

Since the process is executing an ESCAPE instruction, this function sets the pF USEDFPU flag.
Moreover, the function clears the Ts flag of cr0 so that further ESCAPE or MMX instructions
executed by the process won't trigger the "Device not available" exception. If the data stored
in the tss.i387 field is valid, the function loads the floating point registers with the proper
values. Otherwise, the FPU is reinitialized and all its registers are cleared.

3.3 Creating Processes

Unix operating systems rely heavily on process creation to satisfy user requests. As an
example, the shell process creates a new process that executes another copy of the shell
whenever the user enters a command.

Traditional Unix systems treat all processes in the same way: resources owned by the parent
process are duplicated, and a copy is granted to the child process. This approach makes
process creation very slow and inefficient, since it requires copying the entire address space of
the parent process. The child process rarely needs to read or modify all the resources already
owned by the parent; in many cases, it issues an immediate execve () and wipes out the
address space so carefully saved.

Modern Unix kernels solve this problem by introducing three different mechanisms:

86

Understanding the Linux Kernel

e The Copy On Write technique allows both the parent and the child to read the same
physical pages. Whenever either one tries to write on a physical page, the kernel
copies its contents into a new physical page that is assigned to the writing process. The
implementation of this technique in Linux is fully explained in Chapter 7.

o Lightweight processes allow both the parent and the child to share many per-process
kernel data structures, like the paging tables (and therefore the entire User Mode
address space) and the open file tables.

e The vfork() system call creates a process that shares the memory address space of
its parent. To prevent the parent from overwriting data needed by the child, the
parent's execution is blocked until the child exits or executes a new program. We'll
learn more about the vfork () system call in the following section.

3.3.1 The clone(), fork(), and vfork() System Calls

Lightweight processes are created in Linux by using a function named clone(), which
makes use of four parameters:

fn
Specifies a function to be executed by the new process; when the function returns, the
child terminates. The function returns an integer, which represents the exit code for the
child process.

arg
Pointer to data passed to the £n () function.

flags

Miscellaneous information. The low byte specifies the signal number to be sent to the
parent process when the child terminates; the stGCHLD signal is generally selected.
The remaining 3 bytes encode a group of clone flags, which specify the resources
shared between the parent and the child process. The flags, when set, have the
following meanings:

CLONE VM

The memory descriptor and all page tables (see Chapter 7).

CLONE FS:

The table that identifies the root directory and the current working directory.
CLONE FILES:

The table that identifies the open files (see Chapter 12).

CLONE SIGHAND :

The table that identifies the signal handlers (see Chapter 9).

87

Understanding the Linux Kernel

CLONE PID:

The PID."

I As we shall see later, the CLONE_ PID flag can be used only by a process having a PID of 0; in a uniprocessor system,
no two lightweight processes have the same PID.

CLONE PTRACE :

If a ptrace() system call is causing the parent process to be traced, the child will
also be traced.

CLONE VFORK :

Used for the vfork () system call (see later in this section).

child stack

Specifies the User Mode stack pointer to be assigned to the esp register of the child
process. If it is equal to 0, the kernel assigns to the child the current parent stack
pointer. Thus, the parent and child temporarily share the same User Mode stack. But
thanks to the Copy On Write mechanism, they usually get separate copies of the User
Mode stack as soon as one tries to change the stack. However, this parameter must
have a non-null value if the child process shares the same address space as the parent.

__clone() is actually a wrapper function defined in the C library (see Section 8.1 in Chapter
8), which in turn makes use of a Linux system call hidden to the programmer, named clone (
). The clone () system call receives only the flags and child stack parameters; the new
process always starts its execution from the instruction following the system call invocation.
When the system call returns to the clone() function, it determines whether it is in the
parent or the child and forces the child to execute the £n () function.

The traditional fork() system call is implemented by Linux as a clone() whose first
parameter specifies a sTGCHLD signal and all the clone flags cleared and whose second
parameter is 0.

The old vfork () system call, described in the previous section, is implemented by Linux as
a clone() whose first parameter specifies a sTGcHLD signal and the flags cLoNE vM and
cLoNE VFORK and whose second parameter is equal to 0.

When either a clone(), fork(), or vfork() system call is issued, the kernel invokes the
do_fork () function, which executes the following steps:

1. Ifthe cLone pID flag has been specified, the do fork () function checks whether the
PID of the parent process is not null; if so, it returns an error code. Only the swapper
process is allowed to set crLone pID; this is required when initializing a
multiprocessor system (see Section 11.4.1 in Chapter 11).

88

Understanding the Linux Kernel

The alloc task struct() function is invoked in order to get a new 8 KB union
task union memory area to store the process descriptor and the Kernel Mode stack of
the new process.

The function follows the current pointer to obtain the parent process descriptor and
copies it into the new process descriptor in the memory area just allocated.

A few checks occur to make sure the user has the resources necessary to start a new
process. First, the function checks whether current-
>r1im[RLIMIT NPROC].rlim cur is smaller than or equal to the current number of
processes owned by the user: if so, an error code is returned. The function gets the
current number of processes owned by the user from a per-user data structure named
user_ struct. This data structure can be found through a pointer in the user field of
the process descriptor.

The find empty process() function is invoked. If the owner of the parent process
is not the superuser, this function checks whether nr tasks (the total number of
processes in the system) is smaller than NR_TASKS-MIN TASKS LEFT FOR ROOT.'" If
S0, find empty process() Invokes get free taskslot() to find a free entry in
the task array. Otherwise, it returns an error.

191 A few processes, usually four, are reserved to the superuser; MIN TASKS LEFT FOR ROOT refers to this number. Thus, even if a
user is allowed to overload the system with a "fork bomb" (a one-line program that forks itself forever), the superuser can log in, kill some processes,
and start searching for the guilty user.

6.

9.

The function writes the new process descriptor pointer into the previously obtained
task entry and sets the tarray ptr field of the process descriptor to the address of
that entry (see Section 3.1.2).

If the parent process makes use of some kernel modules, the function increments the
corresponding reference counters. Each kernel module has its own reference counter,
which indicates how many processes are using it. A module cannot be removed unless
its reference counter is null (see Appendix B).

The function then updates some of the flags included in the f1ags field that have been
copied from the parent process:

a. It clears the pr superpPRIV flag, which indicates whether the process has used
any of its superuser privileges.

It clears the pr_UseDFPU flag.

c. It clears the pF PTRACED flag unless the CLONE PTRACE parameter flag is set.
When set, the cLoNE pTRACE flag means that the parent process is being traced
with the ptrace () function, so the child should be traced too.

d. It clears pF TrRACESYS flag unless, once again, the CLONE PTRACE parameter
flag is set.

e. It sets the pr FORKNOEXEC flag, which indicates that the child process has not
yet issued an execve () system call.

f. It sets the pF vFORK flag according to the value of the cLoNE vFORK flag. This
specifies that the parent process must be woken up whenever the process (the
child) issues an execve () system call or terminates.

Now the function has taken almost everything that it can use from the parent process;
the rest of its activities focus on setting up new resources in the child and letting the
kernel know that this new process has been born. First, the function invokes the
get _pid() function to obtain a new PID, which will be assigned to the child process
(unless the cLonNE pP1D flag is set).

89

Understanding the Linux Kernel

10. The function then updates all the process descriptor fields that cannot be inherited
from the parent process, such as the fields that specify the process parenthood

relationships.
11. Unless specified differently by the flags parameter, it invokes copy files(),
copy fs(), copy sighand(), and copy mm() to create new data structures and

copy into them the values of the corresponding parent process data structures.

12. It invokes copy thread() to initialize the Kernel Mode stack of the child process
with the values contained in the CPU registers when the clone () call was issued
(these values have been saved in the Kernel Mode stack of the parent, as described in
Chapter 8). However, the function forces the value into the field corresponding to the
eax register. The tss.esp field of the TSS of the child process is initialized with the
base address of the Kernel Mode stack, and the address of an Assembly language
function (ret from fork())is stored in the tss.eip field.

13. It uses the SET LINKS macro to insert the new process descriptor in the process list.

14. It uses the hash pid() function to insert the new process descriptor in the pidhash
hash table.

15. It increments the values of nr tasks and current->user->count.

16. It sets the state field of the child process descriptor to TAsk RUNNING and then
invokes wake up process() to insert the child in the runqueue list.

17. If the cLonE vroORK flag has been specified, the function suspends the parent process
until the child releases its memory address space (that is, until the child either
terminates or executes a new program). In order to do this, the process descriptor
includes a kernel semaphore called vfork sem (see Section 11.2.4 in Chapter 11).

18. It returns the PID of the child, which will be eventually be read by the parent process
in User Mode.

Now we have a complete child process in the runnable state. But it isn't actually running. It is
up to the scheduler to decide when to give the CPU to this child. At some future process
switch, the schedule will bestow this favor on the child process by loading a few CPU
registers with the values of the tss field of the child's process descriptor. In particular, esp
will be loaded with tss.esp (that is, with the address of child's Kernel Mode stack), and eip
will be loaded with the address of ret from fork(). This Assembly language function, in
turn, invokes the ret from sys call() function (see Chapter 8), which reloads all other
registers with the values stored in the stack and forces the CPU back to User Mode. The new
process will then start its execution right at the end of the fork(), vfork(), or clone()
system call. The value returned by the system call is contained in eax: the value is for the
child and equal to the PID for the child's parent.

The child process will execute the same code as the parent, except that the fork will return a
null PID. The developer of the application can exploit this fact, in the manner familiar to Unix
programmers, by inserting a conditional statement in the program based on the PID value that
forces the child to behave differently from the parent process.

3.3.2 Kernel Threads

Traditional Unix systems delegate some critical tasks to intermittently running processes,
including flushing disk caches, swapping out unused page frames, servicing network
connections, and so on. Indeed, it is not efficient to perform these tasks in strict linear fashion;
both their functions and the end user processes get better response if they are scheduled in the
background. Since some of the system processes run only in Kernel Mode, modern operating

90

Understanding the Linux Kernel

systems delegate their functions to kermel threads, which are not encumbered with the
unnecessary User Mode context. In Linux, kernel threads differ from regular processes in the
following ways:

o Each kernel thread executes a single specific kernel function, while regular processes
execute kernel functions only through system calls.

o Kernel threads run only in Kernel Mode, while regular processes run alternatively in
Kernel Mode and in User Mode.

e Since kernel threads run only in Kernel Mode, they use only linear addresses greater
than PAGE OFFSET. Regular processes, on the other hand, use all 4 gigabytes of linear
addresses, either in User Mode or in Kernel Mode.

3.3.2.1 Creating a kernel thread

The kernel thread() function creates a new kernel thread and can be executed only by
another kernel thread. The function contains mostly inline Assembly language code, but it is
somewhat equivalent to the following:

int kernel thread(int (*fn) (void *), void * arg,
unsigned long flags)
{

pid_t p;

p = clone(0, flags | CLONE VM);

if (p) /* parent */
return p;

else { /* child */
fn(arqg) ;
exit();

}

3.3.2.2 Process 0

The ancestor of all processes, called process 0 or, for historical reasons, the swapper process,
is a kernel thread created from scratch during the initialization phase of Linux by the
start _kernel () function (see Appendix A). This ancestor process makes use of the
following data structures:

e A process descriptor and a Kernel Mode stack stored in the init task union
variable. The init task and init stack macros yield the addresses of the process
descriptor and the stack, respectively.

o The following tables, which the process descriptor points to:

init mm

init mmap

init fs

init files

init signals

O O O O O

The tables are initialized, respectively, by the following macros:

INIT MM
INIT MMAP
INIT FS

INIT FILES

O O O O

91

Understanding the Linux Kernel

o INIT SIGNALS
e A TSS segment, initialized by the INIT TSss macro.
e Two Segment Descriptors, namely a TSSD and an LDTD, which are stored in the
GDT.
e A Page Global Directory stored in swapper pg dir, which may be considered as the
kernel Page Global Directory since it is used by all kernel threads.

The start kernel() function initializes all the data structures needed by the kernel,
enables interrupts, and creates another kernel thread, named process I, more commonly
referred to as the init process :

kernel thread(init, NULL,
CLONE FS | CLONE FILES | CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares with process all per-process kernel data
structures. Moreover, when selected from the scheduler, the init process starts executing the
init () function.

After having created the init process, process executes the cpu idle() function, which
essentially consists of repeatedly executing the h1t Assembly language instruction with the
interrupts enabled (see Chapter 4). Process is selected by the scheduler only when there are no
other processes in the TASK_RUNNING state.

3.3.2.3 Process 1

The kernel thread created by process executes the init () function, which in turn invokes
the kernel thread() function four times to initiate four kernel threads needed for routine
kernel tasks:

kernel thread(bdflush, NULL,

CLONE FS | CLONE FILES | CLONE SIGHAND) ;
kernel thread(kupdate, NULL,

CLONE FS | CLONE FILES | CLONE SIGHAND) ;
kernel thread(kpiod, NULL,

CLONE FS | CLONE FILES | CLONE SIGHAND) ;
kernel thread(kswapd, NULL,

CLONE FS | CLONE FILES | CLONE SIGHAND) ;

As a result, four additional kernel threads are created to handle the memory cache and the
swapping activity:

kflushd (also bdflush)

Flushes "dirty" buffers to disk to reclaim memory, as described in Section 14.1.5 in
Chapter 14

kupdate

Flushes old "dirty" buffers to disk to reduce risks of filesystem inconsistencies, as
described in Section 14.1.5 in Chapter 14

kpiod

92

Understanding the Linux Kernel

Swaps out pages belonging to shared memory mappings, as described in
Section 16.5.2 in Chapter 16,

kswapd
Performs memory reclaiming, as described in Section 16.7.6 in Chapter 16

Then init () invokes the execve () system call to load the executable program init. As a
result, the init kernel thread becomes a regular process having its own per-process kernel data
structure. The init process never terminates, since it creates and monitors the activity of all the
processes that implement the outer layers of the operating system.

3.4 Destroying Processes

Most processes "die" in the sense that they terminate the execution of the code they were
supposed to run. When this occurs, the kernel must be notified so that it can release the
resources owned by the process; this includes memory, open files, and any other odds and
ends that we will encounter in this book, such as semaphores.

The usual way for a process to terminate is to invoke the exit () system call. This system
call may be inserted by the programmer explicitly. Additionally, the exit () system call is
always executed when the control flow reaches the last statement of the main procedure (the
main () function in C programs).

Alternatively, the kernel may force a process to die. This typically occurs when the process
has received a signal that it cannot handle or ignore (see Chapter 9) or when an unrecoverable
CPU exception has been raised in Kernel Mode while the kernel was running on behalf of the
process (see Chapter 4).

3.4.1 Process Termination

All process terminations are handled by the do exit() function, which removes most
references to the terminating process from kernel data structures. The do exit () function
executes the following actions:

1. Sets the pr ExITING flag in the £1ag field of the process descriptor to denote that the
process is being eliminated.

2. Removes, if necessary, the process descriptor from an IPC semaphore queue via the
sem exit() function (see Chapter 18) or from a dynamic timer queue via the
del timer () function (see Chapter 5).

3. Examines the process's data structures related to paging, filesystem, open file
descriptors, and signal handling, respectively, with the exit mm(),
__exit files(), exit fs(), and exit sighand() functions. These
functions also remove any of these data structures if no other process is sharing it.

4. Sets the state field of the process descriptor to Task zomBIE. We shall see what
happens to zombie processes in the following section.

5. Sets the exit code field of the process descriptor to the process termination code.
This value is either the exit () system call parameter (normal termination), or an
error code supplied by the kernel (abnormal termination).

93

Understanding the Linux Kernel

6. Invokes the exit notify() function to update the parenthood relationships of both
the parent process and the children processes. All children processes created by the
terminating process become children of the init process.

7. Invokes the schedule() function (see Chapter 10) to select a new process to run.
Since a process in a TASK_zOMBIE state is ignored by the scheduler, the process will
stop executing right after the switch to macro in schedule() is invoked.

3.4.2 Process Removal

The Unix operating system allows a process to query the kernel to obtain the PID of its parent
process or the execution state for any of its children. A process may, for instance, create a
child process to perform a specific task and then invoke a wait ()-like system call to check
whether the child has terminated. If the child has terminated, its termination code will tell the
parent process if the task has been carried out successfully.

In order to comply with these design choices, Unix kernels are not allowed to discard data
included in a process descriptor field right after the process terminates. They are allowed to
do so only after the parent process has issued a wait ()-like system call that refers to the
terminated process. This is why the Task zoMBIE state has been introduced: although the
process is technically dead, its descriptor must be saved until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the system
might be flooded with zombie processes that might end up using all the available task
entries. As mentioned earlier, this problem is solved by forcing all orphan processes to
become children of the init process. In this way, the init process will destroy the zombies
while checking for the termination of one of its legitimate children through a wait ()-like
system call.

The release() function releases the process descriptor of a zombie process by executing
the following steps:

1. Invokes the free uid() function to decrement by 1 the number of processes created
up to now by the user owner of the terminated process. This value is stored in the
user struct structure mentioned earlier in the chapter.

2. Invokes add free taskslot() to free the entry in task that points to the process
descriptor to be released.

3. Decrements the value of the nr tasks variable.

4. Invokes unhash pid() to remove the process descriptor from the pidhash hash
table.

5. Uses the REMOVE LINKS macro to unlink the process descriptor from the process list.

6. Invokes the free task struct() function to release the 8 KB memory area used to
contain the process descriptor and the Kernel Mode stack.

3.5 Anticipating Linux 2.4

The new kernel supports a huge number of users and groups, because it makes use of 32-bit
UIDs and GIDs.

94

Understanding the Linux Kernel

In order to raise the hardcoded limit on the number of processes, Linux 2.4 removes the
tasks array, which previously included pointers to all process descriptors.

Moreover, Linux 2.4 no longer includes a Task State Segment for each process. The tss field
in the process descriptor has thus been replaced by a pointer to a data structure storing
the information that was previously in the TSS, namely the register contents and the I/O
bitmap. Linux 2.4 makes use of just one TSS for each CPU in the system. When a context
switch occurs, the kernel uses the per-process data structures to save and restore the register
contents and to fill the I/O bitmap in the TSS of the executing CPU.

Linux 2.4 enhances wait queues. Sleeping processes are now stored in lists implemented
through the efficient 1ist head data type. Moreover, the kernel is now able to wake up just
a single process that is sleeping in a wait queue, thus greatly improving the efficiency of
semaphores.

Finally, Linux 2.4 adds a new flag to the clone() system call: cLONE PARENT allows

the new lightweight process to have the same parent as the process that invoked the system
call.

95

Understanding the Linux Kernel

Chapter 4. Interrupts and Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions executed by
a processor. Such events correspond to electrical signals generated by hardware circuits both
inside and outside of the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts:

e Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only after
terminating the execution of an instruction.

e Asynchronous interrupts are generated by other hardware devices at arbitrary times
with respect to the CPU clock signals.

Intel 80x86 microprocessor manuals designate synchronous and asynchronous interrupts as
exceptions and interrupts, respectively. We'll adopt this classification, although we'll
occasionally use the term "interrupt signal" to designate both types together (synchronous as
well as asynchronous).

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a keystroke
from a user sets off an interrupt. Exceptions, on the other hand, are caused either by
programming errors or by anomalous conditions that must be handled by the kernel. In the
first case, the kernel handles the exception by delivering to the current process one of the
signals familiar to every Unix programmer. In the second case, the kernel performs all the
steps needed to recover from the anomalous condition, such as a page fault or a request (via
an int instruction) for a kernel service.

We start by describing in Section 4.1 the motivation for introducing such signals. We then
show how the well-known IRQs (Interrupt ReQuests) issued by /O devices give rise to
interrupts, and we detail how Intel 80x86 processors handle interrupts and exceptions at the
hardware level. Next, we illustrate in Section 4.4 how Linux initializes all the data structures
required by the Intel interrupt architecture. The remaining three sections describe how Linux
handles interrupt signals at the software level.

One word of caution before moving on: we cover in this chapter only "classic" interrupts
common to all PCs; we do not cover the nonstandard interrupts of some architectures.
For instance, laptops generate types of interrupts not discussed here. Other types of interrupts
specific to multiprocessor architecture will be briefly described in Chapter 11.

4.1 The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to code outside
the normal flow of control. When an interrupt signal arrives, the CPU must stop what it's
currently doing and switch to a new activity; it does this by saving the current value of the
program counter (i.e., the content of the eip and cs registers) in the Kernel Mode stack and
by placing an address related to the interrupt type into the program counter.

There are some things in this chapter that will remind you of the context switch we described
in the previous chapter, carried out when a kernel substitutes one process for another.

96

Understanding the Linux Kernel

But there is a key difference between interrupt handling and process switching: the code
executed by an interrupt or by an exception handler is not a process. Rather, it is a kernel
control path that runs on behalf of the same process that was running when the interrupt
occurred (see Section 4.3). As a kernel control path, the interrupt handler is lighter than a
process (it has less context and requires less time to set up or tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel, since it must
satisfy the following constraints:

Interrupts can come at any time, when the kernel may want to finish something else it
was trying to do. The kernel's goal is therefore to get the interrupt out of the way as
soon as possible and defer as much processing as it can. For instance, suppose a block
of data has arrived on a network line. When the hardware interrupts the kernel, it could
simply mark the presence of data, give the processor back to whatever was running
before, and do the rest of the processing later (like moving the data into a buffer where
its recipient process can find it and restarting the process). The activities that the
kernel needs to perform in response to an interrupt are thus divided into two parts: a
top half that the kernel executes right away and a bottom half that is left for later. The
kernel keeps a queue pointing to all the functions that represent bottom halves waiting
to be executed and pulls them off the queue to execute them at particular points in
processing.

Since interrupts can come at any time, the kernel might be handling one of them while
another one (of a different type) occurs. This should be allowed as much as possible
since it keeps the I/O devices busy (see Section 4.3). As a result, the interrupt handlers
must be coded so that the corresponding kernel control paths can be executed in a
nested manner. When the last kernel control path terminates, the kernel must be able
to resume execution of the interrupted process or switch to another process if the
interrupt signal has caused a rescheduling activity.

Although the kernel may accept a new interrupt signal while handling a previous one,
some critical regions exist inside the kernel code where interrupts must be disabled.
Such critical regions must be limited as much as possible since, according to the
previous requirement, the kernel, and in particular the interrupt handlers, should run
most of the time with the interrupts enabled.

4.2 Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:

Interrupts:
Maskable interrupts
Sent to the INTR pin of the microprocessor. They can be disabled by clearing the 1F

flag of the eflags register. All IRQs issued by I/O devices give rise to maskable
interrupts.

97

Understanding the Linux Kernel

Nonmaskable interrupts

Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not
disabled by clearing the 1F flag. Only a few critical events, such as hardware failures,
give rise to nonmaskable interrupts.

Exceptions:
Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an
instruction. These are further divided into three groups, depending on the value of the
eip register that is saved on the Kernel Mode stack when the CPU control unit raises
the exception:

Faults

The saved value of eip is the address of the instruction that caused the fault, and
hence that instruction can be resumed when the exception handler terminates. As we
shall see in Section 7.4 in Chapter 7, resuming the same instruction is necessary
whenever the handler is able to correct the anomalous condition that caused the
exception.

Traps

The saved value of eip is the address of the instruction that should be executed after
the one that caused the trap. A trap is triggered only when there is no need to
reexecute the instruction that terminated. The main use of traps is for debugging
purposes: the role of the interrupt signal in this case is to notify the debugger that a
specific instruction has been executed (for instance, a breakpoint has been reached
within a program). Once the user has examined the data provided by the debugger, she
may ask that execution of the debugged program resume starting from the next
instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to store a
meaningful value in the eip register. Aborts are caused by hardware failures or by
invalid values in system tables. The interrupt signal sent by the control unit is an
emergency signal used to switch control to the corresponding abort exception handler.
This handler has no choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3
instructions; the into (check for overflow) and bound (check on address bound)
instructions also give rise to a programmed exception when the condition they are
checking is not true. Programmed exceptions are handled by the control unit as traps;
they are often called software interrupts. Such exceptions have two common uses: to
implement system calls, and to notify a debugger of a specific event (see Chapter 8).

98

Understanding the Linux Kernel

4.2.1 Interrupt and Exception Vectors

Each interrupt or exception is identified by a number ranging from to 255; for some unknown
reason, Intel calls this 8-bit unsigned number a vector. The vectors of nonmaskable interrupts
and exceptions are fixed, while those of maskable interrupts can be altered by programming
the Interrupt Controller (see Section 4.2.2).

Linux uses the following vectors:

e Vectors ranging from to 31 correspond to exceptions and nonmaskable interrupts.

e Vectors ranging from 32 to 47 are assigned to maskable interrupts, that is, to interrupts
caused by IRQs.

e The remaining vectors ranging from 48 to 255 may be used to identify software
interrupts. Linux uses only one of them, namely the 128 or 0x80 vector, which it uses
to implement system calls. When an int 0x80 Assembly instruction is executed by a
process in User Mode, the CPU switches into Kernel Mode and starts executing the
system call() kernel function (see Chapter 8).

4.2.2 IRQs and Interrupts

Each hardware device controller capable of issuing interrupt requests has an output line
designated as an /RQ (Interrupt ReQuest). All existing IRQ lines are connected to the input
pins of a hardware circuit called the Interrupt Controller, which performs the following
actions:

1. Monitors the IRQ lines, checking for raised signals.
2. If araised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.

b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to
read it via the data bus.

c. Sends a raised signal to the processor INTR pin—that is, issues an interrupt.

d. Waits until the CPU acknowledges the interrupt signal by writing into one of
the Programmable Interrupt Controllers (PIC) I/O ports; when this occurs,
clears the INTR line.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from 0; thus, the first IRQ line is usually
denoted as IRQO. Intel's default vector associated with IRQn is n+32; as mentioned before,
the mapping between IRQs and vectors can be modified by issuing suitable I/O instructions to
the Interrupt Controller ports.

Figure 4-1 illustrates a typical connection "in cascade" of two Intel 8259A PICs that can
handle up to 15 different IRQ input lines. Notice that the INT output line of the second PIC is
connected to the IRQ2 pin of the first PIC: a signal on that line denotes the fact that an IRQ
signal on any one of the lines IRQ8-IRQ15 has occurred. The number of available IRQ lines
is thus traditionally limited to 15; however, more recent PIC chips are able to handle many
more input lines.

99

Understanding the Linux Kernel

Figure 4-1. Connecting two 8259A PICs in cascade

CNT INT
82504 Slave - 8259A Master
N
8 9 10 11 12 13 14 15 L 04l 3as56 T
2
IR0 IRQ

Other lines not shown in the figure connect the PICs to the bus: in particular, bidirectional
lines DO-D7 connect the I/O port to the data bus, while another input line is connected to the
control bus and is used for receiving acknowledgment signals from the CPU.

Since the number of available IRQ lines is limited, it may be necessary to share the same line
among several different I/O devices. When this occurs, all the devices connected to the same
line will have to be polled sequentially by the software interrupt handler in order to determine
which of them has issued an interrupt request. We'll describe in Section 4.6 how Linux
handles this kind of hardware limitation.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs.
That is, the PIC can be told to stop issuing interrupts that refer to a given IRQ line or vice
versa to enable them. Disabled interrupts are not lost; the PIC sends them to the CPU as soon
as they are enabled again. This feature is used by most interrupt handlers, since it allows them
to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of
maskable interrupts. When the 1F flag of the eflags register is clear, any maskable interrupt
issued by the PIC is simply ignored by the CPU. The c1i and sti Assembly instructions,
respectively, clear and set that flag.

4.2.3 Exceptions

The Intel 80x86 microprocessors issue roughly 20 different exceptions.” The kernel must
provide a dedicated exception handler for each exception type. For some exceptions, the CPU
control unit also generates a hardware error code and pushes it in the Kernel Mode stack
before starting the exception handler.

I The exact number depends on the processor model.

The following list gives the vector, the name, the type, and a brief description of the
exceptions found in a Pentium model. Additional information may be found in the Intel
technical documentation.

0 - "Divide error" (fault)

Raised when a program tries to divide by 0.

100

Understanding the Linux Kernel

1- "Debug" (trap or fault)
Raised when the T flag of eflags is set (quite useful to implement step-by-step

execution of a debugged program) or when the address of an instruction or operand
falls within the range of an active debug register (see Section 3.2.1 in Chapter 3).

2 - Not used
Reserved for nonmaskable interrupts (those that use the NMI pin).
3 - "Breakpoint" (trap)
Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - "Overflow" (trap)

An into (check for overflow) instruction has been executed when the or (overflow)
flag of ef1lags is set.

5 - "Bounds check" (fault)

A pbound (check on address bound) instruction has been executed with the operand
outside of the valid address bounds.

6 - "Invalid opcode" (fault)

The CPU execution unit has detected an invalid opcode (the part of the machine
instruction that determines the operation performed).

7 - "Device not available" (fault)

An ESCAPE or MMX instruction has been executed with the Ts flag of cro set (see
the section Section 3.2.4 in Chapter 3).

8 - "Double fault" (abort)
Normally, when the CPU detects an exception while trying to call the handler for a
prior exception, the two exceptions can be handled serially. In a few cases, however,
the processor cannot handle them serially, hence it raises this exception.

9 - "Coprocessor segment overrun” (abort)

Problems with the external mathematical coprocessor (applies only to old 80386
MmiCroprocessors).

10 - "Invalid TSS" (fault)

The CPU has attempted a context switch to a process having an invalid Task State
Segment.

101

Understanding the Linux Kernel

11 - "Segment not present” (fault)

A reference was made to a segment not present in memory (one in which the
Ssegment-Present flag of the Segment Descriptor was cleared).

12 - "Stack segment" (fault)

The instruction attempted to exceed the stack segment limit, or the segment identified
by ss is not present in memory.

13 - "General protection” (fault)
One of the protection rules in the protected mode of the Intel 80x86 has been violated.
14 - "Page fault" (fault)

The addressed page is not present in memory, the corresponding page table entry is
null, or a violation of the paging protection mechanism has occurred.

15 - Reserved by Intel
16 - "Floating point error” (fault)

The floating point unit integrated into the CPU chip has signaled an error condition,
such as numeric overflow or division by 0.

17 - "Alignment check” (fault)

The address of an operand is not correctly aligned (for instance, the address of a long
integer is not a multiple of 4).

18 to 31
These values are reserved by Intel for future development.
As illustrated in Table 4-1, each exception is handled by a specific exception handler (see

Section 4.5 later in this chapter), which usually sends a Unix signal to the process that caused
the exception.

102

Understanding the Linux Kernel

Table 4-1. Signals Sent by the Exception Handlers

|Exception Exception Handler Signal

0 |"Divide error" divide error() SIGFPE

1 |"Debug" debug () SIGTRAP
2 NMI nmi () None

3 |"Breakpoint” int3() SIGTRAP
4 |"Overflow" overflow() SIGSEGV
5 |"Bounds check" bounds () SIGSEGV
6 "Invalid opcode" invalid op() SIGILL
7 "Device not available" device not available() SIGSEGV
& ["Double fault" double fault() SIGSEGV
9 |"Coprocessor segment overrun" coprocessor segment overrun() SIGFPE
10 |"Invalid TSS" invalid tss() SIGSEGV
11 |"Segment not present" segment not present() SIGBUS
12 |"Stack exception" stack segment () SIGBUS
13 |"General protection” general protection() SIGSEGV
14 |"Page fault" page fault() SIGSEGV
15 |Intel reserved None None

16 |"Floating point error” coprocessor _error() SIGFPE
17 |"Alignment check" alignment check() SIGSEGV

4.2.4 Interrupt Descriptor Table

A system table called Interrupt Descriptor Table (IDT) associates each interrupt or exception
vector with the address of the corresponding interrupt or exception handler. The IDT must be
properly initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and of the LDTs examined in Chapter 2: each
entry corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor.
Thus, a maximum of 256x 8=2048 bytes are required to store the IDT.

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both
the IDT base physical address and its limit (maximum length). It must be initialized before
enabling interrupts by using the 1idt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64

bits included in each of them. In particular, the value of the Type field encoded in the bits 40-
43 identifies the descriptor type.

103

Understanding the Linux Kernel

Figure 4-2. Gate descriptors's format

Task Gate Descriptor
63 62 61 60 5% 5B 57 55 55 54 53 52 51 50 49 46 47 46 45 44 43 42 41 40 39 35 37 76 35 34 33 32
1]
RESERVED P E o010 RESERVED
T55 SEGMENT SELECTOR RESERVED

ME0292627 2R 202423 2221 2019181716154 13121110 9 8 7T 6 5 4 3 210

Interrupt Gate Descriptor
63 62 61 60 59 56 57 55 5554 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
1]
OFFSET (16-31) ‘P‘ E ‘0‘1‘1‘1‘0‘D‘0‘ﬂ| RESERVED
SEGMENT SELECTOR ‘ (IFFSET (0-15)

MAN2P2E27 2625 242322 1 20191871615 141392 1110 9 8 T 6 5 4 3 2 10D

Trap Gate Descriptor
63 62 61 G0 5% 56 57 56 55 54 53 52 51 50 49 46 47 46 45 44 43 42 41 40 39 35 37 35 35 34 33 32
1]
OFFSET (16-31) ‘F" E ‘U 1‘1 1‘1 0f{0)0| RESERVED
SEGMENT SELECTOR ‘ OFFSET (0-15)

3130292627 262524232221 20 191817161514 13121110 9 8 7 6 5 4 3 2 1D
The descriptors are:
Task gate

Includes the TSS selector of the process that must replace the current one when an
interrupt signal occurs. Linux does not use task gates.

Interrupt gate
Includes the Segment Selector and the offset inside the segment of an interrupt or
exception handler. While transferring control to the proper segment, the processor
clears the 1F flag, thus disabling further maskable interrupts.

Trap gate

Similar to an interrupt gate, except that while transferring control to the proper
segment, the processor does not modify the 1F flag.

As we shall see in Section 4.4.1, Linux uses interrupt gates to handle interrupts and trap gates
to handle exceptions.

4.2.5 Hardware Handling of Interrupts and Exceptions

We now describe how the CPU control unit handles interrupts and exceptions. We assume
that the kernel has been initialized and thus the CPU is operating in protected mode.

After executing an instruction, the cs and eip pair of registers contain the logical address of
the next instruction to be executed. Before dealing with that instruction, the control unit

104

Understanding the Linux Kernel

checks whether an interrupt or an exception has occurred while it executed the previous
instruction. If one occurred, the control unit:

—_

*®

Determines the vector i (Oi: i <25 5) associated with the interrupt or the exception.
Reads the i th entry of the IDT referred by the idtr register (we assume in the
following description that the entry contains an interrupt or a trap gate).
Gets the base address of the GDT from the gdtr register and looks in the GDT to read
the Segment Descriptor identified by the selector in the IDT entry. This descriptor
specifies the base address of the segment that includes the interrupt or exception
handler.
Makes sure the interrupt was issued by an authorized source. First compares the
Current Privilege Level (CPL), which is stored in the two least significant bits of the
cs register, with the Descriptor Privilege Level (DPL) of the Segment Descriptor
included in the GDT. Raises a "General protection" exception if CPL is lower than
DPL, because the interrupt handler cannot have a lower privilege than the program
that caused the interrupt. For programmed exceptions, makes a further security check:
compares the CPL with the DPL of the gate descriptor included in the IDT and raises a
"General protection" exception if the DPL is lower than the CPL. This last check
makes it possible to prevent access by user applications to specific trap or interrupt
gates.
Checks whether a change of privilege level is taking place, that is, if CPL is different
from the selected Segment Descriptor's DPL. If so, the control unit must start using the
stack that is associated with the new privilege level. It does this by performing the
following steps:
a. Reads the tr register to access the TSS segment of the current process.
b. Loads the ss and esp registers with the proper values for the stack segment
and stack pointer relative to the new privilege level. These values are found in
the TSS (see Section 3.2.2 in Chapter 3).
c. In the new stack, saves the previous values of ss and esp, which define the
logical address of the stack associated with the old privilege level.
If a fault has occurred, loads cs and eip with the logical address of the instruction that
caused the exception so that it can be executed again.
Saves the contents of eflags, cs, and eip in the stack.
If the exception carries a hardware error code, saves it on the stack.
Loads cs and eip, respectively, with the Segment Selector and the Offset fields of the
Gate Descriptor stored in the i th entry of the IDT. These values define the logical
address of the first instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or
exception handler. In other words, the instruction processed by the control unit after dealing
with the interrupt signal is the first instruction of the selected handler.

After the interrupt or exception has been processed, the corresponding handler must relinquish
control to the interrupted process by issuing the iret instruction, which forces the control unit

to:

1.

Load the cs, eip, and eflags registers with the values saved on the stack. If a
hardware error code has been pushed in the stack on top of the eip contents, it must be
popped before executing iret.

105

Understanding the Linux Kernel

2. Check whether the CPL of the handler is equal to the value contained in the two least
significant bits of cs (this means the interrupted process was running at the same
privilege level as the handler). If so, iret concludes execution; otherwise, go to the
next step.

3. Load the ss and esp registers from the stack, and hence return to the stack associated
with the old privilege level.

4. Examine the contents of the ds, es, fs, and gs segment registers: if any of them
contains a selector that refers to a Segment Descriptor whose DPL value is lower than
CPL, clear the corresponding segment register. The control unit does this to forbid
User Mode programs that run with a CPL equal to 3 from making use of segment
registers previously used by kernel routines (with a DPL equal to 0). If these registers
were not cleared, malicious User Mode programs could exploit them to access the
kernel address space.

4.3 Nested Execution of Exception and Interrupt Handlers

A kernel control path consists of the sequence of instructions executed in Kernel Mode to
handle an interrupt or an exception. When a process issues a system call request, for instance,
the first instructions of the corresponding kernel control path are those that save the content of
the registers in the Kernel Mode stack, while the last instructions are those that restore the
content of the registers and put the CPU back into User Mode.

Assuming that the kernel is bug-free, most exceptions can occur only while the CPU is in
User Mode. Indeed, they are either caused by programming errors or triggered by debuggers.
However, the "Page fault" exception may occur in Kernel Mode: this happens when the
process attempts to address a page that belongs to its address space but is not currently in
RAM. While handling such an exception, the kernel may suspend the current process and
replace it with another one until the requested page is available. The kernel control path that
handles the page fault exception will resume execution as soon as the process gets the
processor again.

Since the "Page fault" exception handler never gives rise to further exceptions, at most two
kernel control paths associated with exceptions may be stacked, one on top of the other.

In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures
specific to the current process, although the kernel control paths that handle them run on
behalf of that process. As a matter of fact, it is impossible to predict which process will be
currently running when a given interrupt occurs.

Linux design does not allow process switching while the CPU is executing a kernel control
path associated with an interrupt. However, such kernel control paths may be arbitrarily
nested: an interrupt handler may be interrupted by another interrupt handler and so on.

An interrupt handler may also defer an exception handler. Conversely, an exception handler
never defers an interrupt handler. The only exception that can be triggered in Kernel Mode is
the "Page fault" one just described. But interrupt handlers never perform operations that could
induce page faults and thus, potentially, process switching.

Linux interleaves kernel control paths for two major reasons:

106

Understanding the Linux Kernel

e To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the PIC
transforms it into an INTR request, and then both the PIC and the device controller
remain blocked until the PIC receives an acknowledgment from the CPU. Thanks to
kernel control path interleaving, the kernel is able to send the acknowledgment even
when it is handling a previous interrupt.

e To implement an interrupt model without priority levels. Since each interrupt handler
may be deferred by another one, there is no need to establish predefined priorities
among hardware devices. This simplifies the kernel code and improves its portability.

4.4 Initializing the Interrupt Descriptor Table

Now that you understand what the Intel processor does with interrupts and exceptions at the
hardware level, we can move on to describe how the Interrupt Descriptor Table is initialized.

Remember that before the kernel enables the interrupts, it must load the initial address of the
IDT table into the idtr register and initialize all the entries of that table. This activity is done
while initializing the system (see Appendix A).

The int instruction allows a User Mode process to issue an interrupt signal having an
arbitrary vector ranging from to 255. The initialization of the IDT must thus be done
carefully, in order to block illegal interrupts and exceptions simulated by User Mode
processes via int instructions. This can be achieved by setting the DPL field of the Interrupt
or Trap Gate Descriptor to 0. If the process attempts to issue one of such interrupt signals, the
control unit will check the CPL value against the DPL field and issue a "General protection"
exception.

In a few cases, however, a User Mode process must be able to issue a programmed exception.
To allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate
Descriptors to 3; that is, as high as possible.
Let's now see how Linux implements this strategy.
4.4.1 Interrupt, Trap, and System Gates
As mentioned in Section 4.2.4, Intel provides three types of interrupt descriptors: Task,
Interrupt, and Trap Gate Descriptors. Task Gate Descriptors are irrelevant to Linux, but its
Interrupt Descriptor Table contains several Interrupt and Trap Gate Descriptors. Linux
classifies them as follows, using a slightly different breakdown and terminology from Intel:
Interrupt gate
An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's
DPL field is equal to 0). All Linux interrupt handlers are activated by means of
interrupt gates, and all are restricted to Kernel Mode.
System gate
An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field is

equal to 3). The four Linux exception handlers associated with the vectors 3, 4, 5, and

107

Understanding the Linux Kernel

128 are activated by means of system gates, so the four Assembly instructions int3,
into, bound, and int 0x80 can be issued in User Mode.

Trap gate

An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL
field is equal to 0). All Linux exception handlers, except the four described in the
previous paragraph, are activated by means of trap gates.

The following functions are used to insert gates in the IDT:
set intr gate (n,addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is
set to the kernel code's Segment Selector. The Offset field is set to addr, which is the
address of the interrupt handler. The DPL field is set to 0.

set system gate (n,addr)

Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set to
the kernel code's Segment Selector. The Offset field is set to addr, which is the
address of the exception handler. The DPL field is set to 3.

set trap gate (n,addr)
Similar to the previous function, except that the DPL field is set to 0.
4.4.2 Preliminary Initialization of the IDT

The IDT is initialized and used by the BIOS routines when the computer still operates in Real
Mode. Once Linux takes over, however, the IDT is moved to another area of RAM and
initialized a second time, since Linux does not make use of any BIOS routines (see
Appendix A).

The IDT is stored in the idt table table, which includes 256 entries.” The 6-byte
idt descr variable specifies both the size of the IDT and its address; it is used only when the
kernel initializes the idtr register with the 1idt Assembly instruction. In all other cases, the
kernel refers to the idt variable to get the address of the IDT.

12/ Some Pentium models have the notorious "f00f" bug, which allows a User Mode program to freeze the system. When executing on such CPUs,
Linux uses a workaround based on storing the IDT in a write-protected page frame. The workaround for the bug is offered as an option when the user
compiles the kernel.

During kernel initialization, the setup idt () assembly language function starts by filling
all 256 entries of idt table with the same interrupt gate, which refers to the ignore int ()
interrupt handler:

setup idt:
lea ignore int, %edx
movl $(KERNEL CS << 16), %eax
movw %dx, %ax /* selector = 0x0010 = cs */
movw $0x8e00, %dx /* interrupt gate, dpl=0, present */

108

Understanding the Linux Kernel

lea idt table, %edi

mov $256, %ecx
rp_sidt:

movl %eax, (%edi)

movl %edx, 4 (%edi)

addl $8, %edi

dec %ecx

jne rp sidt

ret

The ignore int () interrupt handler, which is in assembly language, may be viewed as a
null handler that executes the following actions:

1. Saves the content of some registers in the stack
2. Invokes the printk() function to print an "Unknown interrupt" system message
3. Restores the register contents from the stack
4. Executes an iret instruction to restart the interrupted program
The ignore int() handler should never be executed: the occurrence of "Unknown

interrupt" messages on the console or in the log files denotes either a hardware problem (an
I/O device is issuing unforeseen interrupts) or a kernel problem (an interrupt or exception is
not being handled properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT to replace
some of the null handlers with meaningful trap and interrupt handlers. Once this is done, the
IDT will include a specialized trap or system gate for each different exception issued by the
control unit, and a specialized interrupt gate for each IRQ recognized by the Programmable
Interrupt Controller.

The next two sections illustrate in detail how this is done, respectively, for exceptions and
interrupts.

4.5 Exception Handling
Linux takes advantage of exceptions to achieve two quite different goals:

e To send a signal to a process to notify an anomalous condition
e To handle demand paging

An example of the first use is if a process performs a division by 0. The CPU raises a "Divide
error” exception, and the corresponding exception handler sends a sIGFPE signal to the
current process, which will then take the necessary steps to recover or (if no signal handler is
set for that signal) abort.

Exception handlers have a standard structure consisting of three parts:
1. Save the contents of most registers in the Kernel Mode stack (this part is coded in
Assembly language).

2. Handle the exception by means of a high-level C function.
3. Exit from the handler by means of the ret from exception() function.

109

Understanding the Linux Kernel

In order to take advantage of exceptions, the IDT must be properly initialized with an
exception handler function for each recognized exception. It is the job of the trap init (
) function to insert the final values—that is, the functions that handle the exceptions—into all
IDT entries that refer to nonmaskable interrupts and exceptions. This is accomplished through
theset_trap_gateandset_system_gatenﬂKIOE

set trap gate (0, ÷ error);

set trap gate (1, &debug) ;

set trap gate (2, &nmi);

set system gate (3, &int3);

set system gate (4, &overflow);

set system gate (5, &bounds) ;

set trap gate(6, &invalid op);

set trap gate(7, &device not available);
set trap gate (8, &double fault);

set trap gate (9, &coprocessor segment overrun);
set trap gate (10, &invalid TSS);

set trap gate(ll, &segment not present);
set trap gate(l2, &stack segment);

set trap gate (13, &general protection);
set trap gate (14, &page fault);

set trap gate(l6, &coprocessor_error);
set trap gate(1l7, &alignment check);

set system gate (0x80, &system call);

Now we will look at what a typical exception handler does once it is invoked.
4.5.1 Saving the Registers for the Exception Handler

Let us denote with handler name the name of a generic exception handler. (The actual names
of all the exception handlers appear on the list of macros in the previous section.) Each
exception handler starts with the following Assembly instructions:

handler name:
pushl $0 /* only for some exceptions */
pushl Sdo handler name
jmp error code

If the control unit is not supposed to automatically insert a hardware error code on the stack
when the exception occurs, the corresponding Assembly fragment includes a pushl $0
instruction to pad the stack with a null value. Then the address of the high-level C function is
pushed on the stack; its name consists of the exception handler name prefixed by do .

The Assembly fragment labeled as error code is the same for all exception handlers except
the one for the "Device not available" exception (see Section 3.2.4 in Chapter 3). The code
performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.

2. Issues a c1d instruction to clear the direction flag pF of ef1ags, thus making sure that
autoincrements on the edi and esi registers will be used with string instructions.

3. Copies the hardware error code saved in the stack at location esp+36 in eax. Stores in
the same stack location the value -1: as we shall see in the section Section 9.3.4 in
Chapter 9, this value is used to separate 0x80 exceptions from other exceptions.

110

Understanding the Linux Kernel

4. Loads ecx with the address of the high-level do _handler name() C function saved
in the stack at location esp+32; writes the contents of es in that stack location.

5. Loads the kernel data Segment Selector into the ds and es registers, then sets the ebx
register to the address of the current process descriptor (see Section 3.1.2 in Chapter
3).

6. Stores the parameters to be passed to the high-level C function on the stack, namely,
the exception hardware error code and the address of the stack location where the
contents of User Mode registers was saved.

7. Invokes the high-level C function whose address is now stored in ecx.

After the last step is executed, the invoked function will find on the top locations of the stack:

e The return address of the instruction to be executed after the C function terminates
(see next section)

e The stack address of the saved User Mode registers

e The hardware error code

4.5.2 Returning from the Exception Handler

When the C function that implements the exception handling terminates, control is transferred
to the following assembly language fragment:

addl $8, %esp
jmp ret from exception

The code pops the stack address of the saved User Mode registers and the hardware error code
from the stack, then performs a jmp instruction to the ret from exception() function.
This function will be described in Section 4.7.

4.5.3 Invoking the Exception Handler

As already explained, the names of the C functions that implement exception handlers always
consist of the prefix do followed by the handler name. Most of these functions store the
hardware error code and the exception vector in the process descriptor of current, then send
to that process a suitable signal. This is done as follows:

current->tss.error code = error code;
current->tss.trap no = vector;
force sig(sig number, current);

When the ret from exception() function is invoked, it checks whether the process has
received a signal. If so, the signal will be handled either by the process's own signal handler
(if it exists) or by the kernel; in the latter case, the kernel will usually kill the process (see
Chapter 9). The signals sent by the exception handlers have already been illustrated in Table
4-1.

Finally, the handler invokes either die if kernel() ordie if no fixup():

e The die if kernel() function checks whether the exception occurred in Kernel
Mode; in this case, it invokes the die () function, which prints the contents of all

111

Understanding the Linux Kernel

CPU registers on the console and terminates the current process by invoking
do exit() (see Chapter 19).

e The die if no fixup() function is similar, but before invoking die () it checks
whether the exception was due to an invalid argument of a system call: in the
affirmative case, it uses a "fixup" approach, which will be described in Section 8.2.6
in Chapter 8.

Two exceptions are exploited by the kernel to manage hardware resources more efficiently.
The corresponding handlers are more complex because the exception does not necessarily
denote an error condition:

e "Device not available": as discussed in Section 3.2.4 in Chapter 3, this exception is
used to defer loading the floating point registers until the last possible moment.

o "Page fault": as we shall see in the section Section 7.4 in Chapter 7, this exception is
used to defer allocating new page frames to the process until the last possible
fmoment.

4.6 Interrupt Handling

As we explained earlier, most exceptions are handled simply by sending a Unix signal to the
process that caused the exception. The action to be taken is thus deferred until the process
receives the signal; as a result, the kernel is able to process the exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after the
process to which they are related (for instance, a process that requested a data transfer) has
been suspended and a completely unrelated process is running. So it would make no sense to
send a Unix signal to the current process.

Furthermore, due to hardware limitations, several devices may share the same IRQ line.
(Remember that PCs supply only a few IRQs.) This means that the interrupt vector alone does
not tell the whole story: as an example, some PC configurations may assign the same vector to
the network card and to the graphic card. Therefore, an interrupt handler must be flexible
enough to service several devices. In order to do this, several interrupt service routines (ISRs)
can be associated with the same interrupt handler; each of them is a function related to a
single device sharing the IRQ line. Since it is not possible to know in advance which
particular device issued the IRQ, each ISR is executed to verify whether its device needs
attention; if so, the ISR performs all the operations that need to be executed when the device
raises an interrupt.

Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the
interrupt handler itself is not a suitable place for all kind of actions. Long noncritical
operations should be deferred, since while an interrupt handler is running, the signals on the
corresponding IRQ line are ignored. Most important, the process on behalf of which an
interrupt handler is executed must always stay in the TASK_RUNNING state, or a system freeze
could occur. Therefore, interrupt handlers cannot perform any blocking procedure such as I/O
disk operations. So Linux divides the actions to be performed following an interrupt into three
classes:

112

Understanding the Linux Kernel

Critical

Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the
device controller, or updating data structures accessed by both the device and the
processor. These can be executed quickly and are critical because they must be
performed as soon as possible. Critical actions are executed within the interrupt
handler immediately, with maskable interrupts disabled.

Noncritical

Actions such as updating data structures that are accessed only by the processor (for
instance, reading the scan code after a keyboard key has been pushed). These actions
can also finish quickly, so they are executed by the interrupt handler immediately,
with the interrupts enabled.

Noncritical deferrable

Actions such as copying a buffers contents into the address space of some process (for
instance, sending the keyboard line buffer to the terminal handler process). These may
be delayed for a long time interval without affecting the kernel operations; the
interested process will just keep waiting for the data. Noncritical deferrable actions are
performed by means of separate functions called "bottom halves." We shall discuss
them in Section 4.6.6.

All interrupt handlers perform the same four basic actions:

—_

4.

Save the IRQ value and the registers contents in the Kernel Mode stack.

Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to
issue further interrupts.

Execute the interrupt service routines (ISRs) associated with all the devices that share
the IRQ.

Terminate by jumping to the ret from intr() address.

Several descriptors are needed to represent both the state of the IRQ lines and the functions to
be executed when an interrupt occurs. Figure 4-3 represents in a schematic way the hardware
circuits and the software functions used to handle an interrupt. These functions will be
discussed in the following sections.

113

Understanding the Linux Kernel

Figure 4-3. Interrupt handling

HARDWARE SOFTWARE
Davige 1 Davice 2 {(Inferrupt Handler)
................. E................- "“I‘Eﬂ
* ty
IDT[32+n]
L1 i1 niiial
INT *

PIC

(IRE‘n_interr'upt { :I)

Y

(dao_TIRO ())

Infarrupt senvice Interrupt sarvica
routing 1 routine 2

4.6.1 Interrupt Vectors

As explained in Section 4.2.2, the 16 physical IRQs are assigned the vectors 32-47. The IBM-
compatible PC architecture requires that some devices must be statically connected to specific
IRQ lines. In particular:

e The interval timer device must be connected to the IRQO line (see Chapter 5).

e The slave 8259A PIC must be connected to the IRQ2 line (see Figure 4-1).

e The external mathematical coprocessor must be connected to the IRQ13 line (although
recent Intel 80x86 processors no longer use such a device, Linux continues to support
the venerable 80386 model).

For all remaining IRQs, the kernel must establish a correspondence between IRQ number and
I/O device before enabling interrupts. Otherwise, how could the kernel handle a signal from
(say) a SCSI disk without knowing which vector corresponds to the device?

Modern I/O devices are able to connect themselves to several IRQ lines. The optimal
selection depends on how many devices are on the system and whether any are constrained to
respond only to certain IRQs. There are two ways to select a line for each device:

e By a utility program executed when installing the device: such a program may ask the
user to select an available IRQ number or determine an available number by itself.

e By a hardware protocol executed at system startup. Under this system, peripheral
devices declare which interrupt lines they are ready to use; the final values are then
negotiated to reduce conflicts as much as possible. Once this is done, each interrupt
handler can read the assigned IRQ by using a function that accesses some I/O ports of
the device. For instance, drivers for devices that comply with the Peripheral
Component Interconnect (PCI) standard make use of a group of functions such as
pci read config byte() and pci write config byte() to access the device
configuration space.

114

Understanding the Linux Kernel

In both cases, the kernel can retrieve the selected IRQ line of a device when initializing the
corresponding driver. Table 4-2 shows a fairly arbitrary arrangement of devices and IRQs,
such as might be found on one particular PC.

Table 4-2. An Example of IRQ Assignment to I/O Devices

IRQ INT Hardware Device

0 32 Timer

1 33 Keyboard

2 34 PIC cascading

3 35 Second serial port

4 36 First serial port

6 38 Floppy disk

8 40 System clock

11 43 Network interface

12 44 PS/2 mouse

13 45 Mathematical coprocessor

14 46 EIDE disk controller's first chain
15 47 EIDE disk controller's second chain

4.6.2 IRQ Data Structures

As always when discussing complicated operations involving state transitions, it helps to
understand first where key data is stored. Thus, this section explains the data structures that
support interrupt handling and how they are laid out in various descriptors. Figure 4-4
illustrates schematically the relationships between the main descriptors that represent the state
of the IRQ lines. (The figure does not illustrate the data structures needed to handle bottom
halves; they will be discussed later in this chapter.)

Figure 4-4. IRQ descriptors

0 i B3

irg_dese | | | | | i Ili'lr.r_mulerrunvl:_hm‘E

irg_desc_t

irgaction irgaction

L
v

4.6.2.1 The irq_desc_t descriptor

An irg desc array includes NR TRQS irg desc t descriptors, which include the following
fields:

status

A set of flags describing the IRQ line status.

115

Understanding the Linux Kernel

IRQ INPROGRESS

A handler for the IRQ is being executed.

IRQ DISABLED

The IRQ line has been deliberately disabled by a device driver.
IRQ PENDING

An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC,
but it has not yet been serviced by the kernel.

IRQ REPLAY

The IRQ line has been disabled but the previous IRQ occurrence has not yet been
acknowledged to the PIC.

IRQ AUTODETECT
The kernel is using the IRQ line while performing a hardware device probe.
IRQ WATITING

The kernel is using the IRQ line while performing a hardware device probe; moreover,
the corresponding interrupt has not been raised.

handler

Points to the hw_interrupt type descriptor that identifies the PIC circuit servicing
the IRQ line.

action

Identifies the interrupt service routines to be invoked when the IRQ occurs. The field
points to the first element of the list of irgaction descriptors associated with the
IRQ. The irgaction descriptor is described briefly later in the chapter.

depth

Shows 0 if the IRQ line is enabled and a positive value if it has been disabled at least
once. Every time the disable irg() function is invoked, it increments this field; if
depth was equal to 0, the function disables the IRQ line. Conversely, each invocation
of the enable irg() function decrements the field; if depth becomes 0, the function
enables the IRQ line.

During system initialization, the init TRQ() function sets the status field of each IRQ
main descriptor to TRQ DISABLED as follows:

116

Understanding the Linux Kernel

for (i=0; i<NR_IRQS; i++)
irg desc[i].status = IRQ DISABLED;

It then updates the IDT by replacing the provisional interrupt gates with the final ones. This is
accomplished through the following statements:

for (1 = 0; i < NR_IRQS; i++)
set intr gate (0x20+i,interrupt[i]);

This code looks in the interrupt array to find the interrupt handler addresses that it uses to
set up the interrupt gates. The interrupt handler for IRQn is named TrROn interrupt() (see
Section 4.6.3).

4.6.2.2 The hw_interrupt_type descriptor

This descriptor includes a group of pointers to the low-level I/O routines that interact with a
specific PIC circuit. Linux supports, in addition to the 8259A chip that was mentioned near
the beginning of this chapter, several other PIC circuits such as the SMP 10-APIC, PIIX4's
internal 8259 PIC, and SGI's Visual Workstation Cobalt (I0-)APIC. But for the sake of
simplifying the explanation, we'll assume in this chapter that our computer is a uniprocessor
with two 8259A PICs, which provides the 16 standard IRQs discussed earlier. In this case, the
handler field in each of the 16 irq desc t descriptors points to the i8259A irg type
variable, which describes the 8259A PIC. This variable is initialized as follows:

struct hw interrupt type 1i8259A irg type = {
"XT-PIC",
startup 8259A irq,
shutdown 8259A irq,
do 8259A IRQ,
enable 8259A irq,
disable 8259A irq
}i

The first field in this structure, "xT-pIC", is a name. Following that, i8259A irg type
includes pointers to five different functions used to program the PIC. The first two functions
start up and shut down an IRQ line of the chip, respectively. But in the case of the 8259A chip
these functions coincide with the last two functions, which enable and disable the line. The
do 8259A TRQ() function will be described in Section 4.6.4.

4.6.2.3 The irqaction descriptor
As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains
irgaction descriptors, each of which refers to a specific hardware device and a specific

interrupt. The descriptor includes the following fields.

handler

Points to the interrupt service routine for an I/O device. This is the key field that
allows many devices to share the same IRQ.

117

Understanding the Linux Kernel

flags
Describes the relationships between IRQ line and I/O device in a set of flags:
SA INTERRUPT
The handler must execute with interrupts disabled.
SA_SHIRQ
The device permits its IRQ line to be shared with other devices.
SA_SAMPLE RANDOM
The device may be considered as a source of events occurring randomly; it can thus be
used by the kernel random number generator. (Users can access this feature by taking
random numbers from the /dev/random and /dev/urandom device files.)
SA_PROBE
The kernel is using the IRQ line while performing a hardware device probe.

name

Names of the I/O device (shown when listing the serviced IRQs by reading the
/proc/interrupts file).

dev id

The major and minor numbers that identify the I/O device (see Section 13.2.1 in
Chapter 13).

next

Points to the next element of a list of irgaction descriptors. The elements in the list
refer to hardware devices that share the same IRQ.

4.6.3 Saving the Registers for the Interrupt Handler

As with other context switches, the need to save registers leaves the kernel developer a
somewhat messy coding job because the registers have to be saved and restored using
assembly language code, but within those operations the processor is expected to call and
return from a C function. In this section we'll describe the assembly language task of handling
registers, while in the next we'll show some of the acrobatics required in the C function that is
subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the interrupt

handler for IRQn is named TROn interrupt, and its address is included in the interrupt gate
stored in the proper IDT entry.

118

Understanding the Linux Kernel

The same BUILD TRQ macro is duplicated 16 times, once for each IRQ number, in order to
yield 16 different interrupt handler entry points. Each ButLD IrRQ expands to the following
assembly language fragment:

IROn interrupt:
pushl $n-256
jmp common interrupt

The result is to save on the stack the IRQ number associated with the interrupt minus 256;"
the same code for all interrupt handlers can then be executed while referring to this number.
The common code can be found in the BUILD comMonN TRQ macro, which expands to the
following assembly language fragment:

1) Subtracting 256 from an IRQ number yields a negative number. Positive numbers are reserved to identify system calls (see Chapter 8).

common_interrupt:
SAVE ALL
call do IRQ
jmp ret from intr

The save ALL macro, in turn, expands to the following fragment:

cld

push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $ KERNEL DS, $edx
mov %dx, %$ds
mov %dx, %es

save aLL saves all the CPU registers that may be used by the interrupt handler on the stack,
except for eflags, cs, eip, ss, and esp, which are already saved automatically by the control
unit (see Section 4.2.5). The macro then loads the selector of the kernel data segment into ds
and es.

After saving the registers, BUILD COMMON IRQ invokes the do TRQ() function and jumps to
the ret from intr() address (see Section 4.7).

4.6.4 The do_IRQ() Function

The do 1RO () function is invoked to execute all interrupt service routines associated with an
interrupt. When it starts, the kernel stack contains from the top down:

e The do TRO() return address

e The group of register values pushed on by sAvE ALL

e The encoding of the IRQ number

o The registers saved automatically by the control unit when it recognized the interrupt

119

Understanding the Linux Kernel

Since the C compiler places all the parameters on top of the stack, the do TrRQ() function is
declared as follows:

void do_ IRQ(struct pt regs regs)
where the pt regs structure consists of 15 fields:

e The first nine fields correspond to the register values pushed by save ALL.

o The tenth field, referenced through a field called orig eax, encodes the IRQ number.

e The remaining fields correspond to the register values pushed on automatically by the
control unit."

“I The ret_from_intr () return address is missing from the Pt _regs structure because the C compiler expects a return address on
top of the stack and takes this into account when generating the instructions to address parameters.

The do TRO() function can thus read the IRQ passed as a parameter and decode it as
follows:

irg = regs.orig eax & Oxff;

The function then executes:

irg desclirq].handler->handle(irq, ®s);

The handler field points to the hw_interrupt type descriptor that refers to the PIC model
servicing the IRQ line (see Section 4.6.2). Assuming that the PIC is an 8259A, the handle
field points to the do 8259a 1RO () function, which is thus executed.

The do 8259A TRQ() function starts by invoking the mask and ack 8259a() function,
which acknowledges the interrupt to the PIC and disables further interrupts with the same
IRQ number.

Then the function checks whether the handler is willing to deal with the interrupt and whether
it is already handling it; to that end, it reads the values of the TrRQ DISABLED and IRQ
_INPROGRESS flags stored in the status field of the IRQ main descriptor. If both flags are
cleared, the function picks up the pointer to the first irgaction descriptor from the action
field and sets the TR0 INPROGRESS flag. It then invokes handle IRQ event(), which
executes each interrupt service routine in turn through the following code. As mentioned
previously, if the IRQ is shared by several devices, each corresponding interrupt service
routine must be invoked because the kernel does not know which device issued the interrupt:

do {
action->handler (irqg, action->dev_id, regs);
action = action->next;

} while (action);

Notice that the kernel cannot break the loop as soon as one ISR has claimed the interrupt
because another device on the same IRQ line might need to be serviced.

120

Understanding the Linux Kernel

Finally, the do 8259a TRO() function cleans things up by clearing the TRQ INPROGRESS
flag just mentioned. Moreover, if the TRo DISABLED flag is not set, the function invokes the
low-level enable 8259a irg() function to enable interrupts that come from the IRQ line.

The control now returns to do IrRQ(), which checks whether "bottom halves" tasks are
waiting to be executed. (As we shall see, a queue of such bottom halves is maintained by the
kernel.) If bottom halves are waiting, the function invokes the do bottom half() function
we'll describe shortly. Finally, do TrRQ() terminates and control is transferred to the
ret from intr address.

4.6.5 Interrupt Service Routines

As mentioned previously, an interrupt service routine implements a device-specific operation.
All of them act on the same parameters:

irg

The IRQ number
dev id

The device identifier
regs

A pointer to the Kernel Mode stack area containing the registers saved right after the
interrupt occurred

The first parameter allows a single ISR to handle several IRQ lines, the second one allows a
single ISR to take care of several devices of the same type, and the last one allows the ISR to
access the execution context of the interrupted kernel control path. In practice, most ISRs do
not use these parameters.

The sa_1nTERRUPT flag of the main IRQ descriptor determines whether interrupts are enabled
or disabled when the do 1RO () function invokes an ISR. An ISR that has been invoked with
the interrupts in one state is allowed to put them in the opposite state through an assembly
language instruction: c11i to disable interrupts and sti to enable them.

The structure of an ISR depends on the characteristics of the device handled. We'll give a few
examples of ISRs in Chapter 5 and Chapter 13.

4.6.6 Bottom Half
A bottom half is a low-priority function, usually related to interrupt handling, that is waiting
for the kernel to find a convenient moment to run it. Bottom halves that are waiting will be

executed only when one of the following events occurs:

e The kernel finishes handling a system call.
o The kernel finishes handling an exception.

121

Understanding the Linux Kernel

e The kernel terminates the do TrRQ() function—that is, it finishes handling an
interrupt.

o The kernel executes the schedule () function to select a new process to run on the
CPU.

Thus, when an interrupt service routine activates a bottom half, a long time interval can occur
before it is executed.” But as we have seen, the existence of bottom halves is very important
to fulfill the kernel's responsibility to service interrupts from multiple devices quickly. This
book doesn't talk too much about the contents of bottom halves—they depend on the
particular tasks needed to service devices—but just about how the kernel maintains and
invokes the bottom halves. You will find an example of a specific bottom half in Section 5.4
in Chapter 5.

I However, the execution of bottom halves will not be deferred forever: the CPU does not switch back to User Mode until there are no bottom halves
to be executed; see the Section 4.7.

Linux makes use of an array called the bh base table to group all bottom halves together. It is
an array of pointers to bottom halves and can include up to 32 entries, one for each type of
bottom half. In practice, Linux uses about half of them; the types are listed in Table 4-3. As
you can see from the table, some of the bottom halves are associated with hardware devices
that are not necessarily installed in the system or that are specific to platforms besides the
IBM PC compatible. But TIMER BH, CONSOLE BH, TQUEUE BH, SERIAL BH, IMMEDIATE BH,
and KEYBOARD BH see widespread use.

Table 4-3. The Linux Bottom Halves

Bottom Half Peripheral Device

AURORA BH Aurora multiport card (SPARC)
CM206 BH CD-ROM Philips/LMS e¢m206 disk
CONSOLE_BH Virtual console

CYCLADES_ BH Cyclades Cyclom-Y serial multiport
DIGI BH DigiBoard PC/Xe

ESP_BH Hayes ESP serial card
IMMEDIATE BH Immediate task queue

ISICOM BH MultiTech's ISI cards

JS_BH Joystick (PC IBM compatible)
KEYBOARD BH Keyboard

MACSERIAL BH Power Macintosh's serial port

NET BH Network interface

RISCOM8 BH RISCom/8

SCSI BH SCSI interface

SERIAL BH Serial port

SPECIALIX BH Specialix 108+

TIMER BH Timer

TQUEUE BH Periodic task queue

4.6.6.1 Activating and tracking the state of bottom halves
Before invoking a bottom half for the first time, it must be initialized. This is done by

invoking the init bh(n, routine) function, which inserts the routine address in the n th
entry of bh_base. Conversely, remove bh (n) removes the n th bottom half from the table.

122

Understanding the Linux Kernel

Once a bottom half has been initialized, it can be "activated," thus executed any time one of
the previously mentioned events occurs. The mark bh(n) function is used by interrupt
handlers to activate the » th bottom half. To keep track of the state of all these bottom halves,
the bh active variable stores 32 flags that specify which bottom halves are currently
activated. When a bottom half concludes its execution, the kernel clears the corresponding
bh active flag; thus, any activation causes exactly one execution.

The do bottom half() function is used to start executing all currently active unmasked
bottom halves; it enables the maskable interrupts and then invokes run bottom halves().
This function makes sure that only one bottom half is ever active at a time by executing the
following C code fragment:

active = bh mask & bh active;
bh active &= active;
bh = bh base;
do {

if (active & 1)

(*bh) ¢)7

bh++;

active >>= 1;
} while (active);

The flags in bh_active that refer to the group of bottom halves that must be executed are
cleared. This ensures that each bottom half activation causes exactly one execution of the
corresponding function.

Each bottom half can be individually "masked"; if this is the case, it won't be executed even if
it is activated. The bh mask variable stores 32 bits that specify which bottom halves are
currently masked. The disable bh(n) and enable bh(n) functions act on the nth flag of
bh mask; they are used to mask and unmask a bottom half, respectively.

Here's why masking bottom halves is useful. Assume that a kernel function is modifying
some kernel data structure when an exception (for instance, a "Page fault") occurs. After the
kernel finishes handling the exception, all active nonmasked bottom halves will be executed.
If one of the bottom halves accesses the same kernel data structure as the suspended kernel
function, both the bottom half and the kernel function will find the data structure in a
nonconsistent state. In order to avoid this race condition, the kernel function must mask all
bottom halves that access the data structure.

Unfortunately, the bh mask variable does not always ensure that bottom halves remain
correctly masked. For instance, let us suppose that some bottom half B is masked by a kernel
control path P1, which is then interrupted by another kernel control path P2. P2 once again
masks the bottom half B, performs its own operations, and terminates by unmasking B. Now
P1 resumes its execution, but Bis (incorrectly) unmasked.

It is thus necessary to use counters rather than a simple binary flag to keep track of masking
and to add one more table called bh mask count whose entries contain the masking level of
each bottom half. The disable bh(n) and enable bh(n) functions update
bh mask count [n] before acting on the nth flag of bh mask.

123

Understanding the Linux Kernel

4.6.6.2 Extending a bottom half

The motivation for introducing bottom halves is to allow a limited number of functions
related to interrupt handling to be executed in a deferred manner. This approach has been
stretched in two directions:

e To allow a generic kernel function, and not only a function that services an interrupt,
to be executed as a bottom half

e To allow several kernel functions, instead of a single one, to be associated with a
bottom half

Groups of functions are represented by task queues, which are lists of struct tg struct
elements having the following structure:

struct tg struct {

struct tg struct *next; /* linked list of active bh's */
unsigned long sync; /* must be initialized to zero */
void (*routine) (void *); /* function to call */

void *data; /* argument to function */

}s

As we shall see in Chapter 13, I/O device drivers make intensive use of task queues to require
the execution of some functions when a specific interrupt occurs.

The DECLARE TASK QUEUE macro is used to allocate a new task queue, while queue task()
inserts a new function in a task queue. The run task queue() function executes all the
functions included in a given task queue. It's worth mentioning two particular task queues,
each associated with a specific bottom half:

e The tg immediate task queue, run by the IMMEDIATE BH bottom half, includes
kernel functions to be executed together with the standard bottom halves. The kernel
activates the IMMEDIATE BH bottom half whenever a function is added to the tqg
_immediate task queue.

e The tg timer task queue is run by the TQUEUE BH bottom half, which is activated at
every timer interrupt. As we'll see in Chapter 5, that means it runs about every 10 ms.

4.6.7 Dynamic Handling of IRQ Lines

With the exception of IRQO, IRQ2, and IRQI13, the remaining 13 IRQs are dynamically
handled. There is, therefore, a way in which the same interrupt can be used by several
hardware devices even if they do not allow IRQ sharing: the trick consists in serializing the
activation of the hardware devices so that just one at a time owns the IRQ line.

Before activating a device that is going to make use of an IRQ line, the corresponding driver
invokes request irqg(). This function creates a new irgaction descriptor and initializes it
with the parameter values; it then invokes the setup x86 irqg() function to insert the
descriptor in the proper IRQ list. The device driver aborts the operation if setup %86 irg()
returns an error code, which means that the IRQ line is already in use by another device that
does not allow interrupt sharing. When the device operation is concluded, the driver invokes
the free irg() function to remove the descriptor from the IRQ list and release the memory
area.

124

Understanding the Linux Kernel

Let us see how this scheme works on a simple example. Assume a program wants to address
the /dev/fd0 device file, that is, the device file that corresponds to the first floppy disk on the
system.”” The program can do this either by directly accessing /dev/fd0 or by mounting a
filesystem on it. Floppy disk controllers are usually assigned IRQ6; given this, the floppy
driver will issue the following request:

1% Floppy disks are "old" devices that do not usually allow IRQ sharing.

request irg(6, floppy interrupt,
SA INTERRUPT|SA SAMPLE RANDOM, "floppy", NULL);

As can be observed, the floppy interrupt () interrupt service routine must execute with
the interrupts disabled (sa INTERRUPT set) and no sharing of the IRQ (sa sHIRrQ flag
cleared). When the operation on the floppy disk is concluded (either the I/O operation on
/dev/fd0 terminates or the filesystem is unmounted), the driver releases IRQ6:

free irg(6, NULL);

In order to insert an irgaction descriptor in the proper list, the kernel invokes the
setup x86 irqg() function, passing to it the parameters irq nr, the IRQ number, and new,
the address of a previously allocated irgaction descriptor. This function:

1. Checks whether another device is already using the irg nr IRQ and, if so, whether
the sa SHIRQ flags in the irgaction descriptors of both devices specify that the IRQ
line can be shared. Returns an error code if the IRQ line cannot be used.

2. Adds *new (the new irgaction descriptor) at the end of the list to which irqg
_desclirg nr]->action points.

3. If no other device is sharing the same IRQ, clears the TR0 DISABLED and IRQ
_INPROGRESS flags in the flags field of *new and reprograms the PIC to make sure
that IRQ signals are enabled.

Here is an example of how setup x86 irg() is used, drawn from system initialization. The
kernel initializes the irq0 descriptor of the interval timer device by executing the following
instructions in the time init () function (see Chapter 5):

struct irgaction irg0 =
{timer interrupt, SA INTERRUPT, O, "timer", NULL,};
setup x86 irg(0, &irg0);

First, the irq0 variable of type irgaction is initialized: the handler field is set to the
address of the timer interrupt() function, the flags field is set to SA INTERRUPT, the
name field is set to "timer", and the last field is set to NULL to show that no dev_id value is
used. Next, the kernel invokes setup x86 irg() to insert irq0 in the list of irgaction
descriptors associated with IRQO.

Similarly, the kernel initializes the irgaction descriptors associated with IRQ2 and IRQ13

and inserts them in the proper lists of irgaction descriptors by executing the following
instructions in the init IRQ() function:

125

Understanding the Linux Kernel

struct irgaction irg2 =

{no _action, 0, 0, "cascade", NULL, };
struct irgaction irgl3 =

{math error irq, 0, 0, "fpu", NULL, };
setup x86 irg(2, &irg2);
setup x86 irg(l3, &irqgl3);

4.7 Returning from Interrupts and Exceptions

We will finish the chapter by examining the termination phase of interrupt and exception
handlers. Although the main objective is clear, namely, to resume execution of some program,
several issues must be considered before doing it:

e The number of kernel control paths being concurrently executed: if there is just one,
the CPU must switch back to User Mode.

e Active bottom halves to be executed: if there are some, they must be executed.

e Pending process switch requests: if there is any request, the kernel must perform
process scheduling; otherwise, control is returned to the current process.

o Pending signals: if a signal has been sent to the current process, it must be handled.

The kernel assembly language code that accomplishes all these things is not, technically
speaking, a function, since control is never returned to the functions that invoke it. It is a piece
of code with three different entry points called ret from intr, ret from sys call, and
ret from exception. We will refer to it as three different functions since this makes the

description simpler. We shall thus refer quite often to the following three entry points as
functions:

ret from intr()

Terminates interrupt handlers
ret from sys call()

Terminates system calls, that is, kernel control paths engendered by 0x80 exceptions
ret from exception()

Terminates all exceptions except the 0x80 ones
The general flow diagram with the corresponding three entry points is illustrated in Figure 4-
5. Besides these three labels, a few other ones have been added to allow you to relate the

assembly language code more easily to the flow diagram. Let us now examine in detail how
the termination occurs in each case.

126

Understanding the Linux Kernel

Figure 4-5. Returning from interrupts and exceptions

(ret from excepr_ion-.:) (ret_from_sya_call:)
Py AN

YES " Bottom
handle_bottom _half: ; ‘m_ﬁ%

do_bottom_halfi) HO

Mested kerngl
controd paths?

ret_with_ras Ch/

reschadule'i' schedule()

signal_returni

Virtuial
vBE mode?
NO
save_vié_stabel)

do_signal(} [

T B T

Reatore hardware context
[RESTORE_ALL)

YES

vBb6_signal_return:

4.7.1 The ret_ from_intr() Function

When ret from intr() isinvoked, the do TRQ() function has already executed all active
bottom halves (see Section 4.6.4). The initial part of the ret from intr() function is
implemented by the following code:

ret from intr:
movl %esp, %ebx
andl $O0xffffe000, %ebx
movl 0x30 (%esp), %eax
movb 0x2c (%esp), %al
testl $(0x00020000 | 3), %eax
jne ret with reschedule
RESTORE ALL

The address of the current's process descriptor is stored in ebx (see Section 3.1.2 in Chapter

3). Then the values of the cs and eflags registers, which were pushed on the stack when the
interrupt occurred, are used by the function to determine whether the interrupted program was

127

Understanding the Linux Kernel

running in Kernel Mode. If so, a nesting of interrupts has occurred and the interrupted kernel
control path is restarted by executing the following code, yielded by the RESTORE ALL macro:

popl S%Sebx
popl S%Secx
popl S%Sedx
popl S%Sesi
popl S%Sedi
popl Sebp
popl S%Seax
popl %ds
popl S%es
addl $4,%esp
iret

This macro loads the registers with the values saved by the saveE ALL macro and yields
control to the interrupted program by executing the iret instruction.

If, on the other hand, the interrupted program was running in User Mode or if the vu flag of
eflags was set,” a jump is made to the ret with reschedule address:

7] This flag allows programs to be executed in Virtual-8086 Mode; see the Pentium manuals for further details.

ret with reschedule:
cmpl $0,20 (%ebx)
jne reschedule
cmpl $0, 8 (%ebx)
jne signal return
RESTORE ALL

As we said previously, the ebx register points to the current process descriptor; within that
descriptor, the need resched field is at offset 20, which is checked by the first cmpl
instruction. Therefore, if the need resched field is 1, the schedule () function is invoked to
perform a process switch.

The offset of the sigpending field inside the process descriptor is 8. If it is null, current
resumes execution in User Mode. Otherwise, the code jumps to signal return to process
the pending signals of current:

signal return:
sti
testl $(0x00020000),0x30 (%esp)
movl %esp, $eax
jne v86_ signal return
xorl %edx, %edx
call do signal
RESTORE ALL

v86 signal return:
call save v86 state
movl %eax, sesp
xorl %edx, %edx
call do signal
RESTORE ALL

128

Understanding the Linux Kernel

If the interrupted process was in VM86 mode, the save v86 state() function is invoked.
The do_signal() function (see Chapter 9) is then invoked to handle the pending signals.
Finally, current can resume execution in User Mode.

4.7.2 The ret_ from_sys_call() Function

The ret from sys call() function is equivalent to the following assembly language code:

ret from sys call:
movl bh mask, %eax
andl bh active, %eax
je ret with reschedule
handle bottom half:
call do bottom half
jmp ret from intr

First, the bh mask and bh active variables are checked to determine whether active
unmasked bottom halves exist. If no bottom half must be executed, a jump is made to the
ret with reschedule address. Otherwise, the do bottom half() function is invoked;
then control is transferred to ret from intr.

4.7.3 The ret_ from_exception() Function

The ret from exception() function is equivalent to the following assembly language
code:

ret from exception:
movl bh mask, $eax
andl bh active, $eax
jne handle bottom half
jmp ret from intr

First, the bh_mask and bh_active global variables are checked to determine whether active
unmasked bottom halves exist. If so, they are executed. In any case, a jump is made to the
ret from intr address. Therefore exceptions terminate in the same way as interrupts.

4.8 Anticipating Linux 2.4

Linux 2.4 introduces a new mechanism called software interrupt. Software interrupts are
similar to Linux 2.2's bottom halves, in that they allow you to defer the execution of a kernel
function. However, while bottom halves were strictly serialized (because no two bottom
halves can be executed at the same time even on different CPUs), software interrupts are not
serialized in any way. It is quite possible that two CPUs run two instances of the same
software interrupt at the same time. In this case, of course, the software interrupt must be
reentrant. Networking, in particular, greatly benefits from software interrupts: it is much more
efficient on multiprocessor systems because it uses two software interrupts in place of the old
NET BH bottom half.

Linux 2.4 introduces another mechanism similar to the bottom half called tasklet. Tasklets are
built on top of software interrupts, but they are serialized with respect to themselves: two
CPUs can execute two tasklets at the same time, but these tasklets must be different. Tasklets
are much easier to write than generic software interrupts, because they need not be reentrant.

129

Understanding the Linux Kernel

Bottom halves continue to exist in Linux 2.4, but they are now built on top of tasklets. As
usual, no two bottom halves can execute at the same time, not even on two different CPUs of
a multiprocessor system. Device driver developers are expected to update their old drivers and
replace bottom halves with tasklets, because bottom halves degrade significantly the
performance of multiprocessor systems.

On the hardware side, Linux 2.4 now supports IO-APIC chips even in uniprocessor systems

and is able to handle several external IO-APIC chips in multiprocessor systems. (This feature
was required for porting Linux to large enterprise systems.)

130

Understanding the Linux Kernel

Chapter 5. Timing Measurements

Countless computerized activities are driven by timing measurements, often behind the user's
back. For instance, if the screen is automatically switched off after you have stopped using the
computer's console, this is due to a timer that allows the kernel to keep track of how much
time has elapsed since you pushed a key or moved the mouse. If you receive a warning from
the system asking you to remove a set of unused files, this is the outcome of a program that
identifies all user files that have not been accessed for a long time. In order to do these things,
programs must be able to retrieve from each file a timestamp identifying its last access time,
and therefore such a timestamp must be automatically written by the kernel. More
significantly, timing drives process switches along with even more basic kernel activities like
checking for time-outs.

We can distinguish two main kinds of timing measurement that must be performed by the
Linux kernel:

o Keeping the current time and date, so that they can be returned to user programs
through the time(), ftime(), and gettimeofday() system calls (see
Section 5.5.1 later in this chapter) and used by the kernel itself as timestamps for files
and network packets

e Maintaining timers, that is, mechanisms that are able to notify the kernel (see
Section 5.4.4) or a user program (see Section 5.5.3) that a certain interval of time has
elapsed

Timing measurements are performed by several hardware circuits based on fixed-frequency
oscillators and counters. This chapter consists of three different parts. The first section
describes the hardware devices that underlie timing; the next three sections describe the kernel
data structures and functions introduced to measure time; then a section discusses the system
calls related to timing measurements and the corresponding service routines.

5.1 Hardware Clocks

The kernel must explicitly interact with three clocks: the Real Time Clock, the Time Stamp
Counter, and the Programmable Interval Timer. The first two hardware devices allow the
kernel to keep track of the current time of day; the latter device is programmed by the kernel
so that it issues interrupts at a fixed, predefined frequency. Such periodic interrupts are crucial
for implementing the timers used by the kernel and the user programs.

5.1.1 Real Time Clock

All PCs include a clock called Real Time Clock (RTC), which is independent of the CPU and
all other chips.

The RTC continues to tick even when the PC is switched off, since it is energized by a small

battery or accumulator. The CMOS RAM and RTC are integrated in a single chip, the
Motorola 146818 or an equivalent.

131

Understanding the Linux Kernel

The RTC is capable of issuing periodic interrupts on IRQS8 at frequencies ranging between 2
Hz and 8192 Hz. It can also be programmed to activate the IRQ8 line when the RTC reaches a
specific value, thus working as an alarm clock.

Linux uses the RTC only to derive the time and date; however, it allows processes to program
the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel accesses the RTC
through the 0x70 and 0x71 I/O ports. The system administrator can set up the clock by
executing the /shin/clock system program that acts directly on these two I/O ports.

5.1.2 Time Stamp Counter

All Intel 80x86 microprocessors include a CLK input pin, which receives the clock signal of
an external oscillator.

Starting with the Pentium, many recent Intel 80x86 microprocessors include a 64-bit Time
Stamp Counter (TSC) register that can be read by means of the rdtsc assembly language
instruction. This register is a counter that is incremented at each clock signal: if, for instance,
the clock ticks at 400 MHz, the Time Stamp Counter is incremented once every 2.5
nanoseconds.

Linux takes advantage of this register to get much more accurate time measurements than the
ones delivered by the Programmable Interval Timer. In order to do this, Linux must determine
the clock signal frequency while initializing the system: in fact, since this frequency is not
declared when compiling the kernel, the same kernel image may run on CPUs whose clocks
may tick at any frequency. The task of figuring out the actual frequency is accomplished
during the system's boot by the calibrate tsc() function, which returns the number:

=_ |, #= CPU brequency in MHz
7

The value of f'is computed by counting the number of clock signals that occur in a relatively
long time interval, namely 50.00077 milliseconds. This time constant is produced by setting
up one of the channels of the Programmable Interval Timer properly (see the next section).
The long execution time of calibrate tsc() does not create problems, since the function
is invoked only during system initialization.

5.1.3 Programmable Interval Timer

Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs include a
third type of time-measuring device called Programmable Interval Timer (PIT). The role of a
PIT is similar to the alarm clock of a microwave oven: to make the user aware that the
cooking time interval has elapsed. Instead of ringing a bell, this device issues a special
interrupt called timer interrupt, which notifies the kernel that one more time interval has
elapsed.”” Another difference from the alarm clock is that the PIT goes on issuing interrupts
forever at some fixed frequency established by the kernel. Each IBM-compatible PC includes
at least one PIT, which is usually implemented by a 8254 CMOS chip using the 0x40-0x43
I/O ports.

1"l The PIT is also used to drive an audio amplifier connected to the computer's internal speaker.

132

Understanding the Linux Kernel

As we shall see in detail in the next paragraphs, Linux programs the first PC's PIT to issue
timer interrupts on the IRQO at a (roughly) 100-Hz frequency, that is, once every 10
milliseconds. This time interval is called a tick, and its length in microseconds is stored in the
tick variable. The ticks beat time for all activities in the system; in some sense, they are like
the ticks sounded by a metronome while a musician is rehearsing.

Generally speaking, shorter ticks yield better system responsiveness. This is because system
responsiveness largely depends on how fast a running process is preempted by a higher-
priority process once it becomes runnable (see Chapter 10); moreover, the kernel usually
checks whether the running process should be preempted while handling the timer interrupt.
This is a trade-off however: shorter ticks require the CPU to spend a larger fraction of its time
in Kernel Mode, that is, a smaller fraction of time in User Mode. As a consequence, user
programs run slower. Therefore, only very powerful machines can adopt very short ticks and
afford the consequent overhead. Currently, only Compaq's Alpha port of the Linux kernel
issues 1024 timer interrupts per second, corresponding to a tick of roughly 1 millisecond.

A few macros in the Linux code yield some constants that determine the frequency of timer
interrupts:

e Hz yields the number of timer interrupts per second, that is, the frequency of timer
interrupts. This value is set to 100 for IBM PCs and most other hardware platforms.

e CLOCK TICK RATE Yyields the value 1193180, which is the 8254 chip's internal
oscillator frequency.

e 1ATCH yields the ratio between cLock TICK RATE and Hz. It is used to program the
PIT.

The first PIT is initialized by init TRQ() as follows:

outb p(0x34,0x43);
outb p(LATCH & Oxff , 0x40);
outb (LATCH >> 8 , 0x40);

The outb () C function is equivalent to the outb assembly language instruction: it copies the
first operand into the I/O port specified as the second operand. The outb p() function is

similar to outb (), except that it introduces a pause by executing a no-op instruction. The
first outb_ p() invocation is a command to the PIT to issue interrupts at a new rate. The
next two outb p() and outb() invocations supply the new interrupt rate to the device.

The 16-bit LATCH constant is sent to the 8-bit 0x40 I/O port of the device as 2 consecutive
bytes. As a result, the PIT will issue timer interrupts at a (roughly) 100-Hz frequency, that is,
once every 10 ms.

Now that we understand what the hardware timers do, the following sections describe all the

actions performed by the kernel when it receives a timer interrupt—that is, when a tick has
elapsed.

5.2 The Timer Interrupt Handler
Each occurrence of a timer interrupt triggers the following major activities:

o Updates the time elapsed since system startup.

133

Understanding the Linux Kernel

o Updates the time and date.

e Determines how long the current process has been running on the CPU and preempts
it if it has exceeded the time allocated to it. The allocation of time slots (also called
quanta) is discussed in Chapter 10.

o Updates resource usage statistics.

e Checks whether the interval of time associated with each software timer (see
Section 5.4.4) has elapsed; if so, invokes the proper function.

The first activity is considered urgent, so it is performed by the timer interrupt handler itself.
The remaining four activities are less urgent; they are performed by the functions invoked by
the TIMER BH and TQUEUE BH bottom halves (see Section 4.6.6 in Chapter 4).

The kernel uses two basic timekeeping functions: one to keep the current time up to date and
another to count the number of microseconds that have elapsed within the current second.
There are two different ways to maintain such values: a more precise method that is available
if the chip has a Time Stamp Counter (TSC) and a less precise method used in other cases. So
the kernel creates two variables to store the functions it uses, pointing the variables to the
functions using the TSC if it exists:

e The current time is calculated by do gettimeofday() if the CPU has the TSC
register and by do normal gettime() otherwise. A pointer to the proper function is
stored in the variable do get fast time.

e The number of microseconds is calculated by do fast gettimeoffset () when the
TSC register is available and by do_slow gettimeoffset () otherwise. The address
of this function is stored in the variable do gettimeoffset.

The time init () function, which runs during kernel startup, sets the variables to point to
the right functions and sets up the interrupt gate corresponding to IRQO.

5.3 PIT's Interrupt Service Routine

Once the IRQO interrupt gate has been initialized, the handler field of IRQO's irgaction
descriptor contains the address of the timer interrupt() function. This function starts
running with the interrupts disabled, since the status field of IRQ0's main descriptor has the
sa INTERRUPT flag set. It performs the following steps:

1. Ifthe CPU has a TSC register, it performs the following substeps:
a. Executes an rdtsc Assembly instruction to store the value of the TSC register
inthe 1ast tsc low variable
b. Reads the state of the 8254 chip device internal oscillator and computes the
delay between the timer interrupt occurrence and the execution of the interrupt
service routine”

12l The 8254 oscillator drives a counter that is continuously decremented. When the counter becomes 0, the chip
raises an IRQO. So reading the counter indicates how much time has elapsed since the interrupt occurred.

c. Stores that delay (in microseconds) in the delay at last interrupt
variable
2. Itinvokes do timer interrupt().

134

Understanding the Linux Kernel

do timer interrupt(), which may be considered as the interrupt service routine common
to all 80x86 models, executes the following operations:

1. Itinvokes the do timer() function, which is fully explained shortly.

2. If an adjtimex() system call has been issued, it invokes the set rtc mmss()
function once every 660 seconds, that is, every 11 minutes, to adjust the Real Time
Clock. This feature helps systems on a network synchronize their clocks (see
Section 5.5.2).

The do timer() function, which runs with the interrupts disabled, must be executed as
quickly as possible. For this reason, it simply updates one fundamental value—the time
elapsed from system startup—while delegating all remaining activities to two bottom halves.
The function refers to three main variables related to timing measurements; the first is the
fundamental uptime just mentioned, while the latter two are needed to store lost ticks that take
place before the bottom half functions have a chance to run. Thus, the first is absolute (it just
keeps incrementing) while the other two are relative to another variable called xtime that
stores the approximate current time. (This variable will be described in Section 5.4.1).

The three do timer () variables are:
Jjiffies

The number of elapsed ticks since the system was started; it is set to during kernel
initialization and incremented by 1 when a timer interrupt occurs, that is, on every
tick.”

B Since J1 £ fies is stored as a 32-bit unsigned integer, it returns to about 497 days after the systems has been booted.

lost ticks

The number of ticks that has occurred since the last update of xtime.

lost ticks system

The number of ticks that has occurred while the process was running in Kernel Mode
since the last update of xtime. The user mode macro examines the CPL field of the
cs register saved in the stack to determine if the process was running in Kernel Mode.

The do_timer () function is equivalent to:

void do_timer (struct pt regs * regs)
{
jiffies++;
lost ticks++;
mark bh (TIMER BH);
if (!user mode (regs))
lost ticks system++;
if (tg timer)
mark bh (TQUEUE BH) ;

135

Understanding the Linux Kernel

Note that the TQUEUE BH bottom half is activated only if the tq timer task queue is not
empty (see Section 4.6.6 in Chapter 4).

5.4 The TIMER_BH Bottom Half Functions

The timer bh() function associated with the TIMER BH bottom half invokes the
update times(), run old timers(), and run timer list() auxiliary functions,
which are described next.

5.4.1 Updating the Time and Date

The xtime variable of type struct timeval is where user programs get the current time and
date. The kernel also occasionally refers to it, for instance, when updating inode timestamps
(see Section 1.5.4 in Chapter 1). In particular, xtime.tv sec stores the number of seconds
that have elapsed since midnight of January 1, 1970% , while xtime.tv usec stores the
number of microseconds that have elapsed within the last second (its value thus ranges
between and 999999).

1“I This date is traditionally used by all Unix systems as the earliest moment in counting time.

During system initialization, the time init() function is invoked to set up the time and
date: it reads them from the Real Time Clock by invoking the get cmos time() function,
then it initializes xtime. Once this has been done, the kernel does not need the RTC anymore:
it relies instead on the TIMER BH bottom half, which is activated once every tick.

The update times() function invoked by the TIMER BH bottom half updates xtime by
disabling interrupts and executing the following statement:

if (lost_ticks)
update wall time (lost ticks);

The update wall time() function invokes the update wall time one tick() function
lost ticks consecutive times; each invocation adds 10000 to the xtime.tv usec field.® If
xtime.tv usec has become greater than 999999, the update wall time() function also
updates the tv_sec field of xtime.

151 In fact, the function is much more complex since it might slightly tune the value 10000. This may be necessary if an adjtimex () system
call has been issued (see Section 5.5.2 later in this chapter).

5.4.2 Updating Resource Usage Statistics

The value of 1ost ticks is also used, together with that of 1ost ticks system, to update
resource usage statistics. These statistics are used by various administration utilities such as
top. A user who enters the uptime command sees the statistics as the "load average" relative
to the last minute, the last 5 minutes, and the last 15 minutes. A value of means that there are
no active processes (besides the swapper process 0) to run, while a value of 1 means that the
CPU is 100% busy with a single process, and values greater than 1 mean that the CPU is
shared among several active processes.

After updating the system clock, update times() reenables the interrupts and performs the
following actions:

136

Understanding the Linux Kernel

e Clears lost_ticks after storing its value in ticks

e Clears lost ticks system after storing its value in system
e Invokes calc load(ticks)

o InVOkeSupdate_process_times(ticks, system)

The calc load() function counts the number of processes in the TASK RUNNING or
TASK_UNINTERRUPTIBLE state and uses this number to update the CPU usage statistics.

The update process times() function updates some kernel statistics stored in the kstat
variable of type kernel stat; it then invokes update one process() to update some
fields storing statistics that can be exported to user programs through the times () system
call. In particular, a distinction is made between CPU time spent in User Mode and in Kernel
Mode. The function perform the following actions:

e Updates the per cpu utime field of current's process descriptor, which stores the
number of ticks during which the process has been running in User Mode.

e Updates the per cpu stime field of current's process descriptor, which stores the
number of ticks during which the process has been running in Kernel Mode.

e Invokes do process times(), which checks whether the total CPU time limit has
been reached; if so, sends sTGxcPU and STIGKILL signals to current. Section 3.1.5 in
Chapter 3, describes how the limit is controlled by the r1im[RLIMIT CPU].rlim cur
field of each process descriptor.

e Invokes the do it virt() and do it prof() functions, which are described in
Section 5.5.3.

Two additional fields called times.tms cutime and times.tms cstime are provided in the
process descriptor to count the number of CPU ticks spent by the process children in User
Mode and in Kernel Mode, respectively. For reasons of efficiency, these fields are not
updated by do process times() but rather when the parent process queries the state of one
of its children (see the section Section 3.4 in Chapter 3).

5.4.3 CPU's Time Sharing

Timer interrupts are essential for time sharing the CPU among runnable processes (that is,
those in the TASK RUNNING state). As we shall see in Chapter 10, each process is usually
allowed a quantum of time of limited duration: if the process is not terminated when its
quantum expires, the schedule () function selects the new process to run.

The counter field of the process descriptor specifies how many ticks of CPU time are left to
the process. The quantum is always a multiple of a tick, that is, a multiple of about 10 ms. The
value of counter is updated at every tick by update process times() as follows:

if (current->pid) {

current->counter -= ticks;

if (current->counter < 0) {
current->counter = 0;
current->need resched = 1;

137

Understanding the Linux Kernel

As stated in Section 3.1.2 in Chapter 3, the process having PID (swapper) must not be time-
shared, because it is the process that runs on the CPU when no other TASK RUNNING processes
exist.

Since counter is updated in a deferred manner by a bottom half, the decrement might be
larger than a single tick. Thus, the ticks local variable denotes the number of ticks that
occurred since the bottom half was activated. When counter becomes smaller than 0, the
need resched field of the process descriptor is set to 1. In that case, the schedule()
function will be invoked before resuming User Mode execution, and other TASK RUNNING
processes will have a chance to resume execution on the CPU.

5.4.4 The Role of Timers

A timer is a software facility that allows functions to be invoked at some future moment, after
a given time interval has elapsed; a time-out denotes a moment at which the time interval
associated with a timer has elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers make use of
timers to detect anomalous conditions: floppy disk drivers, for instance, use timers to switch
off the device motor after the floppy has not been accessed for a while, and parallel printer
drivers use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific functions
at some future time (see Section 5.5.3).

Implementing a timer is relatively easy: each timer contains a field that indicates how far in
the future the timer should expire. This field is initially calculated by adding the right number
of ticks to the current value of jiffies. The field does not change. Every time the kernel
checks a timer, it compares the expiration field to the value of jiffies at the current
moment, and the timer expires when jiffies is greater or equal to the stored value. This
comparison is made via the time after, time before, time after eg, and
time before eq macros, which take care of possible overflows of jiffies.

Linux considers three types of timers called static timers, dynamic timers, and interval timers.
The first two types are used by the kernel, while interval timers may be created by processes
in User Mode.

One word of caution about Linux timers: since checking for timer functions is always done by
bottom halves that may be executed a long time after they have been activated, the kernel
cannot ensure that timer functions will start right at their expiration times; it can only ensure
that they will be executed either at the proper time or after they are supposed to with a delay
of up to a few hundreds of milliseconds. For that reason, timers are not appropriate for real-
time applications in which expiration times must be strictly enforced.

138

Understanding the Linux Kernel

5.4.5 Static Timers

The first versions of Linux allowed only 32 different timers;* these static timers, which rely
on statically allocated kernel data structure, still continue to be used. Since they were the first
to be introduced, Linux code refers to them as old timers.

1% This value was chosen so that the corresponding active flags could be stored in a single variable.

Static timers are stored in the timer table array, which includes 32 entries. Each entry
consists of the following timer struct structure:

struct timer struct ({
unsigned long expires;
void (*fn) (void);

}i

The expires field specifies when the timer expires; the time is expressed as the number of
ticks that have elapsed since the system was started up. All timers having an expires value
smaller than or equal to the value of jiffies are considered to be expired or decayed. The fn
field contains the address of the function to be executed when the timer expires.

Although timer table includes 32 entries, Linux uses only those listed in Table 5-1.

Table 5-1. Static Timers

Static Timer
BACKGR TIMER
BEEP TIMER
BLANK TIMER
COMTROL_TIMER
COPRO_TIMER
DIGI TIMER
FLOPPY TIMER
GDTH_ TIMER
GSCD_TIMER
HD TIMER

MCD TIMER

QIC02 TAPE TIMER

RS_TIMER
SWAP TIMER

Time-out Effect

Background 1/0O operation request
Loudspeaker tone

Switch off the screen

Comtrol serial card

180387 coprocessor

Digiboard card

Floppy disk

GDTH SCSI driver

Goldstar CD-ROM

Hard disk (old IDE driver)
Mitsumi CD-ROM

QIC-02 tape driver

RS-232 serial port

kswapd kernel thread activation

The timer active variable is used to identify the active static timers: each bit of this 32-bit
variable is a flag that specifies whether the corresponding timer is activated.

In order to activate a static timer, the kernel must simply:

e Register the function to be executed in the £n field of the timer.

o Compute the expiration time (this is usually done by adding some specified value to
the value of jiffies) and store it in the expires field of the timer.

o Set the proper flag in timer active.

139

Understanding the Linux Kernel

The job of checking for decayed static timers is done by the run old timers() function,
which is invoked by the TIMER BH bottom half:

void run_old timers (void)
{
struct timer struct *tp;
unsigned long mask;
for (mask = 1, tp = timer table; mask;
tp++, mask += mask) {
if (mask > timer active)

break;

if (! (mask & timer active))
continue;

if (tp->expires > jiffies)
continue;

timer active &= ~mask;

tp->fn();

sti()s

Once a decayed active timer has been identified, the corresponding active flag is cleared
before executing the function that the £n field points to, thus ensuring that the timer won't be
invoked again at each future execution of run old timers().

5.4.6 Dynamic Timers

Dynamic timers may be dynamically created and destroyed. No limit is placed on the number
of currently active dynamic timers.

A dynamic timer is stored in the following timer 1ist structure:

struct timer list {
struct timer list *next;
struct timer list *prev;
unsigned long expires;
unsigned long data;
void (*function) (unsigned long);

b

The function field contains the address of the function to be executed when the timer
expires. The data field specifies a parameter to be passed to this timer function. Thanks to the
data field, it is possible to define a single general-purpose function that handles the time-outs
of several device drivers; the data field could store the device ID or other meaningful data
that could be used by the function to differentiate the device.

The meaning of the expires field is the same as the corresponding field for static timers.
The next and prev fields implement links for a doubly linked circular list. In fact, each active
dynamic timer is inserted in exactly one of 512 doubly linked circular lists, depending on the

value of the expires field. The algorithm that uses this list is described later in the chapter.

In order to create and activate a dynamic timer, the kernel must:

140

Understanding the Linux Kernel

1. Create anew struct timer list object, say t. This can be done in several ways by:
o Defining a static global variable in the code
o Defining a local variable inside a function: in this case, the object is stored on
the Kernel Mode stack
o Including the object in a dynamically allocated descriptor

2. Initialize the object by invoking the init timer (st) function. This simply sets the
next and prev fields to NULL.

3. If the dynamic timer is not already inserted in a list, assign a proper value to the
expires field. Otherwise, if the dynamic timer is already inserted in a list, update the
expires field by invoking the mod timer() function, which also takes care of
moving the object into the proper list (discussed shortly).

4. Load the function field with the address of the function to be activated when the
timer decays. If required, load the data field with a parameter value to be passed to
the function.

5. If the dynamic timer is not already inserted in a list, insert the t element in the proper
list by invoking the add_timer (st) function.

Once the timer has decayed, the kernel automatically removes the t element from its list.
Sometimes, however, a process should explicitly remove a timer from its list using the
del\ timer () function. Indeed, a sleeping process may be woken up before the time-out is
over, and in this case the process may choose to destroy the timer. Invoking del\ timer()
on a timer already removed from a list does no harm, so calling del\ timer() from the
timer function is considered a good practice.

We saw previously how the run old timers() function was able to identify the active
decayed static timers by executing a single for loop on the 32 timer table components.
This approach is no longer applicable to dynamic timers, since scanning a long list of
dynamic timers at every tick would be too costly. On the other hand, maintaining a sorted list
would not be much more efficient, since the insertion and deletion operations would also be
costly.

The solution adopted is based on a clever data structure that partitions the expires values into
blocks of ticks and allows dynamic timers to percolate efficiently from lists with larger
expires values to lists with smaller ones.

The main data structure is an array called tvecs, whose elements point to five groups of lists
identified by the tv1, tv2, tv3, tv4, and tv5 structures (see Figure 5-1).

The tv1 structure is of type struct timer vec root, which includes an index field and a
vec array of 256 pointers to timer list elements, that is, to lists of dynamic timers. It
contains all dynamic timers that will decay within the next 255 ticks.

The index field specifies the currently scanned list; it is initialized to and incremented by 1
(modulo 256) at every tick. The list referenced by index contains all dynamic timers that
have expired during the current tick; the next list contains all dynamic timers that will expire
in the next tick; the (index+k)-th list contains all dynamic timers that will expire in exactly k&
ticks. When index returns to 0, this means that all the timers in tv1 have been scanned: in
this case, the list pointed to by tv2.vec[tv2.index] is used to replenish tvi.

141

Understanding the Linux Kernel

The tv2, tv3, and tv4 structures of type struct timer vec contain all dynamic timers that
will decay within the next 2'*-1, 2%°-1, and 2°-1 ticks, respectively.

The tv5 structure is identical to the previous ones, except that the last entry of the vec array
includes dynamic timers with arbitrarily large expires fields; it needs never be replenished
from another array.

The timer vec structure is very similar to timer vec root: it contains an index field and a
vec array of 64 pointers to dynamic timer lists. The index field specifies the currently
scanned list; it is incremented by 1 (modulo 64) every 256" ticks, where i ranging between 2
and 5 is the tvi group number. As in the case of tv1, when index returns to 0, the list pointed
to by tvj.vec[tvj.index] is used to replenish tvi (i ranges between 2 and 4, j is equal to
i+1).

A single entry of tv2 is sufficient to replenish the whole array tv1; similarly, a single entry of
tv3 1is sufficient to replenish the whole array tv2 and so on.

Figure 5-1 shows how these data structures are connected together.

Figure 5-1. The groups of lists associated with dynamic timers

fvecs
[
. D2 ,wa . . 5
[T 1 [C 1 (L3 L [
a0 0o O o
: :
(0-255) (<214-1) (<2%0-1) (<2%5-1) (<2%2-1)
Dynamic Timer Lists
The timer bh() function associated with the TIiMER BH bottom half invokes the
run timer list() auxiliary function to check for decayed dynamic timers. The function

relies on a variable similar to jiffies called timer jiffies. This new variable is needed
because a few timer interrupts might occur before the activated TIMER BH bottom half has a
chance to run; this happens typically when several interrupts of different types are issued in a
short interval of time.

The value of timer jiffies represents the expiration time of the dynamic timer list yet to be
checked: if it coincides with the value of jiffies, no backlog of bottom half functions has
accumulated; if it is smaller than jiffies, then bottom half functions that refer to previous
ticks have to be dealt with. The variable is set to at system startup and is incremented only by
run timer list(), which is invoked once every tick. Its value can never be greater than
jiffies.

142

Understanding the Linux Kernel

The run timer list() function includes the following C fragment (assuming a uni-
processor system):

cli()

while ((long) (jiffies - timer jiffies) >= 0) {
struct timer list *timer;
if ('tvl.index) {

int n = 1;
do {
cascade timers(tvecs[n]);

} while (tvecs[n]->index == 1 && ++n < 5));
}
while ((timer = tvl.vec[tvl.index])) {

detach timer (timer);

timer->next = timer->prev = NULL;

sti() ;

timer->function (timer->data) ;

cli()

}
++timer jiffies;
tvl.index = (tvl.index + 1) & Oxff;

}
sti()

The outermost while loop ends when timer jiffies becomes greater than the value of
jiffies. Since the values of jiffies and timer jiffies usually coincide, the outermost
while cycle will often be executed only once. In general, the outermost loop will be executed
jiffies - timer jiffies + 1 consecutive times. Moreover, if a timer interrupt occurs while
run timer list() is being executed, dynamic timers that decay at this tick occurrence will
also be considered, since the jiffies variable is asynchronously incremented by the IRQO
interrupt handler (see Section 5.3).

During a single execution of the outermost while cycle, the dynamic timer functions included
in the tvl.vec[tvl.index] list are executed. Before executing a dynamic timer function, the
loop invokes the detach timer () function to remove the dynamic timer from the list. Once
the list is emptied, the values of tv1.index is incremented (modulo 256) and the value of
timer jiffies is incremented.

When tv1.index becomes equal to 0, all the lists of tv1 have been checked; in this case, it is
necessary to refill the tv1 structure. This is accomplished by the cascade timers()
function, which transfers the dynamic timers included in tv2.vec[tv2.index] into tvl.vec,
since they will necessarily decay within the next 256 ticks. If tv2.index is equal to 0, it is
necessary to refill the tv2 array of lists with the elements of tv3.vec[tv3.index] and so on.

Notice that run timer 1list() disables interrupts just before entering the outermost loop;
interrupts are enabled right before invoking each dynamic timer function, and again disabled
right after its termination. This ensures that the dynamic timer data structures are not
corrupted by interleaved kernel control paths.

To sum up, this rather complex algorithm ensures excellent performance. To see why, assume
for the sake of simplicity that the TivMER BH bottom half is executed right after the
corresponding timer interrupt has occurred. Then in 255 timer interrupt occurrences out of
256, that is in 99.6% of the cases, the run timer 1ist() function just runs the functions of

143

Understanding the Linux Kernel

the decayed timers, if any. In order to replenish tv1.vec periodically, it will be sufficient 63
times out of 64 to partition the list pointed to by tv2.vec[tv2.index] into the 256 lists
pointed to by tv1.vec. The tv2.vec array, in turn, must be replenished in 0.02% of the cases,
that is, once every 163 seconds. Similarly, tv3 is replenished every 2 hours and 54 minutes,
tv4 every 7 days and 18 hours, while tv5 doesn't need to be replenished.

5.4.7 An Application of Dynamic Timers

On some occasions, for instance when it is unable to provide a given service, the kernel may
decide to suspend the current process for a fixed amount of time. This is usually done by
performing a process time-out .

Let us assume that the kernel has decided to suspend the current process for two seconds. It
does this by executing the following code:

timeout = 2 * HZ;

current->state = TASK_INTERRUPT IBLE;
timeout = schedule timeout (timeout) ;

The kernel implements process time-outs by using dynamic timers. They appear in the
schedule timeout () function, which executes the following statements:

struct timer list timer;

expire = timeout + Jjiffies;

init timer (&timer) ;

timer.expires = expire;

timer.data = (unsigned long) current;

timer.function = process timeout;

add_timer (&timer);

schedule(); /* process suspended until timer expires */
del timer (&timer);

timeout = expire - jiffies;

return (timeout < 0 ? 0 : timeout);

When schedule () is invoked, another process is selected for execution; when the former

process resumes its execution, the function removes the dynamic timer. In the last statement,
the function returns either if the time-out is expired or the number of ticks left to the time-out
expiration if the process has been awoken for some other reason.

When the time-out expires, the kernel executes the following function:

void process timeout (unsigned long data)

{
struct task struct * p = (struct task struct *) data;
wake up process(p);

The run timer list() function invokes process timeout (), passing as its parameter
the process descriptor pointer stored in the data field of the timer object. As a result, the
suspended process is woken up.

144

Understanding the Linux Kernel

5.5 System Calls Related to Timing Measurements

Several system calls allow User Mode processes to read and modify the time and date and to
create timers. Let us briefly review them and discuss how the kernel handles them.

5.5.1 The time(), ftime(), and gettimeofday() System Calls
Processes in User Mode can get the current time and date by means of several system calls:
time ()

Returns the number of elapsed seconds since midnight at the start of January 1, 1970
ftime ()

Returns, in a data structure of type timeb, the number of elapsed seconds since
midnight of January 1, 1970; the number of elapsed milliseconds in the last second;
the time zone; and the current status of daylight saving time

gettimeofday()

Returns the same information as ftime () in two data structures named timeval and
timezone

The former system calls are superseded by gettimeofday(), but they are still included in
Linux for backward compatibility. We don't discuss them further.

The gettimeofday() system call is implemented by the sys gettimeofday() function.
In order to compute the current date and time of the day, this function invokes do
gettimeofday (), which executes the following actions:

o Copies the contents of xtime into the user-space buffer specified by the system call
parameter tv:

*tv = xtime;

e Updates the number of microseconds by invoking the function addressed by the do
gettimeoffset‘vaﬂable:

tv->tv_usec += do_gettimeoffset();

If the CPU has a Time Stamp Counter, the do fast gettimeoffset() function is
executed. It reads the TSC register by using the rdtsc Assembly instruction; it then
subtracts the value stored in last tsc low to obtain the number of CPU cycles
elapsed since the last timer interrupt was handled. The function converts that number
to microseconds and adds in the delay that elapsed before the activation of the timer
interrupt handler, which is stored in the delay at last interrupt variable
mentioned earlier in Section 5.3.

145

Understanding the Linux Kernel

If the CPU does not have a TSC register, do_ gettimeoffset points to the do slow
gettimeoffset () function. It reads the state of the 8254 chip device internal
oscillator and then computes the time length elapsed since the last timer interrupt.
Using that value and the contents of jiffies, it can derive the number of
microseconds elapsed in the last second.

o Further increases the number of microseconds to take into account all timer interrupts
whose bottom halves have not yet been executed:

if (lost ticks)
tv->tv_usec += lost ticks * (1000000/HZ);

e Finally, checks for an overflow in the microseconds field, adjusting both that field and
the second field if necessary:

while (tv->tv usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;

}

Processes in User Mode with root privilege may modify the current date and time by using
either the obsolete stime () or the settimeofday() system call. The sys settimeofday (
) function invokes do_settimeofday(), which executes operations complementary to those
Ofdo_gettimeofday().

Notice that both system calls modify the value of xtime while leaving unchanged the RTC
registers. Therefore, the new time will be lost when the system shuts down, unless the user
executes the /sbin/clock program to change the RTC value.

5.5.2 The adjtimex() System Call

Although clock drift ensures that all systems eventually move away from the correct time,
changing the time abruptly is both an administrative nuisance and risky behavior. Imagine, for
instance, programmers trying to build a large program and depending on filetime stamps to
make sure that out-of-date object files are recompiled. A large change in the system's time
could confuse the make program and lead to an incorrect build. Keeping the clocks tuned is
also important when implementing a distributed filesystem on a network of computers: in this
case, it is wise to adjust the clocks of the interconnected PCs so that the timestamp values
associated with the inodes of the accessed files are coherent. Thus, systems are often
configured to run a time synchronization protocol such as Network Time Protocol (NTP) on a
regular basis to change the time gradually at each tick. This utility depends on the adjtimex (
) system call in Linux.

This system call is present in several Unix variants, although it should not be used in
programs intended to be portable. It receives as its parameter a pointer to a timex structure,
updates kernel parameters from the values in the timex fields, and returns the same structure
with current kernel values. Such kernel values are used by update wall time one tick()
to slightly adjust the number of microseconds added to xtime.tv usec at each tick.

146

Understanding the Linux Kernel

5.5.3 The setitimer() and alarm() System Calls

Linux allows User Mode processes to activate special timers called interval timers.” The
timers cause Unix signals (see Chapter 9) to be sent periodically to the process. It is also
possible to activate an interval timer so that it sends just one signal after a specified delay.
Each interval timer is therefore characterized by:

7] These software constructs have nothing in common with the Programmable Interval Timer chips described earlier in this chapter.

e The frequency at which the signals must be emitted, or a null value if just one signal
has to be generated
e The time remaining until the next signal is to be generated

The warning earlier in the chapter about accuracy applies to these timers. They are guaranteed
to execute after the requested time has elapsed, but it is impossible to predict exactly when
they will be delivered.

Interval timers are activated by means of the POSIX setitimer() system call. The first
parameter specifies which of the following policies should be adopted:

ITIMER REAL

The actual elapsed time; the process receives STGALRM signals

ITIMER VIRTUAL

The time spent by the process in User Mode; the process receives STGVTALRM signals

ITIMER PROF

The time spent by the process both in User and in Kernel Mode; the process receives
SIGPROF signals

In order to implement an interval timer for each of the preceding policies, the process
descriptor includes three pairs of fields:

e it real incrand it real value
e it virt incr and it virt value

e it prof incrand it prof value

The first field of each pair stores the interval in ticks between two signals; the other field
stores the current value of the timer.

The 1TIMER REAL interval timer is implemented by making use of dynamic timers, because
the kernel must send signals to the process even when it is not running on the CPU. Therefore,
each process descriptor includes a dynamic timer object called real timer. The setitimer (
) system call initializes the real timer fields and then invokes add timer() to insert the
dynamic timer in the proper list. When the timer expires, the kernel executes the
it _real fn() timer function. In turn, the it real fn() function sends a STGALRM signal

147

Understanding the Linux Kernel

to the process; if it real incr is not null, it sets the expires field again, reactivating the
timer.

The 1TIMER VIRTUAL and ITIMER PROF interval timers do not require dynamic timers, since
they can be updated while the process is running: the do it virt() and do it prof()
functions are invoked by update one process(), which runs when the TIMER BH bottom
half is executed. Therefore, the two interval timers are usually updated once every tick, and if
they are expired, the proper signal is sent to the current process.

The alarm() system call sends a sTGALRM signal to the calling process when a specified time
interval has elapsed. It is very similar to setitimer () when invoked with the TTIMER REAL
parameter, since it makes use of the real timer dynamic timer included in the process
descriptor. Therefore, alarm() and setitimer() with parameter ITIMER REAL cannot be
used at the same time.

5.6 Anticipating Linux 2.4

Linux 2.4 introduces no significant change to the time-handling functions of the 2.2 version.

148

Understanding the Linux Kernel

Chapter 6. Memory Management

We saw in Chapter 2, how Linux takes advantage of Intel's segmentation and paging circuits
to translate logical addresses into physical ones. In the same chapter, we mentioned that some
portion of RAM is permanently assigned to the kernel and used to store both the kernel code
and the static kernel data structures.

The remaining part of the RAM is called dynamic memory. It is a valuable resource, needed
not only by the processes but also by the kernel itself. In fact, the performance of the entire
system depends on how efficiently dynamic memory is managed. Therefore, all current
multitasking operating systems try to optimize the use of dynamic memory, assigning it only
when it is needed and freeing it as soon as possible.

This chapter, which consists of three main sections, describes how the kernel allocates
dynamic memory for its own use. Section 6.1 and Section 6.2 illustrate two different
techniques for handling physically contiguous memory areas, while Section 6.3 illustrates a
third technique that handles noncontiguous memory areas.

6.1 Page Frame Management

We saw in Section 2.4 in Chapter 2 how the Intel Pentium processor can use two different
page frame sizes: 4 KB and 4 MB. Linux adopts the smaller 4 KB page frame size as the
standard memory allocation unit. This makes things simpler for two reasons:

e The paging circuitry automatically checks whether the page being addressed is
contained in some page frame; furthermore, each page frame is hardware-protected
through the flags included in the Page Table entry that points to it. By choosing a 4
KB allocation unit, the kernel can directly determine the memory allocation unit
associated with the page where a page fault exception occurs.

e The 4 KB size is a multiple of most disk block sizes, so transfers of data between main
memory and disks are more efficient. Yet this smaller size is much more manageable
than the 4 MB size.

The kernel must keep track of the current status of each page frame. For instance, it must be
able to distinguish the page frames used to contain pages belonging to processes from those
that contain kernel code or kernel data structures; similarly, it must be able to determine
whether a page frame in dynamic memory is free or not. This sort of state information is kept
in an array of descriptors, one for each page frame. The descriptors of type struct page have
the following format:

typedef struct page {
struct page *next;
struct page *prev;
struct inode *inode;
unsigned long offset;
struct page *next hash;
atomic t count;
unsigned long flags;
struct wait queue *wait;
struct page **pprev_hash;
struct buffer head * buffers;
} mem map t;

149

Understanding the Linux Kernel

We shall describe only a few fields (the remaining ones will be discussed in later chapters
dealing with filesystems, I/O buffers, memory mapping, and so on):

count

Set 0 to if the corresponding page frame is free; set to a value greater than if the page
frame has been assigned to one or more processes or if it is used for some kernel data
structures.

prev , next

Used to insert the descriptor in a doubly linked circular list. The meaning of these
fields depends on the current use of the page frame.

flags

An array of up to 32 flags (see Table 6-1) describing the status of the page frame. For
each pG xyz flag, a corresponding pageXyz macro has been defined to read or set its
value.

Some of the flags listed in Table 6-1 are explained in later chapters. The pG_pmMa flag exists
because of a limitation on Direct Memory Access (DMA) processors for ISA buses: such
DMA processors are able to address only the first 16 MB of RAM, hence page frames are
divided into two groups depending on whether they can be addressed by the DMA or not.
(Section 13.1.4 in Chapter 13, gives further details on DMAs.) In this chapter, the term
"DMA" will always refer to DMA for ISA buses.

Table 6-1. Flags Describing the Status of a Page Frame

Flag Name Meaning
PG decr after See Section 16.4.3 in Chapter 16.
PG dirty Not used.

PG error

PG free after
PG DMA

PG locked

PG referenced
PG reserved
PG _skip

PG Slab

PG swap cache

An I/O error occurred while transferring the page.
See Section 15.1.1 in Chapter 15.

Usable by ISA DMA (see text).

Page cannot be swapped out.

Page frame has been accessed through the hash table of the page cache (see
Section 14.2 in Chapter 14).

Page frame reserved to kernel code or unusable.

Used on SPARC/SPARC64 architectures to "skip" some parts of the address
space.

Included in a slab: see Section 6.2 later in this chapter.
Included in the swap cache; see Section 16.3 in Chapter 16

PG_swap_unlock_after See Section 16.4.3 in Chapter 16.

PG uptodate

Set after completing a read operation, unless a disk I/O error happened.

All the page frame descriptors on the system are included in an array called mem map. Since
each descriptor is less than 64 bytes long, mem map requires about four page frames for each
megabyte of RAM. The MaP NR macro computes the number of the page frame whose address
is passed as a parameter, and thus the index of the corresponding descriptor in mem map:

150

Understanding the Linux Kernel

#define MAP NR(addr) (__pa(addr) >> PAGE SHIFT)
The macro makes use of the pa macro, which converts a logical address to a physical one.

Dynamic memory, and the values used to refer to it, are illustrated in Figure 6-1. Page frame
descriptors are initialized by the free area init() function, which acts on two
parameters: start mem denotes the first linear address of the dynamic memory immediately
after the kernel memory, while end mem denotes the last linear address of the dynamic
memory plus 1 (see Section 2.5.3 and Section 2.5.5 in Chapter 2). The free area init()
function also considers the 1386 endbase variable, which stores the initial address of the
reserved page frames. The function allocates a suitably sized memory area to mem map. The
function then initializes the area by setting all fields to 0, except for the f1ags fields, in which
it sets the PG DMA and PG reserved flags:

mem map = (mem map t *) start mem;
p = mem map + MAP NR(end mem) ;
start mem = ((unsigned long) p + sizeof(long) - 1) &
~(sizeof (long)-1);
memset (mem map, 0, start mem - (unsigned long) mem map) ;
do {
——p;
p->count = 0;
p—->flags = (1 << PG DMA) | (1 << PG_reserved);

} while (p > mem map);
Figure 6-1. Memory layout

Reserved Reserved
{Hamlware] (Kernal)

e '

x1000 | 1386_endbase slar_mem end_mem

|
Dynamic Memaory

Subsequently, the mem init() function clears both the PG reserved flag of the page
frames, so they can be used as dynamic memory (see Section 2.5.3 in Chapter 2), and the
pG_DMA flags of all page frames having physical addresses greater than or equal to 0x1000000.
This is done by the following fragment of code:

start low mem = PAGE SIZE + PAGE OFFSET;
num physpages = MAP NR(end mem) ;
while (start low mem < 1386 endbase) {
clear bit (PG reserved,
&mem map [MAP NR(start low mem)].flags);
start low mem += PAGE SIZE;

151

Understanding the Linux Kernel

while (start mem < end mem) {
clear bit (PG reserved,
&mem map [MAP NR(start mem)].flags);
start mem += PAGE SIZE;
}
for (tmp = PAGE OFFSET ; tmp < end mem ; tmp += PAGE SIZE) {
if (tmp >= PAGE OFFSET+0x1000000)
clear bit (PG DMA, &mem map[MAP NR(tmp)].flags);
if (PageReserved (mem map+MAP NR(tmp))) {
if (tmp >= (unsigned long) & text
&& tmp < (unsigned long) & edata)
if (tmp < (unsigned long) & etext)
codepagest+;
else
datapages++;
else if (tmp >= (unsigned long) & init begin
&& tmp < (unsigned long) & init end)
initpages++;
else if (tmp >= (unsigned long) & bss start
&& tmp < (unsigned long) start mem)
datapages+t+;
else
reservedpages++;
continue;
}
mem map [MAP NR(tmp)].count = 1;
free page (tmp);

First, the mem init () function determines the value of num physpages, the total number of
page frames present in the system. It then counts the number of page frames of type
PG_reserved. Several symbols produced while compiling the kernel (we described some of
them in Section 2.5.3 in Chapter 2) enable the function to count the number of page frames
reserved for the hardware, kernel code, and kernel data and the number of page frames used
during kernel initialization that can be successively released.

Finally, mem init () sets the count field of each page frame descriptor associated with the
dynamic memory to 1 and calls the free page() function (see Section 6.1.2 later in this
chapter). Since this function increments the value of the variable nr free pages, that
variable will contain the total number of page frames in the dynamic memory at the end of the
loop.
6.1.1 Requesting and Releasing Page Frames
After having seen how the kernel allocates and initializes the data structures for page frame
handling, we now look at how page frames are allocated and released. Page frames can be
requested by making use of four slightly differing functions and macros:
__get free pages(gfp mask, order)

Function used to request 2°" contiguous page frames.

__get dma pages (gfp mask, order)

Macro used to get page frames suitable for DMA; it expands to:

152

Understanding the Linux Kernel

__get free pages(gfp mask | GFP _DMA, order)

__get free page (gfp mask)

Macro used to get a single page frame; it expands to:

__get free pages(gfp mask, 0)
get free page(gfp mask) :

Function that invokes:
__get free page(gfp mask)
and then fills the page frame obtained with zeros.

The parameter gfp mask specifies how to look for free page frames. It consists of the
following flags:

_ GFP_WAIT

Set if the kernel is allowed to discard the contents of page frames in order to free
memory before satisfying the request.

__GFP_IO
Set if the kernel is allowed to write pages to disk in order to free the corresponding
page frames. (Since swapping can block the process in Kernel Mode, this flag must be

cleared when handling interrupts or modifying critical kernel data structures.)

__GFP_DMA

Set if the requested page frames must be suitable for DMA. (The hardware limitation
that gives rise to this flag was explained in Section 6.1.)

__GFP _HIGH, GFP MED, GFP_LOW
Specify the request priority. ~ GFp_roW is usually associated with dynamic memory
requests issued by User Mode processes, while the other priorities are associated with

kernel requests.

In practice, Linux uses the predefined combinations of flag values shown in Table 6-2; the
group name is what you'll encounter in the source code.

Table 6-2. Groups of Flag Values Used to Request Page Frames

Group Name __GFP_WAIT __GFP_IO Priority
GFP_ATOMIC 0 0 _ GFP_HIGH
GFP_BUFFER 1 0 __GFP_LOW
GFP_KERNEL 1 1 ~__GFP_MED
GFP_NFS 1 1 __GFP_HIGH
GFP_USER 1 1 ___GFP_LOW

153

Understanding the Linux Kernel

Page frames can be released through any of the following three functions and macros:

free pages (addr, order)

This function checks the page descriptor of the page frame having physical address
addr; if the page frame is not reserved (i.e., if the PG _reserved flag is equal to 0), it
decrements the count field of the descriptor. If count becomes 0, it assumes that 2"
contiguous page frames starting from addr are no longer used. In that case, the
function invokes free pages ok() to insert the page frame descriptor of the first
free page in the proper list of free page frames (described in the following section).

__free page(p)

Similar to the previous function, except that it releases the page frame whose
descriptor is pointed to by parameter p.

free page (addr)

Macro used to release the page frame having physical address addr; it expands
to free pages(addr,0) .
6.1.2 The Buddy System Algorithm

The kernel must establish a robust and efficient strategy for allocating groups of contiguous
page frames. In doing so, it must deal with a well-known memory management problem
called external fragmentation : frequent requests and releases of groups of contiguous page
frames of different sizes may lead to a situation in which several small blocks of free page
frames are "scattered" inside blocks of allocated page frames. As a result, it may become
impossible to allocate a large block of contiguous page frames, even if there are enough free
pages to satisfy the request.

There are essentially two ways to avoid external fragmentation:

e Make use of the paging circuitry to map groups of noncontiguous free page frames
into intervals of contiguous linear addresses.

e Develop a suitable technique to keep track of the existing blocks of free contiguous
page frames, avoiding as much as possible the need to split up a large free block in
order to satisfy a request for a smaller one.

The second approach is the one preferred by the kernel for two good reasons:

o In some cases, contiguous page frames are really necessary, since contiguous linear
addresses are not sufficient to satisfy the request. A typical example is a memory
request for buffers to be assigned to a DMA processor (see Chapter 13). Since the
DMA ignores the paging circuitry and accesses the address bus directly while
transferring several disk sectors in a single I/O operation, the buffers requested must
be located in contiguous page frames.

o Even if contiguous page frame allocation is not strictly necessary, it offers the big
advantage of leaving the kernel paging tables unchanged. What's wrong with

154

Understanding the Linux Kernel

modifying the page tables? As we know from Chapter 2, frequent page table
modifications lead to higher average memory access times, since they make the CPU
flush the contents of the translation lookaside buffers.

The technique adopted by Linux to solve the external fragmentation problem is based on the
well-known buddy system algorithm. All free page frames are grouped into 10 lists of blocks
that contain groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 contiguous page frames,
respectively. The physical address of the first page frame of a block is a multiple of the group
size: for example, the initial address of a 16-page-frame block is a multiple of 16 x 2.

We'll show how the algorithm works through a simple example.

Assume there is a request for a group of 128 contiguous page frames (i.e., a half-megabyte).
The algorithm checks first whether a free block in the 128-page-frame list exists. If there is no
such block, the algorithm looks for the next larger block, that is, a free block in the 256-page-
frame list. If such a block exists, the kernel allocates 128 of the 256 page frames to satisfy the
request and inserts the remaining 128 page frames into the list of free 128-page-frame blocks.
If there is no free 256-page block, it then looks for the next larger block, that is, a free 512-
page-frame block. If such a block exists, it allocates 128 of the 512 page frames to satisfy the
request, inserts the first 256 of the remaining 384 page frames into the list of free 256-page-
frame blocks, and inserts the last 128 of the remaining 384 page frames into the list of free
128-page-frame blocks. If the list of 512-page-frame blocks is empty, the algorithm gives up
and signals an error condition.

The reverse operation, releasing blocks of page frames, gives rise to the name of this
algorithm. The kernel attempts to merge together pairs of free buddy blocks of size b into a
single block of size 2b. Two blocks are considered buddy if:

e Both blocks have the same size, say b.

e They are located in contiguous physical addresses.

e The physical address of the first page frame of the first block is a multiple of 2 x b x
2",

The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and tries
again so as to create even bigger blocks.

6.1.2.1 Data structures

Linux makes use of two different buddy systems: one handles the page frames suitable for
ISA DMA, while the other one handles the remaining page frames. Each buddy system relies
on the following main data structures:

e The mem map array introduced previously.

e An array having 10 elements of type free area struct, one element for each group
size. The variable free area[0] points to the array used by the buddy system for the
page frames that are not suitable for ISA DMA, while free area[1] points to the
array used by the buddy system for page frames suitable for ISA DMA.

e Ten binary arrays named bitmaps, one for each group size. Each buddy system has its
own set of bitmaps, which it uses to keep track of the blocks it allocates.

155

Understanding the Linux Kernel

Each element of the free area[0] and free area[l] arrays is a structure of type
free area struct, which is defined as follows:

struct free area struct {
struct page *next;
struct page *prev;
unsigned int *map;
unsigned long count;

}i

Notice that the first two fields of this structure match the corresponding fields of a page
descriptor; in fact, pointers to free area struct structures are sometimes used as pointers
to page descriptors.

The & th element of either the free area[0] or the free area[1] array is associated with a
doubly linked circular list of blocks of size 2%, implemented through the next and prev fields.
Each member of such a list is the descriptor of the first page frame of a block. The count field
of each free area struct structure stores the number of elements in the corresponding list.

The map field points to a bitmap whose size depends on the number of existing page frames.
Each bit of the bitmap of the k th entry of either free area[0] or free area[1] describes
the status of two buddy blocks of size 2k page frames. If a bit of the bitmap is equal to 0,
either both buddy blocks of the pair are free or both are busy; if it is equal to 1, exactly one of
the bl(k)clks is busy. When both buddies are free, the kernel treats them as a single free block of
size 27,

Let us consider, for sake of illustration, a 128 MB RAM and the bitmaps associated with the
non-DMA page frames. The 128 MB can be divided into 32768 single pages, 16384 groups of
2 pages each, or 8192 groups of 4 pages each and so on up to 64 groups of 512 pages each. So
the bitmap corresponding to free area[0][0] consists of 16384 bits, one for each pair of the
32768 existing page frames; the bitmap corresponding to free area[0][1] consists of 8192
bits, one for each pair of blocks of two consecutive page frames; the last bitmap
corresponding to free area[0][9] consists of 32 bits, one for each pair of blocks of 512
contiguous page frames.

Figure 6-2 illustrates with a simple example the use of the data structures introduced by the
buddy system algorithm. The array mem map contains nine free page frames grouped in one
block of one (that is, a single page frame) at the top and two blocks of four further down. The
double arrows denote doubly linked circular lists implemented by the next and prev fields.
Notice that the bitmaps are not drawn to scale.

156

Understanding the Linux Kernel

Figure 6-2. Data structures used by the buddy system

Memm_map
— frée_aréa[0 bitmaps
| 2 | |
N G2 [|
\ N |
/ Cl 2 | A |
AndiEE = |
cl 7 [~
7 [~
Cl 7 | —C
— (: o8 __F__p[:::]
SN o=
6.1.2.2 Allocating a block
The get free pages() function implements the buddy system strategy for allocating

page frames. This function checks first whether there are enough free pages, that is, if
nr free pages is greater than freepages.min. If not, it may decide to reclaim page frames
(see Section 16.7.4 in Chapter 16). Otherwise, it goes on with the allocation by executing the
code included in the RMQUEUE_TYPE macro:

if (! (gfp mask & _ GFP DMA))
RMQUEUE_TYPE (order, 0);
RMQUEUE TYPE (order, 1);

The order parameter denotes the logarithm of the size of the requested block of free pages (0
for a one-page block, 1 for a two-page block, and so forth). The second parameter is the index
into free area, which is for non-DMA blocks and 1 for DMA blocks. So the code checks
gfp mask to see whether non-DMA blocks are allowed and, if so, tries to get blocks from that
list (index 0), because it would be better to save DMA blocks for requests that really need
them. If the page frames are successfully allocated, the code in the RMQUEUE TYPE macro
executes a return statement, thus terminating the @~ get free pages() function.
Otherwise, the code in the RMQUEUE TYPE macro is executed again with the second parameter
equal to 1, that is, the memory allocation request is satisfied using page frames suitable for
DMA.

The code yielded by the RMQUEUE TYPE macro is equivalent to the following fragments. First,
a few local variables are declared and initialized:

struct free area struct * area = &free area[type] [order];
unsigned long new order = order;

struct page *prev;

struct page *ret;

unsigned long map nr;

struct page * next;

157

Understanding the Linux Kernel

The type variable represents the second parameter of the macro: it is equal to when the macro
operates on the buddy system for non-DMA page frames and to 1 otherwise.

The macro then performs a cyclic search through each list for an available block (denoted by
an entry that doesn't point to the entry itself), starting with the list for the requested order and
continuing if necessary to larger orders. This cycle is equivalent to the following structure:

do {
prev = (struct page *)area;
ret = prev->next;
if ((struct page *) area != ret)

goto block found;
new order++;
areat+;
} while (new_order < 10);

If the while loop terminates, no suitable free block has been found, so get free pages(
) returns a NULL value. Otherwise, a suitable free block has been found; in this case, the
descriptor of its first page frame is removed from the list, the corresponding bitmap is
updated, and the value of nr free pages is decreased:

block found:
prev->next = ret->next;
prev->next->prev = prev;
map nr = ret-mem map;
change bit (map nr>>(l+new_order), area->map);
nr_ free pages -= 1 << order;
area—->count--;

If the block found comes from a list of size new order greater than the requested size order,
a while cycle is executed. The rationale behind these lines of codes is the following: when it
becomes necessary to use a block of 2k page frames to satisfy a request for 2 page frames (h
< k), the program allocates the last 2" page frames and iteratively reassigns the first 2* - 2"
page frames to the free area lists having indexes between 4 and «.

size = 1 << new_order;
while (new_order > order) {
area--;

new order--;

size >>= 1;

/* insert *ret as first element in the list
and update the bitmap */

next = area->next;
ret->prev = (struct page *) area;
ret->next = next;
next->prev = ret;
area->next = ret;

area->count++;
change bit (map nr >> (l+new order), area->map);
/* now take care of the second half of
the free block starting at *ret */
map nr += size;
ret += size;

158

Understanding the Linux Kernel

Finally, rRMQUEUE TYPE updates the count field of the page descriptor associated with the
selected block and executes a return instruction:

ret->count = 1;
return PAGE OFFSET + (map nr << PAGE SHIFT);

As aresult,the get free pages() function returns the address of the block found.

6.1.2.3 Freeing a block

The free pages ok() function implements the buddy system strategy for freeing page
frames. It makes use of three input parameters:

map nr
The page number of one of the page frames included in the block to be released
order
The logarithmic size of the block
type
Equal to 1 if the page frames are suitable for DMA and to if they are not

The function starts by declaring and initializing a few local variables:

struct page * next, * prev;

struct free area struct *area = &free areal[type] [order];
unsigned long index = map nr >> (1 + order);
unsigned long mask = (~0UL) << order;

unsigned long flags;

The mask variable contains the two's complement of 2°™. It is used to transform map nr into
the number of the first page frame of the block to be released and to increment nr free

pages.

map_nr &= mask;
nr free pages —-= mask;

The function now starts a cycle executed at most (9 - order), once for each possibility for
merging a block with its buddy. The function starts with the smallest sized block and moves
up to the top size. The condition driving the while loop is:

(mask + (1 << 9))

where the single bit set in mask is shifted to the left at each iteration. The body of the loop
checks whether the buddy block of the block having number map nr is free:

if (!test _and change bit (index, area->map))
break;

159

Understanding the Linux Kernel

If the buddy block is not free, the function breaks out of the cycle; if it is free, the function
detaches it from the corresponding list of free blocks. The block number of the buddy is
derived from map_nr by switching a single bit:

area->count--;

next = mem map[map nr
prev = mem map[map nr
next->prev = prev;
prev->next = next;

A

-mask] .next;
-mask] .prev;

A

At the end of each iteration, the function updates the mask, area, index, and map nr
variables:

mask <<= 1;
areat++;

index >>= 1;
map nr &= mask;

The function then continues the next iteration, trying to merge free blocks twice as large as
the ones considered in the previous cycle. When the cycle is finished, the free block obtained
cannot be further merged with other free blocks. It is then inserted in the proper list:

next = area->next;

mem map [map nr].prev = (struct page *) area;
mem map [map nr].next next;

next->prev

= &mem map[map nr];

area—->next =

&mem map [map nr]j;
area->count++;

6.2 Memory Area Management

This section deals with memory areas, that is, with sequences of memory cells having
contiguous physical addresses and an arbitrary length.

The buddy system algorithm adopts the page frame as the basic memory area. This is fine for
dealing with relatively large memory requests, but how are we going to deal with requests for
small memory areas, say a few tens or hundred of bytes?

Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. The
correct approach instead consists of introducing new data structures that describe how small
memory areas are allocated within the same page frame. In doing so, we introduce a new
problem called internal fragmentation. It is caused by a mismatch between the size of the
memory request and the size of the memory area allocated to satisfy the request.

A classical solution adopted by Linux 2.0 consists of providing memory areas whose sizes are
geometrically distributed: in other words, the size depends on a power of 2 rather than on the
size of the data to be stored. In this way, no matter what the memory request size is, we can
ensure that the internal fragmentation is always smaller than 50%. Following this approach,
Linux 2.0 creates 13 geometrically distributed lists of free memory areas whose sizes range
from 32 to 131056 bytes. The buddy system is invoked both to obtain additional page frames

160

Understanding the Linux Kernel

needed to store new memory areas and conversely to release page frames that no longer
contain memory areas. A dynamic list is used to keep track of the free memory areas
contained in each page frame.

6.2.1 The Slab Allocator

Running a memory area allocation algorithm on top of the buddy algorithm is not particularly
efficient. Linux 2.2 reexamines the memory area allocation from scratch and comes out with
some very clever improvements.

The new algorithm is derived from the slab allocator schema developed in 1994 for the Sun
Microsystem Solaris 2.4 operating system. It is based on the following premises:

o The type of data to be stored may affect how memory areas are allocated; for instance,
when allocating a page frame to a User Mode process, the kernel invokes the
get free page () function, which fills the page with zeros.

The concept of a slab allocator expands upon this idea and views the memory areas as
objects consisting of both a set of data structures and a couple of functions or methods
called the constructor and destructor : the former initializes the memory area while the
latter deinitializes it.

In order to avoid initializing objects repeatedly, the slab allocator does not discard the
objects that have been allocated and then released but saves them in memory. When a
new object is then requested, it can be taken from memory without having to be
reinitialized.

In practice, the memory areas handled by Linux do not need to be initialized or
deinitialized. For efficiency reasons, Linux does not rely on objects that need
constructor or destructor methods; the main motivation for introducing a slab allocator
is to reduce the number of calls to the buddy system allocator. Thus, although the
kernel fully supports the constructor and destructor methods, the pointers to these
methods are NULL.

o The kernel functions tend to request memory areas of the same type repeatedly. For
instance, whenever the kernel creates a new process, it allocates memory areas for
some fixed size tables such as the process descriptor, the open file object, and so on
(see Chapter 3). When a process terminates, the memory areas used to contain these
tables can be reused. Since processes are created and destroyed quite frequently,
previous versions of the Linux kernel wasted time allocating and deallocating the page
frames containing the same memory areas repeatedly; in Linux 2.2 they are saved in a
cache and reused instead.

e Requests for memory areas can be classified according to their frequency. Requests of
a particular size that are expected to occur frequently can be handled most efficiently
by creating a set of special purpose objects having the right size, thus avoiding internal
fragmentation. Meanwhile, sizes that are rarely encountered can be handled through an
allocation scheme based on objects in a series of geometrically distributed sizes (such
as the power-of-2 sizes used in Linux 2.0), even if this approach leads to internal
fragmentation.

161

Understanding the Linux Kernel

e There is another subtle bonus in introducing objects whose sizes are not geometrically
distributed: the initial addresses of the data structures are less prone to be concentrated
on physical addresses whose values are a power of 2. This, in turn, leads to better
performance by the processor hardware cache.

e Hardware cache performance creates an additional reason for limiting calls to the
buddy system allocator as much as possible: every call to a buddy system function
"dirties" the hardware cache, thus increasing the average memory access time."

I The impact of a kernel function on the hardware cache is denoted as the function foosprint; it is defined as the percentage of cache overwritten by
the function when it terminates. Clearly, large footprints lead to a slower execution of the code executed right after the kernel function, since the
hardware cache is by now filled with useless information.

The slab allocator groups objects into caches. Each cache is a "store" of objects of the same
type. For instance, when a file is opened, the memory area needed to store the corresponding
"open file" object is taken from a slab allocator cache named filp (for "file pointer"). The slab
allocator caches used by Linux may be viewed at runtime by reading the /proc/slabinfo file.

The area of main memory that contains a cache is divided into slabs; each slab consists of one
or more contiguous page frames that contain both allocated and free objects (see Figure 6-3).

Figure 6-3. The slab allocator components

. rT
Dbject

: Object
B [

Dbject

The slab allocator never releases the page frames of an empty slab on its own. It would not
know when free memory is needed, and there is no benefit to releasing objects when there is
still plenty of free memory for new objects. Therefore, releases occur only when the kernel is
looking for additional free page frames (see tSection 6.2.12 later in this chapter and Section
16.7 in Chapter 16).

6.2.2 Cache Descriptor

Each cache is described by a table of type struct kmem cache s (which is equivalent to the
type kmem cache t). The most significant fields of this table are:

Cc_name
Points to the name of the cache.

c firstp,c lastp
Point, respectively, to the first and last slab descriptor of the cache. The slab

descriptors of a cache are linked together through a doubly linked, circular, partially
ordered list: the first elements of the list include slabs with no free objects, then come

162

Understanding the Linux Kernel

the slabs that include used objects along with at least one free object, and finally the
slabs that include only free objects.

c freep

Points to the s nextp field of the first slab descriptor that includes at least one free
object.

C _num

Number of objects packed into a single slab. (All slabs of the cache have the same
size.)

c offset

Size of the objects included in the cache. (This size may be rounded up if the initial
addresses of the objects must be memory aligned.)

c gfporder
Logarithm of the number of contiguous page frames included in a single slab.
c_ctor, c_dtor

Point, respectively, to the constructor and destructor methods associated with the
cache objects. They are currently set to NULL, as stated earlier.

C nextp

Points to the next cache descriptor. All cache descriptors are linked together in a
simple list by means of this field.

c flags
An array of flags that describes some permanent properties of the cache. There is, for
instance, a flag that specifies which of two possible alternatives (see the following
section) has been chosen to store the object descriptors in memory.

C_magic

A magic number selected from a predefined set of values. Used to check both the
current state of the cache and its consistency.

6.2.3 Slab Descriptor

Each slab of a cache has its own descriptor of type struct kmem slab s (equivalent to the
type kem slab t).

Slab descriptors can be stored in two possible places, the choice depending normally on the
size of the objects in the slab. If the object size is smaller than 512 bytes, the slab descriptor is

163

Understanding the Linux Kernel

stored at the end of the slab; otherwise, it is stored outside of the slab. The latter option is
preferable for large objects whose sizes are a submultiple of the slab size. In some cases, the
kernel may violate this rule by setting the ¢_f1ags field of the cache descriptor differently.
The most significant fields of a slab descriptor are:
S _inuse
Number of objects in the slab that are currently allocated.
s _mem
Points to the first object (either allocated or free) inside the slab.
s freep
Points to the first free object (if any) in the slab.
S nextp,s prevp
Point, respectively, to the next and previous slab descriptor. The s nextp field of the
last slab descriptor in the list points to the ¢ _offset field of the corresponding cache
descriptor.
s_dma
Flag set if the objects included in the slab can be used by the DMA processor.
S _magic
Similar to the ¢ magic field of the cache descriptor. It contains a magic number
selected from a predefined set of values and is used to check both the current state of
the slab and its consistency. The values of this field are different from those of the
corresponding ¢ magic field of the cache descriptor. The offset of s magic within the
slab descriptor is equal to the offset of ¢ magic with respect to ¢ offset inside the

cache descriptor; the checking routine relies on their being the same.

Figure 6-4 illustrates the major relationships between cache and slab descriptors. Full slabs
precede partially full slabs that precede empty slabs.

164

Understanding the Linux Kernel

Figure 6-4. Relationships between cache and slab descriptors

Eacne Cann& I:a[:n&
Descriptor * Descriptor | ™| Descriptor
I | |
voe=—= U | ¥ —_—
Slab | Slab Slab
Descriptor Descriptor Descriptor

I | } I
1 ' |
Slab <l i Slab Slab

Descriptor Descriptor Descriptor

Slah — 5_naxip Full slab Slab I
i . -
Descriptor - = - & prevp Partially full slab Descriptor

‘!
e (3 IEXTD
!
e o freD () Empry slab
e o_firsip
= _lasip

6.2.4 General and Specific Caches

Caches are divided into two types: general and specific. General caches are used only by the
slab allocator for its own purposes, while specific caches are used by the remaining parts of
the kernel.

The general caches are:

e A first cache contains the cache descriptors of the remaining caches used by the
kernel. The cache cache variable contains its descriptor.

e A second cache contains the slab descriptors that are not stored inside the slabs. The
cache slabp variable points to its descriptor.

e Thirteen additional caches contain geometrically distributed memory areas. The table
called cache sizes whose elements are of type cache sizes t points to the 13
cache descriptors associated with memory areas of size 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, 32768, 65536, and 131072 bytes, respectively. The table
cache sizes is used to efficiently derive the cache address corresponding to a given
size.

The kmem cache init() and kmem cache sizes init() functions are invoked during
system initialization to set up the general caches.

Specific caches are created by the kmem cache create() function. Depending on the
parameters, the function first determines the best way to handle the new cache (for instance,
whether to include the slab descriptor inside or outside of the slab); it then creates a new
cache descriptor for the new cache and inserts the descriptor in the cache cache general
cache. It should be noted that once a cache has been created, it cannot be destroyed.

The names of all general and specific caches can be obtained at runtime by reading

/proc/slabinfo; this file also specifies the number of free objects and the number of allocated
objects in each cache.

165

Understanding the Linux Kernel

6.2.5 Interfacing the Slab Allocator with the Buddy System

When the slab allocator creates new slabs, it relies on the buddy system algorithm to obtain a

group of free contiguous page frames. To that purpose, it invokes the kmem getpages()
function:

void * kmem getpages (kmem cache t *cachep,
unsigned long flags, unsigned int *dma)

{

void *addzr;
*dma = flags & SLAB DMA;
addr = (void*) get free pages(flags, cachep->c gfporder);

if (!*dma && addr) {
struct page *page = mem map + MAP NR(addr);
*dma = 1<<cachep->c_ gfporder;

while ((*dma)--) {
if (!PageDMA (page)) {
*dma = 0;
break;
}
page++;

}
}

return addr;

The parameters have the following meaning:

cachep

Points to the cache descriptor of the cache that needs additional page frames (the
number of required page frames is in the cachep->c_gfporder field)

flags

Specifies how the page frame is requested (see Section 6.1.1 earlier in this chapter)

dma

Points to a variable that is set to 1 by kmem getpages () if the allocated page frames
are suitable for ISA DMA

In the reverse operation, page frames assigned to a slab allocator can be released (see
Section 6.2.7 later in this chapter) by invoking the kmem freepages () function:

void kmem freepages (kmem cache t *cachep, void *addr)

{

unsigned long i = (1l<<cachep->c gfporder);
struct page *page = &mem map [MAP NR(addr)];
while (i--) {

PageClearSlab (page) ;

page+t+;

}

free pages ((unsigned long)addr, cachep->c_gfporder) ;

166

Understanding the Linux Kernel

The function releases the page frames, starting from the one having physical address addr,
that had been allocated to the slab of the cache identified by cachep.

6.2.6 Allocating a Slab to a Cache

A newly created cache does not contain any slab and therefore no free objects. New slabs are
assigned to a cache only when both of the following are true:

e A request has been issued to allocate a new object.
e The cache does not include any free object.

When this occurs, the slab allocator assigns a new slab to the cache by invoking kmem cache
grow (). This function calls kmem getpages() to obtain a group of page frames from the
buddy system; it then calls kmem cache slabmgmt() to get a new slab descriptor. Next, it
calls kmem cache init objs(), which applies the constructor method (if defined) to all the
objects contained in the new slab. It then calls kmem slab link end(), which inserts the
slab descriptor at the end of the cache slab list:

void kmem slab link end(kmem cache t *cachep,
kmem slab t *slabp)

{
kmem slab t *lastp = cachep->c lastp;
slabp->s nextp = kmem slab end(cachep);
slabp->s prevp = lastp;
cachep->c lastp = slabp;
lastp->s nextp = slabp;

The kmem slab end macro yields the address of the ¢ offset field of the corresponding
cache descriptor (as stated before, the last element of a slab list points to that field).

After inserting the new slab descriptor into the list, kmem cache grow() loads the next
and prev fields, respectively, of the descriptors of all page frames included in the new slab
with the address of the cache descriptor and the address of the slab descriptor. This works
correctly because the next and prev fields are used by functions of the buddy system only
when the page frame is free, while page frames handled by the slab allocator functions are not
free as far as the buddy system is concerned. Therefore, the buddy system will not be
confused by this specialized use of the page frame descriptor.

6.2.7 Releasing a Slab from a Cache

As stated previously, the slab allocator never releases the page frames of an empty slab on its
own. In fact, a slab is released only if both the following conditions hold:

e The buddy system is unable to satisfy a new request for a group of page frames.
o The slab is empty, that is, all the objects included in it are free.

When the kernel looks for additional free page frames, it calls try to free pages(); this
function, in turn, may invoke kmem cache reap(), which selects a cache that contains at
least one empty slab. The kmem slab unlink() function then removes the slab from the

cache list of slabs:

167

Understanding the Linux Kernel

void kmem slab unlink(kmem slab t *slabp)

{
kmem slab t *prevp = slabp->s prevp;
kmem slab t *nextp = slabp->s nextp;
prevp->s nextp = nextp;
nextp->s prevp = prevp;

Subsequently, the slab—together with the objects in it—is destroyed by invoking
kmem slab destroy():

void kmem slab destroy(kmem cache t *cachep, kmem slab t *slabp)
{
if (cachep->c dtor) {
unsigned long num = cachep->c num;
void *objp = slabp->s mem;
do {
(cachep->c_dtor) (objp, cachep, 0);
objp += cachep->c offset;
if (!slabp->s_ index)
objp += sizeof (kmem bufctl t);
} while (--num);
}
slabp->s magic = SLAB MAGIC DESTROYED;

if (slabp->s_ index)

kmem cache free (cachep->c index cachep, slabp->s index);
kmem freepages (cachep, slabp->s mem-slabp->s offset);
if (SLAB_OFF SLAB (cachep->c_flags))

kmem cache free (cache slabp, slabp):;

The function checks whether the cache has a destructor method for its objects (the ¢ dtor
field is not NULL), in which case it applies the destructor to all the objects in the slab; the
objp local wvariable keeps track of the currently examined object. Next, it calls
kmem freepages (), which returns all the contiguous page frames used by the slab to the
buddy system. Finally, if the slab descriptor is stored outside of the slab (in this case the
s_index and c_index cachep fields are not NULL, as explained later in this chapter), the
function releases it from the cache of the slab descriptors.

Some modules of Linux (see Appendix B) may create caches. In order to avoid wasting
memory space, the kernel must destroy all slabs in all caches created by a module before
removing it.” The kmem cache shrink() function destroys all the slabs in a cache by
invoking kmem slab destroy() iteratively. The ¢ growing field of the cache descriptor is
used to prevent kmem cache shrink() from shrinking a cache while another kernel control
path attempts to allocate a new slab for it.

12l 'We stated previously that Linux does not destroy caches. Thus, when linking in a new module, the kernel must check whether the new cache
descriptors requested by it were already created in a previous installation of that module or another one.

6.2.8 Object Descriptor

Each object has a descriptor of type struct kmem bufctl s (equivalent to the type
kmem bufctl t). Like the slab descriptors themselves, the object descriptors of a slab can be
stored in two possible ways, illustrated by Figure 6-5.

168

Understanding the Linux Kernel

Figure 6-5. Relationships between slab and object descriptors

Stat with Internal Obyject Descriptors

g_mem
[T 1
S S B
Allocated | | Free | Allocated . | Fres
Object | | Obiect | | Object | Object
Sob I %

Stat with External Ofject Descripfors

T ¥ Y

| i i
- Allocated = Free % Allocated | Free |
: Object | Object ;| Object | Object |
- L— f [
I
I

External object descriptors

Stored outside the slab, in one of the general caches pointed to by cache sizes. In
this case, the first object descriptor in the memory area describes the first object in the
slab and so on. The size of the memory area, and thus the particular general cache
used to store object descriptors, depends on the number of objects stored in the slab
(c_num field of the cache descriptor). The cache containing the objects themselves is
tied to the cache containing their descriptors through two fields. First, the
c_index_ cachep field of the cache containing the slab points to the cache descriptor
of the cache containing the object descriptors. Second, the s index field of the slab
descriptor points to the memory area containing the object descriptors.

Internal object descriptors

Stored inside the slab, right after the objects they describe. In this case, the
c index cachep field of the cache descriptor and the s index field of the slab
descriptor are both NULL.

The slab allocator chooses the first solution when the size of the objects is a multiple of 512,
1024, 2048, or 4096: in this case, storing control structures inside the slab would result in a
high level of internal fragmentation. If the size of the objects is smaller than 512 bytes or not a
multiple of 512, 1024, 2048, or 4096 the slab allocator stores the object descriptors inside the
slab.

Object descriptors are simple structures consisting of a single field:

169

Understanding the Linux Kernel

typedef struct kmem bufctl s {

union {
struct kmem bufctl s * buf nextp;
kmem slab t * buf slabp;
void * buf objp;
}oug

} kmem bufctl t;

#define buf nextp u.buf nextp
#define buf slabp u.buf slabp
#define buf objp u.buf objp

This field has the following meaning, depending on the state of the object and the locations of
the object descriptors:

buf nextp

If the object is free, it points to the next free object in the slab, thus implementing a
simple list of free objects inside the slab.

buf objp

If the object is allocated and its object descriptor is stored outside of the slab, it points
to the object.

buf slabp

If the object is allocated and its object descriptor is stored inside the slab, it points to
the slab descriptor of the slab in which the object is stored. This holds whether the slab
descriptor is stored inside or outside of the slab.

Figure 6-5 illustrates the relationships among slabs, slab descriptors, objects, and object
descriptors. Notice that, although the figure suggests that the slab descriptor is stored outside
of the slab, it remains unchanged if the descriptor is stored inside it.

6.2.9 Aligning Objects in Memory

The objects managed by the slab allocator can be aligned in memory, that is, they can be
stored in memory cells whose initial physical addresses are multiples of a given constant,
usually a power of 2. This constant is called the alignment factor, and its value is stored in the
c align field of the cache descriptor. The c offset field, which contains the object size,
takes into account the number of padding bytes added to obtain the proper alignment. If the
value of ¢ _align is 0, no alignment is required for the objects.

The largest alignment factor allowed by the slab allocator is 4096, that is, the page frame size.
This means that objects can be aligned by referring either to their physical addresses or to
their linear addresses: in both cases, only the 12 least significant bits of the address may be
altered by the alignment.

Usually, microcomputers access memory cells more quickly if their physical addresses are
aligned with respect to the word size, that is, to the width of the internal memory bus of the
computer. Thus, the kmem cache create() function attempts to align objects according to
the word size specified by the BYTES PER WORD macro. For Intel Pentium processors, the

170

Understanding the Linux Kernel

macro yields the value 4 because the word is 32 bits long. However, the function does not
align objects if this leads to a consistent waste of memory.

When creating a new cache, it's possible to specify that the objects included in it be aligned in
the first-level cache. To achieve this, set the SLAB HWCACHE ALIGN cache descriptor flag. The
kmem cache create() function handles the request as follows:

o If the object's size is greater than half of a cache line, it is aligned in RAM to a
multiple of L1 CACHE BYTES, that is, at the beginning of the line.

o Otherwise, the object size is rounded up to a factor of L1 CaACHE BYTES; this ensures
that an object will never span across two cache lines.

Clearly, what the slab allocator is doing here is trading memory space for access time: it gets
better cache performance by artificially increasing the object size, thus causing additional
internal fragmentation.

6.2.10 Slab Coloring

We know from Chapter 2 that the same hardware cache line maps many different blocks of
RAM. In this chapter we have also seen that objects of the same size tend to be stored at the
same offset within a cache. Objects that have the same offset within different slabs will, with
a relatively high probability, end up mapped in the same cache line. The cache hardware
might therefore waste memory cycles transferring two objects from the same cache line back
and forth to different RAM locations, while other cache lines go underutilized. The slab
allocator tries to reduce this unpleasant cache behavior by a policy called slab coloring:
different arbitrary values called colors are assigned to the slabs.

Before examining slab coloring, we have to look at the layout of objects in the cache. Let us
consider a cache whose objects are aligned in RAM. Thus, the ¢ align field of the cache
descriptor has a positive value, say a/n. Even taking into account the alignment constraint,
there are many possible ways to place objects inside the slab. The choices depend on
decisions made for the following variables:

num

Number of objects that can be stored in a slab (its value is in the ¢ num field of the
cache descriptor).

osize

Object size including the alignment bytes (its value is in the ¢ offset field) plus
object descriptor size (if the descriptor is contained inside the slab).

dsize

Slab descriptor size; its value is equal to if the slab descriptor is stored outside of the
slab.

171

Understanding the Linux Kernel

free

Number of unused bytes (bytes not assigned to any object) inside the slab.
The total length in bytes of a slab can then be expressed as:
slab length = (num x osize)+dsize +free

free is always smaller than osize, since otherwise it would be possible to place additional
objects inside the slab. However, free could be greater than aln.

The slab allocator takes advantage of the firee unused bytes to color the slab. The term "color"
is used simply to subdivide the slabs and allow the memory allocator to spread objects out
among different linear addresses. In this way, the kernel obtains the best possible performance
from the microprocessor's hardware cache.

Slabs having different colors store the first object of the slab in different memory locations,
while satisfying the alignment constraint. The number of available colors is free/aln+1. The
first color is denoted as and the last one (whose value is in the ¢ _colour field of the cache
descriptor) is denoted as free/aln.

If a slab is colored with color col, the offset of the first object (with respect to the slab initial
address) is equal to col x aln bytes; this value is stored in the s offset field of the slab
descriptor. Figure 6-6 illustrates how the placement of objects inside the slab depends on the
slab color. Coloring essentially leads to moving some of the free area of the slab from the end
to the beginning.

Figure 6-6. Slab with color col and alignment aln

P |

L L .
£ i I H H i
: i : i Slab
: Obyject | Object : Object ; Object Descriptor
1 r o |2 . ¥
fr .fft!u';‘ —
colx aln| osize | 0zize | osize | osiza |colx an| dsize |
B ol bt *| ™ bl | bl *

Ui & Gsize

Coloring works only when free is large enough. Clearly, if no alignment is required for the
objects or if the number of unused bytes inside the slab is smaller than the required alignment
(free < aln), the only possible slab coloring is the one having the color 0, that is, the one that
assigns a zero offset to the first object.

The various colors are distributed equally among slabs of a given object type by storing the
current color in a field of the cache descriptor called ¢ colour next. The kmem cache
grow() function assigns the color specified by ¢ colour next to a new slab and then
decrements the value of this field. After reaching 0, it wraps around again to the maximum
available value:

172

Understanding the Linux Kernel

if (! (offset = cachep->c colour next--))
cachep->c colour next = cachep->c colour;

offset *= cachep->c align;

slabp->s offset = offset;

In this way, each slab is created with a different color from the previous one, up to the
maximum available colors.

6.2.11 Allocating an Object to a Cache

New objects may be obtained by invoking the kmem cache alloc() function. The
parameter cachep points to the cache descriptor from which the new free object must be
obtained. kmem cache alloc() first checks whether the cache descriptor exists; it then
retrieves from the ¢_freep field the address of the s nextp field of the first slab that includes
at least one free object:

slabp = cachep->c freep;

If slapbp does not point to a slab, it then jumps to alloc new slab and invokes
kmem cache grow() toadd a new slab to the cache:

if (slabp->s magic != SLAB MAGIC ALLOC)
goto alloc new slab;

The value sLaB MAGIC ALLOC in the s magic field indicates that the slab contains at least one
free object. If the slab is full, slabp points to the cachep->c offset field, and thus slabp-
>s magic coincides with cachep->c magic: in this case, however, this field contains a magic
number for the cache different from st.aB MAGIC ALLOC.

After obtaining a slab with a free object, the function increments the counter containing the
number of objects currently allocated in the slab:

slabp->s inuse++;

It then loads pbufp with the address of the first free object inside the slab and, correspondingly,
updates the slabp->s freep field of the slab descriptor to point to the next free object:

bufp = slabp->s freep;
slabp->s freep = bufp->buf nextp;

If slabp->s freep becomes NULL, the slab no longer includes free objects, so the ¢ _freep
field of the cache descriptor must be updated:

if (!slabp->s freep)
cachep->c freep = slabp->s nextp;

Notice that there is no need to change the position of the slab descriptor inside the list since it
remains partially ordered. Now the function must derive the address of the free object and

update the object descriptor.

If the slabp->s index field is null, the object descriptors are stored right after the objects
inside the slab. In this case, the address of the slab descriptor is first stored in the object

173

Understanding the Linux Kernel

descriptor's single field to denote the fact that the object is no longer free; then the object
address is derived by subtracting from the address of the object descriptor the object size
included in the cachep->c offset field:

if (!slabp->s_index) {
bufp->buf slabp = slabp;
objp = ((void*)bufp) - cachep->c offset;

If the s1abp->s index field is not zero, it points to a memory area outside of the slab where
the object descriptors are stored. In this case, the function first computes the relative position
of the object descriptor in the outside memory area; it then multiplies this number by the
object size; finally, it adds the result to the address of the first object in the slab, thus yielding
the address of the object to be returned. As in the previous case, the object descriptor single
field is updated and points now to the object:

if (slabp->s index) {
objp = ((bufp-slabp->s_ index) *cachep->c offset) +
slabp->s mem;
bufp->buf objp = objp;
}

The function terminates by returning the address of the new object:

return objp;
6.2.12 Releasing an Object from a Cache

The kmem cache free() function releases an object previously obtained by the slab
allocator. Its parameters are cachep, the address of the cache descriptor, and objp, the
address of the object to be released. The function starts by checking the parameters, after
which it determines the address of the object descriptor and that of the slab containing the
object. It uses the cachep->c flags flag, included in the cache descriptor, to determine
whether the object descriptor is located inside or outside of the slab.

In the former case, it determines the address of the object descriptor by adding the object's
size to its initial address. The address of the slab descriptor is then extracted from the
appropriate field in the object descriptor:

if (!SLAB BUFCTL(cachep->c flags)) {
bufp = (kmem bufctl t *) (objptcachep->c offset);
slabp = bufp->buf slabp;

In the latter case, it determines the address of the slab descriptor from the prev field of the
descriptor of the page frame containing the object (refer to Section 6.2.6 for the role of prev).
The address of the object descriptor is derived by first computing the sequence number of the
object inside the slab (object address minus first object address divided by object length). This
number is then used to determine the position of the object descriptor starting from the
beginning of the outside area pointed to by the s1abp->s index field of the slab descriptor.
To be on the safe side, the function checks that the object's address passed as a parameter
coincides with the address that its object descriptor says it should have:

174

Understanding the Linux Kernel

if (SLAB BUFCTL (cachep->c_flags)) {
slabp = (kmem slab t *) ((&mem map[MAP NR(objp)])->prev);
bufp = &slabp->s index[(objp - slabp->s mem) /
cachep->c offset];
if (objp != bufp->buf objp)
goto bad obj addr;

Now the function checks whether the siabp->s magic field of the slab descriptor contains
the correct magic number and whether the slabp->s inuse field is greater than 0. If
everything is okay, it decrements the value of slabp->s inuse and inserts the object into the
slab list of free objects:

slabp->s inuse--;
bufp->buf nextp = slabp->s freep;
slabp->s freep = bufp;

If bufp->buf nextp is NULL, the list of free objects includes only one element: the object
that is being released. In this case, the slab was previously filled to capacity and it might be
necessary to reinsert its slab descriptor in a new position in the list of slab descriptors.
(Remember that completely filled slabs appear before slabs with some free objects in the
partially ordered list.) This is done by the kmem cache one free() function:

if (!bufp->buf nextp)
kmem cache one free (cachep, slabp);

If the slab includes other free objects besides the one being released, it is necessary to check
whether all objects are free. As in the previous case, this would make it necessary to reinsert
the slab descriptor in a new position in the list of slab descriptors. The move is done by the
kmem cache full free() function:

if (bufp->buf nextp)
if (!slabp->s_inuse)
kmem cache full free(cachep, slabp);

The kmem cache free() function terminates here.
6.2.13 General Purpose Objects

As stated in Section 6.1.2, infrequent requests for memory areas are handled through a group
of general caches whose objects have geometrically distributed sizes ranging from a minimum
of 32 to a maximum of 131072 bytes.

Objects of this type are obtained by invoking the kmalloc () function:

void * kmalloc(size t size, int flags)
{
cache sizes t *csizep = cache sizes;
for (; csizep->cs size; csizep++) |
if (size > csizep->Ccs_size)
continue;
return kmem cache alloc(csizep->cs cachep, flags);
}
printk (KERN_ERR "kmalloc: Size (%lu) too large\n",

175

Understanding the Linux Kernel

(unsigned long) size);
return NULL;

The function uses the cache sizes table to locate the cache descriptor of the cache

containing objects of the right size. It then calls kmem cache alloc() to allocate the
object.”

1" Actually, for efficiency reasons, the code of kmem cache alloc () is copied inside the body of kmalloc (). The
__kmem cache alloc () function, which implements kmem cache alloc(),isdeclared inline

Objects obtained by invoking kmalloc() can be released by calling kfree ():"

%I A similar function called K f ee s () requires an additional parameter, namely, the size of the object to be released. This function was used
in previous versions of Linux where the size of the memory area had to be determined before releasing it. It is still used by some modules of the
filesystem.

void kfree(const void *objp)
{
struct page *page;
int nr;
if (!'obip)
goto null ptr;
nr = MAP NR(objp);
if (nr >= num physpages)
goto bad ptr;

page = &mem map[nr];
if (PageSlab (page)) {
kmem cache t *cachep;
cachep = (kmem cache t *) (page->next);

if (cachep && (cachep->c flags & SLAB CFLGS GENERAL)) {
__kmem cache free (cachep, objp);
return;

}
bad ptr:
printk (KERN _ERR "kfree: Bad obj %p\n", objp);
*(int *) 0 = 0; /* FORCE A KERNEL DUMP */
null ptr:
return;

}

The proper cache descriptor is identified by reading the next field of the descriptor of the first
page frame containing the memory area. If this field points to a valid descriptor, the memory
area is released by invoking kmem cache free().

6.3 Noncontiguous Memory Area Management

We already know from an earlier discussion that it is preferable to map memory areas into
sets of contiguous page frames, thus making better use of the cache and achieving lower
average memory access times. Nevertheless, if the requests for memory areas are infrequent,
it makes sense to consider an allocation schema based on noncontiguous page frames
accessed through contiguous linear addresses. The main advantage of this schema is to avoid
external fragmentation, while the disadvantage is that it is necessary to fiddle with the kernel
page tables. Clearly, the size of a noncontiguous memory area must be a multiple of 4096.
Linux uses noncontiguous memory areas sparingly, for instance, to allocate data structures for

176

Understanding the Linux Kernel

active swap areas (see Section 16.2.3 in Chapter 16), to allocate space for a module (see
Appendix B), or to allocate buffers to some I/O drivers.

6.3.1 Linear Addresses of Noncontiguous Memory Areas

To find a free range of linear addresses, we can look in the area starting from PAGE OFFSET
(usually 0xc0000000, the beginning of the fourth gigabyte). We learned in the Chapter 2 in
Section 2.5.4 that the kernel reserved this whole upper area of memory to map available RAM
for kernel use. But available RAM occupies only a small fraction of the gigabyte, starting at
the pAGE OFFSET address. All the linear addresses above that reserved area are available for
mapping noncontiguous memory areas. The linear address that corresponds to the end of
physical memory is stored in the high memory variable.

Figure 6-7 shows how linear addresses are assigned to noncontiguous memory areas. A safety
interval of size 8 MB (macro vMALLOC OFFSET) is inserted between the end of the physical
memory and the first memory area; its purpose is to "capture" out-of-bounds memory
accesses. For the same reason, additional safety intervals of size 4 KB are inserted to separate
noncontiguous memory areas.

Figure 6-7. The linear address interval starting from PAGE_OFFSET

high_rmemary
PAGE_OFFSET WIVIALLOC _START 4GB
r ¥
= r= o 5 o
Physical | 8MB ! P AKB 4KB
Memﬂﬂl' : Area - Braa -|—-|-E Araa
o . / F'

The vMarrLoc sTART macro defines the starting address of the linear space reserved for
noncontiguous memory areas. It is defined as follows:

#define VMALLOC START (((unsigned long) high memory + \
VMALLOCioFFSET) & ~(VMALLOC70FFSET—1))

6.3.2 Descriptors of Noncontiguous Memory Areas

Each noncontiguous memory area is associated with a descriptor of type struct vm struct:

struct vm struct {
unsigned long flags;
void * addr;
unsigned long size;
struct vm struct * next;

b

These descriptors are inserted in a simple list by means of the next field; the address of the
first element of the list is stored in the vmlist variable. The addr field contains the linear
address of the first memory cell of the area; the size field contains the size of the area plus
4096 (the size of the previously mentioned interarea safety interval).

177

Understanding the Linux Kernel

€ get vm area unction creates new descriptors o € struct vm struct; its
The get vm () funct t d t ft truct vm struct; it
parameter size specifies the size of the new memory area:

struct vm struct * get vm area(unsigned long size)
{
unsigned long addr;
struct vm struct **p, *tmp, *area;
area = (struct vm struct *) kmalloc(sizeof (*area),
GFP_KERNEL);
if ('area)
return NULL;
addr = VMALLOC START;

for (p = &vmlist; (tmp = *p) ; p = &tmp->next) ({
if (size + addr < (unsigned long) tmp->addr)
break;

addr = tmp->size + (unsigned long) tmp->addr;
if (addr > Oxffffd000-size) {
kfree (area) ;
return NULL;
}
}
area->addr = (void *)addr;
area->size = size + PAGE SIZE;

area->next = *p;
*p = area;
return area;
}
The function first calls kmalloc () to obtain a memory area for the new descriptor. It then

scans the list of descriptors of type struct vm struct looking for an available range of
linear addresses that includes at least size+4096 addresses. If such an interval exists, the
function initializes the fields of the descriptor and terminates by returning the initial address
of the noncontiguous memory area. Otherwise, when addr + size exceeds the 4 GB limit,
get vm area () releases the descriptor and returns NULL.

6.3.3 Allocating a Noncontiguous Memory Area

The vmalloc() function allocates a noncontiguous memory area to the kernel. The
parameter size denotes the size of the requested area. If the function is able to satisfy the
request, then it returns the initial linear address of the new area; otherwise, it returns a NULL
pointer:

void * vmalloc (unsigned long size)
{
void * addr;
struct vm struct *area;
size = (size+PAGE SIZE-1) &PAGE MASK;
if (!size || size > (num physpages << PAGE SHIFT))
return NULL;
area = get vm area(size);
if ('area)
return NULL;
addr = area->addr;
if (vmalloc area pages((unsigned long) addr, size)) {
vfree (addr) ;
return NULL;

178

Understanding the Linux Kernel

return addr;

The function starts by rounding up the value of the size parameter to a multiple of 4096 (the
page frame size). It also performs a sanity check to make sure the size is greater than and less
than or equal to the existing number of page frames. If the size fits available memory,
vmalloc () invokes get vm area(), which creates a new descriptor and returns the linear
addresses assigned to the memory area. Then vmalloc () invokes vmalloc area pages()

to request noncontiguous page frames and terminates by returning the initial linear address of
the noncontiguous memory area.

The vmalloc area pages() function makes use of two parameters: address, the initial
linear address of the area, and size, its size. The linear address of the end of the area is
assigned to the end local variable:

end = address + size;

The function then uses the pgd offset k macro to derive the entry in the Page Global
Directory related to the initial linear address of the area:

dir = pgd offset k(address);

The function then executes the following cycle:

while (address < end) {

pmd t *pmd = pmd alloc kernel (dir, address);

if (!pmd)
return -ENOMEM;

if (alloc area pmd(pmd, address, end - address))
return -ENOMEM;

set pgdir (address, *dir);

address = (address + PGDIR SIZE) & PGDIR MASK;

dir++;

In each cycle, it first invokes pmd alloc kernel() to create a Page Middle Directory for
the new area. It then calls alloc area pmd() to allocate all the Page Tables associated with
the new Page Middle Directory. Next, it invokes set pgdir() to update the entry
corresponding to the new Page Middle Directory in all existing Page Global Directories (see
Section 2.5.4 in Chapter 2). It adds the constant 2%, that is, the size of the range of linear
addresses spanned by a single Page Middle Directory, to the current value of address, and it
increases the pointer dir to the Page Global Directory.

The cycle is repeated until all page table entries referring to the noncontiguous memory area
have been set up.

The alloc area pmd() function executes a similar cycle for all the Page Tables that a Page
Middle Directory points to:

179

Understanding the Linux Kernel

while (address < end) {

pte t * pte = pte alloc kernel (pmd, address);

if (!pte)
return -ENOMEM;

if (alloc_area pte(pte, address, end - address))
return -ENOMEM;

address = (address + PMD SIZE) & PMD MASK;

pmd++;

The pte alloc kernel() function (see Section 2.5.2 in Chapter 2) allocates a new Page
Table and updates the corresponding entry in the Page Middle Directory. Next,
alloc_area pte() allocates all the page frames corresponding to the entries in the Page
Table. The value of address is increased by 222, that is, the size of the linear address interval
spanned by a single Page Table, and the cycle is repeated.

The main cycle of alloc area pte() is:

while (address < end) {
unsigned long page;
if (!pte none(*pte))
printk("alloc area pte: page already exists\n");
page = get free page (GFP_KERNEL) ;
if (!page)
return -ENOMEM;
set pte(pte, mk pte(page, PAGE KERNEL)) ;
address += PAGE SIZE;
ptet++;

Each page frame is allocated through get free page (). The physical address of the new
page frame is written into the Page Table by the set pte and mk pte macros. The cycle is
repeated after adding the constant 4096, that is, the length of a page frame, to address.

6.3.4 Releasing a Noncontiguous Memory Area

The vfree () function releases noncontiguous memory areas. Its parameter addr contains
the initial linear address of the area to be released. vfree () first scans the list pointed by
vmlist to find the address of the area descriptor associated with the area to be released:

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
if (tmp->addr == addr) {
*p = tmp->next;
vmfree area pages((unsigned long) (tmp->addr),
tmp->size);
kfree (tmp) ;
return;
}
}

printk ("Trying to vfree() nonexistent vm area (%p)\n", addr);
The size field of the descriptor specifies the size of the area to be released. The area itself is

released by invoking vmfree area pages(), while the descriptor is released by invoking
kfree().

180

Understanding the Linux Kernel

The vmfree area pages() function takes two parameters: the initial linear address and the
size of the area. It executes the following cycle to reverse the actions performed by
vmalloc area pages():

while (address < end) {
free area pmd(dir, address, end - address);
address = (address + PGDIR SIZE) & PGDIR MASK;
dir++;

In turn, free area pmd() reverses the actions of alloc area pmd() in the cycle:

while (address < end) {
free area pte(pmd, address, end - address);
address = (address + PMD SIZE) & PMD MASK;
pmd++;

Again, free area pte() reverses the activity of alloc area pte() in the cycle:

while (address < end) {
pte t page = *pte;
pte clear (pte);
address += PAGE SIZE;

ptet++;
if (pte none(page))
continue;

if (pte present(page)) {
free page (pte page (page));
continue;

}
printk ("Whee... Swapped out page in kernel page table\n");

}

Each page frame assigned to the noncontiguous memory area is released by means of the
buddy system free page() function. The corresponding entry in the Page Table is set to
by the pte clear macro.

6.4 Anticipating Linux 2.4

Linux 2.2 has two buddy systems: the first one handles page frames suitable for ISA DMA,
while the second one handles page frames not suitable for ISA DMA. Linux 2.4 adds a third
buddy system for the high physical memory, that is, for the page frames not permanently
mapped by the kernel. Using a high-memory page frame implies changing an entry in a
special kernel Page Table to map the page frame physical addresses in the 4 GB linear address
space.

Actually, Linux 2.4 views the three portions of RAM as different "zones." Each zone has its
own counters and watermarks to monitor the number of free page frames. When a memory
allocation request takes place, the kernel first tries to fetch the page frames from the most
suitable zone; if it fails, it may fall back on another zone.

The slab allocator is mostly unchanged. However, Linux 2.4 allows a slab allocator cache that
is no longer useful to be destroyed. Recall that in Linux 2.2 a slab allocator cache can be

181

Understanding the Linux Kernel

dynamically created but not destroyed. Modules that create their own slab allocator cache
when loaded are now expected to destroy it when unloaded.

182

Understanding the Linux Kernel

Chapter 7. Process Address Space

As seen in the previous chapter, a kernel function gets dynamic memory in a fairly

straightforward manner by invoking one of a variety of functions: get free pages() to
get pages from the buddy system algorithm, kmem cache alloc() or kmalloc() to use the
slab allocator for specialized or general-purpose objects, and vmalloc() to get

a noncontiguous memory area. If the request can be satisfied, each of these functions returns
a linear address identifying the beginning of the allocated dynamic memory area.

These simple approaches work for two reasons:

o The kernel is the highest priority component of the operating system: if some kernel
function makes a request for dynamic memory, it must have some valid reason to issue
that request, and there is no point in trying to defer it.

o The kernel trusts itself: all kernel functions are assumed error-free, so it does not need
to insert any protection against programming errors.

When allocating memory to User Mode processes, the situation is entirely different:

e Process requests for dynamic memory are considered nonurgent. When a process's
executable file is loaded, for instance, it is unlikely that the process will address all the
pages of code in the near future. Similarly, when a process invokes malloc() to get
additional dynamic memory, it doesn't mean the process will soon access all the
additional memory obtained. So as a general rule, the kernel tries to defer allocating
dynamic memory to User Mode processes.

e Since user programs cannot be trusted, the kernel must be prepared to catch all
addressing errors caused by processes in User Mode.

As we shall see in this chapter, the kernel succeeds in deferring the allocation of dynamic
memory to processes by making use of a new kind of resource. When a User Mode process
asks for dynamic memory, it doesn't get additional page frames; instead, it gets the right to
use a new range of linear addresses, which become part of its address space. This interval is
called a memory region.

We start in Section 7.1 by discussing how the process views dynamic memory. We then
describe the basic components of the process address space in Section 7.3. Next, we examine
in detail the role played by the page fault exception handler in deferring the allocation of page
frames to processes. We then illustrate how the kernel creates and deletes whole process
address spaces. Last, we discuss the APIs and system calls related to address space
management.

7.1 The Process's Address Space

The address space of a process consists of all linear addresses that the process is allowed to
use. Each process sees a different set of linear addresses; the address used by one process
bears no relation to the address used by another. As we shall see later, the kernel may
dynamically modify a process address space by adding or removing intervals of linear
addresses.

183

Understanding the Linux Kernel

The kernel represents intervals of linear addresses by means of resources called memory
regions, which are characterized by an initial linear address, a length, and some access rights.
For reasons of efficiency, both the initial address and the length of a memory region must be
multiples of 4096, so that the data identified by each memory region entirely fills up the page
frames allocated to it. Let us briefly mention typical situations in which a process gets new
memory regions:

e When the user types a command at the console, the shell process creates a new process
to execute the command. As a result, a fresh address space, thus a set of memory
regions, is assigned to the new process (see Section 7.5 later in this chapter and
Chapter 19).

e A running process may decide to load an entirely different program. In this case, the
process ID remains unchanged but the memory regions used before loading the
program are released, and a new set of memory regions is assigned to the process (see
Section 19.4 in Chapter 19).

e A running process may perform a "memory mapping" on a file (or on a portion of it).
In such cases, the kernel assigns a new memory region to the process to map the file
(see Section 15.2 in Chapter 15).

e A process may keep adding data on its User Mode stack until all addresses in the
memory region that map the stack have been used. In such cases, the kernel may
decide to expand the size of that memory region (see Section 7.4 later in this chapter).

e A process may create an [PC shared memory region to share data with other
cooperating processes. In such cases, the kernel assigns a new memory region to the
process to implement this construct (see Section 18.3.5 in Chapter 18).

e A process may expand its dynamic area (the heap) through a function such as malloc (
). As a result, the kernel may decide to expand the size of the memory region assigned
to the heap (see Section 7.6 later in this chapter).

Table 7-1 illustrates some of the system calls related to the previously mentioned tasks. With
the exception of brk (), which is discussed at the end of this chapter, the system calls are
described in other chapters.

Table 7-1. System Calls Related to Memory Region Creation and Deletion
System Call Description

brk() Changes the heap size of the process

execve () | Loads anew executable file, thus changing the process address space

exit () Terminates the current process and destroys its address space

fork() Creates a new process, and thus a new address space

mmap () Creates a memory mapping for a file, thus enlarging the process address space
munmap () | Destroys a memory mapping for a file, thus contracting the process address space
shmat () Creates a shared memory region

shmdt () Destroys a shared memory region

As we shall see in Section 7.4, it is essential for the kernel to identify the memory regions
currently owned by a process (that is, the address space of a process) since that allows the
"Page fault" exception handler to efficiently distinguish between two types of invalid linear
addresses that cause it to be invoked:

e Those caused by programming errors.

184

Understanding the Linux Kernel

e Those caused by a missing page; even though the linear address belongs to the
process's address space, the page frame corresponding to that address has yet to be
allocated.

The latter addresses are not invalid from the process's point of view; the kernel handles the
page fault by providing the page frame and letting the process continue.

7.2 The Memory Descriptor

All information related to the process address space is included in a table referenced by the mm
field of the process descriptor. This table is a structure of type mm_struct as follows:

struct mm struct {
struct vm area struct *mmap, *mmap avl, *mmap cache;
pgd t * pgd;
atomic_t count;
int map count;
struct semaphore mmap sem;
unsigned long context;
unsigned long start code, end code, start data, end data;
unsigned long start brk, brk, start stack;
unsigned long arg start, arg end, env_start, env_end;
unsigned long rss, total vm, locked vm;
unsigned long def flags;
unsigned long cpu vm mask;
unsigned long swap_cnt;
unsigned long swap_address;
void * segments;

}i
For the present discussion, the most important fields are:
pgd and segments

Point, respectively, to the Page Global Directory and Local Descriptor Table of the
process.

rss
Specifies the number of page frames allocated to the process.
total vm
Denotes the size of the process address space expressed as a number of pages.
locked vm

Counts the number of "locked" pages, that is, pages that cannot be swapped out (see
Chapter 16).

185

Understanding the Linux Kernel

count

Denotes the number of processes that share the same struct mm struct descriptor. If
count is greater than 1, the processes are lightweight processes sharing the same
address space, that is, using the same memory descriptor.

The mm alloc() function is invoked to get a new memory descriptor. Since these
descriptors are stored in a slab allocator cache, mm alloc() calls kmem cache alloc(),
initializes the new memory descriptor by duplicating the content of the memory descriptor of
current, and sets the count field to 1.

Conversely, the mmput () function decrements the count field of a memory descriptor. If that
field becomes 0, the function releases the Local Descriptor Table, the memory region
descriptors (see later in this chapter), the page tables referenced by the memory descriptor,
and the memory descriptor itself.

The mmap, mmap avl, and mmap cache fields are discussed in the next section.
7.3 Memory Regions

Linux implements memory regions by means of descriptors of type vm area struct:

struct vm area struct ({
struct mm struct * vm mm;
unsigned long vm_start;
unsigned long vm_end;
struct vm area struct *vm next;
pgprot t vm page prot;
unsigned short vm flags;
short vm avl height;
struct vm area struct *vm avl left, *vm avl right;
struct vm area struct *vm next share, **vm pprev_ share;
struct vm operations struct * vm ops;
unsigned long vm offset;
struct file * vm file;
unsigned long vm pte;

b

Each memory region descriptor identifies a linear address interval. The vm start field
contains the first linear address of the interval, while the vm_end field contains the first linear
address outside of the interval; vm _end - wvm start thus denotes the length of the memory
region. The vm mm field points to the mm struct memory descriptor of the process that owns
the region. We shall describe the other fields of vm_area struct later.

Memory regions owned by a process never overlap, and the kernel tries to merge regions
when a new one is allocated right next to an existing one. Two adjacent regions can be
merged if their access rights match.

As shown in Figure 7-1, when a new range of linear addresses is added to the process address
space, the kernel checks whether an already existing memory region can be enlarged (case a).
If not, a new memory region is created (case b). Similarly, if a range of linear addresses is
removed from the process address space, the kernel resizes the affected memory regions

186

Understanding the Linux Kernel

(case ¢). In some cases, the resizing forces a memory region to be split into two smaller ones
(case d)."

[Removing a linear address interval may theoretically fail because no free memory is available for a new memory descriptor.

Figure 7-1. Adding or removing a linear address interval

{a) Access rights of interval to be added are (@) The existing ragion is anlarged
equal 1o those of contiguous region

(b} Access rights of interval to be added are (b"} A new memory region is created
different from those of contiguous region

(c) Interval to be removed is at the end of (e') The existing region is shoriened
existing region

{d} Interval to be removed is inside (d*) Two smaller regions are created
existing ragion

Address space before operation Address space after operation
7.3.1 Memory Region Data Structures

All the regions owned by a process are linked together in a simple list. Regions appear in the
list in ascending order by memory address; however, each two regions can be separated by an
area of unused memory addresses. The vm next field of each vm area struct element
points to the next element in the list. The kernel finds the memory regions through the mmap
field of the process memory descriptor, which points to the vm next field of the first memory
region descriptor in the list.

The map count field of the memory descriptor contains the number of regions owned by the
process. A process may own up to MaX MAP COUNT different memory regions (this value is

usually set to 65536).

Figure 7-2 illustrates the relationships among the address space of a process, its memory
descriptor, and the list of memory regions.

187

Understanding the Linux Kernel

Figure 7-2. Descriptors related to the address space of a process

‘ Lingar Adidress Space

e R S = _Memﬂll}l' H-.‘?ﬂl'-ﬂl'?s

e TS LA L

mmap mmap_cache » vm end

Memary Descriptor

A frequent operation performed by the kernel is to search the memory region that includes a
specific linear address. Since the list is sorted, the search can terminate as soon as a memory
region that ends after the specific linear address has been found.

However, using the list is convenient only if the process has very few memory regions, let's
say less than a few tens of them. Searching, inserting elements, and deleting elements in the
list involve a number of operations whose times are linearly proportional to the list length.

Although most Linux processes use very few memory regions, there are some large
applications like object-oriented databases that one might consider "pathological” in that they
have many hundreds or even thousands of regions. In such cases, the memory region list
management becomes very inefficient, hence the performance of the memory-related system
calls degrades to an intolerable point.

When processes have a large number of memory regions, Linux stores their descriptors in
data structures called AVL trees, which were invented in 1962 by Adelson-Velskii and Landis.

In an AVL tree, each element (or node) usually has two children: a left child and a right child.
The elements in the AVL tree are sorted: for each node A, all elements of the subtree rooted at
the left child of N precede N, while, conversely, all elements of the subtree rooted at the right
child of N follow N (see Figure 7-3 (a); the key of the node is written inside the node itself).

Every node N of an AVL tree has a balancing factor, which shows how well balanced the
branches under the node are. The balancing factor is the depth of the subtree rooted at N's left
child minus the depth of the subtree rooted at N's right child. Every node of a properly
balanced AVL tree must have a balancing factor equal to -1, 0, or +1 (see Figure 7-3 (a); the
balancing factor of the node is written to the left of the node itself).

188

Understanding the Linux Kernel

Figure 7-3. Example of AVL trees

(a) (b)

Searching an element in an AVL tree is very efficient, since it requires operations whose
execution time is linearly proportional to the logarithm (of 2) of the tree size. In other words,
doubling the number of memory regions adds just one more iteration to the operation.

Inserting and deleting an element in an AVL tree is also efficient, since the algorithm can
quickly traverse the tree in order to locate the position at which the element will be inserted or
from which it will be removed. However, such operations could make the AVL tree
unbalanced. For instance, let's suppose that an element having value 11 must be inserted in
the AVL tree shown in Figure 7-3 (a). Its proper position is the left child of node having key
12, but once it is inserted, the balancing factor of the node having key 13 becomes -2. In order
to rebalance the AVL tree, the algorithm performs a "rotation" on the subtree rooted at the
node having the key 13, thus producing the new AVL tree shown in Figure 7-3 (). This looks
complicated, but inserting or deleting an element in an AVL tree requires a small number of
operations—a number linearly proportional to the logarithm of the tree size.

Still, AVL trees have their drawbacks. The functions that handle them are a lot more complex
than the functions that handle lists. When the number of elements is small, it is far more
efficient to put them in a list instead of in an AVL tree.

Therefore, in order to store the memory regions of a process, Linux generally makes use of
the linked list referred by the mmap field of the memory descriptor; it starts using an AVL tree
only when the number of memory regions of the process becomes higher than
AVL MIN MAP COUNT (usually 32 elements). Thus, the memory descriptor of a process
includes another field named mmap avl pointing to the AVL tree. This field has the value
until the kernel decides it needs to create the tree. Once an AVL tree has been created to
handle memory regions of a process, Linux keeps both the linked list and the AVL tree up-to-
date. Both data structures contain pointers to the same memory region descriptors. When
inserting or removing a memory region descriptor, the kernel searches the previous and next
elements through the AVL tree and uses them to quickly update the list without scanning it.

The addresses of the left and right children of every AVL node are stored in the vm avl left
and vm avl right fields, respectively, of the vm area struct descriptor. This descriptor
also includes the vm avl height field, which stores the height of the subtree rooted at the
memory region itself. The tree is sorted on the vm_end field value.

189

Understanding the Linux Kernel

The avl rebalance() function receives a path in a memory region's AVL tree as a
parameter. It rebalances the tree, if necessary, by properly rotating a subtree branching off
from a node of the path. The function is invoked by the avl insert() and avl remove ()
functions, which insert and remove a memory region descriptor in a tree, respectively. Linux
also makes use of the avl insert neighbours() function to insert an element into the tree
and return the addresses of the nearest nodes at the left and the right of the new element.

7.3.2 Memory Region Access Rights

Before moving on, we should clarify the relation between a page and a memory region. As
mentioned in Chapter 2, we use the term "page" to refer both to a set of linear addresses and
to the data contained in this group of addresses. In particular, we denote the linear address
interval ranging between and 4095 as page 0, the linear address interval ranging between 4096
and 8191 as page 1, and so forth. Each memory region thus consists of a set of pages having
consecutive page numbers.

We have already discussed in previous chapters two kinds of flags associated with a page:

e A few flags such as Read/Write , Present, Or User/Supervisor stored in each page
table entry (see Section 2.4.1 in Chapter 2).

e A set of flags stored in the flags field of each page descriptor (see Section 6.1 in
Chapter 6).

The first kind of flag is used by the Intel 80x86 hardware to check whether the requested kind
of addressing can be performed; the second kind is used by Linux for many different purposes
(see Table 6-1).

We now introduce a third kind of flags: those associated with the pages of a memory region.
They are stored in the vm flags field of the vm area struct descriptor (see Table 7-2).
Some flags offer the kernel information about all the pages of the memory region, such as
what they contain and what rights the process has to access each page. Other flags describe
the region itself, such as how it can grow.

Table 7-2. The Memory Region Flags

Flag Name Description

VM DENYWRITE The region maps a file that cannot be opened for writing.
VM EXEC Pages can be executed.

VM EXECUTABLE Pages contain executable code.

VM GROWSDOWN The region can expand toward lower addresses.
VM _GROWSUP The region can expand toward higher addresses.
VM IO The region maps the I/O address space of a device.
VM LOCKED Pages are locked and cannot be swapped out.

VM MAYEXEC VM EXEC flag may be set.

VM_MAYREAD VM_READ flag may be set.

VM_MAYSHARE VM_SHARE flag may be set.

VM_MAYWRITE VM_WRITE flag may be set.

VM _READ Pages can be read.

VM SHARED Pages can be shared by several processes.

VM SHM Pages are used for IPC's shared memory.

190

Understanding the Linux Kernel

VM WRITE Pages can be written.

Page access rights included in a memory region descriptor may be combined arbitrarily: it is
possible, for instance, to allow the pages of a region to be executed but not to be read. In order
to implement this protection scheme efficiently, the read, write, and execute access rights
associated with the pages of a memory region must be duplicated in all the corresponding
page table entries, so that checks can be directly performed by the Paging Unit circuitry. In
other words, the page access rights dictate what kinds of access should generate a "Page fault"
exception. As we shall see shortly, Linux delegates the job of figuring out what caused the
page fault to the page fault handler, which implements several page-handling strategies.

The initial values of the page table flags (which must be the same for all pages in the memory
region, as we have seen) are stored in the vm page prot field of the vm area struct
descriptor. When adding a page, the kernel sets the flags in the corresponding page table entry
according to the value of the vm page prot field.

However, translating the memory region's access rights into the page protection bits is not
straightforward, for the following reasons:

o In some cases, a page access should generate a "Page fault" exception even when its
access type is granted by the page access rights specified in the vm flags field of the
corresponding memory region. For instance, the kernel might decide to store two
identical, writable private pages (whose vM sHARE flags are cleared) belonging to two
different processes into the same page frame; in this case, an exception should be
generated when either one of the processes tries to modify the page (see Section 7.4.4
later in this chapter).

o Intel 80x86 processors's page tables have just two protection bits, namely the
Read/Write and User/Supervisor flags. Moreover, the User/Supervisor flag of
any page included in a memory region must always be set, since the page must always
be accessible by User Mode processes.

In order to overcome the hardware limitation of the Intel microprocessors, Linux adopts the
following rules:

o The read access right always implies the execute access right.
o The write access right always implies the read access right.

Moreover, in order to correctly defer the allocation of page frames through the Section 7.4.4
technique (see later in this chapter), the page frame is write-protected whenever the
corresponding page must not be shared by several processes. Therefore, the 16 possible
combinations of the read, write, execute, and share access rights are scaled down to the
following three:

o Ifthe page has both write and share access rights, the Read/write bit is set.

o Ifthe page has the read or execute access right but does not have either the write or the
share access right, the Read/write bit is cleared.

o If the page does not have any access rights, the Present bit is cleared, so that each
access generates a "Page fault" exception. However, in order to distinguish this
condition from the real page-not-present case, Linux also sets the page size bit to 1.7

191

Understanding the Linux Kernel

12/ You might consider this use of the Page size bitto be a dirty trick, since the bit was meant to indicate the real page size. But Linux can get
away with the deception because the Intel chip checks the Page s1i ze bit in Page Directory entries, but not in Page Table entries.

The downscaled protection bits corresponding to each combination of access rights are stored
in the protection map array.

7.3.3 Memory Region Handling

Having the basic understanding of data structures and state information that control memory
handling, we can look at a group of low-level functions that operate on memory region
descriptors. They should be considered as auxiliary functions that simplify the
implementation of do map () and ddo_unmap (). Those two functions, which are described
in Section 7.3.4 and Section 7.3.5 later in this chapter, respectively, enlarge and shrink the
address space of a process. Working at a higher level than the functions we consider here,
they do not receive a memory region descriptor as their parameter, but rather the initial
address, the length, and the access rights of a linear address interval.

7.3.3.1 Finding the closest region to a given address

The find vma() function acts on two parameters: the address mm of a process memory
descriptor and a linear address addr. It locates the first memory region whose vm end field is
greater than addr and returns the address of its descriptor; if no such region exists, it returns a
NULL pointer. Notice that the region selected by find vma () does not necessarily include
addr.

Each memory descriptor includes a mmap cache field that stores the descriptor address of the
region that was last referenced by the process. This additional field is introduced to reduce the
time spent in looking for the region that contains a given linear address: locality of address
references in programs makes it highly likely that if the last linear address checked belonged
to a given region, the next one to be checked belongs to the same region.

The function thus starts by checking whether the region identified by mmap cache includes
addr. If so, it returns the region descriptor pointer:

vma = mm->mmap_cache;
if (vma && vma->vm end > addr && vma->vm_start <= addr)
return vma;

Otherwise, the memory regions of the process must be scanned. If the process does not make
use of an AVL tree, the function simply scans the linked list:

if (!mm->mmap avl) {
vma = mm->mmap;
while (vma && vma->vm end <= addr)

vma = vma->vm next;
if (vma)
mm->mmap_cache = vma;

return vma;

Otherwise, the function looks up the memory region in the AVL tree:

192

Understanding the Linux Kernel

vma = NULL;
for (;;) {
if (tree == NULL)
break;
if (tree->vm end > addr) {
vma = tree;
if (tree->vm start <= addr)
break;
tree = tree->vm avl left;
} else
tree = tree->vm avl right;
}
if (vma)

mm->mmap_cache = vma;
return vma;

The kernel also makes use of the find vma prev() function, which returns the descriptor
addresses of the memory region that precedes the linear address given as parameter and of the
memory region that follows it.

7.3.3.2 Finding a region that overlaps a given address interval

The find vma intersection() function finds the first memory region that overlaps a
given linear address interval; the mm parameter points to the memory descriptor of the process,
while the start addr and end addr linear addresses specify the interval:

vma = find vma (mm,start addr);

if (vma && end addr <= vma->vm start)
vma = NULL;

return vma;

The function returns a NULL pointer if no such region exists. To be exact, if find vma ()
returns a valid address but the memory region found starts after the end of the linear address
interval, vma is set to NULL.

7.3.3.3 Finding a free address interval

The get unmapped area() function searches the process address space to find an available
linear address interval. The 1en parameter specifies the interval length, while the addr
parameter may specify the address from which the search is started. If the search is successful,
the function returns the initial address of the new interval; otherwise, it returns 0:

if (len > PAGE_OFFSET)
return 0;
if ('addr)
addr = PAGE OFFSET / 3;
addr = (addr + Oxfff) & Oxffff£f000;
for (vmm = find vma(current->mm, addr); ; vmm = vmm->vm next) {
if (addr + len > PAGE OFFSET)
return 0;

if (!vmm || addr + len <= vmm->vm start)
return addr;
addr = vmm->vm_end;

193

Understanding the Linux Kernel

The function starts by checking to make sure the interval length is within the limit imposed on
User Mode linear addresses, usually 3 GB. If addr is NULL, the search's starting point is set
to one-third of the User Mode linear address space. To be on the safe side, the function rounds
up the value of addr to a multiple of 4 KB. Starting from addr, it then repeatedly invokes
find vma() with increasing values of addr to find the required free interval. During this
search, the following cases may occur:

e The requested interval is larger than the portion of linear address space yet to be
scanned (addr + len > PAGE OFFSET): since there are not enough linear addresses to
satisfy the request, return 0.

e The hole following the last scanned region is not large enough (vmm != NULL &s& vmm-
>vm_start < addr + len): consider the next region.

o If neither one of the preceding conditions holds, a large enough hole has been found:
return addr.

7.3.3.4 Inserting a region in the memory descriptor list

i nsert vm struct() inserts a vm area struct structure in the list of memory
descriptors and, if necessary, in the AVL tree. It makes use of two parameters: mm, which
specifies the address of a process memory descriptor, and vmp, which specifies the address of
the vm area struct descriptor to be inserted:

if (!mm->mmap avl) {
pprev = &mm->mmap;
while (*pprev && (*pprev)->vm start <= vmp->vm start)
pprev = & (*pprev)->vm _next;
} else {

struct vm area struct *prev, *next;
avl insert neighbours (vmp, &mm->mmap avl, &prev, &next);

pprev = (prev ? §&prev->vm next : &mm->mmap) ;
}
vmp->vm _next = *pprev;
*pprev = vmp;
If the process makes use of the AVL tree, the avl insert neighbours() function is
invoked to insert the memory region descriptor in the proper position; otherwise,
insert vm struct() scans forward through the linked list using the pprev local variable

until it finds the descriptor that should precede vmp. At the end of the search, pprev points to
the vm next field of the memory region descriptor that should precede vmp in the list, hence
*pprev yields the address of the memory region descriptor that should follow vmp. The
descriptor can thus be inserted into the list.

mm->map count++;
if (mm->map count >= AVL MIN MAP COUNT && !mm->mmap avl)
build mmap avl (mm) ;

The map count field of the process memory descriptor is then incremented by 1. Moreover, if
the process was not using the AVL tree up to now but the number of memory regions
becomes greater than or equal to AvL MIN MAP COUNT , the build mmap avl() function is
invoked:

194

Understanding the Linux Kernel

void build mmap avl(struct mm struct * mm)
{
struct vm area struct * vma;
mm->mmap_avl = NULL;
for (vma = mm->mmap; vma; vma = vma->vm_next)
avl insert(vma, &mm->mmap avl);

From now on, the process will use an AVL tree.

If the region contains a memory mapped file, the function performs additional tasks that are
described in Chapter 16.

No explicit function exists for removing a region from the memory descriptor list (see Section
7.3.5).

7.3.3.5 Merging contiguous regions

The merge segments () function attempts to merge together the memory regions included in
a given linear address interval. As illustrated in Figure 7-1, this can be achieved only if the
contiguous regions have the same access rights. The parameters of merge segments() are a
memory descriptor pointer mm and two linear addresses start addr and end addr, which
delimit the interval. The function finds the last memory region that ends before start addr
and puts the address of its descriptor in the prev local variable. Then it iteratively executes
the following actions:

e Loads the mpnt local variable with prev->vm next, that is, the descriptor address of
the first memory region that starts after start addr. If no such region exists, no
merging is possible.

e Cycles through the list as long as prev->vm_start is smaller than end addr. Checks
whether it is possible to merge the memory regions associated with prev and mpnt.
This is possible if:

o The memory regions are contiguous: prev->vm_end = mpnt->vm start.

[} Theyluu@thesanu:ﬂags:prev—>vm_flags = mpnt->vm flags.

o When they map files or are shared among processes, they satisfy additional
requirements to be discussed in later chapters.

If merging is possible, remove the memory region descriptor from the list and, if
necessary, from the AVL tree.

e Decrement the map count field of the memory descriptor by 1, and resume the search
by setting prev so that it points to the merged memory region descriptor.

The function ends by setting the mmap cache field of the memory descriptor to NULL, since
the memory region cache could now refer to a memory region that no longer exists.

7.3.4 Allocating a Linear Address Interval

Now let's discuss how new linear address intervals are allocated. In order to do this, the
do_mmap () function creates and initializes a new memory region for the current process.

195

Understanding the Linux Kernel

However, after a successful allocation, the memory region could be merged with other
memory regions defined for the process.

The function makes use of the following parameters:

fileand off

addr

len

prot

flag

File descriptor pointer file and file offset off are used if the new memory region will
map a file into memory. This topic will be discussed in Chapter 15. In this section,
we'll assume that no memory mapping is required and that file and off are both
NULL.

This linear address specifies where the search for a free interval must start (see the
previous description of the get unmapped area() function).

The length of the linear address interval.

This parameter specifies the access rights of the pages included in the memory region.
Possible flags are PROT READ, PROT WRITE , PROT EXEC, and PROT NONE. The first
three flags mean the same things as the vM ReEaD, vM WRITE, and vM ExeC flags.
PROT NONE indicates that the process has none of those access rights.

This parameter specifies the remaining memory region flags:
MAP_GROWSDOWN,MAP_LOCKED,MAP_DENYWRITE,andMAP_EXECUTABLE
Their meanings are identical to those of the flags listed in Table 7-2.

MAP_SHARED and MAP_PRIVATE

The former flag specifies that the pages in the memory region can be shared among
several processes; the latter flag has the opposite effect. Both flags refer to the
vM_SHARED flag in the vm_area struct descriptor.

MAP ANONYMOUS

No file is associated with the memory region (see Chapter 15).

MAP FIXED

The initial linear address of the interval must be the one specified in the addr
parameter.

196

Understanding the Linux Kernel

MAP NORESERVE

The function doesn't have to do a preliminary check of the number of free page
frames.

The do mmap () function starts by checking whether the parameter values are correct and
whether the request can be satisfied. In particular, it checks for the following conditions that
prevent it from satisfying the request:

e The linear address interval includes addresses greater than PAGE OFFSET.

e The process has already mapped too many memory regions: the value of the
map_count field of its mm memory descriptor exceeds the MAX MAP COUNT value.

e The file parameter is equal to NULL and the f1ag parameter specifies that the pages
of the new linear address interval must be shared.

o The f1lag parameter specifies that the pages of the new linear address interval must be
locked in RAM, and the number of pages locked by the process exceeds the threshold
stored in the r1im [RLIMIT MEMLOCK].rlim cur field of the process descriptor.

If any of the preceding conditions holds, do mmap() terminates by returning a negative
value. If the linear address interval has a zero length, the function returns without performing
any action.

The next step consists of obtaining a linear address interval; if the Map FIXED flag is set, a
check is made on the proper alignment of the addr value; then the get unmapped area()
function is invoked to get it:

if (flags & MAP FIXED) {
if (addr & Oxff£f££000)
return -EINVAL;

} else {
addr = get unmapped area (addr, len);
if ('addr)

return -ENOMEM;

Now a vm_area struct descriptor must be allocated for the new region. This is done by
invoking the kmem cache alloc() slab allocator function:

vma = kmem cache alloc(vm area cachep, SLAB KERNEL) ;
if (!vma)
return -ENOMEM;

The memory region descriptor is then initialized. Notice how the value of the vm flags field
is determined both by the prot and flags parameters (joined together by means of the
vm_flags() function) and by the def flags field of the memory descriptor. The latter field
allows the kernel to define a set of flags that should be set for every memory region in the
process."’

P! Actually, this field is modified only by the mlockall () system call, which can be used to set the VM_LOCKED flag, thus locking all
future pages of the calling process in RAM.

197

Understanding the Linux Kernel

vma->vm mm = current->mm;

vma->vm_ start = addr;

vma->vm end = addr + len;

vma->vm_flags = vm flags (prot, flags) | current->mm->def flags;
vma->vm_flags |= VM MAYREAD | VM MAYWRITE | VM MAYEXEC;

vma->vim_page prot = protection map[vma->vm flags & 0x0f];
The do mmap () function then checks whether any of these error conditions holds:

e The process already includes in its address space a memory region that overlaps the
linear address interval ranging from addr to addr+1en; this check is performed by the
do_munmap () function, which returns the value if the overlap exists.

e The size in pages of the process address space exceeds the threshold stored in the
r1im[RLIMIT AS].rlim cur field of the process descriptor.

e The vaP NORESERVE flag was not set in the f1ags parameter, the new memory region
must contain private writable pages, and the number of free page frames is less than
the size (in pages) of the linear address interval; this last check is performed by the
vm_enough memory () function.

If any of the preceding conditions holds, do mmap() releases the vm area struct
descriptor obtained and terminates by returning the -ENOMEM value.

Once all checks have been performed, do_mmap () increments the size of current's address
space stored in the total vm field of the memory descriptor. It then invokes
insert vm struct (), which inserts the new region in the list of regions owned by current
(and, if necessary, in its AVL tree), and merge segments (), which checks whether regions
can be merged. Since the new region may be destroyed by a merge, the values of vm flags
and vm_start, which may be needed later, are saved in the £1ags and addr local variables:

current->mm->total vm += len >> PAGE SHIFT;

flags = vma->vm_flags;

addr = vma->vm_start;

insert vm struct(current->mm, vma);

merge segments (current->mm, vma->vm start, vma->vm end);

The final step is executed only if the map L.OCKED flag is set. First, the number of pages in the
memory region is added to the 1ocked vm field of the memory descriptor. Then the make
pages_ present () function is invoked to allocate all the pages of the memory region in
succession and lock them in RAM. The core code of make pages present() is:

vma = find vma (current->mm, addr);

write = (vma->vm flags & VM WRITE) != 0;

while (addr < addr + len) {
handle mm fault (current, vma, addr, write);
addr += PAGE SIZE;

As we shall see in Section 7.4.2, handle mm fault () allocates one page and sets its page
table entry according to the vm flags field of the memory region descriptor.

Finally, the do mmap() function terminates by returning the linear address of the new
memory region.

198

Understanding the Linux Kernel

7.3.5 Releasing a Linear Address Interval

The do munmap () function deletes a linear address interval from the address space of the
current process. The parameters are the starting address addr of the interval and its length
len. The interval to be deleted does not usually correspond to a memory region: it may be
included in one memory region, or it may span two or more regions.

The function goes through two main phases. First, it scans the list of memory regions owned
by the process and removes all regions that overlap the linear address interval. In the second
phase, the function updates the process page tables and reinserts a downsized version of the
memory regions that were removed during the first phase.

7.3.5.1 First phase: scanning the memory regions

A preliminary check is made on the parameter values: if the linear address interval includes
addresses greater than PAGE OFFSET, if addr is not a multiple of 4096, or if the linear address
interval has a zero length, the function returns a negative error code.

Next, the function locates the first memory region that overlaps the linear address interval to
be deleted:

mpnt = find vma prev(current->mm, addr, &prev);
if (!mpnt || mpnt->vm start >= addr + len)
return 0;

If the linear address interval is located inside a memory region, its deletion will split the
region into two smaller ones. In this case, do munmap () checks whether current is allowed
to obtain an additional memory region:

if ((mpnt->vm start < addr && mpnt->vm end > addr + len) &&
current->mm->map count > MAX MAP COUNT)
return -ENOMEM;

The function then attempts to get a new vm area struct descriptor. There may be no need
for it, but the function makes the request anyway so that it can terminate right away if the
allocation fails. This cautious approach simplifies the code since it allows an easy error exit:

extra = kmem cache alloc(vm area cachep, SLAB KERNEL) ;
if (!extra)
return -ENOMEM;

Now the function builds up a list including all descriptors of the memory regions that overlap
the linear address interval. This list is created by setting the vm next field of the memory
region descriptor (temporarily) so it points to the previous item in the list; this field thus acts
as a backward link. As each region is added to this backward list, a local variable named free
points to the last inserted element. The regions inserted in the list are also removed from the
list of memory regions owned by the process and, if necessary, from the AVL tree:

199

Understanding the Linux Kernel

npp = (prev ? &prev->vm next : ¤t->mm->mmap) ;

free = NULL;

for (; mpnt && mpnt->vm start < addr + len; mpnt = *npp) {
*npp = mpnt->vm next;
mpnt->vm next = free;

free = mpnt;
if (current->mm->mmap avl)
avl remove (mpnt, ¤t->mm->mmap avl);

}

7.3.5.2 Second phase: updating the page tables

A while cycle is used to scan the list of memory regions built in the first phase, starting with
the memory region descriptor that free points to.

In each iteration, the mpnt local variable points to the descriptor of a memory region in the
list. The map count field of the current->mm memory descriptor is decremented (since the
region has been removed in the first phase from the list of regions owned by the process) and
a check is made (by means of two question-mark conditional expressions) to determine
whether the mpnt region must be eliminated or simply downsized:

current->mm->map_ count--;

st = addr < mpnt->vm start ? mpnt->vm start : addr;
end = addr + len;

end end > mpnt->vm _end ? mpnt->vm end : end;

size = end - st;

The st and end local variables delimit the linear address interval in the mpnt memory region
that should be deleted; the size local variable specifies the length of the interval.

Next, do_munmap () releases the page frames allocated for the pages included in the interval
from st to end:

zap_page range (current->mm, st, size);
flush tlb range (current->mm, st, end);

The zap page range() function deallocates the page frames included in the interval from
st to end and updates the corresponding page table entries. The function invokes in nested
fashion the zap pmd range() and zap pte range() functions for scanning the page
tables; the latter function uses the pte clear macro to clear the page table entries and the
free pte() function to free the corresponding page frames.

The flush tlb range() function is then invoked to invalidate the TLB entries
corresponding to the interval from st to end. In the Intel 80x86 architecture that function
simply invokes flush tlb(), thus invalidating all TLB entries.

The last action performed in each iteration of the do munmap () loop is to check whether a
downsized version of the mpnt memory region must be reinserted in the list of regions of

current:

extra = unmap_ fixup (mpnt, st, size, extra);

The unmap fixup () function considers four possible cases:

200

Understanding the Linux Kernel

e The memory region has been totally canceled. Return the address stored in the extra
local variable, thus signaling that the extra memory region descriptor can be released
byinVOkﬁmgkmem_cache_free().

e Only the lower part of the memory region has been removed, that is:

(mpnt->vm_start < st) && (mpnt->vm end == end)

In this case, update the vm_end field of mnpt, invoke insert vm struct () to insert
the downsized region in the list of regions belonging to the process, and return the
address stored in extra.

e Only the upper part of the memory region has been removed, that is:

(mpnt->vm start == st) && (mpnt->vm end > end)

In this case, update the vm start field of mnpt, invoke insert vm struct() to
insert the downsized region in the list of regions belonging to the process, and return
the address stored in extra.

e The linear address interval is in the middle of the memory region, that is:

(mpnt->vm_start < st) && (mpnt->vm end > end)

Update the vm start and vm_end fields of mnpt and extra (the previously allocated
extra memory region descriptor) so that they refer to the linear address intervals,
respectively, from mpnt->vm start to st and from end to mpnt->vm end. Then
invoke insert vm struct() twice to insert the two regions in the list of regions
belonging to the process (and, if necessary, in the AVL tree) and return NULL, thus
preserving the extra memory region descriptor previously allocated.

This terminates the description of what must be done in a single iteration of the second-phase
loop.

After handling all the memory region descriptors in the list built during the first phase,
do_munmap () checks if the additional extra memory descriptor has been used. If extra is
NULL, the descriptor has been used; otherwise, do munmap () invokes kmem cache free()
to release it. Finally, if the process address space has been modified, do munmap () sets the
mmap cache field of the memory descriptor to NULL and returns 0.

7.4 Page Fault Exception Handler

As stated previously, the Linux "Page fault" exception handler must distinguish exceptions
caused by programming errors from those caused by a reference to a page that legitimately
belongs to the process address space but simply hasn't been allocated yet.

The memory region descriptors allow the exception handler to perform its job quite
efficiently. The do page fault() function, which is the "Page fault" interrupt service
routine, compares the linear address that caused the page fault against the memory regions of
the current process; it can thus determine the proper way to handle the exception according
to the scheme illustrated in Figure 7-4.

201

Understanding the Linux Kernel

Figure 7-4. Overall scheme for the page fault handler

Lepal access:
allocate a new
page frame,
YES
Does the access bype
match the memory
region access rights?
YES
NO
Does the address Illegal access:
helong to the send a SIGSEGY
process address signal
space?
YES
ND
Did the exception
gceur in User Made?
NO
Kernel bug:

kill the process

In practice, things are a lot more complex since the page fault handler must recognize several
particular subcases that fit awkwardly into the overall scheme, and it must distinguish several
kinds of legal access. A detailed flow diagram of the handler is illustrated in Figure 7-5.

Figure 7-5. The flow diagram of the page fault handler

NO /I interrupt or in % YES

S kemnel thread f

YES,/ Addressina
', MMEmory region

Address could
- VES "f helong to User
L good_area s Mode stack

L

NO

YES,/

\ Write access

bad_area
r

5 'rEs,f’
[,

NOY

P&QE is pregent In User Mode

U

Hegion is
writable

no_context
L]

ND J;" Address s a

YES RE&EP s wrong system S
readabie or ry %, call parameter
| ‘x executable
L L L) L
e
Kill process “Fisup code”
Copy On Write D'Z"ﬂ"“ SIEESFFI_':IIS'U' and kerngl (typicaly send
paging “Oops” SIGSEGY)

A

202

Understanding the Linux Kernel

The identifiers good area, bad area, and no context are labels appearing in
do page fault () that should help you to relate the blocks of the flow diagram to specific
lines of code.

The do_ page fault() function accepts the following input parameters:

e The regs address of a pt_regs structure containing the values of the microprocessor
registers when the exception occurred.

e A 3-bit error code, which is pushed on the stack by the control unit when the
exception occurred (see Section 4.2.5 in Chapter 4). The bits have the following
meanings.

o If bit is clear, the exception was caused by an access to a page that is not
present (the present flag in the Page Table entry is clear); otherwise, if bit is
set, the exception was caused by an invalid access right.

o Ifbit 1 is clear, the exception was caused by a read or execute access; if set, the
exception was caused by a write access.

o If bit 2 is clear, the exception occurred while the processor was in Kernel
Mode; otherwise, it occurred in User Mode.

The first operation of do page fault() consists of reading the linear address that caused
the page fault. When the exception occurs, the CPU control unit stores that value in the cr2
control register:

oo

asm("movl %$%cr2,%0":"=r" (address));
tsk = current;
mm = tsk->mm;

The linear address is saved in the address local variable. The function also saves the pointers
to the process descriptor and the memory descriptor of current in the tsk and mm local
variables, respectively.

As shown at the top of Figure 7-5, do page fault() first checks whether the exception
occurred while handling an interrupt or executing a kernel thread:

if (in_interrupt() || mm == &init mm)
goto no_context;

In both cases, do page fault() does not try to compare the linear address with the
memory regions of current, since it would not make any sense: interrupt handlers and kernel
threads never use linear addresses below PAGE OFFsET, and thus never rely on memory
regions.

Let us suppose that the page fault did not occur in an interrupt handler or in a kernel thread.
Then the function must inspect the memory regions owned by the process to determine
whether the faulty linear address is included in the process address space:

vma = find vma (mm, address);
if (!vma)
goto bad area;
if (vma->vm_start <= address)
goto good area;

203

Understanding the Linux Kernel

Now the function has determined that address is not included in any memory region;
however, it must perform an additional check, since the faulty address may have been caused
by a push or pusha instruction on the User Mode stack of the process.

Let us make a short digression to explain how stacks are mapped into memory regions. Each
region that contains a stack expands toward lower addresses; its vM Growspown flag is set,
thus the value of its vm_end field remains fixed while the value of its vm start field may be
decreased. The region boundaries include, but do not delimit precisely, the current size of the
User Mode stack. The reasons for the fuzz factor are:

e The region size is a multiple of 4 KB (it must include complete pages) while the stack
size is arbitrary.

e Page frames assigned to a region are never released until the region is deleted; in
particular, the value of the vm start field of a region that includes a stack can only
decrease; it can never increase. Even if the process executes a series of pop
instructions, the region size remains unchanged.

It should now be clear how a process that has filled up the last page frame allocated to its
stack may cause a "Page fault" exception: the push refers to an address outside of the region
(and to a nonexistent page frame). Notice that this kind of exception is not caused by a
programming error; it must thus be handled separately by the page fault handler.

We now return to the description of do page fault(), which checks for the case
described previously:
if (! (vma->vm flags & VM GROWSDOWN))
goto bad area;
if (error code & 4 /* User Mode */

&& address + 32 < regs->esp)
goto bad area;

if (expand stack(vma, address))
goto bad area;

goto good area;

If the vM_crowspown flag of the region is set and the exception occurred in User Mode, the
function checks whether address is smaller than the regs->esp stack pointer (it should be
only a little smaller). Since a few stack-related assembly language instructions (like pusha)
perform a decrement of the esp register only after the memory access, a 32-byte tolerance
interval is granted to the process. If the address is high enough (within the tolerance granted),
the code invokes the expand stack() function to check whether the process is allowed to
extend both its stack and its address space; if everything is OK, it sets the vm start field of
vma to address and returns 0; otherwise, it returns 1.

Note that the preceding code skips the tolerance check whenever the v Growspown flag of
the region is set and the exception did not occur in User Mode. Those conditions mean that
the kernel is addressing the User Mode stack and that the code should always run
expand stack().

204

Understanding the Linux Kernel

7.4.1 Handling a Faulty Address Outside the Address Space

If address does not belong to the process address space, do page fault() proceeds to
execute the statements at the label bad area. If the error occurred in User Mode, it sends a
SIGSEGV signal to current (see Section 9.2 in Chapter 9) and terminates:

bad area:

if (error code & 4) { /* User Mode */
tsk->tss.cr2 = address;
tsk->tss.error code = error code;

tsk->tss.trap no = 14;
force sig(SIGSEGV, tsk);
return;

If, however, the exception occurred in Kernel Mode (bit 2 of error code is clear), there are
still two alternatives:
e The exception occurred while using some linear address that has been passed to the
kernel as parameter of a system call.

o The exception is due to a real kernel bug.

The function distinguishes these two alternatives as follows:

no context:

if ((fixup = search exception table(regs->eip)) != 0) {
regs->eip = fixup;
return;

In the first case, it jumps to some "fixup code," which typically sends a s1GsEGV signal to
current or terminates a system call handler with a proper error code (see Section 8.2.6 in
Chapter 8).

In the second case, the function prints a complete dump of the CPU registers and the Kernel
Mode stack on the console and on a system message buffer, then kills the current process by
invoking the do exit () function (see Chapter 19). This is the so-called "Kernel oops" error,
named after the message displayed. The dumped values can be used by kernel hackers to
reconstruct the conditions that triggered the bug, thus find and correct it.

7.4.2 Handling a Faulty Address Inside the Address Space

If address belongs to the process address space, do page fault() proceeds to the
statement labeled good area:

205

Understanding the Linux Kernel

good area:

write = 0;
if (error code & 2) { /* write access */
if (! (vma->vm flags & VM WRITE))
goto bad area;
write++;
} else /* read access */

if (error code & 1 |
! (vma->vm_ flags & (VM _READ | VM EXEC)))
goto bad area;

If the exception was caused by a write access, the function checks whether the memory region
is writable. If not, it jumps to the bad area code; if so, it sets the write local variable to 1.

If the exception was caused by a read or execute access, the function checks whether the page
is already present in RAM. In this case, the exception occurred because the process tried to
access a privileged page frame (one whose User/sSupervisor flag is clear) in User Mode, so
the function jumps to the bad_area code.” If the page is not present, the function also checks
whether the memory region is readable or executable.

I However, this case should never happen, since the kernel does not assign privileged page frames to the processes.

If the memory region access rights match the access type that caused the exception, the
handle mm fault() function is invoked:

if (!handle mm fault(tsk, vma, address, write)) {
tsk->tss.cr?2 = address;
tsk->tss.error code = error code;

tsk->tss.trap no = 14;

force sig(SIGBUS, tsk);

if (! (error code & 4)) /* Kernel Mode */
goto no_context;

The handle mm fault() function returns 1 if it succeeded in allocating a new page frame
for the process; otherwise, it returns an appropriate error code so that do page fault() can
send a sTGBUS signal to the process. It acts on four parameters:

tsk
A pointer to the descriptor of the process that was running on the CPU when the
exception occurred

vma
A pointer to the descriptor of the memory region including the linear address that
caused the exception

address

The linear address that caused the exception

206

Understanding the Linux Kernel

write access

Set to 1 if tsk attempted to write in address and to if tsk attempted to read or
execute it

The function starts by checking whether the Page Middle Directory and the Page Table used
to map address exist. Even if address belongs to the process address space, the
corresponding page tables might not have been allocated, so the task of allocating them
precedes everything else:

pgd = pgd offset (vma->vm mm, address):;
pmd = pmd alloc(pgd, address);
if (!pmd)
return -1;
pte = pte alloc(pmd, address);
if (!pte)
return -1;

The pgd local variable contains the Page Global Directory entry that refers to address;
pmd alloc() is invoked to allocate, if needed, a new Page Middle Directory.” pte alloc(
) is then invoked to allocate, if needed, a new Page Table. If both operations are successful,
the pte local variable points to the Page Table entry that refers to address. The
handle pte fault() function is then invoked to inspect the Page Table entry
corresponding to address:

1°I On Intel 80x86 microprocessors, this kind of allocation never occurs since Page Middle Directories are included in the Page Global Directory.

return handle pte fault (tsk, vma, address, write access, pte);

The handle pte fault() function determines how to allocate a new page frame for the
process:

o If the accessed page is not present—that is, if it is not already stored in any page
frame—the kernel allocates a new page frame and initializes it properly; this technique
is called demand paging.

o If the accessed page is present but is marked read only—that is, if it is already stored
in a page frame—the kernel allocates a new page frame and initializes its contents by
copying the old page frame data; this technique is called Copy On Write.

7.4.3 Demand Paging

The term demand paging denotes a dynamic memory allocation technique that consists of
deferring page frame allocation until the last possible moment, that is, until the process
attempts to address a page that is not present in RAM, thus causing a "Page fault" exception.

The motivation behind demand paging is that processes do not address all the addresses
included in their address space right from the start; in fact, some of these addresses may never
be used by the process. Moreover, the program locality principle (see Section 2.4.6 in Chapter
2) ensures that, at each stage of program execution, only a small subset of the process pages
are really referenced, and therefore the page frames containing the temporarily useless pages
can be used by other processes. Demand paging is thus preferable to global allocation
(assigning all page frames to the process right from the start and leaving them in memory

207

Understanding the Linux Kernel

until program termination) since it increases the average number of free page frames in the
system and hence allows better use of the available free memory. From another viewpoint, it
allows the system as a whole to get a better throughput with the same amount of RAM.

The price to pay for all these good things is system overhead: each "Page fault" exception
induced by demand paging must be handled by the kernel, thus wasting CPU cycles.
Fortunately, the locality principle ensures that once a process starts working with a group of
pages, it will stick with them without addressing other pages for quite a while: "Page fault"
exceptions may thus be considered rare events.

An addressed page may not be present in main memory for the following reasons:

o The page was never accessed by the process. The kernel can recognize this case since
the Page Table entry is filled with zeros, that is, the pte none macro returns the value
1.

o The page was already accessed by the process, but its content is temporarily saved on
disk. The kernel can recognize this case since the Page Table entry is not filled with
zeros (however, the present flag is cleared, since the page is not present in RAM).

The handle pte fault() function distinguishes the two cases by inspecting the Page
Table entry that refers to address:

entry = *pte;
if (!pte present(entry)) {
if (pte none(entry))
return do no_page (tsk, vma, address, write access,
pte);
return do_swap page (tsk, vma, address, pte, entry,
write access);

We'll examine the case in which the page is saved on disk (do swap page() function) in
Section 16.6 in Chapter 16.

In the other situation, when the page was never accessed, the do no page() function is
invoked. There are two ways to load the missing page, depending on whether the page is
mapped to a disk file. The function determines this by checking a field called nopage in the
vma memory region descriptor, which points to the function that loads the missing page from
disk into RAM if the page is mapped to a file. Therefore, the possibilities are:

e The vma->vm ops->nopage field is not NULL. In this case, the memory region maps
a disk file and the field points to the function that loads the page. This case will be
covered in Section 15.2 in Chapter 15 and in Section 18.3.5 in Chapter 18.

e FEither the vm ops field or the vma->vm ops->nopage field is NULL. In this case, the
memory region does not map a file on disk, that is, it is an anonymous mapping. Thus,

do no page() invokes the do anonymous page() function to get a new page
frame:
if (!vma->vm ops || !vma->vm ops->nopage)

return do_anonymous_page (tsk, vma, page table,
write access);

208

Understanding the Linux Kernel

The do anonymous page () function handles write and read requests separately:

if (write access) {
page = get free page (GFP_USER);
memset ((void *) (page), 0, PAGE SIZE)
entry = pte mkwrite(pte mkdirty(mk pte (page,
vma->vm _page prot)));
vma->vm _mm->rss++;
tsk->min_ flt++;
set pte(pte, entry);
return 1;

When handling a write access, the function invokes get free page() and fills the new
page frame with zeros by using the memset macro. The function then increments the min f1t
field of tsk to keep track of the number of minor page faults (those that require only a new
page frame) caused by the process and the rss field of the vma->vm mm process memory
descriptor to keep track of the number of page frames allocated to the process.” The Page
Table entry is then set to the physical address of the page frame, which is marked as writable
and dirty.

11 Linux records the number of minor page faults for each process. This information, together with several other statistics, may be used to tune the
system. The value stored in the ¥ S S field of memory descriptors is also used by the kernel to select the region from which to steal page frames (see
Section 16.7 in Chapter 16).

Conversely, when handling a read access, the content of the page is irrelevant because the
process is addressing it for the first time. It is safer to give to the process a page filled with
zeros rather than an old page filled with information written by some other process. Linux
goes one step further in the spirit of demand paging. There is no need to assign a new page
frame filled with zeros to the process right away, since we might as well give it an existing
page called zero page, thus deferring further page frame allocation. The zero page is allocated
statically during kernel initialization in the empty zero page variable (an array of 1024 long
integers filled with zeros); it is stored in the sixth page frame, starting from physical address
0x00005000, and it can be referenced by means of the zErRO PAGE macro.

The Page Table entry is thus set with the physical address of the zero page:

entry = pte wrprotect (mk pte (ZERO PAGE, vma->vm page prot));
set pte(pte, entry);
return 1;

Since the page is marked as nonwritable, if the process attempts to write in it, the Copy On
Write mechanism will be activated. Then, and only then, will the process get a page of its own
to write in. The mechanism is described in the next section.

7.4.4 Copy On Write

First-generation Unix systems implemented process creation in a rather clumsy way: when a
fork() system call was issued, the kernel duplicated the whole parent address space in the
literal sense of the word and assigned the copy to the child process. This activity was quite
time-consuming since it required:

209

Understanding the Linux Kernel

e Allocating page frames for the page tables of the child process

e Allocating page frames for the pages of the child process

o Initializing the page tables of the child process

o Copying the pages of the parent process into the corresponding pages of the child
process

This way of creating an address space involved many memory accesses, used up many CPU
cycles, and entirely spoiled the cache contents. Last but not least, it was often pointless
because many child processes start their execution by loading a new program, thus discarding
entirely the inherited address space (see Chapter 19).

Modern Unix kernels, including Linux, follow a more efficient approach called Copy On
Write, or COW. The idea is quite simple: instead of duplicating page frames, they are shared
between the parent and the child process. However, as long as they are shared, they cannot be
modified. Whenever the parent or the child process attempts to write into a shared page frame,
an exception occurs, and at this point the kernel duplicates the page into a new page frame
that it marks as writable. The original page frame remains write-protected: when the other
process tries to write into it, the kernel checks whether the writing process is the only owner
of the page frame; in such a case, it makes the page frame writable for the process.

The count field of the page descriptor is used to keep track of the number of processes that
are sharing the corresponding page frame. Whenever a process releases a page frame or a
Copy On Write is executed on it, its count field is decremented; the page frame is freed only
when count becomes NULL.

Let us now describe how Linux implements COW. When handle pte fault()
determines that the "Page fault" exception was caused by a request to write into a write-
protected page present in memory, it executes the following instructions:

if (pte present(pte)) {

entry = pte mkyoung (entry);

set pte(pte, entry);

flush tlb page(vma, address);

if (write access) {
if (!pte write(entry))

return do wp page(tsk, vma, address, pte);

entry = pte mkdirty(entry);
set pte(pte, entry);
flush tlb page (vma, address);
}

return 1;

First, the pte mkyoung() and set pte() functions are invoked in order to set the
Accessed bit in the Page Table entry of the page that caused the exception. This setting
makes the page "younger" and reduces its chances of being swapped out to disk (see Chapter
16). If the exception was caused by a write-protection violation, handle pte fault()
returns the value yielded by the do_wp page () function; otherwise, some error condition has
been detected (for instance, a page inside the User Mode process address space with the
User/Supervisor flag equal to 0), and the function returns the value 1.

210

Understanding the Linux Kernel

The do wp page () function starts by loading the pte local variable with the Page Table
entry referenced by the page table parameter and by getting a new page frame:

pte = *page table;
new page = get free page(GFP_USER);

Since the allocation of a page frame can block the process, the function performs the
following consistency checks on the Page Table entry once the page frame has been obtained:

o Whether the page has been swapped out while the process waited for a free page frame
(pte and *page table do not have the same value)

e Whether the page is no longer in RAM (the page's present flag is in its Page Table
entry)

e Whether the page can now be written (the page's rRead/write flag is 1 in its Page
Table entry)

If any of these conditions occurs, do wp page () releases the page frame obtained previously
and returns the value 1.

Now the function updates the number of minor page faults and stores in the page map local
variable a pointer to the page descriptor of the page that caused the exception:

tsk->min_ flt++;
page map = mem map + MAP NR(old page);

Next, the function must determine whether the page must really be duplicated. If only one
process owns the page, Copy On Write does not apply and the process should be free to write
the page. Thus, the page frame is marked as writable so that it will not cause further "Page
fault" exceptions when writes are attempted, the previously allocated new page frame is
released, and the function terminates with a return value of 1. This check is made by reading
the value of the count field of the page descriptor:”

7] Actually, the check is slightly more complicated, since the COUN't field is also incremented when the page is inserted into the swap cache (see
Section 16.3 in Chapter 16).

if (page map->count == 1) {
set pte(page table, pte mkdirty(pte mkwrite (pte)));
flush tlb page (vma, address);
if (new_page)
free page (new_page) ;
return 1;

Conversely, if the page frame is shared among two or more processes, the function copies the
content of the old page frame (o1d_page) into the newly allocated one (new page):

211

Understanding the Linux Kernel

if (old page == ZERO_ PAGE)

memset ((void *) new page, 0, PAGE SIZE);
else

memcpy ((void *) new page, (void *) old page, PAGE SIZE);
set pte(page table, pte mkwrite (pte mkdirty(

mk pte (new page, vma->vm page prot))));

flush tlb page(vma, address);
__free page(page map);
return 1;

If the old page is the zero page, the new frame is efficiently filled with zeros by using the
memset macro. Otherwise, the page frame content is copied using the memcpy macro. Special
handling for the zero page is not strictly required, but it improves the system performance
since it preserves the microprocessor hardware cache by making fewer address references.

The Page Table entry is then updated with the physical address of the new page frame, which
is also marked as writable and dirty. Finally, the function invokes free page() to
decrement the usage counter of the old page frame.

7.5 Creating and Deleting a Process Address Space

Out of the six typical cases mentioned in Section 7.1 in which a process gets new memory
regions, the first one—issuing a fork () system call—requires the creation of a whole new
address space for the child process. Conversely, when a process terminates, the kernel
destroys its address space. In this section we'll discuss how these two activities are performed
by Linux.

7.5.1 Creating a Process Address Space

We have mentioned in Section 3.3.1 in Chapter 3, that the kernel invokes the copy mm()
function while creating a new process. This function takes care of the process address space
creation by setting up all page tables and memory descriptors of the new process.

Each process usually has its own address space, but lightweight processes can be created by
calling clone() with the cLonE vmM flag set. These share the same address space; that is,
they are allowed to address the same set of pages.

Following the COW approach described earlier, traditional processes inherit the address space
of their parent: pages stay shared as long as they are only read. When one of the processes
attempts to write one of them, however, the page is duplicated; after some time, a forked
process usually gets its own address space different from that of the parent process.
Lightweight processes, on the other hand, use the address space of their parent process: Linux
implements them simply by not duplicating address space. Lightweight processes can be
created considerably faster than normal processes, and the sharing of pages can also be
considered a benefit so long as the parent and children coordinate their accesses carefully.

If the new process has been created by means of the =~ clone() system call and if the

cLoNE_vM flag of the f1ag parameter is set, copy mm() gives the clone the address space of
its parent:

212

Understanding the Linux Kernel

if (clone flags & CLONE VM) {
mmget (current->mm) ;
copy segments (nr, tsk, NULL);
SET PAGE DIR(tsk, current->mm->pgd) ;
return 0;

The copy segments() function sets up the LDT for the clone process, because even a
lightweight process must have a separate LDT entry in the GDT. The SET PAGE DIR macro
sets the Page Global Directory of the new process and stores the Page Global Directory
address in the mm->pgd field of the new memory descriptor.

If the cronE vmM flag is not set, copy mm() must create a new address space (even though no
memory is allocated within address space until the process requests an address). The function
allocates a new memory descriptor and stores its address in the mm field of the new process
descriptor; it then initializes several fields in the new process descriptor to and, as in the
previous case, sets up the LDT descriptor by invoking copy segments ():

mm = mm _alloc();
if (!mm)
return -ENOMEM;
tsk->mm = mm;
copy segments(nr, tsk, mm);

Next, copy mm() invokes new page tables() to allocate the Page Global Directory. The
last entries of this table, which correspond to linear addresses greater than PAGE OFFSET, are
copied from the Page Global Directory of the swapper process, while the remaining entries
are set to (in particular, the pPresent and Read/write flags are cleared). Finally,
new page tables() stores the Page Global Directory address in the mm->pgd field of the
new memory descriptor. The dup mmap () function is then invoked to duplicate both the
memory regions and the Page Tables of the parent process:

new page tables(tsk);
dup mmap (mm) ;
return 0;

The dup mmap () function scans the list of regions owned by the parent process, starting
from the one pointed by current->mm->mmap. It duplicates each vm area struct memory
region descriptor encountered and inserts the copy in the list of regions owned by the child
process.

Right after inserting a new memory region descriptor, dup mmap() invokes
copy page range () to create, if necessary, the Page Tables needed to map the group of
pages included in the memory region and to initialize the new Page Table entries. In
particular, any page frame corresponding to a private, writable page (vM sHARE flag off and
vM MAYWRITE flag on) is marked as read only for both the parent and the child, so that it will
be handled with the Copy On Write mechanism. Finally, if the number of memory regions is
greater than or equal to Avi MIN MAP COUNT, the memory region AVL tree of the child
process is created by invoking the build mmap avl () function.

213

Understanding the Linux Kernel

7.5.2 Deleting a Process Address Space

When a process terminates, the kernel invokes the exit mm() function to release the address
space owned by that process. Since the process is entering the TASK zZOMBIE state, the
function assigns the address space of the swapper process to it:

flush tlb mm (mm) ;

tsk->mm = &init mm;

tsk->swappable = 0;

SET PAGE DIR(tsk, swapper pg dir);
mm_release();

mmput (mm) ;

The function then invokes mm release() and mmput() to release the process address
space. The first function clears the fs and gs segmentation registers and restores the LDT of
the process to default 1dt; the second function decrements the value of the mm->count field
and releases the LDT, the memory region descriptors, and the page tables referred by mm.
Finally, the mm memory descriptor itself is released.

7.6 Managing the Heap
Each Unix process owns a specific memory region called heap, which is used to satisfy the
process's dynamic memory requests. The start brk and brk fields of the memory descriptor

delimit the starting and ending address, respectively, of that region.

The following C library functions can be used by the process to request and release dynamic
memory:

malloc (size)

Request size bytes of dynamic memory; if the allocation succeeds, it returns the
linear address of the first memory location.

calloc(n,size)

Request an array consisting of n elements of size size; if the allocation succeeds, it
initializes the array components to and returns the linear address of the first element.

free (addr)

Release the memory region allocated by malloc() or calloc() having initial
address addr.

brk (addr)
Modify the size of the heap directly; the addr parameter specifies the new value of

current->mm->brk, and the return value is the new ending address of the memory
region (the process must check whether it coincides with the requested addr value).

214

Understanding the Linux Kernel

The brk() function differs from the other functions listed because it is the only one
implemented as a system call: all the other functions are implemented in the C library by
making use of brk () and mmap ().

When a process in User Mode invokes the brk() system call, the kernel executes the
sys brk(addr) function (see Chapter 8). This function verifies first whether the addr
parameter falls inside the memory region that contains the process code; if so, it returns
immediately:

mm = current->mm;
if (addr < mm->end code)
return mm->brk;

Since the brk () system call acts on a memory region, it allocates and deallocates whole
pages. Therefore, the function aligns the value of addr to a multiple of PAGE s1zE, then
compares the result with the value of the brk field of the memory descriptor:

newbrk (addr + Oxfff) & Oxfffff000;
oldbrk = (mm->brk + Oxfff) & Oxfff£f£000;
if (oldbrk == newbrk) {

mm->brk = addr;

return mm->brk;

If the process has asked to shrink the heap, sys brk() invokes the do munmap () function
to do the job and then returns:

if (addr <= mm->brk) {
if (!do munmap (newbrk, oldbrk-newbrk))
mm->brk = addr;
return mm->brk;

If the process has asked to enlarge the heap, sys brk() checks first whether the process is
allowed to do so. If the process is trying to allocate memory outside its limit, the function
simply returns the original value of mm->brk without allocating more memory:

rlim = current->rlim[RLIMIT DATA].rlim cur;
if (rlim < RLIM INFINITY && addr - mm->end code > rlim)
return mm->brk;

The function then checks whether the enlarged heap would overlap some other memory
region belonging to the process and, if so, returns without doing anything:

if (find vma intersection (mm, oldbrk, newbrk+PAGE SIZE))
return mm->brk;

The last check before proceeding to the expansion consists of verifying whether the available
free virtual memory is sufficient to support the enlarged heap (see Section 7.3.4):

if (!vm enough memory ((newbrk-oldbrk) >> PAGE SHIFT))
return mm->brk;

215

Understanding the Linux Kernel

If everything is OK, the do mmap () function is invoked with the Map FIxED flag set: if it
returns the oldbrk value, the allocation was successful and sys brk() returns the value
addr; otherwise, it returns the old mm->brk value:

if (do_mmap (NULL, oldbrk, newbrk-oldbrk,
PROT READ | PROT WRITE | PROT EXEC,
MAP FIXED | MAP PRIVATE, 0) == oldbrk)
mm->brk = addr;
return mm->brk;

7.7 Anticipating Linux 2.4

Beside minor optimizations and adjustments, the process address space is handled in the same
way by Linux 2.4.

216

Understanding the Linux Kernel

Chapter 8. System Calls

Operating systems offer processes running in User Mode a set of interfaces to interact with
hardware devices such as the CPU, disks, printers, and so on. Putting an extra layer between
the application and the hardware has several advantages. First, it makes programming easier,
freeing users from studying low-level programming characteristics of hardware devices.
Second, it greatly increases system security, since the kernel can check the correctness of the
request at the interface level before attempting to satisfy it. Last but not least, these interfaces
make programs more portable since they can be compiled and executed correctly on any
kernel that offers the same set of interfaces.

Unix systems implement most interfaces between User Mode processes and hardware devices
by means of system calls issued to the kernel. This chapter examines in detail how system
calls are implemented by the Linux kernel.

8.1 POSIX APIs and System Calls

Let us start by stressing the difference between an application programmer interface (API)
and a system call. The former is a function definition that specifies how to obtain a given
service, while the latter is an explicit request to the kernel made via a software interrupt.

Unix systems include several libraries of functions that provide APIs to programmers. Some
of the APIs defined by the /ibc standard C library refer to wrapper routines, that is, routines
whose only purpose is to issue a system call. Usually, each system call corresponds to a
wrapper routine; the wrapper routine defines the API that application programs should refer
to.

The converse is not true, by the way—an API does not necessarily correspond to a specific
system call. First of all, the API could offer its services directly in User Mode. (For something
abstract like math functions, there may be no reason to make system calls.) Second, a single
API function could make several system calls. Moreover, several API functions could make
the same system call but wrap extra functionality around it. For instance, in Linux the

malloc(), calloc(), and free() POSIX APIs are implemented in the /ibc library: the
code in that library keeps track of the allocation and deallocation requests and uses
the brk () system call in order to enlarge or shrink the process heap (see Section 7.6 in
Chapter 7).

The POSIX standard refers to APIs and not to system calls. A system can be certified as
POSIX-compliant if it offers the proper set of APIs to the application programs, no matter
how the corresponding functions are implemented. As a matter of fact, several non-Unix
systems have been certified as POSIX-compliant since they offer all traditional Unix services
in User Mode libraries.

From the programmer's point of view, the distinction between an API and a system call is
irrelevant: the only things that matter are the function name, the parameter types, and the
meaning of the return code. From the kernel designer's point of view, however, the distinction
does matter since system calls belong to the kernel, while User Mode libraries don't.

217

Understanding the Linux Kernel

Most wrapper routines return an integer value, whose meaning depends on the corresponding
system call. A return value of -1 denotes in most cases, but not always, that the kernel was
unable to satisfy the process request. A failure in the system call handler may be caused by
invalid parameters, a lack of available resources, hardware problems, and so on. The specific
error code is contained in the errno variable, which is defined in the /ibc library.

Each error code is associated with a macro, which yields a corresponding positive integer
value. The POSIX standard specifies the macro names of several error codes. In Linux on
Intel 80x86 systems, those macros are defined in a header file -called
include/asm-i386/errno.h. To allow portability of C programs among Unix systems,
the include/asm-i386/errno.h header file is included, in turn, in the standard
/usr/include/errno.h C library header file. Other systems have their own specialized
subdirectories of header files.

8.2 System Call Handler and Service Routines

When a User Mode process invokes a system call, the CPU switches to Kernel Mode and
starts the execution of a kernel function. In Linux the system calls must be invoked by
executing the int $0x80 Assembly instruction, which raises the programmed exception
having vector 128 (see Section 4.4.1 and Section 4.2.5 in Chapter 4).

Since the kernel implements many different system calls, the process must pass a parameter
called the system call number to identify the required system call; the eax register is used for
that purpose. As we shall see in Section 8.2.3 later in this chapter, additional parameters are
usually passed when invoking a system call.

All system calls return an integer value. The conventions for these return values are different
from those for wrapper routines. In the kernel, positive or null values denote a successful
termination of the system call, while negative values denote an error condition. In the latter
case, the value is the negation of the error code that must be returned to the application
program. The errno variable is not set or used by the kernel.

The system call handler, which has a structure similar to that of the other exception handlers,
performs the following operations:

e Saves the contents of most registers in the Kernel Mode stack (this operation is
common to all system calls and is coded in assembly language).

e Handles the system call by invoking a corresponding C function called the system call
service routine.

e Exits from the handler by means of the ret from sys call() function (this
function is coded in assembly language).

The name of the service routine associated with the xyz() system call is usually sys xyz(
) ; there are, however, a few exceptions to this rule.

Figure 8-1 illustrates the relationships among the application program that invokes a system

call, the corresponding wrapper routine, the system call handler, and the system call service
routine. The arrows denote the execution flow between the functions.

218

Understanding the Linux Kernel

Figure 8-1. Invoking a system call

... VserMode

....KemelMode .

J syatem_call:
IS wsys_xvz() {
SYS5_Xyz ()

iret

i ret_from sys_call:w.

System call Wrapper routing System call Systemn call
imvacation in in fibic standard handlar service roufing
application library

[rO{ram

In order to associate each system call number with its corresponding service routine, the
kernel makes use of a system call dispatch table ; this table is stored in the sys call table
array and has NR syscalls entries (usually 256): the nth entry contains the service routine
address of the system call having number 7.

The NR syscalls macro is just a static limit on the maximum number of implementable
system calls: it does not indicate the number of system calls actually implemented. Indeed,
any entry of the dispatch table may contain the address of the sys ni syscall() function,
which is the service routine of the "nonimplemented" system calls: it just returns the error
code -ENOSYS.

8.2.1 Initializing System Calls

The trap init() function, invoked during kernel initialization, sets up the IDT entry
corresponding to vector 128 as follows:

set system gate (0x80, &system call);

The call loads the following values into the gate descriptor fields (see Section 4.4.1 in
Chapter 4):

Segment Selector

The xERNEL cs Segment Selector of the kernel code segment.
Offset

Pointer to the system call() exception handler.
Type

Set to 15. Indicates that the exception is a Trap and that the corresponding handler
does not disable maskable interrupts.

219

Understanding the Linux Kernel

DPL (Descriptor Privilege Level)

Set to 3; this allows processes in User Mode to invoke the exception handler (see
Section 4.2.5 in Chapter 4).

8.2.2 The system_call() Function

The system call() function implements the system call handler. It starts by saving the
system call number and all the CPU registers that may be used by the exception handler on
the stack, except for eflags, cs, eip, ss, and esp, which have already been saved
automatically by the control unit (see the section Section 4.2.5 in Chapter 4). The savE ALL
macro, which was already discussed in Section 4.6.3 in Chapter 4, also loads the Segment
Selector of the kernel data segment in ds and es:

system call:
pushl %eax
SAVE ALL
movl %esp, %ebx
andl $0xffffe000, %ebx

The function also stores in ebx the address of the current process descriptor; this is done by
taking the value of the kernel stack pointer and rounding it up to a multiple of 8 KB (see
Section 3.1.2 in Chapter 3).

A validity check is then performed on the system call number passed by the User Mode
process. If it is greater than or equal to NR_syscalls, the system call handler terminates:

cmpl $(NR syscalls), %eax
Jb nobadsys
movl $(-ENOSYS), 24 (%esp)
jmp ret from sys call
nobadsys:

If the system call number is not valid, the function stores the -EnoOsys value in the stack
location where the eax register has been saved (at offset 24 from the current stack top). It then
jumps to ret from sys call(). In this way, when the process resumes its execution in
User Mode, it will find a negative return code in eax.

Next, the system call() function checks whether the pF TrRaCESYS flag included in
the flags field of current is equal to 1, that is, whether the system call invocations of
the executed program are being traced by some debugger. If this is the case, system call()
invokes the syscall trace() function twice, once right before and once right after
the execution of the system call service routine. This function stops current and thus allows
the debugging process to collect information about it.

Finally, the specific service routine associated with the system call number contained in eax is
invoked:

call *sys call table(0, %eax, 4)

Since each entry in the dispatch table is 4 bytes long, the kernel finds the address of
the service routine to be invoked by first multiplying the system call number by 4, adding

220

Understanding the Linux Kernel

the initial address of the sys call table dispatch table, and extracting a pointer to
the service routine from that slot in the table.

When the service routine terminates, system call() gets its return code from eax and
stores it in the stack location where the User Mode value of the eax register has been saved. It
then jumps to ret from sys call(), which terminates the execution of the system call
handler (see Section 4.7.2 in Chapter 4):

movl %eax, 24 (%esp)
jmp ret from sys call

When the process resumes its execution in User Mode, it will find in eax the return code of
the system call.

8.2.3 Parameter Passing

Like ordinary functions, system calls often require some input/output parameters, which may
consist of actual values (i.e., numbers) or addresses of functions and variables in the address
space of the User Mode process. Since the system call() function is the unique entry point
for all system calls in Linux, each of them has at least one parameter: the system call number
passed in the eax register. For instance, if an application program invokes the fork()
wrapper routine, the eax register is set to 5 before executing the int $0x80 Assembly
instruction. Because the register is set by the wrapper routines included in the /ibc library,
programmers do not usually care about the system call number.

The fork() system call does not require other parameters. However, many system calls do
require additional parameters, which must be explicitly passed by the application program.
For instance, the mmap () system call may require up to six parameters (besides the system
call number).

The parameters of ordinary functions are passed by writing their values in the active program
stack (either the User Mode stack or the Kernel Mode stack). But system call parameters are
usually passed to the system call handler in the CPU registers, then copied onto the Kernel
Mode stack, since system call service routines are ordinary C functions.

Why doesn't the kernel copy parameters directly from the User Mode stack to the Kernel
Mode stack? First of all, working with two stacks at the same time is complex; moreover, the
use of registers makes the structure of the system call handler similar to that of other
exception handlers.

However, in order to pass parameters in registers, two conditions must be satisfied:

o The length of each parameter cannot exceed the length of a register, that is 32 bits.!"

' We refer as usual to the 32-bit architecture of the Intel 80x86 processors. The discussion in this section does not apply to Compaq's Alpha 64-bit
processors.

e The number of parameters must not exceed six (including the system call number
passed in eax), since the Intel Pentium has a very limited number of registers.

221

Understanding the Linux Kernel

The first condition is always true since, according to the POSIX standard, large parameters
that cannot be stored in a 32-bit register must be passed by specifying their addresses. A
typical example is the settimeofday () system call, which must read two 64-bit structures.

However, system calls that have more than six parameters exist: in such cases, a single
register is used to point to a memory area in the process address space that contains the
parameter values. Of course, programmers do not have to care about this workaround. As with
any C call, parameters are automatically saved on the stack when the wrapper routine is
invoked. This routine will find the appropriate way to pass the parameters to the kernel.

The six registers used to store system call parameters are, in increasing order: eax (for the
system call number), ebx , ecx, edx, esi, and edi. As seen before, system call() saves
the values of these registers on the Kernel Mode stack by using the save ALL macro.
Therefore, when the system call service routine goes to the stack, it finds the return address to
system call(), followed by the parameter stored in ebx (that is, the first parameter of the
system call), the parameter stored in ecx, and so on (see the Section 4.6.3 in Chapter 4). This
stack configuration is exactly the same as in an ordinary function call, and therefore the
service routine can easily refer to its parameters by using the usual C-language constructs.

Let's look at an example. The sys write() service routine, which handles the write ()
system call, is declared as:

int sys _write (unsigned int fd, const char * buf,
unsigned int count)

The C compiler produces an assembly language function that expects to find the £d, buf, and
count parameters on top of the stack, right below the return address, in the locations used to
save the contents of the ebx, ecx, and edx registers, respectively.

In a few cases, even if the system call doesn't make use of any parameters, the corresponding
service routine needs to know the contents of the CPU registers right before the system call
was issued. As an example, the do fork () function that implements fork () needs to know
the value of the registers in order to duplicate them in the child process TSS. In these cases, a
single parameter of type pt regs allows the service routine to access the values saved in the
Kernel Mode stack by the save aALL macro (see Section 4.6.4 in Chapter 4):

int sys fork (struct pt regs regs)

The return value of a service routine must be written into the eax register. This is
automatically done by the C compiler when a return n; instruction is executed.

8.2.4 Verifying the Parameters

All system call parameters must be carefully checked before the kernel attempts to satisfy a
user request. The type of check depends both on the system call and on the specific parameter.
Let us go back to the write () system call introduced before: the £d parameter should be a
file descriptor that describes a specific file, so sys write () must check whether f£d really is
a file descriptor of a file previously opened and whether the process is allowed to write into it
(see Section 1.5.6 in Chapter 1). If any of these conditions is not true, the handler must return
a negative value, in this case the error code -EBADF.

222

Understanding the Linux Kernel

One type of checking, however, is common to all system calls: whenever a parameter
specifies an address, the kernel must check whether it is inside the process address space.
There are two possible ways to perform this check:

o Verify that the linear address belongs to the process address space and, if so, that the
memory region including it has the proper access rights.

e Verify just that the linear address is lower than PAGE OFFSET (i.e., that it doesn't fall
within the range of interval addresses reserved to the kernel).

Previous Linux kernels performed the first type of checking. But it is quite time-consuming
since it must be executed for each address parameter included in a system call; furthermore, it
is usually pointless because faulty programs are not very common.

Therefore, the Linux 2.2 kernel performs the second type of checking. It is much more
efficient because it does not require any scan of the process memory region descriptors.
Obviously, it is a very coarse check: verifying that the linear address is smaller than
PAGE OFFSET is a necessary but not sufficient condition for its validity. But there's no risk in
confining the kernel to this limited kind of check because other errors will be caught later.

The approach followed in Linux 2.2 is thus to defer the real checking until the last possible
moment, that is, until the Paging Unit translates the linear address into a physical one. We
shall discuss in Section 8.2.6 later in this chapter how the "Page fault" exception handler
succeeds in detecting those bad addresses issued in Kernel Mode that have been passed as
parameters by User Mode processes.

One might wonder at this point why the coarse check is performed at all. This type of
checking is actually crucial to preserve both process address spaces and the kernel address
space from illegal accesses. We have seen in Chapter 2, that the RAM is mapped starting
from pAGE OFFSET. This means that kernel routines are able to address all pages present in
memory. Thus, if the coarse check were not performed, a User Mode process might pass an
address belonging to the kernel address space as a parameter and then be able to read or write
any page present in memory without causing a "Page fault" exception!

The check on addresses passed to system calls is performed by the verify area() function,
which acts on two” parameters denoted as addr and size. The function checks the address
interval delimited by addr and addr + size - 1, and is essentially equivalent to the
following C function:

12I'A third parameter named type specifies whether the system call should read or write the referred memory locations. It is used only in systems
having buggy versions of the Intel 80486 microprocessor, in which writing in Kernel Mode to a write-protected page does not generate a page fault.
We don't discuss this case further.

int verify area(const void * addr, unsigned long size)

{

if (a + size < a || a + size > current->addr limit.seq)
return -EFAULT
return 0;

unsigned long a = (unsigned long) addr;
|

The function verifies first whether addr + size, the highest address to be checked, is larger
than 2*2-1; since unsigned long integers and pointers are represented by the GNU C compiler

223

Understanding the Linux Kernel

(gcc) as 32-bit numbers, this is equivalent to checking for an overflow condition. The
function also checks whether addr exceeds the value stored in the addr limit.seg field of
current. This field usually has the value PAGE OFFsET-1 for normal processes and the value
oxfffff£££f for kernel threads. The value of the addr 1imit.seg field can be dynamically
changed by the get fs and set fs macros; this allows the kernel to invoke system call
service routines directly and pass addresses in the kernel data segment to them.

The access ok macro performs the same check as verify area(). It yields 1 if the
specified address interval is valid and otherwise.

8.2.5 Accessing the Process Address Space

System call service routines quite often need to read or write data contained in the process's
address space. Linux includes a set of macros that make this access easier. We'll describe two
of them, called get user() and put user(). The first can be used to read 1, 2, or 4
consecutive bytes from an address, while the second can be used to write data of those sizes
into an address.

Each function accepts two arguments, a value x to transfer and a variable ptr. The second
variable also determines how many bytes to transfer. Thus, in get user (x,ptr), the size of
the variable pointed to by ptr causes the function to expand into a get user 1(),
__get user 2(),0r get user 4() assembly language function. Let us consider one of
them, for instance, get user 2():

__get user 2:
addl $1, %eax
jc bad get user
movl %esp, %Sedx
andl $0xffffe000, %edx
cmpl 12 (%edx), %eax
jae bad get user

2: movzwl -1 (%eax), %edx
xorl %eax, %eax
ret

bad get user:
xorl %edx, %edx
movl S$-EFAULT, %eax
ret

The eax register contains the address ptr of the first byte to be read. The first six instructions
essentially perform the same checks as the verify area() functions: they ensure that the 2
bytes to be read have addresses less than 4 GB as well as less than the addr 1imit.seg field
of the current process. (This field is stored at offset 12 in the process descriptor, which
appears in the first operand of the cmp1 instruction.)

If the addresses are valid, the function executes the movzwl instruction to store the data to be
read in the 2 least significant bytes of edx register while setting the high-order bytes of edx to
0; then it sets a return code in eax and terminates. If the addresses are not valid, the function
clears edx, sets the ~-EFAULT value into eax, and terminates.

The put user (x,ptr) macro is similar to the one discussed before, except that it writes the
value x into the process address space starting from address ptr. Depending on the size of x

224

Understanding the Linux Kernel

(1, 2, or 4 bytes), it invokes the put user 1(), put user 2(),0f put user 4()
function. Let's consider put user 4() for our example this time. The function performs
the usual checks on the ptr address stored in the eax register, then executes a movl
instruction to write the 4 bytes stored into the edx register. The function returns the value in
the eax register if it succeeds, and -EFAULT otherwise.

Several other functions and macros are available to access the process address space in Kernel
Mode; they are listed in Table 8-1. Notice that many of them also have a variant prefixed by
two underscores (). The ones without initial underscores take extra time to check the
validity of the linear address interval requested, while the ones with the underscores bypass
that check. Whenever the kernel must repeatedly access the same memory area in the process
address space, it is more efficient to check the address once at the start, then access the
process area without making any further checks.

Table 8-1. Functions and Macros that Access the Process Address Space

Function Action
get user

Reads an integer value from user space (1, 2, or 4 bytes)
__get user
put user

Writes an integer value to user space (1, 2, or 4 bytes)
__put user
get user ret

Like get user, but returns a specified value on error
__get user ret -
put user ret

Like put user, but returns a specified value on error
___put user ret -
copy_ from user

Copies a block of arbitrary size from user space
__copy_ from user
copy to user

Copies a block of arbitrary size to user space
___copy_to user
copy from user ret Like copy from user, but returns a specified value on error
copy to user ret Like copy to_ user, but returns a specified value on error
strncpy from user

Copies a null-terminated string from user space
__strncpy from user
strlen user

Returns the length of a null-terminated string in user space
strnlen user
clear user

Fills a memory area in user space with zeros
__clear user

8.2.6 Dynamic Address Checking: The Fixup Code

As seen previously, the verify area() function and the access ok macro make only a
coarse check on the validity of linear addresses passed as parameters of a system call. Since

225

Understanding the Linux Kernel

they do not ensure that these addresses are included in the process address space, a process
could cause a "Page fault" exception by passing a wrong address.

Before describing how the kernel detects this type of error, let us specify the three cases in
which "Page fault" exceptions may occur in Kernel Mode:

e The kernel attempts to address a page belonging to the process address space, but
either the corresponding page frame does not exist, or the kernel is trying to write a
read-only page.

e Some kernel function includes a programming bug that causes the exception to be
raised when that program is executed; alternatively, the exception might be caused by
a transient hardware error.

e The case introduced in this chapter: a system call service routine attempts to read or
write into a memory area whose address has been passed as a system call parameter,
but that address does not belong to the process address space.

These cases must be distinguished by the page fault handler, since the actions to be taken are
quite different. In the first case, the handler must allocate and initialize a new page frame (see
Section 7.4.3 and Section 7.4.4 in Chapter 7); in the second case, the handler must perform a
kernel oops (see Section 7.4.1 in Chapter 7); in the third case, the handler must terminate the
system call by returning a proper error code.

The page fault handler can easily recognize the first case by determining whether the faulty
linear address is included in one of the memory regions owned by the process. Let us now
explain how the handler distinguishes the remaining two cases.

8.2.6.1 The exception tables

The key to determining the source of a page fault lies in the narrow range of calls that the
kernel uses to access the process address space. Only the small group of functions and macros
described in the previous section are ever used to access that address space; thus, if the
exception is caused by an invalid parameter, the instruction that caused it must be included in
one of the functions or be generated by expanding one of the macros. If you add up the code
in all these functions and macros, they consist of a fairly small set of addresses.

Therefore, it would not take much effort to put the address of any kernel instruction that
accesses the process address space into a structure called the exception table. If we succeed in
doing this, the rest is easy. When a "Page fault" exception occurs in Kernel Mode, the do
page fault() handler examines the exception table: if it includes the address of the
instruction that triggered the exception, the error is caused by a bad system call parameter;
otherwise, it is caused by some more serious bug.

Linux defines several exception tables. The main exception table is automatically generated
by the C compiler when building the kernel program image. It is stored in the =~ ex table
section of the kernel code segment, and its starting and ending addresses are identified by two
symbols produced by the C compiler: start ex tableand stop ex table.

Moreover, each dynamically loaded module of the kernel (see Appendix B, Modules) includes
its own local exception table. This table is automatically generated by the C compiler when

226

Understanding the Linux Kernel

building the module image, and it is loaded in memory when the module is inserted in the
running kernel.

Each entry of an exception table is an exception table entry structure having two fields:
insn

The linear address of an instruction that accesses the process address space
fixup

The address of the assembly language code to be invoked when a "Page fault"
exception triggered by the instruction located at insn occurs

The fixup code consists of a few assembly language instructions that solve the problem
triggered by the exception. As we shall see later in this section, the fix usually consists of
inserting a sequence of instructions that forces the service routine to return an error code to
the User Mode process. Such instructions are usually defined in the same macro or function
that accesses the process address space; sometimes, they are placed by the C compiler in a
separate section of the kernel code segment called . £ixup.

The search exception table() function is used to search for a specified address in all
exception tables: if the address is included in a table, the function returns the corresponding
fixup address; otherwise, it returns 0. Thus the page fault handler do page fault()
executes the following statements:

if ((fixup = search exception table(regs->eip)) != 0) {
regs->eip = fixup;
return;

The regs->eip field contains the value of the eip register saved on the Kernel Mode stack
when the exception occurred. If the value in the register (the instruction pointer) is in an
exception table, do page fault() replaces the saved value with the address returned by
search exception table(). Then the page fault handler terminates and the interrupted
program resumes with execution of the fixup code.

8.2.6.2 Generating the exception tables and the fixup code

The GNU Assembler .section directive allows programmers to specify which section of the
executable file contains the code that follows. As we shall see in Chapter 19, an executable
file includes a code segment, which in turn may be subdivided into sections. Thus, the
following assembly language instructions add an entry into an exception table; the "a"
attribute specifies that the section must be loaded in memory together with the rest of the
kernel image:

.section ex table, "a"
.long faulty instruction address, fixup code address
.previous

227

Understanding the Linux Kernel

The .previous directive forces the assembler to insert the code that follows into the section
that was active when the last . section directive was encountered.

Let us consider again the get user 1(), get user 2(), and get user 4()
functions mentioned before:

__get user 1:
[...]

1: movzbl (%eax), %edx

[...]
_get user 2:
[...]

2: movzwl -1 (%eax), %edx
[...]

__get user 4:

[...]

3: movl -3 (%eax), %edx
[...]

bad get user:
xorl %edx, %edx
movl $-EFAULT, %eax
ret

.section = ex table,"a"
.long 1b, bad get user
.long 2b, bad get user
.long 3b, bad get user

.previous

The instructions that access the process address space are those labeled as 1, 2, and 3. The
fixup code is common to the three functions and is labeled as bad get user. Each exception
table entry consists simply of two labels. The first one is a numeric label with a b suffix to
indicate that the label is a "backward" one: in other words, it appears in a previous line of the
program. The fixup code at bad get user returns an EFAULT error code to the process that
issued the system call.

Let us consider a second example, the strlen user (string) macro. This returns the length
of a null-terminated string in the process address space or the value on error. The macro
essentially yields the following assembly language instructions:

movl $0, %eax
movl S$Ox7fffffff, %ecx
movl %ecx, %edx
movl string, %edi

0: repne; scasb
subl %ecx, %edx
movl %edx, %eax

1:

.section .fixup,"ax"

2: movl $0, %eax
Jmp 1b

.previous

.section ex table,"a"
.long 0b, 2b

.previous

228

Understanding the Linux Kernel

The ecx and edx registers are initialized with the ox7fff£f£f value, which represents the
maximum allowed length for the string. The repne; scasb assembly language instructions
iteratively scan the string pointed to by the edi register, looking for the value (the end of
string \0 character) in eax. Since the ecx register is decremented at each iteration, the eax
register will ultimately store the total number of bytes scanned in the string; that is, the length
of the string.

The fixup code of the macro is inserted into the . fixup section. The "ax" attributes specify
that the section must be loaded in memory and that it contains executable code. If a page fault
exception is generated by the instructions at label 0, the fixup code is executed: it simply
loads the value in eax, thus forcing the macro to return a error code instead of the string
length, then jumps to the 1 label, which corresponds to the instruction following the macro.

8.3 Wrapper Routines

Although system calls are mainly used by User Mode processes, they can also be invoked by
kernel threads, which cannot make use of library functions. In order to simplify the
declarations of the corresponding wrapper routines, Linux defines a set of six macros called
_syscall0O through syscalls.

The numbers through 5 in the name of each macro correspond to the number of parameters
used by the system call (excluding the system call number). The macros may also be used to
simplify the declarations of the wrapper routines in the /ibc standard library; however, they
cannot be used to define wrapper routines for system calls having more than five parameters
(excluding the system call number) or for system calls that yield nonstandard return values.

Each macro requires exactly 2+2xn parameters, with n being the number of parameters of the
system call. The first two parameters specify the return type and the name of the system call;
each additional pair of parameters specifies the type and the name of the corresponding
system call parameter. Thus, for instance, the wrapper routine of the fork () system call may
be generated by:

_syscallO (int, fork)

while the wrapper routine of the write () system call may be generated by:

_syscall3(int,write,int, fd,const char *,buf,unsigned int, count)

In the latter case, the macro yields the following code:

229

int write(int fd, const char
{

long res;

asm("int $0x80"

"=a" (_ res)
"0" (__NR write),
"c¢" ((long)buf), "d"
if ((unsigned long) res >=
errno = - res;
__res = -1;
}
return (int) _ res;

Understanding the Linux Kernel

* buf,unsigned int count)

((long) £d),
((long)count));
(unsigned long)-125) {

The NR write macro is derived from the second parameter of syscall3; it expands into
the system call number of write (). When compiling the preceding function, the following

assembly language code is produced:

write:
pushl %ebx
movl 8 (%esp), %ebx
movl 12 (%esp), %ecx
movl 16 (%esp), %edx
movl $4, %eax
int $0x80
cmpl $-126, %eax
Jbe .L1
negl %eax
movl %$eax, errno
movl $-1, %eax

LLl: popl %ebx
ret

push ebx into stack

put first parameter in ebx
put second parameter in ecx
put third parameter in edx
put NR write in eax
invoke system call

check return code

if no error, jump
complement the value of eax
put result in errno

set eax to -1

pop ebx from stack

return to calling program

Notice how the parameters of the write () function are loaded into the CPU registers before
the int $0x80 instruction is executed. The value returned in eax must be interpreted as an
error code if it lies between -1 and -125 (the kernel assumes that the largest error code defined
in include/asm-i386/errno.h is 125). If this is the case, the wrapper routine will store the value
of —eax in errno and return the value -1; otherwise, it will return the value of eax.

8.4 Anticipating Linux 2.4

Beside adding a few new system calls, Linux 2.4 does not introduce any change to the system

call mechanism of Linux 2.2.

230

Understanding the Linux Kernel

Chapter 9. Signals

Signals were introduced by the first Unix systems to simplify interprocess communication.
The kernel also uses them to notify processes of system events. In contrast to interrupts and
exceptions, most signals are visible to User Mode processes.

Signals have been around for 30 years with only minor changes. Due to their relative
simplicity and efficiency, they continue to be widely used, although as we shall see in
Chapter 18, other higher-level tools have been introduced for the same purpose.

The first sections of this chapter examine in detail how signals are handled by the Linux
kernel, then we discuss the system calls that allow processes to exchange signals.

9.1 The Role of Signals

A signal is a very short message that may be sent to a process or to a group of processes. The
only information given to the process is usually the number identifying the signal; there is no
room in standard signals for arguments, a message, or other accompanying information.

A set of macros whose names start with the prefix s1G is used to identify signals; we have
already made a few references to them in previous chapters. For instance, the sTGCHLD macro
has been mentioned in Section 3.3.1 in Chapter 3. This macro, which expands into the value
17 in Linux, yields the identifier of the signal that is sent to a parent process when some child
stops or terminates. The sIGseEGv macro, which expands into the value 11, has been
mentioned in Section 7.4 in Chapter 7 : it yields the identifier of the signal that is sent to
a process when it makes an invalid memory reference.

Signals serve two main purposes:

o To make a process aware that a specific event has occurred
e To force a process to execute a signal handler function included in its code

Of course, the two purposes are not mutually exclusive, since often a process must react to
some event by executing a specific routine.

Table 9-1 lists the first 31 signals handled by Linux 2.2 for the Intel 80x86 architecture (some
signal numbers such as STGCHLD or SIGSTOP are architecture-dependent; furthermore, some
signals are defined only for specific architectures). Besides the signals described in this table,
the POSIX standard has introduced a new class of signals called "real-time." They will be
discussed separately in Section 9.4 later in this chapter.

231

Understanding the Linux Kernel

Table 9-1. The First 31 Signals in Linux/i386

|Signal Name Default Action Comment POSIX
1 |SIGHUP Abort Hangup of controlling terminal or process Yes
2 |SIGINT Abort Interrupt from keyboard Yes
3 |SIGQUIT Dump Quit from keyboard Yes
4 |SIGILL Dump Illegal instruction Yes
5 |SIGTRAP Dump Breakpoint for debugging No
6 |SIGABRT Dump Abnormal termination Yes
6 |SIGIOT Dump Equivalent to STGABRT No
7 |SIGBUS Abort Bus error No
8 |SIGFPE Dump Floating point exception Yes
9 |SIGKILL Abort Forced process termination Yes
10 |SIGUSR1 Abort Available to processes Yes
11 |SIGSEGV Dump Invalid memory reference Yes
12 |SIGUSR2 Abort Available to processes Yes
13 |SIGPIPE Abort Write to pipe with no readers Yes
14 |SIGALRM Abort Real timer clock Yes
15 |SIGTERM Abort Process termination Yes
16 |SIGSTKFLT Abort Coprocessor stack error No
17 |SIGCHLD Ignore Child process stopped or terminated Yes
18 |SIGCONT Continue Resume execution, if stopped Yes
19 |SIGSTOP Stop Stop process execution Yes
20 |SIGTSTP Stop Stop process issued from tty Yes
21 |SIGTTIN Stop Background process requires input Yes
22 |SIGTTOU Stop Background process requires output Yes
23 |SIGURG Ignore Urgent condition on socket No
24 |SIGXCPU Abort CPU time limit exceeded No
25 SIGXFSZ Abort File size limit exceeded No
26 |SIGVTALRM Abort Virtual timer clock No
27 |SIGPROF Abort Profile timer clock No
28 |SIGWINCH Ignore Window resizing No
29 |SIGIO Abort I/O now possible No
29 |SIGPOLL Abort Equivalent to SIGIO No
30 |SIGPWR Abort Power supply failure No
31 |SIGUNUSED Abort Not used No

A number of system calls allow programmers to send signals and determine how their
processes exploit the signals they recieve. Table 9-2 describes these calls succinctly; their
behavior is described in detail later in Section 9.5.

232

Understanding the Linux Kernel

Table 9-2. System Calls Related to Signals

System Call Description

kill() Send a signal to a process.

sigaction() Change the action associated with a signal.
signal () Similar to sigaction().

sigpending () Check whether there are pending signals.
sigprocmask() Moditfy the set of blocked signals.

sigsuspend() Wait for a signal.

rt_sigaction() Change the action associated with a real-time signal.
rt _sigpending() Check whether there are pending real-time signals.
rt sigprocmask() Modify the set of blocked real-time signals.

rt sigqueueinfo() Send a real-time signal to a process.

rt sigsuspend() Wait for a real-time signal.

rt sigtimedwait () Similar to rt _sigsuspend().

An important characteristic of signals is that they may be sent at any time to processes whose
state is usually unpredictable. Signals sent to a nonrunning process must be saved by the
kernel until that process resumes execution. Blocking signals (described later) require signals
to be queued, which exacerbates the problem of signals being raised before they can be
delivered.

Therefore, the kernel distinguishes two different phases related to signal transmission:
Signal sending

The kernel updates the descriptor of the destination process to represent that a new
signal has been sent.

Signal receiving

The kernel forces the destination process to react to the signal by changing its
execution state or by starting the execution of a specified signal handler or both.

Each signal sent can be received no more than once. Signals are consumable resources: once
they have been received, all process descriptor information that refers to their previous
existence is canceled.

Signals that have been sent but not yet received are called pending signals . At any time, only
one pending signal of a given type may exist for a process; additional pending signals of the
same type to the same process are not queued but simply discarded. In general, a signal may
remain pending for an unpredictable amount of time. Indeed, the following factors must be
taken into consideration:

o Signals are usually received only by the currently running process (that is, by the
current Process).

o Signals of a given type may be selectively blocked by a process (see Section 9.5.4): in
this case, the process will not receive the signal until it removes the block.

e When a process executes a signal-handler function, it usually "masks" the
corresponding signal, that is, it automatically blocks the signal until the handler

233

Understanding the Linux Kernel

terminates. A signal handler therefore cannot be interrupted by another occurrence of
the handled signal, and therefore the function doesn't need to be reentrant. A masked
signal is always blocked, but the converse does not hold.

Although the notion of signals is intuitive, the kernel implementation is rather complex. The
kernel must:

e Remember which signals are blocked by each process.

e When switching from Kernel Mode to User Mode, check whether a signal for any
process has arrived. This happens at almost every timer interrupt, that is, roughly
every 10 ms.

e Determine whether the signal can be ignored. This happens when all of the following
conditions are fulfilled:

o The destination process is not traced by another process (the pF_TrRaCED flag in
the process descriptor f1ags field is equal to 0)."

If a process receives a signal while it is being traced, the kernel stops the process and notifies the tracing process by sending a STGCHLD signal

to it. The tracing process may, in turn, resume execution of the traced process by means of a STGCONT signal.

The signal is not blocked by the destination process.
The signal is being ignored by the destination process (either because the
process has explicitly ignored it or because the process did not change the
default action of the signal and that action is "ignore").
e Handle the signal, which may require switching the process to a handler function at
any point during its execution and restoring the original execution context after the
function returns.

Moreover, Linux must take into account the different semantics for signals adopted by BSD
and System V; furthermore, it must comply with the rather cumbersome POSIX requirements.

9.1.1 Actions Performed upon Receiving a Signal
There are three ways in which a process can respond to a signal:

o Explicitly ignore the signal.

e Execute the default action associated with the signal (see Table 9-1). This action,
which is predefined by the kernel, depends on the signal type and may be any one of
the following:

Abort
Theprocess is destroyed (killed).
Dump

The process is destroyed (killed) and a core file containing its execution context is
created, if possible; this file may be used for debug purposes.

234

Understanding the Linux Kernel

Ignore
The signal is ignored.
Stop

The process is stopped, that is, put in a TASK STOPPED state (see Section 3.1.1 in
Chapter 3).

Continue
If the process is stopped (TASK_STOPPED), it is put into the TASK RUNNING state.
e Catch the signal by invoking a corresponding signal-handler function.

Notice that blocking a signal is different from ignoring it: a signal is never received while it is
blocked; an ignored signal is always received, and there is simply no further action.

The stckILL and siGsToP signals cannot be explicitly ignored or caught, and thus their
default actions must always be executed. Therefore, sSTGKILL and stGsTop allow a user with
appropriate privileges to destroy and to stop, respectively, any process” regardless of the
defenses taken by the program it is executing.

121" Actually, there are two exceptions: all signals sent to process (swapper) are discarded, while those sent to process 1 (inif) are always discarded
unless they are caught. Therefore, process never dies, while process 1 dies only when the initprogram terminates.

9.1.2 Data Structures Associated with Signals

The basic data structure used to store the signals sent to a process is a sigset t array of bits,
one for each signal type:

typedef struct {
unsigned long sigl[2];
} sigset t;

Since each unsigned long number consists of 32 bits, the maximum number of signals that
may be declared in Linux is 64 (the Ns1G macro denotes this value). No signal has the
number 0, so the other 31 bits in the first element of sigset t are the standard ones listed in
Table 9-1. The bits in the second element are the real-time signals. The following fields are
included in the process descriptor to keep track of the signals sent to the process:

signal

A sigset_t variable that denotes the signals sent to the process

blocked

A sigset_t variable that denotes the blocked signals

235

Understanding the Linux Kernel

sigpending
A flag set if one or more nonblocked signals are pending
gsig

A pointer to a signal struct data structure that describes how each signal must be
handled

The signal struct structure, in turn, is defined as follows:

struct signal struct {

atomic t count;
struct k sigaction action[64];
spinlock t siglock;

i

As mentioned in Section 3.3.1 in Chapter 3, this structure may be shared by several processes
by invoking the clone () system call with the cLoNnE s1GHAND flag set.”’ The count field
specifies the number of processes that share the signal struct structure, while the siglock
field is used to ensure exclusive access to its fields (see Chapter 11). The action field is an
array of 64 k_sigaction structures that specify how each signal must be handled.

I Tf this is not done, about 1300 bytes are added to the process data structures just to take care of signal handling.

Some architectures assign properties to a signal that are visible only to the kernel. Thus, the
properties of a signal are stored in a k sigaction structure, which contains both the
properties hidden from the User Mode process and the more familiar sigaction structure that
holds all the properties a User Mode process can see. Actually, on the Intel platform all signal
properties are visible to User Mode processes. So the k_sigaction structure simply reduces
to a single sa structure of type sigaction, which includes the following fields:

sa handler
This field specifies the type of action to be performed; its value can be a pointer to the
signal handler, s1G DFL (that is, the value 0) to specify that the default action must be
executed or s1G_IGN (that is, the value 1) to specify that the signal must be explicitly
ignored.

sa flags

This set of flags specifies how the signal must be handled; some of them are listed in
Table 9-3.

sa mask

This sigset t variable specifies the signals to be masked when running the signal
handler.

236

Understanding the Linux Kernel

Table 9-3. Flags Specifying How to Handle a Signal

Flag Name Description

SA NOCLDSTOP Do not send STGCHLD to the parent when the process is stopped.

SA NODEFER, SA NOMASK Do not mask the signal while executing the signal handler.

SA RESETHAND, SA ONESHOT |Reset to default action after executing the signal handler.

SA ONSTACK Use an alternate stack for the signal handler (see Section 9.3.3).

SA RESTART Interrupted system calls are automatically restarted (see Section 9.3.4).
SA SIGINFO Provide additional information to the signal handler (see Section 9.5.2).

9.1.3 Operations on Signal Data Structures

Several functions and macros are used by the kernel to handle signals. In the following
description, set is a pointer to a sigset_t variable, nsig is the number of a signal, and mask
1S an unsigned long bit mask.

sigaddset (set,nsig) and sigdelset (set,nsiq)

Sets the bit of the sigset t variable corresponding to signal nsig to 1 or 0,
respectively. In practice, sigaddset () reduces to:

set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32);
and sigdelset() to:
set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32));

sigaddsetmask (set,mask) and sigdelsetmask (set,mask)

Sets all the bits of the sigset_t variable whose corresponding bits of mask are on to 1
or 0, respectively. The corresponding functions reduce to:

set->sig[0] |= mask;
and to:
set->sig[0] &= ~mask;

sigismember (set,nsiqg)

Returns the value of the bit of the sigset t variable corresponding to the signal nsig.
In practice, this function reduces to:

1 & (set->sig[(nsig - 1) / 32] >> ((nsig - 1) % 32))

sigmask (nsiqg)

Yields the bit index of the signal nsig. In other words, if the kernel needs to set, clear,
or test a bit in an element of sigset t that corresponds to a particular signal, it can
derive the proper bit through this macro.

237

Understanding the Linux Kernel

signal pending (p)

Returns the value 1 (true) if the process identified by the *p process descriptor has
nonblocked pending signals and the value (false) if it doesn't. The function is
implemented as a simple check on the sigpending field of the process descriptor.

recalc sigpending(t)
Checks whether the process identified by the process descriptor at *t has nonblocked

pending signals, by looking at the sig and blocked fields of the process, then sets the
sigpending field properly as follows:

ready = t->signal.sig[l] &~ t->blocked.sig[l];
ready |= t->signal.sig[0] &~ t->blocked.sig[0];
t->sigpending = (ready != 0);

sigandsets(d, sl,s2) , sigorsets(d,sl,s2) ,and
signandsets (d, sl, s2)

Performs a logical AND, a logical OR, and a logical NAND, respectively, between the
sigset t variables to which s1 and s2 point; the result is stored in the sigset t
variable to which d points.

dequeue signal (mask, info)

Checks whether the current process has nonblocked pending signals. If so, returns the
lowest-numbered pending signal and updates the data structures to indicate it is no
longer pending. This task involves clearing the corresponding bit in current-
>signal, updating the value of current->sigpending, and storing the signal number
of the dequeued signal into the *info table. In the mask parameter each bit that is set
represents a blocked signal:

sig = 0;
if (((x = current->signal.sig[0]) & ~mask->sig[0]) != 0)
sig = 1 + ffz(~x);
else 1if (((x = current->signal.sig[l]) &
~mask->sig[1l]) != 0)
sig = 33 + ffz(~x);
if (sig) {

sigdelset (¤t->signal, siqg);
recalc_sigpending (current);

}

return sig;

The collection of currently pending signals is ANDed with the blocked signals (the
complement of mask). If anything is left, it represents a signal that should be delivered
to the process. The ££z () function returns the index of the first bit in its parameter;
this value is used to compute the lowest-number signal to be delivered.

238

Understanding the Linux Kernel

flush signals(t)

Deletes all signals sent to the process identified by the process descriptor at *+t. This is
done by clearing both the t->sigpending and the t->signal fields and by emptying
the real-time queue of signals (see Section 9.4).

9.2 Sending a Signal

When a signal is sent to a process, either from the kernel or from another process, the kernel
delivers it by invoking the send sig info(), send sig(), force sig(), Or
force sig info() functions. These accomplish the first phase of signal handling described
earlier in Section 9.1: updating the process descriptor as needed. They do not directly perform
the second phase of receiving the signal but, depending on the type of signal and the state of
the process, may wake up the process and force it to receive the signal.

9.2.1 The send_sig_info() and send_sig() Functions

The send sig info() function acts on three parameters:

sig
The signal number.

info
Either the address of a siginfo_t table associated with real-time signals or one of two
special values: means that the signal has been sent by a User Mode process, while 1
means that it has been sent by the kernel. The siginfo t data structure has
information that must be passed to the process receiving the real-time signal, such as
the PID of the sender process and the UID of its owner.

t

A pointer to the descriptor of the destination process.

The send _sig info() function starts by checking whether the parameters are correct:

if (sig < 0 || sig > 64)
return -EINVAL;

The function checks then if the signal is being sent by a User Mode process. This occurs when

info is equal to or when the si code field of the siginfo t table is negative or zero (the
positive values of this field are reserved to identify the kernel function that sent the signal):

239

Understanding the Linux Kernel

if ((!info || ((unsigned long)info != 1 && (info->si code <=0)))
&& ((sig != SIGCONT) || (current->session != t->session))
&& (current->euid [supscrsym] t->suid)
&& (current->euid [supscrsym] t->uid)
&& (current->uid [supscrsym] t->suid)
&& (current->uid [supscrsym] t->uid)

&& !capable (CAP KILL))
return -EPERM;

If the signal is sent by a User Mode process, the function determines whether the operation is
allowed. The signal is delivered only if the owner of the sending process has the proper
capability (see Chapter 19), the signal is sTGCONT, the destination process is in the same login
session of the sending process, or both processes belong to the same user.

If the sig parameter has the value 0, the function returns immediately without sending any
signal: since is not a valid signal number, it is used to allow the sending process to check
whether it has the required privileges to send a signal to the destination process. The function
returns also if the destination process is in the Task zoMBIE state, indicated by checking
whether its siginfo_t table has been released:

if (!sig || !t->sig)
return 0;

Some types of signals might nullify other pending signals for the destination process.
Therefore, the function checks whether one of the following cases occurs:

e sigisa SIGKILL or SIGCONT signal. If the destination process is stopped, it is put in
the TASK RUNNING state so that it will be able to execute the do exit () function;
moreover, if the destination process has sIGSTOP, SIGTSTP, SIGTTOU, Of SIGTTIN
pending signals, they are removed:

if (t->state == TASK STOPPED)
wake up process(t);
t->exit code = 0;
sigdelsetmask (&t->signal, (sigmask (SIGSTOP) |
sigmask (SIGTSTP) | sigmask (SIGTTOU) |

sigmask (SIGTTIN))) ;
recalc sigpending (t) ;

e sigisaSIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. If the destination process has
a pending STGCONT signal, it is destroyed:

sigdelset (&t->signal, SIGCONT) ;
recalc_sigpending(t);

Next, send sig info() checks whether the new signal can be handled immediately. In this
case, the function also takes care of the receiving phase of the signal:

if (ignored signal(sig, t)) {
out:
if (t->state == TASK INTERRUPTIBLE && signal pending(t))

wake up process(t);
return 0;

240

Understanding the Linux Kernel

The ignored signal() function returns the value 1 when all three conditions for ignoring a
signal mentioned in Section 9.1 are satisfied. However, in order to fulfill a POSIX
requirement, the sTGCHLD signal is handled specially. POSIX distinguishes between explicitly
setting the "ignore" action for the s1GcHLD signal and leaving the default in place (even if the
default is to ignore the signal). In order to let the kernel clean up a terminated child process
and prevent it from becoming a zombie (see Section 3.4.2 in Chapter 3) the parent must
explicitly set the action to "ignore" the signal. So ignored signal() handles as follows: if
the signal is explicitly ignored, ignored signal() returns 0, but if the default action was
"ignore" and the process didn't change that default, ignored signal () returns 1.

If ignored signal() returns 1, the siginfo t table of the destination process must not be
updated; however, if the process is in the TAsk INTERRUPTIBLE state and if it has other
nonblocked pending signals, send sig info() invokes the wake up process() function
to wake it up.

If ignored signal() returns 0, the phase of signal receiving has to be deferred, therefore
send sig info() may have to modify the data structures of the destination process to let it
know later that a new signal has been sent to it. Since standard signals are not queued,
send sig info() must check whether another instance of the same signal is already
pending, then leave its mark on the proper data structures of the process descriptor:

if (sigismember (&t->signal, sig))
goto out;

sigaddset (&t->signal, sig);

if (!sigismember (&t->blocked, siqg))
t->sigpending = 1;

goto out;

The sigaddset() function is invoked to set the proper bit in t->signal.
The t->sigpending flag is also set, unless the destination process has blocked the sig signal.
The function terminates in the usual way by waking up, if necessary, the destination process.
In Section 9.3, we'll discuss the actions performed by the process.

The send sig() function is similar to send sig info(). However, the info parameter is
replaced by a priv flag, which is true if the signal is sent by the kernel and false if it is sent by
a process. The send sig() function is implemented as a special case of

send sig info():

return send sig info(sig, (void*) (priv != 0), t);
9.2.2 The force_sig_info() and force_sig() Functions

The force sig info() function is used by the kernel to send signals that cannot be
explicitly ignored or blocked by the destination processes. The function's parameters are the
same as those of send sig info(). The force sig info() function acts on the
signal struct data structure that is referenced by the sig field included in the descriptor t
of the destination process:

241

Understanding the Linux Kernel

if (t->sig->action[sig-1].sa.sa handler == SIG_ IGN)
t->sig->action[sig-1].sa.sa handler = SIG DFL;

sigdelset (&t->blocked, sig);

return send sig info(sig, info, t);

force sig() is similar to force sig info(). Its use is limited to signals sent by the
kernel; it can be implemented as a special case of the force sig info() function:

force sig info(sig, (void*)1L, t);
9.3 Receiving a Signal

We assume that the kernel has noticed the arrival of a signal and has invoked one of the
functions in the previous section to prepare the process descriptor of the process that is
supposed to receive the signal. But in case that process was not running on the CPU at that
moment, the kernel deferred the task of waking the process, if necessary, and making it
receive the signal. We now turn to the activities that the kernel performs to ensure that
pending signals of a process are handled.

As mentioned in Section 4.7.1 in Chapter 4, the kernel checks whether there are nonblocked
pending signals before allowing a process to resume its execution in User Mode. This check is
performed in ret from intr() every time an interrupt or an exception has been handled by
the kernel routines.

In order to handle the nonblocked pending signals, the kernel invokes the do signal()
function, which receives two parameters:

regs

The address of the stack area where the User Mode register contents of the current
process have been saved

oldset

The address of a variable where the function is supposed to save the bit mask array of
blocked signals (actually, this parameter is NULL when invoked from

ret from intr())

The function starts by checking whether the interrupt occurred while the process was running
in User Mode; if not, it simply returns:

if ((regs->xcs & 3) != 3)
return 1;

However, as we'll see in Section 9.3.4, this does not mean that a system call cannot be
interrupted by a signal.

If the o1dset parameter is NULL, the function initializes it with the address of the current-
>blocked field:

242

Understanding the Linux Kernel

if (!oldset)
oldset = ¤t->blocked;

The heart of the do signal() function consists of a loop that repeatedly invokes
dequeue signal() until no more nonblocked pending signals are left. The return code of
dequeue signal() is stored in the signr local variable: if its value is 0, it means that all
pending signals have been handled and do_signal () can finish. As long as a nonzero value
is returned, a pending signal is waiting to be handled and dequeue signal() is invoked
again after do signal () handles the current signal.

If the current receiver process is being monitored by some other process, the do signal ()
function invokes notify parent() and schedule() to make the monitoring process
aware of the signal handling.

Then do signal() loads the ka local variable with the address of the k_sigaction data
structure of the signal to be handled:

ka = ¤t->sig->action[signr-1];

Depending on the contents, three kinds of actions may be performed: ignoring the signal,
executing a default action, or executing a signal handler.

9.3.1 Ignoring the Signal

When a received signal is explicitly ignored, the do signal() function normally just
continues with a new execution of the loop and therefore considers another pending signal.
One exception exists, as described earlier:

if (ka->sa.sa handler == SIG IGN) {
if (signr == SIGCHLD)
while (sys wait4 (-1, NULL, WNOHANG, NULL) > 0)
/* nothing */;
continue;

If the signal received is STGCHLD, the sys wait4 () service routine of the wait4 () system
call is invoked to force the process to read information about its children, thus cleaning up
memory left over by the terminated child processes (see Section 3.4 in Chapter 3).

9.3.2 Executing the Default Action for the Signal
If ka->sa.sa_handler is equal to SIG DFL, do_signal() must perform the default action

of the signal. The only exception comes when the receiving process is init, in which case the
signal is discarded as described in Section 9.1.1:

if (current->pid == 1)
continue;

For other processes, since the default action depends on the type of signal, the function
executes a switch statement based on the value of signr.

The signals whose default action is "ignore" are easily handled:

243

Understanding the Linux Kernel

case SIGCONT: case SIGCHLD: case SIGWINCH:
continue;

The signals whose default action is "stop" may stop the current process. In order to do this,
do signal () sets the state of current to Task STOPPED and then invokes the schedule ()
function (see Section 10.2.4.2 in Chapter 10). The do signal() function also sends a
SIGCHLD signal to the parent process of current, unless the parent has set the s NocLDSTOP
flag of sTGCHLD:

case SIGTSTP: case SIGTTIN: case SIGTTOU:
if (is_orphaned pgrp (current->pgrp))
continue;
case SIGSTOP:
current->state = TASK STOPPED;
current->exit code = signr;
if (! (SA _NOCLDSTOP &
current->p pptr->sig->action[SIGCHLD-1].sa.sa flags))
notify parent (current, SIGCHLD)
schedule();
continue;

The difference between s1GsTop and the other signals is subtle: stGsTop always stops the
process, while the other signals stop the process only if it is not in an "orphaned process
group"; the POSIX standard specifies that a process group is not orphaned as long as there is a
process in the group that has a parent in a different process group but in the same session.

The signals whose default action is "dump" may create a core file in the process working
directory; this file lists the complete contents of the process's address space and CPU
registers. After the do signal() creates the core file, it kills the process. The default action
of the remaining 18 signals is "abort," which consists of just killing the process:

exit code = sig nr;
case SIGQUIT: case SIGILL: case SIGTRAP:
case SIGABRT: case SIGFPE: case SIGSEGV:
if (current->binfmt
&& current->binfmt->core dump
&& current->binfmt->core dump (signr, regs))

exit code |= 0x80;

default:
sigaddset (¤t->signal, signr);
current->flags |= PF SIGNALED;

do_exit (exit code);
The do_exit () function receives as its input parameter the signal number ORed with a flag

set when a core dump has been performed. That value is used to determine the exit code of the

process. The function terminates the current process, and hence never returns (see Chapter
19).

9.3.3 Catching the Signal

If the signal has a specific handler, the do signal () function must enforce its execution. It
does this by invoking handle signal():

244

Understanding the Linux Kernel

handle signal(signr, ka, &info, oldset, regs);
return 1;

Notice how do_signal() returns after having handled a single signal: other pending signals
won't be considered until the next invocation of do signal(). This approach ensures that
real-time signals will be dealt in the proper order (see Section 9.4).

Executing a signal handler is a rather complex task because of the need to juggle stacks
carefully while switching between User Mode and Kernel Mode. We'll explain exactly what is
entailed here.

Signal handlers are functions defined by User Mode processes and included in the User Mode
code segment. The handle signal() function runs in Kernel Mode while signal handlers
run in User Mode; this means that the current process must first execute the signal handler in
User Mode before being allowed to resume its "normal" execution. Moreover, when the
kernel attempts to resume the normal execution of the process, the Kernel Mode stack no
longer contains the hardware context of the interrupted program because the Kernel Mode
stack is emptied at every transition from User Mode to Kernel Mode.

An additional complication is that signal handlers may invoke system calls: in this case, after
having executed the service routine, control must be returned to the signal handler instead of
to the code of the interrupted program.

The solution adopted in Linux consists of copying the hardware context saved in the Kernel
Mode stack onto the User Mode stack of the current process. The User Mode stack is also
modified in such a way that, when the signal handler terminates, the sigreturn() system
call is automatically invoked to copy the hardware context back on the Kernel Mode stack and
restore the original content of the User Mode stack.

Figure 9-1 illustrates the flow of execution of the functions involved in catching a signal. A
nonblocked signal is sent to a process. When an interrupt or exception occurs, the process
switches into Kernel Mode. Right before returning to User Mode, the kernel executes the
do signal() function, which in turn handles the signal (by invoking handle signal())
and sets up the User Mode stack (by invoking setup frame ()). When the process switches
again to User Mode, it starts executing the signal handler because the handler's starting
address was forced into the program counter. When that function terminates, the return code
placed on the User Mode stack by the setup frame() function is executed. This code
invokes the sigreturn() system call, whose service routine copies the hardware context of
the normal program in the Kernel Mode stack and restores the User Mode stack back to its
original state (by invoking restore sigcontext ()). When the system call terminates, the
normal program can thus resume its execution.

245

Figure 9-1. Catching a signal

o UserMode
! Normal

i program = do_zignall)

flow

Signal /

handler

Return coda 5
on the stack ;

4

Let us now examine in detail how this scheme is carried out.

9.3.3.1 Setting up the frame

handle_signal{}

——# gaystem_call (]

sys_sigreturn(]

Understanding the Linux Kernel

. Kemel Mode o

setup_frame(}

restore_sigcontext ()

In order to properly set the User Mode stack of the process, the handle signal() function
invokes either setup frame () (for signals without siginfo t table) or setup rt frame (

).

The setup frame () function receives four parameters, which have the following meanings:

sig
Signal number

ka

Address of the k_sigaction table associated with the signal

oldset

Address of a bit mask array of blocked signals

regs

Address in the Kernel Mode stack area where the User Mode register contents have

been saved

The function pushes onto the User Mode stack a data structure called a frame, which contains
the information needed to handle the signal and to ensure the correct return to the
handle signal() function. A frame is a sigframe table that includes the following fields

(see Figure 9-2):

246

Understanding the Linux Kernel

Figure 9-2. Frame on the User Mode stack

User Made Stack
(prebeode) Signal handler's return addrass
i sig Signal handler's parameter (sig #)
g Process hardware context
fpstate Floating point registers
extramask Blocked real-time signals
L . retoode J| sigreturn() invocation

Pravious stack contents
pretcode

Return address of the signal handler function; it points to the retcode field (later in
this list) in the same table.

sig
The signal number; this is the parameter required by the signal handler.

sc
structure of type sigcontext containing the hardware context of the User Mode
process right before switching to Kernel Mode (this information is copied from the
Kernel Mode stack of current). It also contains a bit array that specifies the blocked
standard signals of the process.

fpstate
Structure of type fpstate that may be used to store the floating point registers of the
User Mode process (see Section 3.2.4 in Chapter 3).

extramask
Bit array that specifies the blocked real-time signals.

retcode

Eight-byte code issuing a sigreturn() system call; this code is executed when
returning from the signal handler.

The setup frame() function starts by invoking get sigframe() to compute the first
memory location of the frame. That memory location is usually” in the User Mode stack, thus
the function returns the value:

% Linux allows processes to specify an alternate stack for their signal handlers by invoking the S igaltstack () system call; this feature is

also requested by the X/Open standard. When an alternate stack is present, the get s igframe () function returns an address inside that
stack. We don't discuss this feature further, since it is conceptually similar to standard signal handling.

(regs—->esp - sizeof (struct sigframe)) & Oxfffffffs8

247

Understanding the Linux Kernel

Since stacks grow toward lower addresses, the initial address of the frame is obtained by
subtracting its size from the address of the current stack top and aligning the result to a
multiple of 8.

The returned address is then verified by means of the access ok macro; if it is valid, the
function repeatedly invokes put user() to fill all the fields of the frame. Once this is
done, it modifies the regs area of the Kernel Mode stack, thus ensuring that control will be
transferred to the signal handler when current resumes its execution in User Mode:

regs->esp = (unsigned long) frame;
regs->eip = (unsigned long) ka->sa.sa handler;

The setup frame () function terminates by resetting the segmentation registers saved on the
Kernel Mode stack to their default value. Now the information needed by the signal handler is
on the top of the User Mode stack.

The setup rt frame() function is very similar to setup frame (), but it puts on the User
Mode stack an extended frame (stored in the rt sigframe data structure) that also includes
the content of the siginfo t table associated with the signal.

9.3.3.2 Evaluating the signal flags

After setting up the User Mode stack, the handle signal() function checks the values of
the flags associated with the signal.

If the received signal has the sa onEshOT flag set, it must be reset to its default action so that
further occurrences of the same signal will not trigger the execution of the signal handler:

if (ka->sa.sa flags & SA ONESHOT)
ka->sa.sa handler = SIG DFL;

Moreover, if the signal does not have the sa NoDEFER flag set, the signals in the sa mask
field of the sigaction table must be blocked during the execution of the signal handler:

if (!(ka->sa.sa_flags & SA NODEFER)) {
sigorsets (¤t->blocked,
¤t->blocked,
&ka->sa.sa mask);
sigaddset (¤t->blocked, siqg) ;
recalc_sigpending (current) ;

The function returns then to do_signal (), which also returns immediately.

9.3.3.3 Starting the signal handler

When do signal() returns, the current process resumes its execution in User Mode.
Because of the preparation by setup frame() described earlier, the eip register points to
the first instruction of the signal handler, while esp points to the first memory location of
the frame that has been pushed on top of the User Mode stack. As a result, the signal handler
is executed.

248

Understanding the Linux Kernel

9.3.3.4 Terminating the signal handler

When the signal handler terminates, the return address on top of the stack points to the code in
the retcode field of the frame. For signals without siginfo t table, the code is equivalent to
the following Assembly instructions:

popl %Seax
movl § NR sigreturn, %eax
int $0x80

Therefore, the signal number (that is, the sig field of the frame) is discarded from the stack,
and the sigreturn () system call is then invoked.

The sys sigreturn() function receives as its parameter the pt regs data structure regs,
which contains the hardware context of the User Mode process (see Section 8.2.3 in
Chapter 8). It can thus derive the frame address inside the User Mode stack:

frame = (struct sigframe *) (regs.esp - 8);

The function reads from the sc field of the frame the bit array of signals that were blocked
before invoking the signal handler and writes it in the blocked field of current. As a result,
all signals that have been masked for the execution of the signal handler are unblocked. The
recalc sigpending() function is then invoked.

The sys sigreturn() function must at this point copy the process hardware context from
the sc field of the frame to the Kernel Mode stack; it then removes the frame from the User
Mode stack by invoking the restore sigcontext () function.

For signals having a siginfo_t table, the mechanism is very similar. The return code in the
retcode field of the extended frame invokes the rt sigreturn() system call; the
corresponding sys rt sigreturn() service routine copies the process hardware context
from the extended frame to the Kernel Mode stack and restores the original User Mode stack
content by removing the extended frame from it.

9.3.4 Reexecution of System Calls

In some cases, the request associated with a system call cannot be immediately satisfied by
the kernel; when this happens the process that issued the system call is put in a
TASK INTERRUPTIBLE Or TASK UNINTERRUPTIBLE state.

If the process is put in a TASK INTERRUPTIBLE state and some other process sends a signal to
it, the kernel puts it in the Task RUNNING state without completing the system call (see
Section 4.7 in Chapter 4). When this happens, the system call service routine does not
complete its job but returns an EINTR, ERESTARTNOHAND, ERESTARTSYS, Of ERESTARTNOINTR
error code. The process receives the signal while switching back to User Mode.

In practice, the only error code a User Mode process can get in this situation is EINTR, which

means that the system call has not been completed. (The application programmer may check
this code and decide whether to reissue the system call.) The remaining error codes are used

249

Understanding the Linux Kernel

internally by the kernel to specify whether the system call may be reexecuted automatically
after the signal handler termination.

Table 9-4 lists the error codes related to unfinished system calls and their impact for each of
the three possible signal actions. The meaning of the terms appearing in the entries is the
following:

Terminate

The system call will not be automatically reexecuted; the process will resume its
execution in User Mode at the instruction following the int $0x80 one and the eax
register will contain the -EINTR value.

Reexecute
The kernel forces the User Mode process to reload the eax register with the system
call number and to reexecute the int $0x80 instruction; the process is not aware of
the reexecution and the error code is not passed to it.

Depends

The system call is reexecuted only if the sa_rREsTART flag of the received signal is set;
otherwise, the system call terminates with a ~-EINTR error code.

Table 9-4. Reexecution of System Calls
Error Codes and Their Impact on

Signal System Call Execution

Action EINTR |ERESTARTSYS ERESTARTNOHAND ERESTARTNOINTR
Default Terminate Reexecute Reexecute Reexecute

Ignore |Terminate Reexecute Reexecute Reexecute

Catch |Terminate Depends Terminate Reexecute

When receiving a signal, the kernel must be sure that the process really issued a system call
before attempting to reexecute it. This is where the orig eax field of the regs hardware
context plays a critical role. Let us recall how this field is initialized when the interrupt or
exception handler starts:

Interrupt

The field contains the IRQ number associated with the interrupt minus 256 (see the
section Section 4.6.3 in Chapter 4).

0x80 exception
The field contains the system call number (see Section 8.2.2 in Chapter 8).
Other exceptions

The field contains the value -1 (see Section 4.5.1 in Chapter 4).

250

Understanding the Linux Kernel

Therefore, a nonnegative value in the orig eax field means that the signal has woken up a
TASK_INTERRUPTIBLE process that was sleeping in a system call. The service routine
recognizes that the system call was interrupted, and thus returns one of the previously
mentioned error codes.

If the signal is explicitly ignored or if its default action has been executed, do signal()
analyzes the error code of the system call to decide whether the unfinished system call must
be automatically reexecuted, as specified in Table 9-4. If the call must be restarted, the
function modifies the regs hardware context so that, when the process is back in User Mode,
eip points to the int $0x80 instruction and eax contains the system call number:

if (regs->orig eax >= 0) {

if (regs->eax == -ERESTARTNOHAND | |
regs—->eax == -ERESTARTSYS ||
regs->eax == -ERESTARTNOINTR) {
regs->eax = regs->orig eax;
regs->eip -= 2;

The regs->eax field has been filled with the return code of a system call service routine (see
Section 8.2.2 in Chapter 8).

If the signal has been caught, handle signal() analyzes the error code and, possibly, the
sa_ RESTART flag of the sigaction table to decide whether the unfinished system call must be
reexecuted:

if (regs->orig eax >= 0) {
switch (regs->eax) {
case —-ERESTARTNOHAND:
regs—->eax = -EINTR;
break;
case —-ERESTARTSYS:
if (!(ka->sa.sa flags & SA RESTART)) {
regs—->eax = -EINTR;
break;
}
/* fallthrough */
case —-ERESTARTNOINTR:
regs->eax = regs->orig eax;
regs->eip -= 2;

If the system call must be restarted, handle signal() proceeds exactly as do signal();
otherwise, it returns an -EINTR error code to the User Mode process.

9.4 Real-Time Signals
The POSIX standard introduced a new class of signals denoted as real-time signals;
the corresponding signal numbers range from 32 to 63. The main difference with respect to

standard signals is that real-time signals of the same kind may be queued. This ensures that
multiple signals sent will be received. Although the Linux kernel does not make use of

251

Understanding the Linux Kernel

real-time signals, it fully supports the POSIX standard by means of several specific system
calls (see Section 9.5.6).

The queue of real-time signals is implemented as a list of signal gqueue elements:

struct signal queue {
struct signal queue *next;
siginfo t info;

b

The info table of type siginfo t was explained in Section 9.2.1; the next field points to the
next element in the list.

Each process descriptor has two specific fields; sigqueue points to the first element of the
queue of received real-time signals, while sigqueue tail points to the next field of the last
element of the queue.

When sending a signal, the send sig info() function checks whether its number is greater
than 31; if so, it inserts the signal in the queue of real-time signals for the destination process.

Similarly, when receiving a signal, dequeue signal() checks whether the signal number of
the pending signal is greater than 31; if so, it extracts from the queue the element
corresponding to the received signal. If the queue does not contain other signals of the same
type, the function also clears the corresponding bit in current->signal.

9.5 System Calls Related to Signal Handling

As stated in the introduction of this chapter, programs running in User Mode are allowed to
send and receive signals. This means that a set of system calls must be defined to allow these
kinds of operations. Unfortunately, due to historical reasons, several noncompatible system
calls exist that serve essentially the same purpose. In order to ensure full compatibility with
older Unix versions, Linux supports both older system calls and newer ones introduced in the
POSIX standard. We shall describe some of the most significant POSIX system calls.

9.5.1 The kill() System Call
The ki1l (pid, sig) system call is commonly used to send signals; its corresponding service

routine is the sys kill() function. The integer pid parameter has several meanings,
depending on its numerical value:

pid >0
The sig signal is sent to the process whose PID is equal to pid.
pid =0

The sig signal is sent to all processes in the same group of the calling process.

252

Understanding the Linux Kernel

pid = -1

The signal is sent to all processes, except swapper (PID 0), init (PID 1), and current.
pid < -1

The signal is sent to all processes in the process group -pid.

The sys kill() function invokes kill something info(). This in turn invokes either
send sig info(), to send the signal to a single process, or ki1l pg info(), to scan all
processes and invoke send sig info() for each process in the destination group.

System V and BSD Unix variants also have a killpg() system call, which is able to
explicitly send a signal to a group of processes. In Linux the function is implemented as a
library function that makes use of the ki11 () system call.

9.5.2 Changing a Signal Action

The sigaction(sig, act,oact) system call allows users to specify an action for a signal; of
course, if no signal action is defined, the kernel executes the default action associated with the
received signal.

The corresponding sys sigaction() service routine acts on two parameters: the sig signal
number and the act table of type sigaction that specifies the new action. A third oact
optional output parameter may be used to get the previous action associated with the signal.

The function checks first whether the act address is valid. Then it fills the sa handler,
sa_flags, and sa mask fields of a new ka local variable of type k sigaction with the
corresponding fields of *act:

__get user (new ka.sa.sa handler, &act->sa handler);
__get user(new ka.sa.sa flags, &act->sa flags);
___get user (mask, &act->sa mask);

new ka.sa.sa mask.sig[0] = mask;
new ka.sa.sa mask.sig[l] = O
The function invokes do sigaction() to copy the new new ka table into the entry at the

sig-1 position of current->sig->action:

k = ¤t->sig->action[sig-1];
if (act) {
*k = *act;

sigdelsetmask (&k->sa.sa mask, sigmask (SIGKILL)
| sigmask (SIGSTOP)) ;

if (k->sa.sa handler == SIG_IGN
|| (k->sa.sa _handler == SIG DFL
&& (sig == SIGCONT ||
sig == SIGCHLD | |
sig == SIGWINCH))) {

sigdelset (¤t->signal, siqg);
recalc_sigpending (current) ;

253

Understanding the Linux Kernel

The POSIX standard requires that setting a signal action either to SIG_IGN, or to SIG DFL
when the default action is "ignore," will cause any pending signal of the same type to be
discarded. Moreover, notice that, no matter what the requested masked signals are for the
signal handler, sTGkILL and s1GsTOP are never masked.

If the oact parameter is not NULL, the contents of the previous sigaction table are copied
to the process address space at the address specified by that parameter:

if (ocact) {
__put user(old ka.sa.sa handler, &oact->sa handler);
__put user(old ka.sa.sa flags, &oact->sa flags);
__put user(old ka.sa.sa mask.sig[0], &oact->sa mask);

For compatibility with BSD Unix variants, Linux provides the signal () system call, which
is still widely used by programmers. The corresponding sys signal () service routine just
invokesdo_sigaction().

new_ sa.sa.sa handler = handler;

new sa.sa.sa flags = SA ONESHOT | SA NOMASK;

ret = do_sigaction(sig, &new sa, &old sa);

return ret ? ret : (unsigned long)old sa.sa.sa handler;

9.5.3 Examining the Pending Blocked Signals
The sigpending() system call allows a process to examine the set of pending blocked

signals, that is, those that have been raised while blocked. This system call fetches only the
standard signals.

The corresponding sys sigpending() service routine acts on a single parameter, set,
namely, the address of a user variable where the array of bits must be copied:

pending = current->blocked.sig[0] & current->signal.sig[0];
if (copy to user(set, &pending, sizeof (*set)))

return -EFAULT;
return 0;

9.5.4 Modifying the Set of Blocked Signals

The sigprocmask () system call allows processes to modify the set of blocked signals; like
sigpending (), this system call applies only to the standard signals.

The corresponding sys sigprocmask() service routine acts on three parameters:

oset

Pointer in the process address space to a bit array where the previous bit mask must be
stored

set

Pointer in the process address space to the bit array containing the new bit mask

254

Understanding the Linux Kernel

how
Flag that may have one of the following values:
SIG BLOCK

The *set bit mask array specifies the signals that must be added to the bit mask array
of blocked signals.

SIG UNBLOCK

The *set bit mask array specifies the signals that must be removed from the bit mask
array of blocked signals.

SIG SETMASK
The *set bit mask array specifies the new bit mask array of blocked signals.

The function invokes copy from user () to copy the value pointed to by the set parameter
into the new set local variable and copies the bit mask array of standard blocked signals of
current into the o1d set local variable. It then acts as the how flag specifies on these two
variables:

if (copy from user (&new_set, set, sizeof (*set)))
return -EFAULT;

new_set &= ~(sigmask(SIGKILL) |sigmask (SIGSTOP)) ;
old set = current->blocked.sig[0];
if (how == SIG BLOCK)
sigaddsetmask (¤t->blocked, new_ set);
else if (how == SIG _UNBLOCK)
sigdelsetmask (¤t->blocked, new_ set);
else i1f (how == SIG SETMASK)
current->blocked.sig[0] = new_ set;
else

return -EINVAL;
recalc_sigpending (current);
if (oset) {
if (copy to user(oset, &old set, sizeof(*oset)))
return -EFAULT;
}

return 0;

9.5.5 Suspending the Process

The sigsuspend() system call puts the process in the TASK INTERRUPTIBLE state, after
having blocked the standard signals specified by a bit mask array to which the mask parameter

points. The process will wake up only when a nonignored, nonblocked signal is sent to it.

The corresponding sys sigsuspend() service routine executes these statements:

255

Understanding the Linux Kernel

mask &= ~(sigmask (SIGKILL) | sigmask(SIGSTOP))
saveset = current->blocked;
current->blocked.sig[0] = mask;
current->blocked.sig[l] = 0;
recalc_sigpending (current) ;
regs—->eax = —-EINTR;
while (1) {
current->state = TASK INTERRUPTIBLE;
schedule();
if (do_signal (regs, &saveset))
return -EINTR;

The schedule () function selects another process to run. When the process that issued the
sigsuspend () system call is executed again, sys sigsuspend() invokes the do signal (
) system call in order to receive the signal that has woken up the process. If that function
returns the value 1, the signal is not ignored, therefore the system call terminates by returning
the error code -EINTR.

The sigsuspend() system call may appear redundant, since the combined execution of
sigprocmask() and sleep() apparently yields the same result. But this is not true:
because of interleaving of process executions, one must be conscious that invoking a system
call to perform action A followed by another system call to perform action B is not equivalent
to invoking a single system call that performs action A and then action B.

In the particular case, sigprocmask () might unblock a signal that will be received before
invoking sleep(). If this happens, the process might remain in a TASK INTERRUPTIBLE
state forever, waiting for the signal that was already received. On the other hand, the
sigsuspend () system call does not allow signals to be sent after unblocking and before the
schedule () invocation because other processes cannot grab the CPU during that time
interval.

9.5.6 System Calls for Real-Time Signals

Since the system calls previously examined apply only to standard signals, additional system
calls must be introduced to allow User Mode processes to handle real-time signals.

Several system calls for real-time signals (rt sigaction() , rt sigpending(),
rt sigprocmask(), and rt sigsuspend() are similar to those described earlier and won't
be further discussed.

Two other system calls have been introduced to deal with queues of real-time signals:

rt sigqueueinfo()

Sends a real-time signal so that it is added to the real-time signal queue of the
destination process

rt sigtimedwait ()

Similar to rt sigsuspend(), but the process remains suspended only for a fixed
time interval

256

Understanding the Linux Kernel

We do not discuss these system calls because they are quite similar to those used for standard
signals.

9.6 Anticipating Linux 2.4

Signals are pretty much the same in Linux 2.2 and Linux 2.4.

257

Understanding the Linux Kernel

Chapter 10. Process Scheduling

Like any time-sharing system, Linux achieves the magical effect of an apparent simultaneous
execution of multiple processes by switching from one process to another in a very short time
frame. Process switch itself was discussed in Chapter 3; this chapter deals with scheduling,
which is concerned with when to switch and which process to choose.

The chapter consists of three parts. The Section 10.1 introduces the choices made by Linux to
schedule processes in the abstract. Section 10.2 discusses the data structures used to
implement scheduling and the corresponding algorithm. Finally, Section 10.3 describes
the system calls that affect process scheduling.

10.1 Scheduling Policy

The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting
objectives: fast process response time, good throughput for background jobs, avoidance of
process starvation, reconciliation of the needs of low- and high-priority processes, and so on.
The set of rules used to determine when and how selecting a new process to run is called
scheduling policy.

Linux scheduling is based on the time-sharing technique already introduced in Section 5.4.3
in Chapter 5: several processes are allowed to run "concurrently," which means that the CPU
time is roughly divided into "slices," one for each runnable process.” Of course, a single
processor can run only one process at any given instant. If a currently running process is not
terminated when its time slice or quantum expires, a process switch may take place.
Time-sharing relies on timer interrupts and is thus transparent to processes. No additional
code needs to be inserted in the programs in order to ensure CPU time-sharing.

[Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on the CPU.

The scheduling policy is also based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a process,
but the end result is the same: each process is associated with a value that denotes how
appropriate it is to be assigned to the CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing
and adjusts their priorities periodically; in this way, processes that have been denied the use of
the CPU for a long time interval are boosted by dynamically increasing their priority.
Correspondingly, processes running for a long time are penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as "I/O-bound" or
"CPU-bound." The former make heavy use of I/O devices and spend much time waiting for
I/O operations to complete; the latter are number-crunching applications that require a lot of
CPU time.

An alternative classification distinguishes three classes of processes:

258

Understanding the Linux Kernel

Interactive processes

These interact constantly with their users, and therefore spend a lot of time waiting for
keypresses and mouse operations. When input is received, the process must be woken
up quickly, or the user will find the system to be unresponsive. Typically, the average
delay must fall between 50 and 150 ms. The variance of such delay must also be
bounded, or the user will find the system to be erratic. Typical interactive programs
are command shells, text editors, and graphical applications.

Batch processes

These do not need user interaction, and hence they often run in the background. Since
such processes do not need to be very responsive, they are often penalized by the
scheduler. Typical batch programs are programming language compilers, database
search engines, and scientific computations.

Real-time processes

These have very strong scheduling requirements. Such processes should never be
blocked by lower-priority processes, they should have a short response time and, most
important, such response time should have a minimum variance. Typical real-time
programs are video and sound applications, robot controllers, and programs that
collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch
process can be either I/O-bound (e.g., a database server) or CPU-bound
(e.g., an image-rendering program). While in Linux real-time programs are explicitly
recognized as such by the scheduling algorithm, there is no way to distinguish between
interactive and batch programs. In order to offer a good response time to interactive
applications, Linux (like all Unix kernels) implicitly favors I/O-bound processes over
CPU-bound ones.

Programmers may change the scheduling parameters by means of the system calls illustrated
in Table 10-1. More details will be given in Section 10.3.

Table 10-1. System Calls Related to Scheduling

System Call Description

nice() Change the priority of a conventional process.
getpriority() Get the maximum priority of a group of conventional processes.
setpriority() Set the priority of a group of conventional processes.
sched getscheduler() Get the scheduling policy of a process.

sched setscheduler() Set the scheduling policy and priority of a process.
sched_getparam() Get the scheduling priority of a process.

sched setparam() Set the priority of a process.

sched yield() Relinquish the processor voluntarily without blocking.
sched get priority min() Get the minimum priority value for a policy.
sched_get priority max() Get the maximum priority value for a policy.

sched _rr_get_interval() Get the time quantum value for the Round Robin policy.

259

Understanding the Linux Kernel

Most system calls shown in the table apply to real-time processes, thus allowing users to
develop real-time applications. However, Linux does not support the most demanding
real-time applications because its kernel is nonpreemptive (see Section 10.2.5).

10.1.1 Process Preemption

As mentioned in the first chapter, Linux processes are preemptive. If a process enters the
TASK RUNNING state, the kernel checks whether its dynamic priority is greater than the priority
of the currently running process. If it is, the execution of current is interrupted and the
scheduler is invoked to select another process to run (usually the process that just became
runnable). Of course, a process may also be preempted when its time quantum expires. As
mentioned in Section 5.4.3 in Chapter 5, when this occurs, the need resched field of
the current process is set, so the scheduler is invoked when the timer interrupt handler
terminates.

For instance, let us consider a scenario in which only two programs—a text editor
and a compiler—are being executed. The text editor is an interactive program, therefore it has
a higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the user
alternates between pauses for think time and data entry; moreover, the average delay between
two keypresses is relatively long. However, as soon as the user presses a key, an interrupt is
raised, and the kernel wakes up the text editor process. The kernel also determines that the
dynamic priority of the editor is higher than the priority of current, the currently running
process (that is, the compiler), and hence it sets the need resched field of this process, thus
forcing the scheduler to be activated when the kernel finishes handling the interrupt.
The scheduler selects the editor and performs a task switch; as a result, the execution of the
editor is resumed very quickly and the character typed by the user is echoed to the screen.
When the character has been processed, the text editor process suspends itself waiting for
another keypress, and the compiler process can resume its execution.

Be aware that a preempted process is not suspended, since it remains in the TASK _RUNNING
state; it simply no longer uses the CPU.

Some real-time operating systems feature preemptive kernels, which means that a process
running in Kernel Mode can be interrupted after any instruction, just as it can in User Mode.
The Linux kernel is not preemptive, which means that a process can be preempted only while
running in User Mode; nonpreemptive kernel design is much simpler, since most
synchronization problems involving the kernel data structures are easily avoided (see
Section 11.2.1 in Chapter 11).

10.1.2 How Long Must a Quantum Last?

The quantum duration is critical for system performances: it should be neither too long nor
too short.

If the quantum duration is too short, the system overhead caused by task switches becomes
excessively high. For instance, suppose that a task switch requires 10 milliseconds; if the
quantum is also set to 10 milliseconds, then at least 50% of the CPU cycles will be dedicated
to task switch.”

121" Actually, things could be much worse than this; for example, if the time required for task switch is counted in the process quantum, all CPU time
will be devoted to task switch and no process can progress toward its termination. Anyway, you got the point.

260

Understanding the Linux Kernel

If the quantum duration is too long, processes no longer appear to be executed concurrently.
For instance, let's suppose that the quantum is set to five seconds; each runnable process
makes progress for about five seconds, but then it stops for a very long time (typically, five
seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of interactive
applications. This is usually false. As described in Section 10.1.1 earlier in this chapter,
interactive processes have a relatively high priority, therefore they quickly preempt the batch
processes, no matter how long the quantum duration is.

In some cases, a quantum duration that is too long degrades the responsiveness of the system.
For instance, suppose that two users concurrently enter two commands at the respective shell
prompts; one command is CPU-bound, while the other is an interactive application. Both
shells fork a new process and delegate the execution of the user's command to it; moreover,
suppose that such new processes have the same priority initially (Linux does not know in
advance if an executed program is batch or interactive). Now, if the scheduler selects the
CPU-bound process to run, the other process could wait for a whole time quantum before
starting its execution. Therefore, if such duration is long, the system could appear to be
unresponsive to the user that launched it.

The choice of quantum duration is always a compromise. The rule of thumb adopted by Linux
is: choose a duration as long as possible, while keeping good system response time.

10.2 The Scheduling Algorithm

The Linux scheduling algorithm works by dividing the CPU time into epochs . In a single
epoch, every process has a specified time quantum whose duration is computed when the
epoch begins. In general, different processes have different time quantum durations. The time
quantum value is the maximum CPU time portion assigned to the process in that epoch. When
a process has exhausted its time quantum, it is preempted and replaced by another runnable
process. Of course, a process can be selected several times from the scheduler in the same
epoch, as long as its quantum has not been exhausted—for instance, if it suspends itself to
wait for I/0O, it preserves some of its time quantum and can be selected again during the same
epoch. The epoch ends when all runnable processes have exhausted their quantum; in this
case, the scheduler algorithm recomputes the time-quantum durations of all processes and a
new epoch begins.

Each process has a base time quantum: it is the time-quantum value assigned by the scheduler
to the process if it has exhausted its quantum in the previous epoch. The users can change the
base time quantum of their processes by using the nice () and setpriority() system calls
(see Section 10.3 later in this chapter). A new process always inherits the base time quantum
of its parent.

The 1NIT TASK macro sets the value of the base time quantum of process (swapper) to
DEF PRIORITY; that macro is defined as follows:

#define DEF_PRIORITY (20*HZ/100)

Since Hz, which denotes the frequency of timer interrupts, is set to 100 for IBM PCs (see
Section 5.1.3 in Chapter 5), the value of DEF PRIORITY is 20 ticks, that is, about 210 ms.

261

Understanding the Linux Kernel

Users rarely change the base time quantum of their processes, so DEF_PRIORITY also denotes
the base time quantum of most processes in the system.

In order to select a process to run, the Linux scheduler must consider the priority of each
process. Actually, there are two kinds of priority:

Static priority

This kind is assigned by the users to real-time processes and ranges from 1 to 99. It is
never changed by the scheduler.

Dynamic priority

This kind applies only to conventional processes; it is essentially the sum of the base
time quantum (which is therefore also called the base priority of the process) and of
the number of ticks of CPU time left to the process before its quantum expires in the
current epoch.

Of course, the static priority of a real-time process is always higher than the dynamic priority
of a conventional one: the scheduler will start running conventional processes only when there
1s no real-time process in a TASK_RUNNING state.

10.2.1 Data Structures Used by the Scheduler

We recall from Section 3.1 in Chapter 3 that the process list links together all process
descriptors, while the runqueue list links together the process descriptors of all runnable
processes—that is, of those in a TASK RUNNING state. In both cases, the init task process
descriptor plays the role of list header.

Each process descriptor includes several fields related to scheduling:

need resched

A flag checked by ret from intr() to decide whether to invoke the schedule ()
function (see Section 4.7.1 in Chapter 4).

policy
The scheduling class. The values permitted are:
SCHED FIFO
A First-In, First-Out real-time process. When the scheduler assigns the CPU to the
process, it leaves the process descriptor in its current position in the runqueue list. If
no other higher-priority real-time process is runnable, the process will continue to use

the CPU as long as it wishes, even if other real-time processes having the same
priority are runnable.

262

Understanding the Linux Kernel

SCHED_RR

A Round Robin real-time process. When the scheduler assigns the CPU to the process,
it puts the process descriptor at the end of the runqueue list. This policy ensures a fair
assignment of CPU time to all scHED Rr real-time processes that have the same
priority.

SCHED OTHER
A conventional, time-shared process.

The policy field also encodes a scHED YIELD binary flag. This flag is set when the
process invokes the sched yield() system call (a way of voluntarily relinquishing
the processor without the need to start an I/O operation or go to sleep; see Section
10.3.3). The scheduler puts the process descriptor at the bottom of the runqueue list
(see Section 10.3).

rt priority

The static priority of a real-time process. Conventional processes do not make use of
this field.

priority
The base time quantum (or base priority) of the process.
counter

The number of ticks of CPU time left to the process before its quantum expires; when
a new epoch begins, this field contains the time-quantum duration of the process.
Recall that the update process times() function decrements the counter field of
the current process by 1 at every tick.

When a new process is created, do fork() sets the counter field of both current (the
parent) and p (the child) processes in the following way:

current->counter >>= 1;
p->counter = current->counter;

In other words, the number of ticks left to the parent is split in two halves, one for the parent
and one for the child. This is done to prevent users from getting an unlimited amount of CPU
time by using the following method: the parent process creates a child process that runs the
same code and then kills itself; by properly adjusting the creation rate, the child process
would always get a fresh quantum before the quantum of its parent expires. This
programming trick does not work since the kernel does not reward forks. Similarly, a user
cannot hog an unfair share of the processor by starting lots of background processes in a shell
or by opening a lot of windows on a graphical desktop. More generally speaking, a process
cannot hog resources (unless it has privileges to give itself a real-time policy) by forking
multiple descendents.

263

Understanding the Linux Kernel

Notice that the priority and counter fields play different roles for the various kinds of
processes. For conventional processes, they are used both to implement time-sharing and to
compute the process dynamic priority. For SCHED RR real-time processes, they are used only
to implement time-sharing. Finally, for scHED FIFO real-time processes, they are not used at
all, because the scheduling algorithm regards the quantum duration as unlimited.

10.2.2 The schedule() Function

schedule () implements the scheduler. Its objective is to find a process in the runqueue list
and then assign the CPU to it. It is invoked, directly or in a lazy way, by several kernel
routines.

10.2.2.1 Direct invocation

The scheduler is invoked directly when the current process must be blocked right away
because the resource it needs is not available. In this case, the kernel routine that wants to
block it proceeds as follows:

1. Inserts current in the proper wait queue

2. Changes the state of current either to TASK INTERRUPTIBLE Or to
TASK_UNINTERRUPTIBLE

3. Invokes schedule()

4. Checks if the resource is available; if not, goes to step 2

5. Once the resource is available, removes current from the wait queue

As can be seen, the kernel routine checks repeatedly whether the resource needed by the
process is available; if not, it yields the CPU to some other process by invoking schedule (
). Later, when the scheduler once again grants the CPU to the process, the availability of the
resource is again checked.

You may have noticed that these steps are similar to those performed by the s1eep on() and
interruptible sleep on() functions described in Section 3.1.4 in Chapter 3. However,
the functions we discuss here immediately remove the process from the wait queue as soon as
it is woken up.

The scheduler is also directly invoked by many device drivers that execute long iterative
tasks. At each iteration cycle, the driver checks the value of the need resched field and, if
necessary, invokes schedule () to voluntarily relinquish the CPU.

10.2.2.2 Lazy invocation

The scheduler can also be invoked in a lazy way by setting the need resched field of
current to 1. Since a check on the value of this field is always made before resuming the
execution of a User Mode process (see Section 4.7 in Chapter 4), schedule () will definitely
be invoked at some close future time.

Lazy invocation of the scheduler is performed in the following cases:

e When current has used up its quantum of CPU time; this is done by the
update process times() function.

264

Understanding the Linux Kernel

e When a process is woken up and its priority is higher than that of the current process;
this task is performed by the reschedule idle() function, which is invoked by the
wake up process() function (see Section 3.1.2 in Chapter 3):

. if (goodness (current, p) > goodness (current, current))
current->need resched = 1;

(The goodness () function will be described later in Section 10.2.3)

e When a sched setscheduler() oOr sched yield() system call is issued (see
Section 10.3 later in this chapter).

10.2.2.3 Actions performed by schedule()

Before actually scheduling a process, the schedule() function starts by running the
functions left by other kernel control paths in various queues. The function invokes
run task queue() on the tg scheduler task queue. Linux puts a function in that task
queue when it must defer its execution until the next schedule () invocation:

run_task queue (&tg_scheduler) ;

The function then executes all active unmasked bottom halves. These are usually present to
perform tasks requested by device drivers (see Section 4.6.6 in Chapter 4):

if (bh_active & bh mask)
do bottom half();

Now comes the actual scheduling, and therefore a potential process switch.

The value of current is saved in the prev local variable and the need resched field of prev
is set to 0. The key outcome of the function is to set another local variable called next so that
it points to the descriptor of the process selected to replace prev.

First, a check is made to determine whether prev is a Round Robin real-time process (policy
field set to scHED RR) that has exhausted its quantum. If so, schedule() assigns a new
quantum to prev and puts it at the bottom of the runqueue list:

if (!prev->counter && prev->policy == SCHED RR) {
prev->counter = prev->priority;
move last runqueue (prev);

Now schedule() examines the state of prev. If it has nonblocked pending signals and its
state is TASK_INTERRUPTIBLE, the function wakes up the process as follows. This action is not
the same as assigning the processor to prev; it just gives prev a chance to be selected for
execution:

if (prev->state == TASK INTERRUPTIBLE &&
signal pending(prev))
prev->state = TASK RUNNING;

265

Understanding the Linux Kernel

If prev is not in the TASK RUNNING state, schedule () was directly invoked by the process
itself because it had to wait on some external resource; therefore, prev must be removed from
the runqueue list:

if (prev->state != TASK RUNNING)
del from runqueue (prev);

Next, schedule () must select the process to be executed in the next time quantum. To that
end, the function scans the runqueue list. It starts from the process referenced by the
next run field of init task, which is the descriptor of process (swapper). The objective is
to store in next the process descriptor pointer of the highest priority process. In order to do
this, next is initialized to the first runnable process to be checked, and c is initialized to its
"goodness" (see Section 10.2.3):

if (prev->state == TASK RUNNING) {
next = prev;
if (prev->policy & SCHED YIELD) {
prev->policy &= ~SCHED YIELD;
c = 0;
} else
c = goodness (prev, prev);
} else {
c = -1000;
next = &init task;

If the scHED YIELD flag of prev->policy is set, prev has voluntarily relinquished the CPU
by issuing a sched yield() system call. In this case, the function assigns a zero goodness
to it.

Now schedule() repeatedly invokes the goodness () function on the runnable processes
to determine the best candidate:

p = init task.next run;
while (p != &init task) {
weight = goodness (prev, p);
if (weight > c) {
c = weight;
next = p;

}
p = p->next run;

The while loop selects the first process in the runqueue having maximum weight. If the
previous process is runnable, it is preferred with respect to other runnable processes having
the same weight.

Notice that if the runqueue list is empty (no runnable process exists except for swapper), the
cycle is not entered and next points to init task. Moreover, if all processes in the runqueue
list have a priority lesser than or equal to the priority of prev, no process switch will take
place and the old process will continue to be executed.

A further check must be made at the exit of the loop to determine whether c is 0. This occurs
only when all the processes in the runqueue list have exhausted their quantum, that is, all of

266

Understanding the Linux Kernel

them have a zero counter field. When this happens, a new epoch begins, therefore
schedule () assigns to all existing processes (not only to the TAsk RUNNING ones) a fresh
quantum, whose duration is the sum of the priority value plus half the counter value:

if ('c) |
for each task(p)
p->counter = (p->counter >> 1) + p->priority;

In this way, suspended or stopped processes have their dynamic priorities periodically
increased. As stated earlier, the rationale for increasing the counter value of suspended or
stopped processes is to give preference to I/O-bound processes. However, even after an
infinite number of increases, the value of counter can never become larger than twice" the
priority value.

131 Assume both priority and counter equal to P; then the geometric series Px (1 + T) converges to 2 XP.

Now comes the concluding part of schedule(): if a process other than prev has been
selected, a process switch must take place. Before performing it, however, the
context swtch field of kstat is increased by 1 to update the statistics maintained by the
kernel:

if (prev != next) {
kstat.context swtch++;
switch to(prev,next);

}

return;

Notice that the return statement that exits from schedule () will not be performed right
away by the next process but at a later time by the prev one when the scheduler selects it
again for execution.

10.2.3 How Good Is a Runnable Process?

The heart of the scheduling algorithm includes identifying the best candidate among all
processes in the runqueue list. This is what the goodness () function does. It receives as
input parameters prev (the descriptor pointer of the previously running process) and p (the
descriptor pointer of the process to evaluate). The integer value c returned by goodness ()
measures the "goodness" of p and has the following meanings:

¢ =-1000

p must never be selected; this value is returned when the runqueue list contains only
init task.

p has exhausted its quantum. Unless p is the first process in the runqueue list and all
runnable processes have also exhausted their quantum, it will not be selected for
execution.

267

Understanding the Linux Kernel

0 <c¢<1000

p is a conventional process that has not exhausted its quantum; a higher value of c
denotes a higher level of goodness.

¢ >=1000
p is a real-time process; a higher value of ¢ denotes a higher level of goodness.

The goodness () function is equivalent to:

if (p->policy != SCHED OTHER)
return 1000 + p->rt priority;
if (p->counter == 0)
return O;
if (p->mm == prev->mm)
return p->counter + p->priority + 1;
return p->counter + p->priority;

If the process is real-time, its goodness is set to at least 1000. If it is a conventional process
that has exhausted its quantum, its goodness is set to 0; otherwise, it is set to p->counter +
p->priority.

A small bonus is given to p if it shares the address space with prev (i.e., if their process
descriptors' mm fields point to the same memory descriptor). The rationale for this bonus is that
if p runs right after prev, it will use the same page tables, hence the same memory; some of
the valuable data may still be in the hardware cache.

10.2.4 The Linux/SMP Scheduler

The Linux scheduler must be slightly modified in order to support the symmetric
multiprocessor (SMP) architecture. Actually, each processor runs the schedule () function
on its own, but processors must exchange information in order to boost system performance.

When the scheduler computes the goodness of a runnable process, it should consider whether
that process was previously running on the same CPU or on another one. A process that was
running on the same CPU is always preferred, since the hardware cache of the CPU could still
include useful data. This rule helps in reducing the number of cache misses.

Let us suppose, however, that CPU 1 is running a process when a second, higher-priority
process that was last running on CPU 2 becomes runnable. Now the kernel is faced with an
interesting dilemma: should it immediately execute the higher-priority process on CPU 1, or
should it defer that process's execution until CPU 2 becomes available? In the former case,
hardware caches contents are discarded; in the latter case, parallelism of the SMP architecture
may not be fully exploited when CPU 2 is running the idle process (swapper).

In order to achieve good system performance, Linux/SMP adopts an empirical rule to solve
the dilemma. The adopted choice is always a compromise, and the trade-off mainly depends
on the size of the hardware caches integrated into each CPU: the larger the CPU cache is, the
more convenient it is to keep a process bound on that CPU.

268

Understanding the Linux Kernel

10.2.4.1 Linux/SMP scheduler data structures

An aligned data table includes one data structure for each processor, which is used mainly
to obtain the descriptors of current processes quickly. Each element is filled by every
invocation of the schedule () function and has the following structure:

struct schedule data {
struct task struct * curr;
unsigned long last schedule;

i

The curr field points to the descriptor of the process running on the corresponding CPU,
while 1ast schedule specifies when schedule () selected curr as the running process.

Several SMP-related fields are included in the process descriptor. In particular, the
avg_slice field keeps track of the average quantum duration of the process, and the
processor field stores the logical identifier of the last CPU that executed it.

The cacheflush time variable contains a rough estimate of the minimal number of CPU
cycles it takes to entirely overwrite the hardware cache content. It is initialized by the
smp tune scheduling() function to:

cercle size in KB

= ey '.'|'_,':'|\'_I|'I|'||'I Al IR

Intel Pentium processors have a hardware cache of 8 KB, so their cacheflush time 18
initialized to a few hundred CPU cycles, that is, a few microseconds. Recent Intel processors
have larger hardware caches, and therefore the minimal cache flush time could range from 50
to 100 microseconds.

As we shall see later, if cacheflush time is greater than the average time slice of some
currently running process, no process preemption is performed because it is convenient in this
case to bind processes to the processors that last executed them.

10.2.4.2 The schedule() function

When the schedule () function is executed on an SMP system, it carries out the following
operations:

1. Performs the initial part of schedule () as usual.

2. Stores the logical identifier of the executing processor in the this cpu local variable;
such value is read from the processor field of prev (that is, of the process to be
replaced).

3. Initializes the sched data local variable so that it points to the schedule data
structure of the this cpu CPU.

4. Invokes goodness() repeatedly to select the new process to be executed; this

function also examines the processor field of the processes and gives a consistent

bonus (PROC CHANGE PENALTY, usually 15) to the process that was last executed on
the this cpu CPU.

If needed, recomputes process dynamic priorities as usual.

6. Sets sched data->curr to next.

e

269

o

10.
11.

12.
13.

14.

Understanding the Linux Kernel

Sets next->has cpu to 1 and next->processor to this cpu.

Stores the current Time Stamp Counter value in the t local variable.

Stores the last time slice duration of prev in the this slice local variable; this value
is the difference between t and sched data->last schedule.

Sets sched data->last schedule to t.

Sets the avg slice field of prev to (prev->avg slice+this slice)/2; in other
words, updates the average.

Performs the context switch.

When the kernel returns here, the original previous process has been selected again by
the scheduler; the prev local variable now refers to the process that has just been
replaced. If prev is still runnable and it is not the idle task of this CPU, invokes the
reschedule idle() function on it (see the next section).

Sets the has_cpu field of prev to 0.

10.2.4.3 The reschedule_idle() function

The reschedule idle() function is invoked when a process p becomes runnable (see
Section 10.2.2). On an SMP system, the function determines whether the process should
preempt the current process of some CPU. It performs the following operations:

1.
2.

If p is a real-time process, always attempts to perform preemption: go to step 3.
Returns immediately (does not attempt to preempt) if there is a CPU whose current
process satisfies both of the following conditions: "

%I These conditions look like voodoo magic; perhaps, they are empirical rules that make the SMP scheduler work better.

3.
4.

o cacheflush time is greater than the average time slice of the current process.
If this is true, the process is not dirtying the cache significantly.

o Both p and the current process need the global kernel lock (see Section 11.4.6
in Chapter 11) in order to access some critical kernel data structure. This check
is performed because replacing a process holding the lock with another one
that needs it is not fruitful.

If the p->processor CPU (the one on which p was last running) is idle, selects it.
Otherwise, computes the difference:

goodness (tsk, p) - goodness(tsk, tsk)

for each task tsk running on some CPU and selects the CPU for which the difference
is greatest, provided it is a positive value.

If CPU has been selected, sets the need resched field of the corresponding running
process and sends a "reschedule" message to that processor (see Section 11.4.7 in
Chapter 11).

10.2.5 Performance of the Scheduling Algorithm

The scheduling algorithm of Linux is both self-contained and relatively easy to follow. For
that reason, many kernel hackers love to try to make improvements. However, the scheduler is
a rather mysterious component of the kernel. While you can change its performance
significantly by modifying just a few key parameters, there is usually no theoretical support to

270

Understanding the Linux Kernel

justify the results obtained. Furthermore, you can't be sure that the positive (or negative)
results obtained will continue to hold when the mix of requests submitted by the users (real-
time, interactive, I/O-bound, background, etc.) varies significantly. Actually, for almost every
proposed scheduling strategy, it is possible to derive an artificial mix of requests that yields
poor system performances.

Let us try to outline some pitfalls of the Linux scheduler. As it will turn out, some of these
limitations become significant on large systems with many users. On a single workstation that
is running a few tens of processes at a time, the Linux scheduler is quite efficient. Since Linux
was born on an Intel 80386 and continues to be most popular in the PC world, we consider the
current Linux scheduler quite appropriate.

10.2.5.1 The algorithm does not scale well

If the number of existing processes is very large, it is inefficient to recompute all dynamic
priorities at once.

In old traditional Unix kernels, the dynamic priorities were recomputed every second, thus the
problem was even worse. Linux tries instead to minimize the overhead of the scheduler.
Priorities are recomputed only when all runnable processes have exhausted their time
quantum. Therefore, when the number of processes is large, the recomputation phase is more
expensive but is executed less frequently.

This simple approach has the disadvantage that when the number of runnable processes is
very large, I/0O-bound processes are seldom boosted, and therefore interactive applications
have a longer response time.

10.2.5.2 The predefined quantum is too large for high system loads

The system responsiveness experienced by users depends heavily on the system load, which is
the average number of processes that are runnable, and hence waiting for CPU time."

Pl The uptime program returns the system load for the past 1, 5, and 15 minutes. The same information can be obtained by reading the
/proc/loadavgfile.

As mentioned before, system responsiveness depends also on the average time-quantum
duration of the runnable processes. In Linux, the predefined time quantum appears to be too
large for high-end machines having a very high expected system load.

10.2.5.3 1/0-bound process boosting strategy is not optimal

The preference for I/O-bound processes is a good strategy to ensure a short response time for
interactive programs, but it is not perfect. Indeed, some batch programs with almost no user
interaction are I/0-bound. For instance, consider a database search engine that must typically
read lots of data from the hard disk or a network application that must collect data from a
remote host on a slow link. Even if these kinds of processes do not need a short response time,
they are boosted by the scheduling algorithm.

On the other hand, interactive programs that are also CPU-bound may appear unresponsive to

the users, since the increment of dynamic priority due to I/O blocking operations may not
compensate for the decrement due to CPU usage.

271

Understanding the Linux Kernel

10.2.5.4 Support for real-time applications is weak

As stated in the first chapter, nonpreemptive kernels are not well suited for real-time
applications, since processes may spend several milliseconds in Kernel Mode while handling
an interrupt or exception. During this time, a real-time process that becomes runnable cannot
be resumed. This is unacceptable for real-time applications, which require predictable and low
response times.

1 The Linux kernel has been modified in several ways so it can handle a few hard real-time jobs if they remain short. Basically, hardware interrupts
are trapped and kernel execution is monitored by a kind of "superkernel." These changes do not make Linux a true real-time system, though.

Future versions of Linux will likely address this problem, either by implementing SVR4's
"fixed preemption points" or by making the kernel fully preemptive.

However, kernel preemption is just one of several necessary conditions for implementing an
effective real-time scheduler. Several other issues must be considered. For instance, real-time
processes often must use resources also needed by conventional processes. A real-time
process may thus end up waiting until a lower-priority process releases some resource. This
phenomenon is called priority inversion. Moreover, a real-time process could require a kernel
service that is granted on behalf of another lower-priority process (for example, a kernel
thread). This phenomenon is called hidden scheduling. An effective real-time scheduler
should address and resolve such problems.

10.3 System Calls Related to Scheduling

Several system calls have been introduced to allow processes to change their priorities and
scheduling policies. As a general rule, users are always allowed to lower the priorities of their
processes. However, if they want to modify the priorities of processes belonging to some
other user or if they want to increase the priorities of their own processes, they must have
superuser privileges.

10.3.1 The nice() System Call

The nice () system call allows processes to change their base priority. The integer value
contained in the increment parameter is used to modify the priority field of the process
descriptor. The nice Unix command, which allows users to run programs with modified
scheduling priority, is based on this system call.

17 Since this system call is usually invoked to lower the priority of a process, users who invoke it for their processes are "nice" toward other users.

The sys nice() service routine handles the nice () system call. Although the increment
parameter may have any value, absolute values larger than 40 are trimmed down to 40.
Traditionally, negative values correspond to requests for priority increments and require
superuser privileges, while positive ones correspond to requests for priority decrements.

The function starts by copying the value of increment into the newprio local variable. In the
case of a negative increment, the function invokes the capable () function to verify whether
the process has a cap_sys NICE capability. We shall discuss that function, together with the
notion of capability, in Chapter 19. If the user turns out to have the capability required to
change priorities, sys nice() changes the sign of newprio and it sets the increase local
flag:

272

Understanding the Linux Kernel

increase = 0
newprio = increment;
if (increment < 0) {
if (!capable (CAP_SYS NICE))
return -EPERM;
newprio = -increment;
increase = 1;

If newprio has a value larger than 40, the function trims it down to 40. At this point, the
newprio local variable may have any value included from to 40, inclusive. The value is then
converted according to the priority scale used by the scheduling algorithm. Since the highest
base priority allowed is 2 x DEF_PRIORITY, the new value is:

{newpro = 2= DEF_PRIORITY) 40 = 0.5

The resulting value is copied into increment with the proper sign:

if (newprio > 40)
newprio = 40;
newprio = (newprio * DEF PRIORITY + 10) / 20;
increment = newprio;
if (increase)
increment = -increment;

Since newprio is an integer variable, the expression in the code is equivalent to the formula
shown earlier.

The function then sets the final value of priority by subtracting the value of increment
from it. However, the final base priority of the process cannot be smaller than 1 or larger than
2 X DEF_PRIORITY:

if (current->priority - increment < 1)
current->priority = 1;

else if (current->priority > DEF PRIORITY*2)
current->priority = DEF PRIORITY*2;

else
current->priority -= increment;

return 0;

A niced process changes over time like any other process, getting extra priority if necessary
or dropping back in deference to other processes.

10.3.2 The getpriority() and setpriority() System Calls

The nice() system call affects only the process that invokes it. Two other system calls,
denoted as getpriority() and setpriority(), act on the base priorities of all processes
in a given group. getpriority() returns 20 plus the highest base priority among all
processes in a given group; setpriority() sets the base priority of all processes in a given
group to a given value.

273

Understanding the Linux Kernel

The kernel implements these system calls by means of the sys getpriority() and
sys_setpriority() service routines. Both of them act essentially on the same group of
parameters:

which

Identifies the group of processes; it can assume one of the following values:

PRIO PROCESS

Select the processes according to their process ID (pid field of the process descriptor).

PRIO_PGRP

Select the processes according to their group ID (pgrp field of the process descriptor).

PRIO USER

Select the processes according to their user ID (uid field of the process descriptor).

who
Value of the pid, pgrp, or uid field (depending on the value of which) to be used for
selecting the processes. If who is 0, its value is set to that of the corresponding field of
the current process.

niceval

The new base priority value (needed only by sys setpriority()). It should range
between -20 (highest priority) and +20 (minimum priority).

As stated before, only processes with a cap_sys NICE capability are allowed to increase their
own base priority or to modify that of other processes.

As we have seen in Chapter 8, system calls return a negative value only if some error
occurred. For that reason, getpriority() does not return a normal nice value ranging
between -20 and 20, but rather a nonnegative value ranging between and 40.

10.3.3 System Calls Related to Real-Time Processes

We now introduce a group of system calls that allow processes to change their scheduling
discipline and, in particular, to become real-time processes. As usual, a process must have a
CAP_SYS NICE capability in order to modify the values of the rt priority and policy
process descriptor fields of any process, including itself.

10.3.3.1 The sched_getscheduler() and sched_setscheduler() system calls
The sched getscheduler () system call queries the scheduling policy currently applied to

the process identified by the pid parameter. If pid equals 0, the policy of the calling process
will be retrieved. On success, the system call returns the policy for the process: SCHED FIFO,

274

Understanding the Linux Kernel

SCHED RR, Or SCHED OTHER. The corresponding sys sched getscheduler() service
routine invokes find task by pid(), which locates the process descriptor corresponding
to the given pid and returns the value of its policy field.

The sched setscheduler () system call sets both the scheduling policy and the associated
parameters for the process identified by the parameter pid. If pid is equal to 0, the scheduler
parameters of the calling process will be set.

The corresponding sys sched setscheduler() function checks whether the scheduling
policy specified by the policy parameter and the new static priority specified by the param-
>sched priority parameter are valid. It also checks whether the process has cap _sys NICE
capability or whether its owner has superuser rights. If everything is OK, it executes the
following statements:

p->policy = policy;
p->rt priority = param->sched priority;
if (p—->next run)

move first runqueue (p);
current->need resched = 1;

10.3.3.2 The sched_ getparam() and sched_setparam() system calls

The sched getparam() system call retrieves the scheduling parameters for the process
identified by pid. If pid is 0, the parameters of the current process are retrieved. The
corresponding sys sched getparam() service routine, as one would expect, finds the
process descriptor pointer associated with pid, stores its rt priority field in a local variable
of type sched param, and invokes copy to user() to copy it into the process address
space at the address specified by the param parameter.

The sched setparam() system call is similar to sched setscheduler (): it differs from
the latter by not letting the caller set the policy field's value.” The corresponding
sys_sched setparam() service routine is almost identical to sys_sched setscheduler (

), but the policy of the affected process is never changed.

%] This anomaly is caused by a specific requirement of the POSTX standard.

10.3.3.3 The sched_ yield() system call

The sched yield() system call allows a process to relinquish the CPU voluntarily without
being suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it at the
end of the runqueue list. In this way, other processes having the same dynamic priority will
have a chance to run. The call is used mainly by SCHED FIFO processes.

The corresponding sys sched yield() service routine executes these statements:

if (current->policy == SCHED OTHER)
current->policy |= SCHED YIELD;
current->need resched = 1;

move last runqueue (current);

Notice that the sceED vIELD field is set in the policy field of the process descriptor only if
the process is a conventional SCHED OTHER process. As a result, the next invocation of

275

Understanding the Linux Kernel

schedule () will view this process as one that has exhausted its time quantum (see how
schedule () handles the scHED YIELD field).

10.3.3.4 The sched_ get_priority_min() and sched_ get_priority_max() system calls

The sched get priority min() and sched get priority max() system calls return,
respectively, the minimum and the maximum real-time static priority value that can be used
with the scheduling policy identified by the policy parameter.

The sys sched get priority min() service routine returns 1 if current is a real-time
process, otherwise.

The sys sched get priority max() service routine returns 99 (the highest priority) if
current is a real-time process, otherwise.

10.3.3.5 The sched_rr_ get_interval() system call

The sched rr get interval() system call should get the round robin time quantum for
the named real-time process.

The corresponding sys sched rr get interval() service routine does not operate as
expected, since it always returns a 150-millisecond value in the timespec structure pointed to
by tp. This system call remains effectively unimplemented in Linux.

10.4 Anticipating Linux 2.4

Linux 2.4 introduces a subtle optimization concerning TLB flushing for kernel threads and
zombie processes. As a result, the active Page Global Directory is set by the schedule()
function rather than by the switch to macro.

The Linux 2.4 scheduling algorithm for SMP machines has been improved and simplified.
Whenever a new process becomes runnable, the kernel checks whether the preferred CPU of
the process, that is, the CPU on which it was last running, is idle; in this case, the kernel
assigns the process to that CPU. Otherwise, the kernel assigns the process to another idle
CPU, if any. If all CPUs are busy, the kernel checks whether the process has enough priority
to preempt the process running on the preferred CPU. If not, the kernel tries to preempt some
other CPU only if the new runnable process is real-time or if it has short average time slices
compared to the hardware cache rewriting time. (Roughly, preemption occurs if the new
runnable process is interactive and the preferred CPU will not reschedule shortly.)

276

Understanding the Linux Kernel

Chapter 11. Kernel Synchronization

You could think of the kernel as a server that answers requests; these requests can come either
from a process running on a CPU or an external device issuing an interrupt request. We make
this analogy to underscore that parts of the kernel are not run serially but in an interleaved
way. Thus, they can give rise to race conditions, which must be controlled through proper
synchronization techniques. A general introduction to these topics can be found in Section 1.6
in Chapter 1.

We start this chapter by reviewing when, and to what extent, kernel requests are executed in
an interleaved fashion. We then introduce four basic synchronization techniques implemented
by the kernel and illustrate how they are applied by means of examples.

The next two sections deal with the extension of the Linux kernel to multiprocessor
architectures. The first describes some hardware features of the Symmetric Multiprocessor
(SMP) architecture, while the second discusses additional mutual exclusion techniques
adopted by the SMP version of the Linux kernel.

11.1 Kernel Control Paths

As we said, kernel functions are executed following a request that may be issued in two
possible ways:

e A process executing in User Mode causes an exception, for instance by executing an
int 0x80 assembly language instruction.

e An external device sends a signal to a Programmable Interrupt Controller by using an
IRQ line, and the corresponding interrupt is enabled.

The sequence of instructions executed in Kernel Mode to handle a kernel request is denoted as
kernel control path : when a User Mode process issues a system call request, for instance, the
first instructions of the corresponding kernel control path are those included in the initial part
of the system call() function, while the last instructions are those included in the
ret from sys call() function.

In Section 4.3 in Chapter 4, a kernel control path was defined as a sequence of instructions
executed by the kernel to handle a system call, an exception, or an interrupt. Kernel control
paths play a role similar to that of processes, except that they are much more rudimentary:
first, no descriptor of any kind is attached to them; second, they are not scheduled through a
single function, but rather by inserting sequences of instructions that stop or resume the paths
into the kernel code.

In the simplest cases, the CPU executes a kernel control path sequentially from the first
instruction to the last. When one of the following events occurs, however, the CPU interleaves

kernel control paths:

e A context switch occurs. As we have seen in Chapter 10, a context switch can occur
only when the schedule () function is invoked.

277

Understanding the Linux Kernel

e An interrupt occurs while the CPU is running a kernel control path with interrupts
enabled. In this case, the first kernel control path is left unfinished and the CPU starts
processing another kernel control path to handle the interrupt.

It is important to interleave kernel control paths in order to implement multiprocessing. In
addition, as already noticed in Section 4.3 in Chapter 4, interleaving improves the throughput
of programmable interrupt controllers and device controllers.

While interleaving kernel control paths, special care must be applied to data structures that
contain several related member variables, for instance, a buffer and an integer indicating its
length. All statements affecting such a data structure must be put into a single critical section,
otherwise, it is in danger of being corrupted.

11.2 Synchronization Techniques

Chapter | introduced the concepts of race condition and critical region for processes. The
same definitions apply to kernel control paths. In this chapter, a race condition can occur
when the outcome of some computation depends on how two or more interleaved kernel
control paths are nested. A critical region is any section of code that should be completely
executed by each kernel control path that begins it, before another kernel control path can
enter it.

We now examine how kernel control paths can be interleaved while avoiding race conditions
among shared data. We'll distinguish four broad types of synchronization techniques:

Nonpreemptability of processes in Kernel Mode
Atomic operations

Interrupt disabling

Locking

11.2.1 Nonpreemptability of Processes in Kernel Mode

As already pointed out, the Linux kernel is not preemptive, that is, a running process cannot
be preempted (replaced by a higher-priority process) while it remains in Kernel Mode. In
particular, the following assertions always hold in Linux:

e No process running in Kernel Mode may be replaced by another process, except when
the former voluntarily relinquishes control of the CPU."

11 Of course, all context switches are performed in Kernel Mode. However, a context switch may occur only when the current process is going to
return in User Mode.

e Interrupt or exception handling can interrupt a process running in Kernel Mode;
however, when the interrupt handler terminates, the kernel control path of the process
is resumed.

e A kernel control path performing interrupt or exception handling can be interrupted
only by another control path performing interrupt or exception handling.

Thanks to the above assertions, kernel control paths dealing with nonblocking system calls are

atomic with respect to other control paths started by system calls. This simplifies the
implementation of many kernel functions: any kernel data structures that are not updated by

278

Understanding the Linux Kernel

interrupt or exception handlers can be safely accessed. However, if a process in Kernel Mode
voluntarily relinquishes the CPU, it must ensure that all data structures are left in a consistent
state. Moreover, when it resumes its execution, it must recheck the value of all previously
accessed data structures that could be changed. The change could be caused by a different
kernel control path, possibly running the same code on behalf of a separate process.

11.2.2 Atomic Operations

The easiest way to prevent race conditions is by ensuring that an operation is atomic at the
chip level: the operation must be executed in a single instruction. These very small atomic
operations can be found at the base of other, more flexible mechanisms to create critical
sections.

Thus, an atomic operation is something that can be performed by executing a single assembly
language instruction in an "atomic" way, that is, without being interrupted in the middle.

Let's review Intel 80x86 instructions according to that classification:

e Assembly language instructions that make zero or one memory access are atomic.

e Read/modify/write assembly language instructions such as inc or dec that read data
from memory, update it, and write the updated value back to memory are atomic if no
other processor has taken the memory bus after the read and before the write. Memory
bus stealing, naturally, never happens in a uniprocessor system, because all memory
accesses are made by the same processor.

e Read/modify/write assembly language instructions whose opcode is prefixed by the
lock byte (0x£0) are atomic even on a multiprocessor system. When the control unit
detects the prefix, it "locks" the memory bus until the instruction is finished.
Therefore, other processors cannot access the memory location while the locked
instruction is being executed.

e Assembly language instructions whose opcode is prefixed by a rep byte (0x£2, 0x£3),
which forces the control unit to repeat the same instruction several times, are not
atomic: the control unit checks for pending interrupts before executing a new iteration.

When you write C code, you cannot guarantee that the compiler will use a single, atomic
instruction for an operation like a=a+1 or even for a++. Thus, the Linux kernel provides
special functions (see Table 11-1) that it implements as single, atomic assembly language
instructions; on multiprocessor systems each such instruction is prefixed by a 1ock byte.

279

Understanding the Linux Kernel

Table 11-1. Atomic Operations in C

Function Description
atomic read(v) Return *v
atomic set (v, 1) Set *v to 1.
atomic_add(i,v) Add 1 to *v.
atomic sub (i, v) Subtract i from *v.
atomic_inc (v

(

) Add 1 to *v.
atomic_ dec (v) Subtract 1 from *v.

Subtract 1 from *v and return 1 if the result is non-null,

atomic dec and test (v) .
- = = otherwise.

atomic_inc_and test greater zero(v) Add1 to *v and return 1 if the result is positive, otherwise.

atomic_clear mask (mask, addr) Clear all bits of addr specified by mask.

atomic_set mask (mask,addr) Set all bits of addr specified by mask.

11.2.3 Interrupt Disabling

For any section of code too large to be defined as an atomic operation, more complicated
means of providing critical sections are needed. To ensure that no window is left open for a
race condition to slip in, even a window one instruction long, these critical sections always
have an atomic operation at their base.

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of kernel
statements is operated as a critical section. It allows a kernel control path to continue
executing even when hardware devices issue IRQ signals, thus providing an effective way to
protect data structures that are also accessed by interrupt handlers.

However, interrupt disabling alone does not always prevent kernel control path interleaving.
Indeed, a kernel control path could raise a "Page fault" exception, which in turn could suspend
the current process (and thus the corresponding kernel control path). Or again, a kernel
control path could directly invoke the schedule () function. This happens during most I/O
disk operations because they are potentially blocking, that is, they may force the process to
sleep until the I/O operation completes. Therefore, the kernel must never execute a blocking
operation when interrupts are disabled, since the system could freeze.

Interrupts can be disabled by means of the c1i assembly language instruction, which is
yielded by the ~ c1i() and cl1i() macros. Interrupts can be enabled by means of the sti
assembly language instruction, which is yielded by the sti() and sti() macros. On a
uniprocessor system cli () is equivalentto cli() and sti() is equivalentto sti (
); however, as we shall see later in this chapter, these macros are quite different on a
multiprocessor system.

When the kernel enters a critical section, it clears the 1F flag of the ef1ags register in order to
disable interrupts. But at the end of the critical section, the kernel can't simply set the flag
again. Interrupts can execute in nested fashion, so the kernel does not know what the 1r flag
was before the current control path executed. Each control path must therefore save the old
setting of the flag and restore that setting at the end.

In order to save the eflags content, the kernel uses the save flags macro; on a
uniprocessor system it is identical to the save flags macro. In order to restore the eflags

280

Understanding the Linux Kernel

content, the kernel uses the @ restore flags and (on a uniprocessor system)
restore flags macros. Typically, these macros are used in the following way:

__save_ flags(old);
_cli();

[...]

__restore flags(old);

The save flags macro copies the content of the eflags register into the o1d local
variable; the 1F flag is then cleared by = c1i(). At the end of the critical region, the
__restore flags macro restores the original content of eflags; therefore, interrupts are
enabled only if they were enabled before this control path issued the c1i() macro.

Linux offers several additional synchronization macros that are important on a multiprocessor
system (see Section 11.4.2 later in this chapter) but are somewhat redundant on a uniprocessor
system (see Table 11-2). Notice that some functions do not perform any visible operation.
They just act as "barriers" for the gcc compiler, since they prevent the compiler from
optimizing the code by moving around assembly language instructions. The 1ck parameter is
always ignored.

Table 11-2. Interrupt Disabling/Enabling Macros on a Uniprocessor System

Macro Description

spin_lock init (1lck) No operation

spin lock(lck) No operation

spin_unlock (lck) No operation

spin unlock wait (lck) No operation

spin_ trylock (lck) Return always 1

spin lock irqg(lck) _cli()

spin unlock irqg(lck) sti()

spin_lock irgsave (lck, flags) ~_save flags(flags); _ cli()
spin_unlock irgrestore(lck, flags) ~_restore flags(flags)

read lock irg(lck) ~cli()

read unlock irg(lck) _sti()

read lock irgsave (lck, flags) ~_save flags(flags); _ cli()
read unlock irqgrestore(lck, flags) ~_restore flags(flags)

write lock irg(lck) o cli()

write unlock irg(lck) sti()

write lock irgsave (lck, flags) ~_save flags(flags); _ cli()
write unlock irgrestore(lck, flags) ~_restore flags(flags)

Let us recall a few examples of how these macros are used in functions introduced in previous
chapters:

e The add wait queue() and remove wait gqueue() functions protect the wait
queue list with the write lock irgsave() and write unlock irqgrestore()
functions.

e The setup %86 irq() adds a new interrupt handler for a specific IRQ; the
spin_lock irgsave() and spin unlock irgrestore() functions are used to

protect the corresponding list of handlers.

281

Understanding the Linux Kernel

e The run timer 1ist() function protects the dynamic timer data structures with the
spin lock irg() and spin unlock irg() functions.
e The handle signal() function protects the blocked field of current with the

spin_ lock irg() and spin_unlock irqg() functions.

Because of its simplicity, interrupt disabling is widely used by kernel functions for
implementing critical regions. Clearly, the critical regions obtained by interrupt disabling
must be short, because any kind of communication between the I/0O device controllers and the
CPU is blocked when the kernel enters one. Longer critical regions should be implemented by
means of locking.

11.2.4 Locking Through Kernel Semaphores

A widely used synchronization technique is locking: when a kernel control path must access a
shared data structure or enter a critical region, it must acquire a "lock" for it. A resource
protected by a locking mechanism is quite similar to a resource confined in a room whose
door is locked when someone is inside. If a kernel control path wishes to access the resource,
it tries to "open the door" by acquiring the lock. It will succeed only if the resource is free.
Then, as long as it wants to use the resource, the door remains locked. When the kernel
control path releases the lock, the door is unlocked and another kernel control path may enter
the room.

Linux offers two kinds of locking: kernel semaphores, which are widely used both on
uniprocessor systems and multiprocessor ones, and spin locks, which are used only on
multiprocessors systems. We'll discuss just kernel semaphores here; the other solution will be
discussed in the Section 11.4.2 later in this chapter. When a kernel control path tries to
acquire a busy resource protected by a kernel semaphore, the corresponding process is
suspended. It will become runnable again when the resource is released.

Kernel semaphores are objects of type struct semaphore and have these fields:

count

Stores an integer value. If it is greater than 0, the resource is free, that is, it is currently
available. Conversely, if count is less than or equal to 0, the semaphore is busy, that
is, the protected resource is currently unavailable. In the latter case, the absolute value
of count denotes the number of kernel control paths waiting for the resource. Zero
means that a kernel control path is using the resource but no other kernel control path
is waiting for it.

wait
Stores the address of a wait queue list that includes all sleeping processes that are
currently waiting for the resource. Of course, if count is greater than or equal to 0, the
wait queue is empty.

waking
Ensures that, when the resource is freed and the sleeping processes is woken up, only

one of them succeeds in acquiring the resource. We'll see this field in operation soon.

282

Understanding the Linux Kernel

The count field is decremented when a process tries to acquire the lock and incremented
when a process releases it. The MUTEX and MUTEX LOCKED macros may be used to initialize a
semaphore for exclusive access: they set the count field, respectively, to 1 (free resource with
exclusive access) and (busy resource with exclusive access currently granted to the process
that initializes the semaphore). Note that a semaphore could also be initialized with an
arbitrary positive value n for count: in this case, at most n processes will be allowed to
concurrently access the resource.

When a process wishes to acquire a kernel semaphore lock, it invokes the down () function.
The implementation of down () is quite involved, but it is essentially equivalent to the
following:

void down (struct semaphore * sem)
{
/* BEGIN CRITICAL SECTION */
-—-sem->count;
if (sem->count < 0) {
/* END CRITICAL SECTION */
struct wait gqueue wait = { current, NULL };
current->state = TASK UNINTERRUPTIBLE;
add wait queue (&sem->wait, &wait);
for (;;) |
unsigned long flags;
spin lock irgsave (&semaphore wake lock, flags);
if (sem->waking > 0) {
sem->waking--;
break;
}
spin _unlock irgrestore (&semaphore wake lock, flags);
schedule();
current->state = TASK UNINTERRUPTIBLE;
}
spin_unlock irgrestore (&semaphore wake lock, flags);
current->state = TASK RUNNING;
remove wait queue (&sem->wait, &wait);

The function decrements the count field of the *sem semaphore, then checks whether its
value is negative. The decrement and the test must be atomically executed, otherwise another
kernel control path could concurrently access the field value, with disastrous results (see
Section 1.6.5 in Chapter 1). Therefore, these two operations are implemented by means of the
following assembly language instructions:

movl sem, %ecx

lock /* only for multiprocessor systems */
decl (%ecx)

js 2f

On a multiprocessor system, the decl instruction is prefixed by a lock prefix to ensure the
atomicity of the decrement operation (see Section 11.2.2).

If count is greater than or equal to 0, the current process acquires the resource and the
execution continues normally. Otherwise, count is negative and the current process must be

283

Understanding the Linux Kernel

suspended. It is inserted into the wait queue list of the semaphore and put to sleep by directly
invoking the schedule () function.

The process is woken up when the resource is freed. Nonetheless, it cannot assume that the
resource is now available, since several processes in the semaphore wait queue could be
waiting for it. In order to select a winning process, the waking field is used: when the
releasing process is going to wake up the processes in the wait queue, it increments waking;
each awakened process then enters a critical region of the down () function and tests whether
waking is positive. If an awakened process finds the field to be positive, it decrements waking
and acquires the resource; otherwise it goes back to sleep. The critical region is protected by
the semaphore wake lock global spin lock and by interrupt disabling.

Notice that an interrupt handler or a bottom half must not invoke down (), since this function
suspends the process when the semaphore is busy.” For that reason, Linux provides the
down_trylock() function, which may be safely used by one of the previously mentioned
asynchronous functions. It is identical to down () except when the resource is busy: in this
case, the function returns immediately instead of putting the process to sleep.

12l Exception handlers can block on a semaphore. Linux takes special care to avoid the particular kind of race condition in which two nested kernel
control paths compete for the same semaphore; naturally, one of them waits forever because the other cannot run and free the semaphore.

A slightly different function called down interruptible() is also defined. It is widely used
by device drivers since it allows processes that receive a signal while being blocked on a
semaphore to give up the "down" operation. If the sleeping process is awakened by a signal
before getting the needed resource, the function increments the count field of the semaphore
and returns the value -EINTR. On the other hand, if down interruptible() runs to normal
completion and gets the resource, it returns 0. The device driver may thus abort the I/O
operation when the return value is ~-EINTR.

When a process releases a kernel semaphore lock, it invokes the up () function, which is
essentially equivalent to the following:

void up (struct semaphore * sem)
{
/* BEGIN CRITICAL SECTION */
++sem—->count;
if (sem->count <= 0) {
/* END CRITICAL SECTION */
unsigned long flags;
spin_ lock irgsave (&semaphore wake lock, flags);
if (atomic_read(&sem->count) <= 0)
sem->waking++;
spin_unlock irgrestore (&semaphore wake lock, flags);
wake up (&sem->wait);

The function increments the count field of the *sem semaphore, then checks whether its value
is negative or null. The increment and the test must be atomically executed, so these two
operations are implemented by means of the following assembly language instructions:

284

Understanding the Linux Kernel

movl sem, %ecx
lock

incl (%ecx)
jle 2f

If the new value of count is positive, no process is waiting for the resource, and thus the
function terminates. Otherwise, it must wake up the processes in the semaphore wait queue. In
order to do this, it increments the waking field, which is protected by the
semaphore wake lock spin lock and by interrupt disabling, then invokes wake up () on the
semaphore wait queue.

The increment of the waking field is included in a critical region because there can be several
processes that concurrently access the same protected resource; therefore, a process could
start executing up () while the waiting processes have already been woken up and one of
them is already accessing the waking field. This also explains why up () checks whether
count is nonpositive right before incrementing waking: another process could have executed
the up () function after the first count check and before entering the critical region.

We now examine how semaphores are used in Linux. Since the kernel is nonpreemptive, only
a few semaphores are needed. Indeed, on a uniprocessor system race conditions usually occur
either when a process is blocked during an I/O disk operation or when an interrupt handler
accesses a global kernel data structure. Other kinds of race conditions may occur in
multiprocessor systems, but in such cases Linux tends to make use of spin locks (see Section
11.4.2 later in this chapter).

The following sections discuss a few typical examples of semaphore use.

11.2.4.1 Slab cache list semaphore

The list of slab cache descriptors (see Section 6.2.2 in Chapter 6) is protected by the
cache chain_ sem semaphore, which grants an exclusive right to access and modify the list.

A race condition is possible when kmem cache create() adds a new element in the list,
while kmem cache shrink() and kmem cache reap() sequentially scan the list.
However, these functions are never invoked while handling an interrupt, and they can never
block while accessing the list. Since the kernel is nonpreemptive, this semaphore plays an
active role only in multiprocessor systems.

11.2.4.2 Memory descriptor semaphore

Each memory descriptor of type mm_struct includes its own semaphore in the mmap sem field
(see Section 7.2 in Chapter 7). The semaphore protects the descriptor against race conditions
that could arise because a memory descriptor can be shared among several lightweight
processes.

For instance, let us suppose that the kernel must create or extend a memory region for some
process; in order to do this, it invokes the do mmap() function, which allocates a new
vm_area struct data structure. In doing so, the current process could be suspended if no free
memory is available, and another process sharing the same memory descriptor could run.
Without the semaphore, any operation of the second process that requires access to the

285

Understanding the Linux Kernel

memory descriptor (for instance, a page fault due to a Copy On Write) could lead to severe
data corruption.

11.2.4.3 Inode semaphore

This example refers to filesystem handling, which this book has not examined yet. Therefore,
we shall limit ourselves to giving the general picture without going into too many details. As
we shall see in Chapter 12, Linux stores the information on a disk file in a memory object

called an inode. The corresponding data structure includes its own semaphore in the i sem
field.

A huge number of race conditions can occur during filesystem handling. Indeed, each file on
disk is a resource held in common for all users, since all processes may (potentially) access
the file content, change its name or location, destroy or duplicate it, and so on.

For example, let us suppose that a process is listing the files contained in some directory.
Each disk operation is potentially blocking, and therefore even in uniprocessor systems other
processes could access the same directory and modify its content while the first process is in
the middle of the listing operation. Or again, two different processes could modify the same
directory at the same time. All these race conditions are avoided by protecting the directory
file with the inode semaphore.

11.2.5 Avoiding Deadlocks on Semaphores

Whenever a program uses two or more semaphores, the potential for deadlock is present
because two different paths could end up waiting for each other to release a semaphore. A
typical deadlock condition occurs when a kernel control path gets the lock for semaphore A
and is waiting for semaphore B, while another kernel control path holds the lock for
semaphore B and is waiting for semaphore A. Linux has few problems with deadlocks on
semaphore requests, since each kernel control path usually needs to acquire just one
semaphore at a time.

However, in a couple of cases the kernel must get two semaphore locks. This occurs in the
service routines of the rmdir () and the rename () system calls (notice that in both cases
two inodes are involved in the operation). In order to avoid such deadlocks, semaphore
requests are performed in the order given by addresses: the semaphore request whose
semaphore data structure is located at the lowest address is issued first.

11.3 The SMP Architecture

Symmetrical multiprocessing (SMP) denotes a multiprocessor architecture in which no CPU
is selected as the Master CPU, but rather all of them cooperate on an equal basis, hence the
name "symmetrical." As usual, we shall focus on Intel SMP architectures.

How many independent CPUs are most profitably included in a multiprocessor system is a hot
issue. The troubles are mainly due to the impressive progress reached in the area of cache
systems. Many of the benefits introduced by hardware caches are lost by wasting bus cycles
in synchronizing the local hardware caches located on the CPU chips. The higher the number
of CPUs, the worse the problem becomes.

286

Understanding the Linux Kernel

From the kernel design point of view, however, we can completely ignore this issue: an SMP
kernel remains the same no matter how many CPUs are involved. The big jump in complexity
occurs when moving from one CPU (a uniprocessor system) to two.

Before proceeding in describing the changes that had to be made to Linux in order to make it
a true SMP kernel, we shall briefly review the hardware features of the Pentium dual-
processing systems. These features lie in the following areas of computer architecture:

e Shared memory

e Hardware cache synchronization

e Atomic operations

e Distributed interrupt handling

o Interrupt signals for CPU synchronization

Some hardware issues are completely resolved within the hardware, so we don't have to say
much about them.

11.3.1 Common Memory

All the CPUs share the same memory; that is, they are connected to a common bus. This
means that RAM chips may be accessed concurrently by independent CPUs. Since read or
write operations on a RAM chip must be performed serially, a hardware circuit called a
memory arbiter is inserted between the bus and every RAM chip. Its role is to grant access to
a CPU if the chip is free and to delay it if the chip is busy. Even uniprocessor systems make
use of memory arbiters, since they include a specialized processor called DMA that operates
concurrently with the CPU (see Section 13.1.4, in Chapter 13).

In the case of multiprocessor systems, the structure of the arbiter is more complex since it has
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at each chip
entrance and requires that the two CPUs exchange synchronization messages before
attempting to use the bus. From the programming point of view, the arbiter is hidden since it
is managed by hardware circuits.

11.3.2 Hardware Support to Cache Synchronization

The section Section 2.4.6 in Chapter 2,explained that the contents of the hardware cache and
the RAM maintain their consistency at the hardware level. The same approach holds in the
case of a dual processor. As shown in Figure 11-1, each CPU has its own local hardware
cache. But now updating becomes more time-consuming: whenever a CPU modifies its
hardware cache it must check whether the same data is contained in the other hardware cache
and, if so, notify the other CPU to update it with the proper value. This activity is often called
cache snooping. Luckily, all this is done at the hardware level and is of no concern to the
kernel.

287

Understanding the Linux Kernel

Figure 11-1. The caches in a dual processor

GPU O LPUT

..

11.3.3 SMP Atomic Operations

Atomic operations for uniprocessor systems have already been introduced in Section 11.2.2.
Since standard read-modify-write instructions actually access the memory bus twice, they are
not atomic on a multiprocessor system.

Let us give a simple example of what might happen if an SMP kernel used standard
instructions. Consider the semaphore implementation described in Section 11.2.4 earlier in
this chapter and assume that the down () function decrements and tests the count field of the
semaphore with a simple dec1 assembly language instruction. What happens if two processes
running on two different CPUs simultaneously execute the decl instruction on the same
semaphore? Well, decl is a read-modify-write instruction that accesses the same memory
location twice: once to read the old value and again to write the new value.

At first, both CPUs are trying to read the same memory location, but the memory arbiter steps
in to grant access to one of them and delay the other. However, when the first read operation
is complete the delayed CPU reads exactly the same (old) value from the memory location.
Both CPUs then try to write the same (new) value on the memory location; again, the bus
memory access is serialized by the memory arbiter, but eventually both write operations will
succeed and the memory location will contain the old value decremented by 1. But of course,
the global result is completely incorrect. For instance, if count was previously set to 1, both
kernel control paths will simultaneously gain mutual exclusive access to the protected
resource.

Since the early days of the Intel 80286, 1ock instruction prefixes have been introduced to
solve that kind of problem. From the programmer's point of view, lock is just a special byte
that is prefixed to an assembly language instruction. When the control unit detects a 1ock
byte, it locks the memory bus so that no other processor can access the memory location
specified by the destination operand of the following assembly language instruction. The bus
lock is released only when the instruction has been executed. Therefore, read-modify-write
instructions prefixed by 1ock are atomic even in a multiprocessor environment.

The Pentium allows a lock prefix on 18 different instructions. Moreover, some kind of

instructions like xchg do not require the lock prefix because the bus lock is implicitly
enforced by the CPU's control unit.

288

Understanding the Linux Kernel

11.3.4 Distributed Interrupt Handling

Being able to deliver interrupts to any CPU in the system is crucial for fully exploiting the
parallelism of the SMP architecture. For that reason, Intel has introduced a new component
designated as the /O APIC (I/O Advanced Programmable Interrupt Controller), which
replaces the old 8259A Programmable Interrupt Controller.

Figure 11-2 illustrates in a schematic way the structure of a multi-APIC system. Each CPU
chip has its own integrated Local APIC. An Interrupt Controller Communication (ICC) bus
connects a frontend I/0 APIC to the Local APICs. The IRQ lines coming from the devices are
connected to the I/O APIC, which therefore acts as a router with respect to the Local APICs.

Figure 11-2. APIC system

CPUO CPLT
] Local
— IRl
¥ ¥
ICC bus
'
v
1/0
APIC
Extarnal
IR0z

Each Local APIC has 32-bit registers, an internal clock, a timer device, 240 different interrupt
vectors, and two additional IRQ lines reserved for local interrupts, which are typically used to
reset the system.

The I/O APIC consists of a set of IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers, and a message unit for sending and receiving APIC messages over
the ICC bus. Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number:
each entry in the Redirection Table can be individually programmed to indicate the interrupt
vector and priority, the destination processor, and how the processor is selected. The
information in the Redirection Table is used to translate any external IRQ signal into a
message to one or more Local APIC units via the ICC bus.

Interrupt requests can be distributed among the available CPUs in two ways:
Fixed mode

The IRQ signal is delivered to the Local APICs listed in the corresponding Redirection
Table entry.

Lowest-priority mode

The IRQ signal is delivered to the Local APIC of the processor which is executing the
process with the lowest priority. Any Local APIC has a programmable task priority

289

Understanding the Linux Kernel

register, which contains the priority of the currently running process. It must be
modified by the kernel at each task switch.

Another important feature of the APIC allows CPUs to generate interprocessor interrupts .
When a CPU wishes to send an interrupt to another CPU, it stores the interrupt vector and the
identifier of the target's Local APIC in the Interrupt Command Register of its own Local
APIC. A message is then sent via the ICC bus to the target's Local APIC, which therefore
issues a corresponding interrupt to its own CPU.

We'll discuss in Section 11.4.7 later in this chapter how the SMP version of Linux makes use
of these interprocessor interrupts.

11.4 The Linux/SMP Kernel

Linux 2.2 support for SMP is compliant with Version 1.4 of the Intel MultiProcessor
Specification, which establishes a multiprocessor platform interface standard while
maintaining full PC/AT binary compatibility.

As we have seen in Section 11.2.1 earlier in this chapter, race conditions are relatively limited
in Linux on a uniprocessor system, so interrupt disabling and kernel semaphores can be used
to protect data structures that are asynchronously accessed by interrupt or exception handlers.
In a multiprocessor system, however, things are much more complicated: several processes
may be running in Kernel Mode, and therefore data structure corruption can occur even if no
running process is preempted. The usual way to synchronize access to SMP kernel data
structures is by means of semaphores and spin locks (see Section 11.4.2).

Before discussing in detail how Linux 2.2 serializes the accesses to kernel data structures in
multiprocessor systems, let us make a brief digression to how this goal was achieved when
Linux first introduced SMP support. In order to facilitate the transition from a uniprocessor
kernel to a multiprocessor one, the old 2.0 version of Linux/SMP adopted this drastic rule:

At any given instant, at most one processor is allowed to access the kernel data structures and
to handle the interrupts.

This rule dictates that each processor wishing to access the kernel data structures must get a
global lock. As long as it holds the lock, it has exclusive access to all kernel data structures.
Of course, since the processor will also handle any incoming interrupts, the data structures
that are asynchronously accessed by interrupt and exception handlers must still be protected
with interrupt disabling and kernel semaphores.

Although very simple, this approach has a serious drawback: processes spend a significant
fraction of their computing time in Kernel Mode, therefore this rule may force I/O-bound
processes to be sequentially executed. The situation was far from satisfactory, hence the rule
was not strictly enforced in the next stable version of Linux/SMP (2.2). Instead, many locks
were added, each of which grants exclusive access to single kernel data structure or a single
critical region. Therefore, several processes are allowed to concurrently run in Kernel Mode
as long as each of them accesses different data structures protected by locks. However, a
global kernel lock is still present (see Section 11.4.6 later in this chapter), since not all kernel
data structures have been protected with specific locks.

290

Understanding the Linux Kernel

Figure 11-3 illustrates the more flexible Linux 2.2 system. Five kernel control paths—PO0, P1,
P2, P3, and P4—are trying to access two critical regions—C1 and C2. Kernel control path PO
is inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2, while
P3 is waiting to enter it. Notice that PO and P1 could run concurrently. The lock for critical
region C3 is open since no kernel control path needs to enter it.

Figure 11-3. Protecting critical regions with several locks

i '

[:1 P Kernel control path
~ J
i ™
CE C, Critical region
- J

11.4.1 Main SMP Data Structures

In order to handle several CPUs, the kernel must be able to represent the activity that takes
place on each of them. In this section we'll consider some significant kernel data structures
that have been added to allow multiprocessing.

The most important information is what process is currently running on each CPU, but this
information actually does not require a new CPU-specific data structure. Instead, each CPU
retrieves the current process through the same current macro defined for uniprocessor
systems: since it extracts the process descriptor address from the esp stack pointer register, it
yields a value that is CPU-dependent.

A first group of new CPU-specific variables refers to the SMP architecture. Linux/SMP has a
hard-wired limit on the number of CPUs, which is defined by the Nr_cpus macro (usually
32).

During the initialization phase, Linux running on the booting CPU probes whether other
CPUs exist (some CPU slots of an SMP board may be empty). As a result, both a counter and
a bitmap are initialized: max cpus stores the number of existing CPUs while
cpu present map specifies which slots contain a CPU.

An existing CPU is not necessarily activated, that is, initialized and recognized by the kernel.
Another pair of variables, a counter called smp num cpus and a bitmap called
cpu_online map, keeps track of the activated CPUs. If some CPU cannot be properly
initialized, the kernel clears the corresponding bit in cpu_online map.

Each active CPU is identified in Linux by a sequential logical number called CPU ID, which

does not necessarily coincide with the CPU slot number. The cpu number map and
_cpu_logical map arrays allow conversion between CPU IDs and CPU slot numbers.

291

Understanding the Linux Kernel

The process descriptor includes the following fields representing the relationships between the
process and a processor:

has cpu

Flag denoting whether the process is currently running (value 1) or not running (value
0)

processor

Logical number of the CPU that is running the process, or No_proc 1D if the process
is not running

The smp processor id() macro returns the value of current->processor, that is, the
logical number of the CPU that executes the process.

When a new process is created by fork(), the has cpu and processor fields of its
descriptor are initialized respectively to and to the value No _Proc 1D. When the schedule ()
function selects a new process to run, it sets its has cpu field to 1 and its processor field to
the logical number of the CPU that is doing the task switch. The corresponding fields of the
process being replaced are set to and to NO PROC_ 1D, respectively.

During system initialization smp _num cpus different swapper processes are created. Each of
them has a PID equal to and is bound to a specific CPU. As usual, a swapper process is
executed only when the corresponding CPU is idle.

11.4.2 Spin Locks

Spin locks are a locking mechanism designed to work in a multiprocessing environment. They
are similar to the kernel semaphores described earlier, except that when a process finds the
lock closed by another process, it "spins" around repeatedly, executing a tight instruction
loop.

Of course, spin locks would be useless in a uniprocessor environment, since the waiting
process would keep running, and therefore the process that is holding the lock would not have
any chance to release it. In a multiprocessing environment, however, spin locks are much
more convenient, since their overhead is very small. In other words, a context switch takes a
significant amount of time, so it is more efficient for each process to keep its own CPU and
simply spin while waiting for a resource.

Each spin lock is represented by a spinlock t structure consisting of a single 1ock field; the
values and 1 correspond, respectively, to the "unlocked" and the "locked" state. The
SPIN LOCK UNLOCKED macro initializes a spin lock to 0.

The functions that operate on spin locks are based on atomic read/modify/write operations;

this ensures that the spin lock will be properly updated by a process running on a CPU even if
other processes running on different CPUs attempt to modify the spin lock at the same time."

13 Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent access.

292

Understanding the Linux Kernel

The spin lock macro is used to acquire a spin lock. It takes the address s1p of the spin lock
as its parameter and yields essentially the following code:

1: lock; btsl $0, slp
jnc 3f

2: testb $1,slp
jne 2b
Jmp 1b

The bts1 atomic instruction copies into the carry flag the value of bit in *s1p, then sets the
bit. A test is then performed on the carry flag: if it is null, it means that the spin lock was
unlocked and hence normal execution continues at label 3 (the £ suffix denotes the fact that
the label is a "forward" one: it appear in a later line of the program). Otherwise, the tight loop
at label 2 (the b suffix denotes a "backward" label) is executed until the spin lock assumes the
value 0. Then execution restarts from label 1, since it would be unsafe to proceed without
checking whether another processor has grabbed the lock."

1“I The actual implementation of spi n_l ocK is slightly more complicated. The code at label 2, which is executed only if the spin lock is busy, is
included in an auxiliary section so that in the most frequent case (free spin lock) the hardware cache is not filled with code that won't be executed. In
our discussion we omit these optimization details.

The spin unlock macro releases a previously acquired spin lock; it essentially yields the
following code:

lock; btrl $0, slp

The btrl atomic assembly language instruction clears the bit of the spin lock *s1p.

Several other macros have been introduced to handle spin locks; their definitions on a
multiprocessor system are described in Table 11-3 (see Table 11-2 for their definitions on a

uniprocessor system).

Table 11-3. Spin Lock Macros on a Multiprocessor System

Macro Description
spin lock init (slp) Set slp->lockto0
spin trylock (slp) Set slp->lock to 1, return 1 if got the lock, otherwise
spin unlock wait (slp) Cycle until s1p->1ock becomes 0
spin_lock irqg(slp) ~cli();spin lock(slp)
spin _unlock irqg(slp) spin unlock(slp); sti()
~_save flags(flags); cli();

spin_lock irgsave (slp, flags) spin_lock(slp)

spin_unlock irqgrestore(slp,flags) spin unlock(slp); restore flags(flags)

11.4.3 Read/Write Spin Locks

Read/write spin locks have been introduced to increase the amount of concurrency inside the
kernel. They allow several kernel control paths to simultaneously read the same data structure,
as long as no kernel control path modifies it. If a kernel control path wishes to write to the
structure, it must acquire the write version of the read/write lock, which grants exclusive

293

Understanding the Linux Kernel

access to the resource. Of course, allowing concurrent reads on data structures improves
system performance.

Figure 11-4 illustrates two critical regions, C1 and C2, protected by read/write locks. Kernel
control paths RO and R1 are reading the data structures in C1 at the same time, while WO is
waiting to acquire the lock for writing. Kernel control path W1 is writing the data structures in
C2, while both R2 and W2 are waiting to acquire the lock for reading and writing,
respectively.

Figure 11-4. Read/write spin locks

g N
@ R 1 H“:Heaﬁer kermel control path
\ J

W Writer kernel control path
7 5 "
W) W) ¢, |~

L A

Each read/write spin lock is a rwlock t structure; its lock field is a 32-bit counter that
represents the number of kernel control paths currently reading the protected data structure.
The highest-order bit of the 1ock field is the write lock: it is set when a kernel control path is
modifying the data structure.” The Rw LOCK UNLOCKED macro initializes the lock field of a
read/write spin lock to 0. The read lock macro, applied to the address rwlp of a read/write
spin lock, essentially yields the following code:

BTt would also be set if there are more than 2,147,483,647 readers: of course, such a huge limit is never reached.

1: lock; incl rwlp
jns 3f
lock; decl rwlp
2: cmpl $0, rwlp
Jjs 2b
Jmp 1lb

After increasing by 1 the value of rwlp->lock, the function checks whether the field has a
negative value—that is, if it is already locked for writing. If not, execution continues at label
3. Otherwise, the macro restores the previous value and spins around until the highest-order
bit becomes 0; then it starts back from the beginning.

The read unlock function, applied to the address rwlp of a read/write spin lock, yields the
following assembly language instruction:

lock; decl rwlp

The write lock function applied to the address rwip of a read/write spin lock yields the
following instructions:

294

Understanding the Linux Kernel

1: lock; btsl $31, rwlp
jc 2f
testl $Ox7fffffff, rwlp
je 3f
lock; btrl $31, rwlp
2: cmp $0, rwlp
jne 2b
jmp 1b

The highest-order bit of rwip->lock is set. If its old value was 1, the write lock is already
busy, and therefore the execution continues at label 2. Here the macro executes a tight loop
waiting for the 1ock field to become (meaning that the write lock was released). If the old
value of the highest-order bit was (meaning there is no write lock), the macro checks whether
there are readers. If so, the write lock is released and the macro waits until 1ock becomes 0;
otherwise, the CPU has the exclusive access to the resource, so execution continues at label 3.

Finally, the write unlock macro, applied to the address rwlp of a read/write spin lock,
yields the following instruction:

lock; btrl $31, rwlp
Table 11-4 lists the interrupt-safe versions of the macros described in this section.

Table 11-4. Read/Write Spin Lock Macros on a Multiprocessor System

Function Description

read lock irg(rwlp) ~cli(); read lock(rwlp)
read unlock irg(rwlp) read unlock(rwlp); = sti()
write lock irqg(rwlp) ~cli(); write lock(rwlp)
write unlock irg(rwlp) write lock(rwlp); = sti()

~_save flags(flags); _ cli();

read lock irgsave (rwlp, flags) read lock (rwlp)

read unlock(rwlp);

read unlock irgrestore(rwlp, flag) restore flags (flags)

~_save flags(flags); _ cli();

write lock irgsave (rwlp, flags) write lock (rwlp)

write_unlock(rwlp); _ restore_

write unlock irqrestore (rwlp, flags) flags (flags)

11.4.4 Linux/SMP Interrupt Handling

We stated previously that, on Linux/SMP, interrupts are broadcast by the I/O APIC to all
Local APICs; that is, to all CPUs. This means that all CPUs having the 1r flags set will
receive the same interrupt. However, only one CPU must handle the interrupt, although all of
them must acknowledge to their Local APICs they received it.

In order to do this, each IRQ main descriptor (see Section 4.6.2 in Chapter 4) includes an TRQ
_INPROGRESS flag. If it is set, the corresponding interrupt handler is already running on some
CPU. Therefore, when each CPU acknowledges to its Local APIC that the interrupt was
accepted, it checks whether the flag is already set. If it is, the CPU does not handle the
interrupt and exits back to what it was running; otherwise, the CPU sets the flag and starts
executing the interrupt handler.

295

Understanding the Linux Kernel

Of course, accesses to the IRQ main descriptor must be mutually exclusive; therefore, each
CPU always acquires the irq controller lock spin lock before checking the value of TrQ
_INPROGRESS. The same lock also prevents several CPUs from fiddling with the interrupt
controller simultaneously; this precaution is necessary for old SMP machines that have just
one external interrupt controller shared by all CPUs.

The Tro INPROGRESS flag ensures that each specific interrupt handler is atomic with respect
to itself among all CPUs. However, several CPUs may concurrently handle different
interrupts. The global irg count variable contains the number of interrupt handlers that
are being handled at each given instant on all CPUs. This value could be greater than the
number of CPUs, since any interrupt handler can be interrupted by another interrupt handler
of a different kind. Similarly, the 1ocal irg count array stores the number of interrupt
handlers being handled on each CPU.

As we have already seen, the kernel must often disable interrupts in order to prevent
corruption of a kernel data structure that may be accessed by interrupt handlers. Of course,
local CPU interrupt disabling provided by the c1i() macro is not enough, since it does
not prevent some other CPU from accessing the kernel data structure. The usual solution
consists of acquiring a spin lock with an IRQ-safe macro (like spin lock irgsave).

In a few cases, however, interrupts should be disabled on all CPUs. In order to achieve such a
result, the kernel does not clear the 1F flags on all CPUs; instead it uses the global irg
_lock spin lock to delay the execution of the interrupt handlers. The global irg holder
variable contains the logical identifier of the CPU that is holding the lock. The get irglock(
) function acquires the spin lock and waits for the termination of all interrupt handlers
running on the other CPUs. Moreover, if the caller is not a bottom half itself, the function
waits for the termination of all bottom halves running on the other CPUs. No further interrupt
handler on other CPUs will start running until the lock is released by invoking

release irqglock().

Global interrupt disabling is performed by the c1i() macro, which just invokes the
__global cli() function:

__save flags(flags);

if (! (flags & (1 << 9))) /* testing IF flag */
return;

Cpu = smp processor_id();

_cli()

if (!local irg count[cpu]l)
return;

get irglock(cpu);

Notice that global interrupt disabling is not performed when the CPU is running with local
interrupts already disabled or when the CPU is running an interrupt handler itself.

1% Deadlock conditions can easily occur if such constraints are removed. For instance, suppose that C11 () could "promote" a local interrupt
disabling to a global one. Consider a kernel control path that is executing a critical region protected by some spin lock and with local interrupt
disabled. The critical region can legally include a C11 () macro, since it could invoke a function that is also accessed with local interrupts
enabled. The ge t_i rglock () function starts waiting for interrupt handlers to complete on the other CPUs. However, an interrupt handler in

another kernel control path could be stuck on the spin lock that protects the critical region, waiting for the first kernel control path to release it:
deadlock!

296

Understanding the Linux Kernel

Global interrupt enabling is performed by the sti() macro, which just invokes the
__global sti() function:

Cpu = smp processor_id();
if (!local irqg count[cpu])
release irglock(cpu) ;
_sti();
Linux also provides SMP versions of the =~ save flags and _ restore flags macros,

which are called save flags and restore flags: they save and reload, respectively,
information controlling the interrupt handling for the executing CPU. As illustrated in Figure
11-5, save flags yields an integer value that depends on three conditions; restore flags
performs actions based on the value yielded by save flags.

Figure 11-5. Actions performed by save_ flags() and restore_ flags()

In interrupt
handler?

N YES

Halding Local interrupts
global_irg_lock? enabled?

YES NO NO YES

Local interrupls
enabled?

YES NO

© @

save_flags() valie restore_flags() action

0 __glebal_elil)
1 __glokal_stil)
2 clif)
3 stif]
Finally, the synchronize irg() function is called when a kernel control path wishes to

synchronize itself with all interrupt handlers:

if (atomic_ read(&global irg count)) {
cli();
sti();

By invoking c1i (), the function acquires the global irg lock spin lock and then waits
until all executing interrupt handlers terminate; once this is done, it reenables interrupts. The
synchronize irg() function is usually called by device drivers when they want to make
sure that all activities carried on by interrupt handlers are over.

297

Understanding the Linux Kernel

11.4.5 Linux/SMP Bottom Half Handling

Bottom halves are handled much like interrupt handlers, but no bottom half can ever run
concurrently with other bottom halves. Moreover, disabling interrupts also disables the
running of bottom halves. The global bh count variable is a flag that specifies whether a
bottom half is currently active on some CPU. The synchronize bh() function is called
when a kernel control path must wait for the termination of a currently executing bottom half.

The global bh lock variable is used to disable the execution of bottom halves on all CPUs;
in other words, it ensures that some critical region is atomic with respect to all bottom halves
on all CPUs.

The start bh atomic() function, which locks out bottom halves, consists of:

atomic_inc(&global bh lock);
synchronize bh();

The complementary end bh atomic() function is used to reenable the bottom halves by
executing:

atomic_dec(&global bh lock);
Therefore, the do bottom half() function starts bottom halves only if:

e No other bottom half is currently running on any CPU (global bh count is null).
e The bottom halves are not disabled (global bh lock is null).

e No interrupt handler is running on any CPU (global irqg count is null).

e Interrupts are globally enabled (global irqg lockis free).

Serial execution of bottom halves is inherited from previous versions of Linux. Allowing
bottom halves to be executed concurrently would require a full revision of all device drivers
that use them.

11.4.6 Global and Local Kernel Locks

As we have already mentioned, in the Version 2.2 of Linux/SMP a global kernel lock named
kernel flag is still widely used. In Version 2.0, this spin lock was relatively crude, ensuring
simply that only one processor at a time could run in Kernel Mode. The 2.2 kernel is
considerably more flexible and no longer relies on a single spin lock; however, it is still used
to protect a very large number of kernel data structures, namely:

e All data structures related to the Virtual Filesystem and to file handling (see
Chapter 12)

e Most kernel data structures related to networking

o All kernel data structures for interprocess communication (IPC); see Chapter 18

o Several less important kernel data structures

The global kernel lock still exists because introducing new locks is not trivial: both deadlocks
and race conditions must be carefully avoided.

298

Understanding the Linux Kernel

All system call service routines related to files, including the ones related to file memory
mapping, must acquire the global kernel lock before starting their operations and must release
it when they terminate. Therefore, a very large number of system calls cannot concurrently
execute on Linux/SMP.

Every process descriptor includes a lock depth field, which allows the same process to
acquire the global kernel lock several times. Therefore, two consecutive requests for it will
not hang the processor (as for normal spin locks). If the process does not want the lock, the
field has the value -1. If the process wants it, the field value plus 1 specifies how many times
the lock has been requested. The 1ock depth field is crucial for interrupt handlers, exception
handlers, and bottom halves. Without it, any asynchronous function that tries to get the global
kernel lock could generate a deadlock if the current process already owns the lock.

The 1ock kernel() and unlock kernel () functions are used to get and release the global
kernel lock. The former function is equivalent to:

if (++current->lock depth == 0)
spin_ lock(&kernel flag);

while the latter is equivalent to:

if (--current->lock depth < 0)
spin unlock (&kernel flag);

Notice that the if statements of the 1ock kernel() and unlock kernel() functions need
not be executed atomically because lock depth is not a global variable: each CPU addresses
a field of its own current process descriptor. Local interrupts inside the if statements do not
induce race conditions either: even if the new kernel control path invokes lock kernel(), it
must release the global kernel lock before terminating.

Although the global kernel lock still protects a large number of kernel data structures, work is

in progress to reduce that number by introducing many additional smaller locks. Table 11-5
lists some kernel data structures that are already protected by specific (read/write) spin locks.

299

Understanding the Linux Kernel

Table 11-5. Various Kernel Spin Locks

Spin Lock

console lock

dma spin_ lock

inode lock

io request lock

kbd controller lock
page alloc lock
runqueue_lock
semaphore wake lock
tasklist lock (rw)
taskslot lock
timerlist lock
tqueue lock

uidhash lock
waitqueue lock (rw)

xtime lock (rw)

Protected Resource
Console

DMA's data structures
Inode's data structures
Block IO subsystem
Keyboard

Buddy system's data structures
Runqueue list
Semaphores's waking fields
Process list

List of free entries in task
Dynamic timer lists

Task queues' lists

UID hash table

Wait queues' lists

xtime and lost ticks

As already explained, finer granularity in the lock mechanism enhances system performance,
since less serialization is enforced among the processors. For instance, a kernel control path
that accesses the runqueue list is allowed to concurrently run with another kernel control path
that is servicing a file-related system call. Similarly, using a read/write lock, two kernel
control paths may concurrently access the process list as long as neither of them wants to

modify it.

11.4.7 Interprocessor Interrupts

Interprocessor interrupts (in short, IPIs) are part of the SMP architecture and are actively used
by Linux in order to exchange messages among CPUs. Linux/SMP provides the following

functions to handle them:

send IPI all()

Sends an IPI to all CPUs (including the sender)

send IPI allbutself()

Sends an IPI to all CPUs except the sender

send IPI self()

Sends an IPI to the sender CPU

send IPI single()

Sends an IPI to a single, specified CPU

300

Understanding the Linux Kernel

Depending on the I/O APIC configuration, the kernel may sometimes need to invoke the
send IPI self() function. The other functions are used to implement interprocessor
messages.

Linux/SMP recognizes five kinds of messages, which are interpreted by the receiving CPU as
different interrupt vectors:

RESCHEDULE_VECTOR (0x30)

Sent to a single CPU in order to force the execution of the schedule () function on
it. The corresponding Interrupt Service Routine (ISR) is named
smp reschedule interrupt(). This message is used by reschedule idle() and
by send sig info() to preempt the running process on a CPU.

INVALIDATE TLB VECTOR (0x31)

Sent to all CPUs but the sender, forcing them to invalidate their translation lookaside
buffers. The corresponding ISR, named smp invalidate interrupt(), invokes
the flush tlb() function.” This message is used whenever the kernel modifies
a page table of some process.

7' A subtle concurrency problem occurs when trying to flush the translation lookaside buffers of all processors while some of them run with the
interrupts disabled. Therefore, while spinning in tight loops, the kernel control paths keep checking whether some CPU has sent an "invalidate TLB"
message.

STOP CPU VECTOR (0x40)

Sent to all CPUs but the sender, forcing the receiving CPUs to halt. The corresponding
Interrupt Service Routine is named smp stop cpu interrupt (). This message is
used only when the kernel detects an unrecoverable internal error.

LOCAL TIMER VECTOR (0x41)

A timer interrupt automatically sent to all CPUs by the I/O APIC. The corresponding
Interrupt Service Routine is named smp apic timer interrupt().

CALL FUNCTION VECTOR (0x50)

Sent to all CPUs but the sender, forcing those CPUs to run a function passed by the
sender. The corresponding ISR is named smp call function interrupt(). A
typical use of this message is to force CPUs to synchronize and to reload the state of
the Memory Type Range Registers (MTRRs). Starting with the Pentium Pro model,
Intel microprocessors include these additional registers to easily customize cache
operations. Linux uses these registers to disable the hardware cache for the addresses
mapping the frame buffer of a PCI/AGP graphic card while maintaining the "write
combining" mode of operation: the paging unit combines write transfers into larger
chunks before copying them into the frame buffer.

301

Understanding the Linux Kernel

11.5 Anticipating Linux 2.4

Linux 2.4 changes a bit the way semaphores are implemented. Essentially, they are now more
efficient because, when a semaphore is released, usually only one sleeping process is awoken.

As already mentioned, Linux 2.4 enhances support for high-end SMP architectures. It is now
possible to make use of multiple external I/O APIC chips, and all the code that handles
interprocessor interrupts (IPIs) has been rewritten.

However, the most important change is that Linux 2.4 is much more multithreaded than Linux
2.2. In other words, it makes use of many new spin locks and reduces the role of the global
kernel lock, particularly in the networking code. Linux 2.4 is therefore much more efficient on
SMP architectures and performs much better as a high-end server.

302

Understanding the Linux Kernel

Chapter 12. The Virtual Filesystem

One of Linux's keys to success is its ability to coexist comfortably with other systems. You
can transparently mount disks or partitions that host file formats used by Windows, other
Unix systems, or even systems with tiny market shares like the Amiga. Linux manages to
support multiple disk types in the same way other Unix variants do, through a concept called
the Virtual Filesystem.

The idea behind the Virtual Filesystem is that the internal objects representing files and
filesystems in kernel memory embody a wide range of information; there is a field or function
to support any operation provided by any real filesystem supported by Linux. For each read,
write, or other function called, the kernel substitutes the actual function that supports a native
Linux filesystem, the NT filesystem, or whatever other filesystem the file is on.

This chapter discusses the aims, the structure, and the implementation of Linux's Virtual
Filesystem. It focuses on three of the five standard Unix file types, namely, regular files,
directories, and symbolic links. Device files will be covered in Chapter 13, while pipes will be
discussed in Chapter 18. To show how a real filesystem works, Chapter 17, covers the Second
Extended Filesystem that appears on nearly all Linux systems.

12.1 The Role of the VFS

The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel software
layer that handles all system calls related to a standard Unix filesystem. Its main strength is
providing a common interface to several kinds of filesystems.

For instance, let us assume that a user issues the shell command:

$ cp /floppy/TEST /tmp/test

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Ext2 (Second
Extended Filesystem) directory. As shown in Figure 12-1 (a), the VFS is an abstraction layer
between the application program and the filesystem implementations. Therefore, the cp
program is not required to know the filesystem types of /floppy/TEST and /tmp/test. Instead,
cp interacts with the VFS by means of generic system calls well known to anyone who has
done Unix programming (see also Section 1.5.6 in Chapter 1); the code executed by cp is
shown in Figure 12-1 (b).

303

Understanding the Linux Kernel

Figure 12-1. VFS role in a simple file copy operation
cp

inf = open{"/floppy/TEST", O_RDONLY, 0O);
eutl = open(®/tmp/test”,

O_WROMLY |O_CREATE |O_TRUMC, 0800} ;
VFS o 1

1 = read(inf, buf, 409&);
writef{outf, buf, 1);

} while (1};:

cloge(outf};

close(inf);

Ext2 MS-DDS

Simpdtest JLloppy/TEST

(a) (b)
Filesystems supported by the VFS may be grouped into three main classes:
Disk-based filesystems

Manage the memory space available in a local disk partition. The official Linux disk-
based filesystem is Ext2. Other well-known disk-based filesystems supported by the
VFS are:

o Filesystems for Unix variants like System V and BSD

e Microsoft filesystems like MS-DOS, VFAT (Windows 98), and NTFS
(Windows NT)

e IS0O9660 CD-ROM filesystem (formerly High Sierra Filesystem)

e Other proprietary filesystems like HPFS (IBM's 0OS/2), HFS (Apple's
Macintosh), FFS (Amiga's Fast Filesystem), and ADFS (Acorn's machines)

Network filesystems

Allow easy access to files included in filesystems belonging to other networked
computers. Some well-known network filesystems supported by the VFS are NFS,
Coda, AFS (Andrew's filesystem), SMB (Microsoft's Windows and IBM's OS/2 LAN
Manager), and NCP (Novell's NetWare Core Protocol).

Special filesystems (also called virtual filesystems)
Do not manage disk space. Linux's /proc filesystem provides a simple interface that
allows users to access the contents of some kernel data structures. The /dev/pts
filesystem is used for pseudo-terminal support as described in the Open Group's

Unix98 standard.

In this book we describe only the Ext2 filesystem, which is the topic of Chapter 17; the other
filesystems will not be covered for lack of space.

304

Understanding the Linux Kernel

As mentioned in Section 1.5 in Chapter 1, Unix directories build a tree whose root is the /
directory. The root directory is contained in the root filesystem, which in Linux is usually of
type Ext2. All other filesystems can be "mounted" on subdirectories of the root filesystem.'"

1"'When a filesystem is mounted on some directory, the contents of the directory in the parent filesystem are no longer accessible, since any pathname
including the mount point will refer to the mounted filesystem. However, the original directory's content will show up again when the filesystem is
unmounted. This somewhat surprising feature of Unix filesystems is used by system administrators to hide files; they simply mount a filesystem on the
directory containing the files to be hidden.

A disk-based filesystem is usually stored in a hardware block device like a hard disk, a
floppy, or a CD-ROM. A useful feature of Linux's VFS allows it to handle virtual block
devices like /dev/loop(, which may be used to mount filesystems stored in regular files. As a
possible application, a user may protect his own private filesystem by storing an encrypted
version of it in a regular file.

The first Virtual Filesystem was included in Sun Microsystems's SunOS in 1986. Since then,
most Unix filesystems include a VFS. Linux's VFS, however, supports the widest range of
filesystems.

12.1.1 The Common File Model

The key idea behind the VFS consists of introducing a common file model capable of
representing all supported filesystems. This model strictly mirrors the file model provided by
the traditional Unix filesystem. This is not surprising, since Linux wants to run its native
filesystem with minimum overhead. However, each specific filesystem implementation must
translate its physical organization into the VFS's common file model.

For instance, in the common file model each directory is regarded as a normal file, which
contains a list of files and other directories. However, several non-Unix disk-based
filesystems make use of a File Allocation Table (FAT), which stores the position of each file
in the directory tree: in these filesystems, directories are not files. In order to stick to the
VFS's common file model, the Linux implementations of such FAT-based filesystems must
be able to construct on the fly, when needed, the files corresponding to the directories. Such
files exist only as objects in kernel memory.

More essentially, the Linux kernel cannot hardcode a particular function to handle an
operation such as read () or ioctl(). Instead, it must use a pointer for each operation; the
pointer is made to point to the proper function for the particular filesystem being accessed.

Let's illustrate this concept by showing how the read() shown in Figure 12-1 would be
translated by the kernel into a call specific to the MS-DOS filesystem. The application's call
to read () makes the kernel invoke sys read(), just like any other system call. The file is
represented by a file data structure in kernel memory, as we shall see later in the chapter.
This data structure contains a field called £ op that contains pointers to functions specific to
MS-DOS files, including a function that reads a file. sys read() finds the pointer to this
function and invokes it. Thus, the application's read () is turned into the rather indirect call:

file->f op->read(...);

Similarly, the write() operation triggers the execution of a proper Ext2 write function
associated with the output file. In short, the kernel is responsible for assigning the right set of

305

Understanding the Linux Kernel

pointers to the £i1le variable associated with each open file, then for invoking the call specific
to each filesystem that the £ op field points to.

One can think of the common file model as object-oriented, where an object is a software
construct that defines both a data structure and the methods that operate on it. For reasons of
efficiency, Linux is not coded in an object-oriented language like C++. Objects are thus
implemented as data structures with some fields pointing to functions that correspond to the
object's methods.

The common file model consists of the following object types:
The superblock object

Stores information concerning a mounted filesystem. For disk-based filesystems, this
object usually corresponds to a filesystem control block stored on disk.

The inode object

Stores general information about a specific file. For disk-based filesystems, this object
usually corresponds to a file control block stored on disk. Each inode object is
associated with an inode number, which uniquely identifies the file within the
filesystem.

The file object

Stores information about the interaction between an open file and a process. This
information exists only in kernel memory during the period each process accesses a
file.

The dentry object

Stores information about the linking of a directory entry with the corresponding file.
Each disk-based filesystem stores this information in its own particular way on disk.

Figure 12-2 illustrates with a simple example how processes interact with files. Three
different processes have opened the same file, two of them using the same hard link. In this
case, each of the three processes makes use of its own file object, while only two dentry
objects are required, one for each hard link. Both dentry objects refer to the same inode
object, which identifies the superblock object and, together with the latter, the common disk
file.

306

Understanding the Linux Kernel

Figure 12-2. Interaction between processes and VFS objects

disk file Superblock inode
object abject

[
o dentry cache P
Process 1 —h(File object)— I A "
Process 2 -—l-(File object)— - =i dentry dentry
‘ object object
1
Process 2 -—I-(File object }— - - - _4 [
Lo o D |
— fd
- f_dentry
e d_inode

— 1_sb

Besides providing a common interface to all filesystem implementations, the VFS has another
important role related to system performance. The most recently used dentry objects are
contained in a disk cache named the dentry cache, which speeds up the translation from a file
pathname to the inode of the last pathname component.

Generally speaking, a disk cache is a software mechanism that allows the kernel to keep in
RAM some information that is normally stored on a disk, so that further accesses to that data
can be quickly satisfied without a slow access to the disk itself.” Beside the dentry cache,
Linux uses other disk caches, like the buffer cache and the page cache, which will be
described in forthcoming chapters.

12l Notice how a disk cache differs from a hardware cache or a memory cache, neither of which has anything to do with disks or other devices. A
hardware cache is a fast static RAM that speeds up requests directed to the slower dynamic RAM (see Section 2.4.6 in Chapter 2). A memory cache is
a software mechanism introduced to bypass the Kernel Memory Allocator (see Section 6.2.1 in Chapter 6).

12.1.2 System Calls Handled by the VFS

Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files, directories,
and symbolic links. A few other system calls handled by the VFS, such as ioperm(),
ioctl(), pipe(), and mknod(), refer to device files and pipes and hence will be
discussed in later chapters. A last group of system calls handled by the VFS, such as socket (
), connect (), bind(), and protocols(), refer to sockets and are used to implement
networking; they will not be covered in this book. Some of the kernel service routines that
correspond to the system calls listed in Table 12-1 are discussed either in this chapter or in
Chapter 17.

307

Understanding the Linux Kernel

Table 12-1. Some System Calls Handled by the VFS

System Call Name Description

mount () umount () Mount/Unmount filesystems
sysfs () Get filesystem information
statfs() fstatfs() ustat() Get filesystem statistics
chroot () Change root directory
chdir() fchdir() getcwd() Manipulate current directory
mkdir() rmdir() Create and destroy directories
getdents() readdir() link() unlink() rename() Manipulate directory entries
readlink() symlink() Manipulate soft links
chown() fchown() lchown() Modify file owner

chmod () fchmod() utime() Modify file attributes
stat() fstat() lstat() access() Read file status

open() close() creat() umask() Open and close files

dup() dup2() fcntl() Manipulate file descriptors
select () poll() Asynchronous I/O notification
truncate() ftruncate() Change file size

lseek() 1llseek() Change file pointer

read() write() readv() writev() sendfile() File I/O operations

pread() pwrite() Seek file and access it
mmap () munmap () File memory mapping
fdatasync() fsync() sync() msync() Synchronize file data
flock() Manipulate file lock

We said earlier that the VFS is a layer between application programs and specific filesystems.
However, in some cases a file operation can be performed by the VFS itself, without invoking
a lower-level procedure. For instance, when a process closes an open file, the file on disk
doesn't usually need to be touched, and hence the VFS simply releases the corresponding file
object. Similarly, when the 1seek () system call modifies a file pointer, which is an attribute
related to the interaction between an opened file and a process, the VFS needs to modify only
the corresponding file object without accessing the file on disk and therefore does not have to
invoke a specific filesystem procedure. In some sense, the VFS could be considered as a
"generic" filesystem that relies, when necessary, on specific ones.

12.2 VFS Data Structures

Each VFS object is stored in a suitable data structure, which includes both the object
attributes and a pointer to a table of object methods. The kernel may dynamically modify the
methods of the object, and hence it may install specialized behavior for the object.
The following sections explain the VFS objects and their interrelationships in detail.

12.2.1 Superblock Objects

A superblock object consists of a super block structure whose fields are described in
Table 12-2.

308

Understanding the Linux Kernel

Table 12-2. The Fields of the Superblock Object

Type Field Description
struct list head s list Pointers for superblock list
kdev t s dev Device identifier

unsigned long

unsigned char

s _blocksize

s _blocksize bits

Block size in bytes
Block size in number of bits

unsigned char s lock Lock flag

unsigned char s rd only Read-only flag

unsigned char s dirt Modified (dirty) flag

struct file system type * s _type Filesystem type

struct super operations * s_op Superblock methods

struct dquot operations * dg_op Disk quota methods
unsigned long s _flags Mount flags

unsigned long s _magic Filesystem magic number
unsigned long s _time Time of last superblock change
struct dentry * s_root Dentry object of mount directory
struct wait queue * s _wait Mount wait queue

struct inode *

s_ibasket

Future development

short int s_ibasket count Future development

short int Future development
struct list head

union u

s _ibasket max
s dirty List of modified inodes
Specific filesystem information

All superblock objects (one per mounted filesystem) are linked together in a circular doubly
linked list. The addresses of the first and last elements of the list are stored in the next and
prev fields, respectively, of the s 1ist field in the super blocks variable. This field has the
data type struct list head, which is also found in the s dirty field of the superblock and
in a number of other places in the kernel; it consists simply of pointers to the next and
previous elements of a list. Thus, the s 1ist field of a superblock object includes the pointers
to the two adjacent superblock objects in the list. Figure 12-3 illustrates how the 1ist head
elements, next and prev, are embedded in the superblock object.

The last u union field includes superblock information that belongs to a specific filesystem;
for instance, as we shall see later in Chapter 17, if the superblock object refers to an Ext2
filesystem, the field stores an ext2 sb_info structure, which includes the disk allocation bit
masks and other data of no concern to the VFS common file model.

In general, data in the u field is duplicated in memory for reasons of efficiency. Any disk-
based filesystem needs to access and update its allocation bitmaps in order to allocate or
release disk blocks. The VFS allows these filesystems to act directly on the u union field of
the superblock in memory, without accessing the disk.

This approach leads to a new problem, however: the VFS superblock might end up no longer
synchronized with the corresponding superblock on disk. It is thus necessary to introduce an
s dirt flag, which specifies whether the superblock is dirty, that is, whether the data on the
disk must be updated. The lack of synchronization leads to the familiar problem of a
corrupted filesystem when a site's power goes down without giving the user the chance to shut
down a system cleanly. As we shall see in Section 14.1.5 in Chapter 14, Linux minimizes this
problem by periodically copying all dirty superblocks to disk.

309

Understanding the Linux Kernel

Figure 12-3. The superblock list

superblock superblock superblock

5_list 5_list 5_list
Supar_ .;‘:J.O-CIRS next next next
nexk ———— BIEV prev prev

prewv

—

The methods associated with a superblock are called superblock operations. They are
described by the super operations structure whose address is included in the s_op field.

Each specific filesystem can define its own superblock operations. When the VFS needs to
invoke one of them, say read inode (), it executes:

sb->s op->read_inode (inode) ;
where sb stores the address of the superblock object involved. The read inode field of the
super operations table contains the address of the suitable function, which is thus directly
invoked.
Let us briefly describe the superblock operations, which implement higher-level operations
like deleting files or mounting disks. They are listed in the order they appear in the
super operations table:
read inode (inode)
Fills the fields of the inode object whose address is passed as the parameter from the
data on disk; the i ino field of the inode object identifies the specific filesystem inode
on disk to be read.
write inode (inode)
Updates a filesystem inode with the contents of the inode object passed as the
parameter; the i ino field of the inode object identifies the filesystem inode on disk
that is concerned.
put inode (inode)
Releases the inode object whose address is passed as the parameter. As usual,
releasing an object does not necessarily mean freeing memory since other processes

may still use that object.

delete inode (inode)

Deletes the data blocks containing the file, the disk inode, and the VFS inode.

310

Understanding the Linux Kernel

notify change (dentry, iattr)

Changes some attributes of the inode according to the iattr parameter. If the
notify change field is nuLL, the VFS falls back on the write inode() method.

put super (super)

Releases the superblock object whose address is passed as the parameter (because the
corresponding filesystem is unmounted).

write super (super)
Updates a filesystem superblock with the contents of the object indicated.

statfs (super, buf, bufsize)

Returns statistics on a filesystem by filling the buf buffer.

remount fs(super, flags, data)

Remounts the filesystem with new options (invoked when a mount option must be
changed).

clear inode (inode)

Like put inode, but also releases all pages that contain data concerning the file that
corresponds to the indicated inode.

umount begin (super)

Interrupts a mount operation, because the corresponding unmount operation has been
started (used only by network filesystems).

The preceding methods are available to all possible filesystem types. However, only a subset
of them applies to each specific filesystem; the fields corresponding to unimplemented
methods are set to NULL. Notice that no read super method to read a superblock is defined:
how could the kernel invoke a method of an object yet to be read from disk? We'll find the
read_super method in another object describing the filesystem type (seelater Section 12.3).

12.2.2 Inode Objects

All information needed by the filesystem to handle a file is included in a data structure called
an inode. A filename is a casually assigned label that can be changed, but the inode is unique
to the file and remains the same as long as the file exists. An inode object in memory consists
of an inode structure whose fields are described in Table 12-3.

311

Type

struct list head
struct list head
struct list head

unsigned
unsigned
kdev_t
umode t
nlink t
uid t
gid t
kdev_t
off t
time t
time t
time t
unsigned

unsigned
unsigned

unsigned

struct semaphore

struct semaphore

struct
*

struct super block *
struct wait queue *
struct file lock *

struct vm _area struct *

long

int

long
long

long

long

inode_operationsi

struct page *

struct dquot **

unsigned
unsigned
unsigned
unsigned
int
unsigned
__u32

union

long
int
char

char

int

Field

i hash

i list

i dentry
i ino

i count
i dev

i mode

i nlink
i uid

i gid

i rdev

i size

i atime
i mtime
i ctime
i blksize
i blocks

i version

i nrpages

i sem

i atomic write

_op

i sb

i wait

i flock
i mmap

i pages
i dquot
i state
i flags
i pipe

i sock

i writecount
i attr flags

i generation

u

Understanding the Linux Kernel

Table 12-3. The Fields of the Inode Object

Description

Pointers for the hash list
Pointers for the inode list
Pointers for the dentry list
inode number

Usage counter

Device identifier

File type and access rights
Number of hard links
Owner identifier

Group identifier

Real device identifier

File length in bytes

Time of last file access
Time of last file write
Time of last inode change
Block size in bytes
Number of blocks of the file

Version number, automatically incremented after
each use

Number of pages containing file data
inode semaphore
inode semaphore for atomic write

inode operations

Pointer to superblock object
inode wait queue

Pointer to file lock list

Pointer to memory regions used to map the file
Pointer to page descriptor

inode disk quotas

inode state flag

Filesystem mount flag

True if file is a pipe

True if file is a socket

Usage counter for writing process
File creation flags

Reserved for future development
Specific filesystem information

The final u union field is used to include inode information that belongs to a specific
filesystem. For instance, as we shall see in Chapter 17, if the inode object refers to an Ext2
file, the field stores an ext2 inode info structure.

Each inode object duplicates some of the data included in the disk inode, for instance, the
number of blocks allocated to the file. When the value of the i state field is equal to
I _DIRTY, the inode is dirty, that is, the corresponding disk inode must be updated. Other

312

Understanding the Linux Kernel

values of the i state field are T rock (which means that the inode object is locked) and
I_FREEING (wWhich means that the inode object is being freed).

Each inode object always appears in one of the following circular doubly linked lists:

e The list of unused inodes. The first and last elements of this list are referenced by the
next and prev fields, respectively, of the inode unused variable. This list acts as a
memory cache.

e The list of in-use inodes. The first and last elements are referenced by the
inode in use variable.

e The list of dirty inodes. The first and last elements are referenced by the s dirty field
of the corresponding superblock object.

Each of the lists just mentioned links together the i 1ist fields of the proper inode objects.

Inode objects belonging to the "in use" or "dirty" lists are also included in a hash table named
inode hashtable . The hash table speeds up the search of the inode object when the kernel
knows both the inode number and the address of the superblock object corresponding to the
filesystem that includes the file.” Since hashing may induce collisions, the inode object
includes an i hash field that contains a backward and a forward pointer to other inodes that
hash to the same position; this field creates a doubly linked list of those inodes.

B3] Actually, a Unix process may open a file and then unlink it: the i_nl inXkfield of the inode could become 0, yet the process is still able to act on
the file. In this particular case, the inode is removed from the hash table, even if it still belongs to the in-use or dirty list.

The methods associated with an inode object are also called inode operations. They are
described by an inode operations structure, whose address is included in the i op field.
The structure also includes a pointer to the file operation methods (see Section 12.2.3). Here
are the inode operations, in the order they appear in the inode operations table:

create (dir, dentry, mode)

Creates a new disk inode for a regular file associated with a dentry object in some
directory.

lookup (dir, dentry)

Searches a directory for an inode corresponding to the filename included in a dentry
object.

link (old dentry, dir, new dentry)

Creates a new hard link that refers to the file specified by o1d dentry in the directory
dir; the new hard link has the name specified by new dentry.

unlink (dir, dentry)

Removes the hard link of the file specified by a dentry object from a directory.

313

Understanding the Linux Kernel

symlink (dir, dentry, symname)

Creates a new inode for a symbolic link associated with a dentry object in some
directory.

mkdir (dir, dentry, mode)

Creates a new inode for a directory associated with a dentry object in some directory.
rmdir (dir, dentry)

Removes from a directory the subdirectory whose name is included in a dentry object.
mknod (dir, dentry, mode, rdev)

Creates a new disk inode for a special file associated with a dentry object in some

directory. The mode and rdev parameters specify, respectively, the file type and the

device's major number.

rename (old dir, old dentry, new dir, new dentry)

Moves the file identified by o1d entry from the old dir directory to the new dir
one. The new filename is included in the dentry object that new dentry points to.

readlink (dentry, buffer, buflen)

Copies into a memory area specified by buffer the file pathname corresponding to the
symbolic link specified by the dentry.

follow link(inode, dir)

Translates a symbolic link specified by an inode object; if the symbolic link is a
relative pathname, the lookup operation starts from the specified directory.

readpage (file, pg)

Reads a page of data from an open file. As we shall see in Chapter 15, regular files are
read by this method.

writepage (file, pg)

Writes a page of data into an open file. Most filesystems do not make use of this
method when writing regular files.

bmap (inode, block)

Returns the logical block number corresponding to the file block number of the file
associated with an inode.

314

Understanding the Linux Kernel

truncate (inode)

Modifies the size of the file associated with an inode. Before invoking this method, it
is necessary to set the i size field of the inode object to the required new size.

permission (inode, mask)

Checks whether the specified access mode is allowed for the file associated with
inode.

smap (inode, sector)

Similar to bmap(), but determines the disk sector number; used by FAT-based
filesystems.

updatepage (inode, pg, buf, offset, count, sync)

Updates, if needed, a page of data of a file associated with an inode (usually invoked
by network filesystems, which may have to wait a long time before updating remote
files).

revalidate (dentry)

Updates the cached attributes of a file specified by a dentry object (usually invoked by
the network filesystem).

The methods just listed are available to all possible inodes and filesystem types. However,
only a subset of them applies to any specific inode and filesystem; the fields corresponding to
unimplemented methods are set to NULL.

12.2.3 File Objects

A file object describes how a process interacts with a file it has opened. The object is created
when the file is opened and consists of a file structure, whose fields are described in Table
12-4. Notice that file objects have no corresponding image on disk, and hence no "dirty" field
is included in the fi1le structure to specify that the file object has been modified.

The main information stored in a file object is the file pointer, that is, the current position in

the file from which the next operation will take place. Since several processes may access the
same file concurrently, the file pointer cannot be kept in the inode object.

315

Understanding the Linux Kernel

Table 12-4. The Fields of the File Object

Type Field Description

struct file * f next Pointer to next file object

struct file ** f pprev Pointer to previous file object

struct dentry * f dentry Pointer to associated dentry object

itrUCt file operations f op Pointer to file operation table

mode t f mode Process access mode

loff t f pos Current file offset (file pointer)

unsigned int f count File object's usage counter

unsigned int f flags Flags specified when opening the file
unsigned long f reada Read-ahead flag

unsigned long f ramax Maximum number of pages to be read-ahead
unsigned long f raend File pointer after last read-ahead
unsigned long f ralen Number of read-ahead bytes

unsigned long f rawin Number of read-ahead pages

struct fown struct f owner Data for asynchronous I/O via signals
unsigned int f uid User's UID

unsigned int f gid User's GID

int f error Error code for network write operation
unsigned long £ version Xseersion number, automatically incremented after each
void * private data|Needed for tty driver

Each file object is always included in one of the following circular doubly linked lists:

e The list of "unused" file objects. This list acts both as a memory cache for the file
objects and as a reserve for the superuser; it allows the superuser to open a file even if
the dynamic memory in the system is exhausted. Since the objects are unused, their
f count fields are null. The address of the first element in the list is stored in the
free filps variable. The kernel makes sure that the list always contains at least
NR_RESERVED FILES objects, usually 10.

o The list of "in use" file objects. Each element in the list is used by at least one process,
and hence its £ count field is not null. The address of the first element in the list is
stored in the inuse filps variable.

Regardless of which list a file object is in at the moment, its £ next field points to the next
element in the list, while the £ pprev field points to the £ next field of the previous
element.

The size of the list of "unused" file objects is stored in the nr free files variable. The
get empty filp() function is invoked when the VFS must allocate a new file object. The
function checks whether the "unused" list has more than NR RESERVED FILES items, in which
case one can be used for the newly opened file. Otherwise, it falls back to normal memory
allocation.

As we explained in Section 12.1.1, each filesystem includes its own set of file operations that

perform such activities as reading and writing a file. When the kernel loads an inode into
memory from disk, it stores a pointer to these file operations in a file operations structure

316

Understanding the Linux Kernel

whose address is contained in the default file ops field of the inode operations
structure of the inode object. When a process opens the file, the VFS initializes the £ op field
of the new file object with the address stored in the inode so that further calls to file
operations can use these functions. If necessary, the VFS may later modify the set of file
operations by storing a new value in £ op.

The following list describes the file operations in the order in which they appear in the
file operations table:

llseek (file, offset, whence)
Updates the file pointer.
read (file, buf, count, offset)

Reads count bytes from a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then incremented.

write(file, buf, count, offset)

Writes count bytes into a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then incremented.

readdir (dir, dirent, £filldir)
Returns the next directory entry of a directory in dirent; the filldir parameter
contains the address of an auxiliary function that extracts the fields in a directory
entry.

poll (file, poll table)

Checks whether there is activity on a file and goes to sleep until something happens on
it.

ioctl (inode, file, cmd, arqg)

Sends a command to an underlying hardware device. This method applies only to
device files.

mmap (file, vma)

Performs a memory mapping of the file into a process address space (see Section 15.2
in Chapter 15).

open (inode, file)

Opens a file by creating a new file object and linking it to the corresponding inode
object (see Section 12.5.1 later in this chapter).

317

Understanding the Linux Kernel

flush(file)

Called when a reference to an open file is closed, that is, the £ count field of the file
object is decremented. The actual purpose of this method is filesystem-dependent.

release (inode, file)

Releases the file object. Called when the last reference to an open file is closed, that is,
the £ count field of the file object becomes O.

fsync(file, dentry)
Writes all cached data of the file to disk.

fasync (file, on)
Enables or disables asynchronous I/O notification by means of signals.

check media change (dev)
Checks whether there has been a change of media since the last operation on the
device file (applicable to block devices that support removable media, such as floppies
and CD-ROMs).

revalidate (dev)

Restores the consistency of a device (used by network filesystems after a media
change has been recognized on a remote device).

lock (file, cmd, file lock)
Applies a lock to the file (see Section 12.6 later in this chapter).

The methods just described are available to all possible file types. However, only a subset of
them applies to a specific file type; the fields corresponding to unimplemented methods are
set to NULL.

12.2.4 Special Handling for Directory File Objects

Directories must be handled with care because several processes can change their contents
concurrently. Explicit locking, which is frequently performed on regular files (see Section
12.6 later in this chapter), is not well suited for directories because it prevents other processes
from accessing the whole subtree of files rooted at the locked directory. Therefore, the
f version field of the file object is used together with the i version field of the inode
object to ensure that accesses to each directory file maintain consistency.

We'll explain the use of these fields by describing the most common operation in which they
are needed, the readdir () system call. Each invocation of this call is supposed to return a
directory entry and update the directory's file pointer so that the next invocation of the same
system call will return the next directory entry. But the directory could be modified by

318

Understanding the Linux Kernel

another process that concurrently accesses it. Without some kind of consistency check, the
readdir () system call could return the wrong directory entry. Long intervals—potentially
hours—could elapse between a process's calls to readdir (), and the process may choose to
stop calling it at any time, so we don't want to lock the directory. What we want is a way to
make readdir () adapt to changes.

The problem is solved by introducing the global event variable, which plays the role of
version stamp. Whenever the inode object of a directory file is modified, the global event is
increased by 1, and the new version stamp is stored in the i version field of the object.
Whenever a file object is created or its file pointer is modified, global event is increased by
1, and the new version stamp is stored in the £ version field of the object. When servicing
the readdir() system call, the VFS checks whether the version stamps contained in the
i version and £ version fields coincide. If not, the directory may have been modified by
some other process after the previous execution of readdir ().

When the readdir () call detects this consistency problem, it recomputes the directory's file
pointer by reading again the whole directory contents. The system call returns the directory
entry immediately following the entry that was returned by the process's last readdir().
f version is then set to i version to indicate that readdir () is now synchronized with
the actual state of the directory.

12.2.5 Dentry Objects

We mentioned in Section 12.1.1 that each directory is considered by the VFS as a normal file
that contains a list of files and other directories. We shall discuss in Chapter 17 how
directories are implemented on a specific filesystem. Once a directory entry has been read into
memory, however, it is transformed by the VFS into a dentry object based on the dentry
structure, whose fields are described in Table 12-5. A dentry object is created by the kernel
for every component of a pathname that a process looks up; the dentry object associates the
component to its corresponding inode. For example, when looking up the /fmp/test pathname,
the kernel creates a dentry object for the / root directory, a second dentry object for the tmp
entry of the root directory, and a third dentry object for the fest entry of the /tmp directory.

Notice that dentry objects have no corresponding image on disk, and hence no field is
included in the dentry structure to specify that the object has been modified. Dentry objects
are stored in a slab allocator cache called dentry cache; dentry objects are thus created and
destroyed by invoking kmem cache alloc() and kmem cache free().

319

Understanding the Linux Kernel

Table 12-5. The Fields of the Dentry Object

Type Field Description

int d count Dentry object usage counter

unsigned int d flags Dentry flags

struct inode * d inode Inode associated with filename

struct dentry * d parent Dentry object of parent directory

struct dentry * d mounts g(l)ésillsgcl;);mt point, the dentry of the root of the mounted

struct dentry * d covers For the root of a filesystem, the dentry of the mount point

struct list head d hash Pointers for list in hash table entry

struct list head d lru Pointers for unused list

ctruct list head d child Ppinters for the list of dentry objects included in parent
- - directory

struct list head d subdirs |For directories, list of dentry objects of subdirectories

struct list head d alias List of associated inodes (alias)

struct gstr d name Filename

unsigned long d time Used by d_revalidate method

structdentry operations*|d op Dentry methods

struct super block * d sb Superblock object of the file

unsigned long d reftime Time when dentry was discarded

void * d fsdata Filesystem-dependent data

unsigned char

d_iname [16] Space for short filename

Each dentry object may be in one of four states:

Free

The dentry object contains no valid information and is not used by the VFS. The
corresponding memory area is handled by the slab allocator.

Unused

The dentry object is not currently used by the kernel. The d count usage counter of
the object is null, but the d_inode field still points to the associated inode. The dentry
object contains valid information, but its contents may be discarded if necessary to

reclaim memory.

In use
The dentry object is currently used by the kernel. The d count usage counter is
positive and the d_inode field points to the associated inode object. The dentry object
contains valid information and cannot be discarded.

Negative
The inode associated with the dentry no longer exists, because the corresponding disk

inode has been deleted. The d_inode field of the dentry object is set to NULL, but the
object still remains in the dentry cache so that further lookup operations to the same

320

Understanding the Linux Kernel

file pathname can be quickly resolved. The term "negative" is misleading since no
negative value is involved.

12.2.6 The Dentry Cache

Since reading a directory entry from disk and constructing the corresponding dentry object
requires considerable time, it makes sense to keep in memory dentry objects that you've
finished with but might need later. For instance, people often edit a file and then compile it or
edit, then print or copy, then edit. In any case like these, the same file needs to be repeatedly
accessed.

In order to maximize efficiency in handling dentries, Linux uses a dentry cache, which
consists of two kinds of data structures:

e A set of dentry objects in the in-use, unused, or negative state.

e A hash table to derive the dentry object associated with a given filename and a given
directory quickly. As usual, if the required object is not included in the dentry cache,
the hashing function returns a null value.

The dentry cache also acts as a controller for an inode cache . The inodes in kernel memory
that are associated with unused dentries are not discarded, since the dentry cache is still using
them and therefore their i count fields are not null. Thus, the inode objects are kept in RAM
and can be quickly referenced by means of the corresponding dentries.

All the "unused" dentries are included in a doubly linked " Least Recently Used" list sorted by
time of insertion. In other words, the dentry object that was last released is put in front of the
list, so the least recently used dentry objects are always near the end of the list. When the
dentry cache has to shrink, the kernel removes elements from the tail of this list so that the
most recently used objects are preserved. The addresses of the first and last elements of the
LRU list are stored in the next and prev fields of the dentry unused variable. The d_1ru
field of the dentry object contains pointers to the adjacent dentries in the list.

Each "in use" dentry object is inserted into a doubly linked list specified by the i dentry
field of the corresponding inode object (since each inode could be associated with several
hard links, a list is required). The d_alias field of the dentry object stores the addresses of
the adjacent elements in the list. Both fields are of type struct 1ist head.

An "in use" dentry object may become "negative" when the last hard link to the corresponding
file is deleted. In this case, the dentry object is moved into the LRU list of unused dentries.
Each time the kernel shrinks the dentry cache, negative dentries move toward the tail of the
LRU list so that they are gradually freed (see Section 16.7.3 in Chapter 16).

The hash table is implemented by means of a dentry hashtable array. Each element is a
pointer to a list of dentries that hash to the same hash table value. The array's size depends on
the amount of RAM installed in the system. The d_hash field of the dentry object contains
pointers to the adjacent elements in the list associated with a single hash value. The hash
function produces its value from both the address of the dentry object of the directory and the
filename.

321

Understanding the Linux Kernel

The methods associated with a dentry object are called dentry operations; they are described
by the dentry operations structure, whose address is stored in the d op field. Although
some filesystems define their own dentry methods, the fields are usually nurL, and the VFS
replaces them with default functions. Here are the methods, in the order they appear in the
dentry operations table.

d revalidate (dentry)

Determines whether the dentry object is still valid before using it for translating a file
pathname. The default VFS function does nothing, although network filesystems may
specify their own functions.

d hash (dentry, hash)

Creates a hash value; a filesystem-specific hash function for the dentry hash table. The
dentry parameter identifies the directory containing the component. The hash
parameter points to a structure containing both the pathname component to be looked
up and the value produced by the hash function.

d compare (dir, namel, nameZ2)

Compares two filenames; name1 should belong to the directory referenced by dir. The
default VFS function is a normal string match. However, each filesystem can
implement this method in its own way. For instance, MS-DOS does not distinguish
capital from lowercase letters.

d delete(dentry)

Called when the last reference to a dentry object is deleted (d_count becomes 0). The
default VFS function does nothing.

d release (dentry)

Called when a dentry object is going to be freed (released to the slab allocator). The
default VFS function does nothing.

d iput (dentry, 1ino)

Called when a dentry object becomes "negative," that is, it loses its inode. The default
VES function invokes iput () to release the inode object.

12.2.7 Files Associated with a Process
We mentioned in Section 1.5 in Chapter | that each process has its own current working

directory and its own root directory. This information is stored in an f£s_struct kernel table,
whose address is contained in the fs field of the process descriptor.

322

Understanding the Linux Kernel

struct fs struct {
atomic t count;
int umask;
struct dentry * root, * pwd;

}i

The count field specifies the number of processes sharing the same fs struct table (see
Section 3.3.1 in Chapter 3). The umask field is used by the umask () system call to set initial
file permissions on newly created files.

A second table, whose address is contained in the files field of the process descriptor,
specifies which files are currently opened by the process. It is a files struct structure
whose fields are illustrated in Table 12-6. A process cannot have more than NrR OPEN (usually,
1024) file descriptors. It is possible to define a smaller, dynamic bound on the maximum
number of allowed open files by changing the r1im[RLIMIT NOFILE] structure in the process
descriptor.

Table 12-6. The Fields of the files_struct Structure

Type Field Description

int count Number of processes sharing this table

int max fds Current maximum number of file objects

int max_ fdset Current maximum number of file descriptors

int next fd Maximum file descriptors ever allocated plus 1
struct file ** |fd Pointer to array of file object pointers

fd set * close on_exec Pointer to file descriptors to be closed on exec ()
fd set * open_fds Pointer to open file descriptors

fd set close_on_exec_init |Initial set of file descriptors to be closed on exec ()
fd set open fds init Initial set of file descriptors

struct file * fd array[32] Initial array of file object pointers

The £d field points to an array of pointers to file objects. The size of the array is stored in the
max_fds field. Usually, £d points to the £d_array field of the files struct structure, which
includes 32 file object pointers. If the process opens more than 32 files, the kernel allocates a
new, larger array of file pointers and stores its address in the fd fields; it also updates the
max_ fds field.

For every file with an entry in the fd array, the array index is the file descriptor. Usually, the
first element (index 0) of the array is associated with the standard input of the process, the
second with the standard output, and the third with the standard error (see Figure 12-4). Unix
processes use the file descriptor as the main file identifier. Notice that, thanks to the dup (),
dup2(), and fcntl () system calls, two file descriptors may refer to the same opened file,
that is, two elements of the array could point to the same file object. Users see this all the time
when they use shell constructs like 2>s1 to redirect the standard error to the standard output.

The open fds field contains the address of the open fds init field, which is a bitmap that
identifies the file descriptors of currently opened files. The max fdset field stores the number
of bits in the bitmap. Since the £d_set data structure includes 1024 bits, there is usually no
need to expand the size of the bitmap. However, the kernel may dynamically expand the size
of the bitmap if this turns out to be necessary, much as in the case of the array of file objects.

323

Understanding the Linux Kernel

Figure 12-4. The fd array

—* File object

fd [

atdin 0 —
o [—'; File object

atdout 1 _

e W
3
4 J

The kernel provides an fget () function to be invoked when it starts using a file object. This
function receives as its parameter a file descriptor £d . It returns the address in current-
>files->fd[fd], that is, the address of the corresponding file object, or NULL if no file

corresponds to £d . In the first case, fget () increments by 1 the file object usage counter
f count.
The kernel also provides an fput() function to be invoked when a kernel control path

finishes using a file object. This function receives as its parameter the address of a file object
and decrements its usage counter £ count. Moreover, if this field becomes null, the function
invokes the release method of the file operations (if defined), releases the associated dentry
object, decrements the i writeaccess field in the inode object (if the file was opened for
writing), and finally moves the file object from the "in use" list to the "unused" one.

12.3 Filesystem Mounting

Now we'll focus on how the VFS keeps track of the filesystems it is supposed to support. Two
basic operations must be performed before making use of a filesystem: registration and
mounting.

Registration is done either when the system boots or when the module implementing the
filesystem is being loaded. Once a filesystem has been registered, its specific functions are
available to the kernel, so that kind of filesystem can be mounted on the system's directory
tree.

Each filesystem has its own root directory. The filesystem whose root directory is the root of
the system's directory tree is called root filesystem. Other filesystems can be mounted on the
system's directory tree: the directories on which they are inserted are called mount points.

12.3.1 Filesystem Registration

Often, the user configures Linux to recognize all the filesystems needed when compiling the
kernel for her system. But the code for a filesystem actually may either be included in the
kernel image or dynamically loaded as a module (see Appendix B). The VFS must keep track
of all filesystems whose code is currently included in the kernel. It does this by performing
filesystem registrations.

324

Understanding the Linux Kernel

Each registered filesystem is represented as a file system type object whose fields are
illustrated in Table 12-7. All filesystem-type objects are inserted into a simply linked list. The
file systems variable points to the first item.

Table 12-7. The Fields of the file_system_type Object

Type Field Description

const char * name Filesystem name

int fs flag Mount flags

struct super block *(*) () read super Method for reading superblock

struct file system type * next Pointer to next list element

During system initialization, the filesystem setup() function is invoked to register the

filesystems specified at compile time. For each filesystem type, the register filesystem(
) function is invoked with a parameter pointing to the proper file system type object,
which is thus inserted into the filesystem-type list.

The register filesystem() is also invoked when a module implementing a filesystem is
loaded. In this case, the filesystem may also be unregistered (by invoking the
unregister filesystem() function) when the module is unloaded.

The get fs type() function, which receives a filesystem name as its parameter, scans the
list of registered filesystems and returns a pointer to the corresponding file system type
object if it is present.

12.3.2 Mounting the Root Filesystem

Mounting the root filesystem is a crucial part of system initialization. While the system boots,
it finds the major number of the disk containing the root filesystem in the RooT DEV variable.
The root filesystem can be specified as a device file in the /dev directory either when
compiling the kernel or by passing a suitable option to the initial bootstrap loader. Similarly,
the mount flags of the root filesystem are stored in the root mountflags variable. The user
specifies these flags either by using the /sbin/rdev external program on a compiled kernel
image or by passing suitable options to the initial bootstrap loader (see Appendix A).

During system initialization, right after the filesystem setup() invocation, the
mount root () function is executed. It performs the following operations (assuming that the
filesystem to be mounted is a disk-based one):

I Diskless workstations can mount the root directory over a network-based filesystem such as NFS, but we don't describe how this is done.

1. Initializes a dummy, local file object filp. The £ mode field is set according to the
mount flags of the root, while all other fields are set to 0.

2. Creates a dummy inode object and initializes it by setting its i rdev field to
ROOT DEV.

3. Invokes the blkdev open() function, passing the dummy inode and the file object.
As we shall see later in Chapter 13, the function checks whether the disk exists and is
properly working.

4. Releases the dummy inode object, which was needed just to verify the disk.

5. Scans the filesystem-type list. For each file system type object, invokes
read super () to attempt to read the corresponding superblock. This function checks

325

Understanding the Linux Kernel

that the device is not already mounted and attempts to fill a superblock object by using
the method to which the read super field of the file system type object points.
Since each filesystem-specific method uses unique magic numbers, all read super (
) invocations will fail except the one that attempts to fill the superblock by using the
method of the filesystem really used on the root device. The read super () method
also creates an inode object and a dentry object for the root directory; the dentry object
maps / to the inode object.

6. Sets the root and pwd fields of the £s struct table of current (the init process) to
the dentry object of the root directory.

7. Invokes add vfsmnt() to insert a first element into the list of mounted filesystems
(see next section).

12.3.3 Mounting a Generic Filesystem

Once the root filesystem has been initialized, additional filesystems may be mounted. Each of
them must have its own mount point, which is just an already existing directory in the
system's directory tree.

All mounted filesystems are included in a list, whose first element is referenced by the
vfsmntlist variable. Each element is a structure of type vfsmount, whose fields are shown

in Table 12-8.

Table 12-8. The Fields of the vfsmount Data Structure

Type Field Description

kdev t mnt dev Device number

char * mnt_ devname Device name

char * mnt dirname Mount point

unsigned int mnt flags Device flags

struct super block * mnt sb Superblock pointer
struct quota mount options mnt dquot Disk quota mount options
struct vfsmount * mnt next Pointer to next list element

Three low-level functions are used to handle the list and are invoked by the service routines of
the mount () and umount () system calls. The add vfsmnt() and remove vfsmnt ()
functions add and remove, respectively, an element in the list. The lookup vfsmnt()
function searches a specific mounted filesystem and returns the address of the corresponding
vEsmount data structure.

The mount () system call is used to mount a filesystem; its sys mount () service routine
acts on the following parameters:

e The pathname of a device file containing the filesystem or NULL if it is not required
(for instance, when the filesystem to be mounted is network-based)

e The pathname of the directory on which the filesystem will be mounted (the mount
point)

e The filesystem type, which must be the name of a registered filesystem

e The mount flags (permitted values are listed in Table 12-9)

e A pointer to a filesystem-dependent data structure (which may be NULL)

326

Understanding the Linux Kernel

Table 12-9. Filesystem Mounting Options

Macro Value Description

MS_ MANDLOCK 0x040 Mandatory locking allowed.

MS NOATIME 0x400 Do not update file access time.
MS NODEV 0x004 Forbid access to device files.
MS NODIRATIME 0x800 Do not update directory access time.
MS NOEXEC 0x008 Disallow program execution.
MS NOSUID 0x002 Ignore setuid and setgid flags.
MS RDONLY 0x001 Files can only be read.

MS REMOUNT 0x020 Remount the filesystem.

MS SYNCHRONOUS 0x010 Write operations are immediate.
S _APPEND 0x100 Allow append-only file.
S_IMMUTABLE 0x200 Allow immutable file.

S _QUOTA 0x080 Initialize disk quota.

The sys mount () function performs the following operations:

l.
2.

Checks whether the process has the required capability to mount a filesystem.

If the Ms REMOUNT option has been specified, invokes do remount () to modify the
mount flags and terminate.

Otherwise, gets a pointer to the proper file system type object by invoking
get fs type().

If the filesystem to be mounted refers to a hardware device like /dev/hdal, checks
whether the device exists and is operational. This is done as follows:

a. Invokes namei () to get the dentry object of the corresponding device file (see
the section Section 12.4 later in this chapter).

b. Checks whether the inode associated with the device file refers to a valid block
device (see Section 13.2.1 in Chapter 13).

c. Initializes a dummy file object that refers to the device file, then opens the
device file by using the open method of the file operations. If this operation
succeeds, the device is operational.

If the filesystem to be mounted does not refer to a hardware device, gets a fictitious
block device with major number by invoking get unnamed dev ().

Invokes do mount (), passing the parameters dev (device number), dev_name (device
filename), dir name (mount point), type (filesystem type), flags (mount flags), and
data (pointer to optional data area). This function mounts the required filesystem by
performing the following operations:

a. Invokes namei() to locate the dir d dentry object corresponding to
dir name; if it does not exist, creates it (see Figure 12-5 (a)).

b. Acquires the mount sem semaphore, which is used to serialize the mounting
and unmounting operations.

c. Checks to make sure that dir d->d inode is the inode of a directory and that
the directory is not the root of a filesystem that is already mounted (dir d-
>d covers must be equal to dir d).

d. Invokes read super() to get the superblock object sb of the new filesystem.
(If the object does not exist, it is created and filled with information read from
the dev device.) The s root field of the superblock object points to the dentry
object of the root directory of the filesystem to be mounted (see Figure 12-5

(b))

327

Understanding the Linux Kernel

e. The previous operation could have suspended the current process; therefore,
checks that no other process is using the superblock and that no process has
already succeeded in mounting the same filesystem.

f. Invokes add vfsmnt () in order to insert a new element in the list of mounted
filesystems.

g. Sets the d mounts field of dir dto the s root field of the superblock, that is,
to the root directory of the mounted filesystem.

h. Sets the d covers field of the dentry object of the root directory of the
mounted filesystem to dir d (see Figure 12-5 (c)).

i. Releases the mount sem semaphore.

Figure 12-5. Mounting a filesystem

Bystemn’s Diractory Tree Before Mounting Fila Systam to Be Mountad

"7 s_rook
d_mounts sh d_mounts
[: |

dir_name dir_d E ?

d_covers d_covers

(a) (b)

System’s Directory Tree After Mounting
d_covers

——

dir_d

dir_name \T‘J)
\d_ - [soarok b
i

u g

J [:] dantry object

sh

[\j_r} J & directory subtres
d_

mounts s_rook

()

Now, the dir d dentry object of the mount point is linked through the d mounts field to the
root directory dentry object of the mounted filesystem; this latter object is linked to the dir d
dentry object through the d covers field.

12.3.4 Unmounting a Filesystem
The umount () system call is used to unmount a filesystem. The corresponding sys umount (
) service routine acts on two parameters: a filename (either a mount directory or a block
device file) and a set of flags. It performs the following actions:

1. Checks whether the process has the required capability to unmount the filesystem.

2. Invokes namei () on the filename to derive the dentry pointer to the associated
dentry object.

328

o=

Understanding the Linux Kernel

If the filename refers to the mount point, derives the device identifier from dentry-
>d_inode->i sb->s dev. In other words, the function goes from the dentry object of
the mount point to the relative inode, then to the corresponding superblock, and finally
to the device identifier.

Otherwise, if the filename refers to the device file, derives the device identifier from
dentry->d inode->i rdev.

Invokes dput (dentry) to release the dentry object.

Flushes the buffers of the device (see Section 14.1 in Chapter 14).

Acquires the mount sem semaphore.

Invokes do umount (), which performs the following operations:
a. Invokes get super() to get the pointer sb of the superblock of the mounted
filesystem.

b. Invokes shrink dcache sb() to remove the dentry objects that refer to the
dev device without disturbing other dentries. The dentry object of the root
directory of the mounted filesystem will not be removed, since it is still used
by the process doing the unmount.

c. Invokes fsync dev() to force all "dirty" buffers that refer to the dev device
to be written to disk.

d. If dev is the root device (dev == ROOT DEV), it cannot be unmounted. If it has
not been already remounted, remounts it with the Ms roonLy flag set and
returns.

e. Checks whether the usage counter of the dentry object corresponding to the
root directory of the filesystem to be unmounted is greater than 1. If so, some
process is accessing a file in the filesystem, so returns an error code.

f. Decrements the usage counter of sb->s root->d covers (the dentry object of
the mount point directory).

g. Sets sb->s root->d covers->d mounts t0 sb->s root->d covers. This
removes the link from the inode of the mount point to the inode of the root
directory of the filesystem.

h. Releases the dentry object to which sb->s root (the root directory of the
previously mounted filesystem) points and sets sb->s root to NULL.

i. If the superblock has been modified and the write super superblock's method
1s defined, executes it.

j. If defined, invokes the put super () method of the superblock.

k. Sets sb->s dev to 0.

l. Invokes remove vfsmnt() to remove the proper element from the list of
mounted filesystems.

Invokes fsync dev() to force a write to disk for all remaining "dirty" buffers that
refer to the dev device (presumably, the buffers containing the superblock
information), then invokes the release () method of the device file operations.

10. Releases the mount sem semaphore.

12.4 Pathname Lookup

We illustrate in this section how the VFS derives an inode from the corresponding file
pathname. When a process must identify a file, it passes its file pathname to some VFS
system call, such as open(), mkdir(), rename(), stat(), and so on.

329

Understanding the Linux Kernel

The standard procedure for performing this task consists of analyzing the pathname and
breaking it into a sequence of filenames. All filenames except the last must identify
directories.

If the first character of the pathname is /, the pathname is absolute, and the search starts from
the directory identified by current->fs->root (the process root directory). Otherwise, the
pathname is relative, and the search starts from the directory identified by current->fs->pwd
(the process current directory).

Having in hand the inode of the initial directory, the code examines the entry matching the
first name to derive the corresponding inode. Then the directory file having that inode is read
from disk and the entry matching the second name is examined to derive the corresponding
inode. This procedure is repeated for each name included in the path.

The dentry cache considerably speeds up the procedure, since it keeps the most recently used
dentry objects in memory. As we have seen before, each such object associates a filename in a
specific directory to its corresponding inode. In many cases, therefore, the analysis of the
pathname can avoid reading the intermediate directories from the disk.

However, things are not as simple as they look, since the following Unix and VFS filesystem
features must be taken into consideration:

e The access rights of each directory must be checked to verify whether the process is
allowed to read the directory's content.

e A filename can be a symbolic link that corresponds to an arbitrary pathname: in that
case, the analysis must be extended to all components of that pathname.

e Symbolic links may induce circular references: the kernel must take this possibility
into account and break endless loops when they occur.

e A filename can be the mount point of a mounted filesystem: this situation must be
detected, and the lookup operation must continue into the new filesystem.

The namei () and 1namei () functions derive an inode from a pathname. The difference
between them is that namei () follows a symbolic link if it appears as the last component in a
pathname without trailing slashes, while 1namei () does not. Both functions delegate the
heavy work by invoking the lookup dentry() function, which acts on three parameters:
name points to a file pathname, base points to the dentry object of the directory from which to
start searching, and lookup flags is a bit array that includes the following flags:

LOOKUP_ FOLLOW
If the last component of the pathname is a symbolic link, interpret (follow) it. This flag
is set when lookup dentry() is invoked by namei () and cleared when it is

invoked by lnamei ().

LOOKUP DIRECTORY

The last component of the pathname must be a directory.

330

Understanding the Linux Kernel

LOOKUP_ SLASHOK

A trailing / in the pathname is allowed even if the last filename does not exist.

LOOKUP CONTINUE

There are still filenames to be examined in the pathname. This flag is used internally
by lookup dentry().

The lookup dentry() function is recursive, since it may end up invoking itself. Therefore,
name could represent the still unresolved trailing portion of a complete pathname. In this case,
base points to the dentry object of the last resolved pathname component. 1ookup dentry (
) executes the following actions:

1.

Examines both the first character of name and the value of base to identify the
directory from which the search should start. Three cases can occur.

O

The first character of name is /: the pathname is an absolute pathname, thus
base 1S set to current->fs->root.

The first character of name is different from "/" and base is NULL: the
pathname is a relative pathname and base is set to current->fs->pwd.

The first character of name is different from "/" and base is not NULL: the
pathname is a relative pathname and base is left unchanged. (This case should
occur only when lookup dentry() is recursively invoked.)

2. Gets the inode of the initial directory from base->d_inode.

3. Clears the LOOKUP CONTINUE, LOOKUP DIRECTORY, and LOOKUP SLASHOK flags in
lookup flags.

Iteratively repeats the following procedure on each filename included in the path. If an
error condition is encountered, exits from the cycle and returns a NULL dentry pointer,
else returns the dentry pointer corresponding to the file pathname. At the start of each
iteration, name points to the next filename to be examined and base points to the
dentry object of the current directory.

4.

a.

b.

C.

d.

c.

Checks whether the process is allowed to access the base directory (if defined,
uses the permission method of inode).
Computes a hash value from the first component name in name to be used in
searching for the corresponding entry in the dentry cache. Moreover, if the
base directory is in a filesystem that has its own d hash() dentry hashing
method, invokes base->d op->d hash() to compute the hash value based
on the directory, the component name, and the previous hash value.
Updates name so that it points to the first character of the next component name
(if any), skipping any "/" separator.
Sets the f1ag local variable to the value previously set in lookup flags.
Additionally, if the currently resolved component was followed by a trailing /,
sets the Lookup_ DIRECTORY flag (requiring a check on whether the component
is a directory) and the Lookup rForLow flag (interprets the component even if it
is a symbolic link). Moreover, if there is a non-null component after the
component currently resolved, sets the LookurP_CONTINUE flag.
Invokes reserved lookup() to perform the following actions:

a. If the first component name is a single period (.), sets the dentry local

variable to base.

331

Understanding the Linux Kernel

b. If the first component name is a double period (. .) and base is equal to

current->fs->root, sets the dentry local variable to base (because
the process is already in its root directory).

If the first component name is a double period (..) and base is not
equal to current->fs->root, sets the dentry local variable to base-
>d covers->d parent. Usually, d covers points to base itself and
dentry is set to the directory that includes base; however, if the base
directory is the root of a mounted filesystem, the d_covers field points
to the inode of the mount point and dentry is set to the directory that
includes the mount point.

If the first component name is neither (.) nor (..) invokes
cached lookup(), passing as parameters base and the hash number
previously derived. If the dentry hash table includes the required object,
returns its address in dentry.

If the required dentry object is not in the dentry cache, invokes
real lookup() to read the directory from disk and creates a new
dentry object. This function, which acts on the base and name
parameters, performs the following steps:

Gets the i _sem semaphore of the directory inode.

Reexecutes cached lookup(), since the required dentry object could
have been inserted in the cache while the process was waiting for the
directory semaphore.

We assume that the previous attempt failed. Invokes d alloc() to
allocate a new dentry object.

Invokes the 1lookup method of the inode associated with the base
directory to find the directory entry containing the required name and
fills the new dentry object. This method is filesystem-dependent. We'll
describe its Ext2 implementation in Chapter 17.

Releases the i sem semaphore of the directory inode.

Returns the address of the new object in dentry or an error code if the
entry was not found.

f. Invokes follow mount () to check whether the d mounts field of dentry has
the same value as dentry. If not, dentry is the mount point of a filesystem. In
this case, the old dentry object is replaced by the one having the address in
dentry->d mounts.

Invokes do follow link() to check whether name is a symbolic link. This
function receives as its parameters base, dentry, and flags and executes the
following steps:

g.

a.

If the Lookur rorrow flag is not set, returns immediately. Since the
flag is set by 1namei (), this ensures that 1namei () does not follow a
symbolic link if it appears as the last component in a pathname without
trailing slashes.

Checks whether dentry->d_inode contains the follow 1link method.
If not, the inode is not a symbolic link, so the function returns the
dentry input parameter.

332

C.

Understanding the Linux Kernel

Invokes the follow link inode method. This filesystem-dependent
function reads the pathname associated with the symbolic link from the
disk and recursively invokes lookup dentry() to resolve it. The
function then returns a pointer to the dentry object referred by the
symbolic link (we shall describe in Chapter 17 how symbolic links are
handled by Ext2).

Since lookup dentry() invokes do follow link(), which may in
turn invoke the follow link inode method, which invokes, in turn,
lookup dentry(), recursive cycles of function calls may be created.
The 1ink count field of current is used to avoid endless recursive
calls due to circular references inside the symbolic links. This field is
incremented before each recursive execution of follow link() and
decremented right after. If it reaches the value 5, do follow link()
terminates with an error code. Therefore, while there is no limit on the
number of symbolic links in a pathname, the level of nesting of
symbolic links can be at most five.

h. If everything went smoothly, base now points to the dentry object associated
to the currently resolved component, so sets inode to base->d_inode.

i. If the vLookurp DIRECTORY flag of flag is not set, the currently resolved
component is the last one in the file pathname, so returns the address in base.
Note that base could point to a negative dentry object; that is, there might be
no associated inode. This is fine for the lookup operation, since the last
component must not be followed.

Otherwise, if LOOKUP DIRECTORY is set, there is a slash after the currently

resolved component. There are two cases to consider:

inode points to a valid inode object. In this case, checks that it is a
directory by seeing whether the 10okup method of the inode operations
is defined; if not, returns an error code. Then either starts a new cycle
iteration if the LookuP CONTINUE flag in flags is set (meaning that the
currently resolved component is not the last one) or returns the address
in base (meaning that the component is the last one, even if it is
followed by a trailing slash).

inode 1S NULL (meaning that base points to a negative dentry object).
Returns base only if ©Lookup coNTINUE is cleared and
LOOKUP_SLASHOK is set; otherwise, returns an error code. Since a
negative dentry object represents a file that was removed, it must not
appear in the middle of a pathname lookup (which happens when
LOOKUP_CONTINUE is set). Moreover, a negative dentry object must not
appear as the last component in the pathname when a trailing slash is
present, unless explicitly allowed by setting LOOKUP_SLASHOK.

12.5 Implementations of VFS System Calls

For the sake of brevity, we cannot discuss the implementation of all VFS system calls listed in
Table 12-1. However, it could be useful to sketch out the implementation of a few system
calls, just to show how VFS's data structures interact.

333

Understanding the Linux Kernel

Let us reconsider the example proposed at the beginning of this chapter: a user issues a shell
command that copies an MS-DOS file /floppy/TEST in an Ext2 file /tmp/test. The command
shell invokes an external program like cp, which we assume executes the following code
fragment:

inf = open("/floppy/TEST", O RDONLY, 0);
outf = open("/tmp/test", O _WRONLY | O CREAT | O_TRUNC, 0600) ;
do {
1l = read(inf, buf, 4096);
write (outf, buf, 1);
} while (1);
close (outf) ;
close (inf) ;

Actually, the code of the real cp program is more complicated, since it must also check for
possible error codes returned by each system call. In our example, we just focus our attention
on the "normal" behavior of a copy operation.

12.5.1 The open() System Call

The open() system call is serviced by the sys open() function, which receives as
parameters the pathname filename of the file to be opened, some access mode flags f1ags,
and a permission bit mask mode if the file must be created. If the system call succeeds, it
returns a file descriptor, that is, the index in the current->files->fd array of pointers to file
objects; otherwise, it returns -1.

In our example, open () is invoked twice: the first time to open /floppy/TEST for reading
(o_roonLrY flag) and the second time to open /fmp/test for writing (0 wronNLy flag). If
/tmp/test does not already exist, it will be created (0 _creatr flag) with exclusive read and
write access for the owner (octal 0600 number in the third parameter).

Conversely, if the file already exists, it will be rewritten from scratch (o Trunc flag).
Table 12-10 lists all flags of the open () system call.

334

Flag Name
FASYNC
O_APPEND
O_CREAT
O_DIRECTORY
0_EXCL

O _LARGEFILE
O _NDELAY

O _NOCTTY
O_NOFOLLOW
O_NONBLOCK
O _RDONLY
O_RDWR

O _SYNC
O_TRUNC
O_WRONLY

Let us describe the operation of the sys_open (

Understanding the Linux Kernel

Table 12-10. The Flags of the open() System Call
Description
Asynchronous 1/0 notification via signals
Write always at end of the file
Create the file if it does not exist
Fail if file is not a directory
With O_CREAT, fail if the file already exists
Large file (size greater than 2 GB)
Same as O NONBLOCK
Never consider the file as a controlling terminal
Do not follow a trailing symbolic link in pathname
No system calls will block on the file
Open for reading
Open for both reading and writing
Synchronous write (block until physical write terminates)
Truncate the file
Open for writing

) function. It performs the following:

1. Invokes getname () to read the file pathname from the process address space.

2. Invokes get unused fd(

) to find an empty slot in current->files->fd. The

corresponding index (the new file descriptor) is stored in the £d local variable.

3. Invokes the filp open (

) function, passing as parameters the pathname, the access

mode flags, and the permission bit mask. This function, in turn, executes the following

steps:
a.
b.

f.

g.
h.

Invokes get empty filp() to geta new file object.
Sets the £ flags and £ mode fields of the file object according to the values of
the f1ags and modes parameters.
Invokes open namei (), which executes the following operations:

a. Invokes lookup dentry() to interpret the file pathname and gets the
dentry object associated with the requested file.
Performs a series of checks to verify whether the process is permitted
to open the file as specified by the values of the f1ags parameter. If so,
returns the address of the dentry object; otherwise, returns an error
code.
If the access is for writing, checks the value of the i writecount field of the
inode object. A negative value means that the file has been memory-mapped,
specifying that write accesses must be denied (see the section Section 15.2 in
Chapter 15). In this case, returns an error code. Any other value specifies the
number of processes that are actually writing into the file. In the latter case,
increments the counter.
Initializes the fields of the file object; in particular, sets the £ op field to the
contents of the i op->default file ops field of the inode object. This sets
up all the right functions for future file operations.
If the open method of the (default) file operations is defined, invokes it.
Clears the 0 CREAT, O EXCL, O NOCTTY, and 0_TRUNC flags in £ flags.
Returns the address of the file object.

b.

4. Sets current->files->fd[fd] to the address of the file object.

335

Understanding the Linux Kernel

5. Returns fd .
12.5.2 The read() and write() System Calls

Let's return to the code in our cp example. The open() system calls return two file
descriptors, which are stored in the inf and out £ variables. Then the program starts a loop: at
each iteration, a portion of the /floppy/TEST file is copied into a local buffer (read() system
call), and then the data in the local buffer is written into the /tmp/test file (write () system
call).

The read() and write() system calls are quite similar. Both require three parameters: a
file descriptor fd, the address buf of a memory area (the buffer containing the data to be
transferred), and a number count that specifies how many bytes should be transferred. Of
course, read () will transfer the data from the file into the buffer, while write () will do
the opposite. Both system calls return the number of bytes that were successfully transferred
or -1 to signal an error condition."”

PI'A return value less than COUNt does not mean that an error occurred. The kernel is always allowed to terminate the system call even if not all
requested bytes were transferred, and the user application must accordingly check the return value and reissue, if necessary, the system call. Typically,
a small value is returned when reading from a pipe or a terminal device, when reading past the end of the file, or when the system call is interrupted by

a signal. The End-Of-File condition (EOF) can easily be recognized by a null return value from read (). This condition will not be confused
with an abnormal termination due to a signal, because if read () is interrupted by a signal before any data was read, an error occurs.

The read or write operation always takes place at the file offset specified by the current file
pointer (field £ pos of the file object). Both system calls update the file pointer by adding the
number of transferred bytes to it.

In short, both sys read() (the read()'s service routine) and sys write() (the write(
)'s service routine) perform almost the same steps:

1. Invokes fget () to derive from fd the address file of the corresponding file object
and increments the usage counter file->f count.

2. Checks whether the flags in file->f mode allow the requested access (read or write
operation).

3. Invokes locks verify area() to check whether there are mandatory locks for the
file portion to be accessed (see Section 12.6 later in this chapter).

4. If executing a write operation, acquires the i sem semaphore included in the inode
object. This semaphore forbids a process to write into the file while another process is
flushing to disk buffers relative to the same file (see Section 14.1.5 in Chapter 14). It
also forbids two processes to write into the same file at the same time. Notice that,
unless the o appEND flag is set, POSIX does not require serialized file accesses: if a
programmer wants exclusive access to a file, he must use a file lock (see next section).
Thus, it is possible that a process is reading from a file while another process is
writing to it.

5. Invokes either file->f op->read or file->f op->write to transfer the data. Both
functions return the number of bytes that were actually transferred. As a side effect,
the file pointer is properly updated.

6. Invokes fput () to decrement the usage counter file->f count.

7. Returns the number of bytes actually transferred.

336

Understanding the Linux Kernel

12.5.3 The close() System Call

The loop in our example code terminates when the read () system call returns the value 0,
that is, when all bytes of /floppy/TEST have been copied into /tmp/test. The program can then
close the open files, since the copy operation has been completed.

The close() system call receives as its parameter £d the file descriptor of the file to be
closed. The sys close() service routine performs the following operations:

1. Gets the file object address stored in current->files->fd[£fd]; if it iS NULL, returns
an error code.
2. Sets current->files->fd[fd] to NULL. Releases the file descriptor £d by clearing
the corresponding bits in the open fds and close on exec fields of current-
>files (see Chapter 19, for the Close on Execution flag).
3. Invokes filp close(), which performs the following operations:
a. Invokes the £1ush method of the file operations, if defined
b. Releases any mandatory lock on the file
c. Invokes fput () to release the file object

4. Returns the error code of the f1ush method (usually 0).

12.6 File Locking

When a file can be accessed by more than one process, a synchronization problem occurs:
what happens if two processes try to write in the same file location? Or again, what happens if
a process reads from a file location while another process is writing into it?

In traditional Unix systems, concurrent accesses to the same file location produce
unpredictable results. However, the systems provide a mechanism that allows the processes to
lock a file region so that concurrent accesses may be easily avoided.

The POSIX standard requires a file-locking mechanism based on the fcnt1 () system call. It
is possible to lock an arbitrary region of a file (even a single byte) or to lock the whole file
(including data appended in the future). Since a process can choose to lock just a part of a file,
it can also hold multiple locks on different parts of the file.

This kind of lock does not keep out another process that is ignorant of locking. Like a critical
region in code, the lock is considered "advisory" because it doesn't work unless other
processes cooperate in checking the existence of a lock before accessing the file. Therefore,
POSIX's locks are known as advisory locks .

Traditional BSD variants implement advisory locking through the f1ock () system call. This
call does not allow a process to lock a file region, just the whole file.

337

Understanding the Linux Kernel

Traditional System V variants provide the 1ockf () system call, which is just an interface to
fentl (). More importantly, System V Release 3 introduced mandatory locking: the kernel
checks that every invocation of the open(), read(), and write() system calls does not
violate a mandatory lock on the file being accessed. Therefore, mandatory locks are enforced
even between noncooperative processes.” A file is marked as a candidate for mandatory
locking by setting its set-group bit (SGID) and clearing the group-execute permission bit.
Since the set-group bit makes no sense when the group-execute bit is off, the kernel interprets
that combination as a hint to use mandatory locks instead of advisory ones.

11 Oddly enough, a process may still unlink (delete) a file even if some other process owns a mandatory lock on it! This perplexing situation is
possible because, when a process deletes a file hard link, it does not modify its contents but only the contents of its parent directory.

Whether processes use advisory or mandatory locks, they can make use of both shared read
locks and exclusive write locks. Any number of processes may have read locks on some file
region, but only one process can have a write lock on it at the same time. Moreover, it is not
possible to get a write lock when another process owns a read lock for the same file region
and vice versa (see Table 12-11).

Table 12-11. Whether a Lock Is Granted

Requested Lock Requested Lock
Current Locks Read Write
No lock Yes Yes
Read locks Yes No
Write lock No No

12.6.1 Linux File Locking

Linux supports all fashions of file locking: advisory and mandatory locks and the fcnt1(),
flock(), and the lockf() system calls. However, the lockf () system call is just a
library wrapper routine, and therefore will not be discussed here.

Mandatory locks can be enabled and disabled on a per-filesystem basis using the
Ms MANDLOCK flag of the mount () system call. The default is to switch off mandatory
locking: in this case, both flock() and fcntl() create advisory locks. When the flag is
set, flock () still produces advisory locks, while fcnt1 () produces mandatory locks if the
file has the set-group bit on and the group-execute bit off; it produces advisory locks
otherwise.

Beside the checks in the read() and write() system calls, the kernel takes into
consideration the existence of mandatory locks when servicing all system calls that could
modify the contents of a file. For instance, an open () system call with the o_Trunc flag set
fails if any mandatory lock exists for the file.

A lock produced by fcnt1 () is of type FL_Pos1x, while a lock produced by flock() is of
type FL_Lock. These two types of locks may safely coexist, but neither one has any effect on
the other. Therefore, a file locked through fcnt1 () does not appear locked to fiock() and
vice versa.

An rF1_posix lock is always associated with a process and with an inode; the lock is
automatically released either when the process dies or when a file descriptor is closed (even if

338

Understanding the Linux Kernel

the process opened the same file twice or duplicated a file descriptor). Moreover, FL_ POSIX
locks are never inherited by the child across a fork ().

An FL_10cCK lock is always associated with a file object. When a lock is requested, the kernel
replaces any other lock that refers to the same file object. This happens only when a process
wants to change an already owned read lock into a write one or vice versa. Moreover, when a
file object is being freed by the fput() function, all FL_rock locks that refer to the file
object are destroyed. However, there could be other F1. r.ock read locks set by other processes
for the same file (inode), and they still remain active.

12.6.2 File-Locking Data Structures

The file lock data structure represents file locks; its fields are shown in Table 12-12. All
file lock data structures are included in a doubly linked list. The address of the first
element is stored in file lock table, while the fields f1 nextlink and £1 prevlink store
the addresses of the adjacent elements in the list.

Table 12-12. The Fields of the file_lock Data Structure

Type Field Description

struct file lock * fl next Next element in inode list
struct file lock * fl nextlink Nextelement in global list
struct file lock * fl prevlink |Previous element in global list
struct file lock * f1l nextblock |Nextelement in process list
struct file lock * fl prevblock |Previous element in process list
struct files struct * fl owner Owner's files struct
unsigned int fl pid PID of the process owner
struct wait queue * fl wait Wait queue of blocked processes
struct file * fl file Pointer to file object
unsigned char fl flags Lock flags

unsigned char fl type Lock type

off t fl start Starting offset of locked region
off t fl end Ending offset of locked region
void (*) (struct file lock *) fl notify Callback function when lock is unblocked
union u Filesystem-specific information

All 1ock file structures that refer to the same file on disk are collected in a simply linked
list, whose first element is pointed to by the i flock field of the inode object. The £1 next
field of the 1ock file structure specifies the next element in the list.

When a process tries to get an advisory or mandatory lock, it may be suspended until the
previously allocated lock on the same file region is released. All processes sleeping on some
lock are inserted into a wait queue, whose address is stored in the f1 wait field of the
file lock structure. Moreover, all processes sleeping on any file locks are inserted into a
global circular list implemented by means of the £1 nextblock and £1 prevblock fields.

The following sections examine the differences between the two lock types.

339

Understanding the Linux Kernel

12.6.3 FL_LOCK Locks

The flock () system call acts on two parameters: the £d file descriptor of the file to be acted
upon and a cmd parameter that specifies the lock operation. A cmd parameter of LOCK SH
requires a shared lock for reading, Lock Ex requires an exclusive lock for writing, and
Lock UN releases the lock. If the Lock nNB value is ORed to the LOCK SH or LOCK EX
operation, the system call does not block; in other words, if the lock cannot be immediately
obtained, the system call returns an error code. Note that it is not possible to specify a region
inside the file: the lock always applies to the whole file.

When the sys flock() service routine is invoked, it performs the following steps:

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets the
address of the corresponding file object.

2. Invokes flock make lock() to initialize a file lock structure by setting the
f1 flags field to FL_10CK; sets the £1 type field to F RDLCK, F WRLCK, Or F_UNLCK,
depending on the value of cmd, and sets the f1 file field to the address of the file
object.

3. If the lock must be acquired, checks that the process has both read and write
permission on the open file; if not, returns an error code.

4. Invokes flock lock file(), passing as parameters the file object pointer filp, a
pointer caller to the initialized file lock structure, and a flag wait. This last
parameter is set if the system call should block and cleared otherwise. This function
performs, in turn, the following actions:

a. Searches the list that filp->f dentry->d inode->i flock points to. If an
FL _LOCK lock for the same file object is found and an F UNLCK operation is
required, removes the file lock element from the inode list and the global
list, wakes up all processes sleeping in the lock's wait queue, frees the
file lock structure, and returns.

b. Otherwise, searches the inode list again to verify that no existing FL_1.0ck lock
conflicts with the requested one. There must be no rL_rock write lock in the
inode list, and moreover there must be no FL_1.ock lock at all if the processing
is requesting a write lock. However, a process may want to change the type of
a lock it already owns; this is done by issuing a second flock() system call.
Therefore, the kernel always allows the process to change locks that refer to
the same file object. If a conflicting lock is found and the Lock nB flag was
specified, returns an error code, otherwise inserts the current process in the
circular list of blocked processes and invokes interruptible sleep on()
to suspend it.

c. Otherwise, if no incompatibility exists, inserts the file lock structure into the
global lock list and the inode list, then returns (success).

12.6.4 FL_POSIX Locks
When used to lock files, the fcnt1() system call acts on three parameters: the £d file

descriptor of the file to be acted upon, a cmd parameter that specifies the lock operation, and
an f£1 pointer to a f1lock structure.

340

Understanding the Linux Kernel

Locks of type FL_posIx are able to protect an arbitrary file region, even a single byte. The
region is specified by three fields of the flock structure. 1 start is the initial offset of the
region and is relative to the beginning of the file (if field 1 _whence is set to SEEK_SET), to the
current file pointer (if 1 _whence is set to SEEK_CUR), or to the end of the file (if 1 whence is
set to seEk_END). The 1 1len field specifies the length of the file region (or 0, which means
that the region extends beyond the end of the file).

The sys fentl() service routine behaves differently depending on the value of the flag set
in the cmd parameter:

F_GETLK

Determines whether the lock described by the flock structure conflicts with some
FL_PosIx lock already obtained by another process. In that case, the £1ock structure is
overwritten with the information about the existing lock.

F SETLK

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call returns an error code.

F SETLKW

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call blocks; that is, the calling process is put to sleep.

When sys fentl() acquires a lock, it performs the following:

—_—

Reads the flock structure from user space.

2. Gets the file object corresponding to £d.

3. Checks whether the lock should be a mandatory one. In that case, returns an error code
if the file has a shared memory mapping (see Section 15.2 in Chapter 15).

4. Invokes the posix make lock() function to initialize a new file lock structure.

5. Returns an error code if the file does not allow the access mode specified by the type
of the requested lock.

6. Invokes the 1ock method of the file operations, if defined.

7. Invokes the posix lock file() function, which executes the following actions:

a. Invokes posix locks conflict() for each FL posix lock in the inode's
lock list. The function checks whether the lock conflicts with the requested
one. Essentially, there must be no F._pos1ix write lock for the same region in
the inode list, and there may be no F1. pos1x lock at all for the same region if
the process is requesting a write lock. However, locks owned by the same
process never conflict; this allows a process to change the characteristics of a
lock it already owns.

b. If a conflicting lock is found and fcnt1() was invoked with the F SETLK
flag, returns an error code. Otherwise, the current process should be suspended.
In this case, invokes posix locks deadlock() to check that no deadlock
condition is being created among processes waiting for FL. pos1x locks, then

341

Understanding the Linux Kernel

inserts the current process in the circular list of blocked processes and invokes
interruptible sleep on() to suspend it.

c. As soon as the inode's lock list includes no conflicting lock, checks all the
FL poSIX locks of the current process that overlap the file region that the
current process wants to lock and combines and splits adjacent areas as
required. For example, if the process requested a write lock for a file region
that falls inside a read-locked wider region, the previous read lock is split into
two parts covering the nonoverlapping areas, while the central region is
protected by the new write lock. In case of overlaps, newer locks always
replace older ones.

d. Inserts the new file lock structure in the global lock list and in the inode list.

8. Returns the value 0 (success).

12.7 Anticipating Linux 2.4
The Linux 2.4 VFS handles eight new filesystems, among them the udf for handling DVD
devices. The maximum file size has been considerably increased (at least from the VFS point

of view) by expanding the i size field of the inode from 32 to 64 bits.

Additional access types can now be specified when opening a file: one refers to "raw" write
requests that do not make use of the buffer cache.

342

Understanding the Linux Kernel

Chapter 13. Managing I/O Devices

The Virtual File System in the last chapter depends on lower-level functions to carry out each
read, write, or other operation in a manner suited to each device. The previous chapter
included a brief discussion of how operations are handled by different filesystems. In this
chapter, we'll look at how the kernel invokes the operations on actual devices.

In Section 13.1 we give a brief survey of the Intel 80x86 /O architecture. In Section 13.2 we
show how the VFS associates a "device file" with each different hardware device so that
application programs can use all kinds of devices in the same way. Most of the chapter
focuses on the two types of drivers, character and block.

The aim of this chapter is to illustrate the overall organization of device drivers in Linux.
Readers interested in developing device drivers on their own may want to refer to Alessandro
Rubini's Linux Device Drivers book from O'Reilly.

13.1 1/0 Architecture

In order to make a computer work properly, data paths must be provided that let information
flow between CPU(s), RAM, and the score of I/O devices that can be connected nowadays to
a personal computer. These data paths, which are denoted collectively as the bus, act as the
primary communication channel inside the computer.

Several types of buses, such as the ISA, EISA, PCI, and MCA, are currently in use. In this

section we'll discuss the functional characteristics common to all PC architectures, without
giving details about a specific bus type.

In fact, what is commonly denoted as bus consists of three specialized buses:
Data bus

A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data bus.
Address bus

A group of lines that transmits an address in parallel. The Pentium has a 32-bit-wide
address bus.

Control bus

A group of lines that transmits control information to the connected circuits. The
Pentium makes use of control lines to specify, for instance, whether the bus is used to
allow data transfers between a processor and the RAM or alternatively between a
processor and an I/O device. Control lines also determine whether a read or a write
transfer must be performed.

When the bus connects the CPU to an I/O device, it is called an I/O bus. In this case, Intel

80x86 microprocessors use 16 out of the 32 address lines to address I/O devices and 8§, 16, or
32 out of the 64 data lines to transfer data. The I/O bus, in turn, is connected to each I/O

343

Understanding the Linux Kernel

device by means of a hierarchy of hardware components including up to three elements: I/O
ports, interfaces, and device controllers. Figure 13-1 shows the components of the I/O
architecture.

Figure 13-1. PC's 1/O architecture

CPU
4
¥
1/0 bus
| 0 Port | . | 10 Port ' f
' alfasiaansaa
V0 Interface /0 Device
. 10 Controller g

13.1.1 1/O Ports

Each device connected to the I/O bus has its own set of I/O addresses, which are usually
called /O ports. In the IBM PC architecture, the I/O address space provides up to 65,536 8-bit
I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, which must
start on an even address. Similarly, two consecutive 16-bit ports may be regarded as a single
32-bit port, which must start on an address that is a multiple of 4. Four special assembly
language instructions called in, ins, out, and outs allow the CPU to read from and write into
an I/O port. While executing one of these instructions, the CPU makes use of the address bus
to select the required I/O port and of the data bus to transfer data between a CPU register and
the port.

I/O ports may also be mapped into addresses of the physical address space: the processor is
then able to communicate with an I/O device by issuing assembly language instructions that
operate directly on memory (for instance, mov, and, or, and so on). Modern hardware devices
tend to prefer mapped I/O, since it is faster and can be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O
programming without sacrificing performance. Toward that end, the I/O ports of each device
are structured into a set of specialized registers as shown in Figure 13-2. The CPU writes into
the control register the commands to be sent to the device and reads from the status register a
value that represents the internal state of the device. The CPU also fetches data from the
device by reading bytes from the input register and pushes data to the device by writing bytes
into the output register.

344

Understanding the Linux Kernel

Figure 13-2. Specialized 1/O ports

Confrol register

Status ragistar
CPU Device's
110 Interface

Input register

Qutput register

In order to lower costs, the same 1/O port is often used for different purposes. For instance,
some bits describe the device state, while others specify the command to be issued to the
device. Similarly, the same I/O port may be used as an input register or an output register.

13.1.2 1/0O Interfaces

An I/O interface is a hardware circuit inserted between a group of I/O ports and the
corresponding device controller. It acts as an interpreter that translates the values in the I/O
ports into commands and data for the device. In the opposite direction, it detects changes in
the device state and correspondingly updates the I/O port that plays the role of status register.
This circuit can also be connected through an IRQ line to a Programmable Interrupt
Controller, so that it issues interrupt requests on behalf of the device.

There are two types of interfaces:
Custom 1/O interfaces

Devoted to one specific hardware device. In some cases, the device controller is
located in the same card /” that contains the I/O interface. The devices attached to a
custom I/O interface can be either internal devices (devices located inside the PC's
cabinet) or external devices (devices located outside the PC's cabinet).

1 Each card must be inserted in one of the available free bus slots of the PC. If the card can be connected to an external device
through an external cable, the card sports a suitable connector in the rear panel of the PC.

General-purpose 1/O interfaces

Used to connect several different hardware devices. Devices attached to a general-
purpose I/O interface are always external devices.

13.1.2.1 Custom /O interfaces

Just to give an idea of how much variety is encompassed by custom I/O interfaces, thus by the
devices currently installed in a PC, we'll list some of the most commonly found:

Keyboard interface
Connected to a keyboard controller that includes a dedicated microprocessor. This

microprocessor decodes the combination of pressed keys, generates an interrupt, and
puts the corresponding scan code in an input register.

345

Understanding the Linux Kernel

Graphic interface

Packed together with the corresponding controller in a graphic card that has its own
frame buffer, as well as a specialized processor and some code stored in a Read-Only
Memory chip (ROM). The frame buffer is an on-board memory containing the
graphics description of the current screen contents.

Disk interface

Connected by a cable to the disk controller, which is usually integrated with the disk.
For instance, the IDE interface is connected by a 40-wire flat conductor cable to an
intelligent disk controller that can be found on the disk itself.

Bus mouse interface

The corresponding controller is included in the mouse, which is connected via a cable
to the interface.

Network interface

Packed together with the corresponding controller in a network card used to receive or
transmit network packets. Although there are several widely adopted network
standards, Ethernet is the most common.

13.1.2.2 General-purpose I/O interfaces

Modern PCs include several general-purpose I/O interfaces, which are used to connect a wide
range of external devices. The most common interfaces are:

Parallel port

Traditionally used to connect printers, it can also be used to connect removable disks,
scanners, backup units, other computers, and so on. The data is transferred 1 byte (8
bits) at the time.

Serial port

Like the parallel port, but the data is transferred 1 bit at a time. It includes a Universal
Asynchronous Receiver and Transmitter (UART) chip to string out the bytes to be sent
into a sequence of bits and to reassemble the received bits into bytes. Since it is
intrinsically slower than the parallel port, this interface is mainly used to connect
external devices that do not operate at a high speed, like modems, mouses, and
printers.

Universal serial bus (USB)
A recent general-purpose I/O interface that is quickly gaining in popularity. It operates

at a high speed, and it may be used for the external devices traditionally connected to
the parallel port and the serial port.

346

Understanding the Linux Kernel

PCMCIA interface

Included mostly on portable computers. The external device, which has the shape of a
credit card, can be inserted into and removed from a slot without rebooting the system.
The most common PCMCIA devices are hard disks, modems, network cards, and
RAM expansions.

SCSI (Small Computer System Interface) interface

A circuit that connects the main PC bus to a secondary bus called the SCSI bus. The
SCSI-2 bus allows up to eight PCs and external devices—hard disks, scanners, CD-
ROM writers, and so on—to be connected together. Wide SCSI-2 and the recent
SCSI-3 interfaces allow you to connect 16 devices or more if additional interfaces are
present. The SCSI standard is the communication protocol used to connect devices via
the SCSI bus.

13.1.3 Device Controllers

A complex device may require a device controller to drive it. Essentially, the controller plays
two important roles:

o [t interprets the high-level commands received from the I/O interface and forces the
device to execute specific actions by sending proper sequences of electrical signals to
it.

e It converts and properly interprets the electrical signals received from the device and
modifies (through the I/O interface) the value of the status register.

A typical device controller is the disk controller, which receives high-level commands such as
a "write this block of data" from the microprocessor (through the I/O interface) and converts
them into low-level disk operations such as "position the disk head on the right track" and
"write the data inside the track." Modern disk controllers are very sophisticated, since they
can keep the disk data in fast memory caches and can reorder the CPU high-level requests
optimized for the actual disk geometry.

Simpler devices do not have a device controller; the Programmable Interrupt Controller (see
Section 4.2 in Chapter 4) and the Programmable Interval Timer (see Section 5.1.3 in
Chapter 5) are examples of such devices.

13.1.4 Direct Memory Access (DMA)

All PCs include an auxiliary processor called the Direct Memory Access Controller, or
DMAC, which can be instructed to transfer data between the RAM and an I/O device. Once
activated by the CPU, the DMAC is able to carry on the data transfer on its own; when the
data transfer has been completed, the DMAC issues an interrupt request. The conflicts
occurring when both CPU and DMAC need to access the same memory location at the same
time are resolved by a hardware circuit called a memory arbiter (see also Section 11.3.1 in
Chapter 11).

347

Understanding the Linux Kernel

The DMAC is mostly used by disk drivers and other slow devices that transfer a large number
of bytes at once. Because setup time for the DMAC is relatively high, it is more efficient to
directly use the CPU for the data transfer when the number of bytes is small.

The first DMACs for the old ISA buses were complex and hard to program. More recent
DMAC:s for the PCI and SCSI buses rely on dedicated hardware circuits in the buses and
make life easier for device driver developers.

Until now we have distinguished three kinds of memory addresses: logical and linear
addresses, which are used internally by the CPU, and physical addresses, which are the
memory addresses used by the CPU to physically drive the data bus. However, there is a
fourth kind of memory address, the so-called bus address: it corresponds to the memory
addresses used by all hardware devices except the CPU to drive the data bus. In the PC
architecture, bus addresses coincide with physical addresses; however, in other architectures,
like Sun's SPARC and Compaq's Alpha, these two kinds of addresses differ.

Why should the kernel be concerned at all about bus addresses? Well, in a DMA operation the
data transfer takes place without CPU intervention: the data bus is directly driven by the I/O
device and the DMAC. Therefore, when the kernel sets up a DMA operation, it must write the
bus address of the memory buffer involved in the proper I/O ports of the DMAC or /O
device.

13.2 Associating Files with 1/0 Devices

As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a file,
which is just an information container structured as a sequence of bytes. According to this
approach, I/O devices are treated as files; thus, the same system calls used to interact with
regular files on disk can be used to directly interact with I/O devices. As an example, the same
write () system call may be used to write data into a regular file, or to send it to a printer by
writing to the /dev/Ip0 device file. Let's now examine in more detail how this schema is
carried out.

13.2.1 Device Files

Device files are used to represent most of the I/O devices supported by Linux. Besides its
name, each device file has three main attributes:

Type
Either block or character (we'll discuss the difference shortly).
Major number
A number ranging from 1 to 255 that identifies the device type. Usually, all device

files having the same major number and the same type share the same set of file
operations, since they are handled by the same device driver.

348

Understanding the Linux Kernel

Minor number

A number that identifies a specific device among a group of devices that share the
same major number.

The mknod () system call is used to create device files. It receives the name of the device file,
its type, and the major and minor numbers as parameters. The last two parameters are merged
in a 16-bit dev_t number: the eight most significant bits identify the major number, while the
remaining ones identify the minor number. The MaJOR and MINOR macros extract the two
values from the 16-bit number, while the MKDEV macro merges a major and minor number into
a 16-bit number. Actually, dev t is the data type specifically used by application programs;
the kernel uses the kdev t data type. In Linux 2.2 both types reduce to an unsigned short
integer, but kdev t will become a complete device file descriptor in some future Linux
version.

Device files are usually included in the /dev directory. Table 13-1 illustrates the attributes of
some device files.” Notice how the same major number may be used to identify both a
character and a block device.

12/ The official registry of allocated device numbers and /devdirectory nodes is stored in the Documentation/devices.txt file. The major numbers of the
devices supported may also be found in the include/linux/major.h file.

Table 13-1. Examples of Device Files

Name Type |Major Minor |Description

/dev/fd0 block |2 0 Floppy disk

/dev/hda block |3 0 First IDE disk

/dev/hda2 block |3 2 Second primary partition of first IDE disk
/dev/hdb block |3 64 Second IDE disk

/dev/hdb3 block |3 67 Third primary partition of second IDE disk
/dev/ttyp0 char 3 0 Terminal

/dev/console char 5 1 Console

/dev/lpl char 6 1 Parallel printer

/dev/ttyS0 char 4 64 First serial port

/dev/rtc char 10 135 Real time clock

/dev/null char 1 3 Null device (black hole)

Usually, a device file is associated with a hardware device, like a hard disk (for instance,
/dev/hda), or with some physical or logical portion of a hardware device, like a disk partition
(for instance, /dev/hda?2). In some cases, however, a device file is not associated to any real
hardware device, but represents a fictitious logical device. For instance, /dev/null is a device
file corresponding to a "black hole": all data written into it are simply discarded, and the file
appears always empty.

As far as the kernel is concerned, the name of the device file is irrelevant. If you created a
device file named /tmp/disk of type "block" with major number 3 and minor number 0, it
would be equivalent to the /dev/hda device file shown in the table. On the other hand, device
filenames may be significant for some application programs. As an example, a
communication program might assume that the first serial port is associated with the
/dev/ttyS0 device file. But usually most application programs can be configured to interact
with arbitrarily named device files.

349

Understanding the Linux Kernel

13.2.1.1 Block versus character devices
Block devices have the following characteristics:

e They are able to transfer a fixed-size block of data in a single I/O operation.

e Blocks stored in the device can be addressed randomly: the time needed to transfer a
data block can be assumed independent of the block address inside the device and of
the current device state.

Typical examples of block devices are hard disks, floppy disks, and CD-ROMs. RAM disks,
which are obtained by configuring portions of the RAM as fast hard disks and can make
temporary storage very efficient for application programs, are also treated as block devices.

Character devices have the following characteristics:

e They are able to transfer arbitrary-sized data in a single I/O operation. Actually, some
character devices—such as printers—transfer 1 byte at a time, while others, such as
tape units, transfer variable-length blocks of data.

e They usually address characters sequentially.

13.2.1.2 Network cards

Some I/0O devices have no corresponding device file. The most significant example is network
cards. Essentially, a network card places outgoing data on a line going to remote computer
systems and receives packets from those systems into kernel memory. Although this book
does not cover networking, it is worth spending a few moments on the kernel and
programming interfaces to these cards.

Starting with BSD, all Unix systems assign a different symbolic name to each network card
included in the computer; for instance, the first Ethernet card gets the etho name. However,
the name does not correspond to any device file and has no corresponding inode.

Instead of using the filesystem, the system administrator has to set up a relationship between
the device name and a network address. Therefore, data communication between application
programs and the network interface is not based on the standard file-related system calls; it is
based instead on the socket (), bind(), listen(), accept(), and connect () system
calls, which act on network addresses. This group of system calls, introduced first by Unix
BSD, has become the standard programming model for network devices.

13.2.2 VFS Handling of Device Files

Device files live in the system directory tree but are intrinsically different from regular files
and directories. When a process accesses a regular file, it is accessing some data blocks in
some disk partition through a filesystem, but when a process accesses a device file, it is just
driving a hardware device. For instance, a process might access a device file to read the room
temperature from a digital thermometer connected to the computer. It is the VFS's
responsibility to hide the differences between device files and regular files from application
programs.

350

Understanding the Linux Kernel

In order to do this, the VFS changes the default file operations of an opened device file; as
result, any system call on the device file will be translated to an invocation of a device-related
function instead of the corresponding function of the hosting filesystem. The device-related
function acts on the hardware device to perform the operation requested by the process."

I Notice that, thanks to the name-resolving mechanism explained in Section 12.4 in Chapter 12, symbolic links to device files work just like device
files.

The set of device-related functions that control an I/O device is called a device driver. Since
each device has a unique I/O controller, and thus unique commands and unique state
information, most I/O device types have their own drivers.

13.2.2.1 Device file class descriptors

Each class of device files having the same major number and the same type is described by a
device struct data structure, which includes two fields: the name (name) of the device class
and a pointer (fops) to the file operation table. All device struct descriptors for character
device files are included in the chrdevs table. It includes 255 elements, one for each possible
major number. (No device file can have major number 255, since that value is reserved for
future extensions.) Similarly, all 255 descriptors for block device files are included in the
blkdevs table. The first entry of both tables is always empty, since no device file can have
major number 0.

The chrdevs and blkdevs tables are initially empty. The register chrdev() and
register blkdev() functions are used to insert a new entry into one of the tables, while
unregister chrdev() and unregister blkdev() are used to remove an entry.

As an example, the descriptor for the parallel printer driver class is inserted in the chrdevs
table as follows:

register chrdev (6, "lp", &lp fops);

The first parameter denotes the major number, the second denotes the device class name, and
the last is a pointer to the table of file operations.

If a device driver is statically included in the kernel, the corresponding device file class is
registered during system initialization. However, if a device driver is dynamically loaded as a
module (see Appendix B), the corresponding device file class is registered when the module is
loaded and unregistered when the module is unloaded.

13.2.2.2 Opening a device file

We discussed in Section 12.5.1 in Chapter 12 how files are opened. Let us suppose that a
process opens a device file. The VFS initializes, if necessary, the file object, the dentry object,
and the inode object that refer to the device file. In particular, if the inode object does not
already exist, the VFS invokes the read inode method of the proper superblock object to
retrieve the file information from disk. In doing so, the method records the device major and
minor numbers in the i rdev field of the inode object and the device file type in the i mode
field (s _1rcHR for character device files or s 1FBLK for block device files). Moreover, it
installs a pointer to the appropriate inode operations as follows:

351

Understanding the Linux Kernel

if ((inode->i mode & 00170000) == S IFCHR)
inode->i op = &chrdev inode operations;

else if ((inode->i mode & 00170000) == S IFBLK)
inode->i op = &blkdev _inode operations;

All fields of the chrdev _inode operations and blkdev inode operations tables are null
except for the default file ops fields, which point to the def chr fops table and to the
def blk fops table, respectively. All the methods of def chr fops and def blk fops in
turn are null except for the open methods, which point to the chrdev open() function and
to the bl1kdev open () function, respectively.

The £ilp open() function fills the new file object and in particular initializes the £ op field
with the contents of i op->default file ops field of the inode object. As a consequence,
the file operation table will be def chr fops or def blk fops. Then filp open() invokes
the open method, thus executing either chrdev open() or blkdev open(). These
functions essentially perform three operations:

1. Derive the major number of the device driver from the i rdev field of the inode
object:

major = MAJOR (inode->i rdev);

2. Install the proper file operations for the device file:

filp->f op = chrdevs[major].fops;

(The example, of course, is for character device files; blkdev open() uses the
blkdevs table instead.)

3. Invoke, if defined, the open method of the file operations table:

if (filp->f op != NULL && filp->f op->open != NULL)
return filp->f op->open (inode, filp);

Notice that the final invocation of the open() method does not cause recursion, since now
the field contains the address of a device-dependent function whose job is to set up the device.
Typically, that function performs the following operations:

1. If the device driver is included in a kernel module, increments its usage counter, so
that it cannot be unloaded until the device file is closed. (Appendix B describes how
users can load and unload modules.)

2. If the device driver handles several devices of the same kind, selects the proper one by
making use of the minor number and further specializes, if needed, the table of file
operations.

3. Checks whether the device really exists and is currently working.
4. If necessary, sends an initialization command sequence to the hardware device.
5. [Initializes the data structures of the device driver.

352

Understanding the Linux Kernel

13.3 Device Drivers

We have seen that the VFS uses a canonical set of common functions (open, read, Iseek, and
so on) to control a device. The actual implementation of all these functions is delegated to the
device driver. Since each device has a unique I/O controller, and thus unique commands and
unique state information, most I/O devices have their own drivers.

We shall not attempt to describe any of the hundreds of existing device drivers but
concentrate rather on how the kernel supports them. In doing so, we shall describe several I/O
architecture features that must be taken into consideration by device driver programmers.

13.3.1 Level of Kernel Support
The kernel can support access to hardware devices in three possible ways:
No support at all

The application program interacts directly with the device's I/O ports by issuing
suitable in and out assembly language instructions.

Minimal support

The kernel does not recognize the hardware device but only its I/O interface. User
programs are able to treat the interface as a sequential device capable of reading
and/or writing sequences of characters.

Extended support

The kernel recognizes the hardware device and handles the I/O interface itself. In fact,
there might not even be a device file for the device.

The most common example of the first approach, which does not rely on any kernel device
driver, is how the X Window System handles the graphic display. The approach is quite
efficient, although it restrains the X server from making use of the hardware interrupts issued
by the I/O device. This approach also requires some additional effort in order to allow the X
server to access the required I/O ports. As mentioned in Section 3.2.2 in Chapter 3, the iop1 (
) and ioperm() system calls grant a process the privilege to access I/O ports. They can be
invoked only by programs having root privileges. But such programs can be made available to
users by setting the fsuid field of the executable file to 0, the UID of the superuser (see
Section 19.1.1 in Chapter 19).

The minimal support approach is used to handle external hardware devices connected to a
general-purpose I/O interface. The kernel takes care of the I/O interface by offering a device
file (and thus a device driver); the application program handles the external hardware device
by reading and writing the device file.

Minimal support is preferable to extended support because it keeps the kernel size small.

However, among the general-purpose I/O interfaces commonly found on a PC, only the serial
port is handled with this approach. Thus, a serial mouse is directly controlled by an

353

Understanding the Linux Kernel

application program, like the X server, and a serial modem always requires a communication
program like Minicom, Seyon, or a PPP (Point-to-Point Protocol) daemon.

Minimal support has a limited range of applications because it cannot be used when the
external device must interact heavily with internal kernel data structures. As an example,
consider a removable hard disk that is connected to a general-purpose I/O interface. An
application program cannot interact with all kernel data structures and functions needed to
recognize the disk and to mount its filesystem, so extended support is mandatory in this case.

In general, any hardware device directly connected to the I/O bus, such as the internal hard
disk, is handled according to the extended support approach: the kernel must provide a device
driver for each such device. External devices attached to the parallel port, the Universal Serial
Bus (USB), the PCMCIA port found in many laptops, or the SCSI interface—in short, any
general-purpose I/O interface except the serial port—also require extended support.

It is worth noting that the standard file-related system calls like open(), read(), and
write () do not always give the application full control of the underlying hardware device.
In fact, the lowest-common-denominator approach of the VFS does not include room for
special commands that some devices need or let an application check whether the device is in
some specific internal state.

The POSIX ioctl() system call has been introduced to satisfy such needs. Besides the file
descriptor of the device file and a second 32-bit parameter specifying the request, the system
call can accept an arbitrary number of additional parameters. For example, specific ioct1 ()
requests exist to get the CD-ROM sound volume or to eject the CD-ROM media. Application
programs may simulate the user interface of a CD player using these kinds of ioctl()
requests.

13.3.2 Monitoring I/O Operations

The duration of an I/O operation is often unpredictable. It can depend on mechanical
considerations (the current position of a disk head with respect to the block to be transferred),
on truly random events (when a data packet will arrive on the network card), or on human
factors (when a user will press a key on the keyboard or when she will notice that a paper jam
occurred in the printer). In any case, the device driver that started an I/O operation must rely
on a monitoring technique that signals either the termination of the I/O operation or a time-
out.

In the case of a terminated operation, the device driver reads the status register of the 1/O
interface to determine if the I/O operation was carried out successfully. In the case of a time-
out, the driver knows that something went wrong, since the maximum time interval allowed to
complete the operation elapsed and nothing happened.

The two techniques available to monitor the end of an I/O operation are called the polling
mode and the interrupt mode.

13.3.2.1 Polling mode

According to this technique, the CPU checks (polls) the device's status register repeatedly
until its value signals that the I/O operation has been completed. We have already encountered

354

Understanding the Linux Kernel

a technique based on polling in Section 11.4.2 in Chapter 11: when a processor tries to
acquire a busy spin lock, it repeatedly polls the variable until its value becomes 0. However,
polling applied to I/O operations is usually more elaborate, since the delays involved may be
huge and the driver must remember to check for possible time-outs, too. In order to avoid
wasting precious machine cycles, device drivers voluntarily relinquish the CPU after each
polling operation so that other runnable processes can continue their execution:

for (;;) |
if (read status(device) & DEVICE END OPERATION)
break;
schedule();
if (--count == 0)
break;

The count variable, which was initialized before entering the loop, is decremented at each
iteration, and thus can be used to implement a rough time-out mechanism. Alternatively, a
more precise time-out mechanism could be implemented by reading the value of the tick
counter jiffies at each iteration (see Section 5.3 in Chapter 5) and comparing it with the old
value read before starting the wait loop.

13.3.2.2 Interrupt mode

Interrupt mode can be used only if the I/O controller is capable of signaling, via an IRQ line,
the end of an I/O operation. The device driver starts the I/O operation and invokes
interruptible sleep on() Or sleep on(), passing as the parameter a pointer to the I/O
device wait queue.

When the interrupt occurs, the interrupt handler invokes wake up () to wake up all processes
sleeping in the device wait queue. The awakened device driver can thus check the result of the
I/O operation.

Time-out control is implemented through static or dynamic timers (see Chapter 5); the timer

must be set to the right time before starting the I/O operation and removed when the operation
terminates.

13.3.3 Accessing I/O Ports

The in, out, ins, and outs assembly language instructions access 1/O ports. The following
auxiliary functions are included in the kernel to simplify such accesses:

inb() ,inw() ,inl()

"

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix "b," "w,
or "1" refers, respectively, to a byte (8 bits), a word (16 bits), and a long (32 bits).

inb p() ,inw p(),inl p()

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port and then execute a
"dummy" instruction to introduce a pause.

355

Understanding the Linux Kernel

outb() ,outw() ,outl ()
Write 1, 2, or 4 consecutive bytes respectively to an I/O port.
outb p() ,outw p() ,outl p()

Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port and then execute a
"dummy" instruction to introduce a pause.

insb() ,insw() ,insl()

Read sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, from an I/O
port. The length of the sequence is specified as a parameter of the functions.

outsb() ,outsw() ,outsl()

Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an 1/O
port.

While accessing 1/O ports is simple, detecting which I/O ports have been assigned to I/O
devices may not be, in particular for systems based on an ISA bus. Often a device driver must
blindly write into some I/O port in order to probe the hardware device; if, however, this I/O
port is already used by some other hardware device, a system crash could occur. In order to
prevent such situations, the kernel keeps track of I/O ports assigned to each hardware device
by means of the iotable table. Any device driver may thus use the following three functions:
request region()
Assigns a given interval of I/O ports to an I/O device

check region()

Checks whether a given interval of I/O ports is free or whether some of them have
already been assigned to some I/O device

release region()
Releases a given interval of I/O ports previously assigned to an I/O device

The I/O addresses currently assigned to I/O devices can be obtained from the /proc/ioports
file.

13.3.4 Requesting an IRQ
We have seen in Section 4.6.7 in Chapter 4 that the assignment of IRQs to devices is usually
made dynamically, right before using them, since several devices may share the same IRQ

line. To make sure the IRQ is obtained when needed but not requested in a redundant manner
when it is already in use, device drivers usually adopt the following schema:

356

Understanding the Linux Kernel

e A usage counter keeps track of the number of processes that are currently accessing
the device file. The counter is incremented in the open method of the device file and
decremented in the release method."

I More precisely, the usage counter keeps track of the number of file objects referring to the device file, since clone processes could share the same
file object.

e The open method checks the value of the usage counter before the increment. If the
counter is null, the device driver must allocate the IRQ and enable interrupts on the
hardware device. Therefore, it invokes request irg() and configures the I/O
controller properly.

e The release method checks the value of the usage counter after the decrement. If the
counter is null, no more processes are using the hardware device. If so, the method
invokes free irqg(), thus releasing the IRQ line, and disables interrupts on the I/O
controller.

13.3.5 Putting DMA to Work

As mentioned in Section 13.1.4, several I/O drivers make use of the Direct Memory Access
Controller (DMAC) to speed up operations. The DMAC interacts with the device's 1/O
controller to perform a data transfer; as we shall see later, the kernel includes an easy-to-use
set of routines to program the DMAC. The 1/O controller signals to the CPU, via an IRQ,
when the data transfer has finished.

When a device driver sets up a DMA operation for some I/O device, it must specify the
memory buffer involved by using bus addresses. The kernel provides the virt to bus and
bus_to_ virt macros, respectively, to translate a linear address into a bus address and vice
versa.

As with IRQ lines, the DMAC is a resource that must be assigned dynamically to the drivers
that need it. The way the driver starts and ends DMA operations depends on the type of bus.

13.3.5.1 DMA for ISA bus

Each ISA DMAC can control a limited number of channels. Each channel includes an
independent set of internal registers, so that the DMAC can control several data transfers at
the same time.

Device drivers normally reserve and release the ISA DMAC in the following manner. As
usual, the device driver relies on a usage counter to detect when a device file is no longer
accessed by any process. The driver performs the following:

e In the open() method of the device file, increment the device's usage counter. If the
previous value was 0, the driver performs the following operations:
1. Invokes request irq() to allocate the IRQ line used by the ISA DMAC
2. Invokes request dma () to allocate a DMA channel
3. Notifies the hardware device that it should use DMA and issue interrupts
4. Allocates, if necessary, a storage area for the DMA buffer
e When the DMA operation must be started, performs the following operations in the
proper methods of the device file (typically, read and write):
1. Invokes set dma mode () to set the channel to read or write mode.

357

Understanding the Linux Kernel

2. Invokes set dma_addr() to set the bus address of the DMA buffer. (Only
the 24 least-significant bits of the address are sent to the DMAC, so the buffer
must be included in the first 16 MB of RAM.)

3. Invokes set dma count() to set the number of bytes to be transferred.

4. Invokes enable dma() to enable the DMA channel.

5. Puts the current process in the device's wait queue and suspends it. When the
DMAC terminates the transfer operation, the device's I/O controller issues an
interrupt and the corresponding interrupt handler wakes up the sleeping
process.

6. Once awakened, invokes disable dma() to disable the DMA channel.

7. Invokes get dma residue() to check whether all bytes have been
transferred.

e In the release method of the device file, decrements the device's usage counter. If it
becomes 0, execute the following operations:
1. Disables the DMA and the corresponding interrupt on the hardware device
2. Invokes free dma() to release the DMA channel
3. Invokes free irg() to release the IRQ line used for DMA

13.3.5.2 DMA for PCI bus

Making use of DMA for a PCI bus is much simpler, since the DMAC is somewhat integrated
into the I/O interface. As usual, in the open method, the device driver must allocate the IRQ
line used for signaling the termination of the DMA operation. However, there is no need to
allocate a DMA channel, since each hardware device directly controls the electrical signals of
the PCI bus. To start a DMA operation, the device driver simply writes in some I/O port of
the hardware device the bus address of the DMA buffer, the transfer direction, and the size of
the data; the driver then suspends the current process. The release method releases the IRQ
line when the file object is closed by the last process.

13.3.6 Device Controller's Local Memory

Several hardware devices include their own memory, which is often called I/O shared
memory. For instance, all recent graphic cards include a few megabytes of RAM called a
frame buffer, which is used to store the screen image to be displayed on the monitor.

13.3.6.1 Mapping addresses

Depending on the device and on the bus type, I/O shared memory in the PC's architecture may
be mapped within three different physical address ranges:

For most devices connected to the ISA bus
The I/O shared memory is usually mapped into the physical addresses ranging from
0xa0000 to Oxfffff; this gives rise to the "hole" between 640 KB and 1 MB
mentioned in Section 2.5.3 of Chapter 2.

For some old devices using the VESA Local Bus (VLB)

This is a specialized bus mainly used by graphic cards: the I/O shared memory is
mapped into the physical addresses ranging from 0xe00000 to Oxffffff, that is

358

Understanding the Linux Kernel

between 14 MB and 16 MB. These devices, which further complicate the initialization
of the paging tables, are going out of production.

For devices connected to the PCI bus

The I/O shared memory is mapped into very large physical addresses, well above the
end of RAM's physical addresses. This kind of device is much simpler to handle.

13.3.6.2 Accessing the 1/0 shared memory

How ° does the kernel access an I/O shared memory location? Let's start with the PC's
architecture, which is relatively simple to handle and then extend the discussion to other
architectures.

Remember that kernel programs act on linear addresses, so the I/O shared memory locations
must be expressed as addresses greater than PAGE OFFSET. In the following discussion, we
assume that PAGE OFFSET is equal to 0xc0000000, that is, that the kernel linear addresses are
in the fourth gigabyte.

Kernel drivers must translate I/O physical addresses of I/O shared memory locations into
linear addresses in kernel space. In the PC architecture, this can be achieved simply by ORing
the 32-bit physical address with the 0xc0000000 constant. For instance, suppose the kernel
needs to store in t1 the value in the I/O location at physical address 0x000b0fe4 and in 2 the
value in the I/O location at physical address 0x£c000000. One might think that the following
statements could do the job:

tl =
t2

((unsigned char *) (0xc00b0fed));
((unsigned char *) (0xfc000000)) ;

*
*

During the initialization phase, the kernel has mapped the available RAM's physical addresses
into the initial portion of the fourth gigabyte of the linear address space. Therefore, the Paging
Unit maps the 0xc00b0fe4 linear address appearing in the first statement back to the original
I/O physical address 0x000b0fe4, which falls inside the "ISA hole" between 640 KB and 1
MB (see Section 2.5 in Chapter 2). This works fine.

There is a problem, however, for the second statement because the I/O physical address is
greater than the last physical address of the system RAM. Therefore, the 0x£c000000 linear
address does not necessarily correspond to the 0xfc000000 physical address. In such cases,
the kernel page tables must be modified in order to include a linear address that maps the I/O
physical address: this can be done by invoking the ioremap () function. This function, which
is similar to vmalloc(), invokes get vm area() to create a new vm struct descriptor
(see Section 6.3.2 in Chapter 6) for a linear address interval having the size of the required I/O
shared memory area. The ioremap () function then updates properly the corresponding page
table entries of all processes.

The correct form for the second statement might therefore look like:

io mem = ioremap (0xfb000000, 0x200000);
t2 = *((unsigned char *) (io _mem + 0x100000));

359

Understanding the Linux Kernel

The first statement creates a new 2 MB linear address interval, starting from 0xfb000000; the
second one reads the memory location having the 0x£c000000 address. To remove the
mapping later, the device driver must use the iounmap () function.

Now let's consider architectures other than the PC. In this case, adding to an I/O physical
address the 0xc0000000 constant to obtain the corresponding linear address does not always
work. In order to improve kernel portability, Linux therefore includes the following macros to
access the I/0 shared memory:
readb , readw, readl

Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location
writeb ,writew, writel

Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location

memcpy fromio ,memcpy toio

Copies a block of data from an I/O shared memory location to dynamic memory and
vice versa

memset 1o
Fills an I/O shared memory area with a fixed value

The recommended way to access the 0x£fc000000 I/O location is thus:

io mem = ioremap (0xfb000000, 0x200000);
t2 = readb(io mem + 0x100000);

Thanks to these macros, all dependences on platform-specific ways of accessing the I/O
shared memory can be hidden.

13.4 Character Device Handling

Handling a character device is relatively easy, since no data buffering is needed and no disk
caches are involved. Of course, character devices differ in their requirements: some of them
must implement a sophisticated communication protocol to drive the hardware device, while
others just have to read a few values from a couple of I/O ports of the hardware devices. For
instance, the device driver of a multiport serial card device (a hardware device offering many
serial ports) is much more complicated than the device driver of a bus mouse.

Let's briefly sketch out the functioning of a very simple character device driver, namely the
driver of the Logitech bus mouse. It is associated with the /dev/logibm character device file,
which has major number 10 and minor number 0.

Suppose that a process opens the /dev/logibm file; as explained in Section 13.2.2 earlier in this

chapter, the VFS ends up invoking the open method of the device file operations common to
all character devices having major number 10. This device class covers a series of

360

Understanding the Linux Kernel

heterogeneous devices, and hence the method, a function called misc open(), installs yet a
more specialized set of file operations according to the device's minor number. As the final
result, the field £ op of the file object points to the bus mouse fops table, and the
open mouse () function is invoked. This function performs the following operations:

1. Checks whether the bus mouse is connected.

2. Requests the TRQ line used by the bus mouse, that is IRQS5, and registers the
mouse_interrupt () Interrupt Service Routine.

3. Initializes a small mouse data structure of type mouse status, which stores the
information about the status of the bus mouse. This status information includes which
buttons are pressed, along with the horizontal and vertical displacements of the mouse
pointer after the last read of the device file.

4. Writes the valuein the 0x23e control register to enable bus mouse interrupts (the
Logitech bus mouse uses I/O ports from 0x23c to 0x23f).

The mouse data structure is filled asynchronously: every time the user changes the mouse
position or presses a mouse button, the mouse controller generates an interrupt, and hence the
mouse interrupt () function is activated. It performs the following operations:

1. Asks the bus mouse device about its state by writing suitable commands in the 0x23e
control register and reading the corresponding values from the 0x23c input register.

2. Updates the mouse data structure.

3. Writes the value 0 in the 0x23e control register to reenable bus mouse interrupts (they
are automatically disabled by the bus mouse device each time one of them occurs).

The process must read the /dev/logibm file to get the mouse status. Each read() system call
ends up invoking the read mouse () function associated with the read method of the file
operations. It performs the following operations:

1. Checks that the process requested at least 3 bytes and returns -EINVAL otherwise.

2. Checks whether the mouse status has changed after the last read operation of
/dev/logibm; if not, return ~-EAGATN.

3. Invokes disable irg() to disable interrupt handling of IRQS, and reads the values
stored in the mouse data structure; then reenables interrupt handling of IRQS5 by
invoking enable irg().

4. Writes into the User Mode buffer 3 bytes representing the mouse status (buttons
status, horizontal and vertical displacements) after the last read operation.

5. If'the process requested more than 3 bytes, fills the User Mode buffer with zeros.

6. Returns the number of written bytes.

13.5 Block Device Handling

Typical block devices like hard disks have very high average access times. Each operation
requires several milliseconds to complete, mainly because the hard disk controller must move
the heads on the disk surface to reach the exact position where the data is recorded. However,
when the heads are correctly placed, data transfer can be sustained at rates of tens of
megabytes per second.

361

Understanding the Linux Kernel

In order to achieve acceptable performance, hard disks and similar devices transfer several
adjacent bytes at once. In the following discussion, we'll say that groups of bytes are adjacent
when they are recorded on the disk surface in such a manner that a single seek operation can
access them.

The organization of Linux block device handlers is quite involved. We won't be able to
discuss in detail all the functions that have been included in the kernel to support the handlers.
But we'll outline the general software architecture and introduce the main data structures.
Kernel support for block device handlers includes the following features:

o Offers a uniform interface through the VFS
o Implements efficient read-ahead of disk data
e Provides disk caching for the data

The kernel basically distinguishes two kinds of I/O data transfer:
Buffer I/0O operations

Here the transferred data is kept in buffers, the kernel's generic memory containers for
disk-based data. Each buffer is associated with a specific block identified by a device
number and a block number. Linux misleadingly calls these operations "synchronous
I/O operations." The term "synchronous" is not well-suited in this context because a
buffer I/O operation is really asynchronous: in other words, the kernel control path
that starts the operation may continue its execution without waiting for the operation
to end. The term is probably inherited from very old versions of Linux.

Page I/O operations

Here the transferred data is kept in page frames; each page frame contains data
belonging to a regular file. Since this data is not necessarily stored in adjacent disk
blocks, it is identified by the file's inode and by an offset within the file. Again, Linux
inappropriately calls these operations "asynchronous I/O operations."

Buffer I/0O operations are most often used either when a process directly reads a block device
file or when the kernel reads particular types of blocks in a filesystem (for example, a block
containing inodes or a superblock). In Linux 2.2 buffer operations are also used to write disk-
based regular files. Page 1/O operations are used mainly for reading regular files, file memory
mapping, and swapping. Both kinds of I/O data transfer rely on the same driver to access a
block device, but the kernel uses different algorithms and buffering techniques with them.

13.5.1 Sectors, Blocks, and Buffers

Each data transfer operation for a block device acts on a group of adjacent bytes called a
sector. In most disk devices, the size of a sector is 512 bytes, although a few devices have
recently appeared that make use of larger sectors (1024 and 2048 bytes). Notice that the sector
should be considered the basic unit of data transfer: it is never possible to transfer less than a
sector, although most disk devices are capable of transferring several adjacent sectors at once.

The kernel stores the sector size of each hardware block device in a table named
hardsect size. Each element in the table is indexed by the major number and the minor

362

Understanding the Linux Kernel

number of the corresponding block device file. Thus, hardsect size[3][2] represents the
sector size of /dev/hda2, the second primary partition of the first IDE disk (see Table 13-1).
If hardsect size[M] is NULL, all block devices sharing the major number M have a standard
sector size of 512 bytes.

Block device drivers transfer a large number of adjacent bytes called a block in a single
operation. A block should not be confused with a sector: the sector is the basic unit of data
transfer for the hardware device, while the block is simply a group of adjacent bytes involved
in an I/O operation requested by a device driver.

In Linux, the block size must be a power of 2 and cannot be larger than a page frame.
Moreover, it must be a multiple of the sector size, since each block must include an integral
number of sectors. Therefore, on PC architecture, the permitted block sizes are 512, 1024,
2048, and 4096 bytes. The same block device driver may operate with several block sizes,
since it has to handle a set of device files sharing the same major number, while each block
device file has its own predefined block size. For instance, a block device driver could handle
a hard disk with two partitions containing an Ext2 filesystem and a swap area (see Chapter 16,
and Chapter 17). In this case, the device driver makes use of two different block sizes: 1024
bytes for the Ext2 partition and 4096 bytes for the swap partition.

1511024 is the standard Ext2 block size, although other block sizes are allowed.

The kernel stores the block size in a table named blksize size; each element in the table is
indexed by the major number and the minor number of the corresponding block device file. If
blksize size[M] is NULL, all block devices sharing the major number M have a standard
block size of 1024 bytes.

Each block requires its own buffer, which is a RAM memory area used by the kernel to store
the block's content. When a device driver reads a block from disk, it fills the corresponding
buffer with the values obtained from the hardware device; similarly, when a device driver
writes a block on disk, it updates the corresponding group of adjacent bytes on the hardware
device with the actual values of the associated buffer. The size of a buffer always matches the
size of the corresponding block.

13.5.2 An Overview of Buffer I/O Operations

Figure 13-3 illustrates the architecture of a generic block device driver and the main
components that interact with it when servicing a buffer I/O operation.

363

Understanding the Linux Kernel

Figure 13-3. Block device handler architecture for buffer /0 operations

Block device file

VFS
High-level block
block_readl) device handler
block writel}
bread() ————1W0
breada () T
gethlki) - - 11_rw_block()

,,,,,, Low-level block
RAM | Buffer cache device handier - DISK

A block device driver is usually split in two parts: a high-level driver, which interfaces with
the VFS layer, and a low-level driver, which handles the hardware device.

Suppose a process issues a read() or write() system call on a device file. The VFS
executes the read or write method of the corresponding file object, and thus invokes a
procedure within the high-level block device handler. This procedure performs all actions
related to the read or write request that are specific to the hardware device. The kernel offers
two general functions called block read() and block write() that take care of almost
everything (see Section 13.5.4 later in this chapter). Therefore, in most cases, the high-level
hardware device drivers must do nothing, and the read and write methods of the device file
point, respectively, to block read() and block write().

However, some block device handlers require their own customized high-level device drivers.
A significant example is the device driver of the floppy disk: it must check that the disk in the
drive has not been changed by the user since the last disk access; if a new disk has been
inserted, the device driver must invalidate all buffers already filled with data of the old disk
media.

Even when a high-level device driver includes its own read and write methods, they usually
end up invoking block read() and block write(). These functions translate the access
request involving an I/O device file into a request for some blocks from the corresponding
hardware device. As we'll see in Section 14.1 in Chapter 14, the blocks required may already
be in main memory, so both block read() and block write() invoke the getblk()
function to check the cache first in case a block was prefetched or has stayed unchanged since
an earlier access. If the block is not in the cache, getblk () must proceed to request it from
the disk by invoking 11 rw block() (see Section 13.5.9). This latter function activates a
low-level driver that handles the device controller to perform the requested operation on the
block device.

Buffer I/O operations are also triggered when the VFS accesses some specific block on a

block device directly. For instance, if the kernel must read an inode from a disk filesystem, it
must transfer the data from blocks of the corresponding disk partition. Direct access to

364

Understanding the Linux Kernel

specific blocks is performed by the bread() and breada() functions (see Section 13.5.5),
which in turn invoke the getblk () and 11 rw block() functions previously mentioned.

Since block devices are slow, buffer I/O data transfers are always handled asynchronously:
the low-level device driver programs the DMAC and the disk controller and then terminates.
When the transfer completes, an interrupt is issued, and the low-level device driver is
activated a second time to clean up the data structures involved in the I/O operation. In this
way, no kernel control path must be suspended until a data transfer completes (unless the
kernel control path explicitly has to wait for some block of data).

13.5.3 The Role of Read-Ahead

Many disk accesses are sequential. As we shall see in Chapter 17, files are stored on disk in
large groups of adjacent sectors, so that they can be retrieved quickly with few moves of the
disk heads. When a program reads or copies a file, it usually accesses it sequentially, from the
first byte to the last one. Therefore, many adjacent sectors on disk are likely to be fetched in
several I/O operations.

Read-ahead is a technique that consists of reading several adjacent blocks of a block device in
advance, before they are actually requested. In most cases, read-ahead significantly enhances
disk performance, since it lets the disk controller handle fewer commands that refer to larger
groups of adjacent sectors. Moreover, system responsiveness improves. A process that is
sequentially reading a block device can get the requested data faster because the driver
performs fewer disk accesses.

However, read-ahead is of no use for random accesses to block devices; in that case, it is
actually detrimental since it tends to waste space in the disk caches with useless information.
Therefore, the kernel stops read-ahead when it determines that the most recently issued 1/O
access is not sequential to the previous one. The £ reada field of the file object is a flag that
is set when read-ahead is enabled for the corresponding file (or block device file) and cleared
otherwise.

The kernel stores in a table named read ahead the number of bytes (the number of standard
512-byte sectors, to be precise) to be read in advance when a device file is being read
sequentially. A "zero" value specifies a default number of 8 512-byte sectors, that is, 4 KB.
All block device files having the same major number share the same predefined number of
512-byte sectors to be read in advance; therefore, each element in read ahead is indexed by
the major device number.

13.5.4 The block_read() and block_write() Functions

The block read() and block write() functions are invoked by a high-level device
driver whenever a process issues a read or write operation on a device file. For example, the
superformat program formats a diskette by writing blocks into the /dev/fd0 device file. The

write method of the corresponding file object invokes the block write() function.

The block read() andblock write() functions receive the following parameters:

365

Understanding the Linux Kernel

filp
Address of a file object associated with the device file.

buf
Address of a memory area in User Mode address space. block read() writes the
data fetched from the block device into this memory area; conversely, block write (
) reads the data to be written on the block device from the memory area.

count
Number of bytes to be transferred.

ppos

Address of a variable containing an offset in the device file; usually, this parameter
points to filp->f pos, that is, to the file pointer of the device file.

The block read() function performs the following operations:

1. Derives the major number and the minor number of the block device from
filp->f dentry->d inode->i rdev.

2. Derives the block size of the device file from blksize size.

3. Computes from *ppos and the block size the sequential number of the first block to be
read on the device. Also computes the offset of the first byte to be read inside that
block.

4. Derives the size of the block hardware device. This value is stored in a table named
blk size. As with similar data structures introduced earlier in the chapter, each
element is indexed by the major number and the minor number of the corresponding
device file and represents the size of the block device in units of 1024 bytes. If
necessary, modifies count in order to prevent any read operation from going beyond
the end of the device.

5. Computes the number of blocks to be read from the devices from a combination of
count, the block size, and the offset inside the first block. If filp->f reada is set,
also takes into consideration the number of blocks to be read in advance, which is
specified in the read ahead table.

6. For any block to be read, performs the following operations:

a. Searches for the block in the buffer cache by using the getblk() function
(see Section 14.1 in Chapter 14). If it is not found, a new buffer is allocated
and inserted into the cache.

b. If the buffer does not contain valid data (for instance, because it has been
allocated just now), starts a read operation by using the 11 rw block()
function (see Section 13.5.9), and suspends the current process until the data
has been transferred in the buffer.

c. If the block has been requested by the process, that is, if it is not read in
advance, copies the buffer content into the user memory area pointed to by
buf.

366

Understanding the Linux Kernel

Actually, the algorithm is more elaborate than what we've just explained, since it is
optimized to make maximum use of the buffer cache. The function operates by
requesting large groups of blocks from the low-level driver at once; it does not wait
until all of them have been transferred before searching for the next group of blocks in
the buffer cache. However, the final result is the same: after this step, all buffers of the
blocks involved contain valid data, and the bytes requested by the user process are
copied into the user memory area.

Adds to *ppos the number of bytes copied into the user memory area.
Sets the filp->f reada flag, so that the read-ahead mechanism will be used next
time (unless the process modifies the file pointer, in which case the flag is cleared).

9. Returns the number of bytes copied in the user memory area.

The block write() function is similar to block read(), so we won't describe it in detail.
However, some important differences should be underlined:

Before starting the write operation, the block write () function must check whether
the block hardware device is read-only and, in this case, returns an error code. This
happens, for example, when attempting to write on a block device file associated with
a CD-ROM disk. The ro bits table includes a bit for each block hardware device: a
bit is set if the corresponding device cannot be written and cleared if it can be written.
The block write() function must check the offset of the first byte to be written
inside the first block. If the offset is not null and the buffer cache does not already
contain valid data for the first block, the function must read the block from disk before
rewriting it. In fact, since the block device driver operates on whole blocks, the
portions of the first block that precedes the bytes being written must be preserved by
the write operation. Similarly, the function must also read from disk the last block to
be written before rewriting it, unless the last byte to be written falls in the last position
of the last block.

The block write() function does not necessarily invoke 11 rw block() to force
a write to disk. Usually, it just marks the buffers of the blocks to be written as "dirty,"
thus deferring the actual updating of the corresponding sectors on disk (see Section
14.1.5 in Chapter 14). However, the function does invoke 11 rw block() if the call
opening the block device file has specified the o _sync flag. In this case, the calling
process wants to wait (sleep) until the data has been physically written in the hardware
device, so that the disk always reflects what the process thinks it does.

13.5.5 The bread() and breada() Functions

The bread() function checks whether a specific block is already included in the buffer
cache; if not, the function reads the block from a block device. bread () is widely used by
filesystems to read from disk bitmaps, inodes, and other block-based data structures. (Recall
that block read() is used instead of bread() when a process wants to read a block device
file.) The function receives as parameters the device identifier, the block number, and the
block size, and performs the following operations:

1.

2.
3.

Invokes the getblk() function to search for the block in the buffer cache; if the
block is not included in the cache, getblk () allocates a new buffer for it.

If the buffer already contains up-to-date data, terminates.

Invokes 11 rw block() to start the read operation.

367

Understanding the Linux Kernel

4. Waits until the data transfer completes. This is done by invoking a function named
wait on buffer(), which inserts the current process in the b wait wait queue
and suspends the process until the buffer is unlocked.

breada () is very similar to bread(), but it also reads in advance some extra blocks in
addition to the one required. Notice that there is no function that directly writes some block to
disk. Write operations are never critical for system performance, thus are always deferred (see
Section 14.1.5 in Chapter 14).

13.5.6 Buffer Heads

The buffer head is a descriptor of type buffer head associated with each buffer. It contains
all the information needed by the kernel to know how to handle the buffer; thus, before
operating on each buffer the kernel checks its buffer head.

The buffer head fields are listed in Table 13-2. The b data field of each buffer head stores
the starting address of the corresponding buffer. Since a page frame may store several buffers,
the b this page field points to the buffer head of the next buffer in the page. This field
facilitates the storage and retrieval of entire page frames. The b blocknr field stores the
logical block number, that is, the index of the block inside the disk partition.

Table 13-2. The Fields of a Buffer Head

Type Field Description

unsigned long b blocknr Logical block number
unsigned long b size Block size

kdev_t b dev Virtual device identifier

kdev_t b rdev Real device identifier

unsigned long b rsector Number of initial sector in real device
unsigned long b state Buffer status flags

unsigned int b _count Block usage counter

char * b data Pointer to buffer

unsigned long b flushtime Flushing time for buffer

struct wait queue * b wait Buffer wait queue

struct buffer head * b next Next item in collision hash list
struct buffer head ** b _pprev Previous item in collision hash list

struct buffer head *
struct buffer head *
struct buffer head *
unsigned int

struct buffer head *
void (*) ()

void (*)

b this page
b next free
b prev free
b list

b regnext

b _end io

b dev id

The b _state field stores the following flags:

BH Uptodate

Per-page buffer list

Next item in list

Previous item in list

LRU list including the buffer
Request's buffer list

I/0 completion method
Specialized device driver data

Set if the buffer contains valid data. The value of this flag is returned by the
buffer uptodate() function.

368

Understanding the Linux Kernel

BH Dirty

Set if the buffer is dirty, that is, if it contains data that must be written to the block
device. The value of this flag is returned by the buffer dirty() function.

BH Lock

Set if the buffer is locked, which happens if the buffer is involved in a disk transfer.
The value of this flag is returned by the buffer locked() function.

BH Reqg

Set if the corresponding block has been requested (see next section) and has valid (up-
to-date) data. The value of this flag is returned by the buffer req() function.

BH Protected

Set if the buffer is protected (protected buffers never get freed). The value of this flag
is returned by the buffer protected() function. This flag is used only to
implement RAM disks on top of the buffer cache.

The b_dev field identifies the virtual device containing the block stored in the buffer, while
the b_rdev field identifies the real device. This distinction, which is meaningless for simple
hard disks, has been introduced to model RAID (Redundant Array of Independent Disks)
storage units consisting of several disks operating in parallel. For reasons of safety and
efficiency, files stored in a RAID array are scattered across several disks that the applications
think of as a single logical disk. Besides the b blocknr field representing the logical block
number, it is thus necessary to specify the specific disk unit in the b _rdev field, and the
corresponding sector number in the b rsector field.

13.5.7 Block Device Requests

Although block device drivers are able to transfer a single block at a time, the kernel does not
perform an individual I/O operation for each block to be accessed on disk: this would lead to
poor disk performances, since locating the physical position of a block on the disk surface is
quite time-consuming. Instead, the kernel tries, whenever possible, to cluster several blocks
and handle them as a whole, thus reducing the average number of head movements.

When a process, the VFS layer, or any other kernel component wishes to read or write a disk
block, it actually creates a block device request. That request essentially describes the
requested block and the kind of operation to be performed on it (read or write). However, the
kernel does not satisfy a request as soon as it is created: the I/O operation is just scheduled
and will be performed at a later time. This artificial delay is paradoxically the crucial
mechanism for boosting the performance of block devices. When a new block data transfer is
requested, the kernel checks whether it can be satisfied by slightly enlarging a previous
request that is still waiting, that is, whether the new request can be satisfied without further
seek operations. Since disks tend to be accessed sequentially, this simple mechanism is very
effective.

369

Understanding the Linux Kernel

Deferring requests complicates block device handling. For instance, suppose that a process
opens a regular file and, consequently, a filesystem driver wants to read the corresponding
inode from disk. The high-level block device driver puts the request on a queue and the
process is suspended until the block storing the inode is transferred. However, the high-level
block device driver cannot be blocked, because any other process trying to access the same
disk would be blocked as well.

In order to keep the block device driver from being suspended, each I/O operation is being
processed asynchronously, as already mentioned in the section Section 13.5.2. Thus, no kernel
control path is forced to wait until a data transfer completes. In particular, block device
drivers are interrupt-driven (see Section 13.3.2 earlier in this chapter), so that the high-level
driver can terminate its execution as soon as it has issued the block request. The low-level
driver, which is activated at a later time, invokes a so-called strategy routine, which takes the
request from a queue and satisfies it by issuing suitable commands to the disk controller.
When the I/O operation terminates, the disk controller raises an interrupt and the
corresponding handler invokes the strategy routine again, if necessary, to process another
request in the queue.

Each block device driver maintains its own request queues; there should be one request queue
for each physical block device, so that the requests can be ordered in such a way as to increase
disk performance. The strategy routine can thus sequentially scan the queue and service all
requests with the minimum number of head movements.

Each block device request is represented by a request descriptor , which is stored in the
request data structure illustrated in Table 13-3. The direction of the data transfer is stored in
the cmd field: it is either READ (from block device to RAM) or wrITE (from RAM to block
device). The rq status field is used to specify the status of the request: for most block
devices, it is simply set either to RQ INACTIVE (request descriptor not in use) or to RQ
~acTIve (valid request, to be serviced or already being serviced by the low-level device
driver).

Table 13-3. The Fields of a Request Descriptor

Type Field Description

int rq status Request status

kdev_t rq dev Device identifier

int Cmd Requested operation

int errors Success or failure code
unsigned long sector First sector number
unsigned long nr sector Number of sectors of request
unsigned long current nr sector Number of sectors of current block
char * buffer Memory area for 1/O transfer
struct semaphore * sem Request semaphore

struct buffer head * bh First buffer descriptor
struct buffer head * bhtail Last buffer descriptor
struct request * next Request queue link

The request may encompass many adjacent blocks on the same device. The rq dev field
identifies the block device, while the sector field specifies the number of the first sector
corresponding to the first block in the request. Both nr sector and current nr sector

370

Understanding the Linux Kernel

specify the number of sectors to be transferred. As we'll later see in Section 13.5.10, the
sector, nr_sector, and current nr_ sector fields could be dynamically updated while the
request is being serviced.

All buffer heads of the blocks in the request are collected in a simply linked list. The
b reqgnext field of each buffer head points to the next element in the list, while the bh and
bhtail fields of the request descriptor point, respectively, to the first element and the last
element in the list.

The butfer field of the request descriptor points to the memory area used for the actual data
transfer. If the request involves a single block, buffer is just a copy of the b _data field of the
buffer head. However, if the request encompasses several blocks whose buffers are not
consecutive in memory, the buffers are linked through the b regnext fields of their buffer
heads as shown in Figure 13-4. On a read, the low-level device driver could choose to allocate
a large memory area referred by buf fer, read all sectors of the request at once, and then copy
the data into the various buffers. Similarly, for a write, the low-level device driver could copy
the data from many nonconsecutive buffers into a single memory area referred by buffer and
then perform the whole data transfer at once.

Figure 13-4. A request descriptor and its buffers and sectors
all_reguests

Butters in RAM

T N ™
request descriptor '

...

Block device
- bh R ——]’_}_dﬂ.'_d
................. = bhtail b_blocknr
c—-—p b _reqnext sector

Figure 13-4 illustrates a request descriptor encompassing three blocks. The buffers of two of
them are consecutive in RAM, while the third buffer is by itself. The corresponding buffer
heads identify the logical blocks on the block device; the blocks must necessarily be adjacent.
Each logical block includes two sectors. The sector field of the request descriptor points to
the first sector of the first block on disk, and the b _reqnext field of each buffer head points to
the next buffer head.

The kernel statically allocates a fixed number of request descriptors to handle all the requests
for block devices: there are NR REQUEST descriptors (usually 128) stored in the a11 requests
array. Since the efficiency of read operations have a larger impact on system performance
than does the efficiency of write operations (because the data to be read is probably needed

371

Understanding the Linux Kernel

for some computation to progress), the last third of request descriptors in all requests is
reserved for read operations.

The fixed number of request descriptors may become, under very heavy loads and high disk
activity, a bottleneck. A dearth of free descriptors may force processes to wait until an
ongoing data transfer terminates. Thus, a wait for request wait queue is used to queue
processes waiting for a free request element. The get request wait() tries to get a free
request descriptor and puts the current process to sleep in the wait queue if none is found; the
get request () function is similar but simply returns NULL if no free request descriptor is
available.

13.5.8 Request Queues and Block Device Driver Descriptors

A request queue is a simply linked list whose elements are request descriptors. The next field
in each request descriptor points to the next item in the queue and is null for the last element.
The list is usually ordered first according to the device identifier and next according to the
number of the initial sector.

As mentioned earlier, device drivers usually have one request queue for each disk they serve.
However, some device drivers have just one request queue that includes the requests for all
physical devices handled by the driver. This approach simplifies the design of the driver but
degrades overall performances, since no simple ordering strategy can be imposed on the
queue.

The address of the request being serviced, together with a few other pieces of relevant
information, are stored in a descriptor associated with each block device driver. The
descriptor is a data structure of type b1k dev struct, whose fields are listed in Table 13-4.
The descriptors for all the block devices are stored in the b1k dev table, which is indexed by
the major number of the block device.

Table 13-4. The Fields of a Block Device Driver Descriptor

Type Field Description

void * (*) (void) request_fn Strategy routine

void * data Driver's private data common queue

struct request plug Dummy plug request

struct request * current request Current request in single common queue
struct request Method for getting a request from one of the
% (%) (kdev t) dueune queues

struct tqg struct plug tqg Plug task queue element

If the block device driver has a unique request queue for all physical block devices, the queue
field is null and the current request field points to the descriptor of the request being
serviced in the queue. If the queue is empty, current request is null.

Conversely, if the block device driver maintains several queues, the queue field points to a
custom driver method that receives the identifier of the block device file, selects one of the
queues according to the device number, then returns the address of the descriptor of the
request being serviced, if any. In this case, the current request field points to the descriptor
of the request being serviced, if any. (There can be at most one request at a time, since the

372

Understanding the Linux Kernel

same device driver does not allow requests to be processed concurrently even if they refer to
different disks.)

The request fn() field contains the address of the driver's strategy routine, the crucial
function in the low-level block device driver that actually interacts with the physical block
device (usually the disk controller) in order to start the data transfer specified by a request in
the queue.

13.5.9 The ll_rw_block() Function

The 11 rw block() function creates a block device request; as we have seen earlier in this
chapter, it is invoked from several places in the kernel and device drivers. It receives the
following parameters:

e The type of operation, rw, whose value can be READ , WRITE, READA , Of WRITEA . The
last two operation types differ from the former in that the function does not block
when no request descriptor is available.

e The number, nr, of blocks to be transferred.

e A ph array of nr pointers to buffer heads describing the blocks (all of them must have
the same block size and must refer to the same block device).

The buffer heads have been previously initialized, so each specifies the block number, the
block size, and the virtual device identifier (see Section 13.5.6). All blocks must belong to the
same virtual device.

The function enters a loop considering all non-null elements of the bh array. For each buffer
head, it performs the following actions:

1. Checks that the block size b _size matches the block size of the virtual device b_dev.

2. Sets the real device identifier (usually just sets b_rdev to be b_dev).

3. Sets the sector number b rsector according to the block number and the block size.

4. If the operation is WRITE or WRITEA, checks that the block device is not read-only.

5. Sets the BH Req flag of the buffer head to show other kernel control paths that the
block has been requested.

6. Invokes the make request() function, passing to it the real device's major number,
the type of I/O operation, and the address of the buffer head.

The make request () function, in turn, performs the following operations:

—_—

Sets the BH Lock flag of the buffer head.

Checks that b_rsector does not exceed the number of sectors of the block device.

If the block must be read, checks that it is not already valid (that is, the BH Uptodate

flag must be off). If the block must be written, checks that it is actually dirty (that is,

the BH Dirty flag must be on). If either one of these conditions does not hold, returns

without requesting the data transfer, because it is really useless.

4. Disables local interrupts and gets the io request lock spin lock (see Section 11.4.2
in Chapter 11).

5. Invokes the queue method, if defined, or reads the current request field in the
block device descriptor to get the address of the real device's request queue.

6. Performs one of the following substeps:

Rl

373

Understanding the Linux Kernel

a. If the request queue is empty, inserts a new request descriptor in it and
schedules activation of the strategy routine at a later time.

b. If the request queue is not empty, inserts a new request descriptor in it, trying
to cluster it with other requests already queued. As we'll see shortly, there is no
need to schedule the activation of the strategy routine.

Let's look closer at the last two substeps.

13.5.9.1 Scheduling the activation of the strategy routine

As we saw earlier, it's expedient to delay activation of the strategy routine in order to increase
the chances of clustering requests for adjacent blocks. The delay is accomplished through a
technique known as device plugging and unplugging.

If the real device's request queue is empty and the device is not already plugged,
make request () does a device plugging: it sets the current request field of the block
device driver descriptor to the address of a dummy request descriptor, namely, the plug field
of the same block device driver descriptor. The function then allocates a new request
descriptor and initializes it with the information read from the buffer head. Next,
make request () inserts the new request descriptor into the proper real device's request
queue. If there is just one queue, the request is inserted into the queue right after the dummy
element consisting of the p1ug field in the block device descriptor. Finally, make request ()
inserts the plug tq task queue descriptor (statically included in the block device driver
descriptor) in the tg disk task queue (see Section 4.6.6 in Chapter 4) to cause the device's
strategy routine to be activated later. Actually, the task queue element refers to the unplug
_device() function, which executes the device's strategy routine.

The kernel checks periodically whether the tq disk task queue contains any plug tg task
queue elements. This occurs in a kernel thread such as kswapd and bdflush or when the kernel
must wait for some resource related to block device drivers, such as buffers or request
descriptors. During the tg disk check, the kernel removes any element in the queue and
executes the corresponding unplug device() function. This activity is referred to as
unplugging the device.

13.5.9.2 Extending the request queue

If the request queue is not empty, the low-level block device driver keeps handling requests
until the queue has been emptied (see the next section), so make request () does not have to
schedule the activation of the strategy routine.

In this case, make request () just modifies the request queue by adding a new element or by
merging the new request with existing elements; the second case is known as block clustering.

Block clustering is implemented only for blocks belonging to certain block devices, namely
the EIDE and SCSI hard disks, the floppy disk, and a few others. Moreover, a block can be
included in a request only if all the following conditions are satisfied:

e The block to be inserted belongs to the same block device as the other blocks in the

request and is adjacent to them: it either immediately precedes the first block in the
request or immediately follows the last block in the request.

374

Understanding the Linux Kernel

o The blocks in the request have the same I/O operation type (READ or WRITE) as the
block to be inserted.

o The extended request does not exceed the allowed maximum number of sectors. This
value is stored in the max sectors table, which is indexed by the major number and
the minor number of the block device. The default value is 244 sectors.

e The request is not currently being handled by the low-level device driver.

The make request () function scans all the requests in the queue. If one of them satisfies all
the conditions just mentioned, the buffer head is inserted in the request's list, and the fields of
the request data structure are updated. If the block was appended to the end of a request, the
function also tries to merge this request with the next element of the queue. Nothing else has

to be done, and hence make request() releases the io request lock spin lock and
terminates.
Conversely, if no existing request can include the block, make request() allocates a new

request descriptor and initializes it properly with the information read from the buffer head.

[T If there is no free request descriptor, the current process is suspended until a request descriptor is freed.

Finally, make request() invokes the add request() function, which inserts the new
request in the proper position in the request queue, according to its initial sector number. The
io_request lock spin lock is then released and the execution terminates.

13.5.10 Low-Level Request Handling

We have now reached the lowest level of Linux's block device-handling architecture: this
level is implemented by the strategy routine, which interacts with the physical block device in
order to satisfy the requests collected in the queue.

As mentioned earlier, the strategy routine is usually started after inserting a new request in an
empty request queue. Once activated, the low-level block device driver should handle all
requests in the queue and terminate when the queue is empty.

A naive implementation of the strategy routine could be the following: for each element in the
queue, interact with the block device controller to service the request and wait until the data
transfer completes, then remove the serviced request from the queue and proceed with the
next one.

Such an implementation is not very efficient. Even assuming that data can be transferred
using DMA, the strategy routine must suspend itself while waiting for I/O completion, and
hence an unrelated user process would be heavily penalized. (The strategy routine does not
necessarily execute on behalf of the process that has requested the I/O operation but at some
random later time, since it is activated by means of the tq disk task queue.)

Therefore, many low-level block device drivers adopt the following schema:
e The strategy routine handles the current request in the queue and sets up the block

device controller so that it raises an interrupt when the data transfer completes. Then
the strategy routine terminates.

375

Understanding the Linux Kernel

e When the block device controller raises the interrupt, the interrupt handler activates a
bottom half. The bottom half handler