

Understanding the Linux Kernel

Daniel P. Bovet
Marco Cesati

Publisher: O'Reilly

First Edition October 2000

ISBN: 0-596-00002-2, 702 pages

Understanding the Linux Kernel helps readers understand how Linux performs best and how
it meets the challenge of different environments. The authors introduce each topic by
explaining its importance, and show how kernel operations relate to the utilities that are
familiar to Unix programmers and users.

Table of Contents
Preface ..
 The Audience for This Book ..
 Organization of the Material ..
 Overview of the Book ..
 Background Information ...
 Conventions in This Book ...
 How to Contact Us ...
 Acknowledgments ...

1
1
1
3
4
4
4
5

1. Introduction ..
 1.1 Linux Versus Other Unix-Like Kernels
 1.2 Hardware Dependency ..
 1.3 Linux Versions ..
 1.4 Basic Operating System Concepts
 1.5 An Overview of the Unix Filesystem
 1.6 An Overview of Unix Kernels

6
6

10
11
12
16
22

2. Memory Addressing ...
 2.1 Memory Addresses ...
 2.2 Segmentation in Hardware
 2.3 Segmentation in Linux ..
 2.4 Paging in Hardware ..
 2.5 Paging in Linux ...
 2.6 Anticipating Linux 2.4 ..

36
36
37
41
44
52
63

3. Processes ..
 3.1 Process Descriptor ...
 3.2 Process Switching ...
 3.3 Creating Processes ...
 3.4 Destroying Processes ...
 3.5 Anticipating Linux 2.4 ..

64
64
78
86
93
94

4. Interrupts and Exceptions ...
 4.1 The Role of Interrupt Signals
 4.2 Interrupts and Exceptions ..
 4.3 Nested Execution of Exception and Interrupt Handlers
 4.4 Initializing the Interrupt Descriptor Table
 4.5 Exception Handling ...
 4.6 Interrupt Handling ..
 4.7 Returning from Interrupts and Exceptions
 4.8 Anticipating Linux 2.4 ...

96
96
97

106
107
109
112
126
129

5. Timing Measurements ...
 5.1 Hardware Clocks ...
 5.2 The Timer Interrupt Handler
 5.3 PIT's Interrupt Service Routine
 5.4 The TIMER_BH Bottom Half Functions
 5.5 System Calls Related to Timing Measurements
 5.6 Anticipating Linux 2.4 ...

131
131
133
134
136
145
148

6. Memory Management ...
 6.1 Page Frame Management
 6.2 Memory Area Management
 6.3 Noncontiguous Memory Area Management
 6.4 Anticipating Linux 2.4 ...

149
149
160
176
181

7. Process Address Space ..
 7.1 The Process's Address Space
 7.2 The Memory Descriptor ..
 7.3 Memory Regions ...
 7.4 Page Fault Exception Handler
 7.5 Creating and Deleting a Process Address Space
 7.6 Managing the Heap ..
 7.7 Anticipating Linux 2.4 ...

183
183
185
186
201
212
214
216

8. System Calls ..
 8.1 POSIX APIs and System Calls
 8.2 System Call Handler and Service Routines
 8.3 Wrapper Routines ...
 8.4 Anticipating Linux 2.4 ...

217
217
218
229
230

9. Signals ...
 9.1 The Role of Signals ...
 9.2 Sending a Signal ..
 9.3 Receiving a Signal ..
 9.4 Real-Time Signals ..
 9.5 System Calls Related to Signal Handling
 9.6 Anticipating Linux 2.4 ...

231
231
239
242
251
252
257

10. Process Scheduling ..
 10.1 Scheduling Policy ..
 10.2 The Scheduling Algorithm
 10.3 System Calls Related to Scheduling
 10.4 Anticipating Linux 2.4 ..

258
258
261
272
276

11. Kernel Synchronization ...
 11.1 Kernel Control Paths ..
 11.2 Synchronization Techniques
 11.3 The SMP Architecture ..
 11.4 The Linux/SMP Kernel ..
 11.5 Anticipating Linux 2.4 ..

277
277
278
286
290
302

12. The Virtual Filesystem ...
 12.1 The Role of the VFS ..
 12.2 VFS Data Structures ..
 12.3 Filesystem Mounting ...
 12.4 Pathname Lookup ..
 12.5 Implementations of VFS System Calls
 12.6 File Locking ..
 12.7 Anticipating Linux 2.4 ..

303
303
308
324
329
333
337
342

13. Managing I/O Devices ..
 13.1 I/O Architecture ...
 13.2 Associating Files with I/O Devices
 13.3 Device Drivers ..
 13.4 Character Device Handling
 13.5 Block Device Handling ..
 13.6 Page I/O Operations ..
 13.7 Anticipating Linux 2.4 ..

343
343
348
353
360
361
377
380

14. Disk Caches ..
 14.1 The Buffer Cache ..
 14.2 The Page Cache ...
 14.3 Anticipating Linux 2.4 ..

382
383
396
398

15. Accessing Regular Files ...
 15.1 Reading and Writing a Regular File
 15.2 Memory Mapping ..
 15.3 Anticipating Linux 2.4 ..

400
400
408
416

16. Swapping: Methods for Freeing Memory
 16.1 What Is Swapping? ...
 16.2 Swap Area ...
 16.3 The Swap Cache ...
 16.4 Transferring Swap Pages
 16.5 Page Swap-Out ..
 16.6 Page Swap-In ...
 16.7 Freeing Page Frames ..
 16.8 Anticipating Linux 2.4 ..

417
417
420
429
433
437
442
444
450

17. The Ext2 Filesystem ...
 17.1 General Characteristics ..
 17.2 Disk Data Structures ..
 17.3 Memory Data Structures
 17.4 Creating the Filesystem ..
 17.5 Ext2 Methods ...
 17.6 Managing Disk Space ...
 17.7 Reading and Writing an Ext2 Regular File
 17.8 Anticipating Linux 2.4 ..

451
451
453
459
463
464
466
473
475

18. Process Communication ..
 18.1 Pipes ...
 18.2 FIFOs ..
 18.3 System V IPC ...
 18.4 Anticipating Linux 2.4 ..

476
477
483
486
499

19. Program Execution ..
 19.1 Executable Files ...
 19.2 Executable Formats ..
 19.3 Execution Domains ...
 19.4 The exec-like Functions
 19.5 Anticipating Linux 2.4 ..

500
500
512
514
515
519

A. System Startup ..
 A.1 Prehistoric Age: The BIOS
 A.2 Ancient Age: The Boot Loader
 A.3 Middle Ages: The setup() Function
 A.4 Renaissance: The startup_32() Functions
 A.5 Modern Age: The start_kernel() Function

520
520
521
523
523
524

B. Modules ...
 B.1 To Be (a Module) or Not to Be?
 B.2 Module Implementation ..
 B.3 Linking and Unlinking Modules
 B.4 Linking Modules on Demand

526
526
527
529
531

C. Source Code Structure ..

533

Colophon ..

536

Understanding the Linux Kernel

1

Preface
In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0.
The idea was to encourage students to read the source code. To achieve this, we assigned term
projects consisting of making changes to the kernel and performing tests on the modified
version. We also wrote course notes for our students about a few critical features of Linux like
task switching and task scheduling.

We continued along this line in the spring semester of 1998, but we moved on to the Linux
2.1 development version. Our course notes were becoming larger and larger. In July, 1998 we
contacted O'Reilly & Associates, suggesting they publish a whole book on the Linux kernel.
The real work started in the fall of 1998 and lasted about a year and a half. We read thousands
of lines of code, trying to make sense of them. After all this work, we can say that it was
worth the effort. We learned a lot of things you don't find in books, and we hope we have
succeeded in conveying some of this information in the following pages.

The Audience for This Book

All people curious about how Linux works and why it is so efficient will find answers here.
After reading the book, you will find your way through the many thousands of lines of code,
distinguishing between crucial data structures and secondary ones—in short, becoming a true
Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the significant data
structures and many algorithms and programming tricks used in the kernel are discussed; in
many cases, the relevant fragments of code are discussed line by line. Of course, you should
have the Linux source code on hand and should be willing to spend some effort deciphering
some of the functions that are not, for sake of brevity, fully described.

On another level, the book will give valuable insights to people who want to know more about
the critical design issues in a modern operating system. It is not specifically addressed to
system administrators or programmers; it is mostly for people who want to understand how
things really work inside the machine! Like any good guide, we try to go beyond superficial
features. We offer background, such as the history of major features and the reasons they were
used.

Organization of the Material

When starting to write this book, we were faced with a critical decision: should we refer to a
specific hardware platform or skip the hardware-dependent details and concentrate on the
pure hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided to adopt
the former one for the following reasons:

• Efficient kernels take advantage of most available hardware features, such as
addressing techniques, caches, processor exceptions, special instructions, processor
control registers, and so on. If we want to convince you that the kernel indeed does

Understanding the Linux Kernel

2

quite a good job in performing a specific task, we must first tell what kind of support
comes from the hardware.

• Even if a large portion of a Unix kernel source code is processor-independent and
coded in C language, a small and critical part is coded in assembly language. A
thorough knowledge of the kernel thus requires the study of a few assembly language
fragments that interact with the hardware.

When covering hardware features, our strategy will be quite simple: just sketch the features
that are totally hardware-driven while detailing those that need some software support. In fact,
we are interested in kernel design rather than in computer architecture.

The next step consisted of selecting the computer system to be described: although Linux is
now running on several kinds of personal computers and workstations, we decided to
concentrate on the very popular and cheap IBM-compatible personal computers—thus, on the
Intel 80x86 microprocessors and on some support chips included in these personal computers.
The term Intel 80x86 microprocessor will be used in the forthcoming chapters to denote the
Intel 80386, 80486, Pentium, Pentium Pro, Pentium II, and Pentium III microprocessors or
compatible models. In a few cases, explicit references will be made to specific models.

One more choice was the order followed in studying Linux components. We tried to follow a
bottom-up approach: start with topics that are hardware-dependent and end with those that are
totally hardware-independent. In fact, we'll make many references to the Intel 80x86
microprocessors in the first part of the book, while the rest of it is relatively hardware-
independent. Two significant exceptions are made in Chapter 11, and Chapter 13. In practice,
following a bottom-up approach is not as simple as it looks, since the areas of memory
management, process management, and filesystem are intertwined; a few forward
references—that is, references to topics yet to be explained—are unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is then
presented according to the bottom-up approach. We start with the data structures needed to
support the functionalities described in the chapter. Then we usually move from the lowest
level of functions to higher levels, often ending by showing how system calls issued by user
applications are supported.

Level of Description

Linux source code for all supported architectures is contained in about 4500 C and Assembly
files stored in about 270 subdirectories; it consists of about 2 million lines of code, which
occupy more than 58 megabytes of disk space. Of course, this book can cover a very small
portion of that code. Just to figure out how big the Linux source is, consider that the whole
source code of the book you are reading occupies less than 2 megabytes of disk space.
Therefore, in order to list all code, without commenting on it, we would need more than 25
books like this![1]

[1] Nevertheless, Linux is a tiny operating system when compared with other commercial giants. Microsoft Windows 2000, for example, reportedly has
more than 30 million lines of code. Linux is also small when compared to some popular applications; Netscape Communicator 5 browser, for example,
has about 17 million lines of code.

So we had to make some choices about the parts to be described. This is a rough assessment
of our decisions:

Understanding the Linux Kernel

3

• We describe process and memory management fairly thoroughly.
• We cover the Virtual Filesystem and the Ext2 filesystem, although many functions are

just mentioned without detailing the code; we do not discuss other filesystems
supported by Linux.

• We describe device drivers, which account for a good part of the kernel, as far as the
kernel interface is concerned, but do not attempt analysis of any specific driver,
including the terminal drivers.

• We do not cover networking, since this area would deserve a whole new book by
itself.

In many cases, the original code has been rewritten in an easier to read but less efficient way.
This occurs at time-critical points at which sections of programs are often written in a mixture
of hand-optimized C and Assembly code. Once again, our aim is to provide some help in
studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many familiar
features that Unix programmers have heard of and about which they may be curious (shared
and mapped memory, signals, pipes, symbolic links).

Overview of the Book

To make life easier, Chapter 1 presents a general picture of what is inside a Unix kernel and
how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2 explains how Intel 80x86
processors include special circuits to address data in memory and how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3.
Here we also explain how each process runs either in an unprivileged User Mode or in a
privileged Kernel Mode. Transitions between User Mode and Kernel Mode happen only
through well-established hardware mechanisms called interrupts and exceptions, which are
introduced in Chapter 4. One type of interrupt is crucial for allowing Linux to take care of
elapsed time; further details can be found in Chapter 5.

Next we focus again on memory: Chapter 6 describes the sophisticated techniques required to
handle the most precious resource in the system (besides the processors, of course), that is,
available memory. This resource must be granted both to the Linux kernel and to the user
applications. Chapter 7 shows how the kernel copes with the requests for memory issued by
greedy application programs.

Chapter 8 explains how a process running in User Mode makes requests to the kernel, while
Chapter 9 describes how a process may send synchronization signals to other processes.
Chapter 10 explains how Linux executes, in turn, every active process in the system so that all
of them can progress toward their completions. Synchronization mechanisms are needed by
the kernel too: they are discussed in Chapter 11 for both uniprocessor and multiprocessor
systems.

Now we are ready to move on to another essential topic, that is, how Linux implements the
filesystem. A series of chapters covers this topic: Chapter 12 introduces a general layer that
supports many different filesystems. Some Linux files are special because they provide

Understanding the Linux Kernel

4

trapdoors to reach hardware devices; Chapter 13 offers insights on these special files and on
the corresponding hardware device drivers. Another issue to be considered is disk access
time; Chapter 14 shows how a clever use of RAM reduces disk accesses and thus improves
system performance significantly. Building on the material covered in these last chapters, we
can now explain in Chapter 15, how user applications access normal files. Chapter 16
completes our discussion of Linux memory management and explains the techniques used by
Linux to ensure that enough memory is always available. The last chapter dealing with files is
Chapter 17, which illustrates the most-used Linux filesystem, namely Ext2.

The last two chapters end our detailed tour of the Linux kernel: Chapter 18 introduces
communication mechanisms other than signals available to User Mode processes; Chapter 19
explains how user applications are started.

Last but not least are the appendixes: Appendix A sketches out how Linux is booted, while
Appendix B describes how to dynamically reconfigure the running kernel, adding and
removing functionalities as needed. Appendix C is just a list of the directories that contain the
Linux source code. The Source Code Index includes all the Linux symbols referenced in the
book; you will find here the name of the Linux file defining each symbol and the book's page
number where it is explained. We think you'll find it quite handy.

Background Information

No prerequisites are required, except some skill in C programming language and perhaps
some knowledge of Assembly language.

Conventions in This Book

The following is a list of typographical conventions used in this book:

Constant Width

Is used to show the contents of code files or the output from commands, and to
indicate source code keywords that appear in code.

Italic

Is used for file and directory names, program and command names, command-line
options, URLs, and for emphasizing new terms.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of
the book. Please let us know of any errors that you find, as well as suggestions for future
editions, by writing to:

O'Reilly & Associates, Inc. 101 Morris St. Sebastopol, CA 95472 (800) 998-9938 (in the U.S.
or Canada) (707) 829-0515 (international/local) (707) 829-0104 (fax)

Understanding the Linux Kernel

5

You can also send messages electronically. To be put on our mailing list or to request a
catalog, send email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list reader reviews, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/linuxkernel/

We also have an additional web site where you will find material written by the authors about
the new features of Linux 2.4. Hopefully, this material will be used for a future edition of this
book. You can access this page at:

http://www.oreilly.com/catalog/linuxkernel/updates/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

Acknowledgments

This book would not have been written without the precious help of the many students of the
school of engineering at the University of Rome "Tor Vergata" who took our course and tried
to decipher the lecture notes about the Linux kernel. Their strenuous efforts to grasp the
meaning of the source code led us to improve our presentation and to correct many mistakes.

Andy Oram, our wonderful editor at O'Reilly & Associates, deserves a lot of credit. He was
the first at O'Reilly to believe in this project, and he spent a lot of time and energy
deciphering our preliminary drafts. He also suggested many ways to make the book more
readable, and he wrote several excellent introductory paragraphs.

Many thanks also to the O'Reilly staff, especially Rob Romano, the technical illustrator, and
Lenny Muellner, for tools support.

We had some prestigious reviewers who read our text quite carefully (in alphabetical order by
first name): Alan Cox, Michael Kerrisk, Paul Kinzelman, Raph Levien, and Rik van Riel.
Their comments helped us to remove several errors and inaccuracies and have made this book
stronger.

—Daniel P. Bovet, Marco Cesati

September 2000

Understanding the Linux Kernel

6

Chapter 1. Introduction
Linux is a member of the large family of Unix-like operating systems. A relative newcomer
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such
well-known commercial Unix operating systems as System V Release 4 (SVR4) developed by
AT&T, which is now owned by Novell; the 4.4 BSD release from the University of California
at Berkeley (4.4BSD), Digital Unix from Digital Equipment Corporation (now Compaq); AIX
from IBM; HP-UX from Hewlett-Packard; and Solaris from Sun Microsystems.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for IBM-
compatible personal computers based on the Intel 80386 microprocessor. Linus remains
deeply involved with improving Linux, keeping it up-to-date with various hardware
developments and coordinating the activity of hundreds of Linux developers around the
world. Over the years, developers have worked to make Linux available on other
architectures, including Alpha, SPARC, Motorola MC680x0, PowerPC, and IBM
System/390.

One of the more appealing benefits to Linux is that it isn't a commercial operating system: its
source code under the GNU Public License[1] is open and available to anyone to study, as we
will in this book; if you download the code (the official site is http://www.kernel.org/) or
check the sources on a Linux CD, you will be able to explore from top to bottom one of
the most successful, modern operating systems. This book, in fact, assumes you have
the source code on hand and can apply what we say to your own explorations.

[1] The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org/); its aim is to implement a whole operating system
freely usable by everyone. The availability of a GNU C compiler has been essential for the success of the Linux project.

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating
system, because it does not include all the applications such as filesystem utilities, windowing
systems and graphical desktops, system administrator commands, text editors, compilers, and
so on. However, since most of these programs are freely available under the GNU General
Public License, they can be installed into one of the filesystems supported by Linux.

Since Linux is a kernel, many Linux users prefer to rely on commercial distributions,
available on CD-ROM, to get the code included in a standard Unix system. Alternatively,
the code may be obtained from several different FTP sites. The Linux source code is usually
installed in the /usr/src/linux directory. In the rest of this book, all file pathnames will refer
implicitly to that directory.

1.1 Linux Versus Other Unix-Like Kernels

The various Unix-like systems on the market, some of which have a long history and may
show signs of archaic practices, differ in many important respects. All commercial variants
were derived from either SVR4 or 4.4BSD; all of them tend to agree on some common
standards like IEEE's POSIX (Portable Operating Systems based on Unix) and X/Open's CAE
(Common Applications Environment).

Understanding the Linux Kernel

7

The current standards specify only an application programming interface (API)—that is,
a well-defined environment in which user programs should run. Therefore, the standards do
not impose any restriction on internal design choices of a compliant kernel.[2]

[2] As a matter of fact, several non-Unix operating systems like Windows NT are POSIX-compliant.

In order to define a common user interface, Unix-like kernels often share fundamental design
ideas and features. In this respect, Linux is comparable with the other Unix-like operating
systems. What you read in this book and see in the Linux kernel, therefore, may help you
understand the other Unix variants too.

The 2.2 version of the Linux kernel aims to be compliant with the IEEE POSIX standard.
This, of course, means that most existing Unix programs can be compiled and executed on
a Linux system with very little effort or even without the need for patches to the source code.
Moreover, Linux includes all the features of a modern Unix operating system, like virtual
memory, a virtual filesystem, lightweight processes, reliable signals, SVR4 interprocess
communications, support for Symmetric Multiprocessor (SMP) systems, and so on.

By itself, the Linux kernel is not very innovative. When Linus Torvalds wrote the first kernel,
he referred to some classical books on Unix internals, like Maurice Bach's The Design of
the Unix Operating System (Prentice Hall, 1986). Actually, Linux still has some bias toward
the Unix baseline described in Bach's book (i.e., SVR4). However, Linux doesn't stick to any
particular variant. Instead, it tries to adopt good features and design choices of several
different Unix kernels.

Here is an assessment of how Linux competes against some well-known commercial Unix
kernels:

• The Linux kernel is monolithic. It is a large, complex do-it-yourself program,
composed of several logically different components. In this, it is quite conventional;
most commercial Unix variants are monolithic. A notable exception is Carnegie-
Mellon's Mach 3.0, which follows a microkernel approach.

• Traditional Unix kernels are compiled and linked statically. Most modern kernels can
dynamically load and unload some portions of the kernel code (typically, device
drivers), which are usually called modules. Linux's support for modules is very good,
since it is able to automatically load and unload modules on demand. Among the main
commercial Unix variants, only the SVR4.2 kernel has a similar feature.

• Kernel threading. Some modern Unix kernels, like Solaris 2.x and SVR4.2/MP, are
organized as a set of kernel threads. A kernel thread is an execution context that can
be independently scheduled; it may be associated with a user program, or it may run
only some kernel functions. Context switches between kernel threads are usually much
less expensive than context switches between ordinary processes, since the former
usually operate on a common address space. Linux uses kernel threads in a very
limited way to execute a few kernel functions periodically; since Linux kernel threads
cannot execute user programs, they do not represent the basic execution context
abstraction. (That's the topic of the next item.)

• Multithreaded application support. Most modern operating systems have some kind of
support for multithreaded applications, that is, user programs that are well designed in
terms of many relatively independent execution flows sharing a large portion of the
application data structures. A multithreaded user application could be composed of
many lightweight processes (LWP), or processes that can operate on a common

Understanding the Linux Kernel

8

address space, common physical memory pages, common opened files, and so on.
Linux defines its own version of lightweight processes, which is different from the
types used on other systems such as SVR4 and Solaris. While all the commercial Unix
variants of LWP are based on kernel threads, Linux regards lightweight processes as
the basic execution context and handles them via the nonstandard clone() system
call.

• Linux is a nonpreemptive kernel. This means that Linux cannot arbitrarily interleave
execution flows while they are in privileged mode. Several sections of kernel code
assume they can run and modify data structures without fear of being interrupted and
having another thread alter those data structures. Usually, fully preemptive kernels are
associated with special real-time operating systems. Currently, among conventional,
general-purpose Unix systems, only Solaris 2.x and Mach 3.0 are fully preemptive
kernels. SVR4.2/MP introduces some fixed preemption points as a method to get
limited preemption capability.

• Multiprocessor support. Several Unix kernel variants take advantage of multiprocessor
systems. Linux 2.2 offers an evolving kind of support for symmetric multiprocessing
(SMP), which means not only that the system can use multiple processors but also that
any processor can handle any task; there is no discrimination among them. However,
Linux 2.2 does not make optimal use of SMP. Several kernel activities that could be
executed concurrently—like filesystem handling and networking—must now be
executed sequentially.

• Filesystem. Linux's standard filesystem lacks some advanced features, such as
journaling. However, more advanced filesystems for Linux are available, although not
included in the Linux source code; among them, IBM AIX's Journaling File System
(JFS), and Silicon Graphics Irix's XFS filesystem. Thanks to a powerful object-
oriented Virtual File System technology (inspired by Solaris and SVR4), porting
a foreign filesystem to Linux is a relatively easy task.

• STREAMS. Linux has no analog to the STREAMS I/O subsystem introduced in
SVR4, although it is included nowadays in most Unix kernels and it has become the
preferred interface for writing device drivers, terminal drivers, and network protocols.

This somewhat disappointing assessment does not depict, however, the whole truth. Several
features make Linux a wonderfully unique operating system. Commercial Unix kernels often
introduce new features in order to gain a larger slice of the market, but these features are not
necessarily useful, stable, or productive. As a matter of fact, modern Unix kernels tend to be
quite bloated. By contrast, Linux doesn't suffer from the restrictions and the conditioning
imposed by the market, hence it can freely evolve according to the ideas of its designers
(mainly Linus Torvalds). Specifically, Linux offers the following advantages over its
commercial competitors:

Linux is free.

You can install a complete Unix system at no expense other than the hardware (of
course).

Understanding the Linux Kernel

9

Linux is fully customizable in all its components.

Thanks to the General Public License (GPL), you are allowed to freely read and
modify the source code of the kernel and of all system programs.[3]

[3] Several commercial companies have started to support their products under Linux, most of which aren't distributed under a GNU Public License.
Therefore, you may not be allowed to read or modify their source code.

Linux runs on low-end, cheap hardware platforms.

You can even build a network server using an old Intel 80386 system with 4 MB of
RAM.

Linux is powerful.

Linux systems are very fast, since they fully exploit the features of the hardware
components. The main Linux target is efficiency, and indeed many design choices of
commercial variants, like the STREAMS I/O subsystem, have been rejected by Linus
because of their implied performance penalty.

Linux has a high standard for source code quality.

Linux systems are usually very stable; they have a very low failure rate and system
maintenance time.

The Linux kernel can be very small and compact.

Indeed, it is possible to fit both a kernel image and full root filesystem, including all
fundamental system programs, on just one 1.4 MB floppy disk! As far as we know,
none of the commercial Unix variants is able to boot from a single floppy disk.

Linux is highly compatible with many common operating systems.

It lets you directly mount filesystems for all versions of MS-DOS and MS Windows,
SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP, many BSD variants, and so on.
Linux is also able to operate with many network layers like Ethernet, Fiber Distributed
Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IBM's Token
Ring, AT&T WaveLAN, DEC RoamAbout DS, and so forth. By using suitable
libraries, Linux systems are even able to directly run programs written for other
operating systems. For example, Linux is able to execute applications written for MS-
DOS, MS Windows, SVR3 and R4, 4.4BSD, SCO Unix, XENIX, and others on the
Intel 80x86 platform.

Linux is well supported.

Believe it or not, it may be a lot easier to get patches and updates for Linux than for
any proprietary operating system! The answer to a problem often comes back within
a few hours after sending a message to some newsgroup or mailing list. Moreover,
drivers for Linux are usually available a few weeks after new hardware products have
been introduced on the market. By contrast, hardware manufacturers release device
drivers for only a few commercial operating systems, usually the Microsoft ones.

Understanding the Linux Kernel

10

Therefore, all commercial Unix variants run on a restricted subset of hardware
components.

With an estimated installed base of more than 12 million and growing, people who are used to
certain creature features that are standard under other operating systems are starting to expect
the same from Linux. As such, the demand on Linux developers is also increasing. Luckily,
though, Linux has evolved under the close direction of Linus over the years, to accommodate
the needs of the masses.

1.2 Hardware Dependency

Linux tries to maintain a neat distinction between hardware-dependent and hardware-
independent source code. To that end, both the arch and the include directories include nine
subdirectories corresponding to the nine hardware platforms supported. The standard names
of the platforms are:

arm

Acorn personal computers

alpha

Compaq Alpha workstations

i386

IBM-compatible personal computers based on Intel 80x86 or Intel 80x86-compatible
microprocessors

m68k

Personal computers based on Motorola MC680x0 microprocessors

mips

Workstations based on Silicon Graphics MIPS microprocessors

ppc

Workstations based on Motorola-IBM PowerPC microprocessors

sparc

Workstations based on Sun Microsystems SPARC microprocessors

sparc64

Workstations based on Sun Microsystems 64-bit Ultra SPARC microprocessors

Understanding the Linux Kernel

11

s390

IBM System/390 mainframes

1.3 Linux Versions

Linux distinguishes stable kernels from development kernels through a simple numbering
scheme. Each version is characterized by three numbers, separated by periods. The first two
numbers are used to identify the version; the third number identifies the release.

As shown in Figure 1-1, if the second number is even, it denotes a stable kernel; otherwise, it
denotes a development kernel. At the time of this writing, the current stable version of the
Linux kernel is 2.2.14, and the current development version is 2.3.51. The 2.2 kernel, which is
the basis for this book, was first released in January 1999, and it differs considerably from the
2.0 kernel, particularly with respect to memory management. Work on the 2.3 development
version started in May 1999.

Figure 1-1. Numbering Linux versions

New releases of a stable version come out mostly to fix bugs reported by users. The main
algorithms and data structures used to implement the kernel are left unchanged.

Development versions, on the other hand, may differ quite significantly from one another;
kernel developers are free to experiment with different solutions that occasionally lead to
drastic kernel changes. Users who rely on development versions for running applications may
experience unpleasant surprises when upgrading their kernel to a newer release. This book
concentrates on the most recent stable kernel that we had available because, among all
the new features being tried in experimental kernels, there's no way of telling which will
ultimately be accepted and what they'll look like in their final form.

At the time of this writing, Linux 2.4 has not officially come out. We tried to anticipate the
forthcoming features and the main kernel changes with respect to the 2.2 version by looking
at the Linux 2.3.99-pre8 prerelease. Linux 2.4 inherits a good deal from Linux 2.2: many
concepts, design choices, algorithms, and data structures remain the same. For that reason, we
conclude each chapter by sketching how Linux 2.4 differs from Linux 2.2 with respect to
the topics just discussed. As you'll notice, the new Linux is gleaming and shining; it should
appear more appealing to large corporations and, more generally, to the whole business
community.

Understanding the Linux Kernel

12

1.4 Basic Operating System Concepts

Any computer system includes a basic set of programs called the operating system. The most
important program in the set is called the kernel. It is loaded into RAM when the system boots
and contains many critical procedures that are needed for the system to operate. The other
programs are less crucial utilities; they can provide a wide variety of interactive experiences
for the user—as well as doing all the jobs the user bought the computer for—but the essential
shape and capabilities of the system are determined by the kernel. The kernel, then, is where
we fix our attention in this book. Hence, we'll often use the term "operating system" as
a synonym for "kernel."

The operating system must fulfill two main objectives:

• Interact with the hardware components servicing all low-level programmable elements
included in the hardware platform.

• Provide an execution environment to the applications that run on the computer system
(the so-called user programs).

Some operating systems allow all user programs to directly play with the hardware
components (a typical example is MS-DOS). In contrast, a Unix-like operating system hides
all low-level details concerning the physical organization of the computer from applications
run by the user. When a program wants to make use of a hardware resource, it must issue
a request to the operating system. The kernel evaluates the request and, if it chooses to grant
the resource, interacts with the relative hardware components on behalf of the user program.

In order to enforce this mechanism, modern operating systems rely on the availability of
specific hardware features that forbid user programs to directly interact with low-level
hardware components or to access arbitrary memory locations. In particular, the hardware
introduces at least two different execution modes for the CPU: a nonprivileged mode for user
programs and a privileged mode for the kernel. Unix calls these User Mode and Kernel Mode,
respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the design of
Unix over the past two decades, as well as Linux and other operating systems. While the
concepts are probably familiar to you as a Linux user, these sections try to delve into them
a bit more deeply than usual to explain the requirements they place on an operating system
kernel. These broad considerations refer to Unix-like systems, thus also to Linux. The other
chapters of this book will hopefully help you to understand the Linux kernel internals.

1.4.1 Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently execute
several applications belonging to two or more users. "Concurrently" means that applications
can be active at the same time and contend for the various resources such as CPU, memory,
hard disks, and so on. "Independently" means that each application can perform its task with
no concern for what the applications of the other users are doing. Switching from one
application to another, of course, slows down each of them and affects the response time seen
by the users. Many of the complexities of modern operating system kernels, which we will
examine in this book, are present to minimize the delays enforced on each program and to
provide the user with responses that are as fast as possible.

Understanding the Linux Kernel

13

Multiuser operating systems must include several features:

• An authentication mechanism for verifying the user identity
• A protection mechanism against buggy user programs that could block other

applications running in the system
• A protection mechanism against malicious user programs that could interfere with, or

spy on, the activity of other users
• An accounting mechanism that limits the amount of resource units assigned to each

user

In order to ensure safe protection mechanisms, operating systems must make use of the
hardware protection associated with the CPU privileged mode. Otherwise, a user program
would be able to directly access the system circuitry and overcome the imposed bounds. Unix
is a multiuser system that enforces the hardware protection of system resources.

1.4.2 Users and Groups

In a multiuser system, each user has a private space on the machine: typically, he owns some
quota of the disk space to store files, receives private mail messages, and so on. The operating
system must ensure that the private portion of a user space is visible only to its owner. In
particular, it must ensure that no user can exploit a system application for the purpose of
violating the private space of another user.

All users are identified by a unique number called the User ID , or UID. Usually only a
restricted number of persons are allowed to make use of a computer system. When one of
these users starts a working session, the operating system asks for a login name and a
password. If the user does not input a valid pair, the system denies access. Since the password
is assumed to be secret, the user's privacy is ensured.

In order to selectively share material with other users, each user is a member of one or more
groups, which are identified by a unique number called a Group ID , or GID. Each file is also
associated with exactly one group. For example, access could be set so that the user owning
the file has read and write privileges, the group has read-only privileges, and other users on
the system are denied access to the file.

Any Unix-like operating system has a special user called root, superuser, or supervisor. The
system administrator must log in as root in order to handle user accounts, perform
maintenance tasks like system backups and program upgrades, and so on. The root user can
do almost everything, since the operating system does not apply the usual protection
mechanisms to her. In particular, the root user can access every file on the system and can
interfere with the activity of every running user program.

1.4.3 Processes

All operating systems make use of one fundamental abstraction: the process . A process can
be defined either as "an instance of a program in execution," or as the "execution context" of a
running program. In traditional operating systems, a process executes a single sequence of
instructions in an address space ; the address space is the set of memory addresses that the
process is allowed to reference. Modern operating systems allow processes with multiple

Understanding the Linux Kernel

14

execution flows, that is, multiple sequences of instructions executed in the same address
space.

Multiuser systems must enforce an execution environment in which several processes can be
active concurrently and contend for system resources, mainly the CPU. Systems that allow
concurrent active processes are said to be multiprogramming or multiprocessing.[4] It is
important to distinguish programs from processes: several processes can execute the same
program concurrently, while the same process can execute several programs sequentially.

[4] Some multiprocessing operating systems are not multiuser; an example is Microsoft's Windows 98.

On uniprocessor systems, just one process can hold the CPU, and hence just one execution
flow can progress at a time. In general, the number of CPUs is always restricted, and therefore
only a few processes can progress at the same time. The choice of the process that can
progress is left to an operating system component called the scheduler. Some operating
systems allow only nonpreemptive processes, which means that the scheduler is invoked only
when a process voluntarily relinquishes the CPU. But processes of a multiuser system must be
preemptive ; the operating system tracks how long each process holds the CPU and
periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptive processes. Indeed, the process
abstraction is really fundamental in all Unix systems. Even when no user is logged in and no
application is running, several system processes monitor the peripheral devices. In particular,
several processes listen at the system terminals waiting for user logins. When a user inputs a
login name, the listening process runs a program that validates the user password. If the user
identity is acknowledged, the process creates another process that runs a shell into which
commands are entered. When a graphical display is activated, one process runs the window
manager, and each window on the display is usually run by a separate process. When a user
creates a graphics shell, one process runs the graphics windows, and a second process runs the
shell into which the user can enter the commands. For each user command, the shell process
creates another process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model. Each process has the illusion that
it's the only process on the machine and it has exclusive access to the operating system
services. Whenever a process makes a system call (i.e., a request to the kernel), the hardware
changes the privilege mode from User Mode to Kernel Mode, and the process starts the
execution of a kernel procedure with a strictly limited purpose. In this way, the operating
system acts within the execution context of the process in order to satisfy its request.
Whenever the request is fully satisfied, the kernel procedure forces the hardware to return to
User Mode and the process continues its execution from the instruction following the system
call.

1.4.4 Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the
whole kernel program and runs in Kernel Mode on behalf of the current process. In contrast,
microkernel operating systems demand a very small set of functions from the kernel,
generally including a few synchronization primitives, a simple scheduler, and an interprocess
communication mechanism. Several system processes that run on top of the microkernel
implement other operating system-layer functions, like memory allocators, device drivers,
system call handlers, and so on.

Understanding the Linux Kernel

15

Although academic research on operating systems is oriented toward microkernels, such
operating systems are generally slower than monolithic ones, since the explicit message
passing between the different layers of the operating system has a cost. However, microkernel
operating systems might have some theoretical advantages over monolithic ones.
Microkernels force the system programmers to adopt a modularized approach, since any
operating system layer is a relatively independent program that must interact with the other
layers through well-defined and clean software interfaces. Moreover, an existing microkernel
operating system can be fairly easily ported to other architectures, since all hardware-
dependent components are generally encapsulated in the microkernel code. Finally,
microkernel operating systems tend to make better use of random access memory (RAM) than
monolithic ones, since system processes that aren't implementing needed functionalities might
be swapped out or destroyed.

Modules are a kernel feature that effectively achieves many of the theoretical advantages of
microkernels without introducing performance penalties. A module is an object file whose
code can be linked to (and unlinked from) the kernel at runtime. The object code usually
consists of a set of functions that implements a filesystem, a device driver, or other features at
the kernel's upper layer. The module, unlike the external layers of microkernel operating
systems, does not run as a specific process. Instead, it is executed in Kernel Mode on behalf
of the current process, like any other statically linked kernel function.

The main advantages of using modules include:

Modularized approach

Since any module can be linked and unlinked at runtime, system programmers must
introduce well-defined software interfaces to access the data structures handled by
modules. This makes it easy to develop new modules.

Platform independence

Even if it may rely on some specific hardware features, a module doesn't depend on a
fixed hardware platform. For example, a disk driver module that relies on the SCSI
standard works as well on an IBM-compatible PC as it does on Compaq's Alpha.

Frugal main memory usage

A module can be linked to the running kernel when its functionality is required and
unlinked when it is no longer useful. This mechanism also can be made transparent to
the user, since linking and unlinking can be performed automatically by the kernel.

No performance penalty

Once linked in, the object code of a module is equivalent to the object code of the
statically linked kernel. Therefore, no explicit message passing is required when the
functions of the module are invoked.[5]

[5] A small performance penalty occurs when the module is linked and when it is unlinked. However, this penalty can be compared to the penalty
caused by the creation and deletion of system processes in microkernel operating systems.

Understanding the Linux Kernel

16

1.5 An Overview of the Unix Filesystem

The Unix operating system design is centered on its filesystem, which has several interesting
characteristics. We'll review the most significant ones, since they will be mentioned quite
often in forthcoming chapters.

1.5.1 Files

A Unix file is an information container structured as a sequence of bytes; the kernel does not
interpret the contents of a file. Many programming libraries implement higher-level
abstractions, such as records structured into fields and record addressing based on keys.
However, the programs in these libraries must rely on system calls offered by the kernel.
From the user's point of view, files are organized in a tree-structured name space as shown in
Figure 1-2.

Figure 1-2. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node contains
information about the files and directories just beneath it. A file or directory name consists of
a sequence of arbitrary ASCII characters,[6] with the exception of / and of the null character \0.
Most filesystems place a limit on the length of a filename, typically no more than 255
characters. The directory corresponding to the root of the tree is called the root directory . By
convention, its name is a slash (/). Names must be different within the same directory, but the
same name may be used in different directories.

[6] Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit extended coding of graphical characters such
as Unicode.

Unix associates a current working directory with each process (see Section 1.6.1 later in this
chapter); it belongs to the process execution context, and it identifies the directory currently
used by the process. In order to identify a specific file, the process uses a pathname, which
consists of slashes alternating with a sequence of directory names that lead to the file. If the
first item in the pathname is a slash, the pathname is said to be absolute, since its starting
point is the root directory. Otherwise, if the first item is a directory name or filename, the
pathname is said to be relative, since its starting point is the process's current directory.

While specifying filenames, the notations "." and ".." are also used. They denote the current
working directory and its parent directory, respectively. If the current working directory is the
root directory, "." and ".." coincide.

Understanding the Linux Kernel

17

1.5.2 Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply a link. The same
file may have several links included in the same directory or in different ones, thus several
filenames.

The Unix command:

$ ln f1 f2

is used to create a new hard link that has the pathname f2 for a file identified by the pathname
f1.

Hard links have two limitations:

• Users are not allowed to create hard links for directories. This might transform the
directory tree into a graph with cycles, thus making it impossible to locate a file
according to its name.

• Links can be created only among files included in the same filesystem. This is a
serious limitation since modern Unix systems may include several filesystems located
on different disks and/or partitions, and users may be unaware of the physical
divisions between them.

In order to overcome these limitations, soft links (also called symbolic links) have been
introduced. Symbolic links are short files that contain an arbitrary pathname of another file.
The pathname may refer to any file located in any filesystem; it may even refer to a
nonexistent file.

The Unix command:

$ ln -s f1 f2

creates a new soft link with pathname f2 that refers to pathname f1. When this command is
executed, the filesystem creates a soft link and writes into it the f1 pathname. It then inserts—
in the proper directory—a new entry containing the last name of the f2 pathname. In this way,
any reference to f2 can be translated automatically into a reference to f1.

1.5.3 File Types

Unix files may have one of the following types:

• Regular file
• Directory
• Symbolic link
• Block-oriented device file
• Character-oriented device file
• Pipe and named pipe (also called FIFO)
• Socket

Understanding the Linux Kernel

18

The first three file types are constituents of any Unix filesystem. Their implementation will be
described in detail in Chapter 17.

Device files are related to I/O devices and device drivers integrated into the kernel. For
example, when a program accesses a device file, it acts directly on the I/O device associated
with that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see Section 1.6.5
later in this chapter and Chapter 18).

1.5.4 File Descriptor and Inode

Unix makes a clear distinction between a file and a file descriptor. With the exception of
device and special files, each file consists of a sequence of characters. The file does not
include any control information such as its length, or an End-Of-File (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data structure called
an inode. Each file has its own inode, which the filesystem uses to identify the file.

While filesystems and the kernel functions handling them can vary widely from one Unix
system to another, they must always provide at least the following attributes, which are
specified in the POSIX standard:

• File type (see previous section)
• Number of hard links associated with the file
• File length in bytes
• Device ID (i.e., an identifier of the device containing the file)
• Inode number that identifies the file within the filesystem
• User ID of the file owner
• Group ID of the file
• Several timestamps that specify the inode status change time, the last access time, and

the last modify time
• Access rights and file mode (see next section)

1.5.5 Access Rights and File Mode

The potential users of a file fall into three classes:

• The user who is the owner of the file
• The users who belong to the same group as the file, not including the owner
• All remaining users (others)

There are three types of access rights, Read, Write, and Execute, for each of these three
classes. Thus, the set of access rights associated with a file consists of nine different binary
flags. Three additional flags, called suid (Set User ID), sgid (Set Group ID), and sticky define
the file mode. These flags have the following meanings when applied to executable files:

Understanding the Linux Kernel

19

suid

A process executing a file normally keeps the User ID (UID) of the process owner.
However, if the executable file has the suid flag set, the process gets the UID of the
file owner.

sgid

A process executing a file keeps the Group ID (GID) of the process group. However,
if the executable file has the sgid flag set, the process gets the ID of the file group.

sticky

An executable file with the sticky flag set corresponds to a request to the kernel to
keep the program in memory after its execution terminates.[7]

[7] This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 7).

When a file is created by a process, its owner ID is the UID of the process. Its owner group ID
can be either the GID of the creator process or the GID of the parent directory, depending on
the value of the sgid flag of the parent directory.

1.5.6 File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually accesses
some data stored in a hardware block device. In this sense, a filesystem is a user-level view of
the physical organization of a hard disk partition. Since a process in User Mode cannot
directly interact with the low-level hardware components, each actual file operation must be
performed in Kernel Mode.

Therefore, the Unix operating system defines several system calls related to file handling.
Whenever a process wants to perform some operation on a specific file, it uses the proper
system call and passes the file pathname as a parameter.

All Unix kernels devote great attention to the efficient handling of hardware block devices in
order to achieve good overall system performance. In the chapters that follow, we will
describe topics related to file handling in Linux and specifically how the kernel reacts to file-
related system calls. In order to understand those descriptions, you will need to know how the
main file-handling system calls are used; they are described in the next section.

1.5.6.1 Opening a file

Processes can access only "opened" files. In order to open a file, the process invokes the
system call:

fd = open(path, flag, mode)

The three parameters have the following meanings:

Understanding the Linux Kernel

20

path

Denotes the pathname (relative or absolute) of the file to be opened.

flag

Specifies how the file must be opened (e.g., read, write, read/write, append). It can
also specify whether a nonexisting file should be created.

mode

Specifies the access rights of a newly created file.

This system call creates an "open file" object and returns an identifier called file descriptor .
An open file object contains:

• Some file-handling data structures, like a pointer to the kernel buffer memory area
where file data will be copied; an offset field that denotes the current position in the
file from which the next operation will take place (the so-called file pointer); and so
on.

• Some pointers to kernel functions that the process is enabled to invoke. The set of
permitted functions depends on the value of the flag parameter.

We'll discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing
some general properties specified by the POSIX semantics:

• A file descriptor represents an interaction between a process and an opened file, while
an open file object contains data related to that interaction. The same open file object
may be identified by several file descriptors.

• Several processes may concurrently open the same file. In this case, the filesystem
assigns a separate file descriptor to each file, along with a separate open file object.
When this occurs, the Unix filesystem does not provide any kind of synchronization
among the I/O operations issued by the processes on the same file. However, several
system calls such as flock() are available to allow processes to synchronize
themselves on the entire file or on portions of it (see Chapter 12).

In order to create a new file, the process may also invoke the create() system call, which is
handled by the kernel exactly like open().

1.5.6.2 Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device files and
named pipes are usually accessed sequentially (see Chapter 13). In both kinds of access, the
kernel stores the file pointer in the open file object, that is, the current position at which the
next read or write operation will take place.

Sequential access is implicitly assumed: the read() and write() system calls always refer
to the position of the current file pointer. In order to modify the value, a program must
explicitly invoke the lseek() system call. When a file is opened, the kernel sets the file
pointer to the position of the first byte in the file (offset 0).

Understanding the Linux Kernel

21

The lseek() system call requires the following parameters:

newoffset = lseek(fd, offset, whence);

which have the following meanings:

fd

Indicates the file descriptor of the opened file

offset

Specifies a signed integer value that will be used for computing the new position of
the file pointer

whence

Specifies whether the new position should be computed by adding the offset value to
the number (offset from the beginning of the file), the current file pointer, or the
position of the last byte (offset from the end of the file)

The read() system call requires the following parameters:

nread = read(fd, buf, count);

which have the following meaning:

fd

Indicates the file descriptor of the opened file

buf

Specifies the address of the buffer in the process's address space to which the data will
be transferred

count

Denotes the number of bytes to be read

When handling such a system call, the kernel attempts to read count bytes from the file
having the file descriptor fd, starting from the current value of the opened file's offset field. In
some cases—end-of-file, empty pipe, and so on—the kernel does not succeed in reading all
count bytes. The returned nread value specifies the number of bytes effectively read. The file
pointer is also updated by adding nread to its previous value. The write() parameters are
similar.

Understanding the Linux Kernel

22

1.5.6.3 Closing a file

When a process does not need to access the contents of a file anymore, it can invoke the
system call:

res = close(fd);

which releases the open file object corresponding to the file descriptor fd. When a process
terminates, the kernel closes all its still opened files.

1.5.6.4 Renaming and deleting a file

In order to rename or delete a file, a process does not need to open it. Indeed, such operations
do not act on the contents of the affected file, but rather on the contents of one or more
directories. For example, the system call:

res = rename(oldpath, newpath);

changes the name of a file link, while the system call:

res = unlink(pathname);

decrements the file link count and removes the corresponding directory entry. The file is
deleted only when the link count assumes the value 0.

1.6 An Overview of Unix Kernels

Unix kernels provide an execution environment in which applications may run. Therefore, the
kernel must implement a set of services and corresponding interfaces. Applications use those
interfaces and do not usually interact directly with hardware resources.

1.6.1 The Process/Kernel Model

As already mentioned, a CPU can run either in User Mode or in Kernel Mode. Actually, some
CPUs can have more than two execution states. For instance, the Intel 80x86 microprocessors
have four different execution states. But all standard Unix kernels make use of only Kernel
Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data structures
or the kernel programs. When an application executes in Kernel Mode, however, these
restrictions no longer apply. Each CPU model provides special instructions to switch from
User Mode to Kernel Mode and vice versa. A program executes most of the time in User
Mode and switches to Kernel Mode only when requesting a service provided by the kernel.
When the kernel has satisfied the program's request, it puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the system. The
task of creating, eliminating, and synchronizing the existing processes is delegated to a group
of routines in the kernel.

The kernel itself is not a process but a process manager. The process/kernel model assumes
that processes that require a kernel service make use of specific programming constructs

Understanding the Linux Kernel

23

called system calls. Each system call sets up the group of parameters that identifies the
process request and then executes the hardware-dependent CPU instruction to switch from
User Mode to Kernel Mode.

Besides user processes, Unix systems include a few privileged processes called kernel threads
with the following characteristics:

• They run in Kernel Mode in the kernel address space.
• They do not interact with users, and thus do not require terminal devices.
• They are usually created during system startup and remain alive until the system is

shut down.

Notice how the process/ kernel model is somewhat orthogonal to the CPU state: on a
uniprocessor system, only one process is running at any time and it may run either in User or
in Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine.
Figure 1-3 illustrates examples of transitions between User and Kernel Mode. Process 1 in
User Mode issues a system call, after which the process switches to Kernel Mode and the
system call is serviced. Process 1 then resumes execution in User Mode until a timer interrupt
occurs and the scheduler is activated in Kernel Mode. A process switch takes place, and
Process 2 starts its execution in User Mode until a hardware device raises an interrupt. As a
consequence of the interrupt, Process 2 switches to Kernel Mode and services the interrupt.

Figure 1-3. Transitions between User and Kernel Mode

Unix kernels do much more than handle system calls; in fact, kernel routines can be activated
in several ways:

• A process invokes a system call.
• The CPU executing the process signals an exception, which is some unusual condition

such as an invalid instruction. The kernel handles the exception on behalf of the
process that caused it.

• A peripheral device issues an interrupt signal to the CPU to notify it of an event such
as a request for attention, a status change, or the completion of an I/O operation. Each
interrupt signal is dealt by a kernel program called an interrupt handler. Since
peripheral devices operate asynchronously with respect to the CPU, interrupts occur at
unpredictable times.

• A kernel thread is executed; since it runs in Kernel Mode, the corresponding program
must be considered part of the kernel, albeit encapsulated in a process.

Understanding the Linux Kernel

24

1.6.2 Process Implementation

To let the kernel manage processes, each process is represented by a process descriptor that
includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of several
processor registers in the process descriptor. These include:

• The program counter (PC) and stack pointer (SP) registers
• The general-purpose registers
• The floating point registers
• The processor control registers (Processor Status Word) containing information about

the CPU state
• The memory management registers used to keep track of the RAM accessed by the

process

When the kernel decides to resume executing a process, it uses the proper process descriptor
fields to load the CPU registers. Since the stored value of the program counter points to the
instruction following the last instruction executed, the process resumes execution from where
it was stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix kernels
distinguish many wait states, which are usually implemented by queues of process
descriptors; each (possibly empty) queue corresponds to the set of processes waiting for a
specific event.

1.6.3 Reentrant Kernels

All Unix kernels are reentrant : this means that several processes may be executing in Kernel
Mode at the same time. Of course, on uniprocessor systems only one process can progress,
but many of them can be blocked in Kernel Mode waiting for the CPU or the completion of
some I/O operation. For instance, after issuing a read to a disk on behalf of some process, the
kernel will let the disk controller handle it and will resume executing other processes.
An interrupt notifies the kernel when the device has satisfied the read, so the former process
can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local variables
and do not alter global data structures. Such functions are called reentrant functions. But
a reentrant kernel is not limited just to such reentrant functions (although that is how some
real-time kernels are implemented). Instead, the kernel can include nonreentrant functions and
use locking mechanisms to ensure that only one process can execute a nonreentrant function
at a time. Every process in Kernel Mode acts on its own set of memory locations and cannot
interfere with the others.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running
process even if that process is in Kernel Mode. This capability is very important, since it
improves the throughput of the device controllers that issue interrupts. Once a device has
issued an interrupt, it waits until the CPU acknowledges it. If the kernel is able to answer
quickly, the device controller will be able to perform other tasks while the CPU handles
the interrupt.

Understanding the Linux Kernel

25

Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel
control path denotes the sequence of instructions executed by the kernel to handle a system
call, an exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the first
instruction to the last. When one of the following events occurs, however, the CPU interleaves
the kernel control paths:

• A process executing in User Mode invokes a system call and the corresponding kernel
control path verifies that the request cannot be satisfied immediately; it then invokes
the scheduler to select a new process to run. As a result, a process switch occurs. The
first kernel control path is left unfinished and the CPU resumes the execution of some
other kernel control path. In this case, the two control paths are executed on behalf of
two different processes.

• The CPU detects an exception—for example, an access to a page not present in
RAM—while running a kernel control path. The first control path is suspended, and
the CPU starts the execution of a suitable procedure. In our example, this type of
procedure could allocate a new page for the process and read its contents from disk.
When the procedure terminates, the first control path can be resumed. In this case, the
two control paths are executed on behalf of the same process.

• A hardware interrupt occurs while the CPU is running a kernel control path with the
interrupts enabled. The first kernel control path is left unfinished and the CPU starts
processing another kernel control path to handle the interrupt. The first kernel control
path resumes when the interrupt handler terminates. In this case the two kernel control
paths run in the execution context of the same process and the total elapsed system
time is accounted to it. However, the interrupt handler doesn't necessarily operate on
behalf of the process.

Figure 1-4 illustrates a few examples of noninterleaved and interleaved kernel control paths.
Three different CPU states are considered:

• Running a process in User Mode (User)
• Running an exception or a system call handler (Excp)
• Running an interrupt handler (Intr)

Figure 1-4. Interleaving of kernel control paths

Understanding the Linux Kernel

26

1.6.4 Process Address Space

Each process runs in its private address space. A process running in User Mode refers to
private stack, data, and code areas. When running in Kernel Mode, the process addresses the
kernel data and code area and makes use of another stack.

Since the kernel is reentrant, several kernel control paths—each related to a different
process—may be executed in turn. In this case, each kernel control path refers to its own
private kernel stack.

While it appears to each process that it has access to a private address space, there are times
when part of the address space is shared among processes. In some cases this sharing is
explicitly requested by processes; in others it is done automatically by the kernel to reduce
memory usage.

If the same program, say an editor, is needed simultaneously by several users, the program
will be loaded into memory only once, and its instructions can be shared by all of the users
who need it. Its data, of course, must not be shared, because each user will have separate data.
This kind of shared address space is done automatically by the kernel to save memory.

Processes can also share parts of their address space as a kind of interprocess communication,
using the "shared memory" technique introduced in System V and supported by Linux.

Finally, Linux supports the mmap() system call, which allows part of a file or the memory
residing on a device to be mapped into a part of a process address space. Memory mapping
can provide an alternative to normal reads and writes for transferring data. If the same file is
shared by several processes, its memory mapping is included in the address space of each of
the processes that share it.

1.6.5 Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization: if a kernel control path is
suspended while acting on a kernel data structure, no other kernel control path will be allowed
to act on the same data structure unless it has been reset to a consistent state. Otherwise, the
interaction of the two control paths could corrupt the stored information.

For example, let's suppose that a global variable V contains the number of available items of
some system resource. A first kernel control path A reads the variable and determines that
there is just one available item. At this point, another kernel control path B is activated and
reads the same variable, which still contains the value 1. Thus, B decrements V and starts
using the resource item. Then A resumes the execution; because it has already read the value
of V, it assumes that it can decrement V and take the resource item, which B already uses. As
a final result, V contains -1, and two kernel control paths are using the same resource item
with potentially disastrous effects.

When the outcome of some computation depends on how two or more processes are
scheduled, the code is incorrect: we say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations. In the
previous example, data corruption would not be possible if the two control paths read and

Understanding the Linux Kernel

27

decrement V with a single, noninterruptible operation. However, kernels contain many data
structures that cannot be accessed with a single operation. For example, it usually isn't
possible to remove an element from a linked list with a single operation, because the kernel
needs to access at least two pointers at once. Any section of code that should be finished by
each process that begins it before another process can enter it is called a critical region.[8]

[8] Synchronization problems have been fully described in other works; we refer the interested reader to books on the Unix operating systems (see the
bibliography near the end of the book).

These problems occur not only among kernel control paths but also among processes sharing
common data. Several synchronization techniques have been adopted. The following section
will concentrate on how to synchronize kernel control paths.

1.6.5.1 Nonpreemptive kernels

In search of a drastically simple solution to synchronization problems, most traditional Unix
kernels are nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily
suspended and substituted with another process. Therefore, on a uniprocessor system all
kernel data structures that are not updated by interrupts or exception handlers are safe for the
kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case it
must ensure that all data structures are left in a consistent state. Moreover, when it resumes its
execution, it must recheck the value of any previously accessed data structures that could be
changed.

Nonpreemptability is ineffective in multiprocessor systems, since two kernel control paths
running on different CPUs could concurrently access the same data structure.

1.6.5.2 Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling all
hardware interrupts before entering a critical region and reenabling them right after leaving it.
This mechanism, while simple, is far from optimal. If the critical region is large, interrupts
can remain disabled for a relatively long time, potentially causing all hardware activities to
freeze.

Moreover, on a multiprocessor system this mechanism doesn't work at all. There is no way to
ensure that no other CPU can access the same data structures updated in the protected critical
region.

1.6.5.3 Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies
on the use of semaphores. A semaphore is simply a counter associated with a data structure;
the semaphore is checked by all kernel threads before they try to access the data structure.
Each semaphore may be viewed as an object composed of:

• An integer variable
• A list of waiting processes
• Two atomic methods: down() and up()

Understanding the Linux Kernel

28

The down() method decrements the value of the semaphore. If the new value is less than 0,
the method adds the running process to the semaphore list and then blocks (i.e., invokes the
scheduler). The up() method increments the value of the semaphore and, if its new value is
greater than or equal to 0, reactivates one or more processes in the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1. When a
kernel control path wishes to access the data structure, it executes the down() method on the
proper semaphore. If the value of the new semaphore isn't negative, access to the data
structure is granted. Otherwise, the process that is executing the kernel control path is added
to the semaphore list and blocked. When another process executes the up() method on that
semaphore, one of the processes in the semaphore list is allowed to proceed.

1.6.5.4 Spin locks

In multiprocessor systems, semaphores are not always the best solution to the synchronization
problems. Some kernel data structures should be protected from being concurrently accessed
by kernel control paths that run on different CPUs. In this case, if the time required to update
the data structure is short, a semaphore could be very inefficient. To check a semaphore, the
kernel must insert a process in the semaphore list and then suspend it. Since both operations
are relatively expensive, in the time it takes to complete them, the other kernel control path
could have already released the semaphore.

In these cases, multiprocessor operating systems make use of spin locks. A spin lock is very
similar to a semaphore, but it has no process list: when a process finds the lock closed by
another process, it "spins" around repeatedly, executing a tight instruction loop until the lock
becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel control path
tries to access a locked data structure, it starts an endless loop. Therefore, the kernel control
path that is updating the protected data structure would not have a chance to continue the
execution and release the spin lock. The final result is that the system hangs.

1.6.5.5 Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may easily enter in
a deadlocked state. The simplest case of deadlock occurs when process p1 gains access to data
structure a and process p2 gains access to b, but p1 then waits for b and p2 waits for a. Other
more complex cyclic waitings among groups of processes may also occur. Of course, a
deadlock condition causes a complete freeze of the affected processes or kernel control paths.

As far as kernel design is concerned, deadlock becomes an issue when the number of kernel
semaphore types used is high. In this case, it may be quite difficult to ensure that no deadlock
state will ever be reached for all possible ways to interleave kernel control paths. Several
operating systems, including Linux, avoid this problem by introducing a very limited number
of semaphore types and by requesting semaphores in an ascending order.

Understanding the Linux Kernel

29

1.6.6 Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each event has
its own signal number, which is usually referred to by a symbolic constant such as SIGTERM.
There are two kinds of system events:

Asynchronous notifications

For instance, a user can send the interrupt signal SIGTERM to a foreground process by
pressing the interrupt keycode (usually, CTRL-C) at the terminal.

Synchronous errors or exceptions

For instance, the kernel sends the signal SIGSEGV to a process when it accesses a
memory location at an illegal address.

The POSIX standard defines about 20 different signals, two of which are user-definable and
may be used as a primitive mechanism for communication and synchronization among
processes in User Mode. In general, a process may react to a signal reception in two possible
ways:

• Ignore the signal.
• Asynchronously execute a specified procedure (the signal handler).

If the process does not specify one of these alternatives, the kernel performs a default action
that depends on the signal number. The five possible default actions are:

• Terminate the process.
• Write the execution context and the contents of the address space in a file (core dump)

and terminate the process.
• Ignore the signal.
• Suspend the process.
• Resume the process's execution, if it was stopped.

Kernel signal handling is rather elaborate since the POSIX semantics allows processes to
temporarily block signals. Moreover, a few signals such as SIGKILL cannot be directly
handled by the process and cannot be ignored.

AT&T's Unix System V introduced other kinds of interprocess communication among
processes in User Mode, which have been adopted by many Unix kernels: semaphores,
message queues, and shared memory. They are collectively known as System V IPC.

The kernel implements these constructs as IPC resources: a process acquires a resource by
invoking a shmget(), semget(), or msgget() system call. Just like files, IPC resources
are persistent: they must be explicitly deallocated by the creator process, by the current
owner, or by a superuser process.

Semaphores are similar to those described in Section 1.6.5 earlier in this chapter, except that
they are reserved for processes in User Mode. Message queues allow processes to exchange

Understanding the Linux Kernel

30

messages by making use of the msgsnd() and msgget() system calls, which respectively
insert a message into a specific message queue and extract a message from it.

Shared memory provides the fastest way for processes to exchange and share data. A process
starts by issuing a shmget() system call to create a new shared memory having a required
size. After obtaining the IPC resource identifier, the process invokes the shmat() system
call, which returns the starting address of the new region within the process address space.
When the process wishes to detach the shared memory from its address space, it invokes the
shmdt() system call. The implementation of shared memory depends on how the kernel
implements process address spaces.

1.6.7 Process Management

Unix makes a neat distinction between the process and the program it is executing. To that
end, the fork() and exit() system calls are used respectively to create a new process and
to terminate it, while an exec()-like system call is invoked to load a new program. After
such a system call has been executed, the process resumes execution with a brand new
address space containing the loaded program.

The process that invokes a fork() is the parent while the new process is its child . Parents
and children can find each other because the data structure describing each process includes a
pointer to its immediate parent and pointers to all its immediate children.

A naive implementation of the fork() would require both the parent's data and the parent's
code to be duplicated and assign the copies to the child. This would be quite time-consuming.
Current kernels that can rely on hardware paging units follow the Copy-On-Write approach,
which defers page duplication until the last moment (i.e., until the parent or the child is
required to write into a page). We shall describe how Linux implements this technique in
Section 7.4.4 in Chapter 7.

The exit() system call terminates a process. The kernel handles this system call by
releasing the resources owned by the process and sending the parent process a SIGCHLD
signal, which is ignored by default.

1.6.7.1 Zombie processes

How can a parent process inquire about termination of its children? The wait() system call
allows a process to wait until one of its children terminates; it returns the process ID (PID) of
the terminated child.

When executing this system call, the kernel checks whether a child has already terminated. A
special zombie process state is introduced to represent terminated processes: a process
remains in that state until its parent process executes a wait() system call on it. The system
call handler extracts some data about resource usage from the process descriptor fields; the
process descriptor may be released once the data has been collected. If no child process has
already terminated when the wait() system call is executed, the kernel usually puts the
process in a wait state until a child terminates.

Many kernels also implement a waitpid() system call, which allows a process to wait for a
specific child process. Other variants of wait() system calls are also quite common.

Understanding the Linux Kernel

31

It's a good practice for the kernel to keep around information on a child process until the
parent issues its wait() call, but suppose the parent process terminates without issuing that
call? The information takes up valuable memory slots that could be used to serve living
processes. For example, many shells allow the user to start a command in the background and
then log out. The process that is running the command shell terminates, but its children
continue their execution.

The solution lies in a special system process called init that is created during system
initialization. When a process terminates, the kernel changes the appropriate process
descriptor pointers of all the existing children of the terminated process to make them become
children of init. This process monitors the execution of all its children and routinely issues
wait() system calls, whose side effect is to get rid of all zombies.

1.6.7.2 Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a "job"
abstraction. For example, in order to execute the command line:

$ ls | sort | more

a shell that supports process groups, such as bash, creates a new group for the three processes
corresponding to ls, sort, and more. In this way, the shell acts on the three processes as if
they were a single entity (the job, to be precise). Each process descriptor includes a process
group ID field. Each group of processes may have a group leader, which is the process whose
PID coincides with the process group ID. A newly created process is initially inserted into the
process group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session contains all
processes that are descendants of the process that has started a working session on a specific
terminal—usually, the first command shell process created for the user. All processes in a
process group must be in the same login session. A login session may have several process
groups active simultaneously; one of these process groups is always in the foreground, which
means that it has access to the terminal. The other active process groups are in the
background. When a background process tries to access the terminal, it receives a SIGTTIN or
SIGTTOUT signal. In many command shells the internal commands bg and fg can be used to
put a process group in either the background or the foreground.

1.6.8 Memory Management

Memory management is by far the most complex activity in a Unix kernel. We shall dedicate
more than a third of this book just to describing how Linux does it. This section illustrates
some of the main issues related to memory management.

1.6.8.1 Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory. Virtual memory
acts as a logical layer between the application memory requests and the hardware Memory
Management Unit (MMU). Virtual memory has many purposes and advantages:

Understanding the Linux Kernel

32

• Several processes can be executed concurrently.
• It is possible to run applications whose memory needs are larger than the available

physical memory.
• Processes can execute a program whose code is only partially loaded in memory.
• Each process is allowed to access a subset of the available physical memory.
• Processes can share a single memory image of a library or program.
• Programs can be relocatable, that is, they can be placed anywhere in physical memory.
• Programmers can write machine-independent code, since they do not need to be

concerned about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address space.
The set of memory references that a process can use is different from physical memory
addresses. When a process uses a virtual address,[9] the kernel and the MMU cooperate to
locate the actual physical location of the requested memory item.

[9] These addresses have different nomenclatures depending on the computer architecture. As we'll see in Chapter 2, Intel 80x86 manuals refer to them
as "logical addresses."

Today's CPUs include hardware circuits that automatically translate the virtual addresses into
physical ones. To that end, the available RAM is partitioned into page frames 4 or 8 KB in
length, and a set of page tables is introduced to specify the correspondence between virtual
and physical addresses. These circuits make memory allocation simpler, since a request for a
block of contiguous virtual addresses can be satisfied by allocating a group of page frames
having noncontiguous physical addresses.

1.6.8.2 Random access memory usage

All Unix operating systems clearly distinguish two portions of the random access memory
(RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel code and
the kernel static data structures). The remaining portion of RAM is usually handled by the
virtual memory system and is used in three possible ways:

• To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data
structures

• To satisfy process requests for generic memory areas and for memory mapping of files
• To get better performance from disks and other buffered devices by means of caches

Each request type is valuable. On the other hand, since the available RAM is limited, some
balancing among request types must be done, particularly when little available memory is left.
Moreover, when some critical threshold of available memory is reached and a page-frame-
reclaiming algorithm is invoked to free additional memory, which are the page frames most
suitable for reclaiming? As we shall see in Chapter 16, there is no simple answer to this
question and very little support from theory. The only available solution lies in developing
carefully tuned empirical algorithms.

One major problem that must be solved by the virtual memory system is memory
fragmentation . Ideally, a memory request should fail only when the number of free page
frames is too small. However, the kernel is often forced to use physically contiguous memory
areas, hence the memory request could fail even if there is enough memory available but it is
not available as one contiguous chunk.

Understanding the Linux Kernel

33

1.6.8.3 Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for
memory areas from all parts of the system. Some of these requests will come from other
kernel subsystems needing memory for kernel use, and some requests will come via system
calls from user programs to increase their processes' address spaces. A good KMA should
have the following features:

• It must be fast. Actually, this is the most crucial attribute, since it is invoked by all
kernel subsystems (including the interrupt handlers).

• It should minimize the amount of wasted memory.
• It should try to reduce the memory fragmentation problem.
• It should be able to cooperate with the other memory management subsystems in order

to borrow and release page frames from them.

Several kinds of KMAs have been proposed, which are based on a variety of different
algorithmic techniques, including:

• Resource map allocator
• Power-of-two free lists
• McKusick-Karels allocator
• Buddy system
• Mach's Zone allocator
• Dynix allocator
• Solaris's Slab allocator

As we shall see in Chapter 6, Linux's KMA uses a Slab allocator on top of a Buddy system.

1.6.8.4 Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the process is
allowed to reference. The kernel usually stores a process virtual address space as a list of
memory area descriptors. For example, when a process starts the execution of some program
via an exec()-like system call, the kernel assigns to the process a virtual address space that
comprises memory areas for:

• The executable code of the program
• The initialized data of the program
• The uninitialized data of the program
• The initial program stack (that is, the User Mode stack)
• The executable code and data of needed shared libraries
• The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand paging.
With demand paging, a process can start program execution with none of its pages in physical
memory. As it accesses a nonpresent page, the MMU generates an exception; the exception
handler finds the affected memory region, allocates a free page, and initializes it with the
appropriate data. In a similar fashion, when the process dynamically requires some memory
by using malloc() or the brk() system call (which is invoked internally by malloc()),
the kernel just updates the size of the heap memory region of the process. A page frame is

Understanding the Linux Kernel

34

assigned to the process only when it generates an exception by trying to refer its virtual
memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy-On-Write
strategy mentioned earlier. For example, when a new process is created, the kernel just
assigns the parent's page frames to the child address space, but it marks them read only. An
exception is raised as soon the parent or the child tries to modify the contents of a page. The
exception handler assigns a new page frame to the affected process and initializes it with the
contents of the original page.

1.6.8.5 Swapping and caching

In order to extend the size of the virtual address space usable by the processes, the Unix
operating system makes use of swap areas on disk. The virtual memory system regards the
contents of a page frame as the basic unit for swapping. Whenever some process refers to a
swapped-out page, the MMU raises an exception. The exception handler then allocates a new
page frame and initializes the page frame with its old contents saved on disk.

On the other hand, physical memory is also used as cache for hard disks and other block
devices. This is because hard drives are very slow: a disk access requires several milliseconds,
which is a very long time compared with the RAM access time. Therefore, disks are often the
bottleneck in system performance. As a general rule, one of the policies already implemented
in the earliest Unix system is to defer writing to disk as long as possible by loading into RAM
a set of disk buffers corresponding to blocks read from disk. The sync() system call forces
disk synchronization by writing all of the "dirty" buffers (i.e., all the buffers whose contents
differ from that of the corresponding disk blocks) into disk. In order to avoid data loss, all
operating systems take care to periodically write dirty buffers back to disk.

1.6.9 Device Drivers

The kernel interacts with I/O devices by means of device drivers. Device drivers are included
in the kernel and consist of data structures and functions that control one or more devices,
such as hard disks, keyboards, mouses, monitors, network interfaces, and devices connected
to a SCSI bus. Each driver interacts with the remaining part of the kernel (even with other
drivers) through a specific interface. This approach has the following advantages:

• Device-specific code can be encapsulated in a specific module.
• Vendors can add new devices without knowing the kernel source code: only the

interface specifications must be known.
• The kernel deals with all devices in a uniform way and accesses them through the

same interface.
• It is possible to write a device driver as a module that can be dynamically loaded in the

kernel without requiring the system to be rebooted. It is also possible to dynamically
unload a module that is no longer needed, thus minimizing the size of the kernel image
stored in RAM.

Figure 1-5 illustrates how device drivers interface with the rest of the kernel and with the
processes. Some user programs (P) wish to operate on hardware devices. They make requests
to the kernel using the usual file-related system calls and the device files normally found in
the /dev directory. Actually, the device files are the user-visible portion of the device driver

Understanding the Linux Kernel

35

interface. Each device file refers to a specific device driver, which is invoked by the kernel in
order to perform the requested operation on the hardware component.

Figure 1-5. Device driver interface

It is worth mentioning that at the time Unix was introduced graphical terminals were
uncommon and expensive, and thus only alphanumeric terminals were handled directly by
Unix kernels. When graphical terminals became widespread, ad hoc applications such as the
X Window System were introduced that ran as standard processes and accessed the I/O ports
of the graphics interface and the RAM video area directly. Some recent Unix kernels, such as
Linux 2.2, include limited support for some frame buffer devices, thus allowing a program to
access the local memory inside a video card through a device file.

Understanding the Linux Kernel

36

Chapter 2. Memory Addressing
This chapter deals with addressing techniques. Luckily, an operating system is not forced to
keep track of physical memory all by itself; today's microprocessors include several hardware
circuits to make memory management both more efficient and more robust in case of
programming errors.

As in the rest of this book, we offer details in this chapter on how Intel 80x86
microprocessors address memory chips and how Linux makes use of the available addressing
circuits. You will find, we hope, that when you learn the implementation details on Linux's
most popular platform you will better understand both the general theory of paging and how
to research the implementation on other platforms.

This is the first of three chapters related to memory management: Chapter 6, discusses how
the kernel allocates main memory to itself, while Chapter 7, considers how linear addresses
are assigned to processes.

2.1 Memory Addresses

Programmers casually refer to a memory address as the way to access the contents of
a memory cell. But when dealing with Intel 80x86 microprocessors, we have to distinguish
among three kinds of addresses:

Logical address

Included in the machine language instructions to specify the address of an operand or
of an instruction. This type of address embodies the well-known Intel segmented
architecture that forces MS-DOS and Windows programmers to divide their programs
into segments. Each logical address consists of a segment and an offset (or
displacement) that denotes the distance from the start of the segment to the actual
address.

Linear address

A single 32-bit unsigned integer that can be used to address up to 4 GB, that is, up to
4,294,967,296 memory cells. Linear addresses are usually represented in hexadecimal
notation; their values range from 0x00000000 to 0xffffffff.

Physical address

Used to address memory cells included in memory chips. They correspond to the
electrical signals sent along the address pins of the microprocessor to the memory bus.
Physical addresses are represented as 32-bit unsigned integers.

The CPU control unit transforms a logical address into a linear address by means of a
hardware circuit called a segmentation unit; successively, a second hardware circuit called a
paging unit transforms the linear address into a physical address (see Figure 2-1).

Understanding the Linux Kernel

37

Figure 2-1. Logical address translation

2.2 Segmentation in Hardware

Starting with the 80386 model, Intel microprocessors perform address translation in two
different ways called real mode and protected mode. Real mode exists mostly to maintain
processor compatibility with older models and to allow the operating system to bootstrap (see
Appendix A, for a short description of real mode). We shall thus focus our attention on
protected mode.

2.2.1 Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that specifies the
relative address within the segment. The segment identifier is a 16-bit field called Segment
Selector, while the offset is a 32-bit field.

To make it easy to retrieve segment selectors quickly, the processor provides segmentation
registers whose only purpose is to hold Segment Selectors; these registers are called cs, ss,
ds, es, fs, and gs. Although there are only six of them, a program can reuse the same
segmentation register for different purposes by saving its content in memory and then
restoring it later.

Three of the six segmentation registers have specific purposes:

cs

The code segment register, which points to a segment containing program instructions

ss

The stack segment register, which points to a segment containing the current program
stack

ds

The data segment register, which points to a segment containing static and external
data

The remaining three segmentation registers are general purpose and may refer to arbitrary
segments.

The cs register has another important function: it includes a 2-bit field that specifies the
Current Privilege Level (CPL) of the CPU. The value denotes the highest privilege level, while
the value 3 denotes the lowest one. Linux uses only levels and 3, which are respectively called
Kernel Mode and User Mode.

Understanding the Linux Kernel

38

2.2.2 Segment Descriptors

Each segment is represented by an 8-byte Segment Descriptor (see Figure 2-2) that describes
the segment characteristics. Segment Descriptors are stored either in the Global Descriptor
Table (GDT) or in the Local Descriptor Table (LDT).

Figure 2-2. Segment Descriptor format

Usually only one GDT is defined, while each process may have its own LDT. The address of
the GDT in main memory is contained in the gdtr processor register and the address of the
currently used LDT is contained in the ldtr processor register.

Each Segment Descriptor consists of the following fields:

• A 32-bit Base field that contains the linear address of the first byte of the segment.
• A G granularity flag: if it is cleared, the segment size is expressed in bytes; otherwise,

it is expressed in multiples of 4096 bytes.
• A 20-bit Limit field that denotes the segment length in bytes. If G is set to 0, the size

of a non-null segment may vary between 1 byte and 1 MB; otherwise, it may vary
between 4 KB and 4 GB.

• An S system flag: if it is cleared, the segment is a system segment that stores kernel
data structures; otherwise, it is a normal code or data segment.

• A 4-bit Type field that characterizes the segment type and its access rights. The
following Segment Descriptor types are widely used:

Code Segment Descriptor

Indicates that the Segment Descriptor refers to a code segment; it may be included
either in the GDT or in the LDT. The descriptor has the S flag set.

Understanding the Linux Kernel

39

Data Segment Descriptor

Indicates that the Segment Descriptor refers to a data segment; it may be included
either in the GDT or in the LDT. The descriptor has the S flag set. Stack segments are
implemented by means of generic data segments.

Task State Segment Descriptor (TSSD)

Indicates that the Segment Descriptor refers to a Task State Segment (TSS), that is,
a segment used to save the contents of the processor registers (see Section 3.2.2 in
Chapter 3); it can appear only in the GDT. The corresponding Type field has the value
11 or 9, depending on whether the corresponding process is currently executing on the
CPU. The S flag of such descriptors is set to 0.

Local Descriptor Table Descriptor (LDTD)

Indicates that the Segment Descriptor refers to a segment containing an LDT; it can
appear only in the GDT. The corresponding Type field has the value 2. The S flag of
such descriptors is set to 0.

• A DPL (Descriptor Privilege Level) 2-bit field used to restrict accesses to the segment.
It represents the minimal CPU privilege level requested for accessing the segment.
Therefore, a segment with its DPL set to is accessible only when the CPL is 0, that is, in
Kernel Mode, while a segment with its DPL set to 3 is accessible with every CPL value.

• A Segment-Present flag that is set to if the segment is currently not stored in main
memory. Linux always sets this field to 1, since it never swaps out whole segments to
disk.

• An additional flag called D or B depending on whether the segment contains code or
data. Its meaning is slightly different in the two cases, but it is basically set if the
addresses used as segment offsets are 32 bits long and it is cleared if they are 16 bits
long (see the Intel manual for further details).

• A reserved bit (bit 53) always set to 0.
• An AVL flag that may be used by the operating system but is ignored in Linux.

2.2.3 Segment Selectors

To speed up the translation of logical addresses into linear addresses, the Intel processor
provides an additional nonprogrammable register—that is, a register that cannot be set by a
programmer—for each of the six programmable segmentation registers. Each
nonprogrammable register contains the 8-byte Segment Descriptor (described in the previous
section) specified by the Segment Selector contained in the corresponding segmentation
register. Every time a Segment Selector is loaded in a segmentation register, the
corresponding Segment Descriptor is loaded from memory into the matching
nonprogrammable CPU register. From then on, translations of logical addresses referring to
that segment can be performed without accessing the GDT or LDT stored in main memory;
the processor can just refer directly to the CPU register containing the Segment Descriptor.
Accesses to the GDT or LDT are necessary only when the contents of the segmentation
register change (see Figure 2-3). Each Segment Selector includes the following fields:

Understanding the Linux Kernel

40

• A 13-bit index (described further in the text following this list) that identifies the
corresponding Segment Descriptor entry contained in the GDT or in the LDT

• A TI (Table Indicator) flag that specifies whether the Segment Descriptor is included
in the GDT (TI = 0) or in the LDT (TI = 1)

• An RPL (Requestor Privilege Level) 2-bit field, which is precisely the Current
Privilege Level of the CPU when the corresponding Segment Selector is loaded into
the cs register[1]

[1] The RPL field may also be used to selectively weaken the processor privilege level when accessing data segments; see Intel documentation for
details.

Figure 2-3. Segment Selector and Segment Descriptor

Since a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT is
obtained by multiplying the most significant 13 bits of the Segment Selector by 8. For
instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and the index
specified by the Segment Selector is 2, the address of the corresponding Segment Descriptor
is 0x00020000 + (2 x 8), or 0x00020010.

The first entry of the GDT is always set to 0: this ensures that logical addresses with a null
Segment Selector will be considered invalid, thus causing a processor exception. The
maximum number of Segment Descriptors that can be stored in the GDT is thus 8191, that is,
213-1.

2.2.4 Segmentation Unit

Figure 2-4 shows in detail how a logical address is translated into a corresponding linear
address. The segmentation unit performs the following operations:

• Examines the TI field of the Segment Selector, in order to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is either
in the GDT (in which case the segmentation unit gets the base linear address of the
GDT from the gdtr register) or in the active LDT (in which case the segmentation
unit gets the base linear address of that LDT from the ldtr register).

• Computes the address of the Segment Descriptor from the index field of the Segment
Selector. The index field is multiplied by 8 (the size of a Segment Descriptor), and the
result is added to the content of the gdtr or ldtr register.

• Adds to the Base field of the Segment Descriptor the offset of the logical address, thus
obtains the linear address.

Understanding the Linux Kernel

41

Figure 2-4. Translating a logical address

Notice that, thanks to the nonprogrammable registers associated with the segmentation
registers, the first two operations need to be performed only when a segmentation register has
been changed.

2.3 Segmentation in Linux

Segmentation has been included in Intel microprocessors to encourage programmers to split
their applications in logically related entities, such as subroutines or global and local data
areas. However, Linux uses segmentation in a very limited way. In fact, segmentation and
paging are somewhat redundant since both can be used to separate the physical address spaces
of processes: segmentation can assign a different linear address space to each process while
paging can map the same linear address space into different physical address spaces. Linux
prefers paging to segmentation for the following reasons:

• Memory management is simpler when all processes use the same segment register
values, that is, when they share the same set of linear addresses.

• One of the design objectives of Linux is portability to the most popular architectures;
however, several RISC processors support segmentation in a very limited way.

The 2.2 version of Linux uses segmentation only when required by the Intel 80x86
architecture. In particular, all processes use the same logical addresses, so the total number of
segments to be defined is quite limited and it is possible to store all Segment Descriptors in
the Global Descriptor Table (GDT). This table is implemented by the array gdt_table
referred by the gdt variable. If you look in the Source Code Index, you can see that these
symbols are defined in the file arch/i386/kernel/head.S. Every macro, function, and other
symbol in this book is listed in the appendix so you can quickly find it in the source code.

Local Descriptor Tables are not used by the kernel, although a system call exists that allows
processes to create their own LDTs. This turns out to be useful to applications such as Wine
that execute segment-oriented Microsoft Windows applications.

Understanding the Linux Kernel

42

Here are the segments used by Linux:

• A kernel code segment. The fields of the corresponding Segment Descriptor in the
GDT have the following values:

o Base = 0x00000000
o Limit = 0xfffff
o G (granularity flag) = 1, for segment size expressed in pages
o S (system flag) = 1, for normal code or data segment
o Type = 0xa, for code segment that can be read and executed
o DPL (Descriptor Privilege Level) = 0, for Kernel Mode
o D/B (32-bit address flag) = 1, for 32-bit offset addresses

Thus, the linear addresses associated with that segment start at and reach the
addressing limit of 232 - 1. The S and Type fields specify that the segment is a code
segment that can be read and executed. Its DPL value is 0, thus it can be accessed only
in Kernel Mode. The corresponding Segment Selector is defined by the __KERNEL_CS
macro: in order to address the segment, the kernel just loads the value yielded by the
macro into the cs register.

• A kernel data segment. The fields of the corresponding Segment Descriptor in the
GDT have the following values:

o Base = 0x00000000
o Limit = 0xfffff
o G (granularity flag) = 1, for segment size expressed in pages
o S (system flag) = 1, for normal code or data segment
o Type = 2, for data segment that can be read and written
o DPL (Descriptor Privilege Level) = 0, for Kernel Mode
o D/B (32-bit address flag) = 1, for 32-bit offset addresses

This segment is identical to the previous one (in fact, they overlap in the linear address
space) except for the value of the Type field, which specifies that it is a data segment
that can be read and written. The corresponding Segment Selector is defined by the
__KERNEL_DS macro.

• A user code segment shared by all processes in User Mode. The fields of the
corresponding Segment Descriptor in the GDT have the following values:

o Base = 0x00000000
o Limit = 0xfffff
o G (granularity flag) = 1, for segment size expressed in pages
o S (system flag) = 1, for normal code or data segment
o Type = 0xa, for code segment that can be read and executed
o DPL (Descriptor Privilege Level) = 3, for User Mode
o D/B (32-bit address flag) = 1, for 32-bit offset addresses

The S and DPL fields specify that the segment is not a system segment and that its
privilege level is equal to 3; it can thus be accessed both in Kernel Mode and in User
Mode. The corresponding Segment Selector is defined by the __USER_CS macro.

Understanding the Linux Kernel

43

• A user data segment shared by all processes in User Mode. The fields of the
corresponding Segment Descriptor in the GDT have the following values:

o Base = 0x00000000
o Limit = 0xfffff
o G (granularity flag) = 1, for segment size expressed in pages
o S (system flag) = 1, for normal code or data segment
o Type = 2, for data segment that can be read and written
o DPL (Descriptor Privilege Level) = 3, for User Mode
o D/B (32-bit address flag) = 1, for 32-bit offset addresses

This segment overlaps the previous one: they are identical, except for the value of
Type. The corresponding Segment Selector is defined by the __USER_DS macro.

• A Task State Segment (TSS) segment for each process. The descriptors of these
segments are stored in the GDT. The Base field of the TSS descriptor associated with
each process contains the address of the tss field of the corresponding process
descriptor. The G flag is cleared, while the Limit field is set to 0xeb, since the TSS
segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit TSS), and
the DPL is set to 0, since processes in User Mode are not allowed to access TSS
segments.

• A default LDT segment that is usually shared by all processes. This segment is stored
in the default_ldt variable. The default LDT includes a single entry consisting of a
null Segment Descriptor. Each process has its own LDT Segment Descriptor, which
usually points to the common default LDT segment. The Base field is set to the
address of default_ldt and the Limit field is set to 7. If a process requires a real
LDT, a new 4096-byte segment is created (it can include up to 511 Segment
Descriptors), and the default LDT Segment Descriptor associated with that process is
replaced in the GDT with a new descriptor with specific values for the Base and
Limit fields.

For each process, therefore, the GDT contains two different Segment Descriptors: one for the
TSS segment and one for the LDT segment. The maximum number of entries allowed in the
GDT is 12+2xNR_TASKS, where, in turn, NR_TASKS denotes the maximum number of
processes. In the previous list we described the six main Segment Descriptors used by Linux.
Four additional Segment Descriptors cover Advanced Power Management (APM) features,
and four entries of the GDT are left unused, for a grand total of 14.

As we mentioned before, the GDT can have at most 213 = 8192 entries, of which the first is
always null. Since 14 are either unused or filled by the system, NR_TASKS cannot be larger
than 8180/2 = 4090.

The TSS and LDT descriptors for each process are added to the GDT as the process is
created. As we shall see in Section 3.3.2 in Chapter 3, the kernel itself spawns the first
process: process running init_task . During kernel initialization, the trap_init()
function inserts the TSS descriptor of this first process into the GDT using the statement:

set_tss_desc(0, &init_task.tss);

The first process creates others, so that every subsequent process is the child of some existing
process. The copy_thread() function, which is invoked from the clone() and fork()

Understanding the Linux Kernel

44

system calls to create new processes, executes the same function in order to set the TSS of the
new process:

set_tss_desc(nr, &(task[nr]->tss));

Since each TSS descriptor refers to a different process, of course, each Base field has a
different value. The copy_thread() function also invokes the set_ldt_desc() function
in order to insert a Segment Descriptor in the GDT relative to the default LDT for the new
process.

The kernel data segment includes a process descriptor for each process. Each process
descriptor includes its own TSS segment and a pointer to its LDT segment, which is also
located inside the kernel data segment.

As stated earlier, the Current Privilege Level of the CPU reflects whether the processor is in
User or Kernel Mode and is specified by the RPL field of the Segment Selector stored in the
cs register. Whenever the Current Privilege Level is changed, some segmentation registers
must be correspondingly updated. For instance, when the CPL is equal to 3 (User Mode), the
ds register must contain the Segment Selector of the user data segment, but when the CPL is
equal to 0, the ds register must contain the Segment Selector of the kernel data segment.

A similar situation occurs for the ss register: it must refer to a User Mode stack inside the
user data segment when the CPL is 3, and it must refer to a Kernel Mode stack inside the
kernel data segment when the CPL is 0. When switching from User Mode to Kernel Mode,
Linux always makes sure that the ss register contains the Segment Selector of the kernel data
segment.

2.4 Paging in Hardware

The paging unit translates linear addresses into physical ones. It checks the requested access
type against the access rights of the linear address. If the memory access is not valid, it
generates a page fault exception (see Chapter 4, and Chapter 6).

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages;
contiguous linear addresses within a page are mapped into contiguous physical addresses. In
this way, the kernel can specify the physical address and the access rights of a page instead of
those of all the linear addresses included in it. Following the usual convention, we shall use
the term "page" to refer both to a set of linear addresses and to the data contained in this group
of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames (they are
sometimes referred to as physical pages). Each page frame contains a page, that is, the length
of a page frame coincides with that of a page. A page frame is a constituent of main memory,
and hence it is a storage area. It is important to distinguish a page from a page frame: the
former is just a block of data, which may be stored in any page frame or on disk.

The data structures that map linear to physical addresses are called page tables; they are
stored in main memory and must be properly initialized by the kernel before enabling the
paging unit.

Understanding the Linux Kernel

45

In Intel processors, paging is enabled by setting the PG flag of the cr0 register. When PG = 0,
linear addresses are interpreted as physical addresses.

2.4.1 Regular Paging

Starting with the i80386, the paging unit of Intel processors handles 4 KB pages. The 32 bits
of a linear address are divided into three fields:

Directory

The most significant 10 bits

Table

The intermediate 10 bits

Offset

The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a type of
translation table. The first translation table is called Page Directory and the second is called
Page Table.

The physical address of the Page Directory in use is stored in the cr3 processor register. The
Directory field within the linear address determines the entry in the Page Directory that points
to the proper Page Table. The address's Table field, in turn, determines the entry in the Page
Table that contains the physical address of the page frame containing the page. The Offset
field determines the relative position within the page frame (see Figure 2-5). Since it is 12 bits
long, each page consists of 4096 bytes of data.

Figure 2-5. Paging by Intel 80x86 processors

Understanding the Linux Kernel

46

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables
can include up to 1024 entries. It follows that a Page Directory can address up to 1024 x 1024
x 4096=232 memory cells, as you'd expect in 32-bit addresses.

The entries of Page Directories and Page Tables have the same structure. Each entry includes
the following fields:

Present flag

If it is set, the referred page (or Page Table) is contained in main memory; if the flag is
0, the page is not contained in main memory and the remaining entry bits may be used
by the operating system for its own purposes. (We shall see in Chapter 16, how Linux
makes use of this field.)

Field containing the 20 most significant bits of a page frame physical address

Since each page frame has a 4 KB capacity, its physical address must be a multiple of
4096, so the 12 least significant bits of the physical address are always equal to 0. If
the field refers to a Page Directory, the page frame contains a Page Table; if it refers to
a Page Table, the page frame contains a page of data.

Accessed flag

Is set each time the paging unit addresses the corresponding page frame. This flag may
be used by the operating system when selecting pages to be swapped out. The paging
unit never resets this flag; this must be done by the operating system.

Dirty flag

Applies only to the Page Table entries. It is set each time a write operation is
performed on the page frame. As in the previous case, this flag may be used by the
operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Read/Write flag

Contains the access right (Read/Write or Read) of the page or of the Page Table (see
Section 2.4.3 later in this chapter).

User/Supervisor flag

Contains the privilege level required to access the page or Page Table (see Section
2.4.3).

Two flags called PCD and PWT

Control the way the page or Page Table is handled by the hardware cache (see Section
2.4.6 later in this chapter).

Understanding the Linux Kernel

47

Page Size flag

Applies only to Page Directory entries. If it is set, the entry refers to a 4 MB long page
frame (see the following section).

If the entry of a Page Table or Page Directory needed to perform an address translation has
the Present flag cleared, the paging unit stores the linear address in the cr2 processor
register and generates the exception 14, that is, the "Page fault" exception.

2.4.2 Extended Paging

Starting with the Pentium model, Intel 80x86 microprocessors introduce extended paging ,
which allows page frames to be either 4 KB or 4 MB in size (see Figure 2-6).

Figure 2-6. Extended paging

As we have seen in the previous section, extended paging is enabled by setting the Page Size
flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of a linear
address into two fields:

Directory

The most significant 10 bits

Offset

The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except that:

• The Page Size flag must be set.
• Only the first 10 most significant bits of the 20-bit physical address field are

significant. This is because each physical address is aligned on a 4 MB boundary, so
the 22 least significant bits of the address are 0.

Understanding the Linux Kernel

48

Extended paging coexists with regular paging; it is enabled by setting the PSE flag of the cr4
processor register. Extended paging is used to translate large intervals of contiguous linear
addresses into corresponding physical ones; in these cases, the kernel can do without
intermediate Page Tables and thus save memory.

2.4.3 Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit. While Intel
processors allow four possible privilege levels to a segment, only two privilege levels are
associated with pages and Page Tables, because privileges are controlled by the
User/Supervisor flag mentioned in Section 2.4.1. When this flag is 0, the page can be
addressed only when the CPL is less than 3 (this means, for Linux, when the processor is in
Kernel Mode). When the flag is 1, the page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, Execute) associated with
segments, only two types of access rights (Read, Write) are associated with pages. If the
Read/Write flag of a Page Directory or Page Table entry is equal to 0, the corresponding
Page Table or page can only be read; otherwise it can be read and written.

2.4.4 An Example of Paging

A simple example will help in clarifying how paging works.

Let us assume that the kernel has assigned the linear address space between 0x20000000 and
0x2003ffff to a running process. This space consists of exactly 64 pages. We don't care
about the physical addresses of the page frames containing the pages; in fact, some of them
might not even be in main memory. We are interested only in the remaining fields of the page
table entries.

Let us start with the 10 most significant bits of the linear addresses assigned to the process,
which are interpreted as the Directory field by the paging unit. The addresses start with a 2
followed by zeros, so the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus
the Directory field in all the addresses refers to the 129th entry of the process Page Directory.
The corresponding entry must contain the physical address of the Page Table assigned to the
process (see Figure 2-7). If no other linear addresses are assigned to the process, all the
remaining 1023 entries of the Page Directory are filled with zeros.

Figure 2-7. An example of paging

Understanding the Linux Kernel

49

The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range
from to 0x03f, or from to 63 decimal. Thus, only the first 64 entries of the Page Table are
significant. The remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This address is
handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which
points to the Page Table associated with the process's pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to
the page frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired
page frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not present in
main memory; in this case, the paging unit issues a page exception while translating the linear
address. The same exception is issued whenever the process attempts to access linear
addresses outside of the interval delimited by 0x20000000 and 0x2003ffff since the Page
Table entries not assigned to the process are filled with zeros; in particular, their Present
flags are all cleared.

2.4.5 Three-Level Paging

Two-level paging is used by 32-bit microprocessors. But in recent years, several
microprocessors (such as Compaq's Alpha, and Sun's UltraSPARC) have adopted a 64-bit
architecture. In this case, two-level paging is no longer suitable and it is necessary to move up
to three-level paging. Let us use a thought experiment to see why.

Start by assuming about as large a page size as is reasonable (since you have to account for
pages being transferred routinely to and from disk). Let's choose 16 KB for the page size.
Since 1 KB covers a range of 210 addresses, 16 KB covers 214 addresses, so the Offset field
would be 14 bits. This leaves 50 bits of the linear address to be distributed between the Table
and the Directory fields. If we now decide to reserve 25 bits for each of these two fields, this
means that both the Page Directory and the Page Tables of a process would include 225
entries, that is, more than 32 million entries.

Even if RAM is getting cheaper and cheaper, we cannot afford to waste so much memory
space just for storing the page tables.

The solution chosen for Compaq's Alpha microprocessors is the following:

• Page frames are 8 KB long, so the Offset field is 13 bits long.
• Only the least significant 43 bits of an address are used. (The most significant 21 bits

are always set 0.)
• Three levels of page tables are introduced so that the remaining 30 bits of the address

can be split into three 10-bit fields (see Figure 2-9 later in this chapter). So the Page
Tables include 210 = 1024 entries as in the two-level paging schema examined
previously.

Understanding the Linux Kernel

50

As we shall see in Section 2.5 later in this chapter, Linux's designers decided to implement a
paging model inspired by the Alpha architecture.

2.4.6 Hardware Cache

Today's microprocessors have clock rates approaching gigahertz, while dynamic RAM
(DRAM) chips have access times in the range of tens of clock cycles. This means that the
CPU may be held back considerably while executing instructions that require fetching
operands from RAM and/or storing results into RAM.

Hardware cache memories have been introduced to reduce the speed mismatch between CPU
and RAM. They are based on the well-known locality principle, which holds both for
programs and data structures: because of the cyclic structure of programs and the packing of
related data into linear arrays, addresses close to the ones most recently used have a high
probability of being used in the near future. It thus makes sense to introduce a smaller and
faster memory that contains the most recently used code and data. For this purpose, a new unit
called the line has been introduced into the Intel architecture. It consists of a few dozen
contiguous bytes that are transferred in burst mode between the slow DRAM and the fast on-
chip static RAM (SRAM) used to implement caches.

The cache is subdivided into subsets of lines. At one extreme the cache can be direct mapped,
in which case a line in main memory is always stored at the exact same location in the cache.
At the other extreme, the cache is fully associative, meaning that any line in memory can be
stored at any location in the cache. But most caches are to some degree N-way associative,
where any line of main memory can be stored in any one of N lines of the cache. For instance,
a line of memory can be stored in two different lines of a 2-way set of associative cache.

As shown in Figure 2-8, the cache unit is inserted between the paging unit and the main
memory. It includes both a hardware cache memory and a cache controller. The cache
memory stores the actual lines of memory. The cache controller stores an array of entries, one
entry for each line of the cache memory. Each entry includes a tag and a few flags that
describe the status of the cache line. The tag consists of some bits that allow the cache
controller to recognize the memory location currently mapped by the line. The bits of the
memory physical address are usually split into three groups: the most significant ones
correspond to the tag, the middle ones correspond to the cache controller subset index, the
least significant ones to the offset within the line.

Figure 2-8. Processor hardware cache

When accessing a RAM memory cell, the CPU extracts the subset index from the physical
address and compares the tags of all lines in the subset with the high-order bits of the physical

Understanding the Linux Kernel

51

address. If a line with the same tag as the high-order bits of the address is found, the CPU has
a cache hit; otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently depending on access type.
For a read operation, the controller selects the data from the cache line and transfers it into a
CPU register; the RAM is not accessed and the CPU achieves the time saving for which the
cache system was invented. For a write operation, the controller may implement one of two
basic strategies called write-through and write-back. In a write-through, the controller always
writes into both RAM and the cache line, effectively switching off the cache for write
operations. In a write-back, which offers more immediate efficiency, only the cache line is
updated, and the contents of the RAM are left unchanged. After a write-back, of course, the
RAM must eventually be updated. The cache controller writes the cache line back into RAM
only when the CPU executes an instruction requiring a flush of cache entries or when a
FLUSH hardware signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the correct
line is fetched from RAM into the cache entry.

Multiprocessor systems have a separate hardware cache for every processor, and therefore
they need additional hardware circuitry to synchronize the cache contents. See Section 11.3.2
in Chapter 11.

Cache technology is rapidly evolving. For example, the first Pentium models included a single
on-chip cache called the L1-cache. More recent models also include another larger and slower
on-chip cache called the L2-cache. The consistency between the two cache levels is
implemented at the hardware level. Linux ignores these hardware details and assumes there is
a single cache.

The CD flag of the cr0 processor register is used to enable or disable the cache circuitry. The
NW flag, in the same register, specifies whether the write-through or the write-back strategy is
used for the caches.

Another interesting feature of the Pentium cache is that it lets an operating system associate a
different cache management policy with each page frame. For that purpose, each Page
Directory and each Page Table entry includes two flags: PCD specifies whether the cache must
be enabled or disabled while accessing data included in the page frame; PWT specifies whether
the write-back or the write-through strategy must be applied while writing data into the page
frame. Linux clears the PCD and PWT flags of all Page Directory and Page Table entries: as a
result, caching is enabled for all page frames and the write-back strategy is always adopted for
writing.

The L1_CACHE_BYTES macro yields the size of a cache line on a Pentium, that is, 32 bytes. In
order to optimize the cache hit rate, the kernel adopts the following rules:

• The most frequently used fields of a data structure are placed at the low offset within
the data structure so that they can be cached in the same line.

• When allocating a large set of data structures, the kernel tries to store each of them in
memory so that all cache lines are uniformly used.

Understanding the Linux Kernel

52

2.4.7 Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, Intel 80x86 processors include other caches called
translation lookaside buffers or TLB to speed up linear address translation. When a linear
address is used for the first time, the corresponding physical address is computed through
slow accesses to the page tables in RAM. The physical address is then stored in a TLB entry,
so that further references to the same linear address can be quickly translated.

The invlpg instruction can be used to invalidate (that is, to free) a single entry of a TLB. In
order to invalidate all TLB entries, the processor can simply write into the cr3 register that
points to the currently used Page Directory.

Since the TLBs serve as caches of page table contents, whenever a Page Table entry is
modified, the kernel must invalidate the corresponding TLB entry. To do this, Linux makes
use of the flush_tlb_page(addr) function, which invokes __flush_tlb_one(). The latter
function executes the invlpg Assembly instruction:

movl $addr,%eax
invlpg (%eax)

Sometimes it is necessary to invalidate all TLB entries, such as during kernel initialization. In
such cases, the kernel invokes the __flush_tlb() function, which rewrites the current value
of cr3 back into it:

movl %cr3, %eax
movl %eax, %cr3

2.5 Paging in Linux

As we explained in Section 2.4.5, Linux adopted a three-level paging model so paging is
feasible on 64-bit architectures. Figure 2-9 shows the model, which defines three types of
paging tables:

• Page Global Directory
• Page Middle Directory
• Page Table

The Page Global Directory includes the addresses of several Page Middle Directories, which
in turn include the addresses of several Page Tables. Each Page Table entry points to a page
frame. The linear address is thus split into four parts. Figure 2-9 does not show the bit
numbers because the size of each part depends on the computer architecture.

Understanding the Linux Kernel

53

Figure 2-9. The Linux paging model

Linux handling of processes relies heavily on paging. In fact, the automatic translation of
linear addresses into physical ones makes the following design objectives feasible:

• Assign a different physical address space to each process, thus ensuring an efficient
protection against addressing errors.

• Distinguish pages, that is, groups of data, from page frames, that is, physical addresses
in main memory. This allows the same page to be stored in a page frame, then saved to
disk, and later reloaded in a different page frame. This is the basic ingredient of the
virtual memory mechanism (see Chapter 16).

As we shall see in Chapter 7, each process has its own Page Global Directory and its own set
of Page Tables. When a process switching occurs (see Section 3.2 in Chapter 3), Linux saves
in a TSS segment the contents of the cr3 control register and loads from another TSS segment
a new value into cr3. Thus, when the new process resumes its execution on the CPU, the
paging unit refers to the correct set of page tables.

What happens when this three-level paging model is applied to the Pentium, which uses only
two types of page tables? Linux essentially eliminates the Page Middle Directory field by
saying that it contains zero bits. However, the position of the Page Middle Directory in the
sequence of pointers is kept so that the same code can work on 32-bit and 64-bit architectures.
The kernel keeps a position for the Page Middle Directory by setting the number of entries in
it to 1 and mapping this single entry into the proper entry of the Page Global Directory.

Mapping logical to linear addresses now becomes a mechanical task, although somewhat
complex. The next few sections of this chapter are thus a rather tedious list of functions and
macros that retrieve information the kernel needs to find addresses and manage the tables;
most of the functions are one or two lines long. You may want to just skim these sections
now, but it is useful to know the role of these functions and macros because you'll see them
often in discussions in subsequent chapters.

Understanding the Linux Kernel

54

2.5.1 The Linear Address Fields

The following macros simplify page table handling:

PAGE_SHIFT

Specifies the length in bits of the Offset field; when applied to Pentium processors it
yields the value 12. Since all the addresses in a page must fit in the Offset field, the
size of a page on Intel 80x86 systems is 212 or the familiar 4096 bytes; the
PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of the total page size.
This macro is used by PAGE_SIZE to return the size of the page. Finally, the
PAGE_MASK macro is defined as the value 0xfffff000; it is used to mask all the bits of
the Offset field.

PMD_SHIFT

Determines the number of bits in an address that are mapped by the second-level page
table. It yields the value 22 (12 from Offset plus 10 from Table). The PMD_SIZE macro
computes the size of the area mapped by a single entry of the Page Middle Directory,
that is, of a Page Table. Thus, PMD_SIZE yields 222 or 4 MB. The PMD_MASK macro
yields the value 0xffc00000; it is used to mask all the bits of the Offset and Table
fields.

PGDIR_SHIFT

Determines the logarithm of the size of the area a first-level page table can map. Since
the Middle Directory field has length 0, this macro yields the same value yielded by
PMD_SHIFT, which is 22. The PGDIR_SIZE macro computes the size of the area
mapped by a single entry of the Page Global Directory, that is, of a Page Directory.
PGDIR_SIZE therefore yields 4 MB. The PGDIR_MASK macro yields the value
0xffc00000, the same as PMD_MASK.

PTRS_PER_PTE , PTRS_PER_PMD , and PTRS_PER_PGD

Compute the number of entries in the Page Table, Page Middle Directory, and Page
Global Directory; they yield the values 1024, 1, and 1024, respectively.

2.5.2 Page Table Handling

pte_t, pmd_t, and pgd_t are 32-bit data types that describe, respectively, a Page Table, a
Page Middle Directory, and a Page Global Directory entry. pgprot_t is another 32-bit data
type that represents the protection flags associated with a single entry.

Four type-conversion macros (pte_val(), pmd_val(), pgd_val(), and pgprot_val())
cast a 32-bit unsigned integer into the required type. Four other type-conversion macros (__
pte(), __ pmd(), __ pgd(), and __ pgprot()) perform the reverse casting from one of
the four previously mentioned specialized types into a 32-bit unsigned integer.

The kernel also provides several macros and functions to read or modify page table entries:

Understanding the Linux Kernel

55

• The pte_none(), pmd_none(), and pgd_none() macros yield the value 1 if the
corresponding entry has the value 0; otherwise, they yield the value 0.

• The pte_present(), pmd_present(), and pgd_present() macros yield the value
1 if the Present flag of the corresponding entry is equal to 1, that is, if the
corresponding page or Page Table is loaded in main memory.

• The pte_clear(), pmd_clear(), and pgd_clear() macros clear an entry of the
corresponding page table.

The macros pmd_bad() and pgd_bad() are used by functions to check Page Global
Directory and Page Middle Directory entries passed as input parameters. Each macro yields
the value 1 if the entry points to a bad page table, that is, if at least one of the following
conditions applies:

• The page is not in main memory (Present flag cleared).
• The page allows only Read access (Read/Write flag cleared).
• Either Accessed or Dirty is cleared (Linux always forces these flags to be set for

every existing page table).

No pte_bad() macro is defined because it is legal for a Page Table entry to refer to a page
that is not present in main memory, not writable, or not accessible at all. Instead, several
functions are offered to query the current value of any of the flags included in a Page Table
entry:

pte_read()

Returns the value of the User/Supervisor flag (indicating whether the page is
accessible in User Mode).

pte_write()

Returns 1 if both the Present and Read/Write flags are set (indicating whether the
page is present and writable).

pte_exec()

Returns the value of the User/Supervisor flag (indicating whether the page is
accessible in User Mode). Notice that pages on the Intel processor cannot be protected
against code execution.

pte_dirty()

Returns the value of the Dirty flag (indicating whether or not the page has been
modified).

pte_young()

Returns the value of the Accessed flag (indicating whether the page has been
accessed).

Another group of functions sets the value of the flags in a Page Table entry:

Understanding the Linux Kernel

56

pte_wrprotect()

Clears the Read/Write flag

pte_rdprotect and pte_exprotect()

Clear the User/Supervisor flag

pte_mkwrite()

Sets the Read/Write flag

pte_mkread() and pte_mkexec()

Set the User/Supervisor flag

pte_mkdirty() and pte_mkclean()

Set the Dirty flag to 1 and to 0, respectively, thus marking the page as modified or
unmodified

pte_mkyoung() and pte_mkold()

Set the Accessed flag to 1 and to 0, respectively, thus marking the page as accessed
(young) or nonaccessed (old)

pte_modify(p,v)

Sets all access rights in a Page Table entry p to a specified value v

set_pte

Writes a specified value into a Page Table entry

Now come the macros that combine a page address and a group of protection flags into a 32-
bit page entry or perform the reverse operation of extracting the page address from a page
table entry:

mk_ pte()

Combines a linear address and a group of access rights to create a 32-bit Page Table
entry.

mk_ pte_ phys

Creates a Page Table entry by combining the physical address and the access rights of
the page.

Understanding the Linux Kernel

57

pte_ page() and pmd_ page()

Return the linear address of a page from its Page Table entry, and of a Page Table
from its Page Middle Directory entry.

pgd_offset(p,a)

Receives as parameters a memory descriptor p (see Chapter 6) and a linear address a.
The macro yields the address of the entry in a Page Global Directory that corresponds
to the address a; the Page Global Directory is found through a pointer within the
memory descriptor p. The pgd_offset_k(o) macro is similar, except that it refers to
the memory descriptor used by kernel threads (see Section 3.3.2 in Chapter 3).

pmd_offset(p,a)

Receives as parameter a Page Global Directory entry p and a linear address a; it yields
the address of the entry corresponding to the address a in the Page Middle Directory
referenced by p. The pte_offset(p,a) macro is similar, but p is a Page Middle
Directory entry and the macro yields the address of the entry corresponding to a in the
Page Table referenced by p.

The last group of functions of this long and rather boring list were introduced to simplify the
creation and deletion of page table entries. When two-level paging is used, creating or
deleting a Page Middle Directory entry is trivial. As we explained earlier in this section, the
Page Middle Directory contains a single entry that points to the subordinate Page Table. Thus,
the Page Middle Directory entry is the entry within the Page Global Directory too. When
dealing with Page Tables, however, creating an entry may be more complex, because the Page
Table that is supposed to contain it might not exist. In such cases, it is necessary to allocate a
new page frame, fill it with zeros and finally add the entry.

Each page table is stored in one page frame; moreover, each process makes use of several
page tables. As we shall see in Section 6.1 in Chapter 6, the allocations and deallocations of
page frames are expensive operations. Therefore, when the kernel destroys a page table, it
adds the corresponding page frame to a software cache. When the kernel must allocate a new
page table, it takes a page frame contained in the cache; a new page frame is requested from
the memory allocator only when the cache is empty.

The Page Table cache is a simple list of page frames. The pte_quicklist macro points to the
head of the list, while the first 4 bytes of each page frame in the list are used as a pointer to
the next element. The Page Global Directory cache is similar, but the head of the list is
yielded by the pgd_quicklist macro. Of course, on Intel architecture there is no Page
Middle Directory cache.

Since there is no limit on the size of the page table caches, the kernel must implement a
mechanism for shrinking them. Therefore, the kernel introduces high and low watermarks,
which are stored in the pgt_cache_water array; the check_pgt_cache() function checks
whether the size of each cache is greater than the high watermark and, if so, deallocates page
frames until the cache size reaches the low watermark. The check_ pgt_cache() is invoked
either when the system is idle or when the kernel releases all page tables of some process.

Understanding the Linux Kernel

58

Now comes the last round of functions and macros:

pgd_alloc()

Allocates a new Page Global Directory by invoking the get_ pgd_fast() function,
which takes a page frame from the Page Global Directory cache; if the cache is empty,
the page frame is allocated by invoking the get_ pgd_slow() function.

pmd_alloc(p,a)

Defined so three-level paging systems can allocate a new Page Middle Directory for
the linear address a. On Intel 80x86 systems, the function simply returns the input
parameter p, that is, the address of the entry in the Page Global Directory.

pte_alloc(p,a)

Receives as parameters the address of a Page Middle Directory entry p and a linear
address a, and it returns the address of the Page Table entry corresponding to a. If the
Page Middle Directory entry is null, the function must allocate a new Page Table. To
accomplish this, it looks for a free page frame in the Page Table cache by invoking the
get_ pte_fast() function. If the cache is empty, the page frame is allocated by
invoking get_ pte_slow(). If a new Page Table is allocated, the entry
corresponding to a is initialized and the User/Supervisor flag is set.
pte_alloc_kernel() is similar, except that it invokes the get_ pte_kernel_slow(
) function instead of get_ pte_slow() for allocating a new page frame; the
get_pte_kernel_slow() function clears the User/Supervisor flag of the new
Page Table.

pte_free() , pte_free_kernel() , and pgd_free()

Release a page table and insert the freed page frame in the proper cache. The
pmd_free() and pmd_free_kernel() functions do nothing, since Page Middle
Directories do not really exist on Intel 80x86 systems.

free_one_pmd()

Invokes pte_free() to release a Page Table.

free_one_ pgd()

Releases all Page Tables of a Page Middle Directory; in the Intel architecture, it just
invokes free_one_ pmd() once. Then it releases the Page Middle Directory by
invoking pmd_free().

SET_PAGE_DIR

Sets the Page Global Directory of a process. This is accomplished by placing the
physical address of the Page Global Directory in a field of the TSS segment of the
process; this address is loaded in the cr3 register every time the process starts or
resumes its execution on the CPU. Of course, if the affected process is currently in

Understanding the Linux Kernel

59

execution, the macro also directly changes the cr3 register value so that the change
takes effect right away.

new_ page_tables()

Allocates the Page Global Directory and all the Page Tables needed to set up a process
address space. It also invokes SET_PAGE_DIR in order to assign the new Page Global
Directory to the process. This topic will be covered in Chapter 7.

clear_ page_tables()

Clears the contents of the page tables of a process by iteratively invoking free_one_
pgd().

free_page_tables()

Is very similar to clear_ page_tables() , but it also releases the Page Global
Directory of the process.

2.5.3 Reserved Page Frames

The kernel's code and data structures are stored in a group of reserved page frames. A page
contained in one of these page frames can never be dynamically assigned or swapped to disk.

As a general rule, the Linux kernel is installed in RAM starting from physical address
0x00100000, that is, from the second megabyte. The total number of page frames required
depends on how the kernel has been configured: a typical configuration yields a kernel that
can be loaded in less than 2 MBs of RAM.

Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC
architecture has several peculiarities that must be taken into account:

• Page frame is used by BIOS to store the system hardware configuration detected
during the Power-On Self-Test (POST).

• Physical addresses ranging from 0x000a0000 to 0x000fffff are reserved to BIOS
routines and to map the internal memory of ISA graphics cards (the source of the well-
known 640 KB addressing limit in the first MS-DOS systems).

• Additional page frames within the first megabyte may be reserved by specific
computer models. For example, the IBM ThinkPad maps the 0xa0 page frame into the
0x9f one.

In order to avoid loading the kernel into groups of noncontiguous page frames, Linux prefers
to skip the first megabyte of RAM. Clearly, page frames not reserved by the PC architecture
will be used by Linux to store dynamically assigned pages.

Figure 2-10 shows how the first 2 MB of RAM are filled by Linux. We have assumed that the
kernel requires less than one megabyte of RAM (this is a bit optimistic).

Understanding the Linux Kernel

60

Figure 2-10. The first 512 page frames (2 MB) in Linux 2.2

The symbol _text, which corresponds to physical address 0x00100000, denotes the address
of the first byte of kernel code. The end of the kernel code is similarly identified by the
symbol _etext. Kernel data is divided into two groups: initialized and uninitialized. The
initialized data starts right after _etext and ends at _edata. The uninitialized data follows
and ends up at _end.

The symbols appearing in the figure are not defined in Linux source code; they are produced
while compiling the kernel.[2]

[2] You can find the linear address of these symbols in the file System.map, which is created right after the kernel is compiled.

The linear address corresponding to the first physical address reserved to the BIOS or to a
hardware device (usually, 0x0009f000) is stored in the i386_endbase variable. In most
cases, this variable is initialized with a value written by the BIOS during the POST phase.

2.5.4 Process Page Tables

The linear address space of a process is divided into two parts:

• Linear addresses from 0x00000000 to PAGE_OFFSET -1 can be addressed when the
process is in either User or Kernel Mode.

• Linear addresses from PAGE_OFFSET to 0xffffffff can be addressed only when the
process is in Kernel Mode.

Usually, the PAGE_OFFSET macro yields the value 0xc0000000: this means that the fourth
gigabyte of linear addresses is reserved for the kernel, while the first three gigabytes are
accessible from both the kernel and the user programs. However, the value of PAGE_OFFSET
may be customized by the user when the Linux kernel image is compiled. In fact, as we shall
see in the next section, the range of linear addresses reserved for the kernel must include a
mapping of all physical RAM installed in the system; moreover, as we shall see in Chapter 7,
the kernel also makes use of the linear addresses in this range to remap noncontiguous page
frames into contiguous linear addresses. Therefore, if Linux must be installed on a machine
having a huge amount of RAM, a different arrangement for the linear addresses might be
necessary.

The content of the first entries of the Page Global Directory that map linear addresses lower
than PAGE_OFFSET (usually the first 768 entries) depends on the specific process. Conversely,

Understanding the Linux Kernel

61

the remaining entries are the same for all processes; they are equal to the corresponding
entries of the swapper_ pg_dir kernel Page Global Directory (see the following section).

2.5.5 Kernel Page Tables

We now describe how the kernel initializes its own page tables. This is a two-phase activity.
In fact, right after the kernel image has been loaded into memory, the CPU is still running in
real mode; thus, paging is not enabled.

In the first phase, the kernel creates a limited 4 MB address space, which is enough for it to
install itself in RAM.

In the second phase, the kernel takes advantage of all of the existing RAM and sets up the
paging tables properly. The next section examines how this plan is executed.

2.5.5.1 Provisional kernel page tables

Both the Page Global Directory and the Page Table are initialized statically during the kernel
compilation. We won't bother mentioning the Page Middle Directories any more since they
equate to Page Global Directory entries.

The Page Global Directory is contained in the swapper_ pg_dir variable, while the Page
Table that spans the first 4 MB of RAM is contained in the pg0 variable.

The objective of this first phase of paging is to allow these 4 MB to be easily addressed in
both real mode and protected mode. Therefore, the kernel must create a mapping from both
the linear addresses 0x00000000 through 0x003fffff and the linear addresses PAGE_OFFSET
through PAGE_OFFSET+0x3fffff into the physical addresses 0x00000000 through
0x003fffff. In other words, the kernel during its first phase of initialization can address the
first 4 MB of RAM (0x00000000 through 0x003fffff) either using linear addresses identical
to the physical ones or using 4 MB worth of linear addresses starting from PAGE_OFFSET.

Assuming that PAGE_OFFSET yields the value 0xc0000000, the kernel creates the desired
mapping by filling all the swapper_ pg_dir entries with zeros, except for entries and 0x300
(decimal 768); the latter entry spans all linear addresses between 0xc0000000 and
0xc03fffff. The and 0x300 entries are initialized as follows:

• The address field is set to the address of pg0.
• The Present, Read/Write, and User/Supervisor flags are set.
• The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared.

The single pg0 Page Table is also statically initialized, so that the i th entry addresses the i th
page frame.

The paging unit is enabled by the startup_32() Assembly-language function. This is
achieved by loading in the cr3 control register the address of swapper_pg_dir and by setting
the PG flag of the cr0 control register, as shown in the following excerpt:

Understanding the Linux Kernel

62

movl $0x101000,%eax
movl %eax,%cr3 /* set the page table pointer.. */
movl %cr0,%eax
orl $0x80000000,%eax
movl %eax,%cr0 /* ..and set paging (PG) bit */

2.5.5.2 Final kernel page table

The final mapping provided by the kernel page tables must transform linear addresses starting
from PAGE_OFFSET into physical addresses starting from 0.

The _ pa macro is used to convert a linear address starting from PAGE_OFFSET to the
corresponding physical address, while the _va macro does the reverse.

The final kernel Page Global Directory is still stored in swapper_ pg_dir. It is initialized by
the paging_init() function. This function acts on two input parameters:

start_mem

The linear address of the first byte of RAM right after the kernel code and data areas.

end_mem

The linear address of the end of memory (this address is computed by the BIOS
routines during the POST phase).

Linux exploits the extended paging feature of the Pentium processors, enabling 4 MB page
frames: it allows a very efficient mapping from PAGE_OFFSET into physical addresses by
making kernel Page Tables superfluous.[3]

[3] We'll see in Section 6.3 in Chapter 6 that the kernel may set additional mappings for its own use based on 4 KB pages; when this happens, it makes
use of Page Tables.

The swapper_ pg_dir Page Global Directory is reinitialized by a cycle equivalent to the
following:

address = 0;
pg_dir = swapper_pg_dir;
pgd_val(pg_dir[0]) = 0;
pg_dir += (PAGE_OFFSET >> PGDIR_SHIFT);
while (address < end_mem) {
 pgd_val(*pg_dir) = _PAGE_PRESENT+_PAGE_RW+_PAGE_ACCESSED
 +_PAGE_DIRTY +_PAGE_4M+__pa(address);
 pg_dir++;
 address += 0x400000;
}

As you can see, the first entry of the Page Global Directory is zeroed out, hence removing the
mapping between the first 4 MB of linear and physical addresses. The first Page Table is thus
available, so User Mode processes can also use the range of linear addresses between and
4194303.

Understanding the Linux Kernel

63

The User/Supervisor flags in all Page Global Directory entries referencing linear addresses
above PAGE_OFFSET are cleared, thus denying to processes in User Mode access to the kernel
address space.

The pg0 provisional Page Table is no longer used once swapper_ pg_dir has been
initialized.

2.6 Anticipating Linux 2.4

Linux 2.4 introduces two main changes. The TSS Segment Descriptor associated with all
existing processes is no longer stored in the Global Descriptor Table. This change removes
the hard-coded limit on the number of existing processes. The limit thus becomes the number
of available PIDs. In short, you will not find anymore the NR_TASKS macro inside the kernel
code, and all data structures whose size was depending on it have been replaced or removed.

The other main change is related to physical memory addressing. Recent Intel 80x86
microprocessors include a feature called Physical Address Extension (PAE), which adds four
extra bits to the standard 32-bit physical address. Linux 2.4 takes advantage of PAE and
supports up to 64 GB of RAM. However, a linear address is still composed by 32 bits, so that
only 4 GB of RAM can be "permanently mapped" and accessed at any time. Linux 2.4 thus
recognizes three different portions of RAM: the physical memory suitable for ISA Direct
Memory Access (DMA), the physical memory not suitable for ISA DMA but permanently
mapped by the kernel, and the "high memory," that is, the physical memory that is not
permanently mapped by the kernel.

Understanding the Linux Kernel

64

Chapter 3. Processes
The concept of a process is fundamental to any multiprogramming operating system.
A process is usually defined as an instance of a program in execution; thus, if 16 users are
running vi at once, there are 16 separate processes (although they can share the same
executable code). Processes are often called "tasks" in Linux source code.

In this chapter, we will first discuss static properties of processes and then describe how
process switching is performed by the kernel. The last two sections investigate dynamic
properties of processes, namely, how processes can be created and destroyed. This chapter
also describes how Linux supports multithreaded applications: as mentioned in Chapter 1, it
relies on so-called lightweight processes (LWP).

3.1 Process Descriptor

In order to manage processes, the kernel must have a clear picture of what each process is
doing. It must know, for instance, the process's priority, whether it is running on the CPU or
blocked on some event, what address space has been assigned to it, which files it is allowed to
address, and so on. This is the role of the process descriptor , that is, of a task_struct type
structure whose fields contain all the information related to a single process. As the repository
of so much information, the process descriptor is rather complex. Not only does it contain
many fields itself, but some contain pointers to other data structures that, in turn, contain
pointers to other structures. Figure 3-1 describes the Linux process descriptor schematically.

Understanding the Linux Kernel

65

Figure 3-1. The Linux process descriptor

The five data structures on the right side of the figure refer to specific resources owned by the
process. These resources will be covered in future chapters. This chapter will focus on two
types of fields that refer to the process state and to process parent/child relationships.

3.1.1 Process State

As its name implies, the state field of the process descriptor describes what is currently
happening to the process. It consists of an array of flags, each of which describes a possible
process state. In the current Linux version these states are mutually exclusive, and hence
exactly one flag of state is set; the remaining flags are cleared. The following are the
possible process states:

TASK_RUNNING

The process is either executing on the CPU or waiting to be executed.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a
hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process, that is,
put its state back to TASK_RUNNING.

Understanding the Linux Kernel

66

TASK_UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process leaves
its state unchanged. This process state is seldom used. It is valuable, however, under
certain specific conditions in which a process must wait until a given event occurs
without being interrupted. For instance, this state may be used when a process opens a
device file and the corresponding device driver starts probing for a corresponding
hardware device. The device driver must not be interrupted until the probing is
complete, or the hardware device could be left in an unpredictable state.

TASK_STOPPED

Process execution has been stopped: the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being monitored
by another (such as when a debugger executes a ptrace() system call to monitor a
test program), any signal may put the process in the TASK_STOPPED state.

TASK_ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait()-
like system call (wait(), wait3(), wait4(), or waitpid()) to return
information about the dead process. Before the wait()-like call is issued, the kernel
cannot discard the data contained in the dead process descriptor because the parent
could need it. (See Section 3.4.2 near the end of this chapter.)

3.1.2 Identifying a Process

Although Linux processes can share a large portion of their kernel data structures—an
efficiency measure known as lightweight processes—each process has its own process
descriptor. Each execution context that can be independently scheduled must have its own
process descriptor.

Lightweight processes should not be confused with user-mode threads, which are different
execution flows handled by a user-level library. For instance, older Linux systems
implemented POSIX threads entirely in user space by means of the pthread library; therefore,
a multithreaded program was executed as a single Linux process. Currently, the pthread
library, which has been merged into the standard C library, takes advantage of lightweight
processes.

The very strict one-to-one correspondence between the process and process descriptor makes
the 32-bit process descriptor address[1] a convenient tool to identify processes. These addresses
are referred to as process descriptor pointers. Most of the references to processes that the
kernel makes are through process descriptor pointers.

[1] Technically speaking, these 32 bits are only the offset component of a logical address. However, since Linux makes use of a single kernel data
segment, we can consider the offset to be equivalent to a whole logical address. Furthermore, since the base addresses of the code and data segments
are set to 0, we can treat the offset as a linear address.

Any Unix-like operating system, on the other hand, allows users to identify processes by
means of a number called the Process ID (or PID). The PID is a 32-bit unsigned integer
stored in the pid field of the process descriptor. PIDs are numbered sequentially: the PID of

Understanding the Linux Kernel

67

a newly created process is normally the PID of the previously created process incremented by
one. However, for compatibility with traditional Unix systems developed for 16-bit hardware
platforms, the maximum PID number allowed on Linux is 32767. When the kernel creates the
32768th process in the system, it must start recycling the lower unused PIDs.

At the end of this section, we'll show you how it is possible to derive a process descriptor
pointer efficiently from its respective PID. Efficiency is important because many system calls
like kill() use the PID to denote the affected process.

3.1.2.1 The task array

Processes are dynamic entities whose lifetimes in the system range from a few milliseconds to
months. Thus, the kernel must be able to handle many processes at the same time. In fact, we
know from the previous chapter that Linux is able to handle up to NR_TASKS processes. The
kernel reserves a global static array of size NR_TASKS called task in its own address space.
The elements in the array are process descriptor pointers; a null pointer indicates that
a process descriptor hasn't been associated with the array entry.

3.1.2.2 Storing a process descriptor

The task array contains only pointers to process descriptors, not the sizable descriptors
themselves. Since processes are dynamic entities, process descriptors are stored in dynamic
memory rather than in the memory area permanently assigned to the kernel. Linux stores two
different data structures for each process in a single 8 KB memory area: the process descriptor
and the Kernel Mode process stack.

In Section 2.3 in Chapter 2, we learned that a process in Kernel Mode accesses a stack
contained in the kernel data segment, which is different from the stack used by the process in
User Mode. Since kernel control paths make little use of the stack—even taking into account
the interleaved execution of multiple kernel control paths on behalf of the same process—only
a few thousand bytes of kernel stack are required. Therefore, 8 KB is ample space for the
stack and the process descriptor.

Figure 3-2 shows how the two data structures are stored in the memory area. The process
descriptor starts from the beginning of the memory area and the stack from the end.

Understanding the Linux Kernel

68

Figure 3-2. Storing the process descriptor and the process kernel stack

The esp register is the CPU stack pointer, which is used to address the stack's top location.
On Intel systems, the stack starts at the end and grows toward the beginning of the memory
area. Right after switching from User Mode to Kernel Mode, the kernel stack of a process is
always empty, and therefore the esp register points to the byte immediately following
the memory area.

The C language allows such a hybrid structure to be conveniently represented by means of
the following union construct:

union task_union {
 struct task_struct task;
 unsigned long stack[2048];
};

After switching from User Mode to Kernel Mode in Figure 3-2, the esp register contains the
address 0x015fc000. The process descriptor is stored starting at address 0x015fa000. The
value of the esp is decremented as soon as data is written into the stack. Since the process
descriptor is less than 1000 bytes long, the kernel stack can expand up to 7200 bytes.

3.1.2.3 The current macro

The pairing between the process descriptor and the Kernel Mode stack just described offers
a key benefit in terms of efficiency: the kernel can easily obtain the process descriptor pointer
of the process currently running on the CPU from the value of the esp register. In fact, since
the memory area is 8 KB (213 bytes) long, all the kernel has to do is mask out the 13 least
significant bits of esp to obtain the base address of the process descriptor. This is done by the
current macro, which produces some Assembly instructions like the following:

movl $0xffffe000, %ecx
andl %esp, %ecx
movl %ecx, p

Understanding the Linux Kernel

69

After executing these three instructions, the local variable p contains the process descriptor
pointer of the process running on the CPU.[2]

[2] One drawback to the shared-storage approach is that, for efficiency reasons, the kernel stores the 8 KB memory area in two consecutive page frames
with the first page frame aligned to a multiple of 213. This may turn out to be a problem when little dynamic memory is available.

Another advantage of storing the process descriptor with the stack emerges on multiprocessor
systems: the correct current process for each hardware processor can be derived just by
checking the stack as shown previously. Linux 2.0 did not store the kernel stack and the
process descriptor together. Instead, it was forced to introduce a global static variable called
current to identify the process descriptor of the running process. On multiprocessor systems,
it was necessary to define current as an array—one element for each available CPU.

The current macro often appears in kernel code as a prefix to fields of the process descriptor.
For example, current->pid returns the process ID of the process currently running on the
CPU.

A small cache consisting of EXTRA_TASK_STRUCT memory areas (where the macro is usually
set to 16) is used to avoid unnecessarily invoking the memory allocator. To understand
the purpose of this cache, assume for instance that some process is destroyed and that, right
afterward, a new process is created. Without the cache, the kernel would have to release
an 8 KB memory area to the memory allocator and then, immediately afterward, request
another memory area of the same size. This is an example of memory cache, a software
mechanism introduced to bypass the Kernel Memory Allocator. You will find many other
examples of memory caches in the following chapters.

The task_struct_stack array contains the pointers to the process descriptors in the cache.
Its name comes from the fact that process descriptor releases and requests are implemented
respectively as "push" and "pop" operations on the array:

free_task_struct()

This function releases the 8 KB task_union memory areas and places them in
the cache unless it is full.

alloc_task_struct()

This function allocates 8 KB task_union memory areas. The function takes memory
areas from the cache if it is at least half-full or if there isn't a free pair of consecutive
page frames available.

3.1.2.4 The process list

To allow an efficient search through processes of a given type (for instance, all processes in
a runnable state) the kernel creates several lists of processes. Each list consists of pointers to
process descriptors. A list pointer (that is, the field that each process uses to point to the next
process) is embedded right in the process descriptor's data structure. When you look at
the C-language declaration of the task_struct structure, the descriptors may seem to turn in
on themselves in a complicated recursive manner. However, the concept is no more
complicated than any list, which is a data structure containing a pointer to the next instance of
itself.

Understanding the Linux Kernel

70

A circular doubly linked list (see Figure 3-3) links together all existing process descriptors;
we will call it the process list. The prev_task and next_task fields of each process
descriptor are used to implement the list. The head of the list is the init_task descriptor
referenced by the first element of the task array: it is the ancestor of all processes, and it is
called process 0 or swapper (see Section 3.3.2 later in this chapter). The prev_task field of
init_task points to the process descriptor inserted last in the list.

Figure 3-3. The process list

The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process
descriptor in the process list, respectively. These macros also take care of the parenthood
relationship of the process (see Section 3.1.3 later in this chapter).

Another useful macro, called for_each_task , scans the whole process list. It is defined as:

#define for_each_task(p) \
 for (p = &init_task ; (p = p->next_task) != &init_task ;)

The macro is the loop control statement after which the kernel programmer supplies the loop.
Notice how the init_task process descriptor just plays the role of list header. The macro
starts by moving past init_task to the next task and continues until it reaches init_task
again (thanks to the circularity of the list).

3.1.2.5 The list of TASK_RUNNING processes

When looking for a new process to run on the CPU, the kernel has to consider only the
runnable processes (that is, the processes in the TASK_RUNNING state). Since it would be rather
inefficient to scan the whole process list, a doubly linked circular list of TASK_RUNNING
processes called runqueue has been introduced. The process descriptors include the next_run
and prev_run fields to implement the runqueue list. As in the previous case, the init_task
process descriptor plays the role of list header. The nr_running variable stores the total
number of runnable processes.

The add_to_runqueue() function inserts a process descriptor at the beginning of the list,
while del_from_runqueue() removes a process descriptor from the list. For scheduling
purposes, two functions, move_first_runqueue() and move_last_runqueue(), are
provided to move a process descriptor to the beginning or the end of the runqueue,
respectively.

Finally, the wake_up_process() function is used to make a process runnable. It sets the
process state to TASK_RUNNING, invokes add_to_runqueue() to insert the process in the
runqueue list, and increments nr_running. It also forces the invocation of the scheduler when
the process is either real-time or has a dynamic priority much larger than that of the current
process (see Chapter 10).

Understanding the Linux Kernel

71

3.1.2.6 The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor pointer
corresponding to a PID. This occurs, for instance, in servicing the kill() system call: when
process P1 wishes to send a signal to another process, P2, it invokes the kill() system call
specifying the PID of P2 as the parameter. The kernel derives the process descriptor pointer
from the PID and then extracts the pointer to the data structure that records the pending
signals from P2's process descriptor.

Scanning the process list sequentially and checking the pid fields of the process descriptors
would be feasible but rather inefficient. In order to speed up the search, a pidhash hash table
consisting of PIDHASH_SZ elements has been introduced (PIDHASH_SZ is usually set to
NR_TASKS/4). The table entries contain process descriptor pointers. The PID is transformed
into a table index using the pid_hashfn macro:

#define pid_hashfn(x) \
 ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

As every basic computer science course explains, a hash function does not always ensure a
one-to-one correspondence between PIDs and table indexes. Two different PIDs that hash into
the same table index are said to be colliding.

Linux uses chaining to handle colliding PIDs: each table entry is a doubly linked list of
colliding process descriptors. These lists are implemented by means of the pidhash_next and
pidhash_pprev fields in the process descriptor. Figure 3-4 illustrates a pidhash table with
two lists: the processes having PIDs 228 and 27535 hash into the 101st element of the table,
while the process having PID 27536 hashes into the 124th element of the table.

Figure 3-4. The pidhash table and chained lists

Hashing with chaining is preferable to a linear transformation from PIDs to table indexes,
because a PID can assume any value between and 32767. Since NR_TASKS, the maximum
number of processes, is usually set to 512, it would be a waste of storage to define a table
consisting of 32768 entries.

The hash_ pid() and unhash_ pid() functions are invoked to insert and remove a
process in the pidhash table, respectively. The find_task_by_pid() function searches the
hash table and returns the process descriptor pointer of the process with a given PID (or a null
pointer if it does not find the process).

Understanding the Linux Kernel

72

3.1.2.7 The list of task free entries

The task array must be updated every time a process is created or destroyed. As with the
other lists shown in previous sections, a list is used here to speed additions and deletions.
Adding a new entry into the array is done efficiently: instead of searching the array linearly
and looking for the first free entry, the kernel maintains a separate doubly linked, noncircular
list of free entries. The tarray_freelist variable contains the first element of that list; each
free entry in the array points to another free entry, while the last element of the list contains a
null pointer. When a process is destroyed, the corresponding element in task is added to the
head of the list.

In Figure 3-5, if the first element is counted as 0, the tarray_freelist variable points to
element 4 because it is the last freed element. Previously, the processes corresponding to
elements 2 and 1 were destroyed, in that order. Element 2 points to another free element of
tasks not shown in the figure.

Figure 3-5. An example of task array with free entries

Deleting an entry from the array is also done efficiently. Each process descriptor p includes a
tarray_ ptr field that points to the task entry containing the pointer to p.

The get_free_taskslot() and add_free_taskslot() functions are used to get a free
entry and to free an entry, respectively.

3.1.3 Parenthood Relationships Among Processes

Processes created by a program have a parent/child relationship. Since a process can create
several children, these have sibling relationships. Several fields must be introduced in a
process descriptor to represent these relationships. Processes and 1 are created by the kernel;
as we shall see later in the chapter, process 1 (init) is the ancestor of all other processes. The
descriptor of a process P includes the following fields:

p_opptr (original parent)

Points to the process descriptor of the process that created P or to the descriptor of
process 1 (init) if the parent process no longer exists. Thus, when a shell user starts a
background process and exits the shell, the background process becomes the child of
init.

Understanding the Linux Kernel

73

p_pptr (parent)

Points to the current parent of P; its value usually coincides with that of p_opptr. It
may occasionally differ, such as when another process issues a ptrace() system call
requesting that it be allowed to monitor P (see Section 19.1.5 in Chapter 19).

p_cptr (child)

Points to the process descriptor of the youngest child of P, that is, of the process
created most recently by it.

p_ysptr (younger sibling)

Points to the process descriptor of the process that has been created immediately after
P by P's current parent.

p_osptr (older sibling)

Points to the process descriptor of the process that has been created immediately
before P by P's current parent.

Figure 3-6 illustrates the parenthood relationships of a group of processes. Process P0
successively created P1, P2, and P3. Process P3, in turn, created process P4. Starting with
p_cptr and using the p_osptr pointers to siblings, P0 is able to retrieve all its children.

Figure 3-6. Parenthood relationships among five processes

3.1.4 Wait Queues

The runqueue list groups together all processes in a TASK_RUNNING state. When it comes to
grouping processes in other states, the various states call for different types of treatment, with
Linux opting for one of the following choices:

• Processes in a TASK_STOPPED or in a TASK_ZOMBIE state are not linked in specific lists.
There is no need to group them, because either the process PID or the process
parenthood relationships may be used by the parent process to retrieve the child
process.

Understanding the Linux Kernel

74

• Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are subdivided
into many classes, each of which corresponds to a specific event. In this case, the
process state does not provide enough information to retrieve the process quickly, so it
is necessary to introduce additional lists of processes. These additional lists are called
wait queues.

Wait queues have several uses in the kernel, particularly for interrupt handling, process
synchronization, and timing. Because these topics are discussed in later chapters, we'll just
say here that a process must often wait for some event to occur, such as for a disk operation to
terminate, a system resource to be released, or a fixed interval of time to elapse. Wait queues
implement conditional waits on events: a process wishing to wait for a specific event places
itself in the proper wait queue and relinquishes control. Therefore, a wait queue represents a
set of sleeping processes, which are awakened by the kernel when some condition becomes
true.

Wait queues are implemented as cyclical lists whose elements include pointers to process
descriptors. Each element of a wait queue list is of type wait_queue:

struct wait_queue {
 struct task_struct * task;
 struct wait_queue * next;
};

Each wait queue is identified by a wait queue pointer, which contains either the address of the
first element of the list or the null pointer if the list is empty. The next field of the
wait_queue data structure points to the next element in the list, except for the last element,
whose next field points to a dummy list element. The dummy's next field contains the
address of the variable or field that identifies the wait queue minus the size of a pointer (on
Intel platforms, the size of the pointer is 4 bytes). Thus, the wait queue list can be considered
by kernel functions as a truly circular list, since the last element points to the dummy wait
queue structure whose next field coincides with the wait queue pointer (see Figure 3-7).

Figure 3-7. The wait queue data structure

Understanding the Linux Kernel

75

The init_waitqueue() function initializes an empty wait queue; it receives the address q of
a wait queue pointer as its parameter and sets that pointer to q - 4. The add_wait_queue(q,
entry) function inserts a new element with address entry in the wait queue identified by the
wait queue pointer q. Since wait queues are modified by interrupt handlers as well as by major
kernel functions, the function executes the following operations with disabled interrupts (see
Chapter 4):

if (*q != NULL)
 entry->next = *q;
else
 entry->next = (struct wait_queue *)(q-1);
*q = entry;

Since the wait queue pointer is set to entry, the new element is placed in the first position of
the wait queue list. If the wait queue was not empty, the next field of the new element is set
to the address of the previous first element. Otherwise, the next field is set to the address of
the wait queue pointer minus 4, and thus points to the dummy element.

The remove_wait_queue() function removes the element pointed to by entry from a wait
queue. Once again, the function must disable interrupts before executing the following
operations:

next = entry->next;
head = next;
while ((tmp = head->next) != entry)
 head = tmp;
head->next = next;

The function scans the circular list to find the element head that precedes entry. It then
detaches entry from the list by letting the next field of head point to the element that follows
entry. The peculiar format of the wait queue circular list simplifies the code. Moreover, it is
very efficient for the following reasons:

• Most wait queues have just one element, which means that the body of the while loop
is never executed.

• While scanning the list, there is no need to distinguish the wait queue pointer (the
dummy wait queue element) from wait_queue data structures.

A process wishing to wait for a specific condition can invoke any of the following functions:

• The sleep_on() function operates on the current process, which we'll call P:

void sleep_on(struct wait_queue **p)
{
 struct wait_queue wait;
 current->state = TASK_UNINTERRUPTIBLE;
 wait.task = current;
 add_wait_queue(p, &wait);
 schedule();
 remove_wait_queue(p, &wait);

 }

Understanding the Linux Kernel

76

• The function sets P's state to TASK_UNINTERRUPTIBLE and inserts P into the wait
queue whose pointer was specified as the parameter. Then it invokes the scheduler,
which resumes the execution of another process. When P is awakened, the scheduler
resumes execution of the sleep_on() function, which removes P from the wait
queue.

• The interruptible_sleep_on() function is identical to sleep_on(), except that
it sets the state of the current process P to TASK_INTERRUPTIBLE instead of
TASK_UNINTERRUPTIBLE so that P can also be awakened by receiving a signal.

• The sleep_on_timeout() and interruptible_sleep_on_timeout() functions
are similar to the previous ones, but they also allow the caller to define a time interval
after which the process will be woken up by the kernel. In order to do this, they invoke
the schedule_timeout() function instead of schedule() (see Section 5.4.7 in
Chapter 5).

Processes inserted in a wait queue enter the TASK_RUNNING state by using either the wake_up
or the wake_up_interruptible macros. Both macros use the __wake_up() function, which
receives as parameters the address q of the wait queue pointer and a bitmask mode specifying
one or more states. Processes in the specified states will be woken up; others will be left
unchanged. The function essentially executes the following instructions:

if (q && (next = *q)) {
 head = (struct wait_queue *)(q-1);
 while (next != head) {
 p = next->task;
 next = next->next;
 if (p->state & mode)
 wake_up_process(p);
 }
}

The function checks the state p->state of each process against mode to determine whether
the caller wants the process woken up. Only those processes whose state is included in the
mode bitmask are actually awakened. The wake_up macro specifies both the
TASK_INTERRUPTIBLE and the TASK_UNINTERRUPTIBLE flags in mode, so it wakes up all
sleeping processes. Conversely, the wake_up_interruptible macro wakes up only the
TASK_INTERRUPTIBLE processes by specifying only that flag in mode. Notice that awakened
processes are not removed from the wait queue. A process that has been awakened does not
necessarily imply that the wait condition has become true, so the processes could suspend
themselves again.

3.1.5 Process Usage Limits

Processes are associated with sets of usage limits, which specify the amount of system
resources they can use. Specifically, Linux recognizes the following usage limits:

RLIMIT_CPU

Maximum CPU time for the process. If the process exceeds the limit, the kernel sends
it a SIGXCPU signal, and then, if the process doesn't terminate, a SIGKILL signal (see
Chapter 9).

Understanding the Linux Kernel

77

RLIMIT_FSIZE

Maximum file size allowed. If the process tries to enlarge a file to a size greater than
this value, the kernel sends it a SIGXFSZ signal.

RLIMIT_DATA

Maximum heap size. The kernel checks this value before expanding the heap of the
process (see Section 7.6 in Chapter 7).

RLIMIT_STACK

Maximum stack size. The kernel checks this value before expanding the User Mode
stack of the process (see Section 7.4 in Chapter 7).

RLIMIT_CORE

Maximum core dump file size. The kernel checks this value when a process is aborted,
before creating a core file in the current directory of the process (see Section 9.1.1 in
Chapter 9). If the limit is 0, the kernel won't create the file.

RLIMIT_RSS

Maximum number of page frames owned by the process. Actually, the kernel never
checks this value, so this usage limit is not implemented.

RLIMIT_NPROC

Maximum number of processes that the user can own (see Section 3.3.1 later in this
chapter).

RLIMIT_NOFILE

Maximum number of open files. The kernel checks this value when opening a new file
or duplicating a file descriptor (see Chapter 12).

RLIMIT_MEMLOCK

Maximum size of nonswappable memory. The kernel checks this value when the
process tries to lock a page frame in memory using the mlock() or mlockall()
system calls (see Section 7.3.4 in Chapter 7).

RLIMIT_AS

Maximum size of process address space. The kernel checks this value when the
process uses malloc() or a related function to enlarge its address space (see Section
7.1 in Chapter 7).

The usage limits are stored in the rlim field of the process descriptor. The field is an array of
elements of type struct rlimit, one for each usage limit:

Understanding the Linux Kernel

78

struct rlimit {
 long rlim_cur;
 long rlim_max;
};

The rlim_cur field is the current usage limit for the resource. For example, current-
>rlim[RLIMIT_CPU].rlim_cur represents the current limit on the CPU time of the running
process.

The rlim_max field is the maximum allowed value for the resource limit. By using the
getrlimit() and setrlimit() system calls, a user can always increase the rlim_cur
limit of some resource up to rlim_max. However, only the superuser can change the
rlim_max field or set the rlim_cur field to a value greater than the corresponding rlim_max
field.

Usually, most usage limits contain the value RLIMIT_INFINITY (0x7fffffff), which means
that no limit is imposed on the corresponding resource. However, the system administrator
may choose to impose stronger limits on some resources. Whenever a user logs into the
system, the kernel creates a process owned by the superuser, which can invoke setrlimit()
to decrease the rlim_max and rlim_cur fields for some resource. The same process later
executes a login shell and becomes owned by the user. Each new process created by the user
inherits the content of the rlim array from its parent, and therefore the user cannot override
the limits enforced by the system.

3.2 Process Switching

In order to control the execution of processes, the kernel must be able to suspend the
execution of the process running on the CPU and resume the execution of some other process
previously suspended. This activity is called process switching , task switching, or context
switching. The following sections describe the elements of process switching in Linux:

• Hardware context
• Hardware support
• Linux code
• Saving the floating point registers

3.2.1 Hardware Context

While each process can have its own address space, all processes have to share the CPU
registers. So before resuming the execution of a process, the kernel must ensure that each such
register is loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its execution
on the CPU is called the hardware context. The hardware context is a subset of the process
execution context, which includes all information needed for the process execution. In Linux,
part of the hardware context of a process is stored in the TSS segment, while the remaining
part is saved in the Kernel Mode stack. As we learned in Section 2.3 in Chapter 2, the TSS
segment coincides with the tss field of the process descriptor.

Understanding the Linux Kernel

79

We will assume the prev local variable refers to the process descriptor of the process being
switched out and next refers to the one being switched in to replace it. We can thus define
process switching as the activity consisting of saving the hardware context of prev and
replacing it with the hardware context of next. Since process switches occur quite often, it is
important to minimize the time spent in saving and loading hardware contexts.

Earlier versions of Linux took advantage of the hardware support offered by the Intel
architecture and performed process switching through a far jmp instruction[3] to the selector
of the Task State Segment Descriptor of the next process. While executing the instruction,
the CPU performs a hardware context switch by automatically saving the old hardware
context and loading a new one. But for the following reasons, Linux 2.2 uses software to
perform process switching:

[3] far jmp instructions modify both the cs and eip registers, while simple jmp instructions modify only eip.

• Step-by-step switching performed through a sequence of mov instructions allows better
control over the validity of the data being loaded. In particular, it is possible to check
the values of segmentation registers. This type of checking is not possible when using
a single far jmp instruction.

• The amount of time required by the old approach and the new approach is about the
same. However, it is not possible to optimize a hardware context switch, while the
current switching code could perhaps be enhanced in the future.

Process switching occurs only in Kernel Mode. The contents of all registers used by a process
in User Mode have already been saved before performing process switching (see Chapter 4).
This includes the contents of the ss and esp pair that specifies the User Mode stack pointer
address.

3.2.2 Task State Segment

The Intel 80x86 architecture includes a specific segment type called the Task State Segment
(TSS), to store hardware contexts. As we saw in Section 2.3 in Chapter 2, each process
includes its own TSS segment with a minimum length of 104 bytes. Additional bytes are
needed by the operating system to store registers that are not automatically saved by the
hardware and to store the I/O Permission bitmap. That map is needed because the ioperm()
and iopl() system calls may grant a process in User Mode direct access to specific I/O
ports. In particular, if the IOPL field in the eflags register is set to 3, the User Mode process
is allowed to access any of the I/O ports whose corresponding bit in the I/O Permission Bit
Map is cleared.

The thread_struct structure describes the format of the Linux TSS. An additional area is
introduced to store the tr and cr2 registers, the floating point registers, the debug registers,
and other miscellaneous information specific to Intel 80x86 processors.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This Descriptor
includes a 32-bit Base field that points to the TSS starting address and a 20-bit Limit field
whose value cannot be smaller than 0x67 (decimal 103, determined by the minimum TSS
segment length mentioned earlier). The S flag of a TSSD is cleared to denote the fact that the
corresponding TSS is a System Segment.

Understanding the Linux Kernel

80

The Type field is set to 11 if the TSSD refers to the TSS of the process currently running on
the CPU; otherwise it is set to 9.[4] The second least significant bit of the Type field is called
the Busy bit since it discriminates between the values 9 and 11.[5]

[4] Linux does not make use of a hardware feature that uses the Type field in a peculiar way to allow the automatic reexecution of a previously
suspended process. Further details may be found in the Pentium manuals.

[5] Since the processor performs a "bus lock" before modifying this bit, a multitasking operating system may test the bit in order to check whether a
CPU is trying to switch to a process that's already executing. However, Linux does not make use of this hardware feature (see Chapter 11).

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base
address is stored in the gdtr register. The tr register contains the TSSD Selector of the
process currently running on the CPU. It also includes two hidden, nonprogrammable fields:
the Base and Limit fields of the TSSD. In this way, the processor can address the TSS
directly without having to retrieve the TSS address from the GDT.

As stated earlier, Linux stores part of the hardware context in the tss field of the process
descriptor. This means that when the kernel creates a new process, it must also initialize the
TSSD so that it refers to the tss field. Even though the hardware context is saved via
software, the TSS segment still plays an important role because it may contain the I/O
Permission Bit Map. In fact, when a process executes an in or out I/O instruction in User
Mode, the control unit performs the following operations:

1. It checks the IOPL field in the eflags register. If it is set to 3 (User Mode process
enabled to access I/O ports), it performs the next check; otherwise, it raises a "General
protection error" exception.

2. It accesses the tr register to determine the current TSS, and thus the proper I/O
Permission Bit Map.

3. It checks the bit corresponding to the I/O port specified in the I/O instruction. If it is
cleared, the instruction is executed; otherwise, the control unit raises a "General
protection error" exception.

3.2.3 The switch_to Macro

The switch_to macro performs a process switch. It makes use of two parameters denoted as
prev and next: the first is the process descriptor pointer of the process to be suspended, while
the second is the process descriptor pointer of the process to be executed on the CPU. The
macro is invoked by the schedule() function to schedule a new process on the CPU (see
Chapter 10).

The switch_to macro is one of the most hardware-dependent routines of the kernel. Here is a
description of what it does on an Intel 80x86 microprocessor:

1. Saves the values of prev and next in the eax and edx registers, respectively (these
values were previously stored in ebx and ecx):

 movl %ebx, %eax
 movl %ecx, %edx

Understanding the Linux Kernel

81

2. Saves the contents of the esi, edi, and ebp registers in the prev Kernel Mode stack.
They must be saved because the compiler assumes that they will stay unchanged until
the end of switch_to:

 pushl %esi
 pushl %edi

pushl %ebp

3. Saves the content of esp in prev->tss.esp so that the field points to the top of the
prev Kernel Mode stack:

movl %esp, 532(%ebx)

4. Loads next->tss.esp in esp. From now on, the kernel operates on the Kernel Mode
stack of next, so this instruction performs the actual context switch from prev to
next. Since the address of a process descriptor is closely related to that of the Kernel
Mode stack (as explained in Section 3.1.2 earlier in this chapter), changing the kernel
stack means changing the current process:

movl 532(%ecx), %esp

5. Saves the address labeled 1 (shown later in this section) in prev->tss.eip. When the
process being replaced resumes its execution, the process will execute the instruction
labeled as 1:

movl $1f, 508(%ebx)

6. On the Kernel Mode stack of next, pushes the next->tss.eip value, in most cases
the address labeled 1:

pushl 508(%ecx)

7. Jumps to the __switch_to() C function:

jmp __switch_to

This function acts on the prev and next parameters that denote the former process and
the new process. This function call is different from the average function call, though,
because __switch_to() takes the prev and next parameters from the eax and edx
where we saw earlier they were stored, not from the stack like most functions. To
force the function to go to the registers for its parameters, the kernel makes use of
__attribute_ _ and regparm keywords, which are nonstandard extensions of the C
language implemented by the gcc compiler. The __switch_to() function is declared
as follows in the include /asm-i386 /system.h header file:

__switch_to(struct task_struct *prev,
 struct task_struct *next)
 __attribute__(regparm(3))

The function completes the process switch started by the switch_to() macro. It
includes extended inline Assembly language code that makes for rather complex
reading, because the code refers to registers by means of special symbols. In order to

Understanding the Linux Kernel

82

simplify the following discussion, we will describe the Assembly language
instructions yielded by the compiler:

a. Saves the contents of the esi and ebx registers in the Kernel Mode stack of
next, then loads ecx and ebx with the parameters prev and next, respectively:

 pushl %esi
 pushl %ebx
 movl %eax, %ecx

 movl %edx, %ebx

b. Executes the code yielded by the unlazy_fpu() macro (see Section 3.2.4
later in this chapter) to optionally save the contents of the mathematical
coprocessor registers. As we shall see later, there is no need to load the floating
point registers of next while performing the context switch:

unlazy_fpu(prev);

c. Clears the Busy bit (see Section 3.2.2 earlier in this chapter) of next and load
its TSS selector in the tr register:

 movl 712(%ebx), %eax
 andb $0xf8, %al
 andl $0xfffffdff, gdt_table+4(%eax)

 ltr 712(%ebx)

The preceding code is fairly dense. It operates on:

The process's TSSD selector, which is copied from next->tss.tr to eax.

The 8 least significant bits of the selector, which are stored in al.[6] The 3 least
significant bits of al contain the RPL and the TI fields of the TSSD.

[6] The ax register consists of the 16 least significant bits of eax. Moreover, the al register consists of the 8 least significant bits of ax, while
ah consists of the 8 most significant bits of ax. Similar notations apply to the ebx, ecx, and edx registers. The 13 most significant bits of ax
specify the TSSD index within the GDT.

Clearing the 3 least significant bits of al leaves the TSSD index shifted to the
left 3 bits (that is, multiplied by 8). Since the TSSDs are 8 bytes long, the
index value multiplied by 8 yields the relative address of the TSSD within the
GDT. The gdt_table+4(%eax) notation refers to the address of the fifth byte
of the TSSD. The andl instruction clears the Busy bit in the fifth byte, while
the ltr instruction places the next->tss.tr selector in the tr register and
again sets the Busy bit.[7]

[7] Linux must clear the Busy bit before loading the value in tr, or the control unit will raise an exception.

d. Stores the contents of the fs and gs segmentation registers in prev->tss.fs
and prev->tss.gs, respectively:

 movl %fs,564(%ecx)
movl %gs,568(%ecx)

Understanding the Linux Kernel

83

e. Loads the ldtr register with the next->tss.ldt value. This needs to be done
only if the Local Descriptor Table used by prev differs from the one used by
next:

 movl 920(%ebx),%edx
 movl 920(%ecx),%eax
 movl 112(%eax),%eax
 cmpl %eax,112(%edx)
 je 2f
 lldt 572(%ebx)

2:

In practice, the check is made by referring to the tss.segments field (at offset
112 in the process descriptor) instead of the tss.ldt field.

f. Loads the cr3 register with the next->tss.cr3 value. This can be avoided if
prev and next are lightweight processes that share the same Page Global
Directory. Since the PGD address of prev is never changed, it doesn't need to
be saved.

 movl 504(%ebx),%eax
 cmpl %eax,504(%ecx)
 je 3f
 movl %eax,%cr3

 3:

g. Load the fs and gs segment registers with the values contained in next-
>tss.fs and next->tss.gs, respectively. This step logically complements the
actions performed in step 7d.

 movl 564(%ebx),%fs
movl 568(%ebx),%gs

The code is actually more intricate, as an exception might be raised by the
CPU when it detects an invalid segment register value. The code takes this
possibility into account by adopting a "fix-up" approach (see Section 8.2.6 in
Chapter 8).

h. Loads the eight debug registers[8] with the next->tss.debugreg[i] values (0
i 7). This is done only if next was using the debug registers when it was

suspended (that is, field next->tss.debugreg[7] is not 0). As we shall see in
Chapter 19, these registers are modified only by writing in the TSS, thus there
is no need to save them:

[8] The Intel 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas may be defined. Whenever a
monitored process issues a linear address included in one of the breakpoints, an exception occurs.

 cmpl $0,760(%ebx)
 je 4f
 movl 732(%ebx),%esi
 movl %esi,%db0
 movl 736(%ebx),%esi
 movl %esi,%db1
 movl 740(%ebx),%esi

Understanding the Linux Kernel

84

 movl %esi,%db2
 movl 744(%ebx),%esi
 movl %esi,%db3
 movl 756(%ebx),%esi
 movl %esi,%db6
 movl 760(%ebx),%ebx
 movl %ebx,%db7
 4:

i. The function ends up by restoring the original values of the ebx and esi
registers, pushed on the stack in step 7a:

 popl %ebx
 popl %esi

ret

When the ret instruction is executed, the control unit fetches the value to be
loaded in the eip program counter from the stack. This value is usually the
address of the instruction shown in the following item and labeled 1, which
was stored in the stack by the switch_to macro. If, however, next was never
suspended before because it is being executed for the first time, the function
will find the starting address of the ret_from_fork() function (see Section
3.3.1 later in this chapter).

8. The remaining part of the switch_to macro includes a few instructions that restore
the contents of the esi, edi, and ebp registers. The first of these three instructions is
labeled 1:

 1: popl %ebp
 popl %edi

 popl %esi

Notice how these pop instructions refer to the kernel stack of the prev process. They
will be executed when the scheduler selects prev as the new process to be executed on
the CPU, thus invoking switch_to with prev as second parameter. Therefore, the esp
register points to the prev 's Kernel Mode stack.

3.2.4 Saving the Floating Point Registers

Starting with the Intel 80486, the arithmetic floating point unit (FPU) has been integrated into
the CPU. The name mathematical coprocessor continues to be used in memory of the days
when floating point computations were executed by an expensive special-purpose chip. In
order to maintain compatibility with older models, however, floating point arithmetic
functions are performed by making use of ESCAPE instructions, which are instructions with
some prefix byte ranging between 0xd8 and 0xdf. These instructions act on the set of floating
point registers included in the CPU. Clearly, if a process is using ESCAPE instructions, the
contents of the floating point registers belong to its hardware context.

Recently, Intel introduced a new set of Assembly instructions into its microprocessors. They
are called MMX instructions and are supposed to speed up the execution of multimedia
applications. MMX instructions act on the floating point registers of the FPU. The obvious
disadvantage of this architectural choice is that programmers cannot mix floating point

Understanding the Linux Kernel

85

instructions and MMX instructions. The advantage is that operating system designers can
ignore the new instruction set, since the same facility of the task-switching code for saving the
state of the floating point unit can also be relied upon to save the MMX state.

The Intel 80x86 microprocessors do not automatically save the floating point registers in the
TSS. However, they include some hardware support that enables kernels to save these
registers only when needed. The hardware support consists of a TS (Task-Switching) flag in
the cr0 register, which obeys the following rules:

• Every time a hardware context switch is performed, the TS flag is set.
• Every time an ESCAPE or an MMX instruction is executed when the TS flag is set, the

control unit raises a "Device not available" exception (see Chapter 4).

The TS flag allows the kernel to save and restore the floating point registers only when really
needed. To illustrate how it works, let's suppose that a process A is using the mathematical
coprocessor. When a context switch occurs, the kernel sets the TS flag and saves the floating
point registers into the TSS of process A. If the new process B does not make use of the
mathematical coprocessor, the kernel won't need to restore the contents of the floating point
registers. But as soon as B tries to execute an ESCAPE or MMX instruction, the CPU raises a
"Device not available" exception, and the corresponding handler loads the floating point
registers with the values saved in the TSS of process B.

Let us now describe the data structures introduced to handle selective saving of floating point
registers. They are stored in the tss.i387 subfield, whose format is described by the
i387_hard_struct structure. The process descriptor also stores the value of two additional
flags:

• The PF_USEDFPU flag included in the flags field. It specifies whether the process used
the floating point registers when it was last executing on the CPU.

• The used_math field. This flag specifies whether the contents of the tss.i387
subfield are significant. The flag is cleared (not significant) in two cases:

o When the process starts executing a new program by invoking an execve()
system call (see Chapter 19). Since control will never return to the former
program, the data currently stored in tss.i387 will never be used again.

o When a process that was executing a program in User Mode starts executing a
signal handler procedure (see Chapter 9). Since signal handlers are
asynchronous with respect to the program execution flow, the floating point
registers could be meaningless to the signal handler. However, the kernel saves
the floating point registers in tss.i387 before starting the handler and restores
them after the handler terminates. Therefore, a signal handler is allowed to
make use of the mathematical coprocessor, but it cannot carry on a floating
point computation started during the normal program execution flow.

As stated earlier, the __switch_to() function executes the unlazy_fpu macro. This macro
yields the following code:

if (prev->flags & PF_USEDFPU) {
 /* save the floating point registers */
 asm("fnsave %0" : "=m" (prev->tss.i387));
 /* wait until all data has been transferred */
 asm("fwait");

Understanding the Linux Kernel

86

 prev->flags &= ~PF_USEDFPU;
 /* set the TS flag of cr0 to 1 */
 stts();
}

The stts() macro sets the TS flag of cr0. In practice, it yields the following Assembly
language instructions:

movl %cr0, %eax
orb $8, %al
movl %eax, %cr0

The contents of the floating point registers are not restored right after a process resumes
execution. However, the TS flag of cr0 has been set by unlazy_fpu(). Thus, the first time
the process tries to execute an ESCAPE or MMX instruction, the control unit raises a "Device
not available" exception, and the kernel (more precisely, the exception handler involved by
the exception) runs the math_state_restore() function:

void math_state_restore(void) {
 asm("clts"); /* clear the TS flag of cr0 */
 if (current->used_math)
 /* load the floating point registers */
 asm("frstor %0": :"m" (current->tss.i387));
 else {
 /* initialize the floating point unit */
 asm("fninit");
 current->used_math = 1;
 }
 current->flags |= PF_USEDFPU;
}

Since the process is executing an ESCAPE instruction, this function sets the PF_USEDFPU flag.
Moreover, the function clears the TS flag of cr0 so that further ESCAPE or MMX instructions
executed by the process won't trigger the "Device not available" exception. If the data stored
in the tss.i387 field is valid, the function loads the floating point registers with the proper
values. Otherwise, the FPU is reinitialized and all its registers are cleared.

3.3 Creating Processes

Unix operating systems rely heavily on process creation to satisfy user requests. As an
example, the shell process creates a new process that executes another copy of the shell
whenever the user enters a command.

Traditional Unix systems treat all processes in the same way: resources owned by the parent
process are duplicated, and a copy is granted to the child process. This approach makes
process creation very slow and inefficient, since it requires copying the entire address space of
the parent process. The child process rarely needs to read or modify all the resources already
owned by the parent; in many cases, it issues an immediate execve() and wipes out the
address space so carefully saved.

Modern Unix kernels solve this problem by introducing three different mechanisms:

Understanding the Linux Kernel

87

• The Copy On Write technique allows both the parent and the child to read the same
physical pages. Whenever either one tries to write on a physical page, the kernel
copies its contents into a new physical page that is assigned to the writing process. The
implementation of this technique in Linux is fully explained in Chapter 7.

• Lightweight processes allow both the parent and the child to share many per-process
kernel data structures, like the paging tables (and therefore the entire User Mode
address space) and the open file tables.

• The vfork() system call creates a process that shares the memory address space of
its parent. To prevent the parent from overwriting data needed by the child, the
parent's execution is blocked until the child exits or executes a new program. We'll
learn more about the vfork() system call in the following section.

3.3.1 The clone(), fork(), and vfork() System Calls

Lightweight processes are created in Linux by using a function named __clone(), which
makes use of four parameters:

fn

Specifies a function to be executed by the new process; when the function returns, the
child terminates. The function returns an integer, which represents the exit code for the
child process.

arg

Pointer to data passed to the fn() function.

flags

Miscellaneous information. The low byte specifies the signal number to be sent to the
parent process when the child terminates; the SIGCHLD signal is generally selected.
The remaining 3 bytes encode a group of clone flags, which specify the resources
shared between the parent and the child process. The flags, when set, have the
following meanings:

CLONE_VM

The memory descriptor and all page tables (see Chapter 7).

CLONE_FS :

The table that identifies the root directory and the current working directory.

CLONE_FILES :

The table that identifies the open files (see Chapter 12).

CLONE_SIGHAND :

The table that identifies the signal handlers (see Chapter 9).

Understanding the Linux Kernel

88

CLONE_PID :

The PID.[9]

[9] As we shall see later, the CLONE_PID flag can be used only by a process having a PID of 0; in a uniprocessor system,
no two lightweight processes have the same PID.

CLONE_PTRACE :

If a ptrace() system call is causing the parent process to be traced, the child will
also be traced.

CLONE_VFORK :

Used for the vfork() system call (see later in this section).

child_stack

Specifies the User Mode stack pointer to be assigned to the esp register of the child
process. If it is equal to 0, the kernel assigns to the child the current parent stack
pointer. Thus, the parent and child temporarily share the same User Mode stack. But
thanks to the Copy On Write mechanism, they usually get separate copies of the User
Mode stack as soon as one tries to change the stack. However, this parameter must
have a non-null value if the child process shares the same address space as the parent.

__clone() is actually a wrapper function defined in the C library (see Section 8.1 in Chapter
8), which in turn makes use of a Linux system call hidden to the programmer, named clone(
). The clone() system call receives only the flags and child_stack parameters; the new
process always starts its execution from the instruction following the system call invocation.
When the system call returns to the __clone() function, it determines whether it is in the
parent or the child and forces the child to execute the fn() function.

The traditional fork() system call is implemented by Linux as a clone() whose first
parameter specifies a SIGCHLD signal and all the clone flags cleared and whose second
parameter is 0.

The old vfork() system call, described in the previous section, is implemented by Linux as
a clone() whose first parameter specifies a SIGCHLD signal and the flags CLONE_VM and
CLONE_VFORK and whose second parameter is equal to 0.

When either a clone(), fork(), or vfork() system call is issued, the kernel invokes the
do_fork() function, which executes the following steps:

1. If the CLONE_PID flag has been specified, the do_fork() function checks whether the
PID of the parent process is not null; if so, it returns an error code. Only the swapper
process is allowed to set CLONE_PID; this is required when initializing a
multiprocessor system (see Section 11.4.1 in Chapter 11).

Understanding the Linux Kernel

89

2. The alloc_task_struct() function is invoked in order to get a new 8 KB union
task_union memory area to store the process descriptor and the Kernel Mode stack of
the new process.

3. The function follows the current pointer to obtain the parent process descriptor and
copies it into the new process descriptor in the memory area just allocated.

4. A few checks occur to make sure the user has the resources necessary to start a new
process. First, the function checks whether current-
>rlim[RLIMIT_NPROC].rlim_cur is smaller than or equal to the current number of
processes owned by the user: if so, an error code is returned. The function gets the
current number of processes owned by the user from a per-user data structure named
user_struct. This data structure can be found through a pointer in the user field of
the process descriptor.

5. The find_empty_process() function is invoked. If the owner of the parent process
is not the superuser, this function checks whether nr_tasks (the total number of
processes in the system) is smaller than NR_TASKS-MIN_TASKS_LEFT_FOR_ROOT.[10] If
so, find_empty_process() invokes get_free_taskslot() to find a free entry in
the task array. Otherwise, it returns an error.

[10] A few processes, usually four, are reserved to the superuser; MIN_TASKS_LEFT_FOR_ROOT refers to this number. Thus, even if a
user is allowed to overload the system with a "fork bomb" (a one-line program that forks itself forever), the superuser can log in, kill some processes,
and start searching for the guilty user.

6. The function writes the new process descriptor pointer into the previously obtained
task entry and sets the tarray_ptr field of the process descriptor to the address of
that entry (see Section 3.1.2).

7. If the parent process makes use of some kernel modules, the function increments the
corresponding reference counters. Each kernel module has its own reference counter,
which indicates how many processes are using it. A module cannot be removed unless
its reference counter is null (see Appendix B).

8. The function then updates some of the flags included in the flags field that have been
copied from the parent process:

a. It clears the PF_SUPERPRIV flag, which indicates whether the process has used
any of its superuser privileges.

b. It clears the PF_USEDFPU flag.
c. It clears the PF_PTRACED flag unless the CLONE_PTRACE parameter flag is set.

When set, the CLONE_PTRACE flag means that the parent process is being traced
with the ptrace() function, so the child should be traced too.

d. It clears PF_TRACESYS flag unless, once again, the CLONE_PTRACE parameter
flag is set.

e. It sets the PF_FORKNOEXEC flag, which indicates that the child process has not
yet issued an execve() system call.

f. It sets the PF_VFORK flag according to the value of the CLONE_VFORK flag. This
specifies that the parent process must be woken up whenever the process (the
child) issues an execve() system call or terminates.

9. Now the function has taken almost everything that it can use from the parent process;
the rest of its activities focus on setting up new resources in the child and letting the
kernel know that this new process has been born. First, the function invokes the
get_pid() function to obtain a new PID, which will be assigned to the child process
(unless the CLONE_PID flag is set).

Understanding the Linux Kernel

90

10. The function then updates all the process descriptor fields that cannot be inherited
from the parent process, such as the fields that specify the process parenthood
relationships.

11. Unless specified differently by the flags parameter, it invokes copy_files(),
copy_fs(), copy_sighand(), and copy_mm() to create new data structures and
copy into them the values of the corresponding parent process data structures.

12. It invokes copy_thread() to initialize the Kernel Mode stack of the child process
with the values contained in the CPU registers when the clone() call was issued
(these values have been saved in the Kernel Mode stack of the parent, as described in
Chapter 8). However, the function forces the value into the field corresponding to the
eax register. The tss.esp field of the TSS of the child process is initialized with the
base address of the Kernel Mode stack, and the address of an Assembly language
function (ret_from_fork()) is stored in the tss.eip field.

13. It uses the SET_LINKS macro to insert the new process descriptor in the process list.
14. It uses the hash_pid() function to insert the new process descriptor in the pidhash

hash table.
15. It increments the values of nr_tasks and current->user->count.
16. It sets the state field of the child process descriptor to TASK_RUNNING and then

invokes wake_up_process() to insert the child in the runqueue list.
17. If the CLONE_VFORK flag has been specified, the function suspends the parent process

until the child releases its memory address space (that is, until the child either
terminates or executes a new program). In order to do this, the process descriptor
includes a kernel semaphore called vfork_sem (see Section 11.2.4 in Chapter 11).

18. It returns the PID of the child, which will be eventually be read by the parent process
in User Mode.

Now we have a complete child process in the runnable state. But it isn't actually running. It is
up to the scheduler to decide when to give the CPU to this child. At some future process
switch, the schedule will bestow this favor on the child process by loading a few CPU
registers with the values of the tss field of the child's process descriptor. In particular, esp
will be loaded with tss.esp (that is, with the address of child's Kernel Mode stack), and eip
will be loaded with the address of ret_from_fork(). This Assembly language function, in
turn, invokes the ret_from_sys_call() function (see Chapter 8), which reloads all other
registers with the values stored in the stack and forces the CPU back to User Mode. The new
process will then start its execution right at the end of the fork(), vfork(), or clone()
system call. The value returned by the system call is contained in eax: the value is for the
child and equal to the PID for the child's parent.

The child process will execute the same code as the parent, except that the fork will return a
null PID. The developer of the application can exploit this fact, in the manner familiar to Unix
programmers, by inserting a conditional statement in the program based on the PID value that
forces the child to behave differently from the parent process.

3.3.2 Kernel Threads

Traditional Unix systems delegate some critical tasks to intermittently running processes,
including flushing disk caches, swapping out unused page frames, servicing network
connections, and so on. Indeed, it is not efficient to perform these tasks in strict linear fashion;
both their functions and the end user processes get better response if they are scheduled in the
background. Since some of the system processes run only in Kernel Mode, modern operating

Understanding the Linux Kernel

91

systems delegate their functions to kernel threads, which are not encumbered with the
unnecessary User Mode context. In Linux, kernel threads differ from regular processes in the
following ways:

• Each kernel thread executes a single specific kernel function, while regular processes
execute kernel functions only through system calls.

• Kernel threads run only in Kernel Mode, while regular processes run alternatively in
Kernel Mode and in User Mode.

• Since kernel threads run only in Kernel Mode, they use only linear addresses greater
than PAGE_OFFSET. Regular processes, on the other hand, use all 4 gigabytes of linear
addresses, either in User Mode or in Kernel Mode.

3.3.2.1 Creating a kernel thread

The kernel_thread() function creates a new kernel thread and can be executed only by
another kernel thread. The function contains mostly inline Assembly language code, but it is
somewhat equivalent to the following:

int kernel_thread(int (*fn)(void *), void * arg,
 unsigned long flags)
{
 pid_t p;
 p = clone(0, flags | CLONE_VM);
 if (p) /* parent */
 return p;
 else { /* child */
 fn(arg);
 exit();
 }
}

3.3.2.2 Process 0

The ancestor of all processes, called process 0 or, for historical reasons, the swapper process,
is a kernel thread created from scratch during the initialization phase of Linux by the
start_kernel() function (see Appendix A). This ancestor process makes use of the
following data structures:

• A process descriptor and a Kernel Mode stack stored in the init_task_union
variable. The init_task and init_stack macros yield the addresses of the process
descriptor and the stack, respectively.

• The following tables, which the process descriptor points to:
o init_mm
o init_mmap
o init_fs
o init_files
o init_signals

The tables are initialized, respectively, by the following macros:

o INIT_MM
o INIT_MMAP
o INIT_FS
o INIT_FILES

Understanding the Linux Kernel

92

o INIT_SIGNALS
• A TSS segment, initialized by the INIT_TSS macro.
• Two Segment Descriptors, namely a TSSD and an LDTD, which are stored in the

GDT.
• A Page Global Directory stored in swapper_pg_dir, which may be considered as the

kernel Page Global Directory since it is used by all kernel threads.

The start_kernel() function initializes all the data structures needed by the kernel,
enables interrupts, and creates another kernel thread, named process 1, more commonly
referred to as the init process :

kernel_thread(init, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);

The newly created kernel thread has PID 1 and shares with process all per-process kernel data
structures. Moreover, when selected from the scheduler, the init process starts executing the
init() function.

After having created the init process, process executes the cpu_idle() function, which
essentially consists of repeatedly executing the hlt Assembly language instruction with the
interrupts enabled (see Chapter 4). Process is selected by the scheduler only when there are no
other processes in the TASK_RUNNING state.

3.3.2.3 Process 1

The kernel thread created by process executes the init() function, which in turn invokes
the kernel_thread() function four times to initiate four kernel threads needed for routine
kernel tasks:

kernel_thread(bdflush, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
kernel_thread(kupdate, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
kernel_thread(kpiod, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
kernel_thread(kswapd, NULL,
 CLONE_FS | CLONE_FILES | CLONE_SIGHAND);

As a result, four additional kernel threads are created to handle the memory cache and the
swapping activity:

kflushd (also bdflush)

Flushes "dirty" buffers to disk to reclaim memory, as described in Section 14.1.5 in
Chapter 14

kupdate

Flushes old "dirty" buffers to disk to reduce risks of filesystem inconsistencies, as
described in Section 14.1.5 in Chapter 14

kpiod

Understanding the Linux Kernel

93

Swaps out pages belonging to shared memory mappings, as described in
Section 16.5.2 in Chapter 16,

kswapd

Performs memory reclaiming, as described in Section 16.7.6 in Chapter 16

Then init() invokes the execve() system call to load the executable program init. As a
result, the init kernel thread becomes a regular process having its own per-process kernel data
structure. The init process never terminates, since it creates and monitors the activity of all the
processes that implement the outer layers of the operating system.

3.4 Destroying Processes

Most processes "die" in the sense that they terminate the execution of the code they were
supposed to run. When this occurs, the kernel must be notified so that it can release the
resources owned by the process; this includes memory, open files, and any other odds and
ends that we will encounter in this book, such as semaphores.

The usual way for a process to terminate is to invoke the exit() system call. This system
call may be inserted by the programmer explicitly. Additionally, the exit() system call is
always executed when the control flow reaches the last statement of the main procedure (the
main() function in C programs).

Alternatively, the kernel may force a process to die. This typically occurs when the process
has received a signal that it cannot handle or ignore (see Chapter 9) or when an unrecoverable
CPU exception has been raised in Kernel Mode while the kernel was running on behalf of the
process (see Chapter 4).

3.4.1 Process Termination

All process terminations are handled by the do_exit() function, which removes most
references to the terminating process from kernel data structures. The do_exit() function
executes the following actions:

1. Sets the PF_EXITING flag in the flag field of the process descriptor to denote that the
process is being eliminated.

2. Removes, if necessary, the process descriptor from an IPC semaphore queue via the
sem_exit() function (see Chapter 18) or from a dynamic timer queue via the
del_timer() function (see Chapter 5).

3. Examines the process's data structures related to paging, filesystem, open file
descriptors, and signal handling, respectively, with the __exit_mm(),
__exit_files(), __exit_fs(), and _ _exit_sighand() functions. These
functions also remove any of these data structures if no other process is sharing it.

4. Sets the state field of the process descriptor to TASK_ZOMBIE. We shall see what
happens to zombie processes in the following section.

5. Sets the exit_code field of the process descriptor to the process termination code.
This value is either the exit() system call parameter (normal termination), or an
error code supplied by the kernel (abnormal termination).

Understanding the Linux Kernel

94

6. Invokes the exit_notify() function to update the parenthood relationships of both
the parent process and the children processes. All children processes created by the
terminating process become children of the init process.

7. Invokes the schedule() function (see Chapter 10) to select a new process to run.
Since a process in a TASK_ZOMBIE state is ignored by the scheduler, the process will
stop executing right after the switch_to macro in schedule() is invoked.

3.4.2 Process Removal

The Unix operating system allows a process to query the kernel to obtain the PID of its parent
process or the execution state for any of its children. A process may, for instance, create a
child process to perform a specific task and then invoke a wait()-like system call to check
whether the child has terminated. If the child has terminated, its termination code will tell the
parent process if the task has been carried out successfully.

In order to comply with these design choices, Unix kernels are not allowed to discard data
included in a process descriptor field right after the process terminates. They are allowed to
do so only after the parent process has issued a wait()-like system call that refers to the
terminated process. This is why the TASK_ZOMBIE state has been introduced: although the
process is technically dead, its descriptor must be saved until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the system
might be flooded with zombie processes that might end up using all the available task
entries. As mentioned earlier, this problem is solved by forcing all orphan processes to
become children of the init process. In this way, the init process will destroy the zombies
while checking for the termination of one of its legitimate children through a wait()-like
system call.

The release() function releases the process descriptor of a zombie process by executing
the following steps:

1. Invokes the free_uid() function to decrement by 1 the number of processes created
up to now by the user owner of the terminated process. This value is stored in the
user_struct structure mentioned earlier in the chapter.

2. Invokes add_free_taskslot() to free the entry in task that points to the process
descriptor to be released.

3. Decrements the value of the nr_tasks variable.
4. Invokes unhash_pid() to remove the process descriptor from the pidhash hash

table.
5. Uses the REMOVE_LINKS macro to unlink the process descriptor from the process list.
6. Invokes the free_task_struct() function to release the 8 KB memory area used to

contain the process descriptor and the Kernel Mode stack.

3.5 Anticipating Linux 2.4

The new kernel supports a huge number of users and groups, because it makes use of 32-bit
UIDs and GIDs.

Understanding the Linux Kernel

95

In order to raise the hardcoded limit on the number of processes, Linux 2.4 removes the
tasks array, which previously included pointers to all process descriptors.

Moreover, Linux 2.4 no longer includes a Task State Segment for each process. The tss field
in the process descriptor has thus been replaced by a pointer to a data structure storing
the information that was previously in the TSS, namely the register contents and the I/O
bitmap. Linux 2.4 makes use of just one TSS for each CPU in the system. When a context
switch occurs, the kernel uses the per-process data structures to save and restore the register
contents and to fill the I/O bitmap in the TSS of the executing CPU.

Linux 2.4 enhances wait queues. Sleeping processes are now stored in lists implemented
through the efficient list_head data type. Moreover, the kernel is now able to wake up just
a single process that is sleeping in a wait queue, thus greatly improving the efficiency of
semaphores.

Finally, Linux 2.4 adds a new flag to the clone() system call: CLONE_PARENT allows
the new lightweight process to have the same parent as the process that invoked the system
call.

Understanding the Linux Kernel

96

Chapter 4. Interrupts and Exceptions
An interrupt is usually defined as an event that alters the sequence of instructions executed by
a processor. Such events correspond to electrical signals generated by hardware circuits both
inside and outside of the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts:

• Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only after
terminating the execution of an instruction.

• Asynchronous interrupts are generated by other hardware devices at arbitrary times
with respect to the CPU clock signals.

Intel 80x86 microprocessor manuals designate synchronous and asynchronous interrupts as
exceptions and interrupts, respectively. We'll adopt this classification, although we'll
occasionally use the term "interrupt signal" to designate both types together (synchronous as
well as asynchronous).

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a keystroke
from a user sets off an interrupt. Exceptions, on the other hand, are caused either by
programming errors or by anomalous conditions that must be handled by the kernel. In the
first case, the kernel handles the exception by delivering to the current process one of the
signals familiar to every Unix programmer. In the second case, the kernel performs all the
steps needed to recover from the anomalous condition, such as a page fault or a request (via
an int instruction) for a kernel service.

We start by describing in Section 4.1 the motivation for introducing such signals. We then
show how the well-known IRQs (Interrupt ReQuests) issued by I/O devices give rise to
interrupts, and we detail how Intel 80x86 processors handle interrupts and exceptions at the
hardware level. Next, we illustrate in Section 4.4 how Linux initializes all the data structures
required by the Intel interrupt architecture. The remaining three sections describe how Linux
handles interrupt signals at the software level.

One word of caution before moving on: we cover in this chapter only "classic" interrupts
common to all PCs; we do not cover the nonstandard interrupts of some architectures.
For instance, laptops generate types of interrupts not discussed here. Other types of interrupts
specific to multiprocessor architecture will be briefly described in Chapter 11.

4.1 The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to code outside
the normal flow of control. When an interrupt signal arrives, the CPU must stop what it's
currently doing and switch to a new activity; it does this by saving the current value of the
program counter (i.e., the content of the eip and cs registers) in the Kernel Mode stack and
by placing an address related to the interrupt type into the program counter.

There are some things in this chapter that will remind you of the context switch we described
in the previous chapter, carried out when a kernel substitutes one process for another.

Understanding the Linux Kernel

97

But there is a key difference between interrupt handling and process switching: the code
executed by an interrupt or by an exception handler is not a process. Rather, it is a kernel
control path that runs on behalf of the same process that was running when the interrupt
occurred (see Section 4.3). As a kernel control path, the interrupt handler is lighter than a
process (it has less context and requires less time to set up or tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel, since it must
satisfy the following constraints:

• Interrupts can come at any time, when the kernel may want to finish something else it
was trying to do. The kernel's goal is therefore to get the interrupt out of the way as
soon as possible and defer as much processing as it can. For instance, suppose a block
of data has arrived on a network line. When the hardware interrupts the kernel, it could
simply mark the presence of data, give the processor back to whatever was running
before, and do the rest of the processing later (like moving the data into a buffer where
its recipient process can find it and restarting the process). The activities that the
kernel needs to perform in response to an interrupt are thus divided into two parts: a
top half that the kernel executes right away and a bottom half that is left for later. The
kernel keeps a queue pointing to all the functions that represent bottom halves waiting
to be executed and pulls them off the queue to execute them at particular points in
processing.

• Since interrupts can come at any time, the kernel might be handling one of them while
another one (of a different type) occurs. This should be allowed as much as possible
since it keeps the I/O devices busy (see Section 4.3). As a result, the interrupt handlers
must be coded so that the corresponding kernel control paths can be executed in a
nested manner. When the last kernel control path terminates, the kernel must be able
to resume execution of the interrupted process or switch to another process if the
interrupt signal has caused a rescheduling activity.

• Although the kernel may accept a new interrupt signal while handling a previous one,
some critical regions exist inside the kernel code where interrupts must be disabled.
Such critical regions must be limited as much as possible since, according to the
previous requirement, the kernel, and in particular the interrupt handlers, should run
most of the time with the interrupts enabled.

4.2 Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:

• Interrupts:

Maskable interrupts

Sent to the INTR pin of the microprocessor. They can be disabled by clearing the IF
flag of the eflags register. All IRQs issued by I/O devices give rise to maskable
interrupts.

Understanding the Linux Kernel

98

Nonmaskable interrupts

Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not
disabled by clearing the IF flag. Only a few critical events, such as hardware failures,
give rise to nonmaskable interrupts.

• Exceptions:

Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an
instruction. These are further divided into three groups, depending on the value of the
eip register that is saved on the Kernel Mode stack when the CPU control unit raises
the exception:

Faults

The saved value of eip is the address of the instruction that caused the fault, and
hence that instruction can be resumed when the exception handler terminates. As we
shall see in Section 7.4 in Chapter 7, resuming the same instruction is necessary
whenever the handler is able to correct the anomalous condition that caused the
exception.

Traps

The saved value of eip is the address of the instruction that should be executed after
the one that caused the trap. A trap is triggered only when there is no need to
reexecute the instruction that terminated. The main use of traps is for debugging
purposes: the role of the interrupt signal in this case is to notify the debugger that a
specific instruction has been executed (for instance, a breakpoint has been reached
within a program). Once the user has examined the data provided by the debugger, she
may ask that execution of the debugged program resume starting from the next
instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to store a
meaningful value in the eip register. Aborts are caused by hardware failures or by
invalid values in system tables. The interrupt signal sent by the control unit is an
emergency signal used to switch control to the corresponding abort exception handler.
This handler has no choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3
instructions; the into (check for overflow) and bound (check on address bound)
instructions also give rise to a programmed exception when the condition they are
checking is not true. Programmed exceptions are handled by the control unit as traps;
they are often called software interrupts. Such exceptions have two common uses: to
implement system calls, and to notify a debugger of a specific event (see Chapter 8).

Understanding the Linux Kernel

99

4.2.1 Interrupt and Exception Vectors

Each interrupt or exception is identified by a number ranging from to 255; for some unknown
reason, Intel calls this 8-bit unsigned number a vector. The vectors of nonmaskable interrupts
and exceptions are fixed, while those of maskable interrupts can be altered by programming
the Interrupt Controller (see Section 4.2.2).

Linux uses the following vectors:

• Vectors ranging from to 31 correspond to exceptions and nonmaskable interrupts.
• Vectors ranging from 32 to 47 are assigned to maskable interrupts, that is, to interrupts

caused by IRQs.
• The remaining vectors ranging from 48 to 255 may be used to identify software

interrupts. Linux uses only one of them, namely the 128 or 0x80 vector, which it uses
to implement system calls. When an int 0x80 Assembly instruction is executed by a
process in User Mode, the CPU switches into Kernel Mode and starts executing the
system_call() kernel function (see Chapter 8).

4.2.2 IRQs and Interrupts

Each hardware device controller capable of issuing interrupt requests has an output line
designated as an IRQ (Interrupt ReQuest). All existing IRQ lines are connected to the input
pins of a hardware circuit called the Interrupt Controller, which performs the following
actions:

1. Monitors the IRQ lines, checking for raised signals.
2. If a raised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.
b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to

read it via the data bus.
c. Sends a raised signal to the processor INTR pin—that is, issues an interrupt.
d. Waits until the CPU acknowledges the interrupt signal by writing into one of

the Programmable Interrupt Controllers (PIC) I/O ports; when this occurs,
clears the INTR line.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from 0; thus, the first IRQ line is usually
denoted as IRQ0. Intel's default vector associated with IRQn is n+32; as mentioned before,
the mapping between IRQs and vectors can be modified by issuing suitable I/O instructions to
the Interrupt Controller ports.

Figure 4-1 illustrates a typical connection "in cascade" of two Intel 8259A PICs that can
handle up to 15 different IRQ input lines. Notice that the INT output line of the second PIC is
connected to the IRQ2 pin of the first PIC: a signal on that line denotes the fact that an IRQ
signal on any one of the lines IRQ8-IRQ15 has occurred. The number of available IRQ lines
is thus traditionally limited to 15; however, more recent PIC chips are able to handle many
more input lines.

Understanding the Linux Kernel

100

Figure 4-1. Connecting two 8259A PICs in cascade

Other lines not shown in the figure connect the PICs to the bus: in particular, bidirectional
lines D0-D7 connect the I/O port to the data bus, while another input line is connected to the
control bus and is used for receiving acknowledgment signals from the CPU.

Since the number of available IRQ lines is limited, it may be necessary to share the same line
among several different I/O devices. When this occurs, all the devices connected to the same
line will have to be polled sequentially by the software interrupt handler in order to determine
which of them has issued an interrupt request. We'll describe in Section 4.6 how Linux
handles this kind of hardware limitation.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs.
That is, the PIC can be told to stop issuing interrupts that refer to a given IRQ line or vice
versa to enable them. Disabled interrupts are not lost; the PIC sends them to the CPU as soon
as they are enabled again. This feature is used by most interrupt handlers, since it allows them
to process IRQs of the same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of
maskable interrupts. When the IF flag of the eflags register is clear, any maskable interrupt
issued by the PIC is simply ignored by the CPU. The cli and sti Assembly instructions,
respectively, clear and set that flag.

4.2.3 Exceptions

The Intel 80x86 microprocessors issue roughly 20 different exceptions.[1] The kernel must
provide a dedicated exception handler for each exception type. For some exceptions, the CPU
control unit also generates a hardware error code and pushes it in the Kernel Mode stack
before starting the exception handler.

[1] The exact number depends on the processor model.

The following list gives the vector, the name, the type, and a brief description of the
exceptions found in a Pentium model. Additional information may be found in the Intel
technical documentation.

0 - "Divide error" (fault)

Raised when a program tries to divide by 0.

Understanding the Linux Kernel

101

1- "Debug" (trap or fault)

Raised when the T flag of eflags is set (quite useful to implement step-by-step
execution of a debugged program) or when the address of an instruction or operand
falls within the range of an active debug register (see Section 3.2.1 in Chapter 3).

2 - Not used

Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - "Breakpoint" (trap)

Caused by an int3 (breakpoint) instruction (usually inserted by a debugger).

4 - "Overflow" (trap)

An into (check for overflow) instruction has been executed when the OF (overflow)
flag of eflags is set.

5 - "Bounds check" (fault)

A bound (check on address bound) instruction has been executed with the operand
outside of the valid address bounds.

6 - "Invalid opcode" (fault)

The CPU execution unit has detected an invalid opcode (the part of the machine
instruction that determines the operation performed).

7 - "Device not available" (fault)

An ESCAPE or MMX instruction has been executed with the TS flag of cr0 set (see
the section Section 3.2.4 in Chapter 3).

8 - "Double fault" (abort)

Normally, when the CPU detects an exception while trying to call the handler for a
prior exception, the two exceptions can be handled serially. In a few cases, however,
the processor cannot handle them serially, hence it raises this exception.

9 - "Coprocessor segment overrun" (abort)

Problems with the external mathematical coprocessor (applies only to old 80386
microprocessors).

10 - "Invalid TSS" (fault)

The CPU has attempted a context switch to a process having an invalid Task State
Segment.

Understanding the Linux Kernel

102

11 - "Segment not present" (fault)

A reference was made to a segment not present in memory (one in which the
Segment-Present flag of the Segment Descriptor was cleared).

12 - "Stack segment" (fault)

The instruction attempted to exceed the stack segment limit, or the segment identified
by ss is not present in memory.

13 - "General protection" (fault)

One of the protection rules in the protected mode of the Intel 80x86 has been violated.

14 - "Page fault" (fault)

The addressed page is not present in memory, the corresponding page table entry is
null, or a violation of the paging protection mechanism has occurred.

15 - Reserved by Intel

16 - "Floating point error" (fault)

The floating point unit integrated into the CPU chip has signaled an error condition,
such as numeric overflow or division by 0.

17 - "Alignment check" (fault)

The address of an operand is not correctly aligned (for instance, the address of a long
integer is not a multiple of 4).

18 to 31

These values are reserved by Intel for future development.

As illustrated in Table 4-1, each exception is handled by a specific exception handler (see
Section 4.5 later in this chapter), which usually sends a Unix signal to the process that caused
the exception.

Understanding the Linux Kernel

103

Table 4-1. Signals Sent by the Exception Handlers
Exception Exception Handler Signal
0 "Divide error" divide_error() SIGFPE
1 "Debug" debug() SIGTRAP
2 NMI nmi() None
3 "Breakpoint" int3() SIGTRAP
4 "Overflow" overflow() SIGSEGV
5 "Bounds check" bounds() SIGSEGV
6 "Invalid opcode" invalid_op() SIGILL
7 "Device not available" device_not_available() SIGSEGV
8 "Double fault" double_fault() SIGSEGV
9 "Coprocessor segment overrun" coprocessor_segment_overrun() SIGFPE
10 "Invalid TSS" invalid_tss() SIGSEGV
11 "Segment not present" segment_not_present() SIGBUS
12 "Stack exception" stack_segment() SIGBUS
13 "General protection" general_protection() SIGSEGV
14 "Page fault" page_fault() SIGSEGV
15 Intel reserved None None
16 "Floating point error" coprocessor_error() SIGFPE
17 "Alignment check" alignment_check() SIGSEGV

4.2.4 Interrupt Descriptor Table

A system table called Interrupt Descriptor Table (IDT) associates each interrupt or exception
vector with the address of the corresponding interrupt or exception handler. The IDT must be
properly initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and of the LDTs examined in Chapter 2: each
entry corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor.
Thus, a maximum of 256x 8=2048 bytes are required to store the IDT.

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both
the IDT base physical address and its limit (maximum length). It must be initialized before
enabling interrupts by using the lidt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64
bits included in each of them. In particular, the value of the Type field encoded in the bits 40-
43 identifies the descriptor type.

Understanding the Linux Kernel

104

Figure 4-2. Gate descriptors's format

The descriptors are:

Task gate

Includes the TSS selector of the process that must replace the current one when an
interrupt signal occurs. Linux does not use task gates.

Interrupt gate

Includes the Segment Selector and the offset inside the segment of an interrupt or
exception handler. While transferring control to the proper segment, the processor
clears the IF flag, thus disabling further maskable interrupts.

Trap gate

Similar to an interrupt gate, except that while transferring control to the proper
segment, the processor does not modify the IF flag.

As we shall see in Section 4.4.1, Linux uses interrupt gates to handle interrupts and trap gates
to handle exceptions.

4.2.5 Hardware Handling of Interrupts and Exceptions

We now describe how the CPU control unit handles interrupts and exceptions. We assume
that the kernel has been initialized and thus the CPU is operating in protected mode.

After executing an instruction, the cs and eip pair of registers contain the logical address of
the next instruction to be executed. Before dealing with that instruction, the control unit

Understanding the Linux Kernel

105

checks whether an interrupt or an exception has occurred while it executed the previous
instruction. If one occurred, the control unit:

1. Determines the vector i (0 i 255) associated with the interrupt or the exception.
2. Reads the i th entry of the IDT referred by the idtr register (we assume in the

following description that the entry contains an interrupt or a trap gate).
3. Gets the base address of the GDT from the gdtr register and looks in the GDT to read

the Segment Descriptor identified by the selector in the IDT entry. This descriptor
specifies the base address of the segment that includes the interrupt or exception
handler.

4. Makes sure the interrupt was issued by an authorized source. First compares the
Current Privilege Level (CPL), which is stored in the two least significant bits of the
cs register, with the Descriptor Privilege Level (DPL) of the Segment Descriptor
included in the GDT. Raises a "General protection" exception if CPL is lower than
DPL, because the interrupt handler cannot have a lower privilege than the program
that caused the interrupt. For programmed exceptions, makes a further security check:
compares the CPL with the DPL of the gate descriptor included in the IDT and raises a
"General protection" exception if the DPL is lower than the CPL. This last check
makes it possible to prevent access by user applications to specific trap or interrupt
gates.

5. Checks whether a change of privilege level is taking place, that is, if CPL is different
from the selected Segment Descriptor's DPL. If so, the control unit must start using the
stack that is associated with the new privilege level. It does this by performing the
following steps:

a. Reads the tr register to access the TSS segment of the current process.
b. Loads the ss and esp registers with the proper values for the stack segment

and stack pointer relative to the new privilege level. These values are found in
the TSS (see Section 3.2.2 in Chapter 3).

c. In the new stack, saves the previous values of ss and esp, which define the
logical address of the stack associated with the old privilege level.

6. If a fault has occurred, loads cs and eip with the logical address of the instruction that
caused the exception so that it can be executed again.

7. Saves the contents of eflags, cs, and eip in the stack.
8. If the exception carries a hardware error code, saves it on the stack.
9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of the

Gate Descriptor stored in the i th entry of the IDT. These values define the logical
address of the first instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or
exception handler. In other words, the instruction processed by the control unit after dealing
with the interrupt signal is the first instruction of the selected handler.

After the interrupt or exception has been processed, the corresponding handler must relinquish
control to the interrupted process by issuing the iret instruction, which forces the control unit
to:

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a
hardware error code has been pushed in the stack on top of the eip contents, it must be
popped before executing iret.

Understanding the Linux Kernel

106

2. Check whether the CPL of the handler is equal to the value contained in the two least
significant bits of cs (this means the interrupted process was running at the same
privilege level as the handler). If so, iret concludes execution; otherwise, go to the
next step.

3. Load the ss and esp registers from the stack, and hence return to the stack associated
with the old privilege level.

4. Examine the contents of the ds, es, fs, and gs segment registers: if any of them
contains a selector that refers to a Segment Descriptor whose DPL value is lower than
CPL, clear the corresponding segment register. The control unit does this to forbid
User Mode programs that run with a CPL equal to 3 from making use of segment
registers previously used by kernel routines (with a DPL equal to 0). If these registers
were not cleared, malicious User Mode programs could exploit them to access the
kernel address space.

4.3 Nested Execution of Exception and Interrupt Handlers

A kernel control path consists of the sequence of instructions executed in Kernel Mode to
handle an interrupt or an exception. When a process issues a system call request, for instance,
the first instructions of the corresponding kernel control path are those that save the content of
the registers in the Kernel Mode stack, while the last instructions are those that restore the
content of the registers and put the CPU back into User Mode.

Assuming that the kernel is bug-free, most exceptions can occur only while the CPU is in
User Mode. Indeed, they are either caused by programming errors or triggered by debuggers.
However, the "Page fault" exception may occur in Kernel Mode: this happens when the
process attempts to address a page that belongs to its address space but is not currently in
RAM. While handling such an exception, the kernel may suspend the current process and
replace it with another one until the requested page is available. The kernel control path that
handles the page fault exception will resume execution as soon as the process gets the
processor again.

Since the "Page fault" exception handler never gives rise to further exceptions, at most two
kernel control paths associated with exceptions may be stacked, one on top of the other.

In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures
specific to the current process, although the kernel control paths that handle them run on
behalf of that process. As a matter of fact, it is impossible to predict which process will be
currently running when a given interrupt occurs.

Linux design does not allow process switching while the CPU is executing a kernel control
path associated with an interrupt. However, such kernel control paths may be arbitrarily
nested: an interrupt handler may be interrupted by another interrupt handler and so on.

An interrupt handler may also defer an exception handler. Conversely, an exception handler
never defers an interrupt handler. The only exception that can be triggered in Kernel Mode is
the "Page fault" one just described. But interrupt handlers never perform operations that could
induce page faults and thus, potentially, process switching.

Linux interleaves kernel control paths for two major reasons:

Understanding the Linux Kernel

107

• To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the PIC
transforms it into an INTR request, and then both the PIC and the device controller
remain blocked until the PIC receives an acknowledgment from the CPU. Thanks to
kernel control path interleaving, the kernel is able to send the acknowledgment even
when it is handling a previous interrupt.

• To implement an interrupt model without priority levels. Since each interrupt handler
may be deferred by another one, there is no need to establish predefined priorities
among hardware devices. This simplifies the kernel code and improves its portability.

4.4 Initializing the Interrupt Descriptor Table

Now that you understand what the Intel processor does with interrupts and exceptions at the
hardware level, we can move on to describe how the Interrupt Descriptor Table is initialized.

Remember that before the kernel enables the interrupts, it must load the initial address of the
IDT table into the idtr register and initialize all the entries of that table. This activity is done
while initializing the system (see Appendix A).

The int instruction allows a User Mode process to issue an interrupt signal having an
arbitrary vector ranging from to 255. The initialization of the IDT must thus be done
carefully, in order to block illegal interrupts and exceptions simulated by User Mode
processes via int instructions. This can be achieved by setting the DPL field of the Interrupt
or Trap Gate Descriptor to 0. If the process attempts to issue one of such interrupt signals, the
control unit will check the CPL value against the DPL field and issue a "General protection"
exception.

In a few cases, however, a User Mode process must be able to issue a programmed exception.
To allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate
Descriptors to 3; that is, as high as possible.

Let's now see how Linux implements this strategy.

4.4.1 Interrupt, Trap, and System Gates

As mentioned in Section 4.2.4, Intel provides three types of interrupt descriptors: Task,
Interrupt, and Trap Gate Descriptors. Task Gate Descriptors are irrelevant to Linux, but its
Interrupt Descriptor Table contains several Interrupt and Trap Gate Descriptors. Linux
classifies them as follows, using a slightly different breakdown and terminology from Intel:

Interrupt gate

An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's
DPL field is equal to 0). All Linux interrupt handlers are activated by means of
interrupt gates, and all are restricted to Kernel Mode.

System gate

An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field is
equal to 3). The four Linux exception handlers associated with the vectors 3, 4, 5, and

Understanding the Linux Kernel

108

128 are activated by means of system gates, so the four Assembly instructions int3,
into, bound, and int 0x80 can be issued in User Mode.

Trap gate

An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL
field is equal to 0). All Linux exception handlers, except the four described in the
previous paragraph, are activated by means of trap gates.

The following functions are used to insert gates in the IDT:

set_intr_gate(n,addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is
set to the kernel code's Segment Selector. The Offset field is set to addr, which is the
address of the interrupt handler. The DPL field is set to 0.

set_system_gate(n,addr)

Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set to
the kernel code's Segment Selector. The Offset field is set to addr, which is the
address of the exception handler. The DPL field is set to 3.

set_trap_gate(n,addr)

Similar to the previous function, except that the DPL field is set to 0.

4.4.2 Preliminary Initialization of the IDT

The IDT is initialized and used by the BIOS routines when the computer still operates in Real
Mode. Once Linux takes over, however, the IDT is moved to another area of RAM and
initialized a second time, since Linux does not make use of any BIOS routines (see
Appendix A).

The IDT is stored in the idt_table table, which includes 256 entries.[2] The 6-byte
idt_descr variable specifies both the size of the IDT and its address; it is used only when the
kernel initializes the idtr register with the lidt Assembly instruction. In all other cases, the
kernel refers to the idt variable to get the address of the IDT.

[2] Some Pentium models have the notorious "f00f" bug, which allows a User Mode program to freeze the system. When executing on such CPUs,
Linux uses a workaround based on storing the IDT in a write-protected page frame. The workaround for the bug is offered as an option when the user
compiles the kernel.

During kernel initialization, the setup_idt() assembly language function starts by filling
all 256 entries of idt_table with the same interrupt gate, which refers to the ignore_int()
interrupt handler:

setup_idt:
 lea ignore_int, %edx
 movl $(__KERNEL_CS << 16), %eax
 movw %dx, %ax /* selector = 0x0010 = cs */
 movw $0x8e00, %dx /* interrupt gate, dpl=0, present */

Understanding the Linux Kernel

109

 lea idt_table, %edi
 mov $256, %ecx
rp_sidt:
 movl %eax, (%edi)
 movl %edx, 4(%edi)
 addl $8, %edi
 dec %ecx
 jne rp_sidt
 ret

The ignore_int() interrupt handler, which is in assembly language, may be viewed as a
null handler that executes the following actions:

1. Saves the content of some registers in the stack
2. Invokes the printk() function to print an "Unknown interrupt" system message
3. Restores the register contents from the stack
4. Executes an iret instruction to restart the interrupted program

The ignore_int() handler should never be executed: the occurrence of "Unknown
interrupt" messages on the console or in the log files denotes either a hardware problem (an
I/O device is issuing unforeseen interrupts) or a kernel problem (an interrupt or exception is
not being handled properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT to replace
some of the null handlers with meaningful trap and interrupt handlers. Once this is done, the
IDT will include a specialized trap or system gate for each different exception issued by the
control unit, and a specialized interrupt gate for each IRQ recognized by the Programmable
Interrupt Controller.

The next two sections illustrate in detail how this is done, respectively, for exceptions and
interrupts.

4.5 Exception Handling

Linux takes advantage of exceptions to achieve two quite different goals:

• To send a signal to a process to notify an anomalous condition
• To handle demand paging

An example of the first use is if a process performs a division by 0. The CPU raises a "Divide
error" exception, and the corresponding exception handler sends a SIGFPE signal to the
current process, which will then take the necessary steps to recover or (if no signal handler is
set for that signal) abort.

Exception handlers have a standard structure consisting of three parts:

1. Save the contents of most registers in the Kernel Mode stack (this part is coded in
Assembly language).

2. Handle the exception by means of a high-level C function.
3. Exit from the handler by means of the ret_from_exception() function.

Understanding the Linux Kernel

110

In order to take advantage of exceptions, the IDT must be properly initialized with an
exception handler function for each recognized exception. It is the job of the trap_init(
)function to insert the final values—that is, the functions that handle the exceptions—into all
IDT entries that refer to nonmaskable interrupts and exceptions. This is accomplished through
the set_trap_gate and set_system_gate macros:

set_trap_gate(0,÷_error);
set_trap_gate(1,&debug);
set_trap_gate(2,&nmi);
set_system_gate(3,&int3);
set_system_gate(4,&overflow);
set_system_gate(5,&bounds);
set_trap_gate(6,&invalid_op);
set_trap_gate(7,&device_not_available);
set_trap_gate(8,&double_fault);
set_trap_gate(9,&coprocessor_segment_overrun);
set_trap_gate(10,&invalid_TSS);
set_trap_gate(11,&segment_not_present);
set_trap_gate(12,&stack_segment);
set_trap_gate(13,&general_protection);
set_trap_gate(14,&page_fault);
set_trap_gate(16,&coprocessor_error);
set_trap_gate(17,&alignment_check);
set_system_gate(0x80,&system_call);

Now we will look at what a typical exception handler does once it is invoked.

4.5.1 Saving the Registers for the Exception Handler

Let us denote with handler_name the name of a generic exception handler. (The actual names
of all the exception handlers appear on the list of macros in the previous section.) Each
exception handler starts with the following Assembly instructions:

handler_name:
 pushl $0 /* only for some exceptions */
 pushl $do_handler_name
 jmp error_code

If the control unit is not supposed to automatically insert a hardware error code on the stack
when the exception occurs, the corresponding Assembly fragment includes a pushl $0
instruction to pad the stack with a null value. Then the address of the high-level C function is
pushed on the stack; its name consists of the exception handler name prefixed by do_.

The Assembly fragment labeled as error_code is the same for all exception handlers except
the one for the "Device not available" exception (see Section 3.2.4 in Chapter 3). The code
performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.
2. Issues a cld instruction to clear the direction flag DF of eflags, thus making sure that

autoincrements on the edi and esi registers will be used with string instructions.
3. Copies the hardware error code saved in the stack at location esp+36 in eax. Stores in

the same stack location the value -1: as we shall see in the section Section 9.3.4 in
Chapter 9, this value is used to separate 0x80 exceptions from other exceptions.

Understanding the Linux Kernel

111

4. Loads ecx with the address of the high-level do_handler_name() C function saved
in the stack at location esp+32; writes the contents of es in that stack location.

5. Loads the kernel data Segment Selector into the ds and es registers, then sets the ebx
register to the address of the current process descriptor (see Section 3.1.2 in Chapter
3).

6. Stores the parameters to be passed to the high-level C function on the stack, namely,
the exception hardware error code and the address of the stack location where the
contents of User Mode registers was saved.

7. Invokes the high-level C function whose address is now stored in ecx.

After the last step is executed, the invoked function will find on the top locations of the stack:

• The return address of the instruction to be executed after the C function terminates
(see next section)

• The stack address of the saved User Mode registers
• The hardware error code

4.5.2 Returning from the Exception Handler

When the C function that implements the exception handling terminates, control is transferred
to the following assembly language fragment:

addl $8, %esp
jmp ret_from_exception

The code pops the stack address of the saved User Mode registers and the hardware error code
from the stack, then performs a jmp instruction to the ret_from_exception() function.
This function will be described in Section 4.7.

4.5.3 Invoking the Exception Handler

As already explained, the names of the C functions that implement exception handlers always
consist of the prefix do_ followed by the handler name. Most of these functions store the
hardware error code and the exception vector in the process descriptor of current, then send
to that process a suitable signal. This is done as follows:

current->tss.error_code = error_code;
current->tss.trap_no = vector;
force_sig(sig_number, current);

When the ret_from_exception() function is invoked, it checks whether the process has
received a signal. If so, the signal will be handled either by the process's own signal handler
(if it exists) or by the kernel; in the latter case, the kernel will usually kill the process (see
Chapter 9). The signals sent by the exception handlers have already been illustrated in Table
4-1.

Finally, the handler invokes either die_if_kernel() or die_if_no_fixup():

• The die_if_kernel() function checks whether the exception occurred in Kernel
Mode; in this case, it invokes the die() function, which prints the contents of all

Understanding the Linux Kernel

112

CPU registers on the console and terminates the current process by invoking
do_exit() (see Chapter 19).

• The die_if_no_fixup() function is similar, but before invoking die() it checks
whether the exception was due to an invalid argument of a system call: in the
affirmative case, it uses a "fixup" approach, which will be described in Section 8.2.6
in Chapter 8.

Two exceptions are exploited by the kernel to manage hardware resources more efficiently.
The corresponding handlers are more complex because the exception does not necessarily
denote an error condition:

• "Device not available": as discussed in Section 3.2.4 in Chapter 3, this exception is
used to defer loading the floating point registers until the last possible moment.

• "Page fault": as we shall see in the section Section 7.4 in Chapter 7, this exception is
used to defer allocating new page frames to the process until the last possible
fmoment.

4.6 Interrupt Handling

As we explained earlier, most exceptions are handled simply by sending a Unix signal to the
process that caused the exception. The action to be taken is thus deferred until the process
receives the signal; as a result, the kernel is able to process the exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after the
process to which they are related (for instance, a process that requested a data transfer) has
been suspended and a completely unrelated process is running. So it would make no sense to
send a Unix signal to the current process.

Furthermore, due to hardware limitations, several devices may share the same IRQ line.
(Remember that PCs supply only a few IRQs.) This means that the interrupt vector alone does
not tell the whole story: as an example, some PC configurations may assign the same vector to
the network card and to the graphic card. Therefore, an interrupt handler must be flexible
enough to service several devices. In order to do this, several interrupt service routines (ISRs)
can be associated with the same interrupt handler; each of them is a function related to a
single device sharing the IRQ line. Since it is not possible to know in advance which
particular device issued the IRQ, each ISR is executed to verify whether its device needs
attention; if so, the ISR performs all the operations that need to be executed when the device
raises an interrupt.

Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the
interrupt handler itself is not a suitable place for all kind of actions. Long noncritical
operations should be deferred, since while an interrupt handler is running, the signals on the
corresponding IRQ line are ignored. Most important, the process on behalf of which an
interrupt handler is executed must always stay in the TASK_RUNNING state, or a system freeze
could occur. Therefore, interrupt handlers cannot perform any blocking procedure such as I/O
disk operations. So Linux divides the actions to be performed following an interrupt into three
classes:

Understanding the Linux Kernel

113

Critical

Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the
device controller, or updating data structures accessed by both the device and the
processor. These can be executed quickly and are critical because they must be
performed as soon as possible. Critical actions are executed within the interrupt
handler immediately, with maskable interrupts disabled.

Noncritical

Actions such as updating data structures that are accessed only by the processor (for
instance, reading the scan code after a keyboard key has been pushed). These actions
can also finish quickly, so they are executed by the interrupt handler immediately,
with the interrupts enabled.

Noncritical deferrable

Actions such as copying a buffers contents into the address space of some process (for
instance, sending the keyboard line buffer to the terminal handler process). These may
be delayed for a long time interval without affecting the kernel operations; the
interested process will just keep waiting for the data. Noncritical deferrable actions are
performed by means of separate functions called "bottom halves." We shall discuss
them in Section 4.6.6.

All interrupt handlers perform the same four basic actions:

1. Save the IRQ value and the registers contents in the Kernel Mode stack.
2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to

issue further interrupts.
3. Execute the interrupt service routines (ISRs) associated with all the devices that share

the IRQ.
4. Terminate by jumping to the ret_from_intr() address.

Several descriptors are needed to represent both the state of the IRQ lines and the functions to
be executed when an interrupt occurs. Figure 4-3 represents in a schematic way the hardware
circuits and the software functions used to handle an interrupt. These functions will be
discussed in the following sections.

Understanding the Linux Kernel

114

Figure 4-3. Interrupt handling

4.6.1 Interrupt Vectors

As explained in Section 4.2.2, the 16 physical IRQs are assigned the vectors 32-47. The IBM-
compatible PC architecture requires that some devices must be statically connected to specific
IRQ lines. In particular:

• The interval timer device must be connected to the IRQ0 line (see Chapter 5).
• The slave 8259A PIC must be connected to the IRQ2 line (see Figure 4-1).
• The external mathematical coprocessor must be connected to the IRQ13 line (although

recent Intel 80x86 processors no longer use such a device, Linux continues to support
the venerable 80386 model).

For all remaining IRQs, the kernel must establish a correspondence between IRQ number and
I/O device before enabling interrupts. Otherwise, how could the kernel handle a signal from
(say) a SCSI disk without knowing which vector corresponds to the device?

Modern I/O devices are able to connect themselves to several IRQ lines. The optimal
selection depends on how many devices are on the system and whether any are constrained to
respond only to certain IRQs. There are two ways to select a line for each device:

• By a utility program executed when installing the device: such a program may ask the
user to select an available IRQ number or determine an available number by itself.

• By a hardware protocol executed at system startup. Under this system, peripheral
devices declare which interrupt lines they are ready to use; the final values are then
negotiated to reduce conflicts as much as possible. Once this is done, each interrupt
handler can read the assigned IRQ by using a function that accesses some I/O ports of
the device. For instance, drivers for devices that comply with the Peripheral
Component Interconnect (PCI) standard make use of a group of functions such as
pci_read_config_byte() and pci_write_config_byte() to access the device
configuration space.

Understanding the Linux Kernel

115

In both cases, the kernel can retrieve the selected IRQ line of a device when initializing the
corresponding driver. Table 4-2 shows a fairly arbitrary arrangement of devices and IRQs,
such as might be found on one particular PC.

Table 4-2. An Example of IRQ Assignment to I/O Devices
IRQ INT Hardware Device
0 32 Timer
1 33 Keyboard
2 34 PIC cascading
3 35 Second serial port
4 36 First serial port
6 38 Floppy disk
8 40 System clock
11 43 Network interface
12 44 PS/2 mouse
13 45 Mathematical coprocessor
14 46 EIDE disk controller's first chain
15 47 EIDE disk controller's second chain

4.6.2 IRQ Data Structures

As always when discussing complicated operations involving state transitions, it helps to
understand first where key data is stored. Thus, this section explains the data structures that
support interrupt handling and how they are laid out in various descriptors. Figure 4-4
illustrates schematically the relationships between the main descriptors that represent the state
of the IRQ lines. (The figure does not illustrate the data structures needed to handle bottom
halves; they will be discussed later in this chapter.)

Figure 4-4. IRQ descriptors

4.6.2.1 The irq_desc_t descriptor

An irq _desc array includes NR_IRQS irq _desc_t descriptors, which include the following
fields:

status

A set of flags describing the IRQ line status.

Understanding the Linux Kernel

116

IRQ _INPROGRESS

A handler for the IRQ is being executed.

IRQ _DISABLED

The IRQ line has been deliberately disabled by a device driver.

IRQ _PENDING

An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC,
but it has not yet been serviced by the kernel.

IRQ _REPLAY

The IRQ line has been disabled but the previous IRQ occurrence has not yet been
acknowledged to the PIC.

IRQ _AUTODETECT

The kernel is using the IRQ line while performing a hardware device probe.

IRQ _WAITING

The kernel is using the IRQ line while performing a hardware device probe; moreover,
the corresponding interrupt has not been raised.

handler

Points to the hw_interrupt_type descriptor that identifies the PIC circuit servicing
the IRQ line.

action

Identifies the interrupt service routines to be invoked when the IRQ occurs. The field
points to the first element of the list of irqaction descriptors associated with the
IRQ. The irqaction descriptor is described briefly later in the chapter.

depth

Shows 0 if the IRQ line is enabled and a positive value if it has been disabled at least
once. Every time the disable_irq() function is invoked, it increments this field; if
depth was equal to 0, the function disables the IRQ line. Conversely, each invocation
of the enable_irq() function decrements the field; if depth becomes 0, the function
enables the IRQ line.

During system initialization, the init_IRQ() function sets the status field of each IRQ
main descriptor to IRQ _DISABLED as follows:

Understanding the Linux Kernel

117

for (i=0; i<NR_IRQS; i++)
 irq_desc[i].status = IRQ_DISABLED;

It then updates the IDT by replacing the provisional interrupt gates with the final ones. This is
accomplished through the following statements:

for (i = 0; i < NR_IRQS; i++)
 set_intr_gate(0x20+i,interrupt[i]);

This code looks in the interrupt array to find the interrupt handler addresses that it uses to
set up the interrupt gates. The interrupt handler for IRQn is named IRQn_interrupt() (see
Section 4.6.3).

4.6.2.2 The hw_interrupt_type descriptor

This descriptor includes a group of pointers to the low-level I/O routines that interact with a
specific PIC circuit. Linux supports, in addition to the 8259A chip that was mentioned near
the beginning of this chapter, several other PIC circuits such as the SMP IO-APIC, PIIX4's
internal 8259 PIC, and SGI's Visual Workstation Cobalt (IO-)APIC. But for the sake of
simplifying the explanation, we'll assume in this chapter that our computer is a uniprocessor
with two 8259A PICs, which provides the 16 standard IRQs discussed earlier. In this case, the
handler field in each of the 16 irq _desc_t descriptors points to the i8259A_irq _type
variable, which describes the 8259A PIC. This variable is initialized as follows:

struct hw_interrupt_type i8259A_irq_type = {
 "XT-PIC",
 startup_8259A_irq,
 shutdown_8259A_irq,
 do_8259A_IRQ,
 enable_8259A_irq,
 disable_8259A_irq
};

The first field in this structure, "XT-PIC", is a name. Following that, i8259A_irq_type
includes pointers to five different functions used to program the PIC. The first two functions
start up and shut down an IRQ line of the chip, respectively. But in the case of the 8259A chip
these functions coincide with the last two functions, which enable and disable the line. The
do_8259A_IRQ() function will be described in Section 4.6.4.

4.6.2.3 The irqaction descriptor

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains
irqaction descriptors, each of which refers to a specific hardware device and a specific
interrupt. The descriptor includes the following fields.

handler

Points to the interrupt service routine for an I/O device. This is the key field that
allows many devices to share the same IRQ.

Understanding the Linux Kernel

118

flags

Describes the relationships between IRQ line and I/O device in a set of flags:

SA_INTERRUPT

The handler must execute with interrupts disabled.

SA_SHIRQ

The device permits its IRQ line to be shared with other devices.

SA_SAMPLE_RANDOM

The device may be considered as a source of events occurring randomly; it can thus be
used by the kernel random number generator. (Users can access this feature by taking
random numbers from the /dev/random and /dev/urandom device files.)

SA_PROBE

The kernel is using the IRQ line while performing a hardware device probe.

name

Names of the I/O device (shown when listing the serviced IRQs by reading the
/proc/interrupts file).

dev_id

The major and minor numbers that identify the I/O device (see Section 13.2.1 in
Chapter 13).

next

Points to the next element of a list of irqaction descriptors. The elements in the list
refer to hardware devices that share the same IRQ.

4.6.3 Saving the Registers for the Interrupt Handler

As with other context switches, the need to save registers leaves the kernel developer a
somewhat messy coding job because the registers have to be saved and restored using
assembly language code, but within those operations the processor is expected to call and
return from a C function. In this section we'll describe the assembly language task of handling
registers, while in the next we'll show some of the acrobatics required in the C function that is
subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the interrupt
handler for IRQn is named IRQn_interrupt, and its address is included in the interrupt gate
stored in the proper IDT entry.

Understanding the Linux Kernel

119

The same BUILD_IRQ macro is duplicated 16 times, once for each IRQ number, in order to
yield 16 different interrupt handler entry points. Each BUILD_IRQ expands to the following
assembly language fragment:

IRQn_interrupt:
 pushl $n-256
 jmp common_interrupt

The result is to save on the stack the IRQ number associated with the interrupt minus 256;[3]
the same code for all interrupt handlers can then be executed while referring to this number.
The common code can be found in the BUILD_COMMON_IRQ macro, which expands to the
following assembly language fragment:

[3] Subtracting 256 from an IRQ number yields a negative number. Positive numbers are reserved to identify system calls (see Chapter 8).

common_interrupt:
 SAVE_ALL
 call do_IRQ
 jmp ret_from_intr

The SAVE_ALL macro, in turn, expands to the following fragment:

cld
push %es
push %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $__KERNEL_DS,%edx
mov %dx,%ds
mov %dx,%es

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the stack,
except for eflags, cs, eip, ss, and esp, which are already saved automatically by the control
unit (see Section 4.2.5). The macro then loads the selector of the kernel data segment into ds
and es.

After saving the registers, BUILD_COMMON_IRQ invokes the do_IRQ() function and jumps to
the ret_from_intr() address (see Section 4.7).

4.6.4 The do_IRQ() Function

The do_IRQ() function is invoked to execute all interrupt service routines associated with an
interrupt. When it starts, the kernel stack contains from the top down:

• The do_IRQ() return address
• The group of register values pushed on by SAVE_ALL
• The encoding of the IRQ number
• The registers saved automatically by the control unit when it recognized the interrupt

Understanding the Linux Kernel

120

Since the C compiler places all the parameters on top of the stack, the do_IRQ() function is
declared as follows:

void do_IRQ(struct pt_regs regs)

where the pt_regs structure consists of 15 fields:

• The first nine fields correspond to the register values pushed by SAVE_ALL.
• The tenth field, referenced through a field called orig_eax, encodes the IRQ number.
• The remaining fields correspond to the register values pushed on automatically by the

control unit.[4]

[4] The ret_from_intr() return address is missing from the pt_regs structure because the C compiler expects a return address on
top of the stack and takes this into account when generating the instructions to address parameters.

The do_IRQ() function can thus read the IRQ passed as a parameter and decode it as
follows:

irq = regs.orig_eax & 0xff;

The function then executes:

irq_desc[irq].handler->handle(irq, ®s);

The handler field points to the hw_interrupt_type descriptor that refers to the PIC model
servicing the IRQ line (see Section 4.6.2). Assuming that the PIC is an 8259A, the handle
field points to the do_8259A_IRQ() function, which is thus executed.

The do_8259A_IRQ() function starts by invoking the mask_and_ack_8259A() function,
which acknowledges the interrupt to the PIC and disables further interrupts with the same
IRQ number.

Then the function checks whether the handler is willing to deal with the interrupt and whether
it is already handling it; to that end, it reads the values of the IRQ_DISABLED and IRQ
_INPROGRESS flags stored in the status field of the IRQ main descriptor. If both flags are
cleared, the function picks up the pointer to the first irqaction descriptor from the action
field and sets the IRQ _INPROGRESS flag. It then invokes handle_IRQ _event(), which
executes each interrupt service routine in turn through the following code. As mentioned
previously, if the IRQ is shared by several devices, each corresponding interrupt service
routine must be invoked because the kernel does not know which device issued the interrupt:

do {
 action->handler(irq, action->dev_id, regs);
 action = action->next;
} while (action);

Notice that the kernel cannot break the loop as soon as one ISR has claimed the interrupt
because another device on the same IRQ line might need to be serviced.

Understanding the Linux Kernel

121

Finally, the do_8259A_IRQ() function cleans things up by clearing the IRQ_INPROGRESS
flag just mentioned. Moreover, if the IRQ _DISABLED flag is not set, the function invokes the
low-level enable_8259A_irq() function to enable interrupts that come from the IRQ line.

The control now returns to do_IRQ(), which checks whether "bottom halves" tasks are
waiting to be executed. (As we shall see, a queue of such bottom halves is maintained by the
kernel.) If bottom halves are waiting, the function invokes the do_bottom_half() function
we'll describe shortly. Finally, do_IRQ() terminates and control is transferred to the
ret_from_intr address.

4.6.5 Interrupt Service Routines

As mentioned previously, an interrupt service routine implements a device-specific operation.
All of them act on the same parameters:

irq

The IRQ number

dev_id

The device identifier

regs

A pointer to the Kernel Mode stack area containing the registers saved right after the
interrupt occurred

The first parameter allows a single ISR to handle several IRQ lines, the second one allows a
single ISR to take care of several devices of the same type, and the last one allows the ISR to
access the execution context of the interrupted kernel control path. In practice, most ISRs do
not use these parameters.

The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts are enabled
or disabled when the do_IRQ() function invokes an ISR. An ISR that has been invoked with
the interrupts in one state is allowed to put them in the opposite state through an assembly
language instruction: cli to disable interrupts and sti to enable them.

The structure of an ISR depends on the characteristics of the device handled. We'll give a few
examples of ISRs in Chapter 5 and Chapter 13.

4.6.6 Bottom Half

A bottom half is a low-priority function, usually related to interrupt handling, that is waiting
for the kernel to find a convenient moment to run it. Bottom halves that are waiting will be
executed only when one of the following events occurs:

• The kernel finishes handling a system call.
• The kernel finishes handling an exception.

Understanding the Linux Kernel

122

• The kernel terminates the do_IRQ() function—that is, it finishes handling an
interrupt.

• The kernel executes the schedule() function to select a new process to run on the
CPU.

Thus, when an interrupt service routine activates a bottom half, a long time interval can occur
before it is executed.[5] But as we have seen, the existence of bottom halves is very important
to fulfill the kernel's responsibility to service interrupts from multiple devices quickly. This
book doesn't talk too much about the contents of bottom halves—they depend on the
particular tasks needed to service devices—but just about how the kernel maintains and
invokes the bottom halves. You will find an example of a specific bottom half in Section 5.4
in Chapter 5.

[5] However, the execution of bottom halves will not be deferred forever: the CPU does not switch back to User Mode until there are no bottom halves
to be executed; see the Section 4.7.

Linux makes use of an array called the bh_base table to group all bottom halves together. It is
an array of pointers to bottom halves and can include up to 32 entries, one for each type of
bottom half. In practice, Linux uses about half of them; the types are listed in Table 4-3. As
you can see from the table, some of the bottom halves are associated with hardware devices
that are not necessarily installed in the system or that are specific to platforms besides the
IBM PC compatible. But TIMER_BH, CONSOLE_BH, TQUEUE_BH, SERIAL_BH, IMMEDIATE_BH,
and KEYBOARD_BH see widespread use.

Table 4-3. The Linux Bottom Halves
Bottom Half Peripheral Device
AURORA_BH Aurora multiport card (SPARC)
CM206_BH CD-ROM Philips/LMS cm206 disk
CONSOLE_BH Virtual console
CYCLADES_BH Cyclades Cyclom-Y serial multiport
DIGI_BH DigiBoard PC/Xe
ESP_BH Hayes ESP serial card
IMMEDIATE_BH Immediate task queue
ISICOM_BH MultiTech's ISI cards
JS_BH Joystick (PC IBM compatible)
KEYBOARD_BH Keyboard
MACSERIAL_BH Power Macintosh's serial port
NET_BH Network interface
RISCOM8_BH RISCom/8
SCSI_BH SCSI interface
SERIAL_BH Serial port
SPECIALIX_BH Specialix IO8+
TIMER_BH Timer
TQUEUE_BH Periodic task queue

4.6.6.1 Activating and tracking the state of bottom halves

Before invoking a bottom half for the first time, it must be initialized. This is done by
invoking the init_bh(n, routine) function, which inserts the routine address in the n th
entry of bh_base. Conversely, remove_bh(n) removes the n th bottom half from the table.

Understanding the Linux Kernel

123

Once a bottom half has been initialized, it can be "activated," thus executed any time one of
the previously mentioned events occurs. The mark_bh(n) function is used by interrupt
handlers to activate the n th bottom half. To keep track of the state of all these bottom halves,
the bh_active variable stores 32 flags that specify which bottom halves are currently
activated. When a bottom half concludes its execution, the kernel clears the corresponding
bh_active flag; thus, any activation causes exactly one execution.

The do_bottom_half() function is used to start executing all currently active unmasked
bottom halves; it enables the maskable interrupts and then invokes run_bottom_halves().
This function makes sure that only one bottom half is ever active at a time by executing the
following C code fragment:

active = bh_mask & bh_active;
bh_active &= active;
bh = bh_base;
do {
 if (active & 1)
 (*bh)();
 bh++;
 active >>= 1;
} while (active);

The flags in bh_active that refer to the group of bottom halves that must be executed are
cleared. This ensures that each bottom half activation causes exactly one execution of the
corresponding function.

Each bottom half can be individually "masked"; if this is the case, it won't be executed even if
it is activated. The bh_mask variable stores 32 bits that specify which bottom halves are
currently masked. The disable_bh(n) and enable_bh(n) functions act on the nth flag of
bh_mask; they are used to mask and unmask a bottom half, respectively.

Here's why masking bottom halves is useful. Assume that a kernel function is modifying
some kernel data structure when an exception (for instance, a "Page fault") occurs. After the
kernel finishes handling the exception, all active nonmasked bottom halves will be executed.
If one of the bottom halves accesses the same kernel data structure as the suspended kernel
function, both the bottom half and the kernel function will find the data structure in a
nonconsistent state. In order to avoid this race condition, the kernel function must mask all
bottom halves that access the data structure.

Unfortunately, the bh_mask variable does not always ensure that bottom halves remain
correctly masked. For instance, let us suppose that some bottom half B is masked by a kernel
control path P1, which is then interrupted by another kernel control path P2. P2 once again
masks the bottom half B, performs its own operations, and terminates by unmasking B. Now
P1 resumes its execution, but Bis (incorrectly) unmasked.

It is thus necessary to use counters rather than a simple binary flag to keep track of masking
and to add one more table called bh_mask_count whose entries contain the masking level of
each bottom half. The disable_bh(n) and enable_bh(n) functions update
bh_mask_count[n] before acting on the nth flag of bh_mask.

Understanding the Linux Kernel

124

4.6.6.2 Extending a bottom half

The motivation for introducing bottom halves is to allow a limited number of functions
related to interrupt handling to be executed in a deferred manner. This approach has been
stretched in two directions:

• To allow a generic kernel function, and not only a function that services an interrupt,
to be executed as a bottom half

• To allow several kernel functions, instead of a single one, to be associated with a
bottom half

Groups of functions are represented by task queues, which are lists of struct tq_struct
elements having the following structure:

struct tq_struct {
 struct tq_struct *next; /* linked list of active bh's */
 unsigned long sync; /* must be initialized to zero */
 void (*routine)(void *); /* function to call */
 void *data; /* argument to function */
};

As we shall see in Chapter 13, I/O device drivers make intensive use of task queues to require
the execution of some functions when a specific interrupt occurs.

The DECLARE_TASK_QUEUE macro is used to allocate a new task queue, while queue_task()
inserts a new function in a task queue. The run_task_queue() function executes all the
functions included in a given task queue. It's worth mentioning two particular task queues,
each associated with a specific bottom half:

• The tq _immediate task queue, run by the IMMEDIATE_BH bottom half, includes
kernel functions to be executed together with the standard bottom halves. The kernel
activates the IMMEDIATE_BH bottom half whenever a function is added to the tq
_immediate task queue.

• The tq _timer task queue is run by the TQUEUE_BH bottom half, which is activated at
every timer interrupt. As we'll see in Chapter 5, that means it runs about every 10 ms.

4.6.7 Dynamic Handling of IRQ Lines

With the exception of IRQ0, IRQ2, and IRQ13, the remaining 13 IRQs are dynamically
handled. There is, therefore, a way in which the same interrupt can be used by several
hardware devices even if they do not allow IRQ sharing: the trick consists in serializing the
activation of the hardware devices so that just one at a time owns the IRQ line.

Before activating a device that is going to make use of an IRQ line, the corresponding driver
invokes request_irq(). This function creates a new irqaction descriptor and initializes it
with the parameter values; it then invokes the setup_x86_irq() function to insert the
descriptor in the proper IRQ list. The device driver aborts the operation if setup_x86_irq()
returns an error code, which means that the IRQ line is already in use by another device that
does not allow interrupt sharing. When the device operation is concluded, the driver invokes
the free_irq() function to remove the descriptor from the IRQ list and release the memory
area.

Understanding the Linux Kernel

125

Let us see how this scheme works on a simple example. Assume a program wants to address
the /dev/fd0 device file, that is, the device file that corresponds to the first floppy disk on the
system.[6] The program can do this either by directly accessing /dev/fd0 or by mounting a
filesystem on it. Floppy disk controllers are usually assigned IRQ6; given this, the floppy
driver will issue the following request:

[6] Floppy disks are "old" devices that do not usually allow IRQ sharing.

request_irq(6, floppy_interrupt,
 SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL);

As can be observed, the floppy_interrupt() interrupt service routine must execute with
the interrupts disabled (SA_INTERRUPT set) and no sharing of the IRQ (SA_SHIRQ flag
cleared). When the operation on the floppy disk is concluded (either the I/O operation on
/dev/fd0 terminates or the filesystem is unmounted), the driver releases IRQ6:

free_irq(6, NULL);

In order to insert an irqaction descriptor in the proper list, the kernel invokes the
setup_x86_irq() function, passing to it the parameters irq _nr, the IRQ number, and new,
the address of a previously allocated irqaction descriptor. This function:

1. Checks whether another device is already using the irq _nr IRQ and, if so, whether
the SA_SHIRQ flags in the irqaction descriptors of both devices specify that the IRQ
line can be shared. Returns an error code if the IRQ line cannot be used.

2. Adds *new (the new irqaction descriptor) at the end of the list to which irq
_desc[irq _nr]->action points.

3. If no other device is sharing the same IRQ, clears the IRQ _DISABLED and IRQ
_INPROGRESS flags in the flags field of *new and reprograms the PIC to make sure
that IRQ signals are enabled.

Here is an example of how setup_x86_irq() is used, drawn from system initialization. The
kernel initializes the irq0 descriptor of the interval timer device by executing the following
instructions in the time_init() function (see Chapter 5):

struct irqaction irq0 =
 {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL,};
setup_x86_irq(0, &irq0);

First, the irq0 variable of type irqaction is initialized: the handler field is set to the
address of the timer_interrupt() function, the flags field is set to SA_INTERRUPT, the
name field is set to "timer", and the last field is set to NULL to show that no dev_id value is
used. Next, the kernel invokes setup_x86_irq() to insert irq0 in the list of irqaction
descriptors associated with IRQ0.

Similarly, the kernel initializes the irqaction descriptors associated with IRQ2 and IRQ13
and inserts them in the proper lists of irqaction descriptors by executing the following
instructions in the init_IRQ() function:

Understanding the Linux Kernel

126

struct irqaction irq2 =
 {no_action, 0, 0, "cascade", NULL,};
struct irqaction irq13 =
 {math_error_irq, 0, 0, "fpu", NULL,};
setup_x86_irq(2, &irq2);
setup_x86_irq(13, &irq13);

4.7 Returning from Interrupts and Exceptions

We will finish the chapter by examining the termination phase of interrupt and exception
handlers. Although the main objective is clear, namely, to resume execution of some program,
several issues must be considered before doing it:

• The number of kernel control paths being concurrently executed: if there is just one,
the CPU must switch back to User Mode.

• Active bottom halves to be executed: if there are some, they must be executed.
• Pending process switch requests: if there is any request, the kernel must perform

process scheduling; otherwise, control is returned to the current process.
• Pending signals: if a signal has been sent to the current process, it must be handled.

The kernel assembly language code that accomplishes all these things is not, technically
speaking, a function, since control is never returned to the functions that invoke it. It is a piece
of code with three different entry points called ret_from_intr, ret_from_sys_call, and
ret_from_exception. We will refer to it as three different functions since this makes the
description simpler. We shall thus refer quite often to the following three entry points as
functions:

ret_from_intr()

Terminates interrupt handlers

ret_from_sys_call()

Terminates system calls, that is, kernel control paths engendered by 0x80 exceptions

ret_from_exception()

Terminates all exceptions except the 0x80 ones

The general flow diagram with the corresponding three entry points is illustrated in Figure 4-
5. Besides these three labels, a few other ones have been added to allow you to relate the
assembly language code more easily to the flow diagram. Let us now examine in detail how
the termination occurs in each case.

Understanding the Linux Kernel

127

Figure 4-5. Returning from interrupts and exceptions

4.7.1 The ret_ from_intr() Function

When ret_from_intr() is invoked, the do_IRQ() function has already executed all active
bottom halves (see Section 4.6.4). The initial part of the ret_from_intr() function is
implemented by the following code:

ret_from_intr:
 movl %esp, %ebx
 andl $0xffffe000, %ebx
 movl 0x30(%esp), %eax
 movb 0x2c(%esp), %al
 testl $(0x00020000 | 3), %eax
 jne ret_with_reschedule
 RESTORE_ALL

The address of the current's process descriptor is stored in ebx (see Section 3.1.2 in Chapter
3). Then the values of the cs and eflags registers, which were pushed on the stack when the
interrupt occurred, are used by the function to determine whether the interrupted program was

Understanding the Linux Kernel

128

running in Kernel Mode. If so, a nesting of interrupts has occurred and the interrupted kernel
control path is restarted by executing the following code, yielded by the RESTORE_ALL macro:

popl %ebx
popl %ecx
popl %edx
popl %esi
popl %edi
popl %ebp
popl %eax
popl %ds
popl %es
addl $4,%esp
iret

This macro loads the registers with the values saved by the SAVE_ALL macro and yields
control to the interrupted program by executing the iret instruction.

If, on the other hand, the interrupted program was running in User Mode or if the VM flag of
eflags was set,[7] a jump is made to the ret_with_reschedule address:

[7] This flag allows programs to be executed in Virtual-8086 Mode; see the Pentium manuals for further details.

ret_with_reschedule:
 cmpl $0,20(%ebx)
 jne reschedule
 cmpl $0,8(%ebx)
 jne signal_return
 RESTORE_ALL

As we said previously, the ebx register points to the current process descriptor; within that
descriptor, the need_resched field is at offset 20, which is checked by the first cmpl
instruction. Therefore, if the need_resched field is 1, the schedule() function is invoked to
perform a process switch.

The offset of the sigpending field inside the process descriptor is 8. If it is null, current
resumes execution in User Mode. Otherwise, the code jumps to signal_return to process
the pending signals of current:

signal_return:
 sti
 testl $(0x00020000),0x30(%esp)
 movl %esp,%eax
 jne v86_signal_return
 xorl %edx,%edx
 call do_signal
 RESTORE_ALL
v86_signal_return:
 call save_v86_state
 movl %eax,%esp
 xorl %edx,%edx
 call do_signal
 RESTORE_ALL

Understanding the Linux Kernel

129

If the interrupted process was in VM86 mode, the save_v86_state() function is invoked.
The do_signal() function (see Chapter 9) is then invoked to handle the pending signals.
Finally, current can resume execution in User Mode.

4.7.2 The ret_ from_sys_call() Function

The ret_from_sys_call() function is equivalent to the following assembly language code:

ret_from_sys_call:
 movl bh_mask, %eax
 andl bh_active, %eax
 je ret_with_reschedule
handle_bottom_half:
 call do_bottom_half
 jmp ret_from_intr

First, the bh_mask and bh_active variables are checked to determine whether active
unmasked bottom halves exist. If no bottom half must be executed, a jump is made to the
ret_with_reschedule address. Otherwise, the do_bottom_half() function is invoked;
then control is transferred to ret_from_intr.

4.7.3 The ret_ from_exception() Function

The ret_from_exception() function is equivalent to the following assembly language
code:

ret_from_exception:
 movl bh_mask,%eax
 andl bh_active,%eax
 jne handle_bottom_half
 jmp ret_from_intr

First, the bh_mask and bh_active global variables are checked to determine whether active
unmasked bottom halves exist. If so, they are executed. In any case, a jump is made to the
ret_from_intr address. Therefore exceptions terminate in the same way as interrupts.

4.8 Anticipating Linux 2.4

Linux 2.4 introduces a new mechanism called software interrupt. Software interrupts are
similar to Linux 2.2's bottom halves, in that they allow you to defer the execution of a kernel
function. However, while bottom halves were strictly serialized (because no two bottom
halves can be executed at the same time even on different CPUs), software interrupts are not
serialized in any way. It is quite possible that two CPUs run two instances of the same
software interrupt at the same time. In this case, of course, the software interrupt must be
reentrant. Networking, in particular, greatly benefits from software interrupts: it is much more
efficient on multiprocessor systems because it uses two software interrupts in place of the old
NET_BH bottom half.

Linux 2.4 introduces another mechanism similar to the bottom half called tasklet. Tasklets are
built on top of software interrupts, but they are serialized with respect to themselves: two
CPUs can execute two tasklets at the same time, but these tasklets must be different. Tasklets
are much easier to write than generic software interrupts, because they need not be reentrant.

Understanding the Linux Kernel

130

Bottom halves continue to exist in Linux 2.4, but they are now built on top of tasklets. As
usual, no two bottom halves can execute at the same time, not even on two different CPUs of
a multiprocessor system. Device driver developers are expected to update their old drivers and
replace bottom halves with tasklets, because bottom halves degrade significantly the
performance of multiprocessor systems.

On the hardware side, Linux 2.4 now supports IO-APIC chips even in uniprocessor systems
and is able to handle several external IO-APIC chips in multiprocessor systems. (This feature
was required for porting Linux to large enterprise systems.)

Understanding the Linux Kernel

131

Chapter 5. Timing Measurements
Countless computerized activities are driven by timing measurements, often behind the user's
back. For instance, if the screen is automatically switched off after you have stopped using the
computer's console, this is due to a timer that allows the kernel to keep track of how much
time has elapsed since you pushed a key or moved the mouse. If you receive a warning from
the system asking you to remove a set of unused files, this is the outcome of a program that
identifies all user files that have not been accessed for a long time. In order to do these things,
programs must be able to retrieve from each file a timestamp identifying its last access time,
and therefore such a timestamp must be automatically written by the kernel. More
significantly, timing drives process switches along with even more basic kernel activities like
checking for time-outs.

We can distinguish two main kinds of timing measurement that must be performed by the
Linux kernel:

• Keeping the current time and date, so that they can be returned to user programs
through the time(), ftime(), and gettimeofday() system calls (see
Section 5.5.1 later in this chapter) and used by the kernel itself as timestamps for files
and network packets

• Maintaining timers, that is, mechanisms that are able to notify the kernel (see
Section 5.4.4) or a user program (see Section 5.5.3) that a certain interval of time has
elapsed

Timing measurements are performed by several hardware circuits based on fixed-frequency
oscillators and counters. This chapter consists of three different parts. The first section
describes the hardware devices that underlie timing; the next three sections describe the kernel
data structures and functions introduced to measure time; then a section discusses the system
calls related to timing measurements and the corresponding service routines.

5.1 Hardware Clocks

The kernel must explicitly interact with three clocks: the Real Time Clock, the Time Stamp
Counter, and the Programmable Interval Timer. The first two hardware devices allow the
kernel to keep track of the current time of day; the latter device is programmed by the kernel
so that it issues interrupts at a fixed, predefined frequency. Such periodic interrupts are crucial
for implementing the timers used by the kernel and the user programs.

5.1.1 Real Time Clock

All PCs include a clock called Real Time Clock (RTC), which is independent of the CPU and
all other chips.

The RTC continues to tick even when the PC is switched off, since it is energized by a small
battery or accumulator. The CMOS RAM and RTC are integrated in a single chip, the
Motorola 146818 or an equivalent.

Understanding the Linux Kernel

132

The RTC is capable of issuing periodic interrupts on IRQ8 at frequencies ranging between 2
Hz and 8192 Hz. It can also be programmed to activate the IRQ8 line when the RTC reaches a
specific value, thus working as an alarm clock.

Linux uses the RTC only to derive the time and date; however, it allows processes to program
the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel accesses the RTC
through the 0x70 and 0x71 I/O ports. The system administrator can set up the clock by
executing the /sbin/clock system program that acts directly on these two I/O ports.

5.1.2 Time Stamp Counter

All Intel 80x86 microprocessors include a CLK input pin, which receives the clock signal of
an external oscillator.

Starting with the Pentium, many recent Intel 80x86 microprocessors include a 64-bit Time
Stamp Counter (TSC) register that can be read by means of the rdtsc assembly language
instruction. This register is a counter that is incremented at each clock signal: if, for instance,
the clock ticks at 400 MHz, the Time Stamp Counter is incremented once every 2.5
nanoseconds.

Linux takes advantage of this register to get much more accurate time measurements than the
ones delivered by the Programmable Interval Timer. In order to do this, Linux must determine
the clock signal frequency while initializing the system: in fact, since this frequency is not
declared when compiling the kernel, the same kernel image may run on CPUs whose clocks
may tick at any frequency. The task of figuring out the actual frequency is accomplished
during the system's boot by the calibrate_tsc() function, which returns the number:

The value of f is computed by counting the number of clock signals that occur in a relatively
long time interval, namely 50.00077 milliseconds. This time constant is produced by setting
up one of the channels of the Programmable Interval Timer properly (see the next section).
The long execution time of calibrate_tsc() does not create problems, since the function
is invoked only during system initialization.

5.1.3 Programmable Interval Timer

Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs include a
third type of time-measuring device called Programmable Interval Timer (PIT). The role of a
PIT is similar to the alarm clock of a microwave oven: to make the user aware that the
cooking time interval has elapsed. Instead of ringing a bell, this device issues a special
interrupt called timer interrupt, which notifies the kernel that one more time interval has
elapsed.[1] Another difference from the alarm clock is that the PIT goes on issuing interrupts
forever at some fixed frequency established by the kernel. Each IBM-compatible PC includes
at least one PIT, which is usually implemented by a 8254 CMOS chip using the 0x40-0x43
I/O ports.

[1] The PIT is also used to drive an audio amplifier connected to the computer's internal speaker.

Understanding the Linux Kernel

133

As we shall see in detail in the next paragraphs, Linux programs the first PC's PIT to issue
timer interrupts on the IRQ0 at a (roughly) 100-Hz frequency, that is, once every 10
milliseconds. This time interval is called a tick, and its length in microseconds is stored in the
tick variable. The ticks beat time for all activities in the system; in some sense, they are like
the ticks sounded by a metronome while a musician is rehearsing.

Generally speaking, shorter ticks yield better system responsiveness. This is because system
responsiveness largely depends on how fast a running process is preempted by a higher-
priority process once it becomes runnable (see Chapter 10); moreover, the kernel usually
checks whether the running process should be preempted while handling the timer interrupt.
This is a trade-off however: shorter ticks require the CPU to spend a larger fraction of its time
in Kernel Mode, that is, a smaller fraction of time in User Mode. As a consequence, user
programs run slower. Therefore, only very powerful machines can adopt very short ticks and
afford the consequent overhead. Currently, only Compaq's Alpha port of the Linux kernel
issues 1024 timer interrupts per second, corresponding to a tick of roughly 1 millisecond.

A few macros in the Linux code yield some constants that determine the frequency of timer
interrupts:

• HZ yields the number of timer interrupts per second, that is, the frequency of timer
interrupts. This value is set to 100 for IBM PCs and most other hardware platforms.

• CLOCK_TICK_RATE yields the value 1193180, which is the 8254 chip's internal
oscillator frequency.

• LATCH yields the ratio between CLOCK_TICK_RATE and HZ. It is used to program the
PIT.

The first PIT is initialized by init_IRQ() as follows:

outb_p(0x34,0x43);
outb_p(LATCH & 0xff , 0x40);
outb(LATCH >> 8 , 0x40);

The outb() C function is equivalent to the outb assembly language instruction: it copies the
first operand into the I/O port specified as the second operand. The outb_p() function is
similar to outb(), except that it introduces a pause by executing a no-op instruction. The
first outb_ p() invocation is a command to the PIT to issue interrupts at a new rate. The
next two outb_ p() and outb() invocations supply the new interrupt rate to the device.
The 16-bit LATCH constant is sent to the 8-bit 0x40 I/O port of the device as 2 consecutive
bytes. As a result, the PIT will issue timer interrupts at a (roughly) 100-Hz frequency, that is,
once every 10 ms.

Now that we understand what the hardware timers do, the following sections describe all the
actions performed by the kernel when it receives a timer interrupt—that is, when a tick has
elapsed.

5.2 The Timer Interrupt Handler

Each occurrence of a timer interrupt triggers the following major activities:

• Updates the time elapsed since system startup.

Understanding the Linux Kernel

134

• Updates the time and date.
• Determines how long the current process has been running on the CPU and preempts

it if it has exceeded the time allocated to it. The allocation of time slots (also called
quanta) is discussed in Chapter 10.

• Updates resource usage statistics.
• Checks whether the interval of time associated with each software timer (see

Section 5.4.4) has elapsed; if so, invokes the proper function.

The first activity is considered urgent, so it is performed by the timer interrupt handler itself.
The remaining four activities are less urgent; they are performed by the functions invoked by
the TIMER_BH and TQUEUE_BH bottom halves (see Section 4.6.6 in Chapter 4).

The kernel uses two basic timekeeping functions: one to keep the current time up to date and
another to count the number of microseconds that have elapsed within the current second.
There are two different ways to maintain such values: a more precise method that is available
if the chip has a Time Stamp Counter (TSC) and a less precise method used in other cases. So
the kernel creates two variables to store the functions it uses, pointing the variables to the
functions using the TSC if it exists:

• The current time is calculated by do_gettimeofday() if the CPU has the TSC
register and by do_normal_gettime() otherwise. A pointer to the proper function is
stored in the variable do_get_fast_time.

• The number of microseconds is calculated by do_fast_gettimeoffset() when the
TSC register is available and by do_slow_gettimeoffset() otherwise. The address
of this function is stored in the variable do_gettimeoffset.

The time_init() function, which runs during kernel startup, sets the variables to point to
the right functions and sets up the interrupt gate corresponding to IRQ0.

5.3 PIT's Interrupt Service Routine

Once the IRQ0 interrupt gate has been initialized, the handler field of IRQ0's irqaction
descriptor contains the address of the timer_interrupt() function. This function starts
running with the interrupts disabled, since the status field of IRQ0's main descriptor has the
SA_INTERRUPT flag set. It performs the following steps:

1. If the CPU has a TSC register, it performs the following substeps:
a. Executes an rdtsc Assembly instruction to store the value of the TSC register

in the last_tsc_low variable
b. Reads the state of the 8254 chip device internal oscillator and computes the

delay between the timer interrupt occurrence and the execution of the interrupt
service routine[2]

[2] The 8254 oscillator drives a counter that is continuously decremented. When the counter becomes 0, the chip
raises an IRQ0. So reading the counter indicates how much time has elapsed since the interrupt occurred.

c. Stores that delay (in microseconds) in the delay_at_last_interrupt
variable

2. It invokes do_timer_interrupt().

Understanding the Linux Kernel

135

do_timer_interrupt(), which may be considered as the interrupt service routine common
to all 80x86 models, executes the following operations:

1. It invokes the do_timer() function, which is fully explained shortly.
2. If an adjtimex() system call has been issued, it invokes the set_rtc_mmss()

function once every 660 seconds, that is, every 11 minutes, to adjust the Real Time
Clock. This feature helps systems on a network synchronize their clocks (see
Section 5.5.2).

The do_timer() function, which runs with the interrupts disabled, must be executed as
quickly as possible. For this reason, it simply updates one fundamental value—the time
elapsed from system startup—while delegating all remaining activities to two bottom halves.
The function refers to three main variables related to timing measurements; the first is the
fundamental uptime just mentioned, while the latter two are needed to store lost ticks that take
place before the bottom half functions have a chance to run. Thus, the first is absolute (it just
keeps incrementing) while the other two are relative to another variable called xtime that
stores the approximate current time. (This variable will be described in Section 5.4.1).

The three do_timer() variables are:

jiffies

The number of elapsed ticks since the system was started; it is set to during kernel
initialization and incremented by 1 when a timer interrupt occurs, that is, on every
tick.[3]

[3] Since jiffies is stored as a 32-bit unsigned integer, it returns to about 497 days after the systems has been booted.

lost_ticks

The number of ticks that has occurred since the last update of xtime.

lost_ticks_system

The number of ticks that has occurred while the process was running in Kernel Mode
since the last update of xtime. The user_mode macro examines the CPL field of the
cs register saved in the stack to determine if the process was running in Kernel Mode.

The do_timer() function is equivalent to:

void do_timer(struct pt_regs * regs)
{
 jiffies++;
 lost_ticks++;
 mark_bh(TIMER_BH);
 if (!user_mode(regs))
 lost_ticks_system++;
 if (tq_timer)
 mark_bh(TQUEUE_BH);
}

Understanding the Linux Kernel

136

Note that the TQUEUE_BH bottom half is activated only if the tq _timer task queue is not
empty (see Section 4.6.6 in Chapter 4).

5.4 The TIMER_BH Bottom Half Functions

The timer_bh() function associated with the TIMER_BH bottom half invokes the
update_times(), run_old_timers(), and run_timer_list() auxiliary functions,
which are described next.

5.4.1 Updating the Time and Date

The xtime variable of type struct timeval is where user programs get the current time and
date. The kernel also occasionally refers to it, for instance, when updating inode timestamps
(see Section 1.5.4 in Chapter 1). In particular, xtime.tv_sec stores the number of seconds
that have elapsed since midnight of January 1, 1970[4] , while xtime.tv_usec stores the
number of microseconds that have elapsed within the last second (its value thus ranges
between and 999999).

[4] This date is traditionally used by all Unix systems as the earliest moment in counting time.

During system initialization, the time_init() function is invoked to set up the time and
date: it reads them from the Real Time Clock by invoking the get_cmos_time() function,
then it initializes xtime. Once this has been done, the kernel does not need the RTC anymore:
it relies instead on the TIMER_BH bottom half, which is activated once every tick.

The update_times() function invoked by the TIMER_BH bottom half updates xtime by
disabling interrupts and executing the following statement:

if (lost_ticks)
 update_wall_time(lost_ticks);

The update_wall_time() function invokes the update_wall_time_one_tick() function
lost_ticks consecutive times; each invocation adds 10000 to the xtime.tv_usec field.[5] If
xtime.tv_usec has become greater than 999999, the update_wall_time() function also
updates the tv_sec field of xtime.

[5] In fact, the function is much more complex since it might slightly tune the value 10000. This may be necessary if an adjtimex() system
call has been issued (see Section 5.5.2 later in this chapter).

5.4.2 Updating Resource Usage Statistics

The value of lost_ticks is also used, together with that of lost_ticks_system, to update
resource usage statistics. These statistics are used by various administration utilities such as
top. A user who enters the uptime command sees the statistics as the "load average" relative
to the last minute, the last 5 minutes, and the last 15 minutes. A value of means that there are
no active processes (besides the swapper process 0) to run, while a value of 1 means that the
CPU is 100% busy with a single process, and values greater than 1 mean that the CPU is
shared among several active processes.

After updating the system clock, update_times() reenables the interrupts and performs the
following actions:

Understanding the Linux Kernel

137

• Clears lost_ticks after storing its value in ticks
• Clears lost_ticks_system after storing its value in system
• Invokes calc_load(ticks)
• Invokes update_process_times(ticks, system)

The calc_load() function counts the number of processes in the TASK_RUNNING or
TASK_UNINTERRUPTIBLE state and uses this number to update the CPU usage statistics.

The update_ process_times() function updates some kernel statistics stored in the kstat
variable of type kernel_stat; it then invokes update_one_ process() to update some
fields storing statistics that can be exported to user programs through the times() system
call. In particular, a distinction is made between CPU time spent in User Mode and in Kernel
Mode. The function perform the following actions:

• Updates the per_cpu_utime field of current's process descriptor, which stores the
number of ticks during which the process has been running in User Mode.

• Updates the per_cpu_stime field of current's process descriptor, which stores the
number of ticks during which the process has been running in Kernel Mode.

• Invokes do_ process_times(), which checks whether the total CPU time limit has
been reached; if so, sends SIGXCPU and SIGKILL signals to current. Section 3.1.5 in
Chapter 3, describes how the limit is controlled by the rlim[RLIMIT_CPU].rlim_cur
field of each process descriptor.

• Invokes the do_it_virt() and do_it_ prof() functions, which are described in
Section 5.5.3.

Two additional fields called times.tms_cutime and times.tms_cstime are provided in the
process descriptor to count the number of CPU ticks spent by the process children in User
Mode and in Kernel Mode, respectively. For reasons of efficiency, these fields are not
updated by do_process_times() but rather when the parent process queries the state of one
of its children (see the section Section 3.4 in Chapter 3).

5.4.3 CPU's Time Sharing

Timer interrupts are essential for time sharing the CPU among runnable processes (that is,
those in the TASK_RUNNING state). As we shall see in Chapter 10, each process is usually
allowed a quantum of time of limited duration: if the process is not terminated when its
quantum expires, the schedule() function selects the new process to run.

The counter field of the process descriptor specifies how many ticks of CPU time are left to
the process. The quantum is always a multiple of a tick, that is, a multiple of about 10 ms. The
value of counter is updated at every tick by update_process_times() as follows:

if (current->pid) {
 current->counter -= ticks;
 if (current->counter < 0) {
 current->counter = 0;
 current->need_resched = 1;
 }
}

Understanding the Linux Kernel

138

As stated in Section 3.1.2 in Chapter 3, the process having PID (swapper) must not be time-
shared, because it is the process that runs on the CPU when no other TASK_RUNNING processes
exist.

Since counter is updated in a deferred manner by a bottom half, the decrement might be
larger than a single tick. Thus, the ticks local variable denotes the number of ticks that
occurred since the bottom half was activated. When counter becomes smaller than 0, the
need_resched field of the process descriptor is set to 1. In that case, the schedule()
function will be invoked before resuming User Mode execution, and other TASK_RUNNING
processes will have a chance to resume execution on the CPU.

5.4.4 The Role of Timers

A timer is a software facility that allows functions to be invoked at some future moment, after
a given time interval has elapsed; a time-out denotes a moment at which the time interval
associated with a timer has elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers make use of
timers to detect anomalous conditions: floppy disk drivers, for instance, use timers to switch
off the device motor after the floppy has not been accessed for a while, and parallel printer
drivers use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific functions
at some future time (see Section 5.5.3).

Implementing a timer is relatively easy: each timer contains a field that indicates how far in
the future the timer should expire. This field is initially calculated by adding the right number
of ticks to the current value of jiffies. The field does not change. Every time the kernel
checks a timer, it compares the expiration field to the value of jiffies at the current
moment, and the timer expires when jiffies is greater or equal to the stored value. This
comparison is made via the time_after, time_before, time_after_eq, and
time_before_eq macros, which take care of possible overflows of jiffies.

Linux considers three types of timers called static timers, dynamic timers, and interval timers.
The first two types are used by the kernel, while interval timers may be created by processes
in User Mode.

One word of caution about Linux timers: since checking for timer functions is always done by
bottom halves that may be executed a long time after they have been activated, the kernel
cannot ensure that timer functions will start right at their expiration times; it can only ensure
that they will be executed either at the proper time or after they are supposed to with a delay
of up to a few hundreds of milliseconds. For that reason, timers are not appropriate for real-
time applications in which expiration times must be strictly enforced.

Understanding the Linux Kernel

139

5.4.5 Static Timers

The first versions of Linux allowed only 32 different timers;[6] these static timers, which rely
on statically allocated kernel data structure, still continue to be used. Since they were the first
to be introduced, Linux code refers to them as old timers.

[6] This value was chosen so that the corresponding active flags could be stored in a single variable.

Static timers are stored in the timer_table array, which includes 32 entries. Each entry
consists of the following timer_struct structure:

struct timer_struct {
 unsigned long expires;
 void (*fn)(void);
};

The expires field specifies when the timer expires; the time is expressed as the number of
ticks that have elapsed since the system was started up. All timers having an expires value
smaller than or equal to the value of jiffies are considered to be expired or decayed. The fn
field contains the address of the function to be executed when the timer expires.

Although timer_table includes 32 entries, Linux uses only those listed in Table 5-1.

Table 5-1. Static Timers
Static Timer Time-out Effect
BACKGR_TIMER Background I/O operation request
BEEP_TIMER Loudspeaker tone
BLANK_TIMER Switch off the screen
COMTROL_TIMER Comtrol serial card
COPRO_TIMER i80387 coprocessor
DIGI_TIMER Digiboard card
FLOPPY_TIMER Floppy disk
GDTH_TIMER GDTH SCSI driver
GSCD_TIMER Goldstar CD-ROM
HD_TIMER Hard disk (old IDE driver)
MCD_TIMER Mitsumi CD-ROM
QIC02_TAPE_TIMER QIC-02 tape driver
RS_TIMER RS-232 serial port
SWAP_TIMER kswapd kernel thread activation

The timer_active variable is used to identify the active static timers: each bit of this 32-bit
variable is a flag that specifies whether the corresponding timer is activated.

In order to activate a static timer, the kernel must simply:

• Register the function to be executed in the fn field of the timer.
• Compute the expiration time (this is usually done by adding some specified value to

the value of jiffies) and store it in the expires field of the timer.
• Set the proper flag in timer_active.

Understanding the Linux Kernel

140

The job of checking for decayed static timers is done by the run_old_timers() function,
which is invoked by the TIMER_BH bottom half:

void run_old_timers(void)
{
 struct timer_struct *tp;
 unsigned long mask;
 for (mask = 1, tp = timer_table; mask;
 tp++, mask += mask) {
 if (mask > timer_active)
 break;
 if (!(mask & timer_active))
 continue;
 if (tp->expires > jiffies)
 continue;
 timer_active &= ~mask;
 tp->fn();
 sti();
 }
}

Once a decayed active timer has been identified, the corresponding active flag is cleared
before executing the function that the fn field points to, thus ensuring that the timer won't be
invoked again at each future execution of run_old_timers().

5.4.6 Dynamic Timers

Dynamic timers may be dynamically created and destroyed. No limit is placed on the number
of currently active dynamic timers.

A dynamic timer is stored in the following timer_list structure:

struct timer_list {
 struct timer_list *next;
 struct timer_list *prev;
 unsigned long expires;
 unsigned long data;
 void (*function)(unsigned long);
};

The function field contains the address of the function to be executed when the timer
expires. The data field specifies a parameter to be passed to this timer function. Thanks to the
data field, it is possible to define a single general-purpose function that handles the time-outs
of several device drivers; the data field could store the device ID or other meaningful data
that could be used by the function to differentiate the device.

The meaning of the expires field is the same as the corresponding field for static timers.

The next and prev fields implement links for a doubly linked circular list. In fact, each active
dynamic timer is inserted in exactly one of 512 doubly linked circular lists, depending on the
value of the expires field. The algorithm that uses this list is described later in the chapter.

In order to create and activate a dynamic timer, the kernel must:

Understanding the Linux Kernel

141

1. Create a new struct timer_list object, say t. This can be done in several ways by:
o Defining a static global variable in the code
o Defining a local variable inside a function: in this case, the object is stored on

the Kernel Mode stack
o Including the object in a dynamically allocated descriptor

2. Initialize the object by invoking the init_timer(&t) function. This simply sets the
next and prev fields to NULL.

3. If the dynamic timer is not already inserted in a list, assign a proper value to the
expires field. Otherwise, if the dynamic timer is already inserted in a list, update the
expires field by invoking the mod_timer() function, which also takes care of
moving the object into the proper list (discussed shortly).

4. Load the function field with the address of the function to be activated when the
timer decays. If required, load the data field with a parameter value to be passed to
the function.

5. If the dynamic timer is not already inserted in a list, insert the t element in the proper
list by invoking the add_timer(&t) function.

Once the timer has decayed, the kernel automatically removes the t element from its list.
Sometimes, however, a process should explicitly remove a timer from its list using the
del_timer() function. Indeed, a sleeping process may be woken up before the time-out is
over, and in this case the process may choose to destroy the timer. Invoking del_timer()
on a timer already removed from a list does no harm, so calling del_timer() from the
timer function is considered a good practice.

We saw previously how the run_old_timers() function was able to identify the active
decayed static timers by executing a single for loop on the 32 timer_table components.
This approach is no longer applicable to dynamic timers, since scanning a long list of
dynamic timers at every tick would be too costly. On the other hand, maintaining a sorted list
would not be much more efficient, since the insertion and deletion operations would also be
costly.

The solution adopted is based on a clever data structure that partitions the expires values into
blocks of ticks and allows dynamic timers to percolate efficiently from lists with larger
expires values to lists with smaller ones.

The main data structure is an array called tvecs, whose elements point to five groups of lists
identified by the tv1, tv2, tv3, tv4, and tv5 structures (see Figure 5-1).

The tv1 structure is of type struct timer_vec_root, which includes an index field and a
vec array of 256 pointers to timer_list elements, that is, to lists of dynamic timers. It
contains all dynamic timers that will decay within the next 255 ticks.

The index field specifies the currently scanned list; it is initialized to and incremented by 1
(modulo 256) at every tick. The list referenced by index contains all dynamic timers that
have expired during the current tick; the next list contains all dynamic timers that will expire
in the next tick; the (index+k)-th list contains all dynamic timers that will expire in exactly k
ticks. When index returns to 0, this means that all the timers in tv1 have been scanned: in
this case, the list pointed to by tv2.vec[tv2.index] is used to replenish tv1.

Understanding the Linux Kernel

142

The tv2, tv3, and tv4 structures of type struct timer_vec contain all dynamic timers that
will decay within the next 214-1, 220-1, and 226-1 ticks, respectively.

The tv5 structure is identical to the previous ones, except that the last entry of the vec array
includes dynamic timers with arbitrarily large expires fields; it needs never be replenished
from another array.

The timer_vec structure is very similar to timer_vec_root: it contains an index field and a
vec array of 64 pointers to dynamic timer lists. The index field specifies the currently
scanned list; it is incremented by 1 (modulo 64) every 256i-1 ticks, where i ranging between 2
and 5 is the tvi group number. As in the case of tv1, when index returns to 0, the list pointed
to by tvj.vec[tvj.index] is used to replenish tvi (i ranges between 2 and 4, j is equal to
i+1).

A single entry of tv2 is sufficient to replenish the whole array tv1; similarly, a single entry of
tv3 is sufficient to replenish the whole array tv2 and so on.

Figure 5-1 shows how these data structures are connected together.

Figure 5-1. The groups of lists associated with dynamic timers

The timer_bh() function associated with the TIMER_BH bottom half invokes the
run_timer_list() auxiliary function to check for decayed dynamic timers. The function
relies on a variable similar to jiffies called timer_jiffies. This new variable is needed
because a few timer interrupts might occur before the activated TIMER_BH bottom half has a
chance to run; this happens typically when several interrupts of different types are issued in a
short interval of time.

The value of timer_jiffies represents the expiration time of the dynamic timer list yet to be
checked: if it coincides with the value of jiffies, no backlog of bottom half functions has
accumulated; if it is smaller than jiffies, then bottom half functions that refer to previous
ticks have to be dealt with. The variable is set to at system startup and is incremented only by
run_timer_list(), which is invoked once every tick. Its value can never be greater than
jiffies.

Understanding the Linux Kernel

143

The run_timer_list() function includes the following C fragment (assuming a uni-
processor system):

cli();
while ((long)(jiffies - timer_jiffies) >= 0) {
 struct timer_list *timer;
 if (!tv1.index) {
 int n = 1;
 do {
 cascade_timers(tvecs[n]);
 } while (tvecs[n]->index == 1 && ++n < 5));
 }
 while ((timer = tv1.vec[tv1.index])) {
 detach_timer(timer);
 timer->next = timer->prev = NULL;
 sti();
 timer->function(timer->data);
 cli();
 }
 ++timer_jiffies;
 tv1.index = (tv1.index + 1) & 0xff;
}
sti();

The outermost while loop ends when timer_jiffies becomes greater than the value of
jiffies. Since the values of jiffies and timer_jiffies usually coincide, the outermost
while cycle will often be executed only once. In general, the outermost loop will be executed
jiffies - timer_jiffies + 1 consecutive times. Moreover, if a timer interrupt occurs while
run_timer_list() is being executed, dynamic timers that decay at this tick occurrence will
also be considered, since the jiffies variable is asynchronously incremented by the IRQ0
interrupt handler (see Section 5.3).

During a single execution of the outermost while cycle, the dynamic timer functions included
in the tv1.vec[tv1.index] list are executed. Before executing a dynamic timer function, the
loop invokes the detach_timer() function to remove the dynamic timer from the list. Once
the list is emptied, the values of tv1.index is incremented (modulo 256) and the value of
timer_jiffies is incremented.

When tv1.index becomes equal to 0, all the lists of tv1 have been checked; in this case, it is
necessary to refill the tv1 structure. This is accomplished by the cascade_timers()
function, which transfers the dynamic timers included in tv2.vec[tv2.index] into tv1.vec,
since they will necessarily decay within the next 256 ticks. If tv2.index is equal to 0, it is
necessary to refill the tv2 array of lists with the elements of tv3.vec[tv3.index] and so on.

Notice that run_timer_list() disables interrupts just before entering the outermost loop;
interrupts are enabled right before invoking each dynamic timer function, and again disabled
right after its termination. This ensures that the dynamic timer data structures are not
corrupted by interleaved kernel control paths.

To sum up, this rather complex algorithm ensures excellent performance. To see why, assume
for the sake of simplicity that the TIMER_BH bottom half is executed right after the
corresponding timer interrupt has occurred. Then in 255 timer interrupt occurrences out of
256, that is in 99.6% of the cases, the run_timer_list() function just runs the functions of

Understanding the Linux Kernel

144

the decayed timers, if any. In order to replenish tv1.vec periodically, it will be sufficient 63
times out of 64 to partition the list pointed to by tv2.vec[tv2.index] into the 256 lists
pointed to by tv1.vec. The tv2.vec array, in turn, must be replenished in 0.02% of the cases,
that is, once every 163 seconds. Similarly, tv3 is replenished every 2 hours and 54 minutes,
tv4 every 7 days and 18 hours, while tv5 doesn't need to be replenished.

5.4.7 An Application of Dynamic Timers

On some occasions, for instance when it is unable to provide a given service, the kernel may
decide to suspend the current process for a fixed amount of time. This is usually done by
performing a process time-out .

Let us assume that the kernel has decided to suspend the current process for two seconds. It
does this by executing the following code:

timeout = 2 * HZ;
current->state = TASK_INTERRUPTIBLE;
timeout = schedule_timeout(timeout);

The kernel implements process time-outs by using dynamic timers. They appear in the
schedule_timeout() function, which executes the following statements:

struct timer_list timer;
expire = timeout + jiffies;
init_timer(&timer);
timer.expires = expire;
timer.data = (unsigned long) current;
timer.function = process_timeout;
add_timer(&timer);
schedule(); /* process suspended until timer expires */
del_timer(&timer);
timeout = expire - jiffies;
return (timeout < 0 ? 0 : timeout);

When schedule() is invoked, another process is selected for execution; when the former
process resumes its execution, the function removes the dynamic timer. In the last statement,
the function returns either if the time-out is expired or the number of ticks left to the time-out
expiration if the process has been awoken for some other reason.

When the time-out expires, the kernel executes the following function:

void process_timeout(unsigned long data)
{
 struct task_struct * p = (struct task_struct *) data;
 wake_up_process(p);
}

The run_timer_list() function invokes process_timeout(), passing as its parameter
the process descriptor pointer stored in the data field of the timer object. As a result, the
suspended process is woken up.

Understanding the Linux Kernel

145

5.5 System Calls Related to Timing Measurements

Several system calls allow User Mode processes to read and modify the time and date and to
create timers. Let us briefly review them and discuss how the kernel handles them.

5.5.1 The time(), ftime(), and gettimeofday() System Calls

Processes in User Mode can get the current time and date by means of several system calls:

time()

Returns the number of elapsed seconds since midnight at the start of January 1, 1970

ftime()

Returns, in a data structure of type timeb, the number of elapsed seconds since
midnight of January 1, 1970; the number of elapsed milliseconds in the last second;
the time zone; and the current status of daylight saving time

gettimeofday()

Returns the same information as ftime() in two data structures named timeval and
timezone

The former system calls are superseded by gettimeofday(), but they are still included in
Linux for backward compatibility. We don't discuss them further.

The gettimeofday() system call is implemented by the sys_gettimeofday() function.
In order to compute the current date and time of the day, this function invokes do_
gettimeofday(), which executes the following actions:

• Copies the contents of xtime into the user-space buffer specified by the system call
parameter tv:

*tv = xtime;

• Updates the number of microseconds by invoking the function addressed by the do_
gettimeoffset variable:

tv->tv_usec += do_gettimeoffset();

If the CPU has a Time Stamp Counter, the do_fast_gettimeoffset() function is
executed. It reads the TSC register by using the rdtsc Assembly instruction; it then
subtracts the value stored in last_tsc_low to obtain the number of CPU cycles
elapsed since the last timer interrupt was handled. The function converts that number
to microseconds and adds in the delay that elapsed before the activation of the timer
interrupt handler, which is stored in the delay_at_last_interrupt variable
mentioned earlier in Section 5.3.

Understanding the Linux Kernel

146

If the CPU does not have a TSC register, do_ gettimeoffset points to the do_slow_
gettimeoffset() function. It reads the state of the 8254 chip device internal
oscillator and then computes the time length elapsed since the last timer interrupt.
Using that value and the contents of jiffies, it can derive the number of
microseconds elapsed in the last second.

• Further increases the number of microseconds to take into account all timer interrupts
whose bottom halves have not yet been executed:

 if (lost_ticks)
 tv->tv_usec += lost_ticks * (1000000/HZ);

• Finally, checks for an overflow in the microseconds field, adjusting both that field and
the second field if necessary:

 while (tv->tv_usec >= 1000000) {
 tv->tv_usec -= 1000000;
 tv->tv_sec++;

 }

Processes in User Mode with root privilege may modify the current date and time by using
either the obsolete stime() or the settimeofday() system call. The sys_settimeofday(
) function invokes do_settimeofday(), which executes operations complementary to those
of do_gettimeofday().

Notice that both system calls modify the value of xtime while leaving unchanged the RTC
registers. Therefore, the new time will be lost when the system shuts down, unless the user
executes the /sbin/clock program to change the RTC value.

5.5.2 The adjtimex() System Call

Although clock drift ensures that all systems eventually move away from the correct time,
changing the time abruptly is both an administrative nuisance and risky behavior. Imagine, for
instance, programmers trying to build a large program and depending on filetime stamps to
make sure that out-of-date object files are recompiled. A large change in the system's time
could confuse the make program and lead to an incorrect build. Keeping the clocks tuned is
also important when implementing a distributed filesystem on a network of computers: in this
case, it is wise to adjust the clocks of the interconnected PCs so that the timestamp values
associated with the inodes of the accessed files are coherent. Thus, systems are often
configured to run a time synchronization protocol such as Network Time Protocol (NTP) on a
regular basis to change the time gradually at each tick. This utility depends on the adjtimex(
) system call in Linux.

This system call is present in several Unix variants, although it should not be used in
programs intended to be portable. It receives as its parameter a pointer to a timex structure,
updates kernel parameters from the values in the timex fields, and returns the same structure
with current kernel values. Such kernel values are used by update_wall_time_one_tick()
to slightly adjust the number of microseconds added to xtime.tv_usec at each tick.

Understanding the Linux Kernel

147

5.5.3 The setitimer() and alarm() System Calls

Linux allows User Mode processes to activate special timers called interval timers.[7] The
timers cause Unix signals (see Chapter 9) to be sent periodically to the process. It is also
possible to activate an interval timer so that it sends just one signal after a specified delay.
Each interval timer is therefore characterized by:

[7] These software constructs have nothing in common with the Programmable Interval Timer chips described earlier in this chapter.

• The frequency at which the signals must be emitted, or a null value if just one signal
has to be generated

• The time remaining until the next signal is to be generated

The warning earlier in the chapter about accuracy applies to these timers. They are guaranteed
to execute after the requested time has elapsed, but it is impossible to predict exactly when
they will be delivered.

Interval timers are activated by means of the POSIX setitimer() system call. The first
parameter specifies which of the following policies should be adopted:

ITIMER_REAL

The actual elapsed time; the process receives SIGALRM signals

ITIMER_VIRTUAL

The time spent by the process in User Mode; the process receives SIGVTALRM signals

ITIMER_PROF

The time spent by the process both in User and in Kernel Mode; the process receives
SIGPROF signals

In order to implement an interval timer for each of the preceding policies, the process
descriptor includes three pairs of fields:

• it_real_incr and it_real_value
• it_virt_incr and it_virt_value
• it_prof_incr and it_prof_value

The first field of each pair stores the interval in ticks between two signals; the other field
stores the current value of the timer.

The ITIMER_REAL interval timer is implemented by making use of dynamic timers, because
the kernel must send signals to the process even when it is not running on the CPU. Therefore,
each process descriptor includes a dynamic timer object called real_timer. The setitimer(
) system call initializes the real_timer fields and then invokes add_timer() to insert the
dynamic timer in the proper list. When the timer expires, the kernel executes the
it_real_fn() timer function. In turn, the it_real_fn() function sends a SIGALRM signal

Understanding the Linux Kernel

148

to the process; if it_real_incr is not null, it sets the expires field again, reactivating the
timer.

The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers, since
they can be updated while the process is running: the do_it_virt() and do_it_prof()
functions are invoked by update_one_ process(), which runs when the TIMER_BH bottom
half is executed. Therefore, the two interval timers are usually updated once every tick, and if
they are expired, the proper signal is sent to the current process.

The alarm() system call sends a SIGALRM signal to the calling process when a specified time
interval has elapsed. It is very similar to setitimer() when invoked with the ITIMER_REAL
parameter, since it makes use of the real_timer dynamic timer included in the process
descriptor. Therefore, alarm() and setitimer() with parameter ITIMER_REAL cannot be
used at the same time.

5.6 Anticipating Linux 2.4

Linux 2.4 introduces no significant change to the time-handling functions of the 2.2 version.

Understanding the Linux Kernel

149

Chapter 6. Memory Management
We saw in Chapter 2, how Linux takes advantage of Intel's segmentation and paging circuits
to translate logical addresses into physical ones. In the same chapter, we mentioned that some
portion of RAM is permanently assigned to the kernel and used to store both the kernel code
and the static kernel data structures.

The remaining part of the RAM is called dynamic memory. It is a valuable resource, needed
not only by the processes but also by the kernel itself. In fact, the performance of the entire
system depends on how efficiently dynamic memory is managed. Therefore, all current
multitasking operating systems try to optimize the use of dynamic memory, assigning it only
when it is needed and freeing it as soon as possible.

This chapter, which consists of three main sections, describes how the kernel allocates
dynamic memory for its own use. Section 6.1 and Section 6.2 illustrate two different
techniques for handling physically contiguous memory areas, while Section 6.3 illustrates a
third technique that handles noncontiguous memory areas.

6.1 Page Frame Management

We saw in Section 2.4 in Chapter 2 how the Intel Pentium processor can use two different
page frame sizes: 4 KB and 4 MB. Linux adopts the smaller 4 KB page frame size as the
standard memory allocation unit. This makes things simpler for two reasons:

• The paging circuitry automatically checks whether the page being addressed is
contained in some page frame; furthermore, each page frame is hardware-protected
through the flags included in the Page Table entry that points to it. By choosing a 4
KB allocation unit, the kernel can directly determine the memory allocation unit
associated with the page where a page fault exception occurs.

• The 4 KB size is a multiple of most disk block sizes, so transfers of data between main
memory and disks are more efficient. Yet this smaller size is much more manageable
than the 4 MB size.

The kernel must keep track of the current status of each page frame. For instance, it must be
able to distinguish the page frames used to contain pages belonging to processes from those
that contain kernel code or kernel data structures; similarly, it must be able to determine
whether a page frame in dynamic memory is free or not. This sort of state information is kept
in an array of descriptors, one for each page frame. The descriptors of type struct page have
the following format:

typedef struct page {
 struct page *next;
 struct page *prev;
 struct inode *inode;
 unsigned long offset;
 struct page *next_hash;
 atomic_t count;
 unsigned long flags;
 struct wait_queue *wait;
 struct page **pprev_hash;
 struct buffer_head * buffers;
} mem_map_t;

Understanding the Linux Kernel

150

We shall describe only a few fields (the remaining ones will be discussed in later chapters
dealing with filesystems, I/O buffers, memory mapping, and so on):

count

Set 0 to if the corresponding page frame is free; set to a value greater than if the page
frame has been assigned to one or more processes or if it is used for some kernel data
structures.

prev , next

Used to insert the descriptor in a doubly linked circular list. The meaning of these
fields depends on the current use of the page frame.

flags

An array of up to 32 flags (see Table 6-1) describing the status of the page frame. For
each PG_xyz flag, a corresponding PageXyz macro has been defined to read or set its
value.

Some of the flags listed in Table 6-1 are explained in later chapters. The PG_DMA flag exists
because of a limitation on Direct Memory Access (DMA) processors for ISA buses: such
DMA processors are able to address only the first 16 MB of RAM, hence page frames are
divided into two groups depending on whether they can be addressed by the DMA or not.
(Section 13.1.4 in Chapter 13, gives further details on DMAs.) In this chapter, the term
"DMA" will always refer to DMA for ISA buses.

Table 6-1. Flags Describing the Status of a Page Frame
Flag Name Meaning
PG_decr_after See Section 16.4.3 in Chapter 16.
PG_dirty Not used.
PG_error An I/O error occurred while transferring the page.
PG_free_after See Section 15.1.1 in Chapter 15.
PG_DMA Usable by ISA DMA (see text).
PG_locked Page cannot be swapped out.

PG_referenced Page frame has been accessed through the hash table of the page cache (see
Section 14.2 in Chapter 14).

PG_reserved Page frame reserved to kernel code or unusable.

PG_skip Used on SPARC/SPARC64 architectures to "skip" some parts of the address
space.

PG_Slab Included in a slab: see Section 6.2 later in this chapter.
PG_swap_cache Included in the swap cache; see Section 16.3 in Chapter 16
PG_swap_unlock_after See Section 16.4.3 in Chapter 16.
PG_uptodate Set after completing a read operation, unless a disk I/O error happened.

All the page frame descriptors on the system are included in an array called mem_map. Since
each descriptor is less than 64 bytes long, mem_map requires about four page frames for each
megabyte of RAM. The MAP_NR macro computes the number of the page frame whose address
is passed as a parameter, and thus the index of the corresponding descriptor in mem_map:

Understanding the Linux Kernel

151

#define MAP_NR(addr) (__pa(addr) >> PAGE_SHIFT)

The macro makes use of the __ pa macro, which converts a logical address to a physical one.

Dynamic memory, and the values used to refer to it, are illustrated in Figure 6-1. Page frame
descriptors are initialized by the free_area_init() function, which acts on two
parameters: start_mem denotes the first linear address of the dynamic memory immediately
after the kernel memory, while end_mem denotes the last linear address of the dynamic
memory plus 1 (see Section 2.5.3 and Section 2.5.5 in Chapter 2). The free_area_init()
function also considers the i386_endbase variable, which stores the initial address of the
reserved page frames. The function allocates a suitably sized memory area to mem_map. The
function then initializes the area by setting all fields to 0, except for the flags fields, in which
it sets the PG_DMA and PG_reserved flags:

mem_map = (mem_map_t *) start_mem;
p = mem_map + MAP_NR(end_mem);
start_mem = ((unsigned long) p + sizeof(long) - 1) &
 ~(sizeof(long)-1);
memset(mem_map, 0, start_mem - (unsigned long) mem_map);
do {
 --p;
 p->count = 0;
 p->flags = (1 << PG_DMA) | (1 << PG_reserved);
} while (p > mem_map);

Figure 6-1. Memory layout

Subsequently, the mem_init() function clears both the PG_reserved flag of the page
frames, so they can be used as dynamic memory (see Section 2.5.3 in Chapter 2), and the
PG_DMA flags of all page frames having physical addresses greater than or equal to 0x1000000.
This is done by the following fragment of code:

start_low_mem = PAGE_SIZE + PAGE_OFFSET;
num_physpages = MAP_NR(end_mem);
while (start_low_mem < i386_endbase) {
 clear_bit(PG_reserved,
 &mem_map[MAP_NR(start_low_mem)].flags);
 start_low_mem += PAGE_SIZE;
}

Understanding the Linux Kernel

152

while (start_mem < end_mem) {
 clear_bit(PG_reserved,
 &mem_map[MAP_NR(start_mem)].flags);
 start_mem += PAGE_SIZE;
}
for (tmp = PAGE_OFFSET ; tmp < end_mem ; tmp += PAGE_SIZE) {
 if (tmp >= PAGE_OFFSET+0x1000000)
 clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags);
 if (PageReserved(mem_map+MAP_NR(tmp))) {
 if (tmp >= (unsigned long) &_text
 && tmp < (unsigned long) &_edata)
 if (tmp < (unsigned long) &_etext)
 codepages++;
 else
 datapages++;
 else if (tmp >= (unsigned long) &__init_begin
 && tmp < (unsigned long) &__init_end)
 initpages++;
 else if (tmp >= (unsigned long) &__bss_start
 && tmp < (unsigned long) start_mem)
 datapages++;
 else
 reservedpages++;
 continue;
 }
 mem_map[MAP_NR(tmp)].count = 1;
 free_page(tmp);
}

First, the mem_init() function determines the value of num_physpages, the total number of
page frames present in the system. It then counts the number of page frames of type
PG_reserved. Several symbols produced while compiling the kernel (we described some of
them in Section 2.5.3 in Chapter 2) enable the function to count the number of page frames
reserved for the hardware, kernel code, and kernel data and the number of page frames used
during kernel initialization that can be successively released.

Finally, mem_init() sets the count field of each page frame descriptor associated with the
dynamic memory to 1 and calls the free_ page() function (see Section 6.1.2 later in this
chapter). Since this function increments the value of the variable nr_free_pages, that
variable will contain the total number of page frames in the dynamic memory at the end of the
loop.

6.1.1 Requesting and Releasing Page Frames

After having seen how the kernel allocates and initializes the data structures for page frame
handling, we now look at how page frames are allocated and released. Page frames can be
requested by making use of four slightly differing functions and macros:

__get_free_pages(gfp_mask, order)

Function used to request 2order contiguous page frames.

__get_dma_pages(gfp_mask, order)

Macro used to get page frames suitable for DMA; it expands to:

Understanding the Linux Kernel

153

__get_free_pages(gfp_mask | GFP_DMA, order)

__get_free_page(gfp_mask)

Macro used to get a single page frame; it expands to:

__get_free_pages(gfp_mask, 0)
get_free_page(gfp_mask) :

Function that invokes:

__get_free_page(gfp_mask)

and then fills the page frame obtained with zeros.

The parameter gfp_mask specifies how to look for free page frames. It consists of the
following flags:

__GFP_WAIT

Set if the kernel is allowed to discard the contents of page frames in order to free
memory before satisfying the request.

__GFP_IO

Set if the kernel is allowed to write pages to disk in order to free the corresponding
page frames. (Since swapping can block the process in Kernel Mode, this flag must be
cleared when handling interrupts or modifying critical kernel data structures.)

__GFP_DMA

Set if the requested page frames must be suitable for DMA. (The hardware limitation
that gives rise to this flag was explained in Section 6.1.)

__GFP_HIGH , __GFP_MED , __GFP_LOW

Specify the request priority. _ _GFP_LOW is usually associated with dynamic memory
requests issued by User Mode processes, while the other priorities are associated with
kernel requests.

In practice, Linux uses the predefined combinations of flag values shown in Table 6-2; the
group name is what you'll encounter in the source code.

Table 6-2. Groups of Flag Values Used to Request Page Frames
Group Name __GFP_WAIT __GFP_IO Priority
GFP_ATOMIC 0 0 __GFP_HIGH
GFP_BUFFER 1 0 __GFP_LOW
GFP_KERNEL 1 1 __GFP_MED
GFP_NFS 1 1 __GFP_HIGH
GFP_USER 1 1 __GFP_LOW

Understanding the Linux Kernel

154

Page frames can be released through any of the following three functions and macros:

free_pages(addr, order)

This function checks the page descriptor of the page frame having physical address
addr; if the page frame is not reserved (i.e., if the PG_reserved flag is equal to 0), it
decrements the count field of the descriptor. If count becomes 0, it assumes that 2order
contiguous page frames starting from addr are no longer used. In that case, the
function invokes free_ pages_ok() to insert the page frame descriptor of the first
free page in the proper list of free page frames (described in the following section).

__free_page(p)

Similar to the previous function, except that it releases the page frame whose
descriptor is pointed to by parameter p.

free_page(addr)

Macro used to release the page frame having physical address addr; it expands

to free_pages(addr,0) .

6.1.2 The Buddy System Algorithm

The kernel must establish a robust and efficient strategy for allocating groups of contiguous
page frames. In doing so, it must deal with a well-known memory management problem
called external fragmentation : frequent requests and releases of groups of contiguous page
frames of different sizes may lead to a situation in which several small blocks of free page
frames are "scattered" inside blocks of allocated page frames. As a result, it may become
impossible to allocate a large block of contiguous page frames, even if there are enough free
pages to satisfy the request.

There are essentially two ways to avoid external fragmentation:

• Make use of the paging circuitry to map groups of noncontiguous free page frames
into intervals of contiguous linear addresses.

• Develop a suitable technique to keep track of the existing blocks of free contiguous
page frames, avoiding as much as possible the need to split up a large free block in
order to satisfy a request for a smaller one.

The second approach is the one preferred by the kernel for two good reasons:

• In some cases, contiguous page frames are really necessary, since contiguous linear
addresses are not sufficient to satisfy the request. A typical example is a memory
request for buffers to be assigned to a DMA processor (see Chapter 13). Since the
DMA ignores the paging circuitry and accesses the address bus directly while
transferring several disk sectors in a single I/O operation, the buffers requested must
be located in contiguous page frames.

• Even if contiguous page frame allocation is not strictly necessary, it offers the big
advantage of leaving the kernel paging tables unchanged. What's wrong with

Understanding the Linux Kernel

155

modifying the page tables? As we know from Chapter 2, frequent page table
modifications lead to higher average memory access times, since they make the CPU
flush the contents of the translation lookaside buffers.

The technique adopted by Linux to solve the external fragmentation problem is based on the
well-known buddy system algorithm. All free page frames are grouped into 10 lists of blocks
that contain groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 contiguous page frames,
respectively. The physical address of the first page frame of a block is a multiple of the group
size: for example, the initial address of a 16-page-frame block is a multiple of 16 x 212.

We'll show how the algorithm works through a simple example.

Assume there is a request for a group of 128 contiguous page frames (i.e., a half-megabyte).
The algorithm checks first whether a free block in the 128-page-frame list exists. If there is no
such block, the algorithm looks for the next larger block, that is, a free block in the 256-page-
frame list. If such a block exists, the kernel allocates 128 of the 256 page frames to satisfy the
request and inserts the remaining 128 page frames into the list of free 128-page-frame blocks.
If there is no free 256-page block, it then looks for the next larger block, that is, a free 512-
page-frame block. If such a block exists, it allocates 128 of the 512 page frames to satisfy the
request, inserts the first 256 of the remaining 384 page frames into the list of free 256-page-
frame blocks, and inserts the last 128 of the remaining 384 page frames into the list of free
128-page-frame blocks. If the list of 512-page-frame blocks is empty, the algorithm gives up
and signals an error condition.

The reverse operation, releasing blocks of page frames, gives rise to the name of this
algorithm. The kernel attempts to merge together pairs of free buddy blocks of size b into a
single block of size 2b. Two blocks are considered buddy if:

• Both blocks have the same size, say b.
• They are located in contiguous physical addresses.
• The physical address of the first page frame of the first block is a multiple of 2 x b x

212.

The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and tries
again so as to create even bigger blocks.

6.1.2.1 Data structures

Linux makes use of two different buddy systems: one handles the page frames suitable for
ISA DMA, while the other one handles the remaining page frames. Each buddy system relies
on the following main data structures:

• The mem_map array introduced previously.
• An array having 10 elements of type free_area_struct, one element for each group

size. The variable free_area[0] points to the array used by the buddy system for the
page frames that are not suitable for ISA DMA, while free_area[1] points to the
array used by the buddy system for page frames suitable for ISA DMA.

• Ten binary arrays named bitmaps, one for each group size. Each buddy system has its
own set of bitmaps, which it uses to keep track of the blocks it allocates.

Understanding the Linux Kernel

156

Each element of the free_area[0] and free_area[1] arrays is a structure of type
free_area_struct, which is defined as follows:

struct free_area_struct {
 struct page *next;
 struct page *prev;
 unsigned int *map;
 unsigned long count;
};

Notice that the first two fields of this structure match the corresponding fields of a page
descriptor; in fact, pointers to free_area_struct structures are sometimes used as pointers
to page descriptors.

The k th element of either the free_area[0] or the free_area[1] array is associated with a
doubly linked circular list of blocks of size 2k, implemented through the next and prev fields.
Each member of such a list is the descriptor of the first page frame of a block. The count field
of each free_area_struct structure stores the number of elements in the corresponding list.

The map field points to a bitmap whose size depends on the number of existing page frames.
Each bit of the bitmap of the k th entry of either free_area[0] or free_area[1] describes
the status of two buddy blocks of size 2k page frames. If a bit of the bitmap is equal to 0,
either both buddy blocks of the pair are free or both are busy; if it is equal to 1, exactly one of
the blocks is busy. When both buddies are free, the kernel treats them as a single free block of
size 2k+1.

Let us consider, for sake of illustration, a 128 MB RAM and the bitmaps associated with the
non-DMA page frames. The 128 MB can be divided into 32768 single pages, 16384 groups of
2 pages each, or 8192 groups of 4 pages each and so on up to 64 groups of 512 pages each. So
the bitmap corresponding to free_area[0][0] consists of 16384 bits, one for each pair of the
32768 existing page frames; the bitmap corresponding to free_area[0][1] consists of 8192
bits, one for each pair of blocks of two consecutive page frames; the last bitmap
corresponding to free_area[0][9] consists of 32 bits, one for each pair of blocks of 512
contiguous page frames.

Figure 6-2 illustrates with a simple example the use of the data structures introduced by the
buddy system algorithm. The array mem_map contains nine free page frames grouped in one
block of one (that is, a single page frame) at the top and two blocks of four further down. The
double arrows denote doubly linked circular lists implemented by the next and prev fields.
Notice that the bitmaps are not drawn to scale.

Understanding the Linux Kernel

157

Figure 6-2. Data structures used by the buddy system

6.1.2.2 Allocating a block

The __get_free_ pages() function implements the buddy system strategy for allocating
page frames. This function checks first whether there are enough free pages, that is, if
nr_free_ pages is greater than freepages.min. If not, it may decide to reclaim page frames
(see Section 16.7.4 in Chapter 16). Otherwise, it goes on with the allocation by executing the
code included in the RMQUEUE_TYPE macro:

if (!(gfp_mask & __GFP_DMA))
 RMQUEUE_TYPE(order, 0);
RMQUEUE_TYPE(order, 1);

The order parameter denotes the logarithm of the size of the requested block of free pages (0
for a one-page block, 1 for a two-page block, and so forth). The second parameter is the index
into free_area, which is for non-DMA blocks and 1 for DMA blocks. So the code checks
gfp_mask to see whether non-DMA blocks are allowed and, if so, tries to get blocks from that
list (index 0), because it would be better to save DMA blocks for requests that really need
them. If the page frames are successfully allocated, the code in the RMQUEUE_TYPE macro
executes a return statement, thus terminating the _ _get_free_ pages() function.
Otherwise, the code in the RMQUEUE_TYPE macro is executed again with the second parameter
equal to 1, that is, the memory allocation request is satisfied using page frames suitable for
DMA.

The code yielded by the RMQUEUE_TYPE macro is equivalent to the following fragments. First,
a few local variables are declared and initialized:

struct free_area_struct * area = &free_area[type][order];
unsigned long new_order = order;
struct page *prev;
struct page *ret;
unsigned long map_nr;
struct page * next;

Understanding the Linux Kernel

158

The type variable represents the second parameter of the macro: it is equal to when the macro
operates on the buddy system for non-DMA page frames and to 1 otherwise.

The macro then performs a cyclic search through each list for an available block (denoted by
an entry that doesn't point to the entry itself), starting with the list for the requested order and
continuing if necessary to larger orders. This cycle is equivalent to the following structure:

do {
 prev = (struct page *)area;
 ret = prev->next;
 if ((struct page *) area != ret)
 goto block_found;
 new_order++;
 area++;
} while (new_order < 10);

If the while loop terminates, no suitable free block has been found, so _ _get_free_pages(
) returns a NULL value. Otherwise, a suitable free block has been found; in this case, the
descriptor of its first page frame is removed from the list, the corresponding bitmap is
updated, and the value of nr_free_ pages is decreased:

block_found:
 prev->next = ret->next;
 prev->next->prev = prev;
 map_nr = ret-mem_map;
 change_bit(map_nr>>(1+new_order), area->map);
 nr_free_pages -= 1 << order;
 area->count--;

If the block found comes from a list of size new_order greater than the requested size order,
a while cycle is executed. The rationale behind these lines of codes is the following: when it
becomes necessary to use a block of 2k page frames to satisfy a request for 2h page frames (h
< k), the program allocates the last 2h page frames and iteratively reassigns the first 2k - 2h
page frames to the free_area lists having indexes between h and k.

size = 1 << new_order;
while (new_order > order) {
 area--;
 new_order--;
 size >>= 1;
 /* insert *ret as first element in the list
 and update the bitmap */
 next = area->next;
 ret->prev = (struct page *) area;
 ret->next = next;
 next->prev = ret;
 area->next = ret;
 area->count++;
 change_bit(map_nr >> (1+new_order), area->map);
 /* now take care of the second half of
 the free block starting at *ret */
 map_nr += size;
 ret += size;
}

Understanding the Linux Kernel

159

Finally, RMQUEUE_TYPE updates the count field of the page descriptor associated with the
selected block and executes a return instruction:

ret->count = 1;
return PAGE_OFFSET + (map_nr << PAGE_SHIFT);

As a result, the __get_free_pages() function returns the address of the block found.

6.1.2.3 Freeing a block

The free_ pages_ok() function implements the buddy system strategy for freeing page
frames. It makes use of three input parameters:

map_nr

The page number of one of the page frames included in the block to be released

order

The logarithmic size of the block

type

Equal to 1 if the page frames are suitable for DMA and to if they are not

The function starts by declaring and initializing a few local variables:

struct page * next, * prev;
struct free_area_struct *area = &free_area[type][order];
unsigned long index = map_nr >> (1 + order);
unsigned long mask = (~0UL) << order;
unsigned long flags;

The mask variable contains the two's complement of 2order. It is used to transform map_nr into
the number of the first page frame of the block to be released and to increment nr_free_
pages:

map_nr &= mask;
nr_free_pages -= mask;

The function now starts a cycle executed at most (9 - order), once for each possibility for
merging a block with its buddy. The function starts with the smallest sized block and moves
up to the top size. The condition driving the while loop is:

(mask + (1 << 9))

where the single bit set in mask is shifted to the left at each iteration. The body of the loop
checks whether the buddy block of the block having number map_nr is free:

if (!test_and_change_bit(index, area->map))
 break;

Understanding the Linux Kernel

160

If the buddy block is not free, the function breaks out of the cycle; if it is free, the function
detaches it from the corresponding list of free blocks. The block number of the buddy is
derived from map_nr by switching a single bit:

area->count--;
next = mem_map[map_nr ^ -mask].next;
prev = mem_map[map_nr ^ -mask].prev;
next->prev = prev;
prev->next = next;

At the end of each iteration, the function updates the mask, area, index, and map_nr
variables:

mask <<= 1;
area++;
index >>= 1;
map_nr &= mask;

The function then continues the next iteration, trying to merge free blocks twice as large as
the ones considered in the previous cycle. When the cycle is finished, the free block obtained
cannot be further merged with other free blocks. It is then inserted in the proper list:

next = area->next;
mem_map[map_nr].prev = (struct page *) area;
mem_map[map_nr].next = next;
next->prev
= &mem_map[map_nr];
area->next =

&mem_map[map_nr];
area->count++;

6.2 Memory Area Management

This section deals with memory areas, that is, with sequences of memory cells having
contiguous physical addresses and an arbitrary length.

The buddy system algorithm adopts the page frame as the basic memory area. This is fine for
dealing with relatively large memory requests, but how are we going to deal with requests for
small memory areas, say a few tens or hundred of bytes?

Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. The
correct approach instead consists of introducing new data structures that describe how small
memory areas are allocated within the same page frame. In doing so, we introduce a new
problem called internal fragmentation. It is caused by a mismatch between the size of the
memory request and the size of the memory area allocated to satisfy the request.

A classical solution adopted by Linux 2.0 consists of providing memory areas whose sizes are
geometrically distributed: in other words, the size depends on a power of 2 rather than on the
size of the data to be stored. In this way, no matter what the memory request size is, we can
ensure that the internal fragmentation is always smaller than 50%. Following this approach,
Linux 2.0 creates 13 geometrically distributed lists of free memory areas whose sizes range
from 32 to 131056 bytes. The buddy system is invoked both to obtain additional page frames

Understanding the Linux Kernel

161

needed to store new memory areas and conversely to release page frames that no longer
contain memory areas. A dynamic list is used to keep track of the free memory areas
contained in each page frame.

6.2.1 The Slab Allocator

Running a memory area allocation algorithm on top of the buddy algorithm is not particularly
efficient. Linux 2.2 reexamines the memory area allocation from scratch and comes out with
some very clever improvements.

The new algorithm is derived from the slab allocator schema developed in 1994 for the Sun
Microsystem Solaris 2.4 operating system. It is based on the following premises:

• The type of data to be stored may affect how memory areas are allocated; for instance,
when allocating a page frame to a User Mode process, the kernel invokes the
get_free_page() function, which fills the page with zeros.

The concept of a slab allocator expands upon this idea and views the memory areas as
objects consisting of both a set of data structures and a couple of functions or methods
called the constructor and destructor : the former initializes the memory area while the
latter deinitializes it.

In order to avoid initializing objects repeatedly, the slab allocator does not discard the
objects that have been allocated and then released but saves them in memory. When a
new object is then requested, it can be taken from memory without having to be
reinitialized.

In practice, the memory areas handled by Linux do not need to be initialized or
deinitialized. For efficiency reasons, Linux does not rely on objects that need
constructor or destructor methods; the main motivation for introducing a slab allocator
is to reduce the number of calls to the buddy system allocator. Thus, although the
kernel fully supports the constructor and destructor methods, the pointers to these
methods are NULL.

• The kernel functions tend to request memory areas of the same type repeatedly. For
instance, whenever the kernel creates a new process, it allocates memory areas for
some fixed size tables such as the process descriptor, the open file object, and so on
(see Chapter 3). When a process terminates, the memory areas used to contain these
tables can be reused. Since processes are created and destroyed quite frequently,
previous versions of the Linux kernel wasted time allocating and deallocating the page
frames containing the same memory areas repeatedly; in Linux 2.2 they are saved in a
cache and reused instead.

• Requests for memory areas can be classified according to their frequency. Requests of
a particular size that are expected to occur frequently can be handled most efficiently
by creating a set of special purpose objects having the right size, thus avoiding internal
fragmentation. Meanwhile, sizes that are rarely encountered can be handled through an
allocation scheme based on objects in a series of geometrically distributed sizes (such
as the power-of-2 sizes used in Linux 2.0), even if this approach leads to internal
fragmentation.

Understanding the Linux Kernel

162

• There is another subtle bonus in introducing objects whose sizes are not geometrically
distributed: the initial addresses of the data structures are less prone to be concentrated
on physical addresses whose values are a power of 2. This, in turn, leads to better
performance by the processor hardware cache.

• Hardware cache performance creates an additional reason for limiting calls to the
buddy system allocator as much as possible: every call to a buddy system function
"dirties" the hardware cache, thus increasing the average memory access time.[1]

[1] The impact of a kernel function on the hardware cache is denoted as the function footprint; it is defined as the percentage of cache overwritten by
the function when it terminates. Clearly, large footprints lead to a slower execution of the code executed right after the kernel function, since the
hardware cache is by now filled with useless information.

The slab allocator groups objects into caches. Each cache is a "store" of objects of the same
type. For instance, when a file is opened, the memory area needed to store the corresponding
"open file" object is taken from a slab allocator cache named filp (for "file pointer"). The slab
allocator caches used by Linux may be viewed at runtime by reading the /proc/slabinfo file.

The area of main memory that contains a cache is divided into slabs; each slab consists of one
or more contiguous page frames that contain both allocated and free objects (see Figure 6-3).

Figure 6-3. The slab allocator components

The slab allocator never releases the page frames of an empty slab on its own. It would not
know when free memory is needed, and there is no benefit to releasing objects when there is
still plenty of free memory for new objects. Therefore, releases occur only when the kernel is
looking for additional free page frames (see tSection 6.2.12 later in this chapter and Section
16.7 in Chapter 16).

6.2.2 Cache Descriptor

Each cache is described by a table of type struct kmem_cache_s (which is equivalent to the
type kmem_cache_t). The most significant fields of this table are:

c_name

Points to the name of the cache.

c_firstp , c_lastp

Point, respectively, to the first and last slab descriptor of the cache. The slab
descriptors of a cache are linked together through a doubly linked, circular, partially
ordered list: the first elements of the list include slabs with no free objects, then come

Understanding the Linux Kernel

163

the slabs that include used objects along with at least one free object, and finally the
slabs that include only free objects.

c_freep

Points to the s_nextp field of the first slab descriptor that includes at least one free
object.

c_num

Number of objects packed into a single slab. (All slabs of the cache have the same
size.)

c_offset

Size of the objects included in the cache. (This size may be rounded up if the initial
addresses of the objects must be memory aligned.)

c_ gfporder

Logarithm of the number of contiguous page frames included in a single slab.

c_ctor , c_dtor

Point, respectively, to the constructor and destructor methods associated with the
cache objects. They are currently set to NULL, as stated earlier.

c_nextp

Points to the next cache descriptor. All cache descriptors are linked together in a
simple list by means of this field.

c_flags

An array of flags that describes some permanent properties of the cache. There is, for
instance, a flag that specifies which of two possible alternatives (see the following
section) has been chosen to store the object descriptors in memory.

c_magic

A magic number selected from a predefined set of values. Used to check both the
current state of the cache and its consistency.

6.2.3 Slab Descriptor

Each slab of a cache has its own descriptor of type struct kmem_slab_s (equivalent to the
type kem_slab_t).

Slab descriptors can be stored in two possible places, the choice depending normally on the
size of the objects in the slab. If the object size is smaller than 512 bytes, the slab descriptor is

Understanding the Linux Kernel

164

stored at the end of the slab; otherwise, it is stored outside of the slab. The latter option is
preferable for large objects whose sizes are a submultiple of the slab size. In some cases, the
kernel may violate this rule by setting the c_flags field of the cache descriptor differently.

The most significant fields of a slab descriptor are:

s_inuse

Number of objects in the slab that are currently allocated.

s_mem

Points to the first object (either allocated or free) inside the slab.

s_freep

Points to the first free object (if any) in the slab.

s_nextp , s_prevp

Point, respectively, to the next and previous slab descriptor. The s_nextp field of the
last slab descriptor in the list points to the c_offset field of the corresponding cache
descriptor.

s_dma

Flag set if the objects included in the slab can be used by the DMA processor.

s_magic

Similar to the c_magic field of the cache descriptor. It contains a magic number
selected from a predefined set of values and is used to check both the current state of
the slab and its consistency. The values of this field are different from those of the
corresponding c_magic field of the cache descriptor. The offset of s_magic within the
slab descriptor is equal to the offset of c_magic with respect to c_offset inside the
cache descriptor; the checking routine relies on their being the same.

Figure 6-4 illustrates the major relationships between cache and slab descriptors. Full slabs
precede partially full slabs that precede empty slabs.

Understanding the Linux Kernel

165

Figure 6-4. Relationships between cache and slab descriptors

6.2.4 General and Specific Caches

Caches are divided into two types: general and specific. General caches are used only by the
slab allocator for its own purposes, while specific caches are used by the remaining parts of
the kernel.

The general caches are:

• A first cache contains the cache descriptors of the remaining caches used by the
kernel. The cache_cache variable contains its descriptor.

• A second cache contains the slab descriptors that are not stored inside the slabs. The
cache_slabp variable points to its descriptor.

• Thirteen additional caches contain geometrically distributed memory areas. The table
called cache_sizes whose elements are of type cache_sizes_t points to the 13
cache descriptors associated with memory areas of size 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, 32768, 65536, and 131072 bytes, respectively. The table
cache_sizes is used to efficiently derive the cache address corresponding to a given
size.

The kmem_cache_init() and kmem_cache_sizes_init() functions are invoked during
system initialization to set up the general caches.

Specific caches are created by the kmem_cache_create() function. Depending on the
parameters, the function first determines the best way to handle the new cache (for instance,
whether to include the slab descriptor inside or outside of the slab); it then creates a new
cache descriptor for the new cache and inserts the descriptor in the cache_cache general
cache. It should be noted that once a cache has been created, it cannot be destroyed.

The names of all general and specific caches can be obtained at runtime by reading
/proc/slabinfo; this file also specifies the number of free objects and the number of allocated
objects in each cache.

Understanding the Linux Kernel

166

6.2.5 Interfacing the Slab Allocator with the Buddy System

When the slab allocator creates new slabs, it relies on the buddy system algorithm to obtain a
group of free contiguous page frames. To that purpose, it invokes the kmem_getpages()
function:

void * kmem_getpages(kmem_cache_t *cachep,
 unsigned long flags, unsigned int *dma)
{
 void *addr;
 *dma = flags & SLAB_DMA;
 addr = (void*) __get_free_pages(flags, cachep->c_gfporder);
 if (!*dma && addr) {
 struct page *page = mem_map + MAP_NR(addr);
 *dma = 1<<cachep->c_gfporder;
 while ((*dma)--) {
 if (!PageDMA(page)) {
 *dma = 0;
 break;
 }
 page++;
 }
 }
 return addr;
}

The parameters have the following meaning:

cachep

Points to the cache descriptor of the cache that needs additional page frames (the
number of required page frames is in the cachep->c_gfporder field)

flags

Specifies how the page frame is requested (see Section 6.1.1 earlier in this chapter)

dma

Points to a variable that is set to 1 by kmem_getpages() if the allocated page frames
are suitable for ISA DMA

In the reverse operation, page frames assigned to a slab allocator can be released (see
Section 6.2.7 later in this chapter) by invoking the kmem_freepages() function:

void kmem_freepages(kmem_cache_t *cachep, void *addr)
{
 unsigned long i = (1<<cachep->c_gfporder);
 struct page *page = &mem_map[MAP_NR(addr)];
 while (i--) {
 PageClearSlab(page);
 page++;
 }
 free_pages((unsigned long)addr, cachep->c_gfporder);
}

Understanding the Linux Kernel

167

The function releases the page frames, starting from the one having physical address addr,
that had been allocated to the slab of the cache identified by cachep.

6.2.6 Allocating a Slab to a Cache

A newly created cache does not contain any slab and therefore no free objects. New slabs are
assigned to a cache only when both of the following are true:

• A request has been issued to allocate a new object.
• The cache does not include any free object.

When this occurs, the slab allocator assigns a new slab to the cache by invoking kmem_cache_
grow(). This function calls kmem_ getpages() to obtain a group of page frames from the
buddy system; it then calls kmem_cache_slabmgmt() to get a new slab descriptor. Next, it
calls kmem_cache_init_objs(), which applies the constructor method (if defined) to all the
objects contained in the new slab. It then calls kmem_slab_link_end(), which inserts the
slab descriptor at the end of the cache slab list:

void kmem_slab_link_end(kmem_cache_t *cachep,
 kmem_slab_t *slabp)
{
 kmem_slab_t *lastp = cachep->c_lastp;
 slabp->s_nextp = kmem_slab_end(cachep);
 slabp->s_prevp = lastp;
 cachep->c_lastp = slabp;
 lastp->s_nextp = slabp;
}

The kmem_slab_end macro yields the address of the c_offset field of the corresponding
cache descriptor (as stated before, the last element of a slab list points to that field).

After inserting the new slab descriptor into the list, kmem_cache_ grow() loads the next
and prev fields, respectively, of the descriptors of all page frames included in the new slab
with the address of the cache descriptor and the address of the slab descriptor. This works
correctly because the next and prev fields are used by functions of the buddy system only
when the page frame is free, while page frames handled by the slab allocator functions are not
free as far as the buddy system is concerned. Therefore, the buddy system will not be
confused by this specialized use of the page frame descriptor.

6.2.7 Releasing a Slab from a Cache

As stated previously, the slab allocator never releases the page frames of an empty slab on its
own. In fact, a slab is released only if both the following conditions hold:

• The buddy system is unable to satisfy a new request for a group of page frames.
• The slab is empty, that is, all the objects included in it are free.

When the kernel looks for additional free page frames, it calls try_to_free_pages(); this
function, in turn, may invoke kmem_cache_reap(), which selects a cache that contains at
least one empty slab. The kmem_slab_unlink() function then removes the slab from the
cache list of slabs:

Understanding the Linux Kernel

168

void kmem_slab_unlink(kmem_slab_t *slabp)
{
 kmem_slab_t *prevp = slabp->s_prevp;
 kmem_slab_t *nextp = slabp->s_nextp;
 prevp->s_nextp = nextp;
 nextp->s_prevp = prevp;
}

Subsequently, the slab—together with the objects in it—is destroyed by invoking
kmem_slab_destroy():

void kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp)
{
 if (cachep->c_dtor) {
 unsigned long num = cachep->c_num;
 void *objp = slabp->s_mem;
 do {
 (cachep->c_dtor)(objp, cachep, 0);
 objp += cachep->c_offset;
 if (!slabp->s_index)
 objp += sizeof(kmem_bufctl_t);
 } while (--num);
 }
 slabp->s_magic = SLAB_MAGIC_DESTROYED;
 if (slabp->s_index)
 kmem_cache_free(cachep->c_index_cachep, slabp->s_index);
 kmem_freepages(cachep, slabp->s_mem-slabp->s_offset);
 if (SLAB_OFF_SLAB(cachep->c_flags))
 kmem_cache_free(cache_slabp, slabp);
}

The function checks whether the cache has a destructor method for its objects (the c_dtor
field is not NULL), in which case it applies the destructor to all the objects in the slab; the
objp local variable keeps track of the currently examined object. Next, it calls
kmem_freepages(), which returns all the contiguous page frames used by the slab to the
buddy system. Finally, if the slab descriptor is stored outside of the slab (in this case the
s_index and c_index_cachep fields are not NULL, as explained later in this chapter), the
function releases it from the cache of the slab descriptors.

Some modules of Linux (see Appendix B) may create caches. In order to avoid wasting
memory space, the kernel must destroy all slabs in all caches created by a module before
removing it.[2] The kmem_cache_shrink() function destroys all the slabs in a cache by
invoking kmem_slab_destroy() iteratively. The c_ growing field of the cache descriptor is
used to prevent kmem_cache_shrink() from shrinking a cache while another kernel control
path attempts to allocate a new slab for it.

[2] We stated previously that Linux does not destroy caches. Thus, when linking in a new module, the kernel must check whether the new cache
descriptors requested by it were already created in a previous installation of that module or another one.

6.2.8 Object Descriptor

Each object has a descriptor of type struct kmem_bufctl_s (equivalent to the type
kmem_bufctl_t). Like the slab descriptors themselves, the object descriptors of a slab can be
stored in two possible ways, illustrated by Figure 6-5.

Understanding the Linux Kernel

169

Figure 6-5. Relationships between slab and object descriptors

External object descriptors

Stored outside the slab, in one of the general caches pointed to by cache_sizes. In
this case, the first object descriptor in the memory area describes the first object in the
slab and so on. The size of the memory area, and thus the particular general cache
used to store object descriptors, depends on the number of objects stored in the slab
(c_num field of the cache descriptor). The cache containing the objects themselves is
tied to the cache containing their descriptors through two fields. First, the
c_index_cachep field of the cache containing the slab points to the cache descriptor
of the cache containing the object descriptors. Second, the s_index field of the slab
descriptor points to the memory area containing the object descriptors.

Internal object descriptors

Stored inside the slab, right after the objects they describe. In this case, the
c_index_cachep field of the cache descriptor and the s_index field of the slab
descriptor are both NULL.

The slab allocator chooses the first solution when the size of the objects is a multiple of 512,
1024, 2048, or 4096: in this case, storing control structures inside the slab would result in a
high level of internal fragmentation. If the size of the objects is smaller than 512 bytes or not a
multiple of 512, 1024, 2048, or 4096 the slab allocator stores the object descriptors inside the
slab.

Object descriptors are simple structures consisting of a single field:

Understanding the Linux Kernel

170

typedef struct kmem_bufctl_s {
 union {
 struct kmem_bufctl_s * buf_nextp;
 kmem_slab_t * buf_slabp;
 void * buf_objp;
 } u;
} kmem_bufctl_t;
#define buf_nextp u.buf_nextp
#define buf_slabp u.buf_slabp
#define buf_objp u.buf_objp

This field has the following meaning, depending on the state of the object and the locations of
the object descriptors:

buf_nextp

If the object is free, it points to the next free object in the slab, thus implementing a
simple list of free objects inside the slab.

buf_objp

If the object is allocated and its object descriptor is stored outside of the slab, it points
to the object.

buf_slabp

If the object is allocated and its object descriptor is stored inside the slab, it points to
the slab descriptor of the slab in which the object is stored. This holds whether the slab
descriptor is stored inside or outside of the slab.

Figure 6-5 illustrates the relationships among slabs, slab descriptors, objects, and object
descriptors. Notice that, although the figure suggests that the slab descriptor is stored outside
of the slab, it remains unchanged if the descriptor is stored inside it.

6.2.9 Aligning Objects in Memory

The objects managed by the slab allocator can be aligned in memory, that is, they can be
stored in memory cells whose initial physical addresses are multiples of a given constant,
usually a power of 2. This constant is called the alignment factor, and its value is stored in the
c_align field of the cache descriptor. The c_offset field, which contains the object size,
takes into account the number of padding bytes added to obtain the proper alignment. If the
value of c_align is 0, no alignment is required for the objects.

The largest alignment factor allowed by the slab allocator is 4096, that is, the page frame size.
This means that objects can be aligned by referring either to their physical addresses or to
their linear addresses: in both cases, only the 12 least significant bits of the address may be
altered by the alignment.

Usually, microcomputers access memory cells more quickly if their physical addresses are
aligned with respect to the word size, that is, to the width of the internal memory bus of the
computer. Thus, the kmem_cache_create() function attempts to align objects according to
the word size specified by the BYTES_PER_WORD macro. For Intel Pentium processors, the

Understanding the Linux Kernel

171

macro yields the value 4 because the word is 32 bits long. However, the function does not
align objects if this leads to a consistent waste of memory.

When creating a new cache, it's possible to specify that the objects included in it be aligned in
the first-level cache. To achieve this, set the SLAB_HWCACHE_ALIGN cache descriptor flag. The
kmem_cache_create() function handles the request as follows:

• If the object's size is greater than half of a cache line, it is aligned in RAM to a
multiple of L1_CACHE_BYTES, that is, at the beginning of the line.

• Otherwise, the object size is rounded up to a factor of L1_CACHE_BYTES; this ensures
that an object will never span across two cache lines.

Clearly, what the slab allocator is doing here is trading memory space for access time: it gets
better cache performance by artificially increasing the object size, thus causing additional
internal fragmentation.

6.2.10 Slab Coloring

We know from Chapter 2 that the same hardware cache line maps many different blocks of
RAM. In this chapter we have also seen that objects of the same size tend to be stored at the
same offset within a cache. Objects that have the same offset within different slabs will, with
a relatively high probability, end up mapped in the same cache line. The cache hardware
might therefore waste memory cycles transferring two objects from the same cache line back
and forth to different RAM locations, while other cache lines go underutilized. The slab
allocator tries to reduce this unpleasant cache behavior by a policy called slab coloring:
different arbitrary values called colors are assigned to the slabs.

Before examining slab coloring, we have to look at the layout of objects in the cache. Let us
consider a cache whose objects are aligned in RAM. Thus, the c_align field of the cache
descriptor has a positive value, say aln. Even taking into account the alignment constraint,
there are many possible ways to place objects inside the slab. The choices depend on
decisions made for the following variables:

num

Number of objects that can be stored in a slab (its value is in the c_num field of the
cache descriptor).

osize

Object size including the alignment bytes (its value is in the c_offset field) plus
object descriptor size (if the descriptor is contained inside the slab).

dsize

Slab descriptor size; its value is equal to if the slab descriptor is stored outside of the
slab.

Understanding the Linux Kernel

172

free

Number of unused bytes (bytes not assigned to any object) inside the slab.

The total length in bytes of a slab can then be expressed as:

slab length = (num x osize)+dsize +free

free is always smaller than osize, since otherwise it would be possible to place additional
objects inside the slab. However, free could be greater than aln.

The slab allocator takes advantage of the free unused bytes to color the slab. The term "color"
is used simply to subdivide the slabs and allow the memory allocator to spread objects out
among different linear addresses. In this way, the kernel obtains the best possible performance
from the microprocessor's hardware cache.

Slabs having different colors store the first object of the slab in different memory locations,
while satisfying the alignment constraint. The number of available colors is free/aln+1. The
first color is denoted as and the last one (whose value is in the c_colour field of the cache
descriptor) is denoted as free/aln.

If a slab is colored with color col, the offset of the first object (with respect to the slab initial
address) is equal to col x aln bytes; this value is stored in the s_offset field of the slab
descriptor. Figure 6-6 illustrates how the placement of objects inside the slab depends on the
slab color. Coloring essentially leads to moving some of the free area of the slab from the end
to the beginning.

Figure 6-6. Slab with color col and alignment aln

Coloring works only when free is large enough. Clearly, if no alignment is required for the
objects or if the number of unused bytes inside the slab is smaller than the required alignment
(free < aln), the only possible slab coloring is the one having the color 0, that is, the one that
assigns a zero offset to the first object.

The various colors are distributed equally among slabs of a given object type by storing the
current color in a field of the cache descriptor called c_colour_next. The kmem_cache_
grow() function assigns the color specified by c_colour_next to a new slab and then
decrements the value of this field. After reaching 0, it wraps around again to the maximum
available value:

Understanding the Linux Kernel

173

if (!(offset = cachep->c_colour_next--))
 cachep->c_colour_next = cachep->c_colour;
offset *= cachep->c_align;
slabp->s_offset = offset;

In this way, each slab is created with a different color from the previous one, up to the
maximum available colors.

6.2.11 Allocating an Object to a Cache

New objects may be obtained by invoking the kmem_cache_alloc() function. The
parameter cachep points to the cache descriptor from which the new free object must be
obtained. kmem_cache_alloc() first checks whether the cache descriptor exists; it then
retrieves from the c_freep field the address of the s_nextp field of the first slab that includes
at least one free object:

slabp = cachep->c_freep;

If slabp does not point to a slab, it then jumps to alloc_new_slab and invokes
kmem_cache_grow() to add a new slab to the cache:

if (slabp->s_magic != SLAB_MAGIC_ALLOC)
 goto alloc_new_slab;

The value SLAB_MAGIC_ALLOC in the s_magic field indicates that the slab contains at least one
free object. If the slab is full, slabp points to the cachep->c_offset field, and thus slabp-
>s_magic coincides with cachep->c_magic: in this case, however, this field contains a magic
number for the cache different from SLAB_MAGIC_ALLOC.

After obtaining a slab with a free object, the function increments the counter containing the
number of objects currently allocated in the slab:

slabp->s_inuse++;

It then loads bufp with the address of the first free object inside the slab and, correspondingly,
updates the slabp->s_freep field of the slab descriptor to point to the next free object:

bufp = slabp->s_freep;
slabp->s_freep = bufp->buf_nextp;

If slabp->s_freep becomes NULL, the slab no longer includes free objects, so the c_freep
field of the cache descriptor must be updated:

if (!slabp->s_freep)
 cachep->c_freep = slabp->s_nextp;

Notice that there is no need to change the position of the slab descriptor inside the list since it
remains partially ordered. Now the function must derive the address of the free object and
update the object descriptor.

If the slabp->s_index field is null, the object descriptors are stored right after the objects
inside the slab. In this case, the address of the slab descriptor is first stored in the object

Understanding the Linux Kernel

174

descriptor's single field to denote the fact that the object is no longer free; then the object
address is derived by subtracting from the address of the object descriptor the object size
included in the cachep->c_offset field:

if (!slabp->s_index) {
 bufp->buf_slabp = slabp;
 objp = ((void*)bufp) - cachep->c_offset;
 }

If the slabp->s_index field is not zero, it points to a memory area outside of the slab where
the object descriptors are stored. In this case, the function first computes the relative position
of the object descriptor in the outside memory area; it then multiplies this number by the
object size; finally, it adds the result to the address of the first object in the slab, thus yielding
the address of the object to be returned. As in the previous case, the object descriptor single
field is updated and points now to the object:

if (slabp->s_index) {
 objp = ((bufp-slabp->s_index)*cachep->c_offset) +
 slabp->s_mem;
 bufp->buf_objp = objp;
}

The function terminates by returning the address of the new object:

return objp;

6.2.12 Releasing an Object from a Cache

The kmem_cache_free() function releases an object previously obtained by the slab
allocator. Its parameters are cachep, the address of the cache descriptor, and objp, the
address of the object to be released. The function starts by checking the parameters, after
which it determines the address of the object descriptor and that of the slab containing the
object. It uses the cachep->c_flags flag, included in the cache descriptor, to determine
whether the object descriptor is located inside or outside of the slab.

In the former case, it determines the address of the object descriptor by adding the object's
size to its initial address. The address of the slab descriptor is then extracted from the
appropriate field in the object descriptor:

if (!SLAB_BUFCTL(cachep->c_flags)) {
 bufp = (kmem_bufctl_t *)(objp+cachep->c_offset);
 slabp = bufp->buf_slabp;
}

In the latter case, it determines the address of the slab descriptor from the prev field of the
descriptor of the page frame containing the object (refer to Section 6.2.6 for the role of prev).
The address of the object descriptor is derived by first computing the sequence number of the
object inside the slab (object address minus first object address divided by object length). This
number is then used to determine the position of the object descriptor starting from the
beginning of the outside area pointed to by the slabp->s_index field of the slab descriptor.
To be on the safe side, the function checks that the object's address passed as a parameter
coincides with the address that its object descriptor says it should have:

Understanding the Linux Kernel

175

if (SLAB_BUFCTL(cachep->c_flags)) {
 slabp = (kmem_slab_t *)((&mem_map[MAP_NR(objp)])->prev);
 bufp = &slabp->s_index[(objp - slabp->s_mem) /
 cachep->c_offset];
 if (objp != bufp->buf_objp)
 goto bad_obj_addr;
}

Now the function checks whether the slabp->s_magic field of the slab descriptor contains
the correct magic number and whether the slabp->s_inuse field is greater than 0. If
everything is okay, it decrements the value of slabp->s_inuse and inserts the object into the
slab list of free objects:

slabp->s_inuse--;
bufp->buf_nextp = slabp->s_freep;
slabp->s_freep = bufp;

If bufp->buf_nextp is NULL, the list of free objects includes only one element: the object
that is being released. In this case, the slab was previously filled to capacity and it might be
necessary to reinsert its slab descriptor in a new position in the list of slab descriptors.
(Remember that completely filled slabs appear before slabs with some free objects in the
partially ordered list.) This is done by the kmem_cache_one_free() function:

if (!bufp->buf_nextp)
 kmem_cache_one_free(cachep, slabp);

If the slab includes other free objects besides the one being released, it is necessary to check
whether all objects are free. As in the previous case, this would make it necessary to reinsert
the slab descriptor in a new position in the list of slab descriptors. The move is done by the
kmem_cache_full_free() function:

if (bufp->buf_nextp)
 if (!slabp->s_inuse)
 kmem_cache_full_free(cachep, slabp);

The kmem_cache_free() function terminates here.

6.2.13 General Purpose Objects

As stated in Section 6.1.2, infrequent requests for memory areas are handled through a group
of general caches whose objects have geometrically distributed sizes ranging from a minimum
of 32 to a maximum of 131072 bytes.

Objects of this type are obtained by invoking the kmalloc() function:

void * kmalloc(size_t size, int flags)
{
 cache_sizes_t *csizep = cache_sizes;
 for (; csizep->cs_size; csizep++) {
 if (size > csizep->cs_size)
 continue;
 return __kmem_cache_alloc(csizep->cs_cachep, flags);
 }
 printk(KERN_ERR "kmalloc: Size (%lu) too large\n",

Understanding the Linux Kernel

176

 (unsigned long) size);
 return NULL;
}

The function uses the cache_sizes table to locate the cache descriptor of the cache
containing objects of the right size. It then calls kmem_cache_alloc() to allocate the
object.[3]

[3] Actually, for efficiency reasons, the code of kmem_cache_alloc() is copied inside the body of kmalloc(). The
__kmem_cache alloc() function, which implements kmem_cache_alloc(), is declared inline.

Objects obtained by invoking kmalloc() can be released by calling kfree():[4]

[4] A similar function called kfree_s() requires an additional parameter, namely, the size of the object to be released. This function was used
in previous versions of Linux where the size of the memory area had to be determined before releasing it. It is still used by some modules of the
filesystem.

void kfree(const void *objp)
{
 struct page *page;
 int nr;
 if (!objp)
 goto null_ptr;
 nr = MAP_NR(objp);
 if (nr >= num_physpages)
 goto bad_ptr;
 page = &mem_map[nr];
 if (PageSlab(page)) {
 kmem_cache_t *cachep;
 cachep = (kmem_cache_t *)(page->next);
 if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) {
 __kmem_cache_free(cachep, objp);
 return;
 }
 }
bad_ptr:
 printk(KERN_ERR "kfree: Bad obj %p\n", objp);
 *(int *) 0 = 0; /* FORCE A KERNEL DUMP */
null_ptr:
 return;
}

The proper cache descriptor is identified by reading the next field of the descriptor of the first
page frame containing the memory area. If this field points to a valid descriptor, the memory
area is released by invoking kmem_cache_free().

6.3 Noncontiguous Memory Area Management

We already know from an earlier discussion that it is preferable to map memory areas into
sets of contiguous page frames, thus making better use of the cache and achieving lower
average memory access times. Nevertheless, if the requests for memory areas are infrequent,
it makes sense to consider an allocation schema based on noncontiguous page frames
accessed through contiguous linear addresses. The main advantage of this schema is to avoid
external fragmentation, while the disadvantage is that it is necessary to fiddle with the kernel
page tables. Clearly, the size of a noncontiguous memory area must be a multiple of 4096.
Linux uses noncontiguous memory areas sparingly, for instance, to allocate data structures for

Understanding the Linux Kernel

177

active swap areas (see Section 16.2.3 in Chapter 16), to allocate space for a module (see
Appendix B), or to allocate buffers to some I/O drivers.

6.3.1 Linear Addresses of Noncontiguous Memory Areas

To find a free range of linear addresses, we can look in the area starting from PAGE_OFFSET
(usually 0xc0000000, the beginning of the fourth gigabyte). We learned in the Chapter 2 in
Section 2.5.4 that the kernel reserved this whole upper area of memory to map available RAM
for kernel use. But available RAM occupies only a small fraction of the gigabyte, starting at
the PAGE_OFFSET address. All the linear addresses above that reserved area are available for
mapping noncontiguous memory areas. The linear address that corresponds to the end of
physical memory is stored in the high_memory variable.

Figure 6-7 shows how linear addresses are assigned to noncontiguous memory areas. A safety
interval of size 8 MB (macro VMALLOC_OFFSET) is inserted between the end of the physical
memory and the first memory area; its purpose is to "capture" out-of-bounds memory
accesses. For the same reason, additional safety intervals of size 4 KB are inserted to separate
noncontiguous memory areas.

Figure 6-7. The linear address interval starting from PAGE_OFFSET

The VMALLOC_START macro defines the starting address of the linear space reserved for
noncontiguous memory areas. It is defined as follows:

#define VMALLOC_START (((unsigned long) high_memory + \
 VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))

6.3.2 Descriptors of Noncontiguous Memory Areas

Each noncontiguous memory area is associated with a descriptor of type struct vm_struct:

struct vm_struct {
 unsigned long flags;
 void * addr;
 unsigned long size;
 struct vm_struct * next;
};

These descriptors are inserted in a simple list by means of the next field; the address of the
first element of the list is stored in the vmlist variable. The addr field contains the linear
address of the first memory cell of the area; the size field contains the size of the area plus
4096 (the size of the previously mentioned interarea safety interval).

Understanding the Linux Kernel

178

The get_vm_area() function creates new descriptors of type struct vm_struct; its
parameter size specifies the size of the new memory area:

struct vm_struct * get_vm_area(unsigned long size)
{
 unsigned long addr;
 struct vm_struct **p, *tmp, *area;
 area = (struct vm_struct *) kmalloc(sizeof(*area),
 GFP_KERNEL);
 if (!area)
 return NULL;
 addr = VMALLOC_START;
 for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {
 if (size + addr < (unsigned long) tmp->addr)
 break;
 addr = tmp->size + (unsigned long) tmp->addr;
 if (addr > 0xffffd000-size) {
 kfree(area);
 return NULL;
 }
 }
 area->addr = (void *)addr;
 area->size = size + PAGE_SIZE;
 area->next = *p;
 *p = area;
 return area;
}

The function first calls kmalloc() to obtain a memory area for the new descriptor. It then
scans the list of descriptors of type struct vm_struct looking for an available range of
linear addresses that includes at least size+4096 addresses. If such an interval exists, the
function initializes the fields of the descriptor and terminates by returning the initial address
of the noncontiguous memory area. Otherwise, when addr + size exceeds the 4 GB limit,
get_vm_area() releases the descriptor and returns NULL.

6.3.3 Allocating a Noncontiguous Memory Area

The vmalloc() function allocates a noncontiguous memory area to the kernel. The
parameter size denotes the size of the requested area. If the function is able to satisfy the
request, then it returns the initial linear address of the new area; otherwise, it returns a NULL
pointer:

void * vmalloc(unsigned long size)
{
 void * addr;
 struct vm_struct *area;
 size = (size+PAGE_SIZE-1)&PAGE_MASK;
 if (!size || size > (num_physpages << PAGE_SHIFT))
 return NULL;
 area = get_vm_area(size);
 if (!area)
 return NULL;
 addr = area->addr;
 if (vmalloc_area_pages((unsigned long) addr, size)) {
 vfree(addr);
 return NULL;
 }

Understanding the Linux Kernel

179

 return addr;
}

The function starts by rounding up the value of the size parameter to a multiple of 4096 (the
page frame size). It also performs a sanity check to make sure the size is greater than and less
than or equal to the existing number of page frames. If the size fits available memory,
vmalloc() invokes get_vm_area(), which creates a new descriptor and returns the linear
addresses assigned to the memory area. Then vmalloc() invokes vmalloc_area_pages()
to request noncontiguous page frames and terminates by returning the initial linear address of
the noncontiguous memory area.

The vmalloc_area_pages() function makes use of two parameters: address, the initial
linear address of the area, and size, its size. The linear address of the end of the area is
assigned to the end local variable:

end = address + size;

The function then uses the pgd_offset_k macro to derive the entry in the Page Global
Directory related to the initial linear address of the area:

dir = pgd_offset_k(address);

The function then executes the following cycle:

while (address < end) {
 pmd_t *pmd = pmd_alloc_kernel(dir, address);
 if (!pmd)
 return -ENOMEM;
 if (alloc_area_pmd(pmd, address, end - address))
 return -ENOMEM;
 set_pgdir(address, *dir);
 address = (address + PGDIR_SIZE) & PGDIR_MASK;
 dir++;
}

In each cycle, it first invokes pmd_alloc_kernel() to create a Page Middle Directory for
the new area. It then calls alloc_area_pmd() to allocate all the Page Tables associated with
the new Page Middle Directory. Next, it invokes set_pgdir() to update the entry
corresponding to the new Page Middle Directory in all existing Page Global Directories (see
Section 2.5.4 in Chapter 2). It adds the constant 222, that is, the size of the range of linear
addresses spanned by a single Page Middle Directory, to the current value of address, and it
increases the pointer dir to the Page Global Directory.

The cycle is repeated until all page table entries referring to the noncontiguous memory area
have been set up.

The alloc_area_pmd() function executes a similar cycle for all the Page Tables that a Page
Middle Directory points to:

Understanding the Linux Kernel

180

while (address < end) {
 pte_t * pte = pte_alloc_kernel(pmd, address);
 if (!pte)
 return -ENOMEM;
 if (alloc_area_pte(pte, address, end - address))
 return -ENOMEM;
 address = (address + PMD_SIZE) & PMD_MASK;
 pmd++;
}

The pte_alloc_kernel() function (see Section 2.5.2 in Chapter 2) allocates a new Page
Table and updates the corresponding entry in the Page Middle Directory. Next,
alloc_area_pte() allocates all the page frames corresponding to the entries in the Page
Table. The value of address is increased by 222, that is, the size of the linear address interval
spanned by a single Page Table, and the cycle is repeated.

The main cycle of alloc_area_pte() is:

while (address < end) {
 unsigned long page;
 if (!pte_none(*pte))
 printk("alloc_area_pte: page already exists\n");
 page = __ get_free_page(GFP_KERNEL);
 if (!page)
 return -ENOMEM;
 set_pte(pte, mk_pte(page, PAGE_KERNEL));
 address += PAGE_SIZE;
 pte++;
}

Each page frame is allocated through __get_free_page(). The physical address of the new
page frame is written into the Page Table by the set_pte and mk_pte macros. The cycle is
repeated after adding the constant 4096, that is, the length of a page frame, to address.

6.3.4 Releasing a Noncontiguous Memory Area

The vfree() function releases noncontiguous memory areas. Its parameter addr contains
the initial linear address of the area to be released. vfree() first scans the list pointed by
vmlist to find the address of the area descriptor associated with the area to be released:

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
 if (tmp->addr == addr) {
 *p = tmp->next;
 vmfree_area_pages((unsigned long)(tmp->addr),
 tmp->size);
 kfree(tmp);
 return;
 }
}
printk("Trying to vfree() nonexistent vm area (%p)\n", addr);

The size field of the descriptor specifies the size of the area to be released. The area itself is
released by invoking vmfree_area_pages(), while the descriptor is released by invoking
kfree().

Understanding the Linux Kernel

181

The vmfree_area_pages() function takes two parameters: the initial linear address and the
size of the area. It executes the following cycle to reverse the actions performed by
vmalloc_area_pages():

while (address < end) {
 free_area_pmd(dir, address, end - address);
 address = (address + PGDIR_SIZE) & PGDIR_MASK;
 dir++;
}

In turn, free_area_pmd() reverses the actions of alloc_area_pmd() in the cycle:

while (address < end) {
 free_area_pte(pmd, address, end - address);
 address = (address + PMD_SIZE) & PMD_MASK;
 pmd++;
}

Again, free_area_pte() reverses the activity of alloc_area_pte() in the cycle:

while (address < end) {
 pte_t page = *pte;
 pte_clear(pte);
 address += PAGE_SIZE;
 pte++;
 if (pte_none(page))
 continue;
 if (pte_present(page)) {
 free_page(pte_page(page));
 continue;
 }
 printk("Whee... Swapped out page in kernel page table\n");
}

Each page frame assigned to the noncontiguous memory area is released by means of the
buddy system free_ page() function. The corresponding entry in the Page Table is set to
by the pte_clear macro.

6.4 Anticipating Linux 2.4

Linux 2.2 has two buddy systems: the first one handles page frames suitable for ISA DMA,
while the second one handles page frames not suitable for ISA DMA. Linux 2.4 adds a third
buddy system for the high physical memory, that is, for the page frames not permanently
mapped by the kernel. Using a high-memory page frame implies changing an entry in a
special kernel Page Table to map the page frame physical addresses in the 4 GB linear address
space.

Actually, Linux 2.4 views the three portions of RAM as different "zones." Each zone has its
own counters and watermarks to monitor the number of free page frames. When a memory
allocation request takes place, the kernel first tries to fetch the page frames from the most
suitable zone; if it fails, it may fall back on another zone.

The slab allocator is mostly unchanged. However, Linux 2.4 allows a slab allocator cache that
is no longer useful to be destroyed. Recall that in Linux 2.2 a slab allocator cache can be

Understanding the Linux Kernel

182

dynamically created but not destroyed. Modules that create their own slab allocator cache
when loaded are now expected to destroy it when unloaded.

Understanding the Linux Kernel

183

Chapter 7. Process Address Space
As seen in the previous chapter, a kernel function gets dynamic memory in a fairly
straightforward manner by invoking one of a variety of functions: __get_free_pages() to
get pages from the buddy system algorithm, kmem_cache_alloc() or kmalloc() to use the
slab allocator for specialized or general-purpose objects, and vmalloc() to get
a noncontiguous memory area. If the request can be satisfied, each of these functions returns
a linear address identifying the beginning of the allocated dynamic memory area.

These simple approaches work for two reasons:

• The kernel is the highest priority component of the operating system: if some kernel
function makes a request for dynamic memory, it must have some valid reason to issue
that request, and there is no point in trying to defer it.

• The kernel trusts itself: all kernel functions are assumed error-free, so it does not need
to insert any protection against programming errors.

When allocating memory to User Mode processes, the situation is entirely different:

• Process requests for dynamic memory are considered nonurgent. When a process's
executable file is loaded, for instance, it is unlikely that the process will address all the
pages of code in the near future. Similarly, when a process invokes malloc() to get
additional dynamic memory, it doesn't mean the process will soon access all the
additional memory obtained. So as a general rule, the kernel tries to defer allocating
dynamic memory to User Mode processes.

• Since user programs cannot be trusted, the kernel must be prepared to catch all
addressing errors caused by processes in User Mode.

As we shall see in this chapter, the kernel succeeds in deferring the allocation of dynamic
memory to processes by making use of a new kind of resource. When a User Mode process
asks for dynamic memory, it doesn't get additional page frames; instead, it gets the right to
use a new range of linear addresses, which become part of its address space. This interval is
called a memory region.

We start in Section 7.1 by discussing how the process views dynamic memory. We then
describe the basic components of the process address space in Section 7.3. Next, we examine
in detail the role played by the page fault exception handler in deferring the allocation of page
frames to processes. We then illustrate how the kernel creates and deletes whole process
address spaces. Last, we discuss the APIs and system calls related to address space
management.

7.1 The Process's Address Space

The address space of a process consists of all linear addresses that the process is allowed to
use. Each process sees a different set of linear addresses; the address used by one process
bears no relation to the address used by another. As we shall see later, the kernel may
dynamically modify a process address space by adding or removing intervals of linear
addresses.

Understanding the Linux Kernel

184

The kernel represents intervals of linear addresses by means of resources called memory
regions, which are characterized by an initial linear address, a length, and some access rights.
For reasons of efficiency, both the initial address and the length of a memory region must be
multiples of 4096, so that the data identified by each memory region entirely fills up the page
frames allocated to it. Let us briefly mention typical situations in which a process gets new
memory regions:

• When the user types a command at the console, the shell process creates a new process
to execute the command. As a result, a fresh address space, thus a set of memory
regions, is assigned to the new process (see Section 7.5 later in this chapter and
Chapter 19).

• A running process may decide to load an entirely different program. In this case, the
process ID remains unchanged but the memory regions used before loading the
program are released, and a new set of memory regions is assigned to the process (see
Section 19.4 in Chapter 19).

• A running process may perform a "memory mapping" on a file (or on a portion of it).
In such cases, the kernel assigns a new memory region to the process to map the file
(see Section 15.2 in Chapter 15).

• A process may keep adding data on its User Mode stack until all addresses in the
memory region that map the stack have been used. In such cases, the kernel may
decide to expand the size of that memory region (see Section 7.4 later in this chapter).

• A process may create an IPC shared memory region to share data with other
cooperating processes. In such cases, the kernel assigns a new memory region to the
process to implement this construct (see Section 18.3.5 in Chapter 18).

• A process may expand its dynamic area (the heap) through a function such as malloc(
). As a result, the kernel may decide to expand the size of the memory region assigned
to the heap (see Section 7.6 later in this chapter).

Table 7-1 illustrates some of the system calls related to the previously mentioned tasks. With
the exception of brk(), which is discussed at the end of this chapter, the system calls are
described in other chapters.

Table 7-1. System Calls Related to Memory Region Creation and Deletion
System Call Description
brk() Changes the heap size of the process
execve() Loads a new executable file, thus changing the process address space
exit() Terminates the current process and destroys its address space
fork() Creates a new process, and thus a new address space
mmap() Creates a memory mapping for a file, thus enlarging the process address space
munmap() Destroys a memory mapping for a file, thus contracting the process address space
shmat() Creates a shared memory region
shmdt() Destroys a shared memory region

As we shall see in Section 7.4, it is essential for the kernel to identify the memory regions
currently owned by a process (that is, the address space of a process) since that allows the
"Page fault" exception handler to efficiently distinguish between two types of invalid linear
addresses that cause it to be invoked:

• Those caused by programming errors.

Understanding the Linux Kernel

185

• Those caused by a missing page; even though the linear address belongs to the
process's address space, the page frame corresponding to that address has yet to be
allocated.

The latter addresses are not invalid from the process's point of view; the kernel handles the
page fault by providing the page frame and letting the process continue.

7.2 The Memory Descriptor

All information related to the process address space is included in a table referenced by the mm
field of the process descriptor. This table is a structure of type mm_struct as follows:

struct mm_struct {
 struct vm_area_struct *mmap, *mmap_avl, *mmap_cache;
 pgd_t * pgd;
 atomic_t count;
 int map_count;
 struct semaphore mmap_sem;
 unsigned long context;
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 unsigned long rss, total_vm, locked_vm;
 unsigned long def_flags;
 unsigned long cpu_vm_mask;
 unsigned long swap_cnt;
 unsigned long swap_address;
 void * segments;
};

For the present discussion, the most important fields are:

pgd and segments

Point, respectively, to the Page Global Directory and Local Descriptor Table of the
process.

rss

Specifies the number of page frames allocated to the process.

total_vm

Denotes the size of the process address space expressed as a number of pages.

locked_vm

Counts the number of "locked" pages, that is, pages that cannot be swapped out (see
Chapter 16).

Understanding the Linux Kernel

186

count

Denotes the number of processes that share the same struct mm_struct descriptor. If
count is greater than 1, the processes are lightweight processes sharing the same
address space, that is, using the same memory descriptor.

The mm_alloc() function is invoked to get a new memory descriptor. Since these
descriptors are stored in a slab allocator cache, mm_alloc() calls kmem_cache_alloc(),
initializes the new memory descriptor by duplicating the content of the memory descriptor of
current, and sets the count field to 1.

Conversely, the mmput() function decrements the count field of a memory descriptor. If that
field becomes 0, the function releases the Local Descriptor Table, the memory region
descriptors (see later in this chapter), the page tables referenced by the memory descriptor,
and the memory descriptor itself.

The mmap, mmap_avl, and mmap_cache fields are discussed in the next section.

7.3 Memory Regions

Linux implements memory regions by means of descriptors of type vm_area_struct:

struct vm_area_struct {
 struct mm_struct * vm_mm;
 unsigned long vm_start;
 unsigned long vm_end;
 struct vm_area_struct *vm_next;
 pgprot_t vm_page_prot;
 unsigned short vm_flags;
 short vm_avl_height;
 struct vm_area_struct *vm_avl_left, *vm_avl_right;
 struct vm_area_struct *vm_next_share, **vm_pprev_share;
 struct vm_operations_struct * vm_ops;
 unsigned long vm_offset;
 struct file * vm_file;
 unsigned long vm_pte;
};

Each memory region descriptor identifies a linear address interval. The vm_start field
contains the first linear address of the interval, while the vm_end field contains the first linear
address outside of the interval; vm_end - vm_start thus denotes the length of the memory
region. The vm_mm field points to the mm_struct memory descriptor of the process that owns
the region. We shall describe the other fields of vm_area_struct later.

Memory regions owned by a process never overlap, and the kernel tries to merge regions
when a new one is allocated right next to an existing one. Two adjacent regions can be
merged if their access rights match.

As shown in Figure 7-1, when a new range of linear addresses is added to the process address
space, the kernel checks whether an already existing memory region can be enlarged (case a).
If not, a new memory region is created (case b). Similarly, if a range of linear addresses is
removed from the process address space, the kernel resizes the affected memory regions

Understanding the Linux Kernel

187

(case c). In some cases, the resizing forces a memory region to be split into two smaller ones
(case d).[1]

[1] Removing a linear address interval may theoretically fail because no free memory is available for a new memory descriptor.

Figure 7-1. Adding or removing a linear address interval

7.3.1 Memory Region Data Structures

All the regions owned by a process are linked together in a simple list. Regions appear in the
list in ascending order by memory address; however, each two regions can be separated by an
area of unused memory addresses. The vm_next field of each vm_area_struct element
points to the next element in the list. The kernel finds the memory regions through the mmap
field of the process memory descriptor, which points to the vm_next field of the first memory
region descriptor in the list.

The map_count field of the memory descriptor contains the number of regions owned by the
process. A process may own up to MAX_MAP_COUNT different memory regions (this value is
usually set to 65536).

Figure 7-2 illustrates the relationships among the address space of a process, its memory
descriptor, and the list of memory regions.

Understanding the Linux Kernel

188

Figure 7-2. Descriptors related to the address space of a process

A frequent operation performed by the kernel is to search the memory region that includes a
specific linear address. Since the list is sorted, the search can terminate as soon as a memory
region that ends after the specific linear address has been found.

However, using the list is convenient only if the process has very few memory regions, let's
say less than a few tens of them. Searching, inserting elements, and deleting elements in the
list involve a number of operations whose times are linearly proportional to the list length.

Although most Linux processes use very few memory regions, there are some large
applications like object-oriented databases that one might consider "pathological" in that they
have many hundreds or even thousands of regions. In such cases, the memory region list
management becomes very inefficient, hence the performance of the memory-related system
calls degrades to an intolerable point.

When processes have a large number of memory regions, Linux stores their descriptors in
data structures called AVL trees, which were invented in 1962 by Adelson-Velskii and Landis.

In an AVL tree, each element (or node) usually has two children: a left child and a right child.
The elements in the AVL tree are sorted: for each node N, all elements of the subtree rooted at
the left child of N precede N, while, conversely, all elements of the subtree rooted at the right
child of N follow N (see Figure 7-3 (a); the key of the node is written inside the node itself).

Every node N of an AVL tree has a balancing factor, which shows how well balanced the
branches under the node are. The balancing factor is the depth of the subtree rooted at N's left
child minus the depth of the subtree rooted at N's right child. Every node of a properly
balanced AVL tree must have a balancing factor equal to -1, 0, or +1 (see Figure 7-3 (a); the
balancing factor of the node is written to the left of the node itself).

Understanding the Linux Kernel

189

Figure 7-3. Example of AVL trees

Searching an element in an AVL tree is very efficient, since it requires operations whose
execution time is linearly proportional to the logarithm (of 2) of the tree size. In other words,
doubling the number of memory regions adds just one more iteration to the operation.

Inserting and deleting an element in an AVL tree is also efficient, since the algorithm can
quickly traverse the tree in order to locate the position at which the element will be inserted or
from which it will be removed. However, such operations could make the AVL tree
unbalanced. For instance, let's suppose that an element having value 11 must be inserted in
the AVL tree shown in Figure 7-3 (a). Its proper position is the left child of node having key
12, but once it is inserted, the balancing factor of the node having key 13 becomes -2. In order
to rebalance the AVL tree, the algorithm performs a "rotation" on the subtree rooted at the
node having the key 13, thus producing the new AVL tree shown in Figure 7-3 (b). This looks
complicated, but inserting or deleting an element in an AVL tree requires a small number of
operations—a number linearly proportional to the logarithm of the tree size.

Still, AVL trees have their drawbacks. The functions that handle them are a lot more complex
than the functions that handle lists. When the number of elements is small, it is far more
efficient to put them in a list instead of in an AVL tree.

Therefore, in order to store the memory regions of a process, Linux generally makes use of
the linked list referred by the mmap field of the memory descriptor; it starts using an AVL tree
only when the number of memory regions of the process becomes higher than
AVL_MIN_MAP_COUNT (usually 32 elements). Thus, the memory descriptor of a process
includes another field named mmap_avl pointing to the AVL tree. This field has the value
until the kernel decides it needs to create the tree. Once an AVL tree has been created to
handle memory regions of a process, Linux keeps both the linked list and the AVL tree up-to-
date. Both data structures contain pointers to the same memory region descriptors. When
inserting or removing a memory region descriptor, the kernel searches the previous and next
elements through the AVL tree and uses them to quickly update the list without scanning it.

The addresses of the left and right children of every AVL node are stored in the vm_avl_left
and vm_avl_right fields, respectively, of the vm_area_struct descriptor. This descriptor
also includes the vm_avl_height field, which stores the height of the subtree rooted at the
memory region itself. The tree is sorted on the vm_end field value.

Understanding the Linux Kernel

190

The avl_rebalance() function receives a path in a memory region's AVL tree as a
parameter. It rebalances the tree, if necessary, by properly rotating a subtree branching off
from a node of the path. The function is invoked by the avl_insert() and avl_remove()
functions, which insert and remove a memory region descriptor in a tree, respectively. Linux
also makes use of the avl_insert_neighbours() function to insert an element into the tree
and return the addresses of the nearest nodes at the left and the right of the new element.

7.3.2 Memory Region Access Rights

Before moving on, we should clarify the relation between a page and a memory region. As
mentioned in Chapter 2, we use the term "page" to refer both to a set of linear addresses and
to the data contained in this group of addresses. In particular, we denote the linear address
interval ranging between and 4095 as page 0, the linear address interval ranging between 4096
and 8191 as page 1, and so forth. Each memory region thus consists of a set of pages having
consecutive page numbers.

We have already discussed in previous chapters two kinds of flags associated with a page:

• A few flags such as Read/Write , Present, or User/Supervisor stored in each page
table entry (see Section 2.4.1 in Chapter 2).

• A set of flags stored in the flags field of each page descriptor (see Section 6.1 in
Chapter 6).

The first kind of flag is used by the Intel 80x86 hardware to check whether the requested kind
of addressing can be performed; the second kind is used by Linux for many different purposes
(see Table 6-1).

We now introduce a third kind of flags: those associated with the pages of a memory region.
They are stored in the vm_flags field of the vm_area_struct descriptor (see Table 7-2).
Some flags offer the kernel information about all the pages of the memory region, such as
what they contain and what rights the process has to access each page. Other flags describe
the region itself, such as how it can grow.

Table 7-2. The Memory Region Flags
Flag Name Description
VM_DENYWRITE The region maps a file that cannot be opened for writing.
VM_EXEC Pages can be executed.
VM_EXECUTABLE Pages contain executable code.
VM_GROWSDOWN The region can expand toward lower addresses.
VM_GROWSUP The region can expand toward higher addresses.
VM_IO The region maps the I/O address space of a device.
VM_LOCKED Pages are locked and cannot be swapped out.
VM_MAYEXEC VM_EXEC flag may be set.
VM_MAYREAD VM_READ flag may be set.
VM_MAYSHARE VM_SHARE flag may be set.
VM_MAYWRITE VM_WRITE flag may be set.
VM_READ Pages can be read.
VM_SHARED Pages can be shared by several processes.
VM_SHM Pages are used for IPC's shared memory.

Understanding the Linux Kernel

191

VM_WRITE Pages can be written.

Page access rights included in a memory region descriptor may be combined arbitrarily: it is
possible, for instance, to allow the pages of a region to be executed but not to be read. In order
to implement this protection scheme efficiently, the read, write, and execute access rights
associated with the pages of a memory region must be duplicated in all the corresponding
page table entries, so that checks can be directly performed by the Paging Unit circuitry. In
other words, the page access rights dictate what kinds of access should generate a "Page fault"
exception. As we shall see shortly, Linux delegates the job of figuring out what caused the
page fault to the page fault handler, which implements several page-handling strategies.

The initial values of the page table flags (which must be the same for all pages in the memory
region, as we have seen) are stored in the vm_ page_ prot field of the vm_area_struct
descriptor. When adding a page, the kernel sets the flags in the corresponding page table entry
according to the value of the vm_ page_ prot field.

However, translating the memory region's access rights into the page protection bits is not
straightforward, for the following reasons:

• In some cases, a page access should generate a "Page fault" exception even when its
access type is granted by the page access rights specified in the vm_flags field of the
corresponding memory region. For instance, the kernel might decide to store two
identical, writable private pages (whose VM_SHARE flags are cleared) belonging to two
different processes into the same page frame; in this case, an exception should be
generated when either one of the processes tries to modify the page (see Section 7.4.4
later in this chapter).

• Intel 80x86 processors's page tables have just two protection bits, namely the
Read/Write and User/Supervisor flags. Moreover, the User/Supervisor flag of
any page included in a memory region must always be set, since the page must always
be accessible by User Mode processes.

In order to overcome the hardware limitation of the Intel microprocessors, Linux adopts the
following rules:

• The read access right always implies the execute access right.
• The write access right always implies the read access right.

Moreover, in order to correctly defer the allocation of page frames through the Section 7.4.4
technique (see later in this chapter), the page frame is write-protected whenever the
corresponding page must not be shared by several processes. Therefore, the 16 possible
combinations of the read, write, execute, and share access rights are scaled down to the
following three:

• If the page has both write and share access rights, the Read/Write bit is set.
• If the page has the read or execute access right but does not have either the write or the

share access right, the Read/Write bit is cleared.
• If the page does not have any access rights, the Present bit is cleared, so that each

access generates a "Page fault" exception. However, in order to distinguish this
condition from the real page-not-present case, Linux also sets the Page size bit to 1.[2]

Understanding the Linux Kernel

192

[2] You might consider this use of the Page size bit to be a dirty trick, since the bit was meant to indicate the real page size. But Linux can get
away with the deception because the Intel chip checks the Page size bit in Page Directory entries, but not in Page Table entries.

The downscaled protection bits corresponding to each combination of access rights are stored
in the protection_map array.

7.3.3 Memory Region Handling

Having the basic understanding of data structures and state information that control memory
handling, we can look at a group of low-level functions that operate on memory region
descriptors. They should be considered as auxiliary functions that simplify the
implementation of do_map() and ddo_unmap(). Those two functions, which are described
in Section 7.3.4 and Section 7.3.5 later in this chapter, respectively, enlarge and shrink the
address space of a process. Working at a higher level than the functions we consider here,
they do not receive a memory region descriptor as their parameter, but rather the initial
address, the length, and the access rights of a linear address interval.

7.3.3.1 Finding the closest region to a given address

The find_vma() function acts on two parameters: the address mm of a process memory
descriptor and a linear address addr. It locates the first memory region whose vm_end field is
greater than addr and returns the address of its descriptor; if no such region exists, it returns a
NULL pointer. Notice that the region selected by find_vma() does not necessarily include
addr.

Each memory descriptor includes a mmap_cache field that stores the descriptor address of the
region that was last referenced by the process. This additional field is introduced to reduce the
time spent in looking for the region that contains a given linear address: locality of address
references in programs makes it highly likely that if the last linear address checked belonged
to a given region, the next one to be checked belongs to the same region.

The function thus starts by checking whether the region identified by mmap_cache includes
addr. If so, it returns the region descriptor pointer:

vma = mm->mmap_cache;
if (vma && vma->vm_end > addr && vma->vm_start <= addr)
 return vma;

Otherwise, the memory regions of the process must be scanned. If the process does not make
use of an AVL tree, the function simply scans the linked list:

if (!mm->mmap_avl) {
 vma = mm->mmap;
 while (vma && vma->vm_end <= addr)
 vma = vma->vm_next;
 if (vma)
 mm->mmap_cache = vma;
 return vma;
}

Otherwise, the function looks up the memory region in the AVL tree:

Understanding the Linux Kernel

193

tree = mm->mmap_avl;
vma = NULL;
for (;;) {
 if (tree == NULL)
 break;
 if (tree->vm_end > addr) {
 vma = tree;
 if (tree->vm_start <= addr)
 break;
 tree = tree->vm_avl_left;
 } else
 tree = tree->vm_avl_right;
}
if (vma)
 mm->mmap_cache = vma;
return vma;

The kernel also makes use of the find_vma_prev() function, which returns the descriptor
addresses of the memory region that precedes the linear address given as parameter and of the
memory region that follows it.

7.3.3.2 Finding a region that overlaps a given address interval

The find_vma_intersection() function finds the first memory region that overlaps a
given linear address interval; the mm parameter points to the memory descriptor of the process,
while the start_addr and end_addr linear addresses specify the interval:

vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
 vma = NULL;
return vma;

The function returns a NULL pointer if no such region exists. To be exact, if find_vma()
returns a valid address but the memory region found starts after the end of the linear address
interval, vma is set to NULL.

7.3.3.3 Finding a free address interval

The get_unmapped_area() function searches the process address space to find an available
linear address interval. The len parameter specifies the interval length, while the addr
parameter may specify the address from which the search is started. If the search is successful,
the function returns the initial address of the new interval; otherwise, it returns 0:

if (len > PAGE_OFFSET)
 return 0;
if (!addr)
 addr = PAGE_OFFSET / 3;
addr = (addr + 0xfff) & 0xfffff000;
for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
 if (addr + len > PAGE_OFFSET)
 return 0;
 if (!vmm || addr + len <= vmm->vm_start)
 return addr;
 addr = vmm->vm_end;
}

Understanding the Linux Kernel

194

The function starts by checking to make sure the interval length is within the limit imposed on
User Mode linear addresses, usually 3 GB. If addr is NULL, the search's starting point is set
to one-third of the User Mode linear address space. To be on the safe side, the function rounds
up the value of addr to a multiple of 4 KB. Starting from addr, it then repeatedly invokes
find_vma() with increasing values of addr to find the required free interval. During this
search, the following cases may occur:

• The requested interval is larger than the portion of linear address space yet to be
scanned (addr + len > PAGE_OFFSET): since there are not enough linear addresses to
satisfy the request, return 0.

• The hole following the last scanned region is not large enough (vmm != NULL && vmm-
>vm_start < addr + len): consider the next region.

• If neither one of the preceding conditions holds, a large enough hole has been found:
return addr.

7.3.3.4 Inserting a region in the memory descriptor list

i nsert_vm_struct() inserts a vm_area_struct structure in the list of memory
descriptors and, if necessary, in the AVL tree. It makes use of two parameters: mm, which
specifies the address of a process memory descriptor, and vmp, which specifies the address of
the vm_area_struct descriptor to be inserted:

if (!mm->mmap_avl) {
 pprev = &mm->mmap;
 while (*pprev && (*pprev)->vm_start <= vmp->vm_start)
 pprev = &(*pprev)->vm_next;
} else {
 struct vm_area_struct *prev, *next;
 avl_insert_neighbours(vmp, &mm->mmap_avl, &prev, &next);
 pprev = (prev ? &prev->vm_next : &mm->mmap);
}
vmp->vm_next = *pprev;
*pprev = vmp;

If the process makes use of the AVL tree, the avl_insert_neighbours() function is
invoked to insert the memory region descriptor in the proper position; otherwise,
insert_vm_struct() scans forward through the linked list using the pprev local variable
until it finds the descriptor that should precede vmp. At the end of the search, pprev points to
the vm_next field of the memory region descriptor that should precede vmp in the list, hence
*pprev yields the address of the memory region descriptor that should follow vmp. The
descriptor can thus be inserted into the list.

mm->map_count++;
if (mm->map_count >= AVL_MIN_MAP_COUNT && !mm->mmap_avl)
 build_mmap_avl(mm);

The map_count field of the process memory descriptor is then incremented by 1. Moreover, if
the process was not using the AVL tree up to now but the number of memory regions
becomes greater than or equal to AVL_MIN_MAP_COUNT , the build_mmap_avl() function is
invoked:

Understanding the Linux Kernel

195

void build_mmap_avl(struct mm_struct * mm)
{
 struct vm_area_struct * vma;
 mm->mmap_avl = NULL;
 for (vma = mm->mmap; vma; vma = vma->vm_next)
 avl_insert(vma, &mm->mmap_avl);
}

From now on, the process will use an AVL tree.

If the region contains a memory mapped file, the function performs additional tasks that are
described in Chapter 16.

No explicit function exists for removing a region from the memory descriptor list (see Section
7.3.5).

7.3.3.5 Merging contiguous regions

The merge_segments() function attempts to merge together the memory regions included in
a given linear address interval. As illustrated in Figure 7-1, this can be achieved only if the
contiguous regions have the same access rights. The parameters of merge_segments() are a
memory descriptor pointer mm and two linear addresses start_addr and end_addr, which
delimit the interval. The function finds the last memory region that ends before start_addr
and puts the address of its descriptor in the prev local variable. Then it iteratively executes
the following actions:

• Loads the mpnt local variable with prev->vm_next, that is, the descriptor address of
the first memory region that starts after start_addr. If no such region exists, no
merging is possible.

• Cycles through the list as long as prev->vm_start is smaller than end_addr. Checks
whether it is possible to merge the memory regions associated with prev and mpnt.
This is possible if:

o The memory regions are contiguous: prev->vm_end = mpnt->vm_start.
o They have the same flags: prev->vm_flags = mpnt->vm_flags.
o When they map files or are shared among processes, they satisfy additional

requirements to be discussed in later chapters.

If merging is possible, remove the memory region descriptor from the list and, if
necessary, from the AVL tree.

• Decrement the map_count field of the memory descriptor by 1, and resume the search
by setting prev so that it points to the merged memory region descriptor.

The function ends by setting the mmap_cache field of the memory descriptor to NULL, since
the memory region cache could now refer to a memory region that no longer exists.

7.3.4 Allocating a Linear Address Interval

Now let's discuss how new linear address intervals are allocated. In order to do this, the
do_mmap() function creates and initializes a new memory region for the current process.

Understanding the Linux Kernel

196

However, after a successful allocation, the memory region could be merged with other
memory regions defined for the process.

The function makes use of the following parameters:

file and off

File descriptor pointer file and file offset off are used if the new memory region will
map a file into memory. This topic will be discussed in Chapter 15. In this section,
we'll assume that no memory mapping is required and that file and off are both
NULL.

addr

This linear address specifies where the search for a free interval must start (see the
previous description of the get_unmapped_area() function).

len

The length of the linear address interval.

prot

This parameter specifies the access rights of the pages included in the memory region.
Possible flags are PROT_READ, PROT_WRITE , PROT_EXEC, and PROT_NONE. The first
three flags mean the same things as the VM_READ, VM_WRITE, and VM_EXEC flags.
PROT_NONE indicates that the process has none of those access rights.

flag

This parameter specifies the remaining memory region flags:

MAP_GROWSDOWN , MAP_LOCKED , MAP_DENYWRITE , and MAP_EXECUTABLE

Their meanings are identical to those of the flags listed in Table 7-2.

MAP_SHARED and MAP_PRIVATE

The former flag specifies that the pages in the memory region can be shared among
several processes; the latter flag has the opposite effect. Both flags refer to the
VM_SHARED flag in the vm_area_struct descriptor.

MAP_ANONYMOUS

No file is associated with the memory region (see Chapter 15).

MAP_FIXED

The initial linear address of the interval must be the one specified in the addr
parameter.

Understanding the Linux Kernel

197

MAP_NORESERVE

The function doesn't have to do a preliminary check of the number of free page
frames.

The do_mmap() function starts by checking whether the parameter values are correct and
whether the request can be satisfied. In particular, it checks for the following conditions that
prevent it from satisfying the request:

• The linear address interval includes addresses greater than PAGE_OFFSET.
• The process has already mapped too many memory regions: the value of the

map_count field of its mm memory descriptor exceeds the MAX_MAP_COUNT value.
• The file parameter is equal to NULL and the flag parameter specifies that the pages

of the new linear address interval must be shared.
• The flag parameter specifies that the pages of the new linear address interval must be

locked in RAM, and the number of pages locked by the process exceeds the threshold
stored in the rlim[RLIMIT_MEMLOCK].rlim_cur field of the process descriptor.

If any of the preceding conditions holds, do_mmap() terminates by returning a negative
value. If the linear address interval has a zero length, the function returns without performing
any action.

The next step consists of obtaining a linear address interval; if the MAP_FIXED flag is set, a
check is made on the proper alignment of the addr value; then the get_unmapped_area()
function is invoked to get it:

if (flags & MAP_FIXED) {
 if (addr & 0xfffff000)
 return -EINVAL;
} else {
 addr = get_unmapped_area(addr, len);
 if (!addr)
 return -ENOMEM;
}

Now a vm_area_struct descriptor must be allocated for the new region. This is done by
invoking the kmem_cache_alloc() slab allocator function:

vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!vma)
 return -ENOMEM;

The memory region descriptor is then initialized. Notice how the value of the vm_flags field
is determined both by the prot and flags parameters (joined together by means of the
vm_flags() function) and by the def_flags field of the memory descriptor. The latter field
allows the kernel to define a set of flags that should be set for every memory region in the
process.[3]

[3] Actually, this field is modified only by the mlockall() system call, which can be used to set the VM_LOCKED flag, thus locking all
future pages of the calling process in RAM.

Understanding the Linux Kernel

198

vma->vm_mm = current->mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags(prot,flags) | current->mm->def_flags;
vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
vma->vm_page_prot = protection_map[vma->vm_flags & 0x0f];

The do_mmap() function then checks whether any of these error conditions holds:

• The process already includes in its address space a memory region that overlaps the
linear address interval ranging from addr to addr+len; this check is performed by the
do_munmap() function, which returns the value if the overlap exists.

• The size in pages of the process address space exceeds the threshold stored in the
rlim[RLIMIT_AS].rlim_cur field of the process descriptor.

• The MAP_NORESERVE flag was not set in the flags parameter, the new memory region
must contain private writable pages, and the number of free page frames is less than
the size (in pages) of the linear address interval; this last check is performed by the
vm_enough_memory() function.

If any of the preceding conditions holds, do_mmap() releases the vm_area_struct
descriptor obtained and terminates by returning the -ENOMEM value.

Once all checks have been performed, do_mmap() increments the size of current's address
space stored in the total_vm field of the memory descriptor. It then invokes
insert_vm_struct(), which inserts the new region in the list of regions owned by current
(and, if necessary, in its AVL tree), and merge_segments(), which checks whether regions
can be merged. Since the new region may be destroyed by a merge, the values of vm_flags
and vm_start, which may be needed later, are saved in the flags and addr local variables:

current->mm->total_vm += len >> PAGE_SHIFT;
flags = vma->vm_flags;
addr = vma->vm_start;
insert_vm_struct(current->mm, vma);
merge_segments(current->mm, vma->vm_start, vma->vm_end);

The final step is executed only if the MAP_LOCKED flag is set. First, the number of pages in the
memory region is added to the locked_vm field of the memory descriptor. Then the make_
pages_ present() function is invoked to allocate all the pages of the memory region in
succession and lock them in RAM. The core code of make_pages_ present() is:

vma = find_vma(current->mm, addr);
write = (vma->vm_flags & VM_WRITE) != 0;
while (addr < addr + len) {
 handle_mm_fault(current, vma, addr, write);
 addr += PAGE_SIZE;
}

As we shall see in Section 7.4.2, handle_mm_fault() allocates one page and sets its page
table entry according to the vm_flags field of the memory region descriptor.

Finally, the do_mmap() function terminates by returning the linear address of the new
memory region.

Understanding the Linux Kernel

199

7.3.5 Releasing a Linear Address Interval

The do_munmap() function deletes a linear address interval from the address space of the
current process. The parameters are the starting address addr of the interval and its length
len. The interval to be deleted does not usually correspond to a memory region: it may be
included in one memory region, or it may span two or more regions.

The function goes through two main phases. First, it scans the list of memory regions owned
by the process and removes all regions that overlap the linear address interval. In the second
phase, the function updates the process page tables and reinserts a downsized version of the
memory regions that were removed during the first phase.

7.3.5.1 First phase: scanning the memory regions

A preliminary check is made on the parameter values: if the linear address interval includes
addresses greater than PAGE_OFFSET, if addr is not a multiple of 4096, or if the linear address
interval has a zero length, the function returns a negative error code.

Next, the function locates the first memory region that overlaps the linear address interval to
be deleted:

mpnt = find_vma_prev(current->mm, addr, &prev);
if (!mpnt || mpnt->vm_start >= addr + len)
 return 0;

If the linear address interval is located inside a memory region, its deletion will split the
region into two smaller ones. In this case, do_munmap() checks whether current is allowed
to obtain an additional memory region:

if ((mpnt->vm_start < addr && mpnt->vm_end > addr + len) &&
 current->mm->map_count > MAX_MAP_COUNT)
 return -ENOMEM;

The function then attempts to get a new vm_area_struct descriptor. There may be no need
for it, but the function makes the request anyway so that it can terminate right away if the
allocation fails. This cautious approach simplifies the code since it allows an easy error exit:

extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!extra)
 return -ENOMEM;

Now the function builds up a list including all descriptors of the memory regions that overlap
the linear address interval. This list is created by setting the vm_next field of the memory
region descriptor (temporarily) so it points to the previous item in the list; this field thus acts
as a backward link. As each region is added to this backward list, a local variable named free
points to the last inserted element. The regions inserted in the list are also removed from the
list of memory regions owned by the process and, if necessary, from the AVL tree:

Understanding the Linux Kernel

200

npp = (prev ? &prev->vm_next : ¤t->mm->mmap);
free = NULL;
for (; mpnt && mpnt->vm_start < addr + len; mpnt = *npp) {
 *npp = mpnt->vm_next;
 mpnt->vm_next = free;
 free = mpnt;
 if (current->mm->mmap_avl)
 avl_remove(mpnt, ¤t->mm->mmap_avl);
}

7.3.5.2 Second phase: updating the page tables

A while cycle is used to scan the list of memory regions built in the first phase, starting with
the memory region descriptor that free points to.

In each iteration, the mpnt local variable points to the descriptor of a memory region in the
list. The map_count field of the current->mm memory descriptor is decremented (since the
region has been removed in the first phase from the list of regions owned by the process) and
a check is made (by means of two question-mark conditional expressions) to determine
whether the mpnt region must be eliminated or simply downsized:

current->mm->map_count--;
st = addr < mpnt->vm_start ? mpnt->vm_start : addr;
end = addr + len;
end = end > mpnt->vm_end ? mpnt->vm_end : end;
size = end - st;

The st and end local variables delimit the linear address interval in the mpnt memory region
that should be deleted; the size local variable specifies the length of the interval.

Next, do_munmap() releases the page frames allocated for the pages included in the interval
from st to end:

zap_page_range(current->mm, st, size);
flush_tlb_range(current->mm, st, end);

The zap_page_range() function deallocates the page frames included in the interval from
st to end and updates the corresponding page table entries. The function invokes in nested
fashion the zap_pmd_range() and zap_pte_range() functions for scanning the page
tables; the latter function uses the pte_clear macro to clear the page table entries and the
free_pte() function to free the corresponding page frames.

The flush_tlb_range() function is then invoked to invalidate the TLB entries
corresponding to the interval from st to end. In the Intel 80x86 architecture that function
simply invokes __flush_tlb(), thus invalidating all TLB entries.

The last action performed in each iteration of the do_munmap() loop is to check whether a
downsized version of the mpnt memory region must be reinserted in the list of regions of
current:

extra = unmap_fixup(mpnt, st, size, extra);

The unmap_fixup() function considers four possible cases:

Understanding the Linux Kernel

201

• The memory region has been totally canceled. Return the address stored in the extra
local variable, thus signaling that the extra memory region descriptor can be released
by invoking kmem_cache_free().

• Only the lower part of the memory region has been removed, that is:

(mpnt->vm_start < st) && (mpnt->vm_end == end)

In this case, update the vm_end field of mnpt, invoke insert_vm_struct() to insert
the downsized region in the list of regions belonging to the process, and return the
address stored in extra.

• Only the upper part of the memory region has been removed, that is:

(mpnt->vm_start == st) && (mpnt->vm_end > end)

In this case, update the vm_start field of mnpt, invoke insert_vm_struct() to
insert the downsized region in the list of regions belonging to the process, and return
the address stored in extra.

• The linear address interval is in the middle of the memory region, that is:

(mpnt->vm_start < st) && (mpnt->vm_end > end)

Update the vm_start and vm_end fields of mnpt and extra (the previously allocated
extra memory region descriptor) so that they refer to the linear address intervals,
respectively, from mpnt->vm_start to st and from end to mpnt->vm_end. Then
invoke insert_vm_struct() twice to insert the two regions in the list of regions
belonging to the process (and, if necessary, in the AVL tree) and return NULL, thus
preserving the extra memory region descriptor previously allocated.

This terminates the description of what must be done in a single iteration of the second-phase
loop.

After handling all the memory region descriptors in the list built during the first phase,
do_munmap() checks if the additional extra memory descriptor has been used. If extra is
NULL, the descriptor has been used; otherwise, do_munmap() invokes kmem_cache_free()
to release it. Finally, if the process address space has been modified, do_munmap() sets the
mmap_cache field of the memory descriptor to NULL and returns 0.

7.4 Page Fault Exception Handler

As stated previously, the Linux "Page fault" exception handler must distinguish exceptions
caused by programming errors from those caused by a reference to a page that legitimately
belongs to the process address space but simply hasn't been allocated yet.

The memory region descriptors allow the exception handler to perform its job quite
efficiently. The do_page_fault() function, which is the "Page fault" interrupt service
routine, compares the linear address that caused the page fault against the memory regions of
the current process; it can thus determine the proper way to handle the exception according
to the scheme illustrated in Figure 7-4.

Understanding the Linux Kernel

202

Figure 7-4. Overall scheme for the page fault handler

In practice, things are a lot more complex since the page fault handler must recognize several
particular subcases that fit awkwardly into the overall scheme, and it must distinguish several
kinds of legal access. A detailed flow diagram of the handler is illustrated in Figure 7-5.

Figure 7-5. The flow diagram of the page fault handler

Understanding the Linux Kernel

203

The identifiers good_area, bad_area, and no_context are labels appearing in
do_page_fault() that should help you to relate the blocks of the flow diagram to specific
lines of code.

The do_ page_fault() function accepts the following input parameters:

• The regs address of a pt_regs structure containing the values of the microprocessor
registers when the exception occurred.

• A 3-bit error_code, which is pushed on the stack by the control unit when the
exception occurred (see Section 4.2.5 in Chapter 4). The bits have the following
meanings.

o If bit is clear, the exception was caused by an access to a page that is not
present (the Present flag in the Page Table entry is clear); otherwise, if bit is
set, the exception was caused by an invalid access right.

o If bit 1 is clear, the exception was caused by a read or execute access; if set, the
exception was caused by a write access.

o If bit 2 is clear, the exception occurred while the processor was in Kernel
Mode; otherwise, it occurred in User Mode.

The first operation of do_ page_fault() consists of reading the linear address that caused
the page fault. When the exception occurs, the CPU control unit stores that value in the cr2
control register:

asm("movl %%cr2,%0":"=r" (address));
tsk = current;
mm = tsk->mm;

The linear address is saved in the address local variable. The function also saves the pointers
to the process descriptor and the memory descriptor of current in the tsk and mm local
variables, respectively.

As shown at the top of Figure 7-5, do_ page_fault() first checks whether the exception
occurred while handling an interrupt or executing a kernel thread:

if (in_interrupt() || mm == &init_mm)
 goto no_context;

In both cases, do_ page_fault() does not try to compare the linear address with the
memory regions of current, since it would not make any sense: interrupt handlers and kernel
threads never use linear addresses below PAGE_OFFSET, and thus never rely on memory
regions.

Let us suppose that the page fault did not occur in an interrupt handler or in a kernel thread.
Then the function must inspect the memory regions owned by the process to determine
whether the faulty linear address is included in the process address space:

vma = find_vma(mm, address);
if (!vma)
 goto bad_area;
if (vma->vm_start <= address)
 goto good_area;

Understanding the Linux Kernel

204

Now the function has determined that address is not included in any memory region;
however, it must perform an additional check, since the faulty address may have been caused
by a push or pusha instruction on the User Mode stack of the process.

Let us make a short digression to explain how stacks are mapped into memory regions. Each
region that contains a stack expands toward lower addresses; its VM_GROWSDOWN flag is set,
thus the value of its vm_end field remains fixed while the value of its vm_start field may be
decreased. The region boundaries include, but do not delimit precisely, the current size of the
User Mode stack. The reasons for the fuzz factor are:

• The region size is a multiple of 4 KB (it must include complete pages) while the stack
size is arbitrary.

• Page frames assigned to a region are never released until the region is deleted; in
particular, the value of the vm_start field of a region that includes a stack can only
decrease; it can never increase. Even if the process executes a series of pop
instructions, the region size remains unchanged.

It should now be clear how a process that has filled up the last page frame allocated to its
stack may cause a "Page fault" exception: the push refers to an address outside of the region
(and to a nonexistent page frame). Notice that this kind of exception is not caused by a
programming error; it must thus be handled separately by the page fault handler.

We now return to the description of do_ page_fault(), which checks for the case
described previously:

if (!(vma->vm_flags & VM_GROWSDOWN))
 goto bad_area;
if (error_code & 4 /* User Mode */
 && address + 32 < regs->esp)
 goto bad_area;
if (expand_stack(vma, address))
 goto bad_area;
goto good_area;

If the VM_GROWSDOWN flag of the region is set and the exception occurred in User Mode, the
function checks whether address is smaller than the regs->esp stack pointer (it should be
only a little smaller). Since a few stack-related assembly language instructions (like pusha)
perform a decrement of the esp register only after the memory access, a 32-byte tolerance
interval is granted to the process. If the address is high enough (within the tolerance granted),
the code invokes the expand_stack() function to check whether the process is allowed to
extend both its stack and its address space; if everything is OK, it sets the vm_start field of
vma to address and returns 0; otherwise, it returns 1.

Note that the preceding code skips the tolerance check whenever the VM_GROWSDOWN flag of
the region is set and the exception did not occur in User Mode. Those conditions mean that
the kernel is addressing the User Mode stack and that the code should always run
expand_stack().

Understanding the Linux Kernel

205

7.4.1 Handling a Faulty Address Outside the Address Space

If address does not belong to the process address space, do_page_fault() proceeds to
execute the statements at the label bad_area. If the error occurred in User Mode, it sends a
SIGSEGV signal to current (see Section 9.2 in Chapter 9) and terminates:

bad_area:
if (error_code & 4) { /* User Mode */
 tsk->tss.cr2 = address;
 tsk->tss.error_code = error_code;
 tsk->tss.trap_no = 14;
 force_sig(SIGSEGV, tsk);
 return;
}

If, however, the exception occurred in Kernel Mode (bit 2 of error_code is clear), there are
still two alternatives:

• The exception occurred while using some linear address that has been passed to the
kernel as parameter of a system call.

• The exception is due to a real kernel bug.

The function distinguishes these two alternatives as follows:

no_context:
if ((fixup = search_exception_table(regs->eip)) != 0) {
 regs->eip = fixup;
 return;
}

In the first case, it jumps to some "fixup code," which typically sends a SIGSEGV signal to
current or terminates a system call handler with a proper error code (see Section 8.2.6 in
Chapter 8).

In the second case, the function prints a complete dump of the CPU registers and the Kernel
Mode stack on the console and on a system message buffer, then kills the current process by
invoking the do_exit() function (see Chapter 19). This is the so-called "Kernel oops" error,
named after the message displayed. The dumped values can be used by kernel hackers to
reconstruct the conditions that triggered the bug, thus find and correct it.

7.4.2 Handling a Faulty Address Inside the Address Space

If address belongs to the process address space, do_ page_fault() proceeds to the
statement labeled good_area:

Understanding the Linux Kernel

206

good_area:
write = 0;
if (error_code & 2) { /* write access */
 if (!(vma->vm_flags & VM_WRITE))
 goto bad_area;
 write++;
} else /* read access */
 if (error_code & 1 ||
 !(vma->vm_flags & (VM_READ | VM_EXEC)))
 goto bad_area;

If the exception was caused by a write access, the function checks whether the memory region
is writable. If not, it jumps to the bad_area code; if so, it sets the write local variable to 1.

If the exception was caused by a read or execute access, the function checks whether the page
is already present in RAM. In this case, the exception occurred because the process tried to
access a privileged page frame (one whose User/Supervisor flag is clear) in User Mode, so
the function jumps to the bad_area code.[4] If the page is not present, the function also checks
whether the memory region is readable or executable.

[4] However, this case should never happen, since the kernel does not assign privileged page frames to the processes.

If the memory region access rights match the access type that caused the exception, the
handle_mm_fault() function is invoked:

if (!handle_mm_fault(tsk, vma, address, write)) {
 tsk->tss.cr2 = address;
 tsk->tss.error_code = error_code;
 tsk->tss.trap_no = 14;
 force_sig(SIGBUS, tsk);
 if (!(error_code & 4)) /* Kernel Mode */
 goto no_context;
}

The handle_mm_fault() function returns 1 if it succeeded in allocating a new page frame
for the process; otherwise, it returns an appropriate error code so that do_page_fault() can
send a SIGBUS signal to the process. It acts on four parameters:

tsk

A pointer to the descriptor of the process that was running on the CPU when the
exception occurred

vma

A pointer to the descriptor of the memory region including the linear address that
caused the exception

address

The linear address that caused the exception

Understanding the Linux Kernel

207

write_access

Set to 1 if tsk attempted to write in address and to if tsk attempted to read or
execute it

The function starts by checking whether the Page Middle Directory and the Page Table used
to map address exist. Even if address belongs to the process address space, the
corresponding page tables might not have been allocated, so the task of allocating them
precedes everything else:

pgd = pgd_offset(vma->vm_mm, address);
pmd = pmd_alloc(pgd, address);
if (!pmd)
 return -1;
pte = pte_alloc(pmd, address);
if (!pte)
 return -1;

The pgd local variable contains the Page Global Directory entry that refers to address;
pmd_alloc() is invoked to allocate, if needed, a new Page Middle Directory.[5] pte_alloc(
) is then invoked to allocate, if needed, a new Page Table. If both operations are successful,
the pte local variable points to the Page Table entry that refers to address. The
handle_pte_fault() function is then invoked to inspect the Page Table entry
corresponding to address:

[5] On Intel 80x86 microprocessors, this kind of allocation never occurs since Page Middle Directories are included in the Page Global Directory.

return handle_pte_fault(tsk, vma, address, write_access, pte);

The handle_ pte_fault() function determines how to allocate a new page frame for the
process:

• If the accessed page is not present—that is, if it is not already stored in any page
frame—the kernel allocates a new page frame and initializes it properly; this technique
is called demand paging.

• If the accessed page is present but is marked read only—that is, if it is already stored
in a page frame—the kernel allocates a new page frame and initializes its contents by
copying the old page frame data; this technique is called Copy On Write.

7.4.3 Demand Paging

The term demand paging denotes a dynamic memory allocation technique that consists of
deferring page frame allocation until the last possible moment, that is, until the process
attempts to address a page that is not present in RAM, thus causing a "Page fault" exception.

The motivation behind demand paging is that processes do not address all the addresses
included in their address space right from the start; in fact, some of these addresses may never
be used by the process. Moreover, the program locality principle (see Section 2.4.6 in Chapter
2) ensures that, at each stage of program execution, only a small subset of the process pages
are really referenced, and therefore the page frames containing the temporarily useless pages
can be used by other processes. Demand paging is thus preferable to global allocation
(assigning all page frames to the process right from the start and leaving them in memory

Understanding the Linux Kernel

208

until program termination) since it increases the average number of free page frames in the
system and hence allows better use of the available free memory. From another viewpoint, it
allows the system as a whole to get a better throughput with the same amount of RAM.

The price to pay for all these good things is system overhead: each "Page fault" exception
induced by demand paging must be handled by the kernel, thus wasting CPU cycles.
Fortunately, the locality principle ensures that once a process starts working with a group of
pages, it will stick with them without addressing other pages for quite a while: "Page fault"
exceptions may thus be considered rare events.

An addressed page may not be present in main memory for the following reasons:

• The page was never accessed by the process. The kernel can recognize this case since
the Page Table entry is filled with zeros, that is, the pte_none macro returns the value
1.

• The page was already accessed by the process, but its content is temporarily saved on
disk. The kernel can recognize this case since the Page Table entry is not filled with
zeros (however, the Present flag is cleared, since the page is not present in RAM).

The handle_ pte_fault() function distinguishes the two cases by inspecting the Page
Table entry that refers to address:

entry = *pte;
if (!pte_present(entry)) {
 if (pte_none(entry))
 return do_no_page(tsk, vma, address, write_access,
 pte);
 return do_swap_page(tsk, vma, address, pte, entry,
 write_access);
}

We'll examine the case in which the page is saved on disk (do_swap_ page() function) in
Section 16.6 in Chapter 16.

In the other situation, when the page was never accessed, the do_no_page() function is
invoked. There are two ways to load the missing page, depending on whether the page is
mapped to a disk file. The function determines this by checking a field called nopage in the
vma memory region descriptor, which points to the function that loads the missing page from
disk into RAM if the page is mapped to a file. Therefore, the possibilities are:

• The vma->vm_ops->nopage field is not NULL. In this case, the memory region maps
a disk file and the field points to the function that loads the page. This case will be
covered in Section 15.2 in Chapter 15 and in Section 18.3.5 in Chapter 18.

• Either the vm_ops field or the vma->vm_ops->nopage field is NULL. In this case, the
memory region does not map a file on disk, that is, it is an anonymous mapping. Thus,
do_no_ page() invokes the do_anonymous_page() function to get a new page
frame:

if (!vma->vm_ops || !vma->vm_ops->nopage)
 return do_anonymous_page(tsk, vma, page_table,
 write_access);

Understanding the Linux Kernel

209

The do_anonymous_page() function handles write and read requests separately:

if (write_access) {
 page = __get_free_page(GFP_USER);
 memset((void *)(page), 0, PAGE_SIZE)
 entry = pte_mkwrite(pte_mkdirty(mk_pte(page,
 vma->vm_page_prot)));
 vma->vm_mm->rss++;
 tsk->min_flt++;
 set_pte(pte, entry);
 return 1;
}

When handling a write access, the function invokes __get_free_page() and fills the new
page frame with zeros by using the memset macro. The function then increments the min_flt
field of tsk to keep track of the number of minor page faults (those that require only a new
page frame) caused by the process and the rss field of the vma->vm_mm process memory
descriptor to keep track of the number of page frames allocated to the process.[6] The Page
Table entry is then set to the physical address of the page frame, which is marked as writable
and dirty.

[6] Linux records the number of minor page faults for each process. This information, together with several other statistics, may be used to tune the
system. The value stored in the rss field of memory descriptors is also used by the kernel to select the region from which to steal page frames (see
Section 16.7 in Chapter 16).

Conversely, when handling a read access, the content of the page is irrelevant because the
process is addressing it for the first time. It is safer to give to the process a page filled with
zeros rather than an old page filled with information written by some other process. Linux
goes one step further in the spirit of demand paging. There is no need to assign a new page
frame filled with zeros to the process right away, since we might as well give it an existing
page called zero page, thus deferring further page frame allocation. The zero page is allocated
statically during kernel initialization in the empty_zero_page variable (an array of 1024 long
integers filled with zeros); it is stored in the sixth page frame, starting from physical address
0x00005000, and it can be referenced by means of the ZERO_PAGE macro.

The Page Table entry is thus set with the physical address of the zero page:

entry = pte_wrprotect(mk_pte(ZERO_PAGE, vma->vm_page_prot));
set_pte(pte, entry);
return 1;

Since the page is marked as nonwritable, if the process attempts to write in it, the Copy On
Write mechanism will be activated. Then, and only then, will the process get a page of its own
to write in. The mechanism is described in the next section.

7.4.4 Copy On Write

First-generation Unix systems implemented process creation in a rather clumsy way: when a
fork() system call was issued, the kernel duplicated the whole parent address space in the
literal sense of the word and assigned the copy to the child process. This activity was quite
time-consuming since it required:

Understanding the Linux Kernel

210

• Allocating page frames for the page tables of the child process
• Allocating page frames for the pages of the child process
• Initializing the page tables of the child process
• Copying the pages of the parent process into the corresponding pages of the child

process

This way of creating an address space involved many memory accesses, used up many CPU
cycles, and entirely spoiled the cache contents. Last but not least, it was often pointless
because many child processes start their execution by loading a new program, thus discarding
entirely the inherited address space (see Chapter 19).

Modern Unix kernels, including Linux, follow a more efficient approach called Copy On
Write, or COW. The idea is quite simple: instead of duplicating page frames, they are shared
between the parent and the child process. However, as long as they are shared, they cannot be
modified. Whenever the parent or the child process attempts to write into a shared page frame,
an exception occurs, and at this point the kernel duplicates the page into a new page frame
that it marks as writable. The original page frame remains write-protected: when the other
process tries to write into it, the kernel checks whether the writing process is the only owner
of the page frame; in such a case, it makes the page frame writable for the process.

The count field of the page descriptor is used to keep track of the number of processes that
are sharing the corresponding page frame. Whenever a process releases a page frame or a
Copy On Write is executed on it, its count field is decremented; the page frame is freed only
when count becomes NULL.

Let us now describe how Linux implements COW. When handle_ pte_fault()
determines that the "Page fault" exception was caused by a request to write into a write-
protected page present in memory, it executes the following instructions:

if (pte_present(pte)) {
 entry = pte_mkyoung(entry);
 set_ pte(pte, entry);
 flush_tlb_page(vma, address);
 if (write_access) {
 if (!pte_write(entry))
 return do_wp_page(tsk, vma, address, pte);
 entry = pte_mkdirty(entry);
 set_pte(pte, entry);
 flush_tlb_page(vma, address);
 }
 return 1;
}

First, the pte_mkyoung() and set_pte() functions are invoked in order to set the
Accessed bit in the Page Table entry of the page that caused the exception. This setting
makes the page "younger" and reduces its chances of being swapped out to disk (see Chapter
16). If the exception was caused by a write-protection violation, handle_pte_fault()
returns the value yielded by the do_wp_page() function; otherwise, some error condition has
been detected (for instance, a page inside the User Mode process address space with the
User/Supervisor flag equal to 0), and the function returns the value 1.

Understanding the Linux Kernel

211

The do_wp_page() function starts by loading the pte local variable with the Page Table
entry referenced by the page_table parameter and by getting a new page frame:

pte = *page_table;
new_page = __get_free_ page(GFP_USER);

Since the allocation of a page frame can block the process, the function performs the
following consistency checks on the Page Table entry once the page frame has been obtained:

• Whether the page has been swapped out while the process waited for a free page frame
(pte and *page_table do not have the same value)

• Whether the page is no longer in RAM (the page's Present flag is in its Page Table
entry)

• Whether the page can now be written (the page's Read/Write flag is 1 in its Page
Table entry)

If any of these conditions occurs, do_wp_page() releases the page frame obtained previously
and returns the value 1.

Now the function updates the number of minor page faults and stores in the page_map local
variable a pointer to the page descriptor of the page that caused the exception:

tsk->min_flt++;
page_map = mem_map + MAP_NR(old_page);

Next, the function must determine whether the page must really be duplicated. If only one
process owns the page, Copy On Write does not apply and the process should be free to write
the page. Thus, the page frame is marked as writable so that it will not cause further "Page
fault" exceptions when writes are attempted, the previously allocated new page frame is
released, and the function terminates with a return value of 1. This check is made by reading
the value of the count field of the page descriptor:[7]

[7] Actually, the check is slightly more complicated, since the count field is also incremented when the page is inserted into the swap cache (see
Section 16.3 in Chapter 16).

if (page_map->count == 1) {
 set_pte(page_table, pte_mkdirty(pte_mkwrite(pte)));
 flush_tlb_page(vma, address);
 if (new_page)
 free_page(new_page);
 return 1;
}

Conversely, if the page frame is shared among two or more processes, the function copies the
content of the old page frame (old_page) into the newly allocated one (new_page):

Understanding the Linux Kernel

212

if (old_page == ZERO_PAGE)
 memset((void *) new_page, 0, PAGE_SIZE);
else
 memcpy((void *) new_page, (void *) old_page, PAGE_SIZE);
set_pte(page_table, pte_mkwrite(pte_mkdirty(
 mk_pte(new_page, vma->vm_page_prot))));
flush_tlb_page(vma, address);
__free_page(page_map);
return 1;

If the old page is the zero page, the new frame is efficiently filled with zeros by using the
memset macro. Otherwise, the page frame content is copied using the memcpy macro. Special
handling for the zero page is not strictly required, but it improves the system performance
since it preserves the microprocessor hardware cache by making fewer address references.

The Page Table entry is then updated with the physical address of the new page frame, which
is also marked as writable and dirty. Finally, the function invokes __free_page() to
decrement the usage counter of the old page frame.

7.5 Creating and Deleting a Process Address Space

Out of the six typical cases mentioned in Section 7.1 in which a process gets new memory
regions, the first one—issuing a fork() system call—requires the creation of a whole new
address space for the child process. Conversely, when a process terminates, the kernel
destroys its address space. In this section we'll discuss how these two activities are performed
by Linux.

7.5.1 Creating a Process Address Space

We have mentioned in Section 3.3.1 in Chapter 3, that the kernel invokes the copy_mm()
function while creating a new process. This function takes care of the process address space
creation by setting up all page tables and memory descriptors of the new process.

Each process usually has its own address space, but lightweight processes can be created by
calling __clone() with the CLONE_VM flag set. These share the same address space; that is,
they are allowed to address the same set of pages.

Following the COW approach described earlier, traditional processes inherit the address space
of their parent: pages stay shared as long as they are only read. When one of the processes
attempts to write one of them, however, the page is duplicated; after some time, a forked
process usually gets its own address space different from that of the parent process.
Lightweight processes, on the other hand, use the address space of their parent process: Linux
implements them simply by not duplicating address space. Lightweight processes can be
created considerably faster than normal processes, and the sharing of pages can also be
considered a benefit so long as the parent and children coordinate their accesses carefully.

If the new process has been created by means of the _ _clone() system call and if the
CLONE_VM flag of the flag parameter is set, copy_mm() gives the clone the address space of
its parent:

Understanding the Linux Kernel

213

if (clone_flags & CLONE_VM) {
 mmget(current->mm);
 copy_segments(nr, tsk, NULL);
 SET_PAGE_DIR(tsk, current->mm->pgd);
 return 0;
}

The copy_segments() function sets up the LDT for the clone process, because even a
lightweight process must have a separate LDT entry in the GDT. The SET_PAGE_DIR macro
sets the Page Global Directory of the new process and stores the Page Global Directory
address in the mm->pgd field of the new memory descriptor.

If the CLONE_VM flag is not set, copy_mm() must create a new address space (even though no
memory is allocated within address space until the process requests an address). The function
allocates a new memory descriptor and stores its address in the mm field of the new process
descriptor; it then initializes several fields in the new process descriptor to and, as in the
previous case, sets up the LDT descriptor by invoking copy_segments():

mm = mm_alloc();
if (!mm)
 return -ENOMEM;
tsk->mm = mm;
copy_segments(nr, tsk, mm);

Next, copy_mm() invokes new_page_tables() to allocate the Page Global Directory. The
last entries of this table, which correspond to linear addresses greater than PAGE_OFFSET, are
copied from the Page Global Directory of the swapper process, while the remaining entries
are set to (in particular, the Present and Read/Write flags are cleared). Finally,
new_page_tables() stores the Page Global Directory address in the mm->pgd field of the
new memory descriptor. The dup_mmap() function is then invoked to duplicate both the
memory regions and the Page Tables of the parent process:

new_page_tables(tsk);
dup_mmap(mm);
return 0;

The dup_mmap() function scans the list of regions owned by the parent process, starting
from the one pointed by current->mm->mmap. It duplicates each vm_area_struct memory
region descriptor encountered and inserts the copy in the list of regions owned by the child
process.

Right after inserting a new memory region descriptor, dup_mmap() invokes
copy_page_range() to create, if necessary, the Page Tables needed to map the group of
pages included in the memory region and to initialize the new Page Table entries. In
particular, any page frame corresponding to a private, writable page (VM_SHARE flag off and
VM_MAYWRITE flag on) is marked as read only for both the parent and the child, so that it will
be handled with the Copy On Write mechanism. Finally, if the number of memory regions is
greater than or equal to AVL_MIN_MAP_COUNT, the memory region AVL tree of the child
process is created by invoking the build_mmap_avl() function.

Understanding the Linux Kernel

214

7.5.2 Deleting a Process Address Space

When a process terminates, the kernel invokes the exit_mm() function to release the address
space owned by that process. Since the process is entering the TASK_ZOMBIE state, the
function assigns the address space of the swapper process to it:

flush_tlb_mm(mm);
tsk->mm = &init_mm;
tsk->swappable = 0;
SET_PAGE_DIR(tsk, swapper_pg_dir);
mm_release();
mmput(mm);

The function then invokes mm_release() and mmput() to release the process address
space. The first function clears the fs and gs segmentation registers and restores the LDT of
the process to default_ldt; the second function decrements the value of the mm->count field
and releases the LDT, the memory region descriptors, and the page tables referred by mm.
Finally, the mm memory descriptor itself is released.

7.6 Managing the Heap

Each Unix process owns a specific memory region called heap, which is used to satisfy the
process's dynamic memory requests. The start_brk and brk fields of the memory descriptor
delimit the starting and ending address, respectively, of that region.

The following C library functions can be used by the process to request and release dynamic
memory:

malloc(size)

Request size bytes of dynamic memory; if the allocation succeeds, it returns the
linear address of the first memory location.

calloc(n,size)

Request an array consisting of n elements of size size; if the allocation succeeds, it
initializes the array components to and returns the linear address of the first element.

free(addr)

Release the memory region allocated by malloc() or calloc() having initial
address addr.

brk(addr)

Modify the size of the heap directly; the addr parameter specifies the new value of
current->mm->brk, and the return value is the new ending address of the memory
region (the process must check whether it coincides with the requested addr value).

Understanding the Linux Kernel

215

The brk() function differs from the other functions listed because it is the only one
implemented as a system call: all the other functions are implemented in the C library by
making use of brk() and mmap().

When a process in User Mode invokes the brk() system call, the kernel executes the
sys_brk(addr) function (see Chapter 8). This function verifies first whether the addr
parameter falls inside the memory region that contains the process code; if so, it returns
immediately:

mm = current->mm;
if (addr < mm->end_code)
 return mm->brk;

Since the brk() system call acts on a memory region, it allocates and deallocates whole
pages. Therefore, the function aligns the value of addr to a multiple of PAGE_SIZE, then
compares the result with the value of the brk field of the memory descriptor:

newbrk = (addr + 0xfff) & 0xfffff000;
oldbrk = (mm->brk + 0xfff) & 0xfffff000;
if (oldbrk == newbrk) {
 mm->brk = addr;
 return mm->brk;
}

If the process has asked to shrink the heap, sys_brk() invokes the do_munmap() function
to do the job and then returns:

if (addr <= mm->brk) {
 if (!do_munmap(newbrk, oldbrk-newbrk))
 mm->brk = addr;
 return mm->brk;
}

If the process has asked to enlarge the heap, sys_brk() checks first whether the process is
allowed to do so. If the process is trying to allocate memory outside its limit, the function
simply returns the original value of mm->brk without allocating more memory:

rlim = current->rlim[RLIMIT_DATA].rlim_cur;
if (rlim < RLIM_INFINITY && addr - mm->end_code > rlim)
 return mm->brk;

The function then checks whether the enlarged heap would overlap some other memory
region belonging to the process and, if so, returns without doing anything:

if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 return mm->brk;

The last check before proceeding to the expansion consists of verifying whether the available
free virtual memory is sufficient to support the enlarged heap (see Section 7.3.4):

if (!vm_enough_memory((newbrk-oldbrk) >> PAGE_SHIFT))
 return mm->brk;

Understanding the Linux Kernel

216

If everything is OK, the do_mmap() function is invoked with the MAP_FIXED flag set: if it
returns the oldbrk value, the allocation was successful and sys_brk() returns the value
addr; otherwise, it returns the old mm->brk value:

if (do_mmap(NULL, oldbrk, newbrk-oldbrk,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_FIXED|MAP_PRIVATE, 0) == oldbrk)
 mm->brk = addr;
 return mm->brk;

7.7 Anticipating Linux 2.4

Beside minor optimizations and adjustments, the process address space is handled in the same
way by Linux 2.4.

Understanding the Linux Kernel

217

Chapter 8. System Calls
Operating systems offer processes running in User Mode a set of interfaces to interact with
hardware devices such as the CPU, disks, printers, and so on. Putting an extra layer between
the application and the hardware has several advantages. First, it makes programming easier,
freeing users from studying low-level programming characteristics of hardware devices.
Second, it greatly increases system security, since the kernel can check the correctness of the
request at the interface level before attempting to satisfy it. Last but not least, these interfaces
make programs more portable since they can be compiled and executed correctly on any
kernel that offers the same set of interfaces.

Unix systems implement most interfaces between User Mode processes and hardware devices
by means of system calls issued to the kernel. This chapter examines in detail how system
calls are implemented by the Linux kernel.

8.1 POSIX APIs and System Calls

Let us start by stressing the difference between an application programmer interface (API)
and a system call. The former is a function definition that specifies how to obtain a given
service, while the latter is an explicit request to the kernel made via a software interrupt.

Unix systems include several libraries of functions that provide APIs to programmers. Some
of the APIs defined by the libc standard C library refer to wrapper routines, that is, routines
whose only purpose is to issue a system call. Usually, each system call corresponds to a
wrapper routine; the wrapper routine defines the API that application programs should refer
to.

The converse is not true, by the way—an API does not necessarily correspond to a specific
system call. First of all, the API could offer its services directly in User Mode. (For something
abstract like math functions, there may be no reason to make system calls.) Second, a single
API function could make several system calls. Moreover, several API functions could make
the same system call but wrap extra functionality around it. For instance, in Linux the
malloc(), calloc(), and free() POSIX APIs are implemented in the libc library: the
code in that library keeps track of the allocation and deallocation requests and uses
the brk() system call in order to enlarge or shrink the process heap (see Section 7.6 in
Chapter 7).

The POSIX standard refers to APIs and not to system calls. A system can be certified as
POSIX-compliant if it offers the proper set of APIs to the application programs, no matter
how the corresponding functions are implemented. As a matter of fact, several non-Unix
systems have been certified as POSIX-compliant since they offer all traditional Unix services
in User Mode libraries.

From the programmer's point of view, the distinction between an API and a system call is
irrelevant: the only things that matter are the function name, the parameter types, and the
meaning of the return code. From the kernel designer's point of view, however, the distinction
does matter since system calls belong to the kernel, while User Mode libraries don't.

Understanding the Linux Kernel

218

Most wrapper routines return an integer value, whose meaning depends on the corresponding
system call. A return value of -1 denotes in most cases, but not always, that the kernel was
unable to satisfy the process request. A failure in the system call handler may be caused by
invalid parameters, a lack of available resources, hardware problems, and so on. The specific
error code is contained in the errno variable, which is defined in the libc library.

Each error code is associated with a macro, which yields a corresponding positive integer
value. The POSIX standard specifies the macro names of several error codes. In Linux on
Intel 80x86 systems, those macros are defined in a header file called
include/asm-i386/errno.h. To allow portability of C programs among Unix systems,
the include/asm-i386/errno.h header file is included, in turn, in the standard
/usr/include/errno.h C library header file. Other systems have their own specialized
subdirectories of header files.

8.2 System Call Handler and Service Routines

When a User Mode process invokes a system call, the CPU switches to Kernel Mode and
starts the execution of a kernel function. In Linux the system calls must be invoked by
executing the int $0x80 Assembly instruction, which raises the programmed exception
having vector 128 (see Section 4.4.1 and Section 4.2.5 in Chapter 4).

Since the kernel implements many different system calls, the process must pass a parameter
called the system call number to identify the required system call; the eax register is used for
that purpose. As we shall see in Section 8.2.3 later in this chapter, additional parameters are
usually passed when invoking a system call.

All system calls return an integer value. The conventions for these return values are different
from those for wrapper routines. In the kernel, positive or null values denote a successful
termination of the system call, while negative values denote an error condition. In the latter
case, the value is the negation of the error code that must be returned to the application
program. The errno variable is not set or used by the kernel.

The system call handler, which has a structure similar to that of the other exception handlers,
performs the following operations:

• Saves the contents of most registers in the Kernel Mode stack (this operation is
common to all system calls and is coded in assembly language).

• Handles the system call by invoking a corresponding C function called the system call
service routine.

• Exits from the handler by means of the ret_from_sys_call() function (this
function is coded in assembly language).

The name of the service routine associated with the xyz() system call is usually sys_xyz(
); there are, however, a few exceptions to this rule.

Figure 8-1 illustrates the relationships among the application program that invokes a system
call, the corresponding wrapper routine, the system call handler, and the system call service
routine. The arrows denote the execution flow between the functions.

Understanding the Linux Kernel

219

Figure 8-1. Invoking a system call

In order to associate each system call number with its corresponding service routine, the
kernel makes use of a system call dispatch table ; this table is stored in the sys_call_table
array and has NR_syscalls entries (usually 256): the nth entry contains the service routine
address of the system call having number n.

The NR_syscalls macro is just a static limit on the maximum number of implementable
system calls: it does not indicate the number of system calls actually implemented. Indeed,
any entry of the dispatch table may contain the address of the sys_ni_syscall() function,
which is the service routine of the "nonimplemented" system calls: it just returns the error
code -ENOSYS.

8.2.1 Initializing System Calls

The trap_init() function, invoked during kernel initialization, sets up the IDT entry
corresponding to vector 128 as follows:

set_system_gate(0x80, &system_call);

The call loads the following values into the gate descriptor fields (see Section 4.4.1 in
Chapter 4):

Segment Selector

The __KERNEL_CS Segment Selector of the kernel code segment.

Offset

Pointer to the system_call() exception handler.

Type

Set to 15. Indicates that the exception is a Trap and that the corresponding handler
does not disable maskable interrupts.

Understanding the Linux Kernel

220

DPL (Descriptor Privilege Level)

Set to 3; this allows processes in User Mode to invoke the exception handler (see
Section 4.2.5 in Chapter 4).

8.2.2 The system_call() Function

The system_call() function implements the system call handler. It starts by saving the
system call number and all the CPU registers that may be used by the exception handler on
the stack, except for eflags, cs, eip, ss, and esp, which have already been saved
automatically by the control unit (see the section Section 4.2.5 in Chapter 4). The SAVE_ALL
macro, which was already discussed in Section 4.6.3 in Chapter 4, also loads the Segment
Selector of the kernel data segment in ds and es:

system_call:
 pushl %eax
 SAVE_ALL
 movl %esp, %ebx
 andl $0xffffe000, %ebx

The function also stores in ebx the address of the current process descriptor; this is done by
taking the value of the kernel stack pointer and rounding it up to a multiple of 8 KB (see
Section 3.1.2 in Chapter 3).

A validity check is then performed on the system call number passed by the User Mode
process. If it is greater than or equal to NR_syscalls, the system call handler terminates:

cmpl $(NR_syscalls), %eax
 jb nobadsys
 movl $(-ENOSYS), 24(%esp)
 jmp ret_from_sys_call
nobadsys:

If the system call number is not valid, the function stores the -ENOSYS value in the stack
location where the eax register has been saved (at offset 24 from the current stack top). It then
jumps to ret_from_sys_call(). In this way, when the process resumes its execution in
User Mode, it will find a negative return code in eax.

Next, the system_call() function checks whether the PF_TRACESYS flag included in
the flags field of current is equal to 1, that is, whether the system call invocations of
the executed program are being traced by some debugger. If this is the case, system_call()
invokes the syscall_trace() function twice, once right before and once right after
the execution of the system call service routine. This function stops current and thus allows
the debugging process to collect information about it.

Finally, the specific service routine associated with the system call number contained in eax is
invoked:

call *sys_call_table(0, %eax, 4)

Since each entry in the dispatch table is 4 bytes long, the kernel finds the address of
the service routine to be invoked by first multiplying the system call number by 4, adding

Understanding the Linux Kernel

221

the initial address of the sys_call_table dispatch table, and extracting a pointer to
the service routine from that slot in the table.

When the service routine terminates, system_call() gets its return code from eax and
stores it in the stack location where the User Mode value of the eax register has been saved. It
then jumps to ret_from_sys_call(), which terminates the execution of the system call
handler (see Section 4.7.2 in Chapter 4):

movl %eax, 24(%esp)
jmp ret_from_sys_call

When the process resumes its execution in User Mode, it will find in eax the return code of
the system call.

8.2.3 Parameter Passing

Like ordinary functions, system calls often require some input/output parameters, which may
consist of actual values (i.e., numbers) or addresses of functions and variables in the address
space of the User Mode process. Since the system_call() function is the unique entry point
for all system calls in Linux, each of them has at least one parameter: the system call number
passed in the eax register. For instance, if an application program invokes the fork()
wrapper routine, the eax register is set to 5 before executing the int $0x80 Assembly
instruction. Because the register is set by the wrapper routines included in the libc library,
programmers do not usually care about the system call number.

The fork() system call does not require other parameters. However, many system calls do
require additional parameters, which must be explicitly passed by the application program.
For instance, the mmap() system call may require up to six parameters (besides the system
call number).

The parameters of ordinary functions are passed by writing their values in the active program
stack (either the User Mode stack or the Kernel Mode stack). But system call parameters are
usually passed to the system call handler in the CPU registers, then copied onto the Kernel
Mode stack, since system call service routines are ordinary C functions.

Why doesn't the kernel copy parameters directly from the User Mode stack to the Kernel
Mode stack? First of all, working with two stacks at the same time is complex; moreover, the
use of registers makes the structure of the system call handler similar to that of other
exception handlers.

However, in order to pass parameters in registers, two conditions must be satisfied:

• The length of each parameter cannot exceed the length of a register, that is 32 bits.[1]

[1] We refer as usual to the 32-bit architecture of the Intel 80x86 processors. The discussion in this section does not apply to Compaq's Alpha 64-bit
processors.

• The number of parameters must not exceed six (including the system call number
passed in eax), since the Intel Pentium has a very limited number of registers.

Understanding the Linux Kernel

222

The first condition is always true since, according to the POSIX standard, large parameters
that cannot be stored in a 32-bit register must be passed by specifying their addresses. A
typical example is the settimeofday() system call, which must read two 64-bit structures.

However, system calls that have more than six parameters exist: in such cases, a single
register is used to point to a memory area in the process address space that contains the
parameter values. Of course, programmers do not have to care about this workaround. As with
any C call, parameters are automatically saved on the stack when the wrapper routine is
invoked. This routine will find the appropriate way to pass the parameters to the kernel.

The six registers used to store system call parameters are, in increasing order: eax (for the
system call number), ebx , ecx, edx, esi, and edi. As seen before, system_call() saves
the values of these registers on the Kernel Mode stack by using the SAVE_ALL macro.
Therefore, when the system call service routine goes to the stack, it finds the return address to
system_call(), followed by the parameter stored in ebx (that is, the first parameter of the
system call), the parameter stored in ecx, and so on (see the Section 4.6.3 in Chapter 4). This
stack configuration is exactly the same as in an ordinary function call, and therefore the
service routine can easily refer to its parameters by using the usual C-language constructs.

Let's look at an example. The sys_write() service routine, which handles the write()
system call, is declared as:

int sys_write (unsigned int fd, const char * buf,
 unsigned int count)

The C compiler produces an assembly language function that expects to find the fd, buf, and
count parameters on top of the stack, right below the return address, in the locations used to
save the contents of the ebx, ecx, and edx registers, respectively.

In a few cases, even if the system call doesn't make use of any parameters, the corresponding
service routine needs to know the contents of the CPU registers right before the system call
was issued. As an example, the do_fork() function that implements fork() needs to know
the value of the registers in order to duplicate them in the child process TSS. In these cases, a
single parameter of type pt_regs allows the service routine to access the values saved in the
Kernel Mode stack by the SAVE_ALL macro (see Section 4.6.4 in Chapter 4):

int sys_fork (struct pt_regs regs)

The return value of a service routine must be written into the eax register. This is
automatically done by the C compiler when a return n; instruction is executed.

8.2.4 Verifying the Parameters

All system call parameters must be carefully checked before the kernel attempts to satisfy a
user request. The type of check depends both on the system call and on the specific parameter.
Let us go back to the write() system call introduced before: the fd parameter should be a
file descriptor that describes a specific file, so sys_write() must check whether fd really is
a file descriptor of a file previously opened and whether the process is allowed to write into it
(see Section 1.5.6 in Chapter 1). If any of these conditions is not true, the handler must return
a negative value, in this case the error code -EBADF.

Understanding the Linux Kernel

223

One type of checking, however, is common to all system calls: whenever a parameter
specifies an address, the kernel must check whether it is inside the process address space.
There are two possible ways to perform this check:

• Verify that the linear address belongs to the process address space and, if so, that the
memory region including it has the proper access rights.

• Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it doesn't fall
within the range of interval addresses reserved to the kernel).

Previous Linux kernels performed the first type of checking. But it is quite time-consuming
since it must be executed for each address parameter included in a system call; furthermore, it
is usually pointless because faulty programs are not very common.

Therefore, the Linux 2.2 kernel performs the second type of checking. It is much more
efficient because it does not require any scan of the process memory region descriptors.
Obviously, it is a very coarse check: verifying that the linear address is smaller than
PAGE_OFFSET is a necessary but not sufficient condition for its validity. But there's no risk in
confining the kernel to this limited kind of check because other errors will be caught later.

The approach followed in Linux 2.2 is thus to defer the real checking until the last possible
moment, that is, until the Paging Unit translates the linear address into a physical one. We
shall discuss in Section 8.2.6 later in this chapter how the "Page fault" exception handler
succeeds in detecting those bad addresses issued in Kernel Mode that have been passed as
parameters by User Mode processes.

One might wonder at this point why the coarse check is performed at all. This type of
checking is actually crucial to preserve both process address spaces and the kernel address
space from illegal accesses. We have seen in Chapter 2, that the RAM is mapped starting
from PAGE_OFFSET. This means that kernel routines are able to address all pages present in
memory. Thus, if the coarse check were not performed, a User Mode process might pass an
address belonging to the kernel address space as a parameter and then be able to read or write
any page present in memory without causing a "Page fault" exception!

The check on addresses passed to system calls is performed by the verify_area() function,
which acts on two[2] parameters denoted as addr and size. The function checks the address
interval delimited by addr and addr + size - 1, and is essentially equivalent to the
following C function:

[2] A third parameter named type specifies whether the system call should read or write the referred memory locations. It is used only in systems
having buggy versions of the Intel 80486 microprocessor, in which writing in Kernel Mode to a write-protected page does not generate a page fault.
We don't discuss this case further.

int verify_area(const void * addr, unsigned long size)
{
 unsigned long a = (unsigned long) addr;
 if (a + size < a || a + size > current->addr_limit.seg)
 return -EFAULT;
 return 0;
}

The function verifies first whether addr + size, the highest address to be checked, is larger
than 232-1; since unsigned long integers and pointers are represented by the GNU C compiler

Understanding the Linux Kernel

224

(gcc) as 32-bit numbers, this is equivalent to checking for an overflow condition. The
function also checks whether addr exceeds the value stored in the addr_limit.seg field of
current. This field usually has the value PAGE_OFFSET-1 for normal processes and the value
0xffffffff for kernel threads. The value of the addr_limit.seg field can be dynamically
changed by the get_fs and set_fs macros; this allows the kernel to invoke system call
service routines directly and pass addresses in the kernel data segment to them.

The access_ok macro performs the same check as verify_area(). It yields 1 if the
specified address interval is valid and otherwise.

8.2.5 Accessing the Process Address Space

System call service routines quite often need to read or write data contained in the process's
address space. Linux includes a set of macros that make this access easier. We'll describe two
of them, called get_user() and put_user(). The first can be used to read 1, 2, or 4
consecutive bytes from an address, while the second can be used to write data of those sizes
into an address.

Each function accepts two arguments, a value x to transfer and a variable ptr. The second
variable also determines how many bytes to transfer. Thus, in get_user(x,ptr), the size of
the variable pointed to by ptr causes the function to expand into a __get_user_1(),
__get_user_2(), or __get_user_4() assembly language function. Let us consider one of
them, for instance, __get_user_2():

__get_user_2:
 addl $1, %eax
 jc bad_get_user
 movl %esp, %edx
 andl $0xffffe000, %edx
 cmpl 12(%edx), %eax
 jae bad_get_user
2: movzwl -1(%eax), %edx
 xorl %eax, %eax
 ret
bad_get_user:
 xorl %edx, %edx
 movl $-EFAULT, %eax
 ret

The eax register contains the address ptr of the first byte to be read. The first six instructions
essentially perform the same checks as the verify_area() functions: they ensure that the 2
bytes to be read have addresses less than 4 GB as well as less than the addr_limit.seg field
of the current process. (This field is stored at offset 12 in the process descriptor, which
appears in the first operand of the cmpl instruction.)

If the addresses are valid, the function executes the movzwl instruction to store the data to be
read in the 2 least significant bytes of edx register while setting the high-order bytes of edx to
0; then it sets a return code in eax and terminates. If the addresses are not valid, the function
clears edx, sets the -EFAULT value into eax, and terminates.

The put_user(x,ptr) macro is similar to the one discussed before, except that it writes the
value x into the process address space starting from address ptr. Depending on the size of x

Understanding the Linux Kernel

225

(1, 2, or 4 bytes), it invokes the __put_user_1(), __put_user_2(),or __put_user_4()
function. Let's consider __put_user_4() for our example this time. The function performs
the usual checks on the ptr address stored in the eax register, then executes a movl
instruction to write the 4 bytes stored into the edx register. The function returns the value in
the eax register if it succeeds, and -EFAULT otherwise.

Several other functions and macros are available to access the process address space in Kernel
Mode; they are listed in Table 8-1. Notice that many of them also have a variant prefixed by
two underscores (__). The ones without initial underscores take extra time to check the
validity of the linear address interval requested, while the ones with the underscores bypass
that check. Whenever the kernel must repeatedly access the same memory area in the process
address space, it is more efficient to check the address once at the start, then access the
process area without making any further checks.

Table 8-1. Functions and Macros that Access the Process Address Space
Function Action
get_user

__get_user
Reads an integer value from user space (1, 2, or 4 bytes)

put_user

__put_user
Writes an integer value to user space (1, 2, or 4 bytes)

get_user_ret

__get_user_ret
Like get_user, but returns a specified value on error

put_user_ret

__put_user_ret
Like put_user, but returns a specified value on error

copy_from_user

__copy_from_user
Copies a block of arbitrary size from user space

copy_to_user

__copy_to_user
Copies a block of arbitrary size to user space

copy_from_user_ret Like copy_from_user, but returns a specified value on error
copy_to_user_ret Like copy_to_user, but returns a specified value on error
strncpy_from_user

__strncpy_from_user
Copies a null-terminated string from user space

strlen_user

strnlen_user
Returns the length of a null-terminated string in user space

clear_user

__clear_user
Fills a memory area in user space with zeros

8.2.6 Dynamic Address Checking: The Fixup Code

As seen previously, the verify_area() function and the access_ok macro make only a
coarse check on the validity of linear addresses passed as parameters of a system call. Since

Understanding the Linux Kernel

226

they do not ensure that these addresses are included in the process address space, a process
could cause a "Page fault" exception by passing a wrong address.

Before describing how the kernel detects this type of error, let us specify the three cases in
which "Page fault" exceptions may occur in Kernel Mode:

• The kernel attempts to address a page belonging to the process address space, but
either the corresponding page frame does not exist, or the kernel is trying to write a
read-only page.

• Some kernel function includes a programming bug that causes the exception to be
raised when that program is executed; alternatively, the exception might be caused by
a transient hardware error.

• The case introduced in this chapter: a system call service routine attempts to read or
write into a memory area whose address has been passed as a system call parameter,
but that address does not belong to the process address space.

These cases must be distinguished by the page fault handler, since the actions to be taken are
quite different. In the first case, the handler must allocate and initialize a new page frame (see
Section 7.4.3 and Section 7.4.4 in Chapter 7); in the second case, the handler must perform a
kernel oops (see Section 7.4.1 in Chapter 7); in the third case, the handler must terminate the
system call by returning a proper error code.

The page fault handler can easily recognize the first case by determining whether the faulty
linear address is included in one of the memory regions owned by the process. Let us now
explain how the handler distinguishes the remaining two cases.

8.2.6.1 The exception tables

The key to determining the source of a page fault lies in the narrow range of calls that the
kernel uses to access the process address space. Only the small group of functions and macros
described in the previous section are ever used to access that address space; thus, if the
exception is caused by an invalid parameter, the instruction that caused it must be included in
one of the functions or be generated by expanding one of the macros. If you add up the code
in all these functions and macros, they consist of a fairly small set of addresses.

Therefore, it would not take much effort to put the address of any kernel instruction that
accesses the process address space into a structure called the exception table. If we succeed in
doing this, the rest is easy. When a "Page fault" exception occurs in Kernel Mode, the do_
page_fault() handler examines the exception table: if it includes the address of the
instruction that triggered the exception, the error is caused by a bad system call parameter;
otherwise, it is caused by some more serious bug.

Linux defines several exception tables. The main exception table is automatically generated
by the C compiler when building the kernel program image. It is stored in the _ _ex_table
section of the kernel code segment, and its starting and ending addresses are identified by two
symbols produced by the C compiler: __start__ _ex_table and __stop__ _ex_table.

Moreover, each dynamically loaded module of the kernel (see Appendix B, Modules) includes
its own local exception table. This table is automatically generated by the C compiler when

Understanding the Linux Kernel

227

building the module image, and it is loaded in memory when the module is inserted in the
running kernel.

Each entry of an exception table is an exception_table_entry structure having two fields:

insn

The linear address of an instruction that accesses the process address space

fixup

The address of the assembly language code to be invoked when a "Page fault"
exception triggered by the instruction located at insn occurs

The fixup code consists of a few assembly language instructions that solve the problem
triggered by the exception. As we shall see later in this section, the fix usually consists of
inserting a sequence of instructions that forces the service routine to return an error code to
the User Mode process. Such instructions are usually defined in the same macro or function
that accesses the process address space; sometimes, they are placed by the C compiler in a
separate section of the kernel code segment called .fixup.

The search_exception_table() function is used to search for a specified address in all
exception tables: if the address is included in a table, the function returns the corresponding
fixup address; otherwise, it returns 0. Thus the page fault handler do_page_fault()
executes the following statements:

if ((fixup = search_exception_table(regs->eip)) != 0) {
 regs->eip = fixup;
 return;
}

The regs->eip field contains the value of the eip register saved on the Kernel Mode stack
when the exception occurred. If the value in the register (the instruction pointer) is in an
exception table, do_page_fault() replaces the saved value with the address returned by
search_exception_table(). Then the page fault handler terminates and the interrupted
program resumes with execution of the fixup code.

8.2.6.2 Generating the exception tables and the fixup code

The GNU Assembler .section directive allows programmers to specify which section of the
executable file contains the code that follows. As we shall see in Chapter 19, an executable
file includes a code segment, which in turn may be subdivided into sections. Thus, the
following assembly language instructions add an entry into an exception table; the "a"
attribute specifies that the section must be loaded in memory together with the rest of the
kernel image:

.section __ex_table, "a"
 .long faulty_instruction_address, fixup_code_address
.previous

Understanding the Linux Kernel

228

The .previous directive forces the assembler to insert the code that follows into the section
that was active when the last .section directive was encountered.

Let us consider again the __get_user_1(), __get_user_2(), and __get_user_4()
functions mentioned before:

_ _get_user_1:
 [...]
1: movzbl (%eax), %edx
 [...]
_ _get_user_2:
 [...]
2: movzwl -1(%eax), %edx
 [...]
__get_user_4:
 [...]
3: movl -3(%eax), %edx
 [...]
bad_get_user:
 xorl %edx, %edx
 movl $-EFAULT, %eax
 ret
.section _ _ex_table,"a"
 .long 1b, bad_get_user
 .long 2b, bad_get_user
 .long 3b, bad_get_user
.previous

The instructions that access the process address space are those labeled as 1, 2, and 3. The
fixup code is common to the three functions and is labeled as bad_get_user. Each exception
table entry consists simply of two labels. The first one is a numeric label with a b suffix to
indicate that the label is a "backward" one: in other words, it appears in a previous line of the
program. The fixup code at bad_get_user returns an EFAULT error code to the process that
issued the system call.

Let us consider a second example, the strlen_user(string) macro. This returns the length
of a null-terminated string in the process address space or the value on error. The macro
essentially yields the following assembly language instructions:

movl $0, %eax
 movl $0x7fffffff, %ecx
 movl %ecx, %edx
 movl string, %edi
0: repne; scasb
 subl %ecx, %edx
 movl %edx, %eax
1:
.section .fixup,"ax"
2: movl $0, %eax
 jmp 1b
.previous
.section __ex_table,"a"
 .long 0b, 2b
.previous

Understanding the Linux Kernel

229

The ecx and edx registers are initialized with the 0x7fffffff value, which represents the
maximum allowed length for the string. The repne; scasb assembly language instructions
iteratively scan the string pointed to by the edi register, looking for the value (the end of
string \0 character) in eax. Since the ecx register is decremented at each iteration, the eax
register will ultimately store the total number of bytes scanned in the string; that is, the length
of the string.

The fixup code of the macro is inserted into the .fixup section. The "ax" attributes specify
that the section must be loaded in memory and that it contains executable code. If a page fault
exception is generated by the instructions at label 0, the fixup code is executed: it simply
loads the value in eax, thus forcing the macro to return a error code instead of the string
length, then jumps to the 1 label, which corresponds to the instruction following the macro.

8.3 Wrapper Routines

Although system calls are mainly used by User Mode processes, they can also be invoked by
kernel threads, which cannot make use of library functions. In order to simplify the
declarations of the corresponding wrapper routines, Linux defines a set of six macros called
_syscall0 through _syscall5.

The numbers through 5 in the name of each macro correspond to the number of parameters
used by the system call (excluding the system call number). The macros may also be used to
simplify the declarations of the wrapper routines in the libc standard library; however, they
cannot be used to define wrapper routines for system calls having more than five parameters
(excluding the system call number) or for system calls that yield nonstandard return values.

Each macro requires exactly 2+2xn parameters, with n being the number of parameters of the
system call. The first two parameters specify the return type and the name of the system call;
each additional pair of parameters specifies the type and the name of the corresponding
system call parameter. Thus, for instance, the wrapper routine of the fork() system call may
be generated by:

_syscall0(int,fork)

while the wrapper routine of the write() system call may be generated by:

_syscall3(int,write,int,fd,const char *,buf,unsigned int,count)

In the latter case, the macro yields the following code:

Understanding the Linux Kernel

230

int write(int fd,const char * buf,unsigned int count)
{
 long __res;
 asm("int $0x80"
 : "=a" (__res)
 : "0" (__NR_write), "b" ((long)fd),
 "c" ((long)buf), "d" ((long)count));
 if ((unsigned long)__res >= (unsigned long)-125) {
 errno = -__res;
 __res = -1;
 }
 return (int) __res;
}

The __NR_write macro is derived from the second parameter of _syscall3; it expands into
the system call number of write(). When compiling the preceding function, the following
assembly language code is produced:

write:
 pushl %ebx ; push ebx into stack
 movl 8(%esp), %ebx ; put first parameter in ebx
 movl 12(%esp), %ecx ; put second parameter in ecx
 movl 16(%esp), %edx ; put third parameter in edx
 movl $4, %eax ; put __NR_write in eax
 int $0x80 ; invoke system call
 cmpl $-126, %eax ; check return code
 jbe .L1 ; if no error, jump
 negl %eax ; complement the value of eax
 movl %eax, errno ; put result in errno
 movl $-1, %eax ; set eax to -1
.L1: popl %ebx ; pop ebx from stack
 ret ; return to calling program

Notice how the parameters of the write() function are loaded into the CPU registers before
the int $0x80 instruction is executed. The value returned in eax must be interpreted as an
error code if it lies between -1 and -125 (the kernel assumes that the largest error code defined
in include/asm-i386/errno.h is 125). If this is the case, the wrapper routine will store the value
of -eax in errno and return the value -1; otherwise, it will return the value of eax.

8.4 Anticipating Linux 2.4

Beside adding a few new system calls, Linux 2.4 does not introduce any change to the system
call mechanism of Linux 2.2.

Understanding the Linux Kernel

231

Chapter 9. Signals
Signals were introduced by the first Unix systems to simplify interprocess communication.
The kernel also uses them to notify processes of system events. In contrast to interrupts and
exceptions, most signals are visible to User Mode processes.

Signals have been around for 30 years with only minor changes. Due to their relative
simplicity and efficiency, they continue to be widely used, although as we shall see in
Chapter 18, other higher-level tools have been introduced for the same purpose.

The first sections of this chapter examine in detail how signals are handled by the Linux
kernel, then we discuss the system calls that allow processes to exchange signals.

9.1 The Role of Signals

A signal is a very short message that may be sent to a process or to a group of processes. The
only information given to the process is usually the number identifying the signal; there is no
room in standard signals for arguments, a message, or other accompanying information.

A set of macros whose names start with the prefix SIG is used to identify signals; we have
already made a few references to them in previous chapters. For instance, the SIGCHLD macro
has been mentioned in Section 3.3.1 in Chapter 3. This macro, which expands into the value
17 in Linux, yields the identifier of the signal that is sent to a parent process when some child
stops or terminates. The SIGSEGV macro, which expands into the value 11, has been
mentioned in Section 7.4 in Chapter 7 : it yields the identifier of the signal that is sent to
a process when it makes an invalid memory reference.

Signals serve two main purposes:

• To make a process aware that a specific event has occurred
• To force a process to execute a signal handler function included in its code

Of course, the two purposes are not mutually exclusive, since often a process must react to
some event by executing a specific routine.

Table 9-1 lists the first 31 signals handled by Linux 2.2 for the Intel 80x86 architecture (some
signal numbers such as SIGCHLD or SIGSTOP are architecture-dependent; furthermore, some
signals are defined only for specific architectures). Besides the signals described in this table,
the POSIX standard has introduced a new class of signals called "real-time." They will be
discussed separately in Section 9.4 later in this chapter.

Understanding the Linux Kernel

232

Table 9-1. The First 31 Signals in Linux/i386
Signal Name Default Action Comment POSIX
1 SIGHUP Abort Hangup of controlling terminal or process Yes
2 SIGINT Abort Interrupt from keyboard Yes
3 SIGQUIT Dump Quit from keyboard Yes
4 SIGILL Dump Illegal instruction Yes
5 SIGTRAP Dump Breakpoint for debugging No
6 SIGABRT Dump Abnormal termination Yes
6 SIGIOT Dump Equivalent to SIGABRT No
7 SIGBUS Abort Bus error No
8 SIGFPE Dump Floating point exception Yes
9 SIGKILL Abort Forced process termination Yes
10 SIGUSR1 Abort Available to processes Yes
11 SIGSEGV Dump Invalid memory reference Yes
12 SIGUSR2 Abort Available to processes Yes
13 SIGPIPE Abort Write to pipe with no readers Yes
14 SIGALRM Abort Real timer clock Yes
15 SIGTERM Abort Process termination Yes
16 SIGSTKFLT Abort Coprocessor stack error No
17 SIGCHLD Ignore Child process stopped or terminated Yes
18 SIGCONT Continue Resume execution, if stopped Yes
19 SIGSTOP Stop Stop process execution Yes
20 SIGTSTP Stop Stop process issued from tty Yes
21 SIGTTIN Stop Background process requires input Yes
22 SIGTTOU Stop Background process requires output Yes
23 SIGURG Ignore Urgent condition on socket No
24 SIGXCPU Abort CPU time limit exceeded No
25 SIGXFSZ Abort File size limit exceeded No
26 SIGVTALRM Abort Virtual timer clock No
27 SIGPROF Abort Profile timer clock No
28 SIGWINCH Ignore Window resizing No
29 SIGIO Abort I/O now possible No
29 SIGPOLL Abort Equivalent to SIGIO No
30 SIGPWR Abort Power supply failure No
31 SIGUNUSED Abort Not used No

A number of system calls allow programmers to send signals and determine how their
processes exploit the signals they recieve. Table 9-2 describes these calls succinctly; their
behavior is described in detail later in Section 9.5.

Understanding the Linux Kernel

233

Table 9-2. System Calls Related to Signals
System Call Description
kill() Send a signal to a process.
sigaction() Change the action associated with a signal.
signal() Similar to sigaction().
sigpending() Check whether there are pending signals.
sigprocmask() Modify the set of blocked signals.
sigsuspend() Wait for a signal.
rt_sigaction() Change the action associated with a real-time signal.
rt_sigpending() Check whether there are pending real-time signals.
rt_sigprocmask() Modify the set of blocked real-time signals.
rt_sigqueueinfo() Send a real-time signal to a process.
rt_sigsuspend() Wait for a real-time signal.
rt_sigtimedwait() Similar to rt_sigsuspend().

An important characteristic of signals is that they may be sent at any time to processes whose
state is usually unpredictable. Signals sent to a nonrunning process must be saved by the
kernel until that process resumes execution. Blocking signals (described later) require signals
to be queued, which exacerbates the problem of signals being raised before they can be
delivered.

Therefore, the kernel distinguishes two different phases related to signal transmission:

Signal sending

The kernel updates the descriptor of the destination process to represent that a new
signal has been sent.

Signal receiving

The kernel forces the destination process to react to the signal by changing its
execution state or by starting the execution of a specified signal handler or both.

Each signal sent can be received no more than once. Signals are consumable resources: once
they have been received, all process descriptor information that refers to their previous
existence is canceled.

Signals that have been sent but not yet received are called pending signals . At any time, only
one pending signal of a given type may exist for a process; additional pending signals of the
same type to the same process are not queued but simply discarded. In general, a signal may
remain pending for an unpredictable amount of time. Indeed, the following factors must be
taken into consideration:

• Signals are usually received only by the currently running process (that is, by the
current process).

• Signals of a given type may be selectively blocked by a process (see Section 9.5.4): in
this case, the process will not receive the signal until it removes the block.

• When a process executes a signal-handler function, it usually "masks" the
corresponding signal, that is, it automatically blocks the signal until the handler

Understanding the Linux Kernel

234

terminates. A signal handler therefore cannot be interrupted by another occurrence of
the handled signal, and therefore the function doesn't need to be reentrant. A masked
signal is always blocked, but the converse does not hold.

Although the notion of signals is intuitive, the kernel implementation is rather complex. The
kernel must:

• Remember which signals are blocked by each process.
• When switching from Kernel Mode to User Mode, check whether a signal for any

process has arrived. This happens at almost every timer interrupt, that is, roughly
every 10 ms.

• Determine whether the signal can be ignored. This happens when all of the following
conditions are fulfilled:

o The destination process is not traced by another process (the PF_TRACED flag in
the process descriptor flags field is equal to 0).[1]

[1] If a process receives a signal while it is being traced, the kernel stops the process and notifies the tracing process by sending a SIGCHLD signal
to it. The tracing process may, in turn, resume execution of the traced process by means of a SIGCONT signal.

o The signal is not blocked by the destination process.
o The signal is being ignored by the destination process (either because the

process has explicitly ignored it or because the process did not change the
default action of the signal and that action is "ignore").

• Handle the signal, which may require switching the process to a handler function at
any point during its execution and restoring the original execution context after the
function returns.

Moreover, Linux must take into account the different semantics for signals adopted by BSD
and System V; furthermore, it must comply with the rather cumbersome POSIX requirements.

9.1.1 Actions Performed upon Receiving a Signal

There are three ways in which a process can respond to a signal:

• Explicitly ignore the signal.
• Execute the default action associated with the signal (see Table 9-1). This action,

which is predefined by the kernel, depends on the signal type and may be any one of
the following:

Abort

Theprocess is destroyed (killed).

Dump

The process is destroyed (killed) and a core file containing its execution context is
created, if possible; this file may be used for debug purposes.

Understanding the Linux Kernel

235

Ignore

The signal is ignored.

Stop

The process is stopped, that is, put in a TASK_STOPPED state (see Section 3.1.1 in
Chapter 3).

Continue

If the process is stopped (TASK_STOPPED), it is put into the TASK_RUNNING state.

• Catch the signal by invoking a corresponding signal-handler function.

Notice that blocking a signal is different from ignoring it: a signal is never received while it is
blocked; an ignored signal is always received, and there is simply no further action.

The SIGKILL and SIGSTOP signals cannot be explicitly ignored or caught, and thus their
default actions must always be executed. Therefore, SIGKILL and SIGSTOP allow a user with
appropriate privileges to destroy and to stop, respectively, any process[2] regardless of the
defenses taken by the program it is executing.

[2] Actually, there are two exceptions: all signals sent to process (swapper) are discarded, while those sent to process 1 (init) are always discarded
unless they are caught. Therefore, process never dies, while process 1 dies only when the initprogram terminates.

9.1.2 Data Structures Associated with Signals

The basic data structure used to store the signals sent to a process is a sigset_t array of bits,
one for each signal type:

typedef struct {
 unsigned long sig[2];
} sigset_t;

Since each unsigned long number consists of 32 bits, the maximum number of signals that
may be declared in Linux is 64 (the _NSIG macro denotes this value). No signal has the
number 0, so the other 31 bits in the first element of sigset_t are the standard ones listed in
Table 9-1. The bits in the second element are the real-time signals. The following fields are
included in the process descriptor to keep track of the signals sent to the process:

signal

A sigset_t variable that denotes the signals sent to the process

blocked

A sigset_t variable that denotes the blocked signals

Understanding the Linux Kernel

236

sigpending

A flag set if one or more nonblocked signals are pending

gsig

A pointer to a signal_struct data structure that describes how each signal must be
handled

The signal_struct structure, in turn, is defined as follows:

struct signal_struct {
 atomic_t count;
 struct k_sigaction action[64];
 spinlock_t siglock;
};

As mentioned in Section 3.3.1 in Chapter 3, this structure may be shared by several processes
by invoking the clone() system call with the CLONE_SIGHAND flag set.[3] The count field
specifies the number of processes that share the signal_struct structure, while the siglock
field is used to ensure exclusive access to its fields (see Chapter 11). The action field is an
array of 64 k_sigaction structures that specify how each signal must be handled.

[3] If this is not done, about 1300 bytes are added to the process data structures just to take care of signal handling.

Some architectures assign properties to a signal that are visible only to the kernel. Thus, the
properties of a signal are stored in a k_sigaction structure, which contains both the
properties hidden from the User Mode process and the more familiar sigaction structure that
holds all the properties a User Mode process can see. Actually, on the Intel platform all signal
properties are visible to User Mode processes. So the k_sigaction structure simply reduces
to a single sa structure of type sigaction, which includes the following fields:

sa_handler

This field specifies the type of action to be performed; its value can be a pointer to the
signal handler, SIG_DFL (that is, the value 0) to specify that the default action must be
executed or SIG_IGN (that is, the value 1) to specify that the signal must be explicitly
ignored.

sa_flags

This set of flags specifies how the signal must be handled; some of them are listed in
Table 9-3.

sa_mask

This sigset_t variable specifies the signals to be masked when running the signal
handler.

Understanding the Linux Kernel

237

Table 9-3. Flags Specifying How to Handle a Signal
Flag Name Description
SA_NOCLDSTOP Do not send SIGCHLD to the parent when the process is stopped.
SA_NODEFER, SA_NOMASK Do not mask the signal while executing the signal handler.
SA_RESETHAND, SA_ONESHOT Reset to default action after executing the signal handler.
SA_ONSTACK Use an alternate stack for the signal handler (see Section 9.3.3).
SA_RESTART Interrupted system calls are automatically restarted (see Section 9.3.4).
SA_SIGINFO Provide additional information to the signal handler (see Section 9.5.2).

9.1.3 Operations on Signal Data Structures

Several functions and macros are used by the kernel to handle signals. In the following
description, set is a pointer to a sigset_t variable, nsig is the number of a signal, and mask
is an unsigned long bit mask.

sigaddset(set,nsig) and sigdelset(set,nsig)

Sets the bit of the sigset_t variable corresponding to signal nsig to 1 or 0,
respectively. In practice, sigaddset() reduces to:

set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32);

and sigdelset() to:

set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32));

sigaddsetmask(set,mask) and sigdelsetmask(set,mask)

Sets all the bits of the sigset_t variable whose corresponding bits of mask are on to 1
or 0, respectively. The corresponding functions reduce to:

set->sig[0] |= mask;

and to:

set->sig[0] &= ~mask;

sigismember(set,nsig)

Returns the value of the bit of the sigset_t variable corresponding to the signal nsig.
In practice, this function reduces to:

1 & (set->sig[(nsig - 1) / 32] >> ((nsig - 1) % 32))

sigmask(nsig)

Yields the bit index of the signal nsig. In other words, if the kernel needs to set, clear,
or test a bit in an element of sigset_t that corresponds to a particular signal, it can
derive the proper bit through this macro.

Understanding the Linux Kernel

238

signal_pending(p)

Returns the value 1 (true) if the process identified by the *p process descriptor has
nonblocked pending signals and the value (false) if it doesn't. The function is
implemented as a simple check on the sigpending field of the process descriptor.

recalc_sigpending(t)

Checks whether the process identified by the process descriptor at *t has nonblocked
pending signals, by looking at the sig and blocked fields of the process, then sets the
sigpending field properly as follows:

ready = t->signal.sig[1] &~ t->blocked.sig[1];
ready |= t->signal.sig[0] &~ t->blocked.sig[0];
t->sigpending = (ready != 0);

sigandsets(d,s1,s2) , sigorsets(d,s1,s2) , and
signandsets(d,s1,s2)

Performs a logical AND, a logical OR, and a logical NAND, respectively, between the
sigset_t variables to which s1 and s2 point; the result is stored in the sigset_t
variable to which d points.

dequeue_signal(mask, info)

Checks whether the current process has nonblocked pending signals. If so, returns the
lowest-numbered pending signal and updates the data structures to indicate it is no
longer pending. This task involves clearing the corresponding bit in current-
>signal, updating the value of current->sigpending, and storing the signal number
of the dequeued signal into the *info table. In the mask parameter each bit that is set
represents a blocked signal:

sig = 0;
if (((x = current->signal.sig[0]) & ~mask->sig[0]) != 0)
 sig = 1 + ffz(~x);
else if (((x = current->signal.sig[1]) &
 ~mask->sig[1]) != 0)
 sig = 33 + ffz(~x);
if (sig) {
 sigdelset(¤t->signal, sig);
 recalc_sigpending(current);
}
return sig;

The collection of currently pending signals is ANDed with the blocked signals (the
complement of mask). If anything is left, it represents a signal that should be delivered
to the process. The ffz() function returns the index of the first bit in its parameter;
this value is used to compute the lowest-number signal to be delivered.

Understanding the Linux Kernel

239

flush_signals(t)

Deletes all signals sent to the process identified by the process descriptor at *t. This is
done by clearing both the t->sigpending and the t->signal fields and by emptying
the real-time queue of signals (see Section 9.4).

9.2 Sending a Signal

When a signal is sent to a process, either from the kernel or from another process, the kernel
delivers it by invoking the send_sig_info(), send_sig(), force_sig(), or
force_sig_info() functions. These accomplish the first phase of signal handling described
earlier in Section 9.1: updating the process descriptor as needed. They do not directly perform
the second phase of receiving the signal but, depending on the type of signal and the state of
the process, may wake up the process and force it to receive the signal.

9.2.1 The send_sig_info() and send_sig() Functions

The send_sig_info() function acts on three parameters:

sig

The signal number.

info

Either the address of a siginfo_t table associated with real-time signals or one of two
special values: means that the signal has been sent by a User Mode process, while 1
means that it has been sent by the kernel. The siginfo_t data structure has
information that must be passed to the process receiving the real-time signal, such as
the PID of the sender process and the UID of its owner.

t

A pointer to the descriptor of the destination process.

The send_sig_info() function starts by checking whether the parameters are correct:

if (sig < 0 || sig > 64)
 return -EINVAL;

The function checks then if the signal is being sent by a User Mode process. This occurs when
info is equal to or when the si_code field of the siginfo_t table is negative or zero (the
positive values of this field are reserved to identify the kernel function that sent the signal):

Understanding the Linux Kernel

240

if ((!info || ((unsigned long)info != 1 && (info->si_code <=0)))
 && ((sig != SIGCONT) || (current->session != t->session))
 && (current->euid [supscrsym] t->suid)
 && (current->euid [supscrsym] t->uid)
 && (current->uid [supscrsym] t->suid)
 && (current->uid [supscrsym] t->uid)
 && !capable(CAP_KILL))
 return -EPERM;

If the signal is sent by a User Mode process, the function determines whether the operation is
allowed. The signal is delivered only if the owner of the sending process has the proper
capability (see Chapter 19), the signal is SIGCONT, the destination process is in the same login
session of the sending process, or both processes belong to the same user.

If the sig parameter has the value 0, the function returns immediately without sending any
signal: since is not a valid signal number, it is used to allow the sending process to check
whether it has the required privileges to send a signal to the destination process. The function
returns also if the destination process is in the TASK_ZOMBIE state, indicated by checking
whether its siginfo_t table has been released:

if (!sig || !t->sig)
 return 0;

Some types of signals might nullify other pending signals for the destination process.
Therefore, the function checks whether one of the following cases occurs:

• sig is a SIGKILL or SIGCONT signal. If the destination process is stopped, it is put in
the TASK_RUNNING state so that it will be able to execute the do_exit() function;
moreover, if the destination process has SIGSTOP, SIGTSTP, SIGTTOU, or SIGTTIN
pending signals, they are removed:

 if (t->state == TASK_STOPPED)
 wake_up_process(t);
 t->exit_code = 0;
 sigdelsetmask(&t->signal, (sigmask(SIGSTOP) |
 sigmask(SIGTSTP) | sigmask(SIGTTOU) |
 sigmask(SIGTTIN)));

recalc_sigpending(t);

• sig is a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. If the destination process has
a pending SIGCONT signal, it is destroyed:

 sigdelset(&t->signal, SIGCONT);
recalc_sigpending(t);

Next, send_sig_info() checks whether the new signal can be handled immediately. In this
case, the function also takes care of the receiving phase of the signal:

if (ignored_signal(sig, t)) {
 out:
 if (t->state == TASK_INTERRUPTIBLE && signal_pending(t))
 wake_up_process(t);
 return 0;
}

Understanding the Linux Kernel

241

The ignored_signal() function returns the value 1 when all three conditions for ignoring a
signal mentioned in Section 9.1 are satisfied. However, in order to fulfill a POSIX
requirement, the SIGCHLD signal is handled specially. POSIX distinguishes between explicitly
setting the "ignore" action for the SIGCHLD signal and leaving the default in place (even if the
default is to ignore the signal). In order to let the kernel clean up a terminated child process
and prevent it from becoming a zombie (see Section 3.4.2 in Chapter 3) the parent must
explicitly set the action to "ignore" the signal. So ignored_signal() handles as follows: if
the signal is explicitly ignored, ignored_signal() returns 0, but if the default action was
"ignore" and the process didn't change that default, ignored_signal() returns 1.

If ignored_signal() returns 1, the siginfo_t table of the destination process must not be
updated; however, if the process is in the TASK_INTERRUPTIBLE state and if it has other
nonblocked pending signals, send_sig_info() invokes the wake_up_process() function
to wake it up.

If ignored_signal() returns 0, the phase of signal receiving has to be deferred, therefore
send_sig_info() may have to modify the data structures of the destination process to let it
know later that a new signal has been sent to it. Since standard signals are not queued,
send_sig_info() must check whether another instance of the same signal is already
pending, then leave its mark on the proper data structures of the process descriptor:

if (sigismember(&t->signal, sig))
 goto out;
sigaddset(&t->signal, sig);
if (!sigismember(&t->blocked, sig))
 t->sigpending = 1;
goto out;

The sigaddset() function is invoked to set the proper bit in t->signal.
The t->sigpending flag is also set, unless the destination process has blocked the sig signal.
The function terminates in the usual way by waking up, if necessary, the destination process.
In Section 9.3, we'll discuss the actions performed by the process.

The send_sig() function is similar to send_sig_info(). However, the info parameter is
replaced by a priv flag, which is true if the signal is sent by the kernel and false if it is sent by
a process. The send_sig() function is implemented as a special case of
send_sig_info():

return send_sig_info(sig, (void*)(priv != 0), t);

9.2.2 The force_sig_info() and force_sig() Functions

The force_sig_info() function is used by the kernel to send signals that cannot be
explicitly ignored or blocked by the destination processes. The function's parameters are the
same as those of send_sig_info(). The force_sig_info() function acts on the
signal_struct data structure that is referenced by the sig field included in the descriptor t
of the destination process:

Understanding the Linux Kernel

242

if (t->sig->action[sig-1].sa.sa_handler == SIG_IGN)
 t->sig->action[sig-1].sa.sa_handler = SIG_DFL;
sigdelset(&t->blocked, sig);
return send_sig_info(sig, info, t);

force_sig() is similar to force_sig_info(). Its use is limited to signals sent by the
kernel; it can be implemented as a special case of the force_sig_info() function:

force_sig_info(sig, (void*)1L, t);

9.3 Receiving a Signal

We assume that the kernel has noticed the arrival of a signal and has invoked one of the
functions in the previous section to prepare the process descriptor of the process that is
supposed to receive the signal. But in case that process was not running on the CPU at that
moment, the kernel deferred the task of waking the process, if necessary, and making it
receive the signal. We now turn to the activities that the kernel performs to ensure that
pending signals of a process are handled.

As mentioned in Section 4.7.1 in Chapter 4, the kernel checks whether there are nonblocked
pending signals before allowing a process to resume its execution in User Mode. This check is
performed in ret_from_intr() every time an interrupt or an exception has been handled by
the kernel routines.

In order to handle the nonblocked pending signals, the kernel invokes the do_signal()
function, which receives two parameters:

regs

The address of the stack area where the User Mode register contents of the current
process have been saved

oldset

The address of a variable where the function is supposed to save the bit mask array of
blocked signals (actually, this parameter is NULL when invoked from
ret_from_intr())

The function starts by checking whether the interrupt occurred while the process was running
in User Mode; if not, it simply returns:

if ((regs->xcs & 3) != 3)
 return 1;

However, as we'll see in Section 9.3.4, this does not mean that a system call cannot be
interrupted by a signal.

If the oldset parameter is NULL, the function initializes it with the address of the current-
>blocked field:

Understanding the Linux Kernel

243

if (!oldset)
 oldset = ¤t->blocked;

The heart of the do_signal() function consists of a loop that repeatedly invokes
dequeue_signal() until no more nonblocked pending signals are left. The return code of
dequeue_signal() is stored in the signr local variable: if its value is 0, it means that all
pending signals have been handled and do_signal() can finish. As long as a nonzero value
is returned, a pending signal is waiting to be handled and dequeue_signal() is invoked
again after do_signal() handles the current signal.

If the current receiver process is being monitored by some other process, the do_signal()
function invokes notify_parent() and schedule() to make the monitoring process
aware of the signal handling.

Then do_signal() loads the ka local variable with the address of the k_sigaction data
structure of the signal to be handled:

ka = ¤t->sig->action[signr-1];

Depending on the contents, three kinds of actions may be performed: ignoring the signal,
executing a default action, or executing a signal handler.

9.3.1 Ignoring the Signal

When a received signal is explicitly ignored, the do_signal() function normally just
continues with a new execution of the loop and therefore considers another pending signal.
One exception exists, as described earlier:

if (ka->sa.sa_handler == SIG_IGN) {
 if (signr == SIGCHLD)
 while (sys_wait4(-1, NULL, WNOHANG, NULL) > 0)
 /* nothing */;
 continue;
}

If the signal received is SIGCHLD, the sys_wait4() service routine of the wait4() system
call is invoked to force the process to read information about its children, thus cleaning up
memory left over by the terminated child processes (see Section 3.4 in Chapter 3).

9.3.2 Executing the Default Action for the Signal

If ka->sa.sa_handler is equal to SIG_DFL, do_signal() must perform the default action
of the signal. The only exception comes when the receiving process is init, in which case the
signal is discarded as described in Section 9.1.1:

if (current->pid == 1)
 continue;

For other processes, since the default action depends on the type of signal, the function
executes a switch statement based on the value of signr.

The signals whose default action is "ignore" are easily handled:

Understanding the Linux Kernel

244

case SIGCONT: case SIGCHLD: case SIGWINCH:
 continue;

The signals whose default action is "stop" may stop the current process. In order to do this,
do_signal() sets the state of current to TASK_STOPPED and then invokes the schedule()
function (see Section 10.2.4.2 in Chapter 10). The do_signal() function also sends a
SIGCHLD signal to the parent process of current, unless the parent has set the SA_NOCLDSTOP
flag of SIGCHLD:

case SIGTSTP: case SIGTTIN: case SIGTTOU:
 if (is_orphaned_pgrp(current->pgrp))
 continue;
case SIGSTOP:
 current->state = TASK_STOPPED;
 current->exit_code = signr;
 if (!(SA_NOCLDSTOP &
 current->p_pptr->sig->action[SIGCHLD-1].sa.sa_flags))
 notify_parent(current, SIGCHLD);
 schedule();
 continue;

The difference between SIGSTOP and the other signals is subtle: SIGSTOP always stops the
process, while the other signals stop the process only if it is not in an "orphaned process
group"; the POSIX standard specifies that a process group is not orphaned as long as there is a
process in the group that has a parent in a different process group but in the same session.

The signals whose default action is "dump" may create a core file in the process working
directory; this file lists the complete contents of the process's address space and CPU
registers. After the do_signal() creates the core file, it kills the process. The default action
of the remaining 18 signals is "abort," which consists of just killing the process:

exit_code = sig_nr;
case SIGQUIT: case SIGILL: case SIGTRAP:
case SIGABRT: case SIGFPE: case SIGSEGV:
 if (current->binfmt
 && current->binfmt->core_dump
 && current->binfmt->core_dump(signr, regs))
 exit_code |= 0x80;
 default:
 sigaddset(¤t->signal, signr);
 current->flags |= PF_SIGNALED;
 do_exit(exit_code);

The do_exit() function receives as its input parameter the signal number ORed with a flag
set when a core dump has been performed. That value is used to determine the exit code of the
process. The function terminates the current process, and hence never returns (see Chapter
19).

9.3.3 Catching the Signal

If the signal has a specific handler, the do_signal() function must enforce its execution. It
does this by invoking handle_signal():

Understanding the Linux Kernel

245

handle_signal(signr, ka, &info, oldset, regs);
return 1;

Notice how do_signal() returns after having handled a single signal: other pending signals
won't be considered until the next invocation of do_signal(). This approach ensures that
real-time signals will be dealt in the proper order (see Section 9.4).

Executing a signal handler is a rather complex task because of the need to juggle stacks
carefully while switching between User Mode and Kernel Mode. We'll explain exactly what is
entailed here.

Signal handlers are functions defined by User Mode processes and included in the User Mode
code segment. The handle_signal() function runs in Kernel Mode while signal handlers
run in User Mode; this means that the current process must first execute the signal handler in
User Mode before being allowed to resume its "normal" execution. Moreover, when the
kernel attempts to resume the normal execution of the process, the Kernel Mode stack no
longer contains the hardware context of the interrupted program because the Kernel Mode
stack is emptied at every transition from User Mode to Kernel Mode.

An additional complication is that signal handlers may invoke system calls: in this case, after
having executed the service routine, control must be returned to the signal handler instead of
to the code of the interrupted program.

The solution adopted in Linux consists of copying the hardware context saved in the Kernel
Mode stack onto the User Mode stack of the current process. The User Mode stack is also
modified in such a way that, when the signal handler terminates, the sigreturn() system
call is automatically invoked to copy the hardware context back on the Kernel Mode stack and
restore the original content of the User Mode stack.

Figure 9-1 illustrates the flow of execution of the functions involved in catching a signal. A
nonblocked signal is sent to a process. When an interrupt or exception occurs, the process
switches into Kernel Mode. Right before returning to User Mode, the kernel executes the
do_signal() function, which in turn handles the signal (by invoking handle_signal())
and sets up the User Mode stack (by invoking setup_frame()). When the process switches
again to User Mode, it starts executing the signal handler because the handler's starting
address was forced into the program counter. When that function terminates, the return code
placed on the User Mode stack by the setup_frame() function is executed. This code
invokes the sigreturn() system call, whose service routine copies the hardware context of
the normal program in the Kernel Mode stack and restores the User Mode stack back to its
original state (by invoking restore_sigcontext()). When the system call terminates, the
normal program can thus resume its execution.

Understanding the Linux Kernel

246

Figure 9-1. Catching a signal

Let us now examine in detail how this scheme is carried out.

9.3.3.1 Setting up the frame

In order to properly set the User Mode stack of the process, the handle_signal() function
invokes either setup_frame() (for signals without siginfo_t table) or setup_rt_frame(
).

The setup_frame() function receives four parameters, which have the following meanings:

sig

Signal number

ka

Address of the k_sigaction table associated with the signal

oldset

Address of a bit mask array of blocked signals

regs

Address in the Kernel Mode stack area where the User Mode register contents have
been saved

The function pushes onto the User Mode stack a data structure called a frame, which contains
the information needed to handle the signal and to ensure the correct return to the
handle_signal() function. A frame is a sigframe table that includes the following fields
(see Figure 9-2):

Understanding the Linux Kernel

247

Figure 9-2. Frame on the User Mode stack

pretcode

Return address of the signal handler function; it points to the retcode field (later in
this list) in the same table.

sig

The signal number; this is the parameter required by the signal handler.

sc

Structure of type sigcontext containing the hardware context of the User Mode
process right before switching to Kernel Mode (this information is copied from the
Kernel Mode stack of current). It also contains a bit array that specifies the blocked
standard signals of the process.

fpstate

Structure of type _fpstate that may be used to store the floating point registers of the
User Mode process (see Section 3.2.4 in Chapter 3).

extramask

Bit array that specifies the blocked real-time signals.

retcode

Eight-byte code issuing a sigreturn() system call; this code is executed when
returning from the signal handler.

The setup_frame() function starts by invoking get_sigframe() to compute the first
memory location of the frame. That memory location is usually[4] in the User Mode stack, thus
the function returns the value:

[4] Linux allows processes to specify an alternate stack for their signal handlers by invoking the sigaltstack() system call; this feature is
also requested by the X/Open standard. When an alternate stack is present, the get_sigframe() function returns an address inside that
stack. We don't discuss this feature further, since it is conceptually similar to standard signal handling.

(regs->esp - sizeof(struct sigframe)) & 0xfffffff8

Understanding the Linux Kernel

248

Since stacks grow toward lower addresses, the initial address of the frame is obtained by
subtracting its size from the address of the current stack top and aligning the result to a
multiple of 8.

The returned address is then verified by means of the access_ok macro; if it is valid, the
function repeatedly invokes __put_user() to fill all the fields of the frame. Once this is
done, it modifies the regs area of the Kernel Mode stack, thus ensuring that control will be
transferred to the signal handler when current resumes its execution in User Mode:

regs->esp = (unsigned long) frame;
regs->eip = (unsigned long) ka->sa.sa_handler;

The setup_frame() function terminates by resetting the segmentation registers saved on the
Kernel Mode stack to their default value. Now the information needed by the signal handler is
on the top of the User Mode stack.

The setup_rt_frame() function is very similar to setup_frame(), but it puts on the User
Mode stack an extended frame (stored in the rt_sigframe data structure) that also includes
the content of the siginfo_t table associated with the signal.

9.3.3.2 Evaluating the signal flags

After setting up the User Mode stack, the handle_signal() function checks the values of
the flags associated with the signal.

If the received signal has the SA_ONESHOT flag set, it must be reset to its default action so that
further occurrences of the same signal will not trigger the execution of the signal handler:

if (ka->sa.sa_flags & SA_ONESHOT)
 ka->sa.sa_handler = SIG_DFL;

Moreover, if the signal does not have the SA_NODEFER flag set, the signals in the sa_mask
field of the sigaction table must be blocked during the execution of the signal handler:

if (!(ka->sa.sa_flags & SA_NODEFER)) {
 sigorsets(¤t->blocked,
 ¤t->blocked,
 &ka->sa.sa_mask);
 sigaddset(¤t->blocked,sig);
 recalc_sigpending(current);
}

The function returns then to do_signal(), which also returns immediately.

9.3.3.3 Starting the signal handler

When do_signal() returns, the current process resumes its execution in User Mode.
Because of the preparation by setup_frame() described earlier, the eip register points to
the first instruction of the signal handler, while esp points to the first memory location of
the frame that has been pushed on top of the User Mode stack. As a result, the signal handler
is executed.

Understanding the Linux Kernel

249

9.3.3.4 Terminating the signal handler

When the signal handler terminates, the return address on top of the stack points to the code in
the retcode field of the frame. For signals without siginfo_t table, the code is equivalent to
the following Assembly instructions:

popl %eax
movl $__NR_sigreturn, %eax
int $0x80

Therefore, the signal number (that is, the sig field of the frame) is discarded from the stack,
and the sigreturn() system call is then invoked.

The sys_sigreturn() function receives as its parameter the pt_regs data structure regs,
which contains the hardware context of the User Mode process (see Section 8.2.3 in
Chapter 8). It can thus derive the frame address inside the User Mode stack:

frame = (struct sigframe *)(regs.esp - 8);

The function reads from the sc field of the frame the bit array of signals that were blocked
before invoking the signal handler and writes it in the blocked field of current. As a result,
all signals that have been masked for the execution of the signal handler are unblocked. The
recalc_sigpending() function is then invoked.

The sys_sigreturn() function must at this point copy the process hardware context from
the sc field of the frame to the Kernel Mode stack; it then removes the frame from the User
Mode stack by invoking the restore_sigcontext() function.

For signals having a siginfo_t table, the mechanism is very similar. The return code in the
retcode field of the extended frame invokes the rt_sigreturn() system call; the
corresponding sys_rt_sigreturn() service routine copies the process hardware context
from the extended frame to the Kernel Mode stack and restores the original User Mode stack
content by removing the extended frame from it.

9.3.4 Reexecution of System Calls

In some cases, the request associated with a system call cannot be immediately satisfied by
the kernel; when this happens the process that issued the system call is put in a
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state.

If the process is put in a TASK_INTERRUPTIBLE state and some other process sends a signal to
it, the kernel puts it in the TASK_RUNNING state without completing the system call (see
Section 4.7 in Chapter 4). When this happens, the system call service routine does not
complete its job but returns an EINTR, ERESTARTNOHAND, ERESTARTSYS, or ERESTARTNOINTR
error code. The process receives the signal while switching back to User Mode.

In practice, the only error code a User Mode process can get in this situation is EINTR, which
means that the system call has not been completed. (The application programmer may check
this code and decide whether to reissue the system call.) The remaining error codes are used

Understanding the Linux Kernel

250

internally by the kernel to specify whether the system call may be reexecuted automatically
after the signal handler termination.

Table 9-4 lists the error codes related to unfinished system calls and their impact for each of
the three possible signal actions. The meaning of the terms appearing in the entries is the
following:

Terminate

The system call will not be automatically reexecuted; the process will resume its
execution in User Mode at the instruction following the int $0x80 one and the eax
register will contain the -EINTR value.

Reexecute

The kernel forces the User Mode process to reload the eax register with the system
call number and to reexecute the int $0x80 instruction; the process is not aware of
the reexecution and the error code is not passed to it.

Depends

The system call is reexecuted only if the SA_RESTART flag of the received signal is set;
otherwise, the system call terminates with a -EINTR error code.

Table 9-4. Reexecution of System Calls

Signal Error Codes and Their Impact on
System Call Execution

Action EINTR ERESTARTSYS ERESTARTNOHAND ERESTARTNOINTR
Default Terminate Reexecute Reexecute Reexecute
Ignore Terminate Reexecute Reexecute Reexecute
Catch Terminate Depends Terminate Reexecute

When receiving a signal, the kernel must be sure that the process really issued a system call
before attempting to reexecute it. This is where the orig_eax field of the regs hardware
context plays a critical role. Let us recall how this field is initialized when the interrupt or
exception handler starts:

Interrupt

The field contains the IRQ number associated with the interrupt minus 256 (see the
section Section 4.6.3 in Chapter 4).

0x80 exception

The field contains the system call number (see Section 8.2.2 in Chapter 8).

Other exceptions

The field contains the value -1 (see Section 4.5.1 in Chapter 4).

Understanding the Linux Kernel

251

Therefore, a nonnegative value in the orig_eax field means that the signal has woken up a
TASK_INTERRUPTIBLE process that was sleeping in a system call. The service routine
recognizes that the system call was interrupted, and thus returns one of the previously
mentioned error codes.

If the signal is explicitly ignored or if its default action has been executed, do_signal()
analyzes the error code of the system call to decide whether the unfinished system call must
be automatically reexecuted, as specified in Table 9-4. If the call must be restarted, the
function modifies the regs hardware context so that, when the process is back in User Mode,
eip points to the int $0x80 instruction and eax contains the system call number:

if (regs->orig_eax >= 0) {
 if (regs->eax == -ERESTARTNOHAND ||
 regs->eax == -ERESTARTSYS ||
 regs->eax == -ERESTARTNOINTR) {
 regs->eax = regs->orig_eax;
 regs->eip -= 2;
 }
}

The regs->eax field has been filled with the return code of a system call service routine (see
Section 8.2.2 in Chapter 8).

If the signal has been caught, handle_signal() analyzes the error code and, possibly, the
SA_RESTART flag of the sigaction table to decide whether the unfinished system call must be
reexecuted:

if (regs->orig_eax >= 0) {
 switch (regs->eax) {
 case -ERESTARTNOHAND:
 regs->eax = -EINTR;
 break;
 case -ERESTARTSYS:
 if (!(ka->sa.sa_flags & SA_RESTART)) {
 regs->eax = -EINTR;
 break;
 }
 /* fallthrough */
 case -ERESTARTNOINTR:
 regs->eax = regs->orig_eax;
 regs->eip -= 2;
 }
}

If the system call must be restarted, handle_signal() proceeds exactly as do_signal();
otherwise, it returns an -EINTR error code to the User Mode process.

9.4 Real-Time Signals

The POSIX standard introduced a new class of signals denoted as real-time signals;
the corresponding signal numbers range from 32 to 63. The main difference with respect to
standard signals is that real-time signals of the same kind may be queued. This ensures that
multiple signals sent will be received. Although the Linux kernel does not make use of

Understanding the Linux Kernel

252

real-time signals, it fully supports the POSIX standard by means of several specific system
calls (see Section 9.5.6).

The queue of real-time signals is implemented as a list of signal_queue elements:

struct signal_queue {
 struct signal_queue *next;
 siginfo_t info;
};

The info table of type siginfo_t was explained in Section 9.2.1; the next field points to the
next element in the list.

Each process descriptor has two specific fields; sigqueue points to the first element of the
queue of received real-time signals, while sigqueue_tail points to the next field of the last
element of the queue.

When sending a signal, the send_sig_info() function checks whether its number is greater
than 31; if so, it inserts the signal in the queue of real-time signals for the destination process.

Similarly, when receiving a signal, dequeue_signal() checks whether the signal number of
the pending signal is greater than 31; if so, it extracts from the queue the element
corresponding to the received signal. If the queue does not contain other signals of the same
type, the function also clears the corresponding bit in current->signal.

9.5 System Calls Related to Signal Handling

As stated in the introduction of this chapter, programs running in User Mode are allowed to
send and receive signals. This means that a set of system calls must be defined to allow these
kinds of operations. Unfortunately, due to historical reasons, several noncompatible system
calls exist that serve essentially the same purpose. In order to ensure full compatibility with
older Unix versions, Linux supports both older system calls and newer ones introduced in the
POSIX standard. We shall describe some of the most significant POSIX system calls.

9.5.1 The kill() System Call

The kill(pid,sig) system call is commonly used to send signals; its corresponding service
routine is the sys_kill() function. The integer pid parameter has several meanings,
depending on its numerical value:

pid > 0

The sig signal is sent to the process whose PID is equal to pid.

pid = 0

The sig signal is sent to all processes in the same group of the calling process.

Understanding the Linux Kernel

253

pid = -1

The signal is sent to all processes, except swapper (PID 0), init (PID 1), and current.

pid < -1

The signal is sent to all processes in the process group -pid.

The sys_kill() function invokes kill_something_info(). This in turn invokes either
send_sig_info(), to send the signal to a single process, or kill_pg_info(), to scan all
processes and invoke send_sig_info() for each process in the destination group.

System V and BSD Unix variants also have a killpg() system call, which is able to
explicitly send a signal to a group of processes. In Linux the function is implemented as a
library function that makes use of the kill() system call.

9.5.2 Changing a Signal Action

The sigaction(sig,act,oact) system call allows users to specify an action for a signal; of
course, if no signal action is defined, the kernel executes the default action associated with the
received signal.

The corresponding sys_sigaction() service routine acts on two parameters: the sig signal
number and the act table of type sigaction that specifies the new action. A third oact
optional output parameter may be used to get the previous action associated with the signal.

The function checks first whether the act address is valid. Then it fills the sa_handler,
sa_flags, and sa_mask fields of a new_ka local variable of type k_sigaction with the
corresponding fields of *act:

__get_user(new_ka.sa.sa_handler, &act->sa_handler);
__get_user(new_ka.sa.sa_flags, &act->sa_flags);
__get_user(mask, &act->sa_mask);
new_ka.sa.sa_mask.sig[0] = mask;
new_ka.sa.sa_mask.sig[1] = 0

The function invokes do_sigaction() to copy the new new_ka table into the entry at the
sig-1 position of current->sig->action:

k = ¤t->sig->action[sig-1];
if (act) {
 *k = *act;
 sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL)
 | sigmask(SIGSTOP));
 if (k->sa.sa_handler == SIG_IGN
 || (k->sa.sa_handler == SIG_DFL
 && (sig == SIGCONT ||
 sig == SIGCHLD ||
 sig == SIGWINCH))) {
 sigdelset(¤t->signal, sig);
 recalc_sigpending(current);
 }
}

Understanding the Linux Kernel

254

The POSIX standard requires that setting a signal action either to SIG_IGN, or to SIG_DFL
when the default action is "ignore," will cause any pending signal of the same type to be
discarded. Moreover, notice that, no matter what the requested masked signals are for the
signal handler, SIGKILL and SIGSTOP are never masked.

If the oact parameter is not NULL, the contents of the previous sigaction table are copied
to the process address space at the address specified by that parameter:

if (oact) {
 __put_user(old_ka.sa.sa_handler, &oact->sa_handler);
 __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask);
}

For compatibility with BSD Unix variants, Linux provides the signal() system call, which
is still widely used by programmers. The corresponding sys_signal() service routine just
invokes do_sigaction():

new_sa.sa.sa_handler = handler;
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
ret = do_sigaction(sig, &new_sa, &old_sa);
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

9.5.3 Examining the Pending Blocked Signals

The sigpending() system call allows a process to examine the set of pending blocked
signals, that is, those that have been raised while blocked. This system call fetches only the
standard signals.

The corresponding sys_sigpending() service routine acts on a single parameter, set,
namely, the address of a user variable where the array of bits must be copied:

pending = current->blocked.sig[0] & current->signal.sig[0];
if (copy_to_user(set, &pending, sizeof(*set)))
 return -EFAULT;
return 0;

9.5.4 Modifying the Set of Blocked Signals

The sigprocmask() system call allows processes to modify the set of blocked signals; like
sigpending(), this system call applies only to the standard signals.

The corresponding sys_sigprocmask() service routine acts on three parameters:

oset

Pointer in the process address space to a bit array where the previous bit mask must be
stored

set

Pointer in the process address space to the bit array containing the new bit mask

Understanding the Linux Kernel

255

how

Flag that may have one of the following values:

SIG_BLOCK

The *set bit mask array specifies the signals that must be added to the bit mask array
of blocked signals.

SIG_UNBLOCK

The *set bit mask array specifies the signals that must be removed from the bit mask
array of blocked signals.

SIG_SETMASK

The *set bit mask array specifies the new bit mask array of blocked signals.

The function invokes copy_from_user() to copy the value pointed to by the set parameter
into the new_set local variable and copies the bit mask array of standard blocked signals of
current into the old_set local variable. It then acts as the how flag specifies on these two
variables:

if (copy_from_user(&new_set, set, sizeof(*set)))
 return -EFAULT;
new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));
old_set = current->blocked.sig[0];
if (how == SIG_BLOCK)
 sigaddsetmask(¤t->blocked, new_set);
else if (how == SIG_UNBLOCK)
 sigdelsetmask(¤t->blocked, new_set);
else if (how == SIG_SETMASK)
 current->blocked.sig[0] = new_set;
else
 return -EINVAL;
recalc_sigpending(current);
if (oset) {
 if (copy_to_user(oset, &old_set, sizeof(*oset)))
 return -EFAULT;
}
return 0;

9.5.5 Suspending the Process

The sigsuspend() system call puts the process in the TASK_INTERRUPTIBLE state, after
having blocked the standard signals specified by a bit mask array to which the mask parameter
points. The process will wake up only when a nonignored, nonblocked signal is sent to it.

The corresponding sys_sigsuspend() service routine executes these statements:

Understanding the Linux Kernel

256

mask &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
saveset = current->blocked;
current->blocked.sig[0] = mask;
current->blocked.sig[1] = 0;
recalc_sigpending(current);
regs->eax = -EINTR;
while (1) {
 current->state = TASK_INTERRUPTIBLE;
 schedule();
 if (do_signal(regs, &saveset))
 return -EINTR;
}

The schedule() function selects another process to run. When the process that issued the
sigsuspend() system call is executed again, sys_sigsuspend() invokes the do_signal(
) system call in order to receive the signal that has woken up the process. If that function
returns the value 1, the signal is not ignored, therefore the system call terminates by returning
the error code -EINTR.

The sigsuspend() system call may appear redundant, since the combined execution of
sigprocmask() and sleep() apparently yields the same result. But this is not true:
because of interleaving of process executions, one must be conscious that invoking a system
call to perform action A followed by another system call to perform action B is not equivalent
to invoking a single system call that performs action A and then action B.

In the particular case, sigprocmask() might unblock a signal that will be received before
invoking sleep(). If this happens, the process might remain in a TASK_INTERRUPTIBLE
state forever, waiting for the signal that was already received. On the other hand, the
sigsuspend() system call does not allow signals to be sent after unblocking and before the
schedule() invocation because other processes cannot grab the CPU during that time
interval.

9.5.6 System Calls for Real-Time Signals

Since the system calls previously examined apply only to standard signals, additional system
calls must be introduced to allow User Mode processes to handle real-time signals.

Several system calls for real-time signals (rt_sigaction() , rt_sigpending(),
rt_sigprocmask(), and rt_sigsuspend() are similar to those described earlier and won't
be further discussed.

Two other system calls have been introduced to deal with queues of real-time signals:

rt_sigqueueinfo()

Sends a real-time signal so that it is added to the real-time signal queue of the
destination process

rt_sigtimedwait()

Similar to rt_sigsuspend(), but the process remains suspended only for a fixed
time interval

Understanding the Linux Kernel

257

We do not discuss these system calls because they are quite similar to those used for standard
signals.

9.6 Anticipating Linux 2.4

Signals are pretty much the same in Linux 2.2 and Linux 2.4.

Understanding the Linux Kernel

258

Chapter 10. Process Scheduling
Like any time-sharing system, Linux achieves the magical effect of an apparent simultaneous
execution of multiple processes by switching from one process to another in a very short time
frame. Process switch itself was discussed in Chapter 3; this chapter deals with scheduling,
which is concerned with when to switch and which process to choose.

The chapter consists of three parts. The Section 10.1 introduces the choices made by Linux to
schedule processes in the abstract. Section 10.2 discusses the data structures used to
implement scheduling and the corresponding algorithm. Finally, Section 10.3 describes
the system calls that affect process scheduling.

10.1 Scheduling Policy

The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting
objectives: fast process response time, good throughput for background jobs, avoidance of
process starvation, reconciliation of the needs of low- and high-priority processes, and so on.
The set of rules used to determine when and how selecting a new process to run is called
scheduling policy.

Linux scheduling is based on the time-sharing technique already introduced in Section 5.4.3
in Chapter 5: several processes are allowed to run "concurrently," which means that the CPU
time is roughly divided into "slices," one for each runnable process.[1] Of course, a single
processor can run only one process at any given instant. If a currently running process is not
terminated when its time slice or quantum expires, a process switch may take place.
Time-sharing relies on timer interrupts and is thus transparent to processes. No additional
code needs to be inserted in the programs in order to ensure CPU time-sharing.

[1] Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on the CPU.

The scheduling policy is also based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a process,
but the end result is the same: each process is associated with a value that denotes how
appropriate it is to be assigned to the CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing
and adjusts their priorities periodically; in this way, processes that have been denied the use of
the CPU for a long time interval are boosted by dynamically increasing their priority.
Correspondingly, processes running for a long time are penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as "I/O-bound" or
"CPU-bound." The former make heavy use of I/O devices and spend much time waiting for
I/O operations to complete; the latter are number-crunching applications that require a lot of
CPU time.

An alternative classification distinguishes three classes of processes:

Understanding the Linux Kernel

259

Interactive processes

These interact constantly with their users, and therefore spend a lot of time waiting for
keypresses and mouse operations. When input is received, the process must be woken
up quickly, or the user will find the system to be unresponsive. Typically, the average
delay must fall between 50 and 150 ms. The variance of such delay must also be
bounded, or the user will find the system to be erratic. Typical interactive programs
are command shells, text editors, and graphical applications.

Batch processes

These do not need user interaction, and hence they often run in the background. Since
such processes do not need to be very responsive, they are often penalized by the
scheduler. Typical batch programs are programming language compilers, database
search engines, and scientific computations.

Real-time processes

These have very strong scheduling requirements. Such processes should never be
blocked by lower-priority processes, they should have a short response time and, most
important, such response time should have a minimum variance. Typical real-time
programs are video and sound applications, robot controllers, and programs that
collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch
process can be either I/O-bound (e.g., a database server) or CPU-bound
(e.g., an image-rendering program). While in Linux real-time programs are explicitly
recognized as such by the scheduling algorithm, there is no way to distinguish between
interactive and batch programs. In order to offer a good response time to interactive
applications, Linux (like all Unix kernels) implicitly favors I/O-bound processes over
CPU-bound ones.

Programmers may change the scheduling parameters by means of the system calls illustrated
in Table 10-1. More details will be given in Section 10.3.

Table 10-1. System Calls Related to Scheduling
System Call Description
nice() Change the priority of a conventional process.
getpriority() Get the maximum priority of a group of conventional processes.
setpriority() Set the priority of a group of conventional processes.
sched_getscheduler() Get the scheduling policy of a process.
sched_setscheduler() Set the scheduling policy and priority of a process.
sched_getparam() Get the scheduling priority of a process.
sched_setparam() Set the priority of a process.
sched_yield() Relinquish the processor voluntarily without blocking.
sched_get_ priority_min() Get the minimum priority value for a policy.
sched_get_ priority_max() Get the maximum priority value for a policy.
sched_rr_get_interval() Get the time quantum value for the Round Robin policy.

Understanding the Linux Kernel

260

Most system calls shown in the table apply to real-time processes, thus allowing users to
develop real-time applications. However, Linux does not support the most demanding
real-time applications because its kernel is nonpreemptive (see Section 10.2.5).

10.1.1 Process Preemption

As mentioned in the first chapter, Linux processes are preemptive. If a process enters the
TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the priority
of the currently running process. If it is, the execution of current is interrupted and the
scheduler is invoked to select another process to run (usually the process that just became
runnable). Of course, a process may also be preempted when its time quantum expires. As
mentioned in Section 5.4.3 in Chapter 5, when this occurs, the need_resched field of
the current process is set, so the scheduler is invoked when the timer interrupt handler
terminates.

For instance, let us consider a scenario in which only two programs—a text editor
and a compiler—are being executed. The text editor is an interactive program, therefore it has
a higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the user
alternates between pauses for think time and data entry; moreover, the average delay between
two keypresses is relatively long. However, as soon as the user presses a key, an interrupt is
raised, and the kernel wakes up the text editor process. The kernel also determines that the
dynamic priority of the editor is higher than the priority of current, the currently running
process (that is, the compiler), and hence it sets the need_resched field of this process, thus
forcing the scheduler to be activated when the kernel finishes handling the interrupt.
The scheduler selects the editor and performs a task switch; as a result, the execution of the
editor is resumed very quickly and the character typed by the user is echoed to the screen.
When the character has been processed, the text editor process suspends itself waiting for
another keypress, and the compiler process can resume its execution.

Be aware that a preempted process is not suspended, since it remains in the TASK_RUNNING
state; it simply no longer uses the CPU.

Some real-time operating systems feature preemptive kernels, which means that a process
running in Kernel Mode can be interrupted after any instruction, just as it can in User Mode.
The Linux kernel is not preemptive, which means that a process can be preempted only while
running in User Mode; nonpreemptive kernel design is much simpler, since most
synchronization problems involving the kernel data structures are easily avoided (see
Section 11.2.1 in Chapter 11).

10.1.2 How Long Must a Quantum Last?

The quantum duration is critical for system performances: it should be neither too long nor
too short.

If the quantum duration is too short, the system overhead caused by task switches becomes
excessively high. For instance, suppose that a task switch requires 10 milliseconds; if the
quantum is also set to 10 milliseconds, then at least 50% of the CPU cycles will be dedicated
to task switch.[2]

[2] Actually, things could be much worse than this; for example, if the time required for task switch is counted in the process quantum, all CPU time
will be devoted to task switch and no process can progress toward its termination. Anyway, you got the point.

Understanding the Linux Kernel

261

If the quantum duration is too long, processes no longer appear to be executed concurrently.
For instance, let's suppose that the quantum is set to five seconds; each runnable process
makes progress for about five seconds, but then it stops for a very long time (typically, five
seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of interactive
applications. This is usually false. As described in Section 10.1.1 earlier in this chapter,
interactive processes have a relatively high priority, therefore they quickly preempt the batch
processes, no matter how long the quantum duration is.

In some cases, a quantum duration that is too long degrades the responsiveness of the system.
For instance, suppose that two users concurrently enter two commands at the respective shell
prompts; one command is CPU-bound, while the other is an interactive application. Both
shells fork a new process and delegate the execution of the user's command to it; moreover,
suppose that such new processes have the same priority initially (Linux does not know in
advance if an executed program is batch or interactive). Now, if the scheduler selects the
CPU-bound process to run, the other process could wait for a whole time quantum before
starting its execution. Therefore, if such duration is long, the system could appear to be
unresponsive to the user that launched it.

The choice of quantum duration is always a compromise. The rule of thumb adopted by Linux
is: choose a duration as long as possible, while keeping good system response time.

10.2 The Scheduling Algorithm

The Linux scheduling algorithm works by dividing the CPU time into epochs . In a single
epoch, every process has a specified time quantum whose duration is computed when the
epoch begins. In general, different processes have different time quantum durations. The time
quantum value is the maximum CPU time portion assigned to the process in that epoch. When
a process has exhausted its time quantum, it is preempted and replaced by another runnable
process. Of course, a process can be selected several times from the scheduler in the same
epoch, as long as its quantum has not been exhausted—for instance, if it suspends itself to
wait for I/O, it preserves some of its time quantum and can be selected again during the same
epoch. The epoch ends when all runnable processes have exhausted their quantum; in this
case, the scheduler algorithm recomputes the time-quantum durations of all processes and a
new epoch begins.

Each process has a base time quantum: it is the time-quantum value assigned by the scheduler
to the process if it has exhausted its quantum in the previous epoch. The users can change the
base time quantum of their processes by using the nice() and setpriority() system calls
(see Section 10.3 later in this chapter). A new process always inherits the base time quantum
of its parent.

The INIT_TASK macro sets the value of the base time quantum of process (swapper) to
DEF_PRIORITY; that macro is defined as follows:

#define DEF_PRIORITY (20*HZ/100)

Since HZ, which denotes the frequency of timer interrupts, is set to 100 for IBM PCs (see
Section 5.1.3 in Chapter 5), the value of DEF_PRIORITY is 20 ticks, that is, about 210 ms.

Understanding the Linux Kernel

262

Users rarely change the base time quantum of their processes, so DEF_PRIORITY also denotes
the base time quantum of most processes in the system.

In order to select a process to run, the Linux scheduler must consider the priority of each
process. Actually, there are two kinds of priority:

Static priority

This kind is assigned by the users to real-time processes and ranges from 1 to 99. It is
never changed by the scheduler.

Dynamic priority

This kind applies only to conventional processes; it is essentially the sum of the base
time quantum (which is therefore also called the base priority of the process) and of
the number of ticks of CPU time left to the process before its quantum expires in the
current epoch.

Of course, the static priority of a real-time process is always higher than the dynamic priority
of a conventional one: the scheduler will start running conventional processes only when there
is no real-time process in a TASK_RUNNING state.

10.2.1 Data Structures Used by the Scheduler

We recall from Section 3.1 in Chapter 3 that the process list links together all process
descriptors, while the runqueue list links together the process descriptors of all runnable
processes—that is, of those in a TASK_RUNNING state. In both cases, the init_task process
descriptor plays the role of list header.

Each process descriptor includes several fields related to scheduling:

need_resched

A flag checked by ret_from_intr() to decide whether to invoke the schedule()
function (see Section 4.7.1 in Chapter 4).

policy

The scheduling class. The values permitted are:

SCHED_FIFO

A First-In, First-Out real-time process. When the scheduler assigns the CPU to the
process, it leaves the process descriptor in its current position in the runqueue list. If
no other higher-priority real-time process is runnable, the process will continue to use
the CPU as long as it wishes, even if other real-time processes having the same
priority are runnable.

Understanding the Linux Kernel

263

SCHED_RR

A Round Robin real-time process. When the scheduler assigns the CPU to the process,
it puts the process descriptor at the end of the runqueue list. This policy ensures a fair
assignment of CPU time to all SCHED_RR real-time processes that have the same
priority.

SCHED_OTHER

A conventional, time-shared process.

The policy field also encodes a SCHED_YIELD binary flag. This flag is set when the
process invokes the sched_ yield() system call (a way of voluntarily relinquishing
the processor without the need to start an I/O operation or go to sleep; see Section
10.3.3). The scheduler puts the process descriptor at the bottom of the runqueue list
(see Section 10.3).

rt_priority

The static priority of a real-time process. Conventional processes do not make use of
this field.

priority

The base time quantum (or base priority) of the process.

counter

The number of ticks of CPU time left to the process before its quantum expires; when
a new epoch begins, this field contains the time-quantum duration of the process.
Recall that the update_process_times() function decrements the counter field of
the current process by 1 at every tick.

When a new process is created, do_fork() sets the counter field of both current (the
parent) and p (the child) processes in the following way:

current->counter >>= 1;
p->counter = current->counter;

In other words, the number of ticks left to the parent is split in two halves, one for the parent
and one for the child. This is done to prevent users from getting an unlimited amount of CPU
time by using the following method: the parent process creates a child process that runs the
same code and then kills itself; by properly adjusting the creation rate, the child process
would always get a fresh quantum before the quantum of its parent expires. This
programming trick does not work since the kernel does not reward forks. Similarly, a user
cannot hog an unfair share of the processor by starting lots of background processes in a shell
or by opening a lot of windows on a graphical desktop. More generally speaking, a process
cannot hog resources (unless it has privileges to give itself a real-time policy) by forking
multiple descendents.

Understanding the Linux Kernel

264

Notice that the priority and counter fields play different roles for the various kinds of
processes. For conventional processes, they are used both to implement time-sharing and to
compute the process dynamic priority. For SCHED_RR real-time processes, they are used only
to implement time-sharing. Finally, for SCHED_FIFO real-time processes, they are not used at
all, because the scheduling algorithm regards the quantum duration as unlimited.

10.2.2 The schedule() Function

schedule() implements the scheduler. Its objective is to find a process in the runqueue list
and then assign the CPU to it. It is invoked, directly or in a lazy way, by several kernel
routines.

10.2.2.1 Direct invocation

The scheduler is invoked directly when the current process must be blocked right away
because the resource it needs is not available. In this case, the kernel routine that wants to
block it proceeds as follows:

1. Inserts current in the proper wait queue
2. Changes the state of current either to TASK_INTERRUPTIBLE or to

TASK_UNINTERRUPTIBLE
3. Invokes schedule()
4. Checks if the resource is available; if not, goes to step 2
5. Once the resource is available, removes current from the wait queue

As can be seen, the kernel routine checks repeatedly whether the resource needed by the
process is available; if not, it yields the CPU to some other process by invoking schedule(
). Later, when the scheduler once again grants the CPU to the process, the availability of the
resource is again checked.

You may have noticed that these steps are similar to those performed by the sleep_on() and
interruptible_sleep_on() functions described in Section 3.1.4 in Chapter 3. However,
the functions we discuss here immediately remove the process from the wait queue as soon as
it is woken up.

The scheduler is also directly invoked by many device drivers that execute long iterative
tasks. At each iteration cycle, the driver checks the value of the need_resched field and, if
necessary, invokes schedule() to voluntarily relinquish the CPU.

10.2.2.2 Lazy invocation

The scheduler can also be invoked in a lazy way by setting the need_resched field of
current to 1. Since a check on the value of this field is always made before resuming the
execution of a User Mode process (see Section 4.7 in Chapter 4), schedule() will definitely
be invoked at some close future time.

Lazy invocation of the scheduler is performed in the following cases:

• When current has used up its quantum of CPU time; this is done by the
update_process_times() function.

Understanding the Linux Kernel

265

• When a process is woken up and its priority is higher than that of the current process;
this task is performed by the reschedule_idle() function, which is invoked by the
wake_up_process() function (see Section 3.1.2 in Chapter 3):

• if (goodness(current, p) > goodness(current, current))
 current->need_resched = 1;

(The goodness() function will be described later in Section 10.2.3)

• When a sched_setscheduler() or sched_ yield() system call is issued (see
Section 10.3 later in this chapter).

10.2.2.3 Actions performed by schedule()

Before actually scheduling a process, the schedule() function starts by running the
functions left by other kernel control paths in various queues. The function invokes
run_task_queue() on the tq _scheduler task queue. Linux puts a function in that task
queue when it must defer its execution until the next schedule() invocation:

run_task_queue(&tq_scheduler);

The function then executes all active unmasked bottom halves. These are usually present to
perform tasks requested by device drivers (see Section 4.6.6 in Chapter 4):

if (bh_active & bh_mask)
 do_bottom_half();

Now comes the actual scheduling, and therefore a potential process switch.

The value of current is saved in the prev local variable and the need_resched field of prev
is set to 0. The key outcome of the function is to set another local variable called next so that
it points to the descriptor of the process selected to replace prev.

First, a check is made to determine whether prev is a Round Robin real-time process (policy
field set to SCHED_RR) that has exhausted its quantum. If so, schedule() assigns a new
quantum to prev and puts it at the bottom of the runqueue list:

if (!prev->counter && prev->policy == SCHED_RR) {
 prev->counter = prev->priority;
 move_last_runqueue(prev);
}

Now schedule() examines the state of prev. If it has nonblocked pending signals and its
state is TASK_INTERRUPTIBLE, the function wakes up the process as follows. This action is not
the same as assigning the processor to prev; it just gives prev a chance to be selected for
execution:

if (prev->state == TASK_INTERRUPTIBLE &&
 signal_pending(prev))
 prev->state = TASK_RUNNING;

Understanding the Linux Kernel

266

If prev is not in the TASK_RUNNING state, schedule() was directly invoked by the process
itself because it had to wait on some external resource; therefore, prev must be removed from
the runqueue list:

if (prev->state != TASK_RUNNING)
 del_from_runqueue(prev);

Next, schedule() must select the process to be executed in the next time quantum. To that
end, the function scans the runqueue list. It starts from the process referenced by the
next_run field of init_task, which is the descriptor of process (swapper). The objective is
to store in next the process descriptor pointer of the highest priority process. In order to do
this, next is initialized to the first runnable process to be checked, and c is initialized to its
"goodness" (see Section 10.2.3):

if (prev->state == TASK_RUNNING) {
 next = prev;
 if (prev->policy & SCHED_YIELD) {
 prev->policy &= ~SCHED_YIELD;
 c = 0;
 } else
 c = goodness(prev, prev);
} else {
 c = -1000;
 next = &init_task;
}

If the SCHED_YIELD flag of prev->policy is set, prev has voluntarily relinquished the CPU
by issuing a sched_ yield() system call. In this case, the function assigns a zero goodness
to it.

Now schedule() repeatedly invokes the goodness() function on the runnable processes
to determine the best candidate:

p = init_task.next_run;
while (p != &init_task) {
 weight = goodness(prev, p);
 if (weight > c) {
 c = weight;
 next = p;
 }
 p = p->next_run;
}

The while loop selects the first process in the runqueue having maximum weight. If the
previous process is runnable, it is preferred with respect to other runnable processes having
the same weight.

Notice that if the runqueue list is empty (no runnable process exists except for swapper), the
cycle is not entered and next points to init_task. Moreover, if all processes in the runqueue
list have a priority lesser than or equal to the priority of prev, no process switch will take
place and the old process will continue to be executed.

A further check must be made at the exit of the loop to determine whether c is 0. This occurs
only when all the processes in the runqueue list have exhausted their quantum, that is, all of

Understanding the Linux Kernel

267

them have a zero counter field. When this happens, a new epoch begins, therefore
schedule() assigns to all existing processes (not only to the TASK_RUNNING ones) a fresh
quantum, whose duration is the sum of the priority value plus half the counter value:

if (!c) {
 for_each_task(p)
 p->counter = (p->counter >> 1) + p->priority;
}

In this way, suspended or stopped processes have their dynamic priorities periodically
increased. As stated earlier, the rationale for increasing the counter value of suspended or
stopped processes is to give preference to I/O-bound processes. However, even after an
infinite number of increases, the value of counter can never become larger than twice[3] the
priority value.

[3] Assume both priority and counter equal to P; then the geometric series Px (1 + 1/2 + 1/4 + 1/8 + . . .) converges to 2 xP.

Now comes the concluding part of schedule(): if a process other than prev has been
selected, a process switch must take place. Before performing it, however, the
context_swtch field of kstat is increased by 1 to update the statistics maintained by the
kernel:

if (prev != next) {
 kstat.context_swtch++;
 switch_to(prev,next);
}
return;

Notice that the return statement that exits from schedule() will not be performed right
away by the next process but at a later time by the prev one when the scheduler selects it
again for execution.

10.2.3 How Good Is a Runnable Process?

The heart of the scheduling algorithm includes identifying the best candidate among all
processes in the runqueue list. This is what the goodness() function does. It receives as
input parameters prev (the descriptor pointer of the previously running process) and p (the
descriptor pointer of the process to evaluate). The integer value c returned by goodness()
measures the "goodness" of p and has the following meanings:

c = -1000

p must never be selected; this value is returned when the runqueue list contains only
init_task.

c = 0

p has exhausted its quantum. Unless p is the first process in the runqueue list and all
runnable processes have also exhausted their quantum, it will not be selected for
execution.

Understanding the Linux Kernel

268

0 < c < 1000

p is a conventional process that has not exhausted its quantum; a higher value of c
denotes a higher level of goodness.

c >= 1000

p is a real-time process; a higher value of c denotes a higher level of goodness.

The goodness() function is equivalent to:

if (p->policy != SCHED_OTHER)
 return 1000 + p->rt_priority;
if (p->counter == 0)
 return 0;
if (p->mm == prev->mm)
 return p->counter + p->priority + 1;
return p->counter + p->priority;

If the process is real-time, its goodness is set to at least 1000. If it is a conventional process
that has exhausted its quantum, its goodness is set to 0; otherwise, it is set to p->counter +
p->priority.

A small bonus is given to p if it shares the address space with prev (i.e., if their process
descriptors' mm fields point to the same memory descriptor). The rationale for this bonus is that
if p runs right after prev, it will use the same page tables, hence the same memory; some of
the valuable data may still be in the hardware cache.

10.2.4 The Linux/SMP Scheduler

The Linux scheduler must be slightly modified in order to support the symmetric
multiprocessor (SMP) architecture. Actually, each processor runs the schedule() function
on its own, but processors must exchange information in order to boost system performance.

When the scheduler computes the goodness of a runnable process, it should consider whether
that process was previously running on the same CPU or on another one. A process that was
running on the same CPU is always preferred, since the hardware cache of the CPU could still
include useful data. This rule helps in reducing the number of cache misses.

Let us suppose, however, that CPU 1 is running a process when a second, higher-priority
process that was last running on CPU 2 becomes runnable. Now the kernel is faced with an
interesting dilemma: should it immediately execute the higher-priority process on CPU 1, or
should it defer that process's execution until CPU 2 becomes available? In the former case,
hardware caches contents are discarded; in the latter case, parallelism of the SMP architecture
may not be fully exploited when CPU 2 is running the idle process (swapper).

In order to achieve good system performance, Linux/SMP adopts an empirical rule to solve
the dilemma. The adopted choice is always a compromise, and the trade-off mainly depends
on the size of the hardware caches integrated into each CPU: the larger the CPU cache is, the
more convenient it is to keep a process bound on that CPU.

Understanding the Linux Kernel

269

10.2.4.1 Linux/SMP scheduler data structures

An aligned_data table includes one data structure for each processor, which is used mainly
to obtain the descriptors of current processes quickly. Each element is filled by every
invocation of the schedule() function and has the following structure:

struct schedule_data {
 struct task_struct * curr;
 unsigned long last_schedule;
};

The curr field points to the descriptor of the process running on the corresponding CPU,
while last_schedule specifies when schedule() selected curr as the running process.

Several SMP-related fields are included in the process descriptor. In particular, the
avg_slice field keeps track of the average quantum duration of the process, and the
processor field stores the logical identifier of the last CPU that executed it.

The cacheflush_time variable contains a rough estimate of the minimal number of CPU
cycles it takes to entirely overwrite the hardware cache content. It is initialized by the
smp_tune_scheduling() function to:

Intel Pentium processors have a hardware cache of 8 KB, so their cacheflush_time is
initialized to a few hundred CPU cycles, that is, a few microseconds. Recent Intel processors
have larger hardware caches, and therefore the minimal cache flush time could range from 50
to 100 microseconds.

As we shall see later, if cacheflush_time is greater than the average time slice of some
currently running process, no process preemption is performed because it is convenient in this
case to bind processes to the processors that last executed them.

10.2.4.2 The schedule() function

When the schedule() function is executed on an SMP system, it carries out the following
operations:

1. Performs the initial part of schedule() as usual.
2. Stores the logical identifier of the executing processor in the this_cpu local variable;

such value is read from the processor field of prev (that is, of the process to be
replaced).

3. Initializes the sched_data local variable so that it points to the schedule_data
structure of the this_cpu CPU.

4. Invokes goodness() repeatedly to select the new process to be executed; this
function also examines the processor field of the processes and gives a consistent
bonus (PROC_CHANGE_PENALTY, usually 15) to the process that was last executed on
the this_cpu CPU.

5. If needed, recomputes process dynamic priorities as usual.
6. Sets sched_data->curr to next.

Understanding the Linux Kernel

270

7. Sets next->has_cpu to 1 and next->processor to this_cpu.
8. Stores the current Time Stamp Counter value in the t local variable.
9. Stores the last time slice duration of prev in the this_slice local variable; this value

is the difference between t and sched_data->last_schedule.
10. Sets sched_data->last_schedule to t.
11. Sets the avg_slice field of prev to (prev->avg_slice+this_slice)/2; in other

words, updates the average.
12. Performs the context switch.
13. When the kernel returns here, the original previous process has been selected again by

the scheduler; the prev local variable now refers to the process that has just been
replaced. If prev is still runnable and it is not the idle task of this CPU, invokes the
reschedule_idle() function on it (see the next section).

14. Sets the has_cpu field of prev to 0.

10.2.4.3 The reschedule_idle() function

The reschedule_idle() function is invoked when a process p becomes runnable (see
Section 10.2.2). On an SMP system, the function determines whether the process should
preempt the current process of some CPU. It performs the following operations:

1. If p is a real-time process, always attempts to perform preemption: go to step 3.
2. Returns immediately (does not attempt to preempt) if there is a CPU whose current

process satisfies both of the following conditions:[4]

[4] These conditions look like voodoo magic; perhaps, they are empirical rules that make the SMP scheduler work better.

o cacheflush_time is greater than the average time slice of the current process.
If this is true, the process is not dirtying the cache significantly.

o Both p and the current process need the global kernel lock (see Section 11.4.6
in Chapter 11) in order to access some critical kernel data structure. This check
is performed because replacing a process holding the lock with another one
that needs it is not fruitful.

3. If the p->processor CPU (the one on which p was last running) is idle, selects it.
4. Otherwise, computes the difference:

goodness(tsk, p) - goodness(tsk, tsk)

for each task tsk running on some CPU and selects the CPU for which the difference
is greatest, provided it is a positive value.

5. If CPU has been selected, sets the need_resched field of the corresponding running
process and sends a "reschedule" message to that processor (see Section 11.4.7 in
Chapter 11).

10.2.5 Performance of the Scheduling Algorithm

The scheduling algorithm of Linux is both self-contained and relatively easy to follow. For
that reason, many kernel hackers love to try to make improvements. However, the scheduler is
a rather mysterious component of the kernel. While you can change its performance
significantly by modifying just a few key parameters, there is usually no theoretical support to

Understanding the Linux Kernel

271

justify the results obtained. Furthermore, you can't be sure that the positive (or negative)
results obtained will continue to hold when the mix of requests submitted by the users (real-
time, interactive, I/O-bound, background, etc.) varies significantly. Actually, for almost every
proposed scheduling strategy, it is possible to derive an artificial mix of requests that yields
poor system performances.

Let us try to outline some pitfalls of the Linux scheduler. As it will turn out, some of these
limitations become significant on large systems with many users. On a single workstation that
is running a few tens of processes at a time, the Linux scheduler is quite efficient. Since Linux
was born on an Intel 80386 and continues to be most popular in the PC world, we consider the
current Linux scheduler quite appropriate.

10.2.5.1 The algorithm does not scale well

If the number of existing processes is very large, it is inefficient to recompute all dynamic
priorities at once.

In old traditional Unix kernels, the dynamic priorities were recomputed every second, thus the
problem was even worse. Linux tries instead to minimize the overhead of the scheduler.
Priorities are recomputed only when all runnable processes have exhausted their time
quantum. Therefore, when the number of processes is large, the recomputation phase is more
expensive but is executed less frequently.

This simple approach has the disadvantage that when the number of runnable processes is
very large, I/O-bound processes are seldom boosted, and therefore interactive applications
have a longer response time.

10.2.5.2 The predefined quantum is too large for high system loads

The system responsiveness experienced by users depends heavily on the system load, which is
the average number of processes that are runnable, and hence waiting for CPU time.[5]

[5] The uptime program returns the system load for the past 1, 5, and 15 minutes. The same information can be obtained by reading the
/proc/loadavgfile.

As mentioned before, system responsiveness depends also on the average time-quantum
duration of the runnable processes. In Linux, the predefined time quantum appears to be too
large for high-end machines having a very high expected system load.

10.2.5.3 I/O-bound process boosting strategy is not optimal

The preference for I/O-bound processes is a good strategy to ensure a short response time for
interactive programs, but it is not perfect. Indeed, some batch programs with almost no user
interaction are I/O-bound. For instance, consider a database search engine that must typically
read lots of data from the hard disk or a network application that must collect data from a
remote host on a slow link. Even if these kinds of processes do not need a short response time,
they are boosted by the scheduling algorithm.

On the other hand, interactive programs that are also CPU-bound may appear unresponsive to
the users, since the increment of dynamic priority due to I/O blocking operations may not
compensate for the decrement due to CPU usage.

Understanding the Linux Kernel

272

10.2.5.4 Support for real-time applications is weak

As stated in the first chapter, nonpreemptive kernels are not well suited for real-time
applications, since processes may spend several milliseconds in Kernel Mode while handling
an interrupt or exception. During this time, a real-time process that becomes runnable cannot
be resumed. This is unacceptable for real-time applications, which require predictable and low
response times.[6]

[6] The Linux kernel has been modified in several ways so it can handle a few hard real-time jobs if they remain short. Basically, hardware interrupts
are trapped and kernel execution is monitored by a kind of "superkernel." These changes do not make Linux a true real-time system, though.

Future versions of Linux will likely address this problem, either by implementing SVR4's
"fixed preemption points" or by making the kernel fully preemptive.

However, kernel preemption is just one of several necessary conditions for implementing an
effective real-time scheduler. Several other issues must be considered. For instance, real-time
processes often must use resources also needed by conventional processes. A real-time
process may thus end up waiting until a lower-priority process releases some resource. This
phenomenon is called priority inversion. Moreover, a real-time process could require a kernel
service that is granted on behalf of another lower-priority process (for example, a kernel
thread). This phenomenon is called hidden scheduling. An effective real-time scheduler
should address and resolve such problems.

10.3 System Calls Related to Scheduling

Several system calls have been introduced to allow processes to change their priorities and
scheduling policies. As a general rule, users are always allowed to lower the priorities of their
processes. However, if they want to modify the priorities of processes belonging to some
other user or if they want to increase the priorities of their own processes, they must have
superuser privileges.

10.3.1 The nice() System Call

The nice()[7] system call allows processes to change their base priority. The integer value
contained in the increment parameter is used to modify the priority field of the process
descriptor. The nice Unix command, which allows users to run programs with modified
scheduling priority, is based on this system call.

[7] Since this system call is usually invoked to lower the priority of a process, users who invoke it for their processes are "nice" toward other users.

The sys_nice() service routine handles the nice() system call. Although the increment
parameter may have any value, absolute values larger than 40 are trimmed down to 40.
Traditionally, negative values correspond to requests for priority increments and require
superuser privileges, while positive ones correspond to requests for priority decrements.

The function starts by copying the value of increment into the newprio local variable. In the
case of a negative increment, the function invokes the capable() function to verify whether
the process has a CAP_SYS_NICE capability. We shall discuss that function, together with the
notion of capability, in Chapter 19. If the user turns out to have the capability required to
change priorities, sys_nice() changes the sign of newprio and it sets the increase local
flag:

Understanding the Linux Kernel

273

increase = 0
newprio = increment;
if (increment < 0) {
 if (!capable(CAP_SYS_NICE))
 return -EPERM;
 newprio = -increment;
 increase = 1;
}

If newprio has a value larger than 40, the function trims it down to 40. At this point, the
newprio local variable may have any value included from to 40, inclusive. The value is then
converted according to the priority scale used by the scheduling algorithm. Since the highest
base priority allowed is 2 x DEF_PRIORITY, the new value is:

The resulting value is copied into increment with the proper sign:

if (newprio > 40)
 newprio = 40;
newprio = (newprio * DEF_PRIORITY + 10) / 20;
increment = newprio;
if (increase)
 increment = -increment;

Since newprio is an integer variable, the expression in the code is equivalent to the formula
shown earlier.

The function then sets the final value of priority by subtracting the value of increment
from it. However, the final base priority of the process cannot be smaller than 1 or larger than
2 x DEF_PRIORITY:

if (current->priority - increment < 1)
 current->priority = 1;
else if (current->priority > DEF_PRIORITY*2)
 current->priority = DEF_PRIORITY*2;
else
 current->priority -= increment;
return 0;

A niced process changes over time like any other process, getting extra priority if necessary
or dropping back in deference to other processes.

10.3.2 The getpriority() and setpriority() System Calls

The nice() system call affects only the process that invokes it. Two other system calls,
denoted as getpriority() and setpriority(), act on the base priorities of all processes
in a given group. getpriority() returns 20 plus the highest base priority among all
processes in a given group; setpriority() sets the base priority of all processes in a given
group to a given value.

Understanding the Linux Kernel

274

The kernel implements these system calls by means of the sys_getpriority() and
sys_setpriority() service routines. Both of them act essentially on the same group of
parameters:

which

Identifies the group of processes; it can assume one of the following values:

PRIO_PROCESS

Select the processes according to their process ID (pid field of the process descriptor).

PRIO_PGRP

Select the processes according to their group ID (pgrp field of the process descriptor).

PRIO_USER

Select the processes according to their user ID (uid field of the process descriptor).

who

Value of the pid, pgrp, or uid field (depending on the value of which) to be used for
selecting the processes. If who is 0, its value is set to that of the corresponding field of
the current process.

niceval

The new base priority value (needed only by sys_setpriority()). It should range
between -20 (highest priority) and +20 (minimum priority).

As stated before, only processes with a CAP_SYS_NICE capability are allowed to increase their
own base priority or to modify that of other processes.

As we have seen in Chapter 8, system calls return a negative value only if some error
occurred. For that reason, getpriority() does not return a normal nice value ranging
between -20 and 20, but rather a nonnegative value ranging between and 40.

10.3.3 System Calls Related to Real-Time Processes

We now introduce a group of system calls that allow processes to change their scheduling
discipline and, in particular, to become real-time processes. As usual, a process must have a
CAP_SYS_NICE capability in order to modify the values of the rt_priority and policy
process descriptor fields of any process, including itself.

10.3.3.1 The sched_getscheduler() and sched_setscheduler() system calls

The sched_ getscheduler() system call queries the scheduling policy currently applied to
the process identified by the pid parameter. If pid equals 0, the policy of the calling process
will be retrieved. On success, the system call returns the policy for the process: SCHED_FIFO ,

Understanding the Linux Kernel

275

SCHED_RR, or SCHED_OTHER. The corresponding sys_sched_getscheduler() service
routine invokes find_task_by_pid(), which locates the process descriptor corresponding
to the given pid and returns the value of its policy field.

The sched_setscheduler() system call sets both the scheduling policy and the associated
parameters for the process identified by the parameter pid. If pid is equal to 0, the scheduler
parameters of the calling process will be set.

The corresponding sys_sched_setscheduler() function checks whether the scheduling
policy specified by the policy parameter and the new static priority specified by the param-
>sched_priority parameter are valid. It also checks whether the process has CAP_SYS_NICE
capability or whether its owner has superuser rights. If everything is OK, it executes the
following statements:

p->policy = policy;
p->rt_priority = param->sched_priority;
if (p->next_run)
 move_first_runqueue(p);
current->need_resched = 1;

10.3.3.2 The sched_ getparam() and sched_setparam() system calls

The sched_getparam() system call retrieves the scheduling parameters for the process
identified by pid. If pid is 0, the parameters of the current process are retrieved. The
corresponding sys_sched_getparam() service routine, as one would expect, finds the
process descriptor pointer associated with pid, stores its rt_priority field in a local variable
of type sched_param, and invokes copy_to_user() to copy it into the process address
space at the address specified by the param parameter.

The sched_setparam() system call is similar to sched_setscheduler(): it differs from
the latter by not letting the caller set the policy field's value.[8] The corresponding
sys_sched_setparam() service routine is almost identical to sys_sched_setscheduler(
), but the policy of the affected process is never changed.

[8] This anomaly is caused by a specific requirement of the POSIX standard.

10.3.3.3 The sched_ yield() system call

The sched_ yield() system call allows a process to relinquish the CPU voluntarily without
being suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it at the
end of the runqueue list. In this way, other processes having the same dynamic priority will
have a chance to run. The call is used mainly by SCHED_FIFO processes.

The corresponding sys_sched_ yield() service routine executes these statements:

if (current->policy == SCHED_OTHER)
 current->policy |= SCHED_YIELD;
current->need_resched = 1;
move_last_runqueue(current);

Notice that the SCHED_YIELD field is set in the policy field of the process descriptor only if
the process is a conventional SCHED_OTHER process. As a result, the next invocation of

Understanding the Linux Kernel

276

schedule() will view this process as one that has exhausted its time quantum (see how
schedule() handles the SCHED_YIELD field).

10.3.3.4 The sched_ get_priority_min() and sched_ get_priority_max() system calls

The sched_get_priority_min() and sched_get_priority_max() system calls return,
respectively, the minimum and the maximum real-time static priority value that can be used
with the scheduling policy identified by the policy parameter.

The sys_sched_get_priority_min() service routine returns 1 if current is a real-time
process, otherwise.

The sys_sched_get_priority_max() service routine returns 99 (the highest priority) if
current is a real-time process, otherwise.

10.3.3.5 The sched_rr_ get_interval() system call

The sched_rr_get_interval() system call should get the round robin time quantum for
the named real-time process.

The corresponding sys_sched_rr_get_interval() service routine does not operate as
expected, since it always returns a 150-millisecond value in the timespec structure pointed to
by tp. This system call remains effectively unimplemented in Linux.

10.4 Anticipating Linux 2.4

Linux 2.4 introduces a subtle optimization concerning TLB flushing for kernel threads and
zombie processes. As a result, the active Page Global Directory is set by the schedule()
function rather than by the switch_to macro.

The Linux 2.4 scheduling algorithm for SMP machines has been improved and simplified.
Whenever a new process becomes runnable, the kernel checks whether the preferred CPU of
the process, that is, the CPU on which it was last running, is idle; in this case, the kernel
assigns the process to that CPU. Otherwise, the kernel assigns the process to another idle
CPU, if any. If all CPUs are busy, the kernel checks whether the process has enough priority
to preempt the process running on the preferred CPU. If not, the kernel tries to preempt some
other CPU only if the new runnable process is real-time or if it has short average time slices
compared to the hardware cache rewriting time. (Roughly, preemption occurs if the new
runnable process is interactive and the preferred CPU will not reschedule shortly.)

Understanding the Linux Kernel

277

Chapter 11. Kernel Synchronization
You could think of the kernel as a server that answers requests; these requests can come either
from a process running on a CPU or an external device issuing an interrupt request. We make
this analogy to underscore that parts of the kernel are not run serially but in an interleaved
way. Thus, they can give rise to race conditions, which must be controlled through proper
synchronization techniques. A general introduction to these topics can be found in Section 1.6
in Chapter 1.

We start this chapter by reviewing when, and to what extent, kernel requests are executed in
an interleaved fashion. We then introduce four basic synchronization techniques implemented
by the kernel and illustrate how they are applied by means of examples.

The next two sections deal with the extension of the Linux kernel to multiprocessor
architectures. The first describes some hardware features of the Symmetric Multiprocessor
(SMP) architecture, while the second discusses additional mutual exclusion techniques
adopted by the SMP version of the Linux kernel.

11.1 Kernel Control Paths

As we said, kernel functions are executed following a request that may be issued in two
possible ways:

• A process executing in User Mode causes an exception, for instance by executing an
int 0x80 assembly language instruction.

• An external device sends a signal to a Programmable Interrupt Controller by using an
IRQ line, and the corresponding interrupt is enabled.

The sequence of instructions executed in Kernel Mode to handle a kernel request is denoted as
kernel control path : when a User Mode process issues a system call request, for instance, the
first instructions of the corresponding kernel control path are those included in the initial part
of the system_call() function, while the last instructions are those included in the
ret_from_sys_call() function.

In Section 4.3 in Chapter 4, a kernel control path was defined as a sequence of instructions
executed by the kernel to handle a system call, an exception, or an interrupt. Kernel control
paths play a role similar to that of processes, except that they are much more rudimentary:
first, no descriptor of any kind is attached to them; second, they are not scheduled through a
single function, but rather by inserting sequences of instructions that stop or resume the paths
into the kernel code.

In the simplest cases, the CPU executes a kernel control path sequentially from the first
instruction to the last. When one of the following events occurs, however, the CPU interleaves
kernel control paths:

• A context switch occurs. As we have seen in Chapter 10, a context switch can occur
only when the schedule() function is invoked.

Understanding the Linux Kernel

278

• An interrupt occurs while the CPU is running a kernel control path with interrupts
enabled. In this case, the first kernel control path is left unfinished and the CPU starts
processing another kernel control path to handle the interrupt.

It is important to interleave kernel control paths in order to implement multiprocessing. In
addition, as already noticed in Section 4.3 in Chapter 4, interleaving improves the throughput
of programmable interrupt controllers and device controllers.

While interleaving kernel control paths, special care must be applied to data structures that
contain several related member variables, for instance, a buffer and an integer indicating its
length. All statements affecting such a data structure must be put into a single critical section,
otherwise, it is in danger of being corrupted.

11.2 Synchronization Techniques

Chapter 1 introduced the concepts of race condition and critical region for processes. The
same definitions apply to kernel control paths. In this chapter, a race condition can occur
when the outcome of some computation depends on how two or more interleaved kernel
control paths are nested. A critical region is any section of code that should be completely
executed by each kernel control path that begins it, before another kernel control path can
enter it.

We now examine how kernel control paths can be interleaved while avoiding race conditions
among shared data. We'll distinguish four broad types of synchronization techniques:

• Nonpreemptability of processes in Kernel Mode
• Atomic operations
• Interrupt disabling
• Locking

11.2.1 Nonpreemptability of Processes in Kernel Mode

As already pointed out, the Linux kernel is not preemptive, that is, a running process cannot
be preempted (replaced by a higher-priority process) while it remains in Kernel Mode. In
particular, the following assertions always hold in Linux:

• No process running in Kernel Mode may be replaced by another process, except when
the former voluntarily relinquishes control of the CPU.[1]

[1] Of course, all context switches are performed in Kernel Mode. However, a context switch may occur only when the current process is going to
return in User Mode.

• Interrupt or exception handling can interrupt a process running in Kernel Mode;
however, when the interrupt handler terminates, the kernel control path of the process
is resumed.

• A kernel control path performing interrupt or exception handling can be interrupted
only by another control path performing interrupt or exception handling.

Thanks to the above assertions, kernel control paths dealing with nonblocking system calls are
atomic with respect to other control paths started by system calls. This simplifies the
implementation of many kernel functions: any kernel data structures that are not updated by

Understanding the Linux Kernel

279

interrupt or exception handlers can be safely accessed. However, if a process in Kernel Mode
voluntarily relinquishes the CPU, it must ensure that all data structures are left in a consistent
state. Moreover, when it resumes its execution, it must recheck the value of all previously
accessed data structures that could be changed. The change could be caused by a different
kernel control path, possibly running the same code on behalf of a separate process.

11.2.2 Atomic Operations

The easiest way to prevent race conditions is by ensuring that an operation is atomic at the
chip level: the operation must be executed in a single instruction. These very small atomic
operations can be found at the base of other, more flexible mechanisms to create critical
sections.

Thus, an atomic operation is something that can be performed by executing a single assembly
language instruction in an "atomic" way, that is, without being interrupted in the middle.

Let's review Intel 80x86 instructions according to that classification:

• Assembly language instructions that make zero or one memory access are atomic.
• Read/modify/write assembly language instructions such as inc or dec that read data

from memory, update it, and write the updated value back to memory are atomic if no
other processor has taken the memory bus after the read and before the write. Memory
bus stealing, naturally, never happens in a uniprocessor system, because all memory
accesses are made by the same processor.

• Read/modify/write assembly language instructions whose opcode is prefixed by the
lock byte (0xf0) are atomic even on a multiprocessor system. When the control unit
detects the prefix, it "locks" the memory bus until the instruction is finished.
Therefore, other processors cannot access the memory location while the locked
instruction is being executed.

• Assembly language instructions whose opcode is prefixed by a rep byte (0xf2, 0xf3),
which forces the control unit to repeat the same instruction several times, are not
atomic: the control unit checks for pending interrupts before executing a new iteration.

When you write C code, you cannot guarantee that the compiler will use a single, atomic
instruction for an operation like a=a+1 or even for a++. Thus, the Linux kernel provides
special functions (see Table 11-1) that it implements as single, atomic assembly language
instructions; on multiprocessor systems each such instruction is prefixed by a lock byte.

Understanding the Linux Kernel

280

Table 11-1. Atomic Operations in C
Function Description
atomic_read(v) Return *v
atomic_set(v,i) Set *v to i.
atomic_add(i,v) Add i to *v.
atomic_sub(i,v) Subtract i from *v.
atomic_inc(v) Add 1 to *v.
atomic_dec(v) Subtract 1 from *v.

atomic_dec_and_test(v) Subtract 1 from *v and return 1 if the result is non-null,
otherwise.

atomic_inc_and_test_greater_zero(v) Add 1 to *v and return 1 if the result is positive, otherwise.
atomic_clear_mask(mask,addr) Clear all bits of addr specified by mask.
atomic_set_mask(mask,addr) Set all bits of addr specified by mask.

11.2.3 Interrupt Disabling

For any section of code too large to be defined as an atomic operation, more complicated
means of providing critical sections are needed. To ensure that no window is left open for a
race condition to slip in, even a window one instruction long, these critical sections always
have an atomic operation at their base.

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of kernel
statements is operated as a critical section. It allows a kernel control path to continue
executing even when hardware devices issue IRQ signals, thus providing an effective way to
protect data structures that are also accessed by interrupt handlers.

However, interrupt disabling alone does not always prevent kernel control path interleaving.
Indeed, a kernel control path could raise a "Page fault" exception, which in turn could suspend
the current process (and thus the corresponding kernel control path). Or again, a kernel
control path could directly invoke the schedule() function. This happens during most I/O
disk operations because they are potentially blocking, that is, they may force the process to
sleep until the I/O operation completes. Therefore, the kernel must never execute a blocking
operation when interrupts are disabled, since the system could freeze.

Interrupts can be disabled by means of the cli assembly language instruction, which is
yielded by the _ _cli() and cli() macros. Interrupts can be enabled by means of the sti
assembly language instruction, which is yielded by the __sti() and sti() macros. On a
uniprocessor system cli() is equivalent to __cli() and sti() is equivalent to __sti(
); however, as we shall see later in this chapter, these macros are quite different on a
multiprocessor system.

When the kernel enters a critical section, it clears the IF flag of the eflags register in order to
disable interrupts. But at the end of the critical section, the kernel can't simply set the flag
again. Interrupts can execute in nested fashion, so the kernel does not know what the IF flag
was before the current control path executed. Each control path must therefore save the old
setting of the flag and restore that setting at the end.

In order to save the eflags content, the kernel uses the __save_flags macro; on a
uniprocessor system it is identical to the save_flags macro. In order to restore the eflags

Understanding the Linux Kernel

281

content, the kernel uses the _ _restore_flags and (on a uniprocessor system)
restore_flags macros. Typically, these macros are used in the following way:

__save_flags(old);
__cli();
[...]
__restore_flags(old);

The __save_flags macro copies the content of the eflags register into the old local
variable; the IF flag is then cleared by __cli(). At the end of the critical region, the
__restore_flags macro restores the original content of eflags; therefore, interrupts are
enabled only if they were enabled before this control path issued the __cli() macro.

Linux offers several additional synchronization macros that are important on a multiprocessor
system (see Section 11.4.2 later in this chapter) but are somewhat redundant on a uniprocessor
system (see Table 11-2). Notice that some functions do not perform any visible operation.
They just act as "barriers" for the gcc compiler, since they prevent the compiler from
optimizing the code by moving around assembly language instructions. The lck parameter is
always ignored.

Table 11-2. Interrupt Disabling/Enabling Macros on a Uniprocessor System
Macro Description
spin_lock_init(lck) No operation
spin_lock(lck) No operation
spin_unlock(lck) No operation
spin_unlock_wait(lck) No operation
spin_trylock(lck) Return always 1
spin_lock_irq(lck) _ _cli()
spin_unlock_irq(lck) _ _sti()
spin_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli()
spin_unlock_irqrestore(lck, flags) _ _restore_flags(flags)
read_lock_irq(lck) _ _cli()
read_unlock_irq(lck) _ _sti()
read_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli()
read_unlock_irqrestore(lck, flags) _ _restore_flags(flags)
write_lock_irq(lck) _ _cli()
write_unlock_irq(lck) _ _sti()
write_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli()
write_unlock_irqrestore(lck, flags) _ _restore_flags(flags)

Let us recall a few examples of how these macros are used in functions introduced in previous
chapters:

• The add_wait_queue() and remove_wait_queue() functions protect the wait
queue list with the write_lock_irqsave() and write_unlock_irqrestore()
functions.

• The setup_x86_irq() adds a new interrupt handler for a specific IRQ; the
spin_lock_irqsave() and spin_unlock_irqrestore() functions are used to
protect the corresponding list of handlers.

Understanding the Linux Kernel

282

• The run_timer_list() function protects the dynamic timer data structures with the
spin_lock_irq() and spin_unlock_irq() functions.

• The handle_signal() function protects the blocked field of current with the
spin_lock_irq() and spin_unlock_irq() functions.

Because of its simplicity, interrupt disabling is widely used by kernel functions for
implementing critical regions. Clearly, the critical regions obtained by interrupt disabling
must be short, because any kind of communication between the I/O device controllers and the
CPU is blocked when the kernel enters one. Longer critical regions should be implemented by
means of locking.

11.2.4 Locking Through Kernel Semaphores

A widely used synchronization technique is locking: when a kernel control path must access a
shared data structure or enter a critical region, it must acquire a "lock" for it. A resource
protected by a locking mechanism is quite similar to a resource confined in a room whose
door is locked when someone is inside. If a kernel control path wishes to access the resource,
it tries to "open the door" by acquiring the lock. It will succeed only if the resource is free.
Then, as long as it wants to use the resource, the door remains locked. When the kernel
control path releases the lock, the door is unlocked and another kernel control path may enter
the room.

Linux offers two kinds of locking: kernel semaphores, which are widely used both on
uniprocessor systems and multiprocessor ones, and spin locks, which are used only on
multiprocessors systems. We'll discuss just kernel semaphores here; the other solution will be
discussed in the Section 11.4.2 later in this chapter. When a kernel control path tries to
acquire a busy resource protected by a kernel semaphore, the corresponding process is
suspended. It will become runnable again when the resource is released.

Kernel semaphores are objects of type struct semaphore and have these fields:

count

Stores an integer value. If it is greater than 0, the resource is free, that is, it is currently
available. Conversely, if count is less than or equal to 0, the semaphore is busy, that
is, the protected resource is currently unavailable. In the latter case, the absolute value
of count denotes the number of kernel control paths waiting for the resource. Zero
means that a kernel control path is using the resource but no other kernel control path
is waiting for it.

wait

Stores the address of a wait queue list that includes all sleeping processes that are
currently waiting for the resource. Of course, if count is greater than or equal to 0, the
wait queue is empty.

waking

Ensures that, when the resource is freed and the sleeping processes is woken up, only
one of them succeeds in acquiring the resource. We'll see this field in operation soon.

Understanding the Linux Kernel

283

The count field is decremented when a process tries to acquire the lock and incremented
when a process releases it. The MUTEX and MUTEX_LOCKED macros may be used to initialize a
semaphore for exclusive access: they set the count field, respectively, to 1 (free resource with
exclusive access) and (busy resource with exclusive access currently granted to the process
that initializes the semaphore). Note that a semaphore could also be initialized with an
arbitrary positive value n for count: in this case, at most n processes will be allowed to
concurrently access the resource.

When a process wishes to acquire a kernel semaphore lock, it invokes the down() function.
The implementation of down() is quite involved, but it is essentially equivalent to the
following:

void down(struct semaphore * sem)
{
 /* BEGIN CRITICAL SECTION */
 --sem->count;
 if (sem->count < 0) {
 /* END CRITICAL SECTION */
 struct wait_queue wait = { current, NULL };
 current->state = TASK_UNINTERRUPTIBLE;
 add_wait_queue(&sem->wait, &wait);
 for (;;) {
 unsigned long flags;
 spin_lock_irqsave(&semaphore_wake_lock, flags);
 if (sem->waking > 0) {
 sem->waking--;
 break;
 }
 spin_unlock_irqrestore(&semaphore_wake_lock, flags);
 schedule();
 current->state = TASK_UNINTERRUPTIBLE;
 }
 spin_unlock_irqrestore(&semaphore_wake_lock, flags);
 current->state = TASK_RUNNING;
 remove_wait_queue(&sem->wait, &wait);
 }
}

The function decrements the count field of the *sem semaphore, then checks whether its
value is negative. The decrement and the test must be atomically executed, otherwise another
kernel control path could concurrently access the field value, with disastrous results (see
Section 1.6.5 in Chapter 1). Therefore, these two operations are implemented by means of the
following assembly language instructions:

movl sem, %ecx
lock /* only for multiprocessor systems */
decl (%ecx)
js 2f

On a multiprocessor system, the decl instruction is prefixed by a lock prefix to ensure the
atomicity of the decrement operation (see Section 11.2.2).

If count is greater than or equal to 0, the current process acquires the resource and the
execution continues normally. Otherwise, count is negative and the current process must be

Understanding the Linux Kernel

284

suspended. It is inserted into the wait queue list of the semaphore and put to sleep by directly
invoking the schedule() function.

The process is woken up when the resource is freed. Nonetheless, it cannot assume that the
resource is now available, since several processes in the semaphore wait queue could be
waiting for it. In order to select a winning process, the waking field is used: when the
releasing process is going to wake up the processes in the wait queue, it increments waking;
each awakened process then enters a critical region of the down() function and tests whether
waking is positive. If an awakened process finds the field to be positive, it decrements waking
and acquires the resource; otherwise it goes back to sleep. The critical region is protected by
the semaphore_wake_lock global spin lock and by interrupt disabling.

Notice that an interrupt handler or a bottom half must not invoke down(), since this function
suspends the process when the semaphore is busy.[2] For that reason, Linux provides the
down_trylock() function, which may be safely used by one of the previously mentioned
asynchronous functions. It is identical to down() except when the resource is busy: in this
case, the function returns immediately instead of putting the process to sleep.

[2] Exception handlers can block on a semaphore. Linux takes special care to avoid the particular kind of race condition in which two nested kernel
control paths compete for the same semaphore; naturally, one of them waits forever because the other cannot run and free the semaphore.

A slightly different function called down_interruptible() is also defined. It is widely used
by device drivers since it allows processes that receive a signal while being blocked on a
semaphore to give up the "down" operation. If the sleeping process is awakened by a signal
before getting the needed resource, the function increments the count field of the semaphore
and returns the value -EINTR. On the other hand, if down_interruptible() runs to normal
completion and gets the resource, it returns 0. The device driver may thus abort the I/O
operation when the return value is -EINTR.

When a process releases a kernel semaphore lock, it invokes the up() function, which is
essentially equivalent to the following:

void up(struct semaphore * sem)
{
 /* BEGIN CRITICAL SECTION */
 ++sem->count;
 if (sem->count <= 0) {
 /* END CRITICAL SECTION */
 unsigned long flags;
 spin_lock_irqsave(&semaphore_wake_lock, flags);
 if (atomic_read(&sem->count) <= 0)
 sem->waking++;
 spin_unlock_irqrestore(&semaphore_wake_lock, flags);
 wake_up(&sem->wait);
 }
}

The function increments the count field of the *sem semaphore, then checks whether its value
is negative or null. The increment and the test must be atomically executed, so these two
operations are implemented by means of the following assembly language instructions:

Understanding the Linux Kernel

285

movl sem, %ecx
lock
incl (%ecx)
jle 2f

If the new value of count is positive, no process is waiting for the resource, and thus the
function terminates. Otherwise, it must wake up the processes in the semaphore wait queue. In
order to do this, it increments the waking field, which is protected by the
semaphore_wake_lock spin lock and by interrupt disabling, then invokes wake_up() on the
semaphore wait queue.

The increment of the waking field is included in a critical region because there can be several
processes that concurrently access the same protected resource; therefore, a process could
start executing up() while the waiting processes have already been woken up and one of
them is already accessing the waking field. This also explains why up() checks whether
count is nonpositive right before incrementing waking: another process could have executed
the up() function after the first count check and before entering the critical region.

We now examine how semaphores are used in Linux. Since the kernel is nonpreemptive, only
a few semaphores are needed. Indeed, on a uniprocessor system race conditions usually occur
either when a process is blocked during an I/O disk operation or when an interrupt handler
accesses a global kernel data structure. Other kinds of race conditions may occur in
multiprocessor systems, but in such cases Linux tends to make use of spin locks (see Section
11.4.2 later in this chapter).

The following sections discuss a few typical examples of semaphore use.

11.2.4.1 Slab cache list semaphore

The list of slab cache descriptors (see Section 6.2.2 in Chapter 6) is protected by the
cache_chain_sem semaphore, which grants an exclusive right to access and modify the list.

A race condition is possible when kmem_cache_create() adds a new element in the list,
while kmem_cache_shrink() and kmem_cache_reap() sequentially scan the list.
However, these functions are never invoked while handling an interrupt, and they can never
block while accessing the list. Since the kernel is nonpreemptive, this semaphore plays an
active role only in multiprocessor systems.

11.2.4.2 Memory descriptor semaphore

Each memory descriptor of type mm_struct includes its own semaphore in the mmap_sem field
(see Section 7.2 in Chapter 7). The semaphore protects the descriptor against race conditions
that could arise because a memory descriptor can be shared among several lightweight
processes.

For instance, let us suppose that the kernel must create or extend a memory region for some
process; in order to do this, it invokes the do_mmap() function, which allocates a new
vm_area_struct data structure. In doing so, the current process could be suspended if no free
memory is available, and another process sharing the same memory descriptor could run.
Without the semaphore, any operation of the second process that requires access to the

Understanding the Linux Kernel

286

memory descriptor (for instance, a page fault due to a Copy On Write) could lead to severe
data corruption.

11.2.4.3 Inode semaphore

This example refers to filesystem handling, which this book has not examined yet. Therefore,
we shall limit ourselves to giving the general picture without going into too many details. As
we shall see in Chapter 12, Linux stores the information on a disk file in a memory object
called an inode. The corresponding data structure includes its own semaphore in the i_sem
field.

A huge number of race conditions can occur during filesystem handling. Indeed, each file on
disk is a resource held in common for all users, since all processes may (potentially) access
the file content, change its name or location, destroy or duplicate it, and so on.

For example, let us suppose that a process is listing the files contained in some directory.
Each disk operation is potentially blocking, and therefore even in uniprocessor systems other
processes could access the same directory and modify its content while the first process is in
the middle of the listing operation. Or again, two different processes could modify the same
directory at the same time. All these race conditions are avoided by protecting the directory
file with the inode semaphore.

11.2.5 Avoiding Deadlocks on Semaphores

Whenever a program uses two or more semaphores, the potential for deadlock is present
because two different paths could end up waiting for each other to release a semaphore. A
typical deadlock condition occurs when a kernel control path gets the lock for semaphore A
and is waiting for semaphore B, while another kernel control path holds the lock for
semaphore B and is waiting for semaphore A. Linux has few problems with deadlocks on
semaphore requests, since each kernel control path usually needs to acquire just one
semaphore at a time.

However, in a couple of cases the kernel must get two semaphore locks. This occurs in the
service routines of the rmdir() and the rename() system calls (notice that in both cases
two inodes are involved in the operation). In order to avoid such deadlocks, semaphore
requests are performed in the order given by addresses: the semaphore request whose
semaphore data structure is located at the lowest address is issued first.

11.3 The SMP Architecture

Symmetrical multiprocessing (SMP) denotes a multiprocessor architecture in which no CPU
is selected as the Master CPU, but rather all of them cooperate on an equal basis, hence the
name "symmetrical." As usual, we shall focus on Intel SMP architectures.

How many independent CPUs are most profitably included in a multiprocessor system is a hot
issue. The troubles are mainly due to the impressive progress reached in the area of cache
systems. Many of the benefits introduced by hardware caches are lost by wasting bus cycles
in synchronizing the local hardware caches located on the CPU chips. The higher the number
of CPUs, the worse the problem becomes.

Understanding the Linux Kernel

287

From the kernel design point of view, however, we can completely ignore this issue: an SMP
kernel remains the same no matter how many CPUs are involved. The big jump in complexity
occurs when moving from one CPU (a uniprocessor system) to two.

Before proceeding in describing the changes that had to be made to Linux in order to make it
a true SMP kernel, we shall briefly review the hardware features of the Pentium dual-
processing systems. These features lie in the following areas of computer architecture:

• Shared memory
• Hardware cache synchronization
• Atomic operations
• Distributed interrupt handling
• Interrupt signals for CPU synchronization

Some hardware issues are completely resolved within the hardware, so we don't have to say
much about them.

11.3.1 Common Memory

All the CPUs share the same memory; that is, they are connected to a common bus. This
means that RAM chips may be accessed concurrently by independent CPUs. Since read or
write operations on a RAM chip must be performed serially, a hardware circuit called a
memory arbiter is inserted between the bus and every RAM chip. Its role is to grant access to
a CPU if the chip is free and to delay it if the chip is busy. Even uniprocessor systems make
use of memory arbiters, since they include a specialized processor called DMA that operates
concurrently with the CPU (see Section 13.1.4, in Chapter 13).

In the case of multiprocessor systems, the structure of the arbiter is more complex since it has
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at each chip
entrance and requires that the two CPUs exchange synchronization messages before
attempting to use the bus. From the programming point of view, the arbiter is hidden since it
is managed by hardware circuits.

11.3.2 Hardware Support to Cache Synchronization

The section Section 2.4.6 in Chapter 2,explained that the contents of the hardware cache and
the RAM maintain their consistency at the hardware level. The same approach holds in the
case of a dual processor. As shown in Figure 11-1, each CPU has its own local hardware
cache. But now updating becomes more time-consuming: whenever a CPU modifies its
hardware cache it must check whether the same data is contained in the other hardware cache
and, if so, notify the other CPU to update it with the proper value. This activity is often called
cache snooping. Luckily, all this is done at the hardware level and is of no concern to the
kernel.

Understanding the Linux Kernel

288

Figure 11-1. The caches in a dual processor

11.3.3 SMP Atomic Operations

Atomic operations for uniprocessor systems have already been introduced in Section 11.2.2.
Since standard read-modify-write instructions actually access the memory bus twice, they are
not atomic on a multiprocessor system.

Let us give a simple example of what might happen if an SMP kernel used standard
instructions. Consider the semaphore implementation described in Section 11.2.4 earlier in
this chapter and assume that the down() function decrements and tests the count field of the
semaphore with a simple decl assembly language instruction. What happens if two processes
running on two different CPUs simultaneously execute the decl instruction on the same
semaphore? Well, decl is a read-modify-write instruction that accesses the same memory
location twice: once to read the old value and again to write the new value.

At first, both CPUs are trying to read the same memory location, but the memory arbiter steps
in to grant access to one of them and delay the other. However, when the first read operation
is complete the delayed CPU reads exactly the same (old) value from the memory location.
Both CPUs then try to write the same (new) value on the memory location; again, the bus
memory access is serialized by the memory arbiter, but eventually both write operations will
succeed and the memory location will contain the old value decremented by 1. But of course,
the global result is completely incorrect. For instance, if count was previously set to 1, both
kernel control paths will simultaneously gain mutual exclusive access to the protected
resource.

Since the early days of the Intel 80286, lock instruction prefixes have been introduced to
solve that kind of problem. From the programmer's point of view, lock is just a special byte
that is prefixed to an assembly language instruction. When the control unit detects a lock
byte, it locks the memory bus so that no other processor can access the memory location
specified by the destination operand of the following assembly language instruction. The bus
lock is released only when the instruction has been executed. Therefore, read-modify-write
instructions prefixed by lock are atomic even in a multiprocessor environment.

The Pentium allows a lock prefix on 18 different instructions. Moreover, some kind of
instructions like xchg do not require the lock prefix because the bus lock is implicitly
enforced by the CPU's control unit.

Understanding the Linux Kernel

289

11.3.4 Distributed Interrupt Handling

Being able to deliver interrupts to any CPU in the system is crucial for fully exploiting the
parallelism of the SMP architecture. For that reason, Intel has introduced a new component
designated as the I/O APIC (I/O Advanced Programmable Interrupt Controller), which
replaces the old 8259A Programmable Interrupt Controller.

Figure 11-2 illustrates in a schematic way the structure of a multi-APIC system. Each CPU
chip has its own integrated Local APIC. An Interrupt Controller Communication (ICC) bus
connects a frontend I/O APIC to the Local APICs. The IRQ lines coming from the devices are
connected to the I/O APIC, which therefore acts as a router with respect to the Local APICs.

Figure 11-2. APIC system

Each Local APIC has 32-bit registers, an internal clock, a timer device, 240 different interrupt
vectors, and two additional IRQ lines reserved for local interrupts, which are typically used to
reset the system.

The I/O APIC consists of a set of IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers, and a message unit for sending and receiving APIC messages over
the ICC bus. Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number:
each entry in the Redirection Table can be individually programmed to indicate the interrupt
vector and priority, the destination processor, and how the processor is selected. The
information in the Redirection Table is used to translate any external IRQ signal into a
message to one or more Local APIC units via the ICC bus.

Interrupt requests can be distributed among the available CPUs in two ways:

Fixed mode

The IRQ signal is delivered to the Local APICs listed in the corresponding Redirection
Table entry.

Lowest-priority mode

The IRQ signal is delivered to the Local APIC of the processor which is executing the
process with the lowest priority. Any Local APIC has a programmable task priority

Understanding the Linux Kernel

290

register, which contains the priority of the currently running process. It must be
modified by the kernel at each task switch.

Another important feature of the APIC allows CPUs to generate interprocessor interrupts .
When a CPU wishes to send an interrupt to another CPU, it stores the interrupt vector and the
identifier of the target's Local APIC in the Interrupt Command Register of its own Local
APIC. A message is then sent via the ICC bus to the target's Local APIC, which therefore
issues a corresponding interrupt to its own CPU.

We'll discuss in Section 11.4.7 later in this chapter how the SMP version of Linux makes use
of these interprocessor interrupts.

11.4 The Linux/SMP Kernel

Linux 2.2 support for SMP is compliant with Version 1.4 of the Intel MultiProcessor
Specification, which establishes a multiprocessor platform interface standard while
maintaining full PC/AT binary compatibility.

As we have seen in Section 11.2.1 earlier in this chapter, race conditions are relatively limited
in Linux on a uniprocessor system, so interrupt disabling and kernel semaphores can be used
to protect data structures that are asynchronously accessed by interrupt or exception handlers.
In a multiprocessor system, however, things are much more complicated: several processes
may be running in Kernel Mode, and therefore data structure corruption can occur even if no
running process is preempted. The usual way to synchronize access to SMP kernel data
structures is by means of semaphores and spin locks (see Section 11.4.2).

Before discussing in detail how Linux 2.2 serializes the accesses to kernel data structures in
multiprocessor systems, let us make a brief digression to how this goal was achieved when
Linux first introduced SMP support. In order to facilitate the transition from a uniprocessor
kernel to a multiprocessor one, the old 2.0 version of Linux/SMP adopted this drastic rule:

At any given instant, at most one processor is allowed to access the kernel data structures and
to handle the interrupts.

This rule dictates that each processor wishing to access the kernel data structures must get a
global lock. As long as it holds the lock, it has exclusive access to all kernel data structures.
Of course, since the processor will also handle any incoming interrupts, the data structures
that are asynchronously accessed by interrupt and exception handlers must still be protected
with interrupt disabling and kernel semaphores.

Although very simple, this approach has a serious drawback: processes spend a significant
fraction of their computing time in Kernel Mode, therefore this rule may force I/O-bound
processes to be sequentially executed. The situation was far from satisfactory, hence the rule
was not strictly enforced in the next stable version of Linux/SMP (2.2). Instead, many locks
were added, each of which grants exclusive access to single kernel data structure or a single
critical region. Therefore, several processes are allowed to concurrently run in Kernel Mode
as long as each of them accesses different data structures protected by locks. However, a
global kernel lock is still present (see Section 11.4.6 later in this chapter), since not all kernel
data structures have been protected with specific locks.

Understanding the Linux Kernel

291

Figure 11-3 illustrates the more flexible Linux 2.2 system. Five kernel control paths—P0, P1,
P2, P3, and P4—are trying to access two critical regions—C1 and C2. Kernel control path P0
is inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2, while
P3 is waiting to enter it. Notice that P0 and P1 could run concurrently. The lock for critical
region C3 is open since no kernel control path needs to enter it.

Figure 11-3. Protecting critical regions with several locks

11.4.1 Main SMP Data Structures

In order to handle several CPUs, the kernel must be able to represent the activity that takes
place on each of them. In this section we'll consider some significant kernel data structures
that have been added to allow multiprocessing.

The most important information is what process is currently running on each CPU, but this
information actually does not require a new CPU-specific data structure. Instead, each CPU
retrieves the current process through the same current macro defined for uniprocessor
systems: since it extracts the process descriptor address from the esp stack pointer register, it
yields a value that is CPU-dependent.

A first group of new CPU-specific variables refers to the SMP architecture. Linux/SMP has a
hard-wired limit on the number of CPUs, which is defined by the NR_CPUS macro (usually
32).

During the initialization phase, Linux running on the booting CPU probes whether other
CPUs exist (some CPU slots of an SMP board may be empty). As a result, both a counter and
a bitmap are initialized: max_cpus stores the number of existing CPUs while
cpu_present_map specifies which slots contain a CPU.

An existing CPU is not necessarily activated, that is, initialized and recognized by the kernel.
Another pair of variables, a counter called smp_num_cpus and a bitmap called
cpu_online_map, keeps track of the activated CPUs. If some CPU cannot be properly
initialized, the kernel clears the corresponding bit in cpu_online_map.

Each active CPU is identified in Linux by a sequential logical number called CPU ID, which
does not necessarily coincide with the CPU slot number. The cpu_number_map and _
_cpu_logical_map arrays allow conversion between CPU IDs and CPU slot numbers.

Understanding the Linux Kernel

292

The process descriptor includes the following fields representing the relationships between the
process and a processor:

has_cpu

Flag denoting whether the process is currently running (value 1) or not running (value
0)

processor

Logical number of the CPU that is running the process, or NO_PROC_ID if the process
is not running

The smp_processor_id() macro returns the value of current->processor, that is, the
logical number of the CPU that executes the process.

When a new process is created by fork(), the has_cpu and processor fields of its
descriptor are initialized respectively to and to the value NO_PROC_ID. When the schedule()
function selects a new process to run, it sets its has_cpu field to 1 and its processor field to
the logical number of the CPU that is doing the task switch. The corresponding fields of the
process being replaced are set to and to NO_PROC_ID, respectively.

During system initialization smp_num_cpus different swapper processes are created. Each of
them has a PID equal to and is bound to a specific CPU. As usual, a swapper process is
executed only when the corresponding CPU is idle.

11.4.2 Spin Locks

Spin locks are a locking mechanism designed to work in a multiprocessing environment. They
are similar to the kernel semaphores described earlier, except that when a process finds the
lock closed by another process, it "spins" around repeatedly, executing a tight instruction
loop.

Of course, spin locks would be useless in a uniprocessor environment, since the waiting
process would keep running, and therefore the process that is holding the lock would not have
any chance to release it. In a multiprocessing environment, however, spin locks are much
more convenient, since their overhead is very small. In other words, a context switch takes a
significant amount of time, so it is more efficient for each process to keep its own CPU and
simply spin while waiting for a resource.

Each spin lock is represented by a spinlock_t structure consisting of a single lock field; the
values and 1 correspond, respectively, to the "unlocked" and the "locked" state. The
SPIN_LOCK_UNLOCKED macro initializes a spin lock to 0.

The functions that operate on spin locks are based on atomic read/modify/write operations;
this ensures that the spin lock will be properly updated by a process running on a CPU even if
other processes running on different CPUs attempt to modify the spin lock at the same time.[3]

[3] Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent access.

Understanding the Linux Kernel

293

The spin_lock macro is used to acquire a spin lock. It takes the address slp of the spin lock
as its parameter and yields essentially the following code:

1: lock; btsl $0, slp
 jnc 3f
2: testb $1,slp
 jne 2b
 jmp 1b
3:

The btsl atomic instruction copies into the carry flag the value of bit in *slp, then sets the
bit. A test is then performed on the carry flag: if it is null, it means that the spin lock was
unlocked and hence normal execution continues at label 3 (the f suffix denotes the fact that
the label is a "forward" one: it appear in a later line of the program). Otherwise, the tight loop
at label 2 (the b suffix denotes a "backward" label) is executed until the spin lock assumes the
value 0. Then execution restarts from label 1, since it would be unsafe to proceed without
checking whether another processor has grabbed the lock.[4]

[4] The actual implementation of spin_lock is slightly more complicated. The code at label 2, which is executed only if the spin lock is busy, is
included in an auxiliary section so that in the most frequent case (free spin lock) the hardware cache is not filled with code that won't be executed. In
our discussion we omit these optimization details.

The spin_unlock macro releases a previously acquired spin lock; it essentially yields the
following code:

lock; btrl $0, slp

The btrl atomic assembly language instruction clears the bit of the spin lock *slp.

Several other macros have been introduced to handle spin locks; their definitions on a
multiprocessor system are described in Table 11-3 (see Table 11-2 for their definitions on a
uniprocessor system).

Table 11-3. Spin Lock Macros on a Multiprocessor System
Macro Description
spin_lock_init(slp) Set slp->lock to 0
spin_trylock (slp) Set slp->lock to 1, return 1 if got the lock, otherwise
spin_unlock_wait(slp) Cycle until slp->lock becomes 0
spin_lock_irq(slp) _ _cli(); spin_lock(slp)
spin_unlock_irq(slp) spin_unlock(slp); __sti()

spin_lock_irqsave(slp,flags) __save_flags(flags); __cli();
spin_lock(slp)

spin_unlock_irqrestore(slp,flags) spin_unlock(slp); _ _restore_flags(flags)

11.4.3 Read/Write Spin Locks

Read/write spin locks have been introduced to increase the amount of concurrency inside the
kernel. They allow several kernel control paths to simultaneously read the same data structure,
as long as no kernel control path modifies it. If a kernel control path wishes to write to the
structure, it must acquire the write version of the read/write lock, which grants exclusive

Understanding the Linux Kernel

294

access to the resource. Of course, allowing concurrent reads on data structures improves
system performance.

Figure 11-4 illustrates two critical regions, C1 and C2, protected by read/write locks. Kernel
control paths R0 and R1 are reading the data structures in C1 at the same time, while W0 is
waiting to acquire the lock for writing. Kernel control path W1 is writing the data structures in
C2, while both R2 and W2 are waiting to acquire the lock for reading and writing,
respectively.

Figure 11-4. Read/write spin locks

Each read/write spin lock is a rwlock_t structure; its lock field is a 32-bit counter that
represents the number of kernel control paths currently reading the protected data structure.
The highest-order bit of the lock field is the write lock: it is set when a kernel control path is
modifying the data structure.[5] The RW_LOCK_UNLOCKED macro initializes the lock field of a
read/write spin lock to 0. The read_lock macro, applied to the address rwlp of a read/write
spin lock, essentially yields the following code:

[5] It would also be set if there are more than 2,147,483,647 readers: of course, such a huge limit is never reached.

1: lock; incl rwlp
 jns 3f
 lock; decl rwlp
2: cmpl $0, rwlp
 js 2b
 jmp 1b
3:

After increasing by 1 the value of rwlp->lock, the function checks whether the field has a
negative value—that is, if it is already locked for writing. If not, execution continues at label
3. Otherwise, the macro restores the previous value and spins around until the highest-order
bit becomes 0; then it starts back from the beginning.

The read_unlock function, applied to the address rwlp of a read/write spin lock, yields the
following assembly language instruction:

lock; decl rwlp

The write_lock function applied to the address rwlp of a read/write spin lock yields the
following instructions:

Understanding the Linux Kernel

295

1: lock; btsl $31, rwlp
 jc 2f
 testl $0x7fffffff, rwlp
 je 3f
 lock; btrl $31, rwlp
2: cmp $0, rwlp
 jne 2b
 jmp 1b
3:

The highest-order bit of rwlp->lock is set. If its old value was 1, the write lock is already
busy, and therefore the execution continues at label 2. Here the macro executes a tight loop
waiting for the lock field to become (meaning that the write lock was released). If the old
value of the highest-order bit was (meaning there is no write lock), the macro checks whether
there are readers. If so, the write lock is released and the macro waits until lock becomes 0;
otherwise, the CPU has the exclusive access to the resource, so execution continues at label 3.

Finally, the write_unlock macro, applied to the address rwlp of a read/write spin lock,
yields the following instruction:

lock; btrl $31, rwlp

Table 11-4 lists the interrupt-safe versions of the macros described in this section.

Table 11-4. Read/Write Spin Lock Macros on a Multiprocessor System
Function Description
read_lock_irq(rwlp) _ _cli(); read_lock(rwlp)
read_unlock_irq(rwlp) read_unlock(rwlp); _ _sti()
write_lock_irq(rwlp) _ _cli(); write_lock(rwlp)
write_unlock_irq(rwlp) write_lock(rwlp); _ _sti()

read_lock_irqsave(rwlp,flags) __save_flags(flags); __cli();
read_lock(rwlp)

read_unlock_irqrestore(rwlp,flag) read_unlock(rwlp); _
_restore_flags(flags)

write_lock_irqsave(rwlp,flags) __save_flags(flags); __cli();
write_lock(rwlp)

write_unlock_irqrestore(rwlp,flags) write_unlock(rwlp); __restore_
flags(flags)

11.4.4 Linux/SMP Interrupt Handling

We stated previously that, on Linux/SMP, interrupts are broadcast by the I/O APIC to all
Local APICs; that is, to all CPUs. This means that all CPUs having the IF flags set will
receive the same interrupt. However, only one CPU must handle the interrupt, although all of
them must acknowledge to their Local APICs they received it.

In order to do this, each IRQ main descriptor (see Section 4.6.2 in Chapter 4) includes an IRQ
_INPROGRESS flag. If it is set, the corresponding interrupt handler is already running on some
CPU. Therefore, when each CPU acknowledges to its Local APIC that the interrupt was
accepted, it checks whether the flag is already set. If it is, the CPU does not handle the
interrupt and exits back to what it was running; otherwise, the CPU sets the flag and starts
executing the interrupt handler.

Understanding the Linux Kernel

296

Of course, accesses to the IRQ main descriptor must be mutually exclusive; therefore, each
CPU always acquires the irq _controller_lock spin lock before checking the value of IRQ
_INPROGRESS. The same lock also prevents several CPUs from fiddling with the interrupt
controller simultaneously; this precaution is necessary for old SMP machines that have just
one external interrupt controller shared by all CPUs.

The IRQ _INPROGRESS flag ensures that each specific interrupt handler is atomic with respect
to itself among all CPUs. However, several CPUs may concurrently handle different
interrupts. The global_irq _count variable contains the number of interrupt handlers that
are being handled at each given instant on all CPUs. This value could be greater than the
number of CPUs, since any interrupt handler can be interrupted by another interrupt handler
of a different kind. Similarly, the local_irq _count array stores the number of interrupt
handlers being handled on each CPU.

As we have already seen, the kernel must often disable interrupts in order to prevent
corruption of a kernel data structure that may be accessed by interrupt handlers. Of course,
local CPU interrupt disabling provided by the __cli() macro is not enough, since it does
not prevent some other CPU from accessing the kernel data structure. The usual solution
consists of acquiring a spin lock with an IRQ-safe macro (like spin_lock_irqsave).

In a few cases, however, interrupts should be disabled on all CPUs. In order to achieve such a
result, the kernel does not clear the IF flags on all CPUs; instead it uses the global_irq
_lock spin lock to delay the execution of the interrupt handlers. The global_irq _holder
variable contains the logical identifier of the CPU that is holding the lock. The get_irqlock(
) function acquires the spin lock and waits for the termination of all interrupt handlers
running on the other CPUs. Moreover, if the caller is not a bottom half itself, the function
waits for the termination of all bottom halves running on the other CPUs. No further interrupt
handler on other CPUs will start running until the lock is released by invoking
release_irqlock().

Global interrupt disabling is performed by the cli() macro, which just invokes the
__global_cli() function:

__save_flags(flags);
if (!(flags & (1 << 9))) /* testing IF flag */
 return;
cpu = smp_processor_id();
__cli();
if (!local_irq_count[cpu])
 return;
get_irqlock(cpu);

Notice that global interrupt disabling is not performed when the CPU is running with local
interrupts already disabled or when the CPU is running an interrupt handler itself.[6]

[6] Deadlock conditions can easily occur if such constraints are removed. For instance, suppose that cli() could "promote" a local interrupt
disabling to a global one. Consider a kernel control path that is executing a critical region protected by some spin lock and with local interrupt
disabled. The critical region can legally include a cli()macro, since it could invoke a function that is also accessed with local interrupts
enabled. The get_irqlock()function starts waiting for interrupt handlers to complete on the other CPUs. However, an interrupt handler in
another kernel control path could be stuck on the spin lock that protects the critical region, waiting for the first kernel control path to release it:
deadlock!

Understanding the Linux Kernel

297

Global interrupt enabling is performed by the sti() macro, which just invokes the
__global_sti() function:

cpu = smp_processor_id();
if (!local_irq_count[cpu])
 release_irqlock(cpu);
__sti();

Linux also provides SMP versions of the _ _save_flags and __restore_flags macros,
which are called save_flags and restore_flags: they save and reload, respectively,
information controlling the interrupt handling for the executing CPU. As illustrated in Figure
11-5, save_flags yields an integer value that depends on three conditions; restore_flags
performs actions based on the value yielded by save_flags.

Figure 11-5. Actions performed by save_ flags() and restore_ flags()

Finally, the synchronize_irq() function is called when a kernel control path wishes to
synchronize itself with all interrupt handlers:

if (atomic_read(&global_irq_count)) {
 cli();
 sti();
}

By invoking cli(), the function acquires the global_irq _lock spin lock and then waits
until all executing interrupt handlers terminate; once this is done, it reenables interrupts. The
synchronize_irq() function is usually called by device drivers when they want to make
sure that all activities carried on by interrupt handlers are over.

Understanding the Linux Kernel

298

11.4.5 Linux/SMP Bottom Half Handling

Bottom halves are handled much like interrupt handlers, but no bottom half can ever run
concurrently with other bottom halves. Moreover, disabling interrupts also disables the
running of bottom halves. The global_bh_count variable is a flag that specifies whether a
bottom half is currently active on some CPU. The synchronize_bh() function is called
when a kernel control path must wait for the termination of a currently executing bottom half.

The global_bh_lock variable is used to disable the execution of bottom halves on all CPUs;
in other words, it ensures that some critical region is atomic with respect to all bottom halves
on all CPUs.

The start_bh_atomic() function, which locks out bottom halves, consists of:

atomic_inc(&global_bh_lock);
synchronize_bh();

The complementary end_bh_atomic() function is used to reenable the bottom halves by
executing:

atomic_dec(&global_bh_lock);

Therefore, the do_bottom_half() function starts bottom halves only if:

• No other bottom half is currently running on any CPU (global_bh_count is null).
• The bottom halves are not disabled (global_bh_lock is null).
• No interrupt handler is running on any CPU (global_irq_count is null).
• Interrupts are globally enabled (global_irq_lock is free).

Serial execution of bottom halves is inherited from previous versions of Linux. Allowing
bottom halves to be executed concurrently would require a full revision of all device drivers
that use them.

11.4.6 Global and Local Kernel Locks

As we have already mentioned, in the Version 2.2 of Linux/SMP a global kernel lock named
kernel_flag is still widely used. In Version 2.0, this spin lock was relatively crude, ensuring
simply that only one processor at a time could run in Kernel Mode. The 2.2 kernel is
considerably more flexible and no longer relies on a single spin lock; however, it is still used
to protect a very large number of kernel data structures, namely:

• All data structures related to the Virtual Filesystem and to file handling (see
Chapter 12)

• Most kernel data structures related to networking
• All kernel data structures for interprocess communication (IPC); see Chapter 18
• Several less important kernel data structures

The global kernel lock still exists because introducing new locks is not trivial: both deadlocks
and race conditions must be carefully avoided.

Understanding the Linux Kernel

299

All system call service routines related to files, including the ones related to file memory
mapping, must acquire the global kernel lock before starting their operations and must release
it when they terminate. Therefore, a very large number of system calls cannot concurrently
execute on Linux/SMP.

Every process descriptor includes a lock_depth field, which allows the same process to
acquire the global kernel lock several times. Therefore, two consecutive requests for it will
not hang the processor (as for normal spin locks). If the process does not want the lock, the
field has the value -1. If the process wants it, the field value plus 1 specifies how many times
the lock has been requested. The lock_depth field is crucial for interrupt handlers, exception
handlers, and bottom halves. Without it, any asynchronous function that tries to get the global
kernel lock could generate a deadlock if the current process already owns the lock.

The lock_kernel() and unlock_kernel() functions are used to get and release the global
kernel lock. The former function is equivalent to:

if (++current->lock_depth == 0)
 spin_lock(&kernel_flag);

while the latter is equivalent to:

if (--current->lock_depth < 0)
 spin_unlock(&kernel_flag);

Notice that the if statements of the lock_kernel() and unlock_kernel() functions need
not be executed atomically because lock_depth is not a global variable: each CPU addresses
a field of its own current process descriptor. Local interrupts inside the if statements do not
induce race conditions either: even if the new kernel control path invokes lock_kernel(), it
must release the global kernel lock before terminating.

Although the global kernel lock still protects a large number of kernel data structures, work is
in progress to reduce that number by introducing many additional smaller locks. Table 11-5
lists some kernel data structures that are already protected by specific (read/write) spin locks.

Understanding the Linux Kernel

300

Table 11-5. Various Kernel Spin Locks
Spin Lock Protected Resource
console_lock Console
dma_spin_lock DMA's data structures
inode_lock Inode's data structures
io_request_lock Block IO subsystem
kbd_controller_lock Keyboard
page_alloc_lock Buddy system's data structures
runqueue_lock Runqueue list
semaphore_wake_lock Semaphores's waking fields
tasklist_lock (rw) Process list
taskslot_lock List of free entries in task
timerlist_lock Dynamic timer lists
tqueue_lock Task queues' lists
uidhash_lock UID hash table
waitqueue_lock (rw) Wait queues' lists
xtime_lock (rw) xtime and lost_ticks

As already explained, finer granularity in the lock mechanism enhances system performance,
since less serialization is enforced among the processors. For instance, a kernel control path
that accesses the runqueue list is allowed to concurrently run with another kernel control path
that is servicing a file-related system call. Similarly, using a read/write lock, two kernel
control paths may concurrently access the process list as long as neither of them wants to
modify it.

11.4.7 Interprocessor Interrupts

Interprocessor interrupts (in short, IPIs) are part of the SMP architecture and are actively used
by Linux in order to exchange messages among CPUs. Linux/SMP provides the following
functions to handle them:

send_IPI_all()

Sends an IPI to all CPUs (including the sender)

send_IPI_allbutself()

Sends an IPI to all CPUs except the sender

send_IPI_self()

Sends an IPI to the sender CPU

send_IPI_single()

Sends an IPI to a single, specified CPU

Understanding the Linux Kernel

301

Depending on the I/O APIC configuration, the kernel may sometimes need to invoke the
send_IPI_self() function. The other functions are used to implement interprocessor
messages.

Linux/SMP recognizes five kinds of messages, which are interpreted by the receiving CPU as
different interrupt vectors:

RESCHEDULE_VECTOR (0x30)

Sent to a single CPU in order to force the execution of the schedule() function on
it. The corresponding Interrupt Service Routine (ISR) is named
smp_reschedule_interrupt(). This message is used by reschedule_idle() and
by send_sig_info() to preempt the running process on a CPU.

INVALIDATE_TLB_VECTOR (0x31)

Sent to all CPUs but the sender, forcing them to invalidate their translation lookaside
buffers. The corresponding ISR, named smp_invalidate_interrupt(), invokes
the _ _flush_tlb() function.[7] This message is used whenever the kernel modifies
a page table of some process.

[7] A subtle concurrency problem occurs when trying to flush the translation lookaside buffers of all processors while some of them run with the
interrupts disabled. Therefore, while spinning in tight loops, the kernel control paths keep checking whether some CPU has sent an "invalidate TLB"
message.

STOP_CPU_VECTOR (0x40)

Sent to all CPUs but the sender, forcing the receiving CPUs to halt. The corresponding
Interrupt Service Routine is named smp_stop_cpu_interrupt(). This message is
used only when the kernel detects an unrecoverable internal error.

LOCAL_TIMER_VECTOR (0x41)

A timer interrupt automatically sent to all CPUs by the I/O APIC. The corresponding
Interrupt Service Routine is named smp_apic_timer_interrupt().

CALL_FUNCTION_VECTOR (0x50)

Sent to all CPUs but the sender, forcing those CPUs to run a function passed by the
sender. The corresponding ISR is named smp_call_function_interrupt(). A
typical use of this message is to force CPUs to synchronize and to reload the state of
the Memory Type Range Registers (MTRRs). Starting with the Pentium Pro model,
Intel microprocessors include these additional registers to easily customize cache
operations. Linux uses these registers to disable the hardware cache for the addresses
mapping the frame buffer of a PCI/AGP graphic card while maintaining the "write
combining" mode of operation: the paging unit combines write transfers into larger
chunks before copying them into the frame buffer.

Understanding the Linux Kernel

302

11.5 Anticipating Linux 2.4

Linux 2.4 changes a bit the way semaphores are implemented. Essentially, they are now more
efficient because, when a semaphore is released, usually only one sleeping process is awoken.

As already mentioned, Linux 2.4 enhances support for high-end SMP architectures. It is now
possible to make use of multiple external I/O APIC chips, and all the code that handles
interprocessor interrupts (IPIs) has been rewritten.

However, the most important change is that Linux 2.4 is much more multithreaded than Linux
2.2. In other words, it makes use of many new spin locks and reduces the role of the global
kernel lock, particularly in the networking code. Linux 2.4 is therefore much more efficient on
SMP architectures and performs much better as a high-end server.

Understanding the Linux Kernel

303

Chapter 12. The Virtual Filesystem
One of Linux's keys to success is its ability to coexist comfortably with other systems. You
can transparently mount disks or partitions that host file formats used by Windows, other
Unix systems, or even systems with tiny market shares like the Amiga. Linux manages to
support multiple disk types in the same way other Unix variants do, through a concept called
the Virtual Filesystem.

The idea behind the Virtual Filesystem is that the internal objects representing files and
filesystems in kernel memory embody a wide range of information; there is a field or function
to support any operation provided by any real filesystem supported by Linux. For each read,
write, or other function called, the kernel substitutes the actual function that supports a native
Linux filesystem, the NT filesystem, or whatever other filesystem the file is on.

This chapter discusses the aims, the structure, and the implementation of Linux's Virtual
Filesystem. It focuses on three of the five standard Unix file types, namely, regular files,
directories, and symbolic links. Device files will be covered in Chapter 13, while pipes will be
discussed in Chapter 18. To show how a real filesystem works, Chapter 17, covers the Second
Extended Filesystem that appears on nearly all Linux systems.

12.1 The Role of the VFS

The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel software
layer that handles all system calls related to a standard Unix filesystem. Its main strength is
providing a common interface to several kinds of filesystems.

For instance, let us assume that a user issues the shell command:

$ cp /floppy/TEST /tmp/test

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Ext2 (Second
Extended Filesystem) directory. As shown in Figure 12-1 (a), the VFS is an abstraction layer
between the application program and the filesystem implementations. Therefore, the cp
program is not required to know the filesystem types of /floppy/TEST and /tmp/test. Instead,
cp interacts with the VFS by means of generic system calls well known to anyone who has
done Unix programming (see also Section 1.5.6 in Chapter 1); the code executed by cp is
shown in Figure 12-1 (b).

Understanding the Linux Kernel

304

Figure 12-1. VFS role in a simple file copy operation

Filesystems supported by the VFS may be grouped into three main classes:

Disk-based filesystems

Manage the memory space available in a local disk partition. The official Linux disk-
based filesystem is Ext2. Other well-known disk-based filesystems supported by the
VFS are:

• Filesystems for Unix variants like System V and BSD
• Microsoft filesystems like MS-DOS, VFAT (Windows 98), and NTFS

(Windows NT)
• ISO9660 CD-ROM filesystem (formerly High Sierra Filesystem)
• Other proprietary filesystems like HPFS (IBM's OS/2), HFS (Apple's

Macintosh), FFS (Amiga's Fast Filesystem), and ADFS (Acorn's machines)

Network filesystems

Allow easy access to files included in filesystems belonging to other networked
computers. Some well-known network filesystems supported by the VFS are NFS,
Coda, AFS (Andrew's filesystem), SMB (Microsoft's Windows and IBM's OS/2 LAN
Manager), and NCP (Novell's NetWare Core Protocol).

Special filesystems (also called virtual filesystems)

Do not manage disk space. Linux's /proc filesystem provides a simple interface that
allows users to access the contents of some kernel data structures. The /dev/pts
filesystem is used for pseudo-terminal support as described in the Open Group's
Unix98 standard.

In this book we describe only the Ext2 filesystem, which is the topic of Chapter 17; the other
filesystems will not be covered for lack of space.

Understanding the Linux Kernel

305

As mentioned in Section 1.5 in Chapter 1, Unix directories build a tree whose root is the /
directory. The root directory is contained in the root filesystem, which in Linux is usually of
type Ext2. All other filesystems can be "mounted" on subdirectories of the root filesystem.[1]

[1] When a filesystem is mounted on some directory, the contents of the directory in the parent filesystem are no longer accessible, since any pathname
including the mount point will refer to the mounted filesystem. However, the original directory's content will show up again when the filesystem is
unmounted. This somewhat surprising feature of Unix filesystems is used by system administrators to hide files; they simply mount a filesystem on the
directory containing the files to be hidden.

A disk-based filesystem is usually stored in a hardware block device like a hard disk, a
floppy, or a CD-ROM. A useful feature of Linux's VFS allows it to handle virtual block
devices like /dev/loop0, which may be used to mount filesystems stored in regular files. As a
possible application, a user may protect his own private filesystem by storing an encrypted
version of it in a regular file.

The first Virtual Filesystem was included in Sun Microsystems's SunOS in 1986. Since then,
most Unix filesystems include a VFS. Linux's VFS, however, supports the widest range of
filesystems.

12.1.1 The Common File Model

The key idea behind the VFS consists of introducing a common file model capable of
representing all supported filesystems. This model strictly mirrors the file model provided by
the traditional Unix filesystem. This is not surprising, since Linux wants to run its native
filesystem with minimum overhead. However, each specific filesystem implementation must
translate its physical organization into the VFS's common file model.

For instance, in the common file model each directory is regarded as a normal file, which
contains a list of files and other directories. However, several non-Unix disk-based
filesystems make use of a File Allocation Table (FAT), which stores the position of each file
in the directory tree: in these filesystems, directories are not files. In order to stick to the
VFS's common file model, the Linux implementations of such FAT-based filesystems must
be able to construct on the fly, when needed, the files corresponding to the directories. Such
files exist only as objects in kernel memory.

More essentially, the Linux kernel cannot hardcode a particular function to handle an
operation such as read() or ioctl(). Instead, it must use a pointer for each operation; the
pointer is made to point to the proper function for the particular filesystem being accessed.

Let's illustrate this concept by showing how the read() shown in Figure 12-1 would be
translated by the kernel into a call specific to the MS-DOS filesystem. The application's call
to read() makes the kernel invoke sys_read(), just like any other system call. The file is
represented by a file data structure in kernel memory, as we shall see later in the chapter.
This data structure contains a field called f_op that contains pointers to functions specific to
MS-DOS files, including a function that reads a file. sys_read() finds the pointer to this
function and invokes it. Thus, the application's read() is turned into the rather indirect call:

file->f_op->read(...);

Similarly, the write() operation triggers the execution of a proper Ext2 write function
associated with the output file. In short, the kernel is responsible for assigning the right set of

Understanding the Linux Kernel

306

pointers to the file variable associated with each open file, then for invoking the call specific
to each filesystem that the f_op field points to.

One can think of the common file model as object-oriented, where an object is a software
construct that defines both a data structure and the methods that operate on it. For reasons of
efficiency, Linux is not coded in an object-oriented language like C++. Objects are thus
implemented as data structures with some fields pointing to functions that correspond to the
object's methods.

The common file model consists of the following object types:

The superblock object

Stores information concerning a mounted filesystem. For disk-based filesystems, this
object usually corresponds to a filesystem control block stored on disk.

The inode object

Stores general information about a specific file. For disk-based filesystems, this object
usually corresponds to a file control block stored on disk. Each inode object is
associated with an inode number, which uniquely identifies the file within the
filesystem.

The file object

Stores information about the interaction between an open file and a process. This
information exists only in kernel memory during the period each process accesses a
file.

The dentry object

Stores information about the linking of a directory entry with the corresponding file.
Each disk-based filesystem stores this information in its own particular way on disk.

Figure 12-2 illustrates with a simple example how processes interact with files. Three
different processes have opened the same file, two of them using the same hard link. In this
case, each of the three processes makes use of its own file object, while only two dentry
objects are required, one for each hard link. Both dentry objects refer to the same inode
object, which identifies the superblock object and, together with the latter, the common disk
file.

Understanding the Linux Kernel

307

Figure 12-2. Interaction between processes and VFS objects

Besides providing a common interface to all filesystem implementations, the VFS has another
important role related to system performance. The most recently used dentry objects are
contained in a disk cache named the dentry cache, which speeds up the translation from a file
pathname to the inode of the last pathname component.

Generally speaking, a disk cache is a software mechanism that allows the kernel to keep in
RAM some information that is normally stored on a disk, so that further accesses to that data
can be quickly satisfied without a slow access to the disk itself.[2] Beside the dentry cache,
Linux uses other disk caches, like the buffer cache and the page cache, which will be
described in forthcoming chapters.

[2] Notice how a disk cache differs from a hardware cache or a memory cache, neither of which has anything to do with disks or other devices. A
hardware cache is a fast static RAM that speeds up requests directed to the slower dynamic RAM (see Section 2.4.6 in Chapter 2). A memory cache is
a software mechanism introduced to bypass the Kernel Memory Allocator (see Section 6.2.1 in Chapter 6).

12.1.2 System Calls Handled by the VFS

Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files, directories,
and symbolic links. A few other system calls handled by the VFS, such as ioperm(),
ioctl(), pipe(), and mknod(), refer to device files and pipes and hence will be
discussed in later chapters. A last group of system calls handled by the VFS, such as socket(
), connect(), bind(), and protocols(), refer to sockets and are used to implement
networking; they will not be covered in this book. Some of the kernel service routines that
correspond to the system calls listed in Table 12-1 are discussed either in this chapter or in
Chapter 17.

Understanding the Linux Kernel

308

Table 12-1. Some System Calls Handled by the VFS
System Call Name Description
mount() umount() Mount/Unmount filesystems
sysfs() Get filesystem information
statfs() fstatfs() ustat() Get filesystem statistics
chroot() Change root directory
chdir() fchdir() getcwd() Manipulate current directory
mkdir() rmdir() Create and destroy directories
getdents() readdir() link() unlink() rename() Manipulate directory entries
readlink() symlink() Manipulate soft links
chown() fchown() lchown() Modify file owner
chmod() fchmod() utime() Modify file attributes
stat() fstat() lstat() access() Read file status
open() close() creat() umask() Open and close files
dup() dup2() fcntl() Manipulate file descriptors
select() poll() Asynchronous I/O notification
truncate() ftruncate() Change file size
lseek() _llseek() Change file pointer
read() write() readv() writev() sendfile() File I/O operations
pread() pwrite() Seek file and access it
mmap() munmap() File memory mapping
fdatasync() fsync() sync() msync() Synchronize file data
flock() Manipulate file lock

We said earlier that the VFS is a layer between application programs and specific filesystems.
However, in some cases a file operation can be performed by the VFS itself, without invoking
a lower-level procedure. For instance, when a process closes an open file, the file on disk
doesn't usually need to be touched, and hence the VFS simply releases the corresponding file
object. Similarly, when the lseek() system call modifies a file pointer, which is an attribute
related to the interaction between an opened file and a process, the VFS needs to modify only
the corresponding file object without accessing the file on disk and therefore does not have to
invoke a specific filesystem procedure. In some sense, the VFS could be considered as a
"generic" filesystem that relies, when necessary, on specific ones.

12.2 VFS Data Structures

Each VFS object is stored in a suitable data structure, which includes both the object
attributes and a pointer to a table of object methods. The kernel may dynamically modify the
methods of the object, and hence it may install specialized behavior for the object.
The following sections explain the VFS objects and their interrelationships in detail.

12.2.1 Superblock Objects

A superblock object consists of a super_block structure whose fields are described in
Table 12-2.

Understanding the Linux Kernel

309

Table 12-2. The Fields of the Superblock Object
Type Field Description
struct list_head s_list Pointers for superblock list
kdev_t s_dev Device identifier
unsigned long s_blocksize Block size in bytes
unsigned char s_blocksize_bits Block size in number of bits
unsigned char s_lock Lock flag
unsigned char s_rd_only Read-only flag
unsigned char s_dirt Modified (dirty) flag
struct file_system_type * s_type Filesystem type
struct super_operations * s_op Superblock methods
struct dquot_operations * dq_op Disk quota methods
unsigned long s_flags Mount flags
unsigned long s_magic Filesystem magic number
unsigned long s_time Time of last superblock change
struct dentry * s_root Dentry object of mount directory
struct wait_queue * s_wait Mount wait queue
struct inode * s_ibasket Future development
short int s_ibasket_count Future development
short int s_ibasket_max Future development
struct list_head s_dirty List of modified inodes
union u Specific filesystem information

All superblock objects (one per mounted filesystem) are linked together in a circular doubly
linked list. The addresses of the first and last elements of the list are stored in the next and
prev fields, respectively, of the s_list field in the super_blocks variable. This field has the
data type struct list_head, which is also found in the s_dirty field of the superblock and
in a number of other places in the kernel; it consists simply of pointers to the next and
previous elements of a list. Thus, the s_list field of a superblock object includes the pointers
to the two adjacent superblock objects in the list. Figure 12-3 illustrates how the list_head
elements, next and prev, are embedded in the superblock object.

The last u union field includes superblock information that belongs to a specific filesystem;
for instance, as we shall see later in Chapter 17, if the superblock object refers to an Ext2
filesystem, the field stores an ext2_sb_info structure, which includes the disk allocation bit
masks and other data of no concern to the VFS common file model.

In general, data in the u field is duplicated in memory for reasons of efficiency. Any disk-
based filesystem needs to access and update its allocation bitmaps in order to allocate or
release disk blocks. The VFS allows these filesystems to act directly on the u union field of
the superblock in memory, without accessing the disk.

This approach leads to a new problem, however: the VFS superblock might end up no longer
synchronized with the corresponding superblock on disk. It is thus necessary to introduce an
s_dirt flag, which specifies whether the superblock is dirty, that is, whether the data on the
disk must be updated. The lack of synchronization leads to the familiar problem of a
corrupted filesystem when a site's power goes down without giving the user the chance to shut
down a system cleanly. As we shall see in Section 14.1.5 in Chapter 14, Linux minimizes this
problem by periodically copying all dirty superblocks to disk.

Understanding the Linux Kernel

310

Figure 12-3. The superblock list

The methods associated with a superblock are called superblock operations. They are
described by the super_operations structure whose address is included in the s_op field.

Each specific filesystem can define its own superblock operations. When the VFS needs to
invoke one of them, say read_inode(), it executes:

sb->s_op->read_inode(inode);

where sb stores the address of the superblock object involved. The read_inode field of the
super_operations table contains the address of the suitable function, which is thus directly
invoked.

Let us briefly describe the superblock operations, which implement higher-level operations
like deleting files or mounting disks. They are listed in the order they appear in the
super_operations table:

read_inode(inode)

Fills the fields of the inode object whose address is passed as the parameter from the
data on disk; the i_ino field of the inode object identifies the specific filesystem inode
on disk to be read.

write_inode(inode)

Updates a filesystem inode with the contents of the inode object passed as the
parameter; the i_ino field of the inode object identifies the filesystem inode on disk
that is concerned.

put_inode(inode)

Releases the inode object whose address is passed as the parameter. As usual,
releasing an object does not necessarily mean freeing memory since other processes
may still use that object.

delete_inode(inode)

Deletes the data blocks containing the file, the disk inode, and the VFS inode.

Understanding the Linux Kernel

311

notify_change(dentry, iattr)

Changes some attributes of the inode according to the iattr parameter. If the
notify_change field is NULL, the VFS falls back on the write_inode() method.

put_super(super)

Releases the superblock object whose address is passed as the parameter (because the
corresponding filesystem is unmounted).

write_super(super)

Updates a filesystem superblock with the contents of the object indicated.

statfs(super, buf, bufsize)

Returns statistics on a filesystem by filling the buf buffer.

remount_fs(super, flags, data)

Remounts the filesystem with new options (invoked when a mount option must be
changed).

clear_inode(inode)

Like put_inode, but also releases all pages that contain data concerning the file that
corresponds to the indicated inode.

umount_begin(super)

Interrupts a mount operation, because the corresponding unmount operation has been
started (used only by network filesystems).

The preceding methods are available to all possible filesystem types. However, only a subset
of them applies to each specific filesystem; the fields corresponding to unimplemented
methods are set to NULL. Notice that no read_super method to read a superblock is defined:
how could the kernel invoke a method of an object yet to be read from disk? We'll find the
read_super method in another object describing the filesystem type (seelater Section 12.3).

12.2.2 Inode Objects

All information needed by the filesystem to handle a file is included in a data structure called
an inode. A filename is a casually assigned label that can be changed, but the inode is unique
to the file and remains the same as long as the file exists. An inode object in memory consists
of an inode structure whose fields are described in Table 12-3.

Understanding the Linux Kernel

312

Table 12-3. The Fields of the Inode Object
Type Field Description
struct list_head i_hash Pointers for the hash list
struct list_head i_list Pointers for the inode list
struct list_head i_dentry Pointers for the dentry list
unsigned long i_ino inode number
unsigned int i_count Usage counter
kdev_t i_dev Device identifier
umode_t i_mode File type and access rights
nlink_t i_nlink Number of hard links
uid_t i_uid Owner identifier
gid_t i_gid Group identifier
kdev_t i_rdev Real device identifier
off_t i_size File length in bytes
time_t i_atime Time of last file access
time_t i_mtime Time of last file write
time_t i_ctime Time of last inode change
unsigned long i_blksize Block size in bytes
unsigned long i_blocks Number of blocks of the file

unsigned long i_version Version number, automatically incremented after
each use

unsigned long i_nrpages Number of pages containing file data
struct semaphore i_sem inode semaphore
struct semaphore i_atomic_write inode semaphore for atomic write
struct inode_operations
* i_op inode operations

struct super_block * i_sb Pointer to superblock object
struct wait_queue * i_wait inode wait queue
struct file_lock * i_flock Pointer to file lock list
struct vm_area_struct * i_mmap Pointer to memory regions used to map the file
struct page * i_pages Pointer to page descriptor
struct dquot ** i_dquot inode disk quotas
unsigned long i_state inode state flag
unsigned int i_flags Filesystem mount flag
unsigned char i_pipe True if file is a pipe
unsigned char i_sock True if file is a socket
int i_writecount Usage counter for writing process
unsigned int i_attr_flags File creation flags
_ _u32 i_generation Reserved for future development
union u Specific filesystem information

The final u union field is used to include inode information that belongs to a specific
filesystem. For instance, as we shall see in Chapter 17, if the inode object refers to an Ext2
file, the field stores an ext2_inode_info structure.

Each inode object duplicates some of the data included in the disk inode, for instance, the
number of blocks allocated to the file. When the value of the i_state field is equal to
I_DIRTY, the inode is dirty, that is, the corresponding disk inode must be updated. Other

Understanding the Linux Kernel

313

values of the i_state field are I_LOCK (which means that the inode object is locked) and
I_FREEING (which means that the inode object is being freed).

Each inode object always appears in one of the following circular doubly linked lists:

• The list of unused inodes. The first and last elements of this list are referenced by the
next and prev fields, respectively, of the inode_unused variable. This list acts as a
memory cache.

• The list of in-use inodes. The first and last elements are referenced by the
inode_in_use variable.

• The list of dirty inodes. The first and last elements are referenced by the s_dirty field
of the corresponding superblock object.

Each of the lists just mentioned links together the i_list fields of the proper inode objects.

Inode objects belonging to the "in use" or "dirty" lists are also included in a hash table named
inode_hashtable . The hash table speeds up the search of the inode object when the kernel
knows both the inode number and the address of the superblock object corresponding to the
filesystem that includes the file.[3] Since hashing may induce collisions, the inode object
includes an i_hash field that contains a backward and a forward pointer to other inodes that
hash to the same position; this field creates a doubly linked list of those inodes.

[3] Actually, a Unix process may open a file and then unlink it: the i_nlinkfield of the inode could become 0, yet the process is still able to act on
the file. In this particular case, the inode is removed from the hash table, even if it still belongs to the in-use or dirty list.

The methods associated with an inode object are also called inode operations. They are
described by an inode_operations structure, whose address is included in the i_op field.
The structure also includes a pointer to the file operation methods (see Section 12.2.3). Here
are the inode operations, in the order they appear in the inode_operations table:

create(dir, dentry, mode)

Creates a new disk inode for a regular file associated with a dentry object in some
directory.

lookup(dir, dentry)

Searches a directory for an inode corresponding to the filename included in a dentry
object.

link(old_dentry, dir, new_dentry)

Creates a new hard link that refers to the file specified by old_dentry in the directory
dir; the new hard link has the name specified by new_dentry.

unlink(dir, dentry)

Removes the hard link of the file specified by a dentry object from a directory.

Understanding the Linux Kernel

314

symlink(dir, dentry, symname)

Creates a new inode for a symbolic link associated with a dentry object in some
directory.

mkdir(dir, dentry, mode)

Creates a new inode for a directory associated with a dentry object in some directory.

rmdir(dir, dentry)

Removes from a directory the subdirectory whose name is included in a dentry object.

mknod(dir, dentry, mode, rdev)

Creates a new disk inode for a special file associated with a dentry object in some
directory. The mode and rdev parameters specify, respectively, the file type and the
device's major number.

rename(old_dir, old_dentry, new_dir, new_dentry)

Moves the file identified by old_entry from the old_dir directory to the new_dir
one. The new filename is included in the dentry object that new_dentry points to.

readlink(dentry, buffer, buflen)

Copies into a memory area specified by buffer the file pathname corresponding to the
symbolic link specified by the dentry.

follow_link(inode, dir)

Translates a symbolic link specified by an inode object; if the symbolic link is a
relative pathname, the lookup operation starts from the specified directory.

readpage(file, pg)

Reads a page of data from an open file. As we shall see in Chapter 15, regular files are
read by this method.

writepage(file, pg)

Writes a page of data into an open file. Most filesystems do not make use of this
method when writing regular files.

bmap(inode, block)

Returns the logical block number corresponding to the file block number of the file
associated with an inode.

Understanding the Linux Kernel

315

truncate(inode)

Modifies the size of the file associated with an inode. Before invoking this method, it
is necessary to set the i_size field of the inode object to the required new size.

permission(inode, mask)

Checks whether the specified access mode is allowed for the file associated with
inode.

smap(inode, sector)

Similar to bmap(), but determines the disk sector number; used by FAT-based
filesystems.

updatepage(inode, pg, buf, offset, count, sync)

Updates, if needed, a page of data of a file associated with an inode (usually invoked
by network filesystems, which may have to wait a long time before updating remote
files).

revalidate(dentry)

Updates the cached attributes of a file specified by a dentry object (usually invoked by
the network filesystem).

The methods just listed are available to all possible inodes and filesystem types. However,
only a subset of them applies to any specific inode and filesystem; the fields corresponding to
unimplemented methods are set to NULL.

12.2.3 File Objects

A file object describes how a process interacts with a file it has opened. The object is created
when the file is opened and consists of a file structure, whose fields are described in Table
12-4. Notice that file objects have no corresponding image on disk, and hence no "dirty" field
is included in the file structure to specify that the file object has been modified.

The main information stored in a file object is the file pointer, that is, the current position in
the file from which the next operation will take place. Since several processes may access the
same file concurrently, the file pointer cannot be kept in the inode object.

Understanding the Linux Kernel

316

Table 12-4. The Fields of the File Object
Type Field Description
struct file * f_next Pointer to next file object
struct file ** f_pprev Pointer to previous file object
struct dentry * f_dentry Pointer to associated dentry object
struct file_operations
* f_op Pointer to file operation table

mode_t f_mode Process access mode
loff_t f_pos Current file offset (file pointer)
unsigned int f_count File object's usage counter
unsigned int f_flags Flags specified when opening the file
unsigned long f_reada Read-ahead flag
unsigned long f_ramax Maximum number of pages to be read-ahead
unsigned long f_raend File pointer after last read-ahead
unsigned long f_ralen Number of read-ahead bytes
unsigned long f_rawin Number of read-ahead pages
struct fown_struct f_owner Data for asynchronous I/O via signals
unsigned int f_uid User's UID
unsigned int f_gid User's GID
int f_error Error code for network write operation

unsigned long f_version Version number, automatically incremented after each
use

void * private_data Needed for tty driver

Each file object is always included in one of the following circular doubly linked lists:

• The list of "unused" file objects. This list acts both as a memory cache for the file
objects and as a reserve for the superuser; it allows the superuser to open a file even if
the dynamic memory in the system is exhausted. Since the objects are unused, their
f_count fields are null. The address of the first element in the list is stored in the
free_filps variable. The kernel makes sure that the list always contains at least
NR_RESERVED_FILES objects, usually 10.

• The list of "in use" file objects. Each element in the list is used by at least one process,
and hence its f_count field is not null. The address of the first element in the list is
stored in the inuse_filps variable.

Regardless of which list a file object is in at the moment, its f_next field points to the next
element in the list, while the f_ pprev field points to the f_next field of the previous
element.

The size of the list of "unused" file objects is stored in the nr_free_files variable. The
get_empty_filp() function is invoked when the VFS must allocate a new file object. The
function checks whether the "unused" list has more than NR_RESERVED_FILES items, in which
case one can be used for the newly opened file. Otherwise, it falls back to normal memory
allocation.

As we explained in Section 12.1.1, each filesystem includes its own set of file operations that
perform such activities as reading and writing a file. When the kernel loads an inode into
memory from disk, it stores a pointer to these file operations in a file_operations structure

Understanding the Linux Kernel

317

whose address is contained in the default_file_ops field of the inode_operations
structure of the inode object. When a process opens the file, the VFS initializes the f_op field
of the new file object with the address stored in the inode so that further calls to file
operations can use these functions. If necessary, the VFS may later modify the set of file
operations by storing a new value in f_op.

The following list describes the file operations in the order in which they appear in the
file_operations table:

llseek(file, offset, whence)

Updates the file pointer.

read(file, buf, count, offset)

Reads count bytes from a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then incremented.

write(file, buf, count, offset)

Writes count bytes into a file starting at position *offset; the value *offset (which
usually corresponds to the file pointer) is then incremented.

readdir(dir, dirent, filldir)

Returns the next directory entry of a directory in dirent; the filldir parameter
contains the address of an auxiliary function that extracts the fields in a directory
entry.

poll(file, poll_table)

Checks whether there is activity on a file and goes to sleep until something happens on
it.

ioctl(inode, file, cmd, arg)

Sends a command to an underlying hardware device. This method applies only to
device files.

mmap(file, vma)

Performs a memory mapping of the file into a process address space (see Section 15.2
in Chapter 15).

open(inode, file)

Opens a file by creating a new file object and linking it to the corresponding inode
object (see Section 12.5.1 later in this chapter).

Understanding the Linux Kernel

318

flush(file)

Called when a reference to an open file is closed, that is, the f_count field of the file
object is decremented. The actual purpose of this method is filesystem-dependent.

release(inode, file)

Releases the file object. Called when the last reference to an open file is closed, that is,
the f_count field of the file object becomes 0.

fsync(file, dentry)

Writes all cached data of the file to disk.

fasync(file, on)

Enables or disables asynchronous I/O notification by means of signals.

check_media_change(dev)

Checks whether there has been a change of media since the last operation on the
device file (applicable to block devices that support removable media, such as floppies
and CD-ROMs).

revalidate(dev)

Restores the consistency of a device (used by network filesystems after a media
change has been recognized on a remote device).

lock(file, cmd, file_lock)

Applies a lock to the file (see Section 12.6 later in this chapter).

The methods just described are available to all possible file types. However, only a subset of
them applies to a specific file type; the fields corresponding to unimplemented methods are
set to NULL.

12.2.4 Special Handling for Directory File Objects

Directories must be handled with care because several processes can change their contents
concurrently. Explicit locking, which is frequently performed on regular files (see Section
12.6 later in this chapter), is not well suited for directories because it prevents other processes
from accessing the whole subtree of files rooted at the locked directory. Therefore, the
f_version field of the file object is used together with the i_version field of the inode
object to ensure that accesses to each directory file maintain consistency.

We'll explain the use of these fields by describing the most common operation in which they
are needed, the readdir() system call. Each invocation of this call is supposed to return a
directory entry and update the directory's file pointer so that the next invocation of the same
system call will return the next directory entry. But the directory could be modified by

Understanding the Linux Kernel

319

another process that concurrently accesses it. Without some kind of consistency check, the
readdir() system call could return the wrong directory entry. Long intervals—potentially
hours—could elapse between a process's calls to readdir(), and the process may choose to
stop calling it at any time, so we don't want to lock the directory. What we want is a way to
make readdir() adapt to changes.

The problem is solved by introducing the global_event variable, which plays the role of
version stamp. Whenever the inode object of a directory file is modified, the global_event is
increased by 1, and the new version stamp is stored in the i_version field of the object.
Whenever a file object is created or its file pointer is modified, global_event is increased by
1, and the new version stamp is stored in the f_version field of the object. When servicing
the readdir() system call, the VFS checks whether the version stamps contained in the
i_version and f_version fields coincide. If not, the directory may have been modified by
some other process after the previous execution of readdir().

When the readdir() call detects this consistency problem, it recomputes the directory's file
pointer by reading again the whole directory contents. The system call returns the directory
entry immediately following the entry that was returned by the process's last readdir().
f_version is then set to i_version to indicate that readdir() is now synchronized with
the actual state of the directory.

12.2.5 Dentry Objects

We mentioned in Section 12.1.1 that each directory is considered by the VFS as a normal file
that contains a list of files and other directories. We shall discuss in Chapter 17 how
directories are implemented on a specific filesystem. Once a directory entry has been read into
memory, however, it is transformed by the VFS into a dentry object based on the dentry
structure, whose fields are described in Table 12-5. A dentry object is created by the kernel
for every component of a pathname that a process looks up; the dentry object associates the
component to its corresponding inode. For example, when looking up the /tmp/test pathname,
the kernel creates a dentry object for the / root directory, a second dentry object for the tmp
entry of the root directory, and a third dentry object for the test entry of the /tmp directory.

Notice that dentry objects have no corresponding image on disk, and hence no field is
included in the dentry structure to specify that the object has been modified. Dentry objects
are stored in a slab allocator cache called dentry_cache; dentry objects are thus created and
destroyed by invoking kmem_cache_alloc() and kmem_cache_free().

Understanding the Linux Kernel

320

Table 12-5. The Fields of the Dentry Object
Type Field Description
int d_count Dentry object usage counter
unsigned int d_flags Dentry flags
struct inode * d_inode Inode associated with filename
struct dentry * d_parent Dentry object of parent directory

struct dentry * d_mounts For a mount point, the dentry of the root of the mounted
filesystem

struct dentry * d_covers For the root of a filesystem, the dentry of the mount point
struct list_head d_hash Pointers for list in hash table entry
struct list_head d_lru Pointers for unused list

struct list_head d_child Pointers for the list of dentry objects included in parent
directory

struct list_head d_subdirs For directories, list of dentry objects of subdirectories
struct list_head d_alias List of associated inodes (alias)
struct qstr d_name Filename
unsigned long d_time Used by d_revalidate method
structdentry_operations* d_op Dentry methods
struct super_block * d_sb Superblock object of the file
unsigned long d_reftime Time when dentry was discarded
void * d_fsdata Filesystem-dependent data
unsigned char d_iname[16] Space for short filename

Each dentry object may be in one of four states:

Free

The dentry object contains no valid information and is not used by the VFS. The
corresponding memory area is handled by the slab allocator.

Unused

The dentry object is not currently used by the kernel. The d_count usage counter of
the object is null, but the d_inode field still points to the associated inode. The dentry
object contains valid information, but its contents may be discarded if necessary to
reclaim memory.

In use

The dentry object is currently used by the kernel. The d_count usage counter is
positive and the d_inode field points to the associated inode object. The dentry object
contains valid information and cannot be discarded.

Negative

The inode associated with the dentry no longer exists, because the corresponding disk
inode has been deleted. The d_inode field of the dentry object is set to NULL, but the
object still remains in the dentry cache so that further lookup operations to the same

Understanding the Linux Kernel

321

file pathname can be quickly resolved. The term "negative" is misleading since no
negative value is involved.

12.2.6 The Dentry Cache

Since reading a directory entry from disk and constructing the corresponding dentry object
requires considerable time, it makes sense to keep in memory dentry objects that you've
finished with but might need later. For instance, people often edit a file and then compile it or
edit, then print or copy, then edit. In any case like these, the same file needs to be repeatedly
accessed.

In order to maximize efficiency in handling dentries, Linux uses a dentry cache, which
consists of two kinds of data structures:

• A set of dentry objects in the in-use, unused, or negative state.
• A hash table to derive the dentry object associated with a given filename and a given

directory quickly. As usual, if the required object is not included in the dentry cache,
the hashing function returns a null value.

The dentry cache also acts as a controller for an inode cache . The inodes in kernel memory
that are associated with unused dentries are not discarded, since the dentry cache is still using
them and therefore their i_count fields are not null. Thus, the inode objects are kept in RAM
and can be quickly referenced by means of the corresponding dentries.

All the "unused" dentries are included in a doubly linked " Least Recently Used" list sorted by
time of insertion. In other words, the dentry object that was last released is put in front of the
list, so the least recently used dentry objects are always near the end of the list. When the
dentry cache has to shrink, the kernel removes elements from the tail of this list so that the
most recently used objects are preserved. The addresses of the first and last elements of the
LRU list are stored in the next and prev fields of the dentry_unused variable. The d_lru
field of the dentry object contains pointers to the adjacent dentries in the list.

Each "in use" dentry object is inserted into a doubly linked list specified by the i_dentry
field of the corresponding inode object (since each inode could be associated with several
hard links, a list is required). The d_alias field of the dentry object stores the addresses of
the adjacent elements in the list. Both fields are of type struct list_head.

An "in use" dentry object may become "negative" when the last hard link to the corresponding
file is deleted. In this case, the dentry object is moved into the LRU list of unused dentries.
Each time the kernel shrinks the dentry cache, negative dentries move toward the tail of the
LRU list so that they are gradually freed (see Section 16.7.3 in Chapter 16).

The hash table is implemented by means of a dentry_hashtable array. Each element is a
pointer to a list of dentries that hash to the same hash table value. The array's size depends on
the amount of RAM installed in the system. The d_hash field of the dentry object contains
pointers to the adjacent elements in the list associated with a single hash value. The hash
function produces its value from both the address of the dentry object of the directory and the
filename.

Understanding the Linux Kernel

322

The methods associated with a dentry object are called dentry operations; they are described
by the dentry_operations structure, whose address is stored in the d_op field. Although
some filesystems define their own dentry methods, the fields are usually NULL, and the VFS
replaces them with default functions. Here are the methods, in the order they appear in the
dentry_operations table.

d_revalidate(dentry)

Determines whether the dentry object is still valid before using it for translating a file
pathname. The default VFS function does nothing, although network filesystems may
specify their own functions.

d_hash(dentry, hash)

Creates a hash value; a filesystem-specific hash function for the dentry hash table. The
dentry parameter identifies the directory containing the component. The hash
parameter points to a structure containing both the pathname component to be looked
up and the value produced by the hash function.

d_compare(dir, name1, name2)

Compares two filenames; name1 should belong to the directory referenced by dir. The
default VFS function is a normal string match. However, each filesystem can
implement this method in its own way. For instance, MS-DOS does not distinguish
capital from lowercase letters.

d_delete(dentry)

Called when the last reference to a dentry object is deleted (d_count becomes 0). The
default VFS function does nothing.

d_release(dentry)

Called when a dentry object is going to be freed (released to the slab allocator). The
default VFS function does nothing.

d_iput(dentry, ino)

Called when a dentry object becomes "negative," that is, it loses its inode. The default
VFS function invokes iput() to release the inode object.

12.2.7 Files Associated with a Process

We mentioned in Section 1.5 in Chapter 1 that each process has its own current working
directory and its own root directory. This information is stored in an fs_struct kernel table,
whose address is contained in the fs field of the process descriptor.

Understanding the Linux Kernel

323

struct fs_struct {
 atomic_t count;
 int umask;
 struct dentry * root, * pwd;
};

The count field specifies the number of processes sharing the same fs_struct table (see
Section 3.3.1 in Chapter 3). The umask field is used by the umask() system call to set initial
file permissions on newly created files.

A second table, whose address is contained in the files field of the process descriptor,
specifies which files are currently opened by the process. It is a files_struct structure
whose fields are illustrated in Table 12-6. A process cannot have more than NR_OPEN (usually,
1024) file descriptors. It is possible to define a smaller, dynamic bound on the maximum
number of allowed open files by changing the rlim[RLIMIT_NOFILE] structure in the process
descriptor.

Table 12-6. The Fields of the files_struct Structure
Type Field Description
int count Number of processes sharing this table
int max_fds Current maximum number of file objects
int max_fdset Current maximum number of file descriptors
int next_fd Maximum file descriptors ever allocated plus 1
struct file ** fd Pointer to array of file object pointers
fd_set * close_on_exec Pointer to file descriptors to be closed on exec()
fd_set * open_fds Pointer to open file descriptors
fd_set close_on_exec_init Initial set of file descriptors to be closed on exec()
fd_set open_fds_init Initial set of file descriptors
struct file * fd_array[32] Initial array of file object pointers

The fd field points to an array of pointers to file objects. The size of the array is stored in the
max_fds field. Usually, fd points to the fd_array field of the files_struct structure, which
includes 32 file object pointers. If the process opens more than 32 files, the kernel allocates a
new, larger array of file pointers and stores its address in the fd fields; it also updates the
max_fds field.

For every file with an entry in the fd array, the array index is the file descriptor. Usually, the
first element (index 0) of the array is associated with the standard input of the process, the
second with the standard output, and the third with the standard error (see Figure 12-4). Unix
processes use the file descriptor as the main file identifier. Notice that, thanks to the dup(),
dup2(), and fcntl() system calls, two file descriptors may refer to the same opened file,
that is, two elements of the array could point to the same file object. Users see this all the time
when they use shell constructs like 2>&1 to redirect the standard error to the standard output.

The open_fds field contains the address of the open_fds_init field, which is a bitmap that
identifies the file descriptors of currently opened files. The max_fdset field stores the number
of bits in the bitmap. Since the fd_set data structure includes 1024 bits, there is usually no
need to expand the size of the bitmap. However, the kernel may dynamically expand the size
of the bitmap if this turns out to be necessary, much as in the case of the array of file objects.

Understanding the Linux Kernel

324

Figure 12-4. The fd array

The kernel provides an fget() function to be invoked when it starts using a file object. This
function receives as its parameter a file descriptor fd . It returns the address in current-
>files->fd[fd], that is, the address of the corresponding file object, or NULL if no file
corresponds to fd . In the first case, fget() increments by 1 the file object usage counter
f_count.

The kernel also provides an fput() function to be invoked when a kernel control path
finishes using a file object. This function receives as its parameter the address of a file object
and decrements its usage counter f_count. Moreover, if this field becomes null, the function
invokes the release method of the file operations (if defined), releases the associated dentry
object, decrements the i_writeaccess field in the inode object (if the file was opened for
writing), and finally moves the file object from the "in use" list to the "unused" one.

12.3 Filesystem Mounting

Now we'll focus on how the VFS keeps track of the filesystems it is supposed to support. Two
basic operations must be performed before making use of a filesystem: registration and
mounting.

Registration is done either when the system boots or when the module implementing the
filesystem is being loaded. Once a filesystem has been registered, its specific functions are
available to the kernel, so that kind of filesystem can be mounted on the system's directory
tree.

Each filesystem has its own root directory. The filesystem whose root directory is the root of
the system's directory tree is called root filesystem. Other filesystems can be mounted on the
system's directory tree: the directories on which they are inserted are called mount points.

12.3.1 Filesystem Registration

Often, the user configures Linux to recognize all the filesystems needed when compiling the
kernel for her system. But the code for a filesystem actually may either be included in the
kernel image or dynamically loaded as a module (see Appendix B). The VFS must keep track
of all filesystems whose code is currently included in the kernel. It does this by performing
filesystem registrations.

Understanding the Linux Kernel

325

Each registered filesystem is represented as a file_system_type object whose fields are
illustrated in Table 12-7. All filesystem-type objects are inserted into a simply linked list. The
file_systems variable points to the first item.

Table 12-7. The Fields of the file_system_type Object
Type Field Description
const char * name Filesystem name
int fs_flag Mount flags
struct super_block *(*)() read_super Method for reading superblock
struct file_system_type * next Pointer to next list element

During system initialization, the filesystem_setup() function is invoked to register the
filesystems specified at compile time. For each filesystem type, the register_filesystem(
) function is invoked with a parameter pointing to the proper file_system_type object,
which is thus inserted into the filesystem-type list.

The register_filesystem() is also invoked when a module implementing a filesystem is
loaded. In this case, the filesystem may also be unregistered (by invoking the
unregister_filesystem() function) when the module is unloaded.

The get_fs_type() function, which receives a filesystem name as its parameter, scans the
list of registered filesystems and returns a pointer to the corresponding file_system_type
object if it is present.

12.3.2 Mounting the Root Filesystem

Mounting the root filesystem is a crucial part of system initialization. While the system boots,
it finds the major number of the disk containing the root filesystem in the ROOT_DEV variable.
The root filesystem can be specified as a device file in the /dev directory either when
compiling the kernel or by passing a suitable option to the initial bootstrap loader. Similarly,
the mount flags of the root filesystem are stored in the root_mountflags variable. The user
specifies these flags either by using the /sbin/rdev external program on a compiled kernel
image or by passing suitable options to the initial bootstrap loader (see Appendix A).

During system initialization, right after the filesystem_setup() invocation, the
mount_root() function is executed. It performs the following operations (assuming that the
filesystem to be mounted is a disk-based one):[4]

[4] Diskless workstations can mount the root directory over a network-based filesystem such as NFS, but we don't describe how this is done.

1. Initializes a dummy, local file object filp. The f_mode field is set according to the
mount flags of the root, while all other fields are set to 0.

2. Creates a dummy inode object and initializes it by setting its i_rdev field to
ROOT_DEV.

3. Invokes the blkdev_open() function, passing the dummy inode and the file object.
As we shall see later in Chapter 13, the function checks whether the disk exists and is
properly working.

4. Releases the dummy inode object, which was needed just to verify the disk.
5. Scans the filesystem-type list. For each file_system_type object, invokes

read_super() to attempt to read the corresponding superblock. This function checks

Understanding the Linux Kernel

326

that the device is not already mounted and attempts to fill a superblock object by using
the method to which the read_super field of the file_system_type object points.
Since each filesystem-specific method uses unique magic numbers, all read_super(
) invocations will fail except the one that attempts to fill the superblock by using the
method of the filesystem really used on the root device. The read_super() method
also creates an inode object and a dentry object for the root directory; the dentry object
maps / to the inode object.

6. Sets the root and pwd fields of the fs_struct table of current (the init process) to
the dentry object of the root directory.

7. Invokes add_vfsmnt() to insert a first element into the list of mounted filesystems
(see next section).

12.3.3 Mounting a Generic Filesystem

Once the root filesystem has been initialized, additional filesystems may be mounted. Each of
them must have its own mount point, which is just an already existing directory in the
system's directory tree.

All mounted filesystems are included in a list, whose first element is referenced by the
vfsmntlist variable. Each element is a structure of type vfsmount, whose fields are shown
in Table 12-8.

Table 12-8. The Fields of the vfsmount Data Structure
Type Field Description
kdev_t mnt_dev Device number
char * mnt_devname Device name
char * mnt_dirname Mount point
unsigned int mnt_flags Device flags
struct super_block * mnt_sb Superblock pointer
struct quota_mount_options mnt_dquot Disk quota mount options
struct vfsmount * mnt_next Pointer to next list element

Three low-level functions are used to handle the list and are invoked by the service routines of
the mount() and umount() system calls. The add_vfsmnt() and remove_vfsmnt()
functions add and remove, respectively, an element in the list. The lookup_vfsmnt()
function searches a specific mounted filesystem and returns the address of the corresponding
vfsmount data structure.

The mount() system call is used to mount a filesystem; its sys_mount() service routine
acts on the following parameters:

• The pathname of a device file containing the filesystem or NULL if it is not required
(for instance, when the filesystem to be mounted is network-based)

• The pathname of the directory on which the filesystem will be mounted (the mount
point)

• The filesystem type, which must be the name of a registered filesystem
• The mount flags (permitted values are listed in Table 12-9)
• A pointer to a filesystem-dependent data structure (which may be NULL)

Understanding the Linux Kernel

327

Table 12-9. Filesystem Mounting Options
Macro Value Description
MS_MANDLOCK 0x040 Mandatory locking allowed.
MS_NOATIME 0x400 Do not update file access time.
MS_NODEV 0x004 Forbid access to device files.
MS_NODIRATIME 0x800 Do not update directory access time.
MS_NOEXEC 0x008 Disallow program execution.
MS_NOSUID 0x002 Ignore setuid and setgid flags.
MS_RDONLY 0x001 Files can only be read.
MS_REMOUNT 0x020 Remount the filesystem.
MS_SYNCHRONOUS 0x010 Write operations are immediate.
S_APPEND 0x100 Allow append-only file.
S_IMMUTABLE 0x200 Allow immutable file.
S_QUOTA 0x080 Initialize disk quota.

The sys_mount() function performs the following operations:

1. Checks whether the process has the required capability to mount a filesystem.
2. If the MS_REMOUNT option has been specified, invokes do_remount() to modify the

mount flags and terminate.
3. Otherwise, gets a pointer to the proper file_system_type object by invoking

get_fs_type().
4. If the filesystem to be mounted refers to a hardware device like /dev/hda1, checks

whether the device exists and is operational. This is done as follows:
a. Invokes namei() to get the dentry object of the corresponding device file (see

the section Section 12.4 later in this chapter).
b. Checks whether the inode associated with the device file refers to a valid block

device (see Section 13.2.1 in Chapter 13).
c. Initializes a dummy file object that refers to the device file, then opens the

device file by using the open method of the file operations. If this operation
succeeds, the device is operational.

5. If the filesystem to be mounted does not refer to a hardware device, gets a fictitious
block device with major number by invoking get_unnamed_dev().

6. Invokes do_mount(), passing the parameters dev (device number), dev_name (device
filename), dir_name (mount point), type (filesystem type), flags (mount flags), and
data (pointer to optional data area). This function mounts the required filesystem by
performing the following operations:

a. Invokes namei() to locate the dir_d dentry object corresponding to
dir_name; if it does not exist, creates it (see Figure 12-5 (a)).

b. Acquires the mount_sem semaphore, which is used to serialize the mounting
and unmounting operations.

c. Checks to make sure that dir_d->d_inode is the inode of a directory and that
the directory is not the root of a filesystem that is already mounted (dir_d-
>d_covers must be equal to dir_d).

d. Invokes read_super() to get the superblock object sb of the new filesystem.
(If the object does not exist, it is created and filled with information read from
the dev device.) The s_root field of the superblock object points to the dentry
object of the root directory of the filesystem to be mounted (see Figure 12-5
(b)).

Understanding the Linux Kernel

328

e. The previous operation could have suspended the current process; therefore,
checks that no other process is using the superblock and that no process has
already succeeded in mounting the same filesystem.

f. Invokes add_vfsmnt() in order to insert a new element in the list of mounted
filesystems.

g. Sets the d_mounts field of dir_d to the s_root field of the superblock, that is,
to the root directory of the mounted filesystem.

h. Sets the d_covers field of the dentry object of the root directory of the
mounted filesystem to dir_d (see Figure 12-5 (c)).

i. Releases the mount_sem semaphore.

Figure 12-5. Mounting a filesystem

Now, the dir_d dentry object of the mount point is linked through the d_mounts field to the
root directory dentry object of the mounted filesystem; this latter object is linked to the dir_d
dentry object through the d_covers field.

12.3.4 Unmounting a Filesystem

The umount() system call is used to unmount a filesystem. The corresponding sys_umount(
) service routine acts on two parameters: a filename (either a mount directory or a block
device file) and a set of flags. It performs the following actions:

1. Checks whether the process has the required capability to unmount the filesystem.
2. Invokes namei() on the filename to derive the dentry pointer to the associated

dentry object.

Understanding the Linux Kernel

329

3. If the filename refers to the mount point, derives the device identifier from dentry-
>d_inode->i_sb->s_dev. In other words, the function goes from the dentry object of
the mount point to the relative inode, then to the corresponding superblock, and finally
to the device identifier.

4. Otherwise, if the filename refers to the device file, derives the device identifier from
dentry->d_inode->i_rdev.

5. Invokes dput(dentry) to release the dentry object.
6. Flushes the buffers of the device (see Section 14.1 in Chapter 14).
7. Acquires the mount_sem semaphore.
8. Invokes do_umount(), which performs the following operations:

a. Invokes get_super() to get the pointer sb of the superblock of the mounted
filesystem.

b. Invokes shrink_dcache_sb() to remove the dentry objects that refer to the
dev device without disturbing other dentries. The dentry object of the root
directory of the mounted filesystem will not be removed, since it is still used
by the process doing the unmount.

c. Invokes fsync_dev() to force all "dirty" buffers that refer to the dev device
to be written to disk.

d. If dev is the root device (dev == ROOT_DEV), it cannot be unmounted. If it has
not been already remounted, remounts it with the MS_RDONLY flag set and
returns.

e. Checks whether the usage counter of the dentry object corresponding to the
root directory of the filesystem to be unmounted is greater than 1. If so, some
process is accessing a file in the filesystem, so returns an error code.

f. Decrements the usage counter of sb->s_root->d_covers (the dentry object of
the mount point directory).

g. Sets sb->s_root->d_covers->d_mounts to sb->s_root->d_covers. This
removes the link from the inode of the mount point to the inode of the root
directory of the filesystem.

h. Releases the dentry object to which sb->s_root (the root directory of the
previously mounted filesystem) points and sets sb->s_root to NULL.

i. If the superblock has been modified and the write_super superblock's method
is defined, executes it.

j. If defined, invokes the put_super() method of the superblock.
k. Sets sb->s_dev to 0.
l. Invokes remove_vfsmnt() to remove the proper element from the list of

mounted filesystems.
9. Invokes fsync_dev() to force a write to disk for all remaining "dirty" buffers that

refer to the dev device (presumably, the buffers containing the superblock
information), then invokes the release() method of the device file operations.

10. Releases the mount_sem semaphore.

12.4 Pathname Lookup

We illustrate in this section how the VFS derives an inode from the corresponding file
pathname. When a process must identify a file, it passes its file pathname to some VFS
system call, such as open(), mkdir(), rename(), stat(), and so on.

Understanding the Linux Kernel

330

The standard procedure for performing this task consists of analyzing the pathname and
breaking it into a sequence of filenames. All filenames except the last must identify
directories.

If the first character of the pathname is /, the pathname is absolute, and the search starts from
the directory identified by current->fs->root (the process root directory). Otherwise, the
pathname is relative, and the search starts from the directory identified by current->fs->pwd
(the process current directory).

Having in hand the inode of the initial directory, the code examines the entry matching the
first name to derive the corresponding inode. Then the directory file having that inode is read
from disk and the entry matching the second name is examined to derive the corresponding
inode. This procedure is repeated for each name included in the path.

The dentry cache considerably speeds up the procedure, since it keeps the most recently used
dentry objects in memory. As we have seen before, each such object associates a filename in a
specific directory to its corresponding inode. In many cases, therefore, the analysis of the
pathname can avoid reading the intermediate directories from the disk.

However, things are not as simple as they look, since the following Unix and VFS filesystem
features must be taken into consideration:

• The access rights of each directory must be checked to verify whether the process is
allowed to read the directory's content.

• A filename can be a symbolic link that corresponds to an arbitrary pathname: in that
case, the analysis must be extended to all components of that pathname.

• Symbolic links may induce circular references: the kernel must take this possibility
into account and break endless loops when they occur.

• A filename can be the mount point of a mounted filesystem: this situation must be
detected, and the lookup operation must continue into the new filesystem.

The namei() and lnamei() functions derive an inode from a pathname. The difference
between them is that namei() follows a symbolic link if it appears as the last component in a
pathname without trailing slashes, while lnamei() does not. Both functions delegate the
heavy work by invoking the lookup_dentry() function, which acts on three parameters:
name points to a file pathname, base points to the dentry object of the directory from which to
start searching, and lookup_flags is a bit array that includes the following flags:

LOOKUP_FOLLOW

If the last component of the pathname is a symbolic link, interpret (follow) it. This flag
is set when lookup_dentry() is invoked by namei() and cleared when it is
invoked by lnamei().

LOOKUP_DIRECTORY

The last component of the pathname must be a directory.

Understanding the Linux Kernel

331

LOOKUP_SLASHOK

A trailing / in the pathname is allowed even if the last filename does not exist.

LOOKUP_CONTINUE

There are still filenames to be examined in the pathname. This flag is used internally
by lookup_dentry().

The lookup_dentry() function is recursive, since it may end up invoking itself. Therefore,
name could represent the still unresolved trailing portion of a complete pathname. In this case,
base points to the dentry object of the last resolved pathname component. lookup_dentry(
) executes the following actions:

1. Examines both the first character of name and the value of base to identify the
directory from which the search should start. Three cases can occur.

o The first character of name is /: the pathname is an absolute pathname, thus
base is set to current->fs->root.

o The first character of name is different from "/" and base is NULL: the
pathname is a relative pathname and base is set to current->fs->pwd.

o The first character of name is different from "/" and base is not NULL: the
pathname is a relative pathname and base is left unchanged. (This case should
occur only when lookup_dentry() is recursively invoked.)

2. Gets the inode of the initial directory from base->d_inode.
3. Clears the LOOKUP_CONTINUE, LOOKUP_DIRECTORY, and LOOKUP_SLASHOK flags in

lookup_flags.
4. Iteratively repeats the following procedure on each filename included in the path. If an

error condition is encountered, exits from the cycle and returns a NULL dentry pointer,
else returns the dentry pointer corresponding to the file pathname. At the start of each
iteration, name points to the next filename to be examined and base points to the
dentry object of the current directory.

a. Checks whether the process is allowed to access the base directory (if defined,
uses the permission method of inode).

b. Computes a hash value from the first component name in name to be used in
searching for the corresponding entry in the dentry cache. Moreover, if the
base directory is in a filesystem that has its own d_hash() dentry hashing
method, invokes base->d_op->d_hash() to compute the hash value based
on the directory, the component name, and the previous hash value.

c. Updates name so that it points to the first character of the next component name
(if any), skipping any "/" separator.

d. Sets the flag local variable to the value previously set in lookup_flags.
Additionally, if the currently resolved component was followed by a trailing /,
sets the LOOKUP_DIRECTORY flag (requiring a check on whether the component
is a directory) and the LOOKUP_FOLLOW flag (interprets the component even if it
is a symbolic link). Moreover, if there is a non-null component after the
component currently resolved, sets the LOOKUP_CONTINUE flag.

e. Invokes reserved_lookup() to perform the following actions:
a. If the first component name is a single period (.), sets the dentry local

variable to base.

Understanding the Linux Kernel

332

b. If the first component name is a double period (..) and base is equal to
current->fs->root, sets the dentry local variable to base (because
the process is already in its root directory).

c. If the first component name is a double period (..) and base is not
equal to current->fs->root, sets the dentry local variable to base-
>d_covers->d_parent. Usually, d_covers points to base itself and
dentry is set to the directory that includes base; however, if the base
directory is the root of a mounted filesystem, the d_covers field points
to the inode of the mount point and dentry is set to the directory that
includes the mount point.

If the first component name is neither (.) nor (..) invokes
cached_lookup(), passing as parameters base and the hash number
previously derived. If the dentry hash table includes the required object,
returns its address in dentry.

If the required dentry object is not in the dentry cache, invokes
real_lookup() to read the directory from disk and creates a new
dentry object. This function, which acts on the base and name
parameters, performs the following steps:

d. Gets the i_sem semaphore of the directory inode.
e. Reexecutes cached_lookup(), since the required dentry object could

have been inserted in the cache while the process was waiting for the
directory semaphore.

f. We assume that the previous attempt failed. Invokes d_alloc() to
allocate a new dentry object.

g. Invokes the lookup method of the inode associated with the base
directory to find the directory entry containing the required name and
fills the new dentry object. This method is filesystem-dependent. We'll
describe its Ext2 implementation in Chapter 17.

h. Releases the i_sem semaphore of the directory inode.
i. Returns the address of the new object in dentry or an error code if the

entry was not found.
f. Invokes follow_mount() to check whether the d_mounts field of dentry has

the same value as dentry. If not, dentry is the mount point of a filesystem. In
this case, the old dentry object is replaced by the one having the address in
dentry->d_mounts.

g. Invokes do_follow_link() to check whether name is a symbolic link. This
function receives as its parameters base, dentry, and flags and executes the
following steps:

a. If the LOOKUP_FOLLOW flag is not set, returns immediately. Since the
flag is set by lnamei(), this ensures that lnamei() does not follow a
symbolic link if it appears as the last component in a pathname without
trailing slashes.

b. Checks whether dentry->d_inode contains the follow_link method.
If not, the inode is not a symbolic link, so the function returns the
dentry input parameter.

Understanding the Linux Kernel

333

c. Invokes the follow_link inode method. This filesystem-dependent
function reads the pathname associated with the symbolic link from the
disk and recursively invokes lookup_dentry() to resolve it. The
function then returns a pointer to the dentry object referred by the
symbolic link (we shall describe in Chapter 17 how symbolic links are
handled by Ext2).

Since lookup_dentry() invokes do_follow_link(), which may in
turn invoke the follow_link inode method, which invokes, in turn,
lookup_dentry(), recursive cycles of function calls may be created.
The link_count field of current is used to avoid endless recursive
calls due to circular references inside the symbolic links. This field is
incremented before each recursive execution of follow_link() and
decremented right after. If it reaches the value 5, do_follow_link()
terminates with an error code. Therefore, while there is no limit on the
number of symbolic links in a pathname, the level of nesting of
symbolic links can be at most five.

h. If everything went smoothly, base now points to the dentry object associated
to the currently resolved component, so sets inode to base->d_inode.

i. If the LOOKUP_DIRECTORY flag of flag is not set, the currently resolved
component is the last one in the file pathname, so returns the address in base.
Note that base could point to a negative dentry object; that is, there might be
no associated inode. This is fine for the lookup operation, since the last
component must not be followed.

j. Otherwise, if LOOKUP_DIRECTORY is set, there is a slash after the currently
resolved component. There are two cases to consider:

 inode points to a valid inode object. In this case, checks that it is a
directory by seeing whether the lookup method of the inode operations
is defined; if not, returns an error code. Then either starts a new cycle
iteration if the LOOKUP_CONTINUE flag in flags is set (meaning that the
currently resolved component is not the last one) or returns the address
in base (meaning that the component is the last one, even if it is
followed by a trailing slash).

 inode is NULL (meaning that base points to a negative dentry object).
Returns base only if LOOKUP_CONTINUE is cleared and
LOOKUP_SLASHOK is set; otherwise, returns an error code. Since a
negative dentry object represents a file that was removed, it must not
appear in the middle of a pathname lookup (which happens when
LOOKUP_CONTINUE is set). Moreover, a negative dentry object must not
appear as the last component in the pathname when a trailing slash is
present, unless explicitly allowed by setting LOOKUP_SLASHOK.

12.5 Implementations of VFS System Calls

For the sake of brevity, we cannot discuss the implementation of all VFS system calls listed in
Table 12-1. However, it could be useful to sketch out the implementation of a few system
calls, just to show how VFS's data structures interact.

Understanding the Linux Kernel

334

Let us reconsider the example proposed at the beginning of this chapter: a user issues a shell
command that copies an MS-DOS file /floppy/TEST in an Ext2 file /tmp/test. The command
shell invokes an external program like cp, which we assume executes the following code
fragment:

inf = open("/floppy/TEST", O_RDONLY, 0);
outf = open("/tmp/test", O_WRONLY | O_CREAT | O_TRUNC, 0600);
do {
 l = read(inf, buf, 4096);
 write(outf, buf, l);
} while (l);
close(outf);
close(inf);

Actually, the code of the real cp program is more complicated, since it must also check for
possible error codes returned by each system call. In our example, we just focus our attention
on the "normal" behavior of a copy operation.

12.5.1 The open() System Call

The open() system call is serviced by the sys_open() function, which receives as
parameters the pathname filename of the file to be opened, some access mode flags flags,
and a permission bit mask mode if the file must be created. If the system call succeeds, it
returns a file descriptor, that is, the index in the current->files->fd array of pointers to file
objects; otherwise, it returns -1.

In our example, open() is invoked twice: the first time to open /floppy/TEST for reading
(O_RDONLY flag) and the second time to open /tmp/test for writing (O_WRONLY flag). If
/tmp/test does not already exist, it will be created (O_CREAT flag) with exclusive read and
write access for the owner (octal 0600 number in the third parameter).

Conversely, if the file already exists, it will be rewritten from scratch (O_TRUNC flag).
Table 12-10 lists all flags of the open() system call.

Understanding the Linux Kernel

335

Table 12-10. The Flags of the open() System Call
Flag Name Description
FASYNC Asynchronous I/O notification via signals
O_APPEND Write always at end of the file
O_CREAT Create the file if it does not exist
O_DIRECTORY Fail if file is not a directory
O_EXCL With O_CREAT, fail if the file already exists
O_LARGEFILE Large file (size greater than 2 GB)
O_NDELAY Same as O_NONBLOCK
O_NOCTTY Never consider the file as a controlling terminal
O_NOFOLLOW Do not follow a trailing symbolic link in pathname
O_NONBLOCK No system calls will block on the file
O_RDONLY Open for reading
O_RDWR Open for both reading and writing
O_SYNC Synchronous write (block until physical write terminates)
O_TRUNC Truncate the file
O_WRONLY Open for writing

Let us describe the operation of the sys_open() function. It performs the following:

1. Invokes getname() to read the file pathname from the process address space.
2. Invokes get_unused_fd() to find an empty slot in current->files->fd. The

corresponding index (the new file descriptor) is stored in the fd local variable.
3. Invokes the filp_open() function, passing as parameters the pathname, the access

mode flags, and the permission bit mask. This function, in turn, executes the following
steps:

a. Invokes get_empty_filp() to get a new file object.
b. Sets the f_flags and f_mode fields of the file object according to the values of

the flags and modes parameters.
c. Invokes open_namei(), which executes the following operations:

a. Invokes lookup_dentry() to interpret the file pathname and gets the
dentry object associated with the requested file.

b. Performs a series of checks to verify whether the process is permitted
to open the file as specified by the values of the flags parameter. If so,
returns the address of the dentry object; otherwise, returns an error
code.

d. If the access is for writing, checks the value of the i_writecount field of the
inode object. A negative value means that the file has been memory-mapped,
specifying that write accesses must be denied (see the section Section 15.2 in
Chapter 15). In this case, returns an error code. Any other value specifies the
number of processes that are actually writing into the file. In the latter case,
increments the counter.

e. Initializes the fields of the file object; in particular, sets the f_op field to the
contents of the i_op->default_file_ops field of the inode object. This sets
up all the right functions for future file operations.

f. If the open method of the (default) file operations is defined, invokes it.
g. Clears the O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC flags in f_flags.
h. Returns the address of the file object.

4. Sets current->files->fd[fd] to the address of the file object.

Understanding the Linux Kernel

336

5. Returns fd .

12.5.2 The read() and write() System Calls

Let's return to the code in our cp example. The open() system calls return two file
descriptors, which are stored in the inf and outf variables. Then the program starts a loop: at
each iteration, a portion of the /floppy/TEST file is copied into a local buffer (read() system
call), and then the data in the local buffer is written into the /tmp/test file (write() system
call).

The read() and write() system calls are quite similar. Both require three parameters: a
file descriptor fd, the address buf of a memory area (the buffer containing the data to be
transferred), and a number count that specifies how many bytes should be transferred. Of
course, read() will transfer the data from the file into the buffer, while write() will do
the opposite. Both system calls return the number of bytes that were successfully transferred
or -1 to signal an error condition.[5]

[5] A return value less than count does not mean that an error occurred. The kernel is always allowed to terminate the system call even if not all
requested bytes were transferred, and the user application must accordingly check the return value and reissue, if necessary, the system call. Typically,
a small value is returned when reading from a pipe or a terminal device, when reading past the end of the file, or when the system call is interrupted by
a signal. The End-Of-File condition (EOF) can easily be recognized by a null return value from read(). This condition will not be confused
with an abnormal termination due to a signal, because if read()is interrupted by a signal before any data was read, an error occurs.

The read or write operation always takes place at the file offset specified by the current file
pointer (field f_pos of the file object). Both system calls update the file pointer by adding the
number of transferred bytes to it.

In short, both sys_read() (the read()'s service routine) and sys_write() (the write(
)'s service routine) perform almost the same steps:

1. Invokes fget() to derive from fd the address file of the corresponding file object
and increments the usage counter file->f_count.

2. Checks whether the flags in file->f_mode allow the requested access (read or write
operation).

3. Invokes locks_verify_area() to check whether there are mandatory locks for the
file portion to be accessed (see Section 12.6 later in this chapter).

4. If executing a write operation, acquires the i_sem semaphore included in the inode
object. This semaphore forbids a process to write into the file while another process is
flushing to disk buffers relative to the same file (see Section 14.1.5 in Chapter 14). It
also forbids two processes to write into the same file at the same time. Notice that,
unless the O_APPEND flag is set, POSIX does not require serialized file accesses: if a
programmer wants exclusive access to a file, he must use a file lock (see next section).
Thus, it is possible that a process is reading from a file while another process is
writing to it.

5. Invokes either file->f_op->read or file->f_op->write to transfer the data. Both
functions return the number of bytes that were actually transferred. As a side effect,
the file pointer is properly updated.

6. Invokes fput() to decrement the usage counter file->f_count.
7. Returns the number of bytes actually transferred.

Understanding the Linux Kernel

337

12.5.3 The close() System Call

The loop in our example code terminates when the read() system call returns the value 0,
that is, when all bytes of /floppy/TEST have been copied into /tmp/test. The program can then
close the open files, since the copy operation has been completed.

The close() system call receives as its parameter fd the file descriptor of the file to be
closed. The sys_close() service routine performs the following operations:

1. Gets the file object address stored in current->files->fd[fd]; if it is NULL, returns
an error code.

2. Sets current->files->fd[fd] to NULL. Releases the file descriptor fd by clearing
the corresponding bits in the open_fds and close_on_exec fields of current-
>files (see Chapter 19, for the Close on Execution flag).

3. Invokes filp_close(), which performs the following operations:
a. Invokes the flush method of the file operations, if defined
b. Releases any mandatory lock on the file
c. Invokes fput() to release the file object

4. Returns the error code of the flush method (usually 0).

12.6 File Locking

When a file can be accessed by more than one process, a synchronization problem occurs:
what happens if two processes try to write in the same file location? Or again, what happens if
a process reads from a file location while another process is writing into it?

In traditional Unix systems, concurrent accesses to the same file location produce
unpredictable results. However, the systems provide a mechanism that allows the processes to
lock a file region so that concurrent accesses may be easily avoided.

The POSIX standard requires a file-locking mechanism based on the fcntl() system call. It
is possible to lock an arbitrary region of a file (even a single byte) or to lock the whole file
(including data appended in the future). Since a process can choose to lock just a part of a file,
it can also hold multiple locks on different parts of the file.

This kind of lock does not keep out another process that is ignorant of locking. Like a critical
region in code, the lock is considered "advisory" because it doesn't work unless other
processes cooperate in checking the existence of a lock before accessing the file. Therefore,
POSIX's locks are known as advisory locks .

Traditional BSD variants implement advisory locking through the flock() system call. This
call does not allow a process to lock a file region, just the whole file.

Understanding the Linux Kernel

338

Traditional System V variants provide the lockf() system call, which is just an interface to
fcntl(). More importantly, System V Release 3 introduced mandatory locking: the kernel
checks that every invocation of the open(), read(), and write() system calls does not
violate a mandatory lock on the file being accessed. Therefore, mandatory locks are enforced
even between noncooperative processes.[6] A file is marked as a candidate for mandatory
locking by setting its set-group bit (SGID) and clearing the group-execute permission bit.
Since the set-group bit makes no sense when the group-execute bit is off, the kernel interprets
that combination as a hint to use mandatory locks instead of advisory ones.

[6] Oddly enough, a process may still unlink (delete) a file even if some other process owns a mandatory lock on it! This perplexing situation is
possible because, when a process deletes a file hard link, it does not modify its contents but only the contents of its parent directory.

Whether processes use advisory or mandatory locks, they can make use of both shared read
locks and exclusive write locks. Any number of processes may have read locks on some file
region, but only one process can have a write lock on it at the same time. Moreover, it is not
possible to get a write lock when another process owns a read lock for the same file region
and vice versa (see Table 12-11).

Table 12-11. Whether a Lock Is Granted
 Requested Lock Requested Lock
Current Locks Read Write
No lock Yes Yes
Read locks Yes No
Write lock No No

12.6.1 Linux File Locking

Linux supports all fashions of file locking: advisory and mandatory locks and the fcntl(),
flock(), and the lockf() system calls. However, the lockf() system call is just a
library wrapper routine, and therefore will not be discussed here.

Mandatory locks can be enabled and disabled on a per-filesystem basis using the
MS_MANDLOCK flag of the mount() system call. The default is to switch off mandatory
locking: in this case, both flock() and fcntl() create advisory locks. When the flag is
set, flock() still produces advisory locks, while fcntl() produces mandatory locks if the
file has the set-group bit on and the group-execute bit off; it produces advisory locks
otherwise.

Beside the checks in the read() and write() system calls, the kernel takes into
consideration the existence of mandatory locks when servicing all system calls that could
modify the contents of a file. For instance, an open() system call with the O_TRUNC flag set
fails if any mandatory lock exists for the file.

A lock produced by fcntl() is of type FL_POSIX, while a lock produced by flock() is of
type FL_LOCK. These two types of locks may safely coexist, but neither one has any effect on
the other. Therefore, a file locked through fcntl() does not appear locked to flock() and
vice versa.

An FL_POSIX lock is always associated with a process and with an inode; the lock is
automatically released either when the process dies or when a file descriptor is closed (even if

Understanding the Linux Kernel

339

the process opened the same file twice or duplicated a file descriptor). Moreover, FL_POSIX
locks are never inherited by the child across a fork().

An FL_LOCK lock is always associated with a file object. When a lock is requested, the kernel
replaces any other lock that refers to the same file object. This happens only when a process
wants to change an already owned read lock into a write one or vice versa. Moreover, when a
file object is being freed by the fput() function, all FL_LOCK locks that refer to the file
object are destroyed. However, there could be other FL_LOCK read locks set by other processes
for the same file (inode), and they still remain active.

12.6.2 File-Locking Data Structures

The file_lock data structure represents file locks; its fields are shown in Table 12-12. All
file_lock data structures are included in a doubly linked list. The address of the first
element is stored in file_lock_table, while the fields fl_nextlink and fl_prevlink store
the addresses of the adjacent elements in the list.

Table 12-12. The Fields of the file_lock Data Structure
Type Field Description
struct file_lock * fl_next Next element in inode list
struct file_lock * fl_nextlink Next element in global list
struct file_lock * fl_prevlink Previous element in global list
struct file_lock * fl_nextblock Next element in process list
struct file_lock * fl_prevblock Previous element in process list
struct files_struct * fl_owner Owner's files_struct
unsigned int fl_pid PID of the process owner
struct wait_queue * fl_wait Wait queue of blocked processes
struct file * fl_file Pointer to file object
unsigned char fl_flags Lock flags
unsigned char fl_type Lock type
off_t fl_start Starting offset of locked region
off_t fl_end Ending offset of locked region
void (*)(struct file_lock *) fl_notify Callback function when lock is unblocked
union u Filesystem-specific information

All lock_file structures that refer to the same file on disk are collected in a simply linked
list, whose first element is pointed to by the i_flock field of the inode object. The fl_next
field of the lock_file structure specifies the next element in the list.

When a process tries to get an advisory or mandatory lock, it may be suspended until the
previously allocated lock on the same file region is released. All processes sleeping on some
lock are inserted into a wait queue, whose address is stored in the fl_wait field of the
file_lock structure. Moreover, all processes sleeping on any file locks are inserted into a
global circular list implemented by means of the fl_nextblock and fl_prevblock fields.

The following sections examine the differences between the two lock types.

Understanding the Linux Kernel

340

12.6.3 FL_LOCK Locks

The flock() system call acts on two parameters: the fd file descriptor of the file to be acted
upon and a cmd parameter that specifies the lock operation. A cmd parameter of LOCK_SH
requires a shared lock for reading, LOCK_EX requires an exclusive lock for writing, and
LOCK_UN releases the lock. If the LOCK_NB value is ORed to the LOCK_SH or LOCK_EX
operation, the system call does not block; in other words, if the lock cannot be immediately
obtained, the system call returns an error code. Note that it is not possible to specify a region
inside the file: the lock always applies to the whole file.

When the sys_flock() service routine is invoked, it performs the following steps:

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets the
address of the corresponding file object.

2. Invokes flock_make_lock() to initialize a file_lock structure by setting the
fl_flags field to FL_LOCK; sets the fl_type field to F_RDLCK, F_WRLCK, or F_UNLCK,
depending on the value of cmd, and sets the fl_file field to the address of the file
object.

3. If the lock must be acquired, checks that the process has both read and write
permission on the open file; if not, returns an error code.

4. Invokes flock_lock_file(), passing as parameters the file object pointer filp, a
pointer caller to the initialized file_lock structure, and a flag wait. This last
parameter is set if the system call should block and cleared otherwise. This function
performs, in turn, the following actions:

a. Searches the list that filp->f_dentry->d_inode->i_flock points to. If an
FL_LOCK lock for the same file object is found and an F_UNLCK operation is
required, removes the file_lock element from the inode list and the global
list, wakes up all processes sleeping in the lock's wait queue, frees the
file_lock structure, and returns.

b. Otherwise, searches the inode list again to verify that no existing FL_LOCK lock
conflicts with the requested one. There must be no FL_LOCK write lock in the
inode list, and moreover there must be no FL_LOCK lock at all if the processing
is requesting a write lock. However, a process may want to change the type of
a lock it already owns; this is done by issuing a second flock() system call.
Therefore, the kernel always allows the process to change locks that refer to
the same file object. If a conflicting lock is found and the LOCK_NB flag was
specified, returns an error code, otherwise inserts the current process in the
circular list of blocked processes and invokes interruptible_sleep_on()
to suspend it.

c. Otherwise, if no incompatibility exists, inserts the file_lock structure into the
global lock list and the inode list, then returns (success).

12.6.4 FL_POSIX Locks

When used to lock files, the fcntl() system call acts on three parameters: the fd file
descriptor of the file to be acted upon, a cmd parameter that specifies the lock operation, and
an fl pointer to a flock structure.

Understanding the Linux Kernel

341

Locks of type FL_POSIX are able to protect an arbitrary file region, even a single byte. The
region is specified by three fields of the flock structure. l_start is the initial offset of the
region and is relative to the beginning of the file (if field l_whence is set to SEEK_SET), to the
current file pointer (if l_whence is set to SEEK_CUR), or to the end of the file (if l_whence is
set to SEEK_END). The l_len field specifies the length of the file region (or 0, which means
that the region extends beyond the end of the file).

The sys_fcntl() service routine behaves differently depending on the value of the flag set
in the cmd parameter:

F_GETLK

Determines whether the lock described by the flock structure conflicts with some
FL_POSIX lock already obtained by another process. In that case, the flock structure is
overwritten with the information about the existing lock.

F_SETLK

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call returns an error code.

F_SETLKW

Sets the lock described by the flock structure. If the lock cannot be acquired, the
system call blocks; that is, the calling process is put to sleep.

When sys_fcntl() acquires a lock, it performs the following:

1. Reads the flock structure from user space.
2. Gets the file object corresponding to fd.
3. Checks whether the lock should be a mandatory one. In that case, returns an error code

if the file has a shared memory mapping (see Section 15.2 in Chapter 15).
4. Invokes the posix_make_lock() function to initialize a new file_lock structure.
5. Returns an error code if the file does not allow the access mode specified by the type

of the requested lock.
6. Invokes the lock method of the file operations, if defined.
7. Invokes the posix_lock_file() function, which executes the following actions:

a. Invokes posix_locks_conflict() for each FL_POSIX lock in the inode's
lock list. The function checks whether the lock conflicts with the requested
one. Essentially, there must be no FL_POSIX write lock for the same region in
the inode list, and there may be no FL_POSIX lock at all for the same region if
the process is requesting a write lock. However, locks owned by the same
process never conflict; this allows a process to change the characteristics of a
lock it already owns.

b. If a conflicting lock is found and fcntl() was invoked with the F_SETLK
flag, returns an error code. Otherwise, the current process should be suspended.
In this case, invokes posix_locks_deadlock() to check that no deadlock
condition is being created among processes waiting for FL_POSIX locks, then

Understanding the Linux Kernel

342

inserts the current process in the circular list of blocked processes and invokes
interruptible_sleep_on() to suspend it.

c. As soon as the inode's lock list includes no conflicting lock, checks all the
FL_POSIX locks of the current process that overlap the file region that the
current process wants to lock and combines and splits adjacent areas as
required. For example, if the process requested a write lock for a file region
that falls inside a read-locked wider region, the previous read lock is split into
two parts covering the nonoverlapping areas, while the central region is
protected by the new write lock. In case of overlaps, newer locks always
replace older ones.

d. Inserts the new file_lock structure in the global lock list and in the inode list.
8. Returns the value 0 (success).

12.7 Anticipating Linux 2.4

The Linux 2.4 VFS handles eight new filesystems, among them the udf for handling DVD
devices. The maximum file size has been considerably increased (at least from the VFS point
of view) by expanding the i_size field of the inode from 32 to 64 bits.

Additional access types can now be specified when opening a file: one refers to "raw" write
requests that do not make use of the buffer cache.

Understanding the Linux Kernel

343

Chapter 13. Managing I/O Devices
The Virtual File System in the last chapter depends on lower-level functions to carry out each
read, write, or other operation in a manner suited to each device. The previous chapter
included a brief discussion of how operations are handled by different filesystems. In this
chapter, we'll look at how the kernel invokes the operations on actual devices.

In Section 13.1 we give a brief survey of the Intel 80x86 I/O architecture. In Section 13.2 we
show how the VFS associates a "device file" with each different hardware device so that
application programs can use all kinds of devices in the same way. Most of the chapter
focuses on the two types of drivers, character and block.

The aim of this chapter is to illustrate the overall organization of device drivers in Linux.
Readers interested in developing device drivers on their own may want to refer to Alessandro
Rubini's Linux Device Drivers book from O'Reilly.

13.1 I/O Architecture

In order to make a computer work properly, data paths must be provided that let information
flow between CPU(s), RAM, and the score of I/O devices that can be connected nowadays to
a personal computer. These data paths, which are denoted collectively as the bus, act as the
primary communication channel inside the computer.

Several types of buses, such as the ISA, EISA, PCI, and MCA, are currently in use. In this
section we'll discuss the functional characteristics common to all PC architectures, without
giving details about a specific bus type.

In fact, what is commonly denoted as bus consists of three specialized buses:

Data bus

A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data bus.

Address bus

A group of lines that transmits an address in parallel. The Pentium has a 32-bit-wide
address bus.

Control bus

A group of lines that transmits control information to the connected circuits. The
Pentium makes use of control lines to specify, for instance, whether the bus is used to
allow data transfers between a processor and the RAM or alternatively between a
processor and an I/O device. Control lines also determine whether a read or a write
transfer must be performed.

When the bus connects the CPU to an I/O device, it is called an I/O bus. In this case, Intel
80x86 microprocessors use 16 out of the 32 address lines to address I/O devices and 8, 16, or
32 out of the 64 data lines to transfer data. The I/O bus, in turn, is connected to each I/O

Understanding the Linux Kernel

344

device by means of a hierarchy of hardware components including up to three elements: I/O
ports, interfaces, and device controllers. Figure 13-1 shows the components of the I/O
architecture.

Figure 13-1. PC's I/O architecture

13.1.1 I/O Ports

Each device connected to the I/O bus has its own set of I/O addresses, which are usually
called I/O ports. In the IBM PC architecture, the I/O address space provides up to 65,536 8-bit
I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, which must
start on an even address. Similarly, two consecutive 16-bit ports may be regarded as a single
32-bit port, which must start on an address that is a multiple of 4. Four special assembly
language instructions called in, ins, out, and outs allow the CPU to read from and write into
an I/O port. While executing one of these instructions, the CPU makes use of the address bus
to select the required I/O port and of the data bus to transfer data between a CPU register and
the port.

I/O ports may also be mapped into addresses of the physical address space: the processor is
then able to communicate with an I/O device by issuing assembly language instructions that
operate directly on memory (for instance, mov, and, or, and so on). Modern hardware devices
tend to prefer mapped I/O, since it is faster and can be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O
programming without sacrificing performance. Toward that end, the I/O ports of each device
are structured into a set of specialized registers as shown in Figure 13-2. The CPU writes into
the control register the commands to be sent to the device and reads from the status register a
value that represents the internal state of the device. The CPU also fetches data from the
device by reading bytes from the input register and pushes data to the device by writing bytes
into the output register.

Understanding the Linux Kernel

345

Figure 13-2. Specialized I/O ports

In order to lower costs, the same I/O port is often used for different purposes. For instance,
some bits describe the device state, while others specify the command to be issued to the
device. Similarly, the same I/O port may be used as an input register or an output register.

13.1.2 I/O Interfaces

An I/O interface is a hardware circuit inserted between a group of I/O ports and the
corresponding device controller. It acts as an interpreter that translates the values in the I/O
ports into commands and data for the device. In the opposite direction, it detects changes in
the device state and correspondingly updates the I/O port that plays the role of status register.
This circuit can also be connected through an IRQ line to a Programmable Interrupt
Controller, so that it issues interrupt requests on behalf of the device.

There are two types of interfaces:

Custom I/O interfaces

Devoted to one specific hardware device. In some cases, the device controller is
located in the same card [1] that contains the I/O interface. The devices attached to a
custom I/O interface can be either internal devices (devices located inside the PC's
cabinet) or external devices (devices located outside the PC's cabinet).

[1] Each card must be inserted in one of the available free bus slots of the PC. If the card can be connected to an external device
through an external cable, the card sports a suitable connector in the rear panel of the PC.

General-purpose I/O interfaces

Used to connect several different hardware devices. Devices attached to a general-
purpose I/O interface are always external devices.

13.1.2.1 Custom I/O interfaces

Just to give an idea of how much variety is encompassed by custom I/O interfaces, thus by the
devices currently installed in a PC, we'll list some of the most commonly found:

Keyboard interface

Connected to a keyboard controller that includes a dedicated microprocessor. This
microprocessor decodes the combination of pressed keys, generates an interrupt, and
puts the corresponding scan code in an input register.

Understanding the Linux Kernel

346

Graphic interface

Packed together with the corresponding controller in a graphic card that has its own
frame buffer, as well as a specialized processor and some code stored in a Read-Only
Memory chip (ROM). The frame buffer is an on-board memory containing the
graphics description of the current screen contents.

Disk interface

Connected by a cable to the disk controller, which is usually integrated with the disk.
For instance, the IDE interface is connected by a 40-wire flat conductor cable to an
intelligent disk controller that can be found on the disk itself.

Bus mouse interface

The corresponding controller is included in the mouse, which is connected via a cable
to the interface.

Network interface

Packed together with the corresponding controller in a network card used to receive or
transmit network packets. Although there are several widely adopted network
standards, Ethernet is the most common.

13.1.2.2 General-purpose I/O interfaces

Modern PCs include several general-purpose I/O interfaces, which are used to connect a wide
range of external devices. The most common interfaces are:

Parallel port

Traditionally used to connect printers, it can also be used to connect removable disks,
scanners, backup units, other computers, and so on. The data is transferred 1 byte (8
bits) at the time.

Serial port

Like the parallel port, but the data is transferred 1 bit at a time. It includes a Universal
Asynchronous Receiver and Transmitter (UART) chip to string out the bytes to be sent
into a sequence of bits and to reassemble the received bits into bytes. Since it is
intrinsically slower than the parallel port, this interface is mainly used to connect
external devices that do not operate at a high speed, like modems, mouses, and
printers.

Universal serial bus (USB)

A recent general-purpose I/O interface that is quickly gaining in popularity. It operates
at a high speed, and it may be used for the external devices traditionally connected to
the parallel port and the serial port.

Understanding the Linux Kernel

347

PCMCIA interface

Included mostly on portable computers. The external device, which has the shape of a
credit card, can be inserted into and removed from a slot without rebooting the system.
The most common PCMCIA devices are hard disks, modems, network cards, and
RAM expansions.

SCSI (Small Computer System Interface) interface

A circuit that connects the main PC bus to a secondary bus called the SCSI bus. The
SCSI-2 bus allows up to eight PCs and external devices—hard disks, scanners, CD-
ROM writers, and so on—to be connected together. Wide SCSI-2 and the recent
SCSI-3 interfaces allow you to connect 16 devices or more if additional interfaces are
present. The SCSI standard is the communication protocol used to connect devices via
the SCSI bus.

13.1.3 Device Controllers

A complex device may require a device controller to drive it. Essentially, the controller plays
two important roles:

• It interprets the high-level commands received from the I/O interface and forces the
device to execute specific actions by sending proper sequences of electrical signals to
it.

• It converts and properly interprets the electrical signals received from the device and
modifies (through the I/O interface) the value of the status register.

A typical device controller is the disk controller, which receives high-level commands such as
a "write this block of data" from the microprocessor (through the I/O interface) and converts
them into low-level disk operations such as "position the disk head on the right track" and
"write the data inside the track." Modern disk controllers are very sophisticated, since they
can keep the disk data in fast memory caches and can reorder the CPU high-level requests
optimized for the actual disk geometry.

Simpler devices do not have a device controller; the Programmable Interrupt Controller (see
Section 4.2 in Chapter 4) and the Programmable Interval Timer (see Section 5.1.3 in
Chapter 5) are examples of such devices.

13.1.4 Direct Memory Access (DMA)

All PCs include an auxiliary processor called the Direct Memory Access Controller, or
DMAC, which can be instructed to transfer data between the RAM and an I/O device. Once
activated by the CPU, the DMAC is able to carry on the data transfer on its own; when the
data transfer has been completed, the DMAC issues an interrupt request. The conflicts
occurring when both CPU and DMAC need to access the same memory location at the same
time are resolved by a hardware circuit called a memory arbiter (see also Section 11.3.1 in
Chapter 11).

Understanding the Linux Kernel

348

The DMAC is mostly used by disk drivers and other slow devices that transfer a large number
of bytes at once. Because setup time for the DMAC is relatively high, it is more efficient to
directly use the CPU for the data transfer when the number of bytes is small.

The first DMACs for the old ISA buses were complex and hard to program. More recent
DMACs for the PCI and SCSI buses rely on dedicated hardware circuits in the buses and
make life easier for device driver developers.

Until now we have distinguished three kinds of memory addresses: logical and linear
addresses, which are used internally by the CPU, and physical addresses, which are the
memory addresses used by the CPU to physically drive the data bus. However, there is a
fourth kind of memory address, the so-called bus address: it corresponds to the memory
addresses used by all hardware devices except the CPU to drive the data bus. In the PC
architecture, bus addresses coincide with physical addresses; however, in other architectures,
like Sun's SPARC and Compaq's Alpha, these two kinds of addresses differ.

Why should the kernel be concerned at all about bus addresses? Well, in a DMA operation the
data transfer takes place without CPU intervention: the data bus is directly driven by the I/O
device and the DMAC. Therefore, when the kernel sets up a DMA operation, it must write the
bus address of the memory buffer involved in the proper I/O ports of the DMAC or I/O
device.

13.2 Associating Files with I/O Devices

As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a file,
which is just an information container structured as a sequence of bytes. According to this
approach, I/O devices are treated as files; thus, the same system calls used to interact with
regular files on disk can be used to directly interact with I/O devices. As an example, the same
write() system call may be used to write data into a regular file, or to send it to a printer by
writing to the /dev/lp0 device file. Let's now examine in more detail how this schema is
carried out.

13.2.1 Device Files

Device files are used to represent most of the I/O devices supported by Linux. Besides its
name, each device file has three main attributes:

Type

Either block or character (we'll discuss the difference shortly).

Major number

A number ranging from 1 to 255 that identifies the device type. Usually, all device
files having the same major number and the same type share the same set of file
operations, since they are handled by the same device driver.

Understanding the Linux Kernel

349

Minor number

A number that identifies a specific device among a group of devices that share the
same major number.

The mknod() system call is used to create device files. It receives the name of the device file,
its type, and the major and minor numbers as parameters. The last two parameters are merged
in a 16-bit dev_t number: the eight most significant bits identify the major number, while the
remaining ones identify the minor number. The MAJOR and MINOR macros extract the two
values from the 16-bit number, while the MKDEV macro merges a major and minor number into
a 16-bit number. Actually, dev_t is the data type specifically used by application programs;
the kernel uses the kdev_t data type. In Linux 2.2 both types reduce to an unsigned short
integer, but kdev_t will become a complete device file descriptor in some future Linux
version.

Device files are usually included in the /dev directory. Table 13-1 illustrates the attributes of
some device files.[2] Notice how the same major number may be used to identify both a
character and a block device.

[2] The official registry of allocated device numbers and /devdirectory nodes is stored in the Documentation/devices.txt file. The major numbers of the
devices supported may also be found in the include/linux/major.h file.

Table 13-1. Examples of Device Files
Name Type Major Minor Description
/dev/fd0 block 2 0 Floppy disk
/dev/hda block 3 0 First IDE disk
/dev/hda2 block 3 2 Second primary partition of first IDE disk
/dev/hdb block 3 64 Second IDE disk
/dev/hdb3 block 3 67 Third primary partition of second IDE disk
/dev/ttyp0 char 3 0 Terminal
/dev/console char 5 1 Console
/dev/lp1 char 6 1 Parallel printer
/dev/ttyS0 char 4 64 First serial port
/dev/rtc char 10 135 Real time clock
/dev/null char 1 3 Null device (black hole)

Usually, a device file is associated with a hardware device, like a hard disk (for instance,
/dev/hda), or with some physical or logical portion of a hardware device, like a disk partition
(for instance, /dev/hda2). In some cases, however, a device file is not associated to any real
hardware device, but represents a fictitious logical device. For instance, /dev/null is a device
file corresponding to a "black hole": all data written into it are simply discarded, and the file
appears always empty.

As far as the kernel is concerned, the name of the device file is irrelevant. If you created a
device file named /tmp/disk of type "block" with major number 3 and minor number 0, it
would be equivalent to the /dev/hda device file shown in the table. On the other hand, device
filenames may be significant for some application programs. As an example, a
communication program might assume that the first serial port is associated with the
/dev/ttyS0 device file. But usually most application programs can be configured to interact
with arbitrarily named device files.

Understanding the Linux Kernel

350

13.2.1.1 Block versus character devices

Block devices have the following characteristics:

• They are able to transfer a fixed-size block of data in a single I/O operation.
• Blocks stored in the device can be addressed randomly: the time needed to transfer a

data block can be assumed independent of the block address inside the device and of
the current device state.

Typical examples of block devices are hard disks, floppy disks, and CD-ROMs. RAM disks,
which are obtained by configuring portions of the RAM as fast hard disks and can make
temporary storage very efficient for application programs, are also treated as block devices.

Character devices have the following characteristics:

• They are able to transfer arbitrary-sized data in a single I/O operation. Actually, some
character devices—such as printers—transfer 1 byte at a time, while others, such as
tape units, transfer variable-length blocks of data.

• They usually address characters sequentially.

13.2.1.2 Network cards

Some I/O devices have no corresponding device file. The most significant example is network
cards. Essentially, a network card places outgoing data on a line going to remote computer
systems and receives packets from those systems into kernel memory. Although this book
does not cover networking, it is worth spending a few moments on the kernel and
programming interfaces to these cards.

Starting with BSD, all Unix systems assign a different symbolic name to each network card
included in the computer; for instance, the first Ethernet card gets the eth0 name. However,
the name does not correspond to any device file and has no corresponding inode.

Instead of using the filesystem, the system administrator has to set up a relationship between
the device name and a network address. Therefore, data communication between application
programs and the network interface is not based on the standard file-related system calls; it is
based instead on the socket(), bind(), listen(), accept(), and connect() system
calls, which act on network addresses. This group of system calls, introduced first by Unix
BSD, has become the standard programming model for network devices.

13.2.2 VFS Handling of Device Files

Device files live in the system directory tree but are intrinsically different from regular files
and directories. When a process accesses a regular file, it is accessing some data blocks in
some disk partition through a filesystem, but when a process accesses a device file, it is just
driving a hardware device. For instance, a process might access a device file to read the room
temperature from a digital thermometer connected to the computer. It is the VFS's
responsibility to hide the differences between device files and regular files from application
programs.

Understanding the Linux Kernel

351

In order to do this, the VFS changes the default file operations of an opened device file; as
result, any system call on the device file will be translated to an invocation of a device-related
function instead of the corresponding function of the hosting filesystem. The device-related
function acts on the hardware device to perform the operation requested by the process.[3]

[3] Notice that, thanks to the name-resolving mechanism explained in Section 12.4 in Chapter 12, symbolic links to device files work just like device
files.

The set of device-related functions that control an I/O device is called a device driver. Since
each device has a unique I/O controller, and thus unique commands and unique state
information, most I/O device types have their own drivers.

13.2.2.1 Device file class descriptors

Each class of device files having the same major number and the same type is described by a
device_struct data structure, which includes two fields: the name (name) of the device class
and a pointer (fops) to the file operation table. All device_struct descriptors for character
device files are included in the chrdevs table. It includes 255 elements, one for each possible
major number. (No device file can have major number 255, since that value is reserved for
future extensions.) Similarly, all 255 descriptors for block device files are included in the
blkdevs table. The first entry of both tables is always empty, since no device file can have
major number 0.

The chrdevs and blkdevs tables are initially empty. The register_chrdev() and
register_blkdev() functions are used to insert a new entry into one of the tables, while
unregister_chrdev() and unregister_blkdev() are used to remove an entry.

As an example, the descriptor for the parallel printer driver class is inserted in the chrdevs
table as follows:

register_chrdev(6, "lp", &lp_fops);

The first parameter denotes the major number, the second denotes the device class name, and
the last is a pointer to the table of file operations.

If a device driver is statically included in the kernel, the corresponding device file class is
registered during system initialization. However, if a device driver is dynamically loaded as a
module (see Appendix B), the corresponding device file class is registered when the module is
loaded and unregistered when the module is unloaded.

13.2.2.2 Opening a device file

We discussed in Section 12.5.1 in Chapter 12 how files are opened. Let us suppose that a
process opens a device file. The VFS initializes, if necessary, the file object, the dentry object,
and the inode object that refer to the device file. In particular, if the inode object does not
already exist, the VFS invokes the read_inode method of the proper superblock object to
retrieve the file information from disk. In doing so, the method records the device major and
minor numbers in the i_rdev field of the inode object and the device file type in the i_mode
field (S_IFCHR for character device files or S_IFBLK for block device files). Moreover, it
installs a pointer to the appropriate inode operations as follows:

Understanding the Linux Kernel

352

if ((inode->i_mode & 00170000) == S_IFCHR)
 inode->i_op = &chrdev_inode_operations;
else if ((inode->i_mode & 00170000) == S_IFBLK)
 inode->i_op = &blkdev_inode_operations;

All fields of the chrdev_inode_operations and blkdev_inode_operations tables are null
except for the default_file_ops fields, which point to the def_chr_fops table and to the
def_blk_fops table, respectively. All the methods of def_chr_fops and def_blk_fops in
turn are null except for the open methods, which point to the chrdev_open() function and
to the blkdev_open() function, respectively.

The filp_open() function fills the new file object and in particular initializes the f_op field
with the contents of i_op->default_file_ops field of the inode object. As a consequence,
the file operation table will be def_chr_fops or def_blk_fops. Then filp_open() invokes
the open method, thus executing either chrdev_open() or blkdev_open(). These
functions essentially perform three operations:

1. Derive the major number of the device driver from the i_rdev field of the inode
object:

major = MAJOR(inode->i_rdev);

2. Install the proper file operations for the device file:

filp->f_op = chrdevs[major].fops;

(The example, of course, is for character device files; blkdev_open() uses the
blkdevs table instead.)

3. Invoke, if defined, the open method of the file operations table:

 if (filp->f_op != NULL && filp->f_op->open != NULL)
 return filp->f_op->open(inode, filp);

Notice that the final invocation of the open() method does not cause recursion, since now
the field contains the address of a device-dependent function whose job is to set up the device.
Typically, that function performs the following operations:

1. If the device driver is included in a kernel module, increments its usage counter, so
that it cannot be unloaded until the device file is closed. (Appendix B describes how
users can load and unload modules.)

2. If the device driver handles several devices of the same kind, selects the proper one by
making use of the minor number and further specializes, if needed, the table of file
operations.

3. Checks whether the device really exists and is currently working.
4. If necessary, sends an initialization command sequence to the hardware device.
5. Initializes the data structures of the device driver.

Understanding the Linux Kernel

353

13.3 Device Drivers

We have seen that the VFS uses a canonical set of common functions (open, read, lseek, and
so on) to control a device. The actual implementation of all these functions is delegated to the
device driver. Since each device has a unique I/O controller, and thus unique commands and
unique state information, most I/O devices have their own drivers.

We shall not attempt to describe any of the hundreds of existing device drivers but
concentrate rather on how the kernel supports them. In doing so, we shall describe several I/O
architecture features that must be taken into consideration by device driver programmers.

13.3.1 Level of Kernel Support

The kernel can support access to hardware devices in three possible ways:

No support at all

The application program interacts directly with the device's I/O ports by issuing
suitable in and out assembly language instructions.

Minimal support

The kernel does not recognize the hardware device but only its I/O interface. User
programs are able to treat the interface as a sequential device capable of reading
and/or writing sequences of characters.

Extended support

The kernel recognizes the hardware device and handles the I/O interface itself. In fact,
there might not even be a device file for the device.

The most common example of the first approach, which does not rely on any kernel device
driver, is how the X Window System handles the graphic display. The approach is quite
efficient, although it restrains the X server from making use of the hardware interrupts issued
by the I/O device. This approach also requires some additional effort in order to allow the X
server to access the required I/O ports. As mentioned in Section 3.2.2 in Chapter 3, the iopl(
) and ioperm() system calls grant a process the privilege to access I/O ports. They can be
invoked only by programs having root privileges. But such programs can be made available to
users by setting the fsuid field of the executable file to 0, the UID of the superuser (see
Section 19.1.1 in Chapter 19).

The minimal support approach is used to handle external hardware devices connected to a
general-purpose I/O interface. The kernel takes care of the I/O interface by offering a device
file (and thus a device driver); the application program handles the external hardware device
by reading and writing the device file.

Minimal support is preferable to extended support because it keeps the kernel size small.
However, among the general-purpose I/O interfaces commonly found on a PC, only the serial
port is handled with this approach. Thus, a serial mouse is directly controlled by an

Understanding the Linux Kernel

354

application program, like the X server, and a serial modem always requires a communication
program like Minicom, Seyon, or a PPP (Point-to-Point Protocol) daemon.

Minimal support has a limited range of applications because it cannot be used when the
external device must interact heavily with internal kernel data structures. As an example,
consider a removable hard disk that is connected to a general-purpose I/O interface. An
application program cannot interact with all kernel data structures and functions needed to
recognize the disk and to mount its filesystem, so extended support is mandatory in this case.

In general, any hardware device directly connected to the I/O bus, such as the internal hard
disk, is handled according to the extended support approach: the kernel must provide a device
driver for each such device. External devices attached to the parallel port, the Universal Serial
Bus (USB), the PCMCIA port found in many laptops, or the SCSI interface—in short, any
general-purpose I/O interface except the serial port—also require extended support.

It is worth noting that the standard file-related system calls like open(), read(), and
write() do not always give the application full control of the underlying hardware device.
In fact, the lowest-common-denominator approach of the VFS does not include room for
special commands that some devices need or let an application check whether the device is in
some specific internal state.

The POSIX ioctl() system call has been introduced to satisfy such needs. Besides the file
descriptor of the device file and a second 32-bit parameter specifying the request, the system
call can accept an arbitrary number of additional parameters. For example, specific ioctl()
requests exist to get the CD-ROM sound volume or to eject the CD-ROM media. Application
programs may simulate the user interface of a CD player using these kinds of ioctl()
requests.

13.3.2 Monitoring I/O Operations

The duration of an I/O operation is often unpredictable. It can depend on mechanical
considerations (the current position of a disk head with respect to the block to be transferred),
on truly random events (when a data packet will arrive on the network card), or on human
factors (when a user will press a key on the keyboard or when she will notice that a paper jam
occurred in the printer). In any case, the device driver that started an I/O operation must rely
on a monitoring technique that signals either the termination of the I/O operation or a time-
out.

In the case of a terminated operation, the device driver reads the status register of the I/O
interface to determine if the I/O operation was carried out successfully. In the case of a time-
out, the driver knows that something went wrong, since the maximum time interval allowed to
complete the operation elapsed and nothing happened.

The two techniques available to monitor the end of an I/O operation are called the polling
mode and the interrupt mode.

13.3.2.1 Polling mode

According to this technique, the CPU checks (polls) the device's status register repeatedly
until its value signals that the I/O operation has been completed. We have already encountered

Understanding the Linux Kernel

355

a technique based on polling in Section 11.4.2 in Chapter 11: when a processor tries to
acquire a busy spin lock, it repeatedly polls the variable until its value becomes 0. However,
polling applied to I/O operations is usually more elaborate, since the delays involved may be
huge and the driver must remember to check for possible time-outs, too. In order to avoid
wasting precious machine cycles, device drivers voluntarily relinquish the CPU after each
polling operation so that other runnable processes can continue their execution:

for (;;) {
 if (read_status(device) & DEVICE_END_OPERATION)
 break;
 schedule();
 if (--count == 0)
 break;
}

The count variable, which was initialized before entering the loop, is decremented at each
iteration, and thus can be used to implement a rough time-out mechanism. Alternatively, a
more precise time-out mechanism could be implemented by reading the value of the tick
counter jiffies at each iteration (see Section 5.3 in Chapter 5) and comparing it with the old
value read before starting the wait loop.

13.3.2.2 Interrupt mode

Interrupt mode can be used only if the I/O controller is capable of signaling, via an IRQ line,
the end of an I/O operation. The device driver starts the I/O operation and invokes
interruptible_sleep_on() or sleep_on(), passing as the parameter a pointer to the I/O
device wait queue.

When the interrupt occurs, the interrupt handler invokes wake_up() to wake up all processes
sleeping in the device wait queue. The awakened device driver can thus check the result of the
I/O operation.

Time-out control is implemented through static or dynamic timers (see Chapter 5); the timer
must be set to the right time before starting the I/O operation and removed when the operation
terminates.

13.3.3 Accessing I/O Ports

The in, out, ins, and outs assembly language instructions access I/O ports. The following
auxiliary functions are included in the kernel to simplify such accesses:

inb() , inw() , inl()

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix "b," "w,"
or "l" refers, respectively, to a byte (8 bits), a word (16 bits), and a long (32 bits).

inb_p() , inw_p() , inl_p()

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port and then execute a
"dummy" instruction to introduce a pause.

Understanding the Linux Kernel

356

outb() , outw() , outl()

Write 1, 2, or 4 consecutive bytes respectively to an I/O port.

outb_p() , outw_p() , outl_p()

Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port and then execute a
"dummy" instruction to introduce a pause.

insb() , insw() , insl()

Read sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, from an I/O
port. The length of the sequence is specified as a parameter of the functions.

outsb() , outsw() , outsl()

Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an I/O
port.

While accessing I/O ports is simple, detecting which I/O ports have been assigned to I/O
devices may not be, in particular for systems based on an ISA bus. Often a device driver must
blindly write into some I/O port in order to probe the hardware device; if, however, this I/O
port is already used by some other hardware device, a system crash could occur. In order to
prevent such situations, the kernel keeps track of I/O ports assigned to each hardware device
by means of the iotable table. Any device driver may thus use the following three functions:

request_region()

Assigns a given interval of I/O ports to an I/O device

check_region()

Checks whether a given interval of I/O ports is free or whether some of them have
already been assigned to some I/O device

release_region()

Releases a given interval of I/O ports previously assigned to an I/O device

The I/O addresses currently assigned to I/O devices can be obtained from the /proc/ioports
file.

13.3.4 Requesting an IRQ

We have seen in Section 4.6.7 in Chapter 4 that the assignment of IRQs to devices is usually
made dynamically, right before using them, since several devices may share the same IRQ
line. To make sure the IRQ is obtained when needed but not requested in a redundant manner
when it is already in use, device drivers usually adopt the following schema:

Understanding the Linux Kernel

357

• A usage counter keeps track of the number of processes that are currently accessing
the device file. The counter is incremented in the open method of the device file and
decremented in the release method.[4]

[4] More precisely, the usage counter keeps track of the number of file objects referring to the device file, since clone processes could share the same
file object.

• The open method checks the value of the usage counter before the increment. If the
counter is null, the device driver must allocate the IRQ and enable interrupts on the
hardware device. Therefore, it invokes request_irq() and configures the I/O
controller properly.

• The release method checks the value of the usage counter after the decrement. If the
counter is null, no more processes are using the hardware device. If so, the method
invokes free_irq(), thus releasing the IRQ line, and disables interrupts on the I/O
controller.

13.3.5 Putting DMA to Work

As mentioned in Section 13.1.4, several I/O drivers make use of the Direct Memory Access
Controller (DMAC) to speed up operations. The DMAC interacts with the device's I/O
controller to perform a data transfer; as we shall see later, the kernel includes an easy-to-use
set of routines to program the DMAC. The I/O controller signals to the CPU, via an IRQ,
when the data transfer has finished.

When a device driver sets up a DMA operation for some I/O device, it must specify the
memory buffer involved by using bus addresses. The kernel provides the virt_to_bus and
bus_to_virt macros, respectively, to translate a linear address into a bus address and vice
versa.

As with IRQ lines, the DMAC is a resource that must be assigned dynamically to the drivers
that need it. The way the driver starts and ends DMA operations depends on the type of bus.

13.3.5.1 DMA for ISA bus

Each ISA DMAC can control a limited number of channels. Each channel includes an
independent set of internal registers, so that the DMAC can control several data transfers at
the same time.

Device drivers normally reserve and release the ISA DMAC in the following manner. As
usual, the device driver relies on a usage counter to detect when a device file is no longer
accessed by any process. The driver performs the following:

• In the open() method of the device file, increment the device's usage counter. If the
previous value was 0, the driver performs the following operations:

1. Invokes request_irq() to allocate the IRQ line used by the ISA DMAC
2. Invokes request_dma() to allocate a DMA channel
3. Notifies the hardware device that it should use DMA and issue interrupts
4. Allocates, if necessary, a storage area for the DMA buffer

• When the DMA operation must be started, performs the following operations in the
proper methods of the device file (typically, read and write):

1. Invokes set_dma_mode() to set the channel to read or write mode.

Understanding the Linux Kernel

358

2. Invokes set_dma_addr() to set the bus address of the DMA buffer. (Only
the 24 least-significant bits of the address are sent to the DMAC, so the buffer
must be included in the first 16 MB of RAM.)

3. Invokes set_dma_count() to set the number of bytes to be transferred.
4. Invokes enable_dma() to enable the DMA channel.
5. Puts the current process in the device's wait queue and suspends it. When the

DMAC terminates the transfer operation, the device's I/O controller issues an
interrupt and the corresponding interrupt handler wakes up the sleeping
process.

6. Once awakened, invokes disable_dma() to disable the DMA channel.
7. Invokes get_dma_residue() to check whether all bytes have been

transferred.
• In the release method of the device file, decrements the device's usage counter. If it

becomes 0, execute the following operations:
1. Disables the DMA and the corresponding interrupt on the hardware device
2. Invokes free_dma() to release the DMA channel
3. Invokes free_irq() to release the IRQ line used for DMA

13.3.5.2 DMA for PCI bus

Making use of DMA for a PCI bus is much simpler, since the DMAC is somewhat integrated
into the I/O interface. As usual, in the open method, the device driver must allocate the IRQ
line used for signaling the termination of the DMA operation. However, there is no need to
allocate a DMA channel, since each hardware device directly controls the electrical signals of
the PCI bus. To start a DMA operation, the device driver simply writes in some I/O port of
the hardware device the bus address of the DMA buffer, the transfer direction, and the size of
the data; the driver then suspends the current process. The release method releases the IRQ
line when the file object is closed by the last process.

13.3.6 Device Controller's Local Memory

Several hardware devices include their own memory, which is often called I/O shared
memory. For instance, all recent graphic cards include a few megabytes of RAM called a
frame buffer, which is used to store the screen image to be displayed on the monitor.

13.3.6.1 Mapping addresses

Depending on the device and on the bus type, I/O shared memory in the PC's architecture may
be mapped within three different physical address ranges:

For most devices connected to the ISA bus

The I/O shared memory is usually mapped into the physical addresses ranging from
0xa0000 to 0xfffff; this gives rise to the "hole" between 640 KB and 1 MB
mentioned in Section 2.5.3 of Chapter 2.

For some old devices using the VESA Local Bus (VLB)

This is a specialized bus mainly used by graphic cards: the I/O shared memory is
mapped into the physical addresses ranging from 0xe00000 to 0xffffff, that is

Understanding the Linux Kernel

359

between 14 MB and 16 MB. These devices, which further complicate the initialization
of the paging tables, are going out of production.

For devices connected to the PCI bus

The I/O shared memory is mapped into very large physical addresses, well above the
end of RAM's physical addresses. This kind of device is much simpler to handle.

13.3.6.2 Accessing the I/O shared memory

How ` does the kernel access an I/O shared memory location? Let's start with the PC's
architecture, which is relatively simple to handle and then extend the discussion to other
architectures.

Remember that kernel programs act on linear addresses, so the I/O shared memory locations
must be expressed as addresses greater than PAGE_OFFSET. In the following discussion, we
assume that PAGE_OFFSET is equal to 0xc0000000, that is, that the kernel linear addresses are
in the fourth gigabyte.

Kernel drivers must translate I/O physical addresses of I/O shared memory locations into
linear addresses in kernel space. In the PC architecture, this can be achieved simply by ORing
the 32-bit physical address with the 0xc0000000 constant. For instance, suppose the kernel
needs to store in t1 the value in the I/O location at physical address 0x000b0fe4 and in t2 the
value in the I/O location at physical address 0xfc000000. One might think that the following
statements could do the job:

t1 = *((unsigned char *)(0xc00b0fe4));
t2 = *((unsigned char *)(0xfc000000));

During the initialization phase, the kernel has mapped the available RAM's physical addresses
into the initial portion of the fourth gigabyte of the linear address space. Therefore, the Paging
Unit maps the 0xc00b0fe4 linear address appearing in the first statement back to the original
I/O physical address 0x000b0fe4, which falls inside the "ISA hole" between 640 KB and 1
MB (see Section 2.5 in Chapter 2). This works fine.

There is a problem, however, for the second statement because the I/O physical address is
greater than the last physical address of the system RAM. Therefore, the 0xfc000000 linear
address does not necessarily correspond to the 0xfc000000 physical address. In such cases,
the kernel page tables must be modified in order to include a linear address that maps the I/O
physical address: this can be done by invoking the ioremap() function. This function, which
is similar to vmalloc(), invokes get_vm_area() to create a new vm_struct descriptor
(see Section 6.3.2 in Chapter 6) for a linear address interval having the size of the required I/O
shared memory area. The ioremap() function then updates properly the corresponding page
table entries of all processes.

The correct form for the second statement might therefore look like:

io_mem = ioremap(0xfb000000, 0x200000);
t2 = *((unsigned char *)(io_mem + 0x100000));

Understanding the Linux Kernel

360

The first statement creates a new 2 MB linear address interval, starting from 0xfb000000; the
second one reads the memory location having the 0xfc000000 address. To remove the
mapping later, the device driver must use the iounmap() function.

Now let's consider architectures other than the PC. In this case, adding to an I/O physical
address the 0xc0000000 constant to obtain the corresponding linear address does not always
work. In order to improve kernel portability, Linux therefore includes the following macros to
access the I/O shared memory:

readb , readw , readl

Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location

writeb , writew , writel

Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location

memcpy_fromio , memcpy_toio

Copies a block of data from an I/O shared memory location to dynamic memory and
vice versa

memset_io

Fills an I/O shared memory area with a fixed value

The recommended way to access the 0xfc000000 I/O location is thus:

io_mem = ioremap(0xfb000000, 0x200000);
t2 = readb(io_mem + 0x100000);

Thanks to these macros, all dependences on platform-specific ways of accessing the I/O
shared memory can be hidden.

13.4 Character Device Handling

Handling a character device is relatively easy, since no data buffering is needed and no disk
caches are involved. Of course, character devices differ in their requirements: some of them
must implement a sophisticated communication protocol to drive the hardware device, while
others just have to read a few values from a couple of I/O ports of the hardware devices. For
instance, the device driver of a multiport serial card device (a hardware device offering many
serial ports) is much more complicated than the device driver of a bus mouse.

Let's briefly sketch out the functioning of a very simple character device driver, namely the
driver of the Logitech bus mouse. It is associated with the /dev/logibm character device file,
which has major number 10 and minor number 0.

Suppose that a process opens the /dev/logibm file; as explained in Section 13.2.2 earlier in this
chapter, the VFS ends up invoking the open method of the device file operations common to
all character devices having major number 10. This device class covers a series of

Understanding the Linux Kernel

361

heterogeneous devices, and hence the method, a function called misc_open(), installs yet a
more specialized set of file operations according to the device's minor number. As the final
result, the field f_op of the file object points to the bus_mouse_fops table, and the
open_mouse() function is invoked. This function performs the following operations:

1. Checks whether the bus mouse is connected.
2. Requests the IRQ line used by the bus mouse, that is IRQ5, and registers the

mouse_interrupt() Interrupt Service Routine.
3. Initializes a small mouse data structure of type mouse_status, which stores the

information about the status of the bus mouse. This status information includes which
buttons are pressed, along with the horizontal and vertical displacements of the mouse
pointer after the last read of the device file.

4. Writes the valuein the 0x23e control register to enable bus mouse interrupts (the
Logitech bus mouse uses I/O ports from 0x23c to 0x23f).

The mouse data structure is filled asynchronously: every time the user changes the mouse
position or presses a mouse button, the mouse controller generates an interrupt, and hence the
mouse_interrupt() function is activated. It performs the following operations:

1. Asks the bus mouse device about its state by writing suitable commands in the 0x23e
control register and reading the corresponding values from the 0x23c input register.

2. Updates the mouse data structure.
3. Writes the value 0 in the 0x23e control register to reenable bus mouse interrupts (they

are automatically disabled by the bus mouse device each time one of them occurs).

The process must read the /dev/logibm file to get the mouse status. Each read() system call
ends up invoking the read_mouse() function associated with the read method of the file
operations. It performs the following operations:

1. Checks that the process requested at least 3 bytes and returns -EINVAL otherwise.
2. Checks whether the mouse status has changed after the last read operation of

/dev/logibm; if not, return -EAGAIN.
3. Invokes disable_irq() to disable interrupt handling of IRQ5, and reads the values

stored in the mouse data structure; then reenables interrupt handling of IRQ5 by
invoking enable_irq().

4. Writes into the User Mode buffer 3 bytes representing the mouse status (buttons
status, horizontal and vertical displacements) after the last read operation.

5. If the process requested more than 3 bytes, fills the User Mode buffer with zeros.
6. Returns the number of written bytes.

13.5 Block Device Handling

Typical block devices like hard disks have very high average access times. Each operation
requires several milliseconds to complete, mainly because the hard disk controller must move
the heads on the disk surface to reach the exact position where the data is recorded. However,
when the heads are correctly placed, data transfer can be sustained at rates of tens of
megabytes per second.

Understanding the Linux Kernel

362

In order to achieve acceptable performance, hard disks and similar devices transfer several
adjacent bytes at once. In the following discussion, we'll say that groups of bytes are adjacent
when they are recorded on the disk surface in such a manner that a single seek operation can
access them.

The organization of Linux block device handlers is quite involved. We won't be able to
discuss in detail all the functions that have been included in the kernel to support the handlers.
But we'll outline the general software architecture and introduce the main data structures.
Kernel support for block device handlers includes the following features:

• Offers a uniform interface through the VFS
• Implements efficient read-ahead of disk data
• Provides disk caching for the data

The kernel basically distinguishes two kinds of I/O data transfer:

Buffer I/O operations

Here the transferred data is kept in buffers, the kernel's generic memory containers for
disk-based data. Each buffer is associated with a specific block identified by a device
number and a block number. Linux misleadingly calls these operations "synchronous
I/O operations." The term "synchronous" is not well-suited in this context because a
buffer I/O operation is really asynchronous: in other words, the kernel control path
that starts the operation may continue its execution without waiting for the operation
to end. The term is probably inherited from very old versions of Linux.

Page I/O operations

Here the transferred data is kept in page frames; each page frame contains data
belonging to a regular file. Since this data is not necessarily stored in adjacent disk
blocks, it is identified by the file's inode and by an offset within the file. Again, Linux
inappropriately calls these operations "asynchronous I/O operations."

Buffer I/O operations are most often used either when a process directly reads a block device
file or when the kernel reads particular types of blocks in a filesystem (for example, a block
containing inodes or a superblock). In Linux 2.2 buffer operations are also used to write disk-
based regular files. Page I/O operations are used mainly for reading regular files, file memory
mapping, and swapping. Both kinds of I/O data transfer rely on the same driver to access a
block device, but the kernel uses different algorithms and buffering techniques with them.

13.5.1 Sectors, Blocks, and Buffers

Each data transfer operation for a block device acts on a group of adjacent bytes called a
sector. In most disk devices, the size of a sector is 512 bytes, although a few devices have
recently appeared that make use of larger sectors (1024 and 2048 bytes). Notice that the sector
should be considered the basic unit of data transfer: it is never possible to transfer less than a
sector, although most disk devices are capable of transferring several adjacent sectors at once.

The kernel stores the sector size of each hardware block device in a table named
hardsect_size. Each element in the table is indexed by the major number and the minor

Understanding the Linux Kernel

363

number of the corresponding block device file. Thus, hardsect_size[3][2] represents the
sector size of /dev/hda2, the second primary partition of the first IDE disk (see Table 13-1).
If hardsect_size[M] is NULL, all block devices sharing the major number M have a standard
sector size of 512 bytes.

Block device drivers transfer a large number of adjacent bytes called a block in a single
operation. A block should not be confused with a sector: the sector is the basic unit of data
transfer for the hardware device, while the block is simply a group of adjacent bytes involved
in an I/O operation requested by a device driver.

In Linux, the block size must be a power of 2 and cannot be larger than a page frame.
Moreover, it must be a multiple of the sector size, since each block must include an integral
number of sectors. Therefore, on PC architecture, the permitted block sizes are 512, 1024,
2048, and 4096 bytes. The same block device driver may operate with several block sizes,
since it has to handle a set of device files sharing the same major number, while each block
device file has its own predefined block size. For instance, a block device driver could handle
a hard disk with two partitions containing an Ext2 filesystem and a swap area (see Chapter 16,
and Chapter 17). In this case, the device driver makes use of two different block sizes: 1024
bytes for the Ext2 partition[5] and 4096 bytes for the swap partition.

[5] 1024 is the standard Ext2 block size, although other block sizes are allowed.

The kernel stores the block size in a table named blksize_size; each element in the table is
indexed by the major number and the minor number of the corresponding block device file. If
blksize_size[M] is NULL, all block devices sharing the major number M have a standard
block size of 1024 bytes.

Each block requires its own buffer, which is a RAM memory area used by the kernel to store
the block's content. When a device driver reads a block from disk, it fills the corresponding
buffer with the values obtained from the hardware device; similarly, when a device driver
writes a block on disk, it updates the corresponding group of adjacent bytes on the hardware
device with the actual values of the associated buffer. The size of a buffer always matches the
size of the corresponding block.

13.5.2 An Overview of Buffer I/O Operations

Figure 13-3 illustrates the architecture of a generic block device driver and the main
components that interact with it when servicing a buffer I/O operation.

Understanding the Linux Kernel

364

Figure 13-3. Block device handler architecture for buffer I/O operations

A block device driver is usually split in two parts: a high-level driver, which interfaces with
the VFS layer, and a low-level driver, which handles the hardware device.

Suppose a process issues a read() or write() system call on a device file. The VFS
executes the read or write method of the corresponding file object, and thus invokes a
procedure within the high-level block device handler. This procedure performs all actions
related to the read or write request that are specific to the hardware device. The kernel offers
two general functions called block_read() and block_write() that take care of almost
everything (see Section 13.5.4 later in this chapter). Therefore, in most cases, the high-level
hardware device drivers must do nothing, and the read and write methods of the device file
point, respectively, to block_read() and block_write().

However, some block device handlers require their own customized high-level device drivers.
A significant example is the device driver of the floppy disk: it must check that the disk in the
drive has not been changed by the user since the last disk access; if a new disk has been
inserted, the device driver must invalidate all buffers already filled with data of the old disk
media.

Even when a high-level device driver includes its own read and write methods, they usually
end up invoking block_read() and block_write(). These functions translate the access
request involving an I/O device file into a request for some blocks from the corresponding
hardware device. As we'll see in Section 14.1 in Chapter 14, the blocks required may already
be in main memory, so both block_read() and block_write() invoke the getblk()
function to check the cache first in case a block was prefetched or has stayed unchanged since
an earlier access. If the block is not in the cache, getblk() must proceed to request it from
the disk by invoking ll_rw_block() (see Section 13.5.9). This latter function activates a
low-level driver that handles the device controller to perform the requested operation on the
block device.

Buffer I/O operations are also triggered when the VFS accesses some specific block on a
block device directly. For instance, if the kernel must read an inode from a disk filesystem, it
must transfer the data from blocks of the corresponding disk partition. Direct access to

Understanding the Linux Kernel

365

specific blocks is performed by the bread() and breada() functions (see Section 13.5.5),
which in turn invoke the getblk() and ll_rw_block() functions previously mentioned.

Since block devices are slow, buffer I/O data transfers are always handled asynchronously:
the low-level device driver programs the DMAC and the disk controller and then terminates.
When the transfer completes, an interrupt is issued, and the low-level device driver is
activated a second time to clean up the data structures involved in the I/O operation. In this
way, no kernel control path must be suspended until a data transfer completes (unless the
kernel control path explicitly has to wait for some block of data).

13.5.3 The Role of Read-Ahead

Many disk accesses are sequential. As we shall see in Chapter 17, files are stored on disk in
large groups of adjacent sectors, so that they can be retrieved quickly with few moves of the
disk heads. When a program reads or copies a file, it usually accesses it sequentially, from the
first byte to the last one. Therefore, many adjacent sectors on disk are likely to be fetched in
several I/O operations.

Read-ahead is a technique that consists of reading several adjacent blocks of a block device in
advance, before they are actually requested. In most cases, read-ahead significantly enhances
disk performance, since it lets the disk controller handle fewer commands that refer to larger
groups of adjacent sectors. Moreover, system responsiveness improves. A process that is
sequentially reading a block device can get the requested data faster because the driver
performs fewer disk accesses.

However, read-ahead is of no use for random accesses to block devices; in that case, it is
actually detrimental since it tends to waste space in the disk caches with useless information.
Therefore, the kernel stops read-ahead when it determines that the most recently issued I/O
access is not sequential to the previous one. The f_reada field of the file object is a flag that
is set when read-ahead is enabled for the corresponding file (or block device file) and cleared
otherwise.

The kernel stores in a table named read_ahead the number of bytes (the number of standard
512-byte sectors, to be precise) to be read in advance when a device file is being read
sequentially. A "zero" value specifies a default number of 8 512-byte sectors, that is, 4 KB.
All block device files having the same major number share the same predefined number of
512-byte sectors to be read in advance; therefore, each element in read_ahead is indexed by
the major device number.

13.5.4 The block_read() and block_write() Functions

The block_read() and block_write() functions are invoked by a high-level device
driver whenever a process issues a read or write operation on a device file. For example, the
superformat program formats a diskette by writing blocks into the /dev/fd0 device file. The
write method of the corresponding file object invokes the block_write() function.

The block_read() and block_write() functions receive the following parameters:

Understanding the Linux Kernel

366

filp

Address of a file object associated with the device file.

buf

Address of a memory area in User Mode address space. block_read() writes the
data fetched from the block device into this memory area; conversely, block_write(
) reads the data to be written on the block device from the memory area.

count

Number of bytes to be transferred.

ppos

Address of a variable containing an offset in the device file; usually, this parameter
points to filp->f_pos, that is, to the file pointer of the device file.

The block_read() function performs the following operations:

1. Derives the major number and the minor number of the block device from
filp->f_dentry->d_inode->i_rdev.

2. Derives the block size of the device file from blksize_size.
3. Computes from *ppos and the block size the sequential number of the first block to be

read on the device. Also computes the offset of the first byte to be read inside that
block.

4. Derives the size of the block hardware device. This value is stored in a table named
blk_size. As with similar data structures introduced earlier in the chapter, each
element is indexed by the major number and the minor number of the corresponding
device file and represents the size of the block device in units of 1024 bytes. If
necessary, modifies count in order to prevent any read operation from going beyond
the end of the device.

5. Computes the number of blocks to be read from the devices from a combination of
count, the block size, and the offset inside the first block. If filp->f_reada is set,
also takes into consideration the number of blocks to be read in advance, which is
specified in the read_ahead table.

6. For any block to be read, performs the following operations:
a. Searches for the block in the buffer cache by using the getblk() function

(see Section 14.1 in Chapter 14). If it is not found, a new buffer is allocated
and inserted into the cache.

b. If the buffer does not contain valid data (for instance, because it has been
allocated just now), starts a read operation by using the ll_rw_block()
function (see Section 13.5.9), and suspends the current process until the data
has been transferred in the buffer.

c. If the block has been requested by the process, that is, if it is not read in
advance, copies the buffer content into the user memory area pointed to by
buf.

Understanding the Linux Kernel

367

Actually, the algorithm is more elaborate than what we've just explained, since it is
optimized to make maximum use of the buffer cache. The function operates by
requesting large groups of blocks from the low-level driver at once; it does not wait
until all of them have been transferred before searching for the next group of blocks in
the buffer cache. However, the final result is the same: after this step, all buffers of the
blocks involved contain valid data, and the bytes requested by the user process are
copied into the user memory area.

7. Adds to *ppos the number of bytes copied into the user memory area.
8. Sets the filp->f_reada flag, so that the read-ahead mechanism will be used next

time (unless the process modifies the file pointer, in which case the flag is cleared).
9. Returns the number of bytes copied in the user memory area.

The block_write() function is similar to block_read(), so we won't describe it in detail.
However, some important differences should be underlined:

• Before starting the write operation, the block_write() function must check whether
the block hardware device is read-only and, in this case, returns an error code. This
happens, for example, when attempting to write on a block device file associated with
a CD-ROM disk. The ro_bits table includes a bit for each block hardware device: a
bit is set if the corresponding device cannot be written and cleared if it can be written.

• The block_write() function must check the offset of the first byte to be written
inside the first block. If the offset is not null and the buffer cache does not already
contain valid data for the first block, the function must read the block from disk before
rewriting it. In fact, since the block device driver operates on whole blocks, the
portions of the first block that precedes the bytes being written must be preserved by
the write operation. Similarly, the function must also read from disk the last block to
be written before rewriting it, unless the last byte to be written falls in the last position
of the last block.

• The block_write() function does not necessarily invoke ll_rw_block() to force
a write to disk. Usually, it just marks the buffers of the blocks to be written as "dirty,"
thus deferring the actual updating of the corresponding sectors on disk (see Section
14.1.5 in Chapter 14). However, the function does invoke ll_rw_block() if the call
opening the block device file has specified the O_SYNC flag. In this case, the calling
process wants to wait (sleep) until the data has been physically written in the hardware
device, so that the disk always reflects what the process thinks it does.

13.5.5 The bread() and breada() Functions

The bread() function checks whether a specific block is already included in the buffer
cache; if not, the function reads the block from a block device. bread() is widely used by
filesystems to read from disk bitmaps, inodes, and other block-based data structures. (Recall
that block_read() is used instead of bread() when a process wants to read a block device
file.) The function receives as parameters the device identifier, the block number, and the
block size, and performs the following operations:

1. Invokes the getblk() function to search for the block in the buffer cache; if the
block is not included in the cache, getblk() allocates a new buffer for it.

2. If the buffer already contains up-to-date data, terminates.
3. Invokes ll_rw_block() to start the read operation.

Understanding the Linux Kernel

368

4. Waits until the data transfer completes. This is done by invoking a function named
wait_on_buffer(), which inserts the current process in the b_wait wait queue
and suspends the process until the buffer is unlocked.

breada() is very similar to bread(), but it also reads in advance some extra blocks in
addition to the one required. Notice that there is no function that directly writes some block to
disk. Write operations are never critical for system performance, thus are always deferred (see
Section 14.1.5 in Chapter 14).

13.5.6 Buffer Heads

The buffer head is a descriptor of type buffer_head associated with each buffer. It contains
all the information needed by the kernel to know how to handle the buffer; thus, before
operating on each buffer the kernel checks its buffer head.

The buffer head fields are listed in Table 13-2. The b_data field of each buffer head stores
the starting address of the corresponding buffer. Since a page frame may store several buffers,
the b_this_page field points to the buffer head of the next buffer in the page. This field
facilitates the storage and retrieval of entire page frames. The b_blocknr field stores the
logical block number, that is, the index of the block inside the disk partition.

Table 13-2. The Fields of a Buffer Head
Type Field Description
unsigned long b_blocknr Logical block number
unsigned long b_size Block size
kdev_t b_dev Virtual device identifier
kdev_t b_rdev Real device identifier
unsigned long b_rsector Number of initial sector in real device
unsigned long b_state Buffer status flags
unsigned int b_count Block usage counter
char * b_data Pointer to buffer
unsigned long b_flushtime Flushing time for buffer
struct wait_queue * b_wait Buffer wait queue
struct buffer_head * b_next Next item in collision hash list
struct buffer_head ** b_pprev Previous item in collision hash list
struct buffer_head * b_this_page Per-page buffer list
struct buffer_head * b_next_free Next item in list
struct buffer_head * b_prev_free Previous item in list
unsigned int b_list LRU list including the buffer
struct buffer_head * b_reqnext Request's buffer list
void (*)() b_end_io I/O completion method
void (*) b_dev_id Specialized device driver data

The b_state field stores the following flags:

BH_Uptodate

Set if the buffer contains valid data. The value of this flag is returned by the
buffer_uptodate() function.

Understanding the Linux Kernel

369

BH_Dirty

Set if the buffer is dirty, that is, if it contains data that must be written to the block
device. The value of this flag is returned by the buffer_dirty() function.

BH_Lock

Set if the buffer is locked, which happens if the buffer is involved in a disk transfer.
The value of this flag is returned by the buffer_locked() function.

BH_Req

Set if the corresponding block has been requested (see next section) and has valid (up-
to-date) data. The value of this flag is returned by the buffer_req() function.

BH_Protected

Set if the buffer is protected (protected buffers never get freed). The value of this flag
is returned by the buffer_protected() function. This flag is used only to
implement RAM disks on top of the buffer cache.

The b_dev field identifies the virtual device containing the block stored in the buffer, while
the b_rdev field identifies the real device. This distinction, which is meaningless for simple
hard disks, has been introduced to model RAID (Redundant Array of Independent Disks)
storage units consisting of several disks operating in parallel. For reasons of safety and
efficiency, files stored in a RAID array are scattered across several disks that the applications
think of as a single logical disk. Besides the b_blocknr field representing the logical block
number, it is thus necessary to specify the specific disk unit in the b_rdev field, and the
corresponding sector number in the b_rsector field.

13.5.7 Block Device Requests

Although block device drivers are able to transfer a single block at a time, the kernel does not
perform an individual I/O operation for each block to be accessed on disk: this would lead to
poor disk performances, since locating the physical position of a block on the disk surface is
quite time-consuming. Instead, the kernel tries, whenever possible, to cluster several blocks
and handle them as a whole, thus reducing the average number of head movements.

When a process, the VFS layer, or any other kernel component wishes to read or write a disk
block, it actually creates a block device request. That request essentially describes the
requested block and the kind of operation to be performed on it (read or write). However, the
kernel does not satisfy a request as soon as it is created: the I/O operation is just scheduled
and will be performed at a later time. This artificial delay is paradoxically the crucial
mechanism for boosting the performance of block devices. When a new block data transfer is
requested, the kernel checks whether it can be satisfied by slightly enlarging a previous
request that is still waiting, that is, whether the new request can be satisfied without further
seek operations. Since disks tend to be accessed sequentially, this simple mechanism is very
effective.

Understanding the Linux Kernel

370

Deferring requests complicates block device handling. For instance, suppose that a process
opens a regular file and, consequently, a filesystem driver wants to read the corresponding
inode from disk. The high-level block device driver puts the request on a queue and the
process is suspended until the block storing the inode is transferred. However, the high-level
block device driver cannot be blocked, because any other process trying to access the same
disk would be blocked as well.

In order to keep the block device driver from being suspended, each I/O operation is being
processed asynchronously, as already mentioned in the section Section 13.5.2. Thus, no kernel
control path is forced to wait until a data transfer completes. In particular, block device
drivers are interrupt-driven (see Section 13.3.2 earlier in this chapter), so that the high-level
driver can terminate its execution as soon as it has issued the block request. The low-level
driver, which is activated at a later time, invokes a so-called strategy routine, which takes the
request from a queue and satisfies it by issuing suitable commands to the disk controller.
When the I/O operation terminates, the disk controller raises an interrupt and the
corresponding handler invokes the strategy routine again, if necessary, to process another
request in the queue.

Each block device driver maintains its own request queues; there should be one request queue
for each physical block device, so that the requests can be ordered in such a way as to increase
disk performance. The strategy routine can thus sequentially scan the queue and service all
requests with the minimum number of head movements.

Each block device request is represented by a request descriptor , which is stored in the
request data structure illustrated in Table 13-3. The direction of the data transfer is stored in
the cmd field: it is either READ (from block device to RAM) or WRITE (from RAM to block
device). The rq _status field is used to specify the status of the request: for most block
devices, it is simply set either to RQ_INACTIVE (request descriptor not in use) or to RQ
_ACTIVE (valid request, to be serviced or already being serviced by the low-level device
driver).

Table 13-3. The Fields of a Request Descriptor
Type Field Description
int rq_status Request status
kdev_t rq_dev Device identifier
int Cmd Requested operation
int errors Success or failure code
unsigned long sector First sector number
unsigned long nr_sector Number of sectors of request
unsigned long current_nr_sector Number of sectors of current block
char * buffer Memory area for I/O transfer
struct semaphore * sem Request semaphore
struct buffer_head * bh First buffer descriptor
struct buffer_head * bhtail Last buffer descriptor
struct request * next Request queue link

The request may encompass many adjacent blocks on the same device. The rq _dev field
identifies the block device, while the sector field specifies the number of the first sector
corresponding to the first block in the request. Both nr_sector and current_nr_sector

Understanding the Linux Kernel

371

specify the number of sectors to be transferred. As we'll later see in Section 13.5.10, the
sector, nr_sector, and current_nr_sector fields could be dynamically updated while the
request is being serviced.

All buffer heads of the blocks in the request are collected in a simply linked list. The
b_reqnext field of each buffer head points to the next element in the list, while the bh and
bhtail fields of the request descriptor point, respectively, to the first element and the last
element in the list.

The buffer field of the request descriptor points to the memory area used for the actual data
transfer. If the request involves a single block, buffer is just a copy of the b_data field of the
buffer head. However, if the request encompasses several blocks whose buffers are not
consecutive in memory, the buffers are linked through the b_reqnext fields of their buffer
heads as shown in Figure 13-4. On a read, the low-level device driver could choose to allocate
a large memory area referred by buffer, read all sectors of the request at once, and then copy
the data into the various buffers. Similarly, for a write, the low-level device driver could copy
the data from many nonconsecutive buffers into a single memory area referred by buffer and
then perform the whole data transfer at once.

Figure 13-4. A request descriptor and its buffers and sectors

Figure 13-4 illustrates a request descriptor encompassing three blocks. The buffers of two of
them are consecutive in RAM, while the third buffer is by itself. The corresponding buffer
heads identify the logical blocks on the block device; the blocks must necessarily be adjacent.
Each logical block includes two sectors. The sector field of the request descriptor points to
the first sector of the first block on disk, and the b_reqnext field of each buffer head points to
the next buffer head.

The kernel statically allocates a fixed number of request descriptors to handle all the requests
for block devices: there are NR_REQUEST descriptors (usually 128) stored in the all_requests
array. Since the efficiency of read operations have a larger impact on system performance
than does the efficiency of write operations (because the data to be read is probably needed

Understanding the Linux Kernel

372

for some computation to progress), the last third of request descriptors in all_requests is
reserved for read operations.

The fixed number of request descriptors may become, under very heavy loads and high disk
activity, a bottleneck. A dearth of free descriptors may force processes to wait until an
ongoing data transfer terminates. Thus, a wait_for_request wait queue is used to queue
processes waiting for a free request element. The get_request_wait() tries to get a free
request descriptor and puts the current process to sleep in the wait queue if none is found; the
get_request() function is similar but simply returns NULL if no free request descriptor is
available.

13.5.8 Request Queues and Block Device Driver Descriptors

A request queue is a simply linked list whose elements are request descriptors. The next field
in each request descriptor points to the next item in the queue and is null for the last element.
The list is usually ordered first according to the device identifier and next according to the
number of the initial sector.

As mentioned earlier, device drivers usually have one request queue for each disk they serve.
However, some device drivers have just one request queue that includes the requests for all
physical devices handled by the driver. This approach simplifies the design of the driver but
degrades overall performances, since no simple ordering strategy can be imposed on the
queue.

The address of the request being serviced, together with a few other pieces of relevant
information, are stored in a descriptor associated with each block device driver. The
descriptor is a data structure of type blk_dev_struct, whose fields are listed in Table 13-4.
The descriptors for all the block devices are stored in the blk_dev table, which is indexed by
the major number of the block device.

Table 13-4. The Fields of a Block Device Driver Descriptor
Type Field Description
void *(*)(void) request_fn Strategy routine
void * data Driver's private data common queue
struct request plug Dummy plug request
struct request * current_request Current request in single common queue
struct request
**(*)(kdev_t) queue Method for getting a request from one of the

queues
struct tq_struct plug_tq Plug task queue element

If the block device driver has a unique request queue for all physical block devices, the queue
field is null and the current_request field points to the descriptor of the request being
serviced in the queue. If the queue is empty, current_request is null.

Conversely, if the block device driver maintains several queues, the queue field points to a
custom driver method that receives the identifier of the block device file, selects one of the
queues according to the device number, then returns the address of the descriptor of the
request being serviced, if any. In this case, the current_request field points to the descriptor
of the request being serviced, if any. (There can be at most one request at a time, since the

Understanding the Linux Kernel

373

same device driver does not allow requests to be processed concurrently even if they refer to
different disks.)

The request_fn() field contains the address of the driver's strategy routine, the crucial
function in the low-level block device driver that actually interacts with the physical block
device (usually the disk controller) in order to start the data transfer specified by a request in
the queue.

13.5.9 The ll_rw_block() Function

The ll_rw_block() function creates a block device request; as we have seen earlier in this
chapter, it is invoked from several places in the kernel and device drivers. It receives the
following parameters:

• The type of operation, rw, whose value can be READ , WRITE, READA , or WRITEA . The
last two operation types differ from the former in that the function does not block
when no request descriptor is available.

• The number, nr, of blocks to be transferred.
• A bh array of nr pointers to buffer heads describing the blocks (all of them must have

the same block size and must refer to the same block device).

The buffer heads have been previously initialized, so each specifies the block number, the
block size, and the virtual device identifier (see Section 13.5.6). All blocks must belong to the
same virtual device.

The function enters a loop considering all non-null elements of the bh array. For each buffer
head, it performs the following actions:

1. Checks that the block size b_size matches the block size of the virtual device b_dev.
2. Sets the real device identifier (usually just sets b_rdev to be b_dev).
3. Sets the sector number b_rsector according to the block number and the block size.
4. If the operation is WRITE or WRITEA, checks that the block device is not read-only.
5. Sets the BH_Req flag of the buffer head to show other kernel control paths that the

block has been requested.
6. Invokes the make_request() function, passing to it the real device's major number,

the type of I/O operation, and the address of the buffer head.

The make_request() function, in turn, performs the following operations:

1. Sets the BH_Lock flag of the buffer head.
2. Checks that b_rsector does not exceed the number of sectors of the block device.
3. If the block must be read, checks that it is not already valid (that is, the BH_Uptodate

flag must be off). If the block must be written, checks that it is actually dirty (that is,
the BH_Dirty flag must be on). If either one of these conditions does not hold, returns
without requesting the data transfer, because it is really useless.

4. Disables local interrupts and gets the io_request_lock spin lock (see Section 11.4.2
in Chapter 11).

5. Invokes the queue method, if defined, or reads the current_request field in the
block device descriptor to get the address of the real device's request queue.

6. Performs one of the following substeps:

Understanding the Linux Kernel

374

a. If the request queue is empty, inserts a new request descriptor in it and
schedules activation of the strategy routine at a later time.

b. If the request queue is not empty, inserts a new request descriptor in it, trying
to cluster it with other requests already queued. As we'll see shortly, there is no
need to schedule the activation of the strategy routine.

Let's look closer at the last two substeps.

13.5.9.1 Scheduling the activation of the strategy routine

As we saw earlier, it's expedient to delay activation of the strategy routine in order to increase
the chances of clustering requests for adjacent blocks. The delay is accomplished through a
technique known as device plugging and unplugging.

If the real device's request queue is empty and the device is not already plugged,
make_request() does a device plugging: it sets the current_request field of the block
device driver descriptor to the address of a dummy request descriptor, namely, the plug field
of the same block device driver descriptor. The function then allocates a new request
descriptor and initializes it with the information read from the buffer head. Next,
make_request() inserts the new request descriptor into the proper real device's request
queue. If there is just one queue, the request is inserted into the queue right after the dummy
element consisting of the plug field in the block device descriptor. Finally, make_request()
inserts the plug _tq task queue descriptor (statically included in the block device driver
descriptor) in the tq _disk task queue (see Section 4.6.6 in Chapter 4) to cause the device's
strategy routine to be activated later. Actually, the task queue element refers to the unplug
_device() function, which executes the device's strategy routine.

The kernel checks periodically whether the tq _disk task queue contains any plug_tq task
queue elements. This occurs in a kernel thread such as kswapd and bdflush or when the kernel
must wait for some resource related to block device drivers, such as buffers or request
descriptors. During the tq _disk check, the kernel removes any element in the queue and
executes the corresponding unplug_device() function. This activity is referred to as
unplugging the device.

13.5.9.2 Extending the request queue

If the request queue is not empty, the low-level block device driver keeps handling requests
until the queue has been emptied (see the next section), so make_request() does not have to
schedule the activation of the strategy routine.

In this case, make_request() just modifies the request queue by adding a new element or by
merging the new request with existing elements; the second case is known as block clustering.

Block clustering is implemented only for blocks belonging to certain block devices, namely
the EIDE and SCSI hard disks, the floppy disk, and a few others. Moreover, a block can be
included in a request only if all the following conditions are satisfied:

• The block to be inserted belongs to the same block device as the other blocks in the
request and is adjacent to them: it either immediately precedes the first block in the
request or immediately follows the last block in the request.

Understanding the Linux Kernel

375

• The blocks in the request have the same I/O operation type (READ or WRITE) as the
block to be inserted.

• The extended request does not exceed the allowed maximum number of sectors. This
value is stored in the max_sectors table, which is indexed by the major number and
the minor number of the block device. The default value is 244 sectors.

• The request is not currently being handled by the low-level device driver.

The make_request() function scans all the requests in the queue. If one of them satisfies all
the conditions just mentioned, the buffer head is inserted in the request's list, and the fields of
the request data structure are updated. If the block was appended to the end of a request, the
function also tries to merge this request with the next element of the queue. Nothing else has
to be done, and hence make_request() releases the io_request_lock spin lock and
terminates.

Conversely, if no existing request can include the block, make_request() allocates a new
request descriptor[6] and initializes it properly with the information read from the buffer head.

[6] If there is no free request descriptor, the current process is suspended until a request descriptor is freed.

Finally, make_request() invokes the add_request() function, which inserts the new
request in the proper position in the request queue, according to its initial sector number. The
io_request_lock spin lock is then released and the execution terminates.

13.5.10 Low-Level Request Handling

We have now reached the lowest level of Linux's block device-handling architecture: this
level is implemented by the strategy routine, which interacts with the physical block device in
order to satisfy the requests collected in the queue.

As mentioned earlier, the strategy routine is usually started after inserting a new request in an
empty request queue. Once activated, the low-level block device driver should handle all
requests in the queue and terminate when the queue is empty.

A naive implementation of the strategy routine could be the following: for each element in the
queue, interact with the block device controller to service the request and wait until the data
transfer completes, then remove the serviced request from the queue and proceed with the
next one.

Such an implementation is not very efficient. Even assuming that data can be transferred
using DMA, the strategy routine must suspend itself while waiting for I/O completion, and
hence an unrelated user process would be heavily penalized. (The strategy routine does not
necessarily execute on behalf of the process that has requested the I/O operation but at some
random later time, since it is activated by means of the tq _disk task queue.)

Therefore, many low-level block device drivers adopt the following schema:

• The strategy routine handles the current request in the queue and sets up the block
device controller so that it raises an interrupt when the data transfer completes. Then
the strategy routine terminates.

Understanding the Linux Kernel

376

• When the block device controller raises the interrupt, the interrupt handler activates a
bottom half. The bottom half handler removes the request from the queue and
reexecutes the strategy routine to service the next request in the queue.

Basically, low-level block device drivers can be further classified into the following:

• Drivers that service each block in a request separately
• Drivers that service several blocks in a request together

Drivers of the second type are much more complicated to design and implement than drivers
of the first type. Indeed, although the sectors are adjacent on the physical block devices, the
buffers in RAM are not necessarily consecutive. Therefore, any such driver may have to
allocate a temporary area for the DMA data transfer, then perform a memory-to-memory copy
of the data between the temporary area and each buffer in the request's list.

Since clustered requests refer to adjacent blocks on disk, they improve the performance of
both types of drivers because the requests may be serviced by issuing fewer seek commands.
Transferring several blocks from disk at once is not as effective in boosting disk performance.

The kernel doesn't offer any support for the second type of drivers: they must handle the
request queues and the buffer head lists on their own. The choice to leave the job up to the
driver is not capricious or lazy. Each physical block device is inherently different from all
others (for example, a floppy driver groups blocks in disk tracks and transfers a whole track in
a single I/O operation), so making general assumptions on how to service each clustered
request would make very little sense.

However, the kernel offers a limited degree of support for the low-level block device drivers
in the first class. So we'll spend a little more time on such drivers.

A typical strategy routine should perform the following actions:

1. Get the current request from a request queue. If all request queues are empty,
terminate the routine.

2. Check that the current request has consistent information. In particular, compare the
major number of the block device with the value stored in the rq _rdev field of the
request descriptor. Moreover, check that the first buffer head in the list is locked (that
is, the BH_Lock flag has been set by make_request()).

3. Program the block device controller for the data transfer of the first block. The data
transfer direction can be found in the cmd field of the request descriptor and the
address of the buffer in the buffer field, while the initial sector number and the
number of sectors to be transferred are stored in the sector and
current_nr_sectors fields, respectively.[7] Also, set up the block device controller so
that an interrupt is raised when the DMA data transfer completes.

[7] Recall that current_nr_sectors contains the number of sectors in the first block of the request, while nr_sectors contains
the total number of sectors in the request.

4. If the routine is handling a block device file for which ll_rw_block() accomplishes
block clustering, increment the sector field and decrement the nr_sectors field of
the request descriptor to keep track of the blocks to be transferred.

Understanding the Linux Kernel

377

The interrupt handler associated with the termination of the DMA data transfer for the block
device should invoke (either directly or via a bottom half) the end_request() function. It
receives as its parameter the value 1 if the data transfer succeeded and the value if an error
occurred. end_request() performs the following operations:

1. If an error occurred (parameter value is 0), updates the sector and nr_sectors fields
so as to skip the remaining sectors of the block. In step 3a, the buffer content will also
be marked as not up-to-date.

2. Removes the buffer head of the transferred block from the request's list.
3. Invokes the b_end_io method of the buffer head. When the getblk() function

allocates the buffer head, it loads this field with the address of the
end_buffer_io_sync() function, which performs two operations:

a. Sets the BH_Uptodate flag of the buffer head to 1 or 0, according to the
success or failure of the data transfer

b. Clears the BH_Lock flag of the buffer head and wakes up all processes sleeping
in the wait queue to which the b_wait field of the buffer head points

4. If there is another buffer head on the request's list, performs the following actions:
a. Sets the current_nr_sectors field of the request descriptor to the number of

sectors of the new block
b. Sets the buffer field with the address of the new buffer (from the b_data field

of the new buffer head)
5. Otherwise, if the request's list is empty, all blocks have been processed. Therefore,

performs the following operations:
a. Sets the current request pointer to the next element in the request queue
b. Sets the rq _status field of the processed request to RQ _INACTIVE
c. Wakes up all processes sleeping in the wait_for_request wait queue

After invoking end_request(), the low-level block device driver checks the value of the
current_request field in the block device driver descriptor; if it is not NULL, the request
queue is not empty, and the strategy routine is executed again. Notice that end_request()
actually performs two nested iterations: the outer one on the elements of the request queue
and the inner one on the elements in the buffer head list of each request. The strategy routine
is thus invoked once for each block in the request queue.

13.6 Page I/O Operations

Block devices transfer information one block at a time, while process address spaces (or to be
more precise, memory regions allocated for the process) are defined as sets of pages. This
mismatch can be hidden to some extent by using page I/O operations (see the section
Section 13.5). They may be activated in the following cases:

• A process issues a read() or write() system call on a regular file (see
Section 15.1 in Chapter 15).

• A process reads a location of a page that maps a file in memory (see Section 15.2 in
Chapter 15).

• The kernel flushes some dirty pages related to a file memory mapping to disk (see
Section 15.2.6 in Chapter 15).

• When swapping in or swapping out, the kernel loads from disk or saves to disk the
contents of whole page frames (see Chapter 16).

Understanding the Linux Kernel

378

We'll use the rest of this chapter to describe how these operations are carried out.

13.6.1 Starting Page I/O Operations

A page I/O operation is activated by invoking the brw_page() function, which receives the
following parameters:

rw

Type of I/O operation (READ or WRITE)

page

Address of a page descriptor

dev

Block device number

b

Array of logical block numbers

size

Block size

bmap

Flag specifying whether the block numbers in b were computed by using the bmap
method of the inode operations (see Section 12.2.2 in Chapter 12)

The page descriptor refers to the page involved in the page I/O operation. It must already be
locked (PG_locked flag on) before invoking brw_page() so that no other kernel control path
can access it. The page is considered as split into 4096/size buffers; the i th buffer in the page
is associated with the block b[i] of device dev.

The function performs the following operations:

1. Invokes create_buffers() to allocate temporary buffer heads for all buffers
included in the page (such buffer heads are called asynchronous; they will be
discussed in Section 14.1.1 in Chapter 14). The function returns the address of the first
buffer head, while the b_this_page field of each buffer head points to the buffer head
of the next buffer in the page.

2. For each buffer head in the page, performs the following substeps:
a. Initializes the buffer head fields; since it is an asynchronous buffer head, sets

the b_end_io method to end_buffer_io_async().
b. If the bmap parameter flag is not null, checks whether the buffer head refers to

a block having number 0. This is because the bmap method of the inode
operations uses block number to represent a file hole (see Chapter 17). In this

Understanding the Linux Kernel

379

case, fills the buffer with zeros, sets the BH_Uptodate flag of the buffer head,
and continues with the next asynchronous buffer head.

c. Invokes find_buffer() to check whether the block associated with the
buffer head is already present in memory (see Section 14.1 in Chapter 14). If
so, performs the following substeps:

a. Increments the usage counter of the buffer head found in the cache.
b. If the I/O operation is READ and if the buffer in the cache is not up-to-

date, invokes ll_rw_block() to issue a READ request; then invokes
wait_on_buffer() to wait for the I/O to complete. Notice that
ll_rw_block() acts on the buffer head included in the buffer cache,
and thus triggers a buffer I/O operation.

c. If the I/O operation is READ, copies the data from the buffer in the cache
into the page buffer.

d. If the I/O operation is WRITE, copies the data from the page buffer into
the buffer in the cache, and invokes mark_buffer_dirty() to set the
BH_Dirty flag of the buffer head in the cache.

e. Sets the BH_Uptodate field of the asynchronous buffer head,
decrements the usage counter of the buffer head in the cache, and
continues with the next asynchronous buffer head.

d. The block required is not in the cache. Therefore, if the I/O operation is a
READ, clears the BH_Uptodate flag of the asynchronous buffer head; if it is a
WRITE, sets the BH_Dirty flag.

e. Inserts the pointer to the asynchronous buffer head into a local array, and
continues with the next asynchronous buffer head.

Now all asynchronous buffer heads have been considered.

3. If the local array of asynchronous buffer head pointers is empty, all requested blocks
were included in the buffer cache, thus the page I/O operation is not necessary. In this
case, performs the following substeps:

a. Clears the PG_locked flag of the page descriptor, thus unlocking the page
frame.

b. Sets the PG_uptodate flag of the page descriptor.
c. Wakes up any process sleeping on the wait wait queue of the page descriptor.
d. Invokes free_async_buffers() to release the asynchronous buffer heads.
e. Invokes the after_unlock_page() function (see Chapter 16). This function

releases the page frame if the PG_free_after flag of the page descriptor is set.
f. Returns the value 0.

4. If we have reached this point, the local array of asynchronous buffer head pointers is
not empty, thus a page I/O operation is really necessary. Invokes ll_rw_block() to
issue an rw request for all buffer heads included in the local array and immediately
returns the value 0.

13.6.2 Terminating Page I/O Operations

The ll_rw_block() function activates the device driver of the block device being accessed
(see Section 13.5.9). As described in Section 13.5.10, the device driver performs the actual
data transfer, and then invokes the b_end_io method of all asynchronous buffer heads that

Understanding the Linux Kernel

380

have been transferred. The b_end_io field points to the end_buffer_io_async() function,
which performs the following operations:

1. Invokes the mark_buffer_uptodate() function, which in turn performs the
following substeps:

a. Sets the BH_Uptodate flag of the asynchronous buffer head according to the
result of the I/O operation.

b. If the BH_Uptodate flag is set, checks whether all other asynchronous buffer
heads in the page are up-to-date; if so, sets the PG_uptodate flag of the page
descriptor.

2. Clears the BH_Lock flag of the asynchronous buffer head.
3. If the BH_Uptodate flag is off, sets the PG_error flag of the page descriptor because

an error occurred while transferring the block.
4. Decrements the usage counter of the asynchronous buffer head (it becomes 0).
5. Checks whether all asynchronous buffer heads that refer to the page have null usage

counters. If so, all data transfers for the buffers in the page have been completed, thus
performs the following substeps:

a. Invokes the free_async_buffers() function to release all asynchronous
buffer heads.

b. Clears the PG_locked bit of the page descriptor, thus unlocking the page
frame.

c. Wakes up all processes sleeping in the wait wait queue of the page descriptor.
d. Invokes the after_unlock_page() function (see Chapter 16). This function

releases the page frame if the PG_free_after flag of the page descriptor is set.

13.7 Anticipating Linux 2.4

Linux 2.4 heavily changes how I/O device drivers are handled. The main improvement
consists of a new Resource Management Subsystem used to allocate IRQ lines, DMA
channels, I/O ports, and so on. Thanks to this new subsystem, Linux now fully supports hot-
pluggable Plug-And-Play hardware devices, USB buses, and PCMCIA cards.

Linux 2.4 reorganizes the block device driver layer and adds support for the Logical Volume
Manager. The Logical Volume Manager allows filesystems to span several disk partitions and
to be resized dynamically. This new feature brings Linux closer to enterprise-class operating
systems.

The new kernel introduces a class of character devices called raw I/O devices. These devices
allow applications like DBMS to directly access disks without making use of the kernel
caches.

Another significant addition is kernel support for Intelligent Input/Output (I2O) hardware.
The goal of this new standard, derived from the PCI architecture, is to write OS-independent
device drivers for several kind of devices like disks, SCSI devices, and network cards.

Finally, Linux 2.4 includes the devfs virtual filesystem, which replaces the old static /dev
directory of device files. Virtual files appear only when the corresponding device driver is
present in the kernel. The device filenames have also been changed. As an example, all disc
devices are placed under the /dev/discs directory: /dev/hda might become /dev/discs/disc0,

Understanding the Linux Kernel

381

/dev/hdb might become /dev/discs/disc1, and so on. Users can still refer to the old name
scheme by properly configuring a device management daemon.

Understanding the Linux Kernel

382

Chapter 14. Disk Caches
This chapter deals with disk caches. It shows how Linux makes use of sophisticated
techniques to improve system performances by reducing disk accesses as much as possible.

As mentioned in Section 12.1.1 in Chapter 12, a disk cache is a software mechanism that
allows the system to keep in RAM some data normally stored on a disk, so that further
accesses to that data can be satisfied quickly without accessing the disk.

Besides the dentry cache, which is used by the VFS to speed up the translation of a file
pathname to the corresponding inode, two main disk caches—the buffer cache and the page
cache—are used by Linux. Most of this chapter describes the buffer cache, and a short section
near the end covers the page cache.

We learned in Section 13.5.1 in Chapter 13, that a buffer is a memory area containing the data
of a disk block. Each block refers to physically adjacent bytes on the disk surface; the block
size depends on the type of the filesystem it comes from. As suggested by its name, the buffer
cache is a disk cache that stores buffers.

Conversely, the page cache is a disk cache storing page frames that contain data belonging to
regular files. It is inherently different from the buffer cache, since page frames in the page
cache do not necessarily correspond to physically adjacent disk blocks.

Buffer I/O operations (see Section 13.5 in Chapter 13) make use of the buffer cache only.
Page I/O operations use the page cache and optionally the buffer cache as well. As we'll see in
the following sections, both caches are implemented by making use of proper data structures
storing pointers to buffer heads and page descriptors.

Table 14-1. Use of the Buffer Cache and Page Cache
I/O Operation Cache System Call Kernel Function
Read a block device file[1] Buffer read() block_read()
Write a block device file [1] Buffer write() block_write()
Read an Ext2 directory[2] Buffer getdents() ext2_bread()
Read an Ext2 regular file[2] Page read() generic_file_read()
Write an Ext2 regular file[2] Page, buffer write() ext2_file_write()
Access to memory-mapped file[3] Page None file_map_nopage()
Access to swapped-out page[4] Page None do_swap_page()

[1] See Section 13.5.4 in Chapter 13.

[2] See Chapter 17.

[3] See Section 15.2 in Chapter 15.

[4] See Chapter 16.

For each type of I/O activity, the table also shows the system call required to start it (if any)
and the main corresponding kernel function that handles it.

You'll notice in the table that accesses to memory-mapped files and swapped-out pages do not
require system calls; they are transparent to the programmer. Once a file memory mapping

Understanding the Linux Kernel

383

has been set up and once swapping has been activated, the application program can access the
mapped file or the swapped-out page as if it were present in memory. It is the kernel's
responsibility to delay the process until the required page has been located on disk and
brought into RAM.

14.1 The Buffer Cache

The whole idea behind the buffer cache is to relieve processes from having to wait for
relatively slow disks to retrieve or store data. Thus, it would be counterproductive to write a
lot of data at once; instead, data should be written piecemeal at regular intervals so that I/O
operations have a minimal impact on the speed of the user processes and on response time
experienced by human users.

The kernel maintains a lot of information about each buffer to help it pace the writes,
including a "dirty" bit to indicate the buffer has been changed in memory and needs to be
written and a timestamp to indicate how long the buffer should be kept in memory before
being flushed to disk. Information on buffers is kept in buffer heads (introduced in the
previous chapter), so these data structures require maintenance along with the buffers of user
data themselves.

The size of the buffer cache may vary. Page frames are allocated on demand when a new
buffer is required and one is not available. When free memory becomes scarce, as we shall
see in Chapter 16, buffers are released and the corresponding page frames are recycled.

The buffer cache consists of two kinds of data structures:

• A set of buffer heads describing the buffers in the cache (see Section 13.5.6 in Chapter
13)

• A hash table to help the kernel quickly derive the buffer head that describes the buffer
associated with a given pair of device and block numbers

14.1.1 Buffer Head Data Structures

As mentioned in Section 13.5.6 in Chapter 13, each buffer head is stored in a data structure of
type buffer_head. These data structures have their own slab allocator cache called
bh_cachep, which should not be confused with the buffer cache itself. The slab allocator
cache is a memory cache (see Section 3.1.2 in Chapter 3) for the buffer head objects, meaning
that it has no interaction with disks and is simply a way of managing memory efficiently.

In contrast, the buffer cache is a disk cache for the data in the buffers. The number of
allocated buffer heads, that is, the number of objects obtained from the slab allocator, is stored
in the nr_buffer_heads variable.

Each buffer used by a block device driver must have a corresponding buffer head that
describes the buffer's current status. The converse is not true: a buffer head may be unused,
which means it is not bound to any buffer. The kernel keeps a certain number of unused
buffer heads to avoid the overhead of constantly allocating and deallocating memory.

In general, a buffer head may be in any one of the following states:

Understanding the Linux Kernel

384

Unused buffer head

The object is available; the values of its fields are meaningless.

Buffer head for a free buffer

Its b_data field points to a free buffer, and its b_dev field has the value B_FREE
(0xffff). Notice that the buffer is available, not the buffer head itself.

Buffer head for a cached buffer

Its b_data field points to a buffer stored in the buffer cache.

Asynchronous buffer head

Its b_data field points to a temporary buffer used to implement a page I/O operation
(see Section 13.6 in Chapter 13).

Strictly speaking, the buffer cache data structures include only pointers to buffer heads for a
cached buffer. For sake of completeness, we shall examine the data structures and the
methods used by the kernel to handle all kinds of buffer heads, not just those in the buffer
cache.

14.1.1.1 The list of unused buffer heads

All unused buffer heads are collected in a simply linked list, whose first element is addressed
by the unused_list variable. Each buffer head stores the address of the next list element in
the b_next_free field. The current number of elements in the list is stored in the
nr_unused_buffer_heads variable.

The list of unused buffer heads acts as a primary memory cache for the buffer head objects,
while the bh_cachep slab allocator cache is a secondary memory cache. When a buffer head
is no longer needed, it is inserted into the list of unused buffer heads. Buffer heads are
released to the slab allocator (a preliminary step to letting the kernel free the memory
associated with them altogether) only when the number of list elements exceeds
MAX_UNUSED_BUFFERS (usually 36 elements). In other words, a buffer head in this list is
considered as an allocated object by the slab allocator and as an unused data structure by the
buffer cache.

A subset of NR_RESERVED (usually 16) elements in the list is reserved for page I/O operations.
This is done to prevent nasty deadlocks caused by the lack of free buffer heads. As we shall
see in Chapter 16, if free memory is scarce, the kernel can try to free a page frame by
swapping out some page to disk. In order to do this, it requires at least one additional buffer
head to perform the page I/O file operation. If the swapping algorithm fails to get a buffer
head, it simply keeps waiting and lets writes to files proceed in order to free up buffers, since
at least NR_RESERVED buffer heads are going to be released as soon as the ongoing file
operations terminate.

The get_unused_buffer_head() function is invoked to get a new buffer head. It essentially
performs the following operations:

Understanding the Linux Kernel

385

1. Invokes the recover_reusable_buffer_heads() function (more on this later).
2. If the list of unused buffer heads has more than NR_RESERVED elements, removes one

of them from the list and returns its address.
3. Otherwise, invokes kmem_cache_alloc() to allocate a new buffer head; if the

operation succeeds, returns its address.
4. No free memory is available. If the buffer head has been requested for a buffer I/O

operation, returns NULL (failure).
5. If this point is reached, the buffer head has been requested for a page I/O operation. If

the list of unused buffer heads is not empty, removes one element and returns its
address.

The put_unused_buffer_head() function performs the reverse operation, releasing a
buffer head. It inserts the object in the list of unused buffer heads if that list has fewer than
MAX_UNUSED_BUFFERS elements; otherwise, it releases the object to the slab allocator.

14.1.1.2 Lists of buffer heads for free buffers

Since Linux uses several block sizes (see Section 13.5.1 in Chapter 13), it uses several
circular lists, one for each buffer size, to collect the buffer heads of free buffers. Such lists act
as a memory cache. Thanks to them, a free buffer of a given size can be obtained quickly
when needed, without relying on the time-consuming Buddy system procedures.

Seven lists of buffer heads for free buffers are defined; the corresponding buffer sizes are 512,
1024, 2048, 4096, 8192, 16384, and 32768 bytes. The size of a block, however, cannot exceed
the size of a page frame; only the first four lists are thus actually used on PC architecture.

The free_list array points to all seven lists; for each list, there is one element in the array to
hold the address of the list's first element. The BUFSIZE_INDEX macro accepts a block size as
input and derives from it the corresponding index in the array. For instance, buffer size 512
maps to free_list[0], buffer size 1024 to free_list[1], and so on. The lists are doubly
linked by means of the b_next_free and b_ prev_free fields of each buffer head.

14.1.1.3 Lists of buffer heads for cached buffers

When a buffer belongs to the buffer cache, the flags of the corresponding buffer head describe
its current status (see Section 13.5.6 in Chapter 13). For instance, when a block not present in
the cache must be read from disk, a new buffer is allocated and the BH_Uptodate flag of the
buffer head is cleared because the buffer's contents are meaningless. While filling the buffer
by reading from disk, the BH_Lock flag is set to protect the buffer from being reclaimed. If the
read operation terminates successfully, the BH_Uptodate flag is set and the BH_Lock flag is
cleared. If the block must be written to disk, the buffer content is modified and the BH_Dirty
flag is set; the flag will be cleared only after the buffer is successfully written to disk.

Any buffer head associated with a used buffer is contained in a doubly linked list,
implemented by means of the b_next_free and b_prev_free fields. There are three different
lists, identified by an index defined as a macro (BUF_CLEAN, BUF_DIRTY, and BUF_LOCKED).
We'll define these lists in a moment.

The three lists are introduced to speed up the functions that flush dirty buffers to disk (see
Section 14.1.5 later in this chapter). For reasons of efficiency, a buffer head is not moved

Understanding the Linux Kernel

386

right away from one list to another when it changes status; this makes the following
description a bit murky.

BUF_CLEAN

This list collects buffer heads of nondirty buffers (BH_Dirty flag is off). Notice that
buffers in this list are not necessarily up-to-date, that is, they don't necessarily contain
valid data. If the buffer is not up-to-date, it could even be locked (BH_Lock is on) and
selected to be read from the physical device while being on this list. The buffer heads
in this list are guaranteed only to be not dirty—in other words, the corresponding
buffers are ignored by the functions that flush dirty buffers to disk.

BUF_DIRTY

This list mainly collects buffer heads of dirty buffers that have not been selected to be
written into the physical device, that is, dirty buffers that have not yet been included in
a block request for a block device driver (BH_Dirty is on and BH_Lock is off).
However, this list could also include nondirty buffers, since in a few cases the
BH_Dirty flag of a dirty buffer is cleared without flushing it to disk and without
removing the buffer head from the list (for instance, whenever a floppy disk is
removed from its drive without unmounting—an event that most probably leads to
data loss, of course).

BUF_LOCKED

This list mainly collects buffer heads of dirty buffers that have been selected to be
written to the block device (BH_Lock is on; BH_Dirty is clear because the
add_request() function resets it before including the buffer head in a block
request). However, when a write operation for some locked buffer has been
completed, the low-level block device handler clears the BH_Lock flag without
removing the buffer head from the list (see Section 13.5.10 in Chapter 13). The buffer
heads in this list are guaranteed only to be not dirty, or dirty but selected to be written.

For any buffer head associated with a used buffer, the b_list field of the buffer head stores
the index of the list containing the buffer. The lru_list array[5] stores the address of the first
element in each list, while the nr_buffers_type array stores the number of elements in each
list.

[5] The name of the array derives from the abbreviation for Least Recently Used: in earlier versions of Linux, these lists were ordered according to the
time when each buffer was last accessed.

The mark_buffer_dirty() and mark_buffer_clean() functions set and clear,
respectively, the BH_Dirty flag of a buffer head. They also invoke the refile_buffer()
function, which moves the buffer head into the proper list according to the value of the
BH_Dirty and BH_Lock flags.

14.1.1.4 The hash table of cached buffer heads

The addresses of the buffer heads belonging to the buffer cache are inserted into a large hash
table. Given a device identifier and a block number, the kernel can use the hash table to
quickly derive the address of the corresponding buffer head, if one exists. The hash table

Understanding the Linux Kernel

387

noticeably improves kernel performance because checks on buffer heads are frequent. Before
starting a buffer I/O operation, the kernel must check whether the required block is already in
the buffer cache; in this situation, the hash table lets the kernel avoid a lengthy sequential scan
of the lists of cached buffers.

The hash table is stored in the hash_table array, which is allocated during system
initialization and whose size depends on the amount of RAM installed on the system. As an
example, for systems having 64 MB of RAM, hash_table is stored in 64 page frames and
includes 65,536 buffer head pointers. As usual, entries causing a collision are chained in
doubly linked lists implemented by means of the b_next and b_pprev fields of each buffer
head. The total number of buffer heads in the hash table is stored in the nr_hashed_buffer
variable.

The find_buffer() function receives as parameters the device number and the block
number of a buffer head to be searched, hashes the values of the parameters and looks into the
hash table to find the first element in the collision list, then checks the b_dev and b_blocknr
fields of each element in the list and returns the address of the requested buffer head. If the
buffer head is not in the cache, the function returns NULL.

The insert_into_queues() and remove_from_queues() functions insert an element into
the hash table and remove it from the hash table, respectively. Both functions also take care of
the buffer head's other data structures. For instance, when insert_into_queues() is
invoked on a buffer head that should be cached, the function inserts it into both the proper
lru_list and the hash table.

14.1.1.5 Lists of asynchronous buffer heads

Asynchronous buffer heads are used by page I/O file operations (see Section 13.6 in Chapter
13). Even if a page I/O operation transfers a whole page, the actual data transfer is done one
block at a time by the proper block device handler. In other words, the operation views the
page frame containing the page as a group of buffers. The number of buffers in the group
depends on the block size used: a 4 KB page frame may include, for instance, a group of four
1 KB buffers if the block size is 1024 or a single 4 KB buffer if the block size is 4096. During
the page I/O operation, any buffer in the page must have its corresponding asynchronous
buffer head. These buffer heads, however, are discarded as soon as the I/O operation
completes, since from now on the page can be regarded as a whole and referenced by means
of its page descriptor.

Since each page can consist of many buffers, the goal at this point is to try to find whether all
buffers used by a page have been transferred.

As discussed in Section 13.5.10 in Chapter 13, when a block transfer terminates, the interrupt
handler invokes end_request(). This function takes care of removing the block request
from the request queue and invokes the b_end_io method of all buffer heads included in the
request. When a buffer is involved in a page I/O operation (instead of a buffer I/O operation),
the end_request() field points to the end_buffer_io_async() function, which
decrements the usage counter of the buffer head and checks whether all buffer heads in the
page have a null usage counter. If they turn out to be unused, the function invokes
free_async_buffers() to release the asynchronous buffer heads. Notice that the usage

Understanding the Linux Kernel

388

counter of an asynchronous buffer head is used as a flag specifying whether the buffer data
has been transferred.

The free_async_buffers() function cannot, however, insert the asynchronous buffer
heads into the unused list right away, since a customized block device driver's end_request(
) function might need to access them later. Therefore, free_async_buffers() inserts these
buffer heads in a special list denoted as the reuse list, which is implemented by means of the
b_next_free field. The reuse_list variable points to the first element of the list. Elements
in the reuse list are moved into the unused list by recover_reusable_buffer_heads() just
before getting a buffer head from the unused list. But this never happens before
end_request() terminates, so there is no danger of a race condition involving accesses to
the reuse list.

14.1.2 The getblk() Function

The getblk() function is the main service routine for the buffer cache. When the kernel
needs to read or write the contents of some block of a physical device, it must check whether
the buffer head for the required buffer is already included in the buffer cache. If the buffer is
not there, the kernel must create a new entry in the cache. In order to do this, the kernel
invokes getblk(), specifying as parameters the device identifier, the block number, and the
block size. This function returns the address of the buffer head associated with the buffer.

Remember that having a buffer head in the cache does not imply that the data in the buffer is
valid. (For instance, the buffer has yet to be read from disk.) Any function that reads blocks,
such as block_read(), must check whether the buffer obtained from getblk() is up-to-
date; if not, it must read the block first from disk before using the buffer.

The getblk() function performs the following operations:

1. Invokes find_buffer(), which makes use of the hash table to check whether the
required buffer head is already in the cache.

2. If the buffer head has been found, increments its usage counter (b_count field) and
returns its address. The next section explains the purpose of this field.

3. If the buffer head is not in the cache, a new buffer and a new buffer head must be
allocated. Derives from the block size an index in the free_list array and checks
whether the corresponding free list is empty.

4. If the free list is not empty, performs the following operations:
a. Removes the first buffer head from the list
b. Initializes the buffer head with the device identifier, the block number, and the

block size; stores in the b_end_io field a pointer to the end_buffer_io_sync(
) function;[6] and sets the b_count usage counter to 1

[6] The buffer cache is reserved for buffer I/O operations, which require the b_end_io method to point to the
end_buffer_io_sync() function; asynchronous buffer heads are left out of the buffer cache.

c. Invokes insert_into_queues() to insert the buffer head into the hash table
and the lru_list[BUF_CLEAN] list

d. Returns the address of the buffer head
5. If the free list is empty, invokes the refill_freelist() function to replenish it (see

Section 14.1.4).

Understanding the Linux Kernel

389

6. Invokes find_buffer() to check once more whether some other process has put the
buffer in the cache while the kernel control path was waiting for the completion of the
previous step. If so, goes to step 2; otherwise, goes to step 3.

14.1.3 Buffer Usage Counter

The b_count field of the buffer head is a usage counter for the corresponding buffer. The
counter is incremented right before any operation on the buffer and decremented right after. It
acts mainly as a safety lock, since the kernel never destroys a buffer (or its contents) as long
as it has a non-null usage counter. Instead, the cached buffers are examined either periodically
or when the free memory becomes scarce, and only those buffers having null counters may be
destroyed (see Chapter 16). In other words, a buffer with a null usage counter may belong to
the buffer cache, but it cannot be determined for how long the buffer will stay in the cache.

When a kernel control path wishes to access a buffer, it should increment the usage counter
first. This task is performed by the getblk() function, which is usually invoked to locate the
buffer, so that the increment need not be done explicitly by higher-level functions. When a
kernel control path stops accessing a buffer, it may invoke either brelse() or bforget()
to decrement the corresponding usage counter.

The brelse() function receives as its parameter the address of a buffer head. It checks
whether the buffer is dirty and, if so, writes the time when the buffer should be flushed in the
b_flushtime field of the buffer head (see Section 14.1.5). The function also invokes
refile_buffer() to move the buffer head to the proper list, if necessary. Finally, the
PG_referenced flag of the page frame containing the buffer is set (see Chapter 16), and the
b_count field is decremented.

The bforget() function is similar to brelse(), except that if the usage counter becomes
and the buffer is not locked (BH_Lock flag cleared), the buffer head is removed from the
buffer cache and inserted into the proper list of free buffers. In other words, the data included
in the buffer, as well the association between the buffer and a specific block of a physical
device, is lost.

14.1.4 Buffer Allocation

For reasons of efficiency, buffers are not allocated as single memory objects. Instead, buffers
are stored in dedicated pages called buffer pages . All the buffers within a single buffer page
must be the same size. Depending on the block size, a buffer page can include eight, four,
two, or just one buffer on the PC architecture. The buffer head's b_this_page field links all
buffers included in a single buffer page together in a circular list.

If the page descriptor refers to a buffer page, its buffers field points to the buffer head of the
first buffer included in the page; otherwise, this field is set to NULL. Figure 14-1 shows a page
containing four buffers and the corresponding buffer heads.

Understanding the Linux Kernel

390

Figure 14-1. A page including four buffers and their buffer heads

The number of buffer pages must never become too small, or buffer I/O operations would be
delayed for lack of buffers. The minimum percentage of buffer pages among all page frames
is stored in the min_percent field of the buffer_mem table,[7] which is accessible either from
the /proc/sys/vm/buffermem file or by using the sysctl() system call.

[7] The table also includes two other fields, borrow_percent and max_percent, which are not used in Linux 2.2.

When the getblk() function needs a free buffer, it tries to get an element of the list pointing
to free buffers of the right size. If that list is empty, the kernel must allocate additional page
frames and then create new buffers of the required block size. This task is performed by the
refill_freelist() function, which receives as a parameter the block size of the buffers to
be allocated. Actually, the function just invokes grow_buffers(), which basically tries to
allocate new buffers and returns the value 1 if it succeeded, otherwise. If grow_buffers()
failed to obtain new buffers because available memory is scarce, refill_freelist()
wakes up the bdflush kernel thread (see the next section). It then relinquishes the CPU by
setting the SCHED_YIELD flag of current and by invoking schedule(), thus allowing
bdflush to run. The getblk() function invokes refill_freelist() repeatedly until it
succeeds.

The grow_buffers() function receives as a parameter the size of the buffers to be allocated
and performs the following operations:

1. Invokes __get_free_page() with priority GFP_BUFFER to get a new page frame
from the Buddy system. The GFP_BUFFER priority indicates that the current process
could be suspended while executing this function.

2. If no page frame is available, returns 0.
3. If a page frame is available, invokes the create_buffers() function, which in turn

performs the following operations:
a. Tries to allocate the buffer heads for all buffers in the page by repeatedly

invoking get_unused_buffer_head().
b. If all the buffer heads needed have been obtained, initializes them properly; in

particular, sets the b_dev field to B_FREE, the b_size field to the buffer size,
and the b_data field to the starting address of the buffer in the page; then links
together the buffer heads by means of the b_this_page field. Finally, returns
the address of the buffer head of the first buffer in the page.

Understanding the Linux Kernel

391

c. If not all buffer heads have been obtained, releases all buffer heads already
obtained by repeatedly invoking put_unused_buffer_head().

d. If the buffer has been requested for a buffer I/O operation, returns NULL
(failure). This will cause grow_buffers() to return 0.

e. If we reach this point, get_unused_buffer_head() failed and the buffer has
been requested for a page I/O operation. In this case, the unused list is empty
and all NR_RESERVED asynchronous buffer heads in the list are being used for
other page I/O operations. Executes the function in the tq _disk task queue
(see Section 13.5.9 in Chapter 13) and sleeps on the buffer_wait wait queue
until some asynchronous buffer head becomes free.

f. Goes to step a and tries again to allocate all buffer heads for a page.
4. If create_buffers() returned NULL, releases the page frame and returns 0.
5. Otherwise, all the buffer heads needed are now available. Inserts the buffer heads

corresponding to the new buffers in the proper free list.
6. Adds the number of newly created buffers to nr_buffers, which always stores the

total number of existing buffers.
7. Sets the buffers field of the page descriptor to the address of the first buffer head in

the page.
8. Updates the buffermem variable, which stores the total number of bytes in the buffer

pages.
9. Returns the value 1 (success).

14.1.5 Writing Dirty Buffers to Disk

Unix systems allow the deferred writing of dirty buffers into block devices, since that strategy
noticeably improves system performance. Several write operations on a buffer could be
satisfied by just one slow physical update of the corresponding disk block. Moreover, write
operations are less critical than read operations since a process is usually not suspended
because of delaying writings, while it is most often suspended because of delayed readings.
Thanks to deferred writing, any physical block device will service, on the average, many more
read requests than write ones.

A dirty buffer might stay in main memory until the last possible moment, that is, until system
shutdown. However, pushing the delayed-write strategy to its limits has two major
drawbacks:

• If a hardware or power supply failure occurs, the contents of RAM can no longer be
retrieved, so a lot of file updates made since the time the system was booted are lost.

• The size of the buffer cache, and hence of the RAM required to contain it, would have
to be huge—at least as big as the size of the accessed block devices.

Therefore, dirty buffers are flushed (written) to disk under the following conditions:

• The buffer cache gets too full and more buffers are needed, or the number of dirty
buffers becomes too large: when one of these conditions occurs, the bdflush kernel
thread is activated.

• Too much time has elapsed since a buffer has stayed dirty: the kupdate kernel thread
regularly flushes old buffers.

• A process requests all the buffers of block devices or of particular files to be flushed:
it does this by invoking the sync(), fsync(), or fdatasync() system call.

Understanding the Linux Kernel

392

14.1.5.1 The bdflush kernel thread

The bdflush kernel thread (also called kflushd) is created during system initialization. It
executes the bdflush() function, which selects some dirty buffers and forces an update of
the corresponding blocks on the physical block devices.

Some system parameters control the behavior of bdflush; they are stored in the b_un field of
the bdf_prm table and are accessible either by means of the /proc/sys/vm/bdflush file or by
invoking the bdflush() system call. Each parameter has a default standard value, although
it may vary within a minimum and a maximum value stored in the bdflush_min and
bdflush_max tables, respectively. The parameters are listed in Table 14-2; remember that 1
tick corresponds to about 10 milliseconds.[8]

[8] The bdf_prm table also includes several other unused fields.

Table 14-2. Buffer Cache Tuning Parameters
Parameter Default Min Max Description
age_buffer 3000 100 60,000 Time-out in ticks of a normal dirty buffer for being written to disk
age_super 500 100 60,000 Time-out in ticks of a superblock dirty buffer for being written to disk
interval 500 0 6000 Delay in ticks between kupdate activations

ndirty 500 10 5000 Maximum number of dirty buffers written to disk during an activation of
bdflush

nfract 40 0 100 Threshold percentage of dirty buffers for waking up bdflush

In order to implement deferred writing effectively, it would be counterproductive to write a
lot of data at once; that would degrade system response time more than simply writing each
buffer as soon as it's dirty. Therefore, not all dirty buffers are written to disk at each activation
of bdflush. The maximum number of dirty buffers to be flushed in each activation is stored in
the ndirty parameter of bdf_prm.

The kernel thread is woken up in a few specific cases:

• When a buffer head is inserted into the BUF_DIRTY list and the number of elements in
the list becomes larger than:

nr_buffers x bdf_prm.b_un.nfract / 100

that is, the percentage of dirty buffers exceeds the threshold represented by the nfract
system parameter.

• When the grow_buffers() function, invoked by refill_freelist(), fails to
replenish a list of free buffers as described earlier in Section 14.1.4.

• When the kernel tries to get some free pages by releasing some buffers in the buffer
cache (see Chapter 16).

• When a user presses some specific combinations of keys on the console (usually
ALT+SysRq+U and ALT+SysRq+S). These key combinations, which are enabled only if
the Linux kernel has been compiled with the Magic SysRq Key option, allow Linux
hackers to have some explicit control over kernel behavior.

Understanding the Linux Kernel

393

In order to wake up bdflush, the kernel invokes the wakeup_bdflush() function. It receives
as its parameter a wait flag that indicates whether the calling kernel control path wishes to
wait until some buffers have been successfully flushed to disk. The function performs the
following actions:

1. Invokes wake_up() to wake up the process suspended in the bdflush_wait task
queue. There is just one process in this wait queue, namely bdflush itself.

2. If the wait parameter indicates that the calling process wishes to wait, invokes
sleep_on() to insert the current process in a specific wait queue named
bdflush_done.

At each activation of the bdflush kernel thread, the bdflush() function performs the
following operations:

1. Initializes the ndirty local variable to 0; this variable denotes the number of dirty
buffers written to disk during a single activation of bdflush().

2. Scans the BUF_DIRTY and BUF_LOCKED lists of buffer heads. If a dirty, unlocked buffer
is found, increments ndirty and invokes ll_rw_block() to issue a WRITE request
for the buffer. Moreover, if a buffer head in the wrong list is found, invokes
refile_buffer() on it (see Section 14.1.1 earlier in this chapter).

3. If ndirty is smaller than bdf_prm.b_un.ndirty and there are other buffer heads to
be checked, reruns step 2.

4. Invokes run_task_queue() to execute the functions in the tq _disk task queue,
thus starting the effective low-level block device drivers.

5. Invokes wake_up() to wake up all processes suspended in the bdflush_done wait
queue.

6. If some buffers have been flushed in this iteration and the percentage of dirty buffers
is greater than bdf_prm.b_un.nfract, goes to step 1 and starts a new iteration: the
buffer cache still contains too many dirty buffers.

7. Otherwise, suspends the bdflush kernel thread, as follows: invokes flush_signals(
) to flush all pending signals of bdflush and invokes interruptible_sleep_on() to
insert bdflush in the bdflush_wait wait queue. When the kernel thread is awakened,
it will resume its execution from step 1.

14.1.5.2 The kupdate kernel thread

Since the bdflush kernel thread is usually activated only when there are too many dirty buffers
or when more buffers are needed and available memory is scarce, some dirty buffers might
stay in RAM for an arbitrarily long time before being flushed to disk. The kupdate kernel
thread is thus introduced to flush the older dirty buffers.[9]

[9] In an earlier version of Linux 2.2, the same task was achieved by means of the bdflush() system call, which was invoked every five
seconds by a User Mode system process launched at system startup and which executed the /sbin/updateprogram. In more recent kernel versions, the
bdflush()system call is used only to allow users to modify the system parameters in the bdf_prm table.

The kernel distinguishes the buffers used by disk superblocks from other buffers. A
superblock includes very critical information, and its corruption could lead to severe
problems: in fact, the whole partition could become unreadable. As shown in Table 14-2,
there are two time-out parameters: age_buffer is the time for normal buffers to age before

Understanding the Linux Kernel

394

kupdate writes them to disk (usually 30 seconds), while age_super is the corresponding time
for superblocks (usually 5 seconds).

The interval field of the bdf_prm table stores the delay in ticks between two activations of
the kupdate kernel thread (usually five seconds). If this field is null, the kernel thread is
normally stopped, and it is activated only when it receives a SIGCONT signal.

When the kernel modifies the contents of some buffer, it sets the b_flushtime field of the
corresponding buffer head to the time (in jiffies) when it should later be flushed to disk. The
kupdate kernel thread selects only the dirty buffers whose b_flushtime field is smaller than
the current value of jiffies.

The kupdate kernel thread consists of the kupdate() function, which executes the following
endless loop:

for (;;) {
 if (bdf_prm.b_un.interval) {
 tsk->state = TASK_INTERRUPTIBLE;
 schedule_timeout(bdf_prm.b_un.interval);
 } else {
 tsk->state = TASK_STOPPED;
 schedule(); /* wait for SIGCONT */
 }
 sync_old_buffers();
}

If bdf_prm.b_un.interval is not null, the thread suspends itself for the specified amount of
ticks (see Section 5.4.7 in Chapter 5); otherwise, the thread stops itself until a SIGCONT signal
is received (see Section 9.1 in Chapter 9).

The core of the kupdate() function consists of the sync_old_buffers() function. The
operations to be performed are very simple for standard filesystems used with Unix; all the
function has to do is write dirty buffers to disk. However, some nonnative filesystems
introduce complexities because they store their superblock or inode information in
complicated ways. sync_old_buffers() executes the following steps:

1. Invokes sync_supers(), which takes care of superblocks used by filesystems that do
not store all the superblock data in a single disk block (an example is Apple
Macintosh's HFS). The function accesses the super_blocks array to scan the
superblocks of all currently mounted filesystems (see Section 12.3 in Chapter 12). It
then invokes, for each superblock, the corresponding write_super superblock
operation, if one is defined (see Section 12.2.1 in Chapter 12). The write_super
method is not defined for any Unix filesystem.

2. Invokes sync_inodes(), which takes care of inodes used by filesystems that do not
store all the inode data in a single disk block (an example is the MS-DOS filesystem).
The function scans the superblocks of all currently mounted filesystems and, for each
superblock, the list of dirty inodes to which the s_dirty field of the superblock object
points. The function invokes the write_inode superblock operation on each element
of the list, if that method is defined. The write_inode method is not defined for any
Unix filesystem.

Understanding the Linux Kernel

395

3. Scans the BUF_DIRTY and BUF_LOCKED lists and writes to disk all old dirty buffers, that
is, those whose b_flushtime buffer head fields have a value smaller than or equal to
jiffies. The code used to perform this step is almost identical to the code used by
bdflush(), but sync_old_buffers() does not flush young buffers to disk, and it
doesn't limit the number of buffers checked on each activation.

4. Executes the functions in the tq _disk task queue, thus starting up (unplugging) any
low-level block device drivers needed to write blocks to disk.

14.1.5.3 The sync(), fsync(), and fdatasync() system calls

Three different system calls are available to user applications to flush dirty buffers to disk:

sync()

Usually issued before a shutdown, since it flushes all dirty buffers to disk

fsync()

Allows a process to flush all blocks belonging to a specific open file to disk

fdatasync()

Very similar to fsync() but doesn't flush the inode block of the file

The core of the sync() system call is the fsync_dev() function, which performs the
following actions:

1. Invokes sync_buffers(), which scans the BUF_DIRTY and BUF_LOCKED lists and
issues a WRITE request, via ll_rw_block(), for all dirty, unlocked buffers the lists
contain

2. Invokes sync_supers() to write the dirty superblocks to disk, if necessary, by using
the write_super methods (see earlier in this section)

3. Invokes sync_inodes() to write the dirty inodes to disk, if necessary, by using the
write_inode methods (see earlier in this section)

4. Invokes sync_buffers() once again, since sync_supers() and sync_inodes()
might have marked additional buffers as dirty

The fsync() system call forces the kernel to write to disk all dirty buffers belonging to the
file specified by the fd file descriptor parameter (including the buffer containing its inode, if
necessary). The system service routine derives the address of the file object and then invokes
its fsync method. This method is filesystem-dependent, since it must know how files are
stored on disk in order to be able to identify the dirty buffers associated with a given file.
Once the correspondence between file and buffers has been established, the rest of the job can
be delegated to ll_rw_block(). The fsync method suspends the calling process until all
dirty buffers of the file have been written to disk. In order to do this, it scans both the
BUF_DIRTY and BUF_LOCKED lists and invokes wait_on_buffer() for each locked buffer
found.

The fdatasync() system call is very similar to fsync(), but it is supposed to write to disk
only the buffers that contain the file's data, not those that contain inode information. Since

Understanding the Linux Kernel

396

Linux 2.2 does not have a specific file method for fdatasync(), this system call uses the
fsync method and is thus identical to fsync().

14.2 The Page Cache

The page cache, which is thankfully much simpler than the buffer cache, is a disk cache for
the data accessed by page I/O operations. As we shall see in Chapter 15, all access to regular
files made by read(), write(), and mmap() system calls is done through the page cache.
Of course, the unit of information kept in the cache is a whole page, since page I/O operations
transfer whole pages of data. A page does not necessarily contain physically adjacent disk
blocks, and it cannot thus be identified by a device number and a block number. Instead, a
page in the page cache is identified by a file's inode and by the offset within the file.

There are three main activities related to the page cache: adding a page when accessing a file
portion not already in the cache, removing a page when the cache gets too big, and finding the
page including a given file offset.

14.2.1 Page Cache Data Structures

The page cache makes use of two main data structures:

A page hash table

Lets the kernel quickly derive the page descriptor address for the page associated with
a specified inode and file offset

An inode queue

A list of page descriptors corresponding to pages of data of a particular file
(distinguished by a unique inode)

Manipulation of the page cache involves adding and removing entries from these data
structures, as well as updating the fields in all inode objects referencing cached files.

14.2.1.1 The page hash table

When a process reads a large file, the page cache may become filled with pages related to that
file. In such cases, scanning the proper inode queue to find the page that maps the required
file portion could become a time-consuming operation.

For that reason, Linux makes use of a hash table of page descriptor pointers named
page_hash_table. Its size depends on the amount of available RAM; as an example, for
systems having 64 MB of RAM, page_hash_table is stored in 16 page frames and includes
16,384 page descriptor pointers.

The page_hash() function derives from the address of an inode object and from an offset
value the address of the corresponding element in the hash table. As usual, chaining is
introduced to handle entries that cause a collision: the next_hash and pprev_hash fields of
the page descriptors are used to implement doubly circular lists of entries having the same

Understanding the Linux Kernel

397

hash value. The page_cache_size variable specifies the number of page descriptors included
in the collision lists of the page hash table (and therefore in the page cache).

The add_page_to_hash_queue() and remove_page_from_hash_queue() functions are
used to add an element into the hash table and remove an element from it, respectively.

14.2.1.2 The inode queue

A queue of pages is associated with each inode object in kernel memory. The i_pages field
of each inode object stores the address of the first page descriptor in its inode queue, while the
i_nrpages field stores the length of the list.

The add_page_to_inode_queue() and remove_page_from_inode_queue() functions are
used to insert a page descriptor into an inode queue and to remove it, respectively.

14.2.1.3 Page descriptor fields related to the page cache

When a page frame is included in the page cache, some fields of the corresponding page
descriptor have special meanings:

inode

Contains the address of the inode object of the file to which the data included in the
page belongs; if the page does not belong to the page cache, this field is NULL.[10]

[10] As we shall see in Chapter 16, the inode field points to a fictitious inode object when the page includes data of a swap partition; actually, the
page belongs to a subset of the page cache named "swap cache." In this chapter, we don't care about this special case.

offset

Specifies the relative address of the data inside the file.

next

Points to the next element in the inode queue.

prev

Points to the previous element in the inode queue.

next_hash

Points to the next colliding page descriptor in the page hash list.

pprev_hash

Points to the previous colliding page descriptor in the page hash list.

In addition, when a page frame is inserted into the page cache, the usage counter (count field)
of the corresponding page descriptor is incremented. If the count field is exactly 1, the page

Understanding the Linux Kernel

398

frame belongs to the cache but is not being accessed by any process: it can thus be removed
from the page cache whenever free memory becomes scarce, as described in Chapter 16.

14.2.2 Page Cache Handling Functions

The high-level functions using the page cache involve finding, adding, and removing a page.

The find_page() function receives as parameters the address of an inode object and an
offset value. It invokes page_hash() to derive the address of the first element in the
collision list, then scans the list until the requested page is found. If the page is present, the
function increments the count field of the page descriptor, sets the PG_referenced flag, and
returns its address; otherwise, it returns NULL.

The add_to_page_cache() function inserts a new page descriptor in the page cache. This is
achieved by performing the following operations:

1. Increments the count field of the page descriptor
2. Clears the PG_uptodate, PG_error, and PG_referenced flags of the page frame to

indicate that the page is present in the cache but not yet filled with data
3. Sets the offset field of the page descriptor with the offset of the data within the file
4. Invokes add_page_to_hash_queue() to insert the page descriptor in the hash table
5. Invokes add_page_to_inode_queue() to insert the page descriptor in the inode

queue and to set the inode field of the page descriptor

The remove_inode_page() function removes a page descriptor from the page cache. This is
achieved by invoking remove_page_from_hash_queue(),
remove_page_from_inode_queue(), and __free_page() in succession. The latter
function decrements the count field of the page descriptor, and releases the page frame to the
Buddy system if the counter becomes 0.

14.2.3 Tuning the Page Cache

The page cache tends to quickly grow in size, because any access to previously unaccessed
portions of files forces the kernel to allocate a new page frame for the accessed data and to
insert that page frame in the cache. As we shall see in Chapter 16, when free memory
becomes scarce, the kernel prunes the page cache by releasing the oldest unused pages.

However, the page cache size should never fall under some predefined limit, otherwise system
performance will quickly degrade. The lower size limit of the page cache can be tuned by
means of the min_percent parameter stored in the page_cache table,[11] which specifies the
minimum percentage of pages among all page frames that should belong to the page cache.
The default value is 2%. The parameter's value can be read or modified either by invoking the
sysctl() system call or by accessing the /proc/sys/vm/pagecache file.

[11] The page_cache table also includes the borrow_percent and max_percent parameters, which are no longer used.

14.3 Anticipating Linux 2.4

Much work has been done on the page cache. First of all, the page cache makes use preferably
of page frames in high memory. Moreover, Linux 2.4 introduces a new kind of object that

Understanding the Linux Kernel

399

represents a file address space : the object refers to a given block of an inode (or of a block
device) and includes pointers to both the memory region descriptors mapping the file and the
pages containing the file data. The inode object now includes a pointer to the new address
space object, and the page cache is indexed by combining the base address of the address
space object with the offset inside the file.

The address space object includes methods to read and write a full page of data. These
methods take care of inode object management (like updating the file access time), page cache
handling, and temporary buffer allocation. This approach leads to a better coupling between
the page cache and the buffer cache. Most filesystems can thus use the
generic_file_write() function (as you'll see in Chapter 15, Linux 2.2 uses this function
only for networking filesystems). The synchronization problem between the buffer cache and
the page cache has thus been removed: since both read and write operations for regular files
make use of the same page cache, it is no longer necessary to synchronize data present in the
two caches.

Notice that both the buffer cache and the page cache continue to be used with different
purposes. The first acts on disk blocks, the second on pages that have a file image on disk.

Understanding the Linux Kernel

400

Chapter 15. Accessing Regular Files
Accessing a regular file is a complex activity that involves the VFS abstraction (Chapter 12),
the handling of block devices (Chapter 13), and the use of disk caches (Chapter 14). This
chapter shows how the kernel builds on all those facilities to accomplish file reads and writes.
The topics covered in this chapter apply to regular files stored either in disk-based filesystems
or to network filesystems such as NFS or Samba.

The stage we are working at in this chapter starts after the proper read or write method of a
particular file has been called (as described in Chapter 12). We show here how each read ends
with the desired data delivered to a User Mode process and how each write ends with data
marked ready for transfer to disk. The rest of the transfer is handled by the facilities in
Chapter 13 and Chapter 14.

In particular, in Section 15.1 we describe how regular files are accessed by means of the
read() and write() system calls. When a process reads from a regular file, data is first
moved from the disk itself to a set of buffers in the kernel's address space. This set of buffers
is included in a set of pages in the page cache (see Section 13.6 in Chapter 13). Next, the
pages are copied into the process's user address space. This chapter deals only with the move
from the kernel to the user address space. A write is basically the opposite, although some
stages are different from reads in important ways.

We also discuss in Section 15.2 how the kernel allows a process to directly map a regular file
into its address space, because that activity also has to deal with pages in kernel memory.

15.1 Reading and Writing a Regular File

Chapter 13's Section 13.5.4 described how the read() and write() system calls are
implemented. The corresponding service routines end up invoking the file object's read and
write methods, which may be filesystem-dependent. For disk-based filesystems, these
methods locate the physical blocks containing the data being accessed and activate the block
device driver to start the data transfer. However, reading and writing are performed differently
in Linux.

Reading a regular file is page-based: the kernel always transfers whole pages of data at once.
If a process issues a read() system call in order to get a few bytes, and that data is not
already in RAM, the kernel allocates a new page frame, fills the page with the suitable portion
of the regular file, adds the page to the page cache, and finally copies the requested bytes into
the process address space. For most filesystems, reading a page of data from a regular file is
just a matter of finding what blocks on disk contain the requested data. Once this is done, the
kernel can use one or more page I/O operations to fill the pages.

Write operations for disk-based filesystems are much more complicated to handle, since the
file size could change, and therefore the kernel might allocate or release some physical blocks
on the disk. Of course, how this is precisely done depends on the filesystem type.

As a matter of fact, the read method of most filesystems is implemented by a common
function named generic_file_read(). However, all disk-based filesystems have a
customized write method. Since the Second Extended Filesystem is the most efficient and

Understanding the Linux Kernel

401

powerful one currently available for Linux and since it is thus the standard filesystem on most
Linux systems, we discuss how it implements methods like write in Chapter 17. The
generic_file_write() function is used only by NFS and Samba: since they are network
filesystems, the kernel does not care about how the data is physically recorded on the remote
disks.

15.1.1 Reading from a Regular File

Let's discuss the generic_file_read() function, which implements the read method for
regular files of most filesystems. The function acts on the following parameters:

file

Address of the file object

buf

Linear address of the User Mode memory area where the characters read from the file
must be stored

count

Number of characters to be read

ppos

Pointer to a variable storing the file offset from which reading must start

The function verifies that the parameters are correct by invoking access_ok() (see Section
8.2.4 in Chapter 8), then invokes do_generic_file_read(), which performs the following
steps:

1. Determines from *ppos whether the file offset from which reading must start is inside
or outside the file's read-ahead window (see the next section).

2. Starts a cycle to read all the pages that include the requested count characters and
initializes the pos local variable with the value *ppos. During a single iteration, the
function reads a page of data by performing the following substeps:

a. If pos exceeds the file size, exits from the cycle and goes to step 3.
b. Invokes find_ page() to check whether the page is already in the page

cache.
c. If the page is not in the page cache, allocates a new page frame, adds it to the

page cache, and invokes the readpage method of the inode object to fill it.
Although its implementation depends on the filesystem, most disk filesystems
rely on a common generic_readpage() function, which performs the
following operations:

a. Sets the PG_locked flag of the page so that no other kernel control path
can access the page contents.

b. Increments the usage counter of the page descriptor. This is a fail-safe
mechanism ensuring that, if the process that reads the page is killed
while sleeping, the page frame won't be released to the Buddy system.

Understanding the Linux Kernel

402

c. Sets the PG_free_after flag, thus ensuring that the usage counter of
the page descriptor is decremented when the page I/O operation
terminates (see Section 13.6 in Chapter 13). This flag is necessary
because device drivers may invoke the brw_page() function without
first incrementing the usage counter. Currently no device driver does
this, though.

d. Computes the number of blocks needed to fill the page and derives
from the file offset relative to the page the file block number of the first
block in the page.

e. Invokes the bmap method of the inode operation table on each file block
number to get the corresponding logical block number.

f. Invokes brw_page() to transfer the blocks in the page (see Section
13.6.1 in Chapter 13).

d. Invokes the generic_file_readahead() function (see the next section).
e. If the page is locked, invokes wait_on_page() to wait for I/O to complete.
f. Copies the page (or a portion of it) into the process address space, updates pos

to point to the next position in the file for a read to take place, and goes to step
2a to continue with the next requested page.

3. Assigns to the *ppos the current value of pos, thus storing the next position where a
read is to occur for a future invocation of this function.

4. Sets the f_reada field of the file descriptor to 1 (see the next section).
5. Invoke update_atime() to store the current time in the i_atime field of the file's

inode and to mark the inode as dirty.

15.1.2 Read-Ahead for Regular Files

In Section 13.5.3 in Chapter 13, we discussed how sequential disk accesses benefit from
reading several adjacent blocks of a block device in advance, before they are actually
requested. The same considerations apply to sequential read operations of regular files.
However, read-ahead of regular files requires a more sophisticated algorithm than read-ahead
of physical blocks for several reasons:

• Since data is read page by page, the read-ahead algorithm does not have to consider
the offsets inside the page, but only the positions of the accessed pages inside the file.
A sequence of accesses to pages of the same file is considered sequential if the related
pages are close to each other. We'll define the word "close" more precisely in a
moment.

• Read-ahead must be restarted from scratch when the current access is not sequential
with respect to the previous one (random access).

• Read-ahead should be slowed down or even stopped when a process keeps accessing
the same pages over and over again (only a small portion of the file is being used).

• If necessary, the read-ahead algorithm must activate the low-level I/O device driver to
make sure that the new pages will be read.

We'll try now to sketch out how Linux implements read-ahead. However, we won't be able to
cover the algorithm in detail because the motivations behind it appear somewhat empirical.

The read-ahead algorithm identifies a set of pages corresponding to a contiguous portion of
the file as the read-ahead window. If the next read operation issued by a process falls inside
this set of pages, the kernel considers the file access as "sequential" to the previous one. The

Understanding the Linux Kernel

403

read-ahead window consists of pages requested by the process or read in advance by the
kernel and included in the page cache. The read-ahead window always includes the pages
requested in the last read-ahead operation; they are called the read-ahead group. Not all the
pages in the read-ahead window or group are necessarily up-to-date. They are invalid (that is,
their PG_uptodate flags are cleared) if their transfer from disk has not yet been completed.

The file object includes the following fields related to read-ahead:

f_raend

Position of the first byte after the read-ahead group and the read-ahead window

f_rawin

Length in bytes of the current read-ahead window

f_ralen

Length in bytes of the current read-ahead group

f_ramax

Maximum number of characters for the next read-ahead operation

f_reada

Flag specifying whether the file has been accessed sequentially (used only when
accessing a block device file; see Section 13.5.4 in Chapter 13)

Figure 15-1 illustrates how some of the fields are used to delimit the read-ahead window and
the read-ahead group. The generic_file_readahead() function implements the read-
ahead algorithm; its overall scheme is shown later in Figure 15-3.

Figure 15-1. Read-ahead window and read-ahead group

15.1.2.1 Read-ahead operations

The kernel performs a read-ahead operation by invoking a function named
try_to_read_ahead() several times, once for each page to be read ahead.

Understanding the Linux Kernel

404

The number of bytes to be read in advance is stored into the f_ramax field of the file object.
This number is initially set to MIN_READAHEAD (usually three pages); it cannot become larger
than MAX_READAHEAD (usually 31 pages).

The try_to_read_ahead() function checks whether the page considered is already
included in the page cache; if not, the page is transferred by invoking the readpage method of
the corresponding inode object. The function then doubles the value of the f_ramax field, so
that the next read-ahead operation will be much more aggressive (accesses appear to be really
sequential). As mentioned, the field is never allowed to exceed MAX_READAHEAD.

Next, the generic_file_readahead() function updates the file's read-ahead window and
the read-ahead group. As we shall see later, the function may set up either a short read-ahead
window or a long one: the former consists of only the most recent read-ahead group while the
latter includes the two most recent read-ahead groups (see Figure 15-2).

Figure 15-2. Read-ahead group and window

Finally, the generic_file_readahead() function may activate the low-level block device
driver by executing the tq_disk task queue (see Figure 15-3).

A special case occurs for the first read-ahead operation, where the previous read-ahead
window and the previous read-ahead group are null (all relative fields are set to 0). The
number of bytes to be read in advance in the first read-ahead operation is equal to
MIN_READAHEAD or the number of bytes requested by the process in its read() system call,
whichever value is larger.

15.1.2.2 Nonsequential access (outside the read-ahead window)

When a process issues a read request through the read() system call, the kernel checks
whether the first page of the requested data is included in the current read-ahead window of
the corresponding file object.

Suppose the first page is not included in the read-ahead window, perhaps because the file has
never been accessed by the process or because the process issued an lseek() system call to

Understanding the Linux Kernel

405

reposition the current file pointer. The kernel considers every page requested by the process in
turn; for each such page, it invokes the generic_file_readahead() function, which
decides whether a read-ahead operation has to be performed.

Basically, two cases may occur (see Figure 15-3). Either the page is locked, meaning that the
actual data transfer for the page has not been completed, or the page is unlocked and therefore
up-to-date. (For the sake of simplicity, we will not consider I/O errors occurring while
transferring the pages in this chapter.)

If the page is unlocked, the read-ahead operation does not take place. This rule ensures that no
read-ahead operation is performed on a file whose data is entirely contained in the page cache.
In such cases, any further read-ahead processing would be a waste of CPU time. Conversely,
if the page is locked, the kernel starts a read-ahead operation and prepares a short read-ahead
window for the next read-ahead.

Figure 15-3. Read-ahead scheme

15.1.2.3 Sequential access (inside the read-ahead window)

Suppose now that the first page accessed by the process through a read() system call falls
inside the read-ahead window of the previous read-ahead operation. The kernel considers all
pages requested by the process in turn; for each of them, it invokes the
generic_file_readahead() function. Four cases may occur, depending on whether the
page is locked and whether it is included in the read-ahead group (see Figure 15-3):

• If the page is not locked but is included in the read-ahead group, the process has
progressed to the point where it is accessing a page transferred from disk by the last
read-ahead operation, so the process is dangerously close to the end of the pages read
in advance. In this case, another read-ahead is performed and a long read-ahead
window is used; moreover, the functions in the tq _disk task queue are executed to
be sure that the low-level block device driver will be activated.

• If the page is neither locked nor included in the read-ahead group, the process is
accessing a page transferred from disk in the next-to-last read-ahead operation. In this

Understanding the Linux Kernel

406

case, no reading in advance is done since the process is lagging with respect to read-
ahead. This is the best scenario and shows that the kernel has an ample number of
read-ahead pages being read sequentially by the process, just as we would hope.

• If the page is both locked and included in the read-ahead group, the process is
accessing a page requested in the last read-ahead operation but probably not yet
transferred from disk. In this case, it would be pointless to start an additional read-
ahead.

• Finally, if the page is locked but not included in the read-ahead group, the process is
accessing a page requested in the next-to-last read-ahead operation. In this case, the
kernel performs another read-ahead because the page is likely to be written on disk
and an additional read-ahead will cause no harm.

15.1.3 Writing to a Regular File

Recall that the write() system call involves moving data from the User Mode address space
of the calling process into the kernel data structures, and then to disk. The write method of
the file object permits each filesystem type to define a specialized write operation. In Linux
2.2, the write method of each disk-based filesystem is a procedure that basically identifies
the disk blocks involved in the write operation, copies the data from the User Mode address
space into the corresponding buffers, and then marks those buffers as dirty. The procedure
depends on the type of filesystem; we present one example in Section 17.7 in Chapter 17.

Disk-based filesystems do not directly use the page cache for writing to a regular file. This is
a heritage from older versions of Linux, in which the only disk cache was the buffer cache.
However, network-based filesystems always use the page cache for writing to a regular file.

The approach used in Linux 2.2, bypassing the page cache, leads to a synchronization
problem. When writing takes place, the valid data is in the buffer cache but not in the page
cache; more precisely, when the write method changes any portion of a file, any page in the
page cache that corresponds to that portion no longer includes meaningful data. As an
example of the problem, one process might think it's reading correct data but fail to see the
changes written by another process.

In order to solve this problem, all write methods of disk-based filesystems invoke the
update_vm_cache() function to update the page cache used by reads. This function acts on
the following parameters:

inode

Pointer to inode object of the file to which the writes took place

pos

Offset within the file where the writes took place

buf

Address from where the characters to be written into the file must be fetched

Understanding the Linux Kernel

407

count

Number of characters to be written

The function updates page by page the portion of the page cache related to the file being
written by performing the following operations:

1. Computes from pos the offset relative to a page of the first character to be written
2. Invokes find_page() to search in the page cache for the page frame including the

character at file offset pos
3. If the page is found, performs the following substeps:

a. Invokes wait_on_page() to wait until the page becomes unlocked (in case it
is involved in an I/O data transfer).

b. Fills the page with data from the process address space, starting from the page
offset pos previously computed. This is the data that has already been written
into the buffer cache by the filesystem's customized write method.

c. Invokes free_page() to decrement the page's usage counter (it was
incremented by the find_page() function).

4. If some data in the User Mode address space remains to be copied, updates pos, sets
the page offset to 0, and goes to step 2

Now we'll briefly describe the write operation for a regular file through the page cache. Recall
that this operation is used only by network filesystems. In this case, the write method of the
file object is implemented by the generic_file_write() function, which acts on the
following parameters:

file

File object pointer

buf

Address where the characters to be written into the file must be fetched

count

Number of characters to be written

ppos

Address of a variable storing the file offset from which writing must start

The function performs the following operations:

1. If the O_APPEND flag of file->flags is on, sets *ppos to the end of the file so that all
new data is appended to it.

2. Starts a cycle to update all the pages involved in the write operation. During each
iteration, performs the following substeps:

a. Tries to find the page in the page cache. If it isn't there, allocates a free page
and adds it to the page cache.

Understanding the Linux Kernel

408

b. Invokes wait_on_page() and then sets the PG_locked flag of the page
descriptor, thus obtaining exclusive access to the page content.

c. Invokes copy_from_user() to fill the page with data coming from the
process address space.

d. Invokes the inode operation's updatepage method. This method is specific to
the particular network filesystem being used and is not described in this book.
It should ensure that the remote file is properly updated with the newly written
data.

e. Unlocks the page, invokes wake_up() to wake up the processes suspended on
the page wait queue, and invokes free_page() to decrement the page's usage
counter (incremented by find_page()).

3. Updates the value of *ppos to point right after the last character written.

15.2 Memory Mapping

As already mentioned in Section 7.3 in Chapter 7, a memory region can be associated with a
file (or with some portion of it) of a disk-based filesystem. This means that an access to a byte
within a page of the memory region is translated by the kernel into an operation on the
corresponding byte of the regular file. This technique is called memory mapping.

Two kinds of memory mapping exist:

Shared

Any write operation on the pages of the memory region changes the file on disk;
moreover, if a process writes into a page of a shared memory mapping, the changes
are visible to all other processes that map the same file.

Private

Meant to be used when the process creates the mapping just to read the file, not to
write it. For this purpose, private mapping is more efficient than shared mapping. But
any write operation on a privately mapped page will cause it not to map the page in the
file any longer. Thus, a write does not change the file on disk, nor is the change visible
to any other processes that access the same file.

A process can create a new memory mapping by issuing an mmap() system call (see Section
15.2.3 later in this chapter). Programmers must specify either the MAP_SHARED flag or the
MAP_PRIVATE flag as a parameter of the system call; as you can probably guess, in the former
case the mapping is shared while in the latter it is private. Once the mapping has been created,
the process can read the data stored in the file by simply reading from the memory locations
of the new memory region. If the memory mapping is shared, the process can also modify the
corresponding file by simply writing into the same memory locations. In order to destroy or
shrink a memory mapping, the process may use the munmap() system call (see Section
15.2.4).

As a general rule, if a memory mapping is shared, the corresponding memory region has the
VM_SHARED flag set; if it is private, the VM_SHARED flag is cleared. As we'll see later, an
exception to this rule exists for read-only shared memory mappings.

Understanding the Linux Kernel

409

15.2.1 Memory Mapping Data Structures

A memory mapping is represented by a combination of the following data structures:

• The inode object associated with the mapped file
• A file object for each different mapping performed on that file by different processes
• A vm_area_struct descriptor for each different mapping on the file
• A page descriptor for each page frame assigned to a memory region that maps the file

Figure 15-4 illustrates how the data structures are linked together. In the upper left corner we
show the inode. The i_mmap field of each inode object points to the first element of a doubly
linked list that includes all memory regions that currently map the file; if i_mmap is NULL, the
file is not mapped by any memory region. The list contains vm_area_struct descriptors
representing memory regions and is implemented by means of the vm_next_share and
vm_pprev_share fields.

Figure 15-4. Data structures related to memory mapping

The vm_file field of each memory region descriptor contains the address of a file object for
the mapped file; if that field is null, the memory region is not used in a memory mapping. The
file object contains fields that allow the kernel to identify both the process that owns the
memory mapping and the file being mapped.

The position of the first mapped location is stored into the vm_offset field of the memory
region descriptor. The length of the mapped file portion is simply the length of the memory
region, thus can be computed from the vm_start and vm_end fields.

Understanding the Linux Kernel

410

Pages of shared memory mappings are always included in the page cache; pages of private
memory mappings are included in the page cache as long as they are unmodified. When a
process tries to modify a page of a private memory mapping, the kernel duplicates the page
frame and replaces the original page frame with the duplicate in the process Page Table; this
is one of the applications of the Copy On Write mechanism that we discussed in Chapter 7.
The original page frame still remains in the page cache, although it no longer belongs to the
memory mapping since it is replaced by the duplicate. In turn, the duplicate is not inserted
into the page cache since it no longer contains valid data representing the file on disk.

Figure 15-4 also shows the page descriptors of the pages included in the page cache that refer
to the memory-mapped file. As described in Chapter 14 in Chapter 14, these descriptors are
inserted into a doubly linked list implemented through the next and prev fields. The address
of the first list element is in the inode object's i_pages field. Once again, modified pages of
private memory mappings do not belong to this list. Notice that the first memory region in the
figure is three pages long, but only two page frames are allocated for it; presumably, the
process owning the memory region has never accessed the third page.

15.2.2 Operations Associated with a Memory Region

Memory region descriptors are objects, similar to the superblock, inode, and file objects
described in Chapter 12. Like them, memory regions have their own methods. In fact, each
vm_area_struct descriptor includes a vm_ops field that points to a vm_operations_struct
structure. This table, which contains the methods associated with a memory region, includes
the fields illustrated in Table 15-1.

Table 15-1. Memory Region Methods
Method Description
open Open the region.
close Close the region.
unmap Unmap a linear address interval.
protect Not used.
sync Flush the memory region content.
advise Not used.
nopage Demand paging.
wppage Not used.
swapout Swap out a page belonging to the region.
swapin Swap in a page belonging to the region.

The memory region operations allow different filesystems to implement their own memory
mapping functions. In practice, most filesystems rely on two standard tables of memory
region operations: file_shared_mmap, which is used for shared memory mappings, and
file_private_mmap, which is used for private memory mappings. Table 15-2 shows the
names of the relevant methods.

As usual, when a method has a NULL value, the kernel invokes either a default function or no
function at all. If the nopage method has a NULL value, the memory region is anonymous; that
is, it does not map any file on disk. This use is discussed in Section 7.4.3 in Chapter 7.

Understanding the Linux Kernel

411

Table 15-2. Methods Used by file_shared_mmap and by file_private_mmap
Method file_shared_mmap file_private_mmap
open NULL NULL
close NULL NULL
unmap filemap_unmap NULL
protect NULL NULL
sync filemap_sync NULL
advise NULL NULL
nopage filemap_nopage filemap_nopage
wppage NULL NULL
swapout filemap_swapout NULL
swapin NULL NULL

15.2.3 Creating a Memory Mapping

To create a new memory mapping, a process issues an mmap() system call, passing the
following parameters to it:

• A file descriptor identifying the file to be mapped.
• An offset inside the file specifying the first character of the file portion to be mapped.
• The length of the file portion to be mapped.
• A set of flags. The process must explicitly set either the MAP_SHARED flag or the

MAP_PRIVATE flag to specify the kind of memory mapping requested.[1]

[1] The process could also set the MAP_ANONYMOUS flag to specify that the new memory region is anonymous, that is, not associated with any
file (see Section 7.4.3 in Chapter 7); however, this flag is a Linux extension and it is not defined by the POSIX standard.

• A set of permissions specifying one or more types of access to the memory region:
read access (PROT_READ), write access (PROT_WRITE), or execution access
(PROT_EXEC).

• An optional linear address, which is taken by the kernel as a hint of where the new
memory region should start. If the MAP_FIXED flag is specified and the kernel cannot
allocate the new memory region starting from the specified linear address, the system
call fails.

The mmap() system call returns the linear address of the first location in the new memory
region. The service routine is implemented by the old_mmap() function, which essentially
invokes the do_mmap() function already described in Section 7.3.4 in Chapter 7. We now
complete that description by detailing the steps performed only when creating a memory
region that maps a file.

1. Checks whether the mmap file operation for the file to be mapped is defined; if not,
returns an error code. A NULL value for mmap in the file operation table indicates that
the corresponding file cannot be mapped (for instance, because it is a directory).

2. In addition to the usual consistency checks, compares the kind of memory mapping
requested and the flags specified when the file was opened. The flags passed as a
parameter of the system call specify the kind of mapping required, while the value of
the f_mode field of the file object specifies how the file was opened. Depending on
these two sources of information, performs the following checks:

Understanding the Linux Kernel

412

a. If a shared writable memory mapping is required, checks that the file was
opened for writing and that it was not opened in append mode (O_APPEND flag
of the open() system call)

b. If a shared memory mapping is required, checks that there is no mandatory
lock on the file (see Section 12.6 in Chapter 12)

c. For any kind of memory mapping, checks that the file was opened for reading

If any of these conditions is not fulfilled, returns an error code.

3. When initializing the value of the vm_flags field of the new memory region
descriptor, sets the VM_READ, VM_WRITE, VM_EXEC, VM_SHARED, VM_MAYREAD,
VM_MAYWRITE, VM_MAYEXEC, and VM_MAYSHARE flags according to the access rights of
the file and the kind of requested memory mapping (see Section 7.3.2 in Chapter 7).
As an optimization, the VM_SHARED flag is cleared for nonwritable shared memory
mapping. This can be done because the process is not allowed to write into the pages
of the memory region, thus the mapping is treated the same as a private mapping;
however, the kernel actually allows other processes that share the file to access the
pages in this memory region.

4. Invokes the mmap method for the file being mapped, passing as parameters the address
of the file object and the address of the memory region descriptor. For most
filesystems, this method is implemented by the generic_file_mmap() function,
which performs the following operations:

a. Initializes the vm_ops field of the memory region descriptor. If VM_SHARED is
on, sets the field to file_shared_mmap, otherwise sets the field to
file_private_mmap (see Table 15-2). In a sense, this step does something
similar to the way opening a file initializes the methods of a file object.

b. Checks from the inode's i_mode field whether the file to be mapped is a
regular one. For other types of files, such as a directory or socket, returns an
error code.

c. Checks from the inode's i_op field whether the readpage() inode operation
is defined. If not, returns an error code.

d. Invokes update_atime() to store the current time in the i_atime field of the
file's inode and to mark the inode as dirty.

5. Initializes the vm_file field of the memory region descriptor with the address of the
file object and increments the file's usage counter.

6. Recall Section 7.3.4 in Chapter 7 that do_mmap() invokes insert_vm_struct().
During the execution of this function, inserts the memory region descriptor into the list
to which the inode's i_mmap field points.

15.2.4 Destroying a Memory Mapping

When a process is ready to destroy a memory mapping, it invokes the munmap() system call,
passing the following parameters to it:

• The address of the first location in the linear address interval to be removed
• The length of the linear address interval to be removed

Notice that the munmap() system call can be used to either remove or reduce the size of any
kind of memory region. Indeed, the sys_munmap() service routine of the system call
essentially invokes the do_munmap() function already described in Section 7.3.5 in

Understanding the Linux Kernel

413

Chapter 7. However, if the memory region maps a file, the following additional steps are
performed for each memory region included in the range of linear addresses to be released:

1. Checks whether the memory region has an unmap method; if so, invokes it. Usually,
private memory mappings do not have such a method since the file must not be
updated. Shared memory mappings make use of the filemap_unmap() function,
which invokes, in turn, filemap_sync() (see Section 15.2.6).

2. Invokes remove_shared_vm_struct() to remove the memory region descriptor
from the inode list pointed to by the i_mmap field.

15.2.5 Demand Paging for Memory Mapping

For reasons of efficiency, page frames are not assigned to a memory mapping right after it has
been created but at the last possible moment—that is, when the process attempts to address
one of its pages, thus causing a "Page fault" exception.

We have seen in Section 7.4 in Chapter 7 how the kernel verifies whether the faulty address is
included in some memory region of the process; in the affirmative case, the kernel checks the
page table entry corresponding to the faulty address and invokes the do_no_page() function
if the entry is null (see Section 7.4.3 in Chapter 7).

The do_no_page() function performs all the operations that are common to all types of
demand paging, such as allocating a page frame and updating the page tables. It also checks
whether the nopage method of the memory region involved is defined. Chapter 7's
Section 7.4.3, we described the case in which the method is undefined (anonymous memory
region); now we complete the description by discussing the actions performed by the function
when the method is defined:

1. Invokes the nopage method, which returns the address of a page frame that contains
the requested page.

2. Increments the rss field of the process memory descriptor to indicate that a new page
frame has been assigned to the process.

3. Sets up the Page Table entry corresponding to the faulty address with the address of
the page frame returned by the nopage method and the page access rights included in
the memory region vm_page_prot field. Further actions depend on the type of access:

o If the process is trying to write into the page, forces the Read/Write and Dirty
bits of the Page Table entry to 1. In this case, either the page frame is
exclusively assigned to the process, or the page is shared: in both cases, writing
to it should be allowed. (This avoids a second useless "Page fault" exception
caused by the Copy On Write mechanism.)

o If the process is trying to read from the page, the memory region VM_SHARED
flag is not set, and the page's usage counter is greater than 1, forces the
Read/Write bit of the Page Table entry to 0. This is because the page's usage
counter indicates that other processes are sharing the page; since the page
doesn't belong to a shared memory region, it must be handled through the
Copy On Write mechanism.

The core of the demand paging algorithm consists of the memory region's nopage method.
Generally speaking, it must return the address of a page frame that contains the page accessed

Understanding the Linux Kernel

414

by the process. Its implementation depends on the kind of memory region in which the page is
included.

When handling memory regions that map files on disk, the nopage method must first search
for the requested page in the page cache. If the page is not found, the method must read it
from disk. Most filesystems implement the nopage method by means of the
filemap_nopage() function, which acts on three parameters:

area

Descriptor address of the memory region including the required page.

address

Linear address of the required page.

no_share

Flag specifying whether the page frame returned by the function must not be shared
among many processes. The do_no_page() function sets this flag only if the process
is trying to write into the page and the VM_SHARED flag is off.

The filemap_nopage() function executes the following steps:

1. Gets the file object address from area->vm_file field. Derives the inode object
address from the d_inode field of the dentry object to which the f_dentry field of
the file object points.

2. Uses the vm_start and vm_offset fields of area to determine the offset within the
file of the data corresponding to the page starting from address.

3. Checks whether the file offset exceeds the file size. If this occurs and the VM_SHARED
flag is on, returns 0, thus causing a SIGBUS signal to be sent to the process. (Private
memory mappings behave differently: a new page frame filled with zeros is assigned
to the process.)

4. Invokes find_page() to look in the page cache for the page identified by the inode
object and the file offset. If the page isn't there, invokes try_to_read_ahead() to
allocate a new page frame, to add it to the page cache, and to fill its contents with data
read from disk. Actually, the kernel tries to read ahead the next page_cluster pages
as well (see Chapter 16).

5. Invokes wait_on_page() to wait until the required page becomes unlocked (that is,
until any current I/O data transfer for the page terminates).

6. If the no_share flag is 0, the page frame can be shared: returns its address.
7. The no_share flag is 1, so the process tried to write into a page of a private memory

mapping (or, more precisely, of a memory region whose VM_SHARED flag is off).
Therefore, allocates a new page frame by performing the following operations:

a. Invokes the __get_free_page() function
b. Copies the page included in the page cache in the new page frame
c. Decrements the usage counter of the page in the page cache in order to undo

the increment done by find_page()
d. Returns the address of the new page frame

Understanding the Linux Kernel

415

15.2.6 Flushing Dirty Memory Mapping Pages to Disk

The msync() system call can be used by a process to flush to disk dirty pages belonging to a
shared memory mapping. It receives as parameters the starting address of an interval of linear
addresses, the length of the interval, and a set of flags that have the following meanings.

MS_SYNC

Asks the system call to suspend the process until the I/O operation completes. In this
way the calling process can assume that when the system call terminates, all pages of
its memory mapping have been flushed to disk.

MS_ASYNC

Asks the system call to return immediately without suspending the calling process.

MS_INVALIDATE

Asks the system call to remove all pages included in the memory mapping from the
process address space.

The sys_msync() service routine invokes msync_interval() on each memory region
included in the interval of linear addresses (see Section 7.3.4 in Chapter 7). In turn, the latter
function performs the following operations:

1. If the vm_file field of the memory region descriptor is NULL, returns (the memory
region doesn't map a file).

2. Invokes the sync method of the memory region operations. In most filesystems, this
method is implemented by the filemap_sync() function (described shortly).

3. If the MS_SYNC flag is on, invokes the file_fsync() function to flush to disk all
related file information: the file's inode, the filesystem's superblock, and (by means of
sync_buffers()) all the dirty buffers of the file.

The filemap_sync() function copies data included in the memory region to disk. It starts
by scanning the Page Table entries corresponding to the linear address intervals included in
the memory region. For each page frame found, it performs the following steps:

1. Invokes flush_tlb_page() to flush the translation lookaside buffers.
2. If the MS_INVALIDATE flag is off, increments the usage counter of the page descriptor.
3. If the MS_INVALIDATE flag is on, sets the corresponding Page Table entry to 0, thus

specifying that the page is no longer present.
4. Invokes the filemap_write_page() function, which in turn performs the following

substeps:
a. Increments the usage counter of the file object associated with the file. This is

a fail-safe mechanism, so that the file object is not freed if the process
terminates while the I/O data transfer is still going on.

b. Invokes do_write_page(), which essentially executes the write method of
the file operations, thus simulating a write() system call on the file. In this
case, of course, the data to be written is not taken from a User Mode buffer but
from the page being flushed.

Understanding the Linux Kernel

416

c. Invokes fput() to decrement the usage counter of the file object, thus
compensating for the increment made in step 4a.

5. Invokes free_page() to decrease the usage counter of the page descriptor; this
compensates for the increment performed at step 2 if the MS_INVALIDATE flag is off.
Otherwise, if the flag is on, the global effect of filemap_sync() is to release the
page frame (giving it back to the Buddy system if the counter becomes 0).

15.3 Anticipating Linux 2.4

The approach followed remains basically the same. However, if a memory region is
recognized as "sequential read," read-ahead is performed while reading pages from disk.
Moreover, as already mentioned at the end of Chapter 13, writing to a regular file is much
simpler in Linux 2.4 because it can be easily done through page I/O operations.

Understanding the Linux Kernel

417

Chapter 16. Swapping: Methods for Freeing Memory
The disk caches examined in previous chapters used RAM as an extension of the disk; the
goal was to improve system response time and the solution was to reduce the number of disk
accesses. In this chapter we introduce an opposite approach called swapping: here the kernel
uses some space on disk as an extension of RAM. Swapping is transparent to the programmer:
once the swapping areas have been properly installed and activated, the processes may run
under the assumption that they have all the physical memory available that they can address,
never knowing that some of their pages are stored away and retrieved again as needed.

Disk caches enhance system performance at the expense of free RAM, while swapping
extends the amount of addressable memory at the expense of access speed. Thus, disk caches
are "good" and desirable, while swapping should be regarded as some sort of last resort to be
used whenever the amount of free RAM becomes too scarce.

We'll start in Section 16.1 by defining swapping. Then we'll describe in Section 16.2 the main
data structures introduced by Linux to implement it. We discuss the swap cache and
the low-level functions that transfer pages between RAM and swap areas and vice versa. The
two crucial sections are: Section 16.5, where we describe the procedure used to select a page
to be swapped out to disk, and Section 16.6, where we explain how a page stored in a swap
area is read back into RAM when the need occurs.

This chapter effectively concludes our discussion of memory management. Just one topic
remains to be covered, namely page frame reclaiming; this is done in the last section, which is
related only in part to swapping. With so many disk caches around, including the swap cache,
all the available RAM could eventually end up in these caches and no more free RAM would
be left. We shall see how the kernel prevents this by monitoring the amount of free RAM and
by freeing pages from the caches or from the process address spaces, as the need occurs.

16.1 What Is Swapping?

Swapping serves two main purposes:

• To expand the address space that is effectively usable by a process
• To expand the amount of dynamic RAM (what is left of the RAM once the kernel

code and static data structures have been initialized) to load processes

Let's give a few examples of how swapping benefits the user. The simplest is when a
program's data structures take up more space than the size of the available RAM. A swap area
will allow this program to be loaded without any problem, thus to run correctly. A more
subtle example involves users who issue several commands trying to simultaneously run large
applications that require a lot of memory. If no swap area is active, the system might reject
requests to launch a new application. In contrast, a swap area allows the kernel to launch it,
since some memory can be freed at the expense of some of the already existing processes
without killing them.

These two examples illustrate the benefits, but also the drawbacks, of swapping. Simulation
of RAM is not like RAM in terms of performance. Every access by a process to a page that is
currently swapped-out increases the process execution time by several orders of magnitude. In

Understanding the Linux Kernel

418

short, if performance is of great importance, swapping should be used only as a last resort;
adding RAM chips still remains the best solution to cope with increasing computing needs. It
is fair to say, however, that, in some cases, swapping may be beneficial to the system as a
whole. Long-running processes typically access only half of the page frames obtained. Even
when some RAM is available, swapping unused pages out and using the RAM for disk cache
can improve overall system performance.

Swapping has been around for many years. The first Unix system kernels monitored the
amount of free memory constantly. When it became less than a fixed threshold, they
performed some swapping-out. This activity consisted of copying the entire address space of a
process to disk. Conversely, when the scheduling algorithm selected a swapped-out process,
the whole process was swapped in from disk.

This approach has been abandoned by modern Unix kernels, including Linux, mainly because
context switches are quite expensive when they involve swapping in swapped-out processes.
To compensate for the burden of such swapping activity, the scheduling algorithm must be
very sophisticated: it must favor in-RAM processes without completely shutting out the
swapped-out ones.

In Linux, swapping is currently performed at the page level rather than at the process address
space level. This finer level of granularity has been reached thanks to the inclusion of a
hardware paging unit in the CPU. We recall from Section 2.4.1 in Chapter 2, that each Page
Table entry includes a Present flag: the kernel can take advantage of this flag to signal to the
hardware that a page belonging to a process address space has been swapped out. Besides that
flag, Linux also takes advantage of the remaining bits of the Page Table entry to store the
location of the swapped-out page on disk. When a "Page fault" exception occurs, the
corresponding exception handler can detect that the page is not present in RAM and invoke
the function that swaps the missing page in from the disk.

Much of the algorithm's complexity is thus related to swapping-out. In particular, four main
issues must be considered:

• Which kind of page to swap out
• How to distribute pages in the swap areas
• How to select the page to be swapped out
• When to perform page swap-out

Let us give a short preview of how Linux handles these four issues before describing the main
data structures and functions related to swapping.

16.1.1 Which Kind of Page to Swap Out

Swapping applies only to the following kinds of pages:

• Pages belonging to an anonymous memory region (for instance, a User Mode stack) of
a process

• Modified pages belonging to a private memory mapping of a process
• Pages belonging to an IPC shared memory region (see Section 18.3.5 in Chapter 18)

Understanding the Linux Kernel

419

The remaining kinds of pages are either used by the kernel or used to map files on disk. In the
first case, they are ignored by swapping because this simplifies the kernel design; in the
second case, the best swap areas for the pages are the files themselves.

16.1.2 How to Distribute Pages in the Swap Areas

Each swap area is organized into slots , where each slot contains exactly one page. When
swapping out, the kernel tries to store pages in contiguous slots so as to minimize disk seek
time when accessing the swap area; this is an important element of an efficient swapping
algorithm.

If more than one swap area is used, things become more complicated. Faster swap areas—that
is, swap areas stored in faster disks—get a higher priority. When looking for a free slot, the
search starts in the swap area having the highest priority. If there are several of them, swap
areas of the same priority are cyclically selected in order to avoid overloading one of them. If
no free slot is found in the swap areas having the highest priority, the search continues in the
swap areas having a priority next to the highest one, and so on.

16.1.3 How to Select the Page to Be Swapped Out

With the exception of pages belonging to IPC shared memory, which will be discussed in
Chapter 18, the general rule for swapping out is to steal pages from the process having the
largest number of pages in RAM. However, a choice must be made among the pages of the
process chosen for swap-out: it would be nice to be able to rank them according to some
criterion. Several Least Recently Used (LRU) replacement algorithms have been proposed
and used in some kernels. The main idea is to associate with each page in RAM a counter
storing the age of the page, that is, the interval of time elapsed since the last access to the
page. The oldest page of the process can then be swapped out.

Some computer platforms provide sophisticated support for LRU algorithms; for instance, the
CPUs of some mainframes automatically update the value of a counter included in each Page
Table entry to specify the age of the corresponding page. But Intel 80x86 processors do not
offer such a hardware feature, so Linux cannot use a true LRU algorithm. However, when
selecting a candidate for swap-out, Linux takes advantage of the Accessed flag included in
each Page Table entry, which is automatically set by the hardware when the page is accessed.
As we'll see later, this flag is set and cleared in a rather simplistic way to keep pages from
being swapped in and out too much.

16.1.4 When to Perform Page Swap-out

Swapping out is useful when the kernel is dangerously low on memory. In fact, the kernel
keeps a small reserve of free page frames that can be used only by the most critical functions.
This turns out to be essential to avoid system crashes, which might occur when a kernel
routine invoked to free resources is unable to obtain the memory area it needs to complete its
task. In order to protect this reserve of free page frames, Linux performs a swap-out on the
following occasions:

• By a kernel thread denoted as kswapd activated once every second whenever the
number of free page frames falls below a predefined threshold

Understanding the Linux Kernel

420

• When a memory request to the Buddy system (see Section 6.1.2 in Chapter 6) cannot
be satisfied because the number of free page frames would fall below a predefined
threshold

Figure 16-1. Main functions related to swapping

Several functions are concerned with swapping. Figure 16-1 illustrates the most important
ones. They will be discussed in the following sections.

16.2 Swap Area

The pages swapped out from memory are stored in a swap area, which may be implemented
either as a disk partition of its own or as a file included in a larger partition. Several different
swap areas may be defined, up to a maximum number specified by the MAX_SWAPFILES macro
(usually set to 8).

Having multiple swap areas allows a system administrator to spread a lot of swap space
among several disks so that the hardware can act on them concurrently; it also lets swap space
be increased at runtime without rebooting the system.

Each swap area consists of a sequence of page slots , that is, of 4096-byte blocks used to
contain a swapped-out page. The first page slot of a swap area is used to persistently store
some information about the swap area; its format is described by the swap_header union
composed of two structures, info and magic. The magic structure provides a string that
marks part of the disk unambiguously as a swap area; it consists of just one field,
magic.magic, containing a 10-character "magic" string. The magic structure essentially
allows the kernel to unambiguously identify a file or a partition as a swap area; the text of the
string depends on the swapping algorithm version. The field is always located at the end of
the first page slot.

Understanding the Linux Kernel

421

The info structure includes the following fields:

info.bootbits

Not used by the swapping algorithm; this field corresponds to the first 1024 bytes of
the swap area, which may store partition data, disk labels, and so on.

info.version

Swapping algorithm version.

info.last_page

Last page slot that is effectively usable.

info.nr_badpages

Number of defective page slots.

info.padding[125]

Padding bytes.

info.badpages[1]

Up to 640 numbers specifying the location of defective page slots.

Usually, the system administrator creates a swap partition when creating the other partitions
on the Linux system, then uses the /sbin/mkswap command to set up the disk area as a new
swap area. That command initializes the fields just described within the first page slot. Since
the disk may include some bad blocks, the program also examines all other page slots in order
to locate the defective ones. But executing the /sbin/mkswapcommand leaves the swap area in
an inactive state. Each swap area can be activated in a script file at system boot or
dynamically after the system is running. An initialized swap area is considered active when it
effectively represents an extension of the system RAM (see Section 16.2.3 later in this
chapter).

16.2.1 Swap Area Descriptor

Each active swap area has its own swap_info_struct descriptor in memory, whose fields are
illustrated in Table 16-1.

Understanding the Linux Kernel

422

Table 16-1. Fields of a Swap Area Descriptor
Type Field Description
unsigned int flags Swap area flags
kdev_t swap_device Device number of the swap device
struct dentry * swap_file Dentry of the file or device file
unsigned short
* swap_map Pointer to array of counters, one for each swap area page slot

unsigned char * swap_lockmap Pointer to array of bit locks, one for each swap area page slot
unsigned int lowest_bit First page slot to be scanned when searching for a free one
unsigned int highest_bit Last page slot to be scanned when searching for a free one
unsigned int cluster_next Next page slot to be scanned when searching for a free one

unsigned int cluster_nr Number of free page slot allocations before restarting from
beginning

int prio Swap area priority
int pages Number of usable page slots
unsigned long max Size of swap area in pages
int next Pointer to next swap area descriptor

The flags field includes two overlapping subfields:

SWP_USED

1 if the swap area is active; 0 if it is nonactive.

SWP_WRITEOK

This 2-bit field is set to 3 if it is possible to write into the swap area and otherwise;
since the least-significant bit of this field coincides with the bit used to implement
SWP_USED, a swap area can be written only if it is active. The kernel is not allowed to
write in a swap area when it is being activated or deactivated.

The swap_map field points to an array of counters, one for each swap area page slot. If the
counter is equal to 0, the page slot is free; if it is positive, the page slot is filled with a
swapped-out page (the exact meaning of positive values will be discussed in Section 16.3). If
the counter has the value SWAP_MAP_MAX (equal to 32,767), the page stored in the page slot is
"permanent" and cannot be removed from the corresponding slot. If the counter has the value
SWAP_MAP_BAD (equal to 32,768), the page slot is considered defective, thus unusable.

The swap_lockmap field points to an array of bits, one for each swap area page slot. If a bit is
set, the page stored in the page slot is currently being swapped in or swapped out. This bit is
thus used as a lock to ensure exclusive access to the page slot during an I/O data transfer.

The prio field is a signed integer that denotes the "goodness" of the swap area. Swap areas
implemented on faster disks should have a higher priority, so that they will be used first. Only
when they are filled does the swapping algorithm consider lower-priority swap areas. Swap
areas having the same priority are cyclically selected in order to distribute swapped-out pages
among them. As we shall see in Section 16.2.3, the priority is assigned when the swap area is
activated.

Understanding the Linux Kernel

423

The swap_info array includes MAX_SWAPFILES swap area descriptors. Of course, not all of
them are necessarily used, only those having the SWP_USED flag set. Figure 16-2 illustrates the
swap_info array, one swap area, and the corresponding array of counters.

Figure 16-2. Swap area data structures

The nr_swapfiles variable stores the index of the last array element that contains, or that has
contained, an effectively used swap area descriptor. Despite its name, the variable does not
contain the number of active swap areas.

Descriptors of active swap areas are also inserted into a list sorted by the swap area priority.
The list is implemented through the next field of the swap area descriptor, which stores the
index of the next descriptor in the swap_info array. This use of the field as an index is
different from most fields we've seen with the name next, which are usually pointers.

The swap_list variable, of type swap_list_t, includes the following fields:

head

Index in the swap_info array of the first list element.

next

Index in the swap_info array of the descriptor of the next swap area to be selected for
swapping out pages. This field is used to implement a round-robin algorithm among
maximum-priority swap areas with free slots.

The max field stores the size of the swap area in pages, while the pages field stores the
number of usable page slots. These numbers differ because pages does not take into
consideration the first page slot and the defective page slots.

Finally, the nr_swap_pages variable contains the total number of free, nondefective page
slots in all active swap areas.

Understanding the Linux Kernel

424

16.2.2 Swapped-out Page Identifier

A swapped-out page is uniquely identified quite simply by specifying the index of the swap
area in the swap_info array and the page slot index inside the swap area. Since the first page
(with index 0) of the swap area is reserved for the swap_header union discussed earlier, the
first useful page slot has index 1. The format of a swapped-out page identifier is illustrated in
Figure 16-3.

Figure 16-3. Swapped-out page identifier

The SWP_ENTRY(type,offset) macro constructs a swapped-out page identifier from the
swap area index type and the page slot index offset. Conversely, the SWP_TYPE and
SWP_OFFSET macros extract from a swapped-out page identifier the swap area index and the
page slot index, respectively.

When a page is swapped out, its identifier is inserted as the page's entry into the Page Table
so the page can be found again when needed. Notice that the least-significant bit of such an
identifier, which corresponds to the Present flag, is always cleared to denote the fact that the
page is not currently in RAM. However, at least 1 of the 30 most-significant bits has to be set
because no page is ever stored in slot 0. It is thus possible to identify, from the value of a Page
Table entry, three different cases:

• Null entry: the page does not belong to the process address space.
• First 30 most-significant bits not all equal to 0, last 2 bits equal to 0: the page is

currently swapped out.
• Least-significant bit equal to 1: the page is contained in RAM.

Since a page may belong to the address spaces of several processes (see Section 16.3), it may
be swapped out from the address space of one process and still remain in main memory;
therefore, it is possible to swap out the same page several times. A page is physically swapped
out and stored just once, of course, but each subsequent attempt to swap it out increments the
swap_map counter.

The swap_duplicate() function is invoked while trying to swap out an already swapped-
out page. It just verifies that the swapped-out page identifier passed as its parameter is valid
and increments the corresponding swap_map counter. More precisely, it performs the
following actions:

1. Uses the SWP_TYPE and SWP_OFFSET macros to extract from the parameter the partition
number type and the page slot index offset.

2. Checks whether one of the following error conditions occurs:
a. type is greater than nr_swapfiles.
b. The SWP_USED flag in swap_info[type].flags is cleared, indicating that the

swap area is not active.
c. offset is greater than swap_info[type].max.

Understanding the Linux Kernel

425

d. swap_info[type].swap_map[offset] is null, indicating that the page slot is
free.

If any of these cases occurs, return 0 (invalid identifier).

3. If the previous tests were passed, the swapped-out page identifier locates a valid page.
Therefore, increments swap_info[type].swap_map[offset]; however, if the
counter is equal to SWAP_MAP_MAX or to SWAP_MAP_BAD, leaves it unchanged.

4. Returns 1 (valid identifier).

16.2.3 Activating and Deactivating a Swap Area

Once a swap area is initialized, the superuser (or, more precisely, any user having the
CAP_SYS_ADMIN capability, as described in Section 19.1.1 in Chapter 19) may use the
/bin/swapon and /bin/swapoff programs to, respectively, activate and deactivate the swap area.
These programs make use of the swapon() and swapoff() system calls; we'll briefly
sketch out the corresponding service routines.

The sys_swapon() service routine receives as parameters:

specialfile

This parameter contains the pathname of the device file (partition) or plain file used to
implement the swap area.

swap_flags

If the SWAP_FLAG_PREFER bit is on, the 15 least-significant bits specify the priority of
the swap area.

The function checks the fields of the swap_header union that was put in the first slot when
the swap area was created. The main steps performed by the function are:

1. Checks that the current process has the CAP_SYS_ADMIN capability.
2. Searches for the first descriptor in swap_info having the SWP_USED flag cleared,

meaning that the corresponding swap area is inactive. If there is none, returns an error
code, because there are already MAX_SWAPFILES active swap areas.

3. A descriptor for the swap area has been found; sets its SWP_USED flag. Moreover, if the
descriptor's index is greater than nr_swapfiles, updates that variable.

4. Sets the prio field of the descriptor. If the swap_flags parameter does not specify a
priority, initializes the field with the lowest priority among all active swap areas minus
1 (thus assuming that the last activated swap area is on the slowest block device). If no
other swap areas are already active, assigns the value -1.

5. Initializes the swap_file field of the descriptor to the address of the dentry object
associated with specialfile, as returned by the namei() function (see Section 12.4
in Chapter 12).

6. If the specialfile parameter identifies a block device file, stores the device number
into the swap_device field of the descriptor, sets the block size in the proper entry of
the blksize_size array to PAGE_SIZE, and invokes blkdev_open(). The latter
function sets up the f_ops field of a new file object associated with the device file and

Understanding the Linux Kernel

426

initializes the hardware device (see Section 13.2.2 in Chapter 13). Moreover, checks
that the swap area was not already activated by looking at the swap_device field of
the other descriptors in swap_info. If it has been activated, returns an error code.

7. If, on the other hand, the specialfile parameter identifies a regular file, checks that
the swap area was not already activated by looking at the swap_file->d_inode field
of the other descriptors in swap_info. If it was activated, returns an error code.

8. Allocates a page frame and invokes rw_swap_page_nocache() (see Section 16.4
later in this chapter) to read the first page of the swap area, which stores the
swap_header union.

9. Checks that the magic string in the last 10 characters of the first page is equal to SWAP-
SPACE or to SWAPSPACE2 (there are two slightly different versions of the swapping
algorithm). If not, the specialfile parameter does not specify an already initialized
swap area, so returns an error code.

10. Initializes the lowest_bit, highest_bit, and max fields of the swap area descriptor
according to the size of the swap area stored in the info.last_page field of the
swap_header union.

11. Invokes vmalloc() to create the array of counters associated with the new swap area
and store its address in the swap_map field of the swap descriptor. Initializes the
elements of the array to or to SWAP_MAP_BAD, according to the list of defective page
slots stored in the info.bad_pages field of the swap_header union.

12. Invokes vmalloc() again to create the array of locks and store its address in the
swap_lockmap field of the swap descriptor; initializes all bits to 0.

13. Computes the number of useful page slots by accessing the info.last_page and
info.nr_badpages fields in the first page slot.

14. Sets the flags field of the swap descriptor to SWP_WRITEOK, sets the pages field to the
number of useful page slots, and updates the nr_swap_pages variable.

15. Inserts the new swap area descriptor in the list to which the swap_list variable
points.

16. Releases the page frame containing the data of the first page of the swap area and
returns 0 (success).

The sys_swapoff() service routine deactivates a swap area identified by the parameter
specialfile. It is much more complex and time-consuming than sys_swapon(), since the
partition to be deactivated might still contain pages belonging to several processes. The
function is thus forced to scan the swap area and to swap in all existing pages. Since each
swap-in requires a new page frame, it might fail if there are no free page frames left. In this
case, the function returns an error code. All this is achieved by performing the following
steps:

1. Invokes namei() on specialfile to get a pointer to the dentry object associated
with the swap area.

2. Scans the list to which swap_list points and locates the descriptor whose swap_file
field points to the dentry object associated with specialfile. If no such descriptor
exists, an invalid parameter was passed to the function; if the descriptor exists but its
SWP_WRITE flag is cleared while its SWP_USED flag is set, the swap area is in the middle
of being deactivated. In either case, returns an error code.

3. Removes the descriptor from the list and sets its flags field to SWP_USED so the kernel
doesn't store more pages in the swap area before this function deactivates it.

Understanding the Linux Kernel

427

4. Invokes the try_to_unuse() function to successively force all pages left in the swap
area into RAM and to correspondingly update the page tables of the processes that
make use of these pages. For each page slot, the function performs the following
substeps:

a. If the counter associated with the page slot is equal to (no page is stored there)
or to SWAP_MAP_BAD, does nothing (continues with the next page slot).

b. Otherwise, invokes the read_swap_cache() function (see Section 16.4 later
in this chapter) to allocate, if necessary, a new page frame and fill it with the
data stored in the page slot.

c. Invokes unuse_process() on each process in the process list. This time-
consuming function scans all Page Table entries of the process and replaces
any occurrence of the swapped-out page identifier with the physical address of
the page frame. To reflect this move, the function also decrements the page slot
counter in the swap_map array and increments the usage counter of the page
frame.

d. Invokes shm_unuse() to check whether the swapped-out page is used for an
IPC shared memory resource and to properly handle that case (see Section
18.3.5 in Chapter 18).

e. Removes, if necessary, the page frame from the swap cache (see xref
linkend="ch16-89946"/> later in this chapter).

5. If try_to_unuse() fails in allocating all requested page frames, the swap area
cannot be deactivated. Reinserts the swap area descriptor in the swap_list list, sets its
flags field to SWP_WRITEOK again, and returns an error code.

6. Otherwise, all used page slots have been successfully transferred to RAM. Finishes by
releasing the dentry object and the inode object associated with the swap area,
releasing the memory areas used to store the swap_map and swap_lockmap arrays,
updating the nr_swap_pages variable, and finally returning (success).

16.2.4 Finding a Free Page Slot

As we shall see later, when freeing memory, the kernel swaps out many pages in a short
period of time. It is thus important to try to store these pages in contiguous slots so as to
minimize disk seek time when accessing the swap area.

A first approach to an algorithm that searches for a free slot could choose one of two
simplistic, rather extreme strategies:

• Always start from the beginning of the swap area. This approach may increase the
average seek time during swap-out operations, because free page slots may be
scattered far away from one another.

• Always start from the last allocated page slot. This approach increases the average
seek time during swap-in operations if the swap area is mostly free (as is usually the
case): the few occupied page slots may be scattered far away from one another.

Linux adopts a hybrid approach. It always starts from the last allocated page slot unless one of
these conditions occurs:

• The end of the swap area is reached
• SWAPFILE_CLUSTER (usually 256) free page slots have been allocated after the last

restart from the beginning of the swap area

Understanding the Linux Kernel

428

The cluster_nr field in the swap_info_struct descriptor stores the number of free page
slots allocated. This field is reset to when the function restarts allocation from the beginning
of the swap area. The cluster_next field stores the index of the first page slot to be
examined in the next allocation.[1]

[1] As you may have noticed, the names of Linux data structures are not always appropriate. In this case, the kernel does not really "cluster" page slots
of a swap area.

In order to speed up the search for free page slots, the kernel keeps the lowest_bit and
highest_bit fields of each swap area descriptor up-to-date. These fields specify the first and
the last page slots that could be free; in other words, any page slot below lowest_bit and
above highest_bit is known to be occupied.

The scan_swap_map() is used to find a free page slot. It acts on a single parameter, which
points to a swap area descriptor and returns the index of a free page slot. It returns if the swap
area does not contain any free slots. The function performs the following steps:

1. If the cluster_nr field of the swap area descriptor is positive, scans the swap_map
array of counters starting from the element at index cluster_next and looks for a
null entry. If a null entry is found, decrements the cluster_nr field and goes to step
3.

2. If this point is reached, either the cluster_nr field is null or the search starting from
cluster_next didn't find a null entry in the swap_map array. It is time to try the
second stage of the hybrid search. Reinitializes cluster_nr to SWAPFILE_CLUSTER
and restarts scanning of the array from the lowest_bit index. If no null entry is
found, returns (the swap area is full).

3. A null entry has been found. Puts the value 1 in the entry, decrements
nr_swap_pages, updates if necessary the lowest_bit and highest_bit fields, and
sets the cluster_next field to the index of the page slot just allocated.

4. Returns the index of the allocated page slot.

16.2.5 Allocating and Releasing a Page Slot

The get_swap_page() function returns the index of a newly allocated page slot or if all
swap areas are filled. The function takes into consideration the different priorities of the active
swap areas.

Two passes are necessary. The first pass is partial and applies only to areas having the same
priority; the function searches such areas in a round-robin fashion for a free slot. If no free
page slot is found, a second pass is made starting from the beginning of the swap area list; in
this second pass all swap areas are examined. More precisely, the function performs the
following steps:

1. If nr_swap_pages is null, returns 0.
2. Starts by considering the swap area pointed to by swap_list.next (recall that the

swap area list is sorted by decreasing priorities).
3. If the swap area is active and not being deactivated, invokes scan_swap_map() to

allocate a free page slot. If scan_swap_map() returns a page slot index, the function's
job is essentially done, but it must prepare for its next invocation. Thus, it updates
swap_list.next to point to the next swap area in the swap area list, if the latter has

Understanding the Linux Kernel

429

the same priority (thus continuing the round-robin use of these swap areas). If the next
swap area does not have the same priority as the current one, the function sets
swap_list.next to the first swap area in the list (so that the next search will start
with the swap areas having the highest priority). The function finishes by returning the
identifier corresponding to the page slot just allocated.

4. Either the swap area is not writable, or it does not have free page slots. If the next
swap area in the swap area list has the same priority as the current one, makes it the
current one and goes to step 3.

5. At this point, the next swap area in the swap area list has a lower priority than the
previous one. The next step depends on which of the two passes the function is
performing.

a. If this is the first (partial) pass, considers the first swap area in the list and goes
to step 3, thus starting the second pass.

b. Otherwise, checks if there is a next element in the list; if so, considers it and
goes to step 3.

6. At this point the list has been completely scanned by the second pass, and no free page
slot has been found: returns 0.

The swap_free() function is invoked when swapping in a page to decrement the
corresponding swap_map counter (see Table 16-1). When the counter reaches 0, the page slot
becomes free since its identifier is no longer included in any Page Table entry. The function
acts on a single entry parameter that specifies a swapped-out page identifier and performs the
following steps:

1. Uses the SWP_TYPE and SWP_OFFSET macros to derive from entry the swap area index
and the page slot index.

2. Checks whether the swap area is active; returns right away if it is not.
3. If the priority of the swap area is greater than that of the swap area to which

swap_list.next points, sets swap_list.next to swap_list.head, so that the next
search for a free page slot starts from the highest priority swap area. In this way, the
page slot being released will be reallocated before any other page slot is allocated
from lower-priority swap areas.

4. If the swap_map counter corresponding to the page slot being freed is smaller than
SWAP_MAP_MAX, decrements it. Recall that entries having the SWAP_MAP_MAX value are
considered persistent (undeletable).

5. If the swap_map counter becomes 0, increments the value of nr_swap_pages and
updates, if necessary, the lowest_bit and highest_bit fields of the swap area
descriptor.

16.3 The Swap Cache

In Linux, a page frame may be shared among several processes in the following cases:

• The page frame is associated with a shared[2] memory mapping (see the section
Section 15.2 in Chapter 15).

[2] Page frames for private memory mappings are handled through the Copy On Write mechanism, and thus fall under the next case.

• The page frame is handled by means of Copy On Write, perhaps because a new
process has been forked (see Section 7.4.4 in Chapter 7).

Understanding the Linux Kernel

430

• The page frame is allocated to an IPC shared memory resource (see Section 18.3.5 in
Chapter 18).

As we shall see later in this chapter, page frames used for shared memory mappings are never
swapped out. Instead, they are handled by another kernel function that writes their data to the
proper files and discards them. However, the other two kinds of shared page frames must be
carefully handled by the swapping algorithm.

Because the kernel handles each process separately, a page shared by two processes, A and B,
may have been swapped out from the address space of A while it is still in B's address space.
To handle this peculiar situation, Linux makes use of a swap cache, which collects all shared
page frames that have been copied to swap areas. The swap cache does not exist as a data
structure on its own, but the pages in the regular page cache are considered to be in the swap
cache if certain fields are set.

The reader might ask at this point why the algorithm does not just swap a shared page out
from all the process's address spaces at the same time, thus avoiding the need for a swap
cache. The answer is that there is no quick way to derive from the page frame the list of
processes that own it. Scanning all page table entries of all processes looking for an entry with
a given physical address would be too costly.

So shared page swapping works like this. Consider a page P shared among two processes, A
and B. Suppose that the swapping algorithm scans the page frames of process A and selects P
for swapping out: it allocates a new page slot and copies the data stored in P into the new page
slot. It then puts the swapped-out page identifier in the corresponding page table entry of
process A. Finally, it invokes __free_page() to release the page frame. However, the
page's usage counter does not become since P is still owned by B. Thus, the swapping
algorithm succeeds in transferring the page into the swap area, but it fails to reclaim the
corresponding page frame.

Suppose now that the swapping algorithm scans the page frames of process B at a later time
and selects P for swapping out. The kernel must recognize that P has already been transferred
into a swap area so that the page won't be swapped out a second time. Moreover, it must be
able to derive the swapped-out page identifier so that it can increase the page slot usage
counter.

Figure 16-4 illustrates schematically the actions performed by the kernel on a shared page that
is swapped out from multiple processes at different times. The numbers inside the swap area
and inside P represent the page slot usage counter and the page usage counter, respectively.
Notice that any usage count includes every process that is using the page or page slot, plus the
swap cache if the page is included in it. Four stages are shown:

1. In (a) P is present in the Page Tables of both A and B.
2. In (b) P has been swapped out from A's address space.
3. In (c) P has been swapped out from both the address spaces of A and B but is still

included in the swap cache.
4. Finally, in (d) P has been released to the Buddy system.

Understanding the Linux Kernel

431

Figure 16-4. The role of the swap cache

The swap cache is implemented by the page cache data structures and procedures described in
Section 14.2 in Chapter 14. Recall that the page cache includes pages associated with regular
files and that a hash table allows the algorithm to quickly derive the address of a page
descriptor from the address of an inode object and an offset inside the file. Pages in the swap
cache are stored as any other page in the page cache, with the following special treatment:

• The inode field of the page descriptor stores the address of a fictitious inode object
contained in the swapper_inode variable.

• The offset field stores the swapped-out page identifier associated with the page.
• The PG_swap_cache flag in the flags field is set.

Moreover, when the page is put in the swap cache, both the count field of the page descriptor
and the page slot usage counters are incremented, since the swap cache makes use of both the
page frame and the page slot.

The kernel makes use of several functions to handle the swap cache; they are based mainly on
those discussed in Section 14.2 in Chapter 14. We'll show later how these relatively low-level
functions are invoked by higher-level functions to swap pages in and out as needed.

The functions that handle the swap cache are:

Understanding the Linux Kernel

432

in_swap_cache()

Checks the PG_swap_cache flag of a page to determine whether it belongs to the swap
cache; if so, it returns the swapped-out page identifier stored in the offset field.

lookup_swap_cache()

Acts on a swapped-out page identifier passed as its parameter and returns the page
address or if the page is not present in the cache. It invokes find_ page(), passing
as parameters the address of the fictitious swapper_inode inode object and the
swapped-out page identifier to find the required page. If the page is present in the
swap cache, lookup_swap_cache() checks whether it is locked; if so, the function
invokes wait_on_page() to suspend the current process until the page becomes
unlocked.

add_to_swap_cache()

Inserts a page into the swap cache. The inode and offset fields of the page descriptor
are set to the address of the fictitiousswapper_inode inode object and to the swapped-
out page identifier, respectively. Then the function invokes the
add_page_to_hash_queue() and add_page_to_inode_queue() functions. The page
usage counter is also incremented.

is_page_shared()

Returns 1 (true) if a page is shared among several processes, otherwise. While this
function is not properly specific to the swapping algorithm, it must take account of the
value of the page usage counter, the presence or absence of the page in the swap
cache, and the usage counter of the corresponding page slot if any. Moreover, the
function considers whether the page frame is currently involved in a page I/O
operation related to swapping, since in this case the page usage counter is incremented
as a fail-safe mechanism (see Section 15.1.1 in Chapter 15).

delete_from_swap_cache()

Removes a page from the swap cache by clearing the PG_swap_cache flag and by
invoking remove_inode_page(); moreover, it invokes swap_free() to release the
corresponding page slot.

free_page_and_swap_cache()

Releases a page by invoking __free_page(). It also checks whether the page is in the
swap cache (PG_swap_cache flag set) and owned by just one process
(is_page_shared() returns 0); in this case, it invokes delete_from_swap_cache() to
remove the page from the swap cache and to free the corresponding page slot.

Understanding the Linux Kernel

433

16.4 Transferring Swap Pages

Transferring swap pages wouldn't be so complicated if there weren't so many race conditions
and other potential hazards to guard against. Here are some of the things that have to be
checked regularly:

• There may be too many asynchronous swap operations going on; when this occurs,
only synchronous I/O operations are started (see Section 16.4.2 later in this chapter).

• The process that owns a page may terminate while the page is being swapped in or
out.

• Another process may be in the middle of swapping in a page that the current one is
trying to swap out or vice versa.

We'll follow a bottom-up approach in the following sections. First we describe the
synchronization mechanisms that avoid data corruption caused by simultaneous I/O
operations on the same page frame or on the same page slot. Then we illustrate a few
functions used to perform the data transfer of a swapped page.

16.4.1 Locking the Page Frame and the Page Slot

Like any other disk access type, I/O data transfers for swap pages are blocking operations.
Therefore, the kernel must take care to avoid simultaneous transfers involving the same page
frame, the same page slot, or both.

Race conditions can be avoided on the page frame through the mechanisms discussed in
Chapter 13. Specifically, before starting an I/O operation on the page frame, the kernel
invokes the wait_on_page() function to wait until the PG_locked flag is off. When the
function returns, the page frame lock has been acquired, and therefore no other kernel control
path can access the page frame's contents during the I/O operation.

But the state of the page slot must also be tracked. The PG_locked flag of the page descriptor
is used once again to ensure exclusive access to the page slot involved in the I/O data transfer.
Before starting an I/O operation on a swap page, the kernel usually checks that the page frame
involved is included in the swap cache; if not, it adds the page frame into the swap cache.
Let's suppose some process tries to swap in some page while the same page is currently being
transferred. Before doing any work related to the swap-in, the kernel looks in the swap cache
for a page frame associated with the given swapped-out page identifier. Since the page frame
is found, the kernel knows that it must not allocate a new page frame, but must simply use the
cached page frame. Moreover, since the PG_locked flag is set, the kernel suspends the kernel
control path until the bit becomes 0, so that both the page frame's contents and the page slot in
the swap area are preserved until the I/O operation terminates.

In a few specific cases, the PG_locked flag and the swap cache are not sufficient to avoid race
conditions. Let us suppose, for instance, that the kernel begins a swap-out operation on some
page; therefore, it increments the page usage counter, it allocates a page slot, and then it starts
the I/O data transfer. Suppose further that during this operation, the process that owns the
page dies. The kernel reclaims the process's memory; that is, it releases all page frames and all
page slots used by the process. Since the page usage counter was incremented before starting
the I/O operation, the page frame involved in the swap I/O operation is not released to the
Buddy system; however, the page slot usage counter in the swap area descriptor could become

Understanding the Linux Kernel

434

0, thus it could be used for swapping out another page before the previous I/O operation
completes. If this happens, a kernel control path could start a write operation in the page slot
while another kernel control path is performing another write operation on the same page slot,
that is, on the same physical disk portion. This would lead to unpredictable (and unpleasant)
results.

In order to avoid this kind of problem, the kernel uses an array of bits, whose address is stored
into the swap_lockmap field of the swap area descriptor. Each bit in the array is a lock for a
page slot in the swap area. The bit is set before activating an I/O data transfer on the page slot
and is cleared when the operation terminates. The scan_swap_map() function described in
Section 16.2.4 does not consider a page slot as "free" if its lock bit is on, even if its usage
counter in the swap_map array is null. The lock_queue wait queue is used to suspend a
process until a bit in the swap_lockmap array is cleared.

16.4.2 The rw_swap_ page() Function

As illustrated in Figure 16-1, the rw_swap_page() function is used to swap in or swap out a
page. It receives the following parameters:

buffer

The initial address of the page frame containing the page to be swapped in or swapped
out.

entry

A swapped-out page identifier. This parameter is somewhat redundant since the same
information can be derived from the descriptor of the buffer page frame.

rw

A flag specifying the direction of data transfer: READ for swapping in, WRITE for
swapping out.

wait

A flag specifying whether the kernel control path must block until the I/O operation
completes.

The swap-in operation triggered by a page fault is usually synchronous (wait equal to 1), since
the process should be suspended until the requested page has been transferred from disk.
Conversely, swap-out operations are usually asynchronous (wait equal to 0), since there is no
need to suspend the current process until they are completed. However, the kernel defines a
limit on the number of asynchronous swap operations concurrently being carried on, in order
to avoid flooding the block device driver's request queue. The limit is stored in the
swap_cluster field of the pager_daemon variable (see Section 16.7.6 later in this chapter). If
the limit is reached, rw_swap_page() ignores the value of the wait parameter and proceeds as
if it were equal to 1.

In order to swap the page, the function performs the following operations:

Understanding the Linux Kernel

435

1. Computes the address of the page descriptor corresponding to the page frame.
2. Gets the swap area index and the page slot index from entry.
3. Tests and sets the lock bit in the swap_lockmap array corresponding to the page slot.

If the bit was already set, the page is in the middle of being swapped in or out, so we
want to wait for that operation to complete. Therefore, executes the functions in the tq
_disk task queue, thus unplugging any block device driver that is waiting, and sleeps
on the lock_queue wait queue until the ongoing swap operation terminates.

4. Sets the PG_swap_unlock_after flag of the page in order to ensure that the flag in
swap_lockmap will be cleared at the end of the swap operation that the function will
start in step 10. (The effect of the flag is discussed later in this section.)

5. If the data transfer is for a swap-in operation (rw set to READ), clears the
PG_uptodate flag of the page frame. The flag will be set again only if the swap-in
operation terminates successfully.

6. Increments the page usage counter, so that the page frame is not released to the Buddy
system even if the owning process dies (the fail-safe mechanism discussed in the
previous section). Also sets the PG_free_after flag, thus ensuring that the usage
counter of the page descriptor is decremented when the page I/O operation terminates
(see Section 13.6 in Chapter 13). This flag represents a belt-and-suspenders kind of
caution because it might be possible to invoke the brw_page() function without first
incrementing the usage counter. Actually, the kernel never does this.

7. If the swap area is a disk partition, locates the block associated with the page slot
(swap partitions have 4096-byte blocks). Otherwise, if the swap area is a regular file,
invokes the bmap method of the corresponding inode object (or equivalently the smap
method for sector-based filesystems like MS-DOS) to derive the logical numbers of
the blocks associated with the page slot.

8. If nr_async_pages is greater than pager_daemon.swap_cluster, forces the wait
parameter to 1 (too many asynchronous swap operations are being carried on).

9. If wait is null, increments nr_async_pages. Sets the PG_decr_after flag of the page in
order to ensure that the variable will be decremented again when the swap operation to
be started on the next step terminates. (Like PG_swap_unlock_after, the
PG_decr_after flag will be discussed shortly.)

10. Invokes the brw_page() function to start the actual I/O operation. As described in
Section 13.6.1 in Chapter 13, this function returns before the data transfer is
completed.

11. If wait is null, returns without waiting for the completion of the data transfer.
12. Otherwise (wait equal to 1), invokes wait_on_page() to suspend the current process

until the page frame becomes unlocked, that is, until the I/O data transfer terminates.

Notice that the rw_swap_page() function relies on the brw_page() function to perform the
data transfer. As described in Section 13.6.2 in Chapter 13, whenever the block device driver
terminates the data transfer of a block in the page slot, the b_end_io method taken from the
corresponding asynchronous buffer head is invoked. This method is implemented by the
end_buffer_io_async() function, which in turn invokes after_unlock_page() if all blocks in
the page have been transferred. The latter function performs the following operations:

1. If the PG_decr_after flag of the page is on, clears it and decrements the
nr_async_pages variable. As we've seen, this variable helps to put an upper limit on
the number of current asynchronous page swaps.

2. If the PG_swap_unlock_after flag of the page is on, clears it and invokes
swap_after_unlock_page(). This function clears the lock bit in the swap_lockmap

Understanding the Linux Kernel

436

array associated with the page slot and wakes up the processes sleeping in the
lock_queue wait queue. Thus, processes waiting for the end of the I/O operation on the
page slot can start again.

3. If the PG_free_after flag of the page is on, clears it and invokes _ _free_page() to
release the page frame, thus compensating for the increment of the page usage counter
performed by rw_swap_page() as a fail-safe mechanism.

16.4.3 The read_swap_cache_async() Function

As shown in Figure 16-1, the read_swap_cache_async() function is invoked to swap in a
page either from the swap cache or from disk. The function receives the following parameters:

entry

A swapped-out page identifier

wait

A flag specifying whether the kernel is allowed to suspend the current process until
the swap's I/O operation completes

Despite the function's name, the wait parameter determines whether the I/O swap operation
must be synchronous or asynchronous. The read_swap_cache macro is often used to invoke
read_swap_cache_async() passing the value 1 to the wait parameter.

The function performs the following operations:

1. Invokes swap_duplicate() on entry to check whether the page slot is valid and to
increment the page slot usage counter. (The increment is a fail-safe mechanism
applied to the page slot during the swap cache lookup, to avoid problems in case the
process that caused the page fault dies before terminating the swap-in.)

2. Invokes lookup_swap_cache() to search for the page in the swap cache. If the page is
found, invokes swap_free() on entry to decrement the page slot usage counter and
ends by returning the page's address.

3. The page is not included in the swap cache. Invokes __get_free_page() to allocate a
new page frame. Then invokes lookup_swap_cache() again, because the process may
have been suspended while waiting for the new page frame, and some other kernel
control path could have created the page in the interim. As in the previous step, if the
requested page is found, decreases the page slot usage counter, releases the page frame
just allocated, and returns the address of the requested page.

4. Invokes add_to_swap_cache() to initialize the inode and offset fields of the descriptor
of the new page frame and to insert it into the swap cache.

5. Sets the PG_locked flag of the page frame. Since the page frame is new, no other
kernel control path could access it, therefore no check on the previous flag value is
necessary.

6. Invokes rw_swap_page() to read the page's contents from the swap area, passing to
that function the READ parameter, the swapped-out page identifier, the page frame
address, and the wait parameter. As a result, the required page is copied in the page
frame.

7. Returns the page's address.

Understanding the Linux Kernel

437

16.4.4 The rw_swap_ page_nocache() Function

In a few cases, the kernel wants to read a page from a swap area without putting it in the swap
cache. This happens, for instance, when servicing the swapon() system call: the kernel reads
the first page of a swap area, which contains the swap_header union, then immediately
discards the page frame. Swapped-out pages of IPC shared memory regions are also never
included in the swap cache (see Section 18.3.5 in Chapter 18).

The rw_swap_page_nocache() function receives as parameters the type of I/O operation
(READ or WRITE), a swapped-out page identifier, and the address of a page frame. It
performs the following operations:

1. Invokes wait_on_page() and then sets the PG_locked flag of the page frame.
2. Initializes the inode field of the page descriptor with the address of the swapper_inode

inode object, sets the offset field to the swapped-out page identifier, and sets the
PG_swap_cache flag. Notice, however, that the function does not insert the page
frame in the swap cache data structures: the PG_swap_cache flag and the inode and
offset fields of the page descriptor are initialized just to satisfy the consistency checks
of the rw_swap_page() function.

3. Increments the page usage counter (fail-safe mechanism).
4. Invokes rw_swap_page() to start the I/O swap operation.
5. Decrements the page usage counter, clears the PG_swap_cache flag, and sets the inode

field of the page descriptor to 0.

16.5 Page Swap-Out

Section 16.7 explains when pages are swapped out. As we indicated at the beginning of the
chapter, swapping out pages is a last resort and appears as part of a general strategy to free
memory that uses other tactics as well. In this section, we show how the kernel performs
swap-out. This is achieved by the swap_out() function, which acts on the following
parameters.

priority

An integer value ranging from to 6 that specifies how much time the kernel should
spend trying to locate a page to be swapped; lower values correspond to longer search
times. We shall describe how this parameter is set in Section 16.7.5 later in this
chapter.

gfp_mask

If the function has been invoked as a consequence of a memory allocation request, this
parameter is a copy of the gfp_mask parameter passed to the allocator function (see
Section 6.1.1 in Chapter 6. The parameter tells the kernel how to treat the page,
notably how urgent the request is and whether the kernel control path can be
suspended.

The swap_out() function scans existing processes and tries to swap out the pages referenced
in each process's page tables. It terminates as soon as one of the following conditions occurs:

Understanding the Linux Kernel

438

• The function succeeds in swapping out a page.
• The function performs some blocking operation. It doesn't bother resuming activity

because the process being examined could have been destroyed while the current
process was sleeping, and thus no further page scanning would be needed.

• The function failed to swap out a page after scanning a predefined number of
processes. This is because the kernel does not want to spend too much time in swap-
out activities. Specifically, each invocation of swap_out() considers at most
nr_tasks/(priority+1) processes.

How can the kernel select the processes to be penalized? In each invocation, the swap_out()
function scans the process list and finds the process having the largest value for the swap_cnt
field of the process descriptor. If all processes have null swap_cnt fields, the function scans
the process list again and sets each swap_cnt field to the number of page frames assigned to
the corresponding process (the number can be found in the mm->rss field of the process
descriptor). In this way, processes with many page frames are generally more penalized (in
the long run) than processes owning fewer page frames.

After having selected a process, swap_out() invokes the swap_out_process() function,
passing it the process descriptor pointer and the gfp_mask parameter (see Figure 16-1). If the
latter function returns the value 1, swap_out() terminates its execution, since either a page
frame has been swapped out or the current process has been suspended. Otherwise, swap_out(
) tries to select another process, until it reaches the maximum number of processes to be
examined.

The swap_out_process() scans all the memory regions of a process and invokes the
swap_out_vma() function on each one. The address of the first memory region scanned by
swap_out_process() is stored in the swap_address field of the process descriptor: since this
field identifies the memory region last scanned in the previous invocation of the function, all
memory regions of the process are penalized equally. (This appears to be the best strategy
since the kernel has no information on how often each memory region is accessed.)
swap_out_process() continues to invoke swap_out_vma() until that function returns the
value 1 or the end of the memory region list is reached. In the latter case, the swap_cnt field in
the process descriptor is set to 0, so that the process will not be considered again by
swap_out() before it examines all the other processes in the system that remain to be
considered.

The swap_out_vma() function checks that the memory region is not locked, that is, that its
VM_LOCKED flag is equal to 0. It then starts a sequence in which it considers all entries in
the process's Page Global Directory that refer to linear addresses in the memory region. For
each such entry, the function invokes the swap_out_pgd() function, which in turn considers
all entries in a Page Middle Directory corresponding to address intervals in the memory
region. For each such entry, swap_out_pgd() invokes the swap_out_pmd() function, which
considers all entries in a Page Table referencing pages in the memory region. For each such
page, swap_out_pmd() invokes the try_to_swap_out() function, which finally determines
whether the page can be swapped out. If try_to_swap_out() returns the value 1 (meaning the
page frame was freed or the current process is suspended), the chain of nested invocations of
the swap_out_vma(), swap_out_pgd(), swap_out_pmd(), and try_to_swap_out() functions
terminates.

Understanding the Linux Kernel

439

16.5.1 The try_to_swap_out() Function

The try_to_swap_out() function attempts to free a given page frame, either discarding or
swapping out its contents. The parameters of the function are:

tsk

Process descriptor pointer

vma

Memory region descriptor pointer

address

Initial linear address of the page

page_table

Address of the Page Table entry of tsk that maps address

gfp_mask

The gfp_mask parameter of the swap_out() function, which is passed along the chain
of function invocations described at the end of the previous section

The function returns the value 1 either if it has succeeded in swapping out the page or if it has
executed a blocking I/O operation. In this second case, continuing to swap out would be risky
since the function might act on a process that no longer actually exists. The function returns if
it decided not to swap.

try_to_swap_out() must recognize many different situations demanding different responses,
but the responses all share many of the same basic operations. In particular, the function
performs the following steps:

1. Considers the Page Table entry at address page_table. If the Present bit is null, no page
frame is allocated, so there is nothing to swap and the function returns 0.

2. If the Accessed flag of the Page Table entry is set, the page frame is young. In this
case, clears the Accessed flag, sets the PG_referenced flag of the page descriptor,
invokes flush_tlb_page() to invalidate the TLB entry associated with the page, and
returns 0. Only pages whose Accessed flag is null can be swapped out. Since this bit is
automatically set by the CPU's paging unit at every page access, the page can be
swapped out only if it was not accessed after the previous invocation of
try_to_swap_out() on it. As mentioned previously, the Accessed flag offers a limited
degree of hardware support that allows Linux to make use of a primitive LRU
replacement algorithm.

3. If the PG_reserved or PG_locked flag of the page descriptor is set, returns (the page
cannot be swapped out).

4. If the PG_DMA flag is equal to and the gfp_mask parameter specifies that the freed
page frame should be used for an ISA DMA buffer, returns 0.

Understanding the Linux Kernel

440

5. If the page belongs to the swap cache, it is shared with some other process and it has
already been stored in a swap area. In this case, the page must be marked as swapped
out but no memory transfer is performed. Does the following:

a. Gets the swapped-out page's identifier from the offset field of the page
descriptor

b. Invokes swap_duplicate() to increment the page slot usage counter
c. Writes the swapped-out page identifier into the Page Table entry
d. Decrements the mm->rss counter of the process
e. Invokes flush_tlb_page() to invalidate the TLB entry associated with the page
f. Invokes __free_page() to decrement the page usage counter
g. Returns 0 (no page has been swapped out)

6. If the Dirty bit of the Page Table entry is null, the page is "clean"; there is no need to
write it back to disk, since the kernel is always able to restore its contents with the
demand paging mechanism. Therefore, performs the following substeps to remove the
page from the process's address space:

a. Sets the Page Table entry to 0
b. Decrements the mm->rss counter of the process
c. Invokes flush_tlb_page() to invalidate the TLB entry associated with the page
d. Invoke _ _free_page() to decrement the page usage counter
e. Returns 0 (no page has been swapped out)

7. The page is dirty and it can be swapped out; however, checks whether the kernel is
allowed to perform I/O operations (that is, if the _ _GFP_IO flag in the gfp_mask
parameter is set); if not, returns 0. The __GFP_IO flag is cleared when the kernel
control path cannot be suspended (for instance, because it is executing an interrupt
handler).

8. Checks whether the vma memory region that contains the page has its own swapout
method. If so, performs the following substeps:

a. Sets the Page Table entry to 0
b. Decrements the mm->rss counter of the process
c. Invokes flush_tlb_page() to invalidate the TLB entry associated with the page
d. Invokes the swapout method; if this function returns an error code, sends a

SIGBUS signal to the process tsk
e. Invokes _ _free_page() to decrement the page usage counter
f. Returns 1 (the swapout method invoked in step 8d could block, so the

swap_out() function must terminate)
9. The swapout method of the memory region is not defined, thus the page must be

explicitly swapped out. (This is the most frequent case.) Performs the following
substeps:

a. Invokes get_swap_page() to allocate a new page slot.
b. Decrements the mm->rss field of the process and increments its nswap field (a

counter of swapped-out pages).
c. Writes the swapped-out page identifier into the Page Table entry.
d. Invokes flush_tlb_page() to invalidate the TLB entry associated with the page.
e. Invokes swap_duplicate() to increase the page slot usage counter; it will now

have the value 2, one increment for the process and the other for the swap
cache.

f. Invokes add_to_swap_cache() to add the page into the swap cache.
g. Preparatory to the swapping operation to be started in the next step, sets the

PG_locked flag. (We don't have to test the flag, because we did so already in

Understanding the Linux Kernel

441

step 3. No other kernel path could have set the flag since then, because the
function didn't perform any blocking operation.)

h. Invokes rw_swap_page() to start an asynchronous swapping operation to write
the page into the swap area.

i. Invokes __free_page() to decrement the page usage counter.
j. Returns 1 (a page was swapped out).

16.5.2 Swapping Out Pages from Shared Memory Mappings

As we saw in Section 15.2 in Chapter 15, pages in a shared memory mapping correspond to
portions of regular files on disk. For that reason, the kernel does not store them in swap areas
but rather updates the corresponding files.

Shared memory mapping regions define their own swapout method; as shown in Table 15-2
in Chapter 15, this method is implemented by the filemap_swapout() function, which just
invokes the filemap_write_page() function to force the page to be written on disk.

In this case, however, the filemap_write_page() function does not explicitly invoke the
do_write_page() function as described in Section 15.2.6 in Chapter 15. The reason is that
running the function could induce the following nasty race condition: suppose the kernel gets
a critical filesystem lock and then starts swapping out some pages as a consequence of a
memory allocation request. The do_write_page() function might try to acquire the same lock,
thus inducing a deadlock.

In order to avoid this problem, the only part of the kernel allowed to swap out pages
belonging to shared memory mappings is a kernel thread named kpiod , which services all I/O
requests in a special input queue. Since kpiod is a separate kernel thread from the process
executing filemap_write_page(), no deadlock may occur. Even if kpiod is suspended while
trying to get the filesystem lock, the process executing filemap_write_page() can proceed and
eventually release that lock.

The kpiod kernel thread is woken up whenever a new request is added to its input queue; each
request refers to a page of a shared memory region to be written to disk. Since the kernel may
attempt to swap out several pages at once (see Section 16.7 later in this chapter), several
requests may accumulate in the kpiod input queue. The kernel thread continues to process
requests until the queue becomes empty.

Each element in the queue is a descriptor of type pio_request, which includes the fields
illustrated in Table 16-2. The pio_first and pio_last variables point to the first and last
elements in the queue, respectively. The pio_request descriptors are handled by the
pio_request_cache slab allocator cache.

Table 16-2. Fields of a pio_request Descriptor
Type Field Description
struct pio_request * next Next element in queue
struct file * file File object pointer
unsigned long offset File offset
unsigned long page Page initial address

Understanding the Linux Kernel

442

When invoked by filemap_swapout(), the filemap_write_page() function invokes
make_pio_request() to add a request to the kpiod input queue, instead of the usual
do_write_page() that does its own data transfer. The make_pio_request() function performs
the following operations:

1. Increments the usage counter of the page to be written.
2. Allocates a new pio_request descriptor. If no memory is available, tries to prune some

disk caches without doing any actual I/O operation. The function does this by
invoking try_to_free_pages() with the __GFP_IO flag cleared in its parameter (see
Section 16.7.4 later in this chapter). make_pio_request() then tries again to allocate
the request pio_request descriptor.

3. Initializes the fields of the pio_request descriptor.
4. Inserts the pio_request descriptor in the request queue.
5. Wakes up the processes (actually, the kpiod kernel thread) in the pio_wait wait queue.

Thus, the make_pio_request() function does not trigger any I/O operation; instead, it wakes
up the kpiod kernel thread. The thread executes the kpiod() function, which considers all
requests in the input queue and invokes the do_write_page() function on each of them to
write the corresponding page to disk. The page counter is then decremented and the
pio_request descriptor is released to the slab allocator. When all requests in the queue have
been processed, kpiod() inserts itself in the pio_wait wait queue and puts itself to sleep.

kpiod() must guard against another potential error. In general, when a kernel thread requests
some free page frames and free memory is low, it starts reclaiming pages. In order to do this,
it may need to request a few additional page frames. However, during this new request the
thread should never try to reclaim pages, or infinite recursion might occur. For this reason, a
PF_MEMALLOC flag is defined in each process. It essentially forbids recursive invocations
of try_to_free_pages(), so the kernel always sets the flag before invoking that function and
clears it when the function returns. In particular, the value of this flag is checked by
__get_free_pages(); if it is set, the try_to_free_pages() function is never invoked. The kpiod
kernel thread always runs with PF_MEMALLOC set.

16.6 Page Swap-In

Swap-in must take place when a process attempts to address a page within its address space
that has been swapped out to disk. The "Page fault" exception handler triggers a swap-in
operation when the following conditions occur (see Section 7.4.2, Chapter 7):

• The page including the address that caused the exception is a valid one, that is, it
belongs to a memory region of the current process.

• The page is not present in memory, that is, the Present flag in the Page Table entry is
cleared.

• The Page Table entry associated with the page is not null, which means it contains a
swapped-out page identifier.

As described in Section 7.4.3 in Chapter 7, the handle_pte_fault() function, invoked by the
do_page_fault() exception handler, checks whether the Page Table entry is non-null. If so, it
invokes do_swap_page(), which acts on the following parameters:

Understanding the Linux Kernel

443

tsk

Process descriptor address of the process that caused the "Page fault" exception

address

Linear address that caused the exception

vma

Memory region descriptor address of the region that includes address

page_table

Address of the Page Table entry that maps address

entry

Identifier of the swapped-out page

write_access

Flag denoting whether the attempted access was a read or a write

Linux allows each memory region to include a customized function for performing swap-in.
A region that needs such a customized function stores a pointer to it in the swapin field of its
descriptor. Until recently, IPC shared memory regions had a special swapin method. But from
Linux 2.2 on, no memory regions have a customized method. If such a method were provided,
do_swap_page() would perform the following operations:

1. Invoke the swapin method. It returns a Page Table entry value, which contains the
address of the page frame to be assigned to the process.

2. Write the value returned from the swapin method into the Page Table entry that
page_table points to.

3. If the page frame usage counter is greater than 1 and the memory region is shared,
clear the Read/Write flag of the Page Table entry.

4. Increment the mm->rss and the tsk->maj_flt fields of the process.
5. Release the kernel_flag global kernel lock, which had been obtained when entering the

exception handler.
6. Return the value 1.

Conversely, when the swapin method is not defined, do_swap_page() invokes the general
swap_in() function. It acts on the same parameters as do_swap_page() and performs the
following steps:

1. Invokes lookup_swap_cache() to check whether the swap cache already contains the
page specified by entry. If so, goes to step 4.

2. Invokes the swapin_readahead() function to read from the swap area a group of 2n
pages, including the requested one. The value n is stored into the page_cluster
variable, which is usually set to 4, but it could be lower if the system has less than 32

Understanding the Linux Kernel

444

MB of memory. Each page is read by invoking the read_swap_cache_async()
function, specifying a null wait parameter (asynchronous swap operation).

3. Invokes read_swap_cache() on entry, just in case the swapin_readahead() function
failed to read the requested page (for instance, because too many asynchronous swap
operations were already being carried out by the system). Recall that
read_swap_cache() activates a synchronous swap operation. As a consequence, the
current process will be suspended until the page has been read from disk.

4. Checks whether the entry to which page_table points differs from entry. If so, another
kernel control path has already swapped in the requested page. Therefore, invokes
free_page_and_swap_cache() to release the page obtained previously and returns.

5. Invokes swap_free() to decrement the usage counter of the page slot corresponding to
entry.

6. Increments the mm->rss and min_flt fields of the process.
7. If the page is shared by several processes or the process is attempting only a read on it,

the page stays in the swap cache. However, the Page Table of the process must be
updated so the process can find the page. Therefore, writes the physical address of the
requested page and the protection bits found in the vm_page_prot field of the memory
region into the Page Table entry to which page_table points.

8. Otherwise, if the page is not shared and the process attempted to write it, there is no
reason to keep it in the swap cache, since it is private to the process. Therefore,
invokes delete_from_swap_cache() and writes the same information described by the
previous step into the Page Table entry. However, sets the Read/Write and Dirty bits
to 1.

16.7 Freeing Page Frames

Page frames can be freed in several possible ways:

• By reclaiming an unused page frame within a cache. Depending on the type of cache,
the following functions are used:

shrink_mmap()

Used for the page cache, swap cache, and buffer cache

shrink_dcache_memory()

Used for the dentry cache

kmem_cache_reap()

Used for the slab cache (see Section 6.2.7 in Chapter 6)

• By swapping out a page belonging to an anonymous memory region of a process or a
modified page belonging to a private memory mapping.

• By swapping out a page belonging to an IPC shared memory region.

As we shall see shortly, the choice among these possibilities is done in a rather empirical way,
with very little support from theory. The situation is somewhat similar to evaluating the
factors that determine the dynamic priority of a process. The main objective is to get a tuning

Understanding the Linux Kernel

445

of the parameters that achieve good system performance, without asking too many questions
about why it works.

16.7.1 Monitoring the Free Memory

Besides the nr_free_pages variable, which expresses the current number of free page frames,
the kernel relies on two values, a kind of low and high watermark. These values are stored in
a structure called freepages (it also has a low field that is no longer used in Linux 2.2):

min

Minimum number of page frames reserved to the kernel to perform crucial operations
(e.g., for swapping pages to disk). (free_area_init() initializes this field to 2n, where n
denotes the size of primary memory expressed in megabytes. The resulting value must
lie in the range 10 to 256.

high

The threshold of nr_free_pages that indicates to the kernel that enough free memory is
available. In this case, no swapping is done; free_area_init() initializes this threshold
value to 3 x freepages.min.

The contents of min and high fields can be modified by writing into the file
/proc/sys/vm/freepages.

16.7.2 Reclaiming Pages from the Page, Swap, and Buffer Caches

In order to reclaim page frames from the disk caches, the kernel makes use of the
shrink_mmap() function. It returns 1 if it succeeds in freeing a page frame belonging to the
page cache, the swap cache, or the buffer cache; otherwise, it returns 0. The function acts on
two parameters:

priority

Fraction of total number of page frames to be checked before the function gives up
and terminates with a return value of 0. The parameter's value ranges from (very
urgent: shrink everything) to 6 (nonurgent: try to shrink a bit).

gfp_mask

Flags specifying the kind of page frame to be freed.

The function scans the mem_map array and looks for a page that can be freed. To fit the bill,
the page must belong to one of the above caches, must be unlocked, must not be used by any
process, and must have the PG_DMA flag set if the page frame is requested for ISA DMA.
Moreover, it must have not been recently accessed.

A problem of fairness exists, similar to the one encountered by swap_out_process() when
choosing the first memory region of a process to be checked. When shrink_mmap() is
invoked, it should not always start scanning the mem_map array from the beginning, or pages

Understanding the Linux Kernel

446

with lower physical addresses would have much less chance of being in a disk cache than
pages with higher physical addresses. The clock[3] static local variable plays the same role as
the swap_address field of a process descriptor: it points to the next page frame to be checked
in the mem_map array.

[3] The name of this local variable derives from the idea of the hand of a clock moving circularly. The function has nothing to do with system timers, of
course.

The function scans the page descriptors of mem_map by performing the following steps:

1. Initializes the local variable count to the number n/2p of unlocked, nonshared page
frames that should be checked during this activation of the function. Here, n is the
number of page frames in the system as found in the num_physpages variable, and p is
equal to priority.

2. If count is greater than 0, increments clock and performs the following substeps on the
page descriptor in mem_map[clock]:

a. If the page is locked, if its PG_DMA flag is cleared while the gfp_mask
parameter specifies an ISA DMA page, or if its usage counter is not equal to 1,
skips the page and restarts step 2 on the next page.

b. The page is unlocked and nonshared, so decrements count.
c. If the PG_swap_cache flag is set, the page belongs to the swap cache. It can be

reclaimed if either of the following conditions holds:
 Its PG_referenced flag is off, which means that the page has not been

accessed since the last invocation of shrink_mmap(). (This flag acts
like the Accessed flag shown earlier as a simple way to hold back
swapping.)

 The page slot usage counter is 1 (no process is referencing it).

If the page can be reclaimed, invokes delete_from_swap_cache(), clears the
PG_referenced flag, and returns 1 (a page frame has been freed).

d. If the PG_referenced flag of the page is set, the page has been recently
accessed, thus it cannot be reclaimed: clears the flag and restarts step 2 on the
next page.

e. If the page belongs to the buffer cache (that is, the buffers field of the page
descriptor is not null) and the buffer cache size is greater than the threshold
specified by the buffer_mem.min_percent system parameter, invokes
try_to_free_buffers() to check if all buffers in the page are unused. In
particular, this function performs the following operations:

a. Considers all buffers in the page to determine whether they can be
released. They must all be free (that is, their usage counters must be
null), unlocked, not dirty, and not protected. If one of them fails these
tests, very little can be done. Invokes wakeup_bdflush() (see Section
14.1.5 in Chapter 14) and returns to signal that the page has not been
freed.

b. All buffers are unused. Invokes remove_from_queues() and
put_unused_buffer_head() repeatedly to release the corresponding
buffer heads.

c. Decrements nr_buffers by the number of buffers in the page and
decrements buffermem by 4 KB.

Understanding the Linux Kernel

447

d. Wakes up the processes suspended for lack of buffer heads and sleeping
in the buffer_wait wait queue (see Section 14.1.4 in Chapter 14).

e. Invokes __free_page() to release the page frame to the Buddy system,
and returns 1 to signal that the page has been freed.

If try_to_free_buffers() returns the value 0, the page cannot be freed: goes to
step 2. Otherwise, returns the value 1.

f. If the page belongs to the page cache (that is, the inode field of the page
descriptor is not null) and the page cache size is greater than the threshold
specified by the page_cache.min_percent system parameter, invokes
remove_inode_page() (see Section 14.2.2 in Chapter 14) to remove the page
from the page cache and releases the page frame to the Buddy system, then
returns the value 1.

3. If this point is reached, no page frame has been freed: returns the value 0.

16.7.3 Reclaiming Pages from the Dentry and Inode Caches

Dentry objects themselves aren't big, but freeing one of them has a cascading effect that can
ultimately free a lot of memory by releasing several data structures. The
shrink_dcache_memory() function is invoked to remove dentry objects from the dentry
cache. Clearly, only dentry objects not referenced by any process (defined as unused dentries
in the section Section 12.2.5 in Chapter 12) can be removed.

Since the dentry cache objects are allocated through the slab allocator, the
shrink_dcache_memory() function may force some slabs to become free, thus some page
frames may be consequently reclaimed by kmem_cache_reap() (see Section 6.2.7 in
Chapter 6). Moreover, the dentry cache acts as a controller of the inode cache. Therefore,
when a dentry object is released, the buffer storing the corresponding inode becomes unused,
and the shrink_mmap() function may release the corresponding buffer page.

The shrink_dcache_memory() function receives the same parameters as the shrink_mmap()
function. It checks whether the kernel is allowed to perform I/O operations (if the __GFP_IO
flag is set in the gfp_mask parameter) and, if so, invokes prune_dcache().

Two parameters are passed to the latter function: the number of dentry objects d_nr to be
released and the number of inode objects i_nr to be released (because removing a dentry may
induce an inode to be released as well). prune_dcache() stops shrinking the dentry cache as
soon as one of the two targets has been reached. The value of the first parameter d_nr depends
on priority. If it is 0, shrink_dcache_memory() passes the value to prune_dcache(), which
means that all unused dentry objects will be removed. Otherwise, d_nr is computed to be
n/priority, where n is the total number of unused dentry objects. The shrink_dcache_memory(
) function passes -1 as a second parameter to prune_dcache(), which means that no limit is
enforced on the number of released inodes.

The prune_dcache() function scans the list of unused dentries and invokes prune_one_dentry(
) on each object to be released. The latter function, in turn, performs the following operations.

1. Removes the dentry object from the dentry hash table and from the list of dentry
objects in its parent's directory.

Understanding the Linux Kernel

448

2. Invokes dentry_iput(), which releases the dentry's inode using the d_iput dentry
method, if defined, or the iput() function.

3. Invokes dput() on the parent dentry of dentry. As a result, its usage counter is
decremented.

4. Returns the dentry object to the slab allocator (see Section 6.2.12 in Chapter 6).

16.7.4 The try_to_ free_ pages() Function

The try_to_free_pages() function is invoked:

• By the __get_free_pages() function (see Section 6.1.1 in Chapter 6) when the number
of free page frames falls below the threshold specified in freepages.min and the
PF_MEMALLOC flag of the current process is cleared

• By the make_pio_request() function (see Section 16.5.2 earlier in this chapter) when
it fails to allocate a new pio_request descriptor

The function receives as its parameter a set of flags gfp_mask, whose meaning is exactly the
same as the corresponding parameter of the __get_free_pages() function. In particular, the
__GFP_IO flag is set if the kernel is allowed to activate I/O data transfers, while the
__GFP_WAIT flag is set if the kernel is allowed to discard the contents of page frames in
order to free memory.

The function performs only two operations:

• Wakes up the kswapd kernel thread (see Section 16.7.6 later in this chapter)
• If the __GFP_WAIT flag in gfp_mask is set, invokes do_try_to_free_pages(), passing

to it the gfp_mask parameter

16.7.5 The do_try_to_ free_ pages() Function

The do_try_to_free_pages() function is invoked by try_to_free_pages() and by the kswapd
kernel thread. It receives the usual gfp_mask parameter and tries to free at least
SWAP_CLUSTER_MAX page frames (usually 32). A few auxiliary functions are invoked to
do the job. Some of them return after releasing a single page frame, so they must be invoked
repeatedly.

The algorithm implemented by do_try_to_free_pages() is quite reasonable, since the page
frames are released according to their usage. For instance, the algorithm favors the
preservation of page frames used by the dentry cache over the preservation of unused page
frames in the slab allocator caches. Moreover, do_try_to_free_pages() tries to free memory
by invoking the functions that do the reclaiming with decreasing priority values. In general, a
lower value for priority means that more iterations will be performed by the functions before
quitting. do_try_to_free_pages() gives up when all functions have been invoked with a
priority.

In particular, the function executes the following actions:

1. Acquires the global kernel lock by invoking lock_kernel().
2. Invokes kmem_cache_reap(gfp_mask) to reclaim page frames from the slab allocator

caches.

Understanding the Linux Kernel

449

3. Sets a priority local variable to 6 (the lowest priority).
4. Tries to free pages over a series of more and more thorough searches, driven by

increasing the priority on each iteration. To be specific, while priority is greater than
or equal to and the number of released page frames is lower than
SWAP_CLUSTER_MAX, performs the following substeps:

a. Invokes shrink_mmap(priority, gfp_mask) repeatedly until it fails in releasing
a page frame belonging to the page cache, to the swap cache, or to the buffer
cache or until the number of released page frames reaches
SWAP_CLUSTER_MAX

b. If the kernel is allowed to write pages to disk (if the __GFP_IO flag in
gfp_mask is set), invokes shm_swap(priority, gfp_mask) repeatedly until it
fails in releasing a page frame belonging to an IPC shared memory region or
until the number of released page frames reaches SWAP_CLUSTER_MAX

c. Invokes swap_out(priority, gfp_mask) repeatedly until it fails in releasing to
the Buddy system a page frame belonging to some process or until the number
of released page frames reaches SWAP_CLUSTER_MAX

d. Invokes shrink_dcache_memory(priority, gfp_mask) to release free elements
in the dentry cache

e. Decrements priority and goes to the start of the loop
5. Invokes unlock_kernel().
6. Returns 1 if at least SWAP_CLUSTER_MAX page frames have been released,

otherwise.

16.7.6 The kswapd Kernel Thread

The kswapd kernel thread is another kernel mechanism that activates the reclamation of
memory. Why is it necessary? Is it not sufficient to invoke try_to_free_pages() when free
memory becomes scarce and another memory allocation request is issued?

Unfortunately, this is not the case. Some memory allocation requests are performed by
interrupt and exception handlers, which cannot block the current process waiting for some
page frame to be freed; moreover, some memory allocation requests are done by kernel
control paths that have already acquired exclusive access to critical resources and that,
therefore, cannot activate I/O data transfers. In the infrequent case in which all memory
allocation requests are done by such sorts of kernel control paths, the kernel would be unable
to free memory forever.

In order to avoid this situation, the kswapd kernel thread is activated once every 10 seconds.
The thread executes the kswapd() function, which at each activation performs the following
operations:

1. If nr_free_pages is greater than the freepages.high threshold, no memory reclaiming is
necessary: goes to step 5.

2. Invokes do_try_to_free_pages() with gfp_mask set to __GFP_IO. In order to avoid
recursive invocations of the function, the kernel thread executes with the
PF_MEMALLOC flag set (see Section 16.5.2 earlier in this chapter). If the function
does not succeed in freeing SWAP_CLUSTER_MAX page frames, goes to step 5.

3. If the need_resched field of current is equal to 0, goes to step 1 (no higher priority
process is runnable, so continues to reclaim memory).

Understanding the Linux Kernel

450

4. The need_resched field is equal to 1: yields the CPU to some other process by
invoking schedule(). The kswapd kernel thread remains runnable. When the thread
resumes execution, goes to step 1.

5. Sets the state of current to TASK_INTERRUPTIBLE.
6. Invokes schedule_timeout(), passing as its parameter the value 10*HZ, thus forcing

the process to suspend itself and resume execution 10 seconds later. Then goes to step
1.

16.8 Anticipating Linux 2.4

Swapping must now take into consideration the existence of RAM zones; much of the
swapping code has thus been rewritten in a simpler and cleaner way, mainly thanks to the new
page cache implementation. The swap cache is still implemented on top of the page cache, but
the swapper_inode fictitious inode object has been replaced by a file address space object.
The kpiod kernel thread has been removed, because it is now safe to directly swap out pages
of shared memory mappings. Moreover, the arrays of locks associated with each swap area
are no longer used.

The most interesting change concerns the policy used to select the process from which
stealing pages when reclaiming memory: it is the one that performed fewer page faults (recall
that in Linux 2.2 it is the one that owns the largest number of page frames).

Understanding the Linux Kernel

451

Chapter 17. The Ext2 Filesystem
In this chapter, we finish our extensive discussion of I/O and filesystems by taking a look at
the details the kernel has to take care of when interacting with a particular filesystem. Since
the Second Extended Filesystem (Ext2) is native to Linux and is used on virtually every Linux
system, it made a natural choice for this discussion. Furthermore, Ext2 illustrates a lot of good
practices in its support for modern filesystem features with fast performance. To be sure,
other filesystems will embody new and interesting requirements, because they are designed
for other operating systems, but we cannot examine the oddities of various filesystems and
platforms in this book.

After introducing Ext2 in Section 17.1, we describe the data structures needed, just as in other
chapters. Since we are looking at a particular way to store data on a disk, we have to consider
two versions of data structures: Section 17.2 shows the data structures stored by Ext2 on the
disk, while Section 17.3 shows how they are duplicated in memory.

Then we get to the operations performed on the filesystem. In Section 17.4, we discuss how
Ext2 is created in a disk partition. The next sections describe the kernel activities performed
whenever the disk is used. Most of these are relatively low-level activities dealing with the
allocation of disk space to inodes and data blocks. Then we'll discuss how Ext2 regular files
are read and written.

17.1 General Characteristics

Each Unix-like operating system makes use of its own filesystem. Although all such
filesystems comply with the POSIX interface, each of them is implemented in a different way.

The first versions of Linux were based on the Minix filesystem. As Linux matured, the
Extended Filesystem (Ext FS) was introduced; it included several significant extensions but
offered unsatisfactory performance. The Second Extended Filesystem (Ext2) was introduced
in 1994: besides including several new features, it is quite efficient and robust and has
become the most widely used Linux filesystem.

The following features contribute to the efficiency of Ext2:

• When creating an Ext2 filesystem, the system administrator may choose the optimal
block size (from 1024 to 4096 bytes), depending on the expected average file length.
For instance, a 1024 block size is preferable when the average file length is smaller
than a few thousand bytes because this leads to less internal fragmentation—that is,
less of a mismatch between the file length and the portion of the disk that stores it (see
also Section 6.2 in Chapter 6, where internal fragmentation was discussed for dynamic
memory). On the other hand, larger block sizes are usually preferable for files greater
than a few thousand bytes because this leads to fewer disk transfers, thus reducing
system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how many
inodes to allow for a partition of a given size, depending on the expected number of
files to be stored on it. This maximizes the effectively usable disk space.

• The filesystem partitions disk blocks into groups. Each group includes data blocks and
inodes stored in adjacent tracks. Thanks to this structure, files stored in a single block
group can be accessed with a lower average disk seek time.

Understanding the Linux Kernel

452

• The filesystem preallocates disk data blocks to regular files before they are actually
used. Thus, when the file increases in size, several blocks are already reserved at
physically adjacent positions, reducing file fragmentation.

• Fast symbolic links are supported. If the pathname of the symbolic link (see Section
1.5.2 in Chapter 1) has 60 bytes or less, it is stored in the inode and can thus be
translated without reading a data block.

Moreover, the Second Extended File System includes other features that make it both robust
and flexible:

• A careful implementation of the file-updating strategy that minimizes the impact of
system crashes. For instance, when creating a new hard link for a file, the counter of
hard links in the disk inode is incremented first, and the new name is added into the
proper directory next. In this way, if a hardware failure occurs after the inode update
but before the directory can be changed, the directory is consistent, even if the inode's
hard link counter is wrong. Deleting the file does not lead to catastrophic results,
although the file's data blocks cannot be automatically reclaimed. If the reverse were
done (changing the directory before updating the inode), the same hardware failure
would produce a dangerous inconsistency: deleting the original hard link would
remove its data blocks from disk, yet the new directory entry would refer to an inode
that no longer exists. If that inode number is used later for another file, writing into the
stale directory entry will corrupt the new file.

• Support for automatic consistency checks on the filesystem status at boot time. The
checks are performed by the /sbin/e2fsck external program, which may be activated
not only after a system crash, but also after a predefined number of filesystem
mountings (a counter is incremented after each mount operation) or after a predefined
amount of time has elapsed since the most recent check.

• Support for immutable files (they cannot be modified) and for append-only files (data
can be added only to the end of them). Even the superuser is not allowed to override
these kinds of protection.

• Compatibility with both the Unix System V Release 4 and the BSD semantics of the
Group ID for a new file. In SVR4 the new file assumes the Group ID of the process
that creates it; in BSD the new file inherits the Group ID of the directory containing it.
Ext2 includes a mount option that specifies which semantic is used.

Several additional features are being considered for the next major version of the Ext2
filesystem. Some of them have already been coded and are available as external patches.
Others are just planned, but in some cases fields have already been introduced in the Ext2
inode for them. The most significant features are:

Block fragmentation

System administrators usually choose large block sizes for accessing recent disks. As a
result, small files stored in large blocks waste a lot of disk space. This problem can be
solved by allowing several files to be stored in different fragments of the same block.

Understanding the Linux Kernel

453

Access Control Lists

Instead of classifying the users of a file under three classes—owner, group, and
others—an access control list (ACL) is associated with each file to specify the access
rights for any specific users or combinations of users.

Handling of compressed and encrypted files

These new options, which must be specified when creating a file, will allow users to
store compressed and/or encrypted versions of their files on disk.

Logical deletion

An undelete option will allow users to easily recover, if needed, the contents of a
previously removed file.

17.2 Disk Data Structures

Figure 17-1. Layouts of an Ext2 partition and of an Ext2 block group

The first block in any Ext2 partition is never managed by the Ext2 filesystem, since it is
reserved for the partition boot sector (see Appendix A). The rest of the Ext2 partition is split
into block groups , each of which has the layout shown in Figure 17-1. As you will notice
from the figure, some data structures must fit in exactly one block while others may require
more than one block. All the block groups in the filesystem have the same size and are stored
sequentially, so the kernel can derive the location of a block group in a disk simply from its
integer index.

Block groups reduce file fragmentation, since the kernel tries to keep the data blocks
belonging to a file in the same block group if possible. Each block in a block group contains
one of the following pieces of information:

• A copy of the filesystem's superblock
• A copy of the group of block group descriptors
• A data block bitmap
• A group of inodes
• An inode bitmap
• A chunk of data belonging to a file; that is, a data block

If a block does not contain any meaningful information, it is said to be free.

Understanding the Linux Kernel

454

As can be seen from Figure 17-1, both the superblock and the group descriptors are duplicated
in each block group. Only the superblock and the group descriptors included in block group
are used by the kernel, while the remaining superblocks and group descriptors are left
unchanged; in fact, the kernel doesn't even look at them. When the /sbin/e2fsck program
executes a consistency check on the filesystem status, it refers to the superblock and the group
descriptors stored in block group 0, then copies them into all other block groups. If data
corruption occurs and the main superblock or the main group descriptors in block group
becomes invalid, the system administrator can instruct /sbin/e2fsck to refer to the old copies of
the superblock and the group descriptors stored in a block groups other than the first. Usually,
the redundant copies store enough information to allow /sbin/e2fsck to bring the Ext2 partition
back to a consistent state.

How many block groups are there? Well, that depends both on the partition size and on the
block size. The main constraint is that the block bitmap, which is used to identify the blocks
that are used and free inside a group, must be stored in a single block. Therefore, in each
block group there can be at most 8xb blocks, where b is the block size in bytes. Thus, the total
number of block groups is roughly s/(8xb), where s is the partition size in blocks.

As an example, let's consider an 8 GB Ext2 partition with a 4 KB block size. In this case, each
4 KB block bitmap describes 32 K data blocks, that is, 128 MB. Therefore, at most 64 block
groups are needed. Clearly, the smaller the block size, the larger the number of block groups.

17.2.1 Superblock

An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are listed
in Table 17-1. The __u8, __u16, and __u32 data types denote unsigned numbers of length 8,
16, and 32 bits respectively, while the __s8, __s16, __s32 data types denote signed numbers
of length 8, 16, and 32 bits.

Understanding the Linux Kernel

455

Table 17-1. The Fields of the Ext2 Superblock
Type Field Description
_ _u32 s_inodes_count Total number of inodes
_ _u32 s_blocks_count Filesystem size in blocks
_ _u32 s_r_blocks_count Number of reserved blocks
_ _u32 s_free_blocks_count Free blocks counter
_ _u32 s_free_inodes_count Free inodes counter
_ _u32 s_first_data_block Number of first useful block (always 1)
_ _u32 s_log_block_size Block size
_ _s32 s_log_frag_size Fragment size
_ _u32 s_blocks_per_group Number of blocks per group
_ _u32 s_frags_per_group Number of fragments per group
_ _u32 s_inodes_per_group Number of inodes per group
_ _u32 s_mtime Time of last mount operation
_ _u32 s_wtime Time of last write operation
_ _u16 s_mnt_count Mount operations counter
_ _u16 s_max_mnt_count Number of mount operations before check
_ _u16 s_magic Magic signature
_ _u16 s_state Status flag
_ _u16 s_errors Behavior when detecting errors
_ _u16 s_minor_rev_level Minor revision level
_ _u32 s_lastcheck Time of last check
_ _u32 s_checkinterval Time between checks
_ _u32 s_creator_os OS where filesystem was created
_ _u32 s_rev_level Revision level
_ _u16 s_def_resuid Default UID for reserved blocks
_ _u16 s_def_resgid Default GID for reserved blocks
_ _u32 s_first_ino Number of first nonreserved inode
_ _u16 s_inode_size Size of on-disk inode structure
_ _u16 s_block_group_nr Block group number of this superblock
_ _u32 s_feature_compat Compatible features bitmap
_ _u32 s_feature_incompat Incompatible features bitmap
_ _u32 s_feature_ro_compat Read-only-compatible features bitmap
_ _u8 [16] s_uuid 128-bit filesystem identifier
char [16] s_volume_name Volume name
char [64] s_last_mounted Pathname of last mount point
_ _u32 s_algorithm_usage_bitmap Used for compression
_ _u8 s_prealloc_blocks Number of blocks to preallocate
_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate for directories
_ _u8 [818] s_padding Nulls to pad out 1024 bytes

The s_inodes_count field stores the number of inodes, while the s_blocks_count field
stores the number of blocks in the Ext2 filesystem.

The s_log_block_size field expresses the block size as a power of 2, using 1024 bytes as
the unit. Thus, denotes 1024-byte blocks, 1 denotes 2048-byte blocks, and so on. The
s_log_frag_size field is currently equal to s_log_block_size, since block fragmentation
is not yet implemented.

Understanding the Linux Kernel

456

The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the
number of blocks, fragments, and inodes in each block group, respectively.

Some disk blocks are reserved to the superuser (or to some other user or group of users
selected by the s_def_resuid and s_def_resgid fields). These blocks allow the system
administrator to continue to use the filesystem even when no more free blocks are available
for normal users.

The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up the
Ext2 filesystem to be checked automatically at boot time. These fields cause /sbin/e2fsck to
run after a predefined number of mount operations has been performed, or when a predefined
amount of time has elapsed since the last consistency check. (Both kinds of checks can be
used together.) The consistency check is also enforced at boot time if the filesystem has not
been cleanly unmounted (for instance, after a system crash) or when the kernel discovers
some errors in it. The s_state field stores the value if the filesystem is mounted or was not
cleanly unmounted, 1 if it was cleanly unmounted, and 2 if it contains errors.

17.2.2 Group Descriptor and Bitmap

Each block group has its own group descriptor, an ext2_group_desc structure whose fields
are illustrated in Table 17-2.

Table 17-2. The Fields of the Ext2 Group Descriptor
Type Field Description
_ _u32 bg_block_bitmap Block number of block bitmap
_ _u32 bg_inode_bitmap Block number of inode bitmap
_ _u32 bg_inode_table Block number of first inode table block
_ _u16 bg_free_blocks_count Number of free blocks in the group
_ _u16 bg_free_inodes_count Number of free inodes in the group
_ _u16 bg_used_dirs_count Number of directories in the group
_ _u16 bg_pad Alignment to word
_ _u32 [3] bg_reserved Nulls to pad out 24 bytes

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are
used when allocating new inodes and data blocks. These fields determine the most suitable
block in which to allocate each data structure. The bitmaps are sequences of bits, where the
value specifies that the corresponding inode or data block is free and the value 1 specifies that
it is used. Since each bitmap must be stored inside a single block and since the block size can
be 1024, 2048, or 4096 bytes, a single bitmap describes the state of 8192, 16,384, or 32,768
blocks.

17.2.3 Inode Table

The inode table consists of a series of consecutive blocks, each of which contains a predefined
number of inodes. The block number of the first block of the inode table is stored in the
bg_inode_table field of the group descriptor.

All inodes have the same size, 128 bytes. A 1024-byte block contains 8 inodes, while a 4096-
byte block contains 32 inodes. To figure out how many blocks are occupied by the inode

Understanding the Linux Kernel

457

table, divide the total number of inodes in a group (stored in the s_inodes_per_group field
of the superblock) by the number of inodes per block.

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 17-3.

Table 17-3. The Fields of an Ext2 Disk Inode
Type Field Description
_ _u16 i_mode File type and access rights
_ _u16 i_uid Owner identifier
_ _u32 i_size File length in bytes
_ _u32 i_atime Time of last file access
_ _u32 i_ctime Time that inode last changed
_ _u32 i_mtime Time that file contents last changed
_ _u32 i_dtime Time of file deletion
_ _u16 i_gid Group identifier
_ _u16 i_links_count Hard links counter
_ _u32 i_blocks Number of data blocks of the file
_ _u32 i_flags File flags
union osd1 Specific operating system information
_ _u32 [EXT2_N_BLOCKS] i_block Pointers to data blocks
_ _u32 i_version File version (for NFS)
_ _u32 i_file_acl File access control list
_ _u32 i_dir_acl Directory access control list
_ _u32 i_faddr Fragment address
union osd2 Specific operating system information

Many fields related to POSIX specifications are similar to the corresponding fields of the
VFS's inode object and have already been discussed in Section 12.2.2 in Chapter 12.
The remaining ones refer to the Ext2-specific implementation and deal mostly with block
allocation.

In particular, the i_size field stores the effective length of the file in bytes, while the
i_blocks field stores the number of data blocks (in units of 512 bytes) that have been
allocated to the file.

The values of i_size and i_blocks are not necessarily related. Since a file is always stored
in an integer number of blocks, a nonempty file receives at least one data block (since
fragmentation is not yet implemented) and i_size may be smaller than 512xi_blocks. On
the other hand, as we shall see in Section 17.6.4 later in this chapter, a file may contain holes.
In that case, i_size may be greater than 512xi_blocks.

The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to
identify the data blocks allocated to the file (see Section 17.6.3 later in this chapter).

The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the
highest-order bit of the i_size field is not used, thus the maximum file size is limited to 2
GB. However, the Ext2 filesystem includes a "dirty trick" that allows larger files on 64-bit
architectures like Compaq's Alpha. Essentially, the i_dir_acl field of the inode, which is not
used for regular files, represents a 32-bit extension of the i_size field. Therefore, the file size

Understanding the Linux Kernel

458

is stored in the inode as a 64-bit integer. The 64-bit version of the Ext2 filesystem is
somewhat compatible with the 32-bit version because an Ext2 filesystem created on a 64-bit
architecture may be mounted on a 32-bit architecture, and vice versa. However, on a 32-bit
architecture a large file cannot be accessed.

Recall that the VFS model requires each file to have a different inode number. In Ext2, there
is no need to store the inode number of a file on disk because its value can be derived from
the block group number and the relative position inside the inode table. As an example,
suppose that each block group contains 4096 inodes and that we want to know the address on
disk of inode 13021. In this case, the inode belongs to the third block group and its disk
address is stored in the 733rd entry of the corresponding inode table. As you can see, the
inode number is just a key used by the Ext2 routines to retrieve quickly the proper inode
descriptor on disk.

17.2.4 How Various File Types Use Disk Blocks

The different types of files recognized by Ext2 (regular files, pipes, etc.) use data blocks in
different ways. Some files store no data and therefore need no data blocks at all. This section
discusses the storage requirements for each type.

17.2.4.1 Regular file

Regular files are the most common case and receive almost all the attention in this chapter.
But a regular file needs data blocks only when it starts to have data. When first created, a
regular file is empty and needs no data blocks; it can also be emptied by the truncate()
system call. Both situations are common; for instance, when you issue a shell command that
includes the string >filename, the shell creates an empty file or truncates an existing one.

17.2.4.2 Directory

Ext2 implements directories as a special kind of file whose data blocks store filenames
together with the corresponding inode numbers. In particular, such data blocks contain
structures of type ext2_dir_entry_2. The fields of that structure are shown in Table 17-4.
The structure has a variable length, since the last name field is a variable length array of up to
EXT2_NAME_LEN characters (usually 255). Moreover, for reasons of efficiency, the length of a
directory entry is always a multiple of 4, and therefore null characters (\0) are added for
padding at the end of the filename if necessary. The name_len field stores the actual file name
length (see Figure 17-2).

Table 17-4. The Fields of an Ext2 Directory Entry
Type Field Description
_ _u32 inode Inode number
_ _u16 rec_len Directory entry length
_ _u8 name_len File name length
_ _u8 file_type File type
char [EXT2_NAME_LEN] name File name

The file_type field stores a value that specifies the file type (see Table 17-5). The rec_len
field may be interpreted as a pointer to the next valid directory entry: it is the offset to be
added to the starting address of the directory entry to get the starting address of the next valid

Understanding the Linux Kernel

459

directory entry. In order to delete a directory entry, it is sufficient to set its inode field to and
to suitably increment the value of the rec_len field of the previous valid entry. Read the
rec_len field of Figure 17-2 carefully; you'll see that the oldfile entry has been deleted
because the rec_len field of usr is set to 12+16 (the lengths of the usr and oldfile entries).

Figure 17-2. An example of EXT2 directory

17.2.4.3 Symbolic link

As stated before, if the pathname of the symbolic link has up to 60 characters, it is stored in
the i_block field of the inode, which consists of an array of 15 4-byte integers; no data block
is thus required. If the pathname is longer than 60 characters, however, a single data block is
required.

17.2.4.4 Device file, pipe, and socket

No data blocks are required for these kinds of file. All the necessary information is stored in
the inode.

Table 17-5. Ext2 File Types
file_type Description
0 Unknown
1 Regular file
2 Directory
3 Character device
4 Block device
5 Named pipe
6 Socket
7 Symbolic link

17.3 Memory Data Structures

For the sake of efficiency, most information stored in the disk data structures of an Ext2
partition are copied into RAM when the filesystem is mounted, thus allowing the kernel to
avoid many subsequent disk read operations. To get an idea of how often some data structures
change, consider some fundamental operations:

Understanding the Linux Kernel

460

• When a new file is created, the values of the s_free_inodes_count field in the Ext2
superblock and of the bg_free_inodes_count field in the proper group descriptor
must be decremented.

• If the kernel appends some data to an existing file, so that the number of data blocks
allocated for it increases, the values of the s_free_blocks_count field in the Ext2
superblock and of the bg_free_blocks_count field in the group descriptor must be
modified.

• Even just rewriting a portion of an existing file involves an update of the s_wtime
field of the Ext2 superblock.

Since all Ext2 disk data structures are stored in blocks of the Ext2 partition, the kernel uses
the buffer cache to keep them up-to-date (see Section 14.1.5 in Chapter 14).

Table 17-6 specifies, for each type of data related to Ext2 filesystems and files, the data
structure used on the disk to represent its data, the data structure used by the kernel in
memory, and a rule of thumb used to determine how much caching is used. Data that is
updated very frequently is always cached; that is, the data is permanently stored in memory
and included in the buffer cache until the corresponding Ext2 partition is unmounted. The
kernel gets this result by keeping the buffer's usage counter greater than at all times.

Table 17-6. VFS Images of Ext2 Data Structures
Type Disk Data Structure Memory Data Structure Caching Mode
Superblock ext2_super_block ext2_sb_info Always cached
Group descriptor ext2_group_desc ext2_group_desc Always cached
Block bitmap Bit array in block Bit array in buffer Fixed limit
Inode bitmap Bit array in block Bit array in buffer Fixed limit
Inode ext2_inode ext2_inode_info Dynamic
Data block Unspecified Buffer Dynamic
Free inode ext2_inode None Never
Free block Unspecified None Never

The never-cached data is not kept in the buffer cache since it does not represent meaningful
information.

In between these extremes lie two other modes: fixed limit and dynamic. In the fixed limit
mode, a specific number of data structures can be kept in the buffer cache; older ones are
flushed to disk when the number is exceeded. In the dynamic mode, the data is kept in the
buffer cache as long as the associated object (an inode or block) is in use; when the file is
closed or the block is deleted, the shrink_mmap() function may remove the associated data
from the cache and write it back to disk.

17.3.1 The ext2_sb_info and ext2_inode_info Structures

When an Ext2 filesystem is mounted, the u field of the VFS superblock, which contains
filesystem-specific data, is loaded with a structure of type ext2_sb_info so that the kernel
can find out things related to the filesystem as a whole. This structure includes the following
information:

Understanding the Linux Kernel

461

• Most of the disk superblock fields
• The block bitmap cache, tracked by the s_block_bitmap and

s_block_bitmap_number arrays (see next section)
• The inode bitmap cache, tracked by the s_inode_bitmap and

s_inode_bitmap_number arrays (see next section)
• An s_sbh pointer to the buffer head of the buffer containing the disk superblock
• An s_es pointer to the buffer containing the disk superblock
• The number of group descriptors, s_desc_ per_block, that can be packed in a block
• An s_group_desc pointer to an array of buffer heads of buffers containing the group

descriptors (usually, a single entry is sufficient)
• Other data related to mount state, mount options, and so on

Similarly, when an inode object pertaining to an Ext2 file is initialized, the u field is loaded
with a structure of type ext2_inode_info, which includes this information:

• Most of the fields found in the disk's inode structure that are not kept in the generic
VFS inode object (see Table 12-3 in Chapter 12)

• The fragment size and the fragment number (not yet used)
• The block_group block group index at which the inode belongs (see Section 17.2

earlier in this chapter)
• The i_alloc_block and i_alloc_count fields, which are used for data block

preallocation (see the Section 17.6.5 later in this chapter)
• The i_osync field, which is a flag specifying whether the disk inode should be

synchronously updated (see Section 17.7 later in this chapter)

17.3.2 Bitmap Caches

When the kernel mounts an Ext2 filesystem, it allocates a buffer for the Ext2 disk superblock
and reads its contents from disk. The buffer is released only when the Ext2 filesystem is
unmounted. When the kernel must modify a field in the Ext2 superblock, it simply writes the
new value in the proper position of the corresponding buffer and then marks the buffer as
dirty.

Unfortunately, this approach cannot be adopted for all Ext2 disk data structures. The tenfold
increase in disk capacity reached in recent years has induced a tenfold increase in the size of
inode and data block bitmaps, so we have reached the point at which it is no longer
convenient to keep all the bitmaps in RAM at the same time.

For instance, consider a 4 GB disk with a 1 KB block size. Since each bitmap fills all the bits
of a single block, each of them describes the status of 8192 blocks, that is, of 8 MB of disk
storage. The number of block groups is 4096 MB/8 MB=512. Since each block group requires
both an inode bitmap and a data block bitmap, 1 MB of RAM would be required to store all
1024 bitmaps in memory!

The solution adopted to limit the memory requirements of the Ext2 descriptors is to use, for
any mounted Ext2 filesystem, two caches of size EXT2_MAX_GROUP_LOADED (usually 8). One
cache stores the most recently accessed inode bitmaps, while the other cache stores the most
recently accessed block bitmaps. Buffers containing bitmaps included in a cache have a usage
counter greater than 0, therefore they are never freed by shrink_mmap() (see Section 16.7.2

Understanding the Linux Kernel

462

in Chapter 16). Conversely, buffers containing bitmaps not included in a bitmap cache have a
null usage counter, and thus they can be freed if free memory becomes scarce.

Each cache is implemented by means of two arrays of EXT2_MAX_GROUP_LOADED elements.
One array contains the indexes of the block groups whose bitmaps are currently in the cache,
while the other array contains pointers to the buffer heads that refer to those bitmaps.

The ext2_sb_info structure stores the arrays pertaining to the inode bitmap cache: indexes of
block groups are found in the s_inode_bitmap field and pointers to buffer heads in the
s_inode_bitmap_number field. The corresponding arrays for the block bitmap cache are
stored in the s_block_bitmap and s_block_bitmap_number fields.

The load_inode_bitmap() function loads the inode bitmap of a specified block group and
returns the cache position in which the bitmap can be found.

If the bitmap is not already in the bitmap cache, load_inode_bitmap() invokes
read_inode_bitmap(). The latter function gets the number of the block containing the
bitmap from the bg_inode_bitmap field of the group descriptor, then invokes bread() to
allocate a new buffer and read the block from disk if it is not already included in the buffer
cache.

If the number of block groups in the Ext2 partition is less than or equal to
EXT2_MAX_GROUP_LOADED, the index of the cache array position in which the bitmap is
inserted always matches the block group index passed as the parameter to the
load_inode_bitmap() function.

Otherwise, if there are more block groups than cache positions, a bitmap is removed from
cache, if necessary, by using a Least Recently Used (LRU) policy, and the requested bitmap is
inserted in the first cache position. Figure 17-3 illustrates the three possible cases in which the
bitmap in block group 5 is referenced: where the requested bitmap is already in cache, where
the bitmap is not in cache but there is a free position, and where the bitmap is not in cache and
there is no free position.

Figure 17-3. Adding a bitmap to the cache

The load_block_bitmap() and read_block_bitmap() functions are very similar to
load_inode_bitmap() and read_inode_bitmap(), but they refer to the block bitmap
cache of an Ext2 partition.

Understanding the Linux Kernel

463

Figure 17-4 illustrates the memory data structures of a mounted Ext2 filesystem. In our
example, there are three block groups whose descriptors are stored in three blocks on disk;
therefore, the s_group_desc field of the ext2_sb_info points to an array of three buffer
heads. We have shown just one inode bitmap having index 2 and one block bitmap having
index 4, although the kernel may keep in the bitmap caches 2 x EXT2_MAX_GROUP_LOADED
bitmaps, and even more may be stored in the buffer cache.

Figure 17-4. Ext2 memory data structures

17.4 Creating the Filesystem

Formatting a disk partition or a floppy is not the same thing as creating a filesystem on it.
Formatting allows the disk driver to read and write blocks on the disk, while creating a
filesystem means setting up the structures described in detail earlier in this chapter.

Modern hard disks come preformatted from the factory and need not be reformatted; floppy
disks may be formatted by using the /usr/bin/superformat utility program.

Ext2 filesystems are created by the /sbin/mke2fs utility program; it assumes the following
default options, which may be modified by the user with flags on the command line:

• Block size: 1024 bytes
• Fragment size: block size
• Number of allocated inodes: one for each group of 4096 bytes
• Percentage of reserved blocks: 5%

The program performs the following actions:

1. Initializes the superblock and the group descriptors
2. Optionally, checks whether the partition contains defective blocks: if so, creates a list

of defective blocks
3. For each block group, reserves all the disk blocks needed to store the superblock, the

group descriptors, the inode table, and the two bitmaps
4. Initializes the inode bitmap and the data map bitmap of each block group to
5. Initializes the inode table of each block group

Understanding the Linux Kernel

464

6. Creates the / root directory
7. Creates the lost+found directory, which is used by /sbin/e2fsck to link the lost and

defective blocks found
8. Updates the inode bitmap and the data block bitmap of the block group in which the

two previous directories have been created
9. Groups the defective blocks (if any) in the lost+found directory

Let's consider, for the sake of concreteness, how an Ext2 1.4 MB floppy disk is initialized by
/sbin/mke2fs with the default options.

Once mounted, it will appear to the VFS as a volume consisting of 1390 blocks, each one
1024 bytes in length. To examine the disk's contents, we can execute the Unix command:

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex

to get in the /tmp directory a file containing the hexadecimal dump of the floppy disk
contents.[1]

[1] Some information on an Ext2 filesystem could also be obtained by using the /sbin/dumpe2fs and /sbin/debugfs utility programs.

By looking at that file, we can see that, due to the limited capacity of the disk, a single group
descriptor is sufficient. We also notice that the number of reserved blocks is set to 72 (5% of
1440) and that, according to the default option, the inode table must include 1 inode for each
4096 bytes, that is, 360 inodes stored in 45 blocks.

Table 17-7 summarizes how the Ext2 filesystem is created on a floppy disk when the default
options are selected.

Table 17-7. Ext2 Block Allocation for a Floppy Disk
Block Content
0 Boot block
1 Superblock
2 Block containing a single block group descriptor
3 Data block bitmap
4 Inode bitmap
5-49 Inode table: inodes up to 10: reserved; inode 11: lost+found; inodes 12-360: free
50 Root directory (includes ., .., and lost+found)
51 lost+found directory (includes . and ..)
52-62 Reserved blocks preallocated for lost+found directory
63-1439 Free blocks

17.5 Ext2 Methods

Many of the VFS methods described in Chapter 12 have a corresponding Ext2
implementation. Since it would take a whole book to describe all of them, we'll limit
ourselves to briefly reviewing the methods implemented in Ext2. Once the disk and the
memory data structures are clearly understood, the reader should be able to follow the code of
the Ext2 functions that implement them.

Understanding the Linux Kernel

465

17.5.1 Ext2 Superblock Operations

All VFS superblock operations have a specific implementation in Ext2, with the exception of
the clear_inode and umount_begin VFS methods. The addresses of the superblock methods
are stored into the ext2_sops array of pointers.

17.5.2 Ext2 Inode Operations

Many of the VFS inode operations have a specific implementation in Ext2, which depends on
the type of the file to which the inode refers. Table 17-8 illustrates the inode operations
implemented for inodes that refer to regular and directory files; their addresses are stored in
the ext2_file_inode_operations and in the ext2_dir_inode_operations tables,
respectively. Recall that the VFS uses its own generic functions when the corresponding Ext2
method is undefined (NULL pointer).

Table 17-8. Ext2 Inode Operations for Regular and Directory Files
VFS Inode Operation Ext2 File Inode Method Ext2 Directory Inode Method
lookup NULL ext2_lookup()
link NULL ext2_link()
unlink NULL ext2_unlink()
symlink NULL ext2_symlink()
mkdir NULL ext2_mkdir()
rmdir NULL ext2_rmdir()
create NULL ext2_create()
mknod NULL ext2_mknod()
rename NULL ext2_rename()
readlink NULL NULL
follow_link NULL NULL
readpage generic_readpage() NULL
writepage NULL NULL
bmap ext2_bmap() NULL
truncate ext2_truncate() NULL
permission ext2_permission() ext2_permission()
smap NULL NULL
updatepage NULL NULL
revalidate NULL NULL

If the inode refers to a symbolic link, all inode methods are NULL except for readlink and
follow_link, which are implemented by ext2_readlink() and ext2_follow_link(),
respectively. The addresses of those methods are stored in the
ext2_symlink_inode_operations table.

If the inode refers to a character device file, to a block device file, or to a named pipe (see
Section 18.2 in Chapter 18), the inode operations do not depend on the filesystem. They are
specified in the chrdev_inode_operations, blkdev_inode_operations, and
fifo_inode_operations tables, respectively.

Understanding the Linux Kernel

466

17.5.3 Ext2 File Operations

The file operations specific to the Ext2 filesystem are listed in Table 17-9. As you can see, the
read and mmap VFS methods are implemented by generic functions that are common to many
filesystems. The addresses of these methods are stored in the ext2_file_operations table.

Table 17-9. Ext2 File Operations
VFS File Operation Ext2 Method
lseek ext2_file_lseek()
read generic_file_read()
write ext2_file_write()
readdir NULL
poll NULL
ioctl ext2_ioctl()
mmap generic_file_mmap()
open ext2_open_file()
flush NULL
release ext2_release_file()
fsync ext2_sync_file()
fasync NULL
check_media_change NULL
revalidate NULL
lock NULL

17.6 Managing Disk Space

The storage of a file on disk differs from the view the programmer has of the file in two ways:
blocks can be scattered around the disk (although the filesystem tries hard to keep blocks
sequential to improve access time), and files may appear to a programmer to be bigger than
they really are because a program can introduce holes into them (through the lseek()
system call).

In this section we explain how the Ext2 filesystem manages the disk space, that is, how it
allocates and deallocates inodes and data blocks. Two main problems must be addressed:

• Space management must make every effort to avoid file fragmentation, that is, the
physical storage of a file in several, small pieces located in nonadjacent disk blocks.
File fragmentation increases the average time of sequential read operations on the
files, since the disk heads must be frequently repositioned during the read operation.[2]
This problem is similar to the external fragmentation of RAM discussed in Section
6.1.2 in Chapter 6.

[2] Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-implemented fragmentation of blocks in
order to store many files in one block (A Good Thing).

• Space management must be time-efficient; that is, the kernel should be able to quickly
derive from a file offset the corresponding logical block number in the Ext2 partition.
In doing so, the kernel should limit as much as possible the number of accesses to
addressing tables stored on disk, since each such intermediate access considerably
increases the average file access time.

Understanding the Linux Kernel

467

17.6.1 Creating Inodes

The ext2_new_inode() function creates an Ext2 disk inode, returning the address of the
corresponding inode object (or NULL in case of failure). It acts on two parameters: the address
dir of the inode object that refers to the directory into which the new inode must be inserted
and a mode that indicates the type of inode being created. The latter argument also includes an
MS_SYNCHRONOUS flag that requires the current process to be suspended until the inode is
allocated. The function performs the following actions:

1. Invokes get_empty_inode() to allocate a new inode object and initializes its i_sb
field to the superblock address stored in dir->i_sb.

2. Invokes lock_super() to get exclusive access to the superblock object. The function
tests and sets the value of the s_lock field and, if necessary, suspends the current
process until the flag becomes 0.

3. If the new inode is a directory, tries to place it so that directories are evenly scattered
through partially filled block groups. In particular, allocates the new directory in the
block group that has the maximum number of free blocks among all block groups
having a number of free inodes greater than the average. (The average is the total
number of free inodes divided by the number of block groups).

4. If the new inode is not a directory, allocates it in a block group having a free inode.
Selects the group by starting from the one containing the parent directory and moving
farther and farther away from it, to be precise:

a. Performs a quick logarithmic search starting from the block group that includes
the parent directory dir. The algorithm searches log(n) block groups, where n
is the total number of block groups. The algorithm jumps further and further
ahead until it finds an available block group, as follows: if we call the number
of the starting block group i, the algorithm considers block groups i mod (n),
i+1 mod (n), i+1+2 mod (n), i+1+2+4 mod (n), . . .

b. If the logarithmic search failed in finding a block group with a free inode,
performs an exhaustive linear search starting from the first block group.

5. Invokes load_inode_bitmap() to get the inode bitmap of the selected block group
and searches for the first null bit into it, thus obtaining the number of the first free disk
inode.

6. Allocates the disk inode: sets the corresponding bit in the inode bitmap and marks the
buffer containing the bitmap as dirty. Moreover, if the filesystem has been mounted
specifying the MS_SYNCHRONOUS flag, invokes ll_rw_block() and waits until the
write operation terminates (see Section 12.3.3 in Chapter 12).

7. Decrements the bg_free_inodes_count field of the block group descriptor. If the
new inode is a directory, increments bg_used_dirs_count. Marks the buffer
containing the group descriptor as dirty.

8. Decrements the s_free_inodes_count field of the disk superblock and marks the
buffer containing it as dirty. Sets the s_dirt field of the VFS's superblock object to 1.

9. Initializes the fields of the inode object. In particular, sets the inode number i_no and
copies the value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also loads
the i_block_group field in the ext2_inode_info structure with the block group
index. Refer to Table 17-3 for the meaning of these fields.

10. Inserts the new inode object into inode_hashtable.
11. Invokes mark_inode_dirty() to move the inode object into the superblock's dirty

inode list (see Section 12.2.2 in Chapter 12).
12. Invokes unlock_super() to release the superblock object.

Understanding the Linux Kernel

468

13. Returns the address of the new inode object.

17.6.2 Deleting Inodes

The ext2_free_inode() function deletes a disk inode, which is identified by an inode
object whose address is passed as the parameter. The kernel should invoke the function after a
series of cleanup operations involving internal data structures and the data in the file itself: it
should come after the inode object has been removed from the inode hash table, after the last
hard link referring to that inode has been deleted from the proper directory, and after the file
is truncated to length in order to reclaim all its data blocks (see Section 17.6.6 later in this
chapter). It performs the following actions:

1. Invokes lock_super() to get exclusive access to the superblock object.
2. Computes from the inode number and the number of inodes in each block group the

index of the block group containing the disk inode.
3. Invokes load_inode_bitmap() to get the inode bitmap.
4. Invokes clear_inode() to perform the following operations:

a. Release all pages in the page cache associated with the inode, suspending the
current process if some of them are locked. (The pages could be locked
because the kernel could be in the process of reading or writing them, and there
is no way to stop the block device driver.)

b. Invoke the clear_inode method of the superblock object, if defined; but the
Ext2 filesystem does not define it.

5. Increments the bg_free_inodes_count field of the group descriptor. If the deleted
inode is a directory, decrements the bg_used_dirs_count field. Marks the buffer
containing the group descriptor as dirty.

6. Increments the s_free_inodes_count field of the disk superblock and marks the
buffer that contains it as dirty. Also sets the s_dirt field of the superblock object to 1.

7. Clears the bit corresponding to the disk inode in the inode bitmap and marks the buffer
containing the bitmap as dirty. Moreover, if the filesystem has been mounted with the
MS_SYNCHRONIZE flag, invokes ll_rw_block() and waits until the write operation
on the bitmap's buffer terminates.

8. Invokes unlock_super() to unlock the superblock object.

17.6.3 Data Blocks Addressing

Each nonempty regular file consists of a group of data blocks. Such blocks may be referred to
either by their relative position inside the file (their file block number) or by their position
inside the disk partition (their logical block number, explained in Section 13.5.6 in Chapter
13).

Deriving the logical block number of the corresponding data block from an offset f inside a
file is a two-step process:

• Derive from the offset f the file block number, that is, the index of the block
containing the character at offset f.

• Translate the file block number to the corresponding logical block number.

Understanding the Linux Kernel

469

Since Unix files do not include any control character, it is quite easy to derive the file block
number containing the f th character of a file: simply take the quotient of f and the filesystem's
block size and round down to the nearest integer.

For instance, let's assume a block size of 4 KB. If f is smaller than 4096, the character is
contained in the first data block of the file, which has file block number 0. If f is equal to or
greater than 4096 and less than 8192, the character is contained in the data block having file
block number 1 and so on.

This is fine as far as file block numbers are concerned. However, translating a file block
number into the corresponding logical block number is not nearly as straightforward, since the
data blocks of an Ext2 file are not necessarily adjacent on disk.

The Ext2 filesystem must thus provide a method to store on disk the connection between each
file block number and the corresponding logical block number. This mapping, which goes
back to early versions of Unix from AT&T, is implemented partly inside the inode. It also
involves some specialized data blocks, which may be considered an inode extension used to
handle large files.

The i_block field in the disk inode is an array of EXT2_N_BLOCKS components containing
logical block numbers. In the following discussion, we assume that EXT2_N_BLOCKS has the
default value, namely 15. The array represents the initial part of a larger data structure, which
is illustrated in Figure 17-5. As can be noticed from the figure, the 15 components of the array
are of four different types:

• The first 12 components yield the logical block numbers corresponding to the first 12
blocks of the file, that is, to the blocks having file block numbers from to 11.

• The component at index 12 contains the logical block number of a block that
represents a second-order array of logical block numbers. They correspond to the file
block numbers ranging from 12 to b/4+11 where b is the filesystem's block size (each
logical block number is stored in 4 bytes, so we divide by 4 in the formula). Therefore,
the kernel must look in this component for a pointer to a block, then look in that block
for another pointer to the ultimate block that contains the file contents.

• The component at index 13 contains the logical block number of a block containing a
second-order array of logical block numbers; in turn, the entries of this second-order
array point to third-order arrays, which store the logical block numbers corresponding
to the file block numbers ranging from b/4+12 to (b/4)2+(b/4)+11.

• Finally, the component at index 14 makes use of triple indirection: the fourth-order
arrays store the logical block numbers corresponding to the file block numbers ranging
from (b/4)2+(b/4)+12 to (b/4)3+(b/4)2+(b/4)+11 upward.

Understanding the Linux Kernel

470

Figure 17-5. Data structures used to address the file's data blocks

In Figure 17-5, the number inside a block represents the corresponding file block number. The
arrows, which represent logical block numbers stored in array components, show how the
kernel finds its way to reach the block that contains the actual contents of the file.

Notice how this mechanism favors small files. If the file does not require more than 12 data
blocks, any data can be retrieved in two disk accesses: one to read a component in the
i_block array of the disk inode and the other one to read the requested data block. For larger
files, however, three or even four consecutive disk accesses may be needed in order to access
the required block. In practice, this is a worst-case estimate, since dentry, buffer, and page
caches contribute significantly to reduce the number of real disk accesses.

Notice also how the block size of the filesystem affects the addressing mechanism, since a
larger block size allows the Ext2 to store more logical block numbers inside a single block.
Table 17-10 shows the upper limit placed on a file's size for each block size and each
addressing mode. For instance, if the block size is 1024 bytes and the file contains up to 268
kilobytes of data, the first 12 KB of a file can be accessed through direct mapping, and the
remaining 13 through 268 KB can be addressed through simple indirection. With 4096-byte
blocks, double indirection is sufficient to address a file of 2 GB (the maximum allowed by the
Ext2 filesystem on 32-bit architecture).

Table 17-10. File Size Upper Limits for Data Block Addressing
Block Size Direct 1-Indirect 2-Indirect 3-Indirect
1024 12 KB 268 KB 63.55 MB 2 GB
2048 24 KB 1.02 MB 513.02 MB 2 GB
4096 48 KB 4.04 MB 2 GB —

17.6.4 File Holes

A file hole is a portion of a regular file that contains null characters and is not stored in any
data block on disk. Holes are a long-standing feature of Unix files. For instance, the following
Unix command creates a file in which the first bytes are a hole:

Understanding the Linux Kernel

471

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now, /tmp/hole has 6145 characters (6144 null characters plus an X character), yet the file
occupies just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by database
applications and, more generally, by all applications that perform hashing on files.

The Ext2 implementation of file holes is based on dynamic data block allocation: a block is
actually assigned to a file only when the process needs to write data into it. The i_size field
of each inode defines the size of the file as seen by the program, including the hole, while the
i_blocks field stores the number of data blocks effectively assigned to the file (in units of
512 bytes).

In our earlier example of the dd command, suppose the /tmp/hole file was created on an Ext2
partition having blocks of size 4096. The i_size field of the corresponding disk inode stores
the number 6145, while the i_blocks field stores the number 8 (because each 4096-byte
block includes eight 512-byte blocks). The second element of the i_block array
(corresponding to the block having file block number 1) stores the logical block number of the
allocated block, while all other elements in the array are null (see Figure 17-6).

Figure 17-6. A file with an initial hole

17.6.5 Allocating a Data Block

When the kernel has to allocate a new block to hold data for an Ext2 regular file, it invokes
the ext2_getblk() function. In turn, this function handles the data structures already
described in Section 17.6.3 and invokes when necessary the ext2_alloc_block() function
to actually search for a free block in the Ext2 partition.

In order to reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file
near the last block already allocated for the file. Failing that, the filesystem searches for a new
block in the block group that includes the file's inode. As a last resort, the free block is taken
from one of the other block groups.

The Ext2 filesystem uses preallocation of data blocks. The file does not get just the requested
block, but rather a group of up to eight adjacent blocks. The i_prealloc_count field in the
ext2_inode_info structure stores the number of data blocks preallocated to some file that are
still unused, and the i_prealloc_block field stores the logical block number of the next

Understanding the Linux Kernel

472

preallocated block to be used. Any preallocated blocks that remain unused are freed when the
file is closed, when it is truncated, or when a write operation is not sequential with respect to
the write operation that triggered the block preallocation.

The ext2_alloc_block() function receives as parameters a pointer to an inode object and a
goal. The goal is a logical block number that represents the preferred position of the new
block. The ext2_getblk() function sets the goal parameter according to the following
heuristic:

1. If the block being allocated and the previously allocated one have consecutive file
block numbers, the goal is the logical block number of the previous block plus 1; it
makes sense that consecutive blocks as seen by a program should be adjacent on disk.

2. If the first rule does not apply and at least one block has been previously allocated to
the file, the goal is one of these block's logical block number. More precisely, it is the
logical block number of the already allocated block that precedes in the file the block
to be allocated.

3. If the preceding rules do not apply, the goal is the logical block number of the first
block (not necessarily free) in the block group that contains the file's inode.

The ext2_alloc_block() function checks whether the goal refers to one of the preallocated
blocks of the file. If so, it allocates the corresponding block and return its logical block
number; otherwise, the function discards all remaining preallocated blocks and invokes
ext2_new_block().

This latter function searches for a free block inside the Ext2 partition with the following
strategy:

1. If the preferred block passed to ext2_alloc_block() (the goal) is free, allocates it.
2. If the goal is busy, checks whether one of the next 64 blocks after the preferred block

is free.
3. If no free block has been found in the near vicinity of the preferred block, considers all

block groups, starting from the one including the goal. For each block group:
a. Looks for a group of at least eight adjacent free blocks.
b. If no such group is found, looks for a single free block.

The search ends as soon as a free block is found. Before terminating, the ext2_new_block()
function also tries to preallocate up to eight free blocks adjacent to the free block found and
sets the i_prealloc_block and i_prealloc_count fields of the disk inode to the proper
block location and number of blocks.

17.6.6 Releasing a Data Block

When a process deletes a file or truncates it to length, all its data blocks must be reclaimed.
This is done by ext2_truncate(), which receives the address of the file's inode object as its
parameter. The function essentially scans the disk inode's i_block array to locate all data
blocks, partitioning them into physically adjacent groups. Each such group is then released by
invoking ext2_free_blocks().

Understanding the Linux Kernel

473

The ext2_free_blocks() function releases a group of one or more adjacent data blocks.
Besides its use by ext2_truncate(), the function is invoked mainly when discarding the
preallocated blocks of a file (see the earlier section Section 17.6.5). Its parameters are:

inode

Address of the inode object that describes the file

block

Logical block number of the first block to be released

count

Number of adjacent blocks to be released

The function invokes lock_super() to get exclusive access to the filesystem's superblock,
then performs the following actions for each block to be released:

1. Gets the block bitmap of the block group including the block to be released
2. Clears the bit in the block bitmap corresponding to the block to be released and marks

the buffer containing the bitmap as dirty
3. Increments the bg_free_blocks_count field in the block group descriptor and marks

the corresponding buffer as dirty
4. Increments the s_free_blocks_count field of the disk superblock, marks the

corresponding buffer as dirty, and sets the s_dirt flag of the superblock object
5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, invokes

ll_rw_block() and waits until the write operation on the bitmap's buffer terminates

Finally, the function invokes unlock_super() to release the superblock.

17.7 Reading and Writing an Ext2 Regular File

In Chapter 12 we described how the Virtual File System recognizes the type of file being
accessed by a read() or write() system call and invokes the corresponding method of the
proper file operation table. We now have all the needed tools to understand how a regular file
is actually read or written in the Ext2 filesystem.

There's nothing more to say about read operations, however, because they have already been
completely discussed. As shown in Table 17-9, the Ext2's read method is implemented by the
generic_file_read() function, which is described in the section Section 15.1.1 in
Chapter 15.

Let's concentrate then on Ext2's write method, which is implemented by the
ext2_file_write() function. It acts on four parameters:

fd

File descriptor of the file being written

Understanding the Linux Kernel

474

buf

Address of a memory area containing the data to be written

count

Number of bytes to be written

ppos

Pointer to a variable storing the file offset where data must be written

The function performs the following actions:

1. Removes any superuser privilege from the file (to guard against tampering with setuid
programs, described in Chapter 19).

2. If the file has been opened with the O_APPEND flag set, sets the file offset where data
must be written to the end of the file.

3. If the file has been opened in synchronous mode (O_SYNC flag set), sets i_osync field
in the ext2_inode_info structure of the disk inode to 1. This flag is tested when a
data block is allocated for the file, so that the kernel can synchronously update the
inode on disk as soon as it is modified.

4. As done before, computes from the file offset and the filesystem block size the file
block number of the first byte to be written and the relative offset within the block (see
the earlier section Section 17.6.3).

5. For each block to be written, performs the following substeps:
a. Invokes ext2_getblk() to get the data block on the disk, allocating it when

necessary.
b. If the block has to be partially rewritten and the buffer is not up-to-date,

invokes ll_rw_block() and waits until the read operation terminates.
c. Copies the bytes to be written into the block from the process address space to

the buffer and marks the buffer as dirty.
d. Invokes update_vm_cache() to synchronize the contents of the page cache

with that of the buffer cache.
e. If the file has been opened in synchronous mode, inserts the buffer in a local

array. If the array becomes filled (it includes 32 elements), invokes
ll_rw_block() to start the write operations and waits until they terminate.

6. If the file has been opened in synchronous mode, clears the i_osync flag of the disk
inode; also invokes ll_rw_block() to start the write operation for any buffer still
remaining in the local array and waits until I/O data transfers terminate.

7. Updates the i_size field of the inode object.
8. Sets the i_ctime and i_mtime fields of the inode object to xtime.tv_sec and marks

the inode as dirty.
9. Updates the variable *ppos storing the file offset where the data has been written (it is

usually the file pointer).
10. Returns the number of bytes written into the file.

Understanding the Linux Kernel

475

17.8 Anticipating Linux 2.4

Using the generic_file_write() function to write in a regular Ext2 file has several
beneficial effects. One of them is that the 2 GB limit on the file size is gone and very large
files can be accessed even on 32-bit architectures. However, none of the features mentioned at
the end of Section 17.1 has been included in Linux 2.4. They will likely come out with the
new Ext3 filesystem currently being tested.

Understanding the Linux Kernel

476

Chapter 18. Process Communication
This chapter explains how User Mode processes can synchronize themselves and exchange
data. We have already covered a lot of synchronization topics in Chapter 11, but the actors
there were kernel control paths, not User Mode programs. We are now ready, after having
discussed I/O management and filesystems at length, to extend the discussion of
synchronization to User Mode processes. These processes must rely on the kernel to
synchronize themselves and to exchange data.

As we saw in Section 12.6.1 in Chapter 12, a crude form of synchronization among User
Mode processes can be achieved by creating a (possibly empty) file and by making use of
suitable VFS system calls to lock and unlock it. Similarly, data sharing among processes can
be obtained by storing data in temporary files protected by locks. This approach is costly
since it requires accesses to the disk filesystem. For that reason, all Unix kernels include a set
of system calls that supports process communication without interacting with the filesystem;
furthermore, several wrapper functions have been developed and inserted in suitable libraries
to expedite how processes issue their synchronization requests to the kernel.

As usual, application programmers have a variety of needs that call for different
communication mechanisms. Here are the basic mechanisms that Unix systems, and Linux in
particular, offer to allow interprocess communication:

Pipes and FIFOs (named pipes)

Best suited to implement producer/consumer interactions among processes. Some
processes fill the pipe with data while others extract data from the pipe.

Semaphores

Represents, as the name implies, the User Mode version of the kernel semaphores
discussed in Section 11.2.4 in Chapter 11.

Messages

Allow processes to exchange messages (short blocks of data) in an asynchronous way.
They can be thought of as signals carrying additional information.

Shared memory regions

Best suited to implement interaction schemes in which processes must share large
amounts of data in an efficient way.

This book does not cover another common communication mechanism, sockets. As stated in
previous chapters, sockets were introduced initially to allow data communication between
application programs and the network interface (see Section 13.2.1 in Chapter 13). They can
also be used as a communication tool for processes located on the same host computer; the X
Window System graphic interface, for instance, uses a socket to allow client programs to
exchange data with the X server. We don't include them because they would require a long
discussion of networking, which is beyond the scope of the book.

Understanding the Linux Kernel

477

18.1 Pipes

Pipes are an interprocess communication mechanism that is provided in all flavors of Unix. A
pipe is a one-way flow of data between processes: all data written by a process to the pipe is
routed by the kernel to another process, which can thus read it.

In Unix command shells, pipes can be created by means of the | operator. For instance, the
following statement instructs the shell to create two processes connected by a pipe:

$ ls | more

The standard output of the first process, which executes the ls program, is redirected to the
pipe; the second process, which executes the more program, reads its input from the pipe.

Note that the same results can also be obtained by issuing two commands such as the
following:

$ ls > temp
$ more < temp

The first command redirects the output of ls into a regular file; then the second command
forces more to read its input from the same file. Of course, using pipes instead of temporary
files is usually more convenient since:

• The shell statement is much shorter and simpler.
• There is no need to create temporary regular files, which must be deleted later.

18.1.1 Using a Pipe

Pipes may be considered open files that have no corresponding image in the mounted
filesystems. A new pipe can be created by means of the pipe() system call, which returns a
pair of file descriptors. The process can read from the pipe by using the read() system call
with the first file descriptor; likewise, it can write into the pipe by using the write() system
call with the second file descriptor.

POSIX defines only half-duplex pipes, so even though the pipe() system call returns two
file descriptors, each process must close one before using the other. If a two-way flow of data
is required, the processes must use two different pipes by invoking pipe() twice.

Several Unix systems, such as System V Release 4, implement full-duplex pipes and allow
both descriptors to be written into and read from. Linux adopts another approach: each pipe's
file descriptors are still one-way, but it is not necessary to close one of them before using the
other.

Let us resume the previous example: when the command shell interprets the ls|more
statement, it essentially performs the following actions:

1. Invokes the pipe() system call; let us assume that pipe() returns the file
descriptors 3 (the pipe's read channel) and 4 (the write channel).

2. Invokes the fork() system call twice.

Understanding the Linux Kernel

478

3. Invokes the close() system call twice to release file descriptors 3 and 4.

The first child process, which must execute the ls program, performs the following operations:

1. Invokes dup2(4,1) to copy file descriptor 4 to file descriptor 1. From now on, file
descriptor 1 refers to the pipe's write channel.

2. Invokes the close() system call twice to release file descriptors 3 and 4.
3. Invokes the execve() system call to execute the /bin/ls program (see Section 19.4 in

Chapter 19). By default, such a program writes its output to the file having file
descriptor 1 (the standard output), that is, it writes into the pipe.

The second child process must execute the more program; therefore, it performs the following
operations:

1. Invokes dup2(3,0) to copy file descriptor 3 to file descriptor 0. From now on, file
descriptor refers to the pipe's read channel.

2. Invokes the close() system call twice to release file descriptors 3 and 4.
3. Invokes the execve() system call to execute /bin/more. By default, that program

reads its input from the file having file descriptor (the standard input); that is, it reads
from the pipe.

In this simple example, the pipe is used by exactly two processes. Because of its
implementation, though, a pipe can be used by an arbitrary number of processes.[1] Clearly, if
two or more processes read or write the same pipe, they must explicitly synchronize their
accesses by using file locking (see Section 12.6.1 in Chapter 12) or IPC semaphores (see
Section 18.3.3 later in this chapter).

[1] Since most shells offer pipes that connect only two processes, applications requiring pipes used by more than two processes must be coded in a
programming language such as C.

Many Unix systems provide, besides the pipe() system call, two wrapper functions named
popen() and pclose() that handle all the dirty work usually done when using pipes. Once
a pipe has been created by means of the popen() function, it can be used with the high-level
I/O functions included in the C library (fprintf(), fscanf(), and so on).

In Linux, popen() and pclose() are included in the C library. The popen() function
receives two parameters: the filename pathname of an executable file and a type string
specifying the direction of the data transfer. It returns the pointer to a FILE data structure. The
popen() function essentially performs the following operations:

1. Creates a new pipe by making use of the pipe() system call
2. Forks a new process, which in turn executes the following operations:

a. If type is r, duplicates the file descriptor associated with the pipe's write
channel as file descriptor 1 (standard output); otherwise, if type is w,
duplicates the file descriptor associated with the pipe's read channel as file
descriptor (standard input)

b. Closes the file descriptors returned by pipe()
c. Invokes the execve() system call to execute the program specified by

filename

Understanding the Linux Kernel

479

3. If type is r, closes the file descriptor associated with the pipe's write channel;
otherwise, if type is w, closes the file descriptor associated with the pipe's read
channel

4. Returns the address of the FILE file pointer that refers to whichever file descriptor for
the pipe is still open

After the popen() invocation, parent and child can exchange information through the pipe:
the parent can read (if type is r) or write (if type is w) some data by using the FILE pointer
returned by the function. The data is written to the standard output or read from the standard
input, respectively, by the program executed by the child process.

The pclose() function, which receives the file pointer returned by popen() as its
parameter, simply invokes the wait4() system call and waits for the termination of the
process created by popen().

18.1.2 Pipe Data Structures

We now have to start thinking again on the system call level. Once a pipe has been created, a
process uses the read() and write() VFS system calls to access it. Therefore, for each
pipe, the kernel creates an inode object plus two file objects, one for reading and the other for
writing. When a process wants to read from or write to the pipe, it must use the proper file
descriptor.

When the inode object refers to a pipe, its u field consists of a pipe_inode_info structure
shown in Table 18-1.

Table 18-1. The pipe_inode_info Structure
Type Field Description
char * base Address of kernel buffer
unsigned int start Read position in kernel buffer
unsigned int lock Locking flag for exclusive access
struct wait_queue * wait Pipe/FIFO wait queue
unsigned int readers Flag for (or number of) reading processes
unsigned int writers Flag for (or number of) writing processes
unsigned int rd_openers Used while opening a FIFO for reading
unsigned int wr_openers Used while opening a FIFO for writing

Besides one inode and two file objects, each pipe has its own pipe buffer, that is, a single page
frame containing the data written into the pipe and yet to be read. The address of this page
frame is stored in the base field of the pipe_inode_info structure. The i_size field of the
inode object stores the number of bytes written into the pipe buffer that are yet to be read; in
the following, we call that number the current pipe size.

The pipe buffer is accessed both by reading processes and by writing ones, so the kernel must
keep track of two current positions in the buffer:

• The offset of the next byte to be read, which is stored in the start field of the
pipe_inode_info structure

Understanding the Linux Kernel

480

• The offset of the next byte to be written, which is derived from start and the pipe
size

To avoid race conditions on the pipe's data structures, the kernel forbids concurrent accesses
to the pipe buffer. In order to achieve this, it makes use of the lock field in the
pipe_inode_info data structure. Unfortunately, the lock field is not sufficient. As we shall
see, POSIX dictates that some pipe operations are atomic. Moreover, the POSIX standard
allows the writing process to be suspended when the pipe is full, so that readers can empty the
buffer (see Section 18.1.5 later in this chapter). These requirements are satisfied by using an
additional i_atomic_write semaphore that can be found in the inode object: this semaphore
keeps a process from starting a write operation while another writer has been suspended
because the buffer is full.

18.1.3 Creating and Destroying a Pipe

A pipe is implemented as a set of VFS objects, which have no corresponding disk image. As
we shall see from the following discussion, a pipe remains in the system as long as some
process owns a file descriptor referring to it.

The pipe() system call is serviced by the sys_pipe() function, which in turn invokes the
do_pipe() function. In order to create a new pipe, do_pipe() performs the following
operations:

1. Allocates a file object and a file descriptor for the read channel of the pipe, sets the
flag field of the file object to O_RDONLY, and initializes the f_op field with the
address of the read_ pipe_fops table.

2. Allocates a file object and a file descriptor for the write channel of the pipe, sets the
flag field of the file object to O_WRONLY, and initializes the f_op field with the
address of the write_ pipe_fops table.

3. Invokes the get_ pipe_inode() function, which allocates and initializes an inode
object for the pipe. This function also allocates a page frame for the pipe buffer and
stores its address in the base field of the pipe_inode_info structure.

4. Allocates a dentry object and uses it to link together the two file objects and the inode
object (see Section 12.1.1 in Chapter 12).

5. Returns the two file descriptors to the User Mode process.

The process that issues a pipe() system call is initially the only process that can access the
new pipe, both for reading and for writing. To represent that the pipe has actually both a
reader and a writer, the readers and writers fields of the pipe_inode_info data structure
are initialized to 1. In general, each of these two fields is set to 1 if and only if the
corresponding pipe's file object is still opened by some process; the field is set to if the
corresponding file object has been released, since it is no longer accessed by any process.

Forking a new process does not increase the value of the readers and writers fields, so they
never rise above 1;[2] however, it does increase the value of the usage counters of all file
objects still used by the parent process (see Section 3.3.1 in Chapter 3). Thus, the objects will
not be released even when the parent dies, and the pipe will stay open for use by the children.

[2] As we'll see, the readers and writers fields act as counters instead of flags when associated with FIFOs.

Understanding the Linux Kernel

481

Whenever a process invokes the close() system call on a file descriptor associated with a
pipe, the kernel executes the fput() function on the corresponding file object, which
decrements the usage counter. If the counter becomes 0, the function invokes the release
method of the file operations (see Section 12.5.3 and Section 12.2.7 in Chapter 12).

Both the pipe_read_release() and the pipe_write_release() functions are used to
implement the release method of the pipe's file objects. They set to the readers and the
writers fields, respectively, of the pipe_inode_info structure. Each function then invokes
the pipe_release() function. This function wakes up any processes sleeping in the pipe's
wait queue so that they can recognize the change in the pipe state. Moreover, the function
checks whether both the readers and writers fields are equal to 0; in this case, it releases
the page frame containing the pipe buffer.

18.1.4 Reading from a Pipe

A process wishing to get data from a pipe issues a read() system call, specifying as its file
descriptor the descriptor associated with the pipe's read channel. As described in Section
12.5.2 in Chapter 12, the kernel ends up invoking the read method found in the file operation
table associated with the proper file object. In the case of a pipe, the entry for the read method
in the read_pipe_fops table points to the pipe_read() function.

The pipe_read() function is quite involved, since the POSIX standard specifies several
requirements for the pipe's read operations. Table 18-2 illustrates the expected behavior of a
read() system call that requests n bytes from a pipe having a pipe size (number of bytes in
the pipe buffer yet to be read) equal to p. Notice that the read operation can be nonblocking:
in this case, it completes as soon as all available bytes (even none) have been copied into the
user address space.[3] Notice also that the value is returned by the read() system call only if
the pipe is empty and no process is currently using the file object associated with the pipe's
write channel.

[3] Nonblocking operations are usually requested by specifying the O_NONBLOCK flag in the open() system call. This method does not
work for pipes, since they cannot be opened; a process can, however, require a nonblocking operation on a pipe by issuing a fcntl() system
call on the corresponding file descriptor.

Table 18-2. Reading n Bytes from a Pipe
Pipe Size p At Least One Writing Process No Writing Process
Blocking Read Nonblocking Read
p=0 Wait for some data, copy it, and return its size. Return -EAGAIN. Return 0.
0<p<n Copy p bytes and return p: bytes are left in the pipe buffer.

p n Copy n bytes and return n: p-n bytes are left in the pipe buffer.

The function performs the following operations:

1. Determines if the pipe size, which is stored into the inode's i_size field, is 0. In this
case, determines if the function must return or if the process must be blocked while
waiting until another process writes some data in the pipe (see Table 18-2). The type
of I/O operation (blocking or nonblocking) is specified by the O_NONBLOCK flag in the
f_flags field of the file object. If necessary, invokes the interruptible_sleep_on(
) function to suspend the current process after having inserted it in the wait queue to
which the wait field of the pipe_inode_info data structure points.

Understanding the Linux Kernel

482

2. Checks the lock field of the pipe_inode_info data structure. If it is not null, another
process is currently accessing the pipe; in this case, either suspends the current process
or immediately terminates the system call, depending on the type of read operation
(blocking or nonblocking).

3. Increments the lock field.
4. Copies the requested number of bytes (or the number of available bytes, if the buffer

size is too small) from the pipe's buffer to the user address space.
5. Decrements the lock field.
6. Invokes wake_up_interruptible() to wake up all processes sleeping on the pipe's

wait queue.
7. Returns the number of bytes copied into the user address space.

18.1.5 Writing into a Pipe

A process wishing to put data into a pipe issues a write() system call, specifying as its file
descriptor the descriptor associated with the pipe's write channel. The kernel satisfies this
request by invoking the write method of the proper file object; the corresponding entry in the
write_pipe_fops table points to the pipe_write() function.

Table 18-3 illustrates the behavior, specified by the POSIX standard, of a write() system
call that requested to write n bytes into a pipe having u unused bytes in its buffer. In
particular, the standard requires that write operations involving a small number of bytes must
be automatically executed. More precisely, if two or more processes are concurrently writing
into a pipe, any write operation involving fewer than 4096 bytes (the pipe buffer size) must
finish without being interleaved with write operations of other processes to the same pipe.
However, write operations involving more than 4096 bytes may be nonatomic and may also
force the calling process to sleep.

Table 18-3. Writing n Bytes to a Pipe
 At Least One Reading Process At Least One Reading Process
Available Buffer
Space u Blocking Write Nonblocking Write No Reading Process

u<n 4096
Wait until n-u bytes are freed,
copy n bytes, and return n. Return -EAGAIN. Send SIGPIPE signal

and return -EPIPE.

n>4096 Copy n bytes (waiting when
necessary) and return n.

If u>0, copy u bytes and return u,
else return -EAGAIN.

Send SIGPIPE signal
and return -EPIPE.

u n Copy n bytes and return n. Copy n bytes and return n. Send SIGPIPE signal
and return -EPIPE.

Moreover, any write operation to a pipe must fail if the pipe does not have a reading process
(that is, if the readers field of the pipe's inode object has the value 0). In that case, the kernel
sends a SIGPIPE signal to the writing process and terminates the write() system call with
the -EPIPE error code, which usually leads to the familiar "Broken pipe" message.

The pipe_write() function performs the following operations:

1. Checks whether the pipe has at least one reading process. If not, sends a SIGPIPE
signal to the current process and return an -EPIPE value.

Understanding the Linux Kernel

483

2. Releases the i_sem semaphore of the pipe's inode, which was acquired by the
sys_write() function (see Section 12.5.2 in Chapter 12), and acquires the
i_atomic_write semaphore of the same inode.[4]

[4] The i_sem semaphore prevents multiple processes from starting write operations on a file, and thus on the pipe. For some reason unknown to
the authors, Linux prefers to make use of a specialized pipe semaphore.

3. Checks whether the number of bytes to be written is within the pipe's buffer size:
a. If so, the write operation must be atomic. Therefore, checks whether the buffer

has enough free space to store all bytes to be written.
b. If the number of bytes is greater than the buffer size, the operation can start as

long as there is any free space at all. Therefore, checks for at least 1 free byte.
4. If the buffer does not have enough free space and the write operation is blocking,

inserts the current process into the pipe's wait queue and suspends it until some data is
read from the pipe. Notice that the i_atomic_write semaphore is not released, so no
other process can start a write operation on the buffer. If the write operation is
nonblocking, returns the -EAGAIN error code.

5. Checks the lock field of the pipe_inode_info data structure. If it is not null, another
process is currently reading the pipe, so either suspends the current process or
immediately terminates the write depending on whether the write operation is blocking
or nonblocking.

6. Increments the lock field.
7. Copies the requested number of bytes (or the number of free bytes if the pipe size is

too small) from the user address space to the pipe's buffer.
8. If there are bytes yet to be written, goes to step 4.
9. After all requested data is written, decrements the lock field.
10. Invokes wake_up_interruptible() to wake up all processes sleeping on the pipe's

wait queue.
11. Releases the i_atomic_write semaphore and acquires the i_sem semaphore (so that

sys_write() can safely release the latter).
12. Returns the number of bytes written into the pipe's buffer.

18.2 FIFOs

Although pipes are a simple, flexible, and efficient communication mechanism, they have one
main drawback, namely, that there is no way to open an already existing pipe. This makes it
impossible for two arbitrary processes to share the same pipe, unless the pipe was created by a
common ancestor process.

This drawback is substantial for many application programs. Consider, for instance, a
database engine server, which continuously polls client processes wishing to issue some
queries and which sends back to them the results of the database lookups. Each interaction
between the server and a given client might be handled by a pipe. However, client processes
are usually created on demand by a command shell when a user explicitly queries the
database; server and client processes thus cannot easily share a pipe.

In order to address such limitations, Unix systems introduce a special file type called a named
pipe or FIFO (which stands for "first in, first out": the first byte written into the special file is
also the first byte that will be read).[5]

[5] Starting with System V Release 3, FIFOs are implemented as full-duplex (bidirectional) objects.

Understanding the Linux Kernel

484

FIFO files are similar to device files: they have a disk inode, but they do not make use of data
blocks. Thanks to the disk inode, a FIFO can be accessed by any process, since the FIFO
filename is included in the system's directory tree. In addition to having a filename, FIFOs are
similar to unnamed pipes in that they also include a kernel buffer to temporarily store the data
exchanged by two or more processes. Since they make use of kernel buffers, FIFOs are much
more efficient than temporary files.

Going back to the database example, the communication between server and clients may be
easily established by using FIFOs instead of pipes. The server creates, at startup, a FIFO used
by client programs to make their requests. Each client program creates, before establishing the
connection, another FIFO to which the server program can write the answer to the query and
includes the FIFO's name in the initial request to the server.

18.2.1 Creating and Opening a FIFO

A process creates a FIFO by issuing a mknod()[6] system call (see Section 13.2.1 in
Chapter 13), passing to it as parameters the pathname of the new FIFO and the value S_IFIFO
(0x1000) logically ORed with the permission bit mask of the new file. POSIX introduces a
system call named mkfifo() specifically to create a FIFO. This call is implemented in
Linux, as in System V Release 4, as a C library function that invokes mknod().

[6] In fact, mknod() can be used to create nearly any kind of file: block and character device files, FIFOs, and even regular files (it cannot create
directories or sockets, though).

Once created, a FIFO can be accessed through the usual open(), read(), write(), and
close() system calls, yet the VFS handles it in a special way because the FIFO inode and
file operations are customized and do not depend on the filesystems in which the FIFO is
stored.

The POSIX standard specifies the behavior of the open() system call on named pipes; the
behavior depends essentially on the requested access type, on the kind of I/O operation
(blocking or nonblocking), and on the presence of other processes accessing the FIFO.

A process may open a FIFO for reading, for writing, or for reading and writing. The file
operations associated with the corresponding file object are set to special methods for these
three cases.

When a process opens a FIFO, the VFS performs the same operations as it does for device
files (see Section 13.2.2 in Chapter 13). The inode object associated with the opened FIFO is
initialized by a filesystem-dependent read_inode superblock method. This method always
checks whether the inode on disk represents a FIFO:

if ((inode->i_mode & 00170000) == S_IFIFO)
 init_fifo(inode);

The init_fifo() function sets the i_op field of the inode object to the address of the
fifo_inode_operations table. The function also initializes to all fields of the
pipe_inode_info data structure stored inside the inode object (see Table 18-1).

The filp_open() function (invoked by sys_open(), see Section 12.5.1 in Chapter 12)
then fills the remaining fields of the inode object and initializes the f_op field of the new file

Understanding the Linux Kernel

485

object with the contents of i_op->default_file_ops field of the inode object. As a
consequence, the file operation table is set to def_fifo_fops. Then filp_open() invokes
the open method from that table of operations, which is implemented in this specific case by
the fifo_open() function.

The fifo_open() function examines the values of the readers and writers fields in the
pipe_inode_info data structure. When referring to FIFOs, such fields store the number of
reading and writing processes, respectively. If necessary, the function suspends the current
process until a reader or a writer process accesses the FIFO: Table 18-4 illustrates the possible
behaviors of fifo_open(). Moreover, the function further determines specialized behavior
for the set of file operations to be used by setting the f_op field of the file object to the
address of some predefined tables shown in Table 18-5. Finally, the function checks whether
the base field of the pipe_inode_info data structure is NULL; in this case, it gets a free page
frame for the FIFO's kernel buffer and stores its address in base.

Table 18-4. Behavior of the fifo_open() Function
Access Type Blocking Nonblocking
Read only, with writers Successfully return Successfully return
Read only, no writer Wait for a writer Successfully return
Write only, with readers Successfully return Successfully return
Write only, no reader Wait for a reader Return -ENXIO
Read/write Successfully return Successfully return

The FIFO's four specialized file operation tables differ mainly in the implementation of the
read and write methods. If the access type allows read operations, the read method is
implemented by the pipe_read() function. Otherwise, it is implemented by bad_pipe_r(
), which just returns an error code. Similarly, if the access type allows write operations, the
write method is implemented by the pipe_write() function; otherwise, it is implemented
by bad_pipe_w(), which also returns an error code.

According to the POSIX standard, a process may open a FIFO successfully for reading in a
nonblocking mode, even if the FIFO has no writers: in this case, the pipe_read() function
cannot be used right away to implement the read method since it returns an -EAGAIN error
code when it discovers that the pipe is empty and that there are no writers. The solution
adopted consists of implementing the read method with an intermediate connect_read()
function; if there are no writers, this function returns 0; otherwise, it sets the f_op field of the
file object to read_fifo_fops and then invokes pipe_read().

Table 18-5. FIFO's File Operations
Access Type File Operations read Method write Method
Read only, with writers read_fifo_fops pipe_read() bad_pipe_w()
Read only, no writer connecting_fifo_fops connect_read() bad_pipe_w()
Write only write_fifo_fops bad_pipe_r() pipe_write()
Read/write rdwr_fifo_fops pipe_read() pipe_write()

18.2.2 Reading from and Writing into a FIFO

The read() and write() system calls that refer to a FIFO, as well as to any other file type,
are handled by the VFS through the read() and write() file object methods. If the

Understanding the Linux Kernel

486

operation is allowed, the corresponding entries in the file operation table point to the
pipe_read() and pipe_write() functions (see Section 18.1.4 and Section 18.1.5).

The VFS thus handles reading and writing for FIFOs the same as for unnamed pipes. In
contrast to unnamed pipes, however, the same file descriptor may be used both for reading
and for writing a FIFO.

18.3 System V IPC

IPC is an abbreviation that stands for Interprocess Communication. It denotes a set of system
calls that allows a User Mode process to:

• Synchronize itself with other processes by means of semaphores
• Send messages to other processes or receive messages from them
• Share a memory area with other processes

IPC was introduced in a development Unix variant called "Columbus Unix" and later adopted
by AT&T's System III. It is now commonly found in most Unix systems, including Linux.

IPC data structures are created dynamically when a process requests an IPC resource (a
semaphore, a message queue, or a shared memory segment). Each IPC resource is persistent:
unless explicitly released by a process, it is kept in memory. An IPC resource may be used by
any process, including those that do not share the ancestor that created the resource.

Since a process may require several IPC resources of the same type, each new resource is
identified by a 32-bit IPC key, which is similar to the file pathname in the system's directory
tree. Each IPC resource also has a 32-bit IPC identifier, which is somewhat similar to the file
descriptor associated with an open file. IPC identifiers are assigned to IPC resources by the
kernel and are unique within the system, while IPC keys can be freely chosen by
programmers.

When two or more processes wish to communicate through an IPC resource, they all refer to
the IPC identifier of the resource.

18.3.1 Using an IPC Resource

IPC resources are created by invoking the semget(), msgget(), or shmget() functions,
depending on whether the new resource is a semaphore, a message queue, or a shared memory
segment.

The main objective of each of these three functions is to derive from the IPC key (passed as
the first parameter) the corresponding IPC identifier, which will then be used by the process
for accessing the resource. If there is no IPC resource already associated with the IPC key, a
new resource is created. If everything goes right, the function returns a positive IPC identifier;
otherwise, it returns one of the error codes illustrated in Table 18-6.

Understanding the Linux Kernel

487

Table 18-6. Error Codes Returned While Requiring an IPC Identifier
Error Code Description
EACCESS Process does not have proper access rights.
EEXIST Process tried to create an IPC resource with the same key as one that already exists.
EIDRM The resource is marked so as to be deleted.
ENOENT No IPC resource with the requested key exists and the process did not ask to create it.
ENOMEM No more storage is left for an additional IPC resource.
ENOSPC Maximum limit on the number of IPC resources has been exceeded.

Assume that two independent processes want to share a common IPC resource. This can be
achieved in two possible ways:

• The processes agree on some fixed, predefined IPC key. This is the simplest case, and
it works quite well for any complex application implemented by many processes.
However, there's a chance that the same IPC key is adopted by another unrelated
program. In this case, the IPC functions might be successfully invoked and yet return
the IPC identifier of the wrong resource.[7]

[7] The ftok() function attempts to create a new key from a file pathname and an 8-bit project identifier passed as parameters. It does not
guarantee, however, a unique key number, since there is a small chance that it will return the same IPC key to two different applications using
different pathnames and project identifiers.

• One process issues a semget(), msgget(), or shmget() function by specifying
IPC_PRIVATE as its IPC key. A new IPC resource is thus allocated, and the process
can either communicate its IPC identifier to the other process in the application[8] or
fork the other process itself. This method ensures that the IPC resource cannot be
accidentally used by other applications.

[8] This implies, of course, the existence of another communication channel between the processes not based on IPC.

The last parameter of the semget(), msgget(), and shmget() functions can include two
flags. IPC_CREAT specifies that the IPC resource must be created, if it does not already exist;
IPC_EXCL specifies that the function must fail if the resource already exists and the
IPC_CREAT flag is set.

Even if the process uses the IPC_CREAT and IPC_EXCL flags, there is no way to ensure
exclusive access to an IPC resource, since other processes may always refer to the resource by
using its IPC identifier.

In order to minimize the risk of incorrectly referencing the wrong resource, the kernel does
not recycle IPC identifiers as soon as they become free. Instead, the IPC identifier assigned to
a resource is almost always larger than the identifier assigned to the previously allocated
resource of the same type. (The only exception occurs when the 32-bit IPC identifier
overflows.) Each IPC identifier is computed by combining a slot usage sequence number
relative to the resource type, an arbitrary slot index for the allocated resource, and the value
chosen in the kernel for the maximum number of allocatable resources. If we choose s to
represent the slot usage sequence number, M to represent the maximum number of resources,
and i to represent the slot index, where 0 i<M, each IPC resource's ID is computed as
follows:

IPC identifier = s x M + i

Understanding the Linux Kernel

488

The slot usage sequence number s is initialized to and is incremented by 1 at every resource
deallocation. In two consecutive resource allocations, the slot index i can only increase; it can
decrease only when a resource has been deallocated, but then the increased slot usage
sequence number ensures that the new IPC identifier for the next allocated resource is larger
than the previous one.

Each IPC resource is associated with an ipc_perm data structure, whose fields are shown in
Table 18-7. The uid, gid, cuid, and cgid fields store the user and group identifiers of the
resource's creator and the user and group identifiers of the current resource's owner,
respectively. The mode bit mask includes six flags, which store the read and write access
permissions for the resource's owner, the resource's group, and all other users. IPC access
permissions are similar to file access permissions described in Section 1.5.5 in Chapter 1,
except that there is no Execute permission flag.

Table 18-7. The Fields in the ipc_ perm Structure
Type Field Description
int key IPC key
unsigned short uid Owner user ID
unsigned short gid Owner group ID
unsigned short cuid Creator user ID
unsigned short cgid Creator group ID
unsigned short mode Permission bit mask
unsigned short seq Slot usage sequence number

The ipc_perm data structure also includes a key field, which contains the IPC key of the
corresponding resource, and a seq field, which stores the slot usage sequence number s used
to compute the IPC identifier of the resource.

The semctl(), msgctl(), and shmctl() functions may be used to handle IPC resources.
The IPC_SET subcommand allows a process to change the owner's user and group identifiers
and the permission bit mask in the ipc_perm data structure. The IPC_STAT and IPC_INFO
subcommands retrieve some information concerning a resource. Finally, the IPC_RMID
subcommand releases an IPC resource. Depending on the type of IPC resource, other
specialized subcommands are also available.[9]

[9] Another IPC design flaw is that a User Mode process cannot atomically create and initialize an IPC resource, since these two operations are
performed by two different IPC functions.

Once an IPC resource has been created, a process may act on the resource by means of a few
specialized functions. A process may acquire or release an IPC semaphore by issuing the
semop() function. When a process wants to send or receive an IPC message, it uses the
msgsnd() and msgrcv() functions, respectively. Finally, a process attaches and detaches a
shared memory segment in its address space by means of the shmat() and shmdt()
functions, respectively.

18.3.2 The ipc() System Call

All IPC functions must be implemented through suitable Linux system calls. Actually, in the
Intel 80x86 architecture, there is just one IPC system call named ipc(). When a process
invokes an IPC function, let's say msgget(), it really invokes a wrapper function in the C

Understanding the Linux Kernel

489

library, which in turn invokes the ipc() system call by passing to it all the parameters of
msgget() plus a proper subcommand code, in this case MSGGET. The sys_ipc() service
routine examines the subcommand code and invokes the kernel function that implements the
requested service.

The ipc() "multiplexer" system call is a legacy from older Linux versions, which included
the IPC code in a dynamic module (see Appendix B). It did not make much sense to reserve
several system call entries in the system_call table for a kernel component that could be
missing, so the kernel designers adopted the multiplexer approach.

Nowadays, System V IPC can no longer be compiled as a dynamic module, and there is no
justification for using a single IPC system call. As a matter of fact, Linux provides one system
call for each IPC function on Compaq's Alpha architecture.

18.3.3 IPC Semaphores

IPC semaphores are quite similar to the kernel semaphores introduced in Chapter 11: they are
counters used to provide controlled access to shared data structures for multiple processes.
The semaphore value is positive if the protected resource is available, and negative or if the
protected resource is currently not available. A process that wants to access the resource
decrements by 1 the semaphore value. It is allowed to use the resource only if the old value
was positive; otherwise, the process waits until the semaphore becomes positive. When a
process relinquishes a protected resource, it increments its semaphore value by 1; in doing so,
any other process waiting for the semaphore is woken up. Actually, IPC semaphores are more
complicated to handle than kernel semaphores for two main reasons:

• Each IPC semaphore is a set of one or more semaphore values, not just a single value
as for kernel semaphores. This means that the same IPC resource can protect several
independent shared data structures. The number of semaphore values in each IPC
semaphore must be specified as a parameter of the semget() function when the
resource is being allocated, but it cannot be greater than SEMMSL (usually 32). From
now on, we'll refer to the counters inside an IPC semaphore as primitive semaphores.

• The IPC specification creates a fail-safe mechanism for situations in which a process
dies without being able to undo the operations that it previously issued on a
semaphore. When a process chooses to use this mechanism, the resulting operations
are called undoable semaphore operations. When the process dies, all of its IPC
semaphores can revert to the values they would have had if the process had never
started its operations. This can help prevent deadlocks of other processes using the
same semaphores.

First, we'll briefly sketch the typical steps performed by a process wishing to access one or
more resources protected by an IPC semaphore. The process:

1. Invokes the semget() wrapper function to get the IPC semaphore identifier,
specifying as the parameter the IPC key of the IPC semaphore that protects the shared
resources. If the process wants to create a new IPC semaphore, it also specifies the
IPC_CREATE or IPC_PRIVATE flag and the number of primitive semaphores required
(see Section 18.3.1 earlier in this chapter).

2. Invokes the semop() wrapper function to test and decrement all primitive semaphore
values involved. If all the tests succeed, the decrements are performed, the function

Understanding the Linux Kernel

490

terminates, and the process is allowed to access the protected resources. If some
semaphores are in use, the process is usually suspended until some other process
releases the resources. The function receives as parameters the IPC semaphore
identifier, an array of numbers specifying the operations to be atomically performed
on the primitive semaphores, and the number of such operations. Optionally, the
process may specify the SEM_UNDO flag, which instructs the kernel to reverse the
operations should the process exit without releasing the primitive semaphores.

3. When relinquishing the protected resources, invokes the semop() function again to
atomically increment all primitive semaphores involved.

4. Optionally, invokes the semctl() wrapper function, specifying in its parameter the
IPC_RMID flag to remove the IPC semaphore from the system.

Now we can discuss how the kernel implements IPC semaphores. The data structures
involved are shown in Figure 18-1. A statically allocated semary array includes SEMMNI
values (usually 128). Each element in the array can assume one of the following values:

• IPC_UNUSED (-1): no IPC resource refers to this slot.
• IPC_NOID (-2): the IPC resource is being allocated or destroyed.
• The address of a dynamically allocated memory area containing the IPC semaphore

resource.

Figure 18-1. IPC semaphore data structures

The index number of the semary array represents the slot index i mentioned earlier. When a
new IPC resource must be allocated, the kernel scans the array and uses the first array element
(slot) containing the value IPC_UNUSED. The slot index can be easily derived from the IPC
identifier by simply masking out its high-order bits (see Section 18.3.1).

The first locations of the memory area containing the IPC semaphore store a descriptor of
type struct semid_ds, whose fields are shown in Table 18-8. All other locations in the
memory area store several sem data structures, one for each primitive semaphore in the IPC

Understanding the Linux Kernel

491

semaphore resource. The sem_base field of the semid_ds structure points to the first sem
structure in the memory area. The sem data structure includes only two fields:

semval

Value of the semaphore's counter.

sempid

PID of the last process that accessed the semaphore. This value can be queried by a
process through the semctl() wrapper function.

Table 18-8. The Fields in the semid_ds Structure
Type Field Description
struct ipc_perm sem_perm ipc_perm data structure
long sem_otime Timestamp of last semop()
long sem_ctime Timestamp of last change
struct sem * sem_base Pointer to first sem structure
struct sem_queue * sem_pending Pending operations
struct sem_queue ** sem_pending_last Last pending operation
struct sem_undo * undo Undo requests
unsigned short sem_nsems Number of semaphores in array

18.3.3.1 Undoable semaphore operations

If a process aborts suddenly, it cannot undo the operations that it started (for instance, release
the semaphores it reserved); so by declaring them undoable the process lets the kernel return
the semaphores to a consistent state and allow other processes to proceed. Processes may
require undoable operations by specifying the SEM_UNDO flag in the semop() function.

Information to help the kernel reverse the undoable operations performed by a given process
on a given IPC semaphore resource is stored in a sem_undo data structure. It essentially
contains the IPC identifier of the semaphore and an array of integers representing the changes
to the primitive semaphore's values caused by all undoable operations performed by the
process.

A simple example can illustrate how such sem_undo elements are used. Consider a process
using an IPC semaphore resource with four primitive semaphores and suppose that it invokes
the semop() function to increment by 1 the first counter and decrement by 2 the second one.
If it specifies the SEM_UNDO flag, the integer in the first array element in the sem_undo data
structure is decremented by 1, the integer in the second element is incremented by 2, and the
other two integers are left unchanged. Further undoable operations on the IPC semaphore
performed by the same process change accordingly the integers stored in the sem_undo
structure. When the process exits, any nonzero value in that array corresponds to one or more
unbalanced operations on the corresponding primitive semaphore; the kernel reverses these
operations, simply adding the nonzero value to the corresponding semaphore's counter. In
other words, the changes made by the aborted process are backed out while the changes made
by other processes are still reflected in the state of the semaphores.

Understanding the Linux Kernel

492

For each process, the kernel keeps track of all semaphore resources handled with undoable
operations, so that it can roll them back if the process unexpectedly exits. Furthermore, the
kernel has to keep track, for each semaphore, of all its sem_undo structures, so that it can
quickly access them whenever a process uses semctl() to force an explicit value into a
primitive semaphore's counter or to destroy an IPC semaphore resource.

The kernel is able to handle these tasks efficiently thanks to two lists, which we denote as the
per-process and the per-semaphore lists. The first one keeps track of all semaphores handled
by a given process with undoable operations. The second one keeps track of all processes that
are acting on a given semaphore with undoable operations. More precisely:

• The per-process list includes all sem_undo data structures corresponding to IPC
semaphores on which the process has performed undoable operations. The semundo
field of the process descriptor points to the first element of the list, while the
proc_next field of each sem_undo data structure points to the next element in the list.

• The per-semaphore list includes all sem_undo data structures corresponding to the
processes that performed undoable operations on it. The undo field of the semid_ds
data structure points to the first element of the list, while the id_next field of each
sem_undo data structure points to the next element in the list.

The per-process list is used when a process terminates. The sem_exit() function, which is
invoked by do_exit(), walks through the list and reverses the effect of any unbalanced
operation for every IPC semaphore touched by the process. By contrast, the per-semaphore
list is mainly used when a process invokes the semctl() function to force an explicit value
into a primitive semaphore. The kernel sets the corresponding element to in the arrays of all
sem_undo data structures referring to that IPC semaphore resource, since it would no longer
make any sense to reverse the effect of previous undoable operations performed on that
primitive semaphore. Moreover, the per-semaphore list is also used when an IPC semaphore
is destroyed; all related sem_undo data structures are invalidated by setting the semid field to
-1.[10]

[10] Notice that they are just invalidated, and not freed, since it would be too costly to remove the data structures from the per-process lists of all
processes.

18.3.3.2 The queue of pending requests

The kernel associates to each IPC semaphore a queue of pending requests to identify
processes that are waiting on one of the semaphores in the array. The queue is a doubly linked
list of sem_queue data structures, whose fields are shown in Table 18-9. The first and last
pending requests in the queue are referenced, respectively, by the sem_pending and
sem_pending_last fields of the semid_ds structure. This last field allows the list to be
handled easily as a FIFO: new pending requests are added to the end of the list so that they
will be serviced later. The most important fields of a pending request are nsops, which stores
the number of primitive semaphores involved in the pending operation, and sops, which
points to an array of integer values describing each single semaphore operation. The sleeper
field stores the address of the wait queue containing the sleeping process.

Understanding the Linux Kernel

493

Table 18-9. The Fields in the sem_queue Structure
Type Field Description
struct sem_queue * next Pointer to next queue element
struct sem_queue ** prev Pointer to previous queue element
struct wait_queue * sleeper Pointer to sleeping process wait queue
struct sem_undo * undo Pointer to sem_undo structure
int pid Process identifier
int status Completion status of operation
struct semid_ds * sma Pointer to IPC semaphore descriptor
struct sembuf * sops Pointer to array of pending operations
int nsops Number of pending operations
int alter Flag for altering operations

Figure 18-1 illustrates an IPC semaphore that has three pending requests. Two of them refer
to undoable operations, so the undo field of the sem_queue data structure points to the
corresponding sem_undo structure; the third pending request has a NULL undo field since the
corresponding operation is not undoable.

18.3.4 IPC Messages

Processes can communicate with each other by means of IPC messages. Each message
generated by a process is sent to an IPC message queue where it stays until another process
reads it.

A message is composed of a fixed-size header and a variable-length text; it can be labeled
with an integer value (the message type), which allows a process to selectively retrieve
messages from its message queue.[11] Once a process has read a message from an IPC message
queue, the kernel destroys it; therefore, only one process can receive a given message.

[11] As we'll see, the message queue is implemented by means of a linked list. Since messages can be retrieved in an order different from "first in, first
out," the name "message queue" is not appropriate. However, new messages are always put at the end of the linked list.

In order to send a message, a process invokes the msgsnd() function, passing as parameters:

• The IPC identifier of the destination message queue
• The size of the message text
• The address of a User Mode buffer that contains the message type immediately

followed by the message text

To retrieve a message, a process invokes the msgrcv() function, passing to it:

• The IPC identifier of the IPC message queue resource
• The pointer to a User Mode buffer to which the message type and message text should

be copied
• The size of this buffer
• A value t that specifies what message should be retrieved

If the value t is null, the first message in the queue is returned. If t is positive, the first
message in the queue with its type equal to t is returned. Finally, if t is negative, the function

Understanding the Linux Kernel

494

returns the first message whose message type is the lowest value less than or equal to the
absolute value of t.

The data structures associated with IPC message queues are shown in Figure 18-2. A
statically allocated array msgque includes MSGMNI values (usually 128). Like the semary
array, each element in a msgque array can assume the value IPC_UNUSED, IPC_NOID, or the
address of an IPC message queue descriptor.

Figure 18-2. IPC message queue data structures

The message queue descriptor is a msqid_ds structure, whose fields are shown in Table 18-
10. The most important fields are msg_first and msg_last, which point to the first and to
the last message in the linked list, respectively. The rwait field points to a wait queue that
includes all processes currently waiting for some message in the queue. Conversely, the
wwait field points to a wait queue that includes all processes currently waiting for some free
space in the queue so they can add a new message. The total size of the header and the text of
all messages in the queues cannot exceed the value stored in the msg_qbytes field; the default
maximum size is MSGMNB, that is, 16,384 bytes.

Table 18-10. The msqid_ds Structure
Type Field Description
struct ipc_perm msg_perm ipc_perm data structure
struct msg * msg_first First message in queue
struct msg * msg_last Last message in queue
Long msg_stime Time of last msgsnd()
Long msg_rtime Time of last msgrcv()
Long msg_ctime Last change time
struct wait_queue * wwait Processes waiting for free space
struct wait_queue * rwait Processes waiting for messages
unsigned short msg_cbytes Current number of bytes in queue
unsigned short msg_qnum Number of messages in queue
unsigned short msg_qbytes Maximum number of bytes in queue
unsigned short msg_lspid PID of last msgsnd()
unsigned short msg_lrpid PID of last msgrcv()

Understanding the Linux Kernel

495

Each message is placed into a dynamically allocated memory area. The beginning of this area
stores the message header, which is a data structure of type msg; its fields are listed in
Table 18-11. The message text is stored in the rest of the memory area. The msg_spot field of
the message header contains the starting address of the message text, while the msg_ts field
contains the length of the message text; this length cannot be longer than MSGMAX (usually
4056) bytes.

Table 18-11. The msg Structure
Type Field Description
struct msg * msg_next Next message in queue
long msg_type Message type
char * msg_spot Message text address
time_t msg_stime Time of msgsnd()
short msg_ts Message text size

Finally, each message is linked to the next message in the queue through the msg_next field
of its message header.

18.3.5 IPC Shared Memory

The most useful IPC mechanism is shared memory, which allows two or more processes to
access some common data structures by placing them in a shared memory segment. Each
process that wants to access the data structures included in a shared memory segment must
add to its address space a new memory region (see the section Section 7.3 in Chapter 7),
which maps the page frames associated with the shared memory segment. Such page frames
can thus be easily handled by the kernel through demand paging (see Section 7.4.3 in
Chapter 7).

As with semaphores and message queues, the shmget() function is invoked to get the IPC
identifier of a shared memory segment, optionally creating it if it does not already exist.

The shmat() function is invoked to "attach" a shared memory segment to a process. It
receives as its parameter the identifier of the IPC shared memory resource and tries to add a
shared memory region to the address space of the calling process. The calling process can
require a specific starting linear address for the memory region, but the address is usually
unimportant, and each process accessing the shared memory segment can use a different
address in its own address space. The process's page tables are left unchanged by shmat().
We'll describe later what the kernel does when the process tries to access a page belonging to
the new memory region.

The shmdt() function is invoked to "detach" a shared memory segment specified by its IPC
identifier, that is, to remove the corresponding memory region from the process's address
space. Recall that an IPC shared memory resource is persistent: even if no process is using it,
the corresponding pages cannot be discarded, although they can be swapped out.

Figure 18-3 illustrates the main data structures used for implementing IPC shared memory. A
statically allocated array shm_segs includes SHMMNI values (usually 128). Like the semary
and msgque arrays, each element in shm_segs can have the value IPC_UNUSED or IPC_NOID or
the address of an IPC shared memory segment descriptor.

Understanding the Linux Kernel

496

Figure 18-3. IPC shared memory data structures

Each IPC shared memory segment descriptor is a shmid_kernel structure, whose fields are
shown in Table 18-12. Some of the fields, which are accessible to User Mode processes, are
included in a shmid_ds data structure named u inside the descriptor. Their contents can be
accessed by means of the shmctl() function.

The u.shm_segsz and shm_npages fields store the size of the shared memory segment in
bytes and in pages, respectively. Although User Mode processes can require a shared memory
segment of any length, the length of the allocated segment is a multiple of the page size, since
the kernel must map the segment with a memory region.

The shm_pages field points to an array that contains one element for each page of the
segment. Each element stores a 32-bit value in the format of a Page Table entry (see
Section 2.4.1 in Chapter 2). If a page frame is not currently allocated for the page, the element
is 0. Otherwise, it is a regular Page Table entry containing the physical address of a page
frame or a swapped-out page identifier.

Table 18-12. The Fields in the shmid_kernel Structure
Type Field Description
struct ipc_perm u.shm_perm ipc_perm data structure
int u.shm_segsz Size of shared memory region (bytes)
long u.shm_atime Last attach time
long u.shm_dtime Last detach time
long u.shm_ctime Last change time
unsigned short u.shm_cpid PID of creator
unsigned short u.shm_lpid PID of last accessing process
unsigned short u.shm_nattch Number of current attaches
unsigned long shm_npages Size of shared memory region (pages)
unsigned long * shm_pages Pointer to array of page frame PTEs
struct vm_area_struct * attaches Pointer to VMA descriptor list

In the example illustrated in Figure 18-3, the segment is contained in five pages. Three of
them have never been accessed, while the other two pages are stored in RAM.

Understanding the Linux Kernel

497

The attaches field points to the first element of a doubly linked list that includes the
vm_area_struct descriptors of all memory regions associated with the shared memory
segment. The list is implemented by means of the vm_next_share and vm_pprev_share
fields of the descriptors. The number of elements in the list is stored in the u.shm_nattch
field. In Figure 18-3, the shared memory segment has been attached to the address space of
two processes.

When mapping IPC shared memory segments, some fields of vm_area_struct descriptors
have a special meaning:

vm_start and vm_end

Delimit the linear address range of the memory region

vm_pte

Stores the index of the shared memory segment in the shm_segs array

vm_ops

Points to a table of memory region operations called shm_vm_ops

18.3.5.1 Demand paging for IPC shared memory segments

The pages added to a process by shmat() are dummy pages; the function adds a new
memory region into a process's address space, but it doesn't modify the process's page tables.
We can now explain how these pages become usable.

Because the shmat() function didn't modify the page tables, a "Page fault" occurs when a
process tries to access a location of a shared memory segment. The corresponding exception
handler determines that the faulty address is inside the process address space and that the
corresponding Page Table entry is null; therefore, it invokes the do_no_page() function (see
the section Section 7.4.3 in Chapter 7). In turn, this function checks whether the nopage
method for the memory region is defined. The method is then invoked, and the Page Table
entry is set to the address returned from it (see Section 15.2.5 in Chapter 15).

Memory regions used for IPC shared memory always define the nopage method. It is
implemented by the shm_nopage() function, which performs the following operations:

1. Extracts from the vm_pte field of the memory region descriptor the index of the
shm_segs array corresponding to the shared memory segment.

2. Computes the logical page number inside the segment from the vm_start field of the
memory region descriptor and the requested address.

3. Accesses the array referenced by the shm_pages field of the shmid_kernel descriptor
of the segment and gets the entry corresponding to the page that includes the faulty
address. Three cases are considered, depending on the value of the entry:

o Null entry: no page frame was ever allocated to the page. In this case, allocates
a new page frame and stores its Page Table entry in the shm_pages array.

o Regular entry with Present flag set: the page is already stored in some page
frame. Extracts its physical address from the entry in shm_pages.

Understanding the Linux Kernel

498

o Swapped-out page identifier: the page has been swapped out to disk. Allocates
a new page frame, reads the page from disk, copies it into the page frame, and
stores the new Page Table entry in the shm_pages array. Actually, the actions
performed in this case correspond to the swap-in procedure for pages included
in shared memory segments (described later).

4. Increments the usage counter of the page frame allocated or identified in the previous
step.

5. Returns the physical address of the page frame.

The do_no_page() function sets the entry corresponding to the faulty address in the
process's Page Table so that it points to the page frame returned by the method.

18.3.5.2 Swapping out pages of IPC shared memory segments

The kernel has to be careful when swapping out pages included in shared memory segments.
Suppose that two processes P1 and P2 are accessing a page of a shared memory segment.
Suppose also that the swap_out() function tries to free a page frame assigned to process P1
that is also shared with process P2 (see Section 16.5 in Chapter 16). According to the standard
swap-out rules, the shared page should be copied to disk and then released, and a swapped-out
page identifier should be written into the corresponding P1's Page Table entry. However, this
standard procedure doesn't work, because process P2 could try to access the page through its
own page tables: since the corresponding Page Table entry still points to the released page
frame, all sort of data corruption could occur.

The try_to_swap_out() function (see Section 16.5.1 in Chapter 16) recognizes this special
case by checking whether the memory region includes a swapout method. If it is defined, the
page frame is not released to the Buddy system; its usage counter is simply decremented by 1,
and the corresponding entry in P1's Page Table is cleared. The swapout method in
shm_vm_ops is an empty function: the method must be non-null to let the kernel know the
memory is shared, so it must point to some function, even if that function has nothing to do.
P2 can safely access the page frame, since it still contains the page of the IPC shared memory.

Shared memory segments are persistent resources, like any IPC resource. This means that
page frames of a shared memory segment no longer used by any process are still referenced
by the shm_pages array. These page frames may be swapped out to disk by means of the
shm_swap() function, which is periodically invoked by do_try_to_free_pages() (see
Section 16.7.4 in Chapter 16). It iteratively scans all descriptors referenced by the shm_segs
array and, for each descriptor, examines all page frames assigned to each segment. If it
determines that the usage counter of some page frame is equal to 1, the corresponding page
can be safely swapped out to disk. The swap-out procedure used is similar to that used for
non-shared pages, except that the swapped-out page identifier is saved in the shm_pages
array.

In conclusion, though shared memory pages are in process page tables, they are not handled
by the swapping facility like other pages. The swapped-out page identifiers of such pages do
not appear in the page table entries but in the shm_pages array. When a process attempts to
address a swapped-out page, the null page table entry triggers a "Page fault" exception. The
kernel retrieves the swapped-out page identifier in the shm_pages array and performs the
swap-in.

Understanding the Linux Kernel

499

18.4 Anticipating Linux 2.4

Static arrays used to represent semaphores and messages have been removed and replaced by
dynamic data structures. Larger IPC messages can now be handled.

IPC shared memory regions are implemented in a different way: a new /proc filesystem,
denoted as sysvipc, has been introduced. It currently includes only one directory called shm
containing a virtual file for each IPC shared memory region.

Understanding the Linux Kernel

500

Chapter 19. Program Execution
The concept of a "process," described in Chapter 3, was used in Unix from the beginning to
represent the behavior of groups of running programs that compete for system resources. This
final chapter focuses on the relationship between program and process. We'll specifically
describe how the kernel sets up the execution context for a process according to the contents
of the program file. While it may not seem like a big problem to load a bunch of instructions
in memory and point the CPU to them, the kernel has to deal with flexibility in several areas:

Different executable formats

Linux is distinguished by its ability to run binaries that were compiled for other
operating systems.

Shared libraries

Many executable files don't contain all the code required to run the program but expect
the kernel to load in functions from a library at runtime.

Other information in the execution context

This includes the command-line arguments and environment variables familiar to
programmers.

A program is stored on disk as an executable file , which includes both the object code of the
functions to be executed and the data on which such functions will act. Many functions of the
program are service routines available to all programmers; their object code is included in
special files called " libraries." Actually, the code of a library function may either be statically
copied in the executable file (static libraries), or be linked to the process at run time (shared
libraries, since their code can be shared by several independent processes).

When launching a program, the user may supply two kinds of information that affect the way
it is executed: command-line arguments and environment variables. Command-line arguments
are typed in by the user following the executable filename at the shell prompt. Environment
variables, such as HOME and PATH, are inherited from the shell, but the users may modify the
values of any such variables before they launch the program.

In Section 19.1 we explain what a program execution context is. In Section 19.2 we mention
some of the executable formats supported by Linux and show how Linux can change its
"personality" so as to execute programs compiled for other operating systems. Finally, in
Section 19.4, we describe the system call that allows a process to start executing a new
program.

19.1 Executable Files

Chapter 1, defined a process as an "execution context." By this we mean the collection of
information needed to carry on a specific computation; it includes the pages accessed, the
open files, the hardware register contents, and so on. An executable file is a regular file that
describes how to initialize a new execution context, i.e., how to start a new computation.

Understanding the Linux Kernel

501

Suppose a user wants to list the files in the current directory: he knows that this result can be
simply achieved by typing the filename of the /bin/ls[1] external command at the shell prompt.
The command shell forks a new process, which in turn invokes an execve() system call (see
Section 19.4 later in this chapter), passing as one of its parameters a string including the full
pathname for the ls executable file, /bin/ls in this case. The sys_execve() service routine
finds the corresponding file, checks the executable format, and modifies the execution context
of the current process according to the information stored in it. As a result, when the system
call terminates, the process starts executing the code stored in the executable file, which
performs the directory listing.

[1] The pathnames of executable files are not fixed in Linux; they depend on the distribution used. Several standard naming schemes such as FHS and
FSSTND have been proposed for all Unix systems.

When a process starts running a new program, its execution context changes drastically since
most of the resources obtained during the process's previous computations are discarded. In
the preceding example, when the process starts executing /bin/ls, it replaces the shell's
arguments with new ones passed as parameters in the execve() system call and acquires a
new shell environment (see Section 19.1.2); all pages inherited from the parent (and shared
with the Copy On Write mechanism) are released, so that the new computation starts with a
fresh User Mode address space; even the privileges of the process could change (see
Section 19.1.1). However, the process PID doesn't change, and the new computation inherits
from the previous one all open file descriptors that have not been closed automatically while
executing the execve() system call.[2]

[2] By default, a file already opened by a process stays open after issuing an execve()system call. However, the file will be automatically
closed if the process has set the corresponding bit in the close_on_exec field of the files_struct structure (see Table 12-6 in
Chapter 12); this is done by means of the fcntl()system call.

19.1.1 Process Credentials and Capabilities

Traditionally, Unix systems associate with each process some credentials, which bind the
process to a specific user and a specific user group. Credentials are important on multiuser
systems because they determine what each process can or cannot do, thus preserving both the
integrity of each user's personal data and the stability of the system as a whole.

The use of credentials requires support both in the process data structure and in the resources
being protected. One obvious resource is a file. Thus, in the Ext2 filesystem, each file is
owned by a specific user and is bound to some group of users. The owner of a file may decide
what kind of operations are allowed on that file, distinguishing among herself, the file's user
group, and all other users. When some process tries to access a file, the VFS always checks
whether the access is legal, according to the permissions established by the file owner and the
process credentials.

The process's credentials are stored in several fields of the process descriptor, listed in Table
19-1. These fields contain identifiers of users and user groups in the system, which are usually
compared with the corresponding identifiers stored in the inodes of the files being accessed.

Understanding the Linux Kernel

502

Table 19-1. Traditional Process Credentials
Name Description
uid, gid User and group real identifiers
euid, egid User and group effective identifiers
fsuid, fsgid User and group effective identifiers for file access
groups Supplementary group identifiers
suid, sgid User and group saved identifiers

A null UID specifies the root superuser, while a null GID specifies the root super-group. The
kernel always allows a process to do anything whenever the process credential concerned
stores a null value. Therefore, process credentials can also be used for checking non-file-
related operations, like those referring to system administration or hardware manipulation: if
the UID stored in some process credential is null, the operation is allowed; otherwise, it is
denied.

When a process is created, it always inherits the credentials of its parent. However, these
credentials can be modified later, either when the process starts executing a new program or
when it issues suitable system calls. Usually, the uid, euid, fsuid, and suid fields of a
process contain the same value. However, when the process executes a setuid program, that
is, an executable file whose setuid flag is on, the euid and fsuid fields are set to the identifier
of the file's owner. Almost all checks involve one of these two fields: fsuid is used for file-
related operations, while euid is used for all other operations. Similar considerations apply to
the gid, egid, fsgid, and sgid fields that refer to group identifiers.

As an illustration of how the fsuid field is used, consider the common situation when a user
wants to change her password. All passwords are stored in a common file, but she cannot
directly edit such file because it is protected. Therefore, she invokes a system program named
/usr/bin/passwd, which has the setuid flag set and whose owner is the superuser. When the
process forked by the shell executes such a program, its euid and fsuid fields are set to 0,
that is, to the PID of the superuser. Now the process can access the file, since, when the kernel
perform the access control, it finds a value in fsuid. Of course, the /usr/bin/passwd program
does not allow the user to do anything but change her own password.

Unix's long history teaches the lesson that setuid programs are quite dangerous: malicious
users could trigger some programming errors (bugs) in the code in such a way to force setuid
programs to perform operations that were never planned by the program's original designers.
Often, the entire system's security can be compromised. In order to minimize such risks,
Linux, like all modern Unix systems, allows processes to acquire setuid privileges only when
necessary, and drop them when they are no longer needed. This feature may turn out to be
useful when implementing user applications with several protection levels. The process
descriptor includes an suid field, which stores the values of the effective identifiers (euid and
fsuid) right after the execution of the setuid program. The process can change the effective
identifiers by means of the setuid(), setresuid(), setfsuid(), and setreuid()
system calls.[3]

[3] GID effective credentials can be changed by issuing the corresponding setgid(), setresgid(), setfsgid(), and
setregid() system calls.

Table 19-2 shows how these system calls affect the process's credentials. Be warned that, if
the calling process does not already have superuser privileges, that is, if its euid field is not

Understanding the Linux Kernel

503

null, these system calls can be used only to set values already included in the process's
credential fields. For instance, an average user process can force the value 500 into its fsuid
field by invoking the setfsuid() system call, but only if one of the other credential fields
already stores the same value of 500.

Table 19-2. Semantics of the System Calls that Set Process Credentials
 setuid(e) setuid(e) setresuid (u,e,s) setreuid (u,e) setfsuid (f)

 euid=0 euid 0
uid Set to e Unchanged Set to u Set to u Unchanged
euid Set to e Set to e Set to e Set to e Unchanged
fsuid Set to e Set to e Set to e Set to e Set to f
suid Set to e Unchanged Set to s Set to e Unchanged

To understand the sometimes complex relationships among the four user ID fields, consider
for a moment the effects of the setuid() system call. The actions are different depending on
whether the calling process's euid field is set to (that is, the process has superuser privileges)
or to a normal UID.

If the euid field is null, the system call sets all credential fields of the calling process (uid,
euid, fsuid, and suid) to the value of the parameter e. A superuser process can thus drop its
privileges and become a process owned by a normal user. This happens, for instance, when a
user logs in: the system forks a new process with superuser privileges, but the process drops
its privileges by invoking the setuid() system call and then starts executing the user's login
shell program.

If the euid field is not null, the system call modifies only the value stored in euid and fsuid,
leaving the other two fields unchanged. This allows a process executing a setuid program to
have its effective privileges stored in euid and fsuid set alternately to uid (the process acts
as the user who launched the executable file) and to suid (the process acts as the user who
owns the executable file).

19.1.1.1 Process capabilities

Linux is moving toward another model of process credentials based on the notion of
"capabilities." A capability is simply a flag that asserts whether the process is allowed to
perform a specific operation or a specific class of operations. This model is different from the
traditional "superuser versus normal user" model in which a process can either do everything
or do nothing, depending on its effective UID. As illustrated in Table 19-3, several
capabilities have already been included in the Linux kernel.

Understanding the Linux Kernel

504

Table 19-3. Linux Capabilities
Name Description
CAP_CHOWN Ignore restrictions on file and group ownership changes.
CAP_DAC_OVERRIDE Ignore file access permissions.
CAP_DAC_READ_SEARCH Ignore file/directory read and search permissions.
CAP_FOWNER Ignore restrictions on file ownership.
CAP_FSETID Ignore restrictions on setuid and setgid flags.
CAP_KILL Ignore restrictions on signal sendings.
CAP_SETGID Allow setgid flag manipulations.
CAP_SETUID Allow setuid flag manipulations.
CAP_SETPCAP Transfer/remove permitted capabilities to other processes.
CAP_LINUX_IMMUTABLE Allow modification of append-only and immutable files.
CAP_NET_BIND_SERVICE Allow binding to TCP/UDP sockets below 1024.
CAP_NET_BROADCAST Allow network broadcasting and listen to multicast.
CAP_NET_ADMIN Allow general networking administration.
CAP_NET_RAW Allow use of RAW and PACKET sockets.
CAP_IPC_LOCK Allow locking of pages and shared memory segments.
CAP_IPC_OWNER Skip IPC ownership checks.
CAP_SYS_MODULE Allow inserting and removing of kernel modules.
CAP_SYS_RAWIO Allow access to I/O ports through ioperm() and iopl().
CAP_SYS_CHROOT Allow use of chroot().
CAP_SYS_PTRACE Allow use of ptrace() on any process.
CAP_SYS_PACCT Allow configuration of process accounting.
CAP_SYS_ADMIN Allow general system administration.
CAP_SYS_BOOT Allow use of reboot().
CAP_SYS_NICE Ignore restriction on nice().
CAP_SYS_RESOURCE Ignore restrictions on several resources usage.
CAP_SYS_TIME Allow manipulation of system clock and real-time clock.
CAP_SYS_TTY_CONFIG Allow configuration of tty devices.

The main advantage of capabilities is that, at any time, each program needs a limited number
of them. Consequently, even if a malicious user discovers a way to exploit a buggy program,
she can illegally perform a limited number of operation types.

Assume, for instance, that a buggy program has only the CAP_SYS_TIME capability. In this
case, the malicious user who discovers an exploitation of the bug can succeed only in illegally
changing the real-time and the system clock. She won't be able to perform any other kind of
privileged operations.

A process can explicitly get and set its capabilities by using, respectively, the capget() and
capset() system calls. However, neither the VFS nor the Ext2 filesystem currently supports
the capability model, so there is no way to associate an executable file with the set of
capabilities that should be enforced when a process executes that file. Therefore, capabilities
are useless for Linux 2.2 end users, although we can easily predict that the situation will
change very soon.

In fact, the Linux kernel already takes capabilities into account. Let us consider, for instance,
the nice() system call, which allows users to change the static priority of a process. In

Understanding the Linux Kernel

505

the traditional model, only the superuser can raise a priority: the kernel should thus check
whether the euid field in the descriptor of the calling process is set to 0. However, the Linux
kernel defines a capability called CAP_SYS_NICE, which corresponds exactly to this kind of
operation. The kernel checks the value of this flag by invoking the capable() function and
by passing the CAP_SYS_NICE value to it.

This approach works thanks to some "compatibility hacks" that have been added to the kernel
code: each time a process sets the euid and fsuid fields to (either by invoking one of the
system calls listed in Table 19-2 or by executing a setuid program owned by the superuser),
the kernel sets all process capabilities, so that all checks will succeed. Similarly, when the
process resets the euid and fsuid fields to the real UID of the process owner, the kernel
drops all capabilities.

19.1.2 Command-Line Arguments and Shell Environment

When a user types a command, the program loaded to satisfy the request may receive some
command-line arguments from the shell. For example, when a user types the command:

$ ls -l /usr/bin

in order to get a full listing of the files in the /usr/bin directory, the shell process creates a new
process to execute the command. This new process loads the /bin/ls executable file. In doing
so, most of the execution context inherited from the shell is lost, but the three separate
arguments ls, -l, and /usr/bin are kept. Generally, the new process may receive any
number of arguments.

The conventions for passing the command-line arguments depend on the high-level language
used. In the C language, the main() function of a program may receive as parameters an
integer specifying how many arguments have been passed to the program and the address of
an array of pointers to strings. The following prototype formalizes this standard:

int main(int argc, char *argv[])

Going back to the previous example, when the /bin/ls program is invoked, argc has the value
3, argv[0] points to the ls string, argv[1] points to the -l string, and argv[2] points to
the /usr/bin string. The end of the argv array is always marked by a null pointer, so
argv[3] contains NULL.

A third optional parameter that may be passed in the C language to the main() function is
the parameter containing environment variables. When the program uses it, main() must be
declared as follows:

int main(int argc, char *argv[], char *envp[])

The envp parameter points to an array of pointers to environment strings of the form:

VAR_NAME=something

where VAR_NAME represents the name of an environment variable, while the substring
following the = delimiter represents the actual value assigned to the variable. The end of

Understanding the Linux Kernel

506

the envp array is marked by a null pointer, like the argv array. Environment variables are
used to customize the execution context of a process, to provide general information to a user
or other processes, or to allow a process to keep some information across an execve()
system call.

Command-line arguments and environment strings are placed on the User Mode stack, right
before the return address (see Section 8.2.3 in Chapter 8). The bottom locations of the User
Mode stack are illustrated in Figure 19-1. Notice that the environment variables are located
near the bottom of the stack right after a null long integer.

Figure 19-1. The bottom locations of the User Mode stack

19.1.3 Libraries

Each high-level source code file is transformed through several steps into an object file, which
contains the machine code of the assembly language instructions corresponding to the high-
level instructions. An object file cannot be executed, since it does not contain the linear
address that corresponds to each reference to a name of a global symbol external to the source
code file, such as functions in libraries or other source code files of the same program. The
assigning, or resolution, of such addresses is performed by the linker, which collects together
all the object files of the program and constructs the executable file. The linker also analyzes
the library's functions used by the program and glues them into the executable file in a manner
described later in this chapter.

Any program, even the most trivial one, makes use of C libraries. Consider, for instance, the
following one-line C program:

void main(void) { }

Although this program does not compute anything, a lot of work is needed to set up the
execution environment (see Section 19.4 later in this chapter) and to kill the process when the
program terminates (see Section 3.4 in Chapter 3). In particular, when the main() function
terminates, the C compiler inserts an exit() system call in the object code.

Understanding the Linux Kernel

507

We know from Chapter 8 that programs usually invoke system calls through wrapper routines
in the C library. This holds for the C compiler too: besides including the code directly
generated by compiling the program's statements, any executable file also includes some
"glue" code to handle the interactions of the User Mode process with the kernel. Portions of
such glue code are stored in the C library.

Many other libraries of functions, besides the C library, are included in Unix systems. A
generic Linux system could easily have 50 different libraries. Just to mention a couple of
them: the math library libm includes basic functions for floating point operations, while the
X11 library libX11 collects together the basic low-level functions for the X11 Window
System graphics interface.

All executable files in traditional Unix systems were based on static libraries. This means that
the executable file produced by the linker includes not only the code of the original program
but also the code of the library functions that the program refers to.

Static libraries have one big disadvantage: they eat lots of space on disk. Indeed, each
statically linked executable file duplicates some portion of library code.

Modern Unix systems make use of shared libraries. The executable file does not contain the
library object code, but only a reference to the library name. When the program is loaded in
memory for execution, a suitable program called the program interpreter takes care of
analyzing the library names in the executable file, locating the library in the system's directory
tree and making the requested code available to the executing process.

Shared libraries are especially convenient on systems that provide file memory mapping,
since they reduce the amount of main memory requested for executing a program. When the
program interpreter must link some shared library to a process, it does not copy the object
code, but just performs a memory mapping of the relevant portion of the library file into the
process's address space. This allows the page frames containing the machine code of the
library to be shared among all processes that are using the same code.

Shared libraries also have some disadvantages. The startup time of a dynamically linked
program is usually much longer than that of a statically linked one. Moreover, dynamically
linked programs are not as portable as statically linked ones, since they may not execute
properly in systems that include a different version of the same library.

A user may always require a program to be linked statically. The GCC compiler offers, for
instance, the -static option, which tells the linker to use the static libraries instead of the
shared ones.

19.1.4 Program Segments and Process Memory Regions

The linear address space of a Unix program is traditionally partitioned, from a logical point of
view, in several linear address intervals called segments:[4]

[4] The word "segment" has historical roots, since the first Unix systems implemented each linear address interval with a different segment register.
Linux, however, does not rely on the segmentation mechanism of the Intel microprocessors to implement program segments.

Understanding the Linux Kernel

508

Text segment

Includes the executable code

Data segment

Contains the initialized data, that is, the static variables and the global variables whose
initial values are stored in the executable file (because the program must know their
values at startup)

bss segment

Contains the uninitialized data, that is, all global variables whose initial values are not
stored in the executable file (because the program sets the values before referencing
them)

Stack segment

Contains the program stack, which includes the return addresses, parameters, and local
variables of the functions being executed

Each mm_struct memory descriptor (see the section Section 7.2 in Chapter 7) includes some
fields that identify the role of particular memory regions of the corresponding process:

start_code , end_code

Store the initial and final linear addresses of the memory region that includes the
native code of the program, that is, the code in the executable file. Since the text
segment includes shared libraries but the executable file does not, the memory region
demarcated by these fields is a subset of the text segment.

start_data , end_data

Store the initial and final linear addresses of the memory region that includes the
native initialized data of the program, as specified in the executable file. The fields
identify a memory region that roughly corresponds to the data segment. Actually,
start_data should almost always be set to the address of the first page right after
end_code, and thus the field is unused. The end_data field is used, though.

start_brk , brk

Store the initial and final linear addresses of the memory region that includes the
dynamically allocated memory areas of the process (see Section 7.6 in Chapter 7).
This memory region is sometimes called heap.

start_stack

Stores the address right above that of main()'s return address; as illustrated in
Figure 19-1, higher addresses are reserved (recall that stacks grow toward lower
addresses).

Understanding the Linux Kernel

509

arg_start , arg_end

Store the initial and final addresses of the stack portion containing the command-line
arguments.

env_start , env_end

Store the initial and final addresses of the stack portion containing the environment
strings.

Notice that shared libraries and file memory mapping have made the classification of the
process's address space based on program segments a bit obsolete, since each of the shared
libraries is mapped into a different memory region from the ones discussed in the preceding
list.

Now we'll describe, by means of a simple example, how the Linux kernel maps shared
libraries into the process's address space. We assume as usual that the User Mode address
space ranges from 0x00000000 and 0xbfffffff. We consider the /sbin/init program, which
creates and monitors the activity of all the processes that implement the outer layers of the
operating system (see Section 3.3.2 in Chapter 3). The memory regions of the corresponding
init process are shown in Table 19-4 (such information can be obtained from the /proc/1/maps
file). Notice that all regions listed are implemented by means of private memory mappings
(the letter p in the Permissions column). This is not surprising: these memory regions exist
only to provide data to a process; while executing instructions, a process may modify the
contents of these memory regions but the files on disk associated with them stay unchanged.
This is precisely how private memory mappings act.

Table 19-4. Memory Regions of the init Process
Address Range Perms Mapped File
0x08048000-0x0804cfff r-xp /sbin/init at offset 0
0x0804d000-0x0804dfff rw-p /sbin/init atoffset 0x4000
0x0804e000-0x0804efff rwxp Anonymous
0x40000000-0x40005fff r-xp /lib/ld-linux.so.1.9.9 at offset 0
0x40006000-0x40006fff rw-p /lib/ld-linux.so.1.9.9 at offset 0x5000
0x40007000-0x40007fff rw-p Anonymous
0x4000b000-0x40092fff r-xp /lib/libc.so.5.4.46 at offset
0x40093000-0x40098fff rw-p /lib/libc.so.5.4.46 at offset 0x87000
0x40099000-0x400cafff rw-p Anonymous
0xbfffd000-0xbfffffff rwxp Anonymous

The memory region starting from 0x8048000 is a memory mapping associated with the
portion of the /sbin/init file ranging from byte to byte 20479 (only the start and end of the
region are shown in the /proc/1/maps file, but the region size can easily be derived from
them). The permissions specify that the region is executable (it contains object code), read
only (it's not writable, because the instructions don't change during a run), and private, so we
can guess that the region maps the text segment of the program.

The memory region starting from 0x804d000 is a memory mapping associated with another
portion of /sbin/init ranging from byte 16384 (corresponding to offset 0x4000 shown in

Understanding the Linux Kernel

510

Table 19-4) to 20479. Since the permissions specify that the private region may be written, we
can conclude that it maps the data segment of the program.

The next one-page memory region starting from 0x0804e000 is anonymous, that is, it is not
associated with any file. It is probably associated with the bss segment of init.

Similarly, the next three memory regions starting from 0x40000000, 0x40006000, and
0x40007000 correspond to the text segment, the data segment, and the bss segment,
respectively, of the /lib/ld-linux.so.1.9.9 program, which actually is the program interpreter
for the ELF shared libraries. The program interpreter is never executed alone: it is always
memory-mapped inside the address space of a process executing another program.

On this system, the C library happens to be stored in the /lib/libc.so.5.4.46 file. The text
segment, data segment, and bss segment of the C library are mapped into the next three
memory regions starting from address 0x4000b000. Remember that page frames included in
private regions can be shared among several processes with the Copy On Write mechanism,
as long as they are not modified. Thus, since the text segment is read only, the page frames
containing the executable code of the C library are shared among almost all currently
executing processes (all except the statically linked ones).

Finally, the last anonymous memory region from 0xbfffd000 to 0xbfffffff is associated
with the User Mode stack. We have already explained in Section 7.4 in Chapter 7 how the
stack is automatically expanded toward lower addresses whenever necessary.

19.1.5 Execution Tracing

Execution tracing is a technique that allows a program to monitor the execution of another
program. The traced program can be executed step-by-step, until a signal is received, or until
a system call is invoked. Execution tracing is widely used by debuggers, together with other
techniques like the insertion of breakpoints in the debugged program and run-time access to
its variables. As usual, we'll focus on how the kernel supports execution tracing rather than
discussing how debuggers work.

In Linux, execution tracing is performed through the ptrace() system call, which can
handle the commands listed in Table 19-5. Processes having the CAP_SYS_PTRACE capability
flag set are allowed to trace any process in the system except init. Conversely, a process P
with no CAP_SYS_PTRACE capability is allowed to trace only processes having the same owner
as P. Moreover, a process cannot be traced by two processes at the same time.

Understanding the Linux Kernel

511

Table 19-5. The ptrace Commands
Command Description
PTRACE_TRACEME Start execution tracing for the current process
PTRACE_ATTACH Start execution tracing for another process
PTRACE_DETACH Terminate execution tracing
PTRACE_KILL Kill the traced process
PTRACE_CONT Resume execution
PTRACE_SYSCALL Resume execution until the next system call boundary
PTRACE_SINGLESTEP Resume execution for a single assembly instruction
PTRACE_PEEKTEXT Read a 32-bit value from the text segment
PTRACE_PEEKDATA Read a 32-bit value from the data segment
PTRACE_POKETEXT Write a 32-bit value into the text segment
PTRACE_POKEDATA Write a 32-bit value into the data segment
PTRACE_PEEKUSR Read the CPU's normal and debug registers
PTRACE_POKEUSR Write the CPU's normal and debug registers
PTRACE_GETREGS Read privileged CPU's registers
PTRACE_SETREGS Write privileged CPU's registers
PTRACE_GETFPREGS Read floating-point registers
PTRACE_SETFPREGS Write floating-point registers

The ptrace() system call modifies the p_pptr field in the descriptor of the traced process
so that it points to the tracing process; therefore, the tracing process becomes the effective
parent of the traced one. When execution tracing terminates, that is, when ptrace() is
invoked with the PTRACE_DETACH command, the system call sets p_pptr to the value of
p_opptr, thus restoring the original parent of the traced process (see Section 3.1.3 in
Chapter 3).

Several monitored events can be associated with a traced program:

• End of execution of a single assembly instruction
• Entering a system call
• Exiting from a system call
• Receiving a signal

When a monitored event occurs, the traced program is stopped and a SIGCHLD signal is sent to
its parent. When the parent wishes to resume the child's execution, it can use one of the
PTRACE_CONT, PTRACE_SINGLESTEP, and PTRACE_SYSCALL commands, depending on the kind
of event it wants to monitor.

The PTRACE_CONT command just resumes execution: the child will execute until it receives
another signal. This kind of tracing is implemented by means of the PF_PTRACED flag in the
process descriptor, which is checked by the do_signal() function (see Section 9.3 in
Chapter 9).

The PTRACE_SINGLESTEP command forces the child process to execute the next assembly
language instruction, then stops it again. This kind of tracing is implemented on Intel-based
machines by means of the TF trap flag in the eflags register: when it is on, a "Debug"
exception is raised right after any assembly language instruction. The corresponding
exception handler just clears the flag, forces the current process to stop, and sends a SIGCHLD

Understanding the Linux Kernel

512

signal to its parent. Notice that setting the TF flag is not a privileged operation, thus User
Mode processes can force single-step execution even without the ptrace() system call. The
kernel checks the PF_DTRACE flag in the process descriptor to keep track of whether the child
process is being single-stepped through ptrace().

The PTRACE_SYSCALL command causes the traced process to resume execution until a system
call is invoked. The process is stopped twice, the first time when the system call starts, and
the second time when the system call terminates. This kind of tracing is implemented by
means of the PF_TRACESYS flag in the processor descriptor, which is checked in the
system_call() assembly language function (see Section 8.2.2 in Chapter 8).

A process can also be traced using some debugging features of the Intel Pentium processors.
For example, the parent could set the values of the dr0, . . . dr7 debug registers for the child
by using the PTRACE_POKEUSR command. When a monitored event occurs, the CPU raises the
"Debug" exception; the exception handler can then suspend the traced process and send the
SIGCHLD signal to the parent.

19.2 Executable Formats

The official Linux executable format is named ELF (Executable and Linking Format): it was
developed by Unix System Laboratories and is quite popular in the Unix world. Several well-
known Unix operating systems such as System V Release 4 and Sun's Solaris 2 have adopted
ELF as their main executable format.

Older Linux versions supported another format named a.out (Assembler OUTput Format);
actually, there were several versions of that format floating around the Unix world. It is little
used nowadays, since ELF is much more practical.

Linux supports many other different formats for executable files; in this way, it can run
programs compiled for other operating systems like MS-DOS EXE programs, or Unix BSD's
COFF executables. A few executable formats, like Java or bash scripts, are platform-
independent.

An executable format is described by an object of type linux_binfmt, which essentially
provide three methods:

load_binary

Sets up a new execution environment for the current process by reading the
information stored in an executable file.

load_shlib

Used to dynamically bind a shared library to an already running process; it is activated
by the uselib() system call.

core_dump

Stores the execution context of the current process in a file named core. This file,
whose format depends on the type of executable of the program being executed, is

Understanding the Linux Kernel

513

usually created when a process receives a signal whose default action is "dump" (see
Section 9.1.1 in Chapter 9).

All linux_binfmt objects are included in a simply linked list, and the address of the first
element is stored in the formats variable. Elements can be inserted and removed in the list by
invoking the register_binfmt() and unregister_binfmt() functions. The
register_binfmt() function is executed during system startup for each executable format
compiled into the kernel. This function is also executed when a module implementing a new
executable format is being loaded, while the unregister_binfmt() function is invoked
when the module is unloaded.

The last element in the formats list is always an object describing the executable format for
interpreted scripts. This format defines only the load_binary method. The corresponding
do_load_script() function checks whether the executable file starts with the #! pair of
characters. If so, it interprets the rest of the first line as the pathname of another executable
file and tries to execute it by passing the name of the script file as a parameter.[5]

[5] It is possible to execute a script file even if it doesn't start with the #! characters, as long as the file is written in the language recognized by the
user's shell. In this case, however, the script is interpreted by the shell on which the user types the command, and thus the kernel is not directly
involved.

Linux allows users to register their own custom executable formats. Each such format may be
recognized either by means of a magic number stored in the first 128 bytes of the file, or by a
filename extension that identifies the file type. As an example, MS-DOS extensions consist of
three characters separated from the filename by a dot: the .exe extension identifies executable
programs while the .bat extension identifies shell scripts.

Each custom format is associated with an interpreter program, which is automatically invoked
by the kernel with the original custom executable filename as a parameter. The mechanism is
similar to the script's format, but it's more powerful since it doesn't impose any restrictions on
the custom format. To register a new format, the user writes into the
/proc/sys/fs/binfmt_misc/register file a string having the following format:

:name:type:offset:string:mask:interpreter:

where each field has the following meaning:

name

An identifier for the new format

type

The type of recognition (M for magic number, E for extension)

offset

The starting offset of the magic number inside the file

Understanding the Linux Kernel

514

string

The byte sequence to be matched either in the magic number or in the extension

mask

String to mask out some bits in string

interpreter

The full pathname of the program interpreter

As an example, the following command performed by the superuser will enable the kernel to
recognize the Microsoft Windows executable format:

$ echo ':DOSWin:M:0:MZ:0xff:/usr/local/bin/wine:' > \
 /proc/sys/fs/binfmt_misc/register

A Windows executable file has the MZ magic number in the first two bytes, and it will be
executed by the /usr/local/bin/wine program interpreter.

19.3 Execution Domains

As mentioned in Chapter 1, a neat feature of Linux is its ability to execute files compiled for
other operating systems. Of course, this is possible only if the files include machine code for
the same computer architecture on which the kernel is running. Two kinds of support are
offered for these "foreign" programs:

• Emulated execution: necessary to execute programs that include system calls that are
not POSIX-compliant

• Native execution: valid for programs whose system calls are totally POSIX-compliant

Microsoft MS-DOS and Windows programs are emulated: they cannot be natively executed,
since they include APIs that are not recognized by Linux. An emulator like DOSemu or Wine
(which appeared in the example at the end of the previous section) is invoked to translate each
API call into an emulating wrapper function call, which in turn makes use of the existing
Linux system calls. Since emulators are mostly implemented as User Mode applications, we
don't discuss them further.

On the other hand, POSIX-compliant programs compiled on operating systems other than
Linux can be executed without too much trouble, since POSIX operating systems offer similar
APIs. (Actually, the APIs should be identical, although this is not always the case.) Minor
differences that the kernel must iron out usually refer to how system calls are invoked or how
the various signals are numbered. This information is stored in execution domain descriptors
of type exec_domain.

A process specifies its execution domain by setting the personality field of its descriptor
and by storing the address of the corresponding exec_domain data structure in the
exec_domain field. A process can change its personality by issuing a suitable system call
named personality(); typical values assumed by the system call's parameter are listed in

Understanding the Linux Kernel

515

Table 19-6. The C library does not include a corresponding wrapper routine, because
programmers are not expected to directly change the personality of their programs. Instead,
the personality() system call should be issued by the glue code that sets up the execution
context of the process (see Section 19.4).

Table 19-6. Main Personalities Supported by the Linux Kernel
Personality Operating System
PER_LINUX Standard execution domain
PER_SVR4 System V Release 4
PER_SVR3 System V Release 3
PER_SCOSVR3 SCO Unix version 3.2
PER_WYSEV386 Unix System V/386 Release 3.2.1
PER_ISCR4 Interactive Unix
PER_BSD BSD Unix
PER_XENIX Xenix
PER_IRIX32 SGI Irix-5 32 bit
PER_IRIXN32 SGI Irix-6 32 bit
PER_IRIX64 SGI Irix-6 64 bit

19.4 The exec-like Functions

Unix systems provide a family of functions that replace the execution context of a process
with a new context described by an executable file. The names of such functions start with the
prefix exec followed by one or two letters; therefore, a generic function in the family is
usually referred to as an exec-like function.

The exec-like functions are listed in Table 19-7; they differ in how the parameters are
interpreted.

Table 19-7. The exec-like Functions
Function Name PATH Search Command-Line Arguments Environment Array
execl() No List No
execlp() Yes List No
execle() No List Yes
execv() No Array No
execvp() Yes Array No
execve() No Array Yes

The first parameter of each function denotes the pathname of the file to be executed.
The pathname can be absolute or relative to the process's current directory. Moreover, if the
name does not include any / characters, the execlp() and execvp() functions search for
the executable file in all directories specified by the PATH environment variable.

Besides the first parameter, the execl(), execlp(), and execle() functions include
a variable number of additional parameters. Each points to a string describing a command-line
argument for the new program; as the l character in the function names suggests,
the parameters are organized in a list terminated by a NULL value. Usually, the first command-
line argument duplicates the executable filename. Conversely, the execv(), execvp(), and
execve() functions specify the command-line arguments with a single parameter: as the v

Understanding the Linux Kernel

516

character in the function names suggests, the parameter is the address of a vector of pointers
to command-line argument strings. The last component of the array must store the NULL value.

The execle() and execve() functions receive as their last parameter the address of an
array of pointers to environment strings; as usual, the last component of the array must be
NULL. The other functions may access the environment for the new program from the external
environ global variable, which is defined in the C library.

All exec()-like functions, with the exception of execve(), are wrapper routines defined in
the C library and make use of execve(), which is the only system call offered by Linux to
deal with program execution.

The sys_execve() service routine receives the following parameters:

• The address of the executable file pathname (in the User Mode address space).
• The address of a NULL-terminated array (in the User Mode address space) of pointers

to strings (again in the User Mode address space); each string represents a command-
line argument.

• The address of a NULL-terminated array (in the User Mode address space) of pointers
to strings (again in the User Mode address space); each string represents an
environment variable in the NAME=value format.

The function copies the executable file pathname into a newly allocated page frame. It then
invokes the do_execve() function, passing to it the pointers to the page frame, to the
pointer's arrays, and to the location of the Kernel Mode stack where the User Mode register
contents are saved. In turn, do_execve() performs the following operations:

1. Statically allocates a linux_binprm data structure, which will be filled with data
concerning the new executable file.

2. Invokes open_namei() to get the dentry object, thus the file object and the inode
object, associated with the executable file. On failure, returns the proper error code.

3. Invokes the prepare_binprm() function to fill the linux_binprm data structure.
This function, in turn, performs the following operations:

a. Checks whether the permissions of the file allow its execution; if not, returns
an error code.

b. Checks whether the file is being written (that is, whether i_writecount
inode's field is not null): if so, returns an error code.

c. Initializes the e_uid and e_gid fields of the linux_binprm structure, taking
into account the values of the setuid and setgid flags of the executable file.
These fields represent the effective user and group IDs, respectively. Also
checks process capabilities (a compatibility hack explained in Section 19.1.1).

d. Fills the buf field of the linux_binprm structure with the first 128 bytes of the
executable file. These bytes include a magic number and other information
suitable for recognizing the format of the executable file.

4. Copies the file pathname, command-line arguments, and environment strings into one
or more newly allocated page frames. (Eventually, they will be assigned to the User
Mode address space.)

5. Invokes the search_binary_handler() function, which scans the formats list and
tries to apply the load_binary method of each element, passing to it the

Understanding the Linux Kernel

517

linux_binprm data structure. The scan of the formats list terminates as soon as a
load_binary method succeeds in acknowledging the executable format of the file.

6. If the executable file format is not present in the formats list, releases all allocated
page frames and returns the error code -ENOEXEC: Linux cannot recognize the
executable file format.

7. Otherwise, returns the code obtained from the load_binary method associated with
the executable format of the file.

The load_binary method corresponding to an executable file format performs the following
operations (we assume that the executable file is stored on a filesystem that allows file
memory mapping and that it requires one or more shared libraries):

1. Checks some magic numbers stored in the first 128 bytes of the file to identify the
executable format. If the magic numbers don't match, returns the error code -ENOEXEC.

2. Reads the header of the executable file. This header describes the program's segments
and the shared libraries requested.

3. Gets from the executable file the pathname of the program interpreter, which will be
used to locate the shared libraries and map them into memory.

4. Gets the dentry object (as well as the inode object and the file object) of the program
interpreter.

5. Checks the execution permissions of the program interpreter.
6. Copies the first 128 bytes of the program interpreter into the buf field of the

linux_binprm structure.
7. Performs some consistency checks on the program interpreter type.
8. Invokes the flush_old_exec() function to release almost all resources used by the

previous computation; in turn, this function performs the following operations.
a. If the table of signal handlers is shared with other processes, allocates a new

table and decrements the usage counter of the old one; this is done by invoking
the make_private_signals() function.

b. Updates the table of signal handlers by resetting each signal to its default
action: this is done by invoking the release_old_signals() and
flush_signal_handlers() functions.

c. Invokes the exec_mmap() function to release the memory descriptor, all
memory regions, and all page frames assigned to the process and to clean up
the process's page tables.

d. Sets the comm field of the process descriptor with the executable file pathname.
e. Invokes the flush_thread() function to clear the values of the floating point

registers and debug registers saved in the TSS segment.
f. Invokes the flush_old_files() function to close all open files having the

corresponding flag in the files->close_on_exec field of the process
descriptor set (see Section 12.2.7 in Chapter 12).[6]

[6] These flags can be read and modified by means of the fcntl() system call.

9. Now we have reached the point of no return: the function cannot restore the previous
computation if something goes wrong.

10. Sets up the new personality of the process, that is, the personality field in the
process descriptor.

11. Invokes the setup_arg_pages() function to allocate a new memory region
descriptor for the process's User Mode stack and to insert that memory region into the

Understanding the Linux Kernel

518

process's address space. setup_arg_pages() also assigns the page frames
containing the command-line arguments and the environment variable strings to the
new memory region.

12. Invokes the do_mmap() function to create a new memory region that maps the text
segment (that is, the code) of the executable file. The initial linear address of the
memory region depends on the executable format, since the program's executable code
is usually not relocatable. Therefore, the function assumes that the text segment will
be loaded starting from some specific logical address offset (and thus, from some
specified linear address). ELF programs are loaded starting from linear address
0x08048000.

13. Invokes the do_mmap() function to create a new memory region that maps the data
segment of the executable file. Again, the initial linear address of the memory region
depends on the executable format, since the executable code expects to find its
variables at specified offsets (that is, at specified linear addresses). In an ELF
program, the data segment is loaded right after the text segment.

14. Allocates additional memory regions for any other specialized segments of the
executable file. Usually, there are none.

15. Invokes a function that loads the program interpreter. If the program interpreter is an
ELF executable, the function is named load_elf_interp(). In general, the function
performs the operations in steps 11 through 13, but for the program interpreter instead
of the file to be executed. The initial addresses of the memory regions that will include
the text and data of the program interpreter are specified by the program interpreter
itself; however, they are very high (usually above 0x40000000) in order to avoid
collisions with the memory regions that map the text and data of the file to be
executed (see the earlier section Section 19.1.4).

16. Sets the exec_domain field in the process descriptor according to the personality of
the new program.

17. Determines the new capabilities of the process.
18. Clears the PF_FORKNOEXEC flag in the process descriptor. This flag, which is set when

a process is forked and cleared when it executes a new program, is required by the
POSIX standard for process accounting.

19. Creates specific program interpreter tables and stores them on the User Mode stack,
between the command-line arguments and the array of pointers to environment strings
(see Figure 19-1).

20. Sets the values of the start_code, end_code, end_data, start_brk, brk, and
start_stack fields of the process's memory descriptor.

21. Invokes the do_mmap() function to create a new anonymous memory region mapping
the bss segment of the program. (When the process writes into a variable, it triggers
demand paging, thus the allocation of a page frame.) The size of this memory region
was computed when the executable program was linked. The initial linear address of
the memory region must be specified, since the program's executable code is usually
not relocatable. In an ELF program, the bss segment is loaded right after the data
segment.

22. Invokes the start_thread() macro to modify the values of the User Mode registers
eip and esp saved on the Kernel Mode stack, so that they point to the entry point of
the program interpreter and to the top of the new User Mode stack, respectively.

23. If the process is being traced, sends the SIGTRAP signal to it.
24. Returns the value (success).

Understanding the Linux Kernel

519

When the execve() system call terminates and the calling process resumes its execution in
User Mode, the execution context is dramatically changed: the code that invoked the system
call no longer exists. In this sense, we could say that execve() never returns on success.
Instead, a new program to be executed has been mapped in the address space of the process.

However, the new program cannot yet be executed, since the program interpreter must still
take care of loading the shared libraries.[7]

[7] Things are much simpler if the executable file is statically linked, that is, if no shared library is requested. The load_binary method just
maps the text, data, bss, and stack segments of the program into the process memory regions, and then sets the User Mode eip register to the entry
point of the new program.

Although the program interpreter runs in User Mode, we'll briefly sketch out here how it
operates. Its first job is to set up a basic execution context for itself, starting from the
information stored by the kernel in the User Mode stack between the array of pointers to
environment strings and arg_start. Then, the program interpreter must examine the program
to be executed, in order to identify which shared libraries must be loaded and which functions
in each shared library are effectively requested. Next, the interpreter issues several mmap()
system calls to create memory regions mapping the pages that will hold the library functions
(text and data) actually used by the program. Then, the interpreter updates all references to the
symbols of the shared library, according to the linear addresses of the library's memory
regions. Finally, the program interpreter terminates its execution by jumping at the main entry
point of the program to be executed. From now on, the process will execute the code of the
executable file and of the shared libraries.

As you may have noticed, executing a program is a complex activity that involves many
facets of kernel design such as process abstraction, memory management, system calls, and
filesystems. It is the kind of topic that makes you realize what a marvelous piece of work
Linux is!

19.5 Anticipating Linux 2.4

Linux 2.4 adds a few more personalities: the new kernel is able to execute programs written
for SunOS, Sun Solaris, and RISCOS operating systems. The implementation of the
execve() system call is pretty much the same as in Linux 2.2, though.

Understanding the Linux Kernel

520

Appendix A. System Startup
This appendix explains what happens right after users have switched on their computers, that
is, how a Linux kernel image is copied into memory and executed. In short, we discuss how
the kernel, and thus the whole system, is "bootstrapped."

Traditionally, the term bootstrap refers to a person who tries to stand up by pulling her own
boots. In operating systems, the term denotes bringing at least a portion of the operating
system into main memory and having the processor execute it. It also denotes the initialization
of kernel data structures, the creation of some user processes, and the transfer of control to
one of them.

Computer bootstrapping is a tedious, long task, since initially nearly every hardware device
including the RAM is in a random, unpredictable state. Moreover, the bootstrap process is
highly dependent on the computer architecture; as usual, we refer to IBM's PC architecture in
this appendix.

A.1 Prehistoric Age: The BIOS

The moment after a computer is powered on, it is practically useless because the RAM chips
contain random data and no operating system is running. To begin the boot, a special
hardware circuit raises the logical value of the RESET pin of the CPU. After RESET is thus
asserted, some registers of the processor (including cs and eip) are set to fixed values, and
the code found at physical address 0xfffffff0 is executed. This address is mapped by the
hardware to some read-only, persistent memory chip, a kind of memory often called ROM
(Read-Only Memory). The set of programs stored in ROM is traditionally called BIOS (Basic
Input/Output System), since it includes several interrupt-driven low-level procedures used by
some operating systems, including Microsoft's MS-DOS, to handle the hardware devices that
make up the computer.

Once initialized, Linux does not make any use of BIOS but provides its own device driver for
every hardware device on the computer. In fact, the BIOS procedures must be executed in real
mode, while the kernel executes in protected mode (see Section 2.2 in Chapter 2), so they
cannot share functions even if that would be beneficial.

BIOS uses Real Mode addresses because they are the only ones available when the computer
is turned on. A Real Mode address is composed of a seg segment and an off offset; the
corresponding physical address is given by seg *16+off. As a result, no Global Descriptor
Table, Local Descriptor Table, or paging table is needed by the CPU addressing circuit to
translate a logical address into a physical one. Clearly, the code that initializes the GDT, LDT,
and paging tables must run in Real Mode.

Linux is forced to use BIOS in the bootstrapping phase, when it must retrieve the kernel
image from disk or from some other external device. The BIOS bootstrap procedure
essentially performs the following four operations:

1. Executes a series of tests on the computer hardware, in order to establish which
devices are present and whether they are working properly. This phase is often called

Understanding the Linux Kernel

521

POST (Power-On Self-Test). During this phase, several messages, such as the BIOS
version banner, are displayed.

2. Initializes the hardware devices. This phase is crucial in modern PCI-based
architectures, since it guarantees that all hardware devices operate without conflicts on
the IRQ lines and I/O ports. At the end of this phase, a table of installed PCI devices is
displayed.

3. Searches for an operating system to boot. Actually, depending on the BIOS setting, the
procedure may try to access (in a predefined, customizable order) the first sector (boot
sector) of any floppy disk, any hard disk, and any CD-ROM in the system.

4. As soon as a valid device is found, copies the contents of its first sector into RAM,
starting from physical address 0x00007c00, then jumps into that address and executes
the code just loaded.

The rest of this appendix takes you from the most primitive starting state to the full glory of a
running Linux system.

A.2 Ancient Age: The Boot Loader

The boot loader is the program invoked by the BIOS to load the image of an operating system
kernel into RAM. Let us briefly sketch how boot loaders work in IBM's PC architecture.

In order to boot from a floppy disk, the instructions stored in its first sector are loaded in
RAM and executed; these instructions copy all the remaining sectors containing the kernel
image into RAM.

Booting from a hard disk is done differently. The first sector of the hard disk, named the
Master Boot Record (MBR), includes the partition table[A] and a small program, which loads
the first sector of the partition containing the operating system to be started. Some operating
systems such as Microsoft Windows 98 identify this partition by means of an active flag
included in the partition table;[B] following this approach, only the operating system whose
kernel image is stored in the active partition can be booted. As we shall see later, Linux is
more flexible since it replaces the rudimentary program included in the MBR with a
sophisticated program called LILO that allows users to select the operating system to be
booted.

[A] Each partition table entry typically includes the starting and ending sectors of a partition and the kind of operating system that handles it.

[B] The active flag may be set through programs like MS-DOS's FDISK.

A.2.1 Booting Linux from Floppy Disk

The only way to store a Linux kernel on a single floppy disk is to compress the kernel image.
As we shall see, compression is done at compile time and decompression by the loader.

If the Linux kernel is loaded from a floppy disk, the boot loader is quite simple. It is coded in
the arch/i386/boot/bootsect.S assembly language file. When a new kernel image is produced
by compiling the kernel source, the executable code yielded by this assembly language file is
placed at the beginning of the kernel image file. Thus, it is very easy to produce a bootable
floppy containing the Linux kernel. The floppy can be created by copying the kernel image
starting from the first sector of the disk. When the BIOS loads the first sector of the floppy
disk, it actually copies the code of the boot loader.

Understanding the Linux Kernel

522

The boot loader, which is invoked by the BIOS by jumping to physical address 0x00007c00,
performs the following operations:

1. Moves itself from address 0x00007c00 to address 0x00090000.
2. Sets up the Real Mode stack, from address 0x00003ff4. As usual, the stack will grow

toward lower addresses.
3. Sets up the disk parameter table, used by the BIOS to handle the floppy device driver.
4. Invokes a BIOS procedure to display a "Loading" message.
5. Invokes a BIOS procedure to load the setup() code of the kernel image from the

floppy disk and puts it in RAM starting from address 0x00090200.
6. Invokes a BIOS procedure to load the rest of the kernel image from the floppy disk

and puts the image in RAM starting from either low address 0x00010000 (for small
kernel images compiled with make zImage) or high address 0x00100000 (for big
kernel images compiled with make bzImage). In the following discussion, we will say
that the kernel image is "loaded low" or "loaded high" in RAM, respectively. Support
for big kernel images was introduced quite recently: while it uses essentially the same
booting scheme as the older one, it places data in different physical memory addresses
to avoid problems with the ISA hole mentioned in Section 2.5.3 in Chapter 2.

7. Jumps to the setup() code.

A.2.2 Booting Linux from Hard Disk

In most cases, the Linux kernel is loaded from a hard disk, and a two-stage boot loader is
required. The most commonly used Linux boot loader on Intel systems is named LILO (LInux
LOader); corresponding programs exist for other architectures. LILO may be installed either
on the MBR, replacing the small program that loads the boot sector of the active partition, or
in the boot sector of a (usually active) disk partition. In both cases, the final result is the same:
when the loader is executed at boot time, the user may choose which operating system to load.

The LILO boot loader is broken into two parts, since otherwise it would be too large to fit into
the MBR. The MBR or the partition boot sector includes a small boot loader, which is loaded
into RAM starting from address 0x00007c00 by the BIOS. This small program moves itself to
the address 0x0009a000, sets up the Real Mode stack (ranging from 0x0009b000 to
0x0009a200), and loads the second part of the LILO boot loader into RAM starting from
address 0x0009b000. In turn, this latter program reads a map of available operating systems
from disk and offers the user a prompt so she can choose one of them. Finally, after the user
has chosen the kernel to be loaded (or let a time-out elapse so that LILO chooses a default),
the boot loader may either copy the boot sector of the corresponding partition into RAM and
execute it or directly copy the kernel image into RAM.

Assuming that a Linux kernel image must be booted, the LILO boot loader, which relies on
BIOS routines, performs essentially the same operations as the boot loader integrated into the
kernel image described in the previous section about floppy disks. The loader displays the
"Loading Linux" message; then it copies the integrated boot loader of the kernel image to
address 0x00090000, the setup() code to address 0x00090200, and the rest of the kernel
image to address 0x00010000 or 0x00100000. Then it jumps to the setup() code.

Understanding the Linux Kernel

523

A.3 Middle Ages: The setup() Function

The code of the setup() assembly language function is placed by the linker immediately
after the integrated boot loader of the kernel, that is, at offset 0x200 of the kernel image file.
The boot loader can thus easily locate the code and copy it into RAM starting from physical
address 0x00090200.

The setup() function must initialize the hardware devices in the computer and set up the
environment for the execution of the kernel program. Although the BIOS already initialized
most hardware devices, Linux does not rely on it but reinitializes the devices in its own
manner to enhance portability and robustness. setup() essentially performs the following
operations:

1. Invokes a BIOS procedure to find out the amount of RAM available in the system.
2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past a

certain amount of time, the keyboard device sends the corresponding keycode over
and over to the CPU.)

3. Initializes the video adapter card.
4. Reinitializes the disk controller and determines the hard disk parameters.
5. Checks for an IBM Micro Channel bus (MCA).
6. Checks for a PS/2 pointing device (bus mouse).
7. Checks for Advanced Power Management (APM) BIOS support.
8. If the kernel image was loaded low in RAM (at physical address 0x00010000), moves

it to physical address 0x00001000. Conversely, if the kernel image was loaded high in
RAM, does not move it. This step is necessary because, in order to be able to store the
kernel image on a floppy disk and to save time while booting, the kernel image stored
on disk is compressed, and the decompression routine needs some free space to use as
a temporary buffer following the kernel image in RAM.

9. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global
Descriptor Table (GDT).

10. Resets the floating point unit (FPU), if any.
11. Reprograms the Programmable Interrupt Controller (PIC) and maps the 16 hardware

interrupts (IRQ lines) to the range of vectors from 32 to 47. The kernel must perform
this step because the BIOS erroneously maps the hardware interrupts in the range from
to 15, which is already used for CPU exceptions (see Section 4.2.3 in Chapter 4).

12. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the cr0
status register. As explained in Section 2.5.5 in Chapter 2, the provisional kernel page
tables contained in swapper_pg_dir and pg0 identically map the linear addresses to
the same physical addresses. Therefore, the transition from Real Mode to Protected
Mode goes smoothly.

13. Jumps to the startup_32() assembly language function.

A.4 Renaissance: The startup_32() Functions

There are two different startup_32() functions; the one we refer to here is coded in the
arch/i386/boot/compressed/head.S file. After setup() terminates, the function has been
moved either to physical address 0x00100000 or to physical address 0x00001000, depending
on whether the kernel image was loaded high or low in RAM.

This function performs the following operations:

Understanding the Linux Kernel

524

1. Initializes the segmentation registers and a provisional stack.
2. Fills the area of uninitialized data of the kernel identified by the _edata and _end

symbols with zeros (see Section 2.5.3 in Chapter 2).
3. Invokes the decompress_kernel() function to decompress the kernel image. The

"Uncompressing Linux . . . " message is displayed first. After the kernel image has
been decompressed, the "O K, booting the kernel." message is shown. If the kernel
image was loaded low, the decompressed kernel is placed at physical address
0x00100000. Otherwise, if the kernel image was loaded high, the decompressed kernel
is placed in a temporary buffer located after the compressed image. The decompressed
image is then moved into its final position, which starts at physical address
0x00100000.

4. Jumps to physical address 0x00100000.

The decompressed kernel image begins with another startup_32() function included in the
arch/i386/kernel/head.S file. Using the same name for both the functions does not create any
problems (besides confusing our readers), since both functions are executed by jumping to
their initial physical addresses.

The second startup_32() function essentially sets up the execution environment for the
first Linux process (process 0). The function performs the following operations:

1. Initializes the segmentation registers with their final values.
2. Sets up the Kernel Mode stack for process (see Section 3.3.2 in Chapter 3).
3. Invokes setup_idt() to fill the IDT with null interrupt handlers (see Section 4.4.2

in Chapter 4).
4. Puts the system parameters obtained from the BIOS and the parameters passed to the

operating system into the first page frame (see Section 2.5.3 in Chapter 2).
5. Identifies the model of the processor.
6. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.
7. Jumps to the start_kernel() function.

A.5 Modern Age: The start_kernel() Function

The start_kernel() function completes the initialization of the Linux kernel. Nearly every
kernel component is initialized by this function; we mention just a few of them:

• The page tables are initialized by invoking the paging_init() function (see
Section 2.5.5 in Chapter 2).

• The page descriptors are initialized by the mem_init() function (see Section 6.1 in
Chapter 6).

• The final initialization of the IDT is performed by invoking trap_init() (see the
section Section 4.5 in Chapter 4) and init_IRQ() (see Section 4.6.2 in Chapter 4).

• The slab allocator is initialized by the kmem_cache_init() and
kmem_cache_sizes_init() functions (see Section 6.2.4 in Chapter 6).

• The system date and time are initialized by the time_init() function (see
Section 5.1.1 in Chapter 5).

• The kernel thread for process 1 is created by invoking the kernel_thread()
function. In turn, this kernel thread creates the other kernel threads and executes the
/sbin/init program, as described in Section 3.3.2 in Chapter 3.

Understanding the Linux Kernel

525

Besides the "Linux version 2.2.14 . . . " message, which is displayed right after the beginning
of start_kernel(), many other messages are displayed in this last phase both by the init
functions and by the kernel threads. At the end, the familiar login prompt appears on the
console (or in the graphical screen if the X Window System is launched at startup), telling the
user that the Linux kernel is up and running.

Understanding the Linux Kernel

526

Appendix B. Modules
As stated in Chapter 1, modules are Linux's recipe for effectively achieving many of
the theoretical advantages of microkernels without introducing performance penalties.

B.1 To Be (a Module) or Not to Be?

When system programmers want to add a new functionality to the Linux kernel, they are
faced with an interesting dilemma: should they write the new code so that it will be compiled
as a module, or should they statically link the new code to the kernel?

As a general rule, system programmers tend to implement new code as a module. Because
modules can be linked on demand, as we see later, the kernel does not have to be bloated with
hundreds of seldom-used programs. Nearly every higher-level component of the Linux
kernel—filesystems, device drivers, executable formats, network layers, and so on—can be
compiled as a module.

However, some Linux code must necessarily be linked statically, which means that either the
corresponding component is included in the kernel, or it is not compiled at all. This happens
typically when the component requires a modification to some data structure or function
statically linked in the kernel.

As an example, suppose that the component has to introduce new fields into the process
descriptor. Linking a module cannot change an already defined data structure like
task_struct since, even if the module uses its modified version of the data structure, all
statically linked code continues to see the old version: data corruption will easily occur. A
partial solution to the problem consists of "statically" adding the new fields to the process
descriptor, thus making them available to the kernel component, no matter how it has been
linked. However, if the kernel component is never used, such extra fields replicated in every
process descriptor are a waste of memory. If the new kernel component increases the size of
the process descriptor a lot, one would get better system performance by adding the required
fields in the data structure only if the component is statically linked to the kernel.

As a second example, consider a kernel component that has to replace statically linked code.
It's pretty clear that no such component can be compiled as a module because the kernel
cannot change the machine code already in RAM when linking the module. For instance, it is
not possible to link a module that changes the way page frames are allocated, since the Buddy
system functions are always statically linked to the kernel.

The kernel has two key tasks to perform in managing modules. The first task is making sure
the rest of the kernel can reach the module's global symbols, such as the entry point to its
main function. A module must also know the addresses of symbols in the kernel and in other
modules. So references are resolved once and for all when a module is linked. The second
task consists of keeping track of the use of modules, so that no module is unloaded while
another module or another part of the kernel is using it. A simple reference count keeps track
of each module's usage.

Understanding the Linux Kernel

527

B.2 Module Implementation

Modules are stored in the filesystem as ELF object files. The kernel considers only modules
that have been loaded into RAM by the /sbin/insmod program (see Section B.3) and for each
of them it allocates a memory area containing the following data:

• A module object
• A null-terminated string that represents the name of the module (all modules should

have unique names)
• The code that implements the functions of the module

The module object describes a module; its fields are shown in Table B-1. A simply linked list
collects all module objects, where the next field of each object points to the next element in
the list. The first element of the list is addressed by the module_list variable. But actually,
the first element of the list is always the same: it is named kernel_module and refers to a
fictitious module representing the statically linked kernel code.

Table B-1. The module Object
Type Name Description
unsigned long size_of_struct Size of module object
struct module * next Next list element
const char * name Pointer to module name
unsigned long size Module size
atomic_t uc.usecount Module usage counter
unsigned long flags Module flags
unsigned int nsyms Number of exported symbols
unsigned int ndeps Number of referenced modules
struct module_symbol * syms Table of exported symbols
struct module_ref * deps List of referenced modules
struct module_ref * refs List of referencing modules
int (*)(void) init Initialization method
void (*)(void) cleanup Cleanup method
struct exception_table_entry * ex_table_start Start of exception table
struct exception_table_entry * ex_table_end End of exception table

The total size of the memory area allocated for the module (including the module object and
the module name) is contained in the size field.

As already mentioned in Section 8.2.6 in Chapter 8, each module has its own exception table.
The table includes the addresses of the fixup code of the module, if any. The table is copied in
RAM when the module is linked, and its starting and ending addresses are stored in
the ex_table_start and ex_table_end fields of the module object.

B.2.1 Module Usage Counter

Each module has a usage counter, stored in the uc.usecount field of the corresponding
module object. The counter is incremented when an operation involving the module's
functions is started and decremented when the operation terminates. A module can be
unlinked only if its usage counter is null.

Understanding the Linux Kernel

528

As an example, suppose that the MS-DOS filesystem layer has been compiled as a module
and that the module has been linked at runtime. Initially, the module usage counter is null.
If the user mounts an MS-DOS floppy disk, the module usage counter is incremented by 1.
Conversely, when the user unmounts the floppy disk, the counter is decremented by 1.

B.2.2 Exporting Symbols

When linking a module, all references to global kernel symbols (variables and functions) in
the module's object code must be replaced with suitable addresses. This operation, which is
very similar to that performed by the linker while compiling a User Mode program (see
Section 19.1.3 in Chapter 19), is delegated to the /sbin/insmod external program (described
later in Section B.3).

A special table is used by the kernel to store the symbols that can be accessed by modules
together with their corresponding addresses. This kernel symbol table is contained in
the _ _ksymtab section of the kernel code segment, and its starting and ending addresses are
identified by two symbols produced by the C compiler: __start__ _ksymtab and
__stop__ _ksymtab. The EXPORT_SYMBOL macro, when used inside the statically linked
kernel code, forces the C compiler to add a specified symbol to the table.

Only the kernel symbols actually used by some existing module are included in the table.
Should a system programmer need, within some module, to access a kernel symbol that is not
already exported, he can simply add the corresponding EXPORT_SYMBOL macro into the
kernel/ksyms.c file of the Linux source code.

Linked modules can also export their own symbols, so that other modules can access them.
The module symbol table is contained in the _ _ksymtab section of the module code segment.
If the module source code includes the EXPORT_NO_SYMBOLS macro, no symbols from that
module are added to the table. To export a subset of symbols from the module, the
programmer must define the EXPORT_SYMTAB macro before including the
include/linux/module.h header file. Then he may use the EXPORT_SYMBOL macro to export a
specific symbol. If neither EXPORT_NO_SYMBOLS nor EXPORT_SYMTAB appears in the module
source code, all global symbols of the modules are exported.

The symbol table in the __ksymtab section is copied into a memory area when the module is
linked, and the address of the area is stored in the syms field of the module object. The
symbols exported by the statically linked kernel and all linked-in modules can be retrieved by
reading the /proc/ksyms file or using the query_module() system call (described in
Section B.3).

B.2.3 Module Dependency

A module (B) can refer to the symbols exported by another module (A); in this case, we say
that B is loaded on top of A, or equivalently that A is used by B. In order to link module B,
module A must have already been linked; otherwise, the references to the symbols exported
by A cannot be properly linked in B. In short, there is a dependency between modules.

The deps field of the module object relative to B points to a list describing all modules that
are used by B; in our example, A's module object would appear in that list. The ndeps field
stores the number of modules used by B. Conversely, the refs field of A points to a list

Understanding the Linux Kernel

529

describing all modules that are loaded on top of A (thus, B's module object will be included
when it is loaded). The refs list must be updated dynamically whenever a module is loaded
on top of A. In order to ensure that module A is not removed before B, A's usage counter is
incremented for each module loaded on top of it.

Beside A and B there could be, of course, another module (C) loaded on top of B, and so on.
Stacking modules is an effective way to modularize the kernel source code in order to speed
up its development and improve its portability.

B.3 Linking and Unlinking Modules

A user can link a module into the running kernel by executing the /sbin/insmod external
program. This program performs the following operations:

1. Reads from the command line the name of the module to be linked.
2. Locates the file containing the module's object code in the system directory tree. The

file is usually placed in some subdirectory below /lib/modules.
3. Computes the size of the memory area needed to store the module code, its name, and

the module object.
4. Invokes the create_module() system call, passing to it the name and size of the

new module. The corresponding sys_create_module() service routine performs the
following operations:

a. Checks whether the user is allowed to link the module (the current process
must have the CAP_SYS_MODULE capability). In any situation where one is
adding functionality to a kernel, which has access to all data and processes on
the system, security is a paramount concern.

b. Invokes the find_module() function to scan the module_list list of module
objects looking for a module with the specified name. If it is found, the module
has already been linked, so the system call terminates.

c. Invokes vmalloc() to allocate a memory area for the new module.
d. Initializes the fields of the module object at the beginning of the memory area

and copies the name of the module right below the object.
e. Inserts the module object into the list pointed to by module_list.
f. Returns the starting address of the memory area allocated to the module.

5. Invokes the query_module() system call with the QM_MODULES subcommand to get
the name of all already linked modules.

6. Invokes the query_module() system call with the QM_SYMBOL subcommand
repeatedly, to get the kernel symbol table and the symbol tables of all modules that are
already linked in.

7. Using the kernel symbol table, the module symbol tables, and the address returned by
the create_module() system call, relocates the object code included in the module's
file. This means replacing all occurrences of external and global symbols with the
corresponding logical address offsets.

8. Allocates a memory area in the User Mode address space and loads it with a copy of
the module object, the module's name, and the module's code relocated for the running
kernel. The address fields of the object point to the relocated code. The init field is
set to the relocated address of the module's init_module() function, if the module
defines one. (Virtually all modules define a function of that name, which is invoked in
the next step to perform any initialization required by the module.) Similarly, the

Understanding the Linux Kernel

530

cleanup field is set to the relocated address of the module's cleanup_module()
function, if one is present.

9. Invokes the init_module() system call, passing to it the address of the User Mode
memory area set up in the previous step. The sys_init_module() service routine
performs the following operations:

a. Checks whether the user is allowed to link the module (the current process
must have the CAP_SYS_MODULE capability).

b. Invokes find_module() to find the proper module object in the list to which
module_list points.

c. Overwrites the module object with the contents of the corresponding object in
the User Mode memory area.

d. Performs a series of sanity checks on the addresses in the module object.
e. Copies the remaining part of the User Mode memory area into the memory

area allocated to the module.
f. Scans the module list and initializes the ndeps and deps fields of the module

object.
g. Sets the module usage counter to 1.
h. If defined, executes the init method of the module to initialize the module's

data structures properly. The method is usually implemented by the
init_module() function defined inside the module.

i. Sets the module usage counter to 0 and returns.
10. Releases the User Mode memory area and terminates.

In order to unlink a module, a user invokes the /sbin/rmmod external program, which
performs the following operations:

1. From the command line, reads the name of the module to be unlinked.
2. Invokes the query_module() system call with the QM_MODULES subcommand to get

the list of linked modules.
3. Invokes the query_module() system call with the QM_REFS subcommand several

times, to retrieve dependency information on the linked modules. If some module is
linked on top of the one to be removed, terminates.

4. Invokes the delete_module() system call, passing the module's name to it. The
corresponding sys_delete_module() service routine performs these operations:

a. Checks whether the user is allowed to remove the module (the current process
must have the CAP_SYS_MODULE capability).

b. Invokes find_module() to find the corresponding module object in the list to
which module_list points.

c. Checks whether both the refs field and the uc.usecount fields of the module
object are null; otherwise, returns an error code.

d. If defined, invokes the cleanup method to perform the operations needed to
cleanly shut down the module. The method is usually implemented by the
cleanup_module() function defined inside the module.

e. Scans the deps list of the module and removes the module from the refs list
of any element found.

f. Removes the module from the list to which module_list points.
g. Invokes vfree() to release the memory area used by the module and returns

(success).

Understanding the Linux Kernel

531

B.4 Linking Modules on Demand

A module can be automatically linked when the functionality it provides is requested and
automatically removed afterward.

For instance, suppose that the MS-DOS filesystem has not been linked, either statically or
dynamically. If a user tries to mount an MS-DOS filesystem, the mount() system call
normally fails by returning an error code, since MS-DOS is not included in the file_systems
list of registered filesystems. However, if support for automatic linking of modules has been
specified when configuring the kernel, Linux makes an attempt to link the MS-DOS module,
then scans the list of registered filesystems again. If the module was successfully linked, the
mount() system call can continue its execution as if the MS-DOS filesystem were present
from the beginning.

B.4.1 The modprobe Program

In order to automatically link a module, the kernel creates a kernel thread to execute the
/sbin/modprobe external program,[A] which takes care of possible complications due to module
dependencies. The dependencies were already discussed earlier: a module may require one or
more other modules, and these in turn may require still other modules. For instance, the MS-
DOS module requires another module named fat containing some code common to all
filesystems based on a File Allocation Table (FAT). Thus, if it is not already present, the fat
module must also be automatically linked into the running kernel when the MS-DOS module
is requested. Resolving dependencies and finding modules is a type of activity that's best done
in User Mode, because it requires locating and accessing module object files in the filesystem.

[A] This is one of the few examples in which the kernel relies on an external program.

The /sbin/modprobe external program is similar to insmod, since it links in a module specified
on the command line. However, modprobe also recursively links in all modules used by the
module specified on the command line. For instance, if a user invokes modprobe to link the
MS-DOS module, the program links the fat module, if necessary, followed by the MS-DOS
module. Actually, modprobe just checks for module dependencies; the actual linking of each
module is done by forking a new process and executing insmod.

How does modprobe know about module dependencies? Another external program named
/sbin/depmod is executed at system startup. It looks at all the modules compiled for the
running kernel, which are usually stored inside the /lib/modules directory. Then it writes all
module dependencies to a file named modules.dep. The modprobe program can thus simply
compare the information stored in the file with the list of linked modules produced by the
query_module() system call.

B.4.2 The request_module() Function

In some cases, the kernel may invoke the request_module() function to attempt automatic
linking for a module.

Consider again the case of a user trying to mount an MS-DOS filesystem: if the
get_fs_type() function discovers that the filesystem is not registered, it invokes the
request_module() function in the hope that MS-DOS has been compiled as a module.

Understanding the Linux Kernel

532

If the request_module() function succeeds in linking the requested module, get_fs_type(
) can continue as if the module were always present. Of course, this does not always happen;
in our example, the MS-DOS module might not have been compiled at all. In this case,
get_fs_type() returns an error code.

The request_module() function receives the name of the module to be linked as its
parameter. It invokes kernel_thread() to create a new kernel thread that executes the
exec_modprobe() function, then it simply waits until that kernel thread terminates.

The exec_modprobe() function, in turn, also receives the name of the module to be linked
as its parameter. It invokes the execve() system call and executes the /sbin/modprobe
external program,[B] passing the module name to it. In turn, the modprobe program actually
links the requested module, along with any that it depends on.

[B] The name and path of the program executed by exec_modprobe() can be customized by writing into the /proc/sys/kernel/modprobe
file.

Each module automatically linked into the kernel has the MOD_AUTOCLEAN flag in the flags
field of the module object set. This flag allows automatic unlinking of the module when it is
no longer used.

In order to automatically unlink the module, a system process (like crond) periodically
executes the rmmod external program, passing the -a option to it. The latter program executes
the delete_module() system call with a NULL parameter. The corresponding service routine
scans the list of module objects and removes all unused modules having the MOD_AUTOCLEAN
flag set.

Understanding the Linux Kernel

533

Appendix C. Source Code Structure
In order to help you to find your way through the files of the source code, we briefly describe
the organization of the kernel directory tree. As usual, all pathnames refer to the main
directory of the Linux kernel, which is, in most Linux distributions, /usr/src/linux.

Linux source code for all supported architectures is contained in about 4500 C and Assembly
files stored in about 270 subdirectories; it consists of about 2 million lines of code, which
occupy more than 58 megabytes of disk space.

The following list illustrates the directory tree containing the Linux source code. Please notice
that only the subdirectories somehow related to the target of this book have been expanded.

init Kernel initialization code
kernel Kernel core: processes, timing, program execution, signals, modules, . . .
mm Memory handling
arch Platform-dependent code
—i386 IBM's PC architecture
——kernel Kernel core
——mm Memory management
——math-emu Software emulator for floating point unit
——lib Hardware-dependent utility functions
——boot Bootstrapping
———compressed Compressed kernel handling
———tools Programs to build compressed kernel image
—alpha Compaq's Alpha architecture
—s390 IBM's System/390 architecture
—sparc Sun's SPARC architecture
—sparc64 Sun's Ultra-SPARC architecture
—mips Silicon Graphics' MIPS architecture
—ppc Motorola-IBM's PowerPC-based architectures
—m68k Motorola's MC680x0-based architecture
—arm Architectures based on ARM processor
fs Filesystems
—proc /proc virtual filesystem
—devpts /dev/pts virtual filesystem
—ext2 Linux native Ext2 filesystem
—isofs ISO9660 filesystem (CD-ROM)
—nfs Network File System (NFS)
—nfsd Integrated Network filesystem server
—fat Common code for FAT-based filesystems
—msdos Microsoft's MS-DOS filesystem
—vfat Microsoft's Windows filesystem (VFAT)
—nls Native Language Support
—ntfs Microsoft's Windows NT filesystem
—smbfs Microsoft's Windows Server Message Block (SMB) filesystem
—umsdos UMSDOS filesystem
—minix MINIX filesystem

Understanding the Linux Kernel

534

—hpfs IBM's OS/2 filesystem
—sysv System V, SCO, Xenix, Coherent, and Version 7 filesystem
—ncpfs Novell's Netware Core Protocol (NCP)
—ufs Unix BSD, SunOs, FreeBSD, NetBSD, OpenBSD, and NeXTStep filesystem
—affs Amiga's Fast File System (FFS)
—coda Coda network filesystem
—hfs Apple's Macintosh filesystem
—adfs Acorn Disc Filing System
—efs SGI IRIX's EFS filesystem
—qnx4 Filesystem for QNX 4 OS
—romfs Small read-only filesystem
—autofs Directory automounter support
—lockd Remote file locking support
net Networking code
ipc System V's Interprocess Communication
drivers Device drivers
—block Block device drivers
——paride Support for accessing IDE devices from parallel port
—scsi SCSI device drivers
—char Character device drivers
——joystick Joysticks
——ftape Tape-streaming devices
——hfmodem Ham radio devices
—ip2 IntelliPort's multiport serial controllers
—net Network card devices
—sound Audio card devices
—video Video card devices
—cdrom Proprietary CD-ROM devices (neither ATAPI nor SCSI)
—isdn ISDN devices
—ap1000 Fujitsu's AP1000 devices
—macintosh Apple's Macintosh devices
—sgi Silicon Graphics' devices
—fc4 Fibre Channel devices
—acorn Acorn's devices
—misc Miscellaneous devices
—pnp Plug-and-play support
—usb Universal Serial Bus (USB) support
—pci PCI bus support
—sbus Sun's SPARC SBus support
—nubus Apple's Macintosh Nubus support
—zorro Amiga's Zorro bus support
—dio Hewlett-Packard's HP300 DIO bus support
—tc Sun's TurboChannel support (not yet finished)
lib General-purpose kernel functions
include Header files (.h)
—linux Kernel core
——lockd Remote file locking
——nfsd Integrated Network File Server

Understanding the Linux Kernel

535

——sunrpc Sun's Remote Procedure Call
——byteorder Byte-swapping functions
——modules Module support
—asm-generic Platform-independent low-level header files
—asm-i386 IBM's PC architecture
—asm-alpha Compaq's Alpha architecture
—asm-mips Silicon Graphics' MIPS architecture
—asm-m68k Motorola-IBM's PowerPC-based architectures
—asm-ppc Motorola-IBM's PowerPC architecture
—asm-s390 IBM's System/390 architecture
—asm-sparc Sun's SPARC architecture
—asm-sparc64 Sun's Ultra-SPARC architecture
—asm-arm Architectures based on ARM processor
—net Networking
—scsi SCSI support
—video Video card support
—config Header files containing the macros that define the kernel configuration
scripts External programs for building the kernel image
Documentation Text files with general explanations and hints about kernel components

Understanding the Linux Kernel

536

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The cover image of a man with a bubble is adapted from a 19th-century engraving from the
Dover Pictorial Archive. Edie Freeman designed the cover. Emma Colby produced the cover
with Quark™XPress 4.1, using the ITC Garamond Condensed font. David Futato designed
the interior layout based on a series design by Alicia Cech.

Catherine Morris was the production editor, and Norma Emory was the copyeditor for
Understanding the Linux Kernel. Clairemarie Fisher O'Leary was the proofreader. Jeff
Holcomb, Claire Cloutier, and Catherine Morris provided quality control. Judy Hoer and Joe
Wizda wrote the index. Linley Dolby, Rachel Wheeler, and Deborah Smith provided
production support. The illustrations that appear in the book were produced by Robert
Romano using Macromedia FreeHand 8 and Adobe Photoshop 5.

	Cover
	Table of Contents
	Preface
	The Audience for This Book
	Organization of the Material
	Overview of the Book
	Background Information
	Conventions in This Book
	How to Contact Us
	Acknowledgments

	1. Introduction
	1.1 Linux Versus Other Unix-Like Kernels
	1.2 Hardware Dependency
	1.3 Linux Versions
	1.4 Basic Operating System Concepts
	1.5 An Overview of the Unix Filesystem
	1.6 An Overview of Unix Kernels

	2. Memory Addressing
	2.1 Memory Addresses
	2.2 Segmentation in Hardware
	2.3 Segmentation in Linux
	2.4 Paging in Hardware
	2.5 Paging in Linux
	2.6 Anticipating Linux 2.4

	3. Processes
	3.1 Process Descriptor
	3.2 Process Switching
	3.3 Creating Processes
	3.4 Destroying Processes
	3.5 Anticipating Linux 2.4

	4. Interrupts and Exceptions
	4.1 The Role of Interrupt Signals
	4.2 Interrupts and Exceptions
	4.3 Nested Execution of Exception and Interrupt Handlers
	4.4 Initializing the Interrupt Descriptor Table
	4.5 Exception Handling
	4.6 Interrupt Handling
	4.7 Returning from Interrupts and Exceptions
	4.8 Anticipating Linux 2.4

	5. Timing Measurements
	5.1 Hardware Clocks
	5.2 The Timer Interrupt Handler
	5.3 PIT's Interrupt Service Routine
	5.4 The TIMER_BH Bottom Half Functions
	5.5 System Calls Related to Timing Measurements
	5.6 Anticipating Linux 2.4

	6. Memory Management
	6.1 Page Frame Management
	6.2 Memory Area Management
	6.3 Noncontiguous Memory Area Management
	6.4 Anticipating Linux 2.4

	7. Process Address Space
	7.1 The Process's Address Space
	7.2 The Memory Descriptor
	7.3 Memory Regions
	7.4 Page Fault Exception Handler
	7.5 Creating and Deleting a Process Address Space
	7.6 Managing the Heap
	7.7 Anticipating Linux 2.4

	8. System Calls
	8.1 POSIX APIs and System Calls
	8.2 System Call Handler and Service Routines
	8.3 Wrapper Routines
	8.4 Anticipating Linux 2.4

	9. Signals
	9.1 The Role of Signals
	9.2 Sending a Signal
	9.3 Receiving a Signal
	9.4 Real-Time Signals
	9.5 System Calls Related to Signal Handling
	9.6 Anticipating Linux 2.4

	10. Process Scheduling
	10.1 Scheduling Policy
	10.2 The Scheduling Algorithm
	10.3 System Calls Related to Scheduling
	10.4 Anticipating Linux 2.4

	11. Kernel Synchronization
	11.1 Kernel Control Paths
	11.2 Synchronization Techniques
	11.3 The SMP Architecture
	11.4 The Linux/SMP Kernel
	11.5 Anticipating Linux 2.4

	12. The Virtual Filesystem
	12.1 The Role of the VFS
	12.2 VFS Data Structures
	12.3 Filesystem Mounting
	12.4 Pathname Lookup
	12.5 Implementations of VFS System Calls
	12.6 File Locking
	12.7 Anticipating Linux 2.4

	13. Managing I/O Devices
	13.1 I/O Architecture
	13.2 Associating Files with I/O Devices
	13.3 Device Drivers
	13.4 Character Device Handling
	13.5 Block Device Handling
	13.6 Page I/O Operations
	13.7 Anticipating Linux 2.4

	14. Disk Caches
	14.1 The Buffer Cache
	14.2 The Page Cache
	14.3 Anticipating Linux 2.4

	15. Accessing Regular Files
	15.1 Reading and Writing a Regular File
	15.2 Memory Mapping
	15.3 Anticipating Linux 2.4

	16. Swapping: Methods for Freeing Memory
	16.1 What Is Swapping?
	16.2 Swap Area
	16.3 The Swap Cache
	16.4 Transferring Swap Pages
	16.5 Page Swap-Out
	16.6 Page Swap-In
	16.7 Freeing Page Frames
	16.8 Anticipating Linux 2.4

	17. The Ext2 Filesystem
	17.1 General Characteristics
	17.2 Disk Data Structures
	17.3 Memory Data Structures
	17.4 Creating the Filesystem
	17.5 Ext2 Methods
	17.6 Managing Disk Space
	17.7 Reading and Writing an Ext2 Regular File
	17.8 Anticipating Linux 2.4

	18. Process Communication
	18.1 Pipes
	18.2 FIFOs
	18.3 System V IPC
	18.4 Anticipating Linux 2.4

	19. Program Execution
	19.1 Executable Files
	19.2 Executable Formats
	19.3 Execution Domains
	19.4 The exec-like Functions
	19.5 Anticipating Linux 2.4

	A. System Startup
	A.1 Prehistoric Age: The BIOS
	A.2 Ancient Age: The Boot Loader
	A.3 Middle Ages: The setup() Function
	A.4 Renaissance: The startup_32() Functions
	A.5 Modern Age: The start_kernel() Function

	B. Modules
	B.1 To Be (a Module) or Not to Be?
	B.2 Module Implementation
	B.3 Linking and Unlinking Modules
	B.4 Linking Modules on Demand

	C. Source Code Structure
	Colophon

