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Preface 
In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0. 
The idea was to encourage students to read the source code. To achieve this, we assigned term 
projects consisting of making changes to the kernel and performing tests on the modified 
version. We also wrote course notes for our students about a few critical features of Linux like 
task switching and task scheduling. 

We continued along this line in the spring semester of 1998, but we moved on to the Linux 
2.1 development version. Our course notes were becoming larger and larger. In July, 1998 we 
contacted O'Reilly & Associates, suggesting they publish a whole book on the Linux kernel. 
The real work started in the fall of 1998 and lasted about a year and a half. We read thousands 
of lines of code, trying to make sense of them. After all this work, we can say that it was 
worth the effort. We learned a lot of things you don't find in books, and we hope we have 
succeeded in conveying some of this information in the following pages. 

The Audience for This Book 

All people curious about how Linux works and why it is so efficient will find answers here. 
After reading the book, you will find your way through the many thousands of lines of code, 
distinguishing between crucial data structures and secondary ones—in short, becoming a true 
Linux hacker. 

Our work might be considered a guided tour of the Linux kernel: most of the significant data 
structures and many algorithms and programming tricks used in the kernel are discussed; in 
many cases, the relevant fragments of code are discussed line by line. Of course, you should 
have the Linux source code on hand and should be willing to spend some effort deciphering 
some of the functions that are not, for sake of brevity, fully described. 

On another level, the book will give valuable insights to people who want to know more about 
the critical design issues in a modern operating system. It is not specifically addressed to 
system administrators or programmers; it is mostly for people who want to understand how 
things really work inside the machine! Like any good guide, we try to go beyond superficial 
features. We offer background, such as the history of major features and the reasons they were 
used. 

Organization of the Material 

When starting to write this book, we were faced with a critical decision: should we refer to a 
specific hardware platform or skip the hardware-dependent details and concentrate on the 
pure hardware-independent parts of the kernel? 

Others books on Linux kernel internals have chosen the latter approach; we decided to adopt 
the former one for the following reasons: 

• Efficient kernels take advantage of most available hardware features, such as 
addressing techniques, caches, processor exceptions, special instructions, processor 
control registers, and so on. If we want to convince you that the kernel indeed does 
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quite a good job in performing a specific task, we must first tell what kind of support 
comes from the hardware. 

• Even if a large portion of a Unix kernel source code is processor-independent and 
coded in C language, a small and critical part is coded in assembly language. A 
thorough knowledge of the kernel thus requires the study of a few assembly language 
fragments that interact with the hardware. 

When covering hardware features, our strategy will be quite simple: just sketch the features 
that are totally hardware-driven while detailing those that need some software support. In fact, 
we are interested in kernel design rather than in computer architecture. 

The next step consisted of selecting the computer system to be described: although Linux is 
now running on several kinds of personal computers and workstations, we decided to 
concentrate on the very popular and cheap IBM-compatible personal computers—thus, on the 
Intel 80x86 microprocessors and on some support chips included in these personal computers. 
The term Intel 80x86 microprocessor will be used in the forthcoming chapters to denote the 
Intel 80386, 80486, Pentium, Pentium Pro, Pentium II, and Pentium III microprocessors or 
compatible models. In a few cases, explicit references will be made to specific models. 

One more choice was the order followed in studying Linux components. We tried to follow a 
bottom-up approach: start with topics that are hardware-dependent and end with those that are 
totally hardware-independent. In fact, we'll make many references to the Intel 80x86 
microprocessors in the first part of the book, while the rest of it is relatively hardware-
independent. Two significant exceptions are made in Chapter 11, and Chapter 13. In practice, 
following a bottom-up approach is not as simple as it looks, since the areas of memory 
management, process management, and filesystem are intertwined; a few forward 
references—that is, references to topics yet to be explained—are unavoidable. 

Each chapter starts with a theoretical overview of the topics covered. The material is then 
presented according to the bottom-up approach. We start with the data structures needed to 
support the functionalities described in the chapter. Then we usually move from the lowest 
level of functions to higher levels, often ending by showing how system calls issued by user 
applications are supported. 

Level of Description 

Linux source code for all supported architectures is contained in about 4500 C and Assembly 
files stored in about 270 subdirectories; it consists of about 2 million lines of code, which 
occupy more than 58 megabytes of disk space. Of course, this book can cover a very small 
portion of that code. Just to figure out how big the Linux source is, consider that the whole 
source code of the book you are reading occupies less than 2 megabytes of disk space. 
Therefore, in order to list all code, without commenting on it, we would need more than 25 
books like this![1]  

[1] Nevertheless, Linux is a tiny operating system when compared with other commercial giants. Microsoft Windows 2000, for example, reportedly has 
more than 30 million lines of code. Linux is also small when compared to some popular applications; Netscape Communicator 5 browser, for example, 
has about 17 million lines of code. 

So we had to make some choices about the parts to be described. This is a rough assessment 
of our decisions: 
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• We describe process and memory management fairly thoroughly. 
• We cover the Virtual Filesystem and the Ext2 filesystem, although many functions are 

just mentioned without detailing the code; we do not discuss other filesystems 
supported by Linux. 

• We describe device drivers, which account for a good part of the kernel, as far as the 
kernel interface is concerned, but do not attempt analysis of any specific driver, 
including the terminal drivers. 

• We do not cover networking, since this area would deserve a whole new book by 
itself. 

In many cases, the original code has been rewritten in an easier to read but less efficient way. 
This occurs at time-critical points at which sections of programs are often written in a mixture 
of hand-optimized C and Assembly code. Once again, our aim is to provide some help in 
studying the original Linux code. 

While discussing kernel code, we often end up describing the underpinnings of many familiar 
features that Unix programmers have heard of and about which they may be curious (shared 
and mapped memory, signals, pipes, symbolic links). 

Overview of the Book 

To make life easier, Chapter 1 presents a general picture of what is inside a Unix kernel and 
how Linux competes against other well-known Unix systems. 

The heart of any Unix kernel is memory management. Chapter 2 explains how Intel 80x86 
processors include special circuits to address data in memory and how Linux exploits them. 

Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3. 
Here we also explain how each process runs either in an unprivileged User Mode or in a 
privileged Kernel Mode. Transitions between User Mode and Kernel Mode happen only 
through well-established hardware mechanisms called interrupts and exceptions, which are 
introduced in Chapter 4. One type of interrupt is crucial for allowing Linux to take care of 
elapsed time; further details can be found in Chapter 5. 

Next we focus again on memory: Chapter 6 describes the sophisticated techniques required to 
handle the most precious resource in the system (besides the processors, of course), that is, 
available memory. This resource must be granted both to the Linux kernel and to the user 
applications. Chapter 7 shows how the kernel copes with the requests for memory issued by 
greedy application programs. 

Chapter 8 explains how a process running in User Mode makes requests to the kernel, while 
Chapter 9 describes how a process may send synchronization signals to other processes. 
Chapter 10 explains how Linux executes, in turn, every active process in the system so that all 
of them can progress toward their completions. Synchronization mechanisms are needed by 
the kernel too: they are discussed in Chapter 11 for both uniprocessor and multiprocessor 
systems. 

Now we are ready to move on to another essential topic, that is, how Linux implements the 
filesystem. A series of chapters covers this topic: Chapter 12 introduces a general layer that 
supports many different filesystems. Some Linux files are special because they provide 
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trapdoors to reach hardware devices; Chapter 13 offers insights on these special files and on 
the corresponding hardware device drivers. Another issue to be considered is disk access 
time; Chapter 14 shows how a clever use of RAM reduces disk accesses and thus improves 
system performance significantly. Building on the material covered in these last chapters, we 
can now explain in Chapter 15, how user applications access normal files. Chapter 16 
completes our discussion of Linux memory management and explains the techniques used by 
Linux to ensure that enough memory is always available. The last chapter dealing with files is 
Chapter 17, which illustrates the most-used Linux filesystem, namely Ext2. 

The last two chapters end our detailed tour of the Linux kernel: Chapter 18 introduces 
communication mechanisms other than signals available to User Mode processes; Chapter 19 
explains how user applications are started. 

Last but not least are the appendixes: Appendix A sketches out how Linux is booted, while 
Appendix B describes how to dynamically reconfigure the running kernel, adding and 
removing functionalities as needed. Appendix C is just a list of the directories that contain the 
Linux source code. The Source Code Index includes all the Linux symbols referenced in the 
book; you will find here the name of the Linux file defining each symbol and the book's page 
number where it is explained. We think you'll find it quite handy. 

Background Information 

No prerequisites are required, except some skill in C programming language and perhaps 
some knowledge of Assembly language. 

Conventions in This Book 

The following is a list of typographical conventions used in this book: 

Constant Width  

Is used to show the contents of code files or the output from commands, and to 
indicate source code keywords that appear in code. 

Italic  

Is used for file and directory names, program and command names, command-line 
options, URLs, and for emphasizing new terms. 

How to Contact Us 

We have tested and verified all the information in this book to the best of our abilities, but you 
may find that features have changed or that we have let errors slip through the production of 
the book. Please let us know of any errors that you find, as well as suggestions for future 
editions, by writing to: 

O'Reilly & Associates, Inc. 101 Morris St. Sebastopol, CA 95472 (800) 998-9938 (in the U.S. 
or Canada) (707) 829-0515 (international/local) (707) 829-0104 (fax)  
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You can also send messages electronically. To be put on our mailing list or to request a 
catalog, send email to: 

info@oreilly.com  

To ask technical questions or to comment on the book, send email to: 

bookquestions@oreilly.com  

We have a web site for the book, where we'll list reader reviews, errata, and any plans for 
future editions. You can access this page at: 

http://www.oreilly.com/catalog/linuxkernel/  

We also have an additional web site where you will find material written by the authors about 
the new features of Linux 2.4. Hopefully, this material will be used for a future edition of this 
book. You can access this page at: 

http://www.oreilly.com/catalog/linuxkernel/updates/  

For more information about this book and others, see the O'Reilly web site: 

http://www.oreilly.com/  
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Chapter 1. Introduction 
Linux is a member of the large family of Unix-like operating systems. A relative newcomer 
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such     
well-known commercial Unix operating systems as System V Release 4 (SVR4) developed by 
AT&T, which is now owned by Novell; the 4.4 BSD release from the University of California 
at Berkeley (4.4BSD), Digital Unix from Digital Equipment Corporation (now Compaq); AIX 
from IBM; HP-UX from Hewlett-Packard; and Solaris from Sun Microsystems. 

Linux was initially developed by Linus Torvalds in 1991 as an operating system for IBM-
compatible personal computers based on the Intel 80386 microprocessor. Linus remains 
deeply involved with improving Linux, keeping it up-to-date with various hardware 
developments and coordinating the activity of hundreds of Linux developers around the 
world. Over the years, developers have worked to make Linux available on other 
architectures, including Alpha, SPARC, Motorola MC680x0, PowerPC, and IBM 
System/390. 

One of the more appealing benefits to Linux is that it isn't a commercial operating system: its 
source code under the GNU Public License[1] is open and available to anyone to study, as we 
will in this book; if you download the code (the official site is http://www.kernel.org/) or 
check the sources on a Linux CD, you will be able to explore from top to bottom one of       
the most successful, modern operating systems. This book, in fact, assumes you have           
the source code on hand and can apply what we say to your own explorations. 

[1] The GNU project is coordinated by the Free Software Foundation, Inc. (http://www.gnu.org/); its aim is to implement a whole operating system 
freely usable by everyone. The availability of a GNU C compiler has been essential for the success of the Linux project. 

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating 
system, because it does not include all the applications such as filesystem utilities, windowing 
systems and graphical desktops, system administrator commands, text editors, compilers, and 
so on. However, since most of these programs are freely available under the GNU General 
Public License, they can be installed into one of the filesystems supported by Linux. 

Since Linux is a kernel, many Linux users prefer to rely on commercial distributions, 
available on CD-ROM, to get the code included in a standard Unix system. Alternatively,    
the code may be obtained from several different FTP sites. The Linux source code is usually 
installed in the /usr/src/linux directory. In the rest of this book, all file pathnames will refer 
implicitly to that directory. 

1.1 Linux Versus Other Unix-Like Kernels 

The various Unix-like systems on the market, some of which have a long history and may 
show signs of archaic practices, differ in many important respects. All commercial variants 
were derived from either SVR4 or 4.4BSD; all of them tend to agree on some common 
standards like IEEE's POSIX (Portable Operating Systems based on Unix) and X/Open's CAE 
(Common Applications Environment). 
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The current standards specify only an application programming interface (API)—that is,         
a well-defined environment in which user programs should run. Therefore, the standards do 
not impose any restriction on internal design choices of a compliant kernel.[2]  

[2] As a matter of fact, several non-Unix operating systems like Windows NT are POSIX-compliant. 

In order to define a common user interface, Unix-like kernels often share fundamental design 
ideas and features. In this respect, Linux is comparable with the other Unix-like operating 
systems. What you read in this book and see in the Linux kernel, therefore, may help you 
understand the other Unix variants too. 

The 2.2 version of the Linux kernel aims to be compliant with the IEEE POSIX standard. 
This, of course, means that most existing Unix programs can be compiled and executed on     
a Linux system with very little effort or even without the need for patches to the source code. 
Moreover, Linux includes all the features of a modern Unix operating system, like virtual 
memory, a virtual filesystem, lightweight processes, reliable signals, SVR4 interprocess 
communications, support for Symmetric Multiprocessor (SMP) systems, and so on. 

By itself, the Linux kernel is not very innovative. When Linus Torvalds wrote the first kernel, 
he referred to some classical books on Unix internals, like Maurice Bach's The Design of     
the Unix Operating System (Prentice Hall, 1986). Actually, Linux still has some bias toward 
the Unix baseline described in Bach's book (i.e., SVR4). However, Linux doesn't stick to any 
particular variant. Instead, it tries to adopt good features and design choices of several 
different Unix kernels. 

Here is an assessment of how Linux competes against some well-known commercial Unix 
kernels: 

• The Linux kernel is monolithic. It is a large, complex do-it-yourself program, 
composed of several logically different components. In this, it is quite conventional; 
most commercial Unix variants are monolithic. A notable exception is Carnegie-
Mellon's Mach 3.0, which follows a microkernel approach. 

• Traditional Unix kernels are compiled and linked statically. Most modern kernels can 
dynamically load and unload some portions of the kernel code (typically, device 
drivers), which are usually called modules. Linux's support for modules is very good, 
since it is able to automatically load and unload modules on demand. Among the main 
commercial Unix variants, only the SVR4.2 kernel has a similar feature. 

• Kernel threading. Some modern Unix kernels, like Solaris 2.x and SVR4.2/MP, are 
organized as a set of kernel threads. A kernel thread is an execution context that can 
be independently scheduled; it may be associated with a user program, or it may run 
only some kernel functions. Context switches between kernel threads are usually much 
less expensive than context switches between ordinary processes, since the former 
usually operate on a common address space. Linux uses kernel threads in a very 
limited way to execute a few kernel functions periodically; since Linux kernel threads 
cannot execute user programs, they do not represent the basic execution context 
abstraction. (That's the topic of the next item.) 

• Multithreaded application support. Most modern operating systems have some kind of 
support for multithreaded applications, that is, user programs that are well designed in 
terms of many relatively independent execution flows sharing a large portion of the 
application data structures. A multithreaded user application could be composed of 
many lightweight processes (LWP), or processes that can operate on a common 
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address space, common physical memory pages, common opened files, and so on. 
Linux defines its own version of lightweight processes, which is different from the 
types used on other systems such as SVR4 and Solaris. While all the commercial Unix 
variants of LWP are based on kernel threads, Linux regards lightweight processes as 
the basic execution context and handles them via the nonstandard clone( ) system 
call. 

• Linux is a nonpreemptive kernel. This means that Linux cannot arbitrarily interleave 
execution flows while they are in privileged mode. Several sections of kernel code 
assume they can run and modify data structures without fear of being interrupted and 
having another thread alter those data structures. Usually, fully preemptive kernels are 
associated with special real-time operating systems. Currently, among conventional, 
general-purpose Unix systems, only Solaris 2.x and Mach 3.0 are fully preemptive 
kernels. SVR4.2/MP introduces some fixed preemption points as a method to get 
limited preemption capability. 

• Multiprocessor support. Several Unix kernel variants take advantage of multiprocessor 
systems. Linux 2.2 offers an evolving kind of support for symmetric multiprocessing 
(SMP), which means not only that the system can use multiple processors but also that 
any processor can handle any task; there is no discrimination among them. However, 
Linux 2.2 does not make optimal use of SMP. Several kernel activities that could be 
executed concurrently—like filesystem handling and networking—must now be 
executed sequentially. 

• Filesystem. Linux's standard filesystem lacks some advanced features, such as 
journaling. However, more advanced filesystems for Linux are available, although not 
included in the Linux source code; among them, IBM AIX's Journaling File System 
(JFS), and Silicon Graphics Irix's XFS filesystem. Thanks to a powerful object-
oriented Virtual File System technology (inspired by Solaris and SVR4), porting         
a foreign filesystem to Linux is a relatively easy task. 

• STREAMS. Linux has no analog to the STREAMS I/O subsystem introduced in 
SVR4, although it is included nowadays in most Unix kernels and it has become the 
preferred interface for writing device drivers, terminal drivers, and network protocols. 

This somewhat disappointing assessment does not depict, however, the whole truth. Several 
features make Linux a wonderfully unique operating system. Commercial Unix kernels often 
introduce new features in order to gain a larger slice of the market, but these features are not 
necessarily useful, stable, or productive. As a matter of fact, modern Unix kernels tend to be 
quite bloated. By contrast, Linux doesn't suffer from the restrictions and the conditioning 
imposed by the market, hence it can freely evolve according to the ideas of its designers 
(mainly Linus Torvalds). Specifically, Linux offers the following advantages over its 
commercial competitors: 

Linux is free.  

You can install a complete Unix system at no expense other than the hardware (of 
course). 

 

 

 



Understanding the Linux Kernel 

9 

Linux is fully customizable in all its components.  

Thanks to the General Public License (GPL), you are allowed to freely read and 
modify the source code of the kernel and of all system programs.[3]  

[3] Several commercial companies have started to support their products under Linux, most of which aren't distributed under a GNU Public License. 
Therefore, you may not be allowed to read or modify their source code. 

Linux runs on low-end, cheap hardware platforms.  

You can even build a network server using an old Intel 80386 system with 4 MB of 
RAM. 

Linux is powerful.  

Linux systems are very fast, since they fully exploit the features of the hardware 
components. The main Linux target is efficiency, and indeed many design choices of 
commercial variants, like the STREAMS I/O subsystem, have been rejected by Linus 
because of their implied performance penalty. 

Linux has a high standard for source code quality.  

Linux systems are usually very stable; they have a very low failure rate and system 
maintenance time. 

The Linux kernel can be very small and compact.  

Indeed, it is possible to fit both a kernel image and full root filesystem, including all 
fundamental system programs, on just one 1.4 MB floppy disk! As far as we know, 
none of the commercial Unix variants is able to boot from a single floppy disk. 

Linux is highly compatible with many common operating systems.  

It lets you directly mount filesystems for all versions of MS-DOS and MS Windows, 
SVR4, OS/2, Mac OS, Solaris, SunOS, NeXTSTEP, many BSD variants, and so on. 
Linux is also able to operate with many network layers like Ethernet, Fiber Distributed 
Data Interface (FDDI), High Performance Parallel Interface (HIPPI), IBM's Token 
Ring, AT&T WaveLAN, DEC RoamAbout DS, and so forth. By using suitable 
libraries, Linux systems are even able to directly run programs written for other 
operating systems. For example, Linux is able to execute applications written for MS-
DOS, MS Windows, SVR3 and R4, 4.4BSD, SCO Unix, XENIX, and others on the 
Intel 80x86 platform. 

Linux is well supported.  

Believe it or not, it may be a lot easier to get patches and updates for Linux than for 
any proprietary operating system! The answer to a problem often comes back within   
a few hours after sending a message to some newsgroup or mailing list. Moreover, 
drivers for Linux are usually available a few weeks after new hardware products have 
been introduced on the market. By contrast, hardware manufacturers release device 
drivers for only a few commercial operating systems, usually the Microsoft ones. 
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Therefore, all commercial Unix variants run on a restricted subset of hardware 
components. 

With an estimated installed base of more than 12 million and growing, people who are used to 
certain creature features that are standard under other operating systems are starting to expect 
the same from Linux. As such, the demand on Linux developers is also increasing. Luckily, 
though, Linux has evolved under the close direction of Linus over the years, to accommodate 
the needs of the masses. 

1.2 Hardware Dependency 

Linux tries to maintain a neat distinction between hardware-dependent and hardware-
independent source code. To that end, both the arch and the include directories include nine 
subdirectories corresponding to the nine hardware platforms supported. The standard names 
of the platforms are: 

arm  

Acorn personal computers 

alpha  

Compaq Alpha workstations 

i386  

IBM-compatible personal computers based on Intel 80x86 or Intel 80x86-compatible 
microprocessors 

m68k  

Personal computers based on Motorola MC680x0 microprocessors 

mips  

Workstations based on Silicon Graphics MIPS microprocessors 

ppc  

Workstations based on Motorola-IBM PowerPC microprocessors 

sparc  

Workstations based on Sun Microsystems SPARC microprocessors 

sparc64  

Workstations based on Sun Microsystems 64-bit Ultra SPARC microprocessors 
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s390  

IBM System/390 mainframes 

1.3 Linux Versions 

Linux distinguishes stable kernels from development kernels through a simple numbering 
scheme. Each version is characterized by three numbers, separated by periods. The first two 
numbers are used to identify the version; the third number identifies the release. 

As shown in Figure 1-1, if the second number is even, it denotes a stable kernel; otherwise, it 
denotes a development kernel. At the time of this writing, the current stable version of the 
Linux kernel is 2.2.14, and the current development version is 2.3.51. The 2.2 kernel, which is 
the basis for this book, was first released in January 1999, and it differs considerably from the 
2.0 kernel, particularly with respect to memory management. Work on the 2.3 development 
version started in May 1999. 

Figure 1-1. Numbering Linux versions 

 

New releases of a stable version come out mostly to fix bugs reported by users. The main 
algorithms and data structures used to implement the kernel are left unchanged. 

Development versions, on the other hand, may differ quite significantly from one another; 
kernel developers are free to experiment with different solutions that occasionally lead to 
drastic kernel changes. Users who rely on development versions for running applications may 
experience unpleasant surprises when upgrading their kernel to a newer release. This book 
concentrates on the most recent stable kernel that we had available because, among all         
the new features being tried in experimental kernels, there's no way of telling which will 
ultimately be accepted and what they'll look like in their final form. 

At the time of this writing, Linux 2.4 has not officially come out. We tried to anticipate the 
forthcoming features and the main kernel changes with respect to the 2.2 version by looking 
at the Linux 2.3.99-pre8 prerelease. Linux 2.4 inherits a good deal from Linux 2.2: many 
concepts, design choices, algorithms, and data structures remain the same. For that reason, we 
conclude each chapter by sketching how Linux 2.4 differs from Linux 2.2 with respect to    
the topics just discussed. As you'll notice, the new Linux is gleaming and shining; it should 
appear more appealing to large corporations and, more generally, to the whole business 
community. 
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1.4 Basic Operating System Concepts 

Any computer system includes a basic set of programs called the operating system. The most 
important program in the set is called the kernel. It is loaded into RAM when the system boots 
and contains many critical procedures that are needed for the system to operate. The other 
programs are less crucial utilities; they can provide a wide variety of interactive experiences 
for the user—as well as doing all the jobs the user bought the computer for—but the essential 
shape and capabilities of the system are determined by the kernel. The kernel, then, is where 
we fix our attention in this book. Hence, we'll often use the term "operating system" as           
a synonym for "kernel." 

The operating system must fulfill two main objectives: 

• Interact with the hardware components servicing all low-level programmable elements 
included in the hardware platform. 

• Provide an execution environment to the applications that run on the computer system 
(the so-called user programs). 

Some operating systems allow all user programs to directly play with the hardware 
components (a typical example is MS-DOS). In contrast, a Unix-like operating system hides 
all low-level details concerning the physical organization of the computer from applications 
run by the user. When a program wants to make use of a hardware resource, it must issue       
a request to the operating system. The kernel evaluates the request and, if it chooses to grant 
the resource, interacts with the relative hardware components on behalf of the user program. 

In order to enforce this mechanism, modern operating systems rely on the availability of 
specific hardware features that forbid user programs to directly interact with low-level 
hardware components or to access arbitrary memory locations. In particular, the hardware 
introduces at least two different execution modes for the CPU: a nonprivileged mode for user 
programs and a privileged mode for the kernel. Unix calls these User Mode and Kernel Mode, 
respectively. 

In the rest of this chapter, we introduce the basic concepts that have motivated the design of 
Unix over the past two decades, as well as Linux and other operating systems. While the 
concepts are probably familiar to you as a Linux user, these sections try to delve into them     
a bit more deeply than usual to explain the requirements they place on an operating system 
kernel. These broad considerations refer to Unix-like systems, thus also to Linux. The other 
chapters of this book will hopefully help you to understand the Linux kernel internals. 

1.4.1 Multiuser Systems 

A multiuser system is a computer that is able to concurrently and independently execute 
several applications belonging to two or more users. "Concurrently" means that applications 
can be active at the same time and contend for the various resources such as CPU, memory, 
hard disks, and so on. "Independently" means that each application can perform its task with 
no concern for what the applications of the other users are doing. Switching from one 
application to another, of course, slows down each of them and affects the response time seen 
by the users. Many of the complexities of modern operating system kernels, which we will 
examine in this book, are present to minimize the delays enforced on each program and to 
provide the user with responses that are as fast as possible. 
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Multiuser operating systems must include several features: 

• An authentication mechanism for verifying the user identity 
• A protection mechanism against buggy user programs that could block other 

applications running in the system 
• A protection mechanism against malicious user programs that could interfere with, or 

spy on, the activity of other users 
• An accounting mechanism that limits the amount of resource units assigned to each 

user 

In order to ensure safe protection mechanisms, operating systems must make use of the 
hardware protection associated with the CPU privileged mode. Otherwise, a user program 
would be able to directly access the system circuitry and overcome the imposed bounds. Unix 
is a multiuser system that enforces the hardware protection of system resources. 

1.4.2 Users and Groups 

In a multiuser system, each user has a private space on the machine: typically, he owns some 
quota of the disk space to store files, receives private mail messages, and so on. The operating 
system must ensure that the private portion of a user space is visible only to its owner. In 
particular, it must ensure that no user can exploit a system application for the purpose of 
violating the private space of another user. 

All users are identified by a unique number called the User ID , or UID. Usually only a 
restricted number of persons are allowed to make use of a computer system. When one of 
these users starts a working session, the operating system asks for a login name and a 
password. If the user does not input a valid pair, the system denies access. Since the password 
is assumed to be secret, the user's privacy is ensured. 

In order to selectively share material with other users, each user is a member of one or more 
groups, which are identified by a unique number called a Group ID , or GID. Each file is also 
associated with exactly one group. For example, access could be set so that the user owning 
the file has read and write privileges, the group has read-only privileges, and other users on 
the system are denied access to the file. 

Any Unix-like operating system has a special user called root, superuser, or supervisor. The 
system administrator must log in as root in order to handle user accounts, perform 
maintenance tasks like system backups and program upgrades, and so on. The root user can 
do almost everything, since the operating system does not apply the usual protection 
mechanisms to her. In particular, the root user can access every file on the system and can 
interfere with the activity of every running user program. 

1.4.3 Processes 

All operating systems make use of one fundamental abstraction: the process . A process can 
be defined either as "an instance of a program in execution," or as the "execution context" of a 
running program. In traditional operating systems, a process executes a single sequence of 
instructions in an address space ; the address space is the set of memory addresses that the 
process is allowed to reference. Modern operating systems allow processes with multiple 
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execution flows, that is, multiple sequences of instructions executed in the same address 
space. 

Multiuser systems must enforce an execution environment in which several processes can be 
active concurrently and contend for system resources, mainly the CPU. Systems that allow 
concurrent active processes are said to be multiprogramming or multiprocessing.[4] It is 
important to distinguish programs from processes: several processes can execute the same 
program concurrently, while the same process can execute several programs sequentially. 

[4] Some multiprocessing operating systems are not multiuser; an example is Microsoft's Windows 98. 

On uniprocessor systems, just one process can hold the CPU, and hence just one execution 
flow can progress at a time. In general, the number of CPUs is always restricted, and therefore 
only a few processes can progress at the same time. The choice of the process that can 
progress is left to an operating system component called the scheduler. Some operating 
systems allow only nonpreemptive processes, which means that the scheduler is invoked only 
when a process voluntarily relinquishes the CPU. But processes of a multiuser system must be 
preemptive ; the operating system tracks how long each process holds the CPU and 
periodically activates the scheduler. 

Unix is a multiprocessing operating system with preemptive processes. Indeed, the process 
abstraction is really fundamental in all Unix systems. Even when no user is logged in and no 
application is running, several system processes monitor the peripheral devices. In particular, 
several processes listen at the system terminals waiting for user logins. When a user inputs a 
login name, the listening process runs a program that validates the user password. If the user 
identity is acknowledged, the process creates another process that runs a shell into which 
commands are entered. When a graphical display is activated, one process runs the window 
manager, and each window on the display is usually run by a separate process. When a user 
creates a graphics shell, one process runs the graphics windows, and a second process runs the 
shell into which the user can enter the commands. For each user command, the shell process 
creates another process that executes the corresponding program. 

Unix-like operating systems adopt a process/kernel model. Each process has the illusion that 
it's the only process on the machine and it has exclusive access to the operating system 
services. Whenever a process makes a system call (i.e., a request to the kernel), the hardware 
changes the privilege mode from User Mode to Kernel Mode, and the process starts the 
execution of a kernel procedure with a strictly limited purpose. In this way, the operating 
system acts within the execution context of the process in order to satisfy its request. 
Whenever the request is fully satisfied, the kernel procedure forces the hardware to return to 
User Mode and the process continues its execution from the instruction following the system 
call. 

1.4.4 Kernel Architecture 

As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the 
whole kernel program and runs in Kernel Mode on behalf of the current process. In contrast, 
microkernel operating systems demand a very small set of functions from the kernel, 
generally including a few synchronization primitives, a simple scheduler, and an interprocess 
communication mechanism. Several system processes that run on top of the microkernel 
implement other operating system-layer functions, like memory allocators, device drivers, 
system call handlers, and so on. 
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Although academic research on operating systems is oriented toward microkernels, such 
operating systems are generally slower than monolithic ones, since the explicit message 
passing between the different layers of the operating system has a cost. However, microkernel 
operating systems might have some theoretical advantages over monolithic ones. 
Microkernels force the system programmers to adopt a modularized approach, since any 
operating system layer is a relatively independent program that must interact with the other 
layers through well-defined and clean software interfaces. Moreover, an existing microkernel 
operating system can be fairly easily ported to other architectures, since all hardware-
dependent components are generally encapsulated in the microkernel code. Finally, 
microkernel operating systems tend to make better use of random access memory (RAM) than 
monolithic ones, since system processes that aren't implementing needed functionalities might 
be swapped out or destroyed. 

Modules are a kernel feature that effectively achieves many of the theoretical advantages of 
microkernels without introducing performance penalties. A module is an object file whose 
code can be linked to (and unlinked from) the kernel at runtime. The object code usually 
consists of a set of functions that implements a filesystem, a device driver, or other features at 
the kernel's upper layer. The module, unlike the external layers of microkernel operating 
systems, does not run as a specific process. Instead, it is executed in Kernel Mode on behalf 
of the current process, like any other statically linked kernel function. 

The main advantages of using modules include: 

Modularized approach  

Since any module can be linked and unlinked at runtime, system programmers must 
introduce well-defined software interfaces to access the data structures handled by 
modules. This makes it easy to develop new modules. 

Platform independence  

Even if it may rely on some specific hardware features, a module doesn't depend on a 
fixed hardware platform. For example, a disk driver module that relies on the SCSI 
standard works as well on an IBM-compatible PC as it does on Compaq's Alpha. 

Frugal main memory usage  

A module can be linked to the running kernel when its functionality is required and 
unlinked when it is no longer useful. This mechanism also can be made transparent to 
the user, since linking and unlinking can be performed automatically by the kernel. 

No performance penalty  

Once linked in, the object code of a module is equivalent to the object code of the 
statically linked kernel. Therefore, no explicit message passing is required when the 
functions of the module are invoked.[5]  

[5] A small performance penalty occurs when the module is linked and when it is unlinked. However, this penalty can be compared to the penalty 
caused by the creation and deletion of system processes in microkernel operating systems. 
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1.5 An Overview of the Unix Filesystem 

The Unix operating system design is centered on its filesystem, which has several interesting 
characteristics. We'll review the most significant ones, since they will be mentioned quite 
often in forthcoming chapters. 

1.5.1 Files 

A Unix file is an information container structured as a sequence of bytes; the kernel does not 
interpret the contents of a file. Many programming libraries implement higher-level 
abstractions, such as records structured into fields and record addressing based on keys. 
However, the programs in these libraries must rely on system calls offered by the kernel. 
From the user's point of view, files are organized in a tree-structured name space as shown in 
Figure 1-2. 

Figure 1-2. An example of a directory tree 

 

All the nodes of the tree, except the leaves, denote directory names. A directory node contains 
information about the files and directories just beneath it. A file or directory name consists of 
a sequence of arbitrary ASCII characters,[6] with the exception of / and of the null character \0. 
Most filesystems place a limit on the length of a filename, typically no more than 255 
characters. The directory corresponding to the root of the tree is called the root directory . By 
convention, its name is a slash (/). Names must be different within the same directory, but the 
same name may be used in different directories. 

[6] Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit extended coding of graphical characters such 
as Unicode. 

Unix associates a current working directory with each process (see Section 1.6.1 later in this 
chapter); it belongs to the process execution context, and it identifies the directory currently 
used by the process. In order to identify a specific file, the process uses a pathname, which 
consists of slashes alternating with a sequence of directory names that lead to the file. If the 
first item in the pathname is a slash, the pathname is said to be absolute, since its starting 
point is the root directory. Otherwise, if the first item is a directory name or filename, the 
pathname is said to be relative, since its starting point is the process's current directory. 

While specifying filenames, the notations "." and ".." are also used. They denote the current 
working directory and its parent directory, respectively. If the current working directory is the 
root directory, "." and ".." coincide. 
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1.5.2 Hard and Soft Links 

A filename included in a directory is called a file hard link, or more simply a link. The same 
file may have several links included in the same directory or in different ones, thus several 
filenames. 

The Unix command: 

$ ln f1 f2 

is used to create a new hard link that has the pathname f2 for a file identified by the pathname 
f1. 

Hard links have two limitations: 

• Users are not allowed to create hard links for directories. This might transform the 
directory tree into a graph with cycles, thus making it impossible to locate a file 
according to its name. 

• Links can be created only among files included in the same filesystem. This is a 
serious limitation since modern Unix systems may include several filesystems located 
on different disks and/or partitions, and users may be unaware of the physical 
divisions between them. 

In order to overcome these limitations, soft links (also called symbolic links) have been 
introduced. Symbolic links are short files that contain an arbitrary pathname of another file. 
The pathname may refer to any file located in any filesystem; it may even refer to a 
nonexistent file. 

The Unix command: 

$ ln -s f1 f2 

creates a new soft link with pathname f2 that refers to pathname f1. When this command is 
executed, the filesystem creates a soft link and writes into it the f1 pathname. It then inserts—
in the proper directory—a new entry containing the last name of the f2 pathname. In this way, 
any reference to f2 can be translated automatically into a reference to f1. 

1.5.3 File Types 

Unix files may have one of the following types: 

• Regular file 
• Directory 
• Symbolic link 
• Block-oriented device file 
• Character-oriented device file 
• Pipe and named pipe (also called FIFO) 
• Socket 
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The first three file types are constituents of any Unix filesystem. Their implementation will be 
described in detail in Chapter 17. 

Device files are related to I/O devices and device drivers integrated into the kernel. For 
example, when a program accesses a device file, it acts directly on the I/O device associated 
with that file (see Chapter 13). 

Pipes and sockets are special files used for interprocess communication (see Section 1.6.5 
later in this chapter and Chapter 18). 

1.5.4 File Descriptor and Inode 

Unix makes a clear distinction between a file and a file descriptor. With the exception of 
device and special files, each file consists of a sequence of characters. The file does not 
include any control information such as its length, or an End-Of-File (EOF) delimiter. 

All information needed by the filesystem to handle a file is included in a data structure called 
an inode. Each file has its own inode, which the filesystem uses to identify the file. 

While filesystems and the kernel functions handling them can vary widely from one Unix 
system to another, they must always provide at least the following attributes, which are 
specified in the POSIX standard: 

• File type (see previous section) 
• Number of hard links associated with the file 
• File length in bytes 
• Device ID (i.e., an identifier of the device containing the file) 
• Inode number that identifies the file within the filesystem 
• User ID of the file owner 
• Group ID of the file 
• Several timestamps that specify the inode status change time, the last access time, and 

the last modify time 
• Access rights and file mode (see next section) 

1.5.5 Access Rights and File Mode 

The potential users of a file fall into three classes: 

• The user who is the owner of the file 
• The users who belong to the same group as the file, not including the owner 
• All remaining users (others) 

There are three types of access rights, Read, Write, and Execute, for each of these three 
classes. Thus, the set of access rights associated with a file consists of nine different binary 
flags. Three additional flags, called suid (Set User ID), sgid (Set Group ID), and sticky define 
the file mode. These flags have the following meanings when applied to executable files: 

 
 
 



Understanding the Linux Kernel 

19 

suid  

A process executing a file normally keeps the User ID (UID) of the process owner. 
However, if the executable file has the suid flag set, the process gets the UID of the 
file owner. 

sgid  

A process executing a file keeps the Group ID (GID) of the process group. However, 
if the executable file has the sgid flag set, the process gets the ID of the file group. 

sticky  

An executable file with the sticky flag set corresponds to a request to the kernel to 
keep the program in memory after its execution terminates.[7]  

[7] This flag has become obsolete; other approaches based on sharing of code pages are now used (see Chapter 7). 

When a file is created by a process, its owner ID is the UID of the process. Its owner group ID 
can be either the GID of the creator process or the GID of the parent directory, depending on 
the value of the sgid flag of the parent directory. 

1.5.6 File-Handling System Calls 

When a user accesses the contents of either a regular file or a directory, he actually accesses 
some data stored in a hardware block device. In this sense, a filesystem is a user-level view of 
the physical organization of a hard disk partition. Since a process in User Mode cannot 
directly interact with the low-level hardware components, each actual file operation must be 
performed in Kernel Mode. 

Therefore, the Unix operating system defines several system calls related to file handling. 
Whenever a process wants to perform some operation on a specific file, it uses the proper 
system call and passes the file pathname as a parameter. 

All Unix kernels devote great attention to the efficient handling of hardware block devices in 
order to achieve good overall system performance. In the chapters that follow, we will 
describe topics related to file handling in Linux and specifically how the kernel reacts to file-
related system calls. In order to understand those descriptions, you will need to know how the 
main file-handling system calls are used; they are described in the next section. 

1.5.6.1 Opening a file 

Processes can access only "opened" files. In order to open a file, the process invokes the 
system call: 

fd = open(path, flag, mode) 

The three parameters have the following meanings: 
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path  

Denotes the pathname (relative or absolute) of the file to be opened. 

flag  

Specifies how the file must be opened (e.g., read, write, read/write, append). It can 
also specify whether a nonexisting file should be created. 

mode  

Specifies the access rights of a newly created file. 

This system call creates an "open file" object and returns an identifier called file descriptor . 
An open file object contains: 

• Some file-handling data structures, like a pointer to the kernel buffer memory area 
where file data will be copied; an offset field that denotes the current position in the 
file from which the next operation will take place (the so-called file pointer); and so 
on. 

• Some pointers to kernel functions that the process is enabled to invoke. The set of 
permitted functions depends on the value of the flag parameter. 

We'll discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing 
some general properties specified by the POSIX semantics: 

• A file descriptor represents an interaction between a process and an opened file, while 
an open file object contains data related to that interaction. The same open file object 
may be identified by several file descriptors. 

• Several processes may concurrently open the same file. In this case, the filesystem 
assigns a separate file descriptor to each file, along with a separate open file object. 
When this occurs, the Unix filesystem does not provide any kind of synchronization 
among the I/O operations issued by the processes on the same file. However, several 
system calls such as flock( ) are available to allow processes to synchronize 
themselves on the entire file or on portions of it (see Chapter 12). 

In order to create a new file, the process may also invoke the create( ) system call, which is 
handled by the kernel exactly like open( ). 

1.5.6.2 Accessing an opened file 

Regular Unix files can be addressed either sequentially or randomly, while device files and 
named pipes are usually accessed sequentially (see Chapter 13). In both kinds of access, the 
kernel stores the file pointer in the open file object, that is, the current position at which the 
next read or write operation will take place. 

Sequential access is implicitly assumed: the read( ) and write( ) system calls always refer 
to the position of the current file pointer. In order to modify the value, a program must 
explicitly invoke the lseek( ) system call. When a file is opened, the kernel sets the file 
pointer to the position of the first byte in the file (offset 0). 
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The lseek( ) system call requires the following parameters: 

newoffset = lseek(fd, offset, whence); 

which have the following meanings: 

fd  

Indicates the file descriptor of the opened file 

offset  

Specifies a signed integer value that will be used for computing the new position of 
the file pointer 

whence  

Specifies whether the new position should be computed by adding the offset value to 
the number (offset from the beginning of the file), the current file pointer, or the 
position of the last byte (offset from the end of the file) 

The read( ) system call requires the following parameters: 

nread = read(fd, buf, count); 

which have the following meaning: 

fd  

Indicates the file descriptor of the opened file 

buf  

Specifies the address of the buffer in the process's address space to which the data will 
be transferred 

count  

Denotes the number of bytes to be read 

When handling such a system call, the kernel attempts to read count bytes from the file 
having the file descriptor fd, starting from the current value of the opened file's offset field. In 
some cases—end-of-file, empty pipe, and so on—the kernel does not succeed in reading all 
count bytes. The returned nread value specifies the number of bytes effectively read. The file 
pointer is also updated by adding nread to its previous value. The write( ) parameters are 
similar. 
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1.5.6.3 Closing a file 

When a process does not need to access the contents of a file anymore, it can invoke the 
system call: 

res = close(fd); 

which releases the open file object corresponding to the file descriptor fd. When a process 
terminates, the kernel closes all its still opened files. 

1.5.6.4 Renaming and deleting a file 

In order to rename or delete a file, a process does not need to open it. Indeed, such operations 
do not act on the contents of the affected file, but rather on the contents of one or more 
directories. For example, the system call: 

res = rename(oldpath, newpath); 

changes the name of a file link, while the system call: 

res = unlink(pathname); 

decrements the file link count and removes the corresponding directory entry. The file is 
deleted only when the link count assumes the value 0. 

1.6 An Overview of Unix Kernels 

Unix kernels provide an execution environment in which applications may run. Therefore, the 
kernel must implement a set of services and corresponding interfaces. Applications use those 
interfaces and do not usually interact directly with hardware resources. 

1.6.1 The Process/Kernel Model 

As already mentioned, a CPU can run either in User Mode or in Kernel Mode. Actually, some 
CPUs can have more than two execution states. For instance, the Intel 80x86 microprocessors 
have four different execution states. But all standard Unix kernels make use of only Kernel 
Mode and User Mode. 

When a program is executed in User Mode, it cannot directly access the kernel data structures 
or the kernel programs. When an application executes in Kernel Mode, however, these 
restrictions no longer apply. Each CPU model provides special instructions to switch from 
User Mode to Kernel Mode and vice versa. A program executes most of the time in User 
Mode and switches to Kernel Mode only when requesting a service provided by the kernel. 
When the kernel has satisfied the program's request, it puts the program back in User Mode. 

Processes are dynamic entities that usually have a limited life span within the system. The 
task of creating, eliminating, and synchronizing the existing processes is delegated to a group 
of routines in the kernel. 

The kernel itself is not a process but a process manager. The process/kernel model assumes 
that processes that require a kernel service make use of specific programming constructs 
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called system calls. Each system call sets up the group of parameters that identifies the 
process request and then executes the hardware-dependent CPU instruction to switch from 
User Mode to Kernel Mode. 

Besides user processes, Unix systems include a few privileged processes called kernel threads 
with the following characteristics: 

• They run in Kernel Mode in the kernel address space. 
• They do not interact with users, and thus do not require terminal devices. 
• They are usually created during system startup and remain alive until the system is 

shut down. 

Notice how the process/ kernel model is somewhat orthogonal to the CPU state: on a 
uniprocessor system, only one process is running at any time and it may run either in User or 
in Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine. 
Figure 1-3 illustrates examples of transitions between User and Kernel Mode. Process 1 in 
User Mode issues a system call, after which the process switches to Kernel Mode and the 
system call is serviced. Process 1 then resumes execution in User Mode until a timer interrupt 
occurs and the scheduler is activated in Kernel Mode. A process switch takes place, and 
Process 2 starts its execution in User Mode until a hardware device raises an interrupt. As a 
consequence of the interrupt, Process 2 switches to Kernel Mode and services the interrupt. 

Figure 1-3. Transitions between User and Kernel Mode 

 

Unix kernels do much more than handle system calls; in fact, kernel routines can be activated 
in several ways: 

• A process invokes a system call. 
• The CPU executing the process signals an exception, which is some unusual condition 

such as an invalid instruction. The kernel handles the exception on behalf of the 
process that caused it. 

• A peripheral device issues an interrupt signal to the CPU to notify it of an event such 
as a request for attention, a status change, or the completion of an I/O operation. Each 
interrupt signal is dealt by a kernel program called an interrupt handler. Since 
peripheral devices operate asynchronously with respect to the CPU, interrupts occur at 
unpredictable times. 

• A kernel thread is executed; since it runs in Kernel Mode, the corresponding program 
must be considered part of the kernel, albeit encapsulated in a process. 
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1.6.2 Process Implementation 

To let the kernel manage processes, each process is represented by a process descriptor that 
includes information about the current state of the process. 

When the kernel stops the execution of a process, it saves the current contents of several 
processor registers in the process descriptor. These include: 

• The program counter (PC) and stack pointer (SP) registers 
• The general-purpose registers 
• The floating point registers 
• The processor control registers (Processor Status Word) containing information about 

the CPU state 
• The memory management registers used to keep track of the RAM accessed by the 

process 

When the kernel decides to resume executing a process, it uses the proper process descriptor 
fields to load the CPU registers. Since the stored value of the program counter points to the 
instruction following the last instruction executed, the process resumes execution from where 
it was stopped. 

When a process is not executing on the CPU, it is waiting for some event. Unix kernels 
distinguish many wait states, which are usually implemented by queues of process 
descriptors; each (possibly empty) queue corresponds to the set of processes waiting for a 
specific event. 

1.6.3 Reentrant Kernels 

All Unix kernels are reentrant : this means that several processes may be executing in Kernel 
Mode at the same time. Of course, on uniprocessor systems only one process can progress, 
but many of them can be blocked in Kernel Mode waiting for the CPU or the completion of 
some I/O operation. For instance, after issuing a read to a disk on behalf of some process, the 
kernel will let the disk controller handle it and will resume executing other processes.          
An interrupt notifies the kernel when the device has satisfied the read, so the former process 
can resume the execution. 

One way to provide reentrancy is to write functions so that they modify only local variables 
and do not alter global data structures. Such functions are called reentrant functions. But        
a reentrant kernel is not limited just to such reentrant functions (although that is how some 
real-time kernels are implemented). Instead, the kernel can include nonreentrant functions and 
use locking mechanisms to ensure that only one process can execute a nonreentrant function 
at a time. Every process in Kernel Mode acts on its own set of memory locations and cannot 
interfere with the others. 

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running 
process even if that process is in Kernel Mode. This capability is very important, since it 
improves the throughput of the device controllers that issue interrupts. Once a device has 
issued an interrupt, it waits until the CPU acknowledges it. If the kernel is able to answer 
quickly, the device controller will be able to perform other tasks while the CPU handles      
the interrupt. 
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Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel 
control path denotes the sequence of instructions executed by the kernel to handle a system 
call, an exception, or an interrupt. 

In the simplest case, the CPU executes a kernel control path sequentially from the first 
instruction to the last. When one of the following events occurs, however, the CPU interleaves 
the kernel control paths: 

• A process executing in User Mode invokes a system call and the corresponding kernel 
control path verifies that the request cannot be satisfied immediately; it then invokes 
the scheduler to select a new process to run. As a result, a process switch occurs. The 
first kernel control path is left unfinished and the CPU resumes the execution of some 
other kernel control path. In this case, the two control paths are executed on behalf of 
two different processes. 

• The CPU detects an exception—for example, an access to a page not present in 
RAM—while running a kernel control path. The first control path is suspended, and 
the CPU starts the execution of a suitable procedure. In our example, this type of 
procedure could allocate a new page for the process and read its contents from disk. 
When the procedure terminates, the first control path can be resumed. In this case, the 
two control paths are executed on behalf of the same process. 

• A hardware interrupt occurs while the CPU is running a kernel control path with the 
interrupts enabled. The first kernel control path is left unfinished and the CPU starts 
processing another kernel control path to handle the interrupt. The first kernel control 
path resumes when the interrupt handler terminates. In this case the two kernel control 
paths run in the execution context of the same process and the total elapsed system 
time is accounted to it. However, the interrupt handler doesn't necessarily operate on 
behalf of the process. 

Figure 1-4 illustrates a few examples of noninterleaved and interleaved kernel control paths. 
Three different CPU states are considered: 

• Running a process in User Mode (User) 
• Running an exception or a system call handler (Excp) 
• Running an interrupt handler (Intr) 

Figure 1-4. Interleaving of kernel control paths 
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1.6.4 Process Address Space 

Each process runs in its private address space. A process running in User Mode refers to 
private stack, data, and code areas. When running in Kernel Mode, the process addresses the 
kernel data and code area and makes use of another stack. 

Since the kernel is reentrant, several kernel control paths—each related to a different 
process—may be executed in turn. In this case, each kernel control path refers to its own 
private kernel stack. 

While it appears to each process that it has access to a private address space, there are times 
when part of the address space is shared among processes. In some cases this sharing is 
explicitly requested by processes; in others it is done automatically by the kernel to reduce 
memory usage. 

If the same program, say an editor, is needed simultaneously by several users, the program 
will be loaded into memory only once, and its instructions can be shared by all of the users 
who need it. Its data, of course, must not be shared, because each user will have separate data. 
This kind of shared address space is done automatically by the kernel to save memory. 

Processes can also share parts of their address space as a kind of interprocess communication, 
using the "shared memory" technique introduced in System V and supported by Linux. 

Finally, Linux supports the mmap( ) system call, which allows part of a file or the memory 
residing on a device to be mapped into a part of a process address space. Memory mapping 
can provide an alternative to normal reads and writes for transferring data. If the same file is 
shared by several processes, its memory mapping is included in the address space of each of 
the processes that share it. 

1.6.5 Synchronization and Critical Regions 

Implementing a reentrant kernel requires the use of synchronization: if a kernel control path is 
suspended while acting on a kernel data structure, no other kernel control path will be allowed 
to act on the same data structure unless it has been reset to a consistent state. Otherwise, the 
interaction of the two control paths could corrupt the stored information. 

For example, let's suppose that a global variable V contains the number of available items of 
some system resource. A first kernel control path A reads the variable and determines that 
there is just one available item. At this point, another kernel control path B is activated and 
reads the same variable, which still contains the value 1. Thus, B decrements V and starts 
using the resource item. Then A resumes the execution; because it has already read the value 
of V, it assumes that it can decrement V and take the resource item, which B already uses. As 
a final result, V contains -1, and two kernel control paths are using the same resource item 
with potentially disastrous effects. 

When the outcome of some computation depends on how two or more processes are 
scheduled, the code is incorrect: we say that there is a race condition. 

In general, safe access to a global variable is ensured by using atomic operations. In the 
previous example, data corruption would not be possible if the two control paths read and 
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decrement V with a single, noninterruptible operation. However, kernels contain many data 
structures that cannot be accessed with a single operation. For example, it usually isn't 
possible to remove an element from a linked list with a single operation, because the kernel 
needs to access at least two pointers at once. Any section of code that should be finished by 
each process that begins it before another process can enter it is called a critical region.[8]  

[8] Synchronization problems have been fully described in other works; we refer the interested reader to books on the Unix operating systems (see the 
bibliography near the end of the book). 

These problems occur not only among kernel control paths but also among processes sharing 
common data. Several synchronization techniques have been adopted. The following section 
will concentrate on how to synchronize kernel control paths. 

1.6.5.1 Nonpreemptive kernels 

In search of a drastically simple solution to synchronization problems, most traditional Unix 
kernels are nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily 
suspended and substituted with another process. Therefore, on a uniprocessor system all 
kernel data structures that are not updated by interrupts or exception handlers are safe for the 
kernel to access. 

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case it 
must ensure that all data structures are left in a consistent state. Moreover, when it resumes its 
execution, it must recheck the value of any previously accessed data structures that could be 
changed. 

Nonpreemptability is ineffective in multiprocessor systems, since two kernel control paths 
running on different CPUs could concurrently access the same data structure. 

1.6.5.2 Interrupt disabling 

Another synchronization mechanism for uniprocessor systems consists of disabling all 
hardware interrupts before entering a critical region and reenabling them right after leaving it. 
This mechanism, while simple, is far from optimal. If the critical region is large, interrupts 
can remain disabled for a relatively long time, potentially causing all hardware activities to 
freeze. 

Moreover, on a multiprocessor system this mechanism doesn't work at all. There is no way to 
ensure that no other CPU can access the same data structures updated in the protected critical 
region. 

1.6.5.3 Semaphores 

A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies 
on the use of semaphores. A semaphore is simply a counter associated with a data structure; 
the semaphore is checked by all kernel threads before they try to access the data structure. 
Each semaphore may be viewed as an object composed of: 

• An integer variable 
• A list of waiting processes 
• Two atomic methods: down( ) and up( ) 
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The down( ) method decrements the value of the semaphore. If the new value is less than 0, 
the method adds the running process to the semaphore list and then blocks (i.e., invokes the 
scheduler). The up( ) method increments the value of the semaphore and, if its new value is 
greater than or equal to 0, reactivates one or more processes in the semaphore list. 

Each data structure to be protected has its own semaphore, which is initialized to 1. When a 
kernel control path wishes to access the data structure, it executes the down( ) method on the 
proper semaphore. If the value of the new semaphore isn't negative, access to the data 
structure is granted. Otherwise, the process that is executing the kernel control path is added 
to the semaphore list and blocked. When another process executes the up( ) method on that 
semaphore, one of the processes in the semaphore list is allowed to proceed. 

1.6.5.4 Spin locks 

In multiprocessor systems, semaphores are not always the best solution to the synchronization 
problems. Some kernel data structures should be protected from being concurrently accessed 
by kernel control paths that run on different CPUs. In this case, if the time required to update 
the data structure is short, a semaphore could be very inefficient. To check a semaphore, the 
kernel must insert a process in the semaphore list and then suspend it. Since both operations 
are relatively expensive, in the time it takes to complete them, the other kernel control path 
could have already released the semaphore. 

In these cases, multiprocessor operating systems make use of spin locks. A spin lock is very 
similar to a semaphore, but it has no process list: when a process finds the lock closed by 
another process, it "spins" around repeatedly, executing a tight instruction loop until the lock 
becomes open. 

Of course, spin locks are useless in a uniprocessor environment. When a kernel control path 
tries to access a locked data structure, it starts an endless loop. Therefore, the kernel control 
path that is updating the protected data structure would not have a chance to continue the 
execution and release the spin lock. The final result is that the system hangs. 

1.6.5.5 Avoiding deadlocks 

Processes or kernel control paths that synchronize with other control paths may easily enter in 
a deadlocked state. The simplest case of deadlock occurs when process p1 gains access to data 
structure a and process p2 gains access to b, but p1 then waits for b and p2 waits for a. Other 
more complex cyclic waitings among groups of processes may also occur. Of course, a 
deadlock condition causes a complete freeze of the affected processes or kernel control paths. 

As far as kernel design is concerned, deadlock becomes an issue when the number of kernel 
semaphore types used is high. In this case, it may be quite difficult to ensure that no deadlock 
state will ever be reached for all possible ways to interleave kernel control paths. Several 
operating systems, including Linux, avoid this problem by introducing a very limited number 
of semaphore types and by requesting semaphores in an ascending order. 
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1.6.6 Signals and Interprocess Communication 

Unix signals provide a mechanism for notifying processes of system events. Each event has 
its own signal number, which is usually referred to by a symbolic constant such as SIGTERM. 
There are two kinds of system events: 

Asynchronous notifications  

For instance, a user can send the interrupt signal SIGTERM to a foreground process by 
pressing the interrupt keycode (usually, CTRL-C) at the terminal. 

Synchronous errors or exceptions  

For instance, the kernel sends the signal SIGSEGV to a process when it accesses a 
memory location at an illegal address. 

The POSIX standard defines about 20 different signals, two of which are user-definable and 
may be used as a primitive mechanism for communication and synchronization among 
processes in User Mode. In general, a process may react to a signal reception in two possible 
ways: 

• Ignore the signal. 
• Asynchronously execute a specified procedure (the signal handler). 

If the process does not specify one of these alternatives, the kernel performs a default action 
that depends on the signal number. The five possible default actions are: 

• Terminate the process. 
• Write the execution context and the contents of the address space in a file (core dump) 

and terminate the process. 
• Ignore the signal. 
• Suspend the process. 
• Resume the process's execution, if it was stopped. 

Kernel signal handling is rather elaborate since the POSIX semantics allows processes to 
temporarily block signals. Moreover, a few signals such as SIGKILL cannot be directly 
handled by the process and cannot be ignored. 

AT&T's Unix System V introduced other kinds of interprocess communication among 
processes in User Mode, which have been adopted by many Unix kernels: semaphores, 
message queues, and shared memory. They are collectively known as System V IPC. 

The kernel implements these constructs as IPC resources: a process acquires a resource by 
invoking a shmget( ), semget( ), or msgget( ) system call. Just like files, IPC resources 
are persistent: they must be explicitly deallocated by the creator process, by the current 
owner, or by a superuser process. 

Semaphores are similar to those described in Section 1.6.5 earlier in this chapter, except that 
they are reserved for processes in User Mode. Message queues allow processes to exchange 
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messages by making use of the msgsnd( ) and msgget( ) system calls, which respectively 
insert a message into a specific message queue and extract a message from it. 

Shared memory provides the fastest way for processes to exchange and share data. A process 
starts by issuing a shmget( ) system call to create a new shared memory having a required 
size. After obtaining the IPC resource identifier, the process invokes the shmat( ) system 
call, which returns the starting address of the new region within the process address space. 
When the process wishes to detach the shared memory from its address space, it invokes the 
shmdt( ) system call. The implementation of shared memory depends on how the kernel 
implements process address spaces. 

1.6.7 Process Management 

Unix makes a neat distinction between the process and the program it is executing. To that 
end, the fork( ) and exit( ) system calls are used respectively to create a new process and 
to terminate it, while an exec( )-like system call is invoked to load a new program. After 
such a system call has been executed, the process resumes execution with a brand new 
address space containing the loaded program. 

The process that invokes a fork( ) is the parent while the new process is its child . Parents 
and children can find each other because the data structure describing each process includes a 
pointer to its immediate parent and pointers to all its immediate children. 

A naive implementation of the fork( ) would require both the parent's data and the parent's 
code to be duplicated and assign the copies to the child. This would be quite time-consuming. 
Current kernels that can rely on hardware paging units follow the Copy-On-Write approach, 
which defers page duplication until the last moment (i.e., until the parent or the child is 
required to write into a page). We shall describe how Linux implements this technique in 
Section 7.4.4 in Chapter 7. 

The exit( ) system call terminates a process. The kernel handles this system call by 
releasing the resources owned by the process and sending the parent process a SIGCHLD 
signal, which is ignored by default. 

1.6.7.1 Zombie processes 

How can a parent process inquire about termination of its children? The wait( ) system call 
allows a process to wait until one of its children terminates; it returns the process ID (PID) of 
the terminated child. 

When executing this system call, the kernel checks whether a child has already terminated. A 
special zombie process state is introduced to represent terminated processes: a process 
remains in that state until its parent process executes a wait( ) system call on it. The system 
call handler extracts some data about resource usage from the process descriptor fields; the 
process descriptor may be released once the data has been collected. If no child process has 
already terminated when the wait( ) system call is executed, the kernel usually puts the 
process in a wait state until a child terminates. 

Many kernels also implement a waitpid( ) system call, which allows a process to wait for a 
specific child process. Other variants of wait( ) system calls are also quite common. 
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It's a good practice for the kernel to keep around information on a child process until the 
parent issues its wait( ) call, but suppose the parent process terminates without issuing that 
call? The information takes up valuable memory slots that could be used to serve living 
processes. For example, many shells allow the user to start a command in the background and 
then log out. The process that is running the command shell terminates, but its children 
continue their execution. 

The solution lies in a special system process called init that is created during system 
initialization. When a process terminates, the kernel changes the appropriate process 
descriptor pointers of all the existing children of the terminated process to make them become 
children of init. This process monitors the execution of all its children and routinely issues 
wait( ) system calls, whose side effect is to get rid of all zombies. 

1.6.7.2 Process groups and login sessions 

Modern Unix operating systems introduce the notion of process groups to represent a "job" 
abstraction. For example, in order to execute the command line: 

$ ls | sort | more 

a shell that supports process groups, such as bash, creates a new group for the three processes 
corresponding to ls, sort, and more. In this way, the shell acts on the three processes as if 
they were a single entity (the job, to be precise). Each process descriptor includes a process 
group ID field. Each group of processes may have a group leader, which is the process whose 
PID coincides with the process group ID. A newly created process is initially inserted into the 
process group of its parent. 

Modern Unix kernels also introduce login sessions. Informally, a login session contains all 
processes that are descendants of the process that has started a working session on a specific 
terminal—usually, the first command shell process created for the user. All processes in a 
process group must be in the same login session. A login session may have several process 
groups active simultaneously; one of these process groups is always in the foreground, which 
means that it has access to the terminal. The other active process groups are in the 
background. When a background process tries to access the terminal, it receives a SIGTTIN or 
SIGTTOUT signal. In many command shells the internal commands bg and fg can be used to 
put a process group in either the background or the foreground. 

1.6.8 Memory Management 

Memory management is by far the most complex activity in a Unix kernel. We shall dedicate 
more than a third of this book just to describing how Linux does it. This section illustrates 
some of the main issues related to memory management. 

1.6.8.1 Virtual memory 

All recent Unix systems provide a useful abstraction called virtual memory. Virtual memory 
acts as a logical layer between the application memory requests and the hardware Memory 
Management Unit (MMU). Virtual memory has many purposes and advantages: 
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• Several processes can be executed concurrently. 
• It is possible to run applications whose memory needs are larger than the available 

physical memory. 
• Processes can execute a program whose code is only partially loaded in memory. 
• Each process is allowed to access a subset of the available physical memory. 
• Processes can share a single memory image of a library or program. 
• Programs can be relocatable, that is, they can be placed anywhere in physical memory. 
• Programmers can write machine-independent code, since they do not need to be 

concerned about physical memory organization. 

The main ingredient of a virtual memory subsystem is the notion of virtual address space. 
The set of memory references that a process can use is different from physical memory 
addresses. When a process uses a virtual address,[9] the kernel and the MMU cooperate to 
locate the actual physical location of the requested memory item. 

[9] These addresses have different nomenclatures depending on the computer architecture. As we'll see in Chapter 2, Intel 80x86 manuals refer to them 
as "logical addresses." 

Today's CPUs include hardware circuits that automatically translate the virtual addresses into 
physical ones. To that end, the available RAM is partitioned into page frames 4 or 8 KB in 
length, and a set of page tables is introduced to specify the correspondence between virtual 
and physical addresses. These circuits make memory allocation simpler, since a request for a 
block of contiguous virtual addresses can be satisfied by allocating a group of page frames 
having noncontiguous physical addresses. 

1.6.8.2 Random access memory usage 

All Unix operating systems clearly distinguish two portions of the random access memory 
(RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel code and 
the kernel static data structures). The remaining portion of RAM is usually handled by the 
virtual memory system and is used in three possible ways: 

• To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data 
structures 

• To satisfy process requests for generic memory areas and for memory mapping of files 
• To get better performance from disks and other buffered devices by means of caches 

Each request type is valuable. On the other hand, since the available RAM is limited, some 
balancing among request types must be done, particularly when little available memory is left. 
Moreover, when some critical threshold of available memory is reached and a page-frame-
reclaiming algorithm is invoked to free additional memory, which are the page frames most 
suitable for reclaiming? As we shall see in Chapter 16, there is no simple answer to this 
question and very little support from theory. The only available solution lies in developing 
carefully tuned empirical algorithms. 

One major problem that must be solved by the virtual memory system is memory 
fragmentation . Ideally, a memory request should fail only when the number of free page 
frames is too small. However, the kernel is often forced to use physically contiguous memory 
areas, hence the memory request could fail even if there is enough memory available but it is 
not available as one contiguous chunk. 
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1.6.8.3 Kernel Memory Allocator 

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for 
memory areas from all parts of the system. Some of these requests will come from other 
kernel subsystems needing memory for kernel use, and some requests will come via system 
calls from user programs to increase their processes' address spaces. A good KMA should 
have the following features: 

• It must be fast. Actually, this is the most crucial attribute, since it is invoked by all 
kernel subsystems (including the interrupt handlers). 

• It should minimize the amount of wasted memory. 
• It should try to reduce the memory fragmentation problem. 
• It should be able to cooperate with the other memory management subsystems in order 

to borrow and release page frames from them. 

Several kinds of KMAs have been proposed, which are based on a variety of different 
algorithmic techniques, including: 

• Resource map allocator 
• Power-of-two free lists 
• McKusick-Karels allocator 
• Buddy system 
• Mach's Zone allocator 
• Dynix allocator 
• Solaris's Slab allocator 

As we shall see in Chapter 6, Linux's KMA uses a Slab allocator on top of a Buddy system. 

1.6.8.4 Process virtual address space handling 

The address space of a process contains all the virtual memory addresses that the process is 
allowed to reference. The kernel usually stores a process virtual address space as a list of 
memory area descriptors. For example, when a process starts the execution of some program 
via an exec( )-like system call, the kernel assigns to the process a virtual address space that 
comprises memory areas for: 

• The executable code of the program 
• The initialized data of the program 
• The uninitialized data of the program 
• The initial program stack (that is, the User Mode stack) 
• The executable code and data of needed shared libraries 
• The heap (the memory dynamically requested by the program) 

All recent Unix operating systems adopt a memory allocation strategy called demand paging. 
With demand paging, a process can start program execution with none of its pages in physical 
memory. As it accesses a nonpresent page, the MMU generates an exception; the exception 
handler finds the affected memory region, allocates a free page, and initializes it with the 
appropriate data. In a similar fashion, when the process dynamically requires some memory 
by using malloc( ) or the brk( ) system call (which is invoked internally by malloc( )), 
the kernel just updates the size of the heap memory region of the process. A page frame is 
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assigned to the process only when it generates an exception by trying to refer its virtual 
memory addresses. 

Virtual address spaces also allow other efficient strategies, such as the Copy-On-Write 
strategy mentioned earlier. For example, when a new process is created, the kernel just 
assigns the parent's page frames to the child address space, but it marks them read only. An 
exception is raised as soon the parent or the child tries to modify the contents of a page. The 
exception handler assigns a new page frame to the affected process and initializes it with the 
contents of the original page. 

1.6.8.5 Swapping and caching 

In order to extend the size of the virtual address space usable by the processes, the Unix 
operating system makes use of swap areas on disk. The virtual memory system regards the 
contents of a page frame as the basic unit for swapping. Whenever some process refers to a 
swapped-out page, the MMU raises an exception. The exception handler then allocates a new 
page frame and initializes the page frame with its old contents saved on disk. 

On the other hand, physical memory is also used as cache for hard disks and other block 
devices. This is because hard drives are very slow: a disk access requires several milliseconds, 
which is a very long time compared with the RAM access time. Therefore, disks are often the 
bottleneck in system performance. As a general rule, one of the policies already implemented 
in the earliest Unix system is to defer writing to disk as long as possible by loading into RAM 
a set of disk buffers corresponding to blocks read from disk. The sync( ) system call forces 
disk synchronization by writing all of the "dirty" buffers (i.e., all the buffers whose contents 
differ from that of the corresponding disk blocks) into disk. In order to avoid data loss, all 
operating systems take care to periodically write dirty buffers back to disk. 

1.6.9 Device Drivers  

The kernel interacts with I/O devices by means of device drivers. Device drivers are included 
in the kernel and consist of data structures and functions that control one or more devices, 
such as hard disks, keyboards, mouses, monitors, network interfaces, and devices connected 
to a SCSI bus. Each driver interacts with the remaining part of the kernel (even with other 
drivers) through a specific interface. This approach has the following advantages: 

• Device-specific code can be encapsulated in a specific module. 
• Vendors can add new devices without knowing the kernel source code: only the 

interface specifications must be known. 
• The kernel deals with all devices in a uniform way and accesses them through the 

same interface. 
• It is possible to write a device driver as a module that can be dynamically loaded in the 

kernel without requiring the system to be rebooted. It is also possible to dynamically 
unload a module that is no longer needed, thus minimizing the size of the kernel image 
stored in RAM. 

Figure 1-5 illustrates how device drivers interface with the rest of the kernel and with the 
processes. Some user programs (P) wish to operate on hardware devices. They make requests 
to the kernel using the usual file-related system calls and the device files normally found in 
the /dev directory. Actually, the device files are the user-visible portion of the device driver 
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interface. Each device file refers to a specific device driver, which is invoked by the kernel in 
order to perform the requested operation on the hardware component. 

Figure 1-5. Device driver interface 

 

It is worth mentioning that at the time Unix was introduced graphical terminals were 
uncommon and expensive, and thus only alphanumeric terminals were handled directly by 
Unix kernels. When graphical terminals became widespread, ad hoc applications such as the 
X Window System were introduced that ran as standard processes and accessed the I/O ports 
of the graphics interface and the RAM video area directly. Some recent Unix kernels, such as 
Linux 2.2, include limited support for some frame buffer devices, thus allowing a program to 
access the local memory inside a video card through a device file. 
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Chapter 2. Memory Addressing 
This chapter deals with addressing techniques. Luckily, an operating system is not forced to 
keep track of physical memory all by itself; today's microprocessors include several hardware 
circuits to make memory management both more efficient and more robust in case of 
programming errors. 

As in the rest of this book, we offer details in this chapter on how Intel 80x86 
microprocessors address memory chips and how Linux makes use of the available addressing 
circuits. You will find, we hope, that when you learn the implementation details on Linux's 
most popular platform you will better understand both the general theory of paging and how 
to research the implementation on other platforms. 

This is the first of three chapters related to memory management: Chapter 6, discusses how 
the kernel allocates main memory to itself, while Chapter 7, considers how linear addresses 
are assigned to processes. 

2.1 Memory Addresses 

Programmers casually refer to a memory address as the way to access the contents of              
a memory cell. But when dealing with Intel 80x86 microprocessors, we have to distinguish 
among three kinds of addresses: 

Logical address  

Included in the machine language instructions to specify the address of an operand or 
of an instruction. This type of address embodies the well-known Intel segmented 
architecture that forces MS-DOS and Windows programmers to divide their programs 
into segments. Each logical address consists of a segment and an offset (or 
displacement) that denotes the distance from the start of the segment to the actual 
address. 

Linear address  

A single 32-bit unsigned integer that can be used to address up to 4 GB, that is, up to 
4,294,967,296 memory cells. Linear addresses are usually represented in hexadecimal 
notation; their values range from 0x00000000 to 0xffffffff. 

Physical address  

Used to address memory cells included in memory chips. They correspond to the 
electrical signals sent along the address pins of the microprocessor to the memory bus. 
Physical addresses are represented as 32-bit unsigned integers. 

The CPU control unit transforms a logical address into a linear address by means of a 
hardware circuit called a segmentation unit; successively, a second hardware circuit called a 
paging unit transforms the linear address into a physical address (see Figure 2-1). 
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Figure 2-1. Logical address translation 

 

2.2 Segmentation in Hardware 

Starting with the 80386 model, Intel microprocessors perform address translation in two 
different ways called real mode and protected mode. Real mode exists mostly to maintain 
processor compatibility with older models and to allow the operating system to bootstrap (see 
Appendix A, for a short description of real mode). We shall thus focus our attention on 
protected mode. 

2.2.1 Segmentation Registers 

A logical address consists of two parts: a segment identifier and an offset that specifies the 
relative address within the segment. The segment identifier is a 16-bit field called Segment 
Selector, while the offset is a 32-bit field. 

To make it easy to retrieve segment selectors quickly, the processor provides segmentation 
registers whose only purpose is to hold Segment Selectors; these registers are called cs, ss, 
ds, es, fs, and gs. Although there are only six of them, a program can reuse the same 
segmentation register for different purposes by saving its content in memory and then 
restoring it later. 

Three of the six segmentation registers have specific purposes: 

cs  

The code segment register, which points to a segment containing program instructions 

ss  

The stack segment register, which points to a segment containing the current program 
stack 

ds  

The data segment register, which points to a segment containing static and external 
data 

The remaining three segmentation registers are general purpose and may refer to arbitrary 
segments. 

The cs register has another important function: it includes a 2-bit field that specifies the 
Current Privilege Level (CPL) of the CPU. The value denotes the highest privilege level, while 
the value 3 denotes the lowest one. Linux uses only levels and 3, which are respectively called 
Kernel Mode and User Mode. 



Understanding the Linux Kernel 

38 

2.2.2 Segment Descriptors 

Each segment is represented by an 8-byte Segment Descriptor (see Figure 2-2) that describes 
the segment characteristics. Segment Descriptors are stored either in the Global Descriptor 
Table (GDT ) or in the Local Descriptor Table (LDT ). 

Figure 2-2. Segment Descriptor format 

 

Usually only one GDT is defined, while each process may have its own LDT. The address of 
the GDT in main memory is contained in the gdtr processor register and the address of the 
currently used LDT is contained in the ldtr processor register. 

Each Segment Descriptor consists of the following fields: 

• A 32-bit Base field that contains the linear address of the first byte of the segment. 
• A G granularity flag: if it is cleared, the segment size is expressed in bytes; otherwise, 

it is expressed in multiples of 4096 bytes. 
• A 20-bit Limit field that denotes the segment length in bytes. If G is set to 0, the size 

of a non-null segment may vary between 1 byte and 1 MB; otherwise, it may vary 
between 4 KB and 4 GB. 

• An S system flag: if it is cleared, the segment is a system segment that stores kernel 
data structures; otherwise, it is a normal code or data segment. 

• A 4-bit Type field that characterizes the segment type and its access rights. The 
following Segment Descriptor types are widely used: 

Code Segment Descriptor  

Indicates that the Segment Descriptor refers to a code segment; it may be included 
either in the GDT or in the LDT. The descriptor has the S flag set. 
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Data Segment Descriptor  

Indicates that the Segment Descriptor refers to a data segment; it may be included 
either in the GDT or in the LDT. The descriptor has the S flag set. Stack segments are 
implemented by means of generic data segments. 

Task State Segment Descriptor (TSSD)  

Indicates that the Segment Descriptor refers to a Task State Segment (TSS), that is,  
a segment used to save the contents of the processor registers (see Section 3.2.2 in 
Chapter 3); it can appear only in the GDT. The corresponding Type field has the value 
11 or 9, depending on whether the corresponding process is currently executing on the 
CPU. The S flag of such descriptors is set to 0. 

Local Descriptor Table Descriptor (LDTD)  

Indicates that the Segment Descriptor refers to a segment containing an LDT; it can 
appear only in the GDT. The corresponding Type field has the value 2. The S flag of 
such descriptors is set to 0. 

• A DPL (Descriptor Privilege Level ) 2-bit field used to restrict accesses to the segment. 
It represents the minimal CPU privilege level requested for accessing the segment. 
Therefore, a segment with its DPL set to is accessible only when the CPL is 0, that is, in 
Kernel Mode, while a segment with its DPL set to 3 is accessible with every CPL value. 

• A Segment-Present flag that is set to if the segment is currently not stored in main 
memory. Linux always sets this field to 1, since it never swaps out whole segments to 
disk. 

• An additional flag called D or B depending on whether the segment contains code or 
data. Its meaning is slightly different in the two cases, but it is basically set if the 
addresses used as segment offsets are 32 bits long and it is cleared if they are 16 bits 
long (see the Intel manual for further details). 

• A reserved bit (bit 53) always set to 0. 
• An AVL flag that may be used by the operating system but is ignored in Linux. 

2.2.3 Segment Selectors  

To speed up the translation of logical addresses into linear addresses, the Intel processor 
provides an additional nonprogrammable register—that is, a register that cannot be set by a 
programmer—for each of the six programmable segmentation registers. Each 
nonprogrammable register contains the 8-byte Segment Descriptor (described in the previous 
section) specified by the Segment Selector contained in the corresponding segmentation 
register. Every time a Segment Selector is loaded in a segmentation register, the 
corresponding Segment Descriptor is loaded from memory into the matching 
nonprogrammable CPU register. From then on, translations of logical addresses referring to 
that segment can be performed without accessing the GDT or LDT stored in main memory; 
the processor can just refer directly to the CPU register containing the Segment Descriptor. 
Accesses to the GDT or LDT are necessary only when the contents of the segmentation 
register change (see Figure 2-3). Each Segment Selector includes the following fields: 
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• A 13-bit index (described further in the text following this list) that identifies the 
corresponding Segment Descriptor entry contained in the GDT or in the LDT 

• A TI (Table Indicator) flag that specifies whether the Segment Descriptor is included 
in the GDT (TI = 0) or in the LDT (TI = 1) 

• An RPL (Requestor Privilege Level ) 2-bit field, which is precisely the Current 
Privilege Level of the CPU when the corresponding Segment Selector is loaded into 
the cs register[1]  

[1] The RPL field may also be used to selectively weaken the processor privilege level when accessing data segments; see Intel documentation for 
details. 

Figure 2-3. Segment Selector and Segment Descriptor 

 

Since a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT is 
obtained by multiplying the most significant 13 bits of the Segment Selector by 8. For 
instance, if the GDT is at 0x00020000 (the value stored in the gdtr register) and the index 
specified by the Segment Selector is 2, the address of the corresponding Segment Descriptor 
is 0x00020000 + (2 x 8), or 0x00020010. 

The first entry of the GDT is always set to 0: this ensures that logical addresses with a null 
Segment Selector will be considered invalid, thus causing a processor exception. The 
maximum number of Segment Descriptors that can be stored in the GDT is thus 8191, that is, 
213-1. 

2.2.4 Segmentation Unit 

Figure 2-4 shows in detail how a logical address is translated into a corresponding linear 
address. The segmentation unit performs the following operations: 

• Examines the TI field of the Segment Selector, in order to determine which Descriptor 
Table stores the Segment Descriptor. This field indicates that the Descriptor is either 
in the GDT (in which case the segmentation unit gets the base linear address of the 
GDT from the gdtr register) or in the active LDT (in which case the segmentation 
unit gets the base linear address of that LDT from the ldtr register). 

• Computes the address of the Segment Descriptor from the index field of the Segment 
Selector. The index field is multiplied by 8 (the size of a Segment Descriptor), and the 
result is added to the content of the gdtr or ldtr register. 

• Adds to the Base field of the Segment Descriptor the offset of the logical address, thus 
obtains the linear address. 
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Figure 2-4. Translating a logical address 

 

Notice that, thanks to the nonprogrammable registers associated with the segmentation 
registers, the first two operations need to be performed only when a segmentation register has 
been changed. 

2.3 Segmentation in Linux 

Segmentation has been included in Intel microprocessors to encourage programmers to split 
their applications in logically related entities, such as subroutines or global and local data 
areas. However, Linux uses segmentation in a very limited way. In fact, segmentation and 
paging are somewhat redundant since both can be used to separate the physical address spaces 
of processes: segmentation can assign a different linear address space to each process while 
paging can map the same linear address space into different physical address spaces. Linux 
prefers paging to segmentation for the following reasons: 

• Memory management is simpler when all processes use the same segment register 
values, that is, when they share the same set of linear addresses. 

• One of the design objectives of Linux is portability to the most popular architectures; 
however, several RISC processors support segmentation in a very limited way. 

The 2.2 version of Linux uses segmentation only when required by the Intel 80x86 
architecture. In particular, all processes use the same logical addresses, so the total number of 
segments to be defined is quite limited and it is possible to store all Segment Descriptors in 
the Global Descriptor Table (GDT). This table is implemented by the array gdt_table 
referred by the gdt variable. If you look in the Source Code Index, you can see that these 
symbols are defined in the file arch/i386/kernel/head.S. Every macro, function, and other 
symbol in this book is listed in the appendix so you can quickly find it in the source code. 

Local Descriptor Tables are not used by the kernel, although a system call exists that allows 
processes to create their own LDTs. This turns out to be useful to applications such as Wine 
that execute segment-oriented Microsoft Windows applications. 
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Here are the segments used by Linux: 

• A kernel code segment. The fields of the corresponding Segment Descriptor in the 
GDT have the following values: 

o Base = 0x00000000 
o Limit = 0xfffff 
o G (granularity flag) = 1, for segment size expressed in pages 
o S (system flag) = 1, for normal code or data segment 
o Type = 0xa, for code segment that can be read and executed 
o DPL (Descriptor Privilege Level) = 0, for Kernel Mode 
o D/B (32-bit address flag) = 1, for 32-bit offset addresses 

Thus, the linear addresses associated with that segment start at and reach the 
addressing limit of 232 - 1. The S and Type fields specify that the segment is a code 
segment that can be read and executed. Its DPL value is 0, thus it can be accessed only 
in Kernel Mode. The corresponding Segment Selector is defined by the __KERNEL_CS 
macro: in order to address the segment, the kernel just loads the value yielded by the 
macro into the cs register. 

• A kernel data segment. The fields of the corresponding Segment Descriptor in the 
GDT have the following values: 

o Base = 0x00000000 
o Limit = 0xfffff 
o G (granularity flag) = 1, for segment size expressed in pages 
o S (system flag) = 1, for normal code or data segment 
o Type = 2, for data segment that can be read and written 
o DPL (Descriptor Privilege Level) = 0, for Kernel Mode 
o D/B (32-bit address flag) = 1, for 32-bit offset addresses 

This segment is identical to the previous one (in fact, they overlap in the linear address 
space) except for the value of the Type field, which specifies that it is a data segment 
that can be read and written. The corresponding Segment Selector is defined by the 
__KERNEL_DS macro. 

• A user code segment shared by all processes in User Mode. The fields of the 
corresponding Segment Descriptor in the GDT have the following values: 

o Base = 0x00000000 
o Limit = 0xfffff 
o G (granularity flag) = 1, for segment size expressed in pages 
o S (system flag) = 1, for normal code or data segment 
o Type = 0xa, for code segment that can be read and executed 
o DPL (Descriptor Privilege Level) = 3, for User Mode 
o D/B (32-bit address flag) = 1, for 32-bit offset addresses 

The S and DPL fields specify that the segment is not a system segment and that its 
privilege level is equal to 3; it can thus be accessed both in Kernel Mode and in User 
Mode. The corresponding Segment Selector is defined by the __USER_CS macro. 
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• A user data segment shared by all processes in User Mode. The fields of the 
corresponding Segment Descriptor in the GDT have the following values: 

o Base = 0x00000000 
o Limit = 0xfffff 
o G (granularity flag) = 1, for segment size expressed in pages 
o S (system flag) = 1, for normal code or data segment 
o Type = 2, for data segment that can be read and written 
o DPL (Descriptor Privilege Level) = 3, for User Mode 
o D/B (32-bit address flag) = 1, for 32-bit offset addresses 

This segment overlaps the previous one: they are identical, except for the value of 
Type. The corresponding Segment Selector is defined by the __USER_DS macro. 

• A Task State Segment (TSS) segment for each process. The descriptors of these 
segments are stored in the GDT. The Base field of the TSS descriptor associated with 
each process contains the address of the tss field of the corresponding process 
descriptor. The G flag is cleared, while the Limit field is set to 0xeb, since the TSS 
segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit TSS), and 
the DPL is set to 0, since processes in User Mode are not allowed to access TSS 
segments. 

• A default LDT segment that is usually shared by all processes. This segment is stored 
in the default_ldt variable. The default LDT includes a single entry consisting of a 
null Segment Descriptor. Each process has its own LDT Segment Descriptor, which 
usually points to the common default LDT segment. The Base field is set to the 
address of default_ldt and the Limit field is set to 7. If a process requires a real 
LDT, a new 4096-byte segment is created (it can include up to 511 Segment 
Descriptors), and the default LDT Segment Descriptor associated with that process is 
replaced in the GDT with a new descriptor with specific values for the Base and 
Limit fields. 

For each process, therefore, the GDT contains two different Segment Descriptors: one for the 
TSS segment and one for the LDT segment. The maximum number of entries allowed in the 
GDT is 12+2xNR_TASKS, where, in turn, NR_TASKS denotes the maximum number of 
processes. In the previous list we described the six main Segment Descriptors used by Linux. 
Four additional Segment Descriptors cover Advanced Power Management (APM) features, 
and four entries of the GDT are left unused, for a grand total of 14. 

As we mentioned before, the GDT can have at most 213 = 8192 entries, of which the first is 
always null. Since 14 are either unused or filled by the system, NR_TASKS cannot be larger 
than 8180/2 = 4090. 

The TSS and LDT descriptors for each process are added to the GDT as the process is 
created. As we shall see in Section 3.3.2 in Chapter 3, the kernel itself spawns the first 
process: process running init_task . During kernel initialization, the trap_init( ) 
function inserts the TSS descriptor of this first process into the GDT using the statement: 

set_tss_desc(0, &init_task.tss); 

The first process creates others, so that every subsequent process is the child of some existing 
process. The copy_thread( ) function, which is invoked from the clone( ) and fork( ) 
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system calls to create new processes, executes the same function in order to set the TSS of the 
new process: 

set_tss_desc(nr, &(task[nr]->tss)); 

Since each TSS descriptor refers to a different process, of course, each Base field has a 
different value. The copy_thread( ) function also invokes the set_ldt_desc( ) function 
in order to insert a Segment Descriptor in the GDT relative to the default LDT for the new 
process. 

The kernel data segment includes a process descriptor for each process. Each process 
descriptor includes its own TSS segment and a pointer to its LDT segment, which is also 
located inside the kernel data segment. 

As stated earlier, the Current Privilege Level of the CPU reflects whether the processor is in 
User or Kernel Mode and is specified by the RPL field of the Segment Selector stored in the 
cs register. Whenever the Current Privilege Level is changed, some segmentation registers 
must be correspondingly updated. For instance, when the CPL is equal to 3 (User Mode), the 
ds register must contain the Segment Selector of the user data segment, but when the CPL is 
equal to 0, the ds register must contain the Segment Selector of the kernel data segment. 

A similar situation occurs for the ss register: it must refer to a User Mode stack inside the 
user data segment when the CPL is 3, and it must refer to a Kernel Mode stack inside the 
kernel data segment when the CPL is 0. When switching from User Mode to Kernel Mode, 
Linux always makes sure that the ss register contains the Segment Selector of the kernel data 
segment. 

2.4 Paging in Hardware 

The paging unit translates linear addresses into physical ones. It checks the requested access 
type against the access rights of the linear address. If the memory access is not valid, it 
generates a page fault exception (see Chapter 4, and Chapter 6). 

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages; 
contiguous linear addresses within a page are mapped into contiguous physical addresses. In 
this way, the kernel can specify the physical address and the access rights of a page instead of 
those of all the linear addresses included in it. Following the usual convention, we shall use 
the term "page" to refer both to a set of linear addresses and to the data contained in this group 
of addresses. 

The paging unit thinks of all RAM as partitioned into fixed-length page frames (they are 
sometimes referred to as physical pages). Each page frame contains a page, that is, the length 
of a page frame coincides with that of a page. A page frame is a constituent of main memory, 
and hence it is a storage area. It is important to distinguish a page from a page frame: the 
former is just a block of data, which may be stored in any page frame or on disk. 

The data structures that map linear to physical addresses are called page tables; they are 
stored in main memory and must be properly initialized by the kernel before enabling the 
paging unit. 
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In Intel processors, paging is enabled by setting the PG flag of the cr0 register. When PG = 0, 
linear addresses are interpreted as physical addresses. 

2.4.1 Regular Paging 

Starting with the i80386, the paging unit of Intel processors handles 4 KB pages. The 32 bits 
of a linear address are divided into three fields: 

Directory  

The most significant 10 bits 

Table  

The intermediate 10 bits 

Offset  

The least significant 12 bits 

The translation of linear addresses is accomplished in two steps, each based on a type of 
translation table. The first translation table is called Page Directory and the second is called 
Page Table. 

The physical address of the Page Directory in use is stored in the cr3 processor register. The 
Directory field within the linear address determines the entry in the Page Directory that points 
to the proper Page Table. The address's Table field, in turn, determines the entry in the Page 
Table that contains the physical address of the page frame containing the page. The Offset 
field determines the relative position within the page frame (see Figure 2-5). Since it is 12 bits 
long, each page consists of 4096 bytes of data. 

Figure 2-5. Paging by Intel 80x86 processors 
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Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables 
can include up to 1024 entries. It follows that a Page Directory can address up to 1024 x 1024 
x 4096=232 memory cells, as you'd expect in 32-bit addresses. 

The entries of Page Directories and Page Tables have the same structure. Each entry includes 
the following fields: 

Present flag  

If it is set, the referred page (or Page Table) is contained in main memory; if the flag is 
0, the page is not contained in main memory and the remaining entry bits may be used 
by the operating system for its own purposes. (We shall see in Chapter 16, how Linux 
makes use of this field.) 

Field containing the 20 most significant bits of a page frame physical address  

Since each page frame has a 4 KB capacity, its physical address must be a multiple of 
4096, so the 12 least significant bits of the physical address are always equal to 0. If 
the field refers to a Page Directory, the page frame contains a Page Table; if it refers to 
a Page Table, the page frame contains a page of data. 

Accessed flag  

Is set each time the paging unit addresses the corresponding page frame. This flag may 
be used by the operating system when selecting pages to be swapped out. The paging 
unit never resets this flag; this must be done by the operating system. 

Dirty flag  

Applies only to the Page Table entries. It is set each time a write operation is 
performed on the page frame. As in the previous case, this flag may be used by the 
operating system when selecting pages to be swapped out. The paging unit never 
resets this flag; this must be done by the operating system. 

Read/Write flag  

Contains the access right (Read/Write or Read) of the page or of the Page Table (see 
Section 2.4.3 later in this chapter). 

User/Supervisor flag  

Contains the privilege level required to access the page or Page Table (see Section 
2.4.3). 

Two flags called PCD and PWT  

Control the way the page or Page Table is handled by the hardware cache (see Section 
2.4.6 later in this chapter). 
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Page Size flag  

Applies only to Page Directory entries. If it is set, the entry refers to a 4 MB long page 
frame (see the following section). 

If the entry of a Page Table or Page Directory needed to perform an address translation has 
the Present flag cleared, the paging unit stores the linear address in the cr2 processor 
register and generates the exception 14, that is, the "Page fault" exception. 

2.4.2 Extended Paging 

Starting with the Pentium model, Intel 80x86 microprocessors introduce extended paging , 
which allows page frames to be either 4 KB or 4 MB in size (see Figure 2-6). 

Figure 2-6. Extended paging 

 

As we have seen in the previous section, extended paging is enabled by setting the Page Size 
flag of a Page Directory entry. In this case, the paging unit divides the 32 bits of a linear 
address into two fields: 

Directory  

The most significant 10 bits 

Offset  

The remaining 22 bits 

Page Directory entries for extended paging are the same as for normal paging, except that: 

• The Page Size flag must be set. 
• Only the first 10 most significant bits of the 20-bit physical address field are 

significant. This is because each physical address is aligned on a 4 MB boundary, so 
the 22 least significant bits of the address are 0. 
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Extended paging coexists with regular paging; it is enabled by setting the PSE flag of the cr4 
processor register. Extended paging is used to translate large intervals of contiguous linear 
addresses into corresponding physical ones; in these cases, the kernel can do without 
intermediate Page Tables and thus save memory. 

2.4.3 Hardware Protection Scheme 

The paging unit uses a different protection scheme from the segmentation unit. While Intel 
processors allow four possible privilege levels to a segment, only two privilege levels are 
associated with pages and Page Tables, because privileges are controlled by the 
User/Supervisor flag mentioned in Section 2.4.1. When this flag is 0, the page can be 
addressed only when the CPL is less than 3 (this means, for Linux, when the processor is in 
Kernel Mode). When the flag is 1, the page can always be addressed. 

Furthermore, instead of the three types of access rights (Read, Write, Execute) associated with 
segments, only two types of access rights (Read, Write) are associated with pages. If the 
Read/Write flag of a Page Directory or Page Table entry is equal to 0, the corresponding 
Page Table or page can only be read; otherwise it can be read and written. 

2.4.4 An Example of Paging 

A simple example will help in clarifying how paging works. 

Let us assume that the kernel has assigned the linear address space between 0x20000000 and 
0x2003ffff to a running process. This space consists of exactly 64 pages. We don't care 
about the physical addresses of the page frames containing the pages; in fact, some of them 
might not even be in main memory. We are interested only in the remaining fields of the page 
table entries. 

Let us start with the 10 most significant bits of the linear addresses assigned to the process, 
which are interpreted as the Directory field by the paging unit. The addresses start with a 2 
followed by zeros, so the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus 
the Directory field in all the addresses refers to the 129th entry of the process Page Directory. 
The corresponding entry must contain the physical address of the Page Table assigned to the 
process (see Figure 2-7). If no other linear addresses are assigned to the process, all the 
remaining 1023 entries of the Page Directory are filled with zeros. 

Figure 2-7. An example of paging 
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The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range 
from to 0x03f, or from to 63 decimal. Thus, only the first 64 entries of the Page Table are 
significant. The remaining 960 entries are filled with zeros. 

Suppose that the process needs to read the byte at linear address 0x20021406. This address is 
handled by the paging unit as follows: 

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which 
points to the Page Table associated with the process's pages. 

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to 
the page frame containing the desired page. 

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired 
page frame. 

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not present in 
main memory; in this case, the paging unit issues a page exception while translating the linear 
address. The same exception is issued whenever the process attempts to access linear 
addresses outside of the interval delimited by 0x20000000 and 0x2003ffff since the Page 
Table entries not assigned to the process are filled with zeros; in particular, their Present 
flags are all cleared. 

2.4.5 Three-Level Paging 

Two-level paging is used by 32-bit microprocessors. But in recent years, several 
microprocessors (such as Compaq's Alpha, and Sun's UltraSPARC) have adopted a 64-bit 
architecture. In this case, two-level paging is no longer suitable and it is necessary to move up 
to three-level paging. Let us use a thought experiment to see why. 

Start by assuming about as large a page size as is reasonable (since you have to account for 
pages being transferred routinely to and from disk). Let's choose 16 KB for the page size. 
Since 1 KB covers a range of 210 addresses, 16 KB covers 214 addresses, so the Offset field 
would be 14 bits. This leaves 50 bits of the linear address to be distributed between the Table 
and the Directory fields. If we now decide to reserve 25 bits for each of these two fields, this 
means that both the Page Directory and the Page Tables of a process would include 225 
entries, that is, more than 32 million entries. 

Even if RAM is getting cheaper and cheaper, we cannot afford to waste so much memory 
space just for storing the page tables. 

The solution chosen for Compaq's Alpha microprocessors is the following: 

• Page frames are 8 KB long, so the Offset field is 13 bits long. 
• Only the least significant 43 bits of an address are used. (The most significant 21 bits 

are always set 0.) 
• Three levels of page tables are introduced so that the remaining 30 bits of the address 

can be split into three 10-bit fields (see Figure 2-9 later in this chapter). So the Page 
Tables include 210 = 1024 entries as in the two-level paging schema examined 
previously. 
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As we shall see in Section 2.5 later in this chapter, Linux's designers decided to implement a 
paging model inspired by the Alpha architecture. 

2.4.6 Hardware Cache 

Today's microprocessors have clock rates approaching gigahertz, while dynamic RAM 
(DRAM) chips have access times in the range of tens of clock cycles. This means that the 
CPU may be held back considerably while executing instructions that require fetching 
operands from RAM and/or storing results into RAM. 

Hardware cache memories have been introduced to reduce the speed mismatch between CPU 
and RAM. They are based on the well-known locality principle, which holds both for 
programs and data structures: because of the cyclic structure of programs and the packing of 
related data into linear arrays, addresses close to the ones most recently used have a high 
probability of being used in the near future. It thus makes sense to introduce a smaller and 
faster memory that contains the most recently used code and data. For this purpose, a new unit 
called the line has been introduced into the Intel architecture. It consists of a few dozen 
contiguous bytes that are transferred in burst mode between the slow DRAM and the fast on-
chip static RAM (SRAM) used to implement caches. 

The cache is subdivided into subsets of lines. At one extreme the cache can be direct mapped, 
in which case a line in main memory is always stored at the exact same location in the cache. 
At the other extreme, the cache is fully associative, meaning that any line in memory can be 
stored at any location in the cache. But most caches are to some degree N-way associative, 
where any line of main memory can be stored in any one of N lines of the cache. For instance, 
a line of memory can be stored in two different lines of a 2-way set of associative cache. 

As shown in Figure 2-8, the cache unit is inserted between the paging unit and the main 
memory. It includes both a hardware cache memory and a cache controller. The cache 
memory stores the actual lines of memory. The cache controller stores an array of entries, one 
entry for each line of the cache memory. Each entry includes a tag and a few flags that 
describe the status of the cache line. The tag consists of some bits that allow the cache 
controller to recognize the memory location currently mapped by the line. The bits of the 
memory physical address are usually split into three groups: the most significant ones 
correspond to the tag, the middle ones correspond to the cache controller subset index, the 
least significant ones to the offset within the line. 

Figure 2-8. Processor hardware cache 

 

When accessing a RAM memory cell, the CPU extracts the subset index from the physical 
address and compares the tags of all lines in the subset with the high-order bits of the physical 
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address. If a line with the same tag as the high-order bits of the address is found, the CPU has 
a cache hit; otherwise, it has a cache miss. 

When a cache hit occurs, the cache controller behaves differently depending on access type. 
For a read operation, the controller selects the data from the cache line and transfers it into a 
CPU register; the RAM is not accessed and the CPU achieves the time saving for which the 
cache system was invented. For a write operation, the controller may implement one of two 
basic strategies called write-through and write-back. In a write-through, the controller always 
writes into both RAM and the cache line, effectively switching off the cache for write 
operations. In a write-back, which offers more immediate efficiency, only the cache line is 
updated, and the contents of the RAM are left unchanged. After a write-back, of course, the 
RAM must eventually be updated. The cache controller writes the cache line back into RAM 
only when the CPU executes an instruction requiring a flush of cache entries or when a 
FLUSH hardware signal occurs (usually after a cache miss). 

When a cache miss occurs, the cache line is written to memory, if necessary, and the correct 
line is fetched from RAM into the cache entry. 

Multiprocessor systems have a separate hardware cache for every processor, and therefore 
they need additional hardware circuitry to synchronize the cache contents. See Section 11.3.2 
in Chapter 11. 

Cache technology is rapidly evolving. For example, the first Pentium models included a single 
on-chip cache called the L1-cache. More recent models also include another larger and slower 
on-chip cache called the L2-cache. The consistency between the two cache levels is 
implemented at the hardware level. Linux ignores these hardware details and assumes there is 
a single cache. 

The CD flag of the cr0 processor register is used to enable or disable the cache circuitry. The 
NW flag, in the same register, specifies whether the write-through or the write-back strategy is 
used for the caches. 

Another interesting feature of the Pentium cache is that it lets an operating system associate a 
different cache management policy with each page frame. For that purpose, each Page 
Directory and each Page Table entry includes two flags: PCD specifies whether the cache must 
be enabled or disabled while accessing data included in the page frame; PWT specifies whether 
the write-back or the write-through strategy must be applied while writing data into the page 
frame. Linux clears the PCD and PWT flags of all Page Directory and Page Table entries: as a 
result, caching is enabled for all page frames and the write-back strategy is always adopted for 
writing. 

The L1_CACHE_BYTES macro yields the size of a cache line on a Pentium, that is, 32 bytes. In 
order to optimize the cache hit rate, the kernel adopts the following rules: 

• The most frequently used fields of a data structure are placed at the low offset within 
the data structure so that they can be cached in the same line. 

• When allocating a large set of data structures, the kernel tries to store each of them in 
memory so that all cache lines are uniformly used. 
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2.4.7 Translation Lookaside Buffers (TLB) 

Besides general-purpose hardware caches, Intel 80x86 processors include other caches called 
translation lookaside buffers or TLB to speed up linear address translation. When a linear 
address is used for the first time, the corresponding physical address is computed through 
slow accesses to the page tables in RAM. The physical address is then stored in a TLB entry, 
so that further references to the same linear address can be quickly translated. 

The invlpg instruction can be used to invalidate (that is, to free) a single entry of a TLB. In 
order to invalidate all TLB entries, the processor can simply write into the cr3 register that 
points to the currently used Page Directory. 

Since the TLBs serve as caches of page table contents, whenever a Page Table entry is 
modified, the kernel must invalidate the corresponding TLB entry. To do this, Linux makes 
use of the flush_tlb_page(addr) function, which invokes __flush_tlb_one( ). The latter 
function executes the invlpg Assembly instruction: 

movl $addr,%eax  
invlpg (%eax) 

Sometimes it is necessary to invalidate all TLB entries, such as during kernel initialization. In 
such cases, the kernel invokes the __flush_tlb( ) function, which rewrites the current value 
of cr3 back into it: 

movl %cr3, %eax  
movl %eax, %cr3 

2.5 Paging in Linux  

As we explained in Section 2.4.5, Linux adopted a three-level paging model so paging is 
feasible on 64-bit architectures. Figure 2-9 shows the model, which defines three types of 
paging tables: 

• Page Global Directory 
• Page Middle Directory 
• Page Table 

The Page Global Directory includes the addresses of several Page Middle Directories, which 
in turn include the addresses of several Page Tables. Each Page Table entry points to a page 
frame. The linear address is thus split into four parts. Figure 2-9 does not show the bit 
numbers because the size of each part depends on the computer architecture. 
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Figure 2-9. The Linux paging model 

 

Linux handling of processes relies heavily on paging. In fact, the automatic translation of 
linear addresses into physical ones makes the following design objectives feasible: 

• Assign a different physical address space to each process, thus ensuring an efficient 
protection against addressing errors. 

• Distinguish pages, that is, groups of data, from page frames, that is, physical addresses 
in main memory. This allows the same page to be stored in a page frame, then saved to 
disk, and later reloaded in a different page frame. This is the basic ingredient of the 
virtual memory mechanism (see Chapter 16). 

As we shall see in Chapter 7, each process has its own Page Global Directory and its own set 
of Page Tables. When a process switching occurs (see Section 3.2 in Chapter 3), Linux saves 
in a TSS segment the contents of the cr3 control register and loads from another TSS segment 
a new value into cr3. Thus, when the new process resumes its execution on the CPU, the 
paging unit refers to the correct set of page tables. 

What happens when this three-level paging model is applied to the Pentium, which uses only 
two types of page tables? Linux essentially eliminates the Page Middle Directory field by 
saying that it contains zero bits. However, the position of the Page Middle Directory in the 
sequence of pointers is kept so that the same code can work on 32-bit and 64-bit architectures. 
The kernel keeps a position for the Page Middle Directory by setting the number of entries in 
it to 1 and mapping this single entry into the proper entry of the Page Global Directory. 

Mapping logical to linear addresses now becomes a mechanical task, although somewhat 
complex. The next few sections of this chapter are thus a rather tedious list of functions and 
macros that retrieve information the kernel needs to find addresses and manage the tables; 
most of the functions are one or two lines long. You may want to just skim these sections 
now, but it is useful to know the role of these functions and macros because you'll see them 
often in discussions in subsequent chapters. 
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2.5.1 The Linear Address Fields 

The following macros simplify page table handling: 

PAGE_SHIFT  

Specifies the length in bits of the Offset field; when applied to Pentium processors it 
yields the value 12. Since all the addresses in a page must fit in the Offset field, the 
size of a page on Intel 80x86 systems is 212 or the familiar 4096 bytes; the 
PAGE_SHIFT of 12 can thus be considered the logarithm base 2 of the total page size. 
This macro is used by PAGE_SIZE to return the size of the page. Finally, the 
PAGE_MASK macro is defined as the value 0xfffff000; it is used to mask all the bits of 
the Offset field. 

PMD_SHIFT  

Determines the number of bits in an address that are mapped by the second-level page 
table. It yields the value 22 (12 from Offset plus 10 from Table). The PMD_SIZE macro 
computes the size of the area mapped by a single entry of the Page Middle Directory, 
that is, of a Page Table. Thus, PMD_SIZE yields 222 or 4 MB. The PMD_MASK macro 
yields the value 0xffc00000; it is used to mask all the bits of the Offset and Table 
fields. 

PGDIR_SHIFT  

Determines the logarithm of the size of the area a first-level page table can map. Since 
the Middle Directory field has length 0, this macro yields the same value yielded by 
PMD_SHIFT, which is 22. The PGDIR_SIZE macro computes the size of the area 
mapped by a single entry of the Page Global Directory, that is, of a Page Directory. 
PGDIR_SIZE therefore yields 4 MB. The PGDIR_MASK macro yields the value 
0xffc00000, the same as PMD_MASK. 

PTRS_PER_PTE , PTRS_PER_PMD , and PTRS_PER_PGD  

Compute the number of entries in the Page Table, Page Middle Directory, and Page 
Global Directory; they yield the values 1024, 1, and 1024, respectively. 

2.5.2 Page Table Handling 

pte_t, pmd_t, and pgd_t are 32-bit data types that describe, respectively, a Page Table, a 
Page Middle Directory, and a Page Global Directory entry. pgprot_t is another 32-bit data 
type that represents the protection flags associated with a single entry. 

Four type-conversion macros (pte_val( ), pmd_val( ), pgd_val( ), and pgprot_val( )) 
cast a 32-bit unsigned integer into the required type. Four other type-conversion macros (__ 
pte( ), __ pmd( ), __ pgd( ), and __ pgprot( )) perform the reverse casting from one of 
the four previously mentioned specialized types into a 32-bit unsigned integer. 

The kernel also provides several macros and functions to read or modify page table entries: 
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• The pte_none( ), pmd_none( ), and pgd_none( ) macros yield the value 1 if the 
corresponding entry has the value 0; otherwise, they yield the value 0. 

• The pte_present( ), pmd_present( ), and pgd_present( ) macros yield the value 
1 if the Present flag of the corresponding entry is equal to 1, that is, if the 
corresponding page or Page Table is loaded in main memory. 

• The pte_clear( ), pmd_clear( ), and pgd_clear( ) macros clear an entry of the 
corresponding page table. 

The macros pmd_bad( ) and pgd_bad( ) are used by functions to check Page Global 
Directory and Page Middle Directory entries passed as input parameters. Each macro yields 
the value 1 if the entry points to a bad page table, that is, if at least one of the following 
conditions applies: 

• The page is not in main memory (Present flag cleared). 
• The page allows only Read access (Read/Write flag cleared). 
• Either Accessed or Dirty is cleared (Linux always forces these flags to be set for 

every existing page table). 

No pte_bad( ) macro is defined because it is legal for a Page Table entry to refer to a page 
that is not present in main memory, not writable, or not accessible at all. Instead, several 
functions are offered to query the current value of any of the flags included in a Page Table 
entry: 

pte_read( )  

Returns the value of the User/Supervisor flag (indicating whether the page is 
accessible in User Mode). 

pte_write( )  

Returns 1 if both the Present and Read/Write flags are set (indicating whether the 
page is present and writable). 

pte_exec( )  

Returns the value of the User/Supervisor flag (indicating whether the page is 
accessible in User Mode). Notice that pages on the Intel processor cannot be protected 
against code execution. 

pte_dirty( )  

Returns the value of the Dirty flag (indicating whether or not the page has been 
modified). 

pte_young( )  

Returns the value of the Accessed flag (indicating whether the page has been 
accessed). 

Another group of functions sets the value of the flags in a Page Table entry: 
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pte_wrprotect( )  

Clears the Read/Write flag 

pte_rdprotect and pte_exprotect( )  

Clear the User/Supervisor flag 

pte_mkwrite( )  

Sets the Read/Write flag 

pte_mkread( ) and pte_mkexec( )  

Set the User/Supervisor flag 

pte_mkdirty( ) and pte_mkclean( )  

Set the Dirty flag to 1 and to 0, respectively, thus marking the page as modified or 
unmodified 

pte_mkyoung( ) and pte_mkold( )  

Set the Accessed flag to 1 and to 0, respectively, thus marking the page as accessed 
(young) or nonaccessed (old) 

pte_modify(p,v)  

Sets all access rights in a Page Table entry p to a specified value v 

set_pte  

Writes a specified value into a Page Table entry 

Now come the macros that combine a page address and a group of protection flags into a 32-
bit page entry or perform the reverse operation of extracting the page address from a page 
table entry: 

mk_ pte( )  

Combines a linear address and a group of access rights to create a 32-bit Page Table 
entry. 

mk_ pte_ phys  

Creates a Page Table entry by combining the physical address and the access rights of 
the page. 
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pte_ page( ) and pmd_ page( )  

Return the linear address of a page from its Page Table entry, and of a Page Table 
from its Page Middle Directory entry. 

pgd_offset(p,a)  

Receives as parameters a memory descriptor p (see Chapter 6) and a linear address a. 
The macro yields the address of the entry in a Page Global Directory that corresponds 
to the address a; the Page Global Directory is found through a pointer within the 
memory descriptor p. The pgd_offset_k(o) macro is similar, except that it refers to 
the memory descriptor used by kernel threads (see Section 3.3.2 in Chapter 3). 

pmd_offset(p,a)  

Receives as parameter a Page Global Directory entry p and a linear address a; it yields 
the address of the entry corresponding to the address a in the Page Middle Directory 
referenced by p. The pte_offset(p,a) macro is similar, but p is a Page Middle 
Directory entry and the macro yields the address of the entry corresponding to a in the 
Page Table referenced by p. 

The last group of functions of this long and rather boring list were introduced to simplify the 
creation and deletion of page table entries. When two-level paging is used, creating or 
deleting a Page Middle Directory entry is trivial. As we explained earlier in this section, the 
Page Middle Directory contains a single entry that points to the subordinate Page Table. Thus, 
the Page Middle Directory entry is the entry within the Page Global Directory too. When 
dealing with Page Tables, however, creating an entry may be more complex, because the Page 
Table that is supposed to contain it might not exist. In such cases, it is necessary to allocate a 
new page frame, fill it with zeros and finally add the entry. 

Each page table is stored in one page frame; moreover, each process makes use of several 
page tables. As we shall see in Section 6.1 in Chapter 6, the allocations and deallocations of 
page frames are expensive operations. Therefore, when the kernel destroys a page table, it 
adds the corresponding page frame to a software cache. When the kernel must allocate a new 
page table, it takes a page frame contained in the cache; a new page frame is requested from 
the memory allocator only when the cache is empty. 

The Page Table cache is a simple list of page frames. The pte_quicklist macro points to the 
head of the list, while the first 4 bytes of each page frame in the list are used as a pointer to 
the next element. The Page Global Directory cache is similar, but the head of the list is 
yielded by the pgd_quicklist macro. Of course, on Intel architecture there is no Page 
Middle Directory cache. 

Since there is no limit on the size of the page table caches, the kernel must implement a 
mechanism for shrinking them. Therefore, the kernel introduces high and low watermarks, 
which are stored in the pgt_cache_water array; the check_pgt_cache( ) function checks 
whether the size of each cache is greater than the high watermark and, if so, deallocates page 
frames until the cache size reaches the low watermark. The check_ pgt_cache( ) is invoked 
either when the system is idle or when the kernel releases all page tables of some process. 
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Now comes the last round of functions and macros: 

pgd_alloc( )  

Allocates a new Page Global Directory by invoking the get_ pgd_fast( ) function, 
which takes a page frame from the Page Global Directory cache; if the cache is empty, 
the page frame is allocated by invoking the get_ pgd_slow( ) function. 

pmd_alloc(p,a)  

Defined so three-level paging systems can allocate a new Page Middle Directory for 
the linear address a. On Intel 80x86 systems, the function simply returns the input 
parameter p, that is, the address of the entry in the Page Global Directory. 

pte_alloc(p,a)  

Receives as parameters the address of a Page Middle Directory entry p and a linear 
address a, and it returns the address of the Page Table entry corresponding to a. If the 
Page Middle Directory entry is null, the function must allocate a new Page Table. To 
accomplish this, it looks for a free page frame in the Page Table cache by invoking the 
get_ pte_fast( ) function. If the cache is empty, the page frame is allocated by 
invoking get_ pte_slow( ). If a new Page Table is allocated, the entry 
corresponding to a is initialized and the User/Supervisor flag is set. 
pte_alloc_kernel( ) is similar, except that it invokes the get_ pte_kernel_slow( 
) function instead of get_ pte_slow( ) for allocating a new page frame; the 
get_pte_kernel_slow( ) function clears the User/Supervisor flag of the new 
Page Table. 

pte_free( ) , pte_free_kernel( ) , and pgd_free( )  

Release a page table and insert the freed page frame in the proper cache. The 
pmd_free( ) and pmd_free_kernel( ) functions do nothing, since Page Middle 
Directories do not really exist on Intel 80x86 systems. 

free_one_pmd( )  

Invokes pte_free( ) to release a Page Table. 

free_one_ pgd( )  

Releases all Page Tables of a Page Middle Directory; in the Intel architecture, it just 
invokes free_one_ pmd( ) once. Then it releases the Page Middle Directory by 
invoking pmd_free( ). 

SET_PAGE_DIR  

Sets the Page Global Directory of a process. This is accomplished by placing the 
physical address of the Page Global Directory in a field of the TSS segment of the 
process; this address is loaded in the cr3 register every time the process starts or 
resumes its execution on the CPU. Of course, if the affected process is currently in 
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execution, the macro also directly changes the cr3 register value so that the change 
takes effect right away. 

new_ page_tables( )  

Allocates the Page Global Directory and all the Page Tables needed to set up a process 
address space. It also invokes SET_PAGE_DIR in order to assign the new Page Global 
Directory to the process. This topic will be covered in Chapter 7. 

clear_ page_tables( )  

Clears the contents of the page tables of a process by iteratively invoking free_one_ 
pgd( ). 

free_page_tables( )  

Is very similar to clear_ page_tables( ) , but it also releases the Page Global 
Directory of the process. 

2.5.3 Reserved Page Frames 

The kernel's code and data structures are stored in a group of reserved page frames. A page 
contained in one of these page frames can never be dynamically assigned or swapped to disk. 

As a general rule, the Linux kernel is installed in RAM starting from physical address 
0x00100000, that is, from the second megabyte. The total number of page frames required 
depends on how the kernel has been configured: a typical configuration yields a kernel that 
can be loaded in less than 2 MBs of RAM. 

Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC 
architecture has several peculiarities that must be taken into account: 

• Page frame is used by BIOS to store the system hardware configuration detected 
during the Power-On Self-Test (POST ). 

• Physical addresses ranging from 0x000a0000 to 0x000fffff are reserved to BIOS 
routines and to map the internal memory of ISA graphics cards (the source of the well-
known 640 KB addressing limit in the first MS-DOS systems). 

• Additional page frames within the first megabyte may be reserved by specific 
computer models. For example, the IBM ThinkPad maps the 0xa0 page frame into the 
0x9f one. 

In order to avoid loading the kernel into groups of noncontiguous page frames, Linux prefers 
to skip the first megabyte of RAM. Clearly, page frames not reserved by the PC architecture 
will be used by Linux to store dynamically assigned pages. 

Figure 2-10 shows how the first 2 MB of RAM are filled by Linux. We have assumed that the 
kernel requires less than one megabyte of RAM (this is a bit optimistic). 
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Figure 2-10. The first 512 page frames (2 MB) in Linux 2.2 

 

The symbol _text, which corresponds to physical address 0x00100000, denotes the address 
of the first byte of kernel code. The end of the kernel code is similarly identified by the 
symbol _etext. Kernel data is divided into two groups: initialized and uninitialized. The 
initialized data starts right after _etext and ends at _edata. The uninitialized data follows 
and ends up at _end. 

The symbols appearing in the figure are not defined in Linux source code; they are produced 
while compiling the kernel.[2]  

[2] You can find the linear address of these symbols in the file System.map, which is created right after the kernel is compiled. 

The linear address corresponding to the first physical address reserved to the BIOS or to a 
hardware device (usually, 0x0009f000) is stored in the i386_endbase variable. In most 
cases, this variable is initialized with a value written by the BIOS during the POST phase. 

2.5.4 Process Page Tables 

The linear address space of a process is divided into two parts: 

• Linear addresses from 0x00000000 to PAGE_OFFSET -1 can be addressed when the 
process is in either User or Kernel Mode. 

• Linear addresses from PAGE_OFFSET to 0xffffffff can be addressed only when the 
process is in Kernel Mode. 

Usually, the PAGE_OFFSET macro yields the value 0xc0000000: this means that the fourth 
gigabyte of linear addresses is reserved for the kernel, while the first three gigabytes are 
accessible from both the kernel and the user programs. However, the value of PAGE_OFFSET 
may be customized by the user when the Linux kernel image is compiled. In fact, as we shall 
see in the next section, the range of linear addresses reserved for the kernel must include a 
mapping of all physical RAM installed in the system; moreover, as we shall see in Chapter 7, 
the kernel also makes use of the linear addresses in this range to remap noncontiguous page 
frames into contiguous linear addresses. Therefore, if Linux must be installed on a machine 
having a huge amount of RAM, a different arrangement for the linear addresses might be 
necessary. 

The content of the first entries of the Page Global Directory that map linear addresses lower 
than PAGE_OFFSET (usually the first 768 entries) depends on the specific process. Conversely, 
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the remaining entries are the same for all processes; they are equal to the corresponding 
entries of the swapper_ pg_dir kernel Page Global Directory (see the following section). 

2.5.5 Kernel Page Tables 

We now describe how the kernel initializes its own page tables. This is a two-phase activity. 
In fact, right after the kernel image has been loaded into memory, the CPU is still running in 
real mode; thus, paging is not enabled. 

In the first phase, the kernel creates a limited 4 MB address space, which is enough for it to 
install itself in RAM. 

In the second phase, the kernel takes advantage of all of the existing RAM and sets up the 
paging tables properly. The next section examines how this plan is executed. 

2.5.5.1 Provisional kernel page tables 

Both the Page Global Directory and the Page Table are initialized statically during the kernel 
compilation. We won't bother mentioning the Page Middle Directories any more since they 
equate to Page Global Directory entries. 

The Page Global Directory is contained in the swapper_ pg_dir variable, while the Page 
Table that spans the first 4 MB of RAM is contained in the pg0 variable. 

The objective of this first phase of paging is to allow these 4 MB to be easily addressed in 
both real mode and protected mode. Therefore, the kernel must create a mapping from both 
the linear addresses 0x00000000 through 0x003fffff and the linear addresses PAGE_OFFSET 
through PAGE_OFFSET+0x3fffff into the physical addresses 0x00000000 through 
0x003fffff. In other words, the kernel during its first phase of initialization can address the 
first 4 MB of RAM (0x00000000 through 0x003fffff) either using linear addresses identical 
to the physical ones or using 4 MB worth of linear addresses starting from PAGE_OFFSET. 

Assuming that PAGE_OFFSET yields the value 0xc0000000, the kernel creates the desired 
mapping by filling all the swapper_ pg_dir entries with zeros, except for entries and 0x300 
(decimal 768); the latter entry spans all linear addresses between 0xc0000000 and 
0xc03fffff. The and 0x300 entries are initialized as follows: 

• The address field is set to the address of pg0. 
• The Present, Read/Write, and User/Supervisor flags are set. 
• The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared. 

The single pg0 Page Table is also statically initialized, so that the i th entry addresses the i th 
page frame. 

The paging unit is enabled by the startup_32( ) Assembly-language function. This is 
achieved by loading in the cr3 control register the address of swapper_pg_dir and by setting 
the PG flag of the cr0 control register, as shown in the following excerpt: 
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movl $0x101000,%eax  
movl %eax,%cr3        /* set the page table pointer.. */  
movl %cr0,%eax  
orl $0x80000000,%eax  
movl %eax,%cr0        /* ..and set paging (PG) bit */ 

2.5.5.2 Final kernel page table 

The final mapping provided by the kernel page tables must transform linear addresses starting 
from PAGE_OFFSET into physical addresses starting from 0. 

The _ pa macro is used to convert a linear address starting from PAGE_OFFSET to the 
corresponding physical address, while the _va macro does the reverse. 

The final kernel Page Global Directory is still stored in swapper_ pg_dir. It is initialized by 
the paging_init( ) function. This function acts on two input parameters: 

start_mem  

The linear address of the first byte of RAM right after the kernel code and data areas. 

end_mem  

The linear address of the end of memory (this address is computed by the BIOS 
routines during the POST phase). 

Linux exploits the extended paging feature of the Pentium processors, enabling 4 MB page 
frames: it allows a very efficient mapping from PAGE_OFFSET into physical addresses by 
making kernel Page Tables superfluous.[3]  

[3] We'll see in Section 6.3 in Chapter 6 that the kernel may set additional mappings for its own use based on 4 KB pages; when this happens, it makes 
use of Page Tables. 

The swapper_ pg_dir Page Global Directory is reinitialized by a cycle equivalent to the 
following: 

address = 0;  
pg_dir = swapper_pg_dir;  
pgd_val(pg_dir[0]) = 0;  
pg_dir += (PAGE_OFFSET >> PGDIR_SHIFT);  
while (address < end_mem) {  
    pgd_val(*pg_dir) = _PAGE_PRESENT+_PAGE_RW+_PAGE_ACCESSED  
           +_PAGE_DIRTY +_PAGE_4M+__pa(address);  
    pg_dir++;  
    address += 0x400000;  
} 

As you can see, the first entry of the Page Global Directory is zeroed out, hence removing the 
mapping between the first 4 MB of linear and physical addresses. The first Page Table is thus 
available, so User Mode processes can also use the range of linear addresses between and 
4194303. 
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The User/Supervisor flags in all Page Global Directory entries referencing linear addresses 
above PAGE_OFFSET are cleared, thus denying to processes in User Mode access to the kernel 
address space. 

The pg0 provisional Page Table is no longer used once swapper_ pg_dir has been 
initialized. 

2.6 Anticipating Linux 2.4 

Linux 2.4 introduces two main changes. The TSS Segment Descriptor associated with all 
existing processes is no longer stored in the Global Descriptor Table. This change removes 
the hard-coded limit on the number of existing processes. The limit thus becomes the number 
of available PIDs. In short, you will not find anymore the NR_TASKS macro inside the kernel 
code, and all data structures whose size was depending on it have been replaced or removed. 

The other main change is related to physical memory addressing. Recent Intel 80x86 
microprocessors include a feature called Physical Address Extension (PAE), which adds four 
extra bits to the standard 32-bit physical address. Linux 2.4 takes advantage of PAE and 
supports up to 64 GB of RAM. However, a linear address is still composed by 32 bits, so that 
only 4 GB of RAM can be "permanently mapped" and accessed at any time. Linux 2.4 thus 
recognizes three different portions of RAM: the physical memory suitable for ISA Direct 
Memory Access (DMA), the physical memory not suitable for ISA DMA but permanently 
mapped by the kernel, and the "high memory," that is, the physical memory that is not 
permanently mapped by the kernel. 
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Chapter 3. Processes 
The concept of a process is fundamental to any multiprogramming operating system.  
A process is usually defined as an instance of a program in execution; thus, if 16 users are 
running vi at once, there are 16 separate processes (although they can share the same 
executable code). Processes are often called "tasks" in Linux source code. 

In this chapter, we will first discuss static properties of processes and then describe how 
process switching is performed by the kernel. The last two sections investigate dynamic 
properties of processes, namely, how processes can be created and destroyed. This chapter 
also describes how Linux supports multithreaded applications: as mentioned in Chapter 1, it 
relies on so-called lightweight processes (LWP). 

3.1 Process Descriptor  

In order to manage processes, the kernel must have a clear picture of what each process is 
doing. It must know, for instance, the process's priority, whether it is running on the CPU or 
blocked on some event, what address space has been assigned to it, which files it is allowed to 
address, and so on. This is the role of the process descriptor , that is, of a task_struct type 
structure whose fields contain all the information related to a single process. As the repository 
of so much information, the process descriptor is rather complex. Not only does it contain 
many fields itself, but some contain pointers to other data structures that, in turn, contain 
pointers to other structures. Figure 3-1 describes the Linux process descriptor schematically. 
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Figure 3-1. The Linux process descriptor 

 

The five data structures on the right side of the figure refer to specific resources owned by the 
process. These resources will be covered in future chapters. This chapter will focus on two 
types of fields that refer to the process state and to process parent/child relationships. 

3.1.1 Process State 

As its name implies, the state field of the process descriptor describes what is currently 
happening to the process. It consists of an array of flags, each of which describes a possible 
process state. In the current Linux version these states are mutually exclusive, and hence 
exactly one flag of state is set; the remaining flags are cleared. The following are the 
possible process states: 

TASK_RUNNING  

The process is either executing on the CPU or waiting to be executed. 

TASK_INTERRUPTIBLE  

The process is suspended (sleeping) until some condition becomes true. Raising a 
hardware interrupt, releasing a system resource the process is waiting for, or 
delivering a signal are examples of conditions that might wake up the process, that is, 
put its state back to TASK_RUNNING. 
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TASK_UNINTERRUPTIBLE  

Like the previous state, except that delivering a signal to the sleeping process leaves 
its state unchanged. This process state is seldom used. It is valuable, however, under 
certain specific conditions in which a process must wait until a given event occurs 
without being interrupted. For instance, this state may be used when a process opens a 
device file and the corresponding device driver starts probing for a corresponding 
hardware device. The device driver must not be interrupted until the probing is 
complete, or the hardware device could be left in an unpredictable state. 

TASK_STOPPED  

Process execution has been stopped: the process enters this state after receiving a 
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being monitored 
by another (such as when a debugger executes a ptrace( ) system call to monitor a 
test program), any signal may put the process in the TASK_STOPPED state. 

TASK_ZOMBIE  

Process execution is terminated, but the parent process has not yet issued a wait( )-
like system call (wait( ), wait3( ), wait4( ), or waitpid( )) to return 
information about the dead process. Before the wait( )-like call is issued, the kernel 
cannot discard the data contained in the dead process descriptor because the parent 
could need it. (See Section 3.4.2 near the end of this chapter.) 

3.1.2 Identifying a Process 

Although Linux processes can share a large portion of their kernel data structures—an 
efficiency measure known as lightweight processes—each process has its own process 
descriptor. Each execution context that can be independently scheduled must have its own 
process descriptor. 

Lightweight processes should not be confused with user-mode threads, which are different 
execution flows handled by a user-level library. For instance, older Linux systems 
implemented POSIX threads entirely in user space by means of the pthread library; therefore, 
a multithreaded program was executed as a single Linux process. Currently, the pthread 
library, which has been merged into the standard C library, takes advantage of lightweight 
processes. 

The very strict one-to-one correspondence between the process and process descriptor makes 
the 32-bit process descriptor address[1] a convenient tool to identify processes. These addresses 
are referred to as process descriptor pointers. Most of the references to processes that the 
kernel makes are through process descriptor pointers. 

[1] Technically speaking, these 32 bits are only the offset component of a logical address. However, since Linux makes use of a single kernel data 
segment, we can consider the offset to be equivalent to a whole logical address. Furthermore, since the base addresses of the code and data segments 
are set to 0, we can treat the offset as a linear address. 

Any Unix-like operating system, on the other hand, allows users to identify processes by 
means of a number called the Process ID (or PID). The PID is a 32-bit unsigned integer 
stored in the pid field of the process descriptor. PIDs are numbered sequentially: the PID of  
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a newly created process is normally the PID of the previously created process incremented by 
one. However, for compatibility with traditional Unix systems developed for 16-bit hardware 
platforms, the maximum PID number allowed on Linux is 32767. When the kernel creates the 
32768th process in the system, it must start recycling the lower unused PIDs. 

At the end of this section, we'll show you how it is possible to derive a process descriptor 
pointer efficiently from its respective PID. Efficiency is important because many system calls 
like kill( ) use the PID to denote the affected process. 

3.1.2.1 The task array 

Processes are dynamic entities whose lifetimes in the system range from a few milliseconds to 
months. Thus, the kernel must be able to handle many processes at the same time. In fact, we 
know from the previous chapter that Linux is able to handle up to NR_TASKS processes. The 
kernel reserves a global static array of size NR_TASKS called task in its own address space. 
The elements in the array are process descriptor pointers; a null pointer indicates that  
a process descriptor hasn't been associated with the array entry. 

3.1.2.2 Storing a process descriptor 

The task array contains only pointers to process descriptors, not the sizable descriptors 
themselves. Since processes are dynamic entities, process descriptors are stored in dynamic 
memory rather than in the memory area permanently assigned to the kernel. Linux stores two 
different data structures for each process in a single 8 KB memory area: the process descriptor 
and the Kernel Mode process stack. 

In Section 2.3 in Chapter 2, we learned that a process in Kernel Mode accesses a stack 
contained in the kernel data segment, which is different from the stack used by the process in 
User Mode. Since kernel control paths make little use of the stack—even taking into account 
the interleaved execution of multiple kernel control paths on behalf of the same process—only 
a few thousand bytes of kernel stack are required. Therefore, 8 KB is ample space for the 
stack and the process descriptor. 

Figure 3-2 shows how the two data structures are stored in the memory area. The process 
descriptor starts from the beginning of the memory area and the stack from the end. 
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Figure 3-2. Storing the process descriptor and the process kernel stack 

 

The esp register is the CPU stack pointer, which is used to address the stack's top location. 
On Intel systems, the stack starts at the end and grows toward the beginning of the memory 
area. Right after switching from User Mode to Kernel Mode, the kernel stack of a process is 
always empty, and therefore the esp register points to the byte immediately following  
the memory area. 

The C language allows such a hybrid structure to be conveniently represented by means of  
the following union construct: 

union task_union {  
    struct task_struct task;  
    unsigned long stack[2048];  
}; 

After switching from User Mode to Kernel Mode in Figure 3-2, the esp register contains the 
address 0x015fc000. The process descriptor is stored starting at address 0x015fa000. The 
value of the esp is decremented as soon as data is written into the stack. Since the process 
descriptor is less than 1000 bytes long, the kernel stack can expand up to 7200 bytes. 

3.1.2.3 The current macro 

The pairing between the process descriptor and the Kernel Mode stack just described offers  
a key benefit in terms of efficiency: the kernel can easily obtain the process descriptor pointer 
of the process currently running on the CPU from the value of the esp register. In fact, since 
the memory area is 8 KB (213 bytes) long, all the kernel has to do is mask out the 13 least 
significant bits of esp to obtain the base address of the process descriptor. This is done by the 
current macro, which produces some Assembly instructions like the following: 

movl $0xffffe000, %ecx  
andl %esp, %ecx  
movl %ecx, p 
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After executing these three instructions, the local variable p contains the process descriptor 
pointer of the process running on the CPU.[2]  

[2] One drawback to the shared-storage approach is that, for efficiency reasons, the kernel stores the 8 KB memory area in two consecutive page frames 
with the first page frame aligned to a multiple of 213. This may turn out to be a problem when little dynamic memory is available. 

Another advantage of storing the process descriptor with the stack emerges on multiprocessor 
systems: the correct current process for each hardware processor can be derived just by 
checking the stack as shown previously. Linux 2.0 did not store the kernel stack and the 
process descriptor together. Instead, it was forced to introduce a global static variable called 
current to identify the process descriptor of the running process. On multiprocessor systems, 
it was necessary to define current as an array—one element for each available CPU. 

The current macro often appears in kernel code as a prefix to fields of the process descriptor. 
For example, current->pid returns the process ID of the process currently running on the 
CPU. 

A small cache consisting of EXTRA_TASK_STRUCT memory areas (where the macro is usually 
set to 16) is used to avoid unnecessarily invoking the memory allocator. To understand  
the purpose of this cache, assume for instance that some process is destroyed and that, right 
afterward, a new process is created. Without the cache, the kernel would have to release  
an 8 KB memory area to the memory allocator and then, immediately afterward, request 
another memory area of the same size. This is an example of memory cache, a software 
mechanism introduced to bypass the Kernel Memory Allocator. You will find many other 
examples of memory caches in the following chapters. 

The task_struct_stack array contains the pointers to the process descriptors in the cache. 
Its name comes from the fact that process descriptor releases and requests are implemented 
respectively as "push" and "pop" operations on the array: 

free_task_struct( )  

This function releases the 8 KB task_union memory areas and places them in  
the cache unless it is full. 

alloc_task_struct( )  

This function allocates 8 KB task_union memory areas. The function takes memory 
areas from the cache if it is at least half-full or if there isn't a free pair of consecutive 
page frames available. 

3.1.2.4 The process list 

To allow an efficient search through processes of a given type (for instance, all processes in  
a runnable state) the kernel creates several lists of processes. Each list consists of pointers to 
process descriptors. A list pointer (that is, the field that each process uses to point to the next 
process) is embedded right in the process descriptor's data structure. When you look at  
the C-language declaration of the task_struct structure, the descriptors may seem to turn in 
on themselves in a complicated recursive manner. However, the concept is no more 
complicated than any list, which is a data structure containing a pointer to the next instance of 
itself. 
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A circular doubly linked list (see Figure 3-3) links together all existing process descriptors; 
we will call it the process list. The prev_task and next_task fields of each process 
descriptor are used to implement the list. The head of the list is the init_task descriptor 
referenced by the first element of the task array: it is the ancestor of all processes, and it is 
called process 0 or swapper (see Section 3.3.2 later in this chapter). The prev_task field of 
init_task points to the process descriptor inserted last in the list. 

Figure 3-3. The process list 

 

The SET_LINKS and REMOVE_LINKS macros are used to insert and to remove a process 
descriptor in the process list, respectively. These macros also take care of the parenthood 
relationship of the process (see Section 3.1.3 later in this chapter). 

Another useful macro, called for_each_task , scans the whole process list. It is defined as: 

#define for_each_task(p) \  
    for (p = &init_task ; (p = p->next_task) != &init_task ; ) 

The macro is the loop control statement after which the kernel programmer supplies the loop. 
Notice how the init_task process descriptor just plays the role of list header. The macro 
starts by moving past init_task to the next task and continues until it reaches init_task 
again (thanks to the circularity of the list). 

3.1.2.5 The list of TASK_RUNNING processes 

When looking for a new process to run on the CPU, the kernel has to consider only the 
runnable processes (that is, the processes in the TASK_RUNNING state). Since it would be rather 
inefficient to scan the whole process list, a doubly linked circular list of TASK_RUNNING 
processes called runqueue has been introduced. The process descriptors include the next_run 
and prev_run fields to implement the runqueue list. As in the previous case, the init_task 
process descriptor plays the role of list header. The nr_running variable stores the total 
number of runnable processes. 

The add_to_runqueue( ) function inserts a process descriptor at the beginning of the list, 
while del_from_runqueue( ) removes a process descriptor from the list. For scheduling 
purposes, two functions, move_first_runqueue( ) and move_last_runqueue( ), are 
provided to move a process descriptor to the beginning or the end of the runqueue, 
respectively. 

Finally, the wake_up_process( ) function is used to make a process runnable. It sets the 
process state to TASK_RUNNING, invokes add_to_runqueue( ) to insert the process in the 
runqueue list, and increments nr_running. It also forces the invocation of the scheduler when 
the process is either real-time or has a dynamic priority much larger than that of the current 
process (see Chapter 10). 
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3.1.2.6 The pidhash table and chained lists 

In several circumstances, the kernel must be able to derive the process descriptor pointer 
corresponding to a PID. This occurs, for instance, in servicing the kill( ) system call: when 
process P1 wishes to send a signal to another process, P2, it invokes the kill( ) system call 
specifying the PID of P2 as the parameter. The kernel derives the process descriptor pointer 
from the PID and then extracts the pointer to the data structure that records the pending 
signals from P2's process descriptor. 

Scanning the process list sequentially and checking the pid fields of the process descriptors 
would be feasible but rather inefficient. In order to speed up the search, a pidhash hash table 
consisting of PIDHASH_SZ elements has been introduced (PIDHASH_SZ is usually set to 
NR_TASKS/4). The table entries contain process descriptor pointers. The PID is transformed 
into a table index using the pid_hashfn macro: 

#define pid_hashfn(x) \  
    ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1)) 

As every basic computer science course explains, a hash function does not always ensure a 
one-to-one correspondence between PIDs and table indexes. Two different PIDs that hash into 
the same table index are said to be colliding. 

Linux uses chaining to handle colliding PIDs: each table entry is a doubly linked list of 
colliding process descriptors. These lists are implemented by means of the pidhash_next and 
pidhash_pprev fields in the process descriptor. Figure 3-4 illustrates a pidhash table with 
two lists: the processes having PIDs 228 and 27535 hash into the 101st element of the table, 
while the process having PID 27536 hashes into the 124th element of the table. 

Figure 3-4. The pidhash table and chained lists 

 

Hashing with chaining is preferable to a linear transformation from PIDs to table indexes, 
because a PID can assume any value between and 32767. Since NR_TASKS, the maximum 
number of processes, is usually set to 512, it would be a waste of storage to define a table 
consisting of 32768 entries. 

The hash_ pid( ) and unhash_ pid( ) functions are invoked to insert and remove a 
process in the pidhash table, respectively. The find_task_by_pid( ) function searches the 
hash table and returns the process descriptor pointer of the process with a given PID (or a null 
pointer if it does not find the process). 
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3.1.2.7 The list of task free entries 

The task array must be updated every time a process is created or destroyed. As with the 
other lists shown in previous sections, a list is used here to speed additions and deletions. 
Adding a new entry into the array is done efficiently: instead of searching the array linearly 
and looking for the first free entry, the kernel maintains a separate doubly linked, noncircular 
list of free entries. The tarray_freelist variable contains the first element of that list; each 
free entry in the array points to another free entry, while the last element of the list contains a 
null pointer. When a process is destroyed, the corresponding element in task is added to the 
head of the list. 

In Figure 3-5, if the first element is counted as 0, the tarray_freelist variable points to 
element 4 because it is the last freed element. Previously, the processes corresponding to 
elements 2 and 1 were destroyed, in that order. Element 2 points to another free element of 
tasks not shown in the figure. 

Figure 3-5. An example of task array with free entries 

 

Deleting an entry from the array is also done efficiently. Each process descriptor p includes a 
tarray_ ptr field that points to the task entry containing the pointer to p. 

The get_free_taskslot( ) and add_free_taskslot( ) functions are used to get a free 
entry and to free an entry, respectively. 

3.1.3 Parenthood Relationships Among Processes 

Processes created by a program have a parent/child relationship. Since a process can create 
several children, these have sibling relationships. Several fields must be introduced in a 
process descriptor to represent these relationships. Processes and 1 are created by the kernel; 
as we shall see later in the chapter, process 1 (init) is the ancestor of all other processes. The 
descriptor of a process P includes the following fields: 

p_opptr (original parent)  

Points to the process descriptor of the process that created P or to the descriptor of 
process 1 (init) if the parent process no longer exists. Thus, when a shell user starts a 
background process and exits the shell, the background process becomes the child of 
init. 

 
 



Understanding the Linux Kernel 

73 

p_pptr (parent)  

Points to the current parent of P; its value usually coincides with that of p_opptr. It 
may occasionally differ, such as when another process issues a ptrace( ) system call 
requesting that it be allowed to monitor P (see Section 19.1.5 in Chapter 19). 

p_cptr (child)  

Points to the process descriptor of the youngest child of P, that is, of the process 
created most recently by it. 

p_ysptr (younger sibling)  

Points to the process descriptor of the process that has been created immediately after 
P by P's current parent. 

p_osptr (older sibling)  

Points to the process descriptor of the process that has been created immediately 
before P by P's current parent. 

Figure 3-6 illustrates the parenthood relationships of a group of processes. Process P0 
successively created P1, P2, and P3. Process P3, in turn, created process P4. Starting with 
p_cptr and using the p_osptr pointers to siblings, P0 is able to retrieve all its children. 

Figure 3-6. Parenthood relationships among five processes 

 

3.1.4 Wait Queues 

The runqueue list groups together all processes in a TASK_RUNNING state. When it comes to 
grouping processes in other states, the various states call for different types of treatment, with 
Linux opting for one of the following choices: 

• Processes in a TASK_STOPPED or in a TASK_ZOMBIE state are not linked in specific lists. 
There is no need to group them, because either the process PID or the process 
parenthood relationships may be used by the parent process to retrieve the child 
process. 
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• Processes in a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state are subdivided 
into many classes, each of which corresponds to a specific event. In this case, the 
process state does not provide enough information to retrieve the process quickly, so it 
is necessary to introduce additional lists of processes. These additional lists are called 
wait queues. 

Wait queues have several uses in the kernel, particularly for interrupt handling, process 
synchronization, and timing. Because these topics are discussed in later chapters, we'll just 
say here that a process must often wait for some event to occur, such as for a disk operation to 
terminate, a system resource to be released, or a fixed interval of time to elapse. Wait queues 
implement conditional waits on events: a process wishing to wait for a specific event places 
itself in the proper wait queue and relinquishes control. Therefore, a wait queue represents a 
set of sleeping processes, which are awakened by the kernel when some condition becomes 
true. 

Wait queues are implemented as cyclical lists whose elements include pointers to process 
descriptors. Each element of a wait queue list is of type wait_queue: 

struct wait_queue {  
    struct task_struct * task;  
    struct wait_queue * next;  
}; 

Each wait queue is identified by a wait queue pointer, which contains either the address of the 
first element of the list or the null pointer if the list is empty. The next field of the 
wait_queue data structure points to the next element in the list, except for the last element, 
whose next field points to a dummy list element. The dummy's next field contains the 
address of the variable or field that identifies the wait queue minus the size of a pointer (on 
Intel platforms, the size of the pointer is 4 bytes). Thus, the wait queue list can be considered 
by kernel functions as a truly circular list, since the last element points to the dummy wait 
queue structure whose next field coincides with the wait queue pointer (see Figure 3-7). 

Figure 3-7. The wait queue data structure 
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The init_waitqueue( ) function initializes an empty wait queue; it receives the address q of 
a wait queue pointer as its parameter and sets that pointer to q - 4. The add_wait_queue(q, 
entry) function inserts a new element with address entry in the wait queue identified by the 
wait queue pointer q. Since wait queues are modified by interrupt handlers as well as by major 
kernel functions, the function executes the following operations with disabled interrupts (see 
Chapter 4): 

if (*q != NULL)  
    entry->next = *q;  
else  
    entry->next = (struct wait_queue *)(q-1);  
*q = entry; 

Since the wait queue pointer is set to entry, the new element is placed in the first position of 
the wait queue list. If the wait queue was not empty, the next field of the new element is set 
to the address of the previous first element. Otherwise, the next field is set to the address of 
the wait queue pointer minus 4, and thus points to the dummy element. 

The remove_wait_queue( ) function removes the element pointed to by entry from a wait 
queue. Once again, the function must disable interrupts before executing the following 
operations: 

next = entry->next;  
head = next;  
while ((tmp = head->next) != entry)  
    head = tmp;  
head->next = next; 

The function scans the circular list to find the element head that precedes entry. It then 
detaches entry from the list by letting the next field of head point to the element that follows 
entry. The peculiar format of the wait queue circular list simplifies the code. Moreover, it is 
very efficient for the following reasons: 

• Most wait queues have just one element, which means that the body of the while loop 
is never executed. 

• While scanning the list, there is no need to distinguish the wait queue pointer (the 
dummy wait queue element) from wait_queue data structures. 

A process wishing to wait for a specific condition can invoke any of the following functions: 

• The sleep_on( ) function operates on the current process, which we'll call P: 

void sleep_on(struct wait_queue **p)  
{  
    struct wait_queue wait;  
    current->state = TASK_UNINTERRUPTIBLE;  
    wait.task = current;  
    add_wait_queue(p, &wait);  
    schedule(  );  
    remove_wait_queue(p, &wait);  

   } 
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• The function sets P's state to TASK_UNINTERRUPTIBLE and inserts P into the wait 
queue whose pointer was specified as the parameter. Then it invokes the scheduler, 
which resumes the execution of another process. When P is awakened, the scheduler 
resumes execution of the sleep_on( ) function, which removes P from the wait 
queue. 

• The interruptible_sleep_on( ) function is identical to sleep_on( ), except that 
it sets the state of the current process P to TASK_INTERRUPTIBLE instead of 
TASK_UNINTERRUPTIBLE so that P can also be awakened by receiving a signal. 

• The sleep_on_timeout( ) and interruptible_sleep_on_timeout( ) functions 
are similar to the previous ones, but they also allow the caller to define a time interval 
after which the process will be woken up by the kernel. In order to do this, they invoke 
the schedule_timeout( ) function instead of schedule( ) (see Section 5.4.7 in 
Chapter 5). 

Processes inserted in a wait queue enter the TASK_RUNNING state by using either the wake_up 
or the wake_up_interruptible macros. Both macros use the __wake_up( ) function, which 
receives as parameters the address q of the wait queue pointer and a bitmask mode specifying 
one or more states. Processes in the specified states will be woken up; others will be left 
unchanged. The function essentially executes the following instructions: 

if (q && (next = *q)) {  
    head = (struct wait_queue *)(q-1);  
    while (next != head) {  
        p = next->task;  
        next = next->next;  
        if (p->state & mode)  
            wake_up_process(p);  
    }  
} 

The function checks the state p->state of each process against mode to determine whether 
the caller wants the process woken up. Only those processes whose state is included in the 
mode bitmask are actually awakened. The wake_up macro specifies both the 
TASK_INTERRUPTIBLE and the TASK_UNINTERRUPTIBLE flags in mode, so it wakes up all 
sleeping processes. Conversely, the wake_up_interruptible macro wakes up only the 
TASK_INTERRUPTIBLE processes by specifying only that flag in mode. Notice that awakened 
processes are not removed from the wait queue. A process that has been awakened does not 
necessarily imply that the wait condition has become true, so the processes could suspend 
themselves again. 

3.1.5 Process Usage Limits 

Processes are associated with sets of usage limits, which specify the amount of system 
resources they can use. Specifically, Linux recognizes the following usage limits: 

RLIMIT_CPU  

Maximum CPU time for the process. If the process exceeds the limit, the kernel sends 
it a SIGXCPU signal, and then, if the process doesn't terminate, a SIGKILL signal (see 
Chapter 9). 



Understanding the Linux Kernel 

77 

RLIMIT_FSIZE  

Maximum file size allowed. If the process tries to enlarge a file to a size greater than 
this value, the kernel sends it a SIGXFSZ signal. 

RLIMIT_DATA  

Maximum heap size. The kernel checks this value before expanding the heap of the 
process (see Section 7.6 in Chapter 7). 

RLIMIT_STACK  

Maximum stack size. The kernel checks this value before expanding the User Mode 
stack of the process (see Section 7.4 in Chapter 7). 

RLIMIT_CORE  

Maximum core dump file size. The kernel checks this value when a process is aborted, 
before creating a core file in the current directory of the process (see Section 9.1.1 in 
Chapter 9). If the limit is 0, the kernel won't create the file. 

RLIMIT_RSS  

Maximum number of page frames owned by the process. Actually, the kernel never 
checks this value, so this usage limit is not implemented. 

RLIMIT_NPROC  

Maximum number of processes that the user can own (see Section 3.3.1 later in this 
chapter). 

RLIMIT_NOFILE  

Maximum number of open files. The kernel checks this value when opening a new file 
or duplicating a file descriptor (see Chapter 12). 

RLIMIT_MEMLOCK  

Maximum size of nonswappable memory. The kernel checks this value when the 
process tries to lock a page frame in memory using the mlock( ) or mlockall( ) 
system calls (see Section 7.3.4 in Chapter 7). 

RLIMIT_AS  

Maximum size of process address space. The kernel checks this value when the 
process uses malloc( ) or a related function to enlarge its address space (see Section 
7.1 in Chapter 7). 

The usage limits are stored in the rlim field of the process descriptor. The field is an array of 
elements of type struct rlimit, one for each usage limit: 
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struct rlimit {  
    long rlim_cur;  
    long rlim_max;  
}; 

The rlim_cur field is the current usage limit for the resource. For example, current-
>rlim[RLIMIT_CPU].rlim_cur represents the current limit on the CPU time of the running 
process. 

The rlim_max field is the maximum allowed value for the resource limit. By using the 
getrlimit( ) and setrlimit( ) system calls, a user can always increase the rlim_cur 
limit of some resource up to rlim_max. However, only the superuser can change the 
rlim_max field or set the rlim_cur field to a value greater than the corresponding rlim_max 
field. 

Usually, most usage limits contain the value RLIMIT_INFINITY (0x7fffffff), which means 
that no limit is imposed on the corresponding resource. However, the system administrator 
may choose to impose stronger limits on some resources. Whenever a user logs into the 
system, the kernel creates a process owned by the superuser, which can invoke setrlimit( ) 
to decrease the rlim_max and rlim_cur fields for some resource. The same process later 
executes a login shell and becomes owned by the user. Each new process created by the user 
inherits the content of the rlim array from its parent, and therefore the user cannot override 
the limits enforced by the system. 

3.2 Process Switching 

In order to control the execution of processes, the kernel must be able to suspend the 
execution of the process running on the CPU and resume the execution of some other process 
previously suspended. This activity is called process switching , task switching, or context 
switching. The following sections describe the elements of process switching in Linux: 

• Hardware context 
• Hardware support 
• Linux code 
• Saving the floating point registers 

3.2.1 Hardware Context 

While each process can have its own address space, all processes have to share the CPU 
registers. So before resuming the execution of a process, the kernel must ensure that each such 
register is loaded with the value it had when the process was suspended. 

The set of data that must be loaded into the registers before the process resumes its execution 
on the CPU is called the hardware context. The hardware context is a subset of the process 
execution context, which includes all information needed for the process execution. In Linux, 
part of the hardware context of a process is stored in the TSS segment, while the remaining 
part is saved in the Kernel Mode stack. As we learned in Section 2.3 in Chapter 2, the TSS 
segment coincides with the tss field of the process descriptor. 
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We will assume the prev local variable refers to the process descriptor of the process being 
switched out and next refers to the one being switched in to replace it. We can thus define 
process switching as the activity consisting of saving the hardware context of prev and 
replacing it with the hardware context of next. Since process switches occur quite often, it is 
important to minimize the time spent in saving and loading hardware contexts. 

Earlier versions of Linux took advantage of the hardware support offered by the Intel 
architecture and performed process switching through a far jmp instruction[3] to the selector 
of the Task State Segment Descriptor of the next process. While executing the instruction, 
the CPU performs a hardware context switch by automatically saving the old hardware 
context and loading a new one. But for the following reasons, Linux 2.2 uses software to 
perform process switching: 

[3] far jmp instructions modify both the cs and eip registers, while simple jmp instructions modify only eip. 

• Step-by-step switching performed through a sequence of mov instructions allows better 
control over the validity of the data being loaded. In particular, it is possible to check 
the values of segmentation registers. This type of checking is not possible when using 
a single far jmp instruction. 

• The amount of time required by the old approach and the new approach is about the 
same. However, it is not possible to optimize a hardware context switch, while the 
current switching code could perhaps be enhanced in the future. 

Process switching occurs only in Kernel Mode. The contents of all registers used by a process 
in User Mode have already been saved before performing process switching (see Chapter 4). 
This includes the contents of the ss and esp pair that specifies the User Mode stack pointer 
address. 

3.2.2 Task State Segment 

The Intel 80x86 architecture includes a specific segment type called the Task State Segment 
(TSS), to store hardware contexts. As we saw in Section 2.3 in Chapter 2, each process 
includes its own TSS segment with a minimum length of 104 bytes. Additional bytes are 
needed by the operating system to store registers that are not automatically saved by the 
hardware and to store the I/O Permission bitmap. That map is needed because the ioperm( ) 
and iopl( ) system calls may grant a process in User Mode direct access to specific I/O 
ports. In particular, if the IOPL field in the eflags register is set to 3, the User Mode process 
is allowed to access any of the I/O ports whose corresponding bit in the I/O Permission Bit 
Map is cleared. 

The thread_struct structure describes the format of the Linux TSS. An additional area is 
introduced to store the tr and cr2 registers, the floating point registers, the debug registers, 
and other miscellaneous information specific to Intel 80x86 processors. 

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This Descriptor 
includes a 32-bit Base field that points to the TSS starting address and a 20-bit Limit field 
whose value cannot be smaller than 0x67 (decimal 103, determined by the minimum TSS 
segment length mentioned earlier). The S flag of a TSSD is cleared to denote the fact that the 
corresponding TSS is a System Segment. 
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The Type field is set to 11 if the TSSD refers to the TSS of the process currently running on 
the CPU; otherwise it is set to 9.[4] The second least significant bit of the Type field is called 
the Busy bit since it discriminates between the values 9 and 11.[5]  

[4] Linux does not make use of a hardware feature that uses the Type field in a peculiar way to allow the automatic reexecution of a previously 
suspended process. Further details may be found in the Pentium manuals. 

[5] Since the processor performs a "bus lock" before modifying this bit, a multitasking operating system may test the bit in order to check whether a 
CPU is trying to switch to a process that's already executing. However, Linux does not make use of this hardware feature (see Chapter 11). 

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base 
address is stored in the gdtr register. The tr register contains the TSSD Selector of the 
process currently running on the CPU. It also includes two hidden, nonprogrammable fields: 
the Base and Limit fields of the TSSD. In this way, the processor can address the TSS 
directly without having to retrieve the TSS address from the GDT. 

As stated earlier, Linux stores part of the hardware context in the tss field of the process 
descriptor. This means that when the kernel creates a new process, it must also initialize the 
TSSD so that it refers to the tss field. Even though the hardware context is saved via 
software, the TSS segment still plays an important role because it may contain the I/O 
Permission Bit Map. In fact, when a process executes an in or out I/O instruction in User 
Mode, the control unit performs the following operations: 

1. It checks the IOPL field in the eflags register. If it is set to 3 (User Mode process 
enabled to access I/O ports), it performs the next check; otherwise, it raises a "General 
protection error" exception. 

2. It accesses the tr register to determine the current TSS, and thus the proper I/O 
Permission Bit Map. 

3. It checks the bit corresponding to the I/O port specified in the I/O instruction. If it is 
cleared, the instruction is executed; otherwise, the control unit raises a "General 
protection error" exception. 

3.2.3 The switch_to Macro 

The switch_to macro performs a process switch. It makes use of two parameters denoted as 
prev and next: the first is the process descriptor pointer of the process to be suspended, while 
the second is the process descriptor pointer of the process to be executed on the CPU. The 
macro is invoked by the schedule( ) function to schedule a new process on the CPU (see 
Chapter 10). 

The switch_to macro is one of the most hardware-dependent routines of the kernel. Here is a 
description of what it does on an Intel 80x86 microprocessor: 

1. Saves the values of prev and next in the eax and edx registers, respectively (these 
values were previously stored in ebx and ecx): 

   movl %ebx, %eax  
      movl %ecx, %edx 
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2. Saves the contents of the esi, edi, and ebp registers in the prev Kernel Mode stack. 
They must be saved because the compiler assumes that they will stay unchanged until 
the end of switch_to: 

   pushl %esi  
   pushl %edi  

pushl %ebp 

3. Saves the content of esp in prev->tss.esp so that the field points to the top of the 
prev Kernel Mode stack: 

movl %esp, 532(%ebx) 

4. Loads next->tss.esp in esp. From now on, the kernel operates on the Kernel Mode 
stack of next, so this instruction performs the actual context switch from prev to 
next. Since the address of a process descriptor is closely related to that of the Kernel 
Mode stack (as explained in Section 3.1.2 earlier in this chapter), changing the kernel 
stack means changing the current process: 

movl 532(%ecx), %esp 

5. Saves the address labeled 1 (shown later in this section) in prev->tss.eip. When the 
process being replaced resumes its execution, the process will execute the instruction 
labeled as 1: 

movl $1f, 508(%ebx) 

6. On the Kernel Mode stack of next, pushes the next->tss.eip value, in most cases 
the address labeled 1: 

pushl 508(%ecx) 

7. Jumps to the __switch_to( ) C function: 

jmp __switch_to 

This function acts on the prev and next parameters that denote the former process and 
the new process. This function call is different from the average function call, though, 
because __switch_to( ) takes the prev and next parameters from the eax and edx 
where we saw earlier they were stored, not from the stack like most functions. To 
force the function to go to the registers for its parameters, the kernel makes use of 
__attribute_ _ and regparm keywords, which are nonstandard extensions of the C 
language implemented by the gcc compiler. The __switch_to( ) function is declared 
as follows in the include /asm-i386 /system.h header file: 

__switch_to(struct task_struct *prev,  
            struct task_struct *next)  
   __attribute__(regparm(3)) 

The function completes the process switch started by the switch_to( ) macro. It 
includes extended inline Assembly language code that makes for rather complex 
reading, because the code refers to registers by means of special symbols. In order to 
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simplify the following discussion, we will describe the Assembly language 
instructions yielded by the compiler: 

a. Saves the contents of the esi and ebx registers in the Kernel Mode stack of 
next, then loads ecx and ebx with the parameters prev and next, respectively: 

   pushl %esi  
   pushl %ebx  
   movl %eax, %ecx  

            movl %edx, %ebx 

b. Executes the code yielded by the unlazy_fpu( ) macro (see Section 3.2.4 
later in this chapter) to optionally save the contents of the mathematical 
coprocessor registers. As we shall see later, there is no need to load the floating 
point registers of next while performing the context switch: 

unlazy_fpu(prev); 

c. Clears the Busy bit (see Section 3.2.2 earlier in this chapter) of next and load 
its TSS selector in the tr register: 

   movl 712(%ebx), %eax  
   andb $0xf8, %al  
   andl $0xfffffdff, gdt_table+4(%eax)  

            ltr 712(%ebx) 

The preceding code is fairly dense. It operates on: 

The process's TSSD selector, which is copied from next->tss.tr to eax. 

The 8 least significant bits of the selector, which are stored in al.[6] The 3 least 
significant bits of al contain the RPL and the TI fields of the TSSD. 

[6] The ax register consists of the 16 least significant bits of eax. Moreover, the al register consists of the 8 least significant bits of ax, while 
ah consists of the 8 most significant bits of ax. Similar notations apply to the ebx, ecx, and edx registers. The 13 most significant bits of ax 
specify the TSSD index within the GDT. 

Clearing the 3 least significant bits of al leaves the TSSD index shifted to the 
left 3 bits (that is, multiplied by 8). Since the TSSDs are 8 bytes long, the 
index value multiplied by 8 yields the relative address of the TSSD within the 
GDT. The gdt_table+4(%eax) notation refers to the address of the fifth byte 
of the TSSD. The andl instruction clears the Busy bit in the fifth byte, while 
the ltr instruction places the next->tss.tr selector in the tr register and 
again sets the Busy bit.[7]  

[7] Linux must clear the Busy bit before loading the value in tr, or the control unit will raise an exception. 

d. Stores the contents of the fs and gs segmentation registers in prev->tss.fs 
and prev->tss.gs, respectively: 

   movl %fs,564(%ecx)  
movl %gs,568(%ecx) 
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e. Loads the ldtr register with the next->tss.ldt value. This needs to be done 
only if the Local Descriptor Table used by prev differs from the one used by 
next: 

    movl 920(%ebx),%edx  
    movl 920(%ecx),%eax  
    movl 112(%eax),%eax  
    cmpl %eax,112(%edx)  
    je 2f  
    lldt 572(%ebx)  

2: 

In practice, the check is made by referring to the tss.segments field (at offset 
112 in the process descriptor) instead of the tss.ldt field. 

f. Loads the cr3 register with the next->tss.cr3 value. This can be avoided if 
prev and next are lightweight processes that share the same Page Global 
Directory. Since the PGD address of prev is never changed, it doesn't need to 
be saved. 

   movl 504(%ebx),%eax  
        cmpl %eax,504(%ecx)  
        je 3f  
        movl %eax,%cr3  

    3: 

g. Load the fs and gs segment registers with the values contained in next-
>tss.fs and next->tss.gs, respectively. This step logically complements the 
actions performed in step 7d. 

   movl 564(%ebx),%fs  
movl 568(%ebx),%gs 

The code is actually more intricate, as an exception might be raised by the 
CPU when it detects an invalid segment register value. The code takes this 
possibility into account by adopting a "fix-up" approach (see Section 8.2.6 in 
Chapter 8). 

h. Loads the eight debug registers[8] with the next->tss.debugreg[i] values (0 
i 7). This is done only if next was using the debug registers when it was 

suspended (that is, field next->tss.debugreg[7] is not 0). As we shall see in 
Chapter 19, these registers are modified only by writing in the TSS, thus there 
is no need to save them: 

[8] The Intel 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas may be defined. Whenever a 
monitored process issues a linear address included in one of the breakpoints, an exception occurs. 

        cmpl $0,760(%ebx)  
        je 4f  
        movl 732(%ebx),%esi  
        movl %esi,%db0  
        movl 736(%ebx),%esi  
        movl %esi,%db1  
        movl 740(%ebx),%esi  
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        movl %esi,%db2  
        movl 744(%ebx),%esi  
        movl %esi,%db3  
        movl 756(%ebx),%esi  
        movl %esi,%db6  
        movl 760(%ebx),%ebx  
        movl %ebx,%db7  
    4: 

i. The function ends up by restoring the original values of the ebx and esi 
registers, pushed on the stack in step 7a: 

   popl %ebx  
   popl %esi  

ret 

When the ret instruction is executed, the control unit fetches the value to be 
loaded in the eip program counter from the stack. This value is usually the 
address of the instruction shown in the following item and labeled 1, which 
was stored in the stack by the switch_to macro. If, however, next was never 
suspended before because it is being executed for the first time, the function 
will find the starting address of the ret_from_fork( ) function (see Section 
3.3.1 later in this chapter). 

8. The remaining part of the switch_to macro includes a few instructions that restore 
the contents of the esi, edi, and ebp registers. The first of these three instructions is 
labeled 1: 

   1:  popl %ebp  
       popl %edi  

    popl %esi 

Notice how these pop instructions refer to the kernel stack of the prev process. They 
will be executed when the scheduler selects prev as the new process to be executed on 
the CPU, thus invoking switch_to with prev as second parameter. Therefore, the esp 
register points to the prev 's Kernel Mode stack. 

3.2.4 Saving the Floating Point Registers 

Starting with the Intel 80486, the arithmetic floating point unit (FPU) has been integrated into 
the CPU. The name mathematical coprocessor continues to be used in memory of the days 
when floating point computations were executed by an expensive special-purpose chip. In 
order to maintain compatibility with older models, however, floating point arithmetic 
functions are performed by making use of ESCAPE instructions, which are instructions with 
some prefix byte ranging between 0xd8 and 0xdf. These instructions act on the set of floating 
point registers included in the CPU. Clearly, if a process is using ESCAPE instructions, the 
contents of the floating point registers belong to its hardware context. 

Recently, Intel introduced a new set of Assembly instructions into its microprocessors. They 
are called MMX instructions and are supposed to speed up the execution of multimedia 
applications. MMX instructions act on the floating point registers of the FPU. The obvious 
disadvantage of this architectural choice is that programmers cannot mix floating point 
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instructions and MMX instructions. The advantage is that operating system designers can 
ignore the new instruction set, since the same facility of the task-switching code for saving the 
state of the floating point unit can also be relied upon to save the MMX state. 

The Intel 80x86 microprocessors do not automatically save the floating point registers in the 
TSS. However, they include some hardware support that enables kernels to save these 
registers only when needed. The hardware support consists of a TS (Task-Switching) flag in 
the cr0 register, which obeys the following rules: 

• Every time a hardware context switch is performed, the TS flag is set. 
• Every time an ESCAPE or an MMX instruction is executed when the TS flag is set, the 

control unit raises a "Device not available" exception (see Chapter 4). 

The TS flag allows the kernel to save and restore the floating point registers only when really 
needed. To illustrate how it works, let's suppose that a process A is using the mathematical 
coprocessor. When a context switch occurs, the kernel sets the TS flag and saves the floating 
point registers into the TSS of process A. If the new process B does not make use of the 
mathematical coprocessor, the kernel won't need to restore the contents of the floating point 
registers. But as soon as B tries to execute an ESCAPE or MMX instruction, the CPU raises a 
"Device not available" exception, and the corresponding handler loads the floating point 
registers with the values saved in the TSS of process B. 

Let us now describe the data structures introduced to handle selective saving of floating point 
registers. They are stored in the tss.i387 subfield, whose format is described by the 
i387_hard_struct structure. The process descriptor also stores the value of two additional 
flags: 

• The PF_USEDFPU flag included in the flags field. It specifies whether the process used 
the floating point registers when it was last executing on the CPU. 

• The used_math field. This flag specifies whether the contents of the tss.i387 
subfield are significant. The flag is cleared (not significant) in two cases: 

o When the process starts executing a new program by invoking an execve( ) 
system call (see Chapter 19). Since control will never return to the former 
program, the data currently stored in tss.i387 will never be used again. 

o When a process that was executing a program in User Mode starts executing a 
signal handler procedure (see Chapter 9). Since signal handlers are 
asynchronous with respect to the program execution flow, the floating point 
registers could be meaningless to the signal handler. However, the kernel saves 
the floating point registers in tss.i387 before starting the handler and restores 
them after the handler terminates. Therefore, a signal handler is allowed to 
make use of the mathematical coprocessor, but it cannot carry on a floating 
point computation started during the normal program execution flow. 

As stated earlier, the __switch_to( ) function executes the unlazy_fpu macro. This macro 
yields the following code: 

if (prev->flags & PF_USEDFPU) {  
    /* save the floating point registers  */  
    asm("fnsave %0" : "=m" (prev->tss.i387));  
    /* wait until all data has been transferred */  
    asm("fwait");  
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    prev->flags &= ~PF_USEDFPU;  
    /* set the TS flag of cr0 to 1 */  
    stts(  );  
} 

The stts( ) macro sets the TS flag of cr0. In practice, it yields the following Assembly 
language instructions: 

movl %cr0, %eax  
orb $8, %al  
movl %eax, %cr0 

The contents of the floating point registers are not restored right after a process resumes 
execution. However, the TS flag of cr0 has been set by unlazy_fpu( ). Thus, the first time 
the process tries to execute an ESCAPE or MMX instruction, the control unit raises a "Device 
not available" exception, and the kernel (more precisely, the exception handler involved by 
the exception) runs the math_state_restore( ) function: 

void math_state_restore(void) {  
    asm("clts"); /* clear the TS flag of cr0 */  
    if (current->used_math)  
        /* load the floating point registers */  
        asm("frstor %0": :"m" (current->tss.i387));  
    else {  
        /* initialize the floating point unit */  
        asm("fninit");  
        current->used_math = 1;  
    }  
    current->flags |= PF_USEDFPU;  
} 

Since the process is executing an ESCAPE instruction, this function sets the PF_USEDFPU flag. 
Moreover, the function clears the TS flag of cr0 so that further ESCAPE or MMX instructions 
executed by the process won't trigger the "Device not available" exception. If the data stored 
in the tss.i387 field is valid, the function loads the floating point registers with the proper 
values. Otherwise, the FPU is reinitialized and all its registers are cleared. 

3.3 Creating Processes 

Unix operating systems rely heavily on process creation to satisfy user requests. As an 
example, the shell process creates a new process that executes another copy of the shell 
whenever the user enters a command. 

Traditional Unix systems treat all processes in the same way: resources owned by the parent 
process are duplicated, and a copy is granted to the child process. This approach makes 
process creation very slow and inefficient, since it requires copying the entire address space of 
the parent process. The child process rarely needs to read or modify all the resources already 
owned by the parent; in many cases, it issues an immediate execve( ) and wipes out the 
address space so carefully saved. 

Modern Unix kernels solve this problem by introducing three different mechanisms: 
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• The Copy On Write technique allows both the parent and the child to read the same 
physical pages. Whenever either one tries to write on a physical page, the kernel 
copies its contents into a new physical page that is assigned to the writing process. The 
implementation of this technique in Linux is fully explained in Chapter 7. 

• Lightweight processes allow both the parent and the child to share many per-process 
kernel data structures, like the paging tables (and therefore the entire User Mode 
address space) and the open file tables. 

• The vfork( ) system call creates a process that shares the memory address space of 
its parent. To prevent the parent from overwriting data needed by the child, the 
parent's execution is blocked until the child exits or executes a new program. We'll 
learn more about the vfork( ) system call in the following section. 

3.3.1 The clone( ), fork( ), and vfork( ) System Calls 

Lightweight processes are created in Linux by using a function named __clone( ), which 
makes use of four parameters: 

fn  

Specifies a function to be executed by the new process; when the function returns, the 
child terminates. The function returns an integer, which represents the exit code for the 
child process. 

arg  

Pointer to data passed to the fn( ) function. 

flags  

Miscellaneous information. The low byte specifies the signal number to be sent to the 
parent process when the child terminates; the SIGCHLD signal is generally selected. 
The remaining 3 bytes encode a group of clone flags, which specify the resources 
shared between the parent and the child process. The flags, when set, have the 
following meanings: 

CLONE_VM  

The memory descriptor and all page tables (see Chapter 7). 

CLONE_FS :  

The table that identifies the root directory and the current working directory. 

CLONE_FILES :  

The table that identifies the open files (see Chapter 12). 

CLONE_SIGHAND :  

The table that identifies the signal handlers (see Chapter 9). 
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CLONE_PID :  

The PID.[9]  

[9] As we shall see later, the CLONE_PID flag can be used only by a process having a PID of 0; in a uniprocessor system, 
no two lightweight processes have the same PID. 

CLONE_PTRACE :  

If a ptrace( ) system call is causing the parent process to be traced, the child will 
also be traced. 

CLONE_VFORK :  

Used for the vfork( ) system call (see later in this section). 

child_stack  

Specifies the User Mode stack pointer to be assigned to the esp register of the child 
process. If it is equal to 0, the kernel assigns to the child the current parent stack 
pointer. Thus, the parent and child temporarily share the same User Mode stack. But 
thanks to the Copy On Write mechanism, they usually get separate copies of the User 
Mode stack as soon as one tries to change the stack. However, this parameter must 
have a non-null value if the child process shares the same address space as the parent. 

__clone( ) is actually a wrapper function defined in the C library (see Section 8.1 in Chapter 
8), which in turn makes use of a Linux system call hidden to the programmer, named clone( 
). The clone( ) system call receives only the flags and child_stack parameters; the new 
process always starts its execution from the instruction following the system call invocation. 
When the system call returns to the __clone( ) function, it determines whether it is in the 
parent or the child and forces the child to execute the fn( ) function. 

The traditional fork( ) system call is implemented by Linux as a clone( ) whose first 
parameter specifies a SIGCHLD signal and all the clone flags cleared and whose second 
parameter is 0. 

The old vfork( ) system call, described in the previous section, is implemented by Linux as 
a clone( ) whose first parameter specifies a SIGCHLD signal and the flags CLONE_VM and 
CLONE_VFORK and whose second parameter is equal to 0. 

When either a clone( ), fork( ), or vfork( ) system call is issued, the kernel invokes the 
do_fork( ) function, which executes the following steps: 

1. If the CLONE_PID flag has been specified, the do_fork( ) function checks whether the 
PID of the parent process is not null; if so, it returns an error code. Only the swapper 
process is allowed to set CLONE_PID; this is required when initializing a 
multiprocessor system (see Section 11.4.1 in Chapter 11). 
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2. The alloc_task_struct( ) function is invoked in order to get a new 8 KB union 
task_union memory area to store the process descriptor and the Kernel Mode stack of 
the new process. 

3. The function follows the current pointer to obtain the parent process descriptor and 
copies it into the new process descriptor in the memory area just allocated. 

4. A few checks occur to make sure the user has the resources necessary to start a new 
process. First, the function checks whether current-
>rlim[RLIMIT_NPROC].rlim_cur is smaller than or equal to the current number of 
processes owned by the user: if so, an error code is returned. The function gets the 
current number of processes owned by the user from a per-user data structure named 
user_struct. This data structure can be found through a pointer in the user field of 
the process descriptor. 

5. The find_empty_process( ) function is invoked. If the owner of the parent process 
is not the superuser, this function checks whether nr_tasks (the total number of 
processes in the system) is smaller than NR_TASKS-MIN_TASKS_LEFT_FOR_ROOT.[10] If 
so, find_empty_process( ) invokes get_free_taskslot( ) to find a free entry in 
the task array. Otherwise, it returns an error. 

[10] A few processes, usually four, are reserved to the superuser; MIN_TASKS_LEFT_FOR_ROOT refers to this number. Thus, even if a 
user is allowed to overload the system with a "fork bomb" (a one-line program that forks itself forever), the superuser can log in, kill some processes, 
and start searching for the guilty user. 

6. The function writes the new process descriptor pointer into the previously obtained 
task entry and sets the tarray_ptr field of the process descriptor to the address of 
that entry (see Section 3.1.2). 

7. If the parent process makes use of some kernel modules, the function increments the 
corresponding reference counters. Each kernel module has its own reference counter, 
which indicates how many processes are using it. A module cannot be removed unless 
its reference counter is null (see Appendix B). 

8. The function then updates some of the flags included in the flags field that have been 
copied from the parent process: 

a. It clears the PF_SUPERPRIV flag, which indicates whether the process has used 
any of its superuser privileges. 

b. It clears the PF_USEDFPU flag. 
c. It clears the PF_PTRACED flag unless the CLONE_PTRACE parameter flag is set. 

When set, the CLONE_PTRACE flag means that the parent process is being traced 
with the ptrace( ) function, so the child should be traced too. 

d. It clears PF_TRACESYS flag unless, once again, the CLONE_PTRACE parameter 
flag is set. 

e. It sets the PF_FORKNOEXEC flag, which indicates that the child process has not 
yet issued an execve( ) system call. 

f. It sets the PF_VFORK flag according to the value of the CLONE_VFORK flag. This 
specifies that the parent process must be woken up whenever the process (the 
child) issues an execve( ) system call or terminates. 

9. Now the function has taken almost everything that it can use from the parent process; 
the rest of its activities focus on setting up new resources in the child and letting the 
kernel know that this new process has been born. First, the function invokes the 
get_pid( ) function to obtain a new PID, which will be assigned to the child process 
(unless the CLONE_PID flag is set). 
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10. The function then updates all the process descriptor fields that cannot be inherited 
from the parent process, such as the fields that specify the process parenthood 
relationships. 

11. Unless specified differently by the flags parameter, it invokes copy_files( ), 
copy_fs( ), copy_sighand( ), and copy_mm( ) to create new data structures and 
copy into them the values of the corresponding parent process data structures. 

12. It invokes copy_thread( ) to initialize the Kernel Mode stack of the child process 
with the values contained in the CPU registers when the clone( ) call was issued 
(these values have been saved in the Kernel Mode stack of the parent, as described in 
Chapter 8). However, the function forces the value into the field corresponding to the 
eax register. The tss.esp field of the TSS of the child process is initialized with the 
base address of the Kernel Mode stack, and the address of an Assembly language 
function (ret_from_fork( )) is stored in the tss.eip field. 

13. It uses the SET_LINKS macro to insert the new process descriptor in the process list. 
14. It uses the hash_pid( ) function to insert the new process descriptor in the pidhash 

hash table. 
15. It increments the values of nr_tasks and current->user->count. 
16. It sets the state field of the child process descriptor to TASK_RUNNING and then 

invokes wake_up_process( ) to insert the child in the runqueue list. 
17. If the CLONE_VFORK flag has been specified, the function suspends the parent process 

until the child releases its memory address space (that is, until the child either 
terminates or executes a new program). In order to do this, the process descriptor 
includes a kernel semaphore called vfork_sem (see Section 11.2.4 in Chapter 11). 

18. It returns the PID of the child, which will be eventually be read by the parent process 
in User Mode. 

Now we have a complete child process in the runnable state. But it isn't actually running. It is 
up to the scheduler to decide when to give the CPU to this child. At some future process 
switch, the schedule will bestow this favor on the child process by loading a few CPU 
registers with the values of the tss field of the child's process descriptor. In particular, esp 
will be loaded with tss.esp (that is, with the address of child's Kernel Mode stack), and eip 
will be loaded with the address of ret_from_fork( ). This Assembly language function, in 
turn, invokes the ret_from_sys_call( ) function (see Chapter 8), which reloads all other 
registers with the values stored in the stack and forces the CPU back to User Mode. The new 
process will then start its execution right at the end of the fork( ), vfork( ), or clone( ) 
system call. The value returned by the system call is contained in eax: the value is for the 
child and equal to the PID for the child's parent. 

The child process will execute the same code as the parent, except that the fork will return a 
null PID. The developer of the application can exploit this fact, in the manner familiar to Unix 
programmers, by inserting a conditional statement in the program based on the PID value that 
forces the child to behave differently from the parent process. 

3.3.2 Kernel Threads 

Traditional Unix systems delegate some critical tasks to intermittently running processes, 
including flushing disk caches, swapping out unused page frames, servicing network 
connections, and so on. Indeed, it is not efficient to perform these tasks in strict linear fashion; 
both their functions and the end user processes get better response if they are scheduled in the 
background. Since some of the system processes run only in Kernel Mode, modern operating 
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systems delegate their functions to kernel threads, which are not encumbered with the 
unnecessary User Mode context. In Linux, kernel threads differ from regular processes in the 
following ways: 

• Each kernel thread executes a single specific kernel function, while regular processes 
execute kernel functions only through system calls. 

• Kernel threads run only in Kernel Mode, while regular processes run alternatively in 
Kernel Mode and in User Mode. 

• Since kernel threads run only in Kernel Mode, they use only linear addresses greater 
than PAGE_OFFSET. Regular processes, on the other hand, use all 4 gigabytes of linear 
addresses, either in User Mode or in Kernel Mode. 

3.3.2.1 Creating a kernel thread 

The kernel_thread( ) function creates a new kernel thread and can be executed only by 
another kernel thread. The function contains mostly inline Assembly language code, but it is 
somewhat equivalent to the following: 

int kernel_thread(int (*fn)(void *), void * arg,  
                  unsigned long flags)  
{  
    pid_t p;  
    p = clone( 0, flags | CLONE_VM );  
    if ( p )        /* parent */  
        return p;  
    else {          /* child */  
        fn(arg);  
        exit(  );  
   }  
} 

3.3.2.2 Process 0 

The ancestor of all processes, called process 0 or, for historical reasons, the swapper process, 
is a kernel thread created from scratch during the initialization phase of Linux by the 
start_kernel( ) function (see Appendix A). This ancestor process makes use of the 
following data structures: 

• A process descriptor and a Kernel Mode stack stored in the init_task_union 
variable. The init_task and init_stack macros yield the addresses of the process 
descriptor and the stack, respectively. 

• The following tables, which the process descriptor points to: 
o init_mm 
o init_mmap 
o init_fs 
o init_files 
o init_signals 

The tables are initialized, respectively, by the following macros: 

o INIT_MM 
o INIT_MMAP 
o INIT_FS 
o INIT_FILES 
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o INIT_SIGNALS 
• A TSS segment, initialized by the INIT_TSS macro. 
• Two Segment Descriptors, namely a TSSD and an LDTD, which are stored in the 

GDT. 
• A Page Global Directory stored in swapper_pg_dir, which may be considered as the 

kernel Page Global Directory since it is used by all kernel threads. 

The start_kernel( ) function initializes all the data structures needed by the kernel, 
enables interrupts, and creates another kernel thread, named process 1, more commonly 
referred to as the init process : 

kernel_thread(init, NULL,  
              CLONE_FS | CLONE_FILES | CLONE_SIGHAND); 

The newly created kernel thread has PID 1 and shares with process all per-process kernel data 
structures. Moreover, when selected from the scheduler, the init process starts executing the 
init( ) function. 

After having created the init process, process executes the cpu_idle( ) function, which 
essentially consists of repeatedly executing the hlt Assembly language instruction with the 
interrupts enabled (see Chapter 4). Process is selected by the scheduler only when there are no 
other processes in the TASK_RUNNING state. 

3.3.2.3 Process 1 

The kernel thread created by process executes the init( ) function, which in turn invokes 
the kernel_thread( ) function four times to initiate four kernel threads needed for routine 
kernel tasks: 

kernel_thread(bdflush, NULL,  
              CLONE_FS | CLONE_FILES | CLONE_SIGHAND);  
kernel_thread(kupdate, NULL,  
              CLONE_FS | CLONE_FILES | CLONE_SIGHAND);  
kernel_thread(kpiod, NULL,  
              CLONE_FS | CLONE_FILES | CLONE_SIGHAND);  
kernel_thread(kswapd, NULL,  
              CLONE_FS | CLONE_FILES | CLONE_SIGHAND); 

As a result, four additional kernel threads are created to handle the memory cache and the 
swapping activity: 

kflushd (also bdflush)  

Flushes "dirty" buffers to disk to reclaim memory, as described in Section 14.1.5 in 
Chapter 14 

kupdate  

Flushes old "dirty" buffers to disk to reduce risks of filesystem inconsistencies, as 
described in Section 14.1.5 in Chapter 14 

kpiod  



Understanding the Linux Kernel 

93 

Swaps out pages belonging to shared memory mappings, as described in  
Section 16.5.2 in Chapter 16, 

kswapd  

Performs memory reclaiming, as described in Section 16.7.6 in Chapter 16 

Then init( ) invokes the execve( ) system call to load the executable program init. As a 
result, the init kernel thread becomes a regular process having its own per-process kernel data 
structure. The init process never terminates, since it creates and monitors the activity of all the 
processes that implement the outer layers of the operating system. 

3.4 Destroying Processes 

Most processes "die" in the sense that they terminate the execution of the code they were 
supposed to run. When this occurs, the kernel must be notified so that it can release the 
resources owned by the process; this includes memory, open files, and any other odds and 
ends that we will encounter in this book, such as semaphores. 

The usual way for a process to terminate is to invoke the exit( ) system call. This system 
call may be inserted by the programmer explicitly. Additionally, the exit( ) system call is 
always executed when the control flow reaches the last statement of the main procedure (the 
main( ) function in C programs). 

Alternatively, the kernel may force a process to die. This typically occurs when the process 
has received a signal that it cannot handle or ignore (see Chapter 9) or when an unrecoverable 
CPU exception has been raised in Kernel Mode while the kernel was running on behalf of the 
process (see Chapter 4). 

3.4.1 Process Termination 

All process terminations are handled by the do_exit( ) function, which removes most 
references to the terminating process from kernel data structures. The do_exit( ) function 
executes the following actions: 

1. Sets the PF_EXITING flag in the flag field of the process descriptor to denote that the 
process is being eliminated. 

2. Removes, if necessary, the process descriptor from an IPC semaphore queue via the 
sem_exit( ) function (see Chapter 18) or from a dynamic timer queue via the 
del_timer( ) function (see Chapter 5). 

3. Examines the process's data structures related to paging, filesystem, open file 
descriptors, and signal handling, respectively, with the __exit_mm( ), 
__exit_files( ), __exit_fs( ), and _ _exit_sighand( ) functions. These 
functions also remove any of these data structures if no other process is sharing it. 

4. Sets the state field of the process descriptor to TASK_ZOMBIE. We shall see what 
happens to zombie processes in the following section. 

5. Sets the exit_code field of the process descriptor to the process termination code. 
This value is either the exit( ) system call parameter (normal termination), or an 
error code supplied by the kernel (abnormal termination). 



Understanding the Linux Kernel 

94 

6. Invokes the exit_notify( ) function to update the parenthood relationships of both 
the parent process and the children processes. All children processes created by the 
terminating process become children of the init process. 

7. Invokes the schedule( ) function (see Chapter 10) to select a new process to run. 
Since a process in a TASK_ZOMBIE state is ignored by the scheduler, the process will 
stop executing right after the switch_to macro in schedule( ) is invoked. 

3.4.2 Process Removal 

The Unix operating system allows a process to query the kernel to obtain the PID of its parent 
process or the execution state for any of its children. A process may, for instance, create a 
child process to perform a specific task and then invoke a wait( )-like system call to check 
whether the child has terminated. If the child has terminated, its termination code will tell the 
parent process if the task has been carried out successfully. 

In order to comply with these design choices, Unix kernels are not allowed to discard data 
included in a process descriptor field right after the process terminates. They are allowed to 
do so only after the parent process has issued a wait( )-like system call that refers to the 
terminated process. This is why the TASK_ZOMBIE state has been introduced: although the 
process is technically dead, its descriptor must be saved until the parent process is notified. 

What happens if parent processes terminate before their children? In such a case, the system 
might be flooded with zombie processes that might end up using all the available task 
entries. As mentioned earlier, this problem is solved by forcing all orphan processes to 
become children of the init process. In this way, the init process will destroy the zombies 
while checking for the termination of one of its legitimate children through a wait( )-like 
system call. 

The release( ) function releases the process descriptor of a zombie process by executing 
the following steps: 

1. Invokes the free_uid( ) function to decrement by 1 the number of processes created 
up to now by the user owner of the terminated process. This value is stored in the 
user_struct structure mentioned earlier in the chapter. 

2. Invokes add_free_taskslot( ) to free the entry in task that points to the process 
descriptor to be released. 

3. Decrements the value of the nr_tasks variable. 
4. Invokes unhash_pid( ) to remove the process descriptor from the pidhash hash 

table. 
5. Uses the REMOVE_LINKS macro to unlink the process descriptor from the process list. 
6. Invokes the free_task_struct( ) function to release the 8 KB memory area used to 

contain the process descriptor and the Kernel Mode stack. 

3.5 Anticipating Linux 2.4 

The new kernel supports a huge number of users and groups, because it makes use of 32-bit 
UIDs and GIDs. 
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In order to raise the hardcoded limit on the number of processes, Linux 2.4 removes the 
tasks array, which previously included pointers to all process descriptors. 

Moreover, Linux 2.4 no longer includes a Task State Segment for each process. The tss field 
in the process descriptor has thus been replaced by a pointer to a data structure storing  
the information that was previously in the TSS, namely the register contents and the I/O 
bitmap. Linux 2.4 makes use of just one TSS for each CPU in the system. When a context 
switch occurs, the kernel uses the per-process data structures to save and restore the register 
contents and to fill the I/O bitmap in the TSS of the executing CPU. 

Linux 2.4 enhances wait queues. Sleeping processes are now stored in lists implemented 
through the efficient list_head data type. Moreover, the kernel is now able to wake up just  
a single process that is sleeping in a wait queue, thus greatly improving the efficiency of 
semaphores. 

Finally, Linux 2.4 adds a new flag to the clone( ) system call: CLONE_PARENT allows  
the new lightweight process to have the same parent as the process that invoked the system 
call. 
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Chapter 4. Interrupts and Exceptions 
An interrupt is usually defined as an event that alters the sequence of instructions executed by 
a processor. Such events correspond to electrical signals generated by hardware circuits both 
inside and outside of the CPU chip. 

Interrupts are often divided into synchronous and asynchronous interrupts: 

• Synchronous interrupts are produced by the CPU control unit while executing 
instructions and are called synchronous because the control unit issues them only after 
terminating the execution of an instruction. 

• Asynchronous interrupts are generated by other hardware devices at arbitrary times 
with respect to the CPU clock signals. 

Intel 80x86 microprocessor manuals designate synchronous and asynchronous interrupts as 
exceptions and interrupts, respectively. We'll adopt this classification, although we'll 
occasionally use the term "interrupt signal" to designate both types together (synchronous as 
well as asynchronous). 

Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a keystroke 
from a user sets off an interrupt. Exceptions, on the other hand, are caused either by 
programming errors or by anomalous conditions that must be handled by the kernel. In the 
first case, the kernel handles the exception by delivering to the current process one of the 
signals familiar to every Unix programmer. In the second case, the kernel performs all the 
steps needed to recover from the anomalous condition, such as a page fault or a request (via 
an int instruction) for a kernel service. 

We start by describing in Section 4.1 the motivation for introducing such signals. We then 
show how the well-known IRQs (Interrupt ReQuests) issued by I/O devices give rise to 
interrupts, and we detail how Intel 80x86 processors handle interrupts and exceptions at the 
hardware level. Next, we illustrate in Section 4.4 how Linux initializes all the data structures 
required by the Intel interrupt architecture. The remaining three sections describe how Linux 
handles interrupt signals at the software level. 

One word of caution before moving on: we cover in this chapter only "classic" interrupts 
common to all PCs; we do not cover the nonstandard interrupts of some architectures.  
For instance, laptops generate types of interrupts not discussed here. Other types of interrupts 
specific to multiprocessor architecture will be briefly described in Chapter 11. 

4.1 The Role of Interrupt Signals 

As the name suggests, interrupt signals provide a way to divert the processor to code outside 
the normal flow of control. When an interrupt signal arrives, the CPU must stop what it's 
currently doing and switch to a new activity; it does this by saving the current value of the 
program counter (i.e., the content of the eip and cs registers) in the Kernel Mode stack and 
by placing an address related to the interrupt type into the program counter. 

There are some things in this chapter that will remind you of the context switch we described 
in the previous chapter, carried out when a kernel substitutes one process for another.  
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But there is a key difference between interrupt handling and process switching: the code 
executed by an interrupt or by an exception handler is not a process. Rather, it is a kernel 
control path that runs on behalf of the same process that was running when the interrupt 
occurred (see Section 4.3). As a kernel control path, the interrupt handler is lighter than a 
process (it has less context and requires less time to set up or tear down). 

Interrupt handling is one of the most sensitive tasks performed by the kernel, since it must 
satisfy the following constraints: 

• Interrupts can come at any time, when the kernel may want to finish something else it 
was trying to do. The kernel's goal is therefore to get the interrupt out of the way as 
soon as possible and defer as much processing as it can. For instance, suppose a block 
of data has arrived on a network line. When the hardware interrupts the kernel, it could 
simply mark the presence of data, give the processor back to whatever was running 
before, and do the rest of the processing later (like moving the data into a buffer where 
its recipient process can find it and restarting the process). The activities that the 
kernel needs to perform in response to an interrupt are thus divided into two parts: a 
top half that the kernel executes right away and a bottom half that is left for later. The 
kernel keeps a queue pointing to all the functions that represent bottom halves waiting 
to be executed and pulls them off the queue to execute them at particular points in 
processing. 

• Since interrupts can come at any time, the kernel might be handling one of them while 
another one (of a different type) occurs. This should be allowed as much as possible 
since it keeps the I/O devices busy (see Section 4.3). As a result, the interrupt handlers 
must be coded so that the corresponding kernel control paths can be executed in a 
nested manner. When the last kernel control path terminates, the kernel must be able 
to resume execution of the interrupted process or switch to another process if the 
interrupt signal has caused a rescheduling activity. 

• Although the kernel may accept a new interrupt signal while handling a previous one, 
some critical regions exist inside the kernel code where interrupts must be disabled. 
Such critical regions must be limited as much as possible since, according to the 
previous requirement, the kernel, and in particular the interrupt handlers, should run 
most of the time with the interrupts enabled. 

4.2 Interrupts and Exceptions 

The Intel documentation classifies interrupts and exceptions as follows: 

• Interrupts: 

Maskable interrupts  

Sent to the INTR pin of the microprocessor. They can be disabled by clearing the IF 
flag of the eflags register. All IRQs issued by I/O devices give rise to maskable 
interrupts. 
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Nonmaskable interrupts  

Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not 
disabled by clearing the IF flag. Only a few critical events, such as hardware failures, 
give rise to nonmaskable interrupts. 

• Exceptions: 

Processor-detected exceptions  

Generated when the CPU detects an anomalous condition while executing an 
instruction. These are further divided into three groups, depending on the value of the 
eip register that is saved on the Kernel Mode stack when the CPU control unit raises 
the exception: 

Faults  

The saved value of eip is the address of the instruction that caused the fault, and 
hence that instruction can be resumed when the exception handler terminates. As we 
shall see in Section 7.4 in Chapter 7, resuming the same instruction is necessary 
whenever the handler is able to correct the anomalous condition that caused the 
exception. 

Traps  

The saved value of eip is the address of the instruction that should be executed after 
the one that caused the trap. A trap is triggered only when there is no need to 
reexecute the instruction that terminated. The main use of traps is for debugging 
purposes: the role of the interrupt signal in this case is to notify the debugger that a 
specific instruction has been executed (for instance, a breakpoint has been reached 
within a program). Once the user has examined the data provided by the debugger, she 
may ask that execution of the debugged program resume starting from the next 
instruction. 

Aborts  

A serious error occurred; the control unit is in trouble, and it may be unable to store a 
meaningful value in the eip register. Aborts are caused by hardware failures or by 
invalid values in system tables. The interrupt signal sent by the control unit is an 
emergency signal used to switch control to the corresponding abort exception handler. 
This handler has no choice but to force the affected process to terminate. 

Programmed exceptions  

Occur at the request of the programmer. They are triggered by int or int3 
instructions; the into (check for overflow) and bound (check on address bound) 
instructions also give rise to a programmed exception when the condition they are 
checking is not true. Programmed exceptions are handled by the control unit as traps; 
they are often called software interrupts. Such exceptions have two common uses: to 
implement system calls, and to notify a debugger of a specific event (see Chapter 8). 



Understanding the Linux Kernel 

99 

4.2.1 Interrupt and Exception Vectors 

Each interrupt or exception is identified by a number ranging from to 255; for some unknown 
reason, Intel calls this 8-bit unsigned number a vector. The vectors of nonmaskable interrupts 
and exceptions are fixed, while those of maskable interrupts can be altered by programming 
the Interrupt Controller (see Section 4.2.2). 

Linux uses the following vectors: 

• Vectors ranging from to 31 correspond to exceptions and nonmaskable interrupts. 
• Vectors ranging from 32 to 47 are assigned to maskable interrupts, that is, to interrupts 

caused by IRQs. 
• The remaining vectors ranging from 48 to 255 may be used to identify software 

interrupts. Linux uses only one of them, namely the 128 or 0x80 vector, which it uses 
to implement system calls. When an int 0x80 Assembly instruction is executed by a 
process in User Mode, the CPU switches into Kernel Mode and starts executing the 
system_call( ) kernel function (see Chapter 8). 

4.2.2 IRQs and Interrupts 

Each hardware device controller capable of issuing interrupt requests has an output line 
designated as an IRQ (Interrupt ReQuest). All existing IRQ lines are connected to the input 
pins of a hardware circuit called the Interrupt Controller, which performs the following 
actions: 

1. Monitors the IRQ lines, checking for raised signals. 
2. If a raised signal occurs on an IRQ line: 

a. Converts the raised signal received into a corresponding vector. 
b. Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to 

read it via the data bus. 
c. Sends a raised signal to the processor INTR pin—that is, issues an interrupt. 
d. Waits until the CPU acknowledges the interrupt signal by writing into one of 

the Programmable Interrupt Controllers (PIC) I/O ports; when this occurs, 
clears the INTR line. 

3. Goes back to step 1. 

The IRQ lines are sequentially numbered starting from 0; thus, the first IRQ line is usually 
denoted as IRQ0. Intel's default vector associated with IRQn is n+32; as mentioned before, 
the mapping between IRQs and vectors can be modified by issuing suitable I/O instructions to 
the Interrupt Controller ports. 

Figure 4-1 illustrates a typical connection "in cascade" of two Intel 8259A PICs that can 
handle up to 15 different IRQ input lines. Notice that the INT output line of the second PIC is 
connected to the IRQ2 pin of the first PIC: a signal on that line denotes the fact that an IRQ 
signal on any one of the lines IRQ8-IRQ15 has occurred. The number of available IRQ lines 
is thus traditionally limited to 15; however, more recent PIC chips are able to handle many 
more input lines. 
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Figure 4-1. Connecting two 8259A PICs in cascade 

 

Other lines not shown in the figure connect the PICs to the bus: in particular, bidirectional 
lines D0-D7 connect the I/O port to the data bus, while another input line is connected to the 
control bus and is used for receiving acknowledgment signals from the CPU. 

Since the number of available IRQ lines is limited, it may be necessary to share the same line 
among several different I/O devices. When this occurs, all the devices connected to the same 
line will have to be polled sequentially by the software interrupt handler in order to determine 
which of them has issued an interrupt request. We'll describe in Section 4.6 how Linux 
handles this kind of hardware limitation. 

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs. 
That is, the PIC can be told to stop issuing interrupts that refer to a given IRQ line or vice 
versa to enable them. Disabled interrupts are not lost; the PIC sends them to the CPU as soon 
as they are enabled again. This feature is used by most interrupt handlers, since it allows them 
to process IRQs of the same type serially. 

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of 
maskable interrupts. When the IF flag of the eflags register is clear, any maskable interrupt 
issued by the PIC is simply ignored by the CPU. The cli and sti Assembly instructions, 
respectively, clear and set that flag. 

4.2.3 Exceptions 

The Intel 80x86 microprocessors issue roughly 20 different exceptions.[1] The kernel must 
provide a dedicated exception handler for each exception type. For some exceptions, the CPU 
control unit also generates a hardware error code and pushes it in the Kernel Mode stack 
before starting the exception handler. 

[1] The exact number depends on the processor model. 

The following list gives the vector, the name, the type, and a brief description of the 
exceptions found in a Pentium model. Additional information may be found in the Intel 
technical documentation. 

0 - "Divide error" (fault)  

Raised when a program tries to divide by 0. 
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1- "Debug" (trap or fault)  

Raised when the T flag of eflags is set (quite useful to implement step-by-step 
execution of a debugged program) or when the address of an instruction or operand 
falls within the range of an active debug register (see Section 3.2.1 in Chapter 3). 

2 - Not used  

Reserved for nonmaskable interrupts (those that use the NMI pin). 

3 - "Breakpoint" (trap)  

Caused by an int3 (breakpoint) instruction (usually inserted by a debugger). 

4 - "Overflow" (trap)  

An into (check for overflow) instruction has been executed when the OF (overflow) 
flag of eflags is set. 

5 - "Bounds check" (fault)  

A bound (check on address bound) instruction has been executed with the operand 
outside of the valid address bounds. 

6 - "Invalid opcode" (fault)  

The CPU execution unit has detected an invalid opcode (the part of the machine 
instruction that determines the operation performed). 

7 - "Device not available" (fault)  

An ESCAPE or MMX instruction has been executed with the TS flag of cr0 set (see 
the section Section 3.2.4 in Chapter 3). 

8 - "Double fault" (abort)  

Normally, when the CPU detects an exception while trying to call the handler for a 
prior exception, the two exceptions can be handled serially. In a few cases, however, 
the processor cannot handle them serially, hence it raises this exception. 

9 - "Coprocessor segment overrun" (abort)  

Problems with the external mathematical coprocessor (applies only to old 80386 
microprocessors). 

10 - "Invalid TSS" (fault)  

The CPU has attempted a context switch to a process having an invalid Task State 
Segment. 
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11 - "Segment not present" (fault)  

A reference was made to a segment not present in memory (one in which the 
Segment-Present flag of the Segment Descriptor was cleared). 

12 - "Stack segment" (fault)  

The instruction attempted to exceed the stack segment limit, or the segment identified 
by ss is not present in memory. 

13 - "General protection" (fault)  

One of the protection rules in the protected mode of the Intel 80x86 has been violated. 

14 - "Page fault" (fault)  

The addressed page is not present in memory, the corresponding page table entry is 
null, or a violation of the paging protection mechanism has occurred. 

15 - Reserved by Intel  
 
16 - "Floating point error" (fault)  

The floating point unit integrated into the CPU chip has signaled an error condition, 
such as numeric overflow or division by 0. 

17 - "Alignment check" (fault)  

The address of an operand is not correctly aligned (for instance, the address of a long 
integer is not a multiple of 4). 

18 to 31  

These values are reserved by Intel for future development. 

As illustrated in Table 4-1, each exception is handled by a specific exception handler (see 
Section 4.5 later in this chapter), which usually sends a Unix signal to the process that caused 
the exception. 
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Table 4-1. Signals Sent by the Exception Handlers 
# Exception Exception Handler Signal 
0 "Divide error" divide_error( ) SIGFPE 
1 "Debug" debug( ) SIGTRAP 
2 NMI nmi( ) None 
3 "Breakpoint" int3( ) SIGTRAP 
4 "Overflow" overflow( ) SIGSEGV 
5 "Bounds check" bounds( ) SIGSEGV 
6 "Invalid opcode" invalid_op( ) SIGILL 
7 "Device not available" device_not_available( ) SIGSEGV 
8 "Double fault" double_fault( ) SIGSEGV 
9 "Coprocessor segment overrun" coprocessor_segment_overrun( ) SIGFPE 
10 "Invalid TSS" invalid_tss( ) SIGSEGV 
11 "Segment not present" segment_not_present( ) SIGBUS 
12 "Stack exception" stack_segment( ) SIGBUS 
13 "General protection" general_protection( ) SIGSEGV 
14 "Page fault" page_fault( ) SIGSEGV 
15 Intel reserved None None 
16 "Floating point error" coprocessor_error( ) SIGFPE 
17 "Alignment check" alignment_check( ) SIGSEGV 

4.2.4 Interrupt Descriptor Table 

A system table called Interrupt Descriptor Table (IDT) associates each interrupt or exception 
vector with the address of the corresponding interrupt or exception handler. The IDT must be 
properly initialized before the kernel enables interrupts. 

The IDT format is similar to that of the GDT and of the LDTs examined in Chapter 2: each 
entry corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor. 
Thus, a maximum of 256x 8=2048 bytes are required to store the IDT. 

The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both 
the IDT base physical address and its limit (maximum length). It must be initialized before 
enabling interrupts by using the lidt assembly language instruction. 

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64 
bits included in each of them. In particular, the value of the Type field encoded in the bits 40-
43 identifies the descriptor type. 
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Figure 4-2. Gate descriptors's format 

 

The descriptors are: 

Task gate  

Includes the TSS selector of the process that must replace the current one when an 
interrupt signal occurs. Linux does not use task gates. 

Interrupt gate  

Includes the Segment Selector and the offset inside the segment of an interrupt or 
exception handler. While transferring control to the proper segment, the processor 
clears the IF flag, thus disabling further maskable interrupts. 

Trap gate  

Similar to an interrupt gate, except that while transferring control to the proper 
segment, the processor does not modify the IF flag. 

As we shall see in Section 4.4.1, Linux uses interrupt gates to handle interrupts and trap gates 
to handle exceptions. 

4.2.5 Hardware Handling of Interrupts and Exceptions 

We now describe how the CPU control unit handles interrupts and exceptions. We assume 
that the kernel has been initialized and thus the CPU is operating in protected mode. 

After executing an instruction, the cs and eip pair of registers contain the logical address of 
the next instruction to be executed. Before dealing with that instruction, the control unit 
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checks whether an interrupt or an exception has occurred while it executed the previous 
instruction. If one occurred, the control unit: 

1. Determines the vector i (0  i 255) associated with the interrupt or the exception. 
2. Reads the i th entry of the IDT referred by the idtr register (we assume in the 

following description that the entry contains an interrupt or a trap gate). 
3. Gets the base address of the GDT from the gdtr register and looks in the GDT to read 

the Segment Descriptor identified by the selector in the IDT entry. This descriptor 
specifies the base address of the segment that includes the interrupt or exception 
handler. 

4. Makes sure the interrupt was issued by an authorized source. First compares the 
Current Privilege Level (CPL), which is stored in the two least significant bits of the 
cs register, with the Descriptor Privilege Level (DPL) of the Segment Descriptor 
included in the GDT. Raises a "General protection" exception if CPL is lower than 
DPL, because the interrupt handler cannot have a lower privilege than the program 
that caused the interrupt. For programmed exceptions, makes a further security check: 
compares the CPL with the DPL of the gate descriptor included in the IDT and raises a 
"General protection" exception if the DPL is lower than the CPL. This last check 
makes it possible to prevent access by user applications to specific trap or interrupt 
gates. 

5. Checks whether a change of privilege level is taking place, that is, if CPL is different 
from the selected Segment Descriptor's DPL. If so, the control unit must start using the 
stack that is associated with the new privilege level. It does this by performing the 
following steps: 

a. Reads the tr register to access the TSS segment of the current process. 
b. Loads the ss and esp registers with the proper values for the stack segment 

and stack pointer relative to the new privilege level. These values are found in 
the TSS (see Section 3.2.2 in Chapter 3). 

c. In the new stack, saves the previous values of ss and esp, which define the 
logical address of the stack associated with the old privilege level. 

6. If a fault has occurred, loads cs and eip with the logical address of the instruction that 
caused the exception so that it can be executed again. 

7. Saves the contents of eflags, cs, and eip in the stack. 
8. If the exception carries a hardware error code, saves it on the stack. 
9. Loads cs and eip, respectively, with the Segment Selector and the Offset fields of the 

Gate Descriptor stored in the i th entry of the IDT. These values define the logical 
address of the first instruction of the interrupt or exception handler. 

The last step performed by the control unit is equivalent to a jump to the interrupt or 
exception handler. In other words, the instruction processed by the control unit after dealing 
with the interrupt signal is the first instruction of the selected handler. 

After the interrupt or exception has been processed, the corresponding handler must relinquish 
control to the interrupted process by issuing the iret instruction, which forces the control unit 
to: 

1. Load the cs, eip, and eflags registers with the values saved on the stack. If a 
hardware error code has been pushed in the stack on top of the eip contents, it must be 
popped before executing iret. 
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2. Check whether the CPL of the handler is equal to the value contained in the two least 
significant bits of cs (this means the interrupted process was running at the same 
privilege level as the handler). If so, iret concludes execution; otherwise, go to the 
next step. 

3. Load the ss and esp registers from the stack, and hence return to the stack associated 
with the old privilege level. 

4. Examine the contents of the ds, es, fs, and gs segment registers: if any of them 
contains a selector that refers to a Segment Descriptor whose DPL value is lower than 
CPL, clear the corresponding segment register. The control unit does this to forbid 
User Mode programs that run with a CPL equal to 3 from making use of segment 
registers previously used by kernel routines (with a DPL equal to 0). If these registers 
were not cleared, malicious User Mode programs could exploit them to access the 
kernel address space. 

4.3 Nested Execution of Exception and Interrupt Handlers 

A kernel control path consists of the sequence of instructions executed in Kernel Mode to 
handle an interrupt or an exception. When a process issues a system call request, for instance, 
the first instructions of the corresponding kernel control path are those that save the content of 
the registers in the Kernel Mode stack, while the last instructions are those that restore the 
content of the registers and put the CPU back into User Mode. 

Assuming that the kernel is bug-free, most exceptions can occur only while the CPU is in 
User Mode. Indeed, they are either caused by programming errors or triggered by debuggers. 
However, the "Page fault" exception may occur in Kernel Mode: this happens when the 
process attempts to address a page that belongs to its address space but is not currently in 
RAM. While handling such an exception, the kernel may suspend the current process and 
replace it with another one until the requested page is available. The kernel control path that 
handles the page fault exception will resume execution as soon as the process gets the 
processor again. 

Since the "Page fault" exception handler never gives rise to further exceptions, at most two 
kernel control paths associated with exceptions may be stacked, one on top of the other. 

In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures 
specific to the current process, although the kernel control paths that handle them run on 
behalf of that process. As a matter of fact, it is impossible to predict which process will be 
currently running when a given interrupt occurs. 

Linux design does not allow process switching while the CPU is executing a kernel control 
path associated with an interrupt. However, such kernel control paths may be arbitrarily 
nested: an interrupt handler may be interrupted by another interrupt handler and so on. 

An interrupt handler may also defer an exception handler. Conversely, an exception handler 
never defers an interrupt handler. The only exception that can be triggered in Kernel Mode is 
the "Page fault" one just described. But interrupt handlers never perform operations that could 
induce page faults and thus, potentially, process switching. 

Linux interleaves kernel control paths for two major reasons: 



Understanding the Linux Kernel 

107 

• To improve the throughput of programmable interrupt controllers and device 
controllers. Assume that a device controller issues a signal on an IRQ line: the PIC 
transforms it into an INTR request, and then both the PIC and the device controller 
remain blocked until the PIC receives an acknowledgment from the CPU. Thanks to 
kernel control path interleaving, the kernel is able to send the acknowledgment even 
when it is handling a previous interrupt. 

• To implement an interrupt model without priority levels. Since each interrupt handler 
may be deferred by another one, there is no need to establish predefined priorities 
among hardware devices. This simplifies the kernel code and improves its portability. 

4.4 Initializing the Interrupt Descriptor Table 

Now that you understand what the Intel processor does with interrupts and exceptions at the 
hardware level, we can move on to describe how the Interrupt Descriptor Table is initialized. 

Remember that before the kernel enables the interrupts, it must load the initial address of the 
IDT table into the idtr register and initialize all the entries of that table. This activity is done 
while initializing the system (see Appendix A). 

The int instruction allows a User Mode process to issue an interrupt signal having an 
arbitrary vector ranging from to 255. The initialization of the IDT must thus be done 
carefully, in order to block illegal interrupts and exceptions simulated by User Mode 
processes via int instructions. This can be achieved by setting the DPL field of the Interrupt 
or Trap Gate Descriptor to 0. If the process attempts to issue one of such interrupt signals, the 
control unit will check the CPL value against the DPL field and issue a "General protection" 
exception. 

In a few cases, however, a User Mode process must be able to issue a programmed exception. 
To allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate 
Descriptors to 3; that is, as high as possible. 

Let's now see how Linux implements this strategy. 

4.4.1 Interrupt, Trap, and System Gates 

As mentioned in Section 4.2.4, Intel provides three types of interrupt descriptors: Task, 
Interrupt, and Trap Gate Descriptors. Task Gate Descriptors are irrelevant to Linux, but its 
Interrupt Descriptor Table contains several Interrupt and Trap Gate Descriptors. Linux 
classifies them as follows, using a slightly different breakdown and terminology from Intel: 

Interrupt gate  

An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's 
DPL field is equal to 0). All Linux interrupt handlers are activated by means of 
interrupt gates, and all are restricted to Kernel Mode. 

System gate  

An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field is 
equal to 3). The four Linux exception handlers associated with the vectors 3, 4, 5, and 
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128 are activated by means of system gates, so the four Assembly instructions int3, 
into, bound, and int 0x80 can be issued in User Mode. 

Trap gate  

An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL 
field is equal to 0). All Linux exception handlers, except the four described in the 
previous paragraph, are activated by means of trap gates. 

The following functions are used to insert gates in the IDT: 

set_intr_gate(n,addr)  

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is 
set to the kernel code's Segment Selector. The Offset field is set to addr, which is the 
address of the interrupt handler. The DPL field is set to 0. 

set_system_gate(n,addr)  

Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set to 
the kernel code's Segment Selector. The Offset field is set to addr, which is the 
address of the exception handler. The DPL field is set to 3. 

set_trap_gate(n,addr)  

Similar to the previous function, except that the DPL field is set to 0. 

4.4.2 Preliminary Initialization of the IDT 

The IDT is initialized and used by the BIOS routines when the computer still operates in Real 
Mode. Once Linux takes over, however, the IDT is moved to another area of RAM and 
initialized a second time, since Linux does not make use of any BIOS routines (see  
Appendix A). 

The IDT is stored in the idt_table table, which includes 256 entries.[2] The 6-byte 
idt_descr variable specifies both the size of the IDT and its address; it is used only when the 
kernel initializes the idtr register with the lidt Assembly instruction. In all other cases, the 
kernel refers to the idt variable to get the address of the IDT. 

[2] Some Pentium models have the notorious "f00f" bug, which allows a User Mode program to freeze the system. When executing on such CPUs, 
Linux uses a workaround based on storing the IDT in a write-protected page frame. The workaround for the bug is offered as an option when the user 
compiles the kernel. 

During kernel initialization, the setup_idt( ) assembly language function starts by filling 
all 256 entries of idt_table with the same interrupt gate, which refers to the ignore_int( ) 
interrupt handler: 

setup_idt:  
    lea ignore_int, %edx  
    movl $(__KERNEL_CS << 16), %eax  
    movw %dx, %ax       /* selector = 0x0010 = cs */  
    movw $0x8e00, %dx   /* interrupt gate, dpl=0, present */  
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    lea idt_table, %edi  
    mov $256, %ecx  
rp_sidt:  
    movl %eax, (%edi)  
    movl %edx, 4(%edi)  
    addl $8, %edi  
    dec %ecx  
    jne rp_sidt  
    ret 

The ignore_int( ) interrupt handler, which is in assembly language, may be viewed as a 
null handler that executes the following actions: 

1. Saves the content of some registers in the stack 
2. Invokes the printk( ) function to print an "Unknown interrupt" system message 
3. Restores the register contents from the stack 
4. Executes an iret instruction to restart the interrupted program 

The ignore_int( ) handler should never be executed: the occurrence of "Unknown 
interrupt" messages on the console or in the log files denotes either a hardware problem (an 
I/O device is issuing unforeseen interrupts) or a kernel problem (an interrupt or exception is 
not being handled properly). 

Following this preliminary initialization, the kernel makes a second pass in the IDT to replace 
some of the null handlers with meaningful trap and interrupt handlers. Once this is done, the 
IDT will include a specialized trap or system gate for each different exception issued by the 
control unit, and a specialized interrupt gate for each IRQ recognized by the Programmable 
Interrupt Controller. 

The next two sections illustrate in detail how this is done, respectively, for exceptions and 
interrupts. 

4.5 Exception Handling 

Linux takes advantage of exceptions to achieve two quite different goals: 

• To send a signal to a process to notify an anomalous condition 
• To handle demand paging 

An example of the first use is if a process performs a division by 0. The CPU raises a "Divide 
error" exception, and the corresponding exception handler sends a SIGFPE signal to the 
current process, which will then take the necessary steps to recover or (if no signal handler is 
set for that signal) abort. 

Exception handlers have a standard structure consisting of three parts: 

1. Save the contents of most registers in the Kernel Mode stack (this part is coded in 
Assembly language). 

2. Handle the exception by means of a high-level C function. 
3. Exit from the handler by means of the ret_from_exception( ) function. 



Understanding the Linux Kernel 

110 

In order to take advantage of exceptions, the IDT must be properly initialized with an 
exception handler function for each recognized exception. It is the job of the trap_init( 
)function to insert the final values—that is, the functions that handle the exceptions—into all 
IDT entries that refer to nonmaskable interrupts and exceptions. This is accomplished through 
the set_trap_gate and set_system_gate macros: 

set_trap_gate(0,&divide_error);  
set_trap_gate(1,&debug);  
set_trap_gate(2,&nmi);  
set_system_gate(3,&int3);  
set_system_gate(4,&overflow);  
set_system_gate(5,&bounds);  
set_trap_gate(6,&invalid_op);  
set_trap_gate(7,&device_not_available);  
set_trap_gate(8,&double_fault);  
set_trap_gate(9,&coprocessor_segment_overrun);  
set_trap_gate(10,&invalid_TSS);  
set_trap_gate(11,&segment_not_present);  
set_trap_gate(12,&stack_segment);  
set_trap_gate(13,&general_protection);  
set_trap_gate(14,&page_fault);  
set_trap_gate(16,&coprocessor_error);  
set_trap_gate(17,&alignment_check);  
set_system_gate(0x80,&system_call); 

Now we will look at what a typical exception handler does once it is invoked. 

4.5.1 Saving the Registers for the Exception Handler 

Let us denote with handler_name the name of a generic exception handler. (The actual names 
of all the exception handlers appear on the list of macros in the previous section.) Each 
exception handler starts with the following Assembly instructions: 

handler_name: 
    pushl $0 /* only for some exceptions */ 
    pushl $do_handler_name 
    jmp error_code 

If the control unit is not supposed to automatically insert a hardware error code on the stack 
when the exception occurs, the corresponding Assembly fragment includes a pushl $0 
instruction to pad the stack with a null value. Then the address of the high-level C function is 
pushed on the stack; its name consists of the exception handler name prefixed by do_. 

The Assembly fragment labeled as error_code is the same for all exception handlers except 
the one for the "Device not available" exception (see Section 3.2.4 in Chapter 3). The code 
performs the following steps: 

1. Saves the registers that might be used by the high-level C function on the stack. 
2. Issues a cld instruction to clear the direction flag DF of eflags, thus making sure that 

autoincrements on the edi and esi registers will be used with string instructions. 
3. Copies the hardware error code saved in the stack at location esp+36 in eax. Stores in 

the same stack location the value -1: as we shall see in the section Section 9.3.4 in 
Chapter 9, this value is used to separate 0x80 exceptions from other exceptions. 
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4. Loads ecx with the address of the high-level do_handler_name( ) C function saved 
in the stack at location esp+32; writes the contents of es in that stack location. 

5. Loads the kernel data Segment Selector into the ds and es registers, then sets the ebx 
register to the address of the current process descriptor (see Section 3.1.2 in Chapter 
3). 

6. Stores the parameters to be passed to the high-level C function on the stack, namely, 
the exception hardware error code and the address of the stack location where the 
contents of User Mode registers was saved. 

7. Invokes the high-level C function whose address is now stored in ecx. 

After the last step is executed, the invoked function will find on the top locations of the stack: 

• The return address of the instruction to be executed after the C function terminates 
(see next section) 

• The stack address of the saved User Mode registers 
• The hardware error code 

4.5.2 Returning from the Exception Handler 

When the C function that implements the exception handling terminates, control is transferred 
to the following assembly language fragment: 

addl $8, %esp  
jmp ret_from_exception 

The code pops the stack address of the saved User Mode registers and the hardware error code 
from the stack, then performs a jmp instruction to the ret_from_exception( ) function. 
This function will be described in Section 4.7. 

4.5.3 Invoking the Exception Handler 

As already explained, the names of the C functions that implement exception handlers always 
consist of the prefix do_ followed by the handler name. Most of these functions store the 
hardware error code and the exception vector in the process descriptor of current, then send 
to that process a suitable signal. This is done as follows: 

current->tss.error_code = error_code;  
current->tss.trap_no = vector;  
force_sig(sig_number, current); 

When the ret_from_exception( ) function is invoked, it checks whether the process has 
received a signal. If so, the signal will be handled either by the process's own signal handler 
(if it exists) or by the kernel; in the latter case, the kernel will usually kill the process (see 
Chapter 9). The signals sent by the exception handlers have already been illustrated in Table 
4-1. 

Finally, the handler invokes either die_if_kernel( ) or die_if_no_fixup( ): 

• The die_if_kernel( ) function checks whether the exception occurred in Kernel 
Mode; in this case, it invokes the die( ) function, which prints the contents of all 
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CPU registers on the console and terminates the current process by invoking 
do_exit( ) (see Chapter 19). 

• The die_if_no_fixup( ) function is similar, but before invoking die( ) it checks 
whether the exception was due to an invalid argument of a system call: in the 
affirmative case, it uses a "fixup" approach, which will be described in Section 8.2.6 
in Chapter 8. 

Two exceptions are exploited by the kernel to manage hardware resources more efficiently. 
The corresponding handlers are more complex because the exception does not necessarily 
denote an error condition: 

• "Device not available": as discussed in Section 3.2.4 in Chapter 3, this exception is 
used to defer loading the floating point registers until the last possible moment. 

• "Page fault": as we shall see in the section Section 7.4 in Chapter 7, this exception is 
used to defer allocating new page frames to the process until the last possible 
fmoment. 

4.6 Interrupt Handling 

As we explained earlier, most exceptions are handled simply by sending a Unix signal to the 
process that caused the exception. The action to be taken is thus deferred until the process 
receives the signal; as a result, the kernel is able to process the exception quickly. 

This approach does not hold for interrupts, because they frequently arrive long after the 
process to which they are related (for instance, a process that requested a data transfer) has 
been suspended and a completely unrelated process is running. So it would make no sense to 
send a Unix signal to the current process. 

Furthermore, due to hardware limitations, several devices may share the same IRQ line. 
(Remember that PCs supply only a few IRQs.) This means that the interrupt vector alone does 
not tell the whole story: as an example, some PC configurations may assign the same vector to 
the network card and to the graphic card. Therefore, an interrupt handler must be flexible 
enough to service several devices. In order to do this, several interrupt service routines (ISRs) 
can be associated with the same interrupt handler; each of them is a function related to a 
single device sharing the IRQ line. Since it is not possible to know in advance which 
particular device issued the IRQ, each ISR is executed to verify whether its device needs 
attention; if so, the ISR performs all the operations that need to be executed when the device 
raises an interrupt. 

Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the 
interrupt handler itself is not a suitable place for all kind of actions. Long noncritical 
operations should be deferred, since while an interrupt handler is running, the signals on the 
corresponding IRQ line are ignored. Most important, the process on behalf of which an 
interrupt handler is executed must always stay in the TASK_RUNNING state, or a system freeze 
could occur. Therefore, interrupt handlers cannot perform any blocking procedure such as I/O 
disk operations. So Linux divides the actions to be performed following an interrupt into three 
classes: 

 
 



Understanding the Linux Kernel 

113 

Critical  

Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the 
device controller, or updating data structures accessed by both the device and the 
processor. These can be executed quickly and are critical because they must be 
performed as soon as possible. Critical actions are executed within the interrupt 
handler immediately, with maskable interrupts disabled. 

Noncritical  

Actions such as updating data structures that are accessed only by the processor (for 
instance, reading the scan code after a keyboard key has been pushed). These actions 
can also finish quickly, so they are executed by the interrupt handler immediately, 
with the interrupts enabled. 

Noncritical deferrable  

Actions such as copying a buffers contents into the address space of some process (for 
instance, sending the keyboard line buffer to the terminal handler process). These may 
be delayed for a long time interval without affecting the kernel operations; the 
interested process will just keep waiting for the data. Noncritical deferrable actions are 
performed by means of separate functions called "bottom halves." We shall discuss 
them in Section 4.6.6. 

All interrupt handlers perform the same four basic actions: 

1. Save the IRQ value and the registers contents in the Kernel Mode stack. 
2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to 

issue further interrupts. 
3. Execute the interrupt service routines (ISRs) associated with all the devices that share 

the IRQ. 
4. Terminate by jumping to the ret_from_intr( ) address. 

Several descriptors are needed to represent both the state of the IRQ lines and the functions to 
be executed when an interrupt occurs. Figure 4-3 represents in a schematic way the hardware 
circuits and the software functions used to handle an interrupt. These functions will be 
discussed in the following sections. 
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Figure 4-3. Interrupt handling 

 

4.6.1 Interrupt Vectors 

As explained in Section 4.2.2, the 16 physical IRQs are assigned the vectors 32-47. The IBM-
compatible PC architecture requires that some devices must be statically connected to specific 
IRQ lines. In particular: 

• The interval timer device must be connected to the IRQ0 line (see Chapter 5). 
• The slave 8259A PIC must be connected to the IRQ2 line (see Figure 4-1). 
• The external mathematical coprocessor must be connected to the IRQ13 line (although 

recent Intel 80x86 processors no longer use such a device, Linux continues to support 
the venerable 80386 model). 

For all remaining IRQs, the kernel must establish a correspondence between IRQ number and 
I/O device before enabling interrupts. Otherwise, how could the kernel handle a signal from 
(say) a SCSI disk without knowing which vector corresponds to the device? 

Modern I/O devices are able to connect themselves to several IRQ lines. The optimal 
selection depends on how many devices are on the system and whether any are constrained to 
respond only to certain IRQs. There are two ways to select a line for each device: 

• By a utility program executed when installing the device: such a program may ask the 
user to select an available IRQ number or determine an available number by itself. 

• By a hardware protocol executed at system startup. Under this system, peripheral 
devices declare which interrupt lines they are ready to use; the final values are then 
negotiated to reduce conflicts as much as possible. Once this is done, each interrupt 
handler can read the assigned IRQ by using a function that accesses some I/O ports of 
the device. For instance, drivers for devices that comply with the Peripheral 
Component Interconnect (PCI) standard make use of a group of functions such as 
pci_read_config_byte( ) and pci_write_config_byte( ) to access the device 
configuration space. 
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In both cases, the kernel can retrieve the selected IRQ line of a device when initializing the 
corresponding driver. Table 4-2 shows a fairly arbitrary arrangement of devices and IRQs, 
such as might be found on one particular PC. 

Table 4-2. An Example of IRQ Assignment to I/O Devices 
IRQ INT Hardware Device 
0 32 Timer 
1 33 Keyboard 
2 34 PIC cascading 
3 35 Second serial port 
4 36 First serial port 
6 38 Floppy disk 
8 40 System clock 
11 43 Network interface 
12 44 PS/2 mouse 
13 45 Mathematical coprocessor 
14 46 EIDE disk controller's first chain 
15 47 EIDE disk controller's second chain 

4.6.2 IRQ Data Structures 

As always when discussing complicated operations involving state transitions, it helps to 
understand first where key data is stored. Thus, this section explains the data structures that 
support interrupt handling and how they are laid out in various descriptors. Figure 4-4 
illustrates schematically the relationships between the main descriptors that represent the state 
of the IRQ lines. (The figure does not illustrate the data structures needed to handle bottom 
halves; they will be discussed later in this chapter.) 

Figure 4-4. IRQ descriptors 

 

4.6.2.1 The irq_desc_t descriptor 

An irq _desc array includes NR_IRQS irq _desc_t descriptors, which include the following 
fields: 

status  

A set of flags describing the IRQ line status. 



Understanding the Linux Kernel 

116 

IRQ _INPROGRESS  

A handler for the IRQ is being executed. 

IRQ _DISABLED  

The IRQ line has been deliberately disabled by a device driver. 

IRQ _PENDING  

An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC, 
but it has not yet been serviced by the kernel. 

IRQ _REPLAY  

The IRQ line has been disabled but the previous IRQ occurrence has not yet been 
acknowledged to the PIC. 

IRQ _AUTODETECT  

The kernel is using the IRQ line while performing a hardware device probe. 

IRQ _WAITING  

The kernel is using the IRQ line while performing a hardware device probe; moreover, 
the corresponding interrupt has not been raised. 

handler  

Points to the hw_interrupt_type descriptor that identifies the PIC circuit servicing 
the IRQ line. 

action  

Identifies the interrupt service routines to be invoked when the IRQ occurs. The field 
points to the first element of the list of irqaction descriptors associated with the 
IRQ. The irqaction descriptor is described briefly later in the chapter. 

depth  

Shows 0 if the IRQ line is enabled and a positive value if it has been disabled at least 
once. Every time the disable_irq( ) function is invoked, it increments this field; if 
depth was equal to 0, the function disables the IRQ line. Conversely, each invocation 
of the enable_irq( ) function decrements the field; if depth becomes 0, the function 
enables the IRQ line. 

During system initialization, the init_IRQ( ) function sets the status field of each IRQ 
main descriptor to IRQ _DISABLED as follows: 
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for (i=0; i<NR_IRQS; i++)  
    irq_desc[i].status = IRQ_DISABLED; 

It then updates the IDT by replacing the provisional interrupt gates with the final ones. This is 
accomplished through the following statements: 

for (i = 0; i < NR_IRQS; i++)  
    set_intr_gate(0x20+i,interrupt[i]); 

This code looks in the interrupt array to find the interrupt handler addresses that it uses to 
set up the interrupt gates. The interrupt handler for IRQn is named IRQn_interrupt( ) (see 
Section 4.6.3). 

4.6.2.2 The hw_interrupt_type descriptor 

This descriptor includes a group of pointers to the low-level I/O routines that interact with a 
specific PIC circuit. Linux supports, in addition to the 8259A chip that was mentioned near 
the beginning of this chapter, several other PIC circuits such as the SMP IO-APIC, PIIX4's 
internal 8259 PIC, and SGI's Visual Workstation Cobalt (IO-)APIC. But for the sake of 
simplifying the explanation, we'll assume in this chapter that our computer is a uniprocessor 
with two 8259A PICs, which provides the 16 standard IRQs discussed earlier. In this case, the 
handler field in each of the 16 irq _desc_t descriptors points to the i8259A_irq _type 
variable, which describes the 8259A PIC. This variable is initialized as follows: 

struct hw_interrupt_type i8259A_irq_type = {  
    "XT-PIC",  
    startup_8259A_irq,  
    shutdown_8259A_irq,  
    do_8259A_IRQ,  
    enable_8259A_irq,  
    disable_8259A_irq  
}; 

The first field in this structure, "XT-PIC", is a name. Following that, i8259A_irq_type 
includes pointers to five different functions used to program the PIC. The first two functions 
start up and shut down an IRQ line of the chip, respectively. But in the case of the 8259A chip 
these functions coincide with the last two functions, which enable and disable the line. The 
do_8259A_IRQ( ) function will be described in Section 4.6.4. 

4.6.2.3 The irqaction descriptor 

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains 
irqaction descriptors, each of which refers to a specific hardware device and a specific 
interrupt. The descriptor includes the following fields. 

handler  

Points to the interrupt service routine for an I/O device. This is the key field that 
allows many devices to share the same IRQ. 
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flags  

Describes the relationships between IRQ line and I/O device in a set of flags: 

SA_INTERRUPT  

The handler must execute with interrupts disabled. 

SA_SHIRQ  

The device permits its IRQ line to be shared with other devices. 

SA_SAMPLE_RANDOM  

The device may be considered as a source of events occurring randomly; it can thus be 
used by the kernel random number generator. (Users can access this feature by taking 
random numbers from the /dev/random and /dev/urandom device files.) 

SA_PROBE  

The kernel is using the IRQ line while performing a hardware device probe. 

name  

Names of the I/O device (shown when listing the serviced IRQs by reading the 
/proc/interrupts file). 

dev_id  

The major and minor numbers that identify the I/O device (see Section 13.2.1 in 
Chapter 13). 

next  

Points to the next element of a list of irqaction descriptors. The elements in the list 
refer to hardware devices that share the same IRQ. 

4.6.3 Saving the Registers for the Interrupt Handler 

As with other context switches, the need to save registers leaves the kernel developer a 
somewhat messy coding job because the registers have to be saved and restored using 
assembly language code, but within those operations the processor is expected to call and 
return from a C function. In this section we'll describe the assembly language task of handling 
registers, while in the next we'll show some of the acrobatics required in the C function that is 
subsequently invoked. 

Saving registers is the first task of the interrupt handler. As already mentioned, the interrupt 
handler for IRQn is named IRQn_interrupt, and its address is included in the interrupt gate 
stored in the proper IDT entry. 
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The same BUILD_IRQ macro is duplicated 16 times, once for each IRQ number, in order to 
yield 16 different interrupt handler entry points. Each BUILD_IRQ expands to the following 
assembly language fragment: 

IRQn_interrupt: 
    pushl $n-256 
    jmp common_interrupt 

The result is to save on the stack the IRQ number associated with the interrupt minus 256;[3] 
the same code for all interrupt handlers can then be executed while referring to this number. 
The common code can be found in the BUILD_COMMON_IRQ macro, which expands to the 
following assembly language fragment: 

[3] Subtracting 256 from an IRQ number yields a negative number. Positive numbers are reserved to identify system calls (see Chapter 8). 

common_interrupt:  
    SAVE_ALL  
    call do_IRQ  
    jmp ret_from_intr 

The SAVE_ALL macro, in turn, expands to the following fragment: 

cld  
push %es  
push %ds  
pushl %eax  
pushl %ebp  
pushl %edi  
pushl %esi  
pushl %edx  
pushl %ecx  
pushl %ebx  
movl $__KERNEL_DS,%edx  
mov %dx,%ds  
mov %dx,%es 

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the stack, 
except for eflags, cs, eip, ss, and esp, which are already saved automatically by the control 
unit (see Section 4.2.5). The macro then loads the selector of the kernel data segment into ds 
and es. 

After saving the registers, BUILD_COMMON_IRQ invokes the do_IRQ( ) function and jumps to 
the ret_from_intr( ) address (see Section 4.7). 

4.6.4 The do_IRQ( ) Function 

The do_IRQ( ) function is invoked to execute all interrupt service routines associated with an 
interrupt. When it starts, the kernel stack contains from the top down: 

• The do_IRQ( ) return address 
• The group of register values pushed on by SAVE_ALL 
• The encoding of the IRQ number 
• The registers saved automatically by the control unit when it recognized the interrupt 
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Since the C compiler places all the parameters on top of the stack, the do_IRQ( ) function is 
declared as follows: 

void do_IRQ(struct pt_regs regs) 

where the pt_regs structure consists of 15 fields: 

• The first nine fields correspond to the register values pushed by SAVE_ALL. 
• The tenth field, referenced through a field called orig_eax, encodes the IRQ number. 
• The remaining fields correspond to the register values pushed on automatically by the 

control unit.[4]  

[4] The ret_from_intr( ) return address is missing from the pt_regs structure because the C compiler expects a return address on 
top of the stack and takes this into account when generating the instructions to address parameters. 

The do_IRQ( ) function can thus read the IRQ passed as a parameter and decode it as 
follows: 

irq = regs.orig_eax & 0xff; 

The function then executes: 

irq_desc[irq].handler->handle(irq, &regs); 

The handler field points to the hw_interrupt_type descriptor that refers to the PIC model 
servicing the IRQ line (see Section 4.6.2). Assuming that the PIC is an 8259A, the handle 
field points to the do_8259A_IRQ( ) function, which is thus executed. 

The do_8259A_IRQ( ) function starts by invoking the mask_and_ack_8259A( ) function, 
which acknowledges the interrupt to the PIC and disables further interrupts with the same 
IRQ number. 

Then the function checks whether the handler is willing to deal with the interrupt and whether 
it is already handling it; to that end, it reads the values of the IRQ_DISABLED and IRQ 
_INPROGRESS flags stored in the status field of the IRQ main descriptor. If both flags are 
cleared, the function picks up the pointer to the first irqaction descriptor from the action 
field and sets the IRQ _INPROGRESS flag. It then invokes handle_IRQ _event( ), which 
executes each interrupt service routine in turn through the following code. As mentioned 
previously, if the IRQ is shared by several devices, each corresponding interrupt service 
routine must be invoked because the kernel does not know which device issued the interrupt: 

do {  
    action->handler(irq, action->dev_id, regs);  
    action = action->next;  
} while (action); 

Notice that the kernel cannot break the loop as soon as one ISR has claimed the interrupt 
because another device on the same IRQ line might need to be serviced. 
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Finally, the do_8259A_IRQ( ) function cleans things up by clearing the IRQ_INPROGRESS 
flag just mentioned. Moreover, if the IRQ _DISABLED flag is not set, the function invokes the 
low-level enable_8259A_irq( ) function to enable interrupts that come from the IRQ line. 

The control now returns to do_IRQ( ), which checks whether "bottom halves" tasks are 
waiting to be executed. (As we shall see, a queue of such bottom halves is maintained by the 
kernel.) If bottom halves are waiting, the function invokes the do_bottom_half( ) function 
we'll describe shortly. Finally, do_IRQ( ) terminates and control is transferred to the 
ret_from_intr address. 

4.6.5 Interrupt Service Routines 

As mentioned previously, an interrupt service routine implements a device-specific operation. 
All of them act on the same parameters: 

irq  

The IRQ number 

dev_id  

The device identifier 

regs  

A pointer to the Kernel Mode stack area containing the registers saved right after the 
interrupt occurred 

The first parameter allows a single ISR to handle several IRQ lines, the second one allows a 
single ISR to take care of several devices of the same type, and the last one allows the ISR to 
access the execution context of the interrupted kernel control path. In practice, most ISRs do 
not use these parameters. 

The SA_INTERRUPT flag of the main IRQ descriptor determines whether interrupts are enabled 
or disabled when the do_IRQ( ) function invokes an ISR. An ISR that has been invoked with 
the interrupts in one state is allowed to put them in the opposite state through an assembly 
language instruction: cli to disable interrupts and sti to enable them. 

The structure of an ISR depends on the characteristics of the device handled. We'll give a few 
examples of ISRs in Chapter 5 and Chapter 13. 

4.6.6 Bottom Half 

A bottom half is a low-priority function, usually related to interrupt handling, that is waiting 
for the kernel to find a convenient moment to run it. Bottom halves that are waiting will be 
executed only when one of the following events occurs: 

• The kernel finishes handling a system call. 
• The kernel finishes handling an exception. 
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• The kernel terminates the do_IRQ( ) function—that is, it finishes handling an 
interrupt. 

• The kernel executes the schedule( ) function to select a new process to run on the 
CPU. 

Thus, when an interrupt service routine activates a bottom half, a long time interval can occur 
before it is executed.[5] But as we have seen, the existence of bottom halves is very important 
to fulfill the kernel's responsibility to service interrupts from multiple devices quickly. This 
book doesn't talk too much about the contents of bottom halves—they depend on the 
particular tasks needed to service devices—but just about how the kernel maintains and 
invokes the bottom halves. You will find an example of a specific bottom half in Section 5.4 
in Chapter 5. 

[5] However, the execution of bottom halves will not be deferred forever: the CPU does not switch back to User Mode until there are no bottom halves 
to be executed; see the Section 4.7. 

Linux makes use of an array called the bh_base table to group all bottom halves together. It is 
an array of pointers to bottom halves and can include up to 32 entries, one for each type of 
bottom half. In practice, Linux uses about half of them; the types are listed in Table 4-3. As 
you can see from the table, some of the bottom halves are associated with hardware devices 
that are not necessarily installed in the system or that are specific to platforms besides the 
IBM PC compatible. But TIMER_BH, CONSOLE_BH, TQUEUE_BH, SERIAL_BH, IMMEDIATE_BH, 
and KEYBOARD_BH see widespread use. 

Table 4-3. The Linux Bottom Halves 
Bottom Half Peripheral Device 
AURORA_BH Aurora multiport card (SPARC) 
CM206_BH CD-ROM Philips/LMS cm206 disk 
CONSOLE_BH Virtual console 
CYCLADES_BH Cyclades Cyclom-Y serial multiport 
DIGI_BH DigiBoard PC/Xe 
ESP_BH Hayes ESP serial card 
IMMEDIATE_BH Immediate task queue 
ISICOM_BH MultiTech's ISI cards 
JS_BH Joystick (PC IBM compatible) 
KEYBOARD_BH Keyboard 
MACSERIAL_BH Power Macintosh's serial port 
NET_BH Network interface 
RISCOM8_BH RISCom/8 
SCSI_BH SCSI interface 
SERIAL_BH Serial port 
SPECIALIX_BH Specialix IO8+ 
TIMER_BH Timer 
TQUEUE_BH Periodic task queue 

4.6.6.1 Activating and tracking the state of bottom halves  

Before invoking a bottom half for the first time, it must be initialized. This is done by 
invoking the init_bh(n, routine) function, which inserts the routine address in the n th 
entry of bh_base. Conversely, remove_bh(n) removes the n th bottom half from the table. 
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Once a bottom half has been initialized, it can be "activated," thus executed any time one of 
the previously mentioned events occurs. The mark_bh(n) function is used by interrupt 
handlers to activate the n th bottom half. To keep track of the state of all these bottom halves, 
the bh_active variable stores 32 flags that specify which bottom halves are currently 
activated. When a bottom half concludes its execution, the kernel clears the corresponding 
bh_active flag; thus, any activation causes exactly one execution. 

The do_bottom_half( ) function is used to start executing all currently active unmasked 
bottom halves; it enables the maskable interrupts and then invokes run_bottom_halves( ). 
This function makes sure that only one bottom half is ever active at a time by executing the 
following C code fragment: 

active = bh_mask & bh_active;  
bh_active &= active;  
bh = bh_base;  
do {  
    if (active & 1)  
        (*bh)(  );  
    bh++;  
    active >>= 1;  
} while (active); 

The flags in bh_active that refer to the group of bottom halves that must be executed are 
cleared. This ensures that each bottom half activation causes exactly one execution of the 
corresponding function. 

Each bottom half can be individually "masked"; if this is the case, it won't be executed even if 
it is activated. The bh_mask variable stores 32 bits that specify which bottom halves are 
currently masked. The disable_bh(n) and enable_bh(n) functions act on the nth flag of 
bh_mask; they are used to mask and unmask a bottom half, respectively. 

Here's why masking bottom halves is useful. Assume that a kernel function is modifying 
some kernel data structure when an exception (for instance, a "Page fault") occurs. After the 
kernel finishes handling the exception, all active nonmasked bottom halves will be executed. 
If one of the bottom halves accesses the same kernel data structure as the suspended kernel 
function, both the bottom half and the kernel function will find the data structure in a 
nonconsistent state. In order to avoid this race condition, the kernel function must mask all 
bottom halves that access the data structure. 

Unfortunately, the bh_mask variable does not always ensure that bottom halves remain 
correctly masked. For instance, let us suppose that some bottom half B is masked by a kernel 
control path P1, which is then interrupted by another kernel control path P2. P2 once again 
masks the bottom half B, performs its own operations, and terminates by unmasking B. Now 
P1 resumes its execution, but Bis (incorrectly) unmasked. 

It is thus necessary to use counters rather than a simple binary flag to keep track of masking 
and to add one more table called bh_mask_count whose entries contain the masking level of 
each bottom half. The disable_bh(n) and enable_bh(n) functions update 
bh_mask_count[n] before acting on the nth flag of bh_mask. 
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4.6.6.2 Extending a bottom half 

The motivation for introducing bottom halves is to allow a limited number of functions 
related to interrupt handling to be executed in a deferred manner. This approach has been 
stretched in two directions: 

• To allow a generic kernel function, and not only a function that services an interrupt, 
to be executed as a bottom half 

• To allow several kernel functions, instead of a single one, to be associated with a 
bottom half 

Groups of functions are represented by task queues, which are lists of struct tq_struct 
elements having the following structure: 

struct tq_struct {  
    struct tq_struct *next;   /* linked list of active bh's */  
    unsigned long sync;       /* must be initialized to zero */  
    void (*routine)(void *);  /* function to call */  
    void *data;               /* argument to function */  
}; 

As we shall see in Chapter 13, I/O device drivers make intensive use of task queues to require 
the execution of some functions when a specific interrupt occurs. 

The DECLARE_TASK_QUEUE macro is used to allocate a new task queue, while queue_task( ) 
inserts a new function in a task queue. The run_task_queue( ) function executes all the 
functions included in a given task queue. It's worth mentioning two particular task queues, 
each associated with a specific bottom half: 

• The tq _immediate task queue, run by the IMMEDIATE_BH bottom half, includes 
kernel functions to be executed together with the standard bottom halves. The kernel 
activates the IMMEDIATE_BH bottom half whenever a function is added to the tq 
_immediate task queue. 

• The tq _timer task queue is run by the TQUEUE_BH bottom half, which is activated at 
every timer interrupt. As we'll see in Chapter 5, that means it runs about every 10 ms. 

4.6.7 Dynamic Handling of IRQ Lines 

With the exception of IRQ0, IRQ2, and IRQ13, the remaining 13 IRQs are dynamically 
handled. There is, therefore, a way in which the same interrupt can be used by several 
hardware devices even if they do not allow IRQ sharing: the trick consists in serializing the 
activation of the hardware devices so that just one at a time owns the IRQ line. 

Before activating a device that is going to make use of an IRQ line, the corresponding driver 
invokes request_irq( ). This function creates a new irqaction descriptor and initializes it 
with the parameter values; it then invokes the setup_x86_irq( ) function to insert the 
descriptor in the proper IRQ list. The device driver aborts the operation if setup_x86_irq( ) 
returns an error code, which means that the IRQ line is already in use by another device that 
does not allow interrupt sharing. When the device operation is concluded, the driver invokes 
the free_irq( ) function to remove the descriptor from the IRQ list and release the memory 
area. 
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Let us see how this scheme works on a simple example. Assume a program wants to address 
the /dev/fd0 device file, that is, the device file that corresponds to the first floppy disk on the 
system.[6] The program can do this either by directly accessing /dev/fd0 or by mounting a 
filesystem on it. Floppy disk controllers are usually assigned IRQ6; given this, the floppy 
driver will issue the following request: 

[6] Floppy disks are "old" devices that do not usually allow IRQ sharing. 

request_irq(6, floppy_interrupt,  
            SA_INTERRUPT|SA_SAMPLE_RANDOM, "floppy", NULL); 

As can be observed, the floppy_interrupt( ) interrupt service routine must execute with 
the interrupts disabled (SA_INTERRUPT set) and no sharing of the IRQ (SA_SHIRQ flag 
cleared). When the operation on the floppy disk is concluded (either the I/O operation on 
/dev/fd0 terminates or the filesystem is unmounted), the driver releases IRQ6: 

free_irq(6, NULL); 

In order to insert an irqaction descriptor in the proper list, the kernel invokes the 
setup_x86_irq( ) function, passing to it the parameters irq _nr, the IRQ number, and new, 
the address of a previously allocated irqaction descriptor. This function: 

1. Checks whether another device is already using the irq _nr IRQ and, if so, whether 
the SA_SHIRQ flags in the irqaction descriptors of both devices specify that the IRQ 
line can be shared. Returns an error code if the IRQ line cannot be used. 

2. Adds *new (the new irqaction descriptor) at the end of the list to which irq 
_desc[irq _nr]->action points. 

3. If no other device is sharing the same IRQ, clears the IRQ _DISABLED and IRQ 
_INPROGRESS flags in the flags field of *new and reprograms the PIC to make sure 
that IRQ signals are enabled. 

Here is an example of how setup_x86_irq( ) is used, drawn from system initialization. The 
kernel initializes the irq0 descriptor of the interval timer device by executing the following 
instructions in the time_init( ) function (see Chapter 5): 

struct irqaction irq0  =  
    {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL,};  
setup_x86_irq(0, &irq0); 

First, the irq0 variable of type irqaction is initialized: the handler field is set to the 
address of the timer_interrupt( ) function, the flags field is set to SA_INTERRUPT, the 
name field is set to "timer", and the last field is set to NULL to show that no dev_id value is 
used. Next, the kernel invokes setup_x86_irq( ) to insert irq0 in the list of irqaction 
descriptors associated with IRQ0. 

Similarly, the kernel initializes the irqaction descriptors associated with IRQ2 and IRQ13 
and inserts them in the proper lists of irqaction descriptors by executing the following 
instructions in the init_IRQ( ) function: 
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struct irqaction irq2 =  
    {no_action, 0, 0, "cascade", NULL,};  
struct irqaction irq13 =  
    {math_error_irq, 0, 0, "fpu", NULL,};  
setup_x86_irq(2, &irq2);  
setup_x86_irq(13, &irq13); 

4.7 Returning from Interrupts and Exceptions 

We will finish the chapter by examining the termination phase of interrupt and exception 
handlers. Although the main objective is clear, namely, to resume execution of some program, 
several issues must be considered before doing it: 

• The number of kernel control paths being concurrently executed: if there is just one, 
the CPU must switch back to User Mode. 

• Active bottom halves to be executed: if there are some, they must be executed. 
• Pending process switch requests: if there is any request, the kernel must perform 

process scheduling; otherwise, control is returned to the current process. 
• Pending signals: if a signal has been sent to the current process, it must be handled. 

The kernel assembly language code that accomplishes all these things is not, technically 
speaking, a function, since control is never returned to the functions that invoke it. It is a piece 
of code with three different entry points called ret_from_intr, ret_from_sys_call, and 
ret_from_exception. We will refer to it as three different functions since this makes the 
description simpler. We shall thus refer quite often to the following three entry points as 
functions: 

ret_from_intr( )  

Terminates interrupt handlers 

ret_from_sys_call( )  

Terminates system calls, that is, kernel control paths engendered by 0x80 exceptions 

ret_from_exception( )  

Terminates all exceptions except the 0x80 ones 

The general flow diagram with the corresponding three entry points is illustrated in Figure 4-
5. Besides these three labels, a few other ones have been added to allow you to relate the 
assembly language code more easily to the flow diagram. Let us now examine in detail how 
the termination occurs in each case. 
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Figure 4-5. Returning from interrupts and exceptions 

 

4.7.1 The ret_ from_intr( ) Function 

When ret_from_intr( ) is invoked, the do_IRQ( ) function has already executed all active 
bottom halves (see Section 4.6.4). The initial part of the ret_from_intr( ) function is 
implemented by the following code: 

ret_from_intr:  
  movl %esp, %ebx  
  andl $0xffffe000, %ebx  
  movl 0x30(%esp), %eax  
  movb 0x2c(%esp), %al  
  testl $(0x00020000 | 3), %eax  
  jne ret_with_reschedule  
  RESTORE_ALL 

The address of the current's process descriptor is stored in ebx (see Section 3.1.2 in Chapter 
3). Then the values of the cs and eflags registers, which were pushed on the stack when the 
interrupt occurred, are used by the function to determine whether the interrupted program was 
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running in Kernel Mode. If so, a nesting of interrupts has occurred and the interrupted kernel 
control path is restarted by executing the following code, yielded by the RESTORE_ALL macro: 

popl %ebx  
popl %ecx  
popl %edx  
popl %esi  
popl %edi  
popl %ebp  
popl %eax  
popl %ds  
popl %es  
addl $4,%esp  
iret 

This macro loads the registers with the values saved by the SAVE_ALL macro and yields 
control to the interrupted program by executing the iret instruction. 

If, on the other hand, the interrupted program was running in User Mode or if the VM flag of 
eflags was set,[7] a jump is made to the ret_with_reschedule address: 

[7] This flag allows programs to be executed in Virtual-8086 Mode; see the Pentium manuals for further details. 

ret_with_reschedule:  
  cmpl $0,20(%ebx)  
  jne reschedule  
  cmpl $0,8(%ebx)  
  jne signal_return  
  RESTORE_ALL 

As we said previously, the ebx register points to the current process descriptor; within that 
descriptor, the need_resched field is at offset 20, which is checked by the first cmpl 
instruction. Therefore, if the need_resched field is 1, the schedule( ) function is invoked to 
perform a process switch. 

The offset of the sigpending field inside the process descriptor is 8. If it is null, current 
resumes execution in User Mode. Otherwise, the code jumps to signal_return to process 
the pending signals of current: 

signal_return:  
  sti  
  testl $(0x00020000),0x30(%esp)  
  movl %esp,%eax  
  jne v86_signal_return  
  xorl %edx,%edx  
  call do_signal  
  RESTORE_ALL  
v86_signal_return:  
  call save_v86_state  
  movl %eax,%esp  
  xorl %edx,%edx  
  call do_signal  
  RESTORE_ALL 
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If the interrupted process was in VM86 mode, the save_v86_state( ) function is invoked. 
The do_signal( ) function (see Chapter 9) is then invoked to handle the pending signals. 
Finally, current can resume execution in User Mode. 

4.7.2 The ret_ from_sys_call( ) Function 

The ret_from_sys_call( ) function is equivalent to the following assembly language code: 

ret_from_sys_call:  
  movl bh_mask, %eax  
  andl bh_active, %eax  
  je ret_with_reschedule  
handle_bottom_half:  
  call do_bottom_half  
  jmp ret_from_intr 

First, the bh_mask and bh_active variables are checked to determine whether active 
unmasked bottom halves exist. If no bottom half must be executed, a jump is made to the 
ret_with_reschedule address. Otherwise, the do_bottom_half( ) function is invoked; 
then control is transferred to ret_from_intr. 

4.7.3 The ret_ from_exception( ) Function 

The ret_from_exception( ) function is equivalent to the following assembly language 
code: 

ret_from_exception:  
  movl bh_mask,%eax  
  andl bh_active,%eax  
  jne handle_bottom_half  
  jmp ret_from_intr 

First, the bh_mask and bh_active global variables are checked to determine whether active 
unmasked bottom halves exist. If so, they are executed. In any case, a jump is made to the 
ret_from_intr address. Therefore exceptions terminate in the same way as interrupts. 

4.8 Anticipating Linux 2.4 

Linux 2.4 introduces a new mechanism called software interrupt. Software interrupts are 
similar to Linux 2.2's bottom halves, in that they allow you to defer the execution of a kernel 
function. However, while bottom halves were strictly serialized (because no two bottom 
halves can be executed at the same time even on different CPUs), software interrupts are not 
serialized in any way. It is quite possible that two CPUs run two instances of the same 
software interrupt at the same time. In this case, of course, the software interrupt must be 
reentrant. Networking, in particular, greatly benefits from software interrupts: it is much more 
efficient on multiprocessor systems because it uses two software interrupts in place of the old 
NET_BH bottom half. 

Linux 2.4 introduces another mechanism similar to the bottom half called tasklet. Tasklets are 
built on top of software interrupts, but they are serialized with respect to themselves: two 
CPUs can execute two tasklets at the same time, but these tasklets must be different. Tasklets 
are much easier to write than generic software interrupts, because they need not be reentrant. 
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Bottom halves continue to exist in Linux 2.4, but they are now built on top of tasklets. As 
usual, no two bottom halves can execute at the same time, not even on two different CPUs of 
a multiprocessor system. Device driver developers are expected to update their old drivers and 
replace bottom halves with tasklets, because bottom halves degrade significantly the 
performance of multiprocessor systems. 

On the hardware side, Linux 2.4 now supports IO-APIC chips even in uniprocessor systems 
and is able to handle several external IO-APIC chips in multiprocessor systems. (This feature 
was required for porting Linux to large enterprise systems.) 
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Chapter 5. Timing Measurements 
Countless computerized activities are driven by timing measurements, often behind the user's 
back. For instance, if the screen is automatically switched off after you have stopped using the 
computer's console, this is due to a timer that allows the kernel to keep track of how much 
time has elapsed since you pushed a key or moved the mouse. If you receive a warning from 
the system asking you to remove a set of unused files, this is the outcome of a program that 
identifies all user files that have not been accessed for a long time. In order to do these things, 
programs must be able to retrieve from each file a timestamp identifying its last access time, 
and therefore such a timestamp must be automatically written by the kernel. More 
significantly, timing drives process switches along with even more basic kernel activities like 
checking for time-outs. 

We can distinguish two main kinds of timing measurement that must be performed by the 
Linux kernel: 

• Keeping the current time and date, so that they can be returned to user programs 
through the time( ), ftime( ), and gettimeofday( ) system calls (see  
Section 5.5.1 later in this chapter) and used by the kernel itself as timestamps for files 
and network packets 

• Maintaining timers, that is, mechanisms that are able to notify the kernel (see  
Section 5.4.4) or a user program (see Section 5.5.3) that a certain interval of time has 
elapsed 

Timing measurements are performed by several hardware circuits based on fixed-frequency 
oscillators and counters. This chapter consists of three different parts. The first section 
describes the hardware devices that underlie timing; the next three sections describe the kernel 
data structures and functions introduced to measure time; then a section discusses the system 
calls related to timing measurements and the corresponding service routines. 

5.1 Hardware Clocks 

The kernel must explicitly interact with three clocks: the Real Time Clock, the Time Stamp 
Counter, and the Programmable Interval Timer. The first two hardware devices allow the 
kernel to keep track of the current time of day; the latter device is programmed by the kernel 
so that it issues interrupts at a fixed, predefined frequency. Such periodic interrupts are crucial 
for implementing the timers used by the kernel and the user programs. 

5.1.1 Real Time Clock 

All PCs include a clock called Real Time Clock (RTC ), which is independent of the CPU and 
all other chips. 

The RTC continues to tick even when the PC is switched off, since it is energized by a small 
battery or accumulator. The CMOS RAM and RTC are integrated in a single chip, the 
Motorola 146818 or an equivalent. 
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The RTC is capable of issuing periodic interrupts on IRQ8 at frequencies ranging between 2 
Hz and 8192 Hz. It can also be programmed to activate the IRQ8 line when the RTC reaches a 
specific value, thus working as an alarm clock. 

Linux uses the RTC only to derive the time and date; however, it allows processes to program 
the RTC by acting on the /dev/rtc device file (see Chapter 13). The kernel accesses the RTC 
through the 0x70 and 0x71 I/O ports. The system administrator can set up the clock by 
executing the /sbin/clock system program that acts directly on these two I/O ports. 

5.1.2 Time Stamp Counter 

All Intel 80x86 microprocessors include a CLK input pin, which receives the clock signal of 
an external oscillator. 

Starting with the Pentium, many recent Intel 80x86 microprocessors include a 64-bit Time 
Stamp Counter (TSC ) register that can be read by means of the rdtsc assembly language 
instruction. This register is a counter that is incremented at each clock signal: if, for instance, 
the clock ticks at 400 MHz, the Time Stamp Counter is incremented once every 2.5 
nanoseconds. 

Linux takes advantage of this register to get much more accurate time measurements than the 
ones delivered by the Programmable Interval Timer. In order to do this, Linux must determine 
the clock signal frequency while initializing the system: in fact, since this frequency is not 
declared when compiling the kernel, the same kernel image may run on CPUs whose clocks 
may tick at any frequency. The task of figuring out the actual frequency is accomplished 
during the system's boot by the calibrate_tsc( ) function, which returns the number: 

 

The value of f is computed by counting the number of clock signals that occur in a relatively 
long time interval, namely 50.00077 milliseconds. This time constant is produced by setting 
up one of the channels of the Programmable Interval Timer properly (see the next section). 
The long execution time of calibrate_tsc( ) does not create problems, since the function 
is invoked only during system initialization. 

5.1.3 Programmable Interval Timer 

Besides the Real Time Clock and the Time Stamp Counter, IBM-compatible PCs include a 
third type of time-measuring device called Programmable Interval Timer (PIT ). The role of a 
PIT is similar to the alarm clock of a microwave oven: to make the user aware that the 
cooking time interval has elapsed. Instead of ringing a bell, this device issues a special 
interrupt called timer interrupt, which notifies the kernel that one more time interval has 
elapsed.[1] Another difference from the alarm clock is that the PIT goes on issuing interrupts 
forever at some fixed frequency established by the kernel. Each IBM-compatible PC includes 
at least one PIT, which is usually implemented by a 8254 CMOS chip using the 0x40-0x43 
I/O ports. 

[1] The PIT is also used to drive an audio amplifier connected to the computer's internal speaker. 
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As we shall see in detail in the next paragraphs, Linux programs the first PC's PIT to issue 
timer interrupts on the IRQ0 at a (roughly) 100-Hz frequency, that is, once every 10 
milliseconds. This time interval is called a tick, and its length in microseconds is stored in the 
tick variable. The ticks beat time for all activities in the system; in some sense, they are like 
the ticks sounded by a metronome while a musician is rehearsing. 

Generally speaking, shorter ticks yield better system responsiveness. This is because system 
responsiveness largely depends on how fast a running process is preempted by a higher-
priority process once it becomes runnable (see Chapter 10); moreover, the kernel usually 
checks whether the running process should be preempted while handling the timer interrupt. 
This is a trade-off however: shorter ticks require the CPU to spend a larger fraction of its time 
in Kernel Mode, that is, a smaller fraction of time in User Mode. As a consequence, user 
programs run slower. Therefore, only very powerful machines can adopt very short ticks and 
afford the consequent overhead. Currently, only Compaq's Alpha port of the Linux kernel 
issues 1024 timer interrupts per second, corresponding to a tick of roughly 1 millisecond. 

A few macros in the Linux code yield some constants that determine the frequency of timer 
interrupts: 

• HZ yields the number of timer interrupts per second, that is, the frequency of timer 
interrupts. This value is set to 100 for IBM PCs and most other hardware platforms. 

• CLOCK_TICK_RATE yields the value 1193180, which is the 8254 chip's internal 
oscillator frequency. 

• LATCH yields the ratio between CLOCK_TICK_RATE and HZ. It is used to program the 
PIT. 

The first PIT is initialized by init_IRQ( ) as follows: 

outb_p(0x34,0x43);  
outb_p(LATCH & 0xff , 0x40);  
outb(LATCH >> 8 , 0x40); 

The outb( ) C function is equivalent to the outb assembly language instruction: it copies the 
first operand into the I/O port specified as the second operand. The outb_p( ) function is 
similar to outb( ), except that it introduces a pause by executing a no-op instruction. The 
first outb_ p( ) invocation is a command to the PIT to issue interrupts at a new rate. The 
next two outb_ p( ) and outb( ) invocations supply the new interrupt rate to the device. 
The 16-bit LATCH constant is sent to the 8-bit 0x40 I/O port of the device as 2 consecutive 
bytes. As a result, the PIT will issue timer interrupts at a (roughly) 100-Hz frequency, that is, 
once every 10 ms. 

Now that we understand what the hardware timers do, the following sections describe all the 
actions performed by the kernel when it receives a timer interrupt—that is, when a tick has 
elapsed. 

5.2 The Timer Interrupt Handler 

Each occurrence of a timer interrupt triggers the following major activities: 

• Updates the time elapsed since system startup. 
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• Updates the time and date. 
• Determines how long the current process has been running on the CPU and preempts 

it if it has exceeded the time allocated to it. The allocation of time slots (also called 
quanta) is discussed in Chapter 10. 

• Updates resource usage statistics. 
• Checks whether the interval of time associated with each software timer (see  

Section 5.4.4) has elapsed; if so, invokes the proper function. 

The first activity is considered urgent, so it is performed by the timer interrupt handler itself. 
The remaining four activities are less urgent; they are performed by the functions invoked by 
the TIMER_BH and TQUEUE_BH bottom halves (see Section 4.6.6 in Chapter 4). 

The kernel uses two basic timekeeping functions: one to keep the current time up to date and 
another to count the number of microseconds that have elapsed within the current second. 
There are two different ways to maintain such values: a more precise method that is available 
if the chip has a Time Stamp Counter (TSC) and a less precise method used in other cases. So 
the kernel creates two variables to store the functions it uses, pointing the variables to the 
functions using the TSC if it exists: 

• The current time is calculated by do_gettimeofday( ) if the CPU has the TSC 
register and by do_normal_gettime( ) otherwise. A pointer to the proper function is 
stored in the variable do_get_fast_time. 

• The number of microseconds is calculated by do_fast_gettimeoffset( ) when the 
TSC register is available and by do_slow_gettimeoffset( ) otherwise. The address 
of this function is stored in the variable do_gettimeoffset. 

The time_init( ) function, which runs during kernel startup, sets the variables to point to 
the right functions and sets up the interrupt gate corresponding to IRQ0. 

5.3 PIT's Interrupt Service Routine 

Once the IRQ0 interrupt gate has been initialized, the handler field of IRQ0's irqaction 
descriptor contains the address of the timer_interrupt( ) function. This function starts 
running with the interrupts disabled, since the status field of IRQ0's main descriptor has the 
SA_INTERRUPT flag set. It performs the following steps: 

1. If the CPU has a TSC register, it performs the following substeps: 
a. Executes an rdtsc Assembly instruction to store the value of the TSC register 

in the last_tsc_low variable 
b. Reads the state of the 8254 chip device internal oscillator and computes the 

delay between the timer interrupt occurrence and the execution of the interrupt 
service routine[2]  

[2] The 8254 oscillator drives a counter that is continuously decremented. When the counter becomes 0, the chip 
raises an IRQ0. So reading the counter indicates how much time has elapsed since the interrupt occurred. 

c. Stores that delay (in microseconds) in the delay_at_last_interrupt 
variable 

2. It invokes do_timer_interrupt( ). 
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do_timer_interrupt( ), which may be considered as the interrupt service routine common 
to all 80x86 models, executes the following operations: 

1. It invokes the do_timer( ) function, which is fully explained shortly. 
2. If an adjtimex( ) system call has been issued, it invokes the set_rtc_mmss( ) 

function once every 660 seconds, that is, every 11 minutes, to adjust the Real Time 
Clock. This feature helps systems on a network synchronize their clocks (see  
Section 5.5.2). 

The do_timer( ) function, which runs with the interrupts disabled, must be executed as 
quickly as possible. For this reason, it simply updates one fundamental value—the time 
elapsed from system startup—while delegating all remaining activities to two bottom halves. 
The function refers to three main variables related to timing measurements; the first is the 
fundamental uptime just mentioned, while the latter two are needed to store lost ticks that take 
place before the bottom half functions have a chance to run. Thus, the first is absolute (it just 
keeps incrementing) while the other two are relative to another variable called xtime that 
stores the approximate current time. (This variable will be described in Section 5.4.1). 

The three do_timer() variables are: 

jiffies  

The number of elapsed ticks since the system was started; it is set to during kernel 
initialization and incremented by 1 when a timer interrupt occurs, that is, on every 
tick.[3]  

[3] Since jiffies is stored as a 32-bit unsigned integer, it returns to about 497 days after the systems has been booted. 

lost_ticks  

The number of ticks that has occurred since the last update of xtime. 

lost_ticks_system  

The number of ticks that has occurred while the process was running in Kernel Mode 
since the last update of xtime. The user_mode macro examines the CPL field of the 
cs register saved in the stack to determine if the process was running in Kernel Mode. 

The do_timer( ) function is equivalent to: 

void do_timer(struct pt_regs * regs)  
{  
    jiffies++;  
    lost_ticks++;  
    mark_bh(TIMER_BH);  
    if (!user_mode(regs))  
        lost_ticks_system++;  
    if (tq_timer)  
        mark_bh(TQUEUE_BH);  
} 
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Note that the TQUEUE_BH bottom half is activated only if the tq _timer task queue is not 
empty (see Section 4.6.6 in Chapter 4). 

5.4 The TIMER_BH Bottom Half Functions 

The timer_bh( ) function associated with the TIMER_BH bottom half invokes the 
update_times( ), run_old_timers( ), and run_timer_list( ) auxiliary functions, 
which are described next. 

5.4.1 Updating the Time and Date 

The xtime variable of type struct timeval is where user programs get the current time and 
date. The kernel also occasionally refers to it, for instance, when updating inode timestamps 
(see Section 1.5.4 in Chapter 1). In particular, xtime.tv_sec stores the number of seconds 
that have elapsed since midnight of January 1, 1970[4] , while xtime.tv_usec stores the 
number of microseconds that have elapsed within the last second (its value thus ranges 
between and 999999). 

[4] This date is traditionally used by all Unix systems as the earliest moment in counting time. 

During system initialization, the time_init( ) function is invoked to set up the time and 
date: it reads them from the Real Time Clock by invoking the get_cmos_time( ) function, 
then it initializes xtime. Once this has been done, the kernel does not need the RTC anymore: 
it relies instead on the TIMER_BH bottom half, which is activated once every tick. 

The update_times( ) function invoked by the TIMER_BH bottom half updates xtime by 
disabling interrupts and executing the following statement: 

if (lost_ticks)  
    update_wall_time(lost_ticks); 

The update_wall_time( ) function invokes the update_wall_time_one_tick( ) function 
lost_ticks consecutive times; each invocation adds 10000 to the xtime.tv_usec field.[5] If 
xtime.tv_usec has become greater than 999999, the update_wall_time( ) function also 
updates the tv_sec field of xtime. 

[5] In fact, the function is much more complex since it might slightly tune the value 10000. This may be necessary if an adjtimex( ) system 
call has been issued (see Section 5.5.2 later in this chapter). 

5.4.2 Updating Resource Usage Statistics 

The value of lost_ticks is also used, together with that of lost_ticks_system, to update 
resource usage statistics. These statistics are used by various administration utilities such as 
top. A user who enters the uptime command sees the statistics as the "load average" relative 
to the last minute, the last 5 minutes, and the last 15 minutes. A value of means that there are 
no active processes (besides the swapper process 0) to run, while a value of 1 means that the 
CPU is 100% busy with a single process, and values greater than 1 mean that the CPU is 
shared among several active processes. 

After updating the system clock, update_times( ) reenables the interrupts and performs the 
following actions: 
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• Clears lost_ticks after storing its value in ticks 
• Clears lost_ticks_system after storing its value in system 
• Invokes calc_load(ticks) 
• Invokes update_process_times(ticks, system) 

The calc_load( ) function counts the number of processes in the TASK_RUNNING or 
TASK_UNINTERRUPTIBLE state and uses this number to update the CPU usage statistics. 

The update_ process_times( ) function updates some kernel statistics stored in the kstat 
variable of type kernel_stat; it then invokes update_one_ process( ) to update some 
fields storing statistics that can be exported to user programs through the times( ) system 
call. In particular, a distinction is made between CPU time spent in User Mode and in Kernel 
Mode. The function perform the following actions: 

• Updates the per_cpu_utime field of current's process descriptor, which stores the 
number of ticks during which the process has been running in User Mode. 

• Updates the per_cpu_stime field of current's process descriptor, which stores the 
number of ticks during which the process has been running in Kernel Mode. 

• Invokes do_ process_times( ), which checks whether the total CPU time limit has 
been reached; if so, sends SIGXCPU and SIGKILL signals to current. Section 3.1.5 in 
Chapter 3, describes how the limit is controlled by the rlim[RLIMIT_CPU].rlim_cur 
field of each process descriptor. 

• Invokes the do_it_virt( ) and do_it_ prof( ) functions, which are described in 
Section 5.5.3. 

Two additional fields called times.tms_cutime and times.tms_cstime are provided in the 
process descriptor to count the number of CPU ticks spent by the process children in User 
Mode and in Kernel Mode, respectively. For reasons of efficiency, these fields are not 
updated by do_process_times( ) but rather when the parent process queries the state of one 
of its children (see the section Section 3.4 in Chapter 3). 

5.4.3 CPU's Time Sharing 

Timer interrupts are essential for time sharing the CPU among runnable processes (that is, 
those in the TASK_RUNNING state). As we shall see in Chapter 10, each process is usually 
allowed a quantum of time of limited duration: if the process is not terminated when its 
quantum expires, the schedule( ) function selects the new process to run. 

The counter field of the process descriptor specifies how many ticks of CPU time are left to 
the process. The quantum is always a multiple of a tick, that is, a multiple of about 10 ms. The 
value of counter is updated at every tick by update_process_times( ) as follows: 

if (current->pid) {  
    current->counter -= ticks;  
    if (current->counter < 0) {  
        current->counter = 0;  
        current->need_resched = 1;  
    }  
} 
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As stated in Section 3.1.2 in Chapter 3, the process having PID (swapper) must not be time-
shared, because it is the process that runs on the CPU when no other TASK_RUNNING processes 
exist. 

Since counter is updated in a deferred manner by a bottom half, the decrement might be 
larger than a single tick. Thus, the ticks local variable denotes the number of ticks that 
occurred since the bottom half was activated. When counter becomes smaller than 0, the 
need_resched field of the process descriptor is set to 1. In that case, the schedule( ) 
function will be invoked before resuming User Mode execution, and other TASK_RUNNING 
processes will have a chance to resume execution on the CPU. 

5.4.4 The Role of Timers 

A timer is a software facility that allows functions to be invoked at some future moment, after 
a given time interval has elapsed; a time-out denotes a moment at which the time interval 
associated with a timer has elapsed. 

Timers are widely used both by the kernel and by processes. Most device drivers make use of 
timers to detect anomalous conditions: floppy disk drivers, for instance, use timers to switch 
off the device motor after the floppy has not been accessed for a while, and parallel printer 
drivers use them to detect erroneous printer conditions. 

Timers are also used quite often by programmers to force the execution of specific functions 
at some future time (see Section 5.5.3). 

Implementing a timer is relatively easy: each timer contains a field that indicates how far in 
the future the timer should expire. This field is initially calculated by adding the right number 
of ticks to the current value of jiffies. The field does not change. Every time the kernel 
checks a timer, it compares the expiration field to the value of jiffies at the current 
moment, and the timer expires when jiffies is greater or equal to the stored value. This 
comparison is made via the time_after, time_before, time_after_eq, and 
time_before_eq macros, which take care of possible overflows of jiffies. 

Linux considers three types of timers called static timers, dynamic timers, and interval timers. 
The first two types are used by the kernel, while interval timers may be created by processes 
in User Mode. 

One word of caution about Linux timers: since checking for timer functions is always done by 
bottom halves that may be executed a long time after they have been activated, the kernel 
cannot ensure that timer functions will start right at their expiration times; it can only ensure 
that they will be executed either at the proper time or after they are supposed to with a delay 
of up to a few hundreds of milliseconds. For that reason, timers are not appropriate for real-
time applications in which expiration times must be strictly enforced. 

 

 

 



Understanding the Linux Kernel 

139 

5.4.5 Static Timers 

The first versions of Linux allowed only 32 different timers;[6] these static timers, which rely 
on statically allocated kernel data structure, still continue to be used. Since they were the first 
to be introduced, Linux code refers to them as old timers. 

[6] This value was chosen so that the corresponding active flags could be stored in a single variable. 

Static timers are stored in the timer_table array, which includes 32 entries. Each entry 
consists of the following timer_struct structure: 

struct timer_struct {  
    unsigned long expires;  
    void (*fn)(void);  
}; 

The expires field specifies when the timer expires; the time is expressed as the number of 
ticks that have elapsed since the system was started up. All timers having an expires value 
smaller than or equal to the value of jiffies are considered to be expired or decayed. The fn 
field contains the address of the function to be executed when the timer expires. 

Although timer_table includes 32 entries, Linux uses only those listed in Table 5-1. 

Table 5-1. Static Timers 
Static Timer Time-out Effect 
BACKGR_TIMER Background I/O operation request 
BEEP_TIMER Loudspeaker tone 
BLANK_TIMER Switch off the screen 
COMTROL_TIMER Comtrol serial card 
COPRO_TIMER i80387 coprocessor 
DIGI_TIMER Digiboard card 
FLOPPY_TIMER Floppy disk 
GDTH_TIMER GDTH SCSI driver 
GSCD_TIMER Goldstar CD-ROM 
HD_TIMER Hard disk (old IDE driver) 
MCD_TIMER Mitsumi CD-ROM 
QIC02_TAPE_TIMER QIC-02 tape driver 
RS_TIMER RS-232 serial port 
SWAP_TIMER kswapd kernel thread activation 

The timer_active variable is used to identify the active static timers: each bit of this 32-bit 
variable is a flag that specifies whether the corresponding timer is activated. 

In order to activate a static timer, the kernel must simply: 

• Register the function to be executed in the fn field of the timer. 
• Compute the expiration time (this is usually done by adding some specified value to 

the value of jiffies) and store it in the expires field of the timer. 
• Set the proper flag in timer_active. 
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The job of checking for decayed static timers is done by the run_old_timers( ) function, 
which is invoked by the TIMER_BH bottom half: 

void run_old_timers(void)  
{  
    struct timer_struct *tp;  
    unsigned long mask;  
    for (mask = 1, tp = timer_table; mask;  
            tp++, mask += mask) {  
        if (mask > timer_active)  
            break;  
        if (!(mask & timer_active))  
            continue;  
        if (tp->expires > jiffies)  
            continue;  
        timer_active &= ~mask;  
        tp->fn(  );  
        sti(  );  
    }  
} 

Once a decayed active timer has been identified, the corresponding active flag is cleared 
before executing the function that the fn field points to, thus ensuring that the timer won't be 
invoked again at each future execution of run_old_timers( ). 

5.4.6 Dynamic Timers 

Dynamic timers may be dynamically created and destroyed. No limit is placed on the number 
of currently active dynamic timers. 

A dynamic timer is stored in the following timer_list structure: 

struct timer_list {  
    struct timer_list *next;  
    struct timer_list *prev;  
    unsigned long expires;  
    unsigned long data;  
    void (*function)(unsigned long);  
}; 

The function field contains the address of the function to be executed when the timer 
expires. The data field specifies a parameter to be passed to this timer function. Thanks to the 
data field, it is possible to define a single general-purpose function that handles the time-outs 
of several device drivers; the data field could store the device ID or other meaningful data 
that could be used by the function to differentiate the device. 

The meaning of the expires field is the same as the corresponding field for static timers. 

The next and prev fields implement links for a doubly linked circular list. In fact, each active 
dynamic timer is inserted in exactly one of 512 doubly linked circular lists, depending on the 
value of the expires field. The algorithm that uses this list is described later in the chapter. 

In order to create and activate a dynamic timer, the kernel must: 
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1. Create a new struct timer_list object, say t. This can be done in several ways by: 
o Defining a static global variable in the code 
o Defining a local variable inside a function: in this case, the object is stored on 

the Kernel Mode stack 
o Including the object in a dynamically allocated descriptor 

2. Initialize the object by invoking the init_timer(&t) function. This simply sets the 
next and prev fields to NULL. 

3. If the dynamic timer is not already inserted in a list, assign a proper value to the 
expires field. Otherwise, if the dynamic timer is already inserted in a list, update the 
expires field by invoking the mod_timer( ) function, which also takes care of 
moving the object into the proper list (discussed shortly). 

4. Load the function field with the address of the function to be activated when the 
timer decays. If required, load the data field with a parameter value to be passed to 
the function. 

5. If the dynamic timer is not already inserted in a list, insert the t element in the proper 
list by invoking the add_timer(&t) function. 

Once the timer has decayed, the kernel automatically removes the t element from its list. 
Sometimes, however, a process should explicitly remove a timer from its list using the 
del\_timer( ) function. Indeed, a sleeping process may be woken up before the time-out is 
over, and in this case the process may choose to destroy the timer. Invoking del\_timer( ) 
on a timer already removed from a list does no harm, so calling del\_timer( ) from the 
timer function is considered a good practice. 

We saw previously how the run_old_timers( ) function was able to identify the active 
decayed static timers by executing a single for loop on the 32 timer_table components. 
This approach is no longer applicable to dynamic timers, since scanning a long list of 
dynamic timers at every tick would be too costly. On the other hand, maintaining a sorted list 
would not be much more efficient, since the insertion and deletion operations would also be 
costly. 

The solution adopted is based on a clever data structure that partitions the expires values into 
blocks of ticks and allows dynamic timers to percolate efficiently from lists with larger 
expires values to lists with smaller ones. 

The main data structure is an array called tvecs, whose elements point to five groups of lists 
identified by the tv1, tv2, tv3, tv4, and tv5 structures (see Figure 5-1). 

The tv1 structure is of type struct timer_vec_root, which includes an index field and a 
vec array of 256 pointers to timer_list elements, that is, to lists of dynamic timers. It 
contains all dynamic timers that will decay within the next 255 ticks. 

The index field specifies the currently scanned list; it is initialized to and incremented by 1 
(modulo 256) at every tick. The list referenced by index contains all dynamic timers that 
have expired during the current tick; the next list contains all dynamic timers that will expire 
in the next tick; the (index+k)-th list contains all dynamic timers that will expire in exactly k 
ticks. When index returns to 0, this means that all the timers in tv1 have been scanned: in 
this case, the list pointed to by tv2.vec[tv2.index] is used to replenish tv1. 
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The tv2, tv3, and tv4 structures of type struct timer_vec contain all dynamic timers that 
will decay within the next 214-1, 220-1, and 226-1 ticks, respectively. 

The tv5 structure is identical to the previous ones, except that the last entry of the vec array 
includes dynamic timers with arbitrarily large expires fields; it needs never be replenished 
from another array. 

The timer_vec structure is very similar to timer_vec_root: it contains an index field and a 
vec array of 64 pointers to dynamic timer lists. The index field specifies the currently 
scanned list; it is incremented by 1 (modulo 64) every 256i-1 ticks, where i ranging between 2 
and 5 is the tvi group number. As in the case of tv1, when index returns to 0, the list pointed 
to by tvj.vec[tvj.index] is used to replenish tvi (i ranges between 2 and 4, j is equal to 
i+1). 

A single entry of tv2 is sufficient to replenish the whole array tv1; similarly, a single entry of 
tv3 is sufficient to replenish the whole array tv2 and so on. 

Figure 5-1 shows how these data structures are connected together. 

Figure 5-1. The groups of lists associated with dynamic timers 

 

The timer_bh( ) function associated with the TIMER_BH bottom half invokes the 
run_timer_list( ) auxiliary function to check for decayed dynamic timers. The function 
relies on a variable similar to jiffies called timer_jiffies. This new variable is needed 
because a few timer interrupts might occur before the activated TIMER_BH bottom half has a 
chance to run; this happens typically when several interrupts of different types are issued in a 
short interval of time. 

The value of timer_jiffies represents the expiration time of the dynamic timer list yet to be 
checked: if it coincides with the value of jiffies, no backlog of bottom half functions has 
accumulated; if it is smaller than jiffies, then bottom half functions that refer to previous 
ticks have to be dealt with. The variable is set to at system startup and is incremented only by 
run_timer_list( ), which is invoked once every tick. Its value can never be greater than 
jiffies. 
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The run_timer_list( ) function includes the following C fragment (assuming a uni-
processor system): 

cli(  );  
while ((long)(jiffies - timer_jiffies) >= 0) {  
    struct timer_list *timer;  
    if (!tv1.index) {  
        int n = 1;  
        do {  
            cascade_timers(tvecs[n]);  
        } while (tvecs[n]->index == 1 && ++n < 5));  
    }  
    while ((timer = tv1.vec[tv1.index])) {  
        detach_timer(timer);  
        timer->next = timer->prev = NULL;  
        sti(  );  
        timer->function(timer->data);  
        cli(  );  
    }  
    ++timer_jiffies;  
    tv1.index = (tv1.index + 1) & 0xff;  
}  
sti(  ); 

The outermost while loop ends when timer_jiffies becomes greater than the value of 
jiffies. Since the values of jiffies and timer_jiffies usually coincide, the outermost 
while cycle will often be executed only once. In general, the outermost loop will be executed 
jiffies - timer_jiffies + 1 consecutive times. Moreover, if a timer interrupt occurs while 
run_timer_list( ) is being executed, dynamic timers that decay at this tick occurrence will 
also be considered, since the jiffies variable is asynchronously incremented by the IRQ0 
interrupt handler (see Section 5.3). 

During a single execution of the outermost while cycle, the dynamic timer functions included 
in the tv1.vec[tv1.index] list are executed. Before executing a dynamic timer function, the 
loop invokes the detach_timer( ) function to remove the dynamic timer from the list. Once 
the list is emptied, the values of tv1.index is incremented (modulo 256) and the value of 
timer_jiffies is incremented. 

When tv1.index becomes equal to 0, all the lists of tv1 have been checked; in this case, it is 
necessary to refill the tv1 structure. This is accomplished by the cascade_timers( ) 
function, which transfers the dynamic timers included in tv2.vec[tv2.index] into tv1.vec, 
since they will necessarily decay within the next 256 ticks. If tv2.index is equal to 0, it is 
necessary to refill the tv2 array of lists with the elements of tv3.vec[tv3.index] and so on. 

Notice that run_timer_list( ) disables interrupts just before entering the outermost loop; 
interrupts are enabled right before invoking each dynamic timer function, and again disabled 
right after its termination. This ensures that the dynamic timer data structures are not 
corrupted by interleaved kernel control paths. 

To sum up, this rather complex algorithm ensures excellent performance. To see why, assume 
for the sake of simplicity that the TIMER_BH bottom half is executed right after the 
corresponding timer interrupt has occurred. Then in 255 timer interrupt occurrences out of 
256, that is in 99.6% of the cases, the run_timer_list( ) function just runs the functions of 
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the decayed timers, if any. In order to replenish tv1.vec periodically, it will be sufficient 63 
times out of 64 to partition the list pointed to by tv2.vec[tv2.index] into the 256 lists 
pointed to by tv1.vec. The tv2.vec array, in turn, must be replenished in 0.02% of the cases, 
that is, once every 163 seconds. Similarly, tv3 is replenished every 2 hours and 54 minutes, 
tv4 every 7 days and 18 hours, while tv5 doesn't need to be replenished. 

5.4.7 An Application of Dynamic Timers 

On some occasions, for instance when it is unable to provide a given service, the kernel may 
decide to suspend the current process for a fixed amount of time. This is usually done by 
performing a process time-out . 

Let us assume that the kernel has decided to suspend the current process for two seconds. It 
does this by executing the following code: 

timeout = 2 * HZ;  
current->state = TASK_INTERRUPTIBLE;  
timeout = schedule_timeout(timeout); 

The kernel implements process time-outs by using dynamic timers. They appear in the 
schedule_timeout( ) function, which executes the following statements: 

struct timer_list timer;  
expire = timeout + jiffies;  
init_timer(&timer);  
timer.expires = expire;  
timer.data = (unsigned long) current;  
timer.function = process_timeout;  
add_timer(&timer);  
schedule(  );     /* process suspended until timer expires */  
del_timer(&timer);  
timeout = expire - jiffies;  
return (timeout < 0 ? 0 : timeout); 

When schedule( ) is invoked, another process is selected for execution; when the former 
process resumes its execution, the function removes the dynamic timer. In the last statement, 
the function returns either if the time-out is expired or the number of ticks left to the time-out 
expiration if the process has been awoken for some other reason. 

When the time-out expires, the kernel executes the following function: 

void process_timeout(unsigned long data)  
{  
    struct task_struct * p = (struct task_struct *) data;  
    wake_up_process(p);  
} 

The run_timer_list( ) function invokes process_timeout( ), passing as its parameter 
the process descriptor pointer stored in the data field of the timer object. As a result, the 
suspended process is woken up. 
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5.5 System Calls Related to Timing Measurements 

Several system calls allow User Mode processes to read and modify the time and date and to 
create timers. Let us briefly review them and discuss how the kernel handles them. 

5.5.1 The time( ), ftime( ), and gettimeofday( ) System Calls 

Processes in User Mode can get the current time and date by means of several system calls: 

time( )  

Returns the number of elapsed seconds since midnight at the start of January 1, 1970 

ftime( )  

Returns, in a data structure of type timeb, the number of elapsed seconds since 
midnight of January 1, 1970; the number of elapsed milliseconds in the last second; 
the time zone; and the current status of daylight saving time 

gettimeofday( )  

Returns the same information as ftime( ) in two data structures named timeval and 
timezone 

The former system calls are superseded by gettimeofday( ), but they are still included in 
Linux for backward compatibility. We don't discuss them further. 

The gettimeofday( ) system call is implemented by the sys_gettimeofday( ) function. 
In order to compute the current date and time of the day, this function invokes do_ 
gettimeofday( ), which executes the following actions: 

• Copies the contents of xtime into the user-space buffer specified by the system call 
parameter tv: 

*tv = xtime; 

• Updates the number of microseconds by invoking the function addressed by the do_ 
gettimeoffset variable: 

tv->tv_usec += do_gettimeoffset(  ); 

If the CPU has a Time Stamp Counter, the do_fast_gettimeoffset( ) function is 
executed. It reads the TSC register by using the rdtsc Assembly instruction; it then 
subtracts the value stored in last_tsc_low to obtain the number of CPU cycles 
elapsed since the last timer interrupt was handled. The function converts that number 
to microseconds and adds in the delay that elapsed before the activation of the timer 
interrupt handler, which is stored in the delay_at_last_interrupt variable 
mentioned earlier in Section 5.3. 
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If the CPU does not have a TSC register, do_ gettimeoffset points to the do_slow_ 
gettimeoffset( ) function. It reads the state of the 8254 chip device internal 
oscillator and then computes the time length elapsed since the last timer interrupt. 
Using that value and the contents of jiffies, it can derive the number of 
microseconds elapsed in the last second. 

• Further increases the number of microseconds to take into account all timer interrupts 
whose bottom halves have not yet been executed: 

   if (lost_ticks)  
    tv->tv_usec += lost_ticks * (1000000/HZ); 

• Finally, checks for an overflow in the microseconds field, adjusting both that field and 
the second field if necessary: 

   while (tv->tv_usec >= 1000000) {  
       tv->tv_usec -= 1000000;  
       tv->tv_sec++;  

      } 

Processes in User Mode with root privilege may modify the current date and time by using 
either the obsolete stime( ) or the settimeofday( ) system call. The sys_settimeofday( 
) function invokes do_settimeofday( ), which executes operations complementary to those 
of do_gettimeofday( ). 

Notice that both system calls modify the value of xtime while leaving unchanged the RTC 
registers. Therefore, the new time will be lost when the system shuts down, unless the user 
executes the /sbin/clock program to change the RTC value. 

5.5.2 The adjtimex( ) System Call 

Although clock drift ensures that all systems eventually move away from the correct time, 
changing the time abruptly is both an administrative nuisance and risky behavior. Imagine, for 
instance, programmers trying to build a large program and depending on filetime stamps to 
make sure that out-of-date object files are recompiled. A large change in the system's time 
could confuse the make program and lead to an incorrect build. Keeping the clocks tuned is 
also important when implementing a distributed filesystem on a network of computers: in this 
case, it is wise to adjust the clocks of the interconnected PCs so that the timestamp values 
associated with the inodes of the accessed files are coherent. Thus, systems are often 
configured to run a time synchronization protocol such as Network Time Protocol (NTP) on a 
regular basis to change the time gradually at each tick. This utility depends on the adjtimex( 
) system call in Linux. 

This system call is present in several Unix variants, although it should not be used in 
programs intended to be portable. It receives as its parameter a pointer to a timex structure, 
updates kernel parameters from the values in the timex fields, and returns the same structure 
with current kernel values. Such kernel values are used by update_wall_time_one_tick( ) 
to slightly adjust the number of microseconds added to xtime.tv_usec at each tick. 
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5.5.3 The setitimer( ) and alarm( ) System Calls 

Linux allows User Mode processes to activate special timers called interval timers.[7] The 
timers cause Unix signals (see Chapter 9) to be sent periodically to the process. It is also 
possible to activate an interval timer so that it sends just one signal after a specified delay. 
Each interval timer is therefore characterized by: 

[7] These software constructs have nothing in common with the Programmable Interval Timer chips described earlier in this chapter. 

• The frequency at which the signals must be emitted, or a null value if just one signal 
has to be generated 

• The time remaining until the next signal is to be generated 

The warning earlier in the chapter about accuracy applies to these timers. They are guaranteed 
to execute after the requested time has elapsed, but it is impossible to predict exactly when 
they will be delivered. 

Interval timers are activated by means of the POSIX setitimer( ) system call. The first 
parameter specifies which of the following policies should be adopted: 

ITIMER_REAL  

The actual elapsed time; the process receives SIGALRM signals 

ITIMER_VIRTUAL  

The time spent by the process in User Mode; the process receives SIGVTALRM signals 

ITIMER_PROF  

The time spent by the process both in User and in Kernel Mode; the process receives 
SIGPROF signals 

In order to implement an interval timer for each of the preceding policies, the process 
descriptor includes three pairs of fields: 

• it_real_incr and it_real_value 
• it_virt_incr and it_virt_value 
• it_prof_incr and it_prof_value 

The first field of each pair stores the interval in ticks between two signals; the other field 
stores the current value of the timer. 

The ITIMER_REAL interval timer is implemented by making use of dynamic timers, because 
the kernel must send signals to the process even when it is not running on the CPU. Therefore, 
each process descriptor includes a dynamic timer object called real_timer. The setitimer( 
) system call initializes the real_timer fields and then invokes add_timer( ) to insert the 
dynamic timer in the proper list. When the timer expires, the kernel executes the 
it_real_fn( ) timer function. In turn, the it_real_fn( ) function sends a SIGALRM signal 
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to the process; if it_real_incr is not null, it sets the expires field again, reactivating the 
timer. 

The ITIMER_VIRTUAL and ITIMER_PROF interval timers do not require dynamic timers, since 
they can be updated while the process is running: the do_it_virt( ) and do_it_prof( ) 
functions are invoked by update_one_ process( ), which runs when the TIMER_BH bottom 
half is executed. Therefore, the two interval timers are usually updated once every tick, and if 
they are expired, the proper signal is sent to the current process. 

The alarm( ) system call sends a SIGALRM signal to the calling process when a specified time 
interval has elapsed. It is very similar to setitimer( ) when invoked with the ITIMER_REAL 
parameter, since it makes use of the real_timer dynamic timer included in the process 
descriptor. Therefore, alarm( ) and setitimer( ) with parameter ITIMER_REAL cannot be 
used at the same time. 

5.6 Anticipating Linux 2.4 

Linux 2.4 introduces no significant change to the time-handling functions of the 2.2 version. 
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Chapter 6. Memory Management 
We saw in Chapter 2, how Linux takes advantage of Intel's segmentation and paging circuits 
to translate logical addresses into physical ones. In the same chapter, we mentioned that some 
portion of RAM is permanently assigned to the kernel and used to store both the kernel code 
and the static kernel data structures. 

The remaining part of the RAM is called dynamic memory. It is a valuable resource, needed 
not only by the processes but also by the kernel itself. In fact, the performance of the entire 
system depends on how efficiently dynamic memory is managed. Therefore, all current 
multitasking operating systems try to optimize the use of dynamic memory, assigning it only 
when it is needed and freeing it as soon as possible. 

This chapter, which consists of three main sections, describes how the kernel allocates 
dynamic memory for its own use. Section 6.1 and Section 6.2 illustrate two different 
techniques for handling physically contiguous memory areas, while Section 6.3 illustrates a 
third technique that handles noncontiguous memory areas. 

6.1 Page Frame Management 

We saw in Section 2.4 in Chapter 2 how the Intel Pentium processor can use two different 
page frame sizes: 4 KB and 4 MB. Linux adopts the smaller 4 KB page frame size as the 
standard memory allocation unit. This makes things simpler for two reasons: 

• The paging circuitry automatically checks whether the page being addressed is 
contained in some page frame; furthermore, each page frame is hardware-protected 
through the flags included in the Page Table entry that points to it. By choosing a 4 
KB allocation unit, the kernel can directly determine the memory allocation unit 
associated with the page where a page fault exception occurs. 

• The 4 KB size is a multiple of most disk block sizes, so transfers of data between main 
memory and disks are more efficient. Yet this smaller size is much more manageable 
than the 4 MB size. 

The kernel must keep track of the current status of each page frame. For instance, it must be 
able to distinguish the page frames used to contain pages belonging to processes from those 
that contain kernel code or kernel data structures; similarly, it must be able to determine 
whether a page frame in dynamic memory is free or not. This sort of state information is kept 
in an array of descriptors, one for each page frame. The descriptors of type struct page have 
the following format: 

typedef struct page {  
    struct page *next;  
    struct page *prev;  
    struct inode *inode;  
    unsigned long offset;  
    struct page *next_hash;  
    atomic_t count;  
    unsigned long flags;  
    struct wait_queue *wait;  
    struct page **pprev_hash;  
    struct buffer_head * buffers;  
} mem_map_t; 
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We shall describe only a few fields (the remaining ones will be discussed in later chapters 
dealing with filesystems, I/O buffers, memory mapping, and so on): 

count  

Set 0 to if the corresponding page frame is free; set to a value greater than if the page 
frame has been assigned to one or more processes or if it is used for some kernel data 
structures. 

prev , next  

Used to insert the descriptor in a doubly linked circular list. The meaning of these 
fields depends on the current use of the page frame. 

flags  

An array of up to 32 flags (see Table 6-1) describing the status of the page frame. For 
each PG_xyz flag, a corresponding PageXyz macro has been defined to read or set its 
value. 

Some of the flags listed in Table 6-1 are explained in later chapters. The PG_DMA flag exists 
because of a limitation on Direct Memory Access (DMA) processors for ISA buses: such 
DMA processors are able to address only the first 16 MB of RAM, hence page frames are 
divided into two groups depending on whether they can be addressed by the DMA or not. 
(Section 13.1.4 in Chapter 13, gives further details on DMAs.) In this chapter, the term 
"DMA" will always refer to DMA for ISA buses. 

Table 6-1. Flags Describing the Status of a Page Frame 
Flag Name Meaning 
PG_decr_after See Section 16.4.3 in Chapter 16. 
PG_dirty Not used. 
PG_error An I/O error occurred while transferring the page. 
PG_free_after See Section 15.1.1 in Chapter 15. 
PG_DMA Usable by ISA DMA (see text). 
PG_locked Page cannot be swapped out. 

PG_referenced Page frame has been accessed through the hash table of the page cache (see 
Section 14.2 in Chapter 14). 

PG_reserved Page frame reserved to kernel code or unusable. 

PG_skip Used on SPARC/SPARC64 architectures to "skip" some parts of the address 
space. 

PG_Slab Included in a slab: see Section 6.2 later in this chapter. 
PG_swap_cache Included in the swap cache; see Section 16.3 in Chapter 16 
PG_swap_unlock_after See Section 16.4.3 in Chapter 16. 
PG_uptodate Set after completing a read operation, unless a disk I/O error happened. 

All the page frame descriptors on the system are included in an array called mem_map. Since 
each descriptor is less than 64 bytes long, mem_map requires about four page frames for each 
megabyte of RAM. The MAP_NR macro computes the number of the page frame whose address 
is passed as a parameter, and thus the index of the corresponding descriptor in mem_map: 
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#define MAP_NR(addr)   (__pa(addr) >> PAGE_SHIFT) 

The macro makes use of the __ pa macro, which converts a logical address to a physical one. 

Dynamic memory, and the values used to refer to it, are illustrated in Figure 6-1. Page frame 
descriptors are initialized by the free_area_init( ) function, which acts on two 
parameters: start_mem denotes the first linear address of the dynamic memory immediately 
after the kernel memory, while end_mem denotes the last linear address of the dynamic 
memory plus 1 (see Section 2.5.3 and Section 2.5.5 in Chapter 2). The free_area_init( ) 
function also considers the i386_endbase variable, which stores the initial address of the 
reserved page frames. The function allocates a suitably sized memory area to mem_map. The 
function then initializes the area by setting all fields to 0, except for the flags fields, in which 
it sets the PG_DMA and PG_reserved flags: 

mem_map = (mem_map_t *) start_mem;  
p = mem_map + MAP_NR(end_mem);  
start_mem = ((unsigned long) p + sizeof(long) - 1) &  
                ~(sizeof(long)-1);  
memset(mem_map, 0, start_mem - (unsigned long) mem_map);  
do {  
    --p;  
    p->count = 0;  
    p->flags = (1 << PG_DMA) | (1 << PG_reserved);  
} while (p > mem_map); 

Figure 6-1. Memory layout  

 

Subsequently, the mem_init( ) function clears both the PG_reserved flag of the page 
frames, so they can be used as dynamic memory (see Section 2.5.3 in Chapter 2), and the 
PG_DMA flags of all page frames having physical addresses greater than or equal to 0x1000000. 
This is done by the following fragment of code: 

start_low_mem = PAGE_SIZE + PAGE_OFFSET;  
num_physpages = MAP_NR(end_mem);  
while (start_low_mem < i386_endbase) {  
    clear_bit(PG_reserved,  
              &mem_map[MAP_NR(start_low_mem)].flags);  
    start_low_mem += PAGE_SIZE;  
}  
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while (start_mem < end_mem) {  
    clear_bit(PG_reserved,  
              &mem_map[MAP_NR(start_mem)].flags);  
    start_mem += PAGE_SIZE;  
}  
for (tmp = PAGE_OFFSET ; tmp < end_mem ; tmp += PAGE_SIZE) {  
    if (tmp >= PAGE_OFFSET+0x1000000)  
        clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags);  
    if (PageReserved(mem_map+MAP_NR(tmp))) {  
        if (tmp >= (unsigned long) &_text  
                && tmp < (unsigned long) &_edata)  
            if (tmp < (unsigned long) &_etext)  
                codepages++;  
            else  
                datapages++;  
        else if (tmp >= (unsigned long) &__init_begin  
                   && tmp < (unsigned long) &__init_end)  
            initpages++;  
        else if (tmp >= (unsigned long) &__bss_start  
                 && tmp < (unsigned long) start_mem)  
            datapages++;  
        else  
            reservedpages++;  
        continue;  
    }  
    mem_map[MAP_NR(tmp)].count = 1;  
    free_page(tmp);  
} 

First, the mem_init( ) function determines the value of num_physpages, the total number of 
page frames present in the system. It then counts the number of page frames of type 
PG_reserved. Several symbols produced while compiling the kernel (we described some of 
them in Section 2.5.3 in Chapter 2) enable the function to count the number of page frames 
reserved for the hardware, kernel code, and kernel data and the number of page frames used 
during kernel initialization that can be successively released. 

Finally, mem_init( ) sets the count field of each page frame descriptor associated with the 
dynamic memory to 1 and calls the free_ page( ) function (see Section 6.1.2 later in this 
chapter). Since this function increments the value of the variable nr_free_pages, that 
variable will contain the total number of page frames in the dynamic memory at the end of the 
loop. 

6.1.1 Requesting and Releasing Page Frames 

After having seen how the kernel allocates and initializes the data structures for page frame 
handling, we now look at how page frames are allocated and released. Page frames can be 
requested by making use of four slightly differing functions and macros: 

__get_free_pages(gfp_mask, order)  

Function used to request 2order contiguous page frames. 

__get_dma_pages(gfp_mask, order)  

Macro used to get page frames suitable for DMA; it expands to: 
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__get_free_pages(gfp_mask | GFP_DMA, order) 
 

__get_free_page(gfp_mask)  

Macro used to get a single page frame; it expands to: 

__get_free_pages(gfp_mask, 0) 
get_free_page(gfp_mask) :  

Function that invokes: 

__get_free_page(gfp_mask) 

and then fills the page frame obtained with zeros. 

The parameter gfp_mask specifies how to look for free page frames. It consists of the 
following flags: 

__GFP_WAIT  

Set if the kernel is allowed to discard the contents of page frames in order to free 
memory before satisfying the request. 

__GFP_IO  

Set if the kernel is allowed to write pages to disk in order to free the corresponding 
page frames. (Since swapping can block the process in Kernel Mode, this flag must be 
cleared when handling interrupts or modifying critical kernel data structures.) 

__GFP_DMA  

Set if the requested page frames must be suitable for DMA. (The hardware limitation 
that gives rise to this flag was explained in Section 6.1.) 

__GFP_HIGH , __GFP_MED , __GFP_LOW  

Specify the request priority. _ _GFP_LOW is usually associated with dynamic memory 
requests issued by User Mode processes, while the other priorities are associated with 
kernel requests. 

In practice, Linux uses the predefined combinations of flag values shown in Table 6-2; the 
group name is what you'll encounter in the source code. 

Table 6-2. Groups of Flag Values Used to Request Page Frames 
Group Name __GFP_WAIT __GFP_IO Priority 
GFP_ATOMIC 0 0 __GFP_HIGH 
GFP_BUFFER 1 0 __GFP_LOW 
GFP_KERNEL 1 1 __GFP_MED 
GFP_NFS 1 1 __GFP_HIGH 
GFP_USER 1 1 __GFP_LOW 
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Page frames can be released through any of the following three functions and macros: 

free_pages(addr, order)  

This function checks the page descriptor of the page frame having physical address 
addr; if the page frame is not reserved (i.e., if the PG_reserved flag is equal to 0), it 
decrements the count field of the descriptor. If count becomes 0, it assumes that 2order 
contiguous page frames starting from addr are no longer used. In that case, the 
function invokes free_ pages_ok( ) to insert the page frame descriptor of the first 
free page in the proper list of free page frames (described in the following section). 

__free_page(p)  

Similar to the previous function, except that it releases the page frame whose 
descriptor is pointed to by parameter p. 

free_page(addr)  

Macro used to release the page frame having physical address addr; it expands 

to free_pages(addr,0) .  

6.1.2 The Buddy System Algorithm 

The kernel must establish a robust and efficient strategy for allocating groups of contiguous 
page frames. In doing so, it must deal with a well-known memory management problem 
called external fragmentation : frequent requests and releases of groups of contiguous page 
frames of different sizes may lead to a situation in which several small blocks of free page 
frames are "scattered" inside blocks of allocated page frames. As a result, it may become 
impossible to allocate a large block of contiguous page frames, even if there are enough free 
pages to satisfy the request. 

There are essentially two ways to avoid external fragmentation: 

• Make use of the paging circuitry to map groups of noncontiguous free page frames 
into intervals of contiguous linear addresses. 

• Develop a suitable technique to keep track of the existing blocks of free contiguous 
page frames, avoiding as much as possible the need to split up a large free block in 
order to satisfy a request for a smaller one. 

The second approach is the one preferred by the kernel for two good reasons: 

• In some cases, contiguous page frames are really necessary, since contiguous linear 
addresses are not sufficient to satisfy the request. A typical example is a memory 
request for buffers to be assigned to a DMA processor (see Chapter 13). Since the 
DMA ignores the paging circuitry and accesses the address bus directly while 
transferring several disk sectors in a single I/O operation, the buffers requested must 
be located in contiguous page frames. 

• Even if contiguous page frame allocation is not strictly necessary, it offers the big 
advantage of leaving the kernel paging tables unchanged. What's wrong with 
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modifying the page tables? As we know from Chapter 2, frequent page table 
modifications lead to higher average memory access times, since they make the CPU 
flush the contents of the translation lookaside buffers. 

The technique adopted by Linux to solve the external fragmentation problem is based on the 
well-known buddy system algorithm. All free page frames are grouped into 10 lists of blocks 
that contain groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 contiguous page frames, 
respectively. The physical address of the first page frame of a block is a multiple of the group 
size: for example, the initial address of a 16-page-frame block is a multiple of 16 x 212. 

We'll show how the algorithm works through a simple example. 

Assume there is a request for a group of 128 contiguous page frames (i.e., a half-megabyte). 
The algorithm checks first whether a free block in the 128-page-frame list exists. If there is no 
such block, the algorithm looks for the next larger block, that is, a free block in the 256-page-
frame list. If such a block exists, the kernel allocates 128 of the 256 page frames to satisfy the 
request and inserts the remaining 128 page frames into the list of free 128-page-frame blocks. 
If there is no free 256-page block, it then looks for the next larger block, that is, a free 512-
page-frame block. If such a block exists, it allocates 128 of the 512 page frames to satisfy the 
request, inserts the first 256 of the remaining 384 page frames into the list of free 256-page-
frame blocks, and inserts the last 128 of the remaining 384 page frames into the list of free 
128-page-frame blocks. If the list of 512-page-frame blocks is empty, the algorithm gives up 
and signals an error condition. 

The reverse operation, releasing blocks of page frames, gives rise to the name of this 
algorithm. The kernel attempts to merge together pairs of free buddy blocks of size b into a 
single block of size 2b. Two blocks are considered buddy if: 

• Both blocks have the same size, say b. 
• They are located in contiguous physical addresses. 
• The physical address of the first page frame of the first block is a multiple of 2 x b x 

212. 

The algorithm is iterative; if it succeeds in merging released blocks, it doubles b and tries 
again so as to create even bigger blocks. 

6.1.2.1 Data structures 

Linux makes use of two different buddy systems: one handles the page frames suitable for 
ISA DMA, while the other one handles the remaining page frames. Each buddy system relies 
on the following main data structures: 

• The mem_map array introduced previously. 
• An array having 10 elements of type free_area_struct, one element for each group 

size. The variable free_area[0] points to the array used by the buddy system for the 
page frames that are not suitable for ISA DMA, while free_area[1] points to the 
array used by the buddy system for page frames suitable for ISA DMA. 

• Ten binary arrays named bitmaps, one for each group size. Each buddy system has its 
own set of bitmaps, which it uses to keep track of the blocks it allocates. 
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Each element of the free_area[0] and free_area[1] arrays is a structure of type 
free_area_struct, which is defined as follows: 

struct free_area_struct {  
    struct page *next;  
    struct page *prev;  
    unsigned int *map;  
    unsigned long count;  
}; 

Notice that the first two fields of this structure match the corresponding fields of a page 
descriptor; in fact, pointers to free_area_struct structures are sometimes used as pointers 
to page descriptors. 

The k th element of either the free_area[0] or the free_area[1] array is associated with a 
doubly linked circular list of blocks of size 2k, implemented through the next and prev fields. 
Each member of such a list is the descriptor of the first page frame of a block. The count field 
of each free_area_struct structure stores the number of elements in the corresponding list. 

The map field points to a bitmap whose size depends on the number of existing page frames. 
Each bit of the bitmap of the k th entry of either free_area[0] or free_area[1] describes 
the status of two buddy blocks of size 2k page frames. If a bit of the bitmap is equal to 0, 
either both buddy blocks of the pair are free or both are busy; if it is equal to 1, exactly one of 
the blocks is busy. When both buddies are free, the kernel treats them as a single free block of 
size 2k+1. 

Let us consider, for sake of illustration, a 128 MB RAM and the bitmaps associated with the 
non-DMA page frames. The 128 MB can be divided into 32768 single pages, 16384 groups of 
2 pages each, or 8192 groups of 4 pages each and so on up to 64 groups of 512 pages each. So 
the bitmap corresponding to free_area[0][0] consists of 16384 bits, one for each pair of the 
32768 existing page frames; the bitmap corresponding to free_area[0][1] consists of 8192 
bits, one for each pair of blocks of two consecutive page frames; the last bitmap 
corresponding to free_area[0][9] consists of 32 bits, one for each pair of blocks of 512 
contiguous page frames. 

Figure 6-2 illustrates with a simple example the use of the data structures introduced by the 
buddy system algorithm. The array mem_map contains nine free page frames grouped in one 
block of one (that is, a single page frame) at the top and two blocks of four further down. The 
double arrows denote doubly linked circular lists implemented by the next and prev fields. 
Notice that the bitmaps are not drawn to scale. 
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Figure 6-2. Data structures used by the buddy system 

 

6.1.2.2 Allocating a block 

The __get_free_ pages( ) function implements the buddy system strategy for allocating 
page frames. This function checks first whether there are enough free pages, that is, if 
nr_free_ pages is greater than freepages.min. If not, it may decide to reclaim page frames 
(see Section 16.7.4 in Chapter 16). Otherwise, it goes on with the allocation by executing the 
code included in the RMQUEUE_TYPE macro: 

if (!(gfp_mask & __GFP_DMA))  
    RMQUEUE_TYPE(order, 0);  
RMQUEUE_TYPE(order, 1); 

The order parameter denotes the logarithm of the size of the requested block of free pages (0 
for a one-page block, 1 for a two-page block, and so forth). The second parameter is the index 
into free_area, which is for non-DMA blocks and 1 for DMA blocks. So the code checks 
gfp_mask to see whether non-DMA blocks are allowed and, if so, tries to get blocks from that 
list (index 0), because it would be better to save DMA blocks for requests that really need 
them. If the page frames are successfully allocated, the code in the RMQUEUE_TYPE macro 
executes a return statement, thus terminating the _ _get_free_ pages( ) function. 
Otherwise, the code in the RMQUEUE_TYPE macro is executed again with the second parameter 
equal to 1, that is, the memory allocation request is satisfied using page frames suitable for 
DMA. 

The code yielded by the RMQUEUE_TYPE macro is equivalent to the following fragments. First, 
a few local variables are declared and initialized: 

struct free_area_struct * area = &free_area[type][order];  
unsigned long new_order = order;  
struct page *prev;  
struct page *ret;  
unsigned long map_nr;  
struct page * next; 
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The type variable represents the second parameter of the macro: it is equal to when the macro 
operates on the buddy system for non-DMA page frames and to 1 otherwise. 

The macro then performs a cyclic search through each list for an available block (denoted by 
an entry that doesn't point to the entry itself), starting with the list for the requested order and 
continuing if necessary to larger orders. This cycle is equivalent to the following structure: 

do  {  
    prev = (struct page *)area;  
    ret = prev->next;  
    if ((struct page *) area != ret)  
        goto block_found;  
    new_order++;  
    area++;  
} while (new_order < 10); 

If the while loop terminates, no suitable free block has been found, so _ _get_free_pages( 
) returns a NULL value. Otherwise, a suitable free block has been found; in this case, the 
descriptor of its first page frame is removed from the list, the corresponding bitmap is 
updated, and the value of nr_free_ pages is decreased: 

block_found:  
    prev->next = ret->next;  
    prev->next->prev = prev;  
    map_nr = ret-mem_map;  
    change_bit(map_nr>>(1+new_order), area->map);  
    nr_free_pages -= 1 << order;  
    area->count--; 

If the block found comes from a list of size new_order greater than the requested size order, 
a while cycle is executed. The rationale behind these lines of codes is the following: when it 
becomes necessary to use a block of 2k page frames to satisfy a request for 2h page frames (h 
< k), the program allocates the last 2h page frames and iteratively reassigns the first 2k - 2h 
page frames to the free_area lists having indexes between h and k. 

size = 1 << new_order;  
while (new_order > order) {  
    area--;  
    new_order--;  
    size >>= 1;  
    /* insert *ret as first element in the list  
       and update the bitmap */  
    next = area->next;  
    ret->prev = (struct page *) area;  
    ret->next = next;  
    next->prev = ret;  
    area->next = ret;  
    area->count++;  
    change_bit(map_nr >> (1+new_order), area->map);  
    /* now take care of the second half of  
       the free block starting at *ret */  
    map_nr += size;  
    ret += size;  
} 
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Finally, RMQUEUE_TYPE updates the count field of the page descriptor associated with the 
selected block and executes a return instruction: 

ret->count = 1;  
return PAGE_OFFSET + (map_nr << PAGE_SHIFT); 

As a result, the __get_free_pages( ) function returns the address of the block found. 

6.1.2.3 Freeing a block 

The free_ pages_ok( ) function implements the buddy system strategy for freeing page 
frames. It makes use of three input parameters: 

map_nr  

The page number of one of the page frames included in the block to be released 

order  

The logarithmic size of the block 

type  

Equal to 1 if the page frames are suitable for DMA and to if they are not 

The function starts by declaring and initializing a few local variables: 

struct page * next, * prev;  
struct free_area_struct *area = &free_area[type][order];  
unsigned long index = map_nr >> (1 + order);  
unsigned long mask = (~0UL) << order;  
unsigned long flags; 

The mask variable contains the two's complement of 2order. It is used to transform map_nr into 
the number of the first page frame of the block to be released and to increment nr_free_ 
pages: 

map_nr &= mask;  
nr_free_pages -= mask; 

The function now starts a cycle executed at most (9 - order), once for each possibility for 
merging a block with its buddy. The function starts with the smallest sized block and moves 
up to the top size. The condition driving the while loop is: 

(mask + (1 << 9)) 

where the single bit set in mask is shifted to the left at each iteration. The body of the loop 
checks whether the buddy block of the block having number map_nr is free: 

if (!test_and_change_bit(index, area->map))  
    break; 
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If the buddy block is not free, the function breaks out of the cycle; if it is free, the function 
detaches it from the corresponding list of free blocks. The block number of the buddy is 
derived from map_nr by switching a single bit: 

area->count--;  
next = mem_map[map_nr ^ -mask].next;  
prev = mem_map[map_nr ^ -mask].prev;  
next->prev = prev;  
prev->next = next; 

At the end of each iteration, the function updates the mask, area, index, and map_nr 
variables: 

mask <<= 1;  
area++;  
index >>= 1;  
map_nr &= mask; 

The function then continues the next iteration, trying to merge free blocks twice as large as 
the ones considered in the previous cycle. When the cycle is finished, the free block obtained 
cannot be further merged with other free blocks. It is then inserted in the proper list: 

next = area->next;  
mem_map[map_nr].prev = (struct page *) area;  
mem_map[map_nr].next = next;  
next->prev  
= &mem_map[map_nr];  
area->next =  
 
&mem_map[map_nr];  
area->count++; 

6.2 Memory Area Management 

This section deals with memory areas, that is, with sequences of memory cells having 
contiguous physical addresses and an arbitrary length. 

The buddy system algorithm adopts the page frame as the basic memory area. This is fine for 
dealing with relatively large memory requests, but how are we going to deal with requests for 
small memory areas, say a few tens or hundred of bytes? 

Clearly, it would be quite wasteful to allocate a full page frame to store a few bytes. The 
correct approach instead consists of introducing new data structures that describe how small 
memory areas are allocated within the same page frame. In doing so, we introduce a new 
problem called internal fragmentation. It is caused by a mismatch between the size of the 
memory request and the size of the memory area allocated to satisfy the request. 

A classical solution adopted by Linux 2.0 consists of providing memory areas whose sizes are 
geometrically distributed: in other words, the size depends on a power of 2 rather than on the 
size of the data to be stored. In this way, no matter what the memory request size is, we can 
ensure that the internal fragmentation is always smaller than 50%. Following this approach, 
Linux 2.0 creates 13 geometrically distributed lists of free memory areas whose sizes range 
from 32 to 131056 bytes. The buddy system is invoked both to obtain additional page frames 
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needed to store new memory areas and conversely to release page frames that no longer 
contain memory areas. A dynamic list is used to keep track of the free memory areas 
contained in each page frame. 

6.2.1 The Slab Allocator 

Running a memory area allocation algorithm on top of the buddy algorithm is not particularly 
efficient. Linux 2.2 reexamines the memory area allocation from scratch and comes out with 
some very clever improvements. 

The new algorithm is derived from the slab allocator schema developed in 1994 for the Sun 
Microsystem Solaris 2.4 operating system. It is based on the following premises: 

• The type of data to be stored may affect how memory areas are allocated; for instance, 
when allocating a page frame to a User Mode process, the kernel invokes the 
get_free_page( ) function, which fills the page with zeros. 

The concept of a slab allocator expands upon this idea and views the memory areas as 
objects consisting of both a set of data structures and a couple of functions or methods 
called the constructor and destructor : the former initializes the memory area while the 
latter deinitializes it. 

In order to avoid initializing objects repeatedly, the slab allocator does not discard the 
objects that have been allocated and then released but saves them in memory. When a 
new object is then requested, it can be taken from memory without having to be 
reinitialized. 

In practice, the memory areas handled by Linux do not need to be initialized or 
deinitialized. For efficiency reasons, Linux does not rely on objects that need 
constructor or destructor methods; the main motivation for introducing a slab allocator 
is to reduce the number of calls to the buddy system allocator. Thus, although the 
kernel fully supports the constructor and destructor methods, the pointers to these 
methods are NULL. 

• The kernel functions tend to request memory areas of the same type repeatedly. For 
instance, whenever the kernel creates a new process, it allocates memory areas for 
some fixed size tables such as the process descriptor, the open file object, and so on 
(see Chapter 3). When a process terminates, the memory areas used to contain these 
tables can be reused. Since processes are created and destroyed quite frequently, 
previous versions of the Linux kernel wasted time allocating and deallocating the page 
frames containing the same memory areas repeatedly; in Linux 2.2 they are saved in a 
cache and reused instead. 

• Requests for memory areas can be classified according to their frequency. Requests of 
a particular size that are expected to occur frequently can be handled most efficiently 
by creating a set of special purpose objects having the right size, thus avoiding internal 
fragmentation. Meanwhile, sizes that are rarely encountered can be handled through an 
allocation scheme based on objects in a series of geometrically distributed sizes (such 
as the power-of-2 sizes used in Linux 2.0), even if this approach leads to internal 
fragmentation. 



Understanding the Linux Kernel 

162 

• There is another subtle bonus in introducing objects whose sizes are not geometrically 
distributed: the initial addresses of the data structures are less prone to be concentrated 
on physical addresses whose values are a power of 2. This, in turn, leads to better 
performance by the processor hardware cache. 

• Hardware cache performance creates an additional reason for limiting calls to the 
buddy system allocator as much as possible: every call to a buddy system function 
"dirties" the hardware cache, thus increasing the average memory access time.[1]  

[1] The impact of a kernel function on the hardware cache is denoted as the function footprint; it is defined as the percentage of cache overwritten by 
the function when it terminates. Clearly, large footprints lead to a slower execution of the code executed right after the kernel function, since the 
hardware cache is by now filled with useless information. 

The slab allocator groups objects into caches. Each cache is a "store" of objects of the same 
type. For instance, when a file is opened, the memory area needed to store the corresponding 
"open file" object is taken from a slab allocator cache named filp (for "file pointer"). The slab 
allocator caches used by Linux may be viewed at runtime by reading the /proc/slabinfo file. 

The area of main memory that contains a cache is divided into slabs; each slab consists of one 
or more contiguous page frames that contain both allocated and free objects (see Figure 6-3). 

Figure 6-3. The slab allocator components 

 

The slab allocator never releases the page frames of an empty slab on its own. It would not 
know when free memory is needed, and there is no benefit to releasing objects when there is 
still plenty of free memory for new objects. Therefore, releases occur only when the kernel is 
looking for additional free page frames (see tSection 6.2.12 later in this chapter and Section 
16.7 in Chapter 16). 

6.2.2 Cache Descriptor 

Each cache is described by a table of type struct kmem_cache_s (which is equivalent to the 
type kmem_cache_t). The most significant fields of this table are: 

c_name  

Points to the name of the cache. 

c_firstp , c_lastp  

Point, respectively, to the first and last slab descriptor of the cache. The slab 
descriptors of a cache are linked together through a doubly linked, circular, partially 
ordered list: the first elements of the list include slabs with no free objects, then come 
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the slabs that include used objects along with at least one free object, and finally the 
slabs that include only free objects. 

c_freep  

Points to the s_nextp field of the first slab descriptor that includes at least one free 
object. 

c_num  

Number of objects packed into a single slab. (All slabs of the cache have the same 
size.) 

c_offset  

Size of the objects included in the cache. (This size may be rounded up if the initial 
addresses of the objects must be memory aligned.) 

c_ gfporder  

Logarithm of the number of contiguous page frames included in a single slab. 

c_ctor , c_dtor  

Point, respectively, to the constructor and destructor methods associated with the 
cache objects. They are currently set to NULL, as stated earlier. 

c_nextp  

Points to the next cache descriptor. All cache descriptors are linked together in a 
simple list by means of this field. 

c_flags  

An array of flags that describes some permanent properties of the cache. There is, for 
instance, a flag that specifies which of two possible alternatives (see the following 
section) has been chosen to store the object descriptors in memory. 

c_magic  

A magic number selected from a predefined set of values. Used to check both the 
current state of the cache and its consistency. 

6.2.3 Slab Descriptor 

Each slab of a cache has its own descriptor of type struct kmem_slab_s (equivalent to the 
type kem_slab_t). 

Slab descriptors can be stored in two possible places, the choice depending normally on the 
size of the objects in the slab. If the object size is smaller than 512 bytes, the slab descriptor is 
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stored at the end of the slab; otherwise, it is stored outside of the slab. The latter option is 
preferable for large objects whose sizes are a submultiple of the slab size. In some cases, the 
kernel may violate this rule by setting the c_flags field of the cache descriptor differently. 

The most significant fields of a slab descriptor are: 

s_inuse  

Number of objects in the slab that are currently allocated. 

s_mem  

Points to the first object (either allocated or free) inside the slab. 

s_freep  

Points to the first free object (if any) in the slab. 

s_nextp , s_prevp  

Point, respectively, to the next and previous slab descriptor. The s_nextp field of the 
last slab descriptor in the list points to the c_offset field of the corresponding cache 
descriptor. 

s_dma  

Flag set if the objects included in the slab can be used by the DMA processor. 

s_magic  

Similar to the c_magic field of the cache descriptor. It contains a magic number 
selected from a predefined set of values and is used to check both the current state of 
the slab and its consistency. The values of this field are different from those of the 
corresponding c_magic field of the cache descriptor. The offset of s_magic within the 
slab descriptor is equal to the offset of c_magic with respect to c_offset inside the 
cache descriptor; the checking routine relies on their being the same. 

Figure 6-4 illustrates the major relationships between cache and slab descriptors. Full slabs 
precede partially full slabs that precede empty slabs. 
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Figure 6-4. Relationships between cache and slab descriptors 

 

6.2.4 General and Specific Caches 

Caches are divided into two types: general and specific. General caches are used only by the 
slab allocator for its own purposes, while specific caches are used by the remaining parts of 
the kernel. 

The general caches are: 

• A first cache contains the cache descriptors of the remaining caches used by the 
kernel. The cache_cache variable contains its descriptor. 

• A second cache contains the slab descriptors that are not stored inside the slabs. The 
cache_slabp variable points to its descriptor. 

• Thirteen additional caches contain geometrically distributed memory areas. The table 
called cache_sizes whose elements are of type cache_sizes_t points to the 13 
cache descriptors associated with memory areas of size 32, 64, 128, 256, 512, 1024, 
2048, 4096, 8192, 16384, 32768, 65536, and 131072 bytes, respectively. The table 
cache_sizes is used to efficiently derive the cache address corresponding to a given 
size. 

The kmem_cache_init( ) and kmem_cache_sizes_init( ) functions are invoked during 
system initialization to set up the general caches. 

Specific caches are created by the kmem_cache_create( ) function. Depending on the 
parameters, the function first determines the best way to handle the new cache (for instance, 
whether to include the slab descriptor inside or outside of the slab); it then creates a new 
cache descriptor for the new cache and inserts the descriptor in the cache_cache general 
cache. It should be noted that once a cache has been created, it cannot be destroyed. 

The names of all general and specific caches can be obtained at runtime by reading 
/proc/slabinfo; this file also specifies the number of free objects and the number of allocated 
objects in each cache. 
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6.2.5 Interfacing the Slab Allocator with the Buddy System 

When the slab allocator creates new slabs, it relies on the buddy system algorithm to obtain a 
group of free contiguous page frames. To that purpose, it invokes the kmem_getpages( ) 
function: 

void * kmem_getpages(kmem_cache_t *cachep,  
                     unsigned long flags, unsigned int *dma)  
{  
    void    *addr;  
    *dma = flags & SLAB_DMA;  
    addr = (void*) __get_free_pages(flags, cachep->c_gfporder);  
    if (!*dma && addr) {  
        struct page *page = mem_map + MAP_NR(addr);  
        *dma = 1<<cachep->c_gfporder;  
        while ((*dma)--) {  
            if (!PageDMA(page)) {  
                *dma = 0;  
                break;  
            }  
            page++;  
        }  
    }  
    return addr;  
} 

The parameters have the following meaning: 

cachep  

Points to the cache descriptor of the cache that needs additional page frames (the 
number of required page frames is in the cachep->c_gfporder field) 

flags  

Specifies how the page frame is requested (see Section 6.1.1 earlier in this chapter) 

dma  

Points to a variable that is set to 1 by kmem_getpages( ) if the allocated page frames 
are suitable for ISA DMA 

In the reverse operation, page frames assigned to a slab allocator can be released (see  
Section 6.2.7 later in this chapter) by invoking the kmem_freepages( ) function: 

void kmem_freepages(kmem_cache_t *cachep, void *addr)  
{  
    unsigned long i = (1<<cachep->c_gfporder);  
    struct page *page = &mem_map[MAP_NR(addr)];  
    while (i--) {  
        PageClearSlab(page);  
        page++;  
    }  
    free_pages((unsigned long)addr, cachep->c_gfporder);  
} 
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The function releases the page frames, starting from the one having physical address addr, 
that had been allocated to the slab of the cache identified by cachep. 

6.2.6 Allocating a Slab to a Cache 

A newly created cache does not contain any slab and therefore no free objects. New slabs are 
assigned to a cache only when both of the following are true: 

• A request has been issued to allocate a new object. 
• The cache does not include any free object. 

When this occurs, the slab allocator assigns a new slab to the cache by invoking kmem_cache_ 
grow( ). This function calls kmem_ getpages( ) to obtain a group of page frames from the 
buddy system; it then calls kmem_cache_slabmgmt( ) to get a new slab descriptor. Next, it 
calls kmem_cache_init_objs( ), which applies the constructor method (if defined) to all the 
objects contained in the new slab. It then calls kmem_slab_link_end( ), which inserts the 
slab descriptor at the end of the cache slab list: 

void kmem_slab_link_end(kmem_cache_t *cachep,  
                        kmem_slab_t *slabp)  
{  
    kmem_slab_t *lastp = cachep->c_lastp;  
    slabp->s_nextp = kmem_slab_end(cachep);  
    slabp->s_prevp = lastp;  
    cachep->c_lastp = slabp;  
    lastp->s_nextp = slabp;  
} 

The kmem_slab_end macro yields the address of the c_offset field of the corresponding 
cache descriptor (as stated before, the last element of a slab list points to that field). 

After inserting the new slab descriptor into the list, kmem_cache_ grow( ) loads the next 
and prev fields, respectively, of the descriptors of all page frames included in the new slab 
with the address of the cache descriptor and the address of the slab descriptor. This works 
correctly because the next and prev fields are used by functions of the buddy system only 
when the page frame is free, while page frames handled by the slab allocator functions are not 
free as far as the buddy system is concerned. Therefore, the buddy system will not be 
confused by this specialized use of the page frame descriptor. 

6.2.7 Releasing a Slab from a Cache 

As stated previously, the slab allocator never releases the page frames of an empty slab on its 
own. In fact, a slab is released only if both the following conditions hold: 

• The buddy system is unable to satisfy a new request for a group of page frames. 
• The slab is empty, that is, all the objects included in it are free. 

When the kernel looks for additional free page frames, it calls try_to_free_pages( ); this 
function, in turn, may invoke kmem_cache_reap( ), which selects a cache that contains at 
least one empty slab. The kmem_slab_unlink( ) function then removes the slab from the 
cache list of slabs: 



Understanding the Linux Kernel 

168 

void kmem_slab_unlink(kmem_slab_t *slabp)  
{  
    kmem_slab_t *prevp = slabp->s_prevp;  
    kmem_slab_t *nextp = slabp->s_nextp;  
    prevp->s_nextp = nextp;  
    nextp->s_prevp = prevp;  
} 

Subsequently, the slab—together with the objects in it—is destroyed by invoking 
kmem_slab_destroy( ): 

void kmem_slab_destroy(kmem_cache_t *cachep, kmem_slab_t *slabp)  
{  
    if (cachep->c_dtor) {  
        unsigned long num = cachep->c_num;  
        void *objp = slabp->s_mem;  
        do {  
            (cachep->c_dtor)(objp, cachep, 0);  
            objp += cachep->c_offset;  
            if (!slabp->s_index)  
                objp += sizeof(kmem_bufctl_t);  
        } while (--num);  
    }  
    slabp->s_magic = SLAB_MAGIC_DESTROYED;  
    if (slabp->s_index)  
        kmem_cache_free(cachep->c_index_cachep, slabp->s_index);  
    kmem_freepages(cachep, slabp->s_mem-slabp->s_offset);  
    if (SLAB_OFF_SLAB(cachep->c_flags))  
        kmem_cache_free(cache_slabp, slabp);  
} 

The function checks whether the cache has a destructor method for its objects (the c_dtor 
field is not NULL), in which case it applies the destructor to all the objects in the slab; the 
objp local variable keeps track of the currently examined object. Next, it calls 
kmem_freepages( ), which returns all the contiguous page frames used by the slab to the 
buddy system. Finally, if the slab descriptor is stored outside of the slab (in this case the 
s_index and c_index_cachep fields are not NULL, as explained later in this chapter), the 
function releases it from the cache of the slab descriptors. 

Some modules of Linux (see Appendix B) may create caches. In order to avoid wasting 
memory space, the kernel must destroy all slabs in all caches created by a module before 
removing it.[2] The kmem_cache_shrink( ) function destroys all the slabs in a cache by 
invoking kmem_slab_destroy( ) iteratively. The c_ growing field of the cache descriptor is 
used to prevent kmem_cache_shrink( ) from shrinking a cache while another kernel control 
path attempts to allocate a new slab for it. 

[2] We stated previously that Linux does not destroy caches. Thus, when linking in a new module, the kernel must check whether the new cache 
descriptors requested by it were already created in a previous installation of that module or another one. 

6.2.8 Object Descriptor 

Each object has a descriptor of type struct kmem_bufctl_s (equivalent to the type 
kmem_bufctl_t). Like the slab descriptors themselves, the object descriptors of a slab can be 
stored in two possible ways, illustrated by Figure 6-5. 
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Figure 6-5. Relationships between slab and object descriptors 

 
External object descriptors  

Stored outside the slab, in one of the general caches pointed to by cache_sizes. In 
this case, the first object descriptor in the memory area describes the first object in the 
slab and so on. The size of the memory area, and thus the particular general cache 
used to store object descriptors, depends on the number of objects stored in the slab 
(c_num field of the cache descriptor). The cache containing the objects themselves is 
tied to the cache containing their descriptors through two fields. First, the 
c_index_cachep field of the cache containing the slab points to the cache descriptor 
of the cache containing the object descriptors. Second, the s_index field of the slab 
descriptor points to the memory area containing the object descriptors. 

Internal object descriptors  

Stored inside the slab, right after the objects they describe. In this case, the 
c_index_cachep field of the cache descriptor and the s_index field of the slab 
descriptor are both NULL. 

The slab allocator chooses the first solution when the size of the objects is a multiple of 512, 
1024, 2048, or 4096: in this case, storing control structures inside the slab would result in a 
high level of internal fragmentation. If the size of the objects is smaller than 512 bytes or not a 
multiple of 512, 1024, 2048, or 4096 the slab allocator stores the object descriptors inside the 
slab. 

Object descriptors are simple structures consisting of a single field: 
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typedef struct kmem_bufctl_s {  
    union {  
        struct kmem_bufctl_s * buf_nextp;  
        kmem_slab_t *          buf_slabp;  
        void *                 buf_objp;  
    } u;  
} kmem_bufctl_t;  
#define    buf_nextp   u.buf_nextp  
#define    buf_slabp   u.buf_slabp  
#define    buf_objp    u.buf_objp 

This field has the following meaning, depending on the state of the object and the locations of 
the object descriptors: 

buf_nextp  

If the object is free, it points to the next free object in the slab, thus implementing a 
simple list of free objects inside the slab. 

buf_objp  

If the object is allocated and its object descriptor is stored outside of the slab, it points 
to the object. 

buf_slabp  

If the object is allocated and its object descriptor is stored inside the slab, it points to 
the slab descriptor of the slab in which the object is stored. This holds whether the slab 
descriptor is stored inside or outside of the slab. 

Figure 6-5 illustrates the relationships among slabs, slab descriptors, objects, and object 
descriptors. Notice that, although the figure suggests that the slab descriptor is stored outside 
of the slab, it remains unchanged if the descriptor is stored inside it. 

6.2.9 Aligning Objects in Memory 

The objects managed by the slab allocator can be aligned in memory, that is, they can be 
stored in memory cells whose initial physical addresses are multiples of a given constant, 
usually a power of 2. This constant is called the alignment factor, and its value is stored in the 
c_align field of the cache descriptor. The c_offset field, which contains the object size, 
takes into account the number of padding bytes added to obtain the proper alignment. If the 
value of c_align is 0, no alignment is required for the objects. 

The largest alignment factor allowed by the slab allocator is 4096, that is, the page frame size. 
This means that objects can be aligned by referring either to their physical addresses or to 
their linear addresses: in both cases, only the 12 least significant bits of the address may be 
altered by the alignment. 

Usually, microcomputers access memory cells more quickly if their physical addresses are 
aligned with respect to the word size, that is, to the width of the internal memory bus of the 
computer. Thus, the kmem_cache_create( ) function attempts to align objects according to 
the word size specified by the BYTES_PER_WORD macro. For Intel Pentium processors, the 
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macro yields the value 4 because the word is 32 bits long. However, the function does not 
align objects if this leads to a consistent waste of memory. 

When creating a new cache, it's possible to specify that the objects included in it be aligned in 
the first-level cache. To achieve this, set the SLAB_HWCACHE_ALIGN cache descriptor flag. The 
kmem_cache_create( ) function handles the request as follows: 

• If the object's size is greater than half of a cache line, it is aligned in RAM to a 
multiple of L1_CACHE_BYTES, that is, at the beginning of the line. 

• Otherwise, the object size is rounded up to a factor of L1_CACHE_BYTES; this ensures 
that an object will never span across two cache lines. 

Clearly, what the slab allocator is doing here is trading memory space for access time: it gets 
better cache performance by artificially increasing the object size, thus causing additional 
internal fragmentation. 

6.2.10 Slab Coloring 

We know from Chapter 2 that the same hardware cache line maps many different blocks of 
RAM. In this chapter we have also seen that objects of the same size tend to be stored at the 
same offset within a cache. Objects that have the same offset within different slabs will, with 
a relatively high probability, end up mapped in the same cache line. The cache hardware 
might therefore waste memory cycles transferring two objects from the same cache line back 
and forth to different RAM locations, while other cache lines go underutilized. The slab 
allocator tries to reduce this unpleasant cache behavior by a policy called slab coloring: 
different arbitrary values called colors are assigned to the slabs. 

Before examining slab coloring, we have to look at the layout of objects in the cache. Let us 
consider a cache whose objects are aligned in RAM. Thus, the c_align field of the cache 
descriptor has a positive value, say aln. Even taking into account the alignment constraint, 
there are many possible ways to place objects inside the slab. The choices depend on 
decisions made for the following variables: 

num  

Number of objects that can be stored in a slab (its value is in the c_num field of the 
cache descriptor). 

osize  

Object size including the alignment bytes (its value is in the c_offset field) plus 
object descriptor size (if the descriptor is contained inside the slab). 

dsize  

Slab descriptor size; its value is equal to if the slab descriptor is stored outside of the 
slab. 
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free  

Number of unused bytes (bytes not assigned to any object) inside the slab. 

The total length in bytes of a slab can then be expressed as: 

slab length = (num x osize)+dsize +free  

free is always smaller than osize, since otherwise it would be possible to place additional 
objects inside the slab. However, free could be greater than aln. 

The slab allocator takes advantage of the free unused bytes to color the slab. The term "color" 
is used simply to subdivide the slabs and allow the memory allocator to spread objects out 
among different linear addresses. In this way, the kernel obtains the best possible performance 
from the microprocessor's hardware cache. 

Slabs having different colors store the first object of the slab in different memory locations, 
while satisfying the alignment constraint. The number of available colors is free/aln+1. The 
first color is denoted as and the last one (whose value is in the c_colour field of the cache 
descriptor) is denoted as free/aln. 

If a slab is colored with color col, the offset of the first object (with respect to the slab initial 
address) is equal to col x aln bytes; this value is stored in the s_offset field of the slab 
descriptor. Figure 6-6 illustrates how the placement of objects inside the slab depends on the 
slab color. Coloring essentially leads to moving some of the free area of the slab from the end 
to the beginning. 

Figure 6-6. Slab with color col and alignment aln 

 

Coloring works only when free is large enough. Clearly, if no alignment is required for the 
objects or if the number of unused bytes inside the slab is smaller than the required alignment 
(free < aln), the only possible slab coloring is the one having the color 0, that is, the one that 
assigns a zero offset to the first object. 

The various colors are distributed equally among slabs of a given object type by storing the 
current color in a field of the cache descriptor called c_colour_next. The kmem_cache_ 
grow( ) function assigns the color specified by c_colour_next to a new slab and then 
decrements the value of this field. After reaching 0, it wraps around again to the maximum 
available value: 
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if (!(offset = cachep->c_colour_next--))  
    cachep->c_colour_next = cachep->c_colour;  
offset *= cachep->c_align;  
slabp->s_offset = offset; 

In this way, each slab is created with a different color from the previous one, up to the 
maximum available colors. 

6.2.11 Allocating an Object to a Cache 

New objects may be obtained by invoking the kmem_cache_alloc( ) function. The 
parameter cachep points to the cache descriptor from which the new free object must be 
obtained. kmem_cache_alloc( ) first checks whether the cache descriptor exists; it then 
retrieves from the c_freep field the address of the s_nextp field of the first slab that includes 
at least one free object: 

slabp = cachep->c_freep; 

If slabp does not point to a slab, it then jumps to alloc_new_slab and invokes 
kmem_cache_grow( ) to add a new slab to the cache: 

if (slabp->s_magic != SLAB_MAGIC_ALLOC)  
    goto alloc_new_slab; 

The value SLAB_MAGIC_ALLOC in the s_magic field indicates that the slab contains at least one 
free object. If the slab is full, slabp points to the cachep->c_offset field, and thus slabp-
>s_magic coincides with cachep->c_magic: in this case, however, this field contains a magic 
number for the cache different from SLAB_MAGIC_ALLOC. 

After obtaining a slab with a free object, the function increments the counter containing the 
number of objects currently allocated in the slab: 

slabp->s_inuse++; 

It then loads bufp with the address of the first free object inside the slab and, correspondingly, 
updates the slabp->s_freep field of the slab descriptor to point to the next free object: 

bufp = slabp->s_freep;  
slabp->s_freep = bufp->buf_nextp; 

If slabp->s_freep becomes NULL, the slab no longer includes free objects, so the c_freep 
field of the cache descriptor must be updated: 

if (!slabp->s_freep)  
    cachep->c_freep = slabp->s_nextp; 

Notice that there is no need to change the position of the slab descriptor inside the list since it 
remains partially ordered. Now the function must derive the address of the free object and 
update the object descriptor. 

If the slabp->s_index field is null, the object descriptors are stored right after the objects 
inside the slab. In this case, the address of the slab descriptor is first stored in the object 
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descriptor's single field to denote the fact that the object is no longer free; then the object 
address is derived by subtracting from the address of the object descriptor the object size 
included in the cachep->c_offset field: 

if (!slabp->s_index) {  
        bufp->buf_slabp = slabp;  
        objp = ((void*)bufp) - cachep->c_offset;  
    } 

If the slabp->s_index field is not zero, it points to a memory area outside of the slab where 
the object descriptors are stored. In this case, the function first computes the relative position 
of the object descriptor in the outside memory area; it then multiplies this number by the 
object size; finally, it adds the result to the address of the first object in the slab, thus yielding 
the address of the object to be returned. As in the previous case, the object descriptor single 
field is updated and points now to the object: 

if (slabp->s_index) {  
    objp = ((bufp-slabp->s_index)*cachep->c_offset) +  
                slabp->s_mem;  
    bufp->buf_objp = objp;  
} 

The function terminates by returning the address of the new object: 

return objp; 

6.2.12 Releasing an Object from a Cache 

The kmem_cache_free( ) function releases an object previously obtained by the slab 
allocator. Its parameters are cachep, the address of the cache descriptor, and objp, the 
address of the object to be released. The function starts by checking the parameters, after 
which it determines the address of the object descriptor and that of the slab containing the 
object. It uses the cachep->c_flags flag, included in the cache descriptor, to determine 
whether the object descriptor is located inside or outside of the slab. 

In the former case, it determines the address of the object descriptor by adding the object's 
size to its initial address. The address of the slab descriptor is then extracted from the 
appropriate field in the object descriptor: 

if (!SLAB_BUFCTL(cachep->c_flags)) {  
    bufp = (kmem_bufctl_t *)(objp+cachep->c_offset);  
    slabp = bufp->buf_slabp;  
} 

In the latter case, it determines the address of the slab descriptor from the prev field of the 
descriptor of the page frame containing the object (refer to Section 6.2.6 for the role of prev). 
The address of the object descriptor is derived by first computing the sequence number of the 
object inside the slab (object address minus first object address divided by object length). This 
number is then used to determine the position of the object descriptor starting from the 
beginning of the outside area pointed to by the slabp->s_index field of the slab descriptor. 
To be on the safe side, the function checks that the object's address passed as a parameter 
coincides with the address that its object descriptor says it should have: 
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if (SLAB_BUFCTL(cachep->c_flags)) {  
    slabp = (kmem_slab_t *)((&mem_map[MAP_NR(objp)])->prev);  
    bufp =    &slabp->s_index[(objp - slabp->s_mem) /  
                                cachep->c_offset];  
    if (objp != bufp->buf_objp)  
        goto bad_obj_addr;  
} 

Now the function checks whether the slabp->s_magic field of the slab descriptor contains 
the correct magic number and whether the slabp->s_inuse field is greater than 0. If 
everything is okay, it decrements the value of slabp->s_inuse and inserts the object into the 
slab list of free objects: 

slabp->s_inuse--;  
bufp->buf_nextp = slabp->s_freep;  
slabp->s_freep = bufp; 

If bufp->buf_nextp is NULL, the list of free objects includes only one element: the object 
that is being released. In this case, the slab was previously filled to capacity and it might be 
necessary to reinsert its slab descriptor in a new position in the list of slab descriptors. 
(Remember that completely filled slabs appear before slabs with some free objects in the 
partially ordered list.) This is done by the kmem_cache_one_free( ) function: 

if (!bufp->buf_nextp)  
    kmem_cache_one_free(cachep, slabp); 

If the slab includes other free objects besides the one being released, it is necessary to check 
whether all objects are free. As in the previous case, this would make it necessary to reinsert 
the slab descriptor in a new position in the list of slab descriptors. The move is done by the 
kmem_cache_full_free( ) function: 

if (bufp->buf_nextp)  
    if (!slabp->s_inuse)  
        kmem_cache_full_free(cachep, slabp); 

The kmem_cache_free( ) function terminates here. 

6.2.13 General Purpose Objects 

As stated in Section 6.1.2, infrequent requests for memory areas are handled through a group 
of general caches whose objects have geometrically distributed sizes ranging from a minimum 
of 32 to a maximum of 131072 bytes. 

Objects of this type are obtained by invoking the kmalloc( ) function: 

void * kmalloc(size_t size, int flags)  
{  
    cache_sizes_t *csizep = cache_sizes;  
    for (; csizep->cs_size; csizep++) {  
        if (size > csizep->cs_size)  
            continue;  
        return __kmem_cache_alloc(csizep->cs_cachep, flags);  
    }  
    printk(KERN_ERR "kmalloc: Size (%lu) too large\n",  
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                    (unsigned long) size);  
    return NULL;  
} 

The function uses the cache_sizes table to locate the cache descriptor of the cache 
containing objects of the right size. It then calls kmem_cache_alloc( ) to allocate the 
object.[3]  

[3] Actually, for efficiency reasons, the code of kmem_cache_alloc() is copied inside the body of kmalloc(). The 
__kmem_cache alloc() function, which implements kmem_cache_alloc(), is declared inline. 

Objects obtained by invoking kmalloc( ) can be released by calling kfree( ):[4]  

[4] A similar function called kfree_s( ) requires an additional parameter, namely, the size of the object to be released. This function was used 
in previous versions of Linux where the size of the memory area had to be determined before releasing it. It is still used by some modules of the 
filesystem. 

void kfree(const void *objp)  
{  
    struct page *page;  
    int    nr;  
    if (!objp)  
        goto null_ptr;  
    nr = MAP_NR(objp);  
    if (nr >= num_physpages)  
        goto bad_ptr;  
    page = &mem_map[nr];  
    if (PageSlab(page)) {  
        kmem_cache_t    *cachep;  
        cachep = (kmem_cache_t *)(page->next);  
        if (cachep && (cachep->c_flags & SLAB_CFLGS_GENERAL)) {  
            __kmem_cache_free(cachep, objp);  
            return;  
        }  
    }  
bad_ptr:  
    printk(KERN_ERR "kfree: Bad obj %p\n", objp);  
    *(int *) 0 = 0; /* FORCE A KERNEL DUMP */  
null_ptr:  
    return;  
} 

The proper cache descriptor is identified by reading the next field of the descriptor of the first 
page frame containing the memory area. If this field points to a valid descriptor, the memory 
area is released by invoking kmem_cache_free( ). 

6.3 Noncontiguous Memory Area Management 

We already know from an earlier discussion that it is preferable to map memory areas into 
sets of contiguous page frames, thus making better use of the cache and achieving lower 
average memory access times. Nevertheless, if the requests for memory areas are infrequent, 
it makes sense to consider an allocation schema based on noncontiguous page frames 
accessed through contiguous linear addresses. The main advantage of this schema is to avoid 
external fragmentation, while the disadvantage is that it is necessary to fiddle with the kernel 
page tables. Clearly, the size of a noncontiguous memory area must be a multiple of 4096. 
Linux uses noncontiguous memory areas sparingly, for instance, to allocate data structures for 
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active swap areas (see Section 16.2.3 in Chapter 16), to allocate space for a module (see 
Appendix B), or to allocate buffers to some I/O drivers. 

6.3.1 Linear Addresses of Noncontiguous Memory Areas 

To find a free range of linear addresses, we can look in the area starting from PAGE_OFFSET 
(usually 0xc0000000, the beginning of the fourth gigabyte). We learned in the Chapter 2 in 
Section 2.5.4 that the kernel reserved this whole upper area of memory to map available RAM 
for kernel use. But available RAM occupies only a small fraction of the gigabyte, starting at 
the PAGE_OFFSET address. All the linear addresses above that reserved area are available for 
mapping noncontiguous memory areas. The linear address that corresponds to the end of 
physical memory is stored in the high_memory variable. 

Figure 6-7 shows how linear addresses are assigned to noncontiguous memory areas. A safety 
interval of size 8 MB (macro VMALLOC_OFFSET) is inserted between the end of the physical 
memory and the first memory area; its purpose is to "capture" out-of-bounds memory 
accesses. For the same reason, additional safety intervals of size 4 KB are inserted to separate 
noncontiguous memory areas. 

Figure 6-7. The linear address interval starting from PAGE_OFFSET 

 

The VMALLOC_START macro defines the starting address of the linear space reserved for 
noncontiguous memory areas. It is defined as follows: 

#define VMALLOC_START (((unsigned long) high_memory + \  
                        VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 

6.3.2 Descriptors of Noncontiguous Memory Areas 

Each noncontiguous memory area is associated with a descriptor of type struct vm_struct: 

struct vm_struct {  
    unsigned long flags;  
    void * addr;  
    unsigned long size;  
    struct vm_struct * next;  
}; 

These descriptors are inserted in a simple list by means of the next field; the address of the 
first element of the list is stored in the vmlist variable. The addr field contains the linear 
address of the first memory cell of the area; the size field contains the size of the area plus 
4096 (the size of the previously mentioned interarea safety interval). 
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The get_vm_area( ) function creates new descriptors of type struct vm_struct; its 
parameter size specifies the size of the new memory area: 

struct vm_struct * get_vm_area(unsigned long size)  
{  
    unsigned long addr;  
    struct vm_struct **p, *tmp, *area;  
    area = (struct vm_struct *) kmalloc(sizeof(*area),  
                                        GFP_KERNEL);  
    if (!area)  
        return NULL;  
    addr = VMALLOC_START;  
    for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {  
        if (size + addr < (unsigned long) tmp->addr)  
            break;  
        addr = tmp->size + (unsigned long) tmp->addr;  
        if (addr > 0xffffd000-size) {  
            kfree(area);  
            return NULL;  
        }  
    }  
    area->addr = (void *)addr;  
    area->size = size + PAGE_SIZE;  
    area->next = *p;  
    *p = area;  
    return area;  
} 

The function first calls kmalloc( ) to obtain a memory area for the new descriptor. It then 
scans the list of descriptors of type struct vm_struct looking for an available range of 
linear addresses that includes at least size+4096 addresses. If such an interval exists, the 
function initializes the fields of the descriptor and terminates by returning the initial address 
of the noncontiguous memory area. Otherwise, when addr + size exceeds the 4 GB limit, 
get_vm_area( ) releases the descriptor and returns NULL. 

6.3.3 Allocating a Noncontiguous Memory Area 

The vmalloc( ) function allocates a noncontiguous memory area to the kernel. The 
parameter size denotes the size of the requested area. If the function is able to satisfy the 
request, then it returns the initial linear address of the new area; otherwise, it returns a NULL 
pointer: 

void * vmalloc(unsigned long size)  
{  
    void * addr;  
    struct vm_struct *area;  
    size = (size+PAGE_SIZE-1)&PAGE_MASK;  
    if (!size || size > (num_physpages << PAGE_SHIFT))  
        return NULL;  
    area = get_vm_area(size);  
    if (!area)  
        return NULL;  
    addr = area->addr;  
    if (vmalloc_area_pages((unsigned long) addr, size)) {  
        vfree(addr);  
        return NULL;  
    }  
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    return addr;  
} 

The function starts by rounding up the value of the size parameter to a multiple of 4096 (the 
page frame size). It also performs a sanity check to make sure the size is greater than and less 
than or equal to the existing number of page frames. If the size fits available memory, 
vmalloc( ) invokes get_vm_area( ), which creates a new descriptor and returns the linear 
addresses assigned to the memory area. Then vmalloc( ) invokes vmalloc_area_pages( ) 
to request noncontiguous page frames and terminates by returning the initial linear address of 
the noncontiguous memory area. 

The vmalloc_area_pages( ) function makes use of two parameters: address, the initial 
linear address of the area, and size, its size. The linear address of the end of the area is 
assigned to the end local variable: 

end = address + size; 

The function then uses the pgd_offset_k macro to derive the entry in the Page Global 
Directory related to the initial linear address of the area: 

dir = pgd_offset_k(address); 

The function then executes the following cycle: 

while (address < end) {  
    pmd_t *pmd = pmd_alloc_kernel(dir, address);  
    if (!pmd)  
        return -ENOMEM;  
    if (alloc_area_pmd(pmd, address, end - address))  
        return -ENOMEM;  
    set_pgdir(address, *dir);  
    address = (address + PGDIR_SIZE) & PGDIR_MASK;  
    dir++;  
} 

In each cycle, it first invokes pmd_alloc_kernel( ) to create a Page Middle Directory for 
the new area. It then calls alloc_area_pmd( ) to allocate all the Page Tables associated with 
the new Page Middle Directory. Next, it invokes set_pgdir( ) to update the entry 
corresponding to the new Page Middle Directory in all existing Page Global Directories (see 
Section 2.5.4 in Chapter 2). It adds the constant 222, that is, the size of the range of linear 
addresses spanned by a single Page Middle Directory, to the current value of address, and it 
increases the pointer dir to the Page Global Directory. 

The cycle is repeated until all page table entries referring to the noncontiguous memory area 
have been set up. 

The alloc_area_pmd( ) function executes a similar cycle for all the Page Tables that a Page 
Middle Directory points to: 
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while (address < end) {  
    pte_t * pte = pte_alloc_kernel(pmd, address);  
    if (!pte)  
        return -ENOMEM;  
    if (alloc_area_pte(pte, address, end - address))  
        return -ENOMEM;  
    address = (address + PMD_SIZE) & PMD_MASK;  
    pmd++;  
} 

The pte_alloc_kernel( ) function (see Section 2.5.2 in Chapter 2) allocates a new Page 
Table and updates the corresponding entry in the Page Middle Directory. Next, 
alloc_area_pte( ) allocates all the page frames corresponding to the entries in the Page 
Table. The value of address is increased by 222, that is, the size of the linear address interval 
spanned by a single Page Table, and the cycle is repeated. 

The main cycle of alloc_area_pte( ) is: 

while (address < end) {  
    unsigned long page;  
    if (!pte_none(*pte))  
        printk("alloc_area_pte: page already exists\n");  
    page = __ get_free_page(GFP_KERNEL);  
    if (!page)  
        return -ENOMEM;  
    set_pte(pte, mk_pte(page, PAGE_KERNEL));  
    address += PAGE_SIZE;  
    pte++;  
} 

Each page frame is allocated through __get_free_page( ). The physical address of the new 
page frame is written into the Page Table by the set_pte and mk_pte macros. The cycle is 
repeated after adding the constant 4096, that is, the length of a page frame, to address. 

6.3.4 Releasing a Noncontiguous Memory Area 

The vfree( ) function releases noncontiguous memory areas. Its parameter addr contains 
the initial linear address of the area to be released. vfree( ) first scans the list pointed by 
vmlist to find the address of the area descriptor associated with the area to be released: 

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {  
    if (tmp->addr == addr) {  
        *p = tmp->next;  
        vmfree_area_pages((unsigned long)(tmp->addr),  
                          tmp->size);  
        kfree(tmp);  
        return;  
    }  
}  
printk("Trying to vfree(  ) nonexistent vm area (%p)\n", addr); 

The size field of the descriptor specifies the size of the area to be released. The area itself is 
released by invoking vmfree_area_pages( ), while the descriptor is released by invoking 
kfree( ). 
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The vmfree_area_pages( ) function takes two parameters: the initial linear address and the 
size of the area. It executes the following cycle to reverse the actions performed by 
vmalloc_area_pages( ): 

while (address < end) {  
    free_area_pmd(dir, address, end - address);  
    address = (address + PGDIR_SIZE) & PGDIR_MASK;  
    dir++;  
} 

In turn, free_area_pmd( ) reverses the actions of alloc_area_pmd( ) in the cycle: 

while (address < end) {  
    free_area_pte(pmd, address, end - address);  
    address = (address + PMD_SIZE) & PMD_MASK;  
    pmd++;  
} 

Again, free_area_pte( ) reverses the activity of alloc_area_pte( ) in the cycle: 

while (address < end) {  
    pte_t page = *pte;  
    pte_clear(pte);  
    address += PAGE_SIZE;  
    pte++;  
    if (pte_none(page))  
        continue;  
    if (pte_present(page)) {  
        free_page(pte_page(page));  
        continue;  
    }  
    printk("Whee... Swapped out page in kernel page table\n");  
} 

Each page frame assigned to the noncontiguous memory area is released by means of the 
buddy system free_ page( ) function. The corresponding entry in the Page Table is set to 
by the pte_clear macro. 

6.4 Anticipating Linux 2.4 

Linux 2.2 has two buddy systems: the first one handles page frames suitable for ISA DMA, 
while the second one handles page frames not suitable for ISA DMA. Linux 2.4 adds a third 
buddy system for the high physical memory, that is, for the page frames not permanently 
mapped by the kernel. Using a high-memory page frame implies changing an entry in a 
special kernel Page Table to map the page frame physical addresses in the 4 GB linear address 
space. 

Actually, Linux 2.4 views the three portions of RAM as different "zones." Each zone has its 
own counters and watermarks to monitor the number of free page frames. When a memory 
allocation request takes place, the kernel first tries to fetch the page frames from the most 
suitable zone; if it fails, it may fall back on another zone. 

The slab allocator is mostly unchanged. However, Linux 2.4 allows a slab allocator cache that 
is no longer useful to be destroyed. Recall that in Linux 2.2 a slab allocator cache can be 
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dynamically created but not destroyed. Modules that create their own slab allocator cache 
when loaded are now expected to destroy it when unloaded. 
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Chapter 7. Process Address Space 
As seen in the previous chapter, a kernel function gets dynamic memory in a fairly 
straightforward manner by invoking one of a variety of functions: __get_free_pages( ) to 
get pages from the buddy system algorithm, kmem_cache_alloc( ) or kmalloc( ) to use the 
slab allocator for specialized or general-purpose objects, and vmalloc( ) to get  
a noncontiguous memory area. If the request can be satisfied, each of these functions returns  
a linear address identifying the beginning of the allocated dynamic memory area. 

These simple approaches work for two reasons: 

• The kernel is the highest priority component of the operating system: if some kernel 
function makes a request for dynamic memory, it must have some valid reason to issue 
that request, and there is no point in trying to defer it. 

• The kernel trusts itself: all kernel functions are assumed error-free, so it does not need 
to insert any protection against programming errors. 

When allocating memory to User Mode processes, the situation is entirely different: 

• Process requests for dynamic memory are considered nonurgent. When a process's 
executable file is loaded, for instance, it is unlikely that the process will address all the 
pages of code in the near future. Similarly, when a process invokes malloc( ) to get 
additional dynamic memory, it doesn't mean the process will soon access all the 
additional memory obtained. So as a general rule, the kernel tries to defer allocating 
dynamic memory to User Mode processes. 

• Since user programs cannot be trusted, the kernel must be prepared to catch all 
addressing errors caused by processes in User Mode. 

As we shall see in this chapter, the kernel succeeds in deferring the allocation of dynamic 
memory to processes by making use of a new kind of resource. When a User Mode process 
asks for dynamic memory, it doesn't get additional page frames; instead, it gets the right to 
use a new range of linear addresses, which become part of its address space. This interval is 
called a memory region. 

We start in Section 7.1 by discussing how the process views dynamic memory. We then 
describe the basic components of the process address space in Section 7.3. Next, we examine 
in detail the role played by the page fault exception handler in deferring the allocation of page 
frames to processes. We then illustrate how the kernel creates and deletes whole process 
address spaces. Last, we discuss the APIs and system calls related to address space 
management. 

7.1 The Process's Address Space 

The address space of a process consists of all linear addresses that the process is allowed to 
use. Each process sees a different set of linear addresses; the address used by one process 
bears no relation to the address used by another. As we shall see later, the kernel may 
dynamically modify a process address space by adding or removing intervals of linear 
addresses. 
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The kernel represents intervals of linear addresses by means of resources called memory 
regions, which are characterized by an initial linear address, a length, and some access rights. 
For reasons of efficiency, both the initial address and the length of a memory region must be 
multiples of 4096, so that the data identified by each memory region entirely fills up the page 
frames allocated to it. Let us briefly mention typical situations in which a process gets new 
memory regions: 

• When the user types a command at the console, the shell process creates a new process 
to execute the command. As a result, a fresh address space, thus a set of memory 
regions, is assigned to the new process (see Section 7.5 later in this chapter and 
Chapter 19). 

• A running process may decide to load an entirely different program. In this case, the 
process ID remains unchanged but the memory regions used before loading the 
program are released, and a new set of memory regions is assigned to the process (see 
Section 19.4 in Chapter 19). 

• A running process may perform a "memory mapping" on a file (or on a portion of it). 
In such cases, the kernel assigns a new memory region to the process to map the file 
(see Section 15.2 in Chapter 15). 

• A process may keep adding data on its User Mode stack until all addresses in the 
memory region that map the stack have been used. In such cases, the kernel may 
decide to expand the size of that memory region (see Section 7.4 later in this chapter). 

• A process may create an IPC shared memory region to share data with other 
cooperating processes. In such cases, the kernel assigns a new memory region to the 
process to implement this construct (see Section 18.3.5 in Chapter 18). 

• A process may expand its dynamic area (the heap) through a function such as malloc( 
). As a result, the kernel may decide to expand the size of the memory region assigned 
to the heap (see Section 7.6 later in this chapter). 

Table 7-1 illustrates some of the system calls related to the previously mentioned tasks. With 
the exception of brk( ), which is discussed at the end of this chapter, the system calls are 
described in other chapters. 

Table 7-1. System Calls Related to Memory Region Creation and Deletion 
System Call Description 
brk( ) Changes the heap size of the process 
execve( ) Loads a new executable file, thus changing the process address space 
exit( ) Terminates the current process and destroys its address space 
fork( ) Creates a new process, and thus a new address space 
mmap( ) Creates a memory mapping for a file, thus enlarging the process address space 
munmap( ) Destroys a memory mapping for a file, thus contracting the process address space 
shmat( ) Creates a shared memory region 
shmdt( ) Destroys a shared memory region 

As we shall see in Section 7.4, it is essential for the kernel to identify the memory regions 
currently owned by a process (that is, the address space of a process) since that allows the 
"Page fault" exception handler to efficiently distinguish between two types of invalid linear 
addresses that cause it to be invoked: 

• Those caused by programming errors. 
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• Those caused by a missing page; even though the linear address belongs to the 
process's address space, the page frame corresponding to that address has yet to be 
allocated. 

The latter addresses are not invalid from the process's point of view; the kernel handles the 
page fault by providing the page frame and letting the process continue. 

7.2 The Memory Descriptor 

All information related to the process address space is included in a table referenced by the mm 
field of the process descriptor. This table is a structure of type mm_struct as follows: 

struct mm_struct {  
    struct vm_area_struct *mmap, *mmap_avl, *mmap_cache;  
    pgd_t * pgd;  
    atomic_t count;  
    int map_count;  
    struct semaphore mmap_sem;  
    unsigned long context;  
    unsigned long start_code, end_code, start_data, end_data;  
    unsigned long start_brk, brk, start_stack;  
    unsigned long arg_start, arg_end, env_start, env_end;  
    unsigned long rss, total_vm, locked_vm;  
    unsigned long def_flags;  
    unsigned long cpu_vm_mask;  
    unsigned long swap_cnt;  
    unsigned long swap_address;  
    void * segments;  
}; 

For the present discussion, the most important fields are: 

pgd and segments  

Point, respectively, to the Page Global Directory and Local Descriptor Table of the 
process. 

rss  

Specifies the number of page frames allocated to the process. 

total_vm  

Denotes the size of the process address space expressed as a number of pages. 

locked_vm  

Counts the number of "locked" pages, that is, pages that cannot be swapped out (see 
Chapter 16). 
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count  

Denotes the number of processes that share the same struct mm_struct descriptor. If 
count is greater than 1, the processes are lightweight processes sharing the same 
address space, that is, using the same memory descriptor. 

The mm_alloc( ) function is invoked to get a new memory descriptor. Since these 
descriptors are stored in a slab allocator cache, mm_alloc( ) calls kmem_cache_alloc( ), 
initializes the new memory descriptor by duplicating the content of the memory descriptor of 
current, and sets the count field to 1. 

Conversely, the mmput( ) function decrements the count field of a memory descriptor. If that 
field becomes 0, the function releases the Local Descriptor Table, the memory region 
descriptors (see later in this chapter), the page tables referenced by the memory descriptor, 
and the memory descriptor itself. 

The mmap, mmap_avl, and mmap_cache fields are discussed in the next section. 

7.3 Memory Regions 

Linux implements memory regions by means of descriptors of type vm_area_struct: 

struct vm_area_struct {  
    struct mm_struct * vm_mm;  
    unsigned long vm_start;  
    unsigned long vm_end;  
    struct vm_area_struct *vm_next;  
    pgprot_t vm_page_prot;  
    unsigned short vm_flags;  
    short vm_avl_height;  
    struct vm_area_struct *vm_avl_left, *vm_avl_right;  
    struct vm_area_struct *vm_next_share, **vm_pprev_share;  
    struct vm_operations_struct * vm_ops;  
    unsigned long vm_offset;  
    struct file * vm_file;  
    unsigned long vm_pte;  
}; 

Each memory region descriptor identifies a linear address interval. The vm_start field 
contains the first linear address of the interval, while the vm_end field contains the first linear 
address outside of the interval; vm_end - vm_start thus denotes the length of the memory 
region. The vm_mm field points to the mm_struct memory descriptor of the process that owns 
the region. We shall describe the other fields of vm_area_struct later. 

Memory regions owned by a process never overlap, and the kernel tries to merge regions 
when a new one is allocated right next to an existing one. Two adjacent regions can be 
merged if their access rights match. 

As shown in Figure 7-1, when a new range of linear addresses is added to the process address 
space, the kernel checks whether an already existing memory region can be enlarged (case a). 
If not, a new memory region is created (case b). Similarly, if a range of linear addresses is 
removed from the process address space, the kernel resizes the affected memory regions  
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(case c). In some cases, the resizing forces a memory region to be split into two smaller ones 
(case d ).[1]  

[1] Removing a linear address interval may theoretically fail because no free memory is available for a new memory descriptor. 

Figure 7-1. Adding or removing a linear address interval 

 

7.3.1 Memory Region Data Structures 

All the regions owned by a process are linked together in a simple list. Regions appear in the 
list in ascending order by memory address; however, each two regions can be separated by an 
area of unused memory addresses. The vm_next field of each vm_area_struct element 
points to the next element in the list. The kernel finds the memory regions through the mmap 
field of the process memory descriptor, which points to the vm_next field of the first memory 
region descriptor in the list. 

The map_count field of the memory descriptor contains the number of regions owned by the 
process. A process may own up to MAX_MAP_COUNT different memory regions (this value is 
usually set to 65536). 

Figure 7-2 illustrates the relationships among the address space of a process, its memory 
descriptor, and the list of memory regions. 
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Figure 7-2. Descriptors related to the address space of a process 

 

A frequent operation performed by the kernel is to search the memory region that includes a 
specific linear address. Since the list is sorted, the search can terminate as soon as a memory 
region that ends after the specific linear address has been found. 

However, using the list is convenient only if the process has very few memory regions, let's 
say less than a few tens of them. Searching, inserting elements, and deleting elements in the 
list involve a number of operations whose times are linearly proportional to the list length. 

Although most Linux processes use very few memory regions, there are some large 
applications like object-oriented databases that one might consider "pathological" in that they 
have many hundreds or even thousands of regions. In such cases, the memory region list 
management becomes very inefficient, hence the performance of the memory-related system 
calls degrades to an intolerable point. 

When processes have a large number of memory regions, Linux stores their descriptors in 
data structures called AVL trees, which were invented in 1962 by Adelson-Velskii and Landis. 

In an AVL tree, each element (or node) usually has two children: a left child and a right child. 
The elements in the AVL tree are sorted: for each node N, all elements of the subtree rooted at 
the left child of N precede N, while, conversely, all elements of the subtree rooted at the right 
child of N follow N (see Figure 7-3 (a); the key of the node is written inside the node itself). 

Every node N of an AVL tree has a balancing factor, which shows how well balanced the 
branches under the node are. The balancing factor is the depth of the subtree rooted at N's left 
child minus the depth of the subtree rooted at N's right child. Every node of a properly 
balanced AVL tree must have a balancing factor equal to -1, 0, or +1 (see Figure 7-3 (a); the 
balancing factor of the node is written to the left of the node itself). 
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Figure 7-3. Example of AVL trees 

 

Searching an element in an AVL tree is very efficient, since it requires operations whose 
execution time is linearly proportional to the logarithm (of 2) of the tree size. In other words, 
doubling the number of memory regions adds just one more iteration to the operation. 

Inserting and deleting an element in an AVL tree is also efficient, since the algorithm can 
quickly traverse the tree in order to locate the position at which the element will be inserted or 
from which it will be removed. However, such operations could make the AVL tree 
unbalanced. For instance, let's suppose that an element having value 11 must be inserted in 
the AVL tree shown in Figure 7-3 (a). Its proper position is the left child of node having key 
12, but once it is inserted, the balancing factor of the node having key 13 becomes -2. In order 
to rebalance the AVL tree, the algorithm performs a "rotation" on the subtree rooted at the 
node having the key 13, thus producing the new AVL tree shown in Figure 7-3 (b). This looks 
complicated, but inserting or deleting an element in an AVL tree requires a small number of 
operations—a number linearly proportional to the logarithm of the tree size. 

Still, AVL trees have their drawbacks. The functions that handle them are a lot more complex 
than the functions that handle lists. When the number of elements is small, it is far more 
efficient to put them in a list instead of in an AVL tree. 

Therefore, in order to store the memory regions of a process, Linux generally makes use of 
the linked list referred by the mmap field of the memory descriptor; it starts using an AVL tree 
only when the number of memory regions of the process becomes higher than 
AVL_MIN_MAP_COUNT (usually 32 elements). Thus, the memory descriptor of a process 
includes another field named mmap_avl pointing to the AVL tree. This field has the value 
until the kernel decides it needs to create the tree. Once an AVL tree has been created to 
handle memory regions of a process, Linux keeps both the linked list and the AVL tree up-to-
date. Both data structures contain pointers to the same memory region descriptors. When 
inserting or removing a memory region descriptor, the kernel searches the previous and next 
elements through the AVL tree and uses them to quickly update the list without scanning it. 

The addresses of the left and right children of every AVL node are stored in the vm_avl_left 
and vm_avl_right fields, respectively, of the vm_area_struct descriptor. This descriptor 
also includes the vm_avl_height field, which stores the height of the subtree rooted at the 
memory region itself. The tree is sorted on the vm_end field value. 



Understanding the Linux Kernel 

190 

The avl_rebalance( ) function receives a path in a memory region's AVL tree as a 
parameter. It rebalances the tree, if necessary, by properly rotating a subtree branching off 
from a node of the path. The function is invoked by the avl_insert( ) and avl_remove( ) 
functions, which insert and remove a memory region descriptor in a tree, respectively. Linux 
also makes use of the avl_insert_neighbours( ) function to insert an element into the tree 
and return the addresses of the nearest nodes at the left and the right of the new element. 

7.3.2 Memory Region Access Rights 

Before moving on, we should clarify the relation between a page and a memory region. As 
mentioned in Chapter 2, we use the term "page" to refer both to a set of linear addresses and 
to the data contained in this group of addresses. In particular, we denote the linear address 
interval ranging between and 4095 as page 0, the linear address interval ranging between 4096 
and 8191 as page 1, and so forth. Each memory region thus consists of a set of pages having 
consecutive page numbers. 

We have already discussed in previous chapters two kinds of flags associated with a page: 

• A few flags such as Read/Write , Present, or User/Supervisor stored in each page 
table entry (see Section 2.4.1 in Chapter 2). 

• A set of flags stored in the flags field of each page descriptor (see Section 6.1 in 
Chapter 6). 

The first kind of flag is used by the Intel 80x86 hardware to check whether the requested kind 
of addressing can be performed; the second kind is used by Linux for many different purposes 
(see Table 6-1). 

We now introduce a third kind of flags: those associated with the pages of a memory region. 
They are stored in the vm_flags field of the vm_area_struct descriptor (see Table 7-2). 
Some flags offer the kernel information about all the pages of the memory region, such as 
what they contain and what rights the process has to access each page. Other flags describe 
the region itself, such as how it can grow. 

Table 7-2. The Memory Region Flags 
Flag Name Description 
VM_DENYWRITE The region maps a file that cannot be opened for writing. 
VM_EXEC Pages can be executed. 
VM_EXECUTABLE Pages contain executable code. 
VM_GROWSDOWN The region can expand toward lower addresses. 
VM_GROWSUP The region can expand toward higher addresses. 
VM_IO The region maps the I/O address space of a device. 
VM_LOCKED Pages are locked and cannot be swapped out. 
VM_MAYEXEC VM_EXEC flag may be set. 
VM_MAYREAD VM_READ flag may be set. 
VM_MAYSHARE VM_SHARE flag may be set. 
VM_MAYWRITE VM_WRITE flag may be set. 
VM_READ Pages can be read. 
VM_SHARED Pages can be shared by several processes. 
VM_SHM Pages are used for IPC's shared memory. 
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VM_WRITE Pages can be written. 

Page access rights included in a memory region descriptor may be combined arbitrarily: it is 
possible, for instance, to allow the pages of a region to be executed but not to be read. In order 
to implement this protection scheme efficiently, the read, write, and execute access rights 
associated with the pages of a memory region must be duplicated in all the corresponding 
page table entries, so that checks can be directly performed by the Paging Unit circuitry. In 
other words, the page access rights dictate what kinds of access should generate a "Page fault" 
exception. As we shall see shortly, Linux delegates the job of figuring out what caused the 
page fault to the page fault handler, which implements several page-handling strategies. 

The initial values of the page table flags (which must be the same for all pages in the memory 
region, as we have seen) are stored in the vm_ page_ prot field of the vm_area_struct 
descriptor. When adding a page, the kernel sets the flags in the corresponding page table entry 
according to the value of the vm_ page_ prot field. 

However, translating the memory region's access rights into the page protection bits is not 
straightforward, for the following reasons: 

• In some cases, a page access should generate a "Page fault" exception even when its 
access type is granted by the page access rights specified in the vm_flags field of the 
corresponding memory region. For instance, the kernel might decide to store two 
identical, writable private pages (whose VM_SHARE flags are cleared) belonging to two 
different processes into the same page frame; in this case, an exception should be 
generated when either one of the processes tries to modify the page (see Section 7.4.4 
later in this chapter). 

• Intel 80x86 processors's page tables have just two protection bits, namely the 
Read/Write and User/Supervisor flags. Moreover, the User/Supervisor flag of 
any page included in a memory region must always be set, since the page must always 
be accessible by User Mode processes. 

In order to overcome the hardware limitation of the Intel microprocessors, Linux adopts the 
following rules: 

• The read access right always implies the execute access right. 
• The write access right always implies the read access right. 

Moreover, in order to correctly defer the allocation of page frames through the Section 7.4.4 
technique (see later in this chapter), the page frame is write-protected whenever the 
corresponding page must not be shared by several processes. Therefore, the 16 possible 
combinations of the read, write, execute, and share access rights are scaled down to the 
following three: 

• If the page has both write and share access rights, the Read/Write bit is set. 
• If the page has the read or execute access right but does not have either the write or the 

share access right, the Read/Write bit is cleared. 
• If the page does not have any access rights, the Present bit is cleared, so that each 

access generates a "Page fault" exception. However, in order to distinguish this 
condition from the real page-not-present case, Linux also sets the Page size bit to 1.[2]  
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[2] You might consider this use of the Page size bit to be a dirty trick, since the bit was meant to indicate the real page size. But Linux can get 
away with the deception because the Intel chip checks the Page size bit in Page Directory entries, but not in Page Table entries. 

The downscaled protection bits corresponding to each combination of access rights are stored 
in the protection_map array. 

7.3.3 Memory Region Handling 

Having the basic understanding of data structures and state information that control memory 
handling, we can look at a group of low-level functions that operate on memory region 
descriptors. They should be considered as auxiliary functions that simplify the 
implementation of do_map( ) and ddo_unmap( ). Those two functions, which are described 
in Section 7.3.4 and Section 7.3.5 later in this chapter, respectively, enlarge and shrink the 
address space of a process. Working at a higher level than the functions we consider here, 
they do not receive a memory region descriptor as their parameter, but rather the initial 
address, the length, and the access rights of a linear address interval. 

7.3.3.1 Finding the closest region to a given address 

The find_vma( ) function acts on two parameters: the address mm of a process memory 
descriptor and a linear address addr. It locates the first memory region whose vm_end field is 
greater than addr and returns the address of its descriptor; if no such region exists, it returns a 
NULL pointer. Notice that the region selected by find_vma( ) does not necessarily include 
addr. 

Each memory descriptor includes a mmap_cache field that stores the descriptor address of the 
region that was last referenced by the process. This additional field is introduced to reduce the 
time spent in looking for the region that contains a given linear address: locality of address 
references in programs makes it highly likely that if the last linear address checked belonged 
to a given region, the next one to be checked belongs to the same region. 

The function thus starts by checking whether the region identified by mmap_cache includes 
addr. If so, it returns the region descriptor pointer: 

vma = mm->mmap_cache;  
if (vma && vma->vm_end > addr && vma->vm_start <= addr)  
    return vma; 

Otherwise, the memory regions of the process must be scanned. If the process does not make 
use of an AVL tree, the function simply scans the linked list: 

if (!mm->mmap_avl) {  
    vma = mm->mmap;  
    while (vma && vma->vm_end <= addr)  
        vma = vma->vm_next;  
    if (vma)  
        mm->mmap_cache = vma;  
    return vma;  
} 

Otherwise, the function looks up the memory region in the AVL tree: 
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tree = mm->mmap_avl;  
vma = NULL;  
for (;;) {  
    if (tree == NULL)  
        break;  
    if (tree->vm_end > addr) {  
        vma = tree;  
        if (tree->vm_start <= addr)  
            break;  
        tree = tree->vm_avl_left;  
    } else  
        tree = tree->vm_avl_right;  
}  
if (vma)  
    mm->mmap_cache = vma;  
return vma; 

The kernel also makes use of the find_vma_prev( ) function, which returns the descriptor 
addresses of the memory region that precedes the linear address given as parameter and of the 
memory region that follows it. 

7.3.3.2 Finding a region that overlaps a given address interval 

The find_vma_intersection( ) function finds the first memory region that overlaps a 
given linear address interval; the mm parameter points to the memory descriptor of the process, 
while the start_addr and end_addr linear addresses specify the interval: 

vma = find_vma(mm,start_addr);  
if (vma && end_addr <= vma->vm_start)  
    vma = NULL;  
return vma; 

The function returns a NULL pointer if no such region exists. To be exact, if find_vma( ) 
returns a valid address but the memory region found starts after the end of the linear address 
interval, vma is set to NULL. 

7.3.3.3 Finding a free address interval 

The get_unmapped_area( ) function searches the process address space to find an available 
linear address interval. The len parameter specifies the interval length, while the addr 
parameter may specify the address from which the search is started. If the search is successful, 
the function returns the initial address of the new interval; otherwise, it returns 0: 

if (len > PAGE_OFFSET)  
    return 0;  
if (!addr)  
    addr = PAGE_OFFSET / 3;  
addr = (addr + 0xfff) & 0xfffff000;  
for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {  
    if (addr + len > PAGE_OFFSET)  
        return 0;  
    if (!vmm || addr + len <= vmm->vm_start)  
        return addr;  
    addr = vmm->vm_end;  
} 
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The function starts by checking to make sure the interval length is within the limit imposed on 
User Mode linear addresses, usually 3 GB. If addr is NULL, the search's starting point is set 
to one-third of the User Mode linear address space. To be on the safe side, the function rounds 
up the value of addr to a multiple of 4 KB. Starting from addr, it then repeatedly invokes 
find_vma( ) with increasing values of addr to find the required free interval. During this 
search, the following cases may occur: 

• The requested interval is larger than the portion of linear address space yet to be 
scanned (addr + len > PAGE_OFFSET): since there are not enough linear addresses to 
satisfy the request, return 0. 

• The hole following the last scanned region is not large enough (vmm != NULL && vmm-
>vm_start < addr + len): consider the next region. 

• If neither one of the preceding conditions holds, a large enough hole has been found: 
return addr. 

7.3.3.4 Inserting a region in the memory descriptor list 

i nsert_vm_struct( ) inserts a vm_area_struct structure in the list of memory 
descriptors and, if necessary, in the AVL tree. It makes use of two parameters: mm, which 
specifies the address of a process memory descriptor, and vmp, which specifies the address of 
the vm_area_struct descriptor to be inserted: 

if (!mm->mmap_avl) {  
    pprev = &mm->mmap;  
    while (*pprev && (*pprev)->vm_start <= vmp->vm_start)  
        pprev = &(*pprev)->vm_next;  
} else {  
    struct vm_area_struct *prev, *next;  
    avl_insert_neighbours(vmp, &mm->mmap_avl, &prev, &next);  
    pprev = (prev ? &prev->vm_next : &mm->mmap);  
}  
vmp->vm_next = *pprev;  
*pprev = vmp; 

If the process makes use of the AVL tree, the avl_insert_neighbours( ) function is 
invoked to insert the memory region descriptor in the proper position; otherwise, 
insert_vm_struct( ) scans forward through the linked list using the pprev local variable 
until it finds the descriptor that should precede vmp. At the end of the search, pprev points to 
the vm_next field of the memory region descriptor that should precede vmp in the list, hence 
*pprev yields the address of the memory region descriptor that should follow vmp. The 
descriptor can thus be inserted into the list. 

mm->map_count++;  
if (mm->map_count >= AVL_MIN_MAP_COUNT && !mm->mmap_avl)  
    build_mmap_avl(mm); 

The map_count field of the process memory descriptor is then incremented by 1. Moreover, if 
the process was not using the AVL tree up to now but the number of memory regions 
becomes greater than or equal to AVL_MIN_MAP_COUNT , the build_mmap_avl( ) function is 
invoked: 
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void build_mmap_avl(struct mm_struct * mm)  
{  
    struct vm_area_struct * vma;  
    mm->mmap_avl = NULL;  
    for (vma = mm->mmap; vma; vma = vma->vm_next)  
        avl_insert(vma, &mm->mmap_avl);  
} 

From now on, the process will use an AVL tree. 

If the region contains a memory mapped file, the function performs additional tasks that are 
described in Chapter 16. 

No explicit function exists for removing a region from the memory descriptor list (see Section 
7.3.5). 

7.3.3.5 Merging contiguous regions 

The merge_segments( ) function attempts to merge together the memory regions included in 
a given linear address interval. As illustrated in Figure 7-1, this can be achieved only if the 
contiguous regions have the same access rights. The parameters of merge_segments( ) are a 
memory descriptor pointer mm and two linear addresses start_addr and end_addr, which 
delimit the interval. The function finds the last memory region that ends before start_addr 
and puts the address of its descriptor in the prev local variable. Then it iteratively executes 
the following actions: 

• Loads the mpnt local variable with prev->vm_next, that is, the descriptor address of 
the first memory region that starts after start_addr. If no such region exists, no 
merging is possible. 

• Cycles through the list as long as prev->vm_start is smaller than end_addr. Checks 
whether it is possible to merge the memory regions associated with prev and mpnt. 
This is possible if: 

o The memory regions are contiguous: prev->vm_end = mpnt->vm_start. 
o They have the same flags: prev->vm_flags = mpnt->vm_flags. 
o When they map files or are shared among processes, they satisfy additional 

requirements to be discussed in later chapters. 

If merging is possible, remove the memory region descriptor from the list and, if 
necessary, from the AVL tree. 

• Decrement the map_count field of the memory descriptor by 1, and resume the search 
by setting prev so that it points to the merged memory region descriptor. 

The function ends by setting the mmap_cache field of the memory descriptor to NULL, since 
the memory region cache could now refer to a memory region that no longer exists. 

7.3.4 Allocating a Linear Address Interval 

Now let's discuss how new linear address intervals are allocated. In order to do this, the 
do_mmap( ) function creates and initializes a new memory region for the current process. 
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However, after a successful allocation, the memory region could be merged with other 
memory regions defined for the process. 

The function makes use of the following parameters: 

file and off  

File descriptor pointer file and file offset off are used if the new memory region will 
map a file into memory. This topic will be discussed in Chapter 15. In this section, 
we'll assume that no memory mapping is required and that file and off are both 
NULL. 

addr  

This linear address specifies where the search for a free interval must start (see the 
previous description of the get_unmapped_area( ) function). 

len  

The length of the linear address interval. 

prot  

This parameter specifies the access rights of the pages included in the memory region. 
Possible flags are PROT_READ, PROT_WRITE , PROT_EXEC, and PROT_NONE. The first 
three flags mean the same things as the VM_READ, VM_WRITE, and VM_EXEC flags. 
PROT_NONE indicates that the process has none of those access rights. 

flag  

This parameter specifies the remaining memory region flags: 

MAP_GROWSDOWN , MAP_LOCKED , MAP_DENYWRITE , and MAP_EXECUTABLE  

Their meanings are identical to those of the flags listed in Table 7-2. 

MAP_SHARED and MAP_PRIVATE  

The former flag specifies that the pages in the memory region can be shared among 
several processes; the latter flag has the opposite effect. Both flags refer to the 
VM_SHARED flag in the vm_area_struct descriptor. 

MAP_ANONYMOUS  

No file is associated with the memory region (see Chapter 15). 

MAP_FIXED  

The initial linear address of the interval must be the one specified in the addr 
parameter. 



Understanding the Linux Kernel 

197 

MAP_NORESERVE  

The function doesn't have to do a preliminary check of the number of free page 
frames. 

The do_mmap( ) function starts by checking whether the parameter values are correct and 
whether the request can be satisfied. In particular, it checks for the following conditions that 
prevent it from satisfying the request: 

• The linear address interval includes addresses greater than PAGE_OFFSET. 
• The process has already mapped too many memory regions: the value of the 

map_count field of its mm memory descriptor exceeds the MAX_MAP_COUNT value. 
• The file parameter is equal to NULL and the flag parameter specifies that the pages 

of the new linear address interval must be shared. 
• The flag parameter specifies that the pages of the new linear address interval must be 

locked in RAM, and the number of pages locked by the process exceeds the threshold 
stored in the rlim[RLIMIT_MEMLOCK].rlim_cur field of the process descriptor. 

If any of the preceding conditions holds, do_mmap( ) terminates by returning a negative 
value. If the linear address interval has a zero length, the function returns without performing 
any action. 

The next step consists of obtaining a linear address interval; if the MAP_FIXED flag is set, a 
check is made on the proper alignment of the addr value; then the get_unmapped_area( ) 
function is invoked to get it: 

if (flags & MAP_FIXED) {  
    if (addr & 0xfffff000)  
        return -EINVAL;  
} else {  
    addr = get_unmapped_area(addr, len);  
    if (!addr)  
        return -ENOMEM;  
} 

Now a vm_area_struct descriptor must be allocated for the new region. This is done by 
invoking the kmem_cache_alloc( ) slab allocator function: 

vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);  
if (!vma)  
    return -ENOMEM; 

The memory region descriptor is then initialized. Notice how the value of the vm_flags field 
is determined both by the prot and flags parameters (joined together by means of the 
vm_flags( ) function) and by the def_flags field of the memory descriptor. The latter field 
allows the kernel to define a set of flags that should be set for every memory region in the 
process.[3]  

[3] Actually, this field is modified only by the mlockall( ) system call, which can be used to set the VM_LOCKED flag, thus locking all 
future pages of the calling process in RAM. 
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vma->vm_mm = current->mm;  
vma->vm_start = addr;  
vma->vm_end = addr + len;  
vma->vm_flags = vm_flags(prot,flags) | current->mm->def_flags;  
vma->vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;  
vma->vm_page_prot = protection_map[vma->vm_flags & 0x0f]; 

The do_mmap( ) function then checks whether any of these error conditions holds: 

• The process already includes in its address space a memory region that overlaps the 
linear address interval ranging from addr to addr+len; this check is performed by the 
do_munmap( ) function, which returns the value if the overlap exists. 

• The size in pages of the process address space exceeds the threshold stored in the 
rlim[RLIMIT_AS].rlim_cur field of the process descriptor. 

• The MAP_NORESERVE flag was not set in the flags parameter, the new memory region 
must contain private writable pages, and the number of free page frames is less than 
the size (in pages) of the linear address interval; this last check is performed by the 
vm_enough_memory( ) function. 

If any of the preceding conditions holds, do_mmap( ) releases the vm_area_struct 
descriptor obtained and terminates by returning the -ENOMEM value. 

Once all checks have been performed, do_mmap( ) increments the size of current's address 
space stored in the total_vm field of the memory descriptor. It then invokes 
insert_vm_struct( ), which inserts the new region in the list of regions owned by current 
(and, if necessary, in its AVL tree), and merge_segments( ), which checks whether regions 
can be merged. Since the new region may be destroyed by a merge, the values of vm_flags 
and vm_start, which may be needed later, are saved in the flags and addr local variables: 

current->mm->total_vm += len >> PAGE_SHIFT;  
flags = vma->vm_flags;  
addr = vma->vm_start;  
insert_vm_struct(current->mm, vma);  
merge_segments(current->mm, vma->vm_start, vma->vm_end); 

The final step is executed only if the MAP_LOCKED flag is set. First, the number of pages in the 
memory region is added to the locked_vm field of the memory descriptor. Then the make_ 
pages_ present( ) function is invoked to allocate all the pages of the memory region in 
succession and lock them in RAM. The core code of make_pages_ present( ) is: 

vma = find_vma(current->mm, addr);  
write = (vma->vm_flags & VM_WRITE) != 0;  
while (addr < addr + len) {  
    handle_mm_fault(current, vma, addr, write);  
    addr += PAGE_SIZE;  
} 

As we shall see in Section 7.4.2, handle_mm_fault( ) allocates one page and sets its page 
table entry according to the vm_flags field of the memory region descriptor. 

Finally, the do_mmap( ) function terminates by returning the linear address of the new 
memory region. 
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7.3.5 Releasing a Linear Address Interval 

The do_munmap( ) function deletes a linear address interval from the address space of the 
current process. The parameters are the starting address addr of the interval and its length 
len. The interval to be deleted does not usually correspond to a memory region: it may be 
included in one memory region, or it may span two or more regions. 

The function goes through two main phases. First, it scans the list of memory regions owned 
by the process and removes all regions that overlap the linear address interval. In the second 
phase, the function updates the process page tables and reinserts a downsized version of the 
memory regions that were removed during the first phase. 

7.3.5.1 First phase: scanning the memory regions 

A preliminary check is made on the parameter values: if the linear address interval includes 
addresses greater than PAGE_OFFSET, if addr is not a multiple of 4096, or if the linear address 
interval has a zero length, the function returns a negative error code. 

Next, the function locates the first memory region that overlaps the linear address interval to 
be deleted: 

mpnt = find_vma_prev(current->mm, addr, &prev);  
if (!mpnt || mpnt->vm_start >= addr + len)  
    return 0; 

If the linear address interval is located inside a memory region, its deletion will split the 
region into two smaller ones. In this case, do_munmap( ) checks whether current is allowed 
to obtain an additional memory region: 

if ((mpnt->vm_start < addr && mpnt->vm_end > addr + len) &&  
    current->mm->map_count > MAX_MAP_COUNT)  
    return -ENOMEM; 

The function then attempts to get a new vm_area_struct descriptor. There may be no need 
for it, but the function makes the request anyway so that it can terminate right away if the 
allocation fails. This cautious approach simplifies the code since it allows an easy error exit: 

extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);  
if (!extra)  
    return -ENOMEM; 

Now the function builds up a list including all descriptors of the memory regions that overlap 
the linear address interval. This list is created by setting the vm_next field of the memory 
region descriptor (temporarily) so it points to the previous item in the list; this field thus acts 
as a backward link. As each region is added to this backward list, a local variable named free 
points to the last inserted element. The regions inserted in the list are also removed from the 
list of memory regions owned by the process and, if necessary, from the AVL tree: 
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npp = (prev ? &prev->vm_next : &current->mm->mmap);  
free = NULL;  
for ( ; mpnt && mpnt->vm_start < addr + len; mpnt = *npp) {  
    *npp = mpnt->vm_next;  
    mpnt->vm_next = free;  
    free = mpnt;  
    if (current->mm->mmap_avl)  
        avl_remove(mpnt, &current->mm->mmap_avl);  
} 

7.3.5.2 Second phase: updating the page tables 

A while cycle is used to scan the list of memory regions built in the first phase, starting with 
the memory region descriptor that free points to. 

In each iteration, the mpnt local variable points to the descriptor of a memory region in the 
list. The map_count field of the current->mm memory descriptor is decremented (since the 
region has been removed in the first phase from the list of regions owned by the process) and 
a check is made (by means of two question-mark conditional expressions) to determine 
whether the mpnt region must be eliminated or simply downsized: 

current->mm->map_count--;  
st = addr < mpnt->vm_start ? mpnt->vm_start : addr;  
end = addr + len;  
end = end > mpnt->vm_end ? mpnt->vm_end : end;  
size = end - st; 

The st and end local variables delimit the linear address interval in the mpnt memory region 
that should be deleted; the size local variable specifies the length of the interval. 

Next, do_munmap( ) releases the page frames allocated for the pages included in the interval 
from st to end: 

zap_page_range(current->mm, st, size);  
flush_tlb_range(current->mm, st, end); 

The zap_page_range( ) function deallocates the page frames included in the interval from 
st to end and updates the corresponding page table entries. The function invokes in nested 
fashion the zap_pmd_range( ) and zap_pte_range( ) functions for scanning the page 
tables; the latter function uses the pte_clear macro to clear the page table entries and the 
free_pte( ) function to free the corresponding page frames. 

The flush_tlb_range( ) function is then invoked to invalidate the TLB entries 
corresponding to the interval from st to end. In the Intel 80x86 architecture that function 
simply invokes __flush_tlb( ), thus invalidating all TLB entries. 

The last action performed in each iteration of the do_munmap( ) loop is to check whether a 
downsized version of the mpnt memory region must be reinserted in the list of regions of 
current: 

extra = unmap_fixup(mpnt, st, size, extra); 

The unmap_fixup( ) function considers four possible cases: 
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• The memory region has been totally canceled. Return the address stored in the extra 
local variable, thus signaling that the extra memory region descriptor can be released 
by invoking kmem_cache_free( ). 

• Only the lower part of the memory region has been removed, that is: 

(mpnt->vm_start < st) && (mpnt->vm_end == end) 

In this case, update the vm_end field of mnpt, invoke insert_vm_struct( ) to insert 
the downsized region in the list of regions belonging to the process, and return the 
address stored in extra. 

• Only the upper part of the memory region has been removed, that is: 

(mpnt->vm_start == st) && (mpnt->vm_end > end) 

In this case, update the vm_start field of mnpt, invoke insert_vm_struct( ) to 
insert the downsized region in the list of regions belonging to the process, and return 
the address stored in extra. 

• The linear address interval is in the middle of the memory region, that is: 

(mpnt->vm_start < st) && (mpnt->vm_end > end) 

Update the vm_start and vm_end fields of mnpt and extra (the previously allocated 
extra memory region descriptor) so that they refer to the linear address intervals, 
respectively, from mpnt->vm_start to st and from end to mpnt->vm_end. Then 
invoke insert_vm_struct( ) twice to insert the two regions in the list of regions 
belonging to the process (and, if necessary, in the AVL tree) and return NULL, thus 
preserving the extra memory region descriptor previously allocated. 

This terminates the description of what must be done in a single iteration of the second-phase 
loop. 

After handling all the memory region descriptors in the list built during the first phase, 
do_munmap( ) checks if the additional extra memory descriptor has been used. If extra is 
NULL, the descriptor has been used; otherwise, do_munmap( ) invokes kmem_cache_free( ) 
to release it. Finally, if the process address space has been modified, do_munmap( ) sets the 
mmap_cache field of the memory descriptor to NULL and returns 0. 

7.4 Page Fault Exception Handler 

As stated previously, the Linux "Page fault" exception handler must distinguish exceptions 
caused by programming errors from those caused by a reference to a page that legitimately 
belongs to the process address space but simply hasn't been allocated yet. 

The memory region descriptors allow the exception handler to perform its job quite 
efficiently. The do_page_fault( ) function, which is the "Page fault" interrupt service 
routine, compares the linear address that caused the page fault against the memory regions of 
the current process; it can thus determine the proper way to handle the exception according 
to the scheme illustrated in Figure 7-4. 
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Figure 7-4. Overall scheme for the page fault handler 

 

In practice, things are a lot more complex since the page fault handler must recognize several 
particular subcases that fit awkwardly into the overall scheme, and it must distinguish several 
kinds of legal access. A detailed flow diagram of the handler is illustrated in Figure 7-5. 

Figure 7-5. The flow diagram of the page fault handler 
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The identifiers good_area, bad_area, and no_context are labels appearing in 
do_page_fault( ) that should help you to relate the blocks of the flow diagram to specific 
lines of code. 

The do_ page_fault( ) function accepts the following input parameters: 

• The regs address of a pt_regs structure containing the values of the microprocessor 
registers when the exception occurred. 

• A 3-bit error_code, which is pushed on the stack by the control unit when the 
exception occurred (see Section 4.2.5 in Chapter 4). The bits have the following 
meanings. 

o If bit is clear, the exception was caused by an access to a page that is not 
present (the Present flag in the Page Table entry is clear); otherwise, if bit is 
set, the exception was caused by an invalid access right. 

o If bit 1 is clear, the exception was caused by a read or execute access; if set, the 
exception was caused by a write access. 

o If bit 2 is clear, the exception occurred while the processor was in Kernel 
Mode; otherwise, it occurred in User Mode. 

The first operation of do_ page_fault( ) consists of reading the linear address that caused 
the page fault. When the exception occurs, the CPU control unit stores that value in the cr2 
control register: 

asm("movl %%cr2,%0":"=r" (address));  
tsk = current;  
mm = tsk->mm; 

The linear address is saved in the address local variable. The function also saves the pointers 
to the process descriptor and the memory descriptor of current in the tsk and mm local 
variables, respectively. 

As shown at the top of Figure 7-5, do_ page_fault( ) first checks whether the exception 
occurred while handling an interrupt or executing a kernel thread: 

if (in_interrupt(  ) || mm == &init_mm)  
    goto no_context; 

In both cases, do_ page_fault( ) does not try to compare the linear address with the 
memory regions of current, since it would not make any sense: interrupt handlers and kernel 
threads never use linear addresses below PAGE_OFFSET, and thus never rely on memory 
regions. 

Let us suppose that the page fault did not occur in an interrupt handler or in a kernel thread. 
Then the function must inspect the memory regions owned by the process to determine 
whether the faulty linear address is included in the process address space: 

vma = find_vma(mm, address);  
if (!vma)  
    goto bad_area;  
if (vma->vm_start <= address)  
    goto good_area; 
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Now the function has determined that address is not included in any memory region; 
however, it must perform an additional check, since the faulty address may have been caused 
by a push or pusha instruction on the User Mode stack of the process. 

Let us make a short digression to explain how stacks are mapped into memory regions. Each 
region that contains a stack expands toward lower addresses; its VM_GROWSDOWN flag is set, 
thus the value of its vm_end field remains fixed while the value of its vm_start field may be 
decreased. The region boundaries include, but do not delimit precisely, the current size of the 
User Mode stack. The reasons for the fuzz factor are: 

• The region size is a multiple of 4 KB (it must include complete pages) while the stack 
size is arbitrary. 

• Page frames assigned to a region are never released until the region is deleted; in 
particular, the value of the vm_start field of a region that includes a stack can only 
decrease; it can never increase. Even if the process executes a series of pop 
instructions, the region size remains unchanged. 

It should now be clear how a process that has filled up the last page frame allocated to its 
stack may cause a "Page fault" exception: the push refers to an address outside of the region 
(and to a nonexistent page frame). Notice that this kind of exception is not caused by a 
programming error; it must thus be handled separately by the page fault handler. 

We now return to the description of do_ page_fault( ), which checks for the case 
described previously: 

if (!(vma->vm_flags & VM_GROWSDOWN))  
    goto bad_area;  
if (error_code & 4      /* User Mode */  
    && address + 32 < regs->esp)  
    goto bad_area;  
if (expand_stack(vma, address))  
    goto bad_area;  
goto good_area; 

If the VM_GROWSDOWN flag of the region is set and the exception occurred in User Mode, the 
function checks whether address is smaller than the regs->esp stack pointer (it should be 
only a little smaller). Since a few stack-related assembly language instructions (like pusha) 
perform a decrement of the esp register only after the memory access, a 32-byte tolerance 
interval is granted to the process. If the address is high enough (within the tolerance granted), 
the code invokes the expand_stack( ) function to check whether the process is allowed to 
extend both its stack and its address space; if everything is OK, it sets the vm_start field of 
vma to address and returns 0; otherwise, it returns 1. 

Note that the preceding code skips the tolerance check whenever the VM_GROWSDOWN flag of 
the region is set and the exception did not occur in User Mode. Those conditions mean that 
the kernel is addressing the User Mode stack and that the code should always run 
expand_stack( ). 
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7.4.1 Handling a Faulty Address Outside the Address Space 

If address does not belong to the process address space, do_page_fault( ) proceeds to 
execute the statements at the label bad_area. If the error occurred in User Mode, it sends a 
SIGSEGV signal to current (see Section 9.2 in Chapter 9) and terminates: 

bad_area:  
if (error_code & 4) {   /* User Mode */  
    tsk->tss.cr2 = address;  
    tsk->tss.error_code = error_code;  
    tsk->tss.trap_no = 14;  
    force_sig(SIGSEGV, tsk);  
    return;  
} 

If, however, the exception occurred in Kernel Mode (bit 2 of error_code is clear), there are 
still two alternatives: 

• The exception occurred while using some linear address that has been passed to the 
kernel as parameter of a system call. 

• The exception is due to a real kernel bug. 

The function distinguishes these two alternatives as follows: 

no_context:  
if ((fixup = search_exception_table(regs->eip)) != 0) {  
    regs->eip = fixup;  
    return;  
} 

In the first case, it jumps to some "fixup code," which typically sends a SIGSEGV signal to 
current or terminates a system call handler with a proper error code (see Section 8.2.6 in 
Chapter 8). 

In the second case, the function prints a complete dump of the CPU registers and the Kernel 
Mode stack on the console and on a system message buffer, then kills the current process by 
invoking the do_exit( ) function (see Chapter 19). This is the so-called "Kernel oops" error, 
named after the message displayed. The dumped values can be used by kernel hackers to 
reconstruct the conditions that triggered the bug, thus find and correct it. 

7.4.2 Handling a Faulty Address Inside the Address Space 

If address belongs to the process address space, do_ page_fault( ) proceeds to the 
statement labeled good_area: 

 
 
 
 
 
 
 
 
 



Understanding the Linux Kernel 

206 

good_area:  
write = 0;  
if (error_code & 2) { /* write access */  
    if (!(vma->vm_flags & VM_WRITE))  
        goto bad_area;  
    write++;  
} else                /* read access */  
    if (error_code & 1 ||  
        !(vma->vm_flags & (VM_READ | VM_EXEC)))  
        goto bad_area; 

If the exception was caused by a write access, the function checks whether the memory region 
is writable. If not, it jumps to the bad_area code; if so, it sets the write local variable to 1. 

If the exception was caused by a read or execute access, the function checks whether the page 
is already present in RAM. In this case, the exception occurred because the process tried to 
access a privileged page frame (one whose User/Supervisor flag is clear) in User Mode, so 
the function jumps to the bad_area code.[4] If the page is not present, the function also checks 
whether the memory region is readable or executable. 

[4] However, this case should never happen, since the kernel does not assign privileged page frames to the processes. 

If the memory region access rights match the access type that caused the exception, the 
handle_mm_fault( ) function is invoked: 

if (!handle_mm_fault(tsk, vma, address, write)) {  
    tsk->tss.cr2 = address;  
    tsk->tss.error_code = error_code;  
    tsk->tss.trap_no = 14;  
    force_sig(SIGBUS, tsk);  
    if (!(error_code & 4)) /* Kernel Mode */  
        goto no_context;  
} 

The handle_mm_fault( ) function returns 1 if it succeeded in allocating a new page frame 
for the process; otherwise, it returns an appropriate error code so that do_page_fault( ) can 
send a SIGBUS signal to the process. It acts on four parameters: 

tsk  

A pointer to the descriptor of the process that was running on the CPU when the 
exception occurred 

vma  

A pointer to the descriptor of the memory region including the linear address that 
caused the exception 

address  

The linear address that caused the exception 
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write_access  

Set to 1 if tsk attempted to write in address and to if tsk attempted to read or 
execute it 

The function starts by checking whether the Page Middle Directory and the Page Table used 
to map address exist. Even if address belongs to the process address space, the 
corresponding page tables might not have been allocated, so the task of allocating them 
precedes everything else: 

pgd = pgd_offset(vma->vm_mm, address);  
pmd = pmd_alloc(pgd, address);  
if (!pmd)  
    return -1;  
pte = pte_alloc(pmd, address);  
if (!pte)  
    return -1; 

The pgd local variable contains the Page Global Directory entry that refers to address; 
pmd_alloc( ) is invoked to allocate, if needed, a new Page Middle Directory.[5] pte_alloc( 
) is then invoked to allocate, if needed, a new Page Table. If both operations are successful, 
the pte local variable points to the Page Table entry that refers to address. The 
handle_pte_fault( ) function is then invoked to inspect the Page Table entry 
corresponding to address: 

[5] On Intel 80x86 microprocessors, this kind of allocation never occurs since Page Middle Directories are included in the Page Global Directory. 

return handle_pte_fault(tsk, vma, address, write_access, pte); 

The handle_ pte_fault( ) function determines how to allocate a new page frame for the 
process: 

• If the accessed page is not present—that is, if it is not already stored in any page 
frame—the kernel allocates a new page frame and initializes it properly; this technique 
is called demand paging. 

• If the accessed page is present but is marked read only—that is, if it is already stored 
in a page frame—the kernel allocates a new page frame and initializes its contents by 
copying the old page frame data; this technique is called Copy On Write. 

7.4.3 Demand Paging 

The term demand paging denotes a dynamic memory allocation technique that consists of 
deferring page frame allocation until the last possible moment, that is, until the process 
attempts to address a page that is not present in RAM, thus causing a "Page fault" exception. 

The motivation behind demand paging is that processes do not address all the addresses 
included in their address space right from the start; in fact, some of these addresses may never 
be used by the process. Moreover, the program locality principle (see Section 2.4.6 in Chapter 
2) ensures that, at each stage of program execution, only a small subset of the process pages 
are really referenced, and therefore the page frames containing the temporarily useless pages 
can be used by other processes. Demand paging is thus preferable to global allocation 
(assigning all page frames to the process right from the start and leaving them in memory 
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until program termination) since it increases the average number of free page frames in the 
system and hence allows better use of the available free memory. From another viewpoint, it 
allows the system as a whole to get a better throughput with the same amount of RAM. 

The price to pay for all these good things is system overhead: each "Page fault" exception 
induced by demand paging must be handled by the kernel, thus wasting CPU cycles. 
Fortunately, the locality principle ensures that once a process starts working with a group of 
pages, it will stick with them without addressing other pages for quite a while: "Page fault" 
exceptions may thus be considered rare events. 

An addressed page may not be present in main memory for the following reasons: 

• The page was never accessed by the process. The kernel can recognize this case since 
the Page Table entry is filled with zeros, that is, the pte_none macro returns the value 
1. 

• The page was already accessed by the process, but its content is temporarily saved on 
disk. The kernel can recognize this case since the Page Table entry is not filled with 
zeros (however, the Present flag is cleared, since the page is not present in RAM). 

The handle_ pte_fault( ) function distinguishes the two cases by inspecting the Page 
Table entry that refers to address: 

entry = *pte;  
if (!pte_present(entry)) {  
    if (pte_none(entry))  
        return do_no_page(tsk, vma, address, write_access,  
                          pte);  
    return do_swap_page(tsk, vma, address, pte, entry,  
                        write_access);  
} 

We'll examine the case in which the page is saved on disk (do_swap_ page( ) function) in 
Section 16.6 in Chapter 16. 

In the other situation, when the page was never accessed, the do_no_page( ) function is 
invoked. There are two ways to load the missing page, depending on whether the page is 
mapped to a disk file. The function determines this by checking a field called nopage in the 
vma memory region descriptor, which points to the function that loads the missing page from 
disk into RAM if the page is mapped to a file. Therefore, the possibilities are: 

• The vma->vm_ops->nopage field is not NULL. In this case, the memory region maps 
a disk file and the field points to the function that loads the page. This case will be 
covered in Section 15.2 in Chapter 15 and in Section 18.3.5 in Chapter 18. 

• Either the vm_ops field or the vma->vm_ops->nopage field is NULL. In this case, the 
memory region does not map a file on disk, that is, it is an anonymous mapping. Thus, 
do_no_ page( ) invokes the do_anonymous_page( ) function to get a new page 
frame: 

if (!vma->vm_ops || !vma->vm_ops->nopage)  
    return do_anonymous_page(tsk, vma, page_table,  
                             write_access); 
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The do_anonymous_page( ) function handles write and read requests separately: 

if (write_access) {  
    page = __get_free_page(GFP_USER);  
    memset((void *)(page), 0, PAGE_SIZE)  
    entry = pte_mkwrite(pte_mkdirty(mk_pte(page,  
                vma->vm_page_prot)));  
    vma->vm_mm->rss++;  
    tsk->min_flt++;  
    set_pte(pte, entry);  
    return 1;  
} 

When handling a write access, the function invokes __get_free_page( ) and fills the new 
page frame with zeros by using the memset macro. The function then increments the min_flt 
field of tsk to keep track of the number of minor page faults (those that require only a new 
page frame) caused by the process and the rss field of the vma->vm_mm process memory 
descriptor to keep track of the number of page frames allocated to the process.[6] The Page 
Table entry is then set to the physical address of the page frame, which is marked as writable 
and dirty. 

[6] Linux records the number of minor page faults for each process. This information, together with several other statistics, may be used to tune the 
system. The value stored in the rss field of memory descriptors is also used by the kernel to select the region from which to steal page frames (see 
Section 16.7 in Chapter 16). 

Conversely, when handling a read access, the content of the page is irrelevant because the 
process is addressing it for the first time. It is safer to give to the process a page filled with 
zeros rather than an old page filled with information written by some other process. Linux 
goes one step further in the spirit of demand paging. There is no need to assign a new page 
frame filled with zeros to the process right away, since we might as well give it an existing 
page called zero page, thus deferring further page frame allocation. The zero page is allocated 
statically during kernel initialization in the empty_zero_page variable (an array of 1024 long 
integers filled with zeros); it is stored in the sixth page frame, starting from physical address 
0x00005000, and it can be referenced by means of the ZERO_PAGE macro. 

The Page Table entry is thus set with the physical address of the zero page: 

entry = pte_wrprotect(mk_pte(ZERO_PAGE, vma->vm_page_prot));  
set_pte(pte, entry);  
return 1; 

Since the page is marked as nonwritable, if the process attempts to write in it, the Copy On 
Write mechanism will be activated. Then, and only then, will the process get a page of its own 
to write in. The mechanism is described in the next section. 

7.4.4 Copy On Write 

First-generation Unix systems implemented process creation in a rather clumsy way: when a 
fork( ) system call was issued, the kernel duplicated the whole parent address space in the 
literal sense of the word and assigned the copy to the child process. This activity was quite 
time-consuming since it required: 
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• Allocating page frames for the page tables of the child process 
• Allocating page frames for the pages of the child process 
• Initializing the page tables of the child process 
• Copying the pages of the parent process into the corresponding pages of the child 

process 

This way of creating an address space involved many memory accesses, used up many CPU 
cycles, and entirely spoiled the cache contents. Last but not least, it was often pointless 
because many child processes start their execution by loading a new program, thus discarding 
entirely the inherited address space (see Chapter 19). 

Modern Unix kernels, including Linux, follow a more efficient approach called Copy On 
Write, or COW. The idea is quite simple: instead of duplicating page frames, they are shared 
between the parent and the child process. However, as long as they are shared, they cannot be 
modified. Whenever the parent or the child process attempts to write into a shared page frame, 
an exception occurs, and at this point the kernel duplicates the page into a new page frame 
that it marks as writable. The original page frame remains write-protected: when the other 
process tries to write into it, the kernel checks whether the writing process is the only owner 
of the page frame; in such a case, it makes the page frame writable for the process. 

The count field of the page descriptor is used to keep track of the number of processes that 
are sharing the corresponding page frame. Whenever a process releases a page frame or a 
Copy On Write is executed on it, its count field is decremented; the page frame is freed only 
when count becomes NULL. 

Let us now describe how Linux implements COW. When handle_ pte_fault( ) 
determines that the "Page fault" exception was caused by a request to write into a write-
protected page present in memory, it executes the following instructions: 

if (pte_present(pte)) {  
    entry = pte_mkyoung(entry);  
    set_ pte(pte, entry);  
    flush_tlb_page(vma, address);  
    if (write_access) {  
        if (!pte_write(entry))  
            return do_wp_page(tsk, vma, address, pte);  
        entry = pte_mkdirty(entry);  
        set_pte(pte, entry);  
        flush_tlb_page(vma, address);  
        }  
    return 1;  
} 

First, the pte_mkyoung( ) and set_pte( ) functions are invoked in order to set the 
Accessed bit in the Page Table entry of the page that caused the exception. This setting 
makes the page "younger" and reduces its chances of being swapped out to disk (see Chapter 
16). If the exception was caused by a write-protection violation, handle_pte_fault( ) 
returns the value yielded by the do_wp_page( ) function; otherwise, some error condition has 
been detected (for instance, a page inside the User Mode process address space with the 
User/Supervisor flag equal to 0), and the function returns the value 1. 
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The do_wp_page( ) function starts by loading the pte local variable with the Page Table 
entry referenced by the page_table parameter and by getting a new page frame: 

pte = *page_table;  
new_page = __get_free_ page(GFP_USER); 

Since the allocation of a page frame can block the process, the function performs the 
following consistency checks on the Page Table entry once the page frame has been obtained: 

• Whether the page has been swapped out while the process waited for a free page frame 
(pte and *page_table do not have the same value) 

• Whether the page is no longer in RAM (the page's Present flag is in its Page Table 
entry) 

• Whether the page can now be written (the page's Read/Write flag is 1 in its Page 
Table entry) 

If any of these conditions occurs, do_wp_page( ) releases the page frame obtained previously 
and returns the value 1. 

Now the function updates the number of minor page faults and stores in the page_map local 
variable a pointer to the page descriptor of the page that caused the exception: 

tsk->min_flt++;  
page_map = mem_map + MAP_NR(old_page); 

Next, the function must determine whether the page must really be duplicated. If only one 
process owns the page, Copy On Write does not apply and the process should be free to write 
the page. Thus, the page frame is marked as writable so that it will not cause further "Page 
fault" exceptions when writes are attempted, the previously allocated new page frame is 
released, and the function terminates with a return value of 1. This check is made by reading 
the value of the count field of the page descriptor:[7]  

[7] Actually, the check is slightly more complicated, since the count field is also incremented when the page is inserted into the swap cache (see 
Section 16.3 in Chapter 16). 

if (page_map->count == 1) {  
    set_pte(page_table, pte_mkdirty(pte_mkwrite(pte)));  
    flush_tlb_page(vma, address);  
    if (new_page)  
        free_page(new_page);  
    return 1;  
} 

Conversely, if the page frame is shared among two or more processes, the function copies the 
content of the old page frame (old_page) into the newly allocated one (new_page): 
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if (old_page == ZERO_PAGE)  
    memset((void *) new_page, 0, PAGE_SIZE);  
else  
    memcpy((void *) new_page, (void *) old_page, PAGE_SIZE);  
set_pte(page_table, pte_mkwrite(pte_mkdirty(  
        mk_pte(new_page, vma->vm_page_prot))));  
flush_tlb_page(vma, address);  
__free_page(page_map);  
return 1; 

If the old page is the zero page, the new frame is efficiently filled with zeros by using the 
memset macro. Otherwise, the page frame content is copied using the memcpy macro. Special 
handling for the zero page is not strictly required, but it improves the system performance 
since it preserves the microprocessor hardware cache by making fewer address references. 

The Page Table entry is then updated with the physical address of the new page frame, which 
is also marked as writable and dirty. Finally, the function invokes __free_page( ) to 
decrement the usage counter of the old page frame. 

7.5 Creating and Deleting a Process Address Space 

Out of the six typical cases mentioned in Section 7.1 in which a process gets new memory 
regions, the first one—issuing a fork( ) system call—requires the creation of a whole new 
address space for the child process. Conversely, when a process terminates, the kernel 
destroys its address space. In this section we'll discuss how these two activities are performed 
by Linux. 

7.5.1 Creating a Process Address Space 

We have mentioned in Section 3.3.1 in Chapter 3, that the kernel invokes the copy_mm( ) 
function while creating a new process. This function takes care of the process address space 
creation by setting up all page tables and memory descriptors of the new process. 

Each process usually has its own address space, but lightweight processes can be created by 
calling __clone( ) with the CLONE_VM flag set. These share the same address space; that is, 
they are allowed to address the same set of pages. 

Following the COW approach described earlier, traditional processes inherit the address space 
of their parent: pages stay shared as long as they are only read. When one of the processes 
attempts to write one of them, however, the page is duplicated; after some time, a forked 
process usually gets its own address space different from that of the parent process. 
Lightweight processes, on the other hand, use the address space of their parent process: Linux 
implements them simply by not duplicating address space. Lightweight processes can be 
created considerably faster than normal processes, and the sharing of pages can also be 
considered a benefit so long as the parent and children coordinate their accesses carefully. 

If the new process has been created by means of the _ _clone( ) system call and if the 
CLONE_VM flag of the flag parameter is set, copy_mm( ) gives the clone the address space of 
its parent: 
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if (clone_flags & CLONE_VM) {  
    mmget(current->mm);  
    copy_segments(nr, tsk, NULL);  
    SET_PAGE_DIR(tsk, current->mm->pgd);  
    return 0;  
} 

The copy_segments( ) function sets up the LDT for the clone process, because even a 
lightweight process must have a separate LDT entry in the GDT. The SET_PAGE_DIR macro 
sets the Page Global Directory of the new process and stores the Page Global Directory 
address in the mm->pgd field of the new memory descriptor. 

If the CLONE_VM flag is not set, copy_mm( ) must create a new address space (even though no 
memory is allocated within address space until the process requests an address). The function 
allocates a new memory descriptor and stores its address in the mm field of the new process 
descriptor; it then initializes several fields in the new process descriptor to and, as in the 
previous case, sets up the LDT descriptor by invoking copy_segments( ): 

mm = mm_alloc(  );  
if (!mm)  
    return -ENOMEM;  
tsk->mm = mm;  
copy_segments(nr, tsk, mm); 

Next, copy_mm( ) invokes new_page_tables( ) to allocate the Page Global Directory. The 
last entries of this table, which correspond to linear addresses greater than PAGE_OFFSET, are 
copied from the Page Global Directory of the swapper process, while the remaining entries 
are set to (in particular, the Present and Read/Write flags are cleared). Finally, 
new_page_tables( ) stores the Page Global Directory address in the mm->pgd field of the 
new memory descriptor. The dup_mmap( ) function is then invoked to duplicate both the 
memory regions and the Page Tables of the parent process: 

new_page_tables(tsk);  
dup_mmap(mm);  
return 0; 

The dup_mmap( ) function scans the list of regions owned by the parent process, starting 
from the one pointed by current->mm->mmap. It duplicates each vm_area_struct memory 
region descriptor encountered and inserts the copy in the list of regions owned by the child 
process. 

Right after inserting a new memory region descriptor, dup_mmap( ) invokes 
copy_page_range( ) to create, if necessary, the Page Tables needed to map the group of 
pages included in the memory region and to initialize the new Page Table entries. In 
particular, any page frame corresponding to a private, writable page (VM_SHARE flag off and 
VM_MAYWRITE flag on) is marked as read only for both the parent and the child, so that it will 
be handled with the Copy On Write mechanism. Finally, if the number of memory regions is 
greater than or equal to AVL_MIN_MAP_COUNT, the memory region AVL tree of the child 
process is created by invoking the build_mmap_avl( ) function. 
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7.5.2 Deleting a Process Address Space 

When a process terminates, the kernel invokes the exit_mm( ) function to release the address 
space owned by that process. Since the process is entering the TASK_ZOMBIE state, the 
function assigns the address space of the swapper process to it: 

flush_tlb_mm(mm);  
tsk->mm = &init_mm;  
tsk->swappable = 0;  
SET_PAGE_DIR(tsk, swapper_pg_dir);  
mm_release(  );  
mmput(mm); 

The function then invokes mm_release( ) and mmput( ) to release the process address 
space. The first function clears the fs and gs segmentation registers and restores the LDT of 
the process to default_ldt; the second function decrements the value of the mm->count field 
and releases the LDT, the memory region descriptors, and the page tables referred by mm. 
Finally, the mm memory descriptor itself is released. 

7.6 Managing the Heap 

Each Unix process owns a specific memory region called heap, which is used to satisfy the 
process's dynamic memory requests. The start_brk and brk fields of the memory descriptor 
delimit the starting and ending address, respectively, of that region. 

The following C library functions can be used by the process to request and release dynamic 
memory: 

malloc(size)  

Request size bytes of dynamic memory; if the allocation succeeds, it returns the 
linear address of the first memory location. 

calloc(n,size)  

Request an array consisting of n elements of size size; if the allocation succeeds, it 
initializes the array components to and returns the linear address of the first element. 

free(addr)  

Release the memory region allocated by malloc( ) or calloc( ) having initial 
address addr. 

brk(addr)  

Modify the size of the heap directly; the addr parameter specifies the new value of 
current->mm->brk, and the return value is the new ending address of the memory 
region (the process must check whether it coincides with the requested addr value). 
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The brk( ) function differs from the other functions listed because it is the only one 
implemented as a system call: all the other functions are implemented in the C library by 
making use of brk( ) and mmap( ). 

When a process in User Mode invokes the brk( ) system call, the kernel executes the 
sys_brk(addr) function (see Chapter 8). This function verifies first whether the addr 
parameter falls inside the memory region that contains the process code; if so, it returns 
immediately: 

mm = current->mm;  
if (addr < mm->end_code)  
    return mm->brk; 

Since the brk( ) system call acts on a memory region, it allocates and deallocates whole 
pages. Therefore, the function aligns the value of addr to a multiple of PAGE_SIZE, then 
compares the result with the value of the brk field of the memory descriptor: 

newbrk = (addr + 0xfff) & 0xfffff000;  
oldbrk = (mm->brk + 0xfff) & 0xfffff000;  
if (oldbrk == newbrk) {  
    mm->brk = addr;  
    return mm->brk;  
} 

If the process has asked to shrink the heap, sys_brk( ) invokes the do_munmap( ) function 
to do the job and then returns: 

if (addr <= mm->brk) {  
    if (!do_munmap(newbrk, oldbrk-newbrk))  
        mm->brk = addr;  
    return mm->brk;  
} 

If the process has asked to enlarge the heap, sys_brk( ) checks first whether the process is 
allowed to do so. If the process is trying to allocate memory outside its limit, the function 
simply returns the original value of mm->brk without allocating more memory: 

rlim = current->rlim[RLIMIT_DATA].rlim_cur;  
if (rlim < RLIM_INFINITY && addr - mm->end_code > rlim)  
    return mm->brk; 

The function then checks whether the enlarged heap would overlap some other memory 
region belonging to the process and, if so, returns without doing anything: 

if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))  
    return mm->brk; 

The last check before proceeding to the expansion consists of verifying whether the available 
free virtual memory is sufficient to support the enlarged heap (see Section 7.3.4): 

if (!vm_enough_memory((newbrk-oldbrk) >> PAGE_SHIFT))  
    return mm->brk; 
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If everything is OK, the do_mmap( ) function is invoked with the MAP_FIXED flag set: if it 
returns the oldbrk value, the allocation was successful and sys_brk( ) returns the value 
addr; otherwise, it returns the old mm->brk value: 

if (do_mmap(NULL, oldbrk, newbrk-oldbrk,  
           PROT_READ|PROT_WRITE|PROT_EXEC,  
           MAP_FIXED|MAP_PRIVATE, 0) == oldbrk)  
        mm->brk = addr;  
    return mm->brk; 

7.7 Anticipating Linux 2.4 

Beside minor optimizations and adjustments, the process address space is handled in the same 
way by Linux 2.4. 
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Chapter 8. System Calls 
Operating systems offer processes running in User Mode a set of interfaces to interact with 
hardware devices such as the CPU, disks, printers, and so on. Putting an extra layer between 
the application and the hardware has several advantages. First, it makes programming easier, 
freeing users from studying low-level programming characteristics of hardware devices. 
Second, it greatly increases system security, since the kernel can check the correctness of the 
request at the interface level before attempting to satisfy it. Last but not least, these interfaces 
make programs more portable since they can be compiled and executed correctly on any 
kernel that offers the same set of interfaces. 

Unix systems implement most interfaces between User Mode processes and hardware devices 
by means of system calls issued to the kernel. This chapter examines in detail how system 
calls are implemented by the Linux kernel. 

8.1 POSIX APIs and System Calls 

Let us start by stressing the difference between an application programmer interface (API) 
and a system call. The former is a function definition that specifies how to obtain a given 
service, while the latter is an explicit request to the kernel made via a software interrupt. 

Unix systems include several libraries of functions that provide APIs to programmers. Some 
of the APIs defined by the libc standard C library refer to wrapper routines, that is, routines 
whose only purpose is to issue a system call. Usually, each system call corresponds to a 
wrapper routine; the wrapper routine defines the API that application programs should refer 
to. 

The converse is not true, by the way—an API does not necessarily correspond to a specific 
system call. First of all, the API could offer its services directly in User Mode. (For something 
abstract like math functions, there may be no reason to make system calls.) Second, a single 
API function could make several system calls. Moreover, several API functions could make 
the same system call but wrap extra functionality around it. For instance, in Linux the 
malloc( ), calloc( ), and free( ) POSIX APIs are implemented in the libc library: the 
code in that library keeps track of the allocation and deallocation requests and uses  
the brk( ) system call in order to enlarge or shrink the process heap (see Section 7.6 in 
Chapter 7). 

The POSIX standard refers to APIs and not to system calls. A system can be certified as 
POSIX-compliant if it offers the proper set of APIs to the application programs, no matter 
how the corresponding functions are implemented. As a matter of fact, several non-Unix 
systems have been certified as POSIX-compliant since they offer all traditional Unix services 
in User Mode libraries. 

From the programmer's point of view, the distinction between an API and a system call is 
irrelevant: the only things that matter are the function name, the parameter types, and the 
meaning of the return code. From the kernel designer's point of view, however, the distinction 
does matter since system calls belong to the kernel, while User Mode libraries don't. 
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Most wrapper routines return an integer value, whose meaning depends on the corresponding 
system call. A return value of -1 denotes in most cases, but not always, that the kernel was 
unable to satisfy the process request. A failure in the system call handler may be caused by 
invalid parameters, a lack of available resources, hardware problems, and so on. The specific 
error code is contained in the errno variable, which is defined in the libc library. 

Each error code is associated with a macro, which yields a corresponding positive integer 
value. The POSIX standard specifies the macro names of several error codes. In Linux on 
Intel 80x86 systems, those macros are defined in a header file called  
include/asm-i386/errno.h. To allow portability of C programs among Unix systems,  
the include/asm-i386/errno.h header file is included, in turn, in the standard 
/usr/include/errno.h C library header file. Other systems have their own specialized 
subdirectories of header files. 

8.2 System Call Handler and Service Routines 

When a User Mode process invokes a system call, the CPU switches to Kernel Mode and 
starts the execution of a kernel function. In Linux the system calls must be invoked by 
executing the int $0x80 Assembly instruction, which raises the programmed exception 
having vector 128 (see Section 4.4.1 and Section 4.2.5 in Chapter 4). 

Since the kernel implements many different system calls, the process must pass a parameter 
called the system call number to identify the required system call; the eax register is used for 
that purpose. As we shall see in Section 8.2.3 later in this chapter, additional parameters are 
usually passed when invoking a system call. 

All system calls return an integer value. The conventions for these return values are different 
from those for wrapper routines. In the kernel, positive or null values denote a successful 
termination of the system call, while negative values denote an error condition. In the latter 
case, the value is the negation of the error code that must be returned to the application 
program. The errno variable is not set or used by the kernel. 

The system call handler, which has a structure similar to that of the other exception handlers, 
performs the following operations: 

• Saves the contents of most registers in the Kernel Mode stack (this operation is 
common to all system calls and is coded in assembly language). 

• Handles the system call by invoking a corresponding C function called the system call 
service routine. 

• Exits from the handler by means of the ret_from_sys_call( ) function (this 
function is coded in assembly language). 

The name of the service routine associated with the xyz( ) system call is usually sys_xyz( 
); there are, however, a few exceptions to this rule. 

Figure 8-1 illustrates the relationships among the application program that invokes a system 
call, the corresponding wrapper routine, the system call handler, and the system call service 
routine. The arrows denote the execution flow between the functions. 
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Figure 8-1. Invoking a system call 

 

In order to associate each system call number with its corresponding service routine, the 
kernel makes use of a system call dispatch table ; this table is stored in the sys_call_table 
array and has NR_syscalls entries (usually 256): the nth entry contains the service routine 
address of the system call having number n. 

The NR_syscalls macro is just a static limit on the maximum number of implementable 
system calls: it does not indicate the number of system calls actually implemented. Indeed, 
any entry of the dispatch table may contain the address of the sys_ni_syscall( ) function, 
which is the service routine of the "nonimplemented" system calls: it just returns the error 
code -ENOSYS. 

8.2.1 Initializing System Calls 

The trap_init( ) function, invoked during kernel initialization, sets up the IDT entry 
corresponding to vector 128 as follows: 

set_system_gate(0x80, &system_call); 

The call loads the following values into the gate descriptor fields (see Section 4.4.1 in  
Chapter 4): 

Segment Selector  

The __KERNEL_CS Segment Selector of the kernel code segment. 

Offset  

Pointer to the system_call( ) exception handler. 

Type  

Set to 15. Indicates that the exception is a Trap and that the corresponding handler 
does not disable maskable interrupts. 
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DPL (Descriptor Privilege Level)  

Set to 3; this allows processes in User Mode to invoke the exception handler (see 
Section 4.2.5 in Chapter 4). 

8.2.2 The system_call( ) Function 

The system_call( ) function implements the system call handler. It starts by saving the 
system call number and all the CPU registers that may be used by the exception handler on 
the stack, except for eflags, cs, eip, ss, and esp, which have already been saved 
automatically by the control unit (see the section Section 4.2.5 in Chapter 4). The SAVE_ALL 
macro, which was already discussed in Section 4.6.3 in Chapter 4, also loads the Segment 
Selector of the kernel data segment in ds and es: 

system_call:  
  pushl %eax  
  SAVE_ALL  
  movl %esp, %ebx  
  andl $0xffffe000, %ebx 

The function also stores in ebx the address of the current process descriptor; this is done by 
taking the value of the kernel stack pointer and rounding it up to a multiple of 8 KB (see 
Section 3.1.2 in Chapter 3). 

A validity check is then performed on the system call number passed by the User Mode 
process. If it is greater than or equal to NR_syscalls, the system call handler terminates: 

cmpl $(NR_syscalls), %eax  
  jb nobadsys  
  movl $(-ENOSYS), 24(%esp)  
  jmp ret_from_sys_call  
nobadsys: 

If the system call number is not valid, the function stores the -ENOSYS value in the stack 
location where the eax register has been saved (at offset 24 from the current stack top). It then 
jumps to ret_from_sys_call( ). In this way, when the process resumes its execution in 
User Mode, it will find a negative return code in eax. 

Next, the system_call( ) function checks whether the PF_TRACESYS flag included in  
the flags field of current is equal to 1, that is, whether the system call invocations of  
the executed program are being traced by some debugger. If this is the case, system_call( ) 
invokes the syscall_trace( ) function twice, once right before and once right after  
the execution of the system call service routine. This function stops current and thus allows 
the debugging process to collect information about it. 

Finally, the specific service routine associated with the system call number contained in eax is 
invoked: 

call *sys_call_table(0, %eax, 4) 

Since each entry in the dispatch table is 4 bytes long, the kernel finds the address of  
the service routine to be invoked by first multiplying the system call number by 4, adding  
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the initial address of the sys_call_table dispatch table, and extracting a pointer to  
the service routine from that slot in the table. 

When the service routine terminates, system_call( ) gets its return code from eax and 
stores it in the stack location where the User Mode value of the eax register has been saved. It 
then jumps to ret_from_sys_call( ), which terminates the execution of the system call 
handler (see Section 4.7.2 in Chapter 4): 

movl %eax, 24(%esp)  
jmp ret_from_sys_call 

When the process resumes its execution in User Mode, it will find in eax the return code of 
the system call. 

8.2.3 Parameter Passing 

Like ordinary functions, system calls often require some input/output parameters, which may 
consist of actual values (i.e., numbers) or addresses of functions and variables in the address 
space of the User Mode process. Since the system_call( ) function is the unique entry point 
for all system calls in Linux, each of them has at least one parameter: the system call number 
passed in the eax register. For instance, if an application program invokes the fork( ) 
wrapper routine, the eax register is set to 5 before executing the int $0x80 Assembly 
instruction. Because the register is set by the wrapper routines included in the libc library, 
programmers do not usually care about the system call number. 

The fork( ) system call does not require other parameters. However, many system calls do 
require additional parameters, which must be explicitly passed by the application program. 
For instance, the mmap( ) system call may require up to six parameters (besides the system 
call number). 

The parameters of ordinary functions are passed by writing their values in the active program 
stack (either the User Mode stack or the Kernel Mode stack). But system call parameters are 
usually passed to the system call handler in the CPU registers, then copied onto the Kernel 
Mode stack, since system call service routines are ordinary C functions. 

Why doesn't the kernel copy parameters directly from the User Mode stack to the Kernel 
Mode stack? First of all, working with two stacks at the same time is complex; moreover, the 
use of registers makes the structure of the system call handler similar to that of other 
exception handlers. 

However, in order to pass parameters in registers, two conditions must be satisfied: 

• The length of each parameter cannot exceed the length of a register, that is 32 bits.[1]  

[1] We refer as usual to the 32-bit architecture of the Intel 80x86 processors. The discussion in this section does not apply to Compaq's Alpha 64-bit 
processors. 

• The number of parameters must not exceed six (including the system call number 
passed in eax), since the Intel Pentium has a very limited number of registers. 
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The first condition is always true since, according to the POSIX standard, large parameters 
that cannot be stored in a 32-bit register must be passed by specifying their addresses. A 
typical example is the settimeofday( ) system call, which must read two 64-bit structures. 

However, system calls that have more than six parameters exist: in such cases, a single 
register is used to point to a memory area in the process address space that contains the 
parameter values. Of course, programmers do not have to care about this workaround. As with 
any C call, parameters are automatically saved on the stack when the wrapper routine is 
invoked. This routine will find the appropriate way to pass the parameters to the kernel. 

The six registers used to store system call parameters are, in increasing order: eax (for the 
system call number), ebx , ecx, edx, esi, and edi. As seen before, system_call( ) saves 
the values of these registers on the Kernel Mode stack by using the SAVE_ALL macro. 
Therefore, when the system call service routine goes to the stack, it finds the return address to 
system_call( ), followed by the parameter stored in ebx (that is, the first parameter of the 
system call), the parameter stored in ecx, and so on (see the Section 4.6.3 in Chapter 4). This 
stack configuration is exactly the same as in an ordinary function call, and therefore the 
service routine can easily refer to its parameters by using the usual C-language constructs. 

Let's look at an example. The sys_write( ) service routine, which handles the write( ) 
system call, is declared as: 

int sys_write (unsigned int fd, const char * buf,  
               unsigned int count) 

The C compiler produces an assembly language function that expects to find the fd, buf, and 
count parameters on top of the stack, right below the return address, in the locations used to 
save the contents of the ebx, ecx, and edx registers, respectively. 

In a few cases, even if the system call doesn't make use of any parameters, the corresponding 
service routine needs to know the contents of the CPU registers right before the system call 
was issued. As an example, the do_fork( ) function that implements fork( ) needs to know 
the value of the registers in order to duplicate them in the child process TSS. In these cases, a 
single parameter of type pt_regs allows the service routine to access the values saved in the 
Kernel Mode stack by the SAVE_ALL macro (see Section 4.6.4 in Chapter 4): 

int sys_fork (struct pt_regs regs) 

The return value of a service routine must be written into the eax register. This is 
automatically done by the C compiler when a return n; instruction is executed. 

8.2.4 Verifying the Parameters 

All system call parameters must be carefully checked before the kernel attempts to satisfy a 
user request. The type of check depends both on the system call and on the specific parameter. 
Let us go back to the write( ) system call introduced before: the fd parameter should be a 
file descriptor that describes a specific file, so sys_write( ) must check whether fd really is 
a file descriptor of a file previously opened and whether the process is allowed to write into it 
(see Section 1.5.6 in Chapter 1). If any of these conditions is not true, the handler must return 
a negative value, in this case the error code -EBADF. 
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One type of checking, however, is common to all system calls: whenever a parameter 
specifies an address, the kernel must check whether it is inside the process address space. 
There are two possible ways to perform this check: 

• Verify that the linear address belongs to the process address space and, if so, that the 
memory region including it has the proper access rights. 

• Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it doesn't fall 
within the range of interval addresses reserved to the kernel). 

Previous Linux kernels performed the first type of checking. But it is quite time-consuming 
since it must be executed for each address parameter included in a system call; furthermore, it 
is usually pointless because faulty programs are not very common. 

Therefore, the Linux 2.2 kernel performs the second type of checking. It is much more 
efficient because it does not require any scan of the process memory region descriptors. 
Obviously, it is a very coarse check: verifying that the linear address is smaller than 
PAGE_OFFSET is a necessary but not sufficient condition for its validity. But there's no risk in 
confining the kernel to this limited kind of check because other errors will be caught later. 

The approach followed in Linux 2.2 is thus to defer the real checking until the last possible 
moment, that is, until the Paging Unit translates the linear address into a physical one. We 
shall discuss in Section 8.2.6 later in this chapter how the "Page fault" exception handler 
succeeds in detecting those bad addresses issued in Kernel Mode that have been passed as 
parameters by User Mode processes. 

One might wonder at this point why the coarse check is performed at all. This type of 
checking is actually crucial to preserve both process address spaces and the kernel address 
space from illegal accesses. We have seen in Chapter 2, that the RAM is mapped starting 
from PAGE_OFFSET. This means that kernel routines are able to address all pages present in 
memory. Thus, if the coarse check were not performed, a User Mode process might pass an 
address belonging to the kernel address space as a parameter and then be able to read or write 
any page present in memory without causing a "Page fault" exception! 

The check on addresses passed to system calls is performed by the verify_area( ) function, 
which acts on two[2] parameters denoted as addr and size. The function checks the address 
interval delimited by addr and addr + size - 1, and is essentially equivalent to the 
following C function: 

[2] A third parameter named type specifies whether the system call should read or write the referred memory locations. It is used only in systems 
having buggy versions of the Intel 80486 microprocessor, in which writing in Kernel Mode to a write-protected page does not generate a page fault. 
We don't discuss this case further. 

int verify_area(const void * addr, unsigned long size)  
{  
    unsigned long a = (unsigned long) addr;  
    if (a + size < a || a + size > current->addr_limit.seg)  
        return -EFAULT;  
    return 0;  
} 

The function verifies first whether addr + size, the highest address to be checked, is larger 
than 232-1; since unsigned long integers and pointers are represented by the GNU C compiler 
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(gcc) as 32-bit numbers, this is equivalent to checking for an overflow condition. The 
function also checks whether addr exceeds the value stored in the addr_limit.seg field of 
current. This field usually has the value PAGE_OFFSET-1 for normal processes and the value 
0xffffffff for kernel threads. The value of the addr_limit.seg field can be dynamically 
changed by the get_fs and set_fs macros; this allows the kernel to invoke system call 
service routines directly and pass addresses in the kernel data segment to them. 

The access_ok macro performs the same check as verify_area( ). It yields 1 if the 
specified address interval is valid and otherwise. 

8.2.5 Accessing the Process Address Space 

System call service routines quite often need to read or write data contained in the process's 
address space. Linux includes a set of macros that make this access easier. We'll describe two 
of them, called get_user( ) and put_user( ). The first can be used to read 1, 2, or 4 
consecutive bytes from an address, while the second can be used to write data of those sizes 
into an address. 

Each function accepts two arguments, a value x to transfer and a variable ptr. The second 
variable also determines how many bytes to transfer. Thus, in get_user(x,ptr), the size of 
the variable pointed to by ptr causes the function to expand into a __get_user_1( ), 
__get_user_2( ), or __get_user_4( ) assembly language function. Let us consider one of 
them, for instance, __get_user_2( ): 

__get_user_2:  
    addl $1, %eax  
    jc bad_get_user  
    movl %esp, %edx  
    andl $0xffffe000, %edx  
    cmpl 12(%edx), %eax  
    jae bad_get_user  
2:  movzwl -1(%eax), %edx  
    xorl %eax, %eax  
    ret  
bad_get_user:  
    xorl %edx, %edx  
    movl $-EFAULT, %eax  
    ret 

The eax register contains the address ptr of the first byte to be read. The first six instructions 
essentially perform the same checks as the verify_area( ) functions: they ensure that the 2 
bytes to be read have addresses less than 4 GB as well as less than the addr_limit.seg field 
of the current process. (This field is stored at offset 12 in the process descriptor, which 
appears in the first operand of the cmpl instruction.) 

If the addresses are valid, the function executes the movzwl instruction to store the data to be 
read in the 2 least significant bytes of edx register while setting the high-order bytes of edx to 
0; then it sets a return code in eax and terminates. If the addresses are not valid, the function 
clears edx, sets the -EFAULT value into eax, and terminates. 

The put_user(x,ptr) macro is similar to the one discussed before, except that it writes the 
value x into the process address space starting from address ptr. Depending on the size of x 
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(1, 2, or 4 bytes), it invokes the __put_user_1( ), __put_user_2( ),or __put_user_4( ) 
function. Let's consider __put_user_4( ) for our example this time. The function performs 
the usual checks on the ptr address stored in the eax register, then executes a movl 
instruction to write the 4 bytes stored into the edx register. The function returns the value in 
the eax register if it succeeds, and -EFAULT otherwise. 

Several other functions and macros are available to access the process address space in Kernel 
Mode; they are listed in Table 8-1. Notice that many of them also have a variant prefixed by 
two underscores ( __). The ones without initial underscores take extra time to check the 
validity of the linear address interval requested, while the ones with the underscores bypass 
that check. Whenever the kernel must repeatedly access the same memory area in the process 
address space, it is more efficient to check the address once at the start, then access the 
process area without making any further checks. 

Table 8-1. Functions and Macros that Access the Process Address Space 
Function Action 
get_user 

__get_user 
Reads an integer value from user space (1, 2, or 4 bytes) 

put_user 

__put_user 
Writes an integer value to user space (1, 2, or 4 bytes) 

get_user_ret 

__get_user_ret 
Like get_user, but returns a specified value on error 

put_user_ret 

__put_user_ret 
Like put_user, but returns a specified value on error 

copy_from_user 

__copy_from_user 
Copies a block of arbitrary size from user space 

copy_to_user 

__copy_to_user 
Copies a block of arbitrary size to user space 

copy_from_user_ret Like copy_from_user, but returns a specified value on error 
copy_to_user_ret Like copy_to_user, but returns a specified value on error 
strncpy_from_user 

__strncpy_from_user 
Copies a null-terminated string from user space 

strlen_user 

strnlen_user 
Returns the length of a null-terminated string in user space 

clear_user 

__clear_user 
Fills a memory area in user space with zeros 

8.2.6 Dynamic Address Checking: The Fixup Code 

As seen previously, the verify_area( ) function and the access_ok macro make only a 
coarse check on the validity of linear addresses passed as parameters of a system call. Since 
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they do not ensure that these addresses are included in the process address space, a process 
could cause a "Page fault" exception by passing a wrong address. 

Before describing how the kernel detects this type of error, let us specify the three cases in 
which "Page fault" exceptions may occur in Kernel Mode: 

• The kernel attempts to address a page belonging to the process address space, but 
either the corresponding page frame does not exist, or the kernel is trying to write a 
read-only page. 

• Some kernel function includes a programming bug that causes the exception to be 
raised when that program is executed; alternatively, the exception might be caused by 
a transient hardware error. 

• The case introduced in this chapter: a system call service routine attempts to read or 
write into a memory area whose address has been passed as a system call parameter, 
but that address does not belong to the process address space. 

These cases must be distinguished by the page fault handler, since the actions to be taken are 
quite different. In the first case, the handler must allocate and initialize a new page frame (see 
Section 7.4.3 and Section 7.4.4 in Chapter 7); in the second case, the handler must perform a 
kernel oops (see Section 7.4.1 in Chapter 7); in the third case, the handler must terminate the 
system call by returning a proper error code. 

The page fault handler can easily recognize the first case by determining whether the faulty 
linear address is included in one of the memory regions owned by the process. Let us now 
explain how the handler distinguishes the remaining two cases. 

8.2.6.1 The exception tables 

The key to determining the source of a page fault lies in the narrow range of calls that the 
kernel uses to access the process address space. Only the small group of functions and macros 
described in the previous section are ever used to access that address space; thus, if the 
exception is caused by an invalid parameter, the instruction that caused it must be included in 
one of the functions or be generated by expanding one of the macros. If you add up the code 
in all these functions and macros, they consist of a fairly small set of addresses. 

Therefore, it would not take much effort to put the address of any kernel instruction that 
accesses the process address space into a structure called the exception table. If we succeed in 
doing this, the rest is easy. When a "Page fault" exception occurs in Kernel Mode, the do_ 
page_fault( ) handler examines the exception table: if it includes the address of the 
instruction that triggered the exception, the error is caused by a bad system call parameter; 
otherwise, it is caused by some more serious bug. 

Linux defines several exception tables. The main exception table is automatically generated 
by the C compiler when building the kernel program image. It is stored in the _ _ex_table 
section of the kernel code segment, and its starting and ending addresses are identified by two 
symbols produced by the C compiler: __start__ _ex_table and __stop__ _ex_table. 

Moreover, each dynamically loaded module of the kernel (see Appendix B, Modules) includes 
its own local exception table. This table is automatically generated by the C compiler when 
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building the module image, and it is loaded in memory when the module is inserted in the 
running kernel. 

Each entry of an exception table is an exception_table_entry structure having two fields: 

insn  

The linear address of an instruction that accesses the process address space 

fixup  

The address of the assembly language code to be invoked when a "Page fault" 
exception triggered by the instruction located at insn occurs 

The fixup code consists of a few assembly language instructions that solve the problem 
triggered by the exception. As we shall see later in this section, the fix usually consists of 
inserting a sequence of instructions that forces the service routine to return an error code to 
the User Mode process. Such instructions are usually defined in the same macro or function 
that accesses the process address space; sometimes, they are placed by the C compiler in a 
separate section of the kernel code segment called .fixup. 

The search_exception_table( ) function is used to search for a specified address in all 
exception tables: if the address is included in a table, the function returns the corresponding 
fixup address; otherwise, it returns 0. Thus the page fault handler do_page_fault( ) 
executes the following statements: 

if ((fixup = search_exception_table(regs->eip)) != 0) {  
    regs->eip = fixup;  
    return;  
} 

The regs->eip field contains the value of the eip register saved on the Kernel Mode stack 
when the exception occurred. If the value in the register (the instruction pointer) is in an 
exception table, do_page_fault( ) replaces the saved value with the address returned by 
search_exception_table( ). Then the page fault handler terminates and the interrupted 
program resumes with execution of the fixup code. 

8.2.6.2 Generating the exception tables and the fixup code 

The GNU Assembler .section directive allows programmers to specify which section of the 
executable file contains the code that follows. As we shall see in Chapter 19, an executable 
file includes a code segment, which in turn may be subdivided into sections. Thus, the 
following assembly language instructions add an entry into an exception table; the "a" 
attribute specifies that the section must be loaded in memory together with the rest of the 
kernel image: 

.section __ex_table, "a"  
    .long faulty_instruction_address, fixup_code_address  
.previous 
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The .previous directive forces the assembler to insert the code that follows into the section 
that was active when the last .section directive was encountered. 

Let us consider again the __get_user_1( ), __get_user_2( ), and __get_user_4( ) 
functions mentioned before: 

_ _get_user_1:  
    [...]  
1:  movzbl (%eax), %edx  
    [...]  
_ _get_user_2:  
    [...]  
2:  movzwl -1(%eax), %edx  
    [...]  
__get_user_4:  
     [...]  
3:  movl -3(%eax), %edx  
    [...]  
bad_get_user:  
    xorl %edx, %edx  
    movl $-EFAULT, %eax  
    ret  
.section _ _ex_table,"a"  
    .long 1b, bad_get_user  
    .long 2b, bad_get_user  
    .long 3b, bad_get_user  
.previous 

The instructions that access the process address space are those labeled as 1, 2, and 3. The 
fixup code is common to the three functions and is labeled as bad_get_user. Each exception 
table entry consists simply of two labels. The first one is a numeric label with a b suffix to 
indicate that the label is a "backward" one: in other words, it appears in a previous line of the 
program. The fixup code at bad_get_user returns an EFAULT error code to the process that 
issued the system call. 

Let us consider a second example, the strlen_user(string) macro. This returns the length 
of a null-terminated string in the process address space or the value on error. The macro 
essentially yields the following assembly language instructions: 

movl $0, %eax  
    movl $0x7fffffff, %ecx  
    movl %ecx, %edx  
    movl string, %edi  
0:  repne; scasb  
    subl %ecx, %edx  
    movl %edx, %eax  
1:  
.section .fixup,"ax"  
2:  movl $0, %eax  
    jmp 1b  
.previous  
.section __ex_table,"a"  
    .long 0b, 2b  
.previous 
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The ecx and edx registers are initialized with the 0x7fffffff value, which represents the 
maximum allowed length for the string. The repne; scasb assembly language instructions 
iteratively scan the string pointed to by the edi register, looking for the value (the end of 
string \0 character) in eax. Since the ecx register is decremented at each iteration, the eax 
register will ultimately store the total number of bytes scanned in the string; that is, the length 
of the string. 

The fixup code of the macro is inserted into the .fixup section. The "ax" attributes specify 
that the section must be loaded in memory and that it contains executable code. If a page fault 
exception is generated by the instructions at label 0, the fixup code is executed: it simply 
loads the value in eax, thus forcing the macro to return a error code instead of the string 
length, then jumps to the 1 label, which corresponds to the instruction following the macro. 

8.3 Wrapper Routines 

Although system calls are mainly used by User Mode processes, they can also be invoked by 
kernel threads, which cannot make use of library functions. In order to simplify the 
declarations of the corresponding wrapper routines, Linux defines a set of six macros called 
_syscall0 through _syscall5. 

The numbers through 5 in the name of each macro correspond to the number of parameters 
used by the system call (excluding the system call number). The macros may also be used to 
simplify the declarations of the wrapper routines in the libc standard library; however, they 
cannot be used to define wrapper routines for system calls having more than five parameters 
(excluding the system call number) or for system calls that yield nonstandard return values. 

Each macro requires exactly 2+2xn parameters, with n being the number of parameters of the 
system call. The first two parameters specify the return type and the name of the system call; 
each additional pair of parameters specifies the type and the name of the corresponding 
system call parameter. Thus, for instance, the wrapper routine of the fork( ) system call may 
be generated by: 

_syscall0(int,fork) 

while the wrapper routine of the write( ) system call may be generated by: 

_syscall3(int,write,int,fd,const char *,buf,unsigned int,count) 

In the latter case, the macro yields the following code: 
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int write(int fd,const char * buf,unsigned int count)  
{  
    long __res;  
    asm("int $0x80"  
        : "=a" (__res)  
        : "0" (__NR_write), "b" ((long)fd),  
          "c" ((long)buf), "d" ((long)count));  
    if ((unsigned long)__res >= (unsigned long)-125) {  
        errno = -__res;  
        __res = -1;  
    }  
    return (int) __res;  
} 

The __NR_write macro is derived from the second parameter of _syscall3; it expands into 
the system call number of write( ). When compiling the preceding function, the following 
assembly language code is produced: 

write:   
  pushl %ebx              ; push ebx into stack 
  movl 8(%esp), %ebx      ; put first parameter in ebx 
  movl 12(%esp), %ecx     ; put second parameter in ecx 
  movl 16(%esp), %edx     ; put third parameter in edx 
  movl $4, %eax           ; put __NR_write in eax 
  int $0x80               ; invoke system call 
  cmpl $-126, %eax        ; check return code 
  jbe .L1                 ; if no error, jump 
  negl %eax               ; complement the value of eax 
  movl %eax, errno        ; put result in errno 
  movl $-1, %eax          ; set eax to -1 
.L1:  popl %ebx               ; pop ebx from stack 
  ret                     ; return to calling program 

Notice how the parameters of the write( ) function are loaded into the CPU registers before 
the int $0x80 instruction is executed. The value returned in eax must be interpreted as an 
error code if it lies between -1 and -125 (the kernel assumes that the largest error code defined 
in include/asm-i386/errno.h is 125). If this is the case, the wrapper routine will store the value 
of -eax in errno and return the value -1; otherwise, it will return the value of eax. 

8.4 Anticipating Linux 2.4 

Beside adding a few new system calls, Linux 2.4 does not introduce any change to the system 
call mechanism of Linux 2.2. 
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Chapter 9. Signals 
Signals were introduced by the first Unix systems to simplify interprocess communication. 
The kernel also uses them to notify processes of system events. In contrast to interrupts and 
exceptions, most signals are visible to User Mode processes. 

Signals have been around for 30 years with only minor changes. Due to their relative 
simplicity and efficiency, they continue to be widely used, although as we shall see in  
Chapter 18, other higher-level tools have been introduced for the same purpose. 

The first sections of this chapter examine in detail how signals are handled by the Linux 
kernel, then we discuss the system calls that allow processes to exchange signals. 

9.1 The Role of Signals 

A signal is a very short message that may be sent to a process or to a group of processes. The 
only information given to the process is usually the number identifying the signal; there is no 
room in standard signals for arguments, a message, or other accompanying information. 

A set of macros whose names start with the prefix SIG is used to identify signals; we have 
already made a few references to them in previous chapters. For instance, the SIGCHLD macro 
has been mentioned in Section 3.3.1 in Chapter 3. This macro, which expands into the value 
17 in Linux, yields the identifier of the signal that is sent to a parent process when some child 
stops or terminates. The SIGSEGV macro, which expands into the value 11, has been 
mentioned in Section 7.4 in Chapter 7 : it yields the identifier of the signal that is sent to  
a process when it makes an invalid memory reference. 

Signals serve two main purposes: 

• To make a process aware that a specific event has occurred 
• To force a process to execute a signal handler function included in its code 

Of course, the two purposes are not mutually exclusive, since often a process must react to 
some event by executing a specific routine. 

Table 9-1 lists the first 31 signals handled by Linux 2.2 for the Intel 80x86 architecture (some 
signal numbers such as SIGCHLD or SIGSTOP are architecture-dependent; furthermore, some 
signals are defined only for specific architectures). Besides the signals described in this table, 
the POSIX standard has introduced a new class of signals called "real-time." They will be 
discussed separately in Section 9.4 later in this chapter. 
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Table 9-1. The First 31 Signals in Linux/i386 
# Signal Name Default Action Comment POSIX 
1 SIGHUP Abort Hangup of controlling terminal or process Yes 
2 SIGINT Abort Interrupt from keyboard Yes 
3 SIGQUIT Dump Quit from keyboard Yes 
4 SIGILL Dump Illegal instruction Yes 
5 SIGTRAP Dump Breakpoint for debugging No 
6 SIGABRT Dump Abnormal termination Yes 
6 SIGIOT Dump Equivalent to SIGABRT No 
7 SIGBUS Abort Bus error No 
8 SIGFPE Dump Floating point exception Yes 
9 SIGKILL Abort Forced process termination Yes 
10 SIGUSR1 Abort Available to processes Yes 
11 SIGSEGV Dump Invalid memory reference Yes 
12 SIGUSR2 Abort Available to processes Yes 
13 SIGPIPE Abort Write to pipe with no readers Yes 
14 SIGALRM Abort Real timer clock Yes 
15 SIGTERM Abort Process termination Yes 
16 SIGSTKFLT Abort Coprocessor stack error No 
17 SIGCHLD Ignore Child process stopped or terminated Yes 
18 SIGCONT Continue Resume execution, if stopped Yes 
19 SIGSTOP Stop Stop process execution Yes 
20 SIGTSTP Stop Stop process issued from tty Yes 
21 SIGTTIN Stop Background process requires input Yes 
22 SIGTTOU Stop Background process requires output Yes 
23 SIGURG Ignore Urgent condition on socket No 
24 SIGXCPU Abort CPU time limit exceeded No 
25 SIGXFSZ Abort File size limit exceeded No 
26 SIGVTALRM Abort Virtual timer clock No 
27 SIGPROF Abort Profile timer clock No 
28 SIGWINCH Ignore Window resizing No 
29 SIGIO Abort I/O now possible No 
29 SIGPOLL Abort Equivalent to SIGIO No 
30 SIGPWR Abort Power supply failure No 
31 SIGUNUSED Abort Not used No 

A number of system calls allow programmers to send signals and determine how their 
processes exploit the signals they recieve. Table 9-2 describes these calls succinctly; their 
behavior is described in detail later in Section 9.5. 
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Table 9-2. System Calls Related to Signals 
System Call Description 
kill( ) Send a signal to a process. 
sigaction( ) Change the action associated with a signal. 
signal( ) Similar to sigaction( ). 
sigpending( ) Check whether there are pending signals. 
sigprocmask( ) Modify the set of blocked signals. 
sigsuspend( ) Wait for a signal. 
rt_sigaction( ) Change the action associated with a real-time signal. 
rt_sigpending( ) Check whether there are pending real-time signals. 
rt_sigprocmask( ) Modify the set of blocked real-time signals. 
rt_sigqueueinfo( ) Send a real-time signal to a process. 
rt_sigsuspend( ) Wait for a real-time signal. 
rt_sigtimedwait( ) Similar to rt_sigsuspend( ). 

An important characteristic of signals is that they may be sent at any time to processes whose 
state is usually unpredictable. Signals sent to a nonrunning process must be saved by the 
kernel until that process resumes execution. Blocking signals (described later) require signals 
to be queued, which exacerbates the problem of signals being raised before they can be 
delivered. 

Therefore, the kernel distinguishes two different phases related to signal transmission: 

Signal sending  

The kernel updates the descriptor of the destination process to represent that a new 
signal has been sent. 

Signal receiving  

The kernel forces the destination process to react to the signal by changing its 
execution state or by starting the execution of a specified signal handler or both. 

Each signal sent can be received no more than once. Signals are consumable resources: once 
they have been received, all process descriptor information that refers to their previous 
existence is canceled. 

Signals that have been sent but not yet received are called pending signals . At any time, only 
one pending signal of a given type may exist for a process; additional pending signals of the 
same type to the same process are not queued but simply discarded. In general, a signal may 
remain pending for an unpredictable amount of time. Indeed, the following factors must be 
taken into consideration: 

• Signals are usually received only by the currently running process (that is, by the 
current process). 

• Signals of a given type may be selectively blocked by a process (see Section 9.5.4): in 
this case, the process will not receive the signal until it removes the block. 

• When a process executes a signal-handler function, it usually "masks" the 
corresponding signal, that is, it automatically blocks the signal until the handler 
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terminates. A signal handler therefore cannot be interrupted by another occurrence of 
the handled signal, and therefore the function doesn't need to be reentrant. A masked 
signal is always blocked, but the converse does not hold. 

Although the notion of signals is intuitive, the kernel implementation is rather complex. The 
kernel must: 

• Remember which signals are blocked by each process. 
• When switching from Kernel Mode to User Mode, check whether a signal for any 

process has arrived. This happens at almost every timer interrupt, that is, roughly 
every 10 ms. 

• Determine whether the signal can be ignored. This happens when all of the following 
conditions are fulfilled: 

o The destination process is not traced by another process (the PF_TRACED flag in 
the process descriptor flags field is equal to 0).[1]  

[1] If a process receives a signal while it is being traced, the kernel stops the process and notifies the tracing process by sending a SIGCHLD signal 
to it. The tracing process may, in turn, resume execution of the traced process by means of a SIGCONT signal. 

o The signal is not blocked by the destination process. 
o The signal is being ignored by the destination process (either because the 

process has explicitly ignored it or because the process did not change the 
default action of the signal and that action is "ignore"). 

• Handle the signal, which may require switching the process to a handler function at 
any point during its execution and restoring the original execution context after the 
function returns. 

Moreover, Linux must take into account the different semantics for signals adopted by BSD 
and System V; furthermore, it must comply with the rather cumbersome POSIX requirements. 

9.1.1 Actions Performed upon Receiving a Signal 

There are three ways in which a process can respond to a signal: 

• Explicitly ignore the signal. 
• Execute the default action associated with the signal (see Table 9-1). This action, 

which is predefined by the kernel, depends on the signal type and may be any one of 
the following: 

Abort  

Theprocess is destroyed (killed). 

Dump  

The process is destroyed (killed) and a core file containing its execution context is 
created, if possible; this file may be used for debug purposes. 
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Ignore  

The signal is ignored. 

Stop  

The process is stopped, that is, put in a TASK_STOPPED state (see Section 3.1.1 in 
Chapter 3). 

Continue  

If the process is stopped (TASK_STOPPED), it is put into the TASK_RUNNING state. 

• Catch the signal by invoking a corresponding signal-handler function. 

Notice that blocking a signal is different from ignoring it: a signal is never received while it is 
blocked; an ignored signal is always received, and there is simply no further action. 

The SIGKILL and SIGSTOP signals cannot be explicitly ignored or caught, and thus their 
default actions must always be executed. Therefore, SIGKILL and SIGSTOP allow a user with 
appropriate privileges to destroy and to stop, respectively, any process[2] regardless of the 
defenses taken by the program it is executing. 

[2] Actually, there are two exceptions: all signals sent to process (swapper) are discarded, while those sent to process 1 (init) are always discarded 
unless they are caught. Therefore, process never dies, while process 1 dies only when the initprogram terminates. 

9.1.2 Data Structures Associated with Signals 

The basic data structure used to store the signals sent to a process is a sigset_t array of bits, 
one for each signal type: 

typedef struct {  
    unsigned long sig[2];  
} sigset_t; 

Since each unsigned long number consists of 32 bits, the maximum number of signals that 
may be declared in Linux is 64 (the _NSIG macro denotes this value). No signal has the 
number 0, so the other 31 bits in the first element of sigset_t are the standard ones listed in 
Table 9-1. The bits in the second element are the real-time signals. The following fields are 
included in the process descriptor to keep track of the signals sent to the process: 

signal  

A sigset_t variable that denotes the signals sent to the process 

blocked  

A sigset_t variable that denotes the blocked signals 
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sigpending  

A flag set if one or more nonblocked signals are pending 

gsig  

A pointer to a signal_struct data structure that describes how each signal must be 
handled 

The signal_struct structure, in turn, is defined as follows: 

struct signal_struct {  
    atomic_t            count;  
    struct k_sigaction  action[64];  
    spinlock_t          siglock;  
}; 

As mentioned in Section 3.3.1 in Chapter 3, this structure may be shared by several processes 
by invoking the clone( ) system call with the CLONE_SIGHAND flag set.[3] The count field 
specifies the number of processes that share the signal_struct structure, while the siglock 
field is used to ensure exclusive access to its fields (see Chapter 11). The action field is an 
array of 64 k_sigaction structures that specify how each signal must be handled. 

[3] If this is not done, about 1300 bytes are added to the process data structures just to take care of signal handling. 

Some architectures assign properties to a signal that are visible only to the kernel. Thus, the 
properties of a signal are stored in a k_sigaction structure, which contains both the 
properties hidden from the User Mode process and the more familiar sigaction structure that 
holds all the properties a User Mode process can see. Actually, on the Intel platform all signal 
properties are visible to User Mode processes. So the k_sigaction structure simply reduces 
to a single sa structure of type sigaction, which includes the following fields: 

sa_handler  

This field specifies the type of action to be performed; its value can be a pointer to the 
signal handler, SIG_DFL (that is, the value 0) to specify that the default action must be 
executed or SIG_IGN (that is, the value 1) to specify that the signal must be explicitly 
ignored. 

sa_flags  

This set of flags specifies how the signal must be handled; some of them are listed in 
Table 9-3. 

sa_mask  

This sigset_t variable specifies the signals to be masked when running the signal 
handler. 

 



Understanding the Linux Kernel 

237 

Table 9-3. Flags Specifying How to Handle a Signal 
Flag Name Description 
SA_NOCLDSTOP Do not send SIGCHLD to the parent when the process is stopped. 
SA_NODEFER, SA_NOMASK Do not mask the signal while executing the signal handler. 
SA_RESETHAND, SA_ONESHOT Reset to default action after executing the signal handler. 
SA_ONSTACK Use an alternate stack for the signal handler (see Section 9.3.3). 
SA_RESTART Interrupted system calls are automatically restarted (see Section 9.3.4). 
SA_SIGINFO Provide additional information to the signal handler (see Section 9.5.2). 

9.1.3 Operations on Signal Data Structures 

Several functions and macros are used by the kernel to handle signals. In the following 
description, set is a pointer to a sigset_t variable, nsig is the number of a signal, and mask 
is an unsigned long bit mask. 

sigaddset(set,nsig) and sigdelset(set,nsig)  

Sets the bit of the sigset_t variable corresponding to signal nsig to 1 or 0, 
respectively. In practice, sigaddset( ) reduces to: 

set->sig[(nsig - 1) / 32] |= 1UL << ((nsig - 1) % 32); 

and sigdelset( ) to: 

set->sig[(nsig - 1) / 32] &= ~(1UL << ((nsig - 1) % 32)); 
 

sigaddsetmask(set,mask) and sigdelsetmask(set,mask)  

Sets all the bits of the sigset_t variable whose corresponding bits of mask are on to 1 
or 0, respectively. The corresponding functions reduce to: 

set->sig[0] |= mask; 

and to: 

set->sig[0] &= ~mask; 
 

sigismember(set,nsig)  

Returns the value of the bit of the sigset_t variable corresponding to the signal nsig. 
In practice, this function reduces to: 

1 & (set->sig[(nsig - 1) / 32] >> ((nsig - 1) % 32)) 
 

sigmask(nsig)  

Yields the bit index of the signal nsig. In other words, if the kernel needs to set, clear, 
or test a bit in an element of sigset_t that corresponds to a particular signal, it can 
derive the proper bit through this macro. 
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signal_pending(p)  

Returns the value 1 (true) if the process identified by the *p process descriptor has 
nonblocked pending signals and the value (false) if it doesn't. The function is 
implemented as a simple check on the sigpending field of the process descriptor. 

recalc_sigpending(t)  

Checks whether the process identified by the process descriptor at *t has nonblocked 
pending signals, by looking at the sig and blocked fields of the process, then sets the 
sigpending field properly as follows: 

ready  = t->signal.sig[1] &~ t->blocked.sig[1];  
ready |= t->signal.sig[0] &~ t->blocked.sig[0];  
t->sigpending = (ready != 0); 
 

sigandsets(d,s1,s2) , sigorsets(d,s1,s2) , and 
signandsets(d,s1,s2)  

Performs a logical AND, a logical OR, and a logical NAND, respectively, between the 
sigset_t variables to which s1 and s2 point; the result is stored in the sigset_t 
variable to which d points. 

dequeue_signal(mask, info)  

Checks whether the current process has nonblocked pending signals. If so, returns the 
lowest-numbered pending signal and updates the data structures to indicate it is no 
longer pending. This task involves clearing the corresponding bit in current-
>signal, updating the value of current->sigpending, and storing the signal number 
of the dequeued signal into the *info table. In the mask parameter each bit that is set 
represents a blocked signal: 

sig = 0;  
if (((x = current->signal.sig[0]) & ~mask->sig[0]) != 0)  
    sig = 1 + ffz(~x);  
else if (((x = current->signal.sig[1]) &  
          ~mask->sig[1]) != 0)  
    sig = 33 + ffz(~x);  
if (sig) {  
    sigdelset(&current->signal, sig);  
    recalc_sigpending(current);  
}  
return sig; 

The collection of currently pending signals is ANDed with the blocked signals (the 
complement of mask). If anything is left, it represents a signal that should be delivered 
to the process. The ffz( ) function returns the index of the first bit in its parameter; 
this value is used to compute the lowest-number signal to be delivered. 

 
 
 



Understanding the Linux Kernel 

239 

flush_signals(t)  

Deletes all signals sent to the process identified by the process descriptor at *t. This is 
done by clearing both the t->sigpending and the t->signal fields and by emptying 
the real-time queue of signals (see Section 9.4). 

9.2 Sending a Signal 

When a signal is sent to a process, either from the kernel or from another process, the kernel 
delivers it by invoking the send_sig_info( ), send_sig( ), force_sig( ), or 
force_sig_info( ) functions. These accomplish the first phase of signal handling described 
earlier in Section 9.1: updating the process descriptor as needed. They do not directly perform 
the second phase of receiving the signal but, depending on the type of signal and the state of 
the process, may wake up the process and force it to receive the signal. 

9.2.1 The send_sig_info( ) and send_sig( ) Functions 

The send_sig_info( ) function acts on three parameters: 

sig  

The signal number. 

info  

Either the address of a siginfo_t table associated with real-time signals or one of two 
special values: means that the signal has been sent by a User Mode process, while 1 
means that it has been sent by the kernel. The siginfo_t data structure has 
information that must be passed to the process receiving the real-time signal, such as 
the PID of the sender process and the UID of its owner. 

t  

A pointer to the descriptor of the destination process. 

The send_sig_info( ) function starts by checking whether the parameters are correct: 

if (sig < 0 || sig > 64)  
    return -EINVAL; 

The function checks then if the signal is being sent by a User Mode process. This occurs when 
info is equal to or when the si_code field of the siginfo_t table is negative or zero (the 
positive values of this field are reserved to identify the kernel function that sent the signal): 
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if ((!info || ((unsigned long)info != 1 && (info->si_code <=0)))  
    && ((sig != SIGCONT) || (current->session != t->session))  
    && (current->euid [supscrsym] t->suid)  
    && (current->euid [supscrsym] t->uid)  
    && (current->uid [supscrsym] t->suid)  
    && (current->uid [supscrsym] t->uid)  
    && !capable(CAP_KILL))  
        return -EPERM; 

If the signal is sent by a User Mode process, the function determines whether the operation is 
allowed. The signal is delivered only if the owner of the sending process has the proper 
capability (see Chapter 19), the signal is SIGCONT, the destination process is in the same login 
session of the sending process, or both processes belong to the same user. 

If the sig parameter has the value 0, the function returns immediately without sending any 
signal: since is not a valid signal number, it is used to allow the sending process to check 
whether it has the required privileges to send a signal to the destination process. The function 
returns also if the destination process is in the TASK_ZOMBIE state, indicated by checking 
whether its siginfo_t table has been released: 

if (!sig || !t->sig)  
    return 0; 

Some types of signals might nullify other pending signals for the destination process. 
Therefore, the function checks whether one of the following cases occurs: 

• sig is a SIGKILL or SIGCONT signal. If the destination process is stopped, it is put in 
the TASK_RUNNING state so that it will be able to execute the do_exit( ) function; 
moreover, if the destination process has SIGSTOP, SIGTSTP, SIGTTOU, or SIGTTIN 
pending signals, they are removed: 

   if (t->state == TASK_STOPPED)  
       wake_up_process(t);  
   t->exit_code = 0;  
   sigdelsetmask(&t->signal, (sigmask(SIGSTOP) |  
           sigmask(SIGTSTP) | sigmask(SIGTTOU) |  
           sigmask(SIGTTIN)));  

recalc_sigpending(t); 

• sig is a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. If the destination process has 
a pending SIGCONT signal, it is destroyed: 

   sigdelset(&t->signal, SIGCONT);  
recalc_sigpending(t); 

Next, send_sig_info( ) checks whether the new signal can be handled immediately. In this 
case, the function also takes care of the receiving phase of the signal: 

if (ignored_signal(sig, t)) {  
  out:  
    if (t->state == TASK_INTERRUPTIBLE && signal_pending(t))  
        wake_up_process(t);  
    return 0;  
} 
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The ignored_signal( ) function returns the value 1 when all three conditions for ignoring a 
signal mentioned in Section 9.1 are satisfied. However, in order to fulfill a POSIX 
requirement, the SIGCHLD signal is handled specially. POSIX distinguishes between explicitly 
setting the "ignore" action for the SIGCHLD signal and leaving the default in place (even if the 
default is to ignore the signal). In order to let the kernel clean up a terminated child process 
and prevent it from becoming a zombie (see Section 3.4.2 in Chapter 3) the parent must 
explicitly set the action to "ignore" the signal. So ignored_signal( ) handles as follows: if 
the signal is explicitly ignored, ignored_signal( ) returns 0, but if the default action was 
"ignore" and the process didn't change that default, ignored_signal( ) returns 1. 

If ignored_signal( ) returns 1, the siginfo_t table of the destination process must not be 
updated; however, if the process is in the TASK_INTERRUPTIBLE state and if it has other 
nonblocked pending signals, send_sig_info( ) invokes the wake_up_process( ) function 
to wake it up. 

If ignored_signal( ) returns 0, the phase of signal receiving has to be deferred, therefore 
send_sig_info( ) may have to modify the data structures of the destination process to let it 
know later that a new signal has been sent to it. Since standard signals are not queued, 
send_sig_info( ) must check whether another instance of the same signal is already 
pending, then leave its mark on the proper data structures of the process descriptor: 

if (sigismember(&t->signal, sig))  
    goto out;  
sigaddset(&t->signal, sig);  
if (!sigismember(&t->blocked, sig))  
    t->sigpending = 1;  
goto out; 

The sigaddset( ) function is invoked to set the proper bit in t->signal.  
The t->sigpending flag is also set, unless the destination process has blocked the sig signal. 
The function terminates in the usual way by waking up, if necessary, the destination process. 
In Section 9.3, we'll discuss the actions performed by the process. 

The send_sig( ) function is similar to send_sig_info( ). However, the info parameter is 
replaced by a priv flag, which is true if the signal is sent by the kernel and false if it is sent by 
a process. The send_sig( ) function is implemented as a special case of  
send_sig_info( ): 

return send_sig_info(sig, (void*)(priv != 0), t); 

9.2.2 The force_sig_info( ) and force_sig( ) Functions 

The force_sig_info( ) function is used by the kernel to send signals that cannot be 
explicitly ignored or blocked by the destination processes. The function's parameters are the 
same as those of send_sig_info( ). The force_sig_info( ) function acts on the 
signal_struct data structure that is referenced by the sig field included in the descriptor t 
of the destination process: 
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if (t->sig->action[sig-1].sa.sa_handler == SIG_IGN)  
    t->sig->action[sig-1].sa.sa_handler = SIG_DFL;  
sigdelset(&t->blocked, sig);  
return send_sig_info(sig, info, t); 

force_sig( ) is similar to force_sig_info( ). Its use is limited to signals sent by the 
kernel; it can be implemented as a special case of the force_sig_info( ) function: 

force_sig_info(sig, (void*)1L, t); 

9.3 Receiving a Signal 

We assume that the kernel has noticed the arrival of a signal and has invoked one of the 
functions in the previous section to prepare the process descriptor of the process that is 
supposed to receive the signal. But in case that process was not running on the CPU at that 
moment, the kernel deferred the task of waking the process, if necessary, and making it 
receive the signal. We now turn to the activities that the kernel performs to ensure that 
pending signals of a process are handled. 

As mentioned in Section 4.7.1 in Chapter 4, the kernel checks whether there are nonblocked 
pending signals before allowing a process to resume its execution in User Mode. This check is 
performed in ret_from_intr( ) every time an interrupt or an exception has been handled by 
the kernel routines. 

In order to handle the nonblocked pending signals, the kernel invokes the do_signal( ) 
function, which receives two parameters: 

regs  

The address of the stack area where the User Mode register contents of the current 
process have been saved 

oldset  

The address of a variable where the function is supposed to save the bit mask array of 
blocked signals (actually, this parameter is NULL when invoked from 
ret_from_intr( )) 

The function starts by checking whether the interrupt occurred while the process was running 
in User Mode; if not, it simply returns: 

if ((regs->xcs & 3) != 3)  
    return 1; 

However, as we'll see in Section 9.3.4, this does not mean that a system call cannot be 
interrupted by a signal. 

If the oldset parameter is NULL, the function initializes it with the address of the current-
>blocked field: 
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if (!oldset)  
    oldset = &current->blocked; 

The heart of the do_signal( ) function consists of a loop that repeatedly invokes 
dequeue_signal( ) until no more nonblocked pending signals are left. The return code of 
dequeue_signal( ) is stored in the signr local variable: if its value is 0, it means that all 
pending signals have been handled and do_signal( ) can finish. As long as a nonzero value 
is returned, a pending signal is waiting to be handled and dequeue_signal( ) is invoked 
again after do_signal( ) handles the current signal. 

If the current receiver process is being monitored by some other process, the do_signal( ) 
function invokes notify_parent( ) and schedule( ) to make the monitoring process 
aware of the signal handling. 

Then do_signal( ) loads the ka local variable with the address of the k_sigaction data 
structure of the signal to be handled: 

ka = &current->sig->action[signr-1]; 

Depending on the contents, three kinds of actions may be performed: ignoring the signal, 
executing a default action, or executing a signal handler. 

9.3.1 Ignoring the Signal 

When a received signal is explicitly ignored, the do_signal( ) function normally just 
continues with a new execution of the loop and therefore considers another pending signal. 
One exception exists, as described earlier: 

if (ka->sa.sa_handler == SIG_IGN) {  
    if (signr == SIGCHLD)  
        while (sys_wait4(-1, NULL, WNOHANG, NULL) > 0)  
            /* nothing */;  
    continue;  
} 

If the signal received is SIGCHLD, the sys_wait4( ) service routine of the wait4( ) system 
call is invoked to force the process to read information about its children, thus cleaning up 
memory left over by the terminated child processes (see Section 3.4 in Chapter 3). 

9.3.2 Executing the Default Action for the Signal 

If ka->sa.sa_handler is equal to SIG_DFL, do_signal( ) must perform the default action 
of the signal. The only exception comes when the receiving process is init, in which case the 
signal is discarded as described in Section 9.1.1: 

if (current->pid == 1)  
    continue; 

For other processes, since the default action depends on the type of signal, the function 
executes a switch statement based on the value of signr. 

The signals whose default action is "ignore" are easily handled: 
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case SIGCONT: case SIGCHLD: case SIGWINCH:  
    continue; 

The signals whose default action is "stop" may stop the current process. In order to do this, 
do_signal( ) sets the state of current to TASK_STOPPED and then invokes the schedule( ) 
function (see Section 10.2.4.2 in Chapter 10). The do_signal( ) function also sends a 
SIGCHLD signal to the parent process of current, unless the parent has set the SA_NOCLDSTOP 
flag of SIGCHLD: 

case SIGTSTP: case SIGTTIN: case SIGTTOU:  
    if (is_orphaned_pgrp(current->pgrp))  
        continue;  
case SIGSTOP:  
    current->state = TASK_STOPPED;  
    current->exit_code = signr;  
    if (!(SA_NOCLDSTOP &  
        current->p_pptr->sig->action[SIGCHLD-1].sa.sa_flags))  
        notify_parent(current, SIGCHLD);  
    schedule(  );  
    continue; 

The difference between SIGSTOP and the other signals is subtle: SIGSTOP always stops the 
process, while the other signals stop the process only if it is not in an "orphaned process 
group"; the POSIX standard specifies that a process group is not orphaned as long as there is a 
process in the group that has a parent in a different process group but in the same session. 

The signals whose default action is "dump" may create a core file in the process working 
directory; this file lists the complete contents of the process's address space and CPU 
registers. After the do_signal( ) creates the core file, it kills the process. The default action 
of the remaining 18 signals is "abort," which consists of just killing the process: 

exit_code = sig_nr;  
case SIGQUIT: case SIGILL: case SIGTRAP:  
case SIGABRT: case SIGFPE: case SIGSEGV:  
    if (current->binfmt  
        && current->binfmt->core_dump  
        && current->binfmt->core_dump(signr, regs))  
        exit_code |= 0x80;  
    default:  
        sigaddset(&current->signal, signr);  
        current->flags |= PF_SIGNALED;  
        do_exit(exit_code); 

The do_exit( ) function receives as its input parameter the signal number ORed with a flag 
set when a core dump has been performed. That value is used to determine the exit code of the 
process. The function terminates the current process, and hence never returns (see Chapter 
19). 

9.3.3 Catching the Signal 

If the signal has a specific handler, the do_signal( ) function must enforce its execution. It 
does this by invoking handle_signal( ): 
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handle_signal(signr, ka, &info, oldset, regs);  
return 1; 

Notice how do_signal( ) returns after having handled a single signal: other pending signals 
won't be considered until the next invocation of do_signal( ). This approach ensures that 
real-time signals will be dealt in the proper order (see Section 9.4). 

Executing a signal handler is a rather complex task because of the need to juggle stacks 
carefully while switching between User Mode and Kernel Mode. We'll explain exactly what is 
entailed here. 

Signal handlers are functions defined by User Mode processes and included in the User Mode 
code segment. The handle_signal( ) function runs in Kernel Mode while signal handlers 
run in User Mode; this means that the current process must first execute the signal handler in 
User Mode before being allowed to resume its "normal" execution. Moreover, when the 
kernel attempts to resume the normal execution of the process, the Kernel Mode stack no 
longer contains the hardware context of the interrupted program because the Kernel Mode 
stack is emptied at every transition from User Mode to Kernel Mode. 

An additional complication is that signal handlers may invoke system calls: in this case, after 
having executed the service routine, control must be returned to the signal handler instead of 
to the code of the interrupted program. 

The solution adopted in Linux consists of copying the hardware context saved in the Kernel 
Mode stack onto the User Mode stack of the current process. The User Mode stack is also 
modified in such a way that, when the signal handler terminates, the sigreturn( ) system 
call is automatically invoked to copy the hardware context back on the Kernel Mode stack and 
restore the original content of the User Mode stack. 

Figure 9-1 illustrates the flow of execution of the functions involved in catching a signal. A 
nonblocked signal is sent to a process. When an interrupt or exception occurs, the process 
switches into Kernel Mode. Right before returning to User Mode, the kernel executes the 
do_signal( ) function, which in turn handles the signal (by invoking handle_signal( )) 
and sets up the User Mode stack (by invoking setup_frame( )). When the process switches 
again to User Mode, it starts executing the signal handler because the handler's starting 
address was forced into the program counter. When that function terminates, the return code 
placed on the User Mode stack by the setup_frame( ) function is executed. This code 
invokes the sigreturn( ) system call, whose service routine copies the hardware context of 
the normal program in the Kernel Mode stack and restores the User Mode stack back to its 
original state (by invoking restore_sigcontext( )). When the system call terminates, the 
normal program can thus resume its execution. 
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Figure 9-1. Catching a signal 

 

Let us now examine in detail how this scheme is carried out. 

9.3.3.1 Setting up the frame 

In order to properly set the User Mode stack of the process, the handle_signal( ) function 
invokes either setup_frame( ) (for signals without siginfo_t table) or setup_rt_frame( 
). 

The setup_frame( ) function receives four parameters, which have the following meanings: 

sig  

Signal number 

ka  

Address of the k_sigaction table associated with the signal 

oldset  

Address of a bit mask array of blocked signals 

regs  

Address in the Kernel Mode stack area where the User Mode register contents have 
been saved 

The function pushes onto the User Mode stack a data structure called a frame, which contains 
the information needed to handle the signal and to ensure the correct return to the 
handle_signal( ) function. A frame is a sigframe table that includes the following fields 
(see Figure 9-2): 
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Figure 9-2. Frame on the User Mode stack 

 
pretcode  

Return address of the signal handler function; it points to the retcode field (later in 
this list) in the same table. 

sig  

The signal number; this is the parameter required by the signal handler. 

sc  

Structure of type sigcontext containing the hardware context of the User Mode 
process right before switching to Kernel Mode (this information is copied from the 
Kernel Mode stack of current). It also contains a bit array that specifies the blocked 
standard signals of the process. 

fpstate  

Structure of type _fpstate that may be used to store the floating point registers of the 
User Mode process (see Section 3.2.4 in Chapter 3). 

extramask  

Bit array that specifies the blocked real-time signals. 

retcode  

Eight-byte code issuing a sigreturn( ) system call; this code is executed when 
returning from the signal handler. 

The setup_frame( ) function starts by invoking get_sigframe( ) to compute the first 
memory location of the frame. That memory location is usually[4] in the User Mode stack, thus 
the function returns the value: 

[4] Linux allows processes to specify an alternate stack for their signal handlers by invoking the sigaltstack( ) system call; this feature is 
also requested by the X/Open standard. When an alternate stack is present, the get_sigframe( ) function returns an address inside that 
stack. We don't discuss this feature further, since it is conceptually similar to standard signal handling. 

(regs->esp - sizeof(struct sigframe)) & 0xfffffff8 
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Since stacks grow toward lower addresses, the initial address of the frame is obtained by 
subtracting its size from the address of the current stack top and aligning the result to a 
multiple of 8. 

The returned address is then verified by means of the access_ok macro; if it is valid, the 
function repeatedly invokes __put_user( ) to fill all the fields of the frame. Once this is 
done, it modifies the regs area of the Kernel Mode stack, thus ensuring that control will be 
transferred to the signal handler when current resumes its execution in User Mode: 

regs->esp = (unsigned long) frame;  
regs->eip = (unsigned long) ka->sa.sa_handler; 

The setup_frame( ) function terminates by resetting the segmentation registers saved on the 
Kernel Mode stack to their default value. Now the information needed by the signal handler is 
on the top of the User Mode stack. 

The setup_rt_frame( ) function is very similar to setup_frame( ), but it puts on the User 
Mode stack an extended frame (stored in the rt_sigframe data structure) that also includes 
the content of the siginfo_t table associated with the signal. 

9.3.3.2 Evaluating the signal flags 

After setting up the User Mode stack, the handle_signal( ) function checks the values of 
the flags associated with the signal. 

If the received signal has the SA_ONESHOT flag set, it must be reset to its default action so that 
further occurrences of the same signal will not trigger the execution of the signal handler: 

if (ka->sa.sa_flags & SA_ONESHOT)  
    ka->sa.sa_handler = SIG_DFL; 

Moreover, if the signal does not have the SA_NODEFER flag set, the signals in the sa_mask 
field of the sigaction table must be blocked during the execution of the signal handler: 

if (!(ka->sa.sa_flags & SA_NODEFER)) {  
    sigorsets(&current->blocked,  
              &current->blocked,  
              &ka->sa.sa_mask);  
    sigaddset(&current->blocked,sig);  
    recalc_sigpending(current);  
} 

The function returns then to do_signal( ), which also returns immediately. 

9.3.3.3 Starting the signal handler 

When do_signal( ) returns, the current process resumes its execution in User Mode. 
Because of the preparation by setup_frame( ) described earlier, the eip register points to 
the first instruction of the signal handler, while esp points to the first memory location of  
the frame that has been pushed on top of the User Mode stack. As a result, the signal handler 
is executed. 
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9.3.3.4 Terminating the signal handler 

When the signal handler terminates, the return address on top of the stack points to the code in 
the retcode field of the frame. For signals without siginfo_t table, the code is equivalent to 
the following Assembly instructions: 

popl %eax  
movl $__NR_sigreturn, %eax  
int $0x80 

Therefore, the signal number (that is, the sig field of the frame) is discarded from the stack, 
and the sigreturn( ) system call is then invoked. 

The sys_sigreturn( ) function receives as its parameter the pt_regs data structure regs, 
which contains the hardware context of the User Mode process (see Section 8.2.3 in  
Chapter 8). It can thus derive the frame address inside the User Mode stack: 

frame = (struct sigframe *)(regs.esp - 8); 

The function reads from the sc field of the frame the bit array of signals that were blocked 
before invoking the signal handler and writes it in the blocked field of current. As a result, 
all signals that have been masked for the execution of the signal handler are unblocked. The 
recalc_sigpending( ) function is then invoked. 

The sys_sigreturn( ) function must at this point copy the process hardware context from 
the sc field of the frame to the Kernel Mode stack; it then removes the frame from the User 
Mode stack by invoking the restore_sigcontext( ) function. 

For signals having a siginfo_t table, the mechanism is very similar. The return code in the 
retcode field of the extended frame invokes the rt_sigreturn( ) system call; the 
corresponding sys_rt_sigreturn( ) service routine copies the process hardware context 
from the extended frame to the Kernel Mode stack and restores the original User Mode stack 
content by removing the extended frame from it. 

9.3.4 Reexecution of System Calls 

In some cases, the request associated with a system call cannot be immediately satisfied by 
the kernel; when this happens the process that issued the system call is put in a 
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state. 

If the process is put in a TASK_INTERRUPTIBLE state and some other process sends a signal to 
it, the kernel puts it in the TASK_RUNNING state without completing the system call (see 
Section 4.7 in Chapter 4). When this happens, the system call service routine does not 
complete its job but returns an EINTR, ERESTARTNOHAND, ERESTARTSYS, or ERESTARTNOINTR 
error code. The process receives the signal while switching back to User Mode. 

In practice, the only error code a User Mode process can get in this situation is EINTR, which 
means that the system call has not been completed. (The application programmer may check 
this code and decide whether to reissue the system call.) The remaining error codes are used 
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internally by the kernel to specify whether the system call may be reexecuted automatically 
after the signal handler termination. 

Table 9-4 lists the error codes related to unfinished system calls and their impact for each of 
the three possible signal actions. The meaning of the terms appearing in the entries is the 
following: 

Terminate  

The system call will not be automatically reexecuted; the process will resume its 
execution in User Mode at the instruction following the int $0x80 one and the eax 
register will contain the -EINTR value. 

Reexecute  

The kernel forces the User Mode process to reload the eax register with the system 
call number and to reexecute the int $0x80 instruction; the process is not aware of 
the reexecution and the error code is not passed to it. 

Depends  

The system call is reexecuted only if the SA_RESTART flag of the received signal is set; 
otherwise, the system call terminates with a -EINTR error code. 

Table 9-4. Reexecution of System Calls 

Signal   Error Codes and Their Impact on 
System Call Execution   

Action EINTR ERESTARTSYS ERESTARTNOHAND ERESTARTNOINTR
Default Terminate Reexecute Reexecute Reexecute 
Ignore Terminate Reexecute Reexecute Reexecute 
Catch Terminate Depends Terminate Reexecute 

When receiving a signal, the kernel must be sure that the process really issued a system call 
before attempting to reexecute it. This is where the orig_eax field of the regs hardware 
context plays a critical role. Let us recall how this field is initialized when the interrupt or 
exception handler starts: 

Interrupt  

The field contains the IRQ number associated with the interrupt minus 256 (see the 
section Section 4.6.3 in Chapter 4). 

0x80 exception  

The field contains the system call number (see Section 8.2.2 in Chapter 8). 

Other exceptions  

The field contains the value -1 (see Section 4.5.1 in Chapter 4). 
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Therefore, a nonnegative value in the orig_eax field means that the signal has woken up a 
TASK_INTERRUPTIBLE process that was sleeping in a system call. The service routine 
recognizes that the system call was interrupted, and thus returns one of the previously 
mentioned error codes. 

If the signal is explicitly ignored or if its default action has been executed, do_signal( ) 
analyzes the error code of the system call to decide whether the unfinished system call must 
be automatically reexecuted, as specified in Table 9-4. If the call must be restarted, the 
function modifies the regs hardware context so that, when the process is back in User Mode, 
eip points to the int $0x80 instruction and eax contains the system call number: 

if (regs->orig_eax >= 0) {  
    if (regs->eax == -ERESTARTNOHAND ||  
        regs->eax == -ERESTARTSYS ||  
        regs->eax == -ERESTARTNOINTR) {  
        regs->eax = regs->orig_eax;  
        regs->eip -= 2;  
    }  
} 

The regs->eax field has been filled with the return code of a system call service routine (see 
Section 8.2.2 in Chapter 8). 

If the signal has been caught, handle_signal( ) analyzes the error code and, possibly, the 
SA_RESTART flag of the sigaction table to decide whether the unfinished system call must be 
reexecuted: 

if (regs->orig_eax >= 0) {  
    switch (regs->eax) {  
        case -ERESTARTNOHAND:  
            regs->eax = -EINTR;  
            break;  
        case -ERESTARTSYS:  
            if (!(ka->sa.sa_flags & SA_RESTART)) {  
                regs->eax = -EINTR;  
                break;  
            }  
        /* fallthrough */  
        case -ERESTARTNOINTR:  
            regs->eax = regs->orig_eax;  
            regs->eip -= 2;  
    }  
} 

If the system call must be restarted, handle_signal( ) proceeds exactly as do_signal( ); 
otherwise, it returns an -EINTR error code to the User Mode process. 

9.4 Real-Time Signals 

The POSIX standard introduced a new class of signals denoted as real-time signals;  
the corresponding signal numbers range from 32 to 63. The main difference with respect to 
standard signals is that real-time signals of the same kind may be queued. This ensures that 
multiple signals sent will be received. Although the Linux kernel does not make use of  
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real-time signals, it fully supports the POSIX standard by means of several specific system 
calls (see Section 9.5.6). 

The queue of real-time signals is implemented as a list of signal_queue elements: 

struct signal_queue {  
    struct signal_queue *next;  
    siginfo_t info;  
}; 

The info table of type siginfo_t was explained in Section 9.2.1; the next field points to the 
next element in the list. 

Each process descriptor has two specific fields; sigqueue points to the first element of the 
queue of received real-time signals, while sigqueue_tail points to the next field of the last 
element of the queue. 

When sending a signal, the send_sig_info( ) function checks whether its number is greater 
than 31; if so, it inserts the signal in the queue of real-time signals for the destination process. 

Similarly, when receiving a signal, dequeue_signal( ) checks whether the signal number of 
the pending signal is greater than 31; if so, it extracts from the queue the element 
corresponding to the received signal. If the queue does not contain other signals of the same 
type, the function also clears the corresponding bit in current->signal. 

9.5 System Calls Related to Signal Handling 

As stated in the introduction of this chapter, programs running in User Mode are allowed to 
send and receive signals. This means that a set of system calls must be defined to allow these 
kinds of operations. Unfortunately, due to historical reasons, several noncompatible system 
calls exist that serve essentially the same purpose. In order to ensure full compatibility with 
older Unix versions, Linux supports both older system calls and newer ones introduced in the 
POSIX standard. We shall describe some of the most significant POSIX system calls. 

9.5.1 The kill( ) System Call 

The kill(pid,sig) system call is commonly used to send signals; its corresponding service 
routine is the sys_kill( ) function. The integer pid parameter has several meanings, 
depending on its numerical value: 

pid > 0  

The sig signal is sent to the process whose PID is equal to pid. 

pid = 0  

The sig signal is sent to all processes in the same group of the calling process. 

 
 



Understanding the Linux Kernel 

253 

pid = -1  

The signal is sent to all processes, except swapper (PID 0), init (PID 1), and current. 

pid < -1  

The signal is sent to all processes in the process group -pid. 

The sys_kill( ) function invokes kill_something_info( ). This in turn invokes either 
send_sig_info( ), to send the signal to a single process, or kill_pg_info( ), to scan all 
processes and invoke send_sig_info( ) for each process in the destination group. 

System V and BSD Unix variants also have a killpg( ) system call, which is able to 
explicitly send a signal to a group of processes. In Linux the function is implemented as a 
library function that makes use of the kill( ) system call. 

9.5.2 Changing a Signal Action 

The sigaction(sig,act,oact) system call allows users to specify an action for a signal; of 
course, if no signal action is defined, the kernel executes the default action associated with the 
received signal. 

The corresponding sys_sigaction( ) service routine acts on two parameters: the sig signal 
number and the act table of type sigaction that specifies the new action. A third oact 
optional output parameter may be used to get the previous action associated with the signal. 

The function checks first whether the act address is valid. Then it fills the sa_handler, 
sa_flags, and sa_mask fields of a new_ka local variable of type k_sigaction with the 
corresponding fields of *act: 

__get_user(new_ka.sa.sa_handler, &act->sa_handler);  
__get_user(new_ka.sa.sa_flags, &act->sa_flags);  
__get_user(mask, &act->sa_mask);  
new_ka.sa.sa_mask.sig[0] = mask;  
new_ka.sa.sa_mask.sig[1] = 0 

The function invokes do_sigaction( ) to copy the new new_ka table into the entry at the 
sig-1 position of current->sig->action: 

k = &current->sig->action[sig-1];  
if (act) {  
    *k = *act;  
    sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL)  
                                  | sigmask(SIGSTOP));  
    if (k->sa.sa_handler == SIG_IGN  
        || (k->sa.sa_handler == SIG_DFL  
        && (sig == SIGCONT ||  
            sig == SIGCHLD ||  
            sig == SIGWINCH))) {  
        sigdelset(&current->signal, sig);  
        recalc_sigpending(current);  
    }  
} 
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The POSIX standard requires that setting a signal action either to SIG_IGN, or to SIG_DFL 
when the default action is "ignore," will cause any pending signal of the same type to be 
discarded. Moreover, notice that, no matter what the requested masked signals are for the 
signal handler, SIGKILL and SIGSTOP are never masked. 

If the oact parameter is not NULL, the contents of the previous sigaction table are copied 
to the process address space at the address specified by that parameter: 

if (oact) {  
    __put_user(old_ka.sa.sa_handler, &oact->sa_handler);  
    __put_user(old_ka.sa.sa_flags, &oact->sa_flags);  
    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask);  
} 

For compatibility with BSD Unix variants, Linux provides the signal( ) system call, which 
is still widely used by programmers. The corresponding sys_signal( ) service routine just 
invokes do_sigaction( ): 

new_sa.sa.sa_handler = handler;  
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;  
ret = do_sigaction(sig, &new_sa, &old_sa);  
return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 

9.5.3 Examining the Pending Blocked Signals 

The sigpending( ) system call allows a process to examine the set of pending blocked 
signals, that is, those that have been raised while blocked. This system call fetches only the 
standard signals. 

The corresponding sys_sigpending( ) service routine acts on a single parameter, set, 
namely, the address of a user variable where the array of bits must be copied: 

pending = current->blocked.sig[0] & current->signal.sig[0];  
if (copy_to_user(set, &pending, sizeof(*set)))  
    return -EFAULT;  
return 0; 

9.5.4 Modifying the Set of Blocked Signals 

The sigprocmask( ) system call allows processes to modify the set of blocked signals; like 
sigpending( ), this system call applies only to the standard signals. 

The corresponding sys_sigprocmask( ) service routine acts on three parameters: 

oset  

Pointer in the process address space to a bit array where the previous bit mask must be 
stored 

set  

Pointer in the process address space to the bit array containing the new bit mask 
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how  

Flag that may have one of the following values: 

SIG_BLOCK  

The *set bit mask array specifies the signals that must be added to the bit mask array 
of blocked signals. 

SIG_UNBLOCK  

The *set bit mask array specifies the signals that must be removed from the bit mask 
array of blocked signals. 

SIG_SETMASK  

The *set bit mask array specifies the new bit mask array of blocked signals. 

The function invokes copy_from_user( ) to copy the value pointed to by the set parameter 
into the new_set local variable and copies the bit mask array of standard blocked signals of 
current into the old_set local variable. It then acts as the how flag specifies on these two 
variables: 

if (copy_from_user(&new_set, set, sizeof(*set)))  
    return -EFAULT;  
new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));  
old_set = current->blocked.sig[0];  
if (how == SIG_BLOCK)  
    sigaddsetmask(&current->blocked, new_set);  
else if (how == SIG_UNBLOCK)  
    sigdelsetmask(&current->blocked, new_set);  
else if (how == SIG_SETMASK)  
    current->blocked.sig[0] = new_set;  
else  
    return -EINVAL;  
recalc_sigpending(current);  
if (oset) {  
    if (copy_to_user(oset, &old_set, sizeof(*oset)))  
        return -EFAULT;  
}  
return 0; 

9.5.5 Suspending the Process 

The sigsuspend( ) system call puts the process in the TASK_INTERRUPTIBLE state, after 
having blocked the standard signals specified by a bit mask array to which the mask parameter 
points. The process will wake up only when a nonignored, nonblocked signal is sent to it. 

The corresponding sys_sigsuspend( ) service routine executes these statements: 
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mask &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));  
saveset = current->blocked;  
current->blocked.sig[0] = mask;  
current->blocked.sig[1] = 0;  
recalc_sigpending(current);  
regs->eax = -EINTR;  
while (1) {  
    current->state = TASK_INTERRUPTIBLE;  
    schedule(  );  
    if (do_signal(regs, &saveset))  
        return -EINTR;  
} 

The schedule( ) function selects another process to run. When the process that issued the 
sigsuspend( ) system call is executed again, sys_sigsuspend( ) invokes the do_signal( 
) system call in order to receive the signal that has woken up the process. If that function 
returns the value 1, the signal is not ignored, therefore the system call terminates by returning 
the error code -EINTR. 

The sigsuspend( ) system call may appear redundant, since the combined execution of 
sigprocmask( ) and sleep( ) apparently yields the same result. But this is not true: 
because of interleaving of process executions, one must be conscious that invoking a system 
call to perform action A followed by another system call to perform action B is not equivalent 
to invoking a single system call that performs action A and then action B. 

In the particular case, sigprocmask( ) might unblock a signal that will be received before 
invoking sleep( ). If this happens, the process might remain in a TASK_INTERRUPTIBLE 
state forever, waiting for the signal that was already received. On the other hand, the 
sigsuspend( ) system call does not allow signals to be sent after unblocking and before the 
schedule( ) invocation because other processes cannot grab the CPU during that time 
interval. 

9.5.6 System Calls for Real-Time Signals 

Since the system calls previously examined apply only to standard signals, additional system 
calls must be introduced to allow User Mode processes to handle real-time signals. 

Several system calls for real-time signals (rt_sigaction( ) , rt_sigpending( ), 
rt_sigprocmask( ), and rt_sigsuspend( ) are similar to those described earlier and won't 
be further discussed. 

Two other system calls have been introduced to deal with queues of real-time signals: 

rt_sigqueueinfo( )  

Sends a real-time signal so that it is added to the real-time signal queue of the 
destination process 

rt_sigtimedwait( )  

Similar to rt_sigsuspend( ), but the process remains suspended only for a fixed 
time interval 
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We do not discuss these system calls because they are quite similar to those used for standard 
signals. 

9.6 Anticipating Linux 2.4 

Signals are pretty much the same in Linux 2.2 and Linux 2.4. 
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Chapter 10. Process Scheduling 
Like any time-sharing system, Linux achieves the magical effect of an apparent simultaneous 
execution of multiple processes by switching from one process to another in a very short time 
frame. Process switch itself was discussed in Chapter 3; this chapter deals with scheduling, 
which is concerned with when to switch and which process to choose. 

The chapter consists of three parts. The Section 10.1 introduces the choices made by Linux to 
schedule processes in the abstract. Section 10.2 discusses the data structures used to 
implement scheduling and the corresponding algorithm. Finally, Section 10.3 describes  
the system calls that affect process scheduling. 

10.1 Scheduling Policy 

The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting 
objectives: fast process response time, good throughput for background jobs, avoidance of 
process starvation, reconciliation of the needs of low- and high-priority processes, and so on. 
The set of rules used to determine when and how selecting a new process to run is called 
scheduling policy. 

Linux scheduling is based on the time-sharing technique already introduced in Section 5.4.3 
in Chapter 5: several processes are allowed to run "concurrently," which means that the CPU 
time is roughly divided into "slices," one for each runnable process.[1] Of course, a single 
processor can run only one process at any given instant. If a currently running process is not 
terminated when its time slice or quantum expires, a process switch may take place.  
Time-sharing relies on timer interrupts and is thus transparent to processes. No additional 
code needs to be inserted in the programs in order to ensure CPU time-sharing. 

[1] Recall that stopped and suspended processes cannot be selected by the scheduling algorithm to run on the CPU. 

The scheduling policy is also based on ranking processes according to their priority. 
Complicated algorithms are sometimes used to derive the current priority of a process,  
but the end result is the same: each process is associated with a value that denotes how 
appropriate it is to be assigned to the CPU. 

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing 
and adjusts their priorities periodically; in this way, processes that have been denied the use of 
the CPU for a long time interval are boosted by dynamically increasing their priority. 
Correspondingly, processes running for a long time are penalized by decreasing their priority. 

When speaking about scheduling, processes are traditionally classified as "I/O-bound" or 
"CPU-bound." The former make heavy use of I/O devices and spend much time waiting for 
I/O operations to complete; the latter are number-crunching applications that require a lot of 
CPU time. 

An alternative classification distinguishes three classes of processes: 
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Interactive processes  

These interact constantly with their users, and therefore spend a lot of time waiting for 
keypresses and mouse operations. When input is received, the process must be woken 
up quickly, or the user will find the system to be unresponsive. Typically, the average 
delay must fall between 50 and 150 ms. The variance of such delay must also be 
bounded, or the user will find the system to be erratic. Typical interactive programs 
are command shells, text editors, and graphical applications. 

Batch processes  

These do not need user interaction, and hence they often run in the background. Since 
such processes do not need to be very responsive, they are often penalized by the 
scheduler. Typical batch programs are programming language compilers, database 
search engines, and scientific computations. 

Real-time processes  

These have very strong scheduling requirements. Such processes should never be 
blocked by lower-priority processes, they should have a short response time and, most 
important, such response time should have a minimum variance. Typical real-time 
programs are video and sound applications, robot controllers, and programs that 
collect data from physical sensors. 

The two classifications we just offered are somewhat independent. For instance, a batch 
process can be either I/O-bound (e.g., a database server) or CPU-bound  
(e.g., an image-rendering program). While in Linux real-time programs are explicitly 
recognized as such by the scheduling algorithm, there is no way to distinguish between 
interactive and batch programs. In order to offer a good response time to interactive 
applications, Linux (like all Unix kernels) implicitly favors I/O-bound processes over  
CPU-bound ones. 

Programmers may change the scheduling parameters by means of the system calls illustrated 
in Table 10-1. More details will be given in Section 10.3. 

Table 10-1. System Calls Related to Scheduling 
System Call Description 
nice( ) Change the priority of a conventional process. 
getpriority( ) Get the maximum priority of a group of conventional processes. 
setpriority( ) Set the priority of a group of conventional processes. 
sched_getscheduler( ) Get the scheduling policy of a process. 
sched_setscheduler( ) Set the scheduling policy and priority of a process. 
sched_getparam( ) Get the scheduling priority of a process. 
sched_setparam( ) Set the priority of a process. 
sched_yield( ) Relinquish the processor voluntarily without blocking. 
sched_get_ priority_min( ) Get the minimum priority value for a policy. 
sched_get_ priority_max( ) Get the maximum priority value for a policy. 
sched_rr_get_interval( ) Get the time quantum value for the Round Robin policy. 
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Most system calls shown in the table apply to real-time processes, thus allowing users to 
develop real-time applications. However, Linux does not support the most demanding  
real-time applications because its kernel is nonpreemptive (see Section 10.2.5). 

10.1.1 Process Preemption 

As mentioned in the first chapter, Linux processes are preemptive. If a process enters the 
TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the priority 
of the currently running process. If it is, the execution of current is interrupted and the 
scheduler is invoked to select another process to run (usually the process that just became 
runnable). Of course, a process may also be preempted when its time quantum expires. As 
mentioned in Section 5.4.3 in Chapter 5, when this occurs, the need_resched field of  
the current process is set, so the scheduler is invoked when the timer interrupt handler 
terminates. 

For instance, let us consider a scenario in which only two programs—a text editor  
and a compiler—are being executed. The text editor is an interactive program, therefore it has 
a higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the user 
alternates between pauses for think time and data entry; moreover, the average delay between 
two keypresses is relatively long. However, as soon as the user presses a key, an interrupt is 
raised, and the kernel wakes up the text editor process. The kernel also determines that the 
dynamic priority of the editor is higher than the priority of current, the currently running 
process (that is, the compiler), and hence it sets the need_resched field of this process, thus 
forcing the scheduler to be activated when the kernel finishes handling the interrupt.  
The scheduler selects the editor and performs a task switch; as a result, the execution of the 
editor is resumed very quickly and the character typed by the user is echoed to the screen. 
When the character has been processed, the text editor process suspends itself waiting for 
another keypress, and the compiler process can resume its execution. 

Be aware that a preempted process is not suspended, since it remains in the TASK_RUNNING 
state; it simply no longer uses the CPU. 

Some real-time operating systems feature preemptive kernels, which means that a process 
running in Kernel Mode can be interrupted after any instruction, just as it can in User Mode. 
The Linux kernel is not preemptive, which means that a process can be preempted only while 
running in User Mode; nonpreemptive kernel design is much simpler, since most 
synchronization problems involving the kernel data structures are easily avoided (see  
Section 11.2.1 in Chapter 11). 

10.1.2 How Long Must a Quantum Last? 

The quantum duration is critical for system performances: it should be neither too long nor 
too short. 

If the quantum duration is too short, the system overhead caused by task switches becomes 
excessively high. For instance, suppose that a task switch requires 10 milliseconds; if the 
quantum is also set to 10 milliseconds, then at least 50% of the CPU cycles will be dedicated 
to task switch.[2]  

[2] Actually, things could be much worse than this; for example, if the time required for task switch is counted in the process quantum, all CPU time 
will be devoted to task switch and no process can progress toward its termination. Anyway, you got the point. 
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If the quantum duration is too long, processes no longer appear to be executed concurrently. 
For instance, let's suppose that the quantum is set to five seconds; each runnable process 
makes progress for about five seconds, but then it stops for a very long time (typically, five 
seconds times the number of runnable processes). 

It is often believed that a long quantum duration degrades the response time of interactive 
applications. This is usually false. As described in Section 10.1.1 earlier in this chapter, 
interactive processes have a relatively high priority, therefore they quickly preempt the batch 
processes, no matter how long the quantum duration is. 

In some cases, a quantum duration that is too long degrades the responsiveness of the system. 
For instance, suppose that two users concurrently enter two commands at the respective shell 
prompts; one command is CPU-bound, while the other is an interactive application. Both 
shells fork a new process and delegate the execution of the user's command to it; moreover, 
suppose that such new processes have the same priority initially (Linux does not know in 
advance if an executed program is batch or interactive). Now, if the scheduler selects the 
CPU-bound process to run, the other process could wait for a whole time quantum before 
starting its execution. Therefore, if such duration is long, the system could appear to be 
unresponsive to the user that launched it. 

The choice of quantum duration is always a compromise. The rule of thumb adopted by Linux 
is: choose a duration as long as possible, while keeping good system response time. 

10.2 The Scheduling Algorithm 

The Linux scheduling algorithm works by dividing the CPU time into epochs . In a single 
epoch, every process has a specified time quantum whose duration is computed when the 
epoch begins. In general, different processes have different time quantum durations. The time 
quantum value is the maximum CPU time portion assigned to the process in that epoch. When 
a process has exhausted its time quantum, it is preempted and replaced by another runnable 
process. Of course, a process can be selected several times from the scheduler in the same 
epoch, as long as its quantum has not been exhausted—for instance, if it suspends itself to 
wait for I/O, it preserves some of its time quantum and can be selected again during the same 
epoch. The epoch ends when all runnable processes have exhausted their quantum; in this 
case, the scheduler algorithm recomputes the time-quantum durations of all processes and a 
new epoch begins. 

Each process has a base time quantum: it is the time-quantum value assigned by the scheduler 
to the process if it has exhausted its quantum in the previous epoch. The users can change the 
base time quantum of their processes by using the nice( ) and setpriority( ) system calls 
(see Section 10.3 later in this chapter). A new process always inherits the base time quantum 
of its parent. 

The INIT_TASK macro sets the value of the base time quantum of process (swapper) to 
DEF_PRIORITY; that macro is defined as follows: 

#define DEF_PRIORITY (20*HZ/100) 

Since HZ, which denotes the frequency of timer interrupts, is set to 100 for IBM PCs (see 
Section 5.1.3 in Chapter 5), the value of DEF_PRIORITY is 20 ticks, that is, about 210 ms. 
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Users rarely change the base time quantum of their processes, so DEF_PRIORITY also denotes 
the base time quantum of most processes in the system. 

In order to select a process to run, the Linux scheduler must consider the priority of each 
process. Actually, there are two kinds of priority: 

Static priority  

This kind is assigned by the users to real-time processes and ranges from 1 to 99. It is 
never changed by the scheduler. 

Dynamic priority  

This kind applies only to conventional processes; it is essentially the sum of the base 
time quantum (which is therefore also called the base priority of the process) and of 
the number of ticks of CPU time left to the process before its quantum expires in the 
current epoch. 

Of course, the static priority of a real-time process is always higher than the dynamic priority 
of a conventional one: the scheduler will start running conventional processes only when there 
is no real-time process in a TASK_RUNNING state. 

10.2.1 Data Structures Used by the Scheduler 

We recall from Section 3.1 in Chapter 3 that the process list links together all process 
descriptors, while the runqueue list links together the process descriptors of all runnable 
processes—that is, of those in a TASK_RUNNING state. In both cases, the init_task process 
descriptor plays the role of list header. 

Each process descriptor includes several fields related to scheduling: 

need_resched  

A flag checked by ret_from_intr( ) to decide whether to invoke the schedule( ) 
function (see Section 4.7.1 in Chapter 4). 

policy  

The scheduling class. The values permitted are: 

SCHED_FIFO  

A First-In, First-Out real-time process. When the scheduler assigns the CPU to the 
process, it leaves the process descriptor in its current position in the runqueue list. If 
no other higher-priority real-time process is runnable, the process will continue to use 
the CPU as long as it wishes, even if other real-time processes having the same 
priority are runnable. 
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SCHED_RR  

A Round Robin real-time process. When the scheduler assigns the CPU to the process, 
it puts the process descriptor at the end of the runqueue list. This policy ensures a fair 
assignment of CPU time to all SCHED_RR real-time processes that have the same 
priority. 

SCHED_OTHER  

A conventional, time-shared process. 

The policy field also encodes a SCHED_YIELD binary flag. This flag is set when the 
process invokes the sched_ yield( ) system call (a way of voluntarily relinquishing 
the processor without the need to start an I/O operation or go to sleep; see Section 
10.3.3). The scheduler puts the process descriptor at the bottom of the runqueue list 
(see Section 10.3). 

rt_priority  

The static priority of a real-time process. Conventional processes do not make use of 
this field. 

priority  

The base time quantum (or base priority) of the process. 

counter  

The number of ticks of CPU time left to the process before its quantum expires; when 
a new epoch begins, this field contains the time-quantum duration of the process. 
Recall that the update_process_times( ) function decrements the counter field of 
the current process by 1 at every tick. 

When a new process is created, do_fork( ) sets the counter field of both current (the 
parent) and p (the child) processes in the following way: 

current->counter >>= 1;  
p->counter = current->counter; 

In other words, the number of ticks left to the parent is split in two halves, one for the parent 
and one for the child. This is done to prevent users from getting an unlimited amount of CPU 
time by using the following method: the parent process creates a child process that runs the 
same code and then kills itself; by properly adjusting the creation rate, the child process 
would always get a fresh quantum before the quantum of its parent expires. This 
programming trick does not work since the kernel does not reward forks. Similarly, a user 
cannot hog an unfair share of the processor by starting lots of background processes in a shell 
or by opening a lot of windows on a graphical desktop. More generally speaking, a process 
cannot hog resources (unless it has privileges to give itself a real-time policy) by forking 
multiple descendents. 
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Notice that the priority and counter fields play different roles for the various kinds of 
processes. For conventional processes, they are used both to implement time-sharing and to 
compute the process dynamic priority. For SCHED_RR real-time processes, they are used only 
to implement time-sharing. Finally, for SCHED_FIFO real-time processes, they are not used at 
all, because the scheduling algorithm regards the quantum duration as unlimited. 

10.2.2 The schedule( ) Function 

schedule( ) implements the scheduler. Its objective is to find a process in the runqueue list 
and then assign the CPU to it. It is invoked, directly or in a lazy way, by several kernel 
routines. 

10.2.2.1 Direct invocation 

The scheduler is invoked directly when the current process must be blocked right away 
because the resource it needs is not available. In this case, the kernel routine that wants to 
block it proceeds as follows: 

1. Inserts current in the proper wait queue 
2. Changes the state of current either to TASK_INTERRUPTIBLE or to 

TASK_UNINTERRUPTIBLE 
3. Invokes schedule( ) 
4. Checks if the resource is available; if not, goes to step 2 
5. Once the resource is available, removes current from the wait queue 

As can be seen, the kernel routine checks repeatedly whether the resource needed by the 
process is available; if not, it yields the CPU to some other process by invoking schedule( 
). Later, when the scheduler once again grants the CPU to the process, the availability of the 
resource is again checked. 

You may have noticed that these steps are similar to those performed by the sleep_on( ) and 
interruptible_sleep_on( ) functions described in Section 3.1.4 in Chapter 3. However, 
the functions we discuss here immediately remove the process from the wait queue as soon as 
it is woken up. 

The scheduler is also directly invoked by many device drivers that execute long iterative 
tasks. At each iteration cycle, the driver checks the value of the need_resched field and, if 
necessary, invokes schedule( ) to voluntarily relinquish the CPU. 

10.2.2.2 Lazy invocation 

The scheduler can also be invoked in a lazy way by setting the need_resched field of 
current to 1. Since a check on the value of this field is always made before resuming the 
execution of a User Mode process (see Section 4.7 in Chapter 4), schedule( ) will definitely 
be invoked at some close future time. 

Lazy invocation of the scheduler is performed in the following cases: 

• When current has used up its quantum of CPU time; this is done by the 
update_process_times( ) function. 
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• When a process is woken up and its priority is higher than that of the current process; 
this task is performed by the reschedule_idle( ) function, which is invoked by the 
wake_up_process( ) function (see Section 3.1.2 in Chapter 3): 

• if (goodness(current, p) > goodness(current, current))  
    current->need_resched = 1; 

(The goodness( ) function will be described later in Section 10.2.3) 

• When a sched_setscheduler( ) or sched_ yield( ) system call is issued (see 
Section 10.3 later in this chapter). 

10.2.2.3 Actions performed by schedule( ) 

Before actually scheduling a process, the schedule( ) function starts by running the 
functions left by other kernel control paths in various queues. The function invokes 
run_task_queue( ) on the tq _scheduler task queue. Linux puts a function in that task 
queue when it must defer its execution until the next schedule( ) invocation: 

run_task_queue(&tq_scheduler); 

The function then executes all active unmasked bottom halves. These are usually present to 
perform tasks requested by device drivers (see Section 4.6.6 in Chapter 4): 

if (bh_active & bh_mask)  
    do_bottom_half(  ); 

Now comes the actual scheduling, and therefore a potential process switch. 

The value of current is saved in the prev local variable and the need_resched field of prev 
is set to 0. The key outcome of the function is to set another local variable called next so that 
it points to the descriptor of the process selected to replace prev. 

First, a check is made to determine whether prev is a Round Robin real-time process (policy 
field set to SCHED_RR) that has exhausted its quantum. If so, schedule( ) assigns a new 
quantum to prev and puts it at the bottom of the runqueue list: 

if (!prev->counter && prev->policy == SCHED_RR) {  
    prev->counter = prev->priority;  
    move_last_runqueue(prev);  
} 

Now schedule( ) examines the state of prev. If it has nonblocked pending signals and its 
state is TASK_INTERRUPTIBLE, the function wakes up the process as follows. This action is not 
the same as assigning the processor to prev; it just gives prev a chance to be selected for 
execution: 

if (prev->state == TASK_INTERRUPTIBLE &&  
    signal_pending(prev))  
    prev->state = TASK_RUNNING; 
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If prev is not in the TASK_RUNNING state, schedule( ) was directly invoked by the process 
itself because it had to wait on some external resource; therefore, prev must be removed from 
the runqueue list: 

if (prev->state != TASK_RUNNING)  
    del_from_runqueue(prev); 

Next, schedule( ) must select the process to be executed in the next time quantum. To that 
end, the function scans the runqueue list. It starts from the process referenced by the 
next_run field of init_task, which is the descriptor of process (swapper). The objective is 
to store in next the process descriptor pointer of the highest priority process. In order to do 
this, next is initialized to the first runnable process to be checked, and c is initialized to its 
"goodness" (see Section 10.2.3): 

if (prev->state == TASK_RUNNING) {  
    next = prev;  
    if (prev->policy & SCHED_YIELD) {  
        prev->policy &= ~SCHED_YIELD;  
        c = 0;  
    } else  
        c = goodness(prev, prev);  
} else {  
    c = -1000;  
    next = &init_task;  
} 

If the SCHED_YIELD flag of prev->policy is set, prev has voluntarily relinquished the CPU 
by issuing a sched_ yield( ) system call. In this case, the function assigns a zero goodness 
to it. 

Now schedule( ) repeatedly invokes the goodness( ) function on the runnable processes 
to determine the best candidate: 

p = init_task.next_run;  
while (p != &init_task) {  
    weight = goodness(prev, p);  
    if (weight > c) {  
        c = weight;  
        next = p;  
    }  
    p = p->next_run;  
} 

The while loop selects the first process in the runqueue having maximum weight. If the 
previous process is runnable, it is preferred with respect to other runnable processes having 
the same weight. 

Notice that if the runqueue list is empty (no runnable process exists except for swapper), the 
cycle is not entered and next points to init_task. Moreover, if all processes in the runqueue 
list have a priority lesser than or equal to the priority of prev, no process switch will take 
place and the old process will continue to be executed. 

A further check must be made at the exit of the loop to determine whether c is 0. This occurs 
only when all the processes in the runqueue list have exhausted their quantum, that is, all of 
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them have a zero counter field. When this happens, a new epoch begins, therefore 
schedule( ) assigns to all existing processes (not only to the TASK_RUNNING ones) a fresh 
quantum, whose duration is the sum of the priority value plus half the counter value: 

if (!c) {  
    for_each_task(p)  
        p->counter = (p->counter >> 1) + p->priority;  
} 

In this way, suspended or stopped processes have their dynamic priorities periodically 
increased. As stated earlier, the rationale for increasing the counter value of suspended or 
stopped processes is to give preference to I/O-bound processes. However, even after an 
infinite number of increases, the value of counter can never become larger than twice[3] the 
priority value. 

[3] Assume both priority and counter equal to P; then the geometric series Px (1 + 1/2 + 1/4 + 1/8 + . . . ) converges to 2 xP. 

Now comes the concluding part of schedule( ): if a process other than prev has been 
selected, a process switch must take place. Before performing it, however, the 
context_swtch field of kstat is increased by 1 to update the statistics maintained by the 
kernel: 

if (prev != next) {  
    kstat.context_swtch++;  
    switch_to(prev,next);  
}  
return; 

Notice that the return statement that exits from schedule( ) will not be performed right 
away by the next process but at a later time by the prev one when the scheduler selects it 
again for execution. 

10.2.3 How Good Is a Runnable Process? 

The heart of the scheduling algorithm includes identifying the best candidate among all 
processes in the runqueue list. This is what the goodness( ) function does. It receives as 
input parameters prev (the descriptor pointer of the previously running process) and p (the 
descriptor pointer of the process to evaluate). The integer value c returned by goodness( ) 
measures the "goodness" of p and has the following meanings: 

c = -1000  

p must never be selected; this value is returned when the runqueue list contains only 
init_task. 

c = 0  

p has exhausted its quantum. Unless p is the first process in the runqueue list and all 
runnable processes have also exhausted their quantum, it will not be selected for 
execution. 
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0 < c < 1000  

p is a conventional process that has not exhausted its quantum; a higher value of c 
denotes a higher level of goodness. 

c >= 1000  

p is a real-time process; a higher value of c denotes a higher level of goodness. 

The goodness( ) function is equivalent to: 

if (p->policy != SCHED_OTHER)  
       return 1000 + p->rt_priority;  
if (p->counter == 0)  
       return 0;  
if (p->mm == prev->mm)  
       return p->counter + p->priority + 1;  
return p->counter + p->priority; 

If the process is real-time, its goodness is set to at least 1000. If it is a conventional process 
that has exhausted its quantum, its goodness is set to 0; otherwise, it is set to p->counter + 
p->priority. 

A small bonus is given to p if it shares the address space with prev (i.e., if their process 
descriptors' mm fields point to the same memory descriptor). The rationale for this bonus is that 
if p runs right after prev, it will use the same page tables, hence the same memory; some of 
the valuable data may still be in the hardware cache. 

10.2.4 The Linux/SMP Scheduler 

The Linux scheduler must be slightly modified in order to support the symmetric 
multiprocessor (SMP) architecture. Actually, each processor runs the schedule( ) function 
on its own, but processors must exchange information in order to boost system performance. 

When the scheduler computes the goodness of a runnable process, it should consider whether 
that process was previously running on the same CPU or on another one. A process that was 
running on the same CPU is always preferred, since the hardware cache of the CPU could still 
include useful data. This rule helps in reducing the number of cache misses. 

Let us suppose, however, that CPU 1 is running a process when a second, higher-priority 
process that was last running on CPU 2 becomes runnable. Now the kernel is faced with an 
interesting dilemma: should it immediately execute the higher-priority process on CPU 1, or 
should it defer that process's execution until CPU 2 becomes available? In the former case, 
hardware caches contents are discarded; in the latter case, parallelism of the SMP architecture 
may not be fully exploited when CPU 2 is running the idle process (swapper). 

In order to achieve good system performance, Linux/SMP adopts an empirical rule to solve 
the dilemma. The adopted choice is always a compromise, and the trade-off mainly depends 
on the size of the hardware caches integrated into each CPU: the larger the CPU cache is, the 
more convenient it is to keep a process bound on that CPU. 
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10.2.4.1 Linux/SMP scheduler data structures 

An aligned_data table includes one data structure for each processor, which is used mainly 
to obtain the descriptors of current processes quickly. Each element is filled by every 
invocation of the schedule( ) function and has the following structure: 

struct schedule_data {  
    struct task_struct * curr;  
    unsigned long last_schedule;  
}; 

The curr field points to the descriptor of the process running on the corresponding CPU, 
while last_schedule specifies when schedule( ) selected curr as the running process. 

Several SMP-related fields are included in the process descriptor. In particular, the 
avg_slice field keeps track of the average quantum duration of the process, and the 
processor field stores the logical identifier of the last CPU that executed it. 

The cacheflush_time variable contains a rough estimate of the minimal number of CPU 
cycles it takes to entirely overwrite the hardware cache content. It is initialized by the 
smp_tune_scheduling( ) function to: 

 

Intel Pentium processors have a hardware cache of 8 KB, so their cacheflush_time is 
initialized to a few hundred CPU cycles, that is, a few microseconds. Recent Intel processors 
have larger hardware caches, and therefore the minimal cache flush time could range from 50 
to 100 microseconds. 

As we shall see later, if cacheflush_time is greater than the average time slice of some 
currently running process, no process preemption is performed because it is convenient in this 
case to bind processes to the processors that last executed them. 

10.2.4.2 The schedule( ) function 

When the schedule( ) function is executed on an SMP system, it carries out the following 
operations: 

1. Performs the initial part of schedule( ) as usual. 
2. Stores the logical identifier of the executing processor in the this_cpu local variable; 

such value is read from the processor field of prev (that is, of the process to be 
replaced). 

3. Initializes the sched_data local variable so that it points to the schedule_data 
structure of the this_cpu CPU. 

4. Invokes goodness( ) repeatedly to select the new process to be executed; this 
function also examines the processor field of the processes and gives a consistent 
bonus (PROC_CHANGE_PENALTY, usually 15) to the process that was last executed on 
the this_cpu CPU. 

5. If needed, recomputes process dynamic priorities as usual. 
6. Sets sched_data->curr to next. 
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7. Sets next->has_cpu to 1 and next->processor to this_cpu. 
8. Stores the current Time Stamp Counter value in the t local variable. 
9. Stores the last time slice duration of prev in the this_slice local variable; this value 

is the difference between t and sched_data->last_schedule. 
10. Sets sched_data->last_schedule to t. 
11. Sets the avg_slice field of prev to (prev->avg_slice+this_slice)/2; in other 

words, updates the average. 
12. Performs the context switch. 
13. When the kernel returns here, the original previous process has been selected again by 

the scheduler; the prev local variable now refers to the process that has just been 
replaced. If prev is still runnable and it is not the idle task of this CPU, invokes the 
reschedule_idle( ) function on it (see the next section). 

14. Sets the has_cpu field of prev to 0. 

10.2.4.3 The reschedule_idle( ) function 

The reschedule_idle( ) function is invoked when a process p becomes runnable (see 
Section 10.2.2). On an SMP system, the function determines whether the process should 
preempt the current process of some CPU. It performs the following operations: 

1. If p is a real-time process, always attempts to perform preemption: go to step 3. 
2. Returns immediately (does not attempt to preempt) if there is a CPU whose current 

process satisfies both of the following conditions:[4]  

[4] These conditions look like voodoo magic; perhaps, they are empirical rules that make the SMP scheduler work better. 

o cacheflush_time is greater than the average time slice of the current process. 
If this is true, the process is not dirtying the cache significantly. 

o Both p and the current process need the global kernel lock (see Section 11.4.6 
in Chapter 11) in order to access some critical kernel data structure. This check 
is performed because replacing a process holding the lock with another one 
that needs it is not fruitful. 

3. If the p->processor CPU (the one on which p was last running) is idle, selects it. 
4. Otherwise, computes the difference: 

goodness(tsk, p) - goodness(tsk, tsk)  

for each task tsk running on some CPU and selects the CPU for which the difference 
is greatest, provided it is a positive value. 

5. If CPU has been selected, sets the need_resched field of the corresponding running 
process and sends a "reschedule" message to that processor (see Section 11.4.7 in 
Chapter 11). 

10.2.5 Performance of the Scheduling Algorithm 

The scheduling algorithm of Linux is both self-contained and relatively easy to follow. For 
that reason, many kernel hackers love to try to make improvements. However, the scheduler is 
a rather mysterious component of the kernel. While you can change its performance 
significantly by modifying just a few key parameters, there is usually no theoretical support to 
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justify the results obtained. Furthermore, you can't be sure that the positive (or negative) 
results obtained will continue to hold when the mix of requests submitted by the users (real-
time, interactive, I/O-bound, background, etc.) varies significantly. Actually, for almost every 
proposed scheduling strategy, it is possible to derive an artificial mix of requests that yields 
poor system performances. 

Let us try to outline some pitfalls of the Linux scheduler. As it will turn out, some of these 
limitations become significant on large systems with many users. On a single workstation that 
is running a few tens of processes at a time, the Linux scheduler is quite efficient. Since Linux 
was born on an Intel 80386 and continues to be most popular in the PC world, we consider the 
current Linux scheduler quite appropriate. 

10.2.5.1 The algorithm does not scale well 

If the number of existing processes is very large, it is inefficient to recompute all dynamic 
priorities at once. 

In old traditional Unix kernels, the dynamic priorities were recomputed every second, thus the 
problem was even worse. Linux tries instead to minimize the overhead of the scheduler. 
Priorities are recomputed only when all runnable processes have exhausted their time 
quantum. Therefore, when the number of processes is large, the recomputation phase is more 
expensive but is executed less frequently. 

This simple approach has the disadvantage that when the number of runnable processes is 
very large, I/O-bound processes are seldom boosted, and therefore interactive applications 
have a longer response time. 

10.2.5.2 The predefined quantum is too large for high system loads 

The system responsiveness experienced by users depends heavily on the system load, which is 
the average number of processes that are runnable, and hence waiting for CPU time.[5]  

[5] The uptime program returns the system load for the past 1, 5, and 15 minutes. The same information can be obtained by reading the 
/proc/loadavgfile. 

As mentioned before, system responsiveness depends also on the average time-quantum 
duration of the runnable processes. In Linux, the predefined time quantum appears to be too 
large for high-end machines having a very high expected system load. 

10.2.5.3 I/O-bound process boosting strategy is not optimal 

The preference for I/O-bound processes is a good strategy to ensure a short response time for 
interactive programs, but it is not perfect. Indeed, some batch programs with almost no user 
interaction are I/O-bound. For instance, consider a database search engine that must typically 
read lots of data from the hard disk or a network application that must collect data from a 
remote host on a slow link. Even if these kinds of processes do not need a short response time, 
they are boosted by the scheduling algorithm. 

On the other hand, interactive programs that are also CPU-bound may appear unresponsive to 
the users, since the increment of dynamic priority due to I/O blocking operations may not 
compensate for the decrement due to CPU usage. 
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10.2.5.4 Support for real-time applications is weak 

As stated in the first chapter, nonpreemptive kernels are not well suited for real-time 
applications, since processes may spend several milliseconds in Kernel Mode while handling 
an interrupt or exception. During this time, a real-time process that becomes runnable cannot 
be resumed. This is unacceptable for real-time applications, which require predictable and low 
response times.[6]  

[6] The Linux kernel has been modified in several ways so it can handle a few hard real-time jobs if they remain short. Basically, hardware interrupts 
are trapped and kernel execution is monitored by a kind of "superkernel." These changes do not make Linux a true real-time system, though. 

Future versions of Linux will likely address this problem, either by implementing SVR4's 
"fixed preemption points" or by making the kernel fully preemptive. 

However, kernel preemption is just one of several necessary conditions for implementing an 
effective real-time scheduler. Several other issues must be considered. For instance, real-time 
processes often must use resources also needed by conventional processes. A real-time 
process may thus end up waiting until a lower-priority process releases some resource. This 
phenomenon is called priority inversion. Moreover, a real-time process could require a kernel 
service that is granted on behalf of another lower-priority process (for example, a kernel 
thread). This phenomenon is called hidden scheduling. An effective real-time scheduler 
should address and resolve such problems. 

10.3 System Calls Related to Scheduling 

Several system calls have been introduced to allow processes to change their priorities and 
scheduling policies. As a general rule, users are always allowed to lower the priorities of their 
processes. However, if they want to modify the priorities of processes belonging to some 
other user or if they want to increase the priorities of their own processes, they must have 
superuser privileges. 

10.3.1 The nice( ) System Call 

The nice( )[7] system call allows processes to change their base priority. The integer value 
contained in the increment parameter is used to modify the priority field of the process 
descriptor. The nice Unix command, which allows users to run programs with modified 
scheduling priority, is based on this system call. 

[7] Since this system call is usually invoked to lower the priority of a process, users who invoke it for their processes are "nice" toward other users. 

The sys_nice( ) service routine handles the nice( ) system call. Although the increment 
parameter may have any value, absolute values larger than 40 are trimmed down to 40. 
Traditionally, negative values correspond to requests for priority increments and require 
superuser privileges, while positive ones correspond to requests for priority decrements. 

The function starts by copying the value of increment into the newprio local variable. In the 
case of a negative increment, the function invokes the capable( ) function to verify whether 
the process has a CAP_SYS_NICE capability. We shall discuss that function, together with the 
notion of capability, in Chapter 19. If the user turns out to have the capability required to 
change priorities, sys_nice( ) changes the sign of newprio and it sets the increase local 
flag: 
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increase = 0  
newprio = increment;  
if (increment < 0) {  
    if (!capable(CAP_SYS_NICE))  
        return -EPERM;  
    newprio = -increment;  
    increase = 1;  
} 

If newprio has a value larger than 40, the function trims it down to 40. At this point, the 
newprio local variable may have any value included from to 40, inclusive. The value is then 
converted according to the priority scale used by the scheduling algorithm. Since the highest 
base priority allowed is 2 x DEF_PRIORITY, the new value is: 

 

The resulting value is copied into increment with the proper sign: 

if (newprio > 40)  
    newprio = 40;  
newprio = (newprio * DEF_PRIORITY + 10) / 20;  
increment = newprio;  
if (increase)  
    increment = -increment; 

Since newprio is an integer variable, the expression in the code is equivalent to the formula 
shown earlier. 

The function then sets the final value of priority by subtracting the value of increment 
from it. However, the final base priority of the process cannot be smaller than 1 or larger than 
2 x DEF_PRIORITY: 

if (current->priority - increment < 1)  
    current->priority = 1;  
else if (current->priority > DEF_PRIORITY*2)  
    current->priority = DEF_PRIORITY*2;  
else  
    current->priority -= increment;  
return 0; 

A niced process changes over time like any other process, getting extra priority if necessary 
or dropping back in deference to other processes. 

10.3.2 The getpriority( ) and setpriority( ) System Calls 

The nice( ) system call affects only the process that invokes it. Two other system calls, 
denoted as getpriority( ) and setpriority( ), act on the base priorities of all processes 
in a given group. getpriority( ) returns 20 plus the highest base priority among all 
processes in a given group; setpriority( ) sets the base priority of all processes in a given 
group to a given value. 
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The kernel implements these system calls by means of the sys_getpriority( ) and 
sys_setpriority( ) service routines. Both of them act essentially on the same group of 
parameters: 

which  

Identifies the group of processes; it can assume one of the following values: 

PRIO_PROCESS  

Select the processes according to their process ID (pid field of the process descriptor). 

PRIO_PGRP  

Select the processes according to their group ID (pgrp field of the process descriptor). 

PRIO_USER  

Select the processes according to their user ID (uid field of the process descriptor). 

who  

Value of the pid, pgrp, or uid field (depending on the value of which) to be used for 
selecting the processes. If who is 0, its value is set to that of the corresponding field of 
the current process. 

niceval  

The new base priority value (needed only by sys_setpriority( )). It should range 
between -20 (highest priority) and +20 (minimum priority). 

As stated before, only processes with a CAP_SYS_NICE capability are allowed to increase their 
own base priority or to modify that of other processes. 

As we have seen in Chapter 8, system calls return a negative value only if some error 
occurred. For that reason, getpriority( ) does not return a normal nice value ranging 
between -20 and 20, but rather a nonnegative value ranging between and 40. 

10.3.3 System Calls Related to Real-Time Processes 

We now introduce a group of system calls that allow processes to change their scheduling 
discipline and, in particular, to become real-time processes. As usual, a process must have a 
CAP_SYS_NICE capability in order to modify the values of the rt_priority and policy 
process descriptor fields of any process, including itself. 

10.3.3.1 The sched_getscheduler( ) and sched_setscheduler( ) system calls 

The sched_ getscheduler( ) system call queries the scheduling policy currently applied to 
the process identified by the pid parameter. If pid equals 0, the policy of the calling process 
will be retrieved. On success, the system call returns the policy for the process: SCHED_FIFO , 
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SCHED_RR, or SCHED_OTHER. The corresponding sys_sched_getscheduler( ) service 
routine invokes find_task_by_pid( ), which locates the process descriptor corresponding 
to the given pid and returns the value of its policy field. 

The sched_setscheduler( ) system call sets both the scheduling policy and the associated 
parameters for the process identified by the parameter pid. If pid is equal to 0, the scheduler 
parameters of the calling process will be set. 

The corresponding sys_sched_setscheduler( ) function checks whether the scheduling 
policy specified by the policy parameter and the new static priority specified by the param-
>sched_priority parameter are valid. It also checks whether the process has CAP_SYS_NICE 
capability or whether its owner has superuser rights. If everything is OK, it executes the 
following statements: 

p->policy = policy;  
p->rt_priority = param->sched_priority;  
if (p->next_run)  
    move_first_runqueue(p);  
current->need_resched = 1; 

10.3.3.2 The sched_ getparam( ) and sched_setparam( ) system calls 

The sched_getparam( ) system call retrieves the scheduling parameters for the process 
identified by pid. If pid is 0, the parameters of the current process are retrieved. The 
corresponding sys_sched_getparam( ) service routine, as one would expect, finds the 
process descriptor pointer associated with pid, stores its rt_priority field in a local variable 
of type sched_param, and invokes copy_to_user( ) to copy it into the process address 
space at the address specified by the param parameter. 

The sched_setparam( ) system call is similar to sched_setscheduler( ): it differs from 
the latter by not letting the caller set the policy field's value.[8] The corresponding 
sys_sched_setparam( ) service routine is almost identical to sys_sched_setscheduler( 
), but the policy of the affected process is never changed. 

[8] This anomaly is caused by a specific requirement of the POSIX standard. 

10.3.3.3 The sched_ yield( ) system call 

The sched_ yield( ) system call allows a process to relinquish the CPU voluntarily without 
being suspended; the process remains in a TASK_RUNNING state, but the scheduler puts it at the 
end of the runqueue list. In this way, other processes having the same dynamic priority will 
have a chance to run. The call is used mainly by SCHED_FIFO processes. 

The corresponding sys_sched_ yield( ) service routine executes these statements: 

if (current->policy == SCHED_OTHER)  
    current->policy |= SCHED_YIELD;  
current->need_resched = 1;  
move_last_runqueue(current); 

Notice that the SCHED_YIELD field is set in the policy field of the process descriptor only if 
the process is a conventional SCHED_OTHER process. As a result, the next invocation of 
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schedule( ) will view this process as one that has exhausted its time quantum (see how 
schedule( ) handles the SCHED_YIELD field). 

10.3.3.4 The sched_ get_priority_min( ) and sched_ get_priority_max( ) system calls 

The sched_get_priority_min( ) and sched_get_priority_max( ) system calls return, 
respectively, the minimum and the maximum real-time static priority value that can be used 
with the scheduling policy identified by the policy parameter. 

The sys_sched_get_priority_min( ) service routine returns 1 if current is a real-time 
process, otherwise. 

The sys_sched_get_priority_max( ) service routine returns 99 (the highest priority) if 
current is a real-time process, otherwise. 

10.3.3.5 The sched_rr_ get_interval( ) system call 

The sched_rr_get_interval( ) system call should get the round robin time quantum for 
the named real-time process. 

The corresponding sys_sched_rr_get_interval( ) service routine does not operate as 
expected, since it always returns a 150-millisecond value in the timespec structure pointed to 
by tp. This system call remains effectively unimplemented in Linux. 

10.4 Anticipating Linux 2.4 

Linux 2.4 introduces a subtle optimization concerning TLB flushing for kernel threads and 
zombie processes. As a result, the active Page Global Directory is set by the schedule( ) 
function rather than by the switch_to macro. 

The Linux 2.4 scheduling algorithm for SMP machines has been improved and simplified. 
Whenever a new process becomes runnable, the kernel checks whether the preferred CPU of 
the process, that is, the CPU on which it was last running, is idle; in this case, the kernel 
assigns the process to that CPU. Otherwise, the kernel assigns the process to another idle 
CPU, if any. If all CPUs are busy, the kernel checks whether the process has enough priority 
to preempt the process running on the preferred CPU. If not, the kernel tries to preempt some 
other CPU only if the new runnable process is real-time or if it has short average time slices 
compared to the hardware cache rewriting time. (Roughly, preemption occurs if the new 
runnable process is interactive and the preferred CPU will not reschedule shortly.) 
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Chapter 11. Kernel Synchronization 
You could think of the kernel as a server that answers requests; these requests can come either 
from a process running on a CPU or an external device issuing an interrupt request. We make 
this analogy to underscore that parts of the kernel are not run serially but in an interleaved 
way. Thus, they can give rise to race conditions, which must be controlled through proper 
synchronization techniques. A general introduction to these topics can be found in Section 1.6 
in Chapter 1. 

We start this chapter by reviewing when, and to what extent, kernel requests are executed in 
an interleaved fashion. We then introduce four basic synchronization techniques implemented 
by the kernel and illustrate how they are applied by means of examples. 

The next two sections deal with the extension of the Linux kernel to multiprocessor 
architectures. The first describes some hardware features of the Symmetric Multiprocessor 
(SMP) architecture, while the second discusses additional mutual exclusion techniques 
adopted by the SMP version of the Linux kernel. 

11.1 Kernel Control Paths 

As we said, kernel functions are executed following a request that may be issued in two 
possible ways: 

• A process executing in User Mode causes an exception, for instance by executing an 
int 0x80 assembly language instruction. 

• An external device sends a signal to a Programmable Interrupt Controller by using an 
IRQ line, and the corresponding interrupt is enabled. 

The sequence of instructions executed in Kernel Mode to handle a kernel request is denoted as 
kernel control path : when a User Mode process issues a system call request, for instance, the 
first instructions of the corresponding kernel control path are those included in the initial part 
of the system_call( ) function, while the last instructions are those included in the 
ret_from_sys_call( ) function. 

In Section 4.3 in Chapter 4, a kernel control path was defined as a sequence of instructions 
executed by the kernel to handle a system call, an exception, or an interrupt. Kernel control 
paths play a role similar to that of processes, except that they are much more rudimentary: 
first, no descriptor of any kind is attached to them; second, they are not scheduled through a 
single function, but rather by inserting sequences of instructions that stop or resume the paths 
into the kernel code. 

In the simplest cases, the CPU executes a kernel control path sequentially from the first 
instruction to the last. When one of the following events occurs, however, the CPU interleaves 
kernel control paths: 

• A context switch occurs. As we have seen in Chapter 10, a context switch can occur 
only when the schedule( ) function is invoked. 
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• An interrupt occurs while the CPU is running a kernel control path with interrupts 
enabled. In this case, the first kernel control path is left unfinished and the CPU starts 
processing another kernel control path to handle the interrupt. 

It is important to interleave kernel control paths in order to implement multiprocessing. In 
addition, as already noticed in Section 4.3 in Chapter 4, interleaving improves the throughput 
of programmable interrupt controllers and device controllers. 

While interleaving kernel control paths, special care must be applied to data structures that 
contain several related member variables, for instance, a buffer and an integer indicating its 
length. All statements affecting such a data structure must be put into a single critical section, 
otherwise, it is in danger of being corrupted. 

11.2 Synchronization Techniques 

Chapter 1 introduced the concepts of race condition and critical region for processes. The 
same definitions apply to kernel control paths. In this chapter, a race condition can occur 
when the outcome of some computation depends on how two or more interleaved kernel 
control paths are nested. A critical region is any section of code that should be completely 
executed by each kernel control path that begins it, before another kernel control path can 
enter it. 

We now examine how kernel control paths can be interleaved while avoiding race conditions 
among shared data. We'll distinguish four broad types of synchronization techniques: 

• Nonpreemptability of processes in Kernel Mode 
• Atomic operations 
• Interrupt disabling 
• Locking 

11.2.1 Nonpreemptability of Processes in Kernel Mode 

As already pointed out, the Linux kernel is not preemptive, that is, a running process cannot 
be preempted (replaced by a higher-priority process) while it remains in Kernel Mode. In 
particular, the following assertions always hold in Linux: 

• No process running in Kernel Mode may be replaced by another process, except when 
the former voluntarily relinquishes control of the CPU.[1]  

[1] Of course, all context switches are performed in Kernel Mode. However, a context switch may occur only when the current process is going to 
return in User Mode. 

• Interrupt or exception handling can interrupt a process running in Kernel Mode; 
however, when the interrupt handler terminates, the kernel control path of the process 
is resumed. 

• A kernel control path performing interrupt or exception handling can be interrupted 
only by another control path performing interrupt or exception handling. 

Thanks to the above assertions, kernel control paths dealing with nonblocking system calls are 
atomic with respect to other control paths started by system calls. This simplifies the 
implementation of many kernel functions: any kernel data structures that are not updated by 
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interrupt or exception handlers can be safely accessed. However, if a process in Kernel Mode 
voluntarily relinquishes the CPU, it must ensure that all data structures are left in a consistent 
state. Moreover, when it resumes its execution, it must recheck the value of all previously 
accessed data structures that could be changed. The change could be caused by a different 
kernel control path, possibly running the same code on behalf of a separate process. 

11.2.2 Atomic Operations 

The easiest way to prevent race conditions is by ensuring that an operation is atomic at the 
chip level: the operation must be executed in a single instruction. These very small atomic 
operations can be found at the base of other, more flexible mechanisms to create critical 
sections. 

Thus, an atomic operation is something that can be performed by executing a single assembly 
language instruction in an "atomic" way, that is, without being interrupted in the middle. 

Let's review Intel 80x86 instructions according to that classification: 

• Assembly language instructions that make zero or one memory access are atomic. 
• Read/modify/write assembly language instructions such as inc or dec that read data 

from memory, update it, and write the updated value back to memory are atomic if no 
other processor has taken the memory bus after the read and before the write. Memory 
bus stealing, naturally, never happens in a uniprocessor system, because all memory 
accesses are made by the same processor. 

• Read/modify/write assembly language instructions whose opcode is prefixed by the 
lock byte (0xf0) are atomic even on a multiprocessor system. When the control unit 
detects the prefix, it "locks" the memory bus until the instruction is finished. 
Therefore, other processors cannot access the memory location while the locked 
instruction is being executed. 

• Assembly language instructions whose opcode is prefixed by a rep byte (0xf2, 0xf3), 
which forces the control unit to repeat the same instruction several times, are not 
atomic: the control unit checks for pending interrupts before executing a new iteration. 

When you write C code, you cannot guarantee that the compiler will use a single, atomic 
instruction for an operation like a=a+1 or even for a++. Thus, the Linux kernel provides 
special functions (see Table 11-1) that it implements as single, atomic assembly language 
instructions; on multiprocessor systems each such instruction is prefixed by a lock byte. 
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Table 11-1. Atomic Operations in C 
Function Description 
atomic_read(v) Return *v 
atomic_set(v,i) Set *v to i. 
atomic_add(i,v) Add i to *v. 
atomic_sub(i,v) Subtract i from *v. 
atomic_inc(v) Add 1 to *v. 
atomic_dec(v) Subtract 1 from *v. 

atomic_dec_and_test(v) Subtract 1 from *v and return 1 if the result is non-null, 
otherwise. 

atomic_inc_and_test_greater_zero(v) Add 1 to *v and return 1 if the result is positive, otherwise.
atomic_clear_mask(mask,addr) Clear all bits of addr specified by mask. 
atomic_set_mask(mask,addr) Set all bits of addr specified by mask. 

11.2.3 Interrupt Disabling 

For any section of code too large to be defined as an atomic operation, more complicated 
means of providing critical sections are needed. To ensure that no window is left open for a 
race condition to slip in, even a window one instruction long, these critical sections always 
have an atomic operation at their base. 

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of kernel 
statements is operated as a critical section. It allows a kernel control path to continue 
executing even when hardware devices issue IRQ signals, thus providing an effective way to 
protect data structures that are also accessed by interrupt handlers. 

However, interrupt disabling alone does not always prevent kernel control path interleaving. 
Indeed, a kernel control path could raise a "Page fault" exception, which in turn could suspend 
the current process (and thus the corresponding kernel control path). Or again, a kernel 
control path could directly invoke the schedule( ) function. This happens during most I/O 
disk operations because they are potentially blocking, that is, they may force the process to 
sleep until the I/O operation completes. Therefore, the kernel must never execute a blocking 
operation when interrupts are disabled, since the system could freeze. 

Interrupts can be disabled by means of the cli assembly language instruction, which is 
yielded by the _ _cli( ) and cli( ) macros. Interrupts can be enabled by means of the sti 
assembly language instruction, which is yielded by the __sti( ) and sti( ) macros. On a 
uniprocessor system cli( ) is equivalent to __cli( ) and sti( ) is equivalent to __sti( 
); however, as we shall see later in this chapter, these macros are quite different on a 
multiprocessor system. 

When the kernel enters a critical section, it clears the IF flag of the eflags register in order to 
disable interrupts. But at the end of the critical section, the kernel can't simply set the flag 
again. Interrupts can execute in nested fashion, so the kernel does not know what the IF flag 
was before the current control path executed. Each control path must therefore save the old 
setting of the flag and restore that setting at the end. 

In order to save the eflags content, the kernel uses the __save_flags macro; on a 
uniprocessor system it is identical to the save_flags macro. In order to restore the eflags 
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content, the kernel uses the _ _restore_flags and (on a uniprocessor system) 
restore_flags macros. Typically, these macros are used in the following way: 

__save_flags(old);  
__cli(  );  
[...]  
__restore_flags(old); 

The __save_flags macro copies the content of the eflags register into the old local 
variable; the IF flag is then cleared by __cli( ). At the end of the critical region, the 
__restore_flags macro restores the original content of eflags; therefore, interrupts are 
enabled only if they were enabled before this control path issued the __cli( ) macro. 

Linux offers several additional synchronization macros that are important on a multiprocessor 
system (see Section 11.4.2 later in this chapter) but are somewhat redundant on a uniprocessor 
system (see Table 11-2). Notice that some functions do not perform any visible operation. 
They just act as "barriers" for the gcc compiler, since they prevent the compiler from 
optimizing the code by moving around assembly language instructions. The lck parameter is 
always ignored. 

Table 11-2. Interrupt Disabling/Enabling Macros on a Uniprocessor System 
Macro Description 
spin_lock_init(lck) No operation 
spin_lock(lck) No operation 
spin_unlock(lck) No operation 
spin_unlock_wait(lck) No operation 
spin_trylock(lck) Return always 1 
spin_lock_irq(lck) _ _cli( ) 
spin_unlock_irq(lck) _ _sti( ) 
spin_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli( ) 
spin_unlock_irqrestore(lck, flags) _ _restore_flags(flags) 
read_lock_irq(lck) _ _cli( ) 
read_unlock_irq(lck) _ _sti( ) 
read_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli( ) 
read_unlock_irqrestore(lck, flags) _ _restore_flags(flags) 
write_lock_irq(lck) _ _cli( ) 
write_unlock_irq(lck) _ _sti( ) 
write_lock_irqsave(lck, flags) _ _save_flags(flags); _ _cli( ) 
write_unlock_irqrestore(lck, flags) _ _restore_flags(flags) 

Let us recall a few examples of how these macros are used in functions introduced in previous 
chapters: 

• The add_wait_queue( ) and remove_wait_queue( ) functions protect the wait 
queue list with the write_lock_irqsave( ) and write_unlock_irqrestore( ) 
functions. 

• The setup_x86_irq( ) adds a new interrupt handler for a specific IRQ; the 
spin_lock_irqsave( ) and spin_unlock_irqrestore( ) functions are used to 
protect the corresponding list of handlers. 
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• The run_timer_list( ) function protects the dynamic timer data structures with the 
spin_lock_irq( ) and spin_unlock_irq( ) functions. 

• The handle_signal( ) function protects the blocked field of current with the 
spin_lock_irq( ) and spin_unlock_irq( ) functions. 

Because of its simplicity, interrupt disabling is widely used by kernel functions for 
implementing critical regions. Clearly, the critical regions obtained by interrupt disabling 
must be short, because any kind of communication between the I/O device controllers and the 
CPU is blocked when the kernel enters one. Longer critical regions should be implemented by 
means of locking. 

11.2.4 Locking Through Kernel Semaphores 

A widely used synchronization technique is locking: when a kernel control path must access a 
shared data structure or enter a critical region, it must acquire a "lock" for it. A resource 
protected by a locking mechanism is quite similar to a resource confined in a room whose 
door is locked when someone is inside. If a kernel control path wishes to access the resource, 
it tries to "open the door" by acquiring the lock. It will succeed only if the resource is free. 
Then, as long as it wants to use the resource, the door remains locked. When the kernel 
control path releases the lock, the door is unlocked and another kernel control path may enter 
the room. 

Linux offers two kinds of locking: kernel semaphores, which are widely used both on 
uniprocessor systems and multiprocessor ones, and spin locks, which are used only on 
multiprocessors systems. We'll discuss just kernel semaphores here; the other solution will be 
discussed in the Section 11.4.2 later in this chapter. When a kernel control path tries to 
acquire a busy resource protected by a kernel semaphore, the corresponding process is 
suspended. It will become runnable again when the resource is released. 

Kernel semaphores are objects of type struct semaphore and have these fields: 

count  

Stores an integer value. If it is greater than 0, the resource is free, that is, it is currently 
available. Conversely, if count is less than or equal to 0, the semaphore is busy, that 
is, the protected resource is currently unavailable. In the latter case, the absolute value 
of count denotes the number of kernel control paths waiting for the resource. Zero 
means that a kernel control path is using the resource but no other kernel control path 
is waiting for it. 

wait  

Stores the address of a wait queue list that includes all sleeping processes that are 
currently waiting for the resource. Of course, if count is greater than or equal to 0, the 
wait queue is empty. 

waking  

Ensures that, when the resource is freed and the sleeping processes is woken up, only 
one of them succeeds in acquiring the resource. We'll see this field in operation soon. 
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The count field is decremented when a process tries to acquire the lock and incremented 
when a process releases it. The MUTEX and MUTEX_LOCKED macros may be used to initialize a 
semaphore for exclusive access: they set the count field, respectively, to 1 (free resource with 
exclusive access) and (busy resource with exclusive access currently granted to the process 
that initializes the semaphore). Note that a semaphore could also be initialized with an 
arbitrary positive value n for count: in this case, at most n processes will be allowed to 
concurrently access the resource. 

When a process wishes to acquire a kernel semaphore lock, it invokes the down( ) function. 
The implementation of down( ) is quite involved, but it is essentially equivalent to the 
following: 

void down(struct semaphore * sem)  
{  
    /* BEGIN CRITICAL SECTION */  
    --sem->count;  
    if (sem->count < 0) {  
    /* END CRITICAL SECTION */  
        struct wait_queue wait = { current, NULL };  
        current->state = TASK_UNINTERRUPTIBLE;  
        add_wait_queue(&sem->wait, &wait);  
        for (;;) {  
            unsigned long flags;  
            spin_lock_irqsave(&semaphore_wake_lock, flags);  
            if (sem->waking > 0) {  
                sem->waking--;  
                break;  
            }  
            spin_unlock_irqrestore(&semaphore_wake_lock, flags);  
            schedule(  );  
            current->state = TASK_UNINTERRUPTIBLE;  
        }  
        spin_unlock_irqrestore(&semaphore_wake_lock, flags);  
        current->state = TASK_RUNNING;  
        remove_wait_queue(&sem->wait, &wait);  
    }  
} 

The function decrements the count field of the *sem semaphore, then checks whether its 
value is negative. The decrement and the test must be atomically executed, otherwise another 
kernel control path could concurrently access the field value, with disastrous results (see 
Section 1.6.5 in Chapter 1). Therefore, these two operations are implemented by means of the 
following assembly language instructions: 

movl sem, %ecx  
lock /* only for multiprocessor systems */  
decl (%ecx)  
js 2f 

On a multiprocessor system, the decl instruction is prefixed by a lock prefix to ensure the 
atomicity of the decrement operation (see Section 11.2.2). 

If count is greater than or equal to 0, the current process acquires the resource and the 
execution continues normally. Otherwise, count is negative and the current process must be 
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suspended. It is inserted into the wait queue list of the semaphore and put to sleep by directly 
invoking the schedule( ) function. 

The process is woken up when the resource is freed. Nonetheless, it cannot assume that the 
resource is now available, since several processes in the semaphore wait queue could be 
waiting for it. In order to select a winning process, the waking field is used: when the 
releasing process is going to wake up the processes in the wait queue, it increments waking; 
each awakened process then enters a critical region of the down( ) function and tests whether 
waking is positive. If an awakened process finds the field to be positive, it decrements waking 
and acquires the resource; otherwise it goes back to sleep. The critical region is protected by 
the semaphore_wake_lock global spin lock and by interrupt disabling. 

Notice that an interrupt handler or a bottom half must not invoke down( ), since this function 
suspends the process when the semaphore is busy.[2] For that reason, Linux provides the 
down_trylock( ) function, which may be safely used by one of the previously mentioned 
asynchronous functions. It is identical to down( ) except when the resource is busy: in this 
case, the function returns immediately instead of putting the process to sleep. 

[2] Exception handlers can block on a semaphore. Linux takes special care to avoid the particular kind of race condition in which two nested kernel 
control paths compete for the same semaphore; naturally, one of them waits forever because the other cannot run and free the semaphore. 

A slightly different function called down_interruptible( ) is also defined. It is widely used 
by device drivers since it allows processes that receive a signal while being blocked on a 
semaphore to give up the "down" operation. If the sleeping process is awakened by a signal 
before getting the needed resource, the function increments the count field of the semaphore 
and returns the value -EINTR. On the other hand, if down_interruptible( ) runs to normal 
completion and gets the resource, it returns 0. The device driver may thus abort the I/O 
operation when the return value is -EINTR. 

When a process releases a kernel semaphore lock, it invokes the up( ) function, which is 
essentially equivalent to the following: 

void up(struct semaphore * sem)  
{  
    /* BEGIN CRITICAL SECTION */  
    ++sem->count;  
    if (sem->count <= 0) {  
    /* END CRITICAL SECTION */  
        unsigned long flags;  
        spin_lock_irqsave(&semaphore_wake_lock, flags);  
        if (atomic_read(&sem->count) <= 0)  
            sem->waking++;  
        spin_unlock_irqrestore(&semaphore_wake_lock, flags);  
        wake_up(&sem->wait);  
    }  
} 

The function increments the count field of the *sem semaphore, then checks whether its value 
is negative or null. The increment and the test must be atomically executed, so these two 
operations are implemented by means of the following assembly language instructions: 
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movl sem, %ecx  
lock  
incl (%ecx)  
jle 2f 

If the new value of count is positive, no process is waiting for the resource, and thus the 
function terminates. Otherwise, it must wake up the processes in the semaphore wait queue. In 
order to do this, it increments the waking field, which is protected by the 
semaphore_wake_lock spin lock and by interrupt disabling, then invokes wake_up( ) on the 
semaphore wait queue. 

The increment of the waking field is included in a critical region because there can be several 
processes that concurrently access the same protected resource; therefore, a process could 
start executing up( ) while the waiting processes have already been woken up and one of 
them is already accessing the waking field. This also explains why up( ) checks whether 
count is nonpositive right before incrementing waking: another process could have executed 
the up( ) function after the first count check and before entering the critical region. 

We now examine how semaphores are used in Linux. Since the kernel is nonpreemptive, only 
a few semaphores are needed. Indeed, on a uniprocessor system race conditions usually occur 
either when a process is blocked during an I/O disk operation or when an interrupt handler 
accesses a global kernel data structure. Other kinds of race conditions may occur in 
multiprocessor systems, but in such cases Linux tends to make use of spin locks (see Section 
11.4.2 later in this chapter). 

The following sections discuss a few typical examples of semaphore use. 

11.2.4.1 Slab cache list semaphore 

The list of slab cache descriptors (see Section 6.2.2 in Chapter 6) is protected by the 
cache_chain_sem semaphore, which grants an exclusive right to access and modify the list. 

A race condition is possible when kmem_cache_create( ) adds a new element in the list, 
while kmem_cache_shrink( ) and kmem_cache_reap( ) sequentially scan the list. 
However, these functions are never invoked while handling an interrupt, and they can never 
block while accessing the list. Since the kernel is nonpreemptive, this semaphore plays an 
active role only in multiprocessor systems. 

11.2.4.2 Memory descriptor semaphore 

Each memory descriptor of type mm_struct includes its own semaphore in the mmap_sem field 
(see Section 7.2 in Chapter 7). The semaphore protects the descriptor against race conditions 
that could arise because a memory descriptor can be shared among several lightweight 
processes. 

For instance, let us suppose that the kernel must create or extend a memory region for some 
process; in order to do this, it invokes the do_mmap( ) function, which allocates a new 
vm_area_struct data structure. In doing so, the current process could be suspended if no free 
memory is available, and another process sharing the same memory descriptor could run. 
Without the semaphore, any operation of the second process that requires access to the 
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memory descriptor (for instance, a page fault due to a Copy On Write) could lead to severe 
data corruption. 

11.2.4.3 Inode semaphore 

This example refers to filesystem handling, which this book has not examined yet. Therefore, 
we shall limit ourselves to giving the general picture without going into too many details. As 
we shall see in Chapter 12, Linux stores the information on a disk file in a memory object 
called an inode. The corresponding data structure includes its own semaphore in the i_sem 
field. 

A huge number of race conditions can occur during filesystem handling. Indeed, each file on 
disk is a resource held in common for all users, since all processes may (potentially) access 
the file content, change its name or location, destroy or duplicate it, and so on. 

For example, let us suppose that a process is listing the files contained in some directory. 
Each disk operation is potentially blocking, and therefore even in uniprocessor systems other 
processes could access the same directory and modify its content while the first process is in 
the middle of the listing operation. Or again, two different processes could modify the same 
directory at the same time. All these race conditions are avoided by protecting the directory 
file with the inode semaphore. 

11.2.5 Avoiding Deadlocks on Semaphores 

Whenever a program uses two or more semaphores, the potential for deadlock is present 
because two different paths could end up waiting for each other to release a semaphore. A 
typical deadlock condition occurs when a kernel control path gets the lock for semaphore A 
and is waiting for semaphore B, while another kernel control path holds the lock for 
semaphore B and is waiting for semaphore A. Linux has few problems with deadlocks on 
semaphore requests, since each kernel control path usually needs to acquire just one 
semaphore at a time. 

However, in a couple of cases the kernel must get two semaphore locks. This occurs in the 
service routines of the rmdir( ) and the rename( ) system calls (notice that in both cases 
two inodes are involved in the operation). In order to avoid such deadlocks, semaphore 
requests are performed in the order given by addresses: the semaphore request whose 
semaphore data structure is located at the lowest address is issued first. 

11.3 The SMP Architecture 

Symmetrical multiprocessing (SMP ) denotes a multiprocessor architecture in which no CPU 
is selected as the Master CPU, but rather all of them cooperate on an equal basis, hence the 
name "symmetrical." As usual, we shall focus on Intel SMP architectures. 

How many independent CPUs are most profitably included in a multiprocessor system is a hot 
issue. The troubles are mainly due to the impressive progress reached in the area of cache 
systems. Many of the benefits introduced by hardware caches are lost by wasting bus cycles 
in synchronizing the local hardware caches located on the CPU chips. The higher the number 
of CPUs, the worse the problem becomes. 
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From the kernel design point of view, however, we can completely ignore this issue: an SMP 
kernel remains the same no matter how many CPUs are involved. The big jump in complexity 
occurs when moving from one CPU (a uniprocessor system) to two. 

Before proceeding in describing the changes that had to be made to Linux in order to make it 
a true SMP kernel, we shall briefly review the hardware features of the Pentium dual-
processing systems. These features lie in the following areas of computer architecture: 

• Shared memory 
• Hardware cache synchronization 
• Atomic operations 
• Distributed interrupt handling 
• Interrupt signals for CPU synchronization 

Some hardware issues are completely resolved within the hardware, so we don't have to say 
much about them. 

11.3.1 Common Memory 

All the CPUs share the same memory; that is, they are connected to a common bus. This 
means that RAM chips may be accessed concurrently by independent CPUs. Since read or 
write operations on a RAM chip must be performed serially, a hardware circuit called a 
memory arbiter is inserted between the bus and every RAM chip. Its role is to grant access to 
a CPU if the chip is free and to delay it if the chip is busy. Even uniprocessor systems make 
use of memory arbiters, since they include a specialized processor called DMA that operates 
concurrently with the CPU (see Section 13.1.4, in Chapter 13). 

In the case of multiprocessor systems, the structure of the arbiter is more complex since it has 
more input ports. The dual Pentium, for instance, maintains a two-port arbiter at each chip 
entrance and requires that the two CPUs exchange synchronization messages before 
attempting to use the bus. From the programming point of view, the arbiter is hidden since it 
is managed by hardware circuits. 

11.3.2 Hardware Support to Cache Synchronization 

The section Section 2.4.6 in Chapter 2,explained that the contents of the hardware cache and 
the RAM maintain their consistency at the hardware level. The same approach holds in the 
case of a dual processor. As shown in Figure 11-1, each CPU has its own local hardware 
cache. But now updating becomes more time-consuming: whenever a CPU modifies its 
hardware cache it must check whether the same data is contained in the other hardware cache 
and, if so, notify the other CPU to update it with the proper value. This activity is often called 
cache snooping. Luckily, all this is done at the hardware level and is of no concern to the 
kernel. 
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Figure 11-1. The caches in a dual processor 

 

11.3.3 SMP Atomic Operations 

Atomic operations for uniprocessor systems have already been introduced in Section 11.2.2. 
Since standard read-modify-write instructions actually access the memory bus twice, they are 
not atomic on a multiprocessor system. 

Let us give a simple example of what might happen if an SMP kernel used standard 
instructions. Consider the semaphore implementation described in Section 11.2.4 earlier in 
this chapter and assume that the down( ) function decrements and tests the count field of the 
semaphore with a simple decl assembly language instruction. What happens if two processes 
running on two different CPUs simultaneously execute the decl instruction on the same 
semaphore? Well, decl is a read-modify-write instruction that accesses the same memory 
location twice: once to read the old value and again to write the new value. 

At first, both CPUs are trying to read the same memory location, but the memory arbiter steps 
in to grant access to one of them and delay the other. However, when the first read operation 
is complete the delayed CPU reads exactly the same (old) value from the memory location. 
Both CPUs then try to write the same (new) value on the memory location; again, the bus 
memory access is serialized by the memory arbiter, but eventually both write operations will 
succeed and the memory location will contain the old value decremented by 1. But of course, 
the global result is completely incorrect. For instance, if count was previously set to 1, both 
kernel control paths will simultaneously gain mutual exclusive access to the protected 
resource. 

Since the early days of the Intel 80286, lock instruction prefixes have been introduced to 
solve that kind of problem. From the programmer's point of view, lock is just a special byte 
that is prefixed to an assembly language instruction. When the control unit detects a lock 
byte, it locks the memory bus so that no other processor can access the memory location 
specified by the destination operand of the following assembly language instruction. The bus 
lock is released only when the instruction has been executed. Therefore, read-modify-write 
instructions prefixed by lock are atomic even in a multiprocessor environment. 

The Pentium allows a lock prefix on 18 different instructions. Moreover, some kind of 
instructions like xchg do not require the lock prefix because the bus lock is implicitly 
enforced by the CPU's control unit. 
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11.3.4 Distributed Interrupt Handling 

Being able to deliver interrupts to any CPU in the system is crucial for fully exploiting the 
parallelism of the SMP architecture. For that reason, Intel has introduced a new component 
designated as the I/O APIC (I/O Advanced Programmable Interrupt Controller), which 
replaces the old 8259A Programmable Interrupt Controller. 

Figure 11-2 illustrates in a schematic way the structure of a multi-APIC system. Each CPU 
chip has its own integrated Local APIC. An Interrupt Controller Communication (ICC ) bus 
connects a frontend I/O APIC to the Local APICs. The IRQ lines coming from the devices are 
connected to the I/O APIC, which therefore acts as a router with respect to the Local APICs. 

Figure 11-2. APIC system 

 

Each Local APIC has 32-bit registers, an internal clock, a timer device, 240 different interrupt 
vectors, and two additional IRQ lines reserved for local interrupts, which are typically used to 
reset the system. 

The I/O APIC consists of a set of IRQ lines, a 24-entry Interrupt Redirection Table, 
programmable registers, and a message unit for sending and receiving APIC messages over 
the ICC bus. Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number: 
each entry in the Redirection Table can be individually programmed to indicate the interrupt 
vector and priority, the destination processor, and how the processor is selected. The 
information in the Redirection Table is used to translate any external IRQ signal into a 
message to one or more Local APIC units via the ICC bus. 

Interrupt requests can be distributed among the available CPUs in two ways: 

Fixed mode  

The IRQ signal is delivered to the Local APICs listed in the corresponding Redirection 
Table entry. 

Lowest-priority mode  

The IRQ signal is delivered to the Local APIC of the processor which is executing the 
process with the lowest priority. Any Local APIC has a programmable task priority 
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register, which contains the priority of the currently running process. It must be 
modified by the kernel at each task switch. 

Another important feature of the APIC allows CPUs to generate interprocessor interrupts . 
When a CPU wishes to send an interrupt to another CPU, it stores the interrupt vector and the 
identifier of the target's Local APIC in the Interrupt Command Register of its own Local 
APIC. A message is then sent via the ICC bus to the target's Local APIC, which therefore 
issues a corresponding interrupt to its own CPU. 

We'll discuss in Section 11.4.7 later in this chapter how the SMP version of Linux makes use 
of these interprocessor interrupts. 

11.4 The Linux/SMP Kernel 

Linux 2.2 support for SMP is compliant with Version 1.4 of the Intel MultiProcessor 
Specification, which establishes a multiprocessor platform interface standard while 
maintaining full PC/AT binary compatibility. 

As we have seen in Section 11.2.1 earlier in this chapter, race conditions are relatively limited 
in Linux on a uniprocessor system, so interrupt disabling and kernel semaphores can be used 
to protect data structures that are asynchronously accessed by interrupt or exception handlers. 
In a multiprocessor system, however, things are much more complicated: several processes 
may be running in Kernel Mode, and therefore data structure corruption can occur even if no 
running process is preempted. The usual way to synchronize access to SMP kernel data 
structures is by means of semaphores and spin locks (see Section 11.4.2). 

Before discussing in detail how Linux 2.2 serializes the accesses to kernel data structures in 
multiprocessor systems, let us make a brief digression to how this goal was achieved when 
Linux first introduced SMP support. In order to facilitate the transition from a uniprocessor 
kernel to a multiprocessor one, the old 2.0 version of Linux/SMP adopted this drastic rule: 

At any given instant, at most one processor is allowed to access the kernel data structures and 
to handle the interrupts. 

This rule dictates that each processor wishing to access the kernel data structures must get a 
global lock. As long as it holds the lock, it has exclusive access to all kernel data structures. 
Of course, since the processor will also handle any incoming interrupts, the data structures 
that are asynchronously accessed by interrupt and exception handlers must still be protected 
with interrupt disabling and kernel semaphores. 

Although very simple, this approach has a serious drawback: processes spend a significant 
fraction of their computing time in Kernel Mode, therefore this rule may force I/O-bound 
processes to be sequentially executed. The situation was far from satisfactory, hence the rule 
was not strictly enforced in the next stable version of Linux/SMP (2.2). Instead, many locks 
were added, each of which grants exclusive access to single kernel data structure or a single 
critical region. Therefore, several processes are allowed to concurrently run in Kernel Mode 
as long as each of them accesses different data structures protected by locks. However, a 
global kernel lock is still present (see Section 11.4.6 later in this chapter), since not all kernel 
data structures have been protected with specific locks. 
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Figure 11-3 illustrates the more flexible Linux 2.2 system. Five kernel control paths—P0, P1, 
P2, P3, and P4—are trying to access two critical regions—C1 and C2. Kernel control path P0 
is inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2, while 
P3 is waiting to enter it. Notice that P0 and P1 could run concurrently. The lock for critical 
region C3 is open since no kernel control path needs to enter it. 

Figure 11-3. Protecting critical regions with several locks 

 

11.4.1 Main SMP Data Structures 

In order to handle several CPUs, the kernel must be able to represent the activity that takes 
place on each of them. In this section we'll consider some significant kernel data structures 
that have been added to allow multiprocessing. 

The most important information is what process is currently running on each CPU, but this 
information actually does not require a new CPU-specific data structure. Instead, each CPU 
retrieves the current process through the same current macro defined for uniprocessor 
systems: since it extracts the process descriptor address from the esp stack pointer register, it 
yields a value that is CPU-dependent. 

A first group of new CPU-specific variables refers to the SMP architecture. Linux/SMP has a 
hard-wired limit on the number of CPUs, which is defined by the NR_CPUS macro (usually 
32). 

During the initialization phase, Linux running on the booting CPU probes whether other 
CPUs exist (some CPU slots of an SMP board may be empty). As a result, both a counter and 
a bitmap are initialized: max_cpus stores the number of existing CPUs while 
cpu_present_map specifies which slots contain a CPU. 

An existing CPU is not necessarily activated, that is, initialized and recognized by the kernel. 
Another pair of variables, a counter called smp_num_cpus and a bitmap called 
cpu_online_map, keeps track of the activated CPUs. If some CPU cannot be properly 
initialized, the kernel clears the corresponding bit in cpu_online_map. 

Each active CPU is identified in Linux by a sequential logical number called CPU ID, which 
does not necessarily coincide with the CPU slot number. The cpu_number_map and _ 
_cpu_logical_map arrays allow conversion between CPU IDs and CPU slot numbers. 
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The process descriptor includes the following fields representing the relationships between the 
process and a processor: 

has_cpu  

Flag denoting whether the process is currently running (value 1) or not running (value 
0) 

processor  

Logical number of the CPU that is running the process, or NO_PROC_ID if the process 
is not running 

The smp_processor_id( ) macro returns the value of current->processor, that is, the 
logical number of the CPU that executes the process. 

When a new process is created by fork( ), the has_cpu and processor fields of its 
descriptor are initialized respectively to and to the value NO_PROC_ID. When the schedule( ) 
function selects a new process to run, it sets its has_cpu field to 1 and its processor field to 
the logical number of the CPU that is doing the task switch. The corresponding fields of the 
process being replaced are set to and to NO_PROC_ID, respectively. 

During system initialization smp_num_cpus different swapper processes are created. Each of 
them has a PID equal to and is bound to a specific CPU. As usual, a swapper process is 
executed only when the corresponding CPU is idle. 

11.4.2 Spin Locks 

Spin locks are a locking mechanism designed to work in a multiprocessing environment. They 
are similar to the kernel semaphores described earlier, except that when a process finds the 
lock closed by another process, it "spins" around repeatedly, executing a tight instruction 
loop. 

Of course, spin locks would be useless in a uniprocessor environment, since the waiting 
process would keep running, and therefore the process that is holding the lock would not have 
any chance to release it. In a multiprocessing environment, however, spin locks are much 
more convenient, since their overhead is very small. In other words, a context switch takes a 
significant amount of time, so it is more efficient for each process to keep its own CPU and 
simply spin while waiting for a resource. 

Each spin lock is represented by a spinlock_t structure consisting of a single lock field; the 
values and 1 correspond, respectively, to the "unlocked" and the "locked" state. The 
SPIN_LOCK_UNLOCKED macro initializes a spin lock to 0. 

The functions that operate on spin locks are based on atomic read/modify/write operations; 
this ensures that the spin lock will be properly updated by a process running on a CPU even if 
other processes running on different CPUs attempt to modify the spin lock at the same time.[3]  

[3] Spin locks, ironically enough, are global and therefore must themselves be protected against concurrent access. 
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The spin_lock macro is used to acquire a spin lock. It takes the address slp of the spin lock 
as its parameter and yields essentially the following code: 

1: lock; btsl $0, slp  
   jnc  3f  
2: testb $1,slp  
   jne 2b  
   jmp 1b  
3: 

The btsl atomic instruction copies into the carry flag the value of bit in *slp, then sets the 
bit. A test is then performed on the carry flag: if it is null, it means that the spin lock was 
unlocked and hence normal execution continues at label 3 (the f suffix denotes the fact that 
the label is a "forward" one: it appear in a later line of the program). Otherwise, the tight loop 
at label 2 (the b suffix denotes a "backward" label) is executed until the spin lock assumes the 
value 0. Then execution restarts from label 1, since it would be unsafe to proceed without 
checking whether another processor has grabbed the lock.[4]  

[4] The actual implementation of spin_lock is slightly more complicated. The code at label 2, which is executed only if the spin lock is busy, is 
included in an auxiliary section so that in the most frequent case (free spin lock) the hardware cache is not filled with code that won't be executed. In 
our discussion we omit these optimization details. 

The spin_unlock macro releases a previously acquired spin lock; it essentially yields the 
following code: 

lock; btrl $0, slp 

The btrl atomic assembly language instruction clears the bit of the spin lock *slp. 

Several other macros have been introduced to handle spin locks; their definitions on a 
multiprocessor system are described in Table 11-3 (see Table 11-2 for their definitions on a 
uniprocessor system). 

Table 11-3. Spin Lock Macros on a Multiprocessor System 
Macro Description 
spin_lock_init(slp) Set slp->lock to 0 
spin_trylock (slp) Set slp->lock to 1, return 1 if got the lock, otherwise 
spin_unlock_wait(slp) Cycle until slp->lock becomes 0 
spin_lock_irq(slp) _ _cli( ); spin_lock(slp) 
spin_unlock_irq(slp) spin_unlock(slp); __sti( ) 

spin_lock_irqsave(slp,flags)  __save_flags(flags); __cli( ); 
spin_lock(slp)  

spin_unlock_irqrestore(slp,flags) spin_unlock(slp); _ _restore_flags(flags) 

11.4.3 Read/Write Spin Locks 

Read/write spin locks have been introduced to increase the amount of concurrency inside the 
kernel. They allow several kernel control paths to simultaneously read the same data structure, 
as long as no kernel control path modifies it. If a kernel control path wishes to write to the 
structure, it must acquire the write version of the read/write lock, which grants exclusive 
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access to the resource. Of course, allowing concurrent reads on data structures improves 
system performance. 

Figure 11-4 illustrates two critical regions, C1 and C2, protected by read/write locks. Kernel 
control paths R0 and R1 are reading the data structures in C1 at the same time, while W0 is 
waiting to acquire the lock for writing. Kernel control path W1 is writing the data structures in 
C2, while both R2 and W2 are waiting to acquire the lock for reading and writing, 
respectively. 

Figure 11-4. Read/write spin locks 

 

Each read/write spin lock is a rwlock_t structure; its lock field is a 32-bit counter that 
represents the number of kernel control paths currently reading the protected data structure. 
The highest-order bit of the lock field is the write lock: it is set when a kernel control path is 
modifying the data structure.[5] The RW_LOCK_UNLOCKED macro initializes the lock field of a 
read/write spin lock to 0. The read_lock macro, applied to the address rwlp of a read/write 
spin lock, essentially yields the following code: 

[5] It would also be set if there are more than 2,147,483,647 readers: of course, such a huge limit is never reached. 

1: lock; incl rwlp  
   jns 3f  
   lock; decl rwlp  
2: cmpl $0, rwlp  
   js 2b  
   jmp 1b  
3: 

After increasing by 1 the value of rwlp->lock, the function checks whether the field has a 
negative value—that is, if it is already locked for writing. If not, execution continues at label 
3. Otherwise, the macro restores the previous value and spins around until the highest-order 
bit becomes 0; then it starts back from the beginning. 

The read_unlock function, applied to the address rwlp of a read/write spin lock, yields the 
following assembly language instruction: 

lock; decl rwlp 

The write_lock function applied to the address rwlp of a read/write spin lock yields the 
following instructions: 
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1: lock; btsl $31, rwlp  
   jc 2f  
   testl $0x7fffffff, rwlp  
   je 3f  
   lock; btrl $31, rwlp  
2: cmp $0, rwlp  
   jne 2b  
   jmp 1b  
3: 

The highest-order bit of rwlp->lock is set. If its old value was 1, the write lock is already 
busy, and therefore the execution continues at label 2. Here the macro executes a tight loop 
waiting for the lock field to become (meaning that the write lock was released). If the old 
value of the highest-order bit was (meaning there is no write lock), the macro checks whether 
there are readers. If so, the write lock is released and the macro waits until lock becomes 0; 
otherwise, the CPU has the exclusive access to the resource, so execution continues at label 3. 

Finally, the write_unlock macro, applied to the address rwlp of a read/write spin lock, 
yields the following instruction: 

lock; btrl $31, rwlp 

Table 11-4 lists the interrupt-safe versions of the macros described in this section. 

Table 11-4. Read/Write Spin Lock Macros on a Multiprocessor System 
Function Description 
read_lock_irq(rwlp) _ _cli( ); read_lock(rwlp) 
read_unlock_irq(rwlp) read_unlock(rwlp); _ _sti( ) 
write_lock_irq(rwlp) _ _cli( ); write_lock(rwlp) 
write_unlock_irq(rwlp) write_lock(rwlp); _ _sti( ) 

read_lock_irqsave(rwlp,flags)  __save_flags(flags); __cli( ); 
read_lock(rwlp) 

read_unlock_irqrestore(rwlp,flag)  read_unlock(rwlp); _ 
_restore_flags(flags) 

write_lock_irqsave(rwlp,flags)  __save_flags(flags); __cli( ); 
write_lock(rwlp) 

write_unlock_irqrestore(rwlp,flags) write_unlock(rwlp); __restore_ 
flags(flags) 

11.4.4 Linux/SMP Interrupt Handling 

We stated previously that, on Linux/SMP, interrupts are broadcast by the I/O APIC to all 
Local APICs; that is, to all CPUs. This means that all CPUs having the IF flags set will 
receive the same interrupt. However, only one CPU must handle the interrupt, although all of 
them must acknowledge to their Local APICs they received it. 

In order to do this, each IRQ main descriptor (see Section 4.6.2 in Chapter 4) includes an IRQ 
_INPROGRESS flag. If it is set, the corresponding interrupt handler is already running on some 
CPU. Therefore, when each CPU acknowledges to its Local APIC that the interrupt was 
accepted, it checks whether the flag is already set. If it is, the CPU does not handle the 
interrupt and exits back to what it was running; otherwise, the CPU sets the flag and starts 
executing the interrupt handler. 
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Of course, accesses to the IRQ main descriptor must be mutually exclusive; therefore, each 
CPU always acquires the irq _controller_lock spin lock before checking the value of IRQ 
_INPROGRESS. The same lock also prevents several CPUs from fiddling with the interrupt 
controller simultaneously; this precaution is necessary for old SMP machines that have just 
one external interrupt controller shared by all CPUs. 

The IRQ _INPROGRESS flag ensures that each specific interrupt handler is atomic with respect 
to itself among all CPUs. However, several CPUs may concurrently handle different 
interrupts. The global_irq _count variable contains the number of interrupt handlers that 
are being handled at each given instant on all CPUs. This value could be greater than the 
number of CPUs, since any interrupt handler can be interrupted by another interrupt handler 
of a different kind. Similarly, the local_irq _count array stores the number of interrupt 
handlers being handled on each CPU. 

As we have already seen, the kernel must often disable interrupts in order to prevent 
corruption of a kernel data structure that may be accessed by interrupt handlers. Of course, 
local CPU interrupt disabling provided by the __cli( ) macro is not enough, since it does 
not prevent some other CPU from accessing the kernel data structure. The usual solution 
consists of acquiring a spin lock with an IRQ-safe macro (like spin_lock_irqsave). 

In a few cases, however, interrupts should be disabled on all CPUs. In order to achieve such a 
result, the kernel does not clear the IF flags on all CPUs; instead it uses the global_irq 
_lock spin lock to delay the execution of the interrupt handlers. The global_irq _holder 
variable contains the logical identifier of the CPU that is holding the lock. The get_irqlock( 
) function acquires the spin lock and waits for the termination of all interrupt handlers 
running on the other CPUs. Moreover, if the caller is not a bottom half itself, the function 
waits for the termination of all bottom halves running on the other CPUs. No further interrupt 
handler on other CPUs will start running until the lock is released by invoking 
release_irqlock( ). 

Global interrupt disabling is performed by the cli( ) macro, which just invokes the 
__global_cli( ) function: 

__save_flags(flags);  
if (!(flags & (1 << 9))) /* testing IF flag */  
    return;  
cpu = smp_processor_id(  );  
__cli(  );  
if (!local_irq_count[cpu])  
    return;  
get_irqlock(cpu); 

Notice that global interrupt disabling is not performed when the CPU is running with local 
interrupts already disabled or when the CPU is running an interrupt handler itself.[6]  

[6] Deadlock conditions can easily occur if such constraints are removed. For instance, suppose that cli( ) could "promote" a local interrupt 
disabling to a global one. Consider a kernel control path that is executing a critical region protected by some spin lock and with local interrupt 
disabled. The critical region can legally include a cli( )macro, since it could invoke a function that is also accessed with local interrupts 
enabled. The get_irqlock( )function starts waiting for interrupt handlers to complete on the other CPUs. However, an interrupt handler in 
another kernel control path could be stuck on the spin lock that protects the critical region, waiting for the first kernel control path to release it: 
deadlock! 
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Global interrupt enabling is performed by the sti( ) macro, which just invokes the 
__global_sti( ) function: 

cpu = smp_processor_id(  );  
if (!local_irq_count[cpu])  
    release_irqlock(cpu);  
__sti(  ); 

Linux also provides SMP versions of the _ _save_flags and __restore_flags macros, 
which are called save_flags and restore_flags: they save and reload, respectively, 
information controlling the interrupt handling for the executing CPU. As illustrated in Figure 
11-5, save_flags yields an integer value that depends on three conditions; restore_flags 
performs actions based on the value yielded by save_flags. 

Figure 11-5. Actions performed by save_ flags( ) and restore_ flags( ) 

 

Finally, the synchronize_irq( ) function is called when a kernel control path wishes to 
synchronize itself with all interrupt handlers: 

if (atomic_read(&global_irq_count)) {  
    cli();  
    sti();  
} 

By invoking cli( ), the function acquires the global_irq _lock spin lock and then waits 
until all executing interrupt handlers terminate; once this is done, it reenables interrupts. The 
synchronize_irq( ) function is usually called by device drivers when they want to make 
sure that all activities carried on by interrupt handlers are over. 
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11.4.5 Linux/SMP Bottom Half Handling 

Bottom halves are handled much like interrupt handlers, but no bottom half can ever run 
concurrently with other bottom halves. Moreover, disabling interrupts also disables the 
running of bottom halves. The global_bh_count variable is a flag that specifies whether a 
bottom half is currently active on some CPU. The synchronize_bh( ) function is called 
when a kernel control path must wait for the termination of a currently executing bottom half. 

The global_bh_lock variable is used to disable the execution of bottom halves on all CPUs; 
in other words, it ensures that some critical region is atomic with respect to all bottom halves 
on all CPUs. 

The start_bh_atomic( ) function, which locks out bottom halves, consists of: 

atomic_inc(&global_bh_lock);  
synchronize_bh(); 

The complementary end_bh_atomic( ) function is used to reenable the bottom halves by 
executing: 

atomic_dec(&global_bh_lock); 

Therefore, the do_bottom_half( ) function starts bottom halves only if: 

• No other bottom half is currently running on any CPU (global_bh_count is null). 
• The bottom halves are not disabled (global_bh_lock is null). 
• No interrupt handler is running on any CPU (global_irq_count is null). 
• Interrupts are globally enabled (global_irq_lock is free). 

Serial execution of bottom halves is inherited from previous versions of Linux. Allowing 
bottom halves to be executed concurrently would require a full revision of all device drivers 
that use them. 

11.4.6 Global and Local Kernel Locks 

As we have already mentioned, in the Version 2.2 of Linux/SMP a global kernel lock named 
kernel_flag is still widely used. In Version 2.0, this spin lock was relatively crude, ensuring 
simply that only one processor at a time could run in Kernel Mode. The 2.2 kernel is 
considerably more flexible and no longer relies on a single spin lock; however, it is still used 
to protect a very large number of kernel data structures, namely: 

• All data structures related to the Virtual Filesystem and to file handling (see  
Chapter 12) 

• Most kernel data structures related to networking 
• All kernel data structures for interprocess communication (IPC); see Chapter 18 
• Several less important kernel data structures 

The global kernel lock still exists because introducing new locks is not trivial: both deadlocks 
and race conditions must be carefully avoided. 
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All system call service routines related to files, including the ones related to file memory 
mapping, must acquire the global kernel lock before starting their operations and must release 
it when they terminate. Therefore, a very large number of system calls cannot concurrently 
execute on Linux/SMP. 

Every process descriptor includes a lock_depth field, which allows the same process to 
acquire the global kernel lock several times. Therefore, two consecutive requests for it will 
not hang the processor (as for normal spin locks). If the process does not want the lock, the 
field has the value -1. If the process wants it, the field value plus 1 specifies how many times 
the lock has been requested. The lock_depth field is crucial for interrupt handlers, exception 
handlers, and bottom halves. Without it, any asynchronous function that tries to get the global 
kernel lock could generate a deadlock if the current process already owns the lock. 

The lock_kernel( ) and unlock_kernel( ) functions are used to get and release the global 
kernel lock. The former function is equivalent to: 

if (++current->lock_depth == 0)  
    spin_lock(&kernel_flag); 

while the latter is equivalent to: 

if (--current->lock_depth < 0)  
    spin_unlock(&kernel_flag); 

Notice that the if statements of the lock_kernel( ) and unlock_kernel( ) functions need 
not be executed atomically because lock_depth is not a global variable: each CPU addresses 
a field of its own current process descriptor. Local interrupts inside the if statements do not 
induce race conditions either: even if the new kernel control path invokes lock_kernel( ), it 
must release the global kernel lock before terminating. 

Although the global kernel lock still protects a large number of kernel data structures, work is 
in progress to reduce that number by introducing many additional smaller locks. Table 11-5 
lists some kernel data structures that are already protected by specific (read/write) spin locks. 
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Table 11-5. Various Kernel Spin Locks 
Spin Lock Protected Resource 
console_lock Console 
dma_spin_lock DMA's data structures 
inode_lock Inode's data structures 
io_request_lock Block IO subsystem 
kbd_controller_lock Keyboard 
page_alloc_lock Buddy system's data structures 
runqueue_lock Runqueue list 
semaphore_wake_lock Semaphores's waking fields 
tasklist_lock (rw)  Process list 
taskslot_lock List of free entries in task 
timerlist_lock Dynamic timer lists 
tqueue_lock Task queues' lists 
uidhash_lock UID hash table 
waitqueue_lock (rw) Wait queues' lists 
xtime_lock (rw) xtime and lost_ticks 

As already explained, finer granularity in the lock mechanism enhances system performance, 
since less serialization is enforced among the processors. For instance, a kernel control path 
that accesses the runqueue list is allowed to concurrently run with another kernel control path 
that is servicing a file-related system call. Similarly, using a read/write lock, two kernel 
control paths may concurrently access the process list as long as neither of them wants to 
modify it. 

11.4.7 Interprocessor Interrupts 

Interprocessor interrupts (in short, IPIs) are part of the SMP architecture and are actively used 
by Linux in order to exchange messages among CPUs. Linux/SMP provides the following 
functions to handle them: 

send_IPI_all( )  

Sends an IPI to all CPUs (including the sender) 

send_IPI_allbutself( )  

Sends an IPI to all CPUs except the sender 

send_IPI_self( )  

Sends an IPI to the sender CPU 

send_IPI_single( )  

Sends an IPI to a single, specified CPU 
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Depending on the I/O APIC configuration, the kernel may sometimes need to invoke the 
send_IPI_self( ) function. The other functions are used to implement interprocessor 
messages. 

Linux/SMP recognizes five kinds of messages, which are interpreted by the receiving CPU as 
different interrupt vectors: 

RESCHEDULE_VECTOR (0x30 )  

Sent to a single CPU in order to force the execution of the schedule( ) function on 
it. The corresponding Interrupt Service Routine (ISR) is named 
smp_reschedule_interrupt( ). This message is used by reschedule_idle( ) and 
by send_sig_info( ) to preempt the running process on a CPU. 

INVALIDATE_TLB_VECTOR (0x31 )  

Sent to all CPUs but the sender, forcing them to invalidate their translation lookaside 
buffers. The corresponding ISR, named smp_invalidate_interrupt( ), invokes  
the _ _flush_tlb( ) function.[7] This message is used whenever the kernel modifies  
a page table of some process. 

[7] A subtle concurrency problem occurs when trying to flush the translation lookaside buffers of all processors while some of them run with the 
interrupts disabled. Therefore, while spinning in tight loops, the kernel control paths keep checking whether some CPU has sent an "invalidate TLB" 
message. 

STOP_CPU_VECTOR (0x40 )  

Sent to all CPUs but the sender, forcing the receiving CPUs to halt. The corresponding 
Interrupt Service Routine is named smp_stop_cpu_interrupt( ). This message is 
used only when the kernel detects an unrecoverable internal error. 

LOCAL_TIMER_VECTOR (0x41 )  

A timer interrupt automatically sent to all CPUs by the I/O APIC. The corresponding 
Interrupt Service Routine is named smp_apic_timer_interrupt( ). 

CALL_FUNCTION_VECTOR (0x50 )  

Sent to all CPUs but the sender, forcing those CPUs to run a function passed by the 
sender. The corresponding ISR is named smp_call_function_interrupt( ). A 
typical use of this message is to force CPUs to synchronize and to reload the state of 
the Memory Type Range Registers (MTRRs). Starting with the Pentium Pro model, 
Intel microprocessors include these additional registers to easily customize cache 
operations. Linux uses these registers to disable the hardware cache for the addresses 
mapping the frame buffer of a PCI/AGP graphic card while maintaining the "write 
combining" mode of operation: the paging unit combines write transfers into larger 
chunks before copying them into the frame buffer. 
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11.5 Anticipating Linux 2.4 

Linux 2.4 changes a bit the way semaphores are implemented. Essentially, they are now more 
efficient because, when a semaphore is released, usually only one sleeping process is awoken. 

As already mentioned, Linux 2.4 enhances support for high-end SMP architectures. It is now 
possible to make use of multiple external I/O APIC chips, and all the code that handles 
interprocessor interrupts (IPIs) has been rewritten. 

However, the most important change is that Linux 2.4 is much more multithreaded than Linux 
2.2. In other words, it makes use of many new spin locks and reduces the role of the global 
kernel lock, particularly in the networking code. Linux 2.4 is therefore much more efficient on 
SMP architectures and performs much better as a high-end server. 
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Chapter 12. The Virtual Filesystem 
One of Linux's keys to success is its ability to coexist comfortably with other systems. You 
can transparently mount disks or partitions that host file formats used by Windows, other 
Unix systems, or even systems with tiny market shares like the Amiga. Linux manages to 
support multiple disk types in the same way other Unix variants do, through a concept called 
the Virtual Filesystem. 

The idea behind the Virtual Filesystem is that the internal objects representing files and 
filesystems in kernel memory embody a wide range of information; there is a field or function 
to support any operation provided by any real filesystem supported by Linux. For each read, 
write, or other function called, the kernel substitutes the actual function that supports a native 
Linux filesystem, the NT filesystem, or whatever other filesystem the file is on. 

This chapter discusses the aims, the structure, and the implementation of Linux's Virtual 
Filesystem. It focuses on three of the five standard Unix file types, namely, regular files, 
directories, and symbolic links. Device files will be covered in Chapter 13, while pipes will be 
discussed in Chapter 18. To show how a real filesystem works, Chapter 17, covers the Second 
Extended Filesystem that appears on nearly all Linux systems. 

12.1 The Role of the VFS 

The Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is a kernel software 
layer that handles all system calls related to a standard Unix filesystem. Its main strength is 
providing a common interface to several kinds of filesystems. 

For instance, let us assume that a user issues the shell command: 

$ cp /floppy/TEST /tmp/test 

where /floppy is the mount point of an MS-DOS diskette and /tmp is a normal Ext2 (Second 
Extended Filesystem) directory. As shown in Figure 12-1 (a), the VFS is an abstraction layer 
between the application program and the filesystem implementations. Therefore, the cp 
program is not required to know the filesystem types of /floppy/TEST and /tmp/test. Instead, 
cp interacts with the VFS by means of generic system calls well known to anyone who has 
done Unix programming (see also Section 1.5.6 in Chapter 1); the code executed by cp is 
shown in Figure 12-1 (b). 
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Figure 12-1. VFS role in a simple file copy operation 

 

Filesystems supported by the VFS may be grouped into three main classes: 

Disk-based filesystems  

Manage the memory space available in a local disk partition. The official Linux disk-
based filesystem is Ext2. Other well-known disk-based filesystems supported by the 
VFS are: 

• Filesystems for Unix variants like System V and BSD 
• Microsoft filesystems like MS-DOS, VFAT (Windows 98), and NTFS 

(Windows NT) 
• ISO9660 CD-ROM filesystem (formerly High Sierra Filesystem) 
• Other proprietary filesystems like HPFS (IBM's OS/2), HFS (Apple's 

Macintosh), FFS (Amiga's Fast Filesystem), and ADFS (Acorn's machines) 

Network filesystems  

Allow easy access to files included in filesystems belonging to other networked 
computers. Some well-known network filesystems supported by the VFS are NFS, 
Coda, AFS (Andrew's filesystem), SMB (Microsoft's Windows and IBM's OS/2 LAN 
Manager), and NCP (Novell's NetWare Core Protocol). 

Special filesystems (also called virtual filesystems)  

Do not manage disk space. Linux's /proc filesystem provides a simple interface that 
allows users to access the contents of some kernel data structures. The /dev/pts 
filesystem is used for pseudo-terminal support as described in the Open Group's 
Unix98 standard. 

In this book we describe only the Ext2 filesystem, which is the topic of Chapter 17; the other 
filesystems will not be covered for lack of space. 

 



Understanding the Linux Kernel 

305 

As mentioned in Section 1.5 in Chapter 1, Unix directories build a tree whose root is the / 
directory. The root directory is contained in the root filesystem, which in Linux is usually of 
type Ext2. All other filesystems can be "mounted" on subdirectories of the root filesystem.[1]  

[1] When a filesystem is mounted on some directory, the contents of the directory in the parent filesystem are no longer accessible, since any pathname 
including the mount point will refer to the mounted filesystem. However, the original directory's content will show up again when the filesystem is 
unmounted. This somewhat surprising feature of Unix filesystems is used by system administrators to hide files; they simply mount a filesystem on the 
directory containing the files to be hidden. 

A disk-based filesystem is usually stored in a hardware block device like a hard disk, a 
floppy, or a CD-ROM. A useful feature of Linux's VFS allows it to handle virtual block 
devices like /dev/loop0, which may be used to mount filesystems stored in regular files. As a 
possible application, a user may protect his own private filesystem by storing an encrypted 
version of it in a regular file. 

The first Virtual Filesystem was included in Sun Microsystems's SunOS in 1986. Since then, 
most Unix filesystems include a VFS. Linux's VFS, however, supports the widest range of 
filesystems. 

12.1.1 The Common File Model 

The key idea behind the VFS consists of introducing a common file model capable of 
representing all supported filesystems. This model strictly mirrors the file model provided by 
the traditional Unix filesystem. This is not surprising, since Linux wants to run its native 
filesystem with minimum overhead. However, each specific filesystem implementation must 
translate its physical organization into the VFS's common file model. 

For instance, in the common file model each directory is regarded as a normal file, which 
contains a list of files and other directories. However, several non-Unix disk-based 
filesystems make use of a File Allocation Table (FAT), which stores the position of each file 
in the directory tree: in these filesystems, directories are not files. In order to stick to the 
VFS's common file model, the Linux implementations of such FAT-based filesystems must 
be able to construct on the fly, when needed, the files corresponding to the directories. Such 
files exist only as objects in kernel memory. 

More essentially, the Linux kernel cannot hardcode a particular function to handle an 
operation such as read( ) or ioctl( ). Instead, it must use a pointer for each operation; the 
pointer is made to point to the proper function for the particular filesystem being accessed. 

Let's illustrate this concept by showing how the read( ) shown in Figure 12-1 would be 
translated by the kernel into a call specific to the MS-DOS filesystem. The application's call 
to read( ) makes the kernel invoke sys_read( ), just like any other system call. The file is 
represented by a file data structure in kernel memory, as we shall see later in the chapter. 
This data structure contains a field called f_op that contains pointers to functions specific to 
MS-DOS files, including a function that reads a file. sys_read( ) finds the pointer to this 
function and invokes it. Thus, the application's read( ) is turned into the rather indirect call: 

file->f_op->read(...); 

Similarly, the write( ) operation triggers the execution of a proper Ext2 write function 
associated with the output file. In short, the kernel is responsible for assigning the right set of 
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pointers to the file variable associated with each open file, then for invoking the call specific 
to each filesystem that the f_op field points to. 

One can think of the common file model as object-oriented, where an object is a software 
construct that defines both a data structure and the methods that operate on it. For reasons of 
efficiency, Linux is not coded in an object-oriented language like C++. Objects are thus 
implemented as data structures with some fields pointing to functions that correspond to the 
object's methods. 

The common file model consists of the following object types: 

The superblock object  

Stores information concerning a mounted filesystem. For disk-based filesystems, this 
object usually corresponds to a filesystem control block stored on disk. 

The inode object  

Stores general information about a specific file. For disk-based filesystems, this object 
usually corresponds to a file control block stored on disk. Each inode object is 
associated with an inode number, which uniquely identifies the file within the 
filesystem. 

The file object  

Stores information about the interaction between an open file and a process. This 
information exists only in kernel memory during the period each process accesses a 
file. 

The dentry object  

Stores information about the linking of a directory entry with the corresponding file. 
Each disk-based filesystem stores this information in its own particular way on disk. 

Figure 12-2 illustrates with a simple example how processes interact with files. Three 
different processes have opened the same file, two of them using the same hard link. In this 
case, each of the three processes makes use of its own file object, while only two dentry 
objects are required, one for each hard link. Both dentry objects refer to the same inode 
object, which identifies the superblock object and, together with the latter, the common disk 
file. 
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Figure 12-2. Interaction between processes and VFS objects 

 

Besides providing a common interface to all filesystem implementations, the VFS has another 
important role related to system performance. The most recently used dentry objects are 
contained in a disk cache named the dentry cache, which speeds up the translation from a file 
pathname to the inode of the last pathname component. 

Generally speaking, a disk cache is a software mechanism that allows the kernel to keep in 
RAM some information that is normally stored on a disk, so that further accesses to that data 
can be quickly satisfied without a slow access to the disk itself.[2] Beside the dentry cache, 
Linux uses other disk caches, like the buffer cache and the page cache, which will be 
described in forthcoming chapters. 

[2] Notice how a disk cache differs from a hardware cache or a memory cache, neither of which has anything to do with disks or other devices. A 
hardware cache is a fast static RAM that speeds up requests directed to the slower dynamic RAM (see Section 2.4.6 in Chapter 2). A memory cache is 
a software mechanism introduced to bypass the Kernel Memory Allocator (see Section 6.2.1 in Chapter 6). 

12.1.2 System Calls Handled by the VFS 

Table 12-1 illustrates the VFS system calls that refer to filesystems, regular files, directories, 
and symbolic links. A few other system calls handled by the VFS, such as ioperm( ), 
ioctl( ), pipe( ), and mknod( ), refer to device files and pipes and hence will be 
discussed in later chapters. A last group of system calls handled by the VFS, such as socket( 
), connect( ), bind( ), and protocols( ), refer to sockets and are used to implement 
networking; they will not be covered in this book. Some of the kernel service routines that 
correspond to the system calls listed in Table 12-1 are discussed either in this chapter or in 
Chapter 17. 
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Table 12-1. Some System Calls Handled by the VFS 
System Call Name Description 
mount( ) umount( ) Mount/Unmount filesystems 
sysfs( ) Get filesystem information 
statfs( ) fstatfs( ) ustat( ) Get filesystem statistics 
chroot( ) Change root directory 
chdir( ) fchdir( ) getcwd( ) Manipulate current directory 
mkdir( ) rmdir( ) Create and destroy directories 
getdents( ) readdir( ) link( ) unlink( ) rename( ) Manipulate directory entries 
readlink( ) symlink( ) Manipulate soft links 
chown( ) fchown( ) lchown( ) Modify file owner 
chmod( ) fchmod( ) utime( ) Modify file attributes 
stat( ) fstat( ) lstat( ) access( ) Read file status 
open( ) close( ) creat( ) umask( ) Open and close files 
dup( ) dup2( ) fcntl( ) Manipulate file descriptors 
select( ) poll( ) Asynchronous I/O notification 
truncate( ) ftruncate( ) Change file size 
lseek( ) _llseek( ) Change file pointer 
read( ) write( ) readv( ) writev( ) sendfile( ) File I/O operations 
pread( ) pwrite( ) Seek file and access it 
mmap( ) munmap( ) File memory mapping 
fdatasync( ) fsync( ) sync( ) msync( ) Synchronize file data 
flock( ) Manipulate file lock 

We said earlier that the VFS is a layer between application programs and specific filesystems. 
However, in some cases a file operation can be performed by the VFS itself, without invoking 
a lower-level procedure. For instance, when a process closes an open file, the file on disk 
doesn't usually need to be touched, and hence the VFS simply releases the corresponding file 
object. Similarly, when the lseek( ) system call modifies a file pointer, which is an attribute 
related to the interaction between an opened file and a process, the VFS needs to modify only 
the corresponding file object without accessing the file on disk and therefore does not have to 
invoke a specific filesystem procedure. In some sense, the VFS could be considered as a 
"generic" filesystem that relies, when necessary, on specific ones. 

12.2 VFS Data Structures 

Each VFS object is stored in a suitable data structure, which includes both the object 
attributes and a pointer to a table of object methods. The kernel may dynamically modify the 
methods of the object, and hence it may install specialized behavior for the object.  
The following sections explain the VFS objects and their interrelationships in detail. 

12.2.1 Superblock Objects 

A superblock object consists of a super_block structure whose fields are described in  
Table 12-2. 
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Table 12-2. The Fields of the Superblock Object 
Type Field Description 
struct list_head s_list Pointers for superblock list 
kdev_t s_dev Device identifier 
unsigned long s_blocksize Block size in bytes 
unsigned char s_blocksize_bits Block size in number of bits 
unsigned char s_lock Lock flag 
unsigned char s_rd_only Read-only flag 
unsigned char s_dirt Modified (dirty) flag 
struct file_system_type * s_type Filesystem type 
struct super_operations * s_op Superblock methods 
struct dquot_operations * dq_op Disk quota methods 
unsigned long s_flags Mount flags 
unsigned long s_magic Filesystem magic number 
unsigned long s_time Time of last superblock change 
struct dentry * s_root Dentry object of mount directory 
struct wait_queue * s_wait Mount wait queue 
struct inode * s_ibasket Future development 
short int s_ibasket_count Future development 
short int s_ibasket_max Future development 
struct list_head s_dirty List of modified inodes 
union u Specific filesystem information 

All superblock objects (one per mounted filesystem) are linked together in a circular doubly 
linked list. The addresses of the first and last elements of the list are stored in the next and 
prev fields, respectively, of the s_list field in the super_blocks variable. This field has the 
data type struct list_head, which is also found in the s_dirty field of the superblock and 
in a number of other places in the kernel; it consists simply of pointers to the next and 
previous elements of a list. Thus, the s_list field of a superblock object includes the pointers 
to the two adjacent superblock objects in the list. Figure 12-3 illustrates how the list_head 
elements, next and prev, are embedded in the superblock object. 

The last u union field includes superblock information that belongs to a specific filesystem; 
for instance, as we shall see later in Chapter 17, if the superblock object refers to an Ext2 
filesystem, the field stores an ext2_sb_info structure, which includes the disk allocation bit 
masks and other data of no concern to the VFS common file model. 

In general, data in the u field is duplicated in memory for reasons of efficiency. Any disk-
based filesystem needs to access and update its allocation bitmaps in order to allocate or 
release disk blocks. The VFS allows these filesystems to act directly on the u union field of 
the superblock in memory, without accessing the disk. 

This approach leads to a new problem, however: the VFS superblock might end up no longer 
synchronized with the corresponding superblock on disk. It is thus necessary to introduce an 
s_dirt flag, which specifies whether the superblock is dirty, that is, whether the data on the 
disk must be updated. The lack of synchronization leads to the familiar problem of a 
corrupted filesystem when a site's power goes down without giving the user the chance to shut 
down a system cleanly. As we shall see in Section 14.1.5 in Chapter 14, Linux minimizes this 
problem by periodically copying all dirty superblocks to disk. 
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Figure 12-3. The superblock list 

 

The methods associated with a superblock are called superblock operations. They are 
described by the super_operations structure whose address is included in the s_op field. 

Each specific filesystem can define its own superblock operations. When the VFS needs to 
invoke one of them, say read_inode( ), it executes: 

sb->s_op->read_inode(inode); 

where sb stores the address of the superblock object involved. The read_inode field of the 
super_operations table contains the address of the suitable function, which is thus directly 
invoked. 

Let us briefly describe the superblock operations, which implement higher-level operations 
like deleting files or mounting disks. They are listed in the order they appear in the 
super_operations table: 

read_inode(inode)  

Fills the fields of the inode object whose address is passed as the parameter from the 
data on disk; the i_ino field of the inode object identifies the specific filesystem inode 
on disk to be read. 

write_inode(inode)  

Updates a filesystem inode with the contents of the inode object passed as the 
parameter; the i_ino field of the inode object identifies the filesystem inode on disk 
that is concerned. 

put_inode(inode)  

Releases the inode object whose address is passed as the parameter. As usual, 
releasing an object does not necessarily mean freeing memory since other processes 
may still use that object. 

delete_inode(inode)  

Deletes the data blocks containing the file, the disk inode, and the VFS inode. 
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notify_change(dentry, iattr)  

Changes some attributes of the inode according to the iattr parameter. If the 
notify_change field is NULL, the VFS falls back on the write_inode( ) method. 

put_super(super)  

Releases the superblock object whose address is passed as the parameter (because the 
corresponding filesystem is unmounted). 

write_super(super)  

Updates a filesystem superblock with the contents of the object indicated. 

statfs(super, buf, bufsize)  

Returns statistics on a filesystem by filling the buf buffer. 

remount_fs(super, flags, data)  

Remounts the filesystem with new options (invoked when a mount option must be 
changed). 

clear_inode(inode)  

Like put_inode, but also releases all pages that contain data concerning the file that 
corresponds to the indicated inode. 

umount_begin(super)  

Interrupts a mount operation, because the corresponding unmount operation has been 
started (used only by network filesystems). 

The preceding methods are available to all possible filesystem types. However, only a subset 
of them applies to each specific filesystem; the fields corresponding to unimplemented 
methods are set to NULL. Notice that no read_super method to read a superblock is defined: 
how could the kernel invoke a method of an object yet to be read from disk? We'll find the 
read_super method in another object describing the filesystem type (seelater Section 12.3). 

12.2.2 Inode Objects 

All information needed by the filesystem to handle a file is included in a data structure called 
an inode. A filename is a casually assigned label that can be changed, but the inode is unique 
to the file and remains the same as long as the file exists. An inode object in memory consists 
of an inode structure whose fields are described in Table 12-3. 
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Table 12-3. The Fields of the Inode Object 
Type Field Description 
struct list_head i_hash Pointers for the hash list 
struct list_head i_list Pointers for the inode list 
struct list_head i_dentry Pointers for the dentry list 
unsigned long i_ino inode number 
unsigned int i_count Usage counter 
kdev_t i_dev Device identifier 
umode_t i_mode File type and access rights 
nlink_t i_nlink Number of hard links 
uid_t i_uid Owner identifier 
gid_t i_gid Group identifier 
kdev_t i_rdev Real device identifier 
off_t i_size File length in bytes 
time_t i_atime Time of last file access 
time_t i_mtime Time of last file write 
time_t i_ctime Time of last inode change 
unsigned long i_blksize Block size in bytes 
unsigned long i_blocks Number of blocks of the file 

unsigned long i_version Version number, automatically incremented after 
each use 

unsigned long i_nrpages Number of pages containing file data 
struct semaphore i_sem inode semaphore 
struct semaphore i_atomic_write inode semaphore for atomic write 
struct inode_operations 
* i_op inode operations 

struct super_block * i_sb Pointer to superblock object 
struct wait_queue * i_wait inode wait queue 
struct file_lock * i_flock Pointer to file lock list 
struct vm_area_struct * i_mmap Pointer to memory regions used to map the file 
struct page * i_pages Pointer to page descriptor 
struct dquot ** i_dquot inode disk quotas 
unsigned long i_state inode state flag 
unsigned int i_flags Filesystem mount flag 
unsigned char i_pipe True if file is a pipe 
unsigned char i_sock True if file is a socket 
int i_writecount Usage counter for writing process 
unsigned int i_attr_flags File creation flags 
_ _u32 i_generation Reserved for future development 
union u Specific filesystem information 

The final u union field is used to include inode information that belongs to a specific 
filesystem. For instance, as we shall see in Chapter 17, if the inode object refers to an Ext2 
file, the field stores an ext2_inode_info structure. 

Each inode object duplicates some of the data included in the disk inode, for instance, the 
number of blocks allocated to the file. When the value of the i_state field is equal to 
I_DIRTY, the inode is dirty, that is, the corresponding disk inode must be updated. Other 
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values of the i_state field are I_LOCK (which means that the inode object is locked) and 
I_FREEING (which means that the inode object is being freed). 

Each inode object always appears in one of the following circular doubly linked lists: 

• The list of unused inodes. The first and last elements of this list are referenced by the 
next and prev fields, respectively, of the inode_unused variable. This list acts as a 
memory cache. 

• The list of in-use inodes. The first and last elements are referenced by the 
inode_in_use variable. 

• The list of dirty inodes. The first and last elements are referenced by the s_dirty field 
of the corresponding superblock object. 

Each of the lists just mentioned links together the i_list fields of the proper inode objects. 

Inode objects belonging to the "in use" or "dirty" lists are also included in a hash table named 
inode_hashtable . The hash table speeds up the search of the inode object when the kernel 
knows both the inode number and the address of the superblock object corresponding to the 
filesystem that includes the file.[3] Since hashing may induce collisions, the inode object 
includes an i_hash field that contains a backward and a forward pointer to other inodes that 
hash to the same position; this field creates a doubly linked list of those inodes. 

[3] Actually, a Unix process may open a file and then unlink it: the i_nlinkfield of the inode could become 0, yet the process is still able to act on 
the file. In this particular case, the inode is removed from the hash table, even if it still belongs to the in-use or dirty list. 

The methods associated with an inode object are also called inode operations. They are 
described by an inode_operations structure, whose address is included in the i_op field. 
The structure also includes a pointer to the file operation methods (see Section 12.2.3). Here 
are the inode operations, in the order they appear in the inode_operations table: 

create(dir, dentry, mode)  

Creates a new disk inode for a regular file associated with a dentry object in some 
directory. 

lookup(dir, dentry)  

Searches a directory for an inode corresponding to the filename included in a dentry 
object. 

link(old_dentry, dir, new_dentry)  

Creates a new hard link that refers to the file specified by old_dentry in the directory 
dir; the new hard link has the name specified by new_dentry. 

unlink(dir, dentry)  

Removes the hard link of the file specified by a dentry object from a directory. 

 



Understanding the Linux Kernel 

314 

symlink(dir, dentry, symname)  

Creates a new inode for a symbolic link associated with a dentry object in some 
directory. 

mkdir(dir, dentry, mode)  

Creates a new inode for a directory associated with a dentry object in some directory. 

rmdir(dir, dentry)  

Removes from a directory the subdirectory whose name is included in a dentry object. 

mknod(dir, dentry, mode, rdev)  

Creates a new disk inode for a special file associated with a dentry object in some 
directory. The mode and rdev parameters specify, respectively, the file type and the 
device's major number. 

rename(old_dir, old_dentry, new_dir, new_dentry)  

Moves the file identified by old_entry from the old_dir directory to the new_dir 
one. The new filename is included in the dentry object that new_dentry points to. 

readlink(dentry, buffer, buflen)  

Copies into a memory area specified by buffer the file pathname corresponding to the 
symbolic link specified by the dentry. 

follow_link(inode, dir)  

Translates a symbolic link specified by an inode object; if the symbolic link is a 
relative pathname, the lookup operation starts from the specified directory. 

readpage(file, pg)  

Reads a page of data from an open file. As we shall see in Chapter 15, regular files are 
read by this method. 

writepage(file, pg)  

Writes a page of data into an open file. Most filesystems do not make use of this 
method when writing regular files. 

bmap(inode, block)  

Returns the logical block number corresponding to the file block number of the file 
associated with an inode. 
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truncate(inode)  

Modifies the size of the file associated with an inode. Before invoking this method, it 
is necessary to set the i_size field of the inode object to the required new size. 

permission(inode, mask)  

Checks whether the specified access mode is allowed for the file associated with 
inode. 

smap(inode, sector)  

Similar to bmap( ), but determines the disk sector number; used by FAT-based 
filesystems. 

updatepage(inode, pg, buf, offset, count, sync)  

Updates, if needed, a page of data of a file associated with an inode (usually invoked 
by network filesystems, which may have to wait a long time before updating remote 
files). 

revalidate(dentry)  

Updates the cached attributes of a file specified by a dentry object (usually invoked by 
the network filesystem). 

The methods just listed are available to all possible inodes and filesystem types. However, 
only a subset of them applies to any specific inode and filesystem; the fields corresponding to 
unimplemented methods are set to NULL. 

12.2.3 File Objects 

A file object describes how a process interacts with a file it has opened. The object is created 
when the file is opened and consists of a file structure, whose fields are described in Table 
12-4. Notice that file objects have no corresponding image on disk, and hence no "dirty" field 
is included in the file structure to specify that the file object has been modified. 

The main information stored in a file object is the file pointer, that is, the current position in 
the file from which the next operation will take place. Since several processes may access the 
same file concurrently, the file pointer cannot be kept in the inode object. 
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Table 12-4. The Fields of the File Object 
Type Field Description 
struct file * f_next Pointer to next file object 
struct file ** f_pprev Pointer to previous file object 
struct dentry * f_dentry Pointer to associated dentry object 
struct file_operations 
* f_op Pointer to file operation table 

mode_t f_mode Process access mode 
loff_t f_pos Current file offset (file pointer) 
unsigned int f_count File object's usage counter 
unsigned int f_flags Flags specified when opening the file 
unsigned long f_reada Read-ahead flag 
unsigned long f_ramax Maximum number of pages to be read-ahead 
unsigned long f_raend File pointer after last read-ahead 
unsigned long f_ralen Number of read-ahead bytes 
unsigned long f_rawin Number of read-ahead pages 
struct fown_struct f_owner Data for asynchronous I/O via signals 
unsigned int f_uid User's UID 
unsigned int f_gid User's GID 
int f_error Error code for network write operation 

unsigned long f_version Version number, automatically incremented after each 
use 

void * private_data Needed for tty driver 

Each file object is always included in one of the following circular doubly linked lists: 

• The list of "unused" file objects. This list acts both as a memory cache for the file 
objects and as a reserve for the superuser; it allows the superuser to open a file even if 
the dynamic memory in the system is exhausted. Since the objects are unused, their 
f_count fields are null. The address of the first element in the list is stored in the 
free_filps variable. The kernel makes sure that the list always contains at least 
NR_RESERVED_FILES objects, usually 10. 

• The list of "in use" file objects. Each element in the list is used by at least one process, 
and hence its f_count field is not null. The address of the first element in the list is 
stored in the inuse_filps variable. 

Regardless of which list a file object is in at the moment, its f_next field points to the next 
element in the list, while the f_ pprev field points to the f_next field of the previous 
element. 

The size of the list of "unused" file objects is stored in the nr_free_files variable. The 
get_empty_filp( ) function is invoked when the VFS must allocate a new file object. The 
function checks whether the "unused" list has more than NR_RESERVED_FILES items, in which 
case one can be used for the newly opened file. Otherwise, it falls back to normal memory 
allocation. 

As we explained in Section 12.1.1, each filesystem includes its own set of file operations that 
perform such activities as reading and writing a file. When the kernel loads an inode into 
memory from disk, it stores a pointer to these file operations in a file_operations structure 
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whose address is contained in the default_file_ops field of the inode_operations 
structure of the inode object. When a process opens the file, the VFS initializes the f_op field 
of the new file object with the address stored in the inode so that further calls to file 
operations can use these functions. If necessary, the VFS may later modify the set of file 
operations by storing a new value in f_op. 

The following list describes the file operations in the order in which they appear in the 
file_operations table: 

llseek(file, offset, whence)  

Updates the file pointer. 

read(file, buf, count, offset)  

Reads count bytes from a file starting at position *offset; the value *offset (which 
usually corresponds to the file pointer) is then incremented. 

write(file, buf, count, offset)  

Writes count bytes into a file starting at position *offset; the value *offset (which 
usually corresponds to the file pointer) is then incremented. 

readdir(dir, dirent, filldir)  

Returns the next directory entry of a directory in dirent; the filldir parameter 
contains the address of an auxiliary function that extracts the fields in a directory 
entry. 

poll(file, poll_table)  

Checks whether there is activity on a file and goes to sleep until something happens on 
it. 

ioctl(inode, file, cmd, arg)  

Sends a command to an underlying hardware device. This method applies only to 
device files. 

mmap(file, vma)  

Performs a memory mapping of the file into a process address space (see Section 15.2 
in Chapter 15). 

open(inode, file)  

Opens a file by creating a new file object and linking it to the corresponding inode 
object (see Section 12.5.1 later in this chapter). 
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flush(file)  

Called when a reference to an open file is closed, that is, the f_count field of the file 
object is decremented. The actual purpose of this method is filesystem-dependent. 

release(inode, file)  

Releases the file object. Called when the last reference to an open file is closed, that is, 
the f_count field of the file object becomes 0. 

fsync(file, dentry)  

Writes all cached data of the file to disk. 

fasync(file, on)  

Enables or disables asynchronous I/O notification by means of signals. 

check_media_change(dev)  

Checks whether there has been a change of media since the last operation on the 
device file (applicable to block devices that support removable media, such as floppies 
and CD-ROMs). 

revalidate(dev)  

Restores the consistency of a device (used by network filesystems after a media 
change has been recognized on a remote device). 

lock(file, cmd, file_lock)  

Applies a lock to the file (see Section 12.6 later in this chapter). 

The methods just described are available to all possible file types. However, only a subset of 
them applies to a specific file type; the fields corresponding to unimplemented methods are 
set to NULL. 

12.2.4 Special Handling for Directory File Objects 

Directories must be handled with care because several processes can change their contents 
concurrently. Explicit locking, which is frequently performed on regular files (see Section 
12.6 later in this chapter), is not well suited for directories because it prevents other processes 
from accessing the whole subtree of files rooted at the locked directory. Therefore, the 
f_version field of the file object is used together with the i_version field of the inode 
object to ensure that accesses to each directory file maintain consistency. 

We'll explain the use of these fields by describing the most common operation in which they 
are needed, the readdir( ) system call. Each invocation of this call is supposed to return a 
directory entry and update the directory's file pointer so that the next invocation of the same 
system call will return the next directory entry. But the directory could be modified by 
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another process that concurrently accesses it. Without some kind of consistency check, the 
readdir( ) system call could return the wrong directory entry. Long intervals—potentially 
hours—could elapse between a process's calls to readdir( ), and the process may choose to 
stop calling it at any time, so we don't want to lock the directory. What we want is a way to 
make readdir( ) adapt to changes. 

The problem is solved by introducing the global_event variable, which plays the role of 
version stamp. Whenever the inode object of a directory file is modified, the global_event is 
increased by 1, and the new version stamp is stored in the i_version field of the object. 
Whenever a file object is created or its file pointer is modified, global_event is increased by 
1, and the new version stamp is stored in the f_version field of the object. When servicing 
the readdir( ) system call, the VFS checks whether the version stamps contained in the 
i_version and f_version fields coincide. If not, the directory may have been modified by 
some other process after the previous execution of readdir( ). 

When the readdir( ) call detects this consistency problem, it recomputes the directory's file 
pointer by reading again the whole directory contents. The system call returns the directory 
entry immediately following the entry that was returned by the process's last readdir( ). 
f_version is then set to i_version to indicate that readdir( ) is now synchronized with 
the actual state of the directory. 

12.2.5 Dentry Objects 

We mentioned in Section 12.1.1 that each directory is considered by the VFS as a normal file 
that contains a list of files and other directories. We shall discuss in Chapter 17 how 
directories are implemented on a specific filesystem. Once a directory entry has been read into 
memory, however, it is transformed by the VFS into a dentry object based on the dentry 
structure, whose fields are described in Table 12-5. A dentry object is created by the kernel 
for every component of a pathname that a process looks up; the dentry object associates the 
component to its corresponding inode. For example, when looking up the /tmp/test pathname, 
the kernel creates a dentry object for the / root directory, a second dentry object for the tmp 
entry of the root directory, and a third dentry object for the test entry of the /tmp directory. 

Notice that dentry objects have no corresponding image on disk, and hence no field is 
included in the dentry structure to specify that the object has been modified. Dentry objects 
are stored in a slab allocator cache called dentry_cache; dentry objects are thus created and 
destroyed by invoking kmem_cache_alloc( ) and kmem_cache_free( ). 

 

 

 

 

 
 



Understanding the Linux Kernel 

320 

Table 12-5. The Fields of the Dentry Object 
Type Field Description 
int d_count Dentry object usage counter 
unsigned int d_flags Dentry flags 
struct inode * d_inode Inode associated with filename 
struct dentry * d_parent Dentry object of parent directory 

struct dentry * d_mounts For a mount point, the dentry of the root of the mounted 
filesystem 

struct dentry * d_covers For the root of a filesystem, the dentry of the mount point 
struct list_head d_hash Pointers for list in hash table entry 
struct list_head d_lru Pointers for unused list 

struct list_head d_child Pointers for the list of dentry objects included in parent 
directory 

struct list_head d_subdirs For directories, list of dentry objects of subdirectories 
struct list_head d_alias List of associated inodes (alias) 
struct qstr d_name Filename 
unsigned long d_time Used by d_revalidate method 
structdentry_operations* d_op Dentry methods 
struct super_block * d_sb Superblock object of the file 
unsigned long d_reftime Time when dentry was discarded 
void * d_fsdata Filesystem-dependent data 
unsigned char d_iname[16] Space for short filename 

Each dentry object may be in one of four states: 

Free  

The dentry object contains no valid information and is not used by the VFS. The 
corresponding memory area is handled by the slab allocator. 

Unused  

The dentry object is not currently used by the kernel. The d_count usage counter of 
the object is null, but the d_inode field still points to the associated inode. The dentry 
object contains valid information, but its contents may be discarded if necessary to 
reclaim memory. 

In use  

The dentry object is currently used by the kernel. The d_count usage counter is 
positive and the d_inode field points to the associated inode object. The dentry object 
contains valid information and cannot be discarded. 

Negative  

The inode associated with the dentry no longer exists, because the corresponding disk 
inode has been deleted. The d_inode field of the dentry object is set to NULL, but the 
object still remains in the dentry cache so that further lookup operations to the same 
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file pathname can be quickly resolved. The term "negative" is misleading since no 
negative value is involved. 

12.2.6 The Dentry Cache 

Since reading a directory entry from disk and constructing the corresponding dentry object 
requires considerable time, it makes sense to keep in memory dentry objects that you've 
finished with but might need later. For instance, people often edit a file and then compile it or 
edit, then print or copy, then edit. In any case like these, the same file needs to be repeatedly 
accessed. 

In order to maximize efficiency in handling dentries, Linux uses a dentry cache, which 
consists of two kinds of data structures: 

• A set of dentry objects in the in-use, unused, or negative state. 
• A hash table to derive the dentry object associated with a given filename and a given 

directory quickly. As usual, if the required object is not included in the dentry cache, 
the hashing function returns a null value. 

The dentry cache also acts as a controller for an inode cache . The inodes in kernel memory 
that are associated with unused dentries are not discarded, since the dentry cache is still using 
them and therefore their i_count fields are not null. Thus, the inode objects are kept in RAM 
and can be quickly referenced by means of the corresponding dentries. 

All the "unused" dentries are included in a doubly linked " Least Recently Used" list sorted by 
time of insertion. In other words, the dentry object that was last released is put in front of the 
list, so the least recently used dentry objects are always near the end of the list. When the 
dentry cache has to shrink, the kernel removes elements from the tail of this list so that the 
most recently used objects are preserved. The addresses of the first and last elements of the 
LRU list are stored in the next and prev fields of the dentry_unused variable. The d_lru 
field of the dentry object contains pointers to the adjacent dentries in the list. 

Each "in use" dentry object is inserted into a doubly linked list specified by the i_dentry 
field of the corresponding inode object (since each inode could be associated with several 
hard links, a list is required). The d_alias field of the dentry object stores the addresses of 
the adjacent elements in the list. Both fields are of type struct list_head. 

An "in use" dentry object may become "negative" when the last hard link to the corresponding 
file is deleted. In this case, the dentry object is moved into the LRU list of unused dentries. 
Each time the kernel shrinks the dentry cache, negative dentries move toward the tail of the 
LRU list so that they are gradually freed (see Section 16.7.3 in Chapter 16). 

The hash table is implemented by means of a dentry_hashtable array. Each element is a 
pointer to a list of dentries that hash to the same hash table value. The array's size depends on 
the amount of RAM installed in the system. The d_hash field of the dentry object contains 
pointers to the adjacent elements in the list associated with a single hash value. The hash 
function produces its value from both the address of the dentry object of the directory and the 
filename. 
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The methods associated with a dentry object are called dentry operations; they are described 
by the dentry_operations structure, whose address is stored in the d_op field. Although 
some filesystems define their own dentry methods, the fields are usually NULL, and the VFS 
replaces them with default functions. Here are the methods, in the order they appear in the 
dentry_operations table. 

d_revalidate(dentry)  

Determines whether the dentry object is still valid before using it for translating a file 
pathname. The default VFS function does nothing, although network filesystems may 
specify their own functions. 

d_hash(dentry, hash)  

Creates a hash value; a filesystem-specific hash function for the dentry hash table. The 
dentry parameter identifies the directory containing the component. The hash 
parameter points to a structure containing both the pathname component to be looked 
up and the value produced by the hash function. 

d_compare(dir, name1, name2)  

Compares two filenames; name1 should belong to the directory referenced by dir. The 
default VFS function is a normal string match. However, each filesystem can 
implement this method in its own way. For instance, MS-DOS does not distinguish 
capital from lowercase letters. 

d_delete(dentry)  

Called when the last reference to a dentry object is deleted (d_count becomes 0). The 
default VFS function does nothing. 

d_release(dentry)  

Called when a dentry object is going to be freed (released to the slab allocator). The 
default VFS function does nothing. 

d_iput(dentry, ino)  

Called when a dentry object becomes "negative," that is, it loses its inode. The default 
VFS function invokes iput( ) to release the inode object. 

12.2.7 Files Associated with a Process 

We mentioned in Section 1.5 in Chapter 1 that each process has its own current working 
directory and its own root directory. This information is stored in an fs_struct kernel table, 
whose address is contained in the fs field of the process descriptor. 
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struct fs_struct {  
    atomic_t count;  
    int umask;  
    struct dentry * root, * pwd;  
}; 

The count field specifies the number of processes sharing the same fs_struct table (see 
Section 3.3.1 in Chapter 3). The umask field is used by the umask( ) system call to set initial 
file permissions on newly created files. 

A second table, whose address is contained in the files field of the process descriptor, 
specifies which files are currently opened by the process. It is a files_struct structure 
whose fields are illustrated in Table 12-6. A process cannot have more than NR_OPEN (usually, 
1024) file descriptors. It is possible to define a smaller, dynamic bound on the maximum 
number of allowed open files by changing the rlim[RLIMIT_NOFILE] structure in the process 
descriptor. 

Table 12-6. The Fields of the files_struct Structure 
Type Field Description 
int count Number of processes sharing this table 
int max_fds Current maximum number of file objects 
int max_fdset Current maximum number of file descriptors 
int next_fd Maximum file descriptors ever allocated plus 1 
struct file ** fd Pointer to array of file object pointers 
fd_set * close_on_exec Pointer to file descriptors to be closed on exec( ) 
fd_set * open_fds Pointer to open file descriptors 
fd_set close_on_exec_init Initial set of file descriptors to be closed on exec( ) 
fd_set open_fds_init Initial set of file descriptors 
struct file * fd_array[32] Initial array of file object pointers 

The fd field points to an array of pointers to file objects. The size of the array is stored in the 
max_fds field. Usually, fd points to the fd_array field of the files_struct structure, which 
includes 32 file object pointers. If the process opens more than 32 files, the kernel allocates a 
new, larger array of file pointers and stores its address in the fd fields; it also updates the 
max_fds field. 

For every file with an entry in the fd array, the array index is the file descriptor. Usually, the 
first element (index 0) of the array is associated with the standard input of the process, the 
second with the standard output, and the third with the standard error (see Figure 12-4). Unix 
processes use the file descriptor as the main file identifier. Notice that, thanks to the dup( ), 
dup2( ), and fcntl( ) system calls, two file descriptors may refer to the same opened file, 
that is, two elements of the array could point to the same file object. Users see this all the time 
when they use shell constructs like 2>&1 to redirect the standard error to the standard output. 

The open_fds field contains the address of the open_fds_init field, which is a bitmap that 
identifies the file descriptors of currently opened files. The max_fdset field stores the number 
of bits in the bitmap. Since the fd_set data structure includes 1024 bits, there is usually no 
need to expand the size of the bitmap. However, the kernel may dynamically expand the size 
of the bitmap if this turns out to be necessary, much as in the case of the array of file objects. 
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Figure 12-4. The fd array 

 

The kernel provides an fget( ) function to be invoked when it starts using a file object. This 
function receives as its parameter a file descriptor fd . It returns the address in current-
>files->fd[fd], that is, the address of the corresponding file object, or NULL if no file 
corresponds to fd . In the first case, fget( ) increments by 1 the file object usage counter 
f_count. 

The kernel also provides an fput( ) function to be invoked when a kernel control path 
finishes using a file object. This function receives as its parameter the address of a file object 
and decrements its usage counter f_count. Moreover, if this field becomes null, the function 
invokes the release method of the file operations (if defined), releases the associated dentry 
object, decrements the i_writeaccess field in the inode object (if the file was opened for 
writing), and finally moves the file object from the "in use" list to the "unused" one. 

12.3 Filesystem Mounting 

Now we'll focus on how the VFS keeps track of the filesystems it is supposed to support. Two 
basic operations must be performed before making use of a filesystem: registration and 
mounting. 

Registration is done either when the system boots or when the module implementing the 
filesystem is being loaded. Once a filesystem has been registered, its specific functions are 
available to the kernel, so that kind of filesystem can be mounted on the system's directory 
tree. 

Each filesystem has its own root directory. The filesystem whose root directory is the root of 
the system's directory tree is called root filesystem. Other filesystems can be mounted on the 
system's directory tree: the directories on which they are inserted are called mount points. 

12.3.1 Filesystem Registration 

Often, the user configures Linux to recognize all the filesystems needed when compiling the 
kernel for her system. But the code for a filesystem actually may either be included in the 
kernel image or dynamically loaded as a module (see Appendix B). The VFS must keep track 
of all filesystems whose code is currently included in the kernel. It does this by performing 
filesystem registrations. 
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Each registered filesystem is represented as a file_system_type object whose fields are 
illustrated in Table 12-7. All filesystem-type objects are inserted into a simply linked list. The 
file_systems variable points to the first item. 

Table 12-7. The Fields of the file_system_type Object 
Type Field Description 
const char * name Filesystem name 
int fs_flag Mount flags 
struct super_block *(*)( ) read_super Method for reading superblock 
struct file_system_type * next Pointer to next list element 

During system initialization, the filesystem_setup( ) function is invoked to register the 
filesystems specified at compile time. For each filesystem type, the register_filesystem( 
) function is invoked with a parameter pointing to the proper file_system_type object, 
which is thus inserted into the filesystem-type list. 

The register_filesystem( ) is also invoked when a module implementing a filesystem is 
loaded. In this case, the filesystem may also be unregistered (by invoking the 
unregister_filesystem( ) function) when the module is unloaded. 

The get_fs_type( ) function, which receives a filesystem name as its parameter, scans the 
list of registered filesystems and returns a pointer to the corresponding file_system_type 
object if it is present. 

12.3.2 Mounting the Root Filesystem 

Mounting the root filesystem is a crucial part of system initialization. While the system boots, 
it finds the major number of the disk containing the root filesystem in the ROOT_DEV variable. 
The root filesystem can be specified as a device file in the /dev directory either when 
compiling the kernel or by passing a suitable option to the initial bootstrap loader. Similarly, 
the mount flags of the root filesystem are stored in the root_mountflags variable. The user 
specifies these flags either by using the /sbin/rdev external program on a compiled kernel 
image or by passing suitable options to the initial bootstrap loader (see Appendix A). 

During system initialization, right after the filesystem_setup( ) invocation, the 
mount_root( ) function is executed. It performs the following operations (assuming that the 
filesystem to be mounted is a disk-based one):[4]  

[4] Diskless workstations can mount the root directory over a network-based filesystem such as NFS, but we don't describe how this is done. 

1. Initializes a dummy, local file object filp. The f_mode field is set according to the 
mount flags of the root, while all other fields are set to 0. 

2. Creates a dummy inode object and initializes it by setting its i_rdev field to 
ROOT_DEV. 

3. Invokes the blkdev_open( ) function, passing the dummy inode and the file object. 
As we shall see later in Chapter 13, the function checks whether the disk exists and is 
properly working. 

4. Releases the dummy inode object, which was needed just to verify the disk. 
5. Scans the filesystem-type list. For each file_system_type object, invokes 

read_super( ) to attempt to read the corresponding superblock. This function checks 
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that the device is not already mounted and attempts to fill a superblock object by using 
the method to which the read_super field of the file_system_type object points. 
Since each filesystem-specific method uses unique magic numbers, all read_super( 
) invocations will fail except the one that attempts to fill the superblock by using the 
method of the filesystem really used on the root device. The read_super( ) method 
also creates an inode object and a dentry object for the root directory; the dentry object 
maps / to the inode object. 

6. Sets the root and pwd fields of the fs_struct table of current (the init process) to 
the dentry object of the root directory. 

7. Invokes add_vfsmnt( ) to insert a first element into the list of mounted filesystems 
(see next section). 

12.3.3 Mounting a Generic Filesystem 

Once the root filesystem has been initialized, additional filesystems may be mounted. Each of 
them must have its own mount point, which is just an already existing directory in the 
system's directory tree. 

All mounted filesystems are included in a list, whose first element is referenced by the 
vfsmntlist variable. Each element is a structure of type vfsmount, whose fields are shown 
in Table 12-8. 

Table 12-8. The Fields of the vfsmount Data Structure 
Type Field Description 
kdev_t mnt_dev Device number 
char * mnt_devname Device name 
char * mnt_dirname Mount point 
unsigned int mnt_flags Device flags 
struct super_block * mnt_sb Superblock pointer 
struct quota_mount_options mnt_dquot Disk quota mount options 
struct vfsmount * mnt_next Pointer to next list element 

Three low-level functions are used to handle the list and are invoked by the service routines of 
the mount( ) and umount( ) system calls. The add_vfsmnt( ) and remove_vfsmnt( ) 
functions add and remove, respectively, an element in the list. The lookup_vfsmnt( ) 
function searches a specific mounted filesystem and returns the address of the corresponding 
vfsmount data structure. 

The mount( ) system call is used to mount a filesystem; its sys_mount( ) service routine 
acts on the following parameters: 

• The pathname of a device file containing the filesystem or NULL if it is not required 
(for instance, when the filesystem to be mounted is network-based) 

• The pathname of the directory on which the filesystem will be mounted (the mount 
point) 

• The filesystem type, which must be the name of a registered filesystem 
• The mount flags (permitted values are listed in Table 12-9) 
• A pointer to a filesystem-dependent data structure (which may be NULL) 
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Table 12-9. Filesystem Mounting Options 
Macro Value Description 
MS_MANDLOCK 0x040 Mandatory locking allowed. 
MS_NOATIME 0x400 Do not update file access time. 
MS_NODEV 0x004 Forbid access to device files. 
MS_NODIRATIME 0x800 Do not update directory access time. 
MS_NOEXEC 0x008 Disallow program execution. 
MS_NOSUID 0x002 Ignore setuid and setgid flags. 
MS_RDONLY 0x001 Files can only be read. 
MS_REMOUNT 0x020 Remount the filesystem. 
MS_SYNCHRONOUS 0x010 Write operations are immediate. 
S_APPEND 0x100 Allow append-only file. 
S_IMMUTABLE 0x200 Allow immutable file. 
S_QUOTA 0x080 Initialize disk quota. 

The sys_mount( ) function performs the following operations: 

1. Checks whether the process has the required capability to mount a filesystem. 
2. If the MS_REMOUNT option has been specified, invokes do_remount( ) to modify the 

mount flags and terminate. 
3. Otherwise, gets a pointer to the proper file_system_type object by invoking 

get_fs_type( ). 
4. If the filesystem to be mounted refers to a hardware device like /dev/hda1, checks 

whether the device exists and is operational. This is done as follows: 
a. Invokes namei( ) to get the dentry object of the corresponding device file (see 

the section Section 12.4 later in this chapter). 
b. Checks whether the inode associated with the device file refers to a valid block 

device (see Section 13.2.1 in Chapter 13). 
c. Initializes a dummy file object that refers to the device file, then opens the 

device file by using the open method of the file operations. If this operation 
succeeds, the device is operational. 

5. If the filesystem to be mounted does not refer to a hardware device, gets a fictitious 
block device with major number by invoking get_unnamed_dev( ). 

6. Invokes do_mount( ), passing the parameters dev (device number), dev_name (device 
filename), dir_name (mount point), type (filesystem type), flags (mount flags), and 
data (pointer to optional data area). This function mounts the required filesystem by 
performing the following operations: 

a. Invokes namei( ) to locate the dir_d dentry object corresponding to 
dir_name; if it does not exist, creates it (see Figure 12-5 (a)). 

b. Acquires the mount_sem semaphore, which is used to serialize the mounting 
and unmounting operations. 

c. Checks to make sure that dir_d->d_inode is the inode of a directory and that 
the directory is not the root of a filesystem that is already mounted (dir_d-
>d_covers must be equal to dir_d). 

d. Invokes read_super( ) to get the superblock object sb of the new filesystem. 
(If the object does not exist, it is created and filled with information read from 
the dev device.) The s_root field of the superblock object points to the dentry 
object of the root directory of the filesystem to be mounted (see Figure 12-5 
(b)). 
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e. The previous operation could have suspended the current process; therefore, 
checks that no other process is using the superblock and that no process has 
already succeeded in mounting the same filesystem. 

f. Invokes add_vfsmnt( ) in order to insert a new element in the list of mounted 
filesystems. 

g. Sets the d_mounts field of dir_d to the s_root field of the superblock, that is, 
to the root directory of the mounted filesystem. 

h. Sets the d_covers field of the dentry object of the root directory of the 
mounted filesystem to dir_d (see Figure 12-5 (c)). 

i. Releases the mount_sem semaphore. 

Figure 12-5. Mounting a filesystem 

 

Now, the dir_d dentry object of the mount point is linked through the d_mounts field to the 
root directory dentry object of the mounted filesystem; this latter object is linked to the dir_d 
dentry object through the d_covers field. 

12.3.4 Unmounting a Filesystem 

The umount( ) system call is used to unmount a filesystem. The corresponding sys_umount( 
) service routine acts on two parameters: a filename (either a mount directory or a block 
device file) and a set of flags. It performs the following actions: 

1. Checks whether the process has the required capability to unmount the filesystem. 
2. Invokes namei( ) on the filename to derive the dentry pointer to the associated 

dentry object. 
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3. If the filename refers to the mount point, derives the device identifier from dentry-
>d_inode->i_sb->s_dev. In other words, the function goes from the dentry object of 
the mount point to the relative inode, then to the corresponding superblock, and finally 
to the device identifier. 

4. Otherwise, if the filename refers to the device file, derives the device identifier from 
dentry->d_inode->i_rdev. 

5. Invokes dput(dentry) to release the dentry object. 
6. Flushes the buffers of the device (see Section 14.1 in Chapter 14). 
7. Acquires the mount_sem semaphore. 
8. Invokes do_umount( ), which performs the following operations: 

a. Invokes get_super( ) to get the pointer sb of the superblock of the mounted 
filesystem. 

b. Invokes shrink_dcache_sb( ) to remove the dentry objects that refer to the 
dev device without disturbing other dentries. The dentry object of the root 
directory of the mounted filesystem will not be removed, since it is still used 
by the process doing the unmount. 

c. Invokes fsync_dev( ) to force all "dirty" buffers that refer to the dev device 
to be written to disk. 

d. If dev is the root device (dev == ROOT_DEV), it cannot be unmounted. If it has 
not been already remounted, remounts it with the MS_RDONLY flag set and 
returns. 

e. Checks whether the usage counter of the dentry object corresponding to the 
root directory of the filesystem to be unmounted is greater than 1. If so, some 
process is accessing a file in the filesystem, so returns an error code. 

f. Decrements the usage counter of sb->s_root->d_covers (the dentry object of 
the mount point directory). 

g. Sets sb->s_root->d_covers->d_mounts to sb->s_root->d_covers. This 
removes the link from the inode of the mount point to the inode of the root 
directory of the filesystem. 

h. Releases the dentry object to which sb->s_root (the root directory of the 
previously mounted filesystem) points and sets sb->s_root to NULL. 

i. If the superblock has been modified and the write_super superblock's method 
is defined, executes it. 

j. If defined, invokes the put_super( ) method of the superblock. 
k. Sets sb->s_dev to 0. 
l. Invokes remove_vfsmnt( ) to remove the proper element from the list of 

mounted filesystems. 
9. Invokes fsync_dev( ) to force a write to disk for all remaining "dirty" buffers that 

refer to the dev device (presumably, the buffers containing the superblock 
information), then invokes the release( ) method of the device file operations. 

10. Releases the mount_sem semaphore. 

12.4 Pathname Lookup 

We illustrate in this section how the VFS derives an inode from the corresponding file 
pathname. When a process must identify a file, it passes its file pathname to some VFS 
system call, such as open( ), mkdir( ), rename( ), stat( ), and so on. 
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The standard procedure for performing this task consists of analyzing the pathname and 
breaking it into a sequence of filenames. All filenames except the last must identify 
directories. 

If the first character of the pathname is /, the pathname is absolute, and the search starts from 
the directory identified by current->fs->root (the process root directory). Otherwise, the 
pathname is relative, and the search starts from the directory identified by current->fs->pwd 
(the process current directory). 

Having in hand the inode of the initial directory, the code examines the entry matching the 
first name to derive the corresponding inode. Then the directory file having that inode is read 
from disk and the entry matching the second name is examined to derive the corresponding 
inode. This procedure is repeated for each name included in the path. 

The dentry cache considerably speeds up the procedure, since it keeps the most recently used 
dentry objects in memory. As we have seen before, each such object associates a filename in a 
specific directory to its corresponding inode. In many cases, therefore, the analysis of the 
pathname can avoid reading the intermediate directories from the disk. 

However, things are not as simple as they look, since the following Unix and VFS filesystem 
features must be taken into consideration: 

• The access rights of each directory must be checked to verify whether the process is 
allowed to read the directory's content. 

• A filename can be a symbolic link that corresponds to an arbitrary pathname: in that 
case, the analysis must be extended to all components of that pathname. 

• Symbolic links may induce circular references: the kernel must take this possibility 
into account and break endless loops when they occur. 

• A filename can be the mount point of a mounted filesystem: this situation must be 
detected, and the lookup operation must continue into the new filesystem. 

The namei( ) and lnamei( ) functions derive an inode from a pathname. The difference 
between them is that namei( ) follows a symbolic link if it appears as the last component in a 
pathname without trailing slashes, while lnamei( ) does not. Both functions delegate the 
heavy work by invoking the lookup_dentry( ) function, which acts on three parameters: 
name points to a file pathname, base points to the dentry object of the directory from which to 
start searching, and lookup_flags is a bit array that includes the following flags: 

LOOKUP_FOLLOW  

If the last component of the pathname is a symbolic link, interpret (follow) it. This flag 
is set when lookup_dentry( ) is invoked by namei( ) and cleared when it is 
invoked by lnamei( ). 

LOOKUP_DIRECTORY  

The last component of the pathname must be a directory. 
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LOOKUP_SLASHOK  

A trailing / in the pathname is allowed even if the last filename does not exist. 

LOOKUP_CONTINUE  

There are still filenames to be examined in the pathname. This flag is used internally 
by lookup_dentry( ). 

The lookup_dentry( ) function is recursive, since it may end up invoking itself. Therefore, 
name could represent the still unresolved trailing portion of a complete pathname. In this case, 
base points to the dentry object of the last resolved pathname component. lookup_dentry( 
) executes the following actions: 

1. Examines both the first character of name and the value of base to identify the 
directory from which the search should start. Three cases can occur. 

o The first character of name is /: the pathname is an absolute pathname, thus 
base is set to current->fs->root. 

o The first character of name is different from "/" and base is NULL: the 
pathname is a relative pathname and base is set to current->fs->pwd. 

o The first character of name is different from "/" and base is not NULL: the 
pathname is a relative pathname and base is left unchanged. (This case should 
occur only when lookup_dentry( ) is recursively invoked.) 

2. Gets the inode of the initial directory from base->d_inode. 
3. Clears the LOOKUP_CONTINUE, LOOKUP_DIRECTORY, and LOOKUP_SLASHOK flags in 

lookup_flags. 
4. Iteratively repeats the following procedure on each filename included in the path. If an 

error condition is encountered, exits from the cycle and returns a NULL dentry pointer, 
else returns the dentry pointer corresponding to the file pathname. At the start of each 
iteration, name points to the next filename to be examined and base points to the 
dentry object of the current directory. 

a. Checks whether the process is allowed to access the base directory (if defined, 
uses the permission method of inode). 

b. Computes a hash value from the first component name in name to be used in 
searching for the corresponding entry in the dentry cache. Moreover, if the 
base directory is in a filesystem that has its own d_hash( ) dentry hashing 
method, invokes base->d_op->d_hash( ) to compute the hash value based 
on the directory, the component name, and the previous hash value. 

c. Updates name so that it points to the first character of the next component name 
(if any), skipping any "/" separator. 

d. Sets the flag local variable to the value previously set in lookup_flags. 
Additionally, if the currently resolved component was followed by a trailing /, 
sets the LOOKUP_DIRECTORY flag (requiring a check on whether the component 
is a directory) and the LOOKUP_FOLLOW flag (interprets the component even if it 
is a symbolic link). Moreover, if there is a non-null component after the 
component currently resolved, sets the LOOKUP_CONTINUE flag. 

e. Invokes reserved_lookup( ) to perform the following actions: 
a. If the first component name is a single period (.), sets the dentry local 

variable to base. 
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b. If the first component name is a double period (..) and base is equal to 
current->fs->root, sets the dentry local variable to base (because 
the process is already in its root directory). 

c. If the first component name is a double period (..) and base is not 
equal to current->fs->root, sets the dentry local variable to base-
>d_covers->d_parent. Usually, d_covers points to base itself and 
dentry is set to the directory that includes base; however, if the base 
directory is the root of a mounted filesystem, the d_covers field points 
to the inode of the mount point and dentry is set to the directory that 
includes the mount point. 

If the first component name is neither (.) nor (..) invokes 
cached_lookup( ), passing as parameters base and the hash number 
previously derived. If the dentry hash table includes the required object, 
returns its address in dentry. 

If the required dentry object is not in the dentry cache, invokes 
real_lookup( ) to read the directory from disk and creates a new 
dentry object. This function, which acts on the base and name 
parameters, performs the following steps: 

d. Gets the i_sem semaphore of the directory inode. 
e. Reexecutes cached_lookup( ), since the required dentry object could 

have been inserted in the cache while the process was waiting for the 
directory semaphore. 

f. We assume that the previous attempt failed. Invokes d_alloc( ) to 
allocate a new dentry object. 

g. Invokes the lookup method of the inode associated with the base 
directory to find the directory entry containing the required name and 
fills the new dentry object. This method is filesystem-dependent. We'll 
describe its Ext2 implementation in Chapter 17. 

h. Releases the i_sem semaphore of the directory inode. 
i. Returns the address of the new object in dentry or an error code if the 

entry was not found. 
f. Invokes follow_mount( ) to check whether the d_mounts field of dentry has 

the same value as dentry. If not, dentry is the mount point of a filesystem. In 
this case, the old dentry object is replaced by the one having the address in 
dentry->d_mounts. 

g. Invokes do_follow_link( ) to check whether name is a symbolic link. This 
function receives as its parameters base, dentry, and flags and executes the 
following steps: 

a. If the LOOKUP_FOLLOW flag is not set, returns immediately. Since the 
flag is set by lnamei( ), this ensures that lnamei( ) does not follow a 
symbolic link if it appears as the last component in a pathname without 
trailing slashes. 

b. Checks whether dentry->d_inode contains the follow_link method. 
If not, the inode is not a symbolic link, so the function returns the 
dentry input parameter. 
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c. Invokes the follow_link inode method. This filesystem-dependent 
function reads the pathname associated with the symbolic link from the 
disk and recursively invokes lookup_dentry( ) to resolve it. The 
function then returns a pointer to the dentry object referred by the 
symbolic link (we shall describe in Chapter 17 how symbolic links are 
handled by Ext2). 

Since lookup_dentry( ) invokes do_follow_link( ), which may in 
turn invoke the follow_link inode method, which invokes, in turn, 
lookup_dentry( ), recursive cycles of function calls may be created. 
The link_count field of current is used to avoid endless recursive 
calls due to circular references inside the symbolic links. This field is 
incremented before each recursive execution of follow_link( ) and 
decremented right after. If it reaches the value 5, do_follow_link( ) 
terminates with an error code. Therefore, while there is no limit on the 
number of symbolic links in a pathname, the level of nesting of 
symbolic links can be at most five. 

h. If everything went smoothly, base now points to the dentry object associated 
to the currently resolved component, so sets inode to base->d_inode. 

i. If the LOOKUP_DIRECTORY flag of flag is not set, the currently resolved 
component is the last one in the file pathname, so returns the address in base. 
Note that base could point to a negative dentry object; that is, there might be 
no associated inode. This is fine for the lookup operation, since the last 
component must not be followed. 

j. Otherwise, if LOOKUP_DIRECTORY is set, there is a slash after the currently 
resolved component. There are two cases to consider: 

 inode points to a valid inode object. In this case, checks that it is a 
directory by seeing whether the lookup method of the inode operations 
is defined; if not, returns an error code. Then either starts a new cycle 
iteration if the LOOKUP_CONTINUE flag in flags is set (meaning that the 
currently resolved component is not the last one) or returns the address 
in base (meaning that the component is the last one, even if it is 
followed by a trailing slash). 

 inode is NULL (meaning that base points to a negative dentry object). 
Returns base only if LOOKUP_CONTINUE is cleared and 
LOOKUP_SLASHOK is set; otherwise, returns an error code. Since a 
negative dentry object represents a file that was removed, it must not 
appear in the middle of a pathname lookup (which happens when 
LOOKUP_CONTINUE is set). Moreover, a negative dentry object must not 
appear as the last component in the pathname when a trailing slash is 
present, unless explicitly allowed by setting LOOKUP_SLASHOK. 

12.5 Implementations of VFS System Calls 

For the sake of brevity, we cannot discuss the implementation of all VFS system calls listed in 
Table 12-1. However, it could be useful to sketch out the implementation of a few system 
calls, just to show how VFS's data structures interact. 
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Let us reconsider the example proposed at the beginning of this chapter: a user issues a shell 
command that copies an MS-DOS file /floppy/TEST in an Ext2 file /tmp/test. The command 
shell invokes an external program like cp, which we assume executes the following code 
fragment: 

inf = open("/floppy/TEST", O_RDONLY, 0);  
outf = open("/tmp/test", O_WRONLY | O_CREAT | O_TRUNC, 0600);  
do {  
    l = read(inf, buf, 4096);  
    write(outf, buf, l);  
} while (l);  
close(outf);  
close(inf); 

Actually, the code of the real cp program is more complicated, since it must also check for 
possible error codes returned by each system call. In our example, we just focus our attention 
on the "normal" behavior of a copy operation. 

12.5.1 The open( ) System Call 

The open( ) system call is serviced by the sys_open( ) function, which receives as 
parameters the pathname filename of the file to be opened, some access mode flags flags, 
and a permission bit mask mode if the file must be created. If the system call succeeds, it 
returns a file descriptor, that is, the index in the current->files->fd array of pointers to file 
objects; otherwise, it returns -1. 

In our example, open( ) is invoked twice: the first time to open /floppy/TEST for reading 
(O_RDONLY flag) and the second time to open /tmp/test for writing (O_WRONLY flag). If 
/tmp/test does not already exist, it will be created (O_CREAT flag) with exclusive read and 
write access for the owner (octal 0600 number in the third parameter). 

Conversely, if the file already exists, it will be rewritten from scratch (O_TRUNC flag).  
Table 12-10 lists all flags of the open( ) system call. 
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Table 12-10. The Flags of the open( ) System Call 
Flag Name Description 
FASYNC Asynchronous I/O notification via signals 
O_APPEND Write always at end of the file 
O_CREAT Create the file if it does not exist 
O_DIRECTORY Fail if file is not a directory 
O_EXCL With O_CREAT, fail if the file already exists 
O_LARGEFILE Large file (size greater than 2 GB) 
O_NDELAY Same as O_NONBLOCK 
O_NOCTTY Never consider the file as a controlling terminal 
O_NOFOLLOW Do not follow a trailing symbolic link in pathname 
O_NONBLOCK No system calls will block on the file 
O_RDONLY Open for reading 
O_RDWR Open for both reading and writing 
O_SYNC Synchronous write (block until physical write terminates) 
O_TRUNC Truncate the file 
O_WRONLY Open for writing 

Let us describe the operation of the sys_open( ) function. It performs the following: 

1. Invokes getname( ) to read the file pathname from the process address space. 
2. Invokes get_unused_fd( ) to find an empty slot in current->files->fd. The 

corresponding index (the new file descriptor) is stored in the fd local variable. 
3. Invokes the filp_open( ) function, passing as parameters the pathname, the access 

mode flags, and the permission bit mask. This function, in turn, executes the following 
steps: 

a. Invokes get_empty_filp( ) to get a new file object. 
b. Sets the f_flags and f_mode fields of the file object according to the values of 

the flags and modes parameters. 
c. Invokes open_namei( ), which executes the following operations: 

a. Invokes lookup_dentry( ) to interpret the file pathname and gets the 
dentry object associated with the requested file. 

b. Performs a series of checks to verify whether the process is permitted 
to open the file as specified by the values of the flags parameter. If so, 
returns the address of the dentry object; otherwise, returns an error 
code. 

d. If the access is for writing, checks the value of the i_writecount field of the 
inode object. A negative value means that the file has been memory-mapped, 
specifying that write accesses must be denied (see the section Section 15.2 in 
Chapter 15). In this case, returns an error code. Any other value specifies the 
number of processes that are actually writing into the file. In the latter case, 
increments the counter. 

e. Initializes the fields of the file object; in particular, sets the f_op field to the 
contents of the i_op->default_file_ops field of the inode object. This sets 
up all the right functions for future file operations. 

f. If the open method of the (default) file operations is defined, invokes it. 
g. Clears the O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC flags in f_flags. 
h. Returns the address of the file object. 

4. Sets current->files->fd[fd] to the address of the file object. 
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5. Returns fd . 

12.5.2 The read( ) and write( ) System Calls 

Let's return to the code in our cp example. The open( ) system calls return two file 
descriptors, which are stored in the inf and outf variables. Then the program starts a loop: at 
each iteration, a portion of the /floppy/TEST file is copied into a local buffer (read( ) system 
call), and then the data in the local buffer is written into the /tmp/test file (write( ) system 
call). 

The read( ) and write( ) system calls are quite similar. Both require three parameters: a 
file descriptor fd, the address buf of a memory area (the buffer containing the data to be 
transferred), and a number count that specifies how many bytes should be transferred. Of 
course, read( ) will transfer the data from the file into the buffer, while write( ) will do 
the opposite. Both system calls return the number of bytes that were successfully transferred 
or -1 to signal an error condition.[5]  

[5] A return value less than count does not mean that an error occurred. The kernel is always allowed to terminate the system call even if not all 
requested bytes were transferred, and the user application must accordingly check the return value and reissue, if necessary, the system call. Typically, 
a small value is returned when reading from a pipe or a terminal device, when reading past the end of the file, or when the system call is interrupted by 
a signal. The End-Of-File condition (EOF) can easily be recognized by a null return value from read( ). This condition will not be confused 
with an abnormal termination due to a signal, because if read( )is interrupted by a signal before any data was read, an error occurs. 

The read or write operation always takes place at the file offset specified by the current file 
pointer (field f_pos of the file object). Both system calls update the file pointer by adding the 
number of transferred bytes to it. 

In short, both sys_read( ) (the read( )'s service routine) and sys_write( ) (the write( 
)'s service routine) perform almost the same steps: 

1. Invokes fget( ) to derive from fd the address file of the corresponding file object 
and increments the usage counter file->f_count. 

2. Checks whether the flags in file->f_mode allow the requested access (read or write 
operation). 

3. Invokes locks_verify_area( ) to check whether there are mandatory locks for the 
file portion to be accessed (see Section 12.6 later in this chapter). 

4. If executing a write operation, acquires the i_sem semaphore included in the inode 
object. This semaphore forbids a process to write into the file while another process is 
flushing to disk buffers relative to the same file (see Section 14.1.5 in Chapter 14). It 
also forbids two processes to write into the same file at the same time. Notice that, 
unless the O_APPEND flag is set, POSIX does not require serialized file accesses: if a 
programmer wants exclusive access to a file, he must use a file lock (see next section). 
Thus, it is possible that a process is reading from a file while another process is 
writing to it. 

5. Invokes either file->f_op->read or file->f_op->write to transfer the data. Both 
functions return the number of bytes that were actually transferred. As a side effect, 
the file pointer is properly updated. 

6. Invokes fput( ) to decrement the usage counter file->f_count. 
7. Returns the number of bytes actually transferred. 
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12.5.3 The close( ) System Call 

The loop in our example code terminates when the read( ) system call returns the value 0, 
that is, when all bytes of /floppy/TEST have been copied into /tmp/test. The program can then 
close the open files, since the copy operation has been completed. 

The close( ) system call receives as its parameter fd the file descriptor of the file to be 
closed. The sys_close( ) service routine performs the following operations: 

1. Gets the file object address stored in current->files->fd[fd]; if it is NULL, returns 
an error code. 

2. Sets current->files->fd[fd] to NULL. Releases the file descriptor fd by clearing 
the corresponding bits in the open_fds and close_on_exec fields of current-
>files (see Chapter 19, for the Close on Execution flag). 

3. Invokes filp_close( ), which performs the following operations: 
a. Invokes the flush method of the file operations, if defined 
b. Releases any mandatory lock on the file 
c. Invokes fput( ) to release the file object 

4. Returns the error code of the flush method (usually 0). 

12.6 File Locking 

When a file can be accessed by more than one process, a synchronization problem occurs: 
what happens if two processes try to write in the same file location? Or again, what happens if 
a process reads from a file location while another process is writing into it? 

In traditional Unix systems, concurrent accesses to the same file location produce 
unpredictable results. However, the systems provide a mechanism that allows the processes to 
lock a file region so that concurrent accesses may be easily avoided. 

The POSIX standard requires a file-locking mechanism based on the fcntl( ) system call. It 
is possible to lock an arbitrary region of a file (even a single byte) or to lock the whole file 
(including data appended in the future). Since a process can choose to lock just a part of a file, 
it can also hold multiple locks on different parts of the file. 

This kind of lock does not keep out another process that is ignorant of locking. Like a critical 
region in code, the lock is considered "advisory" because it doesn't work unless other 
processes cooperate in checking the existence of a lock before accessing the file. Therefore, 
POSIX's locks are known as advisory locks . 

Traditional BSD variants implement advisory locking through the flock( ) system call. This 
call does not allow a process to lock a file region, just the whole file. 
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Traditional System V variants provide the lockf( ) system call, which is just an interface to 
fcntl( ). More importantly, System V Release 3 introduced mandatory locking: the kernel 
checks that every invocation of the open( ), read( ), and write( ) system calls does not 
violate a mandatory lock on the file being accessed. Therefore, mandatory locks are enforced 
even between noncooperative processes.[6] A file is marked as a candidate for mandatory 
locking by setting its set-group bit (SGID) and clearing the group-execute permission bit. 
Since the set-group bit makes no sense when the group-execute bit is off, the kernel interprets 
that combination as a hint to use mandatory locks instead of advisory ones. 

[6] Oddly enough, a process may still unlink (delete) a file even if some other process owns a mandatory lock on it! This perplexing situation is 
possible because, when a process deletes a file hard link, it does not modify its contents but only the contents of its parent directory. 

Whether processes use advisory or mandatory locks, they can make use of both shared read 
locks and exclusive write locks. Any number of processes may have read locks on some file 
region, but only one process can have a write lock on it at the same time. Moreover, it is not 
possible to get a write lock when another process owns a read lock for the same file region 
and vice versa (see Table 12-11). 

Table 12-11. Whether a Lock Is Granted 
  Requested Lock Requested Lock 
Current Locks Read Write 
No lock Yes Yes 
Read locks Yes No 
Write lock No No 

12.6.1 Linux File Locking 

Linux supports all fashions of file locking: advisory and mandatory locks and the fcntl( ), 
flock( ), and the lockf( ) system calls. However, the lockf( ) system call is just a 
library wrapper routine, and therefore will not be discussed here. 

Mandatory locks can be enabled and disabled on a per-filesystem basis using the 
MS_MANDLOCK flag of the mount( ) system call. The default is to switch off mandatory 
locking: in this case, both flock( ) and fcntl( ) create advisory locks. When the flag is 
set, flock( ) still produces advisory locks, while fcntl( ) produces mandatory locks if the 
file has the set-group bit on and the group-execute bit off; it produces advisory locks 
otherwise. 

Beside the checks in the read( ) and write( ) system calls, the kernel takes into 
consideration the existence of mandatory locks when servicing all system calls that could 
modify the contents of a file. For instance, an open( ) system call with the O_TRUNC flag set 
fails if any mandatory lock exists for the file. 

A lock produced by fcntl( ) is of type FL_POSIX, while a lock produced by flock( ) is of 
type FL_LOCK. These two types of locks may safely coexist, but neither one has any effect on 
the other. Therefore, a file locked through fcntl( ) does not appear locked to flock( ) and 
vice versa. 

An FL_POSIX lock is always associated with a process and with an inode; the lock is 
automatically released either when the process dies or when a file descriptor is closed (even if 
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the process opened the same file twice or duplicated a file descriptor). Moreover, FL_POSIX 
locks are never inherited by the child across a fork( ). 

An FL_LOCK lock is always associated with a file object. When a lock is requested, the kernel 
replaces any other lock that refers to the same file object. This happens only when a process 
wants to change an already owned read lock into a write one or vice versa. Moreover, when a 
file object is being freed by the fput( ) function, all FL_LOCK locks that refer to the file 
object are destroyed. However, there could be other FL_LOCK read locks set by other processes 
for the same file (inode), and they still remain active. 

12.6.2 File-Locking Data Structures 

The file_lock data structure represents file locks; its fields are shown in Table 12-12. All 
file_lock data structures are included in a doubly linked list. The address of the first 
element is stored in file_lock_table, while the fields fl_nextlink and fl_prevlink store 
the addresses of the adjacent elements in the list. 

Table 12-12. The Fields of the file_lock Data Structure 
Type Field Description 
struct file_lock * fl_next Next element in inode list 
struct file_lock * fl_nextlink Next element in global list 
struct file_lock * fl_prevlink Previous element in global list 
struct file_lock * fl_nextblock Next element in process list 
struct file_lock * fl_prevblock Previous element in process list 
struct files_struct * fl_owner Owner's files_struct 
unsigned int fl_pid PID of the process owner 
struct wait_queue * fl_wait Wait queue of blocked processes 
struct file * fl_file Pointer to file object 
unsigned char fl_flags Lock flags 
unsigned char fl_type Lock type 
off_t fl_start Starting offset of locked region 
off_t fl_end Ending offset of locked region 
void (*)(struct file_lock *) fl_notify Callback function when lock is unblocked 
union u Filesystem-specific information 

All lock_file structures that refer to the same file on disk are collected in a simply linked 
list, whose first element is pointed to by the i_flock field of the inode object. The fl_next 
field of the lock_file structure specifies the next element in the list. 

When a process tries to get an advisory or mandatory lock, it may be suspended until the 
previously allocated lock on the same file region is released. All processes sleeping on some 
lock are inserted into a wait queue, whose address is stored in the fl_wait field of the 
file_lock structure. Moreover, all processes sleeping on any file locks are inserted into a 
global circular list implemented by means of the fl_nextblock and fl_prevblock fields. 

The following sections examine the differences between the two lock types. 
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12.6.3 FL_LOCK Locks 

The flock( ) system call acts on two parameters: the fd file descriptor of the file to be acted 
upon and a cmd parameter that specifies the lock operation. A cmd parameter of LOCK_SH 
requires a shared lock for reading, LOCK_EX requires an exclusive lock for writing, and 
LOCK_UN releases the lock. If the LOCK_NB value is ORed to the LOCK_SH or LOCK_EX 
operation, the system call does not block; in other words, if the lock cannot be immediately 
obtained, the system call returns an error code. Note that it is not possible to specify a region 
inside the file: the lock always applies to the whole file. 

When the sys_flock( ) service routine is invoked, it performs the following steps: 

1. Checks whether fd is a valid file descriptor; if not, returns an error code. Gets the 
address of the corresponding file object. 

2. Invokes flock_make_lock( ) to initialize a file_lock structure by setting the 
fl_flags field to FL_LOCK; sets the fl_type field to F_RDLCK, F_WRLCK, or F_UNLCK, 
depending on the value of cmd, and sets the fl_file field to the address of the file 
object. 

3. If the lock must be acquired, checks that the process has both read and write 
permission on the open file; if not, returns an error code. 

4. Invokes flock_lock_file( ), passing as parameters the file object pointer filp, a 
pointer caller to the initialized file_lock structure, and a flag wait. This last 
parameter is set if the system call should block and cleared otherwise. This function 
performs, in turn, the following actions: 

a. Searches the list that filp->f_dentry->d_inode->i_flock points to. If an 
FL_LOCK lock for the same file object is found and an F_UNLCK operation is 
required, removes the file_lock element from the inode list and the global 
list, wakes up all processes sleeping in the lock's wait queue, frees the 
file_lock structure, and returns. 

b. Otherwise, searches the inode list again to verify that no existing FL_LOCK lock 
conflicts with the requested one. There must be no FL_LOCK write lock in the 
inode list, and moreover there must be no FL_LOCK lock at all if the processing 
is requesting a write lock. However, a process may want to change the type of 
a lock it already owns; this is done by issuing a second flock( ) system call. 
Therefore, the kernel always allows the process to change locks that refer to 
the same file object. If a conflicting lock is found and the LOCK_NB flag was 
specified, returns an error code, otherwise inserts the current process in the 
circular list of blocked processes and invokes interruptible_sleep_on( ) 
to suspend it. 

c. Otherwise, if no incompatibility exists, inserts the file_lock structure into the 
global lock list and the inode list, then returns (success). 

12.6.4 FL_POSIX Locks 

When used to lock files, the fcntl( ) system call acts on three parameters: the fd file 
descriptor of the file to be acted upon, a cmd parameter that specifies the lock operation, and 
an fl pointer to a flock structure. 
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Locks of type FL_POSIX are able to protect an arbitrary file region, even a single byte. The 
region is specified by three fields of the flock structure. l_start is the initial offset of the 
region and is relative to the beginning of the file (if field l_whence is set to SEEK_SET), to the 
current file pointer (if l_whence is set to SEEK_CUR), or to the end of the file (if l_whence is 
set to SEEK_END). The l_len field specifies the length of the file region (or 0, which means 
that the region extends beyond the end of the file). 

The sys_fcntl( ) service routine behaves differently depending on the value of the flag set 
in the cmd parameter: 

F_GETLK  

Determines whether the lock described by the flock structure conflicts with some 
FL_POSIX lock already obtained by another process. In that case, the flock structure is 
overwritten with the information about the existing lock. 

F_SETLK  

Sets the lock described by the flock structure. If the lock cannot be acquired, the 
system call returns an error code. 

F_SETLKW  

Sets the lock described by the flock structure. If the lock cannot be acquired, the 
system call blocks; that is, the calling process is put to sleep. 

When sys_fcntl( ) acquires a lock, it performs the following: 

1. Reads the flock structure from user space. 
2. Gets the file object corresponding to fd. 
3. Checks whether the lock should be a mandatory one. In that case, returns an error code 

if the file has a shared memory mapping (see Section 15.2 in Chapter 15). 
4. Invokes the posix_make_lock( ) function to initialize a new file_lock structure. 
5. Returns an error code if the file does not allow the access mode specified by the type 

of the requested lock. 
6. Invokes the lock method of the file operations, if defined. 
7. Invokes the posix_lock_file( ) function, which executes the following actions: 

a. Invokes posix_locks_conflict( ) for each FL_POSIX lock in the inode's 
lock list. The function checks whether the lock conflicts with the requested 
one. Essentially, there must be no FL_POSIX write lock for the same region in 
the inode list, and there may be no FL_POSIX lock at all for the same region if 
the process is requesting a write lock. However, locks owned by the same 
process never conflict; this allows a process to change the characteristics of a 
lock it already owns. 

b. If a conflicting lock is found and fcntl( ) was invoked with the F_SETLK 
flag, returns an error code. Otherwise, the current process should be suspended. 
In this case, invokes posix_locks_deadlock( ) to check that no deadlock 
condition is being created among processes waiting for FL_POSIX locks, then 
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inserts the current process in the circular list of blocked processes and invokes 
interruptible_sleep_on( ) to suspend it. 

c. As soon as the inode's lock list includes no conflicting lock, checks all the 
FL_POSIX locks of the current process that overlap the file region that the 
current process wants to lock and combines and splits adjacent areas as 
required. For example, if the process requested a write lock for a file region 
that falls inside a read-locked wider region, the previous read lock is split into 
two parts covering the nonoverlapping areas, while the central region is 
protected by the new write lock. In case of overlaps, newer locks always 
replace older ones. 

d. Inserts the new file_lock structure in the global lock list and in the inode list. 
8. Returns the value 0 (success). 

12.7 Anticipating Linux 2.4 

The Linux 2.4 VFS handles eight new filesystems, among them the udf for handling DVD 
devices. The maximum file size has been considerably increased (at least from the VFS point 
of view) by expanding the i_size field of the inode from 32 to 64 bits. 

Additional access types can now be specified when opening a file: one refers to "raw" write 
requests that do not make use of the buffer cache. 
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Chapter 13. Managing I/O Devices 
The Virtual File System in the last chapter depends on lower-level functions to carry out each 
read, write, or other operation in a manner suited to each device. The previous chapter 
included a brief discussion of how operations are handled by different filesystems. In this 
chapter, we'll look at how the kernel invokes the operations on actual devices. 

In Section 13.1 we give a brief survey of the Intel 80x86 I/O architecture. In Section 13.2 we 
show how the VFS associates a "device file" with each different hardware device so that 
application programs can use all kinds of devices in the same way. Most of the chapter 
focuses on the two types of drivers, character and block. 

The aim of this chapter is to illustrate the overall organization of device drivers in Linux. 
Readers interested in developing device drivers on their own may want to refer to Alessandro 
Rubini's Linux Device Drivers book from O'Reilly. 

13.1 I/O Architecture 

In order to make a computer work properly, data paths must be provided that let information 
flow between CPU(s), RAM, and the score of I/O devices that can be connected nowadays to 
a personal computer. These data paths, which are denoted collectively as the bus, act as the 
primary communication channel inside the computer. 

Several types of buses, such as the ISA, EISA, PCI, and MCA, are currently in use. In this 
section we'll discuss the functional characteristics common to all PC architectures, without 
giving details about a specific bus type. 

In fact, what is commonly denoted as bus consists of three specialized buses: 

Data bus  

A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data bus. 

Address bus  

A group of lines that transmits an address in parallel. The Pentium has a 32-bit-wide 
address bus. 

Control bus  

A group of lines that transmits control information to the connected circuits. The 
Pentium makes use of control lines to specify, for instance, whether the bus is used to 
allow data transfers between a processor and the RAM or alternatively between a 
processor and an I/O device. Control lines also determine whether a read or a write 
transfer must be performed. 

When the bus connects the CPU to an I/O device, it is called an I/O bus. In this case, Intel 
80x86 microprocessors use 16 out of the 32 address lines to address I/O devices and 8, 16, or 
32 out of the 64 data lines to transfer data. The I/O bus, in turn, is connected to each I/O 
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device by means of a hierarchy of hardware components including up to three elements: I/O 
ports, interfaces, and device controllers. Figure 13-1 shows the components of the I/O 
architecture. 

Figure 13-1. PC's I/O architecture 

 

13.1.1 I/O Ports 

Each device connected to the I/O bus has its own set of I/O addresses, which are usually 
called I/O ports. In the IBM PC architecture, the I/O address space provides up to 65,536 8-bit 
I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, which must 
start on an even address. Similarly, two consecutive 16-bit ports may be regarded as a single 
32-bit port, which must start on an address that is a multiple of 4. Four special assembly 
language instructions called in, ins, out, and outs allow the CPU to read from and write into 
an I/O port. While executing one of these instructions, the CPU makes use of the address bus 
to select the required I/O port and of the data bus to transfer data between a CPU register and 
the port. 

I/O ports may also be mapped into addresses of the physical address space: the processor is 
then able to communicate with an I/O device by issuing assembly language instructions that 
operate directly on memory (for instance, mov, and, or, and so on). Modern hardware devices 
tend to prefer mapped I/O, since it is faster and can be combined with DMA. 

An important objective for system designers is to offer a unified approach to I/O 
programming without sacrificing performance. Toward that end, the I/O ports of each device 
are structured into a set of specialized registers as shown in Figure 13-2. The CPU writes into 
the control register the commands to be sent to the device and reads from the status register a 
value that represents the internal state of the device. The CPU also fetches data from the 
device by reading bytes from the input register and pushes data to the device by writing bytes 
into the output register. 
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Figure 13-2. Specialized I/O ports 

 

In order to lower costs, the same I/O port is often used for different purposes. For instance, 
some bits describe the device state, while others specify the command to be issued to the 
device. Similarly, the same I/O port may be used as an input register or an output register. 

13.1.2 I/O Interfaces 

An I/O interface is a hardware circuit inserted between a group of I/O ports and the 
corresponding device controller. It acts as an interpreter that translates the values in the I/O 
ports into commands and data for the device. In the opposite direction, it detects changes in 
the device state and correspondingly updates the I/O port that plays the role of status register. 
This circuit can also be connected through an IRQ line to a Programmable Interrupt 
Controller, so that it issues interrupt requests on behalf of the device. 

There are two types of interfaces: 

Custom I/O interfaces  

Devoted to one specific hardware device. In some cases, the device controller is 
located in the same card [1] that contains the I/O interface. The devices attached to a 
custom I/O interface can be either internal devices (devices located inside the PC's 
cabinet) or external devices (devices located outside the PC's cabinet). 

[1] Each card must be inserted in one of the available free bus slots of the PC. If the card can be connected to an external device 
through an external cable, the card sports a suitable connector in the rear panel of the PC. 

General-purpose I/O interfaces  

Used to connect several different hardware devices. Devices attached to a general-
purpose I/O interface are always external devices. 

13.1.2.1 Custom I/O interfaces 

Just to give an idea of how much variety is encompassed by custom I/O interfaces, thus by the 
devices currently installed in a PC, we'll list some of the most commonly found: 

Keyboard interface  

Connected to a keyboard controller that includes a dedicated microprocessor. This 
microprocessor decodes the combination of pressed keys, generates an interrupt, and 
puts the corresponding scan code in an input register. 
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Graphic interface  

Packed together with the corresponding controller in a graphic card that has its own 
frame buffer, as well as a specialized processor and some code stored in a Read-Only 
Memory chip (ROM). The frame buffer is an on-board memory containing the 
graphics description of the current screen contents. 

Disk interface  

Connected by a cable to the disk controller, which is usually integrated with the disk. 
For instance, the IDE interface is connected by a 40-wire flat conductor cable to an 
intelligent disk controller that can be found on the disk itself. 

Bus mouse interface  

The corresponding controller is included in the mouse, which is connected via a cable 
to the interface. 

Network interface  

Packed together with the corresponding controller in a network card used to receive or 
transmit network packets. Although there are several widely adopted network 
standards, Ethernet is the most common. 

13.1.2.2 General-purpose I/O interfaces 

Modern PCs include several general-purpose I/O interfaces, which are used to connect a wide 
range of external devices. The most common interfaces are: 

Parallel port  

Traditionally used to connect printers, it can also be used to connect removable disks, 
scanners, backup units, other computers, and so on. The data is transferred 1 byte (8 
bits) at the time. 

Serial port  

Like the parallel port, but the data is transferred 1 bit at a time. It includes a Universal 
Asynchronous Receiver and Transmitter (UART) chip to string out the bytes to be sent 
into a sequence of bits and to reassemble the received bits into bytes. Since it is 
intrinsically slower than the parallel port, this interface is mainly used to connect 
external devices that do not operate at a high speed, like modems, mouses, and 
printers. 

Universal serial bus (USB)  

A recent general-purpose I/O interface that is quickly gaining in popularity. It operates 
at a high speed, and it may be used for the external devices traditionally connected to 
the parallel port and the serial port. 
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PCMCIA interface  

Included mostly on portable computers. The external device, which has the shape of a 
credit card, can be inserted into and removed from a slot without rebooting the system. 
The most common PCMCIA devices are hard disks, modems, network cards, and 
RAM expansions. 

SCSI (Small Computer System Interface) interface  

A circuit that connects the main PC bus to a secondary bus called the SCSI bus. The 
SCSI-2 bus allows up to eight PCs and external devices—hard disks, scanners, CD-
ROM writers, and so on—to be connected together. Wide SCSI-2 and the recent 
SCSI-3 interfaces allow you to connect 16 devices or more if additional interfaces are 
present. The SCSI standard is the communication protocol used to connect devices via 
the SCSI bus. 

13.1.3 Device Controllers 

A complex device may require a device controller to drive it. Essentially, the controller plays 
two important roles: 

• It interprets the high-level commands received from the I/O interface and forces the 
device to execute specific actions by sending proper sequences of electrical signals to 
it. 

• It converts and properly interprets the electrical signals received from the device and 
modifies (through the I/O interface) the value of the status register. 

A typical device controller is the disk controller, which receives high-level commands such as 
a "write this block of data" from the microprocessor (through the I/O interface) and converts 
them into low-level disk operations such as "position the disk head on the right track" and 
"write the data inside the track." Modern disk controllers are very sophisticated, since they 
can keep the disk data in fast memory caches and can reorder the CPU high-level requests 
optimized for the actual disk geometry. 

Simpler devices do not have a device controller; the Programmable Interrupt Controller (see 
Section 4.2 in Chapter 4) and the Programmable Interval Timer (see Section 5.1.3 in  
Chapter 5) are examples of such devices. 

13.1.4 Direct Memory Access (DMA) 

All PCs include an auxiliary processor called the Direct Memory Access Controller, or 
DMAC, which can be instructed to transfer data between the RAM and an I/O device. Once 
activated by the CPU, the DMAC is able to carry on the data transfer on its own; when the 
data transfer has been completed, the DMAC issues an interrupt request. The conflicts 
occurring when both CPU and DMAC need to access the same memory location at the same 
time are resolved by a hardware circuit called a memory arbiter (see also Section 11.3.1 in 
Chapter 11). 
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The DMAC is mostly used by disk drivers and other slow devices that transfer a large number 
of bytes at once. Because setup time for the DMAC is relatively high, it is more efficient to 
directly use the CPU for the data transfer when the number of bytes is small. 

The first DMACs for the old ISA buses were complex and hard to program. More recent 
DMACs for the PCI and SCSI buses rely on dedicated hardware circuits in the buses and 
make life easier for device driver developers. 

Until now we have distinguished three kinds of memory addresses: logical and linear 
addresses, which are used internally by the CPU, and physical addresses, which are the 
memory addresses used by the CPU to physically drive the data bus. However, there is a 
fourth kind of memory address, the so-called bus address: it corresponds to the memory 
addresses used by all hardware devices except the CPU to drive the data bus. In the PC 
architecture, bus addresses coincide with physical addresses; however, in other architectures, 
like Sun's SPARC and Compaq's Alpha, these two kinds of addresses differ. 

Why should the kernel be concerned at all about bus addresses? Well, in a DMA operation the 
data transfer takes place without CPU intervention: the data bus is directly driven by the I/O 
device and the DMAC. Therefore, when the kernel sets up a DMA operation, it must write the 
bus address of the memory buffer involved in the proper I/O ports of the DMAC or I/O 
device. 

13.2 Associating Files with I/O Devices 

As mentioned in Chapter 1, Unix-like operating systems are based on the notion of a file, 
which is just an information container structured as a sequence of bytes. According to this 
approach, I/O devices are treated as files; thus, the same system calls used to interact with 
regular files on disk can be used to directly interact with I/O devices. As an example, the same 
write( ) system call may be used to write data into a regular file, or to send it to a printer by 
writing to the /dev/lp0 device file. Let's now examine in more detail how this schema is 
carried out. 

13.2.1 Device Files 

Device files are used to represent most of the I/O devices supported by Linux. Besides its 
name, each device file has three main attributes: 

Type  

Either block or character (we'll discuss the difference shortly). 

Major number  

A number ranging from 1 to 255 that identifies the device type. Usually, all device 
files having the same major number and the same type share the same set of file 
operations, since they are handled by the same device driver. 
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Minor number  

A number that identifies a specific device among a group of devices that share the 
same major number. 

The mknod( ) system call is used to create device files. It receives the name of the device file, 
its type, and the major and minor numbers as parameters. The last two parameters are merged 
in a 16-bit dev_t number: the eight most significant bits identify the major number, while the 
remaining ones identify the minor number. The MAJOR and MINOR macros extract the two 
values from the 16-bit number, while the MKDEV macro merges a major and minor number into 
a 16-bit number. Actually, dev_t is the data type specifically used by application programs; 
the kernel uses the kdev_t data type. In Linux 2.2 both types reduce to an unsigned short 
integer, but kdev_t will become a complete device file descriptor in some future Linux 
version. 

Device files are usually included in the /dev directory. Table 13-1 illustrates the attributes of 
some device files.[2] Notice how the same major number may be used to identify both a 
character and a block device. 

[2] The official registry of allocated device numbers and /devdirectory nodes is stored in the Documentation/devices.txt file. The major numbers of the 
devices supported may also be found in the include/linux/major.h file. 

Table 13-1. Examples of Device Files 
Name Type Major Minor Description 
/dev/fd0 block 2 0 Floppy disk 
/dev/hda block 3 0 First IDE disk 
/dev/hda2 block 3 2 Second primary partition of first IDE disk 
/dev/hdb block 3 64 Second IDE disk 
/dev/hdb3 block 3 67 Third primary partition of second IDE disk 
/dev/ttyp0 char 3 0 Terminal 
/dev/console char 5 1 Console 
/dev/lp1 char 6 1 Parallel printer 
/dev/ttyS0 char 4 64 First serial port 
/dev/rtc char 10 135 Real time clock 
/dev/null char 1 3 Null device (black hole) 

Usually, a device file is associated with a hardware device, like a hard disk (for instance, 
/dev/hda), or with some physical or logical portion of a hardware device, like a disk partition 
(for instance, /dev/hda2). In some cases, however, a device file is not associated to any real 
hardware device, but represents a fictitious logical device. For instance, /dev/null is a device 
file corresponding to a "black hole": all data written into it are simply discarded, and the file 
appears always empty. 

As far as the kernel is concerned, the name of the device file is irrelevant. If you created a 
device file named /tmp/disk of type "block" with major number 3 and minor number 0, it 
would be equivalent to the /dev/hda device file shown in the table. On the other hand, device 
filenames may be significant for some application programs. As an example, a 
communication program might assume that the first serial port is associated with the 
/dev/ttyS0 device file. But usually most application programs can be configured to interact 
with arbitrarily named device files. 



Understanding the Linux Kernel 

350 

13.2.1.1 Block versus character devices 

Block devices have the following characteristics: 

• They are able to transfer a fixed-size block of data in a single I/O operation. 
• Blocks stored in the device can be addressed randomly: the time needed to transfer a 

data block can be assumed independent of the block address inside the device and of 
the current device state. 

Typical examples of block devices are hard disks, floppy disks, and CD-ROMs. RAM disks, 
which are obtained by configuring portions of the RAM as fast hard disks and can make 
temporary storage very efficient for application programs, are also treated as block devices. 

Character devices have the following characteristics: 

• They are able to transfer arbitrary-sized data in a single I/O operation. Actually, some 
character devices—such as printers—transfer 1 byte at a time, while others, such as 
tape units, transfer variable-length blocks of data. 

• They usually address characters sequentially. 

13.2.1.2 Network cards 

Some I/O devices have no corresponding device file. The most significant example is network 
cards. Essentially, a network card places outgoing data on a line going to remote computer 
systems and receives packets from those systems into kernel memory. Although this book 
does not cover networking, it is worth spending a few moments on the kernel and 
programming interfaces to these cards. 

Starting with BSD, all Unix systems assign a different symbolic name to each network card 
included in the computer; for instance, the first Ethernet card gets the eth0 name. However, 
the name does not correspond to any device file and has no corresponding inode. 

Instead of using the filesystem, the system administrator has to set up a relationship between 
the device name and a network address. Therefore, data communication between application 
programs and the network interface is not based on the standard file-related system calls; it is 
based instead on the socket( ), bind( ), listen( ), accept( ), and connect( ) system 
calls, which act on network addresses. This group of system calls, introduced first by Unix 
BSD, has become the standard programming model for network devices. 

13.2.2 VFS Handling of Device Files 

Device files live in the system directory tree but are intrinsically different from regular files 
and directories. When a process accesses a regular file, it is accessing some data blocks in 
some disk partition through a filesystem, but when a process accesses a device file, it is just 
driving a hardware device. For instance, a process might access a device file to read the room 
temperature from a digital thermometer connected to the computer. It is the VFS's 
responsibility to hide the differences between device files and regular files from application 
programs. 
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In order to do this, the VFS changes the default file operations of an opened device file; as 
result, any system call on the device file will be translated to an invocation of a device-related 
function instead of the corresponding function of the hosting filesystem. The device-related 
function acts on the hardware device to perform the operation requested by the process.[3]  

[3] Notice that, thanks to the name-resolving mechanism explained in Section 12.4 in Chapter 12, symbolic links to device files work just like device 
files. 

The set of device-related functions that control an I/O device is called a device driver. Since 
each device has a unique I/O controller, and thus unique commands and unique state 
information, most I/O device types have their own drivers. 

13.2.2.1 Device file class descriptors 

Each class of device files having the same major number and the same type is described by a 
device_struct data structure, which includes two fields: the name (name) of the device class 
and a pointer (fops) to the file operation table. All device_struct descriptors for character 
device files are included in the chrdevs table. It includes 255 elements, one for each possible 
major number. (No device file can have major number 255, since that value is reserved for 
future extensions.) Similarly, all 255 descriptors for block device files are included in the 
blkdevs table. The first entry of both tables is always empty, since no device file can have 
major number 0. 

The chrdevs and blkdevs tables are initially empty. The register_chrdev( ) and 
register_blkdev( ) functions are used to insert a new entry into one of the tables, while 
unregister_chrdev( ) and unregister_blkdev( ) are used to remove an entry. 

As an example, the descriptor for the parallel printer driver class is inserted in the chrdevs 
table as follows: 

register_chrdev(6, "lp", &lp_fops); 

The first parameter denotes the major number, the second denotes the device class name, and 
the last is a pointer to the table of file operations. 

If a device driver is statically included in the kernel, the corresponding device file class is 
registered during system initialization. However, if a device driver is dynamically loaded as a 
module (see Appendix B), the corresponding device file class is registered when the module is 
loaded and unregistered when the module is unloaded. 

13.2.2.2 Opening a device file 

We discussed in Section 12.5.1 in Chapter 12 how files are opened. Let us suppose that a 
process opens a device file. The VFS initializes, if necessary, the file object, the dentry object, 
and the inode object that refer to the device file. In particular, if the inode object does not 
already exist, the VFS invokes the read_inode method of the proper superblock object to 
retrieve the file information from disk. In doing so, the method records the device major and 
minor numbers in the i_rdev field of the inode object and the device file type in the i_mode 
field (S_IFCHR for character device files or S_IFBLK for block device files). Moreover, it 
installs a pointer to the appropriate inode operations as follows: 



Understanding the Linux Kernel 

352 

if ((inode->i_mode & 00170000) == S_IFCHR)  
    inode->i_op = &chrdev_inode_operations;  
else if ((inode->i_mode & 00170000) == S_IFBLK)  
    inode->i_op = &blkdev_inode_operations; 

All fields of the chrdev_inode_operations and blkdev_inode_operations tables are null 
except for the default_file_ops fields, which point to the def_chr_fops table and to the 
def_blk_fops table, respectively. All the methods of def_chr_fops and def_blk_fops in 
turn are null except for the open methods, which point to the chrdev_open( ) function and 
to the blkdev_open( ) function, respectively. 

The filp_open( ) function fills the new file object and in particular initializes the f_op field 
with the contents of i_op->default_file_ops field of the inode object. As a consequence, 
the file operation table will be def_chr_fops or def_blk_fops. Then filp_open( ) invokes 
the open method, thus executing either chrdev_open( ) or blkdev_open( ). These 
functions essentially perform three operations: 

1. Derive the major number of the device driver from the i_rdev field of the inode 
object: 

major = MAJOR(inode->i_rdev); 

2. Install the proper file operations for the device file: 

filp->f_op = chrdevs[major].fops; 

(The example, of course, is for character device files; blkdev_open( ) uses the 
blkdevs table instead.) 

3. Invoke, if defined, the open method of the file operations table: 

   if (filp->f_op != NULL && filp->f_op->open != NULL)  
    return filp->f_op->open(inode, filp); 

Notice that the final invocation of the open( ) method does not cause recursion, since now 
the field contains the address of a device-dependent function whose job is to set up the device. 
Typically, that function performs the following operations: 

1. If the device driver is included in a kernel module, increments its usage counter, so 
that it cannot be unloaded until the device file is closed. (Appendix B describes how 
users can load and unload modules.) 

2. If the device driver handles several devices of the same kind, selects the proper one by 
making use of the minor number and further specializes, if needed, the table of file 
operations. 

3. Checks whether the device really exists and is currently working. 
4. If necessary, sends an initialization command sequence to the hardware device. 
5. Initializes the data structures of the device driver. 
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13.3 Device Drivers 

We have seen that the VFS uses a canonical set of common functions (open, read, lseek, and 
so on) to control a device. The actual implementation of all these functions is delegated to the 
device driver. Since each device has a unique I/O controller, and thus unique commands and 
unique state information, most I/O devices have their own drivers. 

We shall not attempt to describe any of the hundreds of existing device drivers but 
concentrate rather on how the kernel supports them. In doing so, we shall describe several I/O 
architecture features that must be taken into consideration by device driver programmers. 

13.3.1 Level of Kernel Support 

The kernel can support access to hardware devices in three possible ways: 

No support at all  

The application program interacts directly with the device's I/O ports by issuing 
suitable in and out assembly language instructions. 

Minimal support  

The kernel does not recognize the hardware device but only its I/O interface. User 
programs are able to treat the interface as a sequential device capable of reading 
and/or writing sequences of characters. 

Extended support  

The kernel recognizes the hardware device and handles the I/O interface itself. In fact, 
there might not even be a device file for the device. 

The most common example of the first approach, which does not rely on any kernel device 
driver, is how the X Window System handles the graphic display. The approach is quite 
efficient, although it restrains the X server from making use of the hardware interrupts issued 
by the I/O device. This approach also requires some additional effort in order to allow the X 
server to access the required I/O ports. As mentioned in Section 3.2.2 in Chapter 3, the iopl( 
) and ioperm( ) system calls grant a process the privilege to access I/O ports. They can be 
invoked only by programs having root privileges. But such programs can be made available to 
users by setting the fsuid field of the executable file to 0, the UID of the superuser (see 
Section 19.1.1 in Chapter 19). 

The minimal support approach is used to handle external hardware devices connected to a 
general-purpose I/O interface. The kernel takes care of the I/O interface by offering a device 
file (and thus a device driver); the application program handles the external hardware device 
by reading and writing the device file. 

Minimal support is preferable to extended support because it keeps the kernel size small. 
However, among the general-purpose I/O interfaces commonly found on a PC, only the serial 
port is handled with this approach. Thus, a serial mouse is directly controlled by an 
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application program, like the X server, and a serial modem always requires a communication 
program like Minicom, Seyon, or a PPP (Point-to-Point Protocol) daemon. 

Minimal support has a limited range of applications because it cannot be used when the 
external device must interact heavily with internal kernel data structures. As an example, 
consider a removable hard disk that is connected to a general-purpose I/O interface. An 
application program cannot interact with all kernel data structures and functions needed to 
recognize the disk and to mount its filesystem, so extended support is mandatory in this case. 

In general, any hardware device directly connected to the I/O bus, such as the internal hard 
disk, is handled according to the extended support approach: the kernel must provide a device 
driver for each such device. External devices attached to the parallel port, the Universal Serial 
Bus (USB), the PCMCIA port found in many laptops, or the SCSI interface—in short, any 
general-purpose I/O interface except the serial port—also require extended support. 

It is worth noting that the standard file-related system calls like open( ), read( ), and 
write( ) do not always give the application full control of the underlying hardware device. 
In fact, the lowest-common-denominator approach of the VFS does not include room for 
special commands that some devices need or let an application check whether the device is in 
some specific internal state. 

The POSIX ioctl( ) system call has been introduced to satisfy such needs. Besides the file 
descriptor of the device file and a second 32-bit parameter specifying the request, the system 
call can accept an arbitrary number of additional parameters. For example, specific ioctl( ) 
requests exist to get the CD-ROM sound volume or to eject the CD-ROM media. Application 
programs may simulate the user interface of a CD player using these kinds of ioctl( ) 
requests. 

13.3.2 Monitoring I/O Operations 

The duration of an I/O operation is often unpredictable. It can depend on mechanical 
considerations (the current position of a disk head with respect to the block to be transferred), 
on truly random events (when a data packet will arrive on the network card), or on human 
factors (when a user will press a key on the keyboard or when she will notice that a paper jam 
occurred in the printer). In any case, the device driver that started an I/O operation must rely 
on a monitoring technique that signals either the termination of the I/O operation or a time-
out. 

In the case of a terminated operation, the device driver reads the status register of the I/O 
interface to determine if the I/O operation was carried out successfully. In the case of a time-
out, the driver knows that something went wrong, since the maximum time interval allowed to 
complete the operation elapsed and nothing happened. 

The two techniques available to monitor the end of an I/O operation are called the polling 
mode and the interrupt mode. 

13.3.2.1 Polling mode 

According to this technique, the CPU checks (polls) the device's status register repeatedly 
until its value signals that the I/O operation has been completed. We have already encountered 
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a technique based on polling in Section 11.4.2 in Chapter 11: when a processor tries to 
acquire a busy spin lock, it repeatedly polls the variable until its value becomes 0. However, 
polling applied to I/O operations is usually more elaborate, since the delays involved may be 
huge and the driver must remember to check for possible time-outs, too. In order to avoid 
wasting precious machine cycles, device drivers voluntarily relinquish the CPU after each 
polling operation so that other runnable processes can continue their execution: 

for (;;) {  
    if (read_status(device) & DEVICE_END_OPERATION)  
        break;  
    schedule(  );  
    if (--count == 0)  
        break;  
} 

The count variable, which was initialized before entering the loop, is decremented at each 
iteration, and thus can be used to implement a rough time-out mechanism. Alternatively, a 
more precise time-out mechanism could be implemented by reading the value of the tick 
counter jiffies at each iteration (see Section 5.3 in Chapter 5) and comparing it with the old 
value read before starting the wait loop. 

13.3.2.2 Interrupt mode 

Interrupt mode can be used only if the I/O controller is capable of signaling, via an IRQ line, 
the end of an I/O operation. The device driver starts the I/O operation and invokes 
interruptible_sleep_on( ) or sleep_on( ), passing as the parameter a pointer to the I/O 
device wait queue. 

When the interrupt occurs, the interrupt handler invokes wake_up( ) to wake up all processes 
sleeping in the device wait queue. The awakened device driver can thus check the result of the 
I/O operation. 

Time-out control is implemented through static or dynamic timers (see Chapter 5); the timer 
must be set to the right time before starting the I/O operation and removed when the operation 
terminates. 

13.3.3 Accessing I/O Ports 

The in, out, ins, and outs assembly language instructions access I/O ports. The following 
auxiliary functions are included in the kernel to simplify such accesses: 

inb( ) , inw( ) , inl( )  

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port. The suffix "b," "w," 
or "l" refers, respectively, to a byte (8 bits), a word (16 bits), and a long (32 bits). 

inb_p( ) , inw_p( ) , inl_p( )  

Read 1, 2, or 4 consecutive bytes, respectively, from an I/O port and then execute a 
"dummy" instruction to introduce a pause. 
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outb( ) , outw( ) , outl( )  

Write 1, 2, or 4 consecutive bytes respectively to an I/O port. 

outb_p( ) , outw_p( ) , outl_p( )  

Write 1, 2, and 4 consecutive bytes, respectively, to an I/O port and then execute a 
"dummy" instruction to introduce a pause. 

insb( ) , insw( ) , insl( )  

Read sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, from an I/O 
port. The length of the sequence is specified as a parameter of the functions. 

outsb( ) , outsw( ) , outsl( )  

Write sequences of consecutive bytes, in groups of 1, 2, or 4, respectively, to an I/O 
port. 

While accessing I/O ports is simple, detecting which I/O ports have been assigned to I/O 
devices may not be, in particular for systems based on an ISA bus. Often a device driver must 
blindly write into some I/O port in order to probe the hardware device; if, however, this I/O 
port is already used by some other hardware device, a system crash could occur. In order to 
prevent such situations, the kernel keeps track of I/O ports assigned to each hardware device 
by means of the iotable table. Any device driver may thus use the following three functions: 

request_region( )  

Assigns a given interval of I/O ports to an I/O device 

check_region( )  

Checks whether a given interval of I/O ports is free or whether some of them have 
already been assigned to some I/O device 

release_region( )  

Releases a given interval of I/O ports previously assigned to an I/O device 

The I/O addresses currently assigned to I/O devices can be obtained from the /proc/ioports 
file. 

13.3.4 Requesting an IRQ 

We have seen in Section 4.6.7 in Chapter 4 that the assignment of IRQs to devices is usually 
made dynamically, right before using them, since several devices may share the same IRQ 
line. To make sure the IRQ is obtained when needed but not requested in a redundant manner 
when it is already in use, device drivers usually adopt the following schema: 
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• A usage counter keeps track of the number of processes that are currently accessing 
the device file. The counter is incremented in the open method of the device file and 
decremented in the release method.[4]  

[4] More precisely, the usage counter keeps track of the number of file objects referring to the device file, since clone processes could share the same 
file object. 

• The open method checks the value of the usage counter before the increment. If the 
counter is null, the device driver must allocate the IRQ and enable interrupts on the 
hardware device. Therefore, it invokes request_irq( ) and configures the I/O 
controller properly. 

• The release method checks the value of the usage counter after the decrement. If the 
counter is null, no more processes are using the hardware device. If so, the method 
invokes free_irq( ), thus releasing the IRQ line, and disables interrupts on the I/O 
controller. 

13.3.5 Putting DMA to Work 

As mentioned in Section 13.1.4, several I/O drivers make use of the Direct Memory Access 
Controller (DMAC) to speed up operations. The DMAC interacts with the device's I/O 
controller to perform a data transfer; as we shall see later, the kernel includes an easy-to-use 
set of routines to program the DMAC. The I/O controller signals to the CPU, via an IRQ, 
when the data transfer has finished. 

When a device driver sets up a DMA operation for some I/O device, it must specify the 
memory buffer involved by using bus addresses. The kernel provides the virt_to_bus and 
bus_to_virt macros, respectively, to translate a linear address into a bus address and vice 
versa. 

As with IRQ lines, the DMAC is a resource that must be assigned dynamically to the drivers 
that need it. The way the driver starts and ends DMA operations depends on the type of bus. 

13.3.5.1 DMA for ISA bus 

Each ISA DMAC can control a limited number of channels. Each channel includes an 
independent set of internal registers, so that the DMAC can control several data transfers at 
the same time. 

Device drivers normally reserve and release the ISA DMAC in the following manner. As 
usual, the device driver relies on a usage counter to detect when a device file is no longer 
accessed by any process. The driver performs the following: 

• In the open( ) method of the device file, increment the device's usage counter. If the 
previous value was 0, the driver performs the following operations: 

1. Invokes request_irq( ) to allocate the IRQ line used by the ISA DMAC 
2. Invokes request_dma( ) to allocate a DMA channel 
3. Notifies the hardware device that it should use DMA and issue interrupts 
4. Allocates, if necessary, a storage area for the DMA buffer 

• When the DMA operation must be started, performs the following operations in the 
proper methods of the device file (typically, read and write): 

1. Invokes set_dma_mode( ) to set the channel to read or write mode. 
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2. Invokes set_dma_addr( ) to set the bus address of the DMA buffer. (Only 
the 24 least-significant bits of the address are sent to the DMAC, so the buffer 
must be included in the first 16 MB of RAM.) 

3. Invokes set_dma_count( ) to set the number of bytes to be transferred. 
4. Invokes enable_dma( ) to enable the DMA channel. 
5. Puts the current process in the device's wait queue and suspends it. When the 

DMAC terminates the transfer operation, the device's I/O controller issues an 
interrupt and the corresponding interrupt handler wakes up the sleeping 
process. 

6. Once awakened, invokes disable_dma( ) to disable the DMA channel. 
7. Invokes get_dma_residue( ) to check whether all bytes have been 

transferred. 
• In the release method of the device file, decrements the device's usage counter. If it 

becomes 0, execute the following operations: 
1. Disables the DMA and the corresponding interrupt on the hardware device 
2. Invokes free_dma( ) to release the DMA channel 
3. Invokes free_irq( ) to release the IRQ line used for DMA 

13.3.5.2 DMA for PCI bus 

Making use of DMA for a PCI bus is much simpler, since the DMAC is somewhat integrated 
into the I/O interface. As usual, in the open method, the device driver must allocate the IRQ 
line used for signaling the termination of the DMA operation. However, there is no need to 
allocate a DMA channel, since each hardware device directly controls the electrical signals of 
the PCI bus. To start a DMA operation, the device driver simply writes in some I/O port of 
the hardware device the bus address of the DMA buffer, the transfer direction, and the size of 
the data; the driver then suspends the current process. The release method releases the IRQ 
line when the file object is closed by the last process. 

13.3.6 Device Controller's Local Memory 

Several hardware devices include their own memory, which is often called I/O shared 
memory. For instance, all recent graphic cards include a few megabytes of RAM called a 
frame buffer, which is used to store the screen image to be displayed on the monitor. 

13.3.6.1 Mapping addresses 

Depending on the device and on the bus type, I/O shared memory in the PC's architecture may 
be mapped within three different physical address ranges: 

For most devices connected to the ISA bus  

The I/O shared memory is usually mapped into the physical addresses ranging from 
0xa0000 to 0xfffff; this gives rise to the "hole" between 640 KB and 1 MB 
mentioned in Section 2.5.3 of Chapter 2. 

For some old devices using the VESA Local Bus (VLB)  

This is a specialized bus mainly used by graphic cards: the I/O shared memory is 
mapped into the physical addresses ranging from 0xe00000 to 0xffffff, that is 
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between 14 MB and 16 MB. These devices, which further complicate the initialization 
of the paging tables, are going out of production. 

For devices connected to the PCI bus  

The I/O shared memory is mapped into very large physical addresses, well above the 
end of RAM's physical addresses. This kind of device is much simpler to handle. 

13.3.6.2 Accessing the I/O shared memory 

How ` does the kernel access an I/O shared memory location? Let's start with the PC's 
architecture, which is relatively simple to handle and then extend the discussion to other 
architectures. 

Remember that kernel programs act on linear addresses, so the I/O shared memory locations 
must be expressed as addresses greater than PAGE_OFFSET. In the following discussion, we 
assume that PAGE_OFFSET is equal to 0xc0000000, that is, that the kernel linear addresses are 
in the fourth gigabyte. 

Kernel drivers must translate I/O physical addresses of I/O shared memory locations into 
linear addresses in kernel space. In the PC architecture, this can be achieved simply by ORing 
the 32-bit physical address with the 0xc0000000 constant. For instance, suppose the kernel 
needs to store in t1 the value in the I/O location at physical address 0x000b0fe4 and in t2 the 
value in the I/O location at physical address 0xfc000000. One might think that the following 
statements could do the job: 

t1 = *((unsigned char *)(0xc00b0fe4));  
t2 = *((unsigned char *)(0xfc000000)); 

During the initialization phase, the kernel has mapped the available RAM's physical addresses 
into the initial portion of the fourth gigabyte of the linear address space. Therefore, the Paging 
Unit maps the 0xc00b0fe4 linear address appearing in the first statement back to the original 
I/O physical address 0x000b0fe4, which falls inside the "ISA hole" between 640 KB and 1 
MB (see Section 2.5 in Chapter 2). This works fine. 

There is a problem, however, for the second statement because the I/O physical address is 
greater than the last physical address of the system RAM. Therefore, the 0xfc000000 linear 
address does not necessarily correspond to the 0xfc000000 physical address. In such cases, 
the kernel page tables must be modified in order to include a linear address that maps the I/O 
physical address: this can be done by invoking the ioremap( ) function. This function, which 
is similar to vmalloc( ), invokes get_vm_area( ) to create a new vm_struct descriptor 
(see Section 6.3.2 in Chapter 6) for a linear address interval having the size of the required I/O 
shared memory area. The ioremap( ) function then updates properly the corresponding page 
table entries of all processes. 

The correct form for the second statement might therefore look like: 

io_mem = ioremap(0xfb000000, 0x200000);  
t2 = *((unsigned char *)(io_mem + 0x100000)); 
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The first statement creates a new 2 MB linear address interval, starting from 0xfb000000; the 
second one reads the memory location having the 0xfc000000 address. To remove the 
mapping later, the device driver must use the iounmap( ) function. 

Now let's consider architectures other than the PC. In this case, adding to an I/O physical 
address the 0xc0000000 constant to obtain the corresponding linear address does not always 
work. In order to improve kernel portability, Linux therefore includes the following macros to 
access the I/O shared memory: 

readb , readw , readl  

Reads 1, 2, or 4 bytes, respectively, from an I/O shared memory location 

writeb , writew , writel  

Writes 1, 2, or 4 bytes, respectively, into an I/O shared memory location 

memcpy_fromio , memcpy_toio  

Copies a block of data from an I/O shared memory location to dynamic memory and 
vice versa 

memset_io  

Fills an I/O shared memory area with a fixed value 

The recommended way to access the 0xfc000000 I/O location is thus: 

io_mem = ioremap(0xfb000000, 0x200000);  
t2 = readb(io_mem + 0x100000); 

Thanks to these macros, all dependences on platform-specific ways of accessing the I/O 
shared memory can be hidden. 

13.4 Character Device Handling 

Handling a character device is relatively easy, since no data buffering is needed and no disk 
caches are involved. Of course, character devices differ in their requirements: some of them 
must implement a sophisticated communication protocol to drive the hardware device, while 
others just have to read a few values from a couple of I/O ports of the hardware devices. For 
instance, the device driver of a multiport serial card device (a hardware device offering many 
serial ports) is much more complicated than the device driver of a bus mouse. 

Let's briefly sketch out the functioning of a very simple character device driver, namely the 
driver of the Logitech bus mouse. It is associated with the /dev/logibm character device file, 
which has major number 10 and minor number 0. 

Suppose that a process opens the /dev/logibm file; as explained in Section 13.2.2 earlier in this 
chapter, the VFS ends up invoking the open method of the device file operations common to 
all character devices having major number 10. This device class covers a series of 
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heterogeneous devices, and hence the method, a function called misc_open( ), installs yet a 
more specialized set of file operations according to the device's minor number. As the final 
result, the field f_op of the file object points to the bus_mouse_fops table, and the 
open_mouse( ) function is invoked. This function performs the following operations: 

1. Checks whether the bus mouse is connected. 
2. Requests the IRQ line used by the bus mouse, that is IRQ5, and registers the 

mouse_interrupt( ) Interrupt Service Routine. 
3. Initializes a small mouse data structure of type mouse_status, which stores the 

information about the status of the bus mouse. This status information includes which 
buttons are pressed, along with the horizontal and vertical displacements of the mouse 
pointer after the last read of the device file. 

4. Writes the valuein the 0x23e control register to enable bus mouse interrupts (the 
Logitech bus mouse uses I/O ports from 0x23c to 0x23f). 

The mouse data structure is filled asynchronously: every time the user changes the mouse 
position or presses a mouse button, the mouse controller generates an interrupt, and hence the 
mouse_interrupt( ) function is activated. It performs the following operations: 

1. Asks the bus mouse device about its state by writing suitable commands in the 0x23e 
control register and reading the corresponding values from the 0x23c input register. 

2. Updates the mouse data structure. 
3. Writes the value 0 in the 0x23e control register to reenable bus mouse interrupts (they 

are automatically disabled by the bus mouse device each time one of them occurs). 

The process must read the /dev/logibm file to get the mouse status. Each read( ) system call 
ends up invoking the read_mouse( ) function associated with the read method of the file 
operations. It performs the following operations: 

1. Checks that the process requested at least 3 bytes and returns -EINVAL otherwise. 
2. Checks whether the mouse status has changed after the last read operation of 

/dev/logibm; if not, return -EAGAIN. 
3. Invokes disable_irq( ) to disable interrupt handling of IRQ5, and reads the values 

stored in the mouse data structure; then reenables interrupt handling of IRQ5 by 
invoking enable_irq( ). 

4. Writes into the User Mode buffer 3 bytes representing the mouse status (buttons 
status, horizontal and vertical displacements) after the last read operation. 

5. If the process requested more than 3 bytes, fills the User Mode buffer with zeros. 
6. Returns the number of written bytes. 

13.5 Block Device Handling 

Typical block devices like hard disks have very high average access times. Each operation 
requires several milliseconds to complete, mainly because the hard disk controller must move 
the heads on the disk surface to reach the exact position where the data is recorded. However, 
when the heads are correctly placed, data transfer can be sustained at rates of tens of 
megabytes per second. 
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In order to achieve acceptable performance, hard disks and similar devices transfer several 
adjacent bytes at once. In the following discussion, we'll say that groups of bytes are adjacent 
when they are recorded on the disk surface in such a manner that a single seek operation can 
access them. 

The organization of Linux block device handlers is quite involved. We won't be able to 
discuss in detail all the functions that have been included in the kernel to support the handlers. 
But we'll outline the general software architecture and introduce the main data structures. 
Kernel support for block device handlers includes the following features: 

• Offers a uniform interface through the VFS 
• Implements efficient read-ahead of disk data 
• Provides disk caching for the data 

The kernel basically distinguishes two kinds of I/O data transfer: 

Buffer I/O operations  

Here the transferred data is kept in buffers, the kernel's generic memory containers for 
disk-based data. Each buffer is associated with a specific block identified by a device 
number and a block number. Linux misleadingly calls these operations "synchronous 
I/O operations." The term "synchronous" is not well-suited in this context because a 
buffer I/O operation is really asynchronous: in other words, the kernel control path 
that starts the operation may continue its execution without waiting for the operation 
to end. The term is probably inherited from very old versions of Linux. 

Page I/O operations  

Here the transferred data is kept in page frames; each page frame contains data 
belonging to a regular file. Since this data is not necessarily stored in adjacent disk 
blocks, it is identified by the file's inode and by an offset within the file. Again, Linux 
inappropriately calls these operations "asynchronous I/O operations." 

Buffer I/O operations are most often used either when a process directly reads a block device 
file or when the kernel reads particular types of blocks in a filesystem (for example, a block 
containing inodes or a superblock). In Linux 2.2 buffer operations are also used to write disk-
based regular files. Page I/O operations are used mainly for reading regular files, file memory 
mapping, and swapping. Both kinds of I/O data transfer rely on the same driver to access a 
block device, but the kernel uses different algorithms and buffering techniques with them. 

13.5.1 Sectors, Blocks, and Buffers 

Each data transfer operation for a block device acts on a group of adjacent bytes called a 
sector. In most disk devices, the size of a sector is 512 bytes, although a few devices have 
recently appeared that make use of larger sectors (1024 and 2048 bytes). Notice that the sector 
should be considered the basic unit of data transfer: it is never possible to transfer less than a 
sector, although most disk devices are capable of transferring several adjacent sectors at once. 

The kernel stores the sector size of each hardware block device in a table named 
hardsect_size. Each element in the table is indexed by the major number and the minor 
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number of the corresponding block device file. Thus, hardsect_size[3][2] represents the 
sector size of /dev/hda2, the second primary partition of the first IDE disk (see Table 13-1). 
If hardsect_size[M] is NULL, all block devices sharing the major number M have a standard 
sector size of 512 bytes. 

Block device drivers transfer a large number of adjacent bytes called a block in a single 
operation. A block should not be confused with a sector: the sector is the basic unit of data 
transfer for the hardware device, while the block is simply a group of adjacent bytes involved 
in an I/O operation requested by a device driver. 

In Linux, the block size must be a power of 2 and cannot be larger than a page frame. 
Moreover, it must be a multiple of the sector size, since each block must include an integral 
number of sectors. Therefore, on PC architecture, the permitted block sizes are 512, 1024, 
2048, and 4096 bytes. The same block device driver may operate with several block sizes, 
since it has to handle a set of device files sharing the same major number, while each block 
device file has its own predefined block size. For instance, a block device driver could handle 
a hard disk with two partitions containing an Ext2 filesystem and a swap area (see Chapter 16, 
and Chapter 17). In this case, the device driver makes use of two different block sizes: 1024 
bytes for the Ext2 partition[5] and 4096 bytes for the swap partition. 

[5] 1024 is the standard Ext2 block size, although other block sizes are allowed. 

The kernel stores the block size in a table named blksize_size; each element in the table is 
indexed by the major number and the minor number of the corresponding block device file. If 
blksize_size[M] is NULL, all block devices sharing the major number M have a standard 
block size of 1024 bytes. 

Each block requires its own buffer, which is a RAM memory area used by the kernel to store 
the block's content. When a device driver reads a block from disk, it fills the corresponding 
buffer with the values obtained from the hardware device; similarly, when a device driver 
writes a block on disk, it updates the corresponding group of adjacent bytes on the hardware 
device with the actual values of the associated buffer. The size of a buffer always matches the 
size of the corresponding block. 

13.5.2 An Overview of Buffer I/O Operations 

Figure 13-3 illustrates the architecture of a generic block device driver and the main 
components that interact with it when servicing a buffer I/O operation. 
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Figure 13-3. Block device handler architecture for buffer I/O operations 

 

A block device driver is usually split in two parts: a high-level driver, which interfaces with 
the VFS layer, and a low-level driver, which handles the hardware device. 

Suppose a process issues a read( ) or write( ) system call on a device file. The VFS 
executes the read or write method of the corresponding file object, and thus invokes a 
procedure within the high-level block device handler. This procedure performs all actions 
related to the read or write request that are specific to the hardware device. The kernel offers 
two general functions called block_read( ) and block_write( ) that take care of almost 
everything (see Section 13.5.4 later in this chapter). Therefore, in most cases, the high-level 
hardware device drivers must do nothing, and the read and write methods of the device file 
point, respectively, to block_read( ) and block_write( ). 

However, some block device handlers require their own customized high-level device drivers. 
A significant example is the device driver of the floppy disk: it must check that the disk in the 
drive has not been changed by the user since the last disk access; if a new disk has been 
inserted, the device driver must invalidate all buffers already filled with data of the old disk 
media. 

Even when a high-level device driver includes its own read and write methods, they usually 
end up invoking block_read( ) and block_write( ). These functions translate the access 
request involving an I/O device file into a request for some blocks from the corresponding 
hardware device. As we'll see in Section 14.1 in Chapter 14, the blocks required may already 
be in main memory, so both block_read( ) and block_write( ) invoke the getblk( ) 
function to check the cache first in case a block was prefetched or has stayed unchanged since 
an earlier access. If the block is not in the cache, getblk( ) must proceed to request it from 
the disk by invoking ll_rw_block( ) (see Section 13.5.9). This latter function activates a 
low-level driver that handles the device controller to perform the requested operation on the 
block device. 

Buffer I/O operations are also triggered when the VFS accesses some specific block on a 
block device directly. For instance, if the kernel must read an inode from a disk filesystem, it 
must transfer the data from blocks of the corresponding disk partition. Direct access to 
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specific blocks is performed by the bread( ) and breada( ) functions (see Section 13.5.5), 
which in turn invoke the getblk( ) and ll_rw_block( ) functions previously mentioned. 

Since block devices are slow, buffer I/O data transfers are always handled asynchronously: 
the low-level device driver programs the DMAC and the disk controller and then terminates. 
When the transfer completes, an interrupt is issued, and the low-level device driver is 
activated a second time to clean up the data structures involved in the I/O operation. In this 
way, no kernel control path must be suspended until a data transfer completes (unless the 
kernel control path explicitly has to wait for some block of data). 

13.5.3 The Role of Read-Ahead 

Many disk accesses are sequential. As we shall see in Chapter 17, files are stored on disk in 
large groups of adjacent sectors, so that they can be retrieved quickly with few moves of the 
disk heads. When a program reads or copies a file, it usually accesses it sequentially, from the 
first byte to the last one. Therefore, many adjacent sectors on disk are likely to be fetched in 
several I/O operations. 

Read-ahead is a technique that consists of reading several adjacent blocks of a block device in 
advance, before they are actually requested. In most cases, read-ahead significantly enhances 
disk performance, since it lets the disk controller handle fewer commands that refer to larger 
groups of adjacent sectors. Moreover, system responsiveness improves. A process that is 
sequentially reading a block device can get the requested data faster because the driver 
performs fewer disk accesses. 

However, read-ahead is of no use for random accesses to block devices; in that case, it is 
actually detrimental since it tends to waste space in the disk caches with useless information. 
Therefore, the kernel stops read-ahead when it determines that the most recently issued I/O 
access is not sequential to the previous one. The f_reada field of the file object is a flag that 
is set when read-ahead is enabled for the corresponding file (or block device file) and cleared 
otherwise. 

The kernel stores in a table named read_ahead the number of bytes (the number of standard 
512-byte sectors, to be precise) to be read in advance when a device file is being read 
sequentially. A "zero" value specifies a default number of 8 512-byte sectors, that is, 4 KB. 
All block device files having the same major number share the same predefined number of 
512-byte sectors to be read in advance; therefore, each element in read_ahead is indexed by 
the major device number. 

13.5.4 The block_read( ) and block_write( ) Functions 

The block_read( ) and block_write( ) functions are invoked by a high-level device 
driver whenever a process issues a read or write operation on a device file. For example, the 
superformat program formats a diskette by writing blocks into the /dev/fd0 device file. The 
write method of the corresponding file object invokes the block_write( ) function. 

The block_read( ) and block_write( ) functions receive the following parameters: 
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filp  

Address of a file object associated with the device file. 

buf  

Address of a memory area in User Mode address space. block_read( ) writes the 
data fetched from the block device into this memory area; conversely, block_write( 
) reads the data to be written on the block device from the memory area. 

count  

Number of bytes to be transferred. 

ppos  

Address of a variable containing an offset in the device file; usually, this parameter 
points to filp->f_pos, that is, to the file pointer of the device file. 

The block_read( ) function performs the following operations: 

1. Derives the major number and the minor number of the block device from  
filp->f_dentry->d_inode->i_rdev. 

2. Derives the block size of the device file from blksize_size. 
3. Computes from *ppos and the block size the sequential number of the first block to be 

read on the device. Also computes the offset of the first byte to be read inside that 
block. 

4. Derives the size of the block hardware device. This value is stored in a table named 
blk_size. As with similar data structures introduced earlier in the chapter, each 
element is indexed by the major number and the minor number of the corresponding 
device file and represents the size of the block device in units of 1024 bytes. If 
necessary, modifies count in order to prevent any read operation from going beyond 
the end of the device. 

5. Computes the number of blocks to be read from the devices from a combination of 
count, the block size, and the offset inside the first block. If filp->f_reada is set, 
also takes into consideration the number of blocks to be read in advance, which is 
specified in the read_ahead table. 

6. For any block to be read, performs the following operations: 
a. Searches for the block in the buffer cache by using the getblk( ) function 

(see Section 14.1 in Chapter 14). If it is not found, a new buffer is allocated 
and inserted into the cache. 

b. If the buffer does not contain valid data (for instance, because it has been 
allocated just now), starts a read operation by using the ll_rw_block( ) 
function (see Section 13.5.9), and suspends the current process until the data 
has been transferred in the buffer. 

c. If the block has been requested by the process, that is, if it is not read in 
advance, copies the buffer content into the user memory area pointed to by 
buf. 
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Actually, the algorithm is more elaborate than what we've just explained, since it is 
optimized to make maximum use of the buffer cache. The function operates by 
requesting large groups of blocks from the low-level driver at once; it does not wait 
until all of them have been transferred before searching for the next group of blocks in 
the buffer cache. However, the final result is the same: after this step, all buffers of the 
blocks involved contain valid data, and the bytes requested by the user process are 
copied into the user memory area. 

7. Adds to *ppos the number of bytes copied into the user memory area. 
8. Sets the filp->f_reada flag, so that the read-ahead mechanism will be used next 

time (unless the process modifies the file pointer, in which case the flag is cleared). 
9. Returns the number of bytes copied in the user memory area. 

The block_write( ) function is similar to block_read( ), so we won't describe it in detail. 
However, some important differences should be underlined: 

• Before starting the write operation, the block_write( ) function must check whether 
the block hardware device is read-only and, in this case, returns an error code. This 
happens, for example, when attempting to write on a block device file associated with 
a CD-ROM disk. The ro_bits table includes a bit for each block hardware device: a 
bit is set if the corresponding device cannot be written and cleared if it can be written. 

• The block_write( ) function must check the offset of the first byte to be written 
inside the first block. If the offset is not null and the buffer cache does not already 
contain valid data for the first block, the function must read the block from disk before 
rewriting it. In fact, since the block device driver operates on whole blocks, the 
portions of the first block that precedes the bytes being written must be preserved by 
the write operation. Similarly, the function must also read from disk the last block to 
be written before rewriting it, unless the last byte to be written falls in the last position 
of the last block. 

• The block_write( ) function does not necessarily invoke ll_rw_block( ) to force 
a write to disk. Usually, it just marks the buffers of the blocks to be written as "dirty," 
thus deferring the actual updating of the corresponding sectors on disk (see Section 
14.1.5 in Chapter 14). However, the function does invoke ll_rw_block( ) if the call 
opening the block device file has specified the O_SYNC flag. In this case, the calling 
process wants to wait (sleep) until the data has been physically written in the hardware 
device, so that the disk always reflects what the process thinks it does. 

13.5.5 The bread( ) and breada( ) Functions 

The bread( ) function checks whether a specific block is already included in the buffer 
cache; if not, the function reads the block from a block device. bread( ) is widely used by 
filesystems to read from disk bitmaps, inodes, and other block-based data structures. (Recall 
that block_read( ) is used instead of bread( ) when a process wants to read a block device 
file.) The function receives as parameters the device identifier, the block number, and the 
block size, and performs the following operations: 

1. Invokes the getblk( ) function to search for the block in the buffer cache; if the 
block is not included in the cache, getblk( ) allocates a new buffer for it. 

2. If the buffer already contains up-to-date data, terminates. 
3. Invokes ll_rw_block( ) to start the read operation. 
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4. Waits until the data transfer completes. This is done by invoking a function named 
wait_on_buffer( ), which inserts the current process in the b_wait wait queue 
and suspends the process until the buffer is unlocked. 

breada( ) is very similar to bread( ), but it also reads in advance some extra blocks in 
addition to the one required. Notice that there is no function that directly writes some block to 
disk. Write operations are never critical for system performance, thus are always deferred (see 
Section 14.1.5 in Chapter 14). 

13.5.6 Buffer Heads 

The buffer head is a descriptor of type buffer_head associated with each buffer. It contains 
all the information needed by the kernel to know how to handle the buffer; thus, before 
operating on each buffer the kernel checks its buffer head. 

The buffer head fields are listed in Table 13-2. The b_data field of each buffer head stores 
the starting address of the corresponding buffer. Since a page frame may store several buffers, 
the b_this_page field points to the buffer head of the next buffer in the page. This field 
facilitates the storage and retrieval of entire page frames. The b_blocknr field stores the 
logical block number, that is, the index of the block inside the disk partition. 

Table 13-2. The Fields of a Buffer Head 
Type Field Description 
unsigned long b_blocknr Logical block number 
unsigned long b_size Block size 
kdev_t b_dev Virtual device identifier 
kdev_t b_rdev Real device identifier 
unsigned long b_rsector Number of initial sector in real device 
unsigned long b_state Buffer status flags 
unsigned int b_count Block usage counter 
char * b_data Pointer to buffer 
unsigned long b_flushtime Flushing time for buffer 
struct wait_queue * b_wait Buffer wait queue 
struct buffer_head * b_next Next item in collision hash list 
struct buffer_head ** b_pprev Previous item in collision hash list 
struct buffer_head * b_this_page Per-page buffer list 
struct buffer_head * b_next_free Next item in list 
struct buffer_head * b_prev_free Previous item in list 
unsigned int b_list LRU list including the buffer 
struct buffer_head * b_reqnext Request's buffer list 
void (*)( ) b_end_io I/O completion method 
void (*) b_dev_id Specialized device driver data 

The b_state field stores the following flags: 

BH_Uptodate  

Set if the buffer contains valid data. The value of this flag is returned by the 
buffer_uptodate( ) function. 
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BH_Dirty  

Set if the buffer is dirty, that is, if it contains data that must be written to the block 
device. The value of this flag is returned by the buffer_dirty( ) function. 

BH_Lock  

Set if the buffer is locked, which happens if the buffer is involved in a disk transfer. 
The value of this flag is returned by the buffer_locked( ) function. 

BH_Req  

Set if the corresponding block has been requested (see next section) and has valid (up-
to-date) data. The value of this flag is returned by the buffer_req( ) function. 

BH_Protected  

Set if the buffer is protected (protected buffers never get freed). The value of this flag 
is returned by the buffer_protected( ) function. This flag is used only to 
implement RAM disks on top of the buffer cache. 

The b_dev field identifies the virtual device containing the block stored in the buffer, while 
the b_rdev field identifies the real device. This distinction, which is meaningless for simple 
hard disks, has been introduced to model RAID (Redundant Array of Independent Disks) 
storage units consisting of several disks operating in parallel. For reasons of safety and 
efficiency, files stored in a RAID array are scattered across several disks that the applications 
think of as a single logical disk. Besides the b_blocknr field representing the logical block 
number, it is thus necessary to specify the specific disk unit in the b_rdev field, and the 
corresponding sector number in the b_rsector field. 

13.5.7 Block Device Requests 

Although block device drivers are able to transfer a single block at a time, the kernel does not 
perform an individual I/O operation for each block to be accessed on disk: this would lead to 
poor disk performances, since locating the physical position of a block on the disk surface is 
quite time-consuming. Instead, the kernel tries, whenever possible, to cluster several blocks 
and handle them as a whole, thus reducing the average number of head movements. 

When a process, the VFS layer, or any other kernel component wishes to read or write a disk 
block, it actually creates a block device request. That request essentially describes the 
requested block and the kind of operation to be performed on it (read or write). However, the 
kernel does not satisfy a request as soon as it is created: the I/O operation is just scheduled 
and will be performed at a later time. This artificial delay is paradoxically the crucial 
mechanism for boosting the performance of block devices. When a new block data transfer is 
requested, the kernel checks whether it can be satisfied by slightly enlarging a previous 
request that is still waiting, that is, whether the new request can be satisfied without further 
seek operations. Since disks tend to be accessed sequentially, this simple mechanism is very 
effective. 
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Deferring requests complicates block device handling. For instance, suppose that a process 
opens a regular file and, consequently, a filesystem driver wants to read the corresponding 
inode from disk. The high-level block device driver puts the request on a queue and the 
process is suspended until the block storing the inode is transferred. However, the high-level 
block device driver cannot be blocked, because any other process trying to access the same 
disk would be blocked as well. 

In order to keep the block device driver from being suspended, each I/O operation is being 
processed asynchronously, as already mentioned in the section Section 13.5.2. Thus, no kernel 
control path is forced to wait until a data transfer completes. In particular, block device 
drivers are interrupt-driven (see Section 13.3.2 earlier in this chapter), so that the high-level 
driver can terminate its execution as soon as it has issued the block request. The low-level 
driver, which is activated at a later time, invokes a so-called strategy routine, which takes the 
request from a queue and satisfies it by issuing suitable commands to the disk controller. 
When the I/O operation terminates, the disk controller raises an interrupt and the 
corresponding handler invokes the strategy routine again, if necessary, to process another 
request in the queue. 

Each block device driver maintains its own request queues; there should be one request queue 
for each physical block device, so that the requests can be ordered in such a way as to increase 
disk performance. The strategy routine can thus sequentially scan the queue and service all 
requests with the minimum number of head movements. 

Each block device request is represented by a request descriptor , which is stored in the 
request data structure illustrated in Table 13-3. The direction of the data transfer is stored in 
the cmd field: it is either READ (from block device to RAM) or WRITE (from RAM to block 
device). The rq _status field is used to specify the status of the request: for most block 
devices, it is simply set either to RQ_INACTIVE (request descriptor not in use) or to RQ 
_ACTIVE (valid request, to be serviced or already being serviced by the low-level device 
driver). 

Table 13-3. The Fields of a Request Descriptor 
Type Field Description 
int rq_status Request status 
kdev_t rq_dev Device identifier 
int Cmd Requested operation 
int errors Success or failure code 
unsigned long sector First sector number 
unsigned long nr_sector Number of sectors of request 
unsigned long current_nr_sector Number of sectors of current block 
char * buffer Memory area for I/O transfer 
struct semaphore * sem Request semaphore 
struct buffer_head * bh First buffer descriptor 
struct buffer_head * bhtail Last buffer descriptor 
struct request * next Request queue link 

The request may encompass many adjacent blocks on the same device. The rq _dev field 
identifies the block device, while the sector field specifies the number of the first sector 
corresponding to the first block in the request. Both nr_sector and current_nr_sector 
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specify the number of sectors to be transferred. As we'll later see in Section 13.5.10, the 
sector, nr_sector, and current_nr_sector fields could be dynamically updated while the 
request is being serviced. 

All buffer heads of the blocks in the request are collected in a simply linked list. The 
b_reqnext field of each buffer head points to the next element in the list, while the bh and 
bhtail fields of the request descriptor point, respectively, to the first element and the last 
element in the list. 

The buffer field of the request descriptor points to the memory area used for the actual data 
transfer. If the request involves a single block, buffer is just a copy of the b_data field of the 
buffer head. However, if the request encompasses several blocks whose buffers are not 
consecutive in memory, the buffers are linked through the b_reqnext fields of their buffer 
heads as shown in Figure 13-4. On a read, the low-level device driver could choose to allocate 
a large memory area referred by buffer, read all sectors of the request at once, and then copy 
the data into the various buffers. Similarly, for a write, the low-level device driver could copy 
the data from many nonconsecutive buffers into a single memory area referred by buffer and 
then perform the whole data transfer at once. 

Figure 13-4. A request descriptor and its buffers and sectors 

 

Figure 13-4 illustrates a request descriptor encompassing three blocks. The buffers of two of 
them are consecutive in RAM, while the third buffer is by itself. The corresponding buffer 
heads identify the logical blocks on the block device; the blocks must necessarily be adjacent. 
Each logical block includes two sectors. The sector field of the request descriptor points to 
the first sector of the first block on disk, and the b_reqnext field of each buffer head points to 
the next buffer head. 

The kernel statically allocates a fixed number of request descriptors to handle all the requests 
for block devices: there are NR_REQUEST descriptors (usually 128) stored in the all_requests 
array. Since the efficiency of read operations have a larger impact on system performance 
than does the efficiency of write operations (because the data to be read is probably needed 
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for some computation to progress), the last third of request descriptors in all_requests is 
reserved for read operations. 

The fixed number of request descriptors may become, under very heavy loads and high disk 
activity, a bottleneck. A dearth of free descriptors may force processes to wait until an 
ongoing data transfer terminates. Thus, a wait_for_request wait queue is used to queue 
processes waiting for a free request element. The get_request_wait( ) tries to get a free 
request descriptor and puts the current process to sleep in the wait queue if none is found; the 
get_request( ) function is similar but simply returns NULL if no free request descriptor is 
available. 

13.5.8 Request Queues and Block Device Driver Descriptors 

A request queue is a simply linked list whose elements are request descriptors. The next field 
in each request descriptor points to the next item in the queue and is null for the last element. 
The list is usually ordered first according to the device identifier and next according to the 
number of the initial sector. 

As mentioned earlier, device drivers usually have one request queue for each disk they serve. 
However, some device drivers have just one request queue that includes the requests for all 
physical devices handled by the driver. This approach simplifies the design of the driver but 
degrades overall performances, since no simple ordering strategy can be imposed on the 
queue. 

The address of the request being serviced, together with a few other pieces of relevant 
information, are stored in a descriptor associated with each block device driver. The 
descriptor is a data structure of type blk_dev_struct, whose fields are listed in Table 13-4. 
The descriptors for all the block devices are stored in the blk_dev table, which is indexed by 
the major number of the block device. 

Table 13-4. The Fields of a Block Device Driver Descriptor 
Type Field Description 
void *(*)(void) request_fn Strategy routine 
void * data Driver's private data common queue 
struct request plug Dummy plug request 
struct request * current_request Current request in single common queue 
struct request 
**(*)(kdev_t) queue Method for getting a request from one of the 

queues 
struct tq_struct plug_tq Plug task queue element 

If the block device driver has a unique request queue for all physical block devices, the queue 
field is null and the current_request field points to the descriptor of the request being 
serviced in the queue. If the queue is empty, current_request is null. 

Conversely, if the block device driver maintains several queues, the queue field points to a 
custom driver method that receives the identifier of the block device file, selects one of the 
queues according to the device number, then returns the address of the descriptor of the 
request being serviced, if any. In this case, the current_request field points to the descriptor 
of the request being serviced, if any. (There can be at most one request at a time, since the 
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same device driver does not allow requests to be processed concurrently even if they refer to 
different disks.) 

The request_fn( ) field contains the address of the driver's strategy routine, the crucial 
function in the low-level block device driver that actually interacts with the physical block 
device (usually the disk controller) in order to start the data transfer specified by a request in 
the queue. 

13.5.9 The ll_rw_block( ) Function 

The ll_rw_block( ) function creates a block device request; as we have seen earlier in this 
chapter, it is invoked from several places in the kernel and device drivers. It receives the 
following parameters: 

• The type of operation, rw, whose value can be READ , WRITE, READA , or WRITEA . The 
last two operation types differ from the former in that the function does not block 
when no request descriptor is available. 

• The number, nr, of blocks to be transferred. 
• A bh array of nr pointers to buffer heads describing the blocks (all of them must have 

the same block size and must refer to the same block device). 

The buffer heads have been previously initialized, so each specifies the block number, the 
block size, and the virtual device identifier (see Section 13.5.6). All blocks must belong to the 
same virtual device. 

The function enters a loop considering all non-null elements of the bh array. For each buffer 
head, it performs the following actions: 

1. Checks that the block size b_size matches the block size of the virtual device b_dev. 
2. Sets the real device identifier (usually just sets b_rdev to be b_dev). 
3. Sets the sector number b_rsector according to the block number and the block size. 
4. If the operation is WRITE or WRITEA, checks that the block device is not read-only. 
5. Sets the BH_Req flag of the buffer head to show other kernel control paths that the 

block has been requested. 
6. Invokes the make_request( ) function, passing to it the real device's major number, 

the type of I/O operation, and the address of the buffer head. 

The make_request( ) function, in turn, performs the following operations: 

1. Sets the BH_Lock flag of the buffer head. 
2. Checks that b_rsector does not exceed the number of sectors of the block device. 
3. If the block must be read, checks that it is not already valid (that is, the BH_Uptodate 

flag must be off). If the block must be written, checks that it is actually dirty (that is, 
the BH_Dirty flag must be on). If either one of these conditions does not hold, returns 
without requesting the data transfer, because it is really useless. 

4. Disables local interrupts and gets the io_request_lock spin lock (see Section 11.4.2 
in Chapter 11). 

5. Invokes the queue method, if defined, or reads the current_request field in the 
block device descriptor to get the address of the real device's request queue. 

6. Performs one of the following substeps: 



Understanding the Linux Kernel 

374 

a. If the request queue is empty, inserts a new request descriptor in it and 
schedules activation of the strategy routine at a later time. 

b. If the request queue is not empty, inserts a new request descriptor in it, trying 
to cluster it with other requests already queued. As we'll see shortly, there is no 
need to schedule the activation of the strategy routine. 

Let's look closer at the last two substeps. 

13.5.9.1 Scheduling the activation of the strategy routine 

As we saw earlier, it's expedient to delay activation of the strategy routine in order to increase 
the chances of clustering requests for adjacent blocks. The delay is accomplished through a 
technique known as device plugging and unplugging. 

If the real device's request queue is empty and the device is not already plugged, 
make_request( ) does a device plugging: it sets the current_request field of the block 
device driver descriptor to the address of a dummy request descriptor, namely, the plug field 
of the same block device driver descriptor. The function then allocates a new request 
descriptor and initializes it with the information read from the buffer head. Next, 
make_request( ) inserts the new request descriptor into the proper real device's request 
queue. If there is just one queue, the request is inserted into the queue right after the dummy 
element consisting of the plug field in the block device descriptor. Finally, make_request( ) 
inserts the plug _tq task queue descriptor (statically included in the block device driver 
descriptor) in the tq _disk task queue (see Section 4.6.6 in Chapter 4) to cause the device's 
strategy routine to be activated later. Actually, the task queue element refers to the unplug 
_device( ) function, which executes the device's strategy routine. 

The kernel checks periodically whether the tq _disk task queue contains any plug_tq task 
queue elements. This occurs in a kernel thread such as kswapd and bdflush or when the kernel 
must wait for some resource related to block device drivers, such as buffers or request 
descriptors. During the tq _disk check, the kernel removes any element in the queue and 
executes the corresponding unplug_device( ) function. This activity is referred to as 
unplugging the device. 

13.5.9.2 Extending the request queue 

If the request queue is not empty, the low-level block device driver keeps handling requests 
until the queue has been emptied (see the next section), so make_request( ) does not have to 
schedule the activation of the strategy routine. 

In this case, make_request( ) just modifies the request queue by adding a new element or by 
merging the new request with existing elements; the second case is known as block clustering. 

Block clustering is implemented only for blocks belonging to certain block devices, namely 
the EIDE and SCSI hard disks, the floppy disk, and a few others. Moreover, a block can be 
included in a request only if all the following conditions are satisfied: 

• The block to be inserted belongs to the same block device as the other blocks in the 
request and is adjacent to them: it either immediately precedes the first block in the 
request or immediately follows the last block in the request. 
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• The blocks in the request have the same I/O operation type (READ or WRITE) as the 
block to be inserted. 

• The extended request does not exceed the allowed maximum number of sectors. This 
value is stored in the max_sectors table, which is indexed by the major number and 
the minor number of the block device. The default value is 244 sectors. 

• The request is not currently being handled by the low-level device driver. 

The make_request( ) function scans all the requests in the queue. If one of them satisfies all 
the conditions just mentioned, the buffer head is inserted in the request's list, and the fields of 
the request data structure are updated. If the block was appended to the end of a request, the 
function also tries to merge this request with the next element of the queue. Nothing else has 
to be done, and hence make_request( ) releases the io_request_lock spin lock and 
terminates. 

Conversely, if no existing request can include the block, make_request( ) allocates a new 
request descriptor[6] and initializes it properly with the information read from the buffer head. 

[6] If there is no free request descriptor, the current process is suspended until a request descriptor is freed. 

Finally, make_request( ) invokes the add_request( ) function, which inserts the new 
request in the proper position in the request queue, according to its initial sector number. The 
io_request_lock spin lock is then released and the execution terminates. 

13.5.10 Low-Level Request Handling 

We have now reached the lowest level of Linux's block device-handling architecture: this 
level is implemented by the strategy routine, which interacts with the physical block device in 
order to satisfy the requests collected in the queue. 

As mentioned earlier, the strategy routine is usually started after inserting a new request in an 
empty request queue. Once activated, the low-level block device driver should handle all 
requests in the queue and terminate when the queue is empty. 

A naive implementation of the strategy routine could be the following: for each element in the 
queue, interact with the block device controller to service the request and wait until the data 
transfer completes, then remove the serviced request from the queue and proceed with the 
next one. 

Such an implementation is not very efficient. Even assuming that data can be transferred 
using DMA, the strategy routine must suspend itself while waiting for I/O completion, and 
hence an unrelated user process would be heavily penalized. (The strategy routine does not 
necessarily execute on behalf of the process that has requested the I/O operation but at some 
random later time, since it is activated by means of the tq _disk task queue.) 

Therefore, many low-level block device drivers adopt the following schema: 

• The strategy routine handles the current request in the queue and sets up the block 
device controller so that it raises an interrupt when the data transfer completes. Then 
the strategy routine terminates. 
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• When the block device controller raises the interrupt, the interrupt handler activates a 
bottom half. The bottom half handler removes the request from the queue and 
reexecutes the strategy routine to service the next request in the queue. 

Basically, low-level block device drivers can be further classified into the following: 

• Drivers that service each block in a request separately 
• Drivers that service several blocks in a request together 

Drivers of the second type are much more complicated to design and implement than drivers 
of the first type. Indeed, although the sectors are adjacent on the physical block devices, the 
buffers in RAM are not necessarily consecutive. Therefore, any such driver may have to 
allocate a temporary area for the DMA data transfer, then perform a memory-to-memory copy 
of the data between the temporary area and each buffer in the request's list. 

Since clustered requests refer to adjacent blocks on disk, they improve the performance of 
both types of drivers because the requests may be serviced by issuing fewer seek commands. 
Transferring several blocks from disk at once is not as effective in boosting disk performance. 

The kernel doesn't offer any support for the second type of drivers: they must handle the 
request queues and the buffer head lists on their own. The choice to leave the job up to the 
driver is not capricious or lazy. Each physical block device is inherently different from all 
others (for example, a floppy driver groups blocks in disk tracks and transfers a whole track in 
a single I/O operation), so making general assumptions on how to service each clustered 
request would make very little sense. 

However, the kernel offers a limited degree of support for the low-level block device drivers 
in the first class. So we'll spend a little more time on such drivers. 

A typical strategy routine should perform the following actions: 

1. Get the current request from a request queue. If all request queues are empty, 
terminate the routine. 

2. Check that the current request has consistent information. In particular, compare the 
major number of the block device with the value stored in the rq _rdev field of the 
request descriptor. Moreover, check that the first buffer head in the list is locked (that 
is, the BH_Lock flag has been set by make_request( )). 

3. Program the block device controller for the data transfer of the first block. The data 
transfer direction can be found in the cmd field of the request descriptor and the 
address of the buffer in the buffer field, while the initial sector number and the 
number of sectors to be transferred are stored in the sector and 
current_nr_sectors fields, respectively.[7] Also, set up the block device controller so 
that an interrupt is raised when the DMA data transfer completes. 

[7] Recall that current_nr_sectors contains the number of sectors in the first block of the request, while nr_sectors contains 
the total number of sectors in the request. 

4. If the routine is handling a block device file for which ll_rw_block( ) accomplishes 
block clustering, increment the sector field and decrement the nr_sectors field of 
the request descriptor to keep track of the blocks to be transferred. 
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The interrupt handler associated with the termination of the DMA data transfer for the block 
device should invoke (either directly or via a bottom half) the end_request( ) function. It 
receives as its parameter the value 1 if the data transfer succeeded and the value if an error 
occurred. end_request( ) performs the following operations: 

1. If an error occurred (parameter value is 0), updates the sector and nr_sectors fields 
so as to skip the remaining sectors of the block. In step 3a, the buffer content will also 
be marked as not up-to-date. 

2. Removes the buffer head of the transferred block from the request's list. 
3. Invokes the b_end_io method of the buffer head. When the getblk( ) function 

allocates the buffer head, it loads this field with the address of the 
end_buffer_io_sync( ) function, which performs two operations: 

a. Sets the BH_Uptodate flag of the buffer head to 1 or 0, according to the 
success or failure of the data transfer 

b. Clears the BH_Lock flag of the buffer head and wakes up all processes sleeping 
in the wait queue to which the b_wait field of the buffer head points 

4. If there is another buffer head on the request's list, performs the following actions: 
a. Sets the current_nr_sectors field of the request descriptor to the number of 

sectors of the new block 
b. Sets the buffer field with the address of the new buffer (from the b_data field 

of the new buffer head) 
5. Otherwise, if the request's list is empty, all blocks have been processed. Therefore, 

performs the following operations: 
a. Sets the current request pointer to the next element in the request queue 
b. Sets the rq _status field of the processed request to RQ _INACTIVE 
c. Wakes up all processes sleeping in the wait_for_request wait queue 

After invoking end_request( ), the low-level block device driver checks the value of the 
current_request field in the block device driver descriptor; if it is not NULL, the request 
queue is not empty, and the strategy routine is executed again. Notice that end_request( ) 
actually performs two nested iterations: the outer one on the elements of the request queue 
and the inner one on the elements in the buffer head list of each request. The strategy routine 
is thus invoked once for each block in the request queue. 

13.6 Page I/O Operations 

Block devices transfer information one block at a time, while process address spaces (or to be 
more precise, memory regions allocated for the process) are defined as sets of pages. This 
mismatch can be hidden to some extent by using page I/O operations (see the section  
Section 13.5). They may be activated in the following cases: 

• A process issues a read( ) or write( ) system call on a regular file (see  
Section 15.1 in Chapter 15). 

• A process reads a location of a page that maps a file in memory (see Section 15.2 in 
Chapter 15). 

• The kernel flushes some dirty pages related to a file memory mapping to disk (see 
Section 15.2.6 in Chapter 15). 

• When swapping in or swapping out, the kernel loads from disk or saves to disk the 
contents of whole page frames (see Chapter 16). 
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We'll use the rest of this chapter to describe how these operations are carried out. 

13.6.1 Starting Page I/O Operations 

A page I/O operation is activated by invoking the brw_page( ) function, which receives the 
following parameters: 

rw  

Type of I/O operation (READ or WRITE) 

page  

Address of a page descriptor 

dev  

Block device number 

b  

Array of logical block numbers 

size  

Block size 

bmap  

Flag specifying whether the block numbers in b were computed by using the bmap 
method of the inode operations (see Section 12.2.2 in Chapter 12) 

The page descriptor refers to the page involved in the page I/O operation. It must already be 
locked (PG_locked flag on) before invoking brw_page( ) so that no other kernel control path 
can access it. The page is considered as split into 4096/size buffers; the i th buffer in the page 
is associated with the block b[i] of device dev. 

The function performs the following operations: 

1. Invokes create_buffers( ) to allocate temporary buffer heads for all buffers 
included in the page (such buffer heads are called asynchronous; they will be 
discussed in Section 14.1.1 in Chapter 14). The function returns the address of the first 
buffer head, while the b_this_page field of each buffer head points to the buffer head 
of the next buffer in the page. 

2. For each buffer head in the page, performs the following substeps: 
a. Initializes the buffer head fields; since it is an asynchronous buffer head, sets 

the b_end_io method to end_buffer_io_async( ). 
b. If the bmap parameter flag is not null, checks whether the buffer head refers to 

a block having number 0. This is because the bmap method of the inode 
operations uses block number to represent a file hole (see Chapter 17). In this 
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case, fills the buffer with zeros, sets the BH_Uptodate flag of the buffer head, 
and continues with the next asynchronous buffer head. 

c. Invokes find_buffer( ) to check whether the block associated with the 
buffer head is already present in memory (see Section 14.1 in Chapter 14). If 
so, performs the following substeps: 

a. Increments the usage counter of the buffer head found in the cache. 
b. If the I/O operation is READ and if the buffer in the cache is not up-to-

date, invokes ll_rw_block( ) to issue a READ request; then invokes 
wait_on_buffer( ) to wait for the I/O to complete. Notice that 
ll_rw_block( ) acts on the buffer head included in the buffer cache, 
and thus triggers a buffer I/O operation. 

c. If the I/O operation is READ, copies the data from the buffer in the cache 
into the page buffer. 

d. If the I/O operation is WRITE, copies the data from the page buffer into 
the buffer in the cache, and invokes mark_buffer_dirty( ) to set the 
BH_Dirty flag of the buffer head in the cache. 

e. Sets the BH_Uptodate field of the asynchronous buffer head, 
decrements the usage counter of the buffer head in the cache, and 
continues with the next asynchronous buffer head. 

d. The block required is not in the cache. Therefore, if the I/O operation is a 
READ, clears the BH_Uptodate flag of the asynchronous buffer head; if it is a 
WRITE, sets the BH_Dirty flag. 

e. Inserts the pointer to the asynchronous buffer head into a local array, and 
continues with the next asynchronous buffer head. 

Now all asynchronous buffer heads have been considered. 

3. If the local array of asynchronous buffer head pointers is empty, all requested blocks 
were included in the buffer cache, thus the page I/O operation is not necessary. In this 
case, performs the following substeps: 

a. Clears the PG_locked flag of the page descriptor, thus unlocking the page 
frame. 

b. Sets the PG_uptodate flag of the page descriptor. 
c. Wakes up any process sleeping on the wait wait queue of the page descriptor. 
d. Invokes free_async_buffers( ) to release the asynchronous buffer heads. 
e. Invokes the after_unlock_page( ) function (see Chapter 16). This function 

releases the page frame if the PG_free_after flag of the page descriptor is set. 
f. Returns the value 0. 

4. If we have reached this point, the local array of asynchronous buffer head pointers is 
not empty, thus a page I/O operation is really necessary. Invokes ll_rw_block( ) to 
issue an rw request for all buffer heads included in the local array and immediately 
returns the value 0. 

13.6.2 Terminating Page I/O Operations 

The ll_rw_block( ) function activates the device driver of the block device being accessed 
(see Section 13.5.9). As described in Section 13.5.10, the device driver performs the actual 
data transfer, and then invokes the b_end_io method of all asynchronous buffer heads that 
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have been transferred. The b_end_io field points to the end_buffer_io_async( ) function, 
which performs the following operations: 

1. Invokes the mark_buffer_uptodate( ) function, which in turn performs the 
following substeps: 

a. Sets the BH_Uptodate flag of the asynchronous buffer head according to the 
result of the I/O operation. 

b. If the BH_Uptodate flag is set, checks whether all other asynchronous buffer 
heads in the page are up-to-date; if so, sets the PG_uptodate flag of the page 
descriptor. 

2. Clears the BH_Lock flag of the asynchronous buffer head. 
3. If the BH_Uptodate flag is off, sets the PG_error flag of the page descriptor because 

an error occurred while transferring the block. 
4. Decrements the usage counter of the asynchronous buffer head (it becomes 0). 
5. Checks whether all asynchronous buffer heads that refer to the page have null usage 

counters. If so, all data transfers for the buffers in the page have been completed, thus 
performs the following substeps: 

a. Invokes the free_async_buffers( ) function to release all asynchronous 
buffer heads. 

b. Clears the PG_locked bit of the page descriptor, thus unlocking the page 
frame. 

c. Wakes up all processes sleeping in the wait wait queue of the page descriptor. 
d. Invokes the after_unlock_page( ) function (see Chapter 16). This function 

releases the page frame if the PG_free_after flag of the page descriptor is set. 

13.7 Anticipating Linux 2.4 

Linux 2.4 heavily changes how I/O device drivers are handled. The main improvement 
consists of a new Resource Management Subsystem used to allocate IRQ lines, DMA 
channels, I/O ports, and so on. Thanks to this new subsystem, Linux now fully supports hot-
pluggable Plug-And-Play hardware devices, USB buses, and PCMCIA cards. 

Linux 2.4 reorganizes the block device driver layer and adds support for the Logical Volume 
Manager. The Logical Volume Manager allows filesystems to span several disk partitions and 
to be resized dynamically. This new feature brings Linux closer to enterprise-class operating 
systems. 

The new kernel introduces a class of character devices called raw I/O devices. These devices 
allow applications like DBMS to directly access disks without making use of the kernel 
caches. 

Another significant addition is kernel support for Intelligent Input/Output (I2O) hardware. 
The goal of this new standard, derived from the PCI architecture, is to write OS-independent 
device drivers for several kind of devices like disks, SCSI devices, and network cards. 

Finally, Linux 2.4 includes the devfs virtual filesystem, which replaces the old static /dev 
directory of device files. Virtual files appear only when the corresponding device driver is 
present in the kernel. The device filenames have also been changed. As an example, all disc 
devices are placed under the /dev/discs directory: /dev/hda might become /dev/discs/disc0, 
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/dev/hdb might become /dev/discs/disc1, and so on. Users can still refer to the old name 
scheme by properly configuring a device management daemon. 
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Chapter 14. Disk Caches 
This chapter deals with disk caches. It shows how Linux makes use of sophisticated 
techniques to improve system performances by reducing disk accesses as much as possible. 

As mentioned in Section 12.1.1 in Chapter 12, a disk cache is a software mechanism that 
allows the system to keep in RAM some data normally stored on a disk, so that further 
accesses to that data can be satisfied quickly without accessing the disk. 

Besides the dentry cache, which is used by the VFS to speed up the translation of a file 
pathname to the corresponding inode, two main disk caches—the buffer cache and the page 
cache—are used by Linux. Most of this chapter describes the buffer cache, and a short section 
near the end covers the page cache. 

We learned in Section 13.5.1 in Chapter 13, that a buffer is a memory area containing the data 
of a disk block. Each block refers to physically adjacent bytes on the disk surface; the block 
size depends on the type of the filesystem it comes from. As suggested by its name, the buffer 
cache is a disk cache that stores buffers. 

Conversely, the page cache is a disk cache storing page frames that contain data belonging to 
regular files. It is inherently different from the buffer cache, since page frames in the page 
cache do not necessarily correspond to physically adjacent disk blocks. 

Buffer I/O operations (see Section 13.5 in Chapter 13) make use of the buffer cache only. 
Page I/O operations use the page cache and optionally the buffer cache as well. As we'll see in 
the following sections, both caches are implemented by making use of proper data structures 
storing pointers to buffer heads and page descriptors. 

Table 14-1. Use of the Buffer Cache and Page Cache 
I/O Operation Cache System Call Kernel Function 
Read a block device file[1]  Buffer read( ) block_read( ) 
Write a block device file [1] Buffer write( ) block_write( ) 
Read an Ext2 directory[2]  Buffer getdents( ) ext2_bread( ) 
Read an Ext2 regular file[2] Page read( ) generic_file_read( ) 
Write an Ext2 regular file[2] Page, buffer write( ) ext2_file_write( ) 
Access to memory-mapped file[3]  Page None file_map_nopage( ) 
Access to swapped-out page[4]  Page None do_swap_page( ) 

[1] See Section 13.5.4 in Chapter 13. 

[2] See Chapter 17. 

[3] See Section 15.2 in Chapter 15. 

[4] See Chapter 16. 

For each type of I/O activity, the table also shows the system call required to start it (if any) 
and the main corresponding kernel function that handles it. 

You'll notice in the table that accesses to memory-mapped files and swapped-out pages do not 
require system calls; they are transparent to the programmer. Once a file memory mapping 
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has been set up and once swapping has been activated, the application program can access the 
mapped file or the swapped-out page as if it were present in memory. It is the kernel's 
responsibility to delay the process until the required page has been located on disk and 
brought into RAM. 

14.1 The Buffer Cache 

The whole idea behind the buffer cache is to relieve processes from having to wait for 
relatively slow disks to retrieve or store data. Thus, it would be counterproductive to write a 
lot of data at once; instead, data should be written piecemeal at regular intervals so that I/O 
operations have a minimal impact on the speed of the user processes and on response time 
experienced by human users. 

The kernel maintains a lot of information about each buffer to help it pace the writes, 
including a "dirty" bit to indicate the buffer has been changed in memory and needs to be 
written and a timestamp to indicate how long the buffer should be kept in memory before 
being flushed to disk. Information on buffers is kept in buffer heads (introduced in the 
previous chapter), so these data structures require maintenance along with the buffers of user 
data themselves. 

The size of the buffer cache may vary. Page frames are allocated on demand when a new 
buffer is required and one is not available. When free memory becomes scarce, as we shall 
see in Chapter 16, buffers are released and the corresponding page frames are recycled. 

The buffer cache consists of two kinds of data structures: 

• A set of buffer heads describing the buffers in the cache (see Section 13.5.6 in Chapter 
13) 

• A hash table to help the kernel quickly derive the buffer head that describes the buffer 
associated with a given pair of device and block numbers 

14.1.1 Buffer Head Data Structures 

As mentioned in Section 13.5.6 in Chapter 13, each buffer head is stored in a data structure of 
type buffer_head. These data structures have their own slab allocator cache called 
bh_cachep, which should not be confused with the buffer cache itself. The slab allocator 
cache is a memory cache (see Section 3.1.2 in Chapter 3) for the buffer head objects, meaning 
that it has no interaction with disks and is simply a way of managing memory efficiently. 

In contrast, the buffer cache is a disk cache for the data in the buffers. The number of 
allocated buffer heads, that is, the number of objects obtained from the slab allocator, is stored 
in the nr_buffer_heads variable. 

Each buffer used by a block device driver must have a corresponding buffer head that 
describes the buffer's current status. The converse is not true: a buffer head may be unused, 
which means it is not bound to any buffer. The kernel keeps a certain number of unused 
buffer heads to avoid the overhead of constantly allocating and deallocating memory. 

In general, a buffer head may be in any one of the following states: 
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Unused buffer head  

The object is available; the values of its fields are meaningless. 

Buffer head for a free buffer  

Its b_data field points to a free buffer, and its b_dev field has the value B_FREE 
(0xffff). Notice that the buffer is available, not the buffer head itself. 

Buffer head for a cached buffer  

Its b_data field points to a buffer stored in the buffer cache. 

Asynchronous buffer head  

Its b_data field points to a temporary buffer used to implement a page I/O operation 
(see Section 13.6 in Chapter 13). 

Strictly speaking, the buffer cache data structures include only pointers to buffer heads for a 
cached buffer. For sake of completeness, we shall examine the data structures and the 
methods used by the kernel to handle all kinds of buffer heads, not just those in the buffer 
cache. 

14.1.1.1 The list of unused buffer heads 

All unused buffer heads are collected in a simply linked list, whose first element is addressed 
by the unused_list variable. Each buffer head stores the address of the next list element in 
the b_next_free field. The current number of elements in the list is stored in the 
nr_unused_buffer_heads variable. 

The list of unused buffer heads acts as a primary memory cache for the buffer head objects, 
while the bh_cachep slab allocator cache is a secondary memory cache. When a buffer head 
is no longer needed, it is inserted into the list of unused buffer heads. Buffer heads are 
released to the slab allocator (a preliminary step to letting the kernel free the memory 
associated with them altogether) only when the number of list elements exceeds 
MAX_UNUSED_BUFFERS (usually 36 elements). In other words, a buffer head in this list is 
considered as an allocated object by the slab allocator and as an unused data structure by the 
buffer cache. 

A subset of NR_RESERVED (usually 16) elements in the list is reserved for page I/O operations. 
This is done to prevent nasty deadlocks caused by the lack of free buffer heads. As we shall 
see in Chapter 16, if free memory is scarce, the kernel can try to free a page frame by 
swapping out some page to disk. In order to do this, it requires at least one additional buffer 
head to perform the page I/O file operation. If the swapping algorithm fails to get a buffer 
head, it simply keeps waiting and lets writes to files proceed in order to free up buffers, since 
at least NR_RESERVED buffer heads are going to be released as soon as the ongoing file 
operations terminate. 

The get_unused_buffer_head( ) function is invoked to get a new buffer head. It essentially 
performs the following operations: 
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1. Invokes the recover_reusable_buffer_heads( ) function (more on this later). 
2. If the list of unused buffer heads has more than NR_RESERVED elements, removes one 

of them from the list and returns its address. 
3. Otherwise, invokes kmem_cache_alloc( ) to allocate a new buffer head; if the 

operation succeeds, returns its address. 
4. No free memory is available. If the buffer head has been requested for a buffer I/O 

operation, returns NULL (failure). 
5. If this point is reached, the buffer head has been requested for a page I/O operation. If 

the list of unused buffer heads is not empty, removes one element and returns its 
address. 

The put_unused_buffer_head( ) function performs the reverse operation, releasing a 
buffer head. It inserts the object in the list of unused buffer heads if that list has fewer than 
MAX_UNUSED_BUFFERS elements; otherwise, it releases the object to the slab allocator. 

14.1.1.2 Lists of buffer heads for free buffers 

Since Linux uses several block sizes (see Section 13.5.1 in Chapter 13), it uses several 
circular lists, one for each buffer size, to collect the buffer heads of free buffers. Such lists act 
as a memory cache. Thanks to them, a free buffer of a given size can be obtained quickly 
when needed, without relying on the time-consuming Buddy system procedures. 

Seven lists of buffer heads for free buffers are defined; the corresponding buffer sizes are 512, 
1024, 2048, 4096, 8192, 16384, and 32768 bytes. The size of a block, however, cannot exceed 
the size of a page frame; only the first four lists are thus actually used on PC architecture. 

The free_list array points to all seven lists; for each list, there is one element in the array to 
hold the address of the list's first element. The BUFSIZE_INDEX macro accepts a block size as 
input and derives from it the corresponding index in the array. For instance, buffer size 512 
maps to free_list[0], buffer size 1024 to free_list[1], and so on. The lists are doubly 
linked by means of the b_next_free and b_ prev_free fields of each buffer head. 

14.1.1.3 Lists of buffer heads for cached buffers 

When a buffer belongs to the buffer cache, the flags of the corresponding buffer head describe 
its current status (see Section 13.5.6 in Chapter 13). For instance, when a block not present in 
the cache must be read from disk, a new buffer is allocated and the BH_Uptodate flag of the 
buffer head is cleared because the buffer's contents are meaningless. While filling the buffer 
by reading from disk, the BH_Lock flag is set to protect the buffer from being reclaimed. If the 
read operation terminates successfully, the BH_Uptodate flag is set and the BH_Lock flag is 
cleared. If the block must be written to disk, the buffer content is modified and the BH_Dirty 
flag is set; the flag will be cleared only after the buffer is successfully written to disk. 

Any buffer head associated with a used buffer is contained in a doubly linked list, 
implemented by means of the b_next_free and b_prev_free fields. There are three different 
lists, identified by an index defined as a macro (BUF_CLEAN, BUF_DIRTY, and BUF_LOCKED). 
We'll define these lists in a moment. 

The three lists are introduced to speed up the functions that flush dirty buffers to disk (see 
Section 14.1.5 later in this chapter). For reasons of efficiency, a buffer head is not moved 
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right away from one list to another when it changes status; this makes the following 
description a bit murky. 

BUF_CLEAN  

This list collects buffer heads of nondirty buffers (BH_Dirty flag is off). Notice that 
buffers in this list are not necessarily up-to-date, that is, they don't necessarily contain 
valid data. If the buffer is not up-to-date, it could even be locked (BH_Lock is on) and 
selected to be read from the physical device while being on this list. The buffer heads 
in this list are guaranteed only to be not dirty—in other words, the corresponding 
buffers are ignored by the functions that flush dirty buffers to disk. 

BUF_DIRTY  

This list mainly collects buffer heads of dirty buffers that have not been selected to be 
written into the physical device, that is, dirty buffers that have not yet been included in 
a block request for a block device driver (BH_Dirty is on and BH_Lock is off). 
However, this list could also include nondirty buffers, since in a few cases the 
BH_Dirty flag of a dirty buffer is cleared without flushing it to disk and without 
removing the buffer head from the list (for instance, whenever a floppy disk is 
removed from its drive without unmounting—an event that most probably leads to 
data loss, of course). 

BUF_LOCKED  

This list mainly collects buffer heads of dirty buffers that have been selected to be 
written to the block device (BH_Lock is on; BH_Dirty is clear because the 
add_request( ) function resets it before including the buffer head in a block 
request). However, when a write operation for some locked buffer has been 
completed, the low-level block device handler clears the BH_Lock flag without 
removing the buffer head from the list (see Section 13.5.10 in Chapter 13). The buffer 
heads in this list are guaranteed only to be not dirty, or dirty but selected to be written. 

For any buffer head associated with a used buffer, the b_list field of the buffer head stores 
the index of the list containing the buffer. The lru_list array[5] stores the address of the first 
element in each list, while the nr_buffers_type array stores the number of elements in each 
list. 

[5] The name of the array derives from the abbreviation for Least Recently Used: in earlier versions of Linux, these lists were ordered according to the 
time when each buffer was last accessed. 

The mark_buffer_dirty( ) and mark_buffer_clean( ) functions set and clear, 
respectively, the BH_Dirty flag of a buffer head. They also invoke the refile_buffer( ) 
function, which moves the buffer head into the proper list according to the value of the 
BH_Dirty and BH_Lock flags. 

14.1.1.4 The hash table of cached buffer heads 

The addresses of the buffer heads belonging to the buffer cache are inserted into a large hash 
table. Given a device identifier and a block number, the kernel can use the hash table to 
quickly derive the address of the corresponding buffer head, if one exists. The hash table 
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noticeably improves kernel performance because checks on buffer heads are frequent. Before 
starting a buffer I/O operation, the kernel must check whether the required block is already in 
the buffer cache; in this situation, the hash table lets the kernel avoid a lengthy sequential scan 
of the lists of cached buffers. 

The hash table is stored in the hash_table array, which is allocated during system 
initialization and whose size depends on the amount of RAM installed on the system. As an 
example, for systems having 64 MB of RAM, hash_table is stored in 64 page frames and 
includes 65,536 buffer head pointers. As usual, entries causing a collision are chained in 
doubly linked lists implemented by means of the b_next and b_pprev fields of each buffer 
head. The total number of buffer heads in the hash table is stored in the nr_hashed_buffer 
variable. 

The find_buffer( ) function receives as parameters the device number and the block 
number of a buffer head to be searched, hashes the values of the parameters and looks into the 
hash table to find the first element in the collision list, then checks the b_dev and b_blocknr 
fields of each element in the list and returns the address of the requested buffer head. If the 
buffer head is not in the cache, the function returns NULL. 

The insert_into_queues( ) and remove_from_queues( ) functions insert an element into 
the hash table and remove it from the hash table, respectively. Both functions also take care of 
the buffer head's other data structures. For instance, when insert_into_queues( ) is 
invoked on a buffer head that should be cached, the function inserts it into both the proper 
lru_list and the hash table. 

14.1.1.5 Lists of asynchronous buffer heads 

Asynchronous buffer heads are used by page I/O file operations (see Section 13.6 in Chapter 
13). Even if a page I/O operation transfers a whole page, the actual data transfer is done one 
block at a time by the proper block device handler. In other words, the operation views the 
page frame containing the page as a group of buffers. The number of buffers in the group 
depends on the block size used: a 4 KB page frame may include, for instance, a group of four 
1 KB buffers if the block size is 1024 or a single 4 KB buffer if the block size is 4096. During 
the page I/O operation, any buffer in the page must have its corresponding asynchronous 
buffer head. These buffer heads, however, are discarded as soon as the I/O operation 
completes, since from now on the page can be regarded as a whole and referenced by means 
of its page descriptor. 

Since each page can consist of many buffers, the goal at this point is to try to find whether all 
buffers used by a page have been transferred. 

As discussed in Section 13.5.10 in Chapter 13, when a block transfer terminates, the interrupt 
handler invokes end_request( ). This function takes care of removing the block request 
from the request queue and invokes the b_end_io method of all buffer heads included in the 
request. When a buffer is involved in a page I/O operation (instead of a buffer I/O operation), 
the end_request( ) field points to the end_buffer_io_async( ) function, which 
decrements the usage counter of the buffer head and checks whether all buffer heads in the 
page have a null usage counter. If they turn out to be unused, the function invokes 
free_async_buffers( ) to release the asynchronous buffer heads. Notice that the usage 
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counter of an asynchronous buffer head is used as a flag specifying whether the buffer data 
has been transferred. 

The free_async_buffers( ) function cannot, however, insert the asynchronous buffer 
heads into the unused list right away, since a customized block device driver's end_request( 
) function might need to access them later. Therefore, free_async_buffers( ) inserts these 
buffer heads in a special list denoted as the reuse list, which is implemented by means of the 
b_next_free field. The reuse_list variable points to the first element of the list. Elements 
in the reuse list are moved into the unused list by recover_reusable_buffer_heads( ) just 
before getting a buffer head from the unused list. But this never happens before 
end_request( ) terminates, so there is no danger of a race condition involving accesses to 
the reuse list. 

14.1.2 The getblk( ) Function 

The getblk( ) function is the main service routine for the buffer cache. When the kernel 
needs to read or write the contents of some block of a physical device, it must check whether 
the buffer head for the required buffer is already included in the buffer cache. If the buffer is 
not there, the kernel must create a new entry in the cache. In order to do this, the kernel 
invokes getblk( ), specifying as parameters the device identifier, the block number, and the 
block size. This function returns the address of the buffer head associated with the buffer. 

Remember that having a buffer head in the cache does not imply that the data in the buffer is 
valid. (For instance, the buffer has yet to be read from disk.) Any function that reads blocks, 
such as block_read( ), must check whether the buffer obtained from getblk( ) is up-to-
date; if not, it must read the block first from disk before using the buffer. 

The getblk( ) function performs the following operations: 

1. Invokes find_buffer( ), which makes use of the hash table to check whether the 
required buffer head is already in the cache. 

2. If the buffer head has been found, increments its usage counter (b_count field) and 
returns its address. The next section explains the purpose of this field. 

3. If the buffer head is not in the cache, a new buffer and a new buffer head must be 
allocated. Derives from the block size an index in the free_list array and checks 
whether the corresponding free list is empty. 

4. If the free list is not empty, performs the following operations: 
a. Removes the first buffer head from the list 
b. Initializes the buffer head with the device identifier, the block number, and the 

block size; stores in the b_end_io field a pointer to the end_buffer_io_sync( 
) function;[6] and sets the b_count usage counter to 1 

[6] The buffer cache is reserved for buffer I/O operations, which require the b_end_io method to point to the 
end_buffer_io_sync( ) function; asynchronous buffer heads are left out of the buffer cache. 

c. Invokes insert_into_queues( ) to insert the buffer head into the hash table 
and the lru_list[BUF_CLEAN] list 

d. Returns the address of the buffer head 
5. If the free list is empty, invokes the refill_freelist( ) function to replenish it (see 

Section 14.1.4). 
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6. Invokes find_buffer( ) to check once more whether some other process has put the 
buffer in the cache while the kernel control path was waiting for the completion of the 
previous step. If so, goes to step 2; otherwise, goes to step 3. 

14.1.3 Buffer Usage Counter 

The b_count field of the buffer head is a usage counter for the corresponding buffer. The 
counter is incremented right before any operation on the buffer and decremented right after. It 
acts mainly as a safety lock, since the kernel never destroys a buffer (or its contents) as long 
as it has a non-null usage counter. Instead, the cached buffers are examined either periodically 
or when the free memory becomes scarce, and only those buffers having null counters may be 
destroyed (see Chapter 16). In other words, a buffer with a null usage counter may belong to 
the buffer cache, but it cannot be determined for how long the buffer will stay in the cache. 

When a kernel control path wishes to access a buffer, it should increment the usage counter 
first. This task is performed by the getblk( ) function, which is usually invoked to locate the 
buffer, so that the increment need not be done explicitly by higher-level functions. When a 
kernel control path stops accessing a buffer, it may invoke either brelse( ) or bforget( ) 
to decrement the corresponding usage counter. 

The brelse( ) function receives as its parameter the address of a buffer head. It checks 
whether the buffer is dirty and, if so, writes the time when the buffer should be flushed in the 
b_flushtime field of the buffer head (see Section 14.1.5). The function also invokes 
refile_buffer( ) to move the buffer head to the proper list, if necessary. Finally, the 
PG_referenced flag of the page frame containing the buffer is set (see Chapter 16), and the 
b_count field is decremented. 

The bforget( ) function is similar to brelse( ), except that if the usage counter becomes 
and the buffer is not locked (BH_Lock flag cleared), the buffer head is removed from the 
buffer cache and inserted into the proper list of free buffers. In other words, the data included 
in the buffer, as well the association between the buffer and a specific block of a physical 
device, is lost. 

14.1.4 Buffer Allocation 

For reasons of efficiency, buffers are not allocated as single memory objects. Instead, buffers 
are stored in dedicated pages called buffer pages . All the buffers within a single buffer page 
must be the same size. Depending on the block size, a buffer page can include eight, four, 
two, or just one buffer on the PC architecture. The buffer head's b_this_page field links all 
buffers included in a single buffer page together in a circular list. 

If the page descriptor refers to a buffer page, its buffers field points to the buffer head of the 
first buffer included in the page; otherwise, this field is set to NULL. Figure 14-1 shows a page 
containing four buffers and the corresponding buffer heads. 
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Figure 14-1. A page including four buffers and their buffer heads 

 

The number of buffer pages must never become too small, or buffer I/O operations would be 
delayed for lack of buffers. The minimum percentage of buffer pages among all page frames 
is stored in the min_percent field of the buffer_mem table,[7] which is accessible either from 
the /proc/sys/vm/buffermem file or by using the sysctl( ) system call. 

[7] The table also includes two other fields, borrow_percent and max_percent, which are not used in Linux 2.2. 

When the getblk( ) function needs a free buffer, it tries to get an element of the list pointing 
to free buffers of the right size. If that list is empty, the kernel must allocate additional page 
frames and then create new buffers of the required block size. This task is performed by the 
refill_freelist( ) function, which receives as a parameter the block size of the buffers to 
be allocated. Actually, the function just invokes grow_buffers( ), which basically tries to 
allocate new buffers and returns the value 1 if it succeeded, otherwise. If grow_buffers( ) 
failed to obtain new buffers because available memory is scarce, refill_freelist( ) 
wakes up the bdflush kernel thread (see the next section). It then relinquishes the CPU by 
setting the SCHED_YIELD flag of current and by invoking schedule( ), thus allowing 
bdflush to run. The getblk( ) function invokes refill_freelist( ) repeatedly until it 
succeeds. 

The grow_buffers( ) function receives as a parameter the size of the buffers to be allocated 
and performs the following operations: 

1. Invokes __get_free_page( ) with priority GFP_BUFFER to get a new page frame 
from the Buddy system. The GFP_BUFFER priority indicates that the current process 
could be suspended while executing this function. 

2. If no page frame is available, returns 0. 
3. If a page frame is available, invokes the create_buffers( ) function, which in turn 

performs the following operations: 
a. Tries to allocate the buffer heads for all buffers in the page by repeatedly 

invoking get_unused_buffer_head( ). 
b. If all the buffer heads needed have been obtained, initializes them properly; in 

particular, sets the b_dev field to B_FREE, the b_size field to the buffer size, 
and the b_data field to the starting address of the buffer in the page; then links 
together the buffer heads by means of the b_this_page field. Finally, returns 
the address of the buffer head of the first buffer in the page. 
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c. If not all buffer heads have been obtained, releases all buffer heads already 
obtained by repeatedly invoking put_unused_buffer_head( ). 

d. If the buffer has been requested for a buffer I/O operation, returns NULL 
(failure). This will cause grow_buffers( ) to return 0. 

e. If we reach this point, get_unused_buffer_head( ) failed and the buffer has 
been requested for a page I/O operation. In this case, the unused list is empty 
and all NR_RESERVED asynchronous buffer heads in the list are being used for 
other page I/O operations. Executes the function in the tq _disk task queue 
(see Section 13.5.9 in Chapter 13) and sleeps on the buffer_wait wait queue 
until some asynchronous buffer head becomes free. 

f. Goes to step a and tries again to allocate all buffer heads for a page. 
4. If create_buffers( ) returned NULL, releases the page frame and returns 0. 
5. Otherwise, all the buffer heads needed are now available. Inserts the buffer heads 

corresponding to the new buffers in the proper free list. 
6. Adds the number of newly created buffers to nr_buffers, which always stores the 

total number of existing buffers. 
7. Sets the buffers field of the page descriptor to the address of the first buffer head in 

the page. 
8. Updates the buffermem variable, which stores the total number of bytes in the buffer 

pages. 
9. Returns the value 1 (success). 

14.1.5 Writing Dirty Buffers to Disk 

Unix systems allow the deferred writing of dirty buffers into block devices, since that strategy 
noticeably improves system performance. Several write operations on a buffer could be 
satisfied by just one slow physical update of the corresponding disk block. Moreover, write 
operations are less critical than read operations since a process is usually not suspended 
because of delaying writings, while it is most often suspended because of delayed readings. 
Thanks to deferred writing, any physical block device will service, on the average, many more 
read requests than write ones. 

A dirty buffer might stay in main memory until the last possible moment, that is, until system 
shutdown. However, pushing the delayed-write strategy to its limits has two major 
drawbacks: 

• If a hardware or power supply failure occurs, the contents of RAM can no longer be 
retrieved, so a lot of file updates made since the time the system was booted are lost. 

• The size of the buffer cache, and hence of the RAM required to contain it, would have 
to be huge—at least as big as the size of the accessed block devices. 

Therefore, dirty buffers are flushed (written) to disk under the following conditions: 

• The buffer cache gets too full and more buffers are needed, or the number of dirty 
buffers becomes too large: when one of these conditions occurs, the bdflush kernel 
thread is activated. 

• Too much time has elapsed since a buffer has stayed dirty: the kupdate kernel thread 
regularly flushes old buffers. 

• A process requests all the buffers of block devices or of particular files to be flushed: 
it does this by invoking the sync( ), fsync( ), or fdatasync( ) system call. 
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14.1.5.1 The bdflush kernel thread 

The bdflush kernel thread (also called kflushd ) is created during system initialization. It 
executes the bdflush( ) function, which selects some dirty buffers and forces an update of 
the corresponding blocks on the physical block devices. 

Some system parameters control the behavior of bdflush; they are stored in the b_un field of 
the bdf_prm table and are accessible either by means of the /proc/sys/vm/bdflush file or by 
invoking the bdflush( ) system call. Each parameter has a default standard value, although 
it may vary within a minimum and a maximum value stored in the bdflush_min and 
bdflush_max tables, respectively. The parameters are listed in Table 14-2; remember that 1 
tick corresponds to about 10 milliseconds.[8]  

[8] The bdf_prm table also includes several other unused fields. 

Table 14-2. Buffer Cache Tuning Parameters 
Parameter Default Min Max Description 
age_buffer 3000 100 60,000 Time-out in ticks of a normal dirty buffer for being written to disk 
age_super 500 100 60,000 Time-out in ticks of a superblock dirty buffer for being written to disk 
interval 500 0 6000 Delay in ticks between kupdate activations 

ndirty 500 10 5000 Maximum number of dirty buffers written to disk during an activation of 
bdflush 

nfract 40 0 100 Threshold percentage of dirty buffers for waking up bdflush 

In order to implement deferred writing effectively, it would be counterproductive to write a 
lot of data at once; that would degrade system response time more than simply writing each 
buffer as soon as it's dirty. Therefore, not all dirty buffers are written to disk at each activation 
of bdflush. The maximum number of dirty buffers to be flushed in each activation is stored in 
the ndirty parameter of bdf_prm. 

The kernel thread is woken up in a few specific cases: 

• When a buffer head is inserted into the BUF_DIRTY list and the number of elements in 
the list becomes larger than: 

nr_buffers x bdf_prm.b_un.nfract / 100  

that is, the percentage of dirty buffers exceeds the threshold represented by the nfract 
system parameter. 

• When the grow_buffers( ) function, invoked by refill_freelist( ), fails to 
replenish a list of free buffers as described earlier in Section 14.1.4. 

• When the kernel tries to get some free pages by releasing some buffers in the buffer 
cache (see Chapter 16). 

• When a user presses some specific combinations of keys on the console (usually 
ALT+SysRq+U and ALT+SysRq+S). These key combinations, which are enabled only if 
the Linux kernel has been compiled with the Magic SysRq Key option, allow Linux 
hackers to have some explicit control over kernel behavior. 
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In order to wake up bdflush, the kernel invokes the wakeup_bdflush( ) function. It receives 
as its parameter a wait flag that indicates whether the calling kernel control path wishes to 
wait until some buffers have been successfully flushed to disk. The function performs the 
following actions: 

1. Invokes wake_up( ) to wake up the process suspended in the bdflush_wait task 
queue. There is just one process in this wait queue, namely bdflush itself. 

2. If the wait parameter indicates that the calling process wishes to wait, invokes 
sleep_on( ) to insert the current process in a specific wait queue named 
bdflush_done. 

At each activation of the bdflush kernel thread, the bdflush( ) function performs the 
following operations: 

1. Initializes the ndirty local variable to 0; this variable denotes the number of dirty 
buffers written to disk during a single activation of bdflush( ). 

2. Scans the BUF_DIRTY and BUF_LOCKED lists of buffer heads. If a dirty, unlocked buffer 
is found, increments ndirty and invokes ll_rw_block( ) to issue a WRITE request 
for the buffer. Moreover, if a buffer head in the wrong list is found, invokes 
refile_buffer( ) on it (see Section 14.1.1 earlier in this chapter). 

3. If ndirty is smaller than bdf_prm.b_un.ndirty and there are other buffer heads to 
be checked, reruns step 2. 

4. Invokes run_task_queue( ) to execute the functions in the tq _disk task queue, 
thus starting the effective low-level block device drivers. 

5. Invokes wake_up( ) to wake up all processes suspended in the bdflush_done wait 
queue. 

6. If some buffers have been flushed in this iteration and the percentage of dirty buffers 
is greater than bdf_prm.b_un.nfract, goes to step 1 and starts a new iteration: the 
buffer cache still contains too many dirty buffers. 

7. Otherwise, suspends the bdflush kernel thread, as follows: invokes flush_signals( 
) to flush all pending signals of bdflush and invokes interruptible_sleep_on( ) to 
insert bdflush in the bdflush_wait wait queue. When the kernel thread is awakened, 
it will resume its execution from step 1. 

14.1.5.2 The kupdate kernel thread 

Since the bdflush kernel thread is usually activated only when there are too many dirty buffers 
or when more buffers are needed and available memory is scarce, some dirty buffers might 
stay in RAM for an arbitrarily long time before being flushed to disk. The kupdate kernel 
thread is thus introduced to flush the older dirty buffers.[9]  

[9] In an earlier version of Linux 2.2, the same task was achieved by means of the bdflush( ) system call, which was invoked every five 
seconds by a User Mode system process launched at system startup and which executed the /sbin/updateprogram. In more recent kernel versions, the 
bdflush( )system call is used only to allow users to modify the system parameters in the bdf_prm table. 

The kernel distinguishes the buffers used by disk superblocks from other buffers. A 
superblock includes very critical information, and its corruption could lead to severe 
problems: in fact, the whole partition could become unreadable. As shown in Table 14-2, 
there are two time-out parameters: age_buffer is the time for normal buffers to age before 
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kupdate writes them to disk (usually 30 seconds), while age_super is the corresponding time 
for superblocks (usually 5 seconds). 

The interval field of the bdf_prm table stores the delay in ticks between two activations of 
the kupdate kernel thread (usually five seconds). If this field is null, the kernel thread is 
normally stopped, and it is activated only when it receives a SIGCONT signal. 

When the kernel modifies the contents of some buffer, it sets the b_flushtime field of the 
corresponding buffer head to the time (in jiffies) when it should later be flushed to disk. The 
kupdate kernel thread selects only the dirty buffers whose b_flushtime field is smaller than 
the current value of jiffies. 

The kupdate kernel thread consists of the kupdate( ) function, which executes the following 
endless loop: 

for (;;) {  
    if (bdf_prm.b_un.interval) {  
        tsk->state = TASK_INTERRUPTIBLE;  
        schedule_timeout(bdf_prm.b_un.interval);  
    } else {  
        tsk->state = TASK_STOPPED;  
        schedule(  ); /* wait for SIGCONT */  
    }  
    sync_old_buffers(  );  
} 

If bdf_prm.b_un.interval is not null, the thread suspends itself for the specified amount of 
ticks (see Section 5.4.7 in Chapter 5); otherwise, the thread stops itself until a SIGCONT signal 
is received (see Section 9.1 in Chapter 9). 

The core of the kupdate( ) function consists of the sync_old_buffers( ) function. The 
operations to be performed are very simple for standard filesystems used with Unix; all the 
function has to do is write dirty buffers to disk. However, some nonnative filesystems 
introduce complexities because they store their superblock or inode information in 
complicated ways. sync_old_buffers( ) executes the following steps: 

1. Invokes sync_supers( ), which takes care of superblocks used by filesystems that do 
not store all the superblock data in a single disk block (an example is Apple 
Macintosh's HFS). The function accesses the super_blocks array to scan the 
superblocks of all currently mounted filesystems (see Section 12.3 in Chapter 12). It 
then invokes, for each superblock, the corresponding write_super superblock 
operation, if one is defined (see Section 12.2.1 in Chapter 12). The write_super 
method is not defined for any Unix filesystem. 

2. Invokes sync_inodes( ), which takes care of inodes used by filesystems that do not 
store all the inode data in a single disk block (an example is the MS-DOS filesystem). 
The function scans the superblocks of all currently mounted filesystems and, for each 
superblock, the list of dirty inodes to which the s_dirty field of the superblock object 
points. The function invokes the write_inode superblock operation on each element 
of the list, if that method is defined. The write_inode method is not defined for any 
Unix filesystem. 
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3. Scans the BUF_DIRTY and BUF_LOCKED lists and writes to disk all old dirty buffers, that 
is, those whose b_flushtime buffer head fields have a value smaller than or equal to 
jiffies. The code used to perform this step is almost identical to the code used by 
bdflush( ), but sync_old_buffers( ) does not flush young buffers to disk, and it 
doesn't limit the number of buffers checked on each activation. 

4. Executes the functions in the tq _disk task queue, thus starting up (unplugging) any 
low-level block device drivers needed to write blocks to disk. 

14.1.5.3 The sync( ), fsync( ), and fdatasync( ) system calls 

Three different system calls are available to user applications to flush dirty buffers to disk: 

sync( )  

Usually issued before a shutdown, since it flushes all dirty buffers to disk 

fsync( )  

Allows a process to flush all blocks belonging to a specific open file to disk 

fdatasync( )  

Very similar to fsync( ) but doesn't flush the inode block of the file 

The core of the sync( ) system call is the fsync_dev( ) function, which performs the 
following actions: 

1. Invokes sync_buffers( ), which scans the BUF_DIRTY and BUF_LOCKED lists and 
issues a WRITE request, via ll_rw_block( ), for all dirty, unlocked buffers the lists 
contain 

2. Invokes sync_supers( ) to write the dirty superblocks to disk, if necessary, by using 
the write_super methods (see earlier in this section) 

3. Invokes sync_inodes( ) to write the dirty inodes to disk, if necessary, by using the 
write_inode methods (see earlier in this section) 

4. Invokes sync_buffers( ) once again, since sync_supers( ) and sync_inodes( ) 
might have marked additional buffers as dirty 

The fsync( ) system call forces the kernel to write to disk all dirty buffers belonging to the 
file specified by the fd file descriptor parameter (including the buffer containing its inode, if 
necessary). The system service routine derives the address of the file object and then invokes 
its fsync method. This method is filesystem-dependent, since it must know how files are 
stored on disk in order to be able to identify the dirty buffers associated with a given file. 
Once the correspondence between file and buffers has been established, the rest of the job can 
be delegated to ll_rw_block( ). The fsync method suspends the calling process until all 
dirty buffers of the file have been written to disk. In order to do this, it scans both the 
BUF_DIRTY and BUF_LOCKED lists and invokes wait_on_buffer( ) for each locked buffer 
found. 

The fdatasync( ) system call is very similar to fsync( ), but it is supposed to write to disk 
only the buffers that contain the file's data, not those that contain inode information. Since 
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Linux 2.2 does not have a specific file method for fdatasync( ), this system call uses the 
fsync method and is thus identical to fsync( ). 

14.2 The Page Cache 

The page cache, which is thankfully much simpler than the buffer cache, is a disk cache for 
the data accessed by page I/O operations. As we shall see in Chapter 15, all access to regular 
files made by read( ), write( ), and mmap( ) system calls is done through the page cache. 
Of course, the unit of information kept in the cache is a whole page, since page I/O operations 
transfer whole pages of data. A page does not necessarily contain physically adjacent disk 
blocks, and it cannot thus be identified by a device number and a block number. Instead, a 
page in the page cache is identified by a file's inode and by the offset within the file. 

There are three main activities related to the page cache: adding a page when accessing a file 
portion not already in the cache, removing a page when the cache gets too big, and finding the 
page including a given file offset. 

14.2.1 Page Cache Data Structures 

The page cache makes use of two main data structures: 

A page hash table  

Lets the kernel quickly derive the page descriptor address for the page associated with 
a specified inode and file offset 

An inode queue  

A list of page descriptors corresponding to pages of data of a particular file 
(distinguished by a unique inode) 

Manipulation of the page cache involves adding and removing entries from these data 
structures, as well as updating the fields in all inode objects referencing cached files. 

14.2.1.1 The page hash table 

When a process reads a large file, the page cache may become filled with pages related to that 
file. In such cases, scanning the proper inode queue to find the page that maps the required 
file portion could become a time-consuming operation. 

For that reason, Linux makes use of a hash table of page descriptor pointers named 
page_hash_table. Its size depends on the amount of available RAM; as an example, for 
systems having 64 MB of RAM, page_hash_table is stored in 16 page frames and includes 
16,384 page descriptor pointers. 

The page_hash( ) function derives from the address of an inode object and from an offset 
value the address of the corresponding element in the hash table. As usual, chaining is 
introduced to handle entries that cause a collision: the next_hash and pprev_hash fields of 
the page descriptors are used to implement doubly circular lists of entries having the same 
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hash value. The page_cache_size variable specifies the number of page descriptors included 
in the collision lists of the page hash table (and therefore in the page cache). 

The add_page_to_hash_queue( ) and remove_page_from_hash_queue( ) functions are 
used to add an element into the hash table and remove an element from it, respectively. 

14.2.1.2 The inode queue 

A queue of pages is associated with each inode object in kernel memory. The i_pages field 
of each inode object stores the address of the first page descriptor in its inode queue, while the 
i_nrpages field stores the length of the list. 

The add_page_to_inode_queue( ) and remove_page_from_inode_queue( ) functions are 
used to insert a page descriptor into an inode queue and to remove it, respectively. 

14.2.1.3 Page descriptor fields related to the page cache 

When a page frame is included in the page cache, some fields of the corresponding page 
descriptor have special meanings: 

inode  

Contains the address of the inode object of the file to which the data included in the 
page belongs; if the page does not belong to the page cache, this field is NULL.[10]  

[10] As we shall see in Chapter 16, the inode field points to a fictitious inode object when the page includes data of a swap partition; actually, the 
page belongs to a subset of the page cache named "swap cache." In this chapter, we don't care about this special case. 

offset  

Specifies the relative address of the data inside the file. 

next  

Points to the next element in the inode queue. 

prev  

Points to the previous element in the inode queue. 

next_hash  

Points to the next colliding page descriptor in the page hash list. 

pprev_hash  

Points to the previous colliding page descriptor in the page hash list. 

In addition, when a page frame is inserted into the page cache, the usage counter (count field) 
of the corresponding page descriptor is incremented. If the count field is exactly 1, the page 
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frame belongs to the cache but is not being accessed by any process: it can thus be removed 
from the page cache whenever free memory becomes scarce, as described in Chapter 16. 

14.2.2 Page Cache Handling Functions 

The high-level functions using the page cache involve finding, adding, and removing a page. 

The find_page( ) function receives as parameters the address of an inode object and an 
offset value. It invokes page_hash( ) to derive the address of the first element in the 
collision list, then scans the list until the requested page is found. If the page is present, the 
function increments the count field of the page descriptor, sets the PG_referenced flag, and 
returns its address; otherwise, it returns NULL. 

The add_to_page_cache( ) function inserts a new page descriptor in the page cache. This is 
achieved by performing the following operations: 

1. Increments the count field of the page descriptor 
2. Clears the PG_uptodate, PG_error, and PG_referenced flags of the page frame to 

indicate that the page is present in the cache but not yet filled with data 
3. Sets the offset field of the page descriptor with the offset of the data within the file 
4. Invokes add_page_to_hash_queue( ) to insert the page descriptor in the hash table 
5. Invokes add_page_to_inode_queue( ) to insert the page descriptor in the inode 

queue and to set the inode field of the page descriptor 

The remove_inode_page( ) function removes a page descriptor from the page cache. This is 
achieved by invoking remove_page_from_hash_queue( ), 
remove_page_from_inode_queue( ), and __free_page( ) in succession. The latter 
function decrements the count field of the page descriptor, and releases the page frame to the 
Buddy system if the counter becomes 0. 

14.2.3 Tuning the Page Cache 

The page cache tends to quickly grow in size, because any access to previously unaccessed 
portions of files forces the kernel to allocate a new page frame for the accessed data and to 
insert that page frame in the cache. As we shall see in Chapter 16, when free memory 
becomes scarce, the kernel prunes the page cache by releasing the oldest unused pages. 

However, the page cache size should never fall under some predefined limit, otherwise system 
performance will quickly degrade. The lower size limit of the page cache can be tuned by 
means of the min_percent parameter stored in the page_cache table,[11] which specifies the 
minimum percentage of pages among all page frames that should belong to the page cache. 
The default value is 2%. The parameter's value can be read or modified either by invoking the 
sysctl( ) system call or by accessing the /proc/sys/vm/pagecache file. 

[11] The page_cache table also includes the borrow_percent and max_percent parameters, which are no longer used. 

14.3 Anticipating Linux 2.4 

Much work has been done on the page cache. First of all, the page cache makes use preferably 
of page frames in high memory. Moreover, Linux 2.4 introduces a new kind of object that 



Understanding the Linux Kernel 

399 

represents a file address space : the object refers to a given block of an inode (or of a block 
device) and includes pointers to both the memory region descriptors mapping the file and the 
pages containing the file data. The inode object now includes a pointer to the new address 
space object, and the page cache is indexed by combining the base address of the address 
space object with the offset inside the file. 

The address space object includes methods to read and write a full page of data. These 
methods take care of inode object management (like updating the file access time), page cache 
handling, and temporary buffer allocation. This approach leads to a better coupling between 
the page cache and the buffer cache. Most filesystems can thus use the 
generic_file_write( ) function (as you'll see in Chapter 15, Linux 2.2 uses this function 
only for networking filesystems). The synchronization problem between the buffer cache and 
the page cache has thus been removed: since both read and write operations for regular files 
make use of the same page cache, it is no longer necessary to synchronize data present in the 
two caches. 

Notice that both the buffer cache and the page cache continue to be used with different 
purposes. The first acts on disk blocks, the second on pages that have a file image on disk. 
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Chapter 15. Accessing Regular Files 
Accessing a regular file is a complex activity that involves the VFS abstraction (Chapter 12), 
the handling of block devices (Chapter 13), and the use of disk caches (Chapter 14). This 
chapter shows how the kernel builds on all those facilities to accomplish file reads and writes. 
The topics covered in this chapter apply to regular files stored either in disk-based filesystems 
or to network filesystems such as NFS or Samba. 

The stage we are working at in this chapter starts after the proper read or write method of a 
particular file has been called (as described in Chapter 12). We show here how each read ends 
with the desired data delivered to a User Mode process and how each write ends with data 
marked ready for transfer to disk. The rest of the transfer is handled by the facilities in 
Chapter 13 and Chapter 14. 

In particular, in Section 15.1 we describe how regular files are accessed by means of the 
read( ) and write( ) system calls. When a process reads from a regular file, data is first 
moved from the disk itself to a set of buffers in the kernel's address space. This set of buffers 
is included in a set of pages in the page cache (see Section 13.6 in Chapter 13). Next, the 
pages are copied into the process's user address space. This chapter deals only with the move 
from the kernel to the user address space. A write is basically the opposite, although some 
stages are different from reads in important ways. 

We also discuss in Section 15.2 how the kernel allows a process to directly map a regular file 
into its address space, because that activity also has to deal with pages in kernel memory. 

15.1 Reading and Writing a Regular File 

Chapter 13's Section 13.5.4 described how the read( ) and write( ) system calls are 
implemented. The corresponding service routines end up invoking the file object's read and 
write methods, which may be filesystem-dependent. For disk-based filesystems, these 
methods locate the physical blocks containing the data being accessed and activate the block 
device driver to start the data transfer. However, reading and writing are performed differently 
in Linux. 

Reading a regular file is page-based: the kernel always transfers whole pages of data at once. 
If a process issues a read( ) system call in order to get a few bytes, and that data is not 
already in RAM, the kernel allocates a new page frame, fills the page with the suitable portion 
of the regular file, adds the page to the page cache, and finally copies the requested bytes into 
the process address space. For most filesystems, reading a page of data from a regular file is 
just a matter of finding what blocks on disk contain the requested data. Once this is done, the 
kernel can use one or more page I/O operations to fill the pages. 

Write operations for disk-based filesystems are much more complicated to handle, since the 
file size could change, and therefore the kernel might allocate or release some physical blocks 
on the disk. Of course, how this is precisely done depends on the filesystem type. 

As a matter of fact, the read method of most filesystems is implemented by a common 
function named generic_file_read( ). However, all disk-based filesystems have a 
customized write method. Since the Second Extended Filesystem is the most efficient and 
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powerful one currently available for Linux and since it is thus the standard filesystem on most 
Linux systems, we discuss how it implements methods like write in Chapter 17. The 
generic_file_write( ) function is used only by NFS and Samba: since they are network 
filesystems, the kernel does not care about how the data is physically recorded on the remote 
disks. 

15.1.1 Reading from a Regular File 

Let's discuss the generic_file_read( ) function, which implements the read method for 
regular files of most filesystems. The function acts on the following parameters: 

file  

Address of the file object 

buf  

Linear address of the User Mode memory area where the characters read from the file 
must be stored 

count  

Number of characters to be read 

ppos  

Pointer to a variable storing the file offset from which reading must start 

The function verifies that the parameters are correct by invoking access_ok( ) (see Section 
8.2.4 in Chapter 8), then invokes do_generic_file_read( ), which performs the following 
steps: 

1. Determines from *ppos whether the file offset from which reading must start is inside 
or outside the file's read-ahead window (see the next section). 

2. Starts a cycle to read all the pages that include the requested count characters and 
initializes the pos local variable with the value *ppos. During a single iteration, the 
function reads a page of data by performing the following substeps: 

a. If pos exceeds the file size, exits from the cycle and goes to step 3. 
b. Invokes find_ page( ) to check whether the page is already in the page 

cache. 
c. If the page is not in the page cache, allocates a new page frame, adds it to the 

page cache, and invokes the readpage method of the inode object to fill it. 
Although its implementation depends on the filesystem, most disk filesystems 
rely on a common generic_readpage( ) function, which performs the 
following operations: 

a. Sets the PG_locked flag of the page so that no other kernel control path 
can access the page contents. 

b. Increments the usage counter of the page descriptor. This is a fail-safe 
mechanism ensuring that, if the process that reads the page is killed 
while sleeping, the page frame won't be released to the Buddy system. 
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c. Sets the PG_free_after flag, thus ensuring that the usage counter of 
the page descriptor is decremented when the page I/O operation 
terminates (see Section 13.6 in Chapter 13). This flag is necessary 
because device drivers may invoke the brw_page( ) function without 
first incrementing the usage counter. Currently no device driver does 
this, though. 

d. Computes the number of blocks needed to fill the page and derives 
from the file offset relative to the page the file block number of the first 
block in the page. 

e. Invokes the bmap method of the inode operation table on each file block 
number to get the corresponding logical block number. 

f. Invokes brw_page( ) to transfer the blocks in the page (see Section 
13.6.1 in Chapter 13). 

d. Invokes the generic_file_readahead( ) function (see the next section). 
e. If the page is locked, invokes wait_on_page( ) to wait for I/O to complete. 
f. Copies the page (or a portion of it) into the process address space, updates pos 

to point to the next position in the file for a read to take place, and goes to step 
2a to continue with the next requested page. 

3. Assigns to the *ppos the current value of pos, thus storing the next position where a 
read is to occur for a future invocation of this function. 

4. Sets the f_reada field of the file descriptor to 1 (see the next section). 
5. Invoke update_atime( ) to store the current time in the i_atime field of the file's 

inode and to mark the inode as dirty. 

15.1.2 Read-Ahead for Regular Files 

In Section 13.5.3 in Chapter 13, we discussed how sequential disk accesses benefit from 
reading several adjacent blocks of a block device in advance, before they are actually 
requested. The same considerations apply to sequential read operations of regular files. 
However, read-ahead of regular files requires a more sophisticated algorithm than read-ahead 
of physical blocks for several reasons: 

• Since data is read page by page, the read-ahead algorithm does not have to consider 
the offsets inside the page, but only the positions of the accessed pages inside the file. 
A sequence of accesses to pages of the same file is considered sequential if the related 
pages are close to each other. We'll define the word "close" more precisely in a 
moment. 

• Read-ahead must be restarted from scratch when the current access is not sequential 
with respect to the previous one (random access). 

• Read-ahead should be slowed down or even stopped when a process keeps accessing 
the same pages over and over again (only a small portion of the file is being used). 

• If necessary, the read-ahead algorithm must activate the low-level I/O device driver to 
make sure that the new pages will be read. 

We'll try now to sketch out how Linux implements read-ahead. However, we won't be able to 
cover the algorithm in detail because the motivations behind it appear somewhat empirical. 

The read-ahead algorithm identifies a set of pages corresponding to a contiguous portion of 
the file as the read-ahead window. If the next read operation issued by a process falls inside 
this set of pages, the kernel considers the file access as "sequential" to the previous one. The 



Understanding the Linux Kernel 

403 

read-ahead window consists of pages requested by the process or read in advance by the 
kernel and included in the page cache. The read-ahead window always includes the pages 
requested in the last read-ahead operation; they are called the read-ahead group. Not all the 
pages in the read-ahead window or group are necessarily up-to-date. They are invalid (that is, 
their PG_uptodate flags are cleared) if their transfer from disk has not yet been completed. 

The file object includes the following fields related to read-ahead: 

f_raend  

Position of the first byte after the read-ahead group and the read-ahead window 

f_rawin  

Length in bytes of the current read-ahead window 

f_ralen  

Length in bytes of the current read-ahead group 

f_ramax  

Maximum number of characters for the next read-ahead operation 

f_reada  

Flag specifying whether the file has been accessed sequentially (used only when 
accessing a block device file; see Section 13.5.4 in Chapter 13) 

Figure 15-1 illustrates how some of the fields are used to delimit the read-ahead window and 
the read-ahead group. The generic_file_readahead( ) function implements the read-
ahead algorithm; its overall scheme is shown later in Figure 15-3. 

Figure 15-1. Read-ahead window and read-ahead group 

 

15.1.2.1 Read-ahead operations 

The kernel performs a read-ahead operation by invoking a function named 
try_to_read_ahead( ) several times, once for each page to be read ahead. 
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The number of bytes to be read in advance is stored into the f_ramax field of the file object. 
This number is initially set to MIN_READAHEAD (usually three pages); it cannot become larger 
than MAX_READAHEAD (usually 31 pages). 

The try_to_read_ahead( ) function checks whether the page considered is already 
included in the page cache; if not, the page is transferred by invoking the readpage method of 
the corresponding inode object. The function then doubles the value of the f_ramax field, so 
that the next read-ahead operation will be much more aggressive (accesses appear to be really 
sequential). As mentioned, the field is never allowed to exceed MAX_READAHEAD. 

Next, the generic_file_readahead( ) function updates the file's read-ahead window and 
the read-ahead group. As we shall see later, the function may set up either a short read-ahead 
window or a long one: the former consists of only the most recent read-ahead group while the 
latter includes the two most recent read-ahead groups (see Figure 15-2). 

Figure 15-2. Read-ahead group and window 

 

Finally, the generic_file_readahead( ) function may activate the low-level block device 
driver by executing the tq_disk task queue (see Figure 15-3). 

A special case occurs for the first read-ahead operation, where the previous read-ahead 
window and the previous read-ahead group are null (all relative fields are set to 0). The 
number of bytes to be read in advance in the first read-ahead operation is equal to 
MIN_READAHEAD or the number of bytes requested by the process in its read( ) system call, 
whichever value is larger. 

15.1.2.2 Nonsequential access (outside the read-ahead window) 

When a process issues a read request through the read( ) system call, the kernel checks 
whether the first page of the requested data is included in the current read-ahead window of 
the corresponding file object. 

Suppose the first page is not included in the read-ahead window, perhaps because the file has 
never been accessed by the process or because the process issued an lseek( ) system call to 



Understanding the Linux Kernel 

405 

reposition the current file pointer. The kernel considers every page requested by the process in 
turn; for each such page, it invokes the generic_file_readahead( ) function, which 
decides whether a read-ahead operation has to be performed. 

Basically, two cases may occur (see Figure 15-3). Either the page is locked, meaning that the 
actual data transfer for the page has not been completed, or the page is unlocked and therefore 
up-to-date. (For the sake of simplicity, we will not consider I/O errors occurring while 
transferring the pages in this chapter.) 

If the page is unlocked, the read-ahead operation does not take place. This rule ensures that no 
read-ahead operation is performed on a file whose data is entirely contained in the page cache. 
In such cases, any further read-ahead processing would be a waste of CPU time. Conversely, 
if the page is locked, the kernel starts a read-ahead operation and prepares a short read-ahead 
window for the next read-ahead. 

Figure 15-3. Read-ahead scheme 

 

15.1.2.3 Sequential access (inside the read-ahead window) 

Suppose now that the first page accessed by the process through a read( ) system call falls 
inside the read-ahead window of the previous read-ahead operation. The kernel considers all 
pages requested by the process in turn; for each of them, it invokes the 
generic_file_readahead( ) function. Four cases may occur, depending on whether the 
page is locked and whether it is included in the read-ahead group (see Figure 15-3): 

• If the page is not locked but is included in the read-ahead group, the process has 
progressed to the point where it is accessing a page transferred from disk by the last 
read-ahead operation, so the process is dangerously close to the end of the pages read 
in advance. In this case, another read-ahead is performed and a long read-ahead 
window is used; moreover, the functions in the tq _disk task queue are executed to 
be sure that the low-level block device driver will be activated. 

• If the page is neither locked nor included in the read-ahead group, the process is 
accessing a page transferred from disk in the next-to-last read-ahead operation. In this 
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case, no reading in advance is done since the process is lagging with respect to read-
ahead. This is the best scenario and shows that the kernel has an ample number of 
read-ahead pages being read sequentially by the process, just as we would hope. 

• If the page is both locked and included in the read-ahead group, the process is 
accessing a page requested in the last read-ahead operation but probably not yet 
transferred from disk. In this case, it would be pointless to start an additional read-
ahead. 

• Finally, if the page is locked but not included in the read-ahead group, the process is 
accessing a page requested in the next-to-last read-ahead operation. In this case, the 
kernel performs another read-ahead because the page is likely to be written on disk 
and an additional read-ahead will cause no harm. 

15.1.3 Writing to a Regular File 

Recall that the write( ) system call involves moving data from the User Mode address space 
of the calling process into the kernel data structures, and then to disk. The write method of 
the file object permits each filesystem type to define a specialized write operation. In Linux 
2.2, the write method of each disk-based filesystem is a procedure that basically identifies 
the disk blocks involved in the write operation, copies the data from the User Mode address 
space into the corresponding buffers, and then marks those buffers as dirty. The procedure 
depends on the type of filesystem; we present one example in Section 17.7 in Chapter 17. 

Disk-based filesystems do not directly use the page cache for writing to a regular file. This is 
a heritage from older versions of Linux, in which the only disk cache was the buffer cache. 
However, network-based filesystems always use the page cache for writing to a regular file. 

The approach used in Linux 2.2, bypassing the page cache, leads to a synchronization 
problem. When writing takes place, the valid data is in the buffer cache but not in the page 
cache; more precisely, when the write method changes any portion of a file, any page in the 
page cache that corresponds to that portion no longer includes meaningful data. As an 
example of the problem, one process might think it's reading correct data but fail to see the 
changes written by another process. 

In order to solve this problem, all write methods of disk-based filesystems invoke the 
update_vm_cache( ) function to update the page cache used by reads. This function acts on 
the following parameters: 

inode  

Pointer to inode object of the file to which the writes took place 

pos  

Offset within the file where the writes took place 

buf  

Address from where the characters to be written into the file must be fetched 
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count  

Number of characters to be written 

The function updates page by page the portion of the page cache related to the file being 
written by performing the following operations: 

1. Computes from pos the offset relative to a page of the first character to be written 
2. Invokes find_page( ) to search in the page cache for the page frame including the 

character at file offset pos 
3. If the page is found, performs the following substeps: 

a. Invokes wait_on_page( ) to wait until the page becomes unlocked (in case it 
is involved in an I/O data transfer). 

b. Fills the page with data from the process address space, starting from the page 
offset pos previously computed. This is the data that has already been written 
into the buffer cache by the filesystem's customized write method. 

c. Invokes free_page( ) to decrement the page's usage counter (it was 
incremented by the find_page( ) function). 

4. If some data in the User Mode address space remains to be copied, updates pos, sets 
the page offset to 0, and goes to step 2 

Now we'll briefly describe the write operation for a regular file through the page cache. Recall 
that this operation is used only by network filesystems. In this case, the write method of the 
file object is implemented by the generic_file_write( ) function, which acts on the 
following parameters: 

file  

File object pointer 

buf  

Address where the characters to be written into the file must be fetched 

count  

Number of characters to be written 

ppos  

Address of a variable storing the file offset from which writing must start 

The function performs the following operations: 

1. If the O_APPEND flag of file->flags is on, sets *ppos to the end of the file so that all 
new data is appended to it. 

2. Starts a cycle to update all the pages involved in the write operation. During each 
iteration, performs the following substeps: 

a. Tries to find the page in the page cache. If it isn't there, allocates a free page 
and adds it to the page cache. 
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b. Invokes wait_on_page( ) and then sets the PG_locked flag of the page 
descriptor, thus obtaining exclusive access to the page content. 

c. Invokes copy_from_user( ) to fill the page with data coming from the 
process address space. 

d. Invokes the inode operation's updatepage method. This method is specific to 
the particular network filesystem being used and is not described in this book. 
It should ensure that the remote file is properly updated with the newly written 
data. 

e. Unlocks the page, invokes wake_up( ) to wake up the processes suspended on 
the page wait queue, and invokes free_page( ) to decrement the page's usage 
counter (incremented by find_page( )). 

3. Updates the value of *ppos to point right after the last character written. 

15.2 Memory Mapping 

As already mentioned in Section 7.3 in Chapter 7, a memory region can be associated with a 
file (or with some portion of it) of a disk-based filesystem. This means that an access to a byte 
within a page of the memory region is translated by the kernel into an operation on the 
corresponding byte of the regular file. This technique is called memory mapping. 

Two kinds of memory mapping exist: 

Shared  

Any write operation on the pages of the memory region changes the file on disk; 
moreover, if a process writes into a page of a shared memory mapping, the changes 
are visible to all other processes that map the same file. 

Private  

Meant to be used when the process creates the mapping just to read the file, not to 
write it. For this purpose, private mapping is more efficient than shared mapping. But 
any write operation on a privately mapped page will cause it not to map the page in the 
file any longer. Thus, a write does not change the file on disk, nor is the change visible 
to any other processes that access the same file. 

A process can create a new memory mapping by issuing an mmap( ) system call (see Section 
15.2.3 later in this chapter). Programmers must specify either the MAP_SHARED flag or the 
MAP_PRIVATE flag as a parameter of the system call; as you can probably guess, in the former 
case the mapping is shared while in the latter it is private. Once the mapping has been created, 
the process can read the data stored in the file by simply reading from the memory locations 
of the new memory region. If the memory mapping is shared, the process can also modify the 
corresponding file by simply writing into the same memory locations. In order to destroy or 
shrink a memory mapping, the process may use the munmap( ) system call (see Section 
15.2.4). 

As a general rule, if a memory mapping is shared, the corresponding memory region has the 
VM_SHARED flag set; if it is private, the VM_SHARED flag is cleared. As we'll see later, an 
exception to this rule exists for read-only shared memory mappings. 



Understanding the Linux Kernel 

409 

15.2.1 Memory Mapping Data Structures 

A memory mapping is represented by a combination of the following data structures: 

• The inode object associated with the mapped file 
• A file object for each different mapping performed on that file by different processes 
• A vm_area_struct descriptor for each different mapping on the file 
• A page descriptor for each page frame assigned to a memory region that maps the file 

Figure 15-4 illustrates how the data structures are linked together. In the upper left corner we 
show the inode. The i_mmap field of each inode object points to the first element of a doubly 
linked list that includes all memory regions that currently map the file; if i_mmap is NULL, the 
file is not mapped by any memory region. The list contains vm_area_struct descriptors 
representing memory regions and is implemented by means of the vm_next_share and 
vm_pprev_share fields. 

Figure 15-4. Data structures related to memory mapping 

 

The vm_file field of each memory region descriptor contains the address of a file object for 
the mapped file; if that field is null, the memory region is not used in a memory mapping. The 
file object contains fields that allow the kernel to identify both the process that owns the 
memory mapping and the file being mapped. 

The position of the first mapped location is stored into the vm_offset field of the memory 
region descriptor. The length of the mapped file portion is simply the length of the memory 
region, thus can be computed from the vm_start and vm_end fields. 
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Pages of shared memory mappings are always included in the page cache; pages of private 
memory mappings are included in the page cache as long as they are unmodified. When a 
process tries to modify a page of a private memory mapping, the kernel duplicates the page 
frame and replaces the original page frame with the duplicate in the process Page Table; this 
is one of the applications of the Copy On Write mechanism that we discussed in Chapter 7. 
The original page frame still remains in the page cache, although it no longer belongs to the 
memory mapping since it is replaced by the duplicate. In turn, the duplicate is not inserted 
into the page cache since it no longer contains valid data representing the file on disk. 

Figure 15-4 also shows the page descriptors of the pages included in the page cache that refer 
to the memory-mapped file. As described in Chapter 14 in Chapter 14, these descriptors are 
inserted into a doubly linked list implemented through the next and prev fields. The address 
of the first list element is in the inode object's i_pages field. Once again, modified pages of 
private memory mappings do not belong to this list. Notice that the first memory region in the 
figure is three pages long, but only two page frames are allocated for it; presumably, the 
process owning the memory region has never accessed the third page. 

15.2.2 Operations Associated with a Memory Region 

Memory region descriptors are objects, similar to the superblock, inode, and file objects 
described in Chapter 12. Like them, memory regions have their own methods. In fact, each 
vm_area_struct descriptor includes a vm_ops field that points to a vm_operations_struct 
structure. This table, which contains the methods associated with a memory region, includes 
the fields illustrated in Table 15-1. 

Table 15-1. Memory Region Methods 
Method Description 
open Open the region. 
close Close the region. 
unmap Unmap a linear address interval. 
protect Not used. 
sync Flush the memory region content. 
advise Not used. 
nopage Demand paging. 
wppage Not used. 
swapout Swap out a page belonging to the region. 
swapin Swap in a page belonging to the region. 

The memory region operations allow different filesystems to implement their own memory 
mapping functions. In practice, most filesystems rely on two standard tables of memory 
region operations: file_shared_mmap, which is used for shared memory mappings, and 
file_private_mmap, which is used for private memory mappings. Table 15-2 shows the 
names of the relevant methods. 

As usual, when a method has a NULL value, the kernel invokes either a default function or no 
function at all. If the nopage method has a NULL value, the memory region is anonymous; that 
is, it does not map any file on disk. This use is discussed in Section 7.4.3 in Chapter 7. 
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Table 15-2. Methods Used by file_shared_mmap and by file_private_mmap 
Method file_shared_mmap file_private_mmap 
open NULL NULL 
close NULL NULL 
unmap filemap_unmap NULL 
protect NULL NULL 
sync filemap_sync NULL 
advise NULL NULL 
nopage filemap_nopage filemap_nopage 
wppage NULL NULL 
swapout filemap_swapout NULL 
swapin NULL NULL 

15.2.3 Creating a Memory Mapping 

To create a new memory mapping, a process issues an mmap( ) system call, passing the 
following parameters to it: 

• A file descriptor identifying the file to be mapped. 
• An offset inside the file specifying the first character of the file portion to be mapped. 
• The length of the file portion to be mapped. 
• A set of flags. The process must explicitly set either the MAP_SHARED flag or the 

MAP_PRIVATE flag to specify the kind of memory mapping requested.[1]  

[1] The process could also set the MAP_ANONYMOUS flag to specify that the new memory region is anonymous, that is, not associated with any 
file (see Section 7.4.3 in Chapter 7); however, this flag is a Linux extension and it is not defined by the POSIX standard. 

• A set of permissions specifying one or more types of access to the memory region: 
read access (PROT_READ), write access (PROT_WRITE ), or execution access 
(PROT_EXEC). 

• An optional linear address, which is taken by the kernel as a hint of where the new 
memory region should start. If the MAP_FIXED flag is specified and the kernel cannot 
allocate the new memory region starting from the specified linear address, the system 
call fails. 

The mmap( ) system call returns the linear address of the first location in the new memory 
region. The service routine is implemented by the old_mmap( ) function, which essentially 
invokes the do_mmap( ) function already described in Section 7.3.4 in Chapter 7. We now 
complete that description by detailing the steps performed only when creating a memory 
region that maps a file. 

1. Checks whether the mmap file operation for the file to be mapped is defined; if not, 
returns an error code. A NULL value for mmap in the file operation table indicates that 
the corresponding file cannot be mapped (for instance, because it is a directory). 

2. In addition to the usual consistency checks, compares the kind of memory mapping 
requested and the flags specified when the file was opened. The flags passed as a 
parameter of the system call specify the kind of mapping required, while the value of 
the f_mode field of the file object specifies how the file was opened. Depending on 
these two sources of information, performs the following checks: 
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a. If a shared writable memory mapping is required, checks that the file was 
opened for writing and that it was not opened in append mode (O_APPEND flag 
of the open( ) system call) 

b. If a shared memory mapping is required, checks that there is no mandatory 
lock on the file (see Section 12.6 in Chapter 12) 

c. For any kind of memory mapping, checks that the file was opened for reading 

If any of these conditions is not fulfilled, returns an error code. 

3. When initializing the value of the vm_flags field of the new memory region 
descriptor, sets the VM_READ, VM_WRITE, VM_EXEC, VM_SHARED, VM_MAYREAD, 
VM_MAYWRITE, VM_MAYEXEC, and VM_MAYSHARE flags according to the access rights of 
the file and the kind of requested memory mapping (see Section 7.3.2 in Chapter 7). 
As an optimization, the VM_SHARED flag is cleared for nonwritable shared memory 
mapping. This can be done because the process is not allowed to write into the pages 
of the memory region, thus the mapping is treated the same as a private mapping; 
however, the kernel actually allows other processes that share the file to access the 
pages in this memory region. 

4. Invokes the mmap method for the file being mapped, passing as parameters the address 
of the file object and the address of the memory region descriptor. For most 
filesystems, this method is implemented by the generic_file_mmap( ) function, 
which performs the following operations: 

a. Initializes the vm_ops field of the memory region descriptor. If VM_SHARED is 
on, sets the field to file_shared_mmap, otherwise sets the field to 
file_private_mmap (see Table 15-2). In a sense, this step does something 
similar to the way opening a file initializes the methods of a file object. 

b. Checks from the inode's i_mode field whether the file to be mapped is a 
regular one. For other types of files, such as a directory or socket, returns an 
error code. 

c. Checks from the inode's i_op field whether the readpage( ) inode operation 
is defined. If not, returns an error code. 

d. Invokes update_atime( ) to store the current time in the i_atime field of the 
file's inode and to mark the inode as dirty. 

5. Initializes the vm_file field of the memory region descriptor with the address of the 
file object and increments the file's usage counter. 

6. Recall Section 7.3.4 in Chapter 7 that do_mmap( ) invokes insert_vm_struct( ). 
During the execution of this function, inserts the memory region descriptor into the list 
to which the inode's i_mmap field points. 

15.2.4 Destroying a Memory Mapping 

When a process is ready to destroy a memory mapping, it invokes the munmap( ) system call, 
passing the following parameters to it: 

• The address of the first location in the linear address interval to be removed 
• The length of the linear address interval to be removed 

Notice that the munmap( ) system call can be used to either remove or reduce the size of any 
kind of memory region. Indeed, the sys_munmap( ) service routine of the system call 
essentially invokes the do_munmap( ) function already described in Section 7.3.5 in  
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Chapter 7. However, if the memory region maps a file, the following additional steps are 
performed for each memory region included in the range of linear addresses to be released: 

1. Checks whether the memory region has an unmap method; if so, invokes it. Usually, 
private memory mappings do not have such a method since the file must not be 
updated. Shared memory mappings make use of the filemap_unmap( ) function, 
which invokes, in turn, filemap_sync( ) (see Section 15.2.6). 

2. Invokes remove_shared_vm_struct( ) to remove the memory region descriptor 
from the inode list pointed to by the i_mmap field. 

15.2.5 Demand Paging for Memory Mapping 

For reasons of efficiency, page frames are not assigned to a memory mapping right after it has 
been created but at the last possible moment—that is, when the process attempts to address 
one of its pages, thus causing a "Page fault" exception. 

We have seen in Section 7.4 in Chapter 7 how the kernel verifies whether the faulty address is 
included in some memory region of the process; in the affirmative case, the kernel checks the 
page table entry corresponding to the faulty address and invokes the do_no_page( ) function 
if the entry is null (see Section 7.4.3 in Chapter 7). 

The do_no_page( ) function performs all the operations that are common to all types of 
demand paging, such as allocating a page frame and updating the page tables. It also checks 
whether the nopage method of the memory region involved is defined. Chapter 7's  
Section 7.4.3, we described the case in which the method is undefined (anonymous memory 
region); now we complete the description by discussing the actions performed by the function 
when the method is defined: 

1. Invokes the nopage method, which returns the address of a page frame that contains 
the requested page. 

2. Increments the rss field of the process memory descriptor to indicate that a new page 
frame has been assigned to the process. 

3. Sets up the Page Table entry corresponding to the faulty address with the address of 
the page frame returned by the nopage method and the page access rights included in 
the memory region vm_page_prot field. Further actions depend on the type of access: 

o If the process is trying to write into the page, forces the Read/Write and Dirty 
bits of the Page Table entry to 1. In this case, either the page frame is 
exclusively assigned to the process, or the page is shared: in both cases, writing 
to it should be allowed. (This avoids a second useless "Page fault" exception 
caused by the Copy On Write mechanism.) 

o If the process is trying to read from the page, the memory region VM_SHARED 
flag is not set, and the page's usage counter is greater than 1, forces the 
Read/Write bit of the Page Table entry to 0. This is because the page's usage 
counter indicates that other processes are sharing the page; since the page 
doesn't belong to a shared memory region, it must be handled through the 
Copy On Write mechanism. 

The core of the demand paging algorithm consists of the memory region's nopage method. 
Generally speaking, it must return the address of a page frame that contains the page accessed 
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by the process. Its implementation depends on the kind of memory region in which the page is 
included. 

When handling memory regions that map files on disk, the nopage method must first search 
for the requested page in the page cache. If the page is not found, the method must read it 
from disk. Most filesystems implement the nopage method by means of the 
filemap_nopage( ) function, which acts on three parameters: 

area  

Descriptor address of the memory region including the required page. 

address  

Linear address of the required page. 

no_share  

Flag specifying whether the page frame returned by the function must not be shared 
among many processes. The do_no_page( ) function sets this flag only if the process 
is trying to write into the page and the VM_SHARED flag is off. 

The filemap_nopage( ) function executes the following steps: 

1. Gets the file object address from area->vm_file field. Derives the inode object 
address from the d_inode field of the dentry object to which the f_dentry field of 
the file object points. 

2. Uses the vm_start and vm_offset fields of area to determine the offset within the 
file of the data corresponding to the page starting from address. 

3. Checks whether the file offset exceeds the file size. If this occurs and the VM_SHARED 
flag is on, returns 0, thus causing a SIGBUS signal to be sent to the process. (Private 
memory mappings behave differently: a new page frame filled with zeros is assigned 
to the process.) 

4. Invokes find_page( ) to look in the page cache for the page identified by the inode 
object and the file offset. If the page isn't there, invokes try_to_read_ahead( ) to 
allocate a new page frame, to add it to the page cache, and to fill its contents with data 
read from disk. Actually, the kernel tries to read ahead the next page_cluster pages 
as well (see Chapter 16). 

5. Invokes wait_on_page( ) to wait until the required page becomes unlocked (that is, 
until any current I/O data transfer for the page terminates). 

6. If the no_share flag is 0, the page frame can be shared: returns its address. 
7. The no_share flag is 1, so the process tried to write into a page of a private memory 

mapping (or, more precisely, of a memory region whose VM_SHARED flag is off). 
Therefore, allocates a new page frame by performing the following operations: 

a. Invokes the __get_free_page( ) function 
b. Copies the page included in the page cache in the new page frame 
c. Decrements the usage counter of the page in the page cache in order to undo 

the increment done by find_page( ) 
d. Returns the address of the new page frame 
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15.2.6 Flushing Dirty Memory Mapping Pages to Disk 

The msync( ) system call can be used by a process to flush to disk dirty pages belonging to a 
shared memory mapping. It receives as parameters the starting address of an interval of linear 
addresses, the length of the interval, and a set of flags that have the following meanings. 

MS_SYNC  

Asks the system call to suspend the process until the I/O operation completes. In this 
way the calling process can assume that when the system call terminates, all pages of 
its memory mapping have been flushed to disk. 

MS_ASYNC  

Asks the system call to return immediately without suspending the calling process. 

MS_INVALIDATE  

Asks the system call to remove all pages included in the memory mapping from the 
process address space. 

The sys_msync( ) service routine invokes msync_interval( ) on each memory region 
included in the interval of linear addresses (see Section 7.3.4 in Chapter 7). In turn, the latter 
function performs the following operations: 

1. If the vm_file field of the memory region descriptor is NULL, returns (the memory 
region doesn't map a file). 

2. Invokes the sync method of the memory region operations. In most filesystems, this 
method is implemented by the filemap_sync( ) function (described shortly). 

3. If the MS_SYNC flag is on, invokes the file_fsync( ) function to flush to disk all 
related file information: the file's inode, the filesystem's superblock, and (by means of 
sync_buffers( )) all the dirty buffers of the file. 

The filemap_sync( ) function copies data included in the memory region to disk. It starts 
by scanning the Page Table entries corresponding to the linear address intervals included in 
the memory region. For each page frame found, it performs the following steps: 

1. Invokes flush_tlb_page( ) to flush the translation lookaside buffers. 
2. If the MS_INVALIDATE flag is off, increments the usage counter of the page descriptor. 
3. If the MS_INVALIDATE flag is on, sets the corresponding Page Table entry to 0, thus 

specifying that the page is no longer present. 
4. Invokes the filemap_write_page( ) function, which in turn performs the following 

substeps: 
a. Increments the usage counter of the file object associated with the file. This is 

a fail-safe mechanism, so that the file object is not freed if the process 
terminates while the I/O data transfer is still going on. 

b. Invokes do_write_page( ), which essentially executes the write method of 
the file operations, thus simulating a write( ) system call on the file. In this 
case, of course, the data to be written is not taken from a User Mode buffer but 
from the page being flushed. 
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c. Invokes fput( ) to decrement the usage counter of the file object, thus 
compensating for the increment made in step 4a. 

5. Invokes free_page( ) to decrease the usage counter of the page descriptor; this 
compensates for the increment performed at step 2 if the MS_INVALIDATE flag is off. 
Otherwise, if the flag is on, the global effect of filemap_sync( ) is to release the 
page frame (giving it back to the Buddy system if the counter becomes 0). 

15.3 Anticipating Linux 2.4 

The approach followed remains basically the same. However, if a memory region is 
recognized as "sequential read," read-ahead is performed while reading pages from disk. 
Moreover, as already mentioned at the end of Chapter 13, writing to a regular file is much 
simpler in Linux 2.4 because it can be easily done through page I/O operations. 
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Chapter 16. Swapping: Methods for Freeing Memory 
The disk caches examined in previous chapters used RAM as an extension of the disk; the 
goal was to improve system response time and the solution was to reduce the number of disk 
accesses. In this chapter we introduce an opposite approach called swapping: here the kernel 
uses some space on disk as an extension of RAM. Swapping is transparent to the programmer: 
once the swapping areas have been properly installed and activated, the processes may run 
under the assumption that they have all the physical memory available that they can address, 
never knowing that some of their pages are stored away and retrieved again as needed. 

Disk caches enhance system performance at the expense of free RAM, while swapping 
extends the amount of addressable memory at the expense of access speed. Thus, disk caches 
are "good" and desirable, while swapping should be regarded as some sort of last resort to be 
used whenever the amount of free RAM becomes too scarce. 

We'll start in Section 16.1 by defining swapping. Then we'll describe in Section 16.2 the main 
data structures introduced by Linux to implement it. We discuss the swap cache and  
the low-level functions that transfer pages between RAM and swap areas and vice versa. The 
two crucial sections are: Section 16.5, where we describe the procedure used to select a page 
to be swapped out to disk, and Section 16.6, where we explain how a page stored in a swap 
area is read back into RAM when the need occurs. 

This chapter effectively concludes our discussion of memory management. Just one topic 
remains to be covered, namely page frame reclaiming; this is done in the last section, which is 
related only in part to swapping. With so many disk caches around, including the swap cache, 
all the available RAM could eventually end up in these caches and no more free RAM would 
be left. We shall see how the kernel prevents this by monitoring the amount of free RAM and 
by freeing pages from the caches or from the process address spaces, as the need occurs. 

16.1 What Is Swapping? 

Swapping serves two main purposes: 

• To expand the address space that is effectively usable by a process 
• To expand the amount of dynamic RAM (what is left of the RAM once the kernel 

code and static data structures have been initialized) to load processes 

Let's give a few examples of how swapping benefits the user. The simplest is when a 
program's data structures take up more space than the size of the available RAM. A swap area 
will allow this program to be loaded without any problem, thus to run correctly. A more 
subtle example involves users who issue several commands trying to simultaneously run large 
applications that require a lot of memory. If no swap area is active, the system might reject 
requests to launch a new application. In contrast, a swap area allows the kernel to launch it, 
since some memory can be freed at the expense of some of the already existing processes 
without killing them. 

These two examples illustrate the benefits, but also the drawbacks, of swapping. Simulation 
of RAM is not like RAM in terms of performance. Every access by a process to a page that is 
currently swapped-out increases the process execution time by several orders of magnitude. In 
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short, if performance is of great importance, swapping should be used only as a last resort; 
adding RAM chips still remains the best solution to cope with increasing computing needs. It 
is fair to say, however, that, in some cases, swapping may be beneficial to the system as a 
whole. Long-running processes typically access only half of the page frames obtained. Even 
when some RAM is available, swapping unused pages out and using the RAM for disk cache 
can improve overall system performance. 

Swapping has been around for many years. The first Unix system kernels monitored the 
amount of free memory constantly. When it became less than a fixed threshold, they 
performed some swapping-out. This activity consisted of copying the entire address space of a 
process to disk. Conversely, when the scheduling algorithm selected a swapped-out process, 
the whole process was swapped in from disk. 

This approach has been abandoned by modern Unix kernels, including Linux, mainly because 
context switches are quite expensive when they involve swapping in swapped-out processes. 
To compensate for the burden of such swapping activity, the scheduling algorithm must be 
very sophisticated: it must favor in-RAM processes without completely shutting out the 
swapped-out ones. 

In Linux, swapping is currently performed at the page level rather than at the process address 
space level. This finer level of granularity has been reached thanks to the inclusion of a 
hardware paging unit in the CPU. We recall from Section 2.4.1 in Chapter 2, that each Page 
Table entry includes a Present flag: the kernel can take advantage of this flag to signal to the 
hardware that a page belonging to a process address space has been swapped out. Besides that 
flag, Linux also takes advantage of the remaining bits of the Page Table entry to store the 
location of the swapped-out page on disk. When a "Page fault" exception occurs, the 
corresponding exception handler can detect that the page is not present in RAM and invoke 
the function that swaps the missing page in from the disk. 

Much of the algorithm's complexity is thus related to swapping-out. In particular, four main 
issues must be considered: 

• Which kind of page to swap out 
• How to distribute pages in the swap areas 
• How to select the page to be swapped out 
• When to perform page swap-out 

Let us give a short preview of how Linux handles these four issues before describing the main 
data structures and functions related to swapping. 

16.1.1 Which Kind of Page to Swap Out 

Swapping applies only to the following kinds of pages: 

• Pages belonging to an anonymous memory region (for instance, a User Mode stack) of 
a process 

• Modified pages belonging to a private memory mapping of a process 
• Pages belonging to an IPC shared memory region (see Section 18.3.5 in Chapter 18) 
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The remaining kinds of pages are either used by the kernel or used to map files on disk. In the 
first case, they are ignored by swapping because this simplifies the kernel design; in the 
second case, the best swap areas for the pages are the files themselves. 

16.1.2 How to Distribute Pages in the Swap Areas 

Each swap area is organized into slots , where each slot contains exactly one page. When 
swapping out, the kernel tries to store pages in contiguous slots so as to minimize disk seek 
time when accessing the swap area; this is an important element of an efficient swapping 
algorithm. 

If more than one swap area is used, things become more complicated. Faster swap areas—that 
is, swap areas stored in faster disks—get a higher priority. When looking for a free slot, the 
search starts in the swap area having the highest priority. If there are several of them, swap 
areas of the same priority are cyclically selected in order to avoid overloading one of them. If 
no free slot is found in the swap areas having the highest priority, the search continues in the 
swap areas having a priority next to the highest one, and so on. 

16.1.3 How to Select the Page to Be Swapped Out 

With the exception of pages belonging to IPC shared memory, which will be discussed in 
Chapter 18, the general rule for swapping out is to steal pages from the process having the 
largest number of pages in RAM. However, a choice must be made among the pages of the 
process chosen for swap-out: it would be nice to be able to rank them according to some 
criterion. Several Least Recently Used (LRU) replacement algorithms have been proposed 
and used in some kernels. The main idea is to associate with each page in RAM a counter 
storing the age of the page, that is, the interval of time elapsed since the last access to the 
page. The oldest page of the process can then be swapped out. 

Some computer platforms provide sophisticated support for LRU algorithms; for instance, the 
CPUs of some mainframes automatically update the value of a counter included in each Page 
Table entry to specify the age of the corresponding page. But Intel 80x86 processors do not 
offer such a hardware feature, so Linux cannot use a true LRU algorithm. However, when 
selecting a candidate for swap-out, Linux takes advantage of the Accessed flag included in 
each Page Table entry, which is automatically set by the hardware when the page is accessed. 
As we'll see later, this flag is set and cleared in a rather simplistic way to keep pages from 
being swapped in and out too much. 

16.1.4 When to Perform Page Swap-out 

Swapping out is useful when the kernel is dangerously low on memory. In fact, the kernel 
keeps a small reserve of free page frames that can be used only by the most critical functions. 
This turns out to be essential to avoid system crashes, which might occur when a kernel 
routine invoked to free resources is unable to obtain the memory area it needs to complete its 
task. In order to protect this reserve of free page frames, Linux performs a swap-out on the 
following occasions: 

• By a kernel thread denoted as kswapd activated once every second whenever the 
number of free page frames falls below a predefined threshold 
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• When a memory request to the Buddy system (see Section 6.1.2 in Chapter 6) cannot 
be satisfied because the number of free page frames would fall below a predefined 
threshold 

Figure 16-1. Main functions related to swapping 

 

Several functions are concerned with swapping. Figure 16-1 illustrates the most important 
ones. They will be discussed in the following sections. 

16.2 Swap Area 

The pages swapped out from memory are stored in a swap area, which may be implemented 
either as a disk partition of its own or as a file included in a larger partition. Several different 
swap areas may be defined, up to a maximum number specified by the MAX_SWAPFILES macro 
(usually set to 8). 

Having multiple swap areas allows a system administrator to spread a lot of swap space 
among several disks so that the hardware can act on them concurrently; it also lets swap space 
be increased at runtime without rebooting the system. 

Each swap area consists of a sequence of page slots , that is, of 4096-byte blocks used to 
contain a swapped-out page. The first page slot of a swap area is used to persistently store 
some information about the swap area; its format is described by the swap_header union 
composed of two structures, info and magic. The magic structure provides a string that 
marks part of the disk unambiguously as a swap area; it consists of just one field, 
magic.magic, containing a 10-character "magic" string. The magic structure essentially 
allows the kernel to unambiguously identify a file or a partition as a swap area; the text of the 
string depends on the swapping algorithm version. The field is always located at the end of 
the first page slot. 
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The info structure includes the following fields: 

info.bootbits  

Not used by the swapping algorithm; this field corresponds to the first 1024 bytes of 
the swap area, which may store partition data, disk labels, and so on. 

info.version  

Swapping algorithm version. 

info.last_page  

Last page slot that is effectively usable. 

info.nr_badpages  

Number of defective page slots. 

info.padding[125]  

Padding bytes. 

info.badpages[1]  

Up to 640 numbers specifying the location of defective page slots. 

Usually, the system administrator creates a swap partition when creating the other partitions 
on the Linux system, then uses the /sbin/mkswap command to set up the disk area as a new 
swap area. That command initializes the fields just described within the first page slot. Since 
the disk may include some bad blocks, the program also examines all other page slots in order 
to locate the defective ones. But executing the /sbin/mkswapcommand leaves the swap area in 
an inactive state. Each swap area can be activated in a script file at system boot or 
dynamically after the system is running. An initialized swap area is considered active when it 
effectively represents an extension of the system RAM (see Section 16.2.3 later in this 
chapter). 

16.2.1 Swap Area Descriptor 

Each active swap area has its own swap_info_struct descriptor in memory, whose fields are 
illustrated in Table 16-1. 
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Table 16-1. Fields of a Swap Area Descriptor 
Type Field Description 
unsigned int flags Swap area flags 
kdev_t swap_device Device number of the swap device 
struct dentry * swap_file Dentry of the file or device file 
unsigned short 
* swap_map Pointer to array of counters, one for each swap area page slot 

unsigned char * swap_lockmap Pointer to array of bit locks, one for each swap area page slot 
unsigned int lowest_bit First page slot to be scanned when searching for a free one 
unsigned int highest_bit Last page slot to be scanned when searching for a free one 
unsigned int cluster_next Next page slot to be scanned when searching for a free one 

unsigned int cluster_nr Number of free page slot allocations before restarting from 
beginning 

int prio Swap area priority 
int pages Number of usable page slots 
unsigned long max Size of swap area in pages 
int next Pointer to next swap area descriptor 

The flags field includes two overlapping subfields: 

SWP_USED  

1 if the swap area is active; 0 if it is nonactive. 

SWP_WRITEOK  

This 2-bit field is set to 3 if it is possible to write into the swap area and otherwise; 
since the least-significant bit of this field coincides with the bit used to implement 
SWP_USED, a swap area can be written only if it is active. The kernel is not allowed to 
write in a swap area when it is being activated or deactivated. 

The swap_map field points to an array of counters, one for each swap area page slot. If the 
counter is equal to 0, the page slot is free; if it is positive, the page slot is filled with a 
swapped-out page (the exact meaning of positive values will be discussed in Section 16.3). If 
the counter has the value SWAP_MAP_MAX (equal to 32,767), the page stored in the page slot is 
"permanent" and cannot be removed from the corresponding slot. If the counter has the value 
SWAP_MAP_BAD (equal to 32,768), the page slot is considered defective, thus unusable. 

The swap_lockmap field points to an array of bits, one for each swap area page slot. If a bit is 
set, the page stored in the page slot is currently being swapped in or swapped out. This bit is 
thus used as a lock to ensure exclusive access to the page slot during an I/O data transfer. 

The prio field is a signed integer that denotes the "goodness" of the swap area. Swap areas 
implemented on faster disks should have a higher priority, so that they will be used first. Only 
when they are filled does the swapping algorithm consider lower-priority swap areas. Swap 
areas having the same priority are cyclically selected in order to distribute swapped-out pages 
among them. As we shall see in Section 16.2.3, the priority is assigned when the swap area is 
activated. 
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The swap_info array includes MAX_SWAPFILES swap area descriptors. Of course, not all of 
them are necessarily used, only those having the SWP_USED flag set. Figure 16-2 illustrates the 
swap_info array, one swap area, and the corresponding array of counters. 

Figure 16-2. Swap area data structures 

 

The nr_swapfiles variable stores the index of the last array element that contains, or that has 
contained, an effectively used swap area descriptor. Despite its name, the variable does not 
contain the number of active swap areas. 

Descriptors of active swap areas are also inserted into a list sorted by the swap area priority. 
The list is implemented through the next field of the swap area descriptor, which stores the 
index of the next descriptor in the swap_info array. This use of the field as an index is 
different from most fields we've seen with the name next, which are usually pointers. 

The swap_list variable, of type swap_list_t, includes the following fields: 

head  

Index in the swap_info array of the first list element. 

next  

Index in the swap_info array of the descriptor of the next swap area to be selected for 
swapping out pages. This field is used to implement a round-robin algorithm among 
maximum-priority swap areas with free slots. 

The max field stores the size of the swap area in pages, while the pages field stores the 
number of usable page slots. These numbers differ because pages does not take into 
consideration the first page slot and the defective page slots. 

Finally, the nr_swap_pages variable contains the total number of free, nondefective page 
slots in all active swap areas. 
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16.2.2 Swapped-out Page Identifier 

A swapped-out page is uniquely identified quite simply by specifying the index of the swap 
area in the swap_info array and the page slot index inside the swap area. Since the first page 
(with index 0) of the swap area is reserved for the swap_header union discussed earlier, the 
first useful page slot has index 1. The format of a swapped-out page identifier is illustrated in 
Figure 16-3. 

Figure 16-3. Swapped-out page identifier 

 

The SWP_ENTRY(type,offset) macro constructs a swapped-out page identifier from the 
swap area index type and the page slot index offset. Conversely, the SWP_TYPE and 
SWP_OFFSET macros extract from a swapped-out page identifier the swap area index and the 
page slot index, respectively. 

When a page is swapped out, its identifier is inserted as the page's entry into the Page Table 
so the page can be found again when needed. Notice that the least-significant bit of such an 
identifier, which corresponds to the Present flag, is always cleared to denote the fact that the 
page is not currently in RAM. However, at least 1 of the 30 most-significant bits has to be set 
because no page is ever stored in slot 0. It is thus possible to identify, from the value of a Page 
Table entry, three different cases: 

• Null entry: the page does not belong to the process address space. 
• First 30 most-significant bits not all equal to 0, last 2 bits equal to 0: the page is 

currently swapped out. 
• Least-significant bit equal to 1: the page is contained in RAM. 

Since a page may belong to the address spaces of several processes (see Section 16.3), it may 
be swapped out from the address space of one process and still remain in main memory; 
therefore, it is possible to swap out the same page several times. A page is physically swapped 
out and stored just once, of course, but each subsequent attempt to swap it out increments the 
swap_map counter. 

The swap_duplicate( ) function is invoked while trying to swap out an already swapped-
out page. It just verifies that the swapped-out page identifier passed as its parameter is valid 
and increments the corresponding swap_map counter. More precisely, it performs the 
following actions: 

1. Uses the SWP_TYPE and SWP_OFFSET macros to extract from the parameter the partition 
number type and the page slot index offset. 

2. Checks whether one of the following error conditions occurs: 
a. type is greater than nr_swapfiles. 
b. The SWP_USED flag in swap_info[type].flags is cleared, indicating that the 

swap area is not active. 
c. offset is greater than swap_info[type].max. 
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d. swap_info[type].swap_map[offset] is null, indicating that the page slot is 
free. 

If any of these cases occurs, return 0 (invalid identifier). 

3. If the previous tests were passed, the swapped-out page identifier locates a valid page. 
Therefore, increments swap_info[type].swap_map[offset]; however, if the 
counter is equal to SWAP_MAP_MAX or to SWAP_MAP_BAD, leaves it unchanged. 

4. Returns 1 (valid identifier). 

16.2.3 Activating and Deactivating a Swap Area 

Once a swap area is initialized, the superuser (or, more precisely, any user having the 
CAP_SYS_ADMIN capability, as described in Section 19.1.1 in Chapter 19) may use the 
/bin/swapon and /bin/swapoff programs to, respectively, activate and deactivate the swap area. 
These programs make use of the swapon( ) and swapoff( ) system calls; we'll briefly 
sketch out the corresponding service routines. 

The sys_swapon( ) service routine receives as parameters: 

specialfile  

This parameter contains the pathname of the device file (partition) or plain file used to 
implement the swap area. 

swap_flags  

If the SWAP_FLAG_PREFER bit is on, the 15 least-significant bits specify the priority of 
the swap area. 

The function checks the fields of the swap_header union that was put in the first slot when 
the swap area was created. The main steps performed by the function are: 

1. Checks that the current process has the CAP_SYS_ADMIN capability. 
2. Searches for the first descriptor in swap_info having the SWP_USED flag cleared, 

meaning that the corresponding swap area is inactive. If there is none, returns an error 
code, because there are already MAX_SWAPFILES active swap areas. 

3. A descriptor for the swap area has been found; sets its SWP_USED flag. Moreover, if the 
descriptor's index is greater than nr_swapfiles, updates that variable. 

4. Sets the prio field of the descriptor. If the swap_flags parameter does not specify a 
priority, initializes the field with the lowest priority among all active swap areas minus 
1 (thus assuming that the last activated swap area is on the slowest block device). If no 
other swap areas are already active, assigns the value -1. 

5. Initializes the swap_file field of the descriptor to the address of the dentry object 
associated with specialfile, as returned by the namei( ) function (see Section 12.4 
in Chapter 12). 

6. If the specialfile parameter identifies a block device file, stores the device number 
into the swap_device field of the descriptor, sets the block size in the proper entry of 
the blksize_size array to PAGE_SIZE, and invokes blkdev_open( ). The latter 
function sets up the f_ops field of a new file object associated with the device file and 
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initializes the hardware device (see Section 13.2.2 in Chapter 13). Moreover, checks 
that the swap area was not already activated by looking at the swap_device field of 
the other descriptors in swap_info. If it has been activated, returns an error code. 

7. If, on the other hand, the specialfile parameter identifies a regular file, checks that 
the swap area was not already activated by looking at the swap_file->d_inode field 
of the other descriptors in swap_info. If it was activated, returns an error code. 

8. Allocates a page frame and invokes rw_swap_page_nocache( ) (see Section 16.4 
later in this chapter) to read the first page of the swap area, which stores the 
swap_header union. 

9. Checks that the magic string in the last 10 characters of the first page is equal to SWAP-
SPACE or to SWAPSPACE2 (there are two slightly different versions of the swapping 
algorithm). If not, the specialfile parameter does not specify an already initialized 
swap area, so returns an error code. 

10. Initializes the lowest_bit, highest_bit, and max fields of the swap area descriptor 
according to the size of the swap area stored in the info.last_page field of the 
swap_header union. 

11. Invokes vmalloc( ) to create the array of counters associated with the new swap area 
and store its address in the swap_map field of the swap descriptor. Initializes the 
elements of the array to or to SWAP_MAP_BAD, according to the list of defective page 
slots stored in the info.bad_pages field of the swap_header union. 

12. Invokes vmalloc( ) again to create the array of locks and store its address in the 
swap_lockmap field of the swap descriptor; initializes all bits to 0. 

13. Computes the number of useful page slots by accessing the info.last_page and 
info.nr_badpages fields in the first page slot. 

14. Sets the flags field of the swap descriptor to SWP_WRITEOK, sets the pages field to the 
number of useful page slots, and updates the nr_swap_pages variable. 

15. Inserts the new swap area descriptor in the list to which the swap_list variable 
points. 

16. Releases the page frame containing the data of the first page of the swap area and 
returns 0 (success). 

The sys_swapoff( ) service routine deactivates a swap area identified by the parameter 
specialfile. It is much more complex and time-consuming than sys_swapon( ), since the 
partition to be deactivated might still contain pages belonging to several processes. The 
function is thus forced to scan the swap area and to swap in all existing pages. Since each 
swap-in requires a new page frame, it might fail if there are no free page frames left. In this 
case, the function returns an error code. All this is achieved by performing the following 
steps: 

1. Invokes namei( ) on specialfile to get a pointer to the dentry object associated 
with the swap area. 

2. Scans the list to which swap_list points and locates the descriptor whose swap_file 
field points to the dentry object associated with specialfile. If no such descriptor 
exists, an invalid parameter was passed to the function; if the descriptor exists but its 
SWP_WRITE flag is cleared while its SWP_USED flag is set, the swap area is in the middle 
of being deactivated. In either case, returns an error code. 

3. Removes the descriptor from the list and sets its flags field to SWP_USED so the kernel 
doesn't store more pages in the swap area before this function deactivates it. 
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4. Invokes the try_to_unuse( ) function to successively force all pages left in the swap 
area into RAM and to correspondingly update the page tables of the processes that 
make use of these pages. For each page slot, the function performs the following 
substeps: 

a. If the counter associated with the page slot is equal to (no page is stored there) 
or to SWAP_MAP_BAD, does nothing (continues with the next page slot). 

b. Otherwise, invokes the read_swap_cache( ) function (see Section 16.4 later 
in this chapter) to allocate, if necessary, a new page frame and fill it with the 
data stored in the page slot. 

c. Invokes unuse_process( ) on each process in the process list. This time-
consuming function scans all Page Table entries of the process and replaces 
any occurrence of the swapped-out page identifier with the physical address of 
the page frame. To reflect this move, the function also decrements the page slot 
counter in the swap_map array and increments the usage counter of the page 
frame. 

d. Invokes shm_unuse( ) to check whether the swapped-out page is used for an 
IPC shared memory resource and to properly handle that case (see Section 
18.3.5 in Chapter 18). 

e. Removes, if necessary, the page frame from the swap cache (see xref 
linkend="ch16-89946"/> later in this chapter). 

5. If try_to_unuse( ) fails in allocating all requested page frames, the swap area 
cannot be deactivated. Reinserts the swap area descriptor in the swap_list list, sets its 
flags field to SWP_WRITEOK again, and returns an error code. 

6. Otherwise, all used page slots have been successfully transferred to RAM. Finishes by 
releasing the dentry object and the inode object associated with the swap area, 
releasing the memory areas used to store the swap_map and swap_lockmap arrays, 
updating the nr_swap_pages variable, and finally returning (success). 

16.2.4 Finding a Free Page Slot 

As we shall see later, when freeing memory, the kernel swaps out many pages in a short 
period of time. It is thus important to try to store these pages in contiguous slots so as to 
minimize disk seek time when accessing the swap area. 

A first approach to an algorithm that searches for a free slot could choose one of two 
simplistic, rather extreme strategies: 

• Always start from the beginning of the swap area. This approach may increase the 
average seek time during swap-out operations, because free page slots may be 
scattered far away from one another. 

• Always start from the last allocated page slot. This approach increases the average 
seek time during swap-in operations if the swap area is mostly free (as is usually the 
case): the few occupied page slots may be scattered far away from one another. 

Linux adopts a hybrid approach. It always starts from the last allocated page slot unless one of 
these conditions occurs: 

• The end of the swap area is reached 
• SWAPFILE_CLUSTER (usually 256) free page slots have been allocated after the last 

restart from the beginning of the swap area 
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The cluster_nr field in the swap_info_struct descriptor stores the number of free page 
slots allocated. This field is reset to when the function restarts allocation from the beginning 
of the swap area. The cluster_next field stores the index of the first page slot to be 
examined in the next allocation.[1]  

[1] As you may have noticed, the names of Linux data structures are not always appropriate. In this case, the kernel does not really "cluster" page slots 
of a swap area. 

In order to speed up the search for free page slots, the kernel keeps the lowest_bit and 
highest_bit fields of each swap area descriptor up-to-date. These fields specify the first and 
the last page slots that could be free; in other words, any page slot below lowest_bit and 
above highest_bit is known to be occupied. 

The scan_swap_map( ) is used to find a free page slot. It acts on a single parameter, which 
points to a swap area descriptor and returns the index of a free page slot. It returns if the swap 
area does not contain any free slots. The function performs the following steps: 

1. If the cluster_nr field of the swap area descriptor is positive, scans the swap_map 
array of counters starting from the element at index cluster_next and looks for a 
null entry. If a null entry is found, decrements the cluster_nr field and goes to step 
3. 

2. If this point is reached, either the cluster_nr field is null or the search starting from 
cluster_next didn't find a null entry in the swap_map array. It is time to try the 
second stage of the hybrid search. Reinitializes cluster_nr to SWAPFILE_CLUSTER 
and restarts scanning of the array from the lowest_bit index. If no null entry is 
found, returns (the swap area is full). 

3. A null entry has been found. Puts the value 1 in the entry, decrements 
nr_swap_pages, updates if necessary the lowest_bit and highest_bit fields, and 
sets the cluster_next field to the index of the page slot just allocated. 

4. Returns the index of the allocated page slot. 

16.2.5 Allocating and Releasing a Page Slot 

The get_swap_page( ) function returns the index of a newly allocated page slot or if all 
swap areas are filled. The function takes into consideration the different priorities of the active 
swap areas. 

Two passes are necessary. The first pass is partial and applies only to areas having the same 
priority; the function searches such areas in a round-robin fashion for a free slot. If no free 
page slot is found, a second pass is made starting from the beginning of the swap area list; in 
this second pass all swap areas are examined. More precisely, the function performs the 
following steps: 

1. If nr_swap_pages is null, returns 0. 
2. Starts by considering the swap area pointed to by swap_list.next (recall that the 

swap area list is sorted by decreasing priorities). 
3. If the swap area is active and not being deactivated, invokes scan_swap_map( ) to 

allocate a free page slot. If scan_swap_map( ) returns a page slot index, the function's 
job is essentially done, but it must prepare for its next invocation. Thus, it updates 
swap_list.next to point to the next swap area in the swap area list, if the latter has 
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the same priority (thus continuing the round-robin use of these swap areas). If the next 
swap area does not have the same priority as the current one, the function sets 
swap_list.next to the first swap area in the list (so that the next search will start 
with the swap areas having the highest priority). The function finishes by returning the 
identifier corresponding to the page slot just allocated. 

4. Either the swap area is not writable, or it does not have free page slots. If the next 
swap area in the swap area list has the same priority as the current one, makes it the 
current one and goes to step 3. 

5. At this point, the next swap area in the swap area list has a lower priority than the 
previous one. The next step depends on which of the two passes the function is 
performing. 

a. If this is the first (partial) pass, considers the first swap area in the list and goes 
to step 3, thus starting the second pass. 

b. Otherwise, checks if there is a next element in the list; if so, considers it and 
goes to step 3. 

6. At this point the list has been completely scanned by the second pass, and no free page 
slot has been found: returns 0. 

The swap_free( ) function is invoked when swapping in a page to decrement the 
corresponding swap_map counter (see Table 16-1). When the counter reaches 0, the page slot 
becomes free since its identifier is no longer included in any Page Table entry. The function 
acts on a single entry parameter that specifies a swapped-out page identifier and performs the 
following steps: 

1. Uses the SWP_TYPE and SWP_OFFSET macros to derive from entry the swap area index 
and the page slot index. 

2. Checks whether the swap area is active; returns right away if it is not. 
3. If the priority of the swap area is greater than that of the swap area to which 

swap_list.next points, sets swap_list.next to swap_list.head, so that the next 
search for a free page slot starts from the highest priority swap area. In this way, the 
page slot being released will be reallocated before any other page slot is allocated 
from lower-priority swap areas. 

4. If the swap_map counter corresponding to the page slot being freed is smaller than 
SWAP_MAP_MAX, decrements it. Recall that entries having the SWAP_MAP_MAX value are 
considered persistent (undeletable). 

5. If the swap_map counter becomes 0, increments the value of nr_swap_pages and 
updates, if necessary, the lowest_bit and highest_bit fields of the swap area 
descriptor. 

16.3 The Swap Cache 

In Linux, a page frame may be shared among several processes in the following cases: 

• The page frame is associated with a shared[2] memory mapping (see the section  
Section 15.2 in Chapter 15). 

[2] Page frames for private memory mappings are handled through the Copy On Write mechanism, and thus fall under the next case. 

• The page frame is handled by means of Copy On Write, perhaps because a new 
process has been forked (see Section 7.4.4 in Chapter 7). 
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• The page frame is allocated to an IPC shared memory resource (see Section 18.3.5 in 
Chapter 18). 

As we shall see later in this chapter, page frames used for shared memory mappings are never 
swapped out. Instead, they are handled by another kernel function that writes their data to the 
proper files and discards them. However, the other two kinds of shared page frames must be 
carefully handled by the swapping algorithm. 

Because the kernel handles each process separately, a page shared by two processes, A and B, 
may have been swapped out from the address space of A while it is still in B's address space. 
To handle this peculiar situation, Linux makes use of a swap cache, which collects all shared 
page frames that have been copied to swap areas. The swap cache does not exist as a data 
structure on its own, but the pages in the regular page cache are considered to be in the swap 
cache if certain fields are set. 

The reader might ask at this point why the algorithm does not just swap a shared page out 
from all the process's address spaces at the same time, thus avoiding the need for a swap 
cache. The answer is that there is no quick way to derive from the page frame the list of 
processes that own it. Scanning all page table entries of all processes looking for an entry with 
a given physical address would be too costly. 

So shared page swapping works like this. Consider a page P shared among two processes, A 
and B. Suppose that the swapping algorithm scans the page frames of process A and selects P 
for swapping out: it allocates a new page slot and copies the data stored in P into the new page 
slot. It then puts the swapped-out page identifier in the corresponding page table entry of 
process A. Finally, it invokes __free_page( ) to release the page frame. However, the 
page's usage counter does not become since P is still owned by B. Thus, the swapping 
algorithm succeeds in transferring the page into the swap area, but it fails to reclaim the 
corresponding page frame. 

Suppose now that the swapping algorithm scans the page frames of process B at a later time 
and selects P for swapping out. The kernel must recognize that P has already been transferred 
into a swap area so that the page won't be swapped out a second time. Moreover, it must be 
able to derive the swapped-out page identifier so that it can increase the page slot usage 
counter. 

Figure 16-4 illustrates schematically the actions performed by the kernel on a shared page that 
is swapped out from multiple processes at different times. The numbers inside the swap area 
and inside P represent the page slot usage counter and the page usage counter, respectively. 
Notice that any usage count includes every process that is using the page or page slot, plus the 
swap cache if the page is included in it. Four stages are shown: 

1. In (a) P is present in the Page Tables of both A and B. 
2. In (b) P has been swapped out from A's address space. 
3. In (c) P has been swapped out from both the address spaces of A and B but is still 

included in the swap cache. 
4. Finally, in (d) P has been released to the Buddy system. 
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Figure 16-4. The role of the swap cache 

 

The swap cache is implemented by the page cache data structures and procedures described in 
Section 14.2 in Chapter 14. Recall that the page cache includes pages associated with regular 
files and that a hash table allows the algorithm to quickly derive the address of a page 
descriptor from the address of an inode object and an offset inside the file. Pages in the swap 
cache are stored as any other page in the page cache, with the following special treatment: 

• The inode field of the page descriptor stores the address of a fictitious inode object 
contained in the swapper_inode variable. 

• The offset field stores the swapped-out page identifier associated with the page. 
• The PG_swap_cache flag in the flags field is set. 

Moreover, when the page is put in the swap cache, both the count field of the page descriptor 
and the page slot usage counters are incremented, since the swap cache makes use of both the 
page frame and the page slot. 

The kernel makes use of several functions to handle the swap cache; they are based mainly on 
those discussed in Section 14.2 in Chapter 14. We'll show later how these relatively low-level 
functions are invoked by higher-level functions to swap pages in and out as needed. 

The functions that handle the swap cache are: 
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in_swap_cache( )  

Checks the PG_swap_cache flag of a page to determine whether it belongs to the swap 
cache; if so, it returns the swapped-out page identifier stored in the offset field. 

lookup_swap_cache( )  

Acts on a swapped-out page identifier passed as its parameter and returns the page 
address or if the page is not present in the cache. It invokes find_ page( ), passing 
as parameters the address of the fictitious swapper_inode inode object and the 
swapped-out page identifier to find the required page. If the page is present in the 
swap cache, lookup_swap_cache( ) checks whether it is locked; if so, the function 
invokes wait_on_page( ) to suspend the current process until the page becomes 
unlocked. 

add_to_swap_cache( )  

Inserts a page into the swap cache. The inode and offset fields of the page descriptor 
are set to the address of the fictitiousswapper_inode inode object and to the swapped-
out page identifier, respectively. Then the function invokes the 
add_page_to_hash_queue( ) and add_page_to_inode_queue( ) functions. The page 
usage counter is also incremented. 

is_page_shared( )  

Returns 1 (true) if a page is shared among several processes, otherwise. While this 
function is not properly specific to the swapping algorithm, it must take account of the 
value of the page usage counter, the presence or absence of the page in the swap 
cache, and the usage counter of the corresponding page slot if any. Moreover, the 
function considers whether the page frame is currently involved in a page I/O 
operation related to swapping, since in this case the page usage counter is incremented 
as a fail-safe mechanism (see Section 15.1.1 in Chapter 15). 

delete_from_swap_cache( )  

Removes a page from the swap cache by clearing the PG_swap_cache flag and by 
invoking remove_inode_page( ); moreover, it invokes swap_free( ) to release the 
corresponding page slot. 

free_page_and_swap_cache( )  

Releases a page by invoking __free_page( ). It also checks whether the page is in the 
swap cache (PG_swap_cache flag set) and owned by just one process 
(is_page_shared( ) returns 0); in this case, it invokes delete_from_swap_cache( ) to 
remove the page from the swap cache and to free the corresponding page slot. 
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16.4 Transferring Swap Pages 

Transferring swap pages wouldn't be so complicated if there weren't so many race conditions 
and other potential hazards to guard against. Here are some of the things that have to be 
checked regularly: 

• There may be too many asynchronous swap operations going on; when this occurs, 
only synchronous I/O operations are started (see Section 16.4.2 later in this chapter). 

• The process that owns a page may terminate while the page is being swapped in or 
out. 

• Another process may be in the middle of swapping in a page that the current one is 
trying to swap out or vice versa. 

We'll follow a bottom-up approach in the following sections. First we describe the 
synchronization mechanisms that avoid data corruption caused by simultaneous I/O 
operations on the same page frame or on the same page slot. Then we illustrate a few 
functions used to perform the data transfer of a swapped page. 

16.4.1 Locking the Page Frame and the Page Slot 

Like any other disk access type, I/O data transfers for swap pages are blocking operations. 
Therefore, the kernel must take care to avoid simultaneous transfers involving the same page 
frame, the same page slot, or both. 

Race conditions can be avoided on the page frame through the mechanisms discussed in 
Chapter 13. Specifically, before starting an I/O operation on the page frame, the kernel 
invokes the wait_on_page( ) function to wait until the PG_locked flag is off. When the 
function returns, the page frame lock has been acquired, and therefore no other kernel control 
path can access the page frame's contents during the I/O operation. 

But the state of the page slot must also be tracked. The PG_locked flag of the page descriptor 
is used once again to ensure exclusive access to the page slot involved in the I/O data transfer. 
Before starting an I/O operation on a swap page, the kernel usually checks that the page frame 
involved is included in the swap cache; if not, it adds the page frame into the swap cache. 
Let's suppose some process tries to swap in some page while the same page is currently being 
transferred. Before doing any work related to the swap-in, the kernel looks in the swap cache 
for a page frame associated with the given swapped-out page identifier. Since the page frame 
is found, the kernel knows that it must not allocate a new page frame, but must simply use the 
cached page frame. Moreover, since the PG_locked flag is set, the kernel suspends the kernel 
control path until the bit becomes 0, so that both the page frame's contents and the page slot in 
the swap area are preserved until the I/O operation terminates. 

In a few specific cases, the PG_locked flag and the swap cache are not sufficient to avoid race 
conditions. Let us suppose, for instance, that the kernel begins a swap-out operation on some 
page; therefore, it increments the page usage counter, it allocates a page slot, and then it starts 
the I/O data transfer. Suppose further that during this operation, the process that owns the 
page dies. The kernel reclaims the process's memory; that is, it releases all page frames and all 
page slots used by the process. Since the page usage counter was incremented before starting 
the I/O operation, the page frame involved in the swap I/O operation is not released to the 
Buddy system; however, the page slot usage counter in the swap area descriptor could become 
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0, thus it could be used for swapping out another page before the previous I/O operation 
completes. If this happens, a kernel control path could start a write operation in the page slot 
while another kernel control path is performing another write operation on the same page slot, 
that is, on the same physical disk portion. This would lead to unpredictable (and unpleasant) 
results. 

In order to avoid this kind of problem, the kernel uses an array of bits, whose address is stored 
into the swap_lockmap field of the swap area descriptor. Each bit in the array is a lock for a 
page slot in the swap area. The bit is set before activating an I/O data transfer on the page slot 
and is cleared when the operation terminates. The scan_swap_map( ) function described in 
Section 16.2.4 does not consider a page slot as "free" if its lock bit is on, even if its usage 
counter in the swap_map array is null. The lock_queue wait queue is used to suspend a 
process until a bit in the swap_lockmap array is cleared. 

16.4.2 The rw_swap_ page( ) Function 

As illustrated in Figure 16-1, the rw_swap_page( ) function is used to swap in or swap out a 
page. It receives the following parameters: 

buffer  

The initial address of the page frame containing the page to be swapped in or swapped 
out. 

entry  

A swapped-out page identifier. This parameter is somewhat redundant since the same 
information can be derived from the descriptor of the buffer page frame. 

rw  

A flag specifying the direction of data transfer: READ for swapping in, WRITE for 
swapping out. 

wait  

A flag specifying whether the kernel control path must block until the I/O operation 
completes. 

The swap-in operation triggered by a page fault is usually synchronous (wait equal to 1), since 
the process should be suspended until the requested page has been transferred from disk. 
Conversely, swap-out operations are usually asynchronous (wait equal to 0), since there is no 
need to suspend the current process until they are completed. However, the kernel defines a 
limit on the number of asynchronous swap operations concurrently being carried on, in order 
to avoid flooding the block device driver's request queue. The limit is stored in the 
swap_cluster field of the pager_daemon variable (see Section 16.7.6 later in this chapter). If 
the limit is reached, rw_swap_page( ) ignores the value of the wait parameter and proceeds as 
if it were equal to 1. 

In order to swap the page, the function performs the following operations: 
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1. Computes the address of the page descriptor corresponding to the page frame. 
2. Gets the swap area index and the page slot index from entry. 
3. Tests and sets the lock bit in the swap_lockmap array corresponding to the page slot. 

If the bit was already set, the page is in the middle of being swapped in or out, so we 
want to wait for that operation to complete. Therefore, executes the functions in the tq 
_disk task queue, thus unplugging any block device driver that is waiting, and sleeps 
on the lock_queue wait queue until the ongoing swap operation terminates. 

4. Sets the PG_swap_unlock_after flag of the page in order to ensure that the flag in 
swap_lockmap will be cleared at the end of the swap operation that the function will 
start in step 10. (The effect of the flag is discussed later in this section.) 

5. If the data transfer is for a swap-in operation (rw set to READ), clears the 
PG_uptodate flag of the page frame. The flag will be set again only if the swap-in 
operation terminates successfully. 

6. Increments the page usage counter, so that the page frame is not released to the Buddy 
system even if the owning process dies (the fail-safe mechanism discussed in the 
previous section). Also sets the PG_free_after flag, thus ensuring that the usage 
counter of the page descriptor is decremented when the page I/O operation terminates 
(see Section 13.6 in Chapter 13). This flag represents a belt-and-suspenders kind of 
caution because it might be possible to invoke the brw_page( ) function without first 
incrementing the usage counter. Actually, the kernel never does this. 

7. If the swap area is a disk partition, locates the block associated with the page slot 
(swap partitions have 4096-byte blocks). Otherwise, if the swap area is a regular file, 
invokes the bmap method of the corresponding inode object (or equivalently the smap 
method for sector-based filesystems like MS-DOS) to derive the logical numbers of 
the blocks associated with the page slot. 

8. If nr_async_pages is greater than pager_daemon.swap_cluster, forces the wait 
parameter to 1 (too many asynchronous swap operations are being carried on). 

9. If wait is null, increments nr_async_pages. Sets the PG_decr_after flag of the page in 
order to ensure that the variable will be decremented again when the swap operation to 
be started on the next step terminates. (Like PG_swap_unlock_after, the 
PG_decr_after flag will be discussed shortly.) 

10. Invokes the brw_page( ) function to start the actual I/O operation. As described in 
Section 13.6.1 in Chapter 13, this function returns before the data transfer is 
completed. 

11. If wait is null, returns without waiting for the completion of the data transfer. 
12. Otherwise (wait equal to 1), invokes wait_on_page( ) to suspend the current process 

until the page frame becomes unlocked, that is, until the I/O data transfer terminates. 

Notice that the rw_swap_page( ) function relies on the brw_page( ) function to perform the 
data transfer. As described in Section 13.6.2 in Chapter 13, whenever the block device driver 
terminates the data transfer of a block in the page slot, the b_end_io method taken from the 
corresponding asynchronous buffer head is invoked. This method is implemented by the 
end_buffer_io_async( ) function, which in turn invokes after_unlock_page( ) if all blocks in 
the page have been transferred. The latter function performs the following operations: 

1. If the PG_decr_after flag of the page is on, clears it and decrements the 
nr_async_pages variable. As we've seen, this variable helps to put an upper limit on 
the number of current asynchronous page swaps. 

2. If the PG_swap_unlock_after flag of the page is on, clears it and invokes 
swap_after_unlock_page( ). This function clears the lock bit in the swap_lockmap 
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array associated with the page slot and wakes up the processes sleeping in the 
lock_queue wait queue. Thus, processes waiting for the end of the I/O operation on the 
page slot can start again. 

3. If the PG_free_after flag of the page is on, clears it and invokes _ _free_page( ) to 
release the page frame, thus compensating for the increment of the page usage counter 
performed by rw_swap_page( ) as a fail-safe mechanism. 

16.4.3 The read_swap_cache_async( ) Function 

As shown in Figure 16-1, the read_swap_cache_async( ) function is invoked to swap in a 
page either from the swap cache or from disk. The function receives the following parameters: 

entry  

A swapped-out page identifier 

wait  

A flag specifying whether the kernel is allowed to suspend the current process until 
the swap's I/O operation completes 

Despite the function's name, the wait parameter determines whether the I/O swap operation 
must be synchronous or asynchronous. The read_swap_cache macro is often used to invoke 
read_swap_cache_async( ) passing the value 1 to the wait parameter. 

The function performs the following operations: 

1. Invokes swap_duplicate( ) on entry to check whether the page slot is valid and to 
increment the page slot usage counter. (The increment is a fail-safe mechanism 
applied to the page slot during the swap cache lookup, to avoid problems in case the 
process that caused the page fault dies before terminating the swap-in.) 

2. Invokes lookup_swap_cache( ) to search for the page in the swap cache. If the page is 
found, invokes swap_free( ) on entry to decrement the page slot usage counter and 
ends by returning the page's address. 

3. The page is not included in the swap cache. Invokes __get_free_page( ) to allocate a 
new page frame. Then invokes lookup_swap_cache( ) again, because the process may 
have been suspended while waiting for the new page frame, and some other kernel 
control path could have created the page in the interim. As in the previous step, if the 
requested page is found, decreases the page slot usage counter, releases the page frame 
just allocated, and returns the address of the requested page. 

4. Invokes add_to_swap_cache( ) to initialize the inode and offset fields of the descriptor 
of the new page frame and to insert it into the swap cache. 

5. Sets the PG_locked flag of the page frame. Since the page frame is new, no other 
kernel control path could access it, therefore no check on the previous flag value is 
necessary. 

6. Invokes rw_swap_page( ) to read the page's contents from the swap area, passing to 
that function the READ parameter, the swapped-out page identifier, the page frame 
address, and the wait parameter. As a result, the required page is copied in the page 
frame. 

7. Returns the page's address. 
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16.4.4 The rw_swap_ page_nocache( ) Function 

In a few cases, the kernel wants to read a page from a swap area without putting it in the swap 
cache. This happens, for instance, when servicing the swapon( ) system call: the kernel reads 
the first page of a swap area, which contains the swap_header union, then immediately 
discards the page frame. Swapped-out pages of IPC shared memory regions are also never 
included in the swap cache (see Section 18.3.5 in Chapter 18). 

The rw_swap_page_nocache( ) function receives as parameters the type of I/O operation 
(READ or WRITE), a swapped-out page identifier, and the address of a page frame. It 
performs the following operations: 

1. Invokes wait_on_page( ) and then sets the PG_locked flag of the page frame. 
2. Initializes the inode field of the page descriptor with the address of the swapper_inode 

inode object, sets the offset field to the swapped-out page identifier, and sets the 
PG_swap_cache flag. Notice, however, that the function does not insert the page 
frame in the swap cache data structures: the PG_swap_cache flag and the inode and 
offset fields of the page descriptor are initialized just to satisfy the consistency checks 
of the rw_swap_page( ) function. 

3. Increments the page usage counter (fail-safe mechanism). 
4. Invokes rw_swap_page( ) to start the I/O swap operation. 
5. Decrements the page usage counter, clears the PG_swap_cache flag, and sets the inode 

field of the page descriptor to 0. 

16.5 Page Swap-Out 

Section 16.7 explains when pages are swapped out. As we indicated at the beginning of the 
chapter, swapping out pages is a last resort and appears as part of a general strategy to free 
memory that uses other tactics as well. In this section, we show how the kernel performs 
swap-out. This is achieved by the swap_out( ) function, which acts on the following 
parameters. 

priority  

An integer value ranging from to 6 that specifies how much time the kernel should 
spend trying to locate a page to be swapped; lower values correspond to longer search 
times. We shall describe how this parameter is set in Section 16.7.5 later in this 
chapter. 

gfp_mask  

If the function has been invoked as a consequence of a memory allocation request, this 
parameter is a copy of the gfp_mask parameter passed to the allocator function (see 
Section 6.1.1 in Chapter 6. The parameter tells the kernel how to treat the page, 
notably how urgent the request is and whether the kernel control path can be 
suspended. 

The swap_out( ) function scans existing processes and tries to swap out the pages referenced 
in each process's page tables. It terminates as soon as one of the following conditions occurs: 
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• The function succeeds in swapping out a page. 
• The function performs some blocking operation. It doesn't bother resuming activity 

because the process being examined could have been destroyed while the current 
process was sleeping, and thus no further page scanning would be needed. 

• The function failed to swap out a page after scanning a predefined number of 
processes. This is because the kernel does not want to spend too much time in swap-
out activities. Specifically, each invocation of swap_out( ) considers at most 
nr_tasks/(priority+1) processes. 

How can the kernel select the processes to be penalized? In each invocation, the swap_out( ) 
function scans the process list and finds the process having the largest value for the swap_cnt 
field of the process descriptor. If all processes have null swap_cnt fields, the function scans 
the process list again and sets each swap_cnt field to the number of page frames assigned to 
the corresponding process (the number can be found in the mm->rss field of the process 
descriptor). In this way, processes with many page frames are generally more penalized (in 
the long run) than processes owning fewer page frames. 

After having selected a process, swap_out( ) invokes the swap_out_process( ) function, 
passing it the process descriptor pointer and the gfp_mask parameter (see Figure 16-1). If the 
latter function returns the value 1, swap_out( ) terminates its execution, since either a page 
frame has been swapped out or the current process has been suspended. Otherwise, swap_out( 
) tries to select another process, until it reaches the maximum number of processes to be 
examined. 

The swap_out_process( ) scans all the memory regions of a process and invokes the 
swap_out_vma( ) function on each one. The address of the first memory region scanned by 
swap_out_process( ) is stored in the swap_address field of the process descriptor: since this 
field identifies the memory region last scanned in the previous invocation of the function, all 
memory regions of the process are penalized equally. (This appears to be the best strategy 
since the kernel has no information on how often each memory region is accessed.) 
swap_out_process( ) continues to invoke swap_out_vma( ) until that function returns the 
value 1 or the end of the memory region list is reached. In the latter case, the swap_cnt field in 
the process descriptor is set to 0, so that the process will not be considered again by 
swap_out( ) before it examines all the other processes in the system that remain to be 
considered. 

The swap_out_vma( ) function checks that the memory region is not locked, that is, that its 
VM_LOCKED flag is equal to 0. It then starts a sequence in which it considers all entries in 
the process's Page Global Directory that refer to linear addresses in the memory region. For 
each such entry, the function invokes the swap_out_pgd( ) function, which in turn considers 
all entries in a Page Middle Directory corresponding to address intervals in the memory 
region. For each such entry, swap_out_pgd( ) invokes the swap_out_pmd( ) function, which 
considers all entries in a Page Table referencing pages in the memory region. For each such 
page, swap_out_pmd( ) invokes the try_to_swap_out( ) function, which finally determines 
whether the page can be swapped out. If try_to_swap_out( ) returns the value 1 (meaning the 
page frame was freed or the current process is suspended), the chain of nested invocations of 
the swap_out_vma( ), swap_out_pgd( ), swap_out_pmd( ), and try_to_swap_out( ) functions 
terminates. 
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16.5.1 The try_to_swap_out( ) Function 

The try_to_swap_out( ) function attempts to free a given page frame, either discarding or 
swapping out its contents. The parameters of the function are: 

tsk  

Process descriptor pointer 

vma  

Memory region descriptor pointer 

address  

Initial linear address of the page 

page_table  

Address of the Page Table entry of tsk that maps address 

gfp_mask  

The gfp_mask parameter of the swap_out( ) function, which is passed along the chain 
of function invocations described at the end of the previous section 

The function returns the value 1 either if it has succeeded in swapping out the page or if it has 
executed a blocking I/O operation. In this second case, continuing to swap out would be risky 
since the function might act on a process that no longer actually exists. The function returns if 
it decided not to swap. 

try_to_swap_out( ) must recognize many different situations demanding different responses, 
but the responses all share many of the same basic operations. In particular, the function 
performs the following steps: 

1. Considers the Page Table entry at address page_table. If the Present bit is null, no page 
frame is allocated, so there is nothing to swap and the function returns 0. 

2. If the Accessed flag of the Page Table entry is set, the page frame is young. In this 
case, clears the Accessed flag, sets the PG_referenced flag of the page descriptor, 
invokes flush_tlb_page( ) to invalidate the TLB entry associated with the page, and 
returns 0. Only pages whose Accessed flag is null can be swapped out. Since this bit is 
automatically set by the CPU's paging unit at every page access, the page can be 
swapped out only if it was not accessed after the previous invocation of 
try_to_swap_out( ) on it. As mentioned previously, the Accessed flag offers a limited 
degree of hardware support that allows Linux to make use of a primitive LRU 
replacement algorithm. 

3. If the PG_reserved or PG_locked flag of the page descriptor is set, returns (the page 
cannot be swapped out). 

4. If the PG_DMA flag is equal to and the gfp_mask parameter specifies that the freed 
page frame should be used for an ISA DMA buffer, returns 0. 



Understanding the Linux Kernel 

440 

5. If the page belongs to the swap cache, it is shared with some other process and it has 
already been stored in a swap area. In this case, the page must be marked as swapped 
out but no memory transfer is performed. Does the following: 

a. Gets the swapped-out page's identifier from the offset field of the page 
descriptor 

b. Invokes swap_duplicate( ) to increment the page slot usage counter 
c. Writes the swapped-out page identifier into the Page Table entry 
d. Decrements the mm->rss counter of the process 
e. Invokes flush_tlb_page( ) to invalidate the TLB entry associated with the page 
f. Invokes __free_page( ) to decrement the page usage counter 
g. Returns 0 (no page has been swapped out) 

6. If the Dirty bit of the Page Table entry is null, the page is "clean"; there is no need to 
write it back to disk, since the kernel is always able to restore its contents with the 
demand paging mechanism. Therefore, performs the following substeps to remove the 
page from the process's address space: 

a. Sets the Page Table entry to 0 
b. Decrements the mm->rss counter of the process 
c. Invokes flush_tlb_page( ) to invalidate the TLB entry associated with the page 
d. Invoke _ _free_page( ) to decrement the page usage counter 
e. Returns 0 (no page has been swapped out) 

7. The page is dirty and it can be swapped out; however, checks whether the kernel is 
allowed to perform I/O operations (that is, if the _ _GFP_IO flag in the gfp_mask 
parameter is set); if not, returns 0. The __GFP_IO flag is cleared when the kernel 
control path cannot be suspended (for instance, because it is executing an interrupt 
handler). 

8. Checks whether the vma memory region that contains the page has its own swapout 
method. If so, performs the following substeps: 

a. Sets the Page Table entry to 0 
b. Decrements the mm->rss counter of the process 
c. Invokes flush_tlb_page( ) to invalidate the TLB entry associated with the page 
d. Invokes the swapout method; if this function returns an error code, sends a 

SIGBUS signal to the process tsk 
e. Invokes _ _free_page( ) to decrement the page usage counter 
f. Returns 1 (the swapout method invoked in step 8d could block, so the 

swap_out( ) function must terminate) 
9. The swapout method of the memory region is not defined, thus the page must be 

explicitly swapped out. (This is the most frequent case.) Performs the following 
substeps: 

a. Invokes get_swap_page( ) to allocate a new page slot. 
b. Decrements the mm->rss field of the process and increments its nswap field (a 

counter of swapped-out pages). 
c. Writes the swapped-out page identifier into the Page Table entry. 
d. Invokes flush_tlb_page( ) to invalidate the TLB entry associated with the page. 
e. Invokes swap_duplicate( ) to increase the page slot usage counter; it will now 

have the value 2, one increment for the process and the other for the swap 
cache. 

f. Invokes add_to_swap_cache( ) to add the page into the swap cache. 
g. Preparatory to the swapping operation to be started in the next step, sets the 

PG_locked flag. (We don't have to test the flag, because we did so already in 
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step 3. No other kernel path could have set the flag since then, because the 
function didn't perform any blocking operation.) 

h. Invokes rw_swap_page( ) to start an asynchronous swapping operation to write 
the page into the swap area. 

i. Invokes __free_page( ) to decrement the page usage counter. 
j. Returns 1 (a page was swapped out). 

16.5.2 Swapping Out Pages from Shared Memory Mappings 

As we saw in Section 15.2 in Chapter 15, pages in a shared memory mapping correspond to 
portions of regular files on disk. For that reason, the kernel does not store them in swap areas 
but rather updates the corresponding files. 

Shared memory mapping regions define their own swapout method; as shown in Table 15-2 
in Chapter 15, this method is implemented by the filemap_swapout( ) function, which just 
invokes the filemap_write_page( ) function to force the page to be written on disk. 

In this case, however, the filemap_write_page( ) function does not explicitly invoke the 
do_write_page( ) function as described in Section 15.2.6 in Chapter 15. The reason is that 
running the function could induce the following nasty race condition: suppose the kernel gets 
a critical filesystem lock and then starts swapping out some pages as a consequence of a 
memory allocation request. The do_write_page( ) function might try to acquire the same lock, 
thus inducing a deadlock. 

In order to avoid this problem, the only part of the kernel allowed to swap out pages 
belonging to shared memory mappings is a kernel thread named kpiod , which services all I/O 
requests in a special input queue. Since kpiod is a separate kernel thread from the process 
executing filemap_write_page( ), no deadlock may occur. Even if kpiod is suspended while 
trying to get the filesystem lock, the process executing filemap_write_page( ) can proceed and 
eventually release that lock. 

The kpiod kernel thread is woken up whenever a new request is added to its input queue; each 
request refers to a page of a shared memory region to be written to disk. Since the kernel may 
attempt to swap out several pages at once (see Section 16.7 later in this chapter), several 
requests may accumulate in the kpiod input queue. The kernel thread continues to process 
requests until the queue becomes empty. 

Each element in the queue is a descriptor of type pio_request, which includes the fields 
illustrated in Table 16-2. The pio_first and pio_last variables point to the first and last 
elements in the queue, respectively. The pio_request descriptors are handled by the 
pio_request_cache slab allocator cache. 

Table 16-2. Fields of a pio_request Descriptor 
Type Field Description 
struct pio_request * next Next element in queue 
struct file * file File object pointer 
unsigned long offset File offset 
unsigned long page Page initial address 
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When invoked by filemap_swapout( ), the filemap_write_page( ) function invokes 
make_pio_request( ) to add a request to the kpiod input queue, instead of the usual 
do_write_page( ) that does its own data transfer. The make_pio_request( ) function performs 
the following operations: 

1. Increments the usage counter of the page to be written. 
2. Allocates a new pio_request descriptor. If no memory is available, tries to prune some 

disk caches without doing any actual I/O operation. The function does this by 
invoking try_to_free_pages( ) with the __GFP_IO flag cleared in its parameter (see 
Section 16.7.4 later in this chapter). make_pio_request( ) then tries again to allocate 
the request pio_request descriptor. 

3. Initializes the fields of the pio_request descriptor. 
4. Inserts the pio_request descriptor in the request queue. 
5. Wakes up the processes (actually, the kpiod kernel thread) in the pio_wait wait queue. 

Thus, the make_pio_request( ) function does not trigger any I/O operation; instead, it wakes 
up the kpiod kernel thread. The thread executes the kpiod( ) function, which considers all 
requests in the input queue and invokes the do_write_page( ) function on each of them to 
write the corresponding page to disk. The page counter is then decremented and the 
pio_request descriptor is released to the slab allocator. When all requests in the queue have 
been processed, kpiod( ) inserts itself in the pio_wait wait queue and puts itself to sleep. 

kpiod( ) must guard against another potential error. In general, when a kernel thread requests 
some free page frames and free memory is low, it starts reclaiming pages. In order to do this, 
it may need to request a few additional page frames. However, during this new request the 
thread should never try to reclaim pages, or infinite recursion might occur. For this reason, a 
PF_MEMALLOC flag is defined in each process. It essentially forbids recursive invocations 
of try_to_free_pages( ), so the kernel always sets the flag before invoking that function and 
clears it when the function returns. In particular, the value of this flag is checked by 
__get_free_pages( ); if it is set, the try_to_free_pages( ) function is never invoked. The kpiod 
kernel thread always runs with PF_MEMALLOC set. 

16.6 Page Swap-In 

Swap-in must take place when a process attempts to address a page within its address space 
that has been swapped out to disk. The "Page fault" exception handler triggers a swap-in 
operation when the following conditions occur (see Section 7.4.2, Chapter 7): 

• The page including the address that caused the exception is a valid one, that is, it 
belongs to a memory region of the current process. 

• The page is not present in memory, that is, the Present flag in the Page Table entry is 
cleared. 

• The Page Table entry associated with the page is not null, which means it contains a 
swapped-out page identifier. 

As described in Section 7.4.3 in Chapter 7, the handle_pte_fault( ) function, invoked by the 
do_page_fault( ) exception handler, checks whether the Page Table entry is non-null. If so, it 
invokes do_swap_page( ), which acts on the following parameters: 
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tsk  

Process descriptor address of the process that caused the "Page fault" exception 

address  

Linear address that caused the exception 

vma  

Memory region descriptor address of the region that includes address 

page_table  

Address of the Page Table entry that maps address 

entry  

Identifier of the swapped-out page 

write_access  

Flag denoting whether the attempted access was a read or a write 

Linux allows each memory region to include a customized function for performing swap-in. 
A region that needs such a customized function stores a pointer to it in the swapin field of its 
descriptor. Until recently, IPC shared memory regions had a special swapin method. But from 
Linux 2.2 on, no memory regions have a customized method. If such a method were provided, 
do_swap_page( ) would perform the following operations: 

1. Invoke the swapin method. It returns a Page Table entry value, which contains the 
address of the page frame to be assigned to the process. 

2. Write the value returned from the swapin method into the Page Table entry that 
page_table points to. 

3. If the page frame usage counter is greater than 1 and the memory region is shared, 
clear the Read/Write flag of the Page Table entry. 

4. Increment the mm->rss and the tsk->maj_flt fields of the process. 
5. Release the kernel_flag global kernel lock, which had been obtained when entering the 

exception handler. 
6. Return the value 1. 

Conversely, when the swapin method is not defined, do_swap_page( ) invokes the general 
swap_in( ) function. It acts on the same parameters as do_swap_page( ) and performs the 
following steps: 

1. Invokes lookup_swap_cache( ) to check whether the swap cache already contains the 
page specified by entry. If so, goes to step 4. 

2. Invokes the swapin_readahead( ) function to read from the swap area a group of 2n 
pages, including the requested one. The value n is stored into the page_cluster 
variable, which is usually set to 4, but it could be lower if the system has less than 32 
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MB of memory. Each page is read by invoking the read_swap_cache_async( ) 
function, specifying a null wait parameter (asynchronous swap operation). 

3. Invokes read_swap_cache( ) on entry, just in case the swapin_readahead( ) function 
failed to read the requested page (for instance, because too many asynchronous swap 
operations were already being carried out by the system). Recall that 
read_swap_cache( ) activates a synchronous swap operation. As a consequence, the 
current process will be suspended until the page has been read from disk. 

4. Checks whether the entry to which page_table points differs from entry. If so, another 
kernel control path has already swapped in the requested page. Therefore, invokes 
free_page_and_swap_cache( ) to release the page obtained previously and returns. 

5. Invokes swap_free( ) to decrement the usage counter of the page slot corresponding to 
entry. 

6. Increments the mm->rss and min_flt fields of the process. 
7. If the page is shared by several processes or the process is attempting only a read on it, 

the page stays in the swap cache. However, the Page Table of the process must be 
updated so the process can find the page. Therefore, writes the physical address of the 
requested page and the protection bits found in the vm_page_prot field of the memory 
region into the Page Table entry to which page_table points. 

8. Otherwise, if the page is not shared and the process attempted to write it, there is no 
reason to keep it in the swap cache, since it is private to the process. Therefore, 
invokes delete_from_swap_cache( ) and writes the same information described by the 
previous step into the Page Table entry. However, sets the Read/Write and Dirty bits 
to 1. 

16.7 Freeing Page Frames 

Page frames can be freed in several possible ways: 

• By reclaiming an unused page frame within a cache. Depending on the type of cache, 
the following functions are used: 

shrink_mmap( )  

Used for the page cache, swap cache, and buffer cache 

shrink_dcache_memory( )  

Used for the dentry cache 

kmem_cache_reap( )  

Used for the slab cache (see Section 6.2.7 in Chapter 6) 

• By swapping out a page belonging to an anonymous memory region of a process or a 
modified page belonging to a private memory mapping. 

• By swapping out a page belonging to an IPC shared memory region. 

As we shall see shortly, the choice among these possibilities is done in a rather empirical way, 
with very little support from theory. The situation is somewhat similar to evaluating the 
factors that determine the dynamic priority of a process. The main objective is to get a tuning 
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of the parameters that achieve good system performance, without asking too many questions 
about why it works. 

16.7.1 Monitoring the Free Memory 

Besides the nr_free_pages variable, which expresses the current number of free page frames, 
the kernel relies on two values, a kind of low and high watermark. These values are stored in 
a structure called freepages (it also has a low field that is no longer used in Linux 2.2): 

min  

Minimum number of page frames reserved to the kernel to perform crucial operations 
(e.g., for swapping pages to disk). (free_area_init( ) initializes this field to 2n, where n 
denotes the size of primary memory expressed in megabytes. The resulting value must 
lie in the range 10 to 256. 

high  

The threshold of nr_free_pages that indicates to the kernel that enough free memory is 
available. In this case, no swapping is done; free_area_init( ) initializes this threshold 
value to 3 x freepages.min. 

The contents of min and high fields can be modified by writing into the file 
/proc/sys/vm/freepages. 

16.7.2 Reclaiming Pages from the Page, Swap, and Buffer Caches 

In order to reclaim page frames from the disk caches, the kernel makes use of the 
shrink_mmap( ) function. It returns 1 if it succeeds in freeing a page frame belonging to the 
page cache, the swap cache, or the buffer cache; otherwise, it returns 0. The function acts on 
two parameters: 

priority  

Fraction of total number of page frames to be checked before the function gives up 
and terminates with a return value of 0. The parameter's value ranges from (very 
urgent: shrink everything) to 6 (nonurgent: try to shrink a bit). 

gfp_mask  

Flags specifying the kind of page frame to be freed. 

The function scans the mem_map array and looks for a page that can be freed. To fit the bill, 
the page must belong to one of the above caches, must be unlocked, must not be used by any 
process, and must have the PG_DMA flag set if the page frame is requested for ISA DMA. 
Moreover, it must have not been recently accessed. 

A problem of fairness exists, similar to the one encountered by swap_out_process( ) when 
choosing the first memory region of a process to be checked. When shrink_mmap( ) is 
invoked, it should not always start scanning the mem_map array from the beginning, or pages 
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with lower physical addresses would have much less chance of being in a disk cache than 
pages with higher physical addresses. The clock[3] static local variable plays the same role as 
the swap_address field of a process descriptor: it points to the next page frame to be checked 
in the mem_map array. 

[3] The name of this local variable derives from the idea of the hand of a clock moving circularly. The function has nothing to do with system timers, of 
course. 

The function scans the page descriptors of mem_map by performing the following steps: 

1. Initializes the local variable count to the number n/2p of unlocked, nonshared page 
frames that should be checked during this activation of the function. Here, n is the 
number of page frames in the system as found in the num_physpages variable, and p is 
equal to priority. 

2. If count is greater than 0, increments clock and performs the following substeps on the 
page descriptor in mem_map[clock]: 

a. If the page is locked, if its PG_DMA flag is cleared while the gfp_mask 
parameter specifies an ISA DMA page, or if its usage counter is not equal to 1, 
skips the page and restarts step 2 on the next page. 

b. The page is unlocked and nonshared, so decrements count. 
c. If the PG_swap_cache flag is set, the page belongs to the swap cache. It can be 

reclaimed if either of the following conditions holds: 
 Its PG_referenced flag is off, which means that the page has not been 

accessed since the last invocation of shrink_mmap( ). (This flag acts 
like the Accessed flag shown earlier as a simple way to hold back 
swapping.) 

 The page slot usage counter is 1 (no process is referencing it). 

If the page can be reclaimed, invokes delete_from_swap_cache( ), clears the 
PG_referenced flag, and returns 1 (a page frame has been freed). 

d. If the PG_referenced flag of the page is set, the page has been recently 
accessed, thus it cannot be reclaimed: clears the flag and restarts step 2 on the 
next page. 

e. If the page belongs to the buffer cache (that is, the buffers field of the page 
descriptor is not null) and the buffer cache size is greater than the threshold 
specified by the buffer_mem.min_percent system parameter, invokes 
try_to_free_buffers( ) to check if all buffers in the page are unused. In 
particular, this function performs the following operations: 

a. Considers all buffers in the page to determine whether they can be 
released. They must all be free (that is, their usage counters must be 
null), unlocked, not dirty, and not protected. If one of them fails these 
tests, very little can be done. Invokes wakeup_bdflush( ) (see Section 
14.1.5 in Chapter 14) and returns to signal that the page has not been 
freed. 

b. All buffers are unused. Invokes remove_from_queues( ) and 
put_unused_buffer_head( ) repeatedly to release the corresponding 
buffer heads. 

c. Decrements nr_buffers by the number of buffers in the page and 
decrements buffermem by 4 KB. 
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d. Wakes up the processes suspended for lack of buffer heads and sleeping 
in the buffer_wait wait queue (see Section 14.1.4 in Chapter 14). 

e. Invokes __free_page( ) to release the page frame to the Buddy system, 
and returns 1 to signal that the page has been freed. 

If try_to_free_buffers( ) returns the value 0, the page cannot be freed: goes to 
step 2. Otherwise, returns the value 1. 

f. If the page belongs to the page cache (that is, the inode field of the page 
descriptor is not null) and the page cache size is greater than the threshold 
specified by the page_cache.min_percent system parameter, invokes 
remove_inode_page( ) (see Section 14.2.2 in Chapter 14) to remove the page 
from the page cache and releases the page frame to the Buddy system, then 
returns the value 1. 

3. If this point is reached, no page frame has been freed: returns the value 0. 

16.7.3 Reclaiming Pages from the Dentry and Inode Caches 

Dentry objects themselves aren't big, but freeing one of them has a cascading effect that can 
ultimately free a lot of memory by releasing several data structures. The 
shrink_dcache_memory( ) function is invoked to remove dentry objects from the dentry 
cache. Clearly, only dentry objects not referenced by any process (defined as unused dentries 
in the section Section 12.2.5 in Chapter 12) can be removed. 

Since the dentry cache objects are allocated through the slab allocator, the 
shrink_dcache_memory( ) function may force some slabs to become free, thus some page 
frames may be consequently reclaimed by kmem_cache_reap( ) (see Section 6.2.7 in  
Chapter 6). Moreover, the dentry cache acts as a controller of the inode cache. Therefore, 
when a dentry object is released, the buffer storing the corresponding inode becomes unused, 
and the shrink_mmap( ) function may release the corresponding buffer page. 

The shrink_dcache_memory( ) function receives the same parameters as the shrink_mmap( ) 
function. It checks whether the kernel is allowed to perform I/O operations (if the __GFP_IO 
flag is set in the gfp_mask parameter) and, if so, invokes prune_dcache( ). 

Two parameters are passed to the latter function: the number of dentry objects d_nr to be 
released and the number of inode objects i_nr to be released (because removing a dentry may 
induce an inode to be released as well). prune_dcache( ) stops shrinking the dentry cache as 
soon as one of the two targets has been reached. The value of the first parameter d_nr depends 
on priority. If it is 0, shrink_dcache_memory( ) passes the value to prune_dcache( ), which 
means that all unused dentry objects will be removed. Otherwise, d_nr is computed to be 
n/priority, where n is the total number of unused dentry objects. The shrink_dcache_memory( 
) function passes -1 as a second parameter to prune_dcache( ), which means that no limit is 
enforced on the number of released inodes. 

The prune_dcache( ) function scans the list of unused dentries and invokes prune_one_dentry( 
) on each object to be released. The latter function, in turn, performs the following operations. 

1. Removes the dentry object from the dentry hash table and from the list of dentry 
objects in its parent's directory. 
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2. Invokes dentry_iput( ), which releases the dentry's inode using the d_iput dentry 
method, if defined, or the iput( ) function. 

3. Invokes dput( ) on the parent dentry of dentry. As a result, its usage counter is 
decremented. 

4. Returns the dentry object to the slab allocator (see Section 6.2.12 in Chapter 6). 

16.7.4 The try_to_ free_ pages( ) Function 

The try_to_free_pages( ) function is invoked: 

• By the __get_free_pages( ) function (see Section 6.1.1 in Chapter 6) when the number 
of free page frames falls below the threshold specified in freepages.min and the 
PF_MEMALLOC flag of the current process is cleared 

• By the make_pio_request( ) function (see Section 16.5.2 earlier in this chapter) when 
it fails to allocate a new pio_request descriptor 

The function receives as its parameter a set of flags gfp_mask, whose meaning is exactly the 
same as the corresponding parameter of the __get_free_pages( ) function. In particular, the 
__GFP_IO flag is set if the kernel is allowed to activate I/O data transfers, while the 
__GFP_WAIT flag is set if the kernel is allowed to discard the contents of page frames in 
order to free memory. 

The function performs only two operations: 

• Wakes up the kswapd kernel thread (see Section 16.7.6 later in this chapter) 
• If the __GFP_WAIT flag in gfp_mask is set, invokes do_try_to_free_pages( ), passing 

to it the gfp_mask parameter 

16.7.5 The do_try_to_ free_ pages( ) Function 

The do_try_to_free_pages( ) function is invoked by try_to_free_pages( ) and by the kswapd 
kernel thread. It receives the usual gfp_mask parameter and tries to free at least 
SWAP_CLUSTER_MAX page frames (usually 32). A few auxiliary functions are invoked to 
do the job. Some of them return after releasing a single page frame, so they must be invoked 
repeatedly. 

The algorithm implemented by do_try_to_free_pages( ) is quite reasonable, since the page 
frames are released according to their usage. For instance, the algorithm favors the 
preservation of page frames used by the dentry cache over the preservation of unused page 
frames in the slab allocator caches. Moreover, do_try_to_free_pages( ) tries to free memory 
by invoking the functions that do the reclaiming with decreasing priority values. In general, a 
lower value for priority means that more iterations will be performed by the functions before 
quitting. do_try_to_free_pages( ) gives up when all functions have been invoked with a 
priority. 

In particular, the function executes the following actions: 

1. Acquires the global kernel lock by invoking lock_kernel( ). 
2. Invokes kmem_cache_reap(gfp_mask) to reclaim page frames from the slab allocator 

caches. 
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3. Sets a priority local variable to 6 (the lowest priority). 
4. Tries to free pages over a series of more and more thorough searches, driven by 

increasing the priority on each iteration. To be specific, while priority is greater than 
or equal to and the number of released page frames is lower than 
SWAP_CLUSTER_MAX, performs the following substeps: 

a. Invokes shrink_mmap(priority, gfp_mask) repeatedly until it fails in releasing 
a page frame belonging to the page cache, to the swap cache, or to the buffer 
cache or until the number of released page frames reaches 
SWAP_CLUSTER_MAX 

b. If the kernel is allowed to write pages to disk (if the __GFP_IO flag in 
gfp_mask is set), invokes shm_swap(priority, gfp_mask) repeatedly until it 
fails in releasing a page frame belonging to an IPC shared memory region or 
until the number of released page frames reaches SWAP_CLUSTER_MAX 

c. Invokes swap_out(priority, gfp_mask) repeatedly until it fails in releasing to 
the Buddy system a page frame belonging to some process or until the number 
of released page frames reaches SWAP_CLUSTER_MAX 

d. Invokes shrink_dcache_memory(priority, gfp_mask) to release free elements 
in the dentry cache 

e. Decrements priority and goes to the start of the loop 
5. Invokes unlock_kernel( ). 
6. Returns 1 if at least SWAP_CLUSTER_MAX page frames have been released, 

otherwise. 

16.7.6 The kswapd Kernel Thread 

The kswapd kernel thread is another kernel mechanism that activates the reclamation of 
memory. Why is it necessary? Is it not sufficient to invoke try_to_free_pages( ) when free 
memory becomes scarce and another memory allocation request is issued? 

Unfortunately, this is not the case. Some memory allocation requests are performed by 
interrupt and exception handlers, which cannot block the current process waiting for some 
page frame to be freed; moreover, some memory allocation requests are done by kernel 
control paths that have already acquired exclusive access to critical resources and that, 
therefore, cannot activate I/O data transfers. In the infrequent case in which all memory 
allocation requests are done by such sorts of kernel control paths, the kernel would be unable 
to free memory forever. 

In order to avoid this situation, the kswapd kernel thread is activated once every 10 seconds. 
The thread executes the kswapd( ) function, which at each activation performs the following 
operations: 

1. If nr_free_pages is greater than the freepages.high threshold, no memory reclaiming is 
necessary: goes to step 5. 

2. Invokes do_try_to_free_pages( ) with gfp_mask set to __GFP_IO. In order to avoid 
recursive invocations of the function, the kernel thread executes with the 
PF_MEMALLOC flag set (see Section 16.5.2 earlier in this chapter). If the function 
does not succeed in freeing SWAP_CLUSTER_MAX page frames, goes to step 5. 

3. If the need_resched field of current is equal to 0, goes to step 1 (no higher priority 
process is runnable, so continues to reclaim memory). 
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4. The need_resched field is equal to 1: yields the CPU to some other process by 
invoking schedule( ). The kswapd kernel thread remains runnable. When the thread 
resumes execution, goes to step 1. 

5. Sets the state of current to TASK_INTERRUPTIBLE. 
6. Invokes schedule_timeout( ), passing as its parameter the value 10*HZ, thus forcing 

the process to suspend itself and resume execution 10 seconds later. Then goes to step 
1. 

16.8 Anticipating Linux 2.4 

Swapping must now take into consideration the existence of RAM zones; much of the 
swapping code has thus been rewritten in a simpler and cleaner way, mainly thanks to the new 
page cache implementation. The swap cache is still implemented on top of the page cache, but 
the swapper_inode fictitious inode object has been replaced by a file address space object. 
The kpiod kernel thread has been removed, because it is now safe to directly swap out pages 
of shared memory mappings. Moreover, the arrays of locks associated with each swap area 
are no longer used. 

The most interesting change concerns the policy used to select the process from which 
stealing pages when reclaiming memory: it is the one that performed fewer page faults (recall 
that in Linux 2.2 it is the one that owns the largest number of page frames). 
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Chapter 17. The Ext2 Filesystem 
In this chapter, we finish our extensive discussion of I/O and filesystems by taking a look at 
the details the kernel has to take care of when interacting with a particular filesystem. Since 
the Second Extended Filesystem (Ext2) is native to Linux and is used on virtually every Linux 
system, it made a natural choice for this discussion. Furthermore, Ext2 illustrates a lot of good 
practices in its support for modern filesystem features with fast performance. To be sure, 
other filesystems will embody new and interesting requirements, because they are designed 
for other operating systems, but we cannot examine the oddities of various filesystems and 
platforms in this book. 

After introducing Ext2 in Section 17.1, we describe the data structures needed, just as in other 
chapters. Since we are looking at a particular way to store data on a disk, we have to consider 
two versions of data structures: Section 17.2 shows the data structures stored by Ext2 on the 
disk, while Section 17.3 shows how they are duplicated in memory. 

Then we get to the operations performed on the filesystem. In Section 17.4, we discuss how 
Ext2 is created in a disk partition. The next sections describe the kernel activities performed 
whenever the disk is used. Most of these are relatively low-level activities dealing with the 
allocation of disk space to inodes and data blocks. Then we'll discuss how Ext2 regular files 
are read and written. 

17.1 General Characteristics 

Each Unix-like operating system makes use of its own filesystem. Although all such 
filesystems comply with the POSIX interface, each of them is implemented in a different way. 

The first versions of Linux were based on the Minix filesystem. As Linux matured, the 
Extended Filesystem (Ext FS) was introduced; it included several significant extensions but 
offered unsatisfactory performance. The Second Extended Filesystem (Ext2) was introduced 
in 1994: besides including several new features, it is quite efficient and robust and has 
become the most widely used Linux filesystem. 

The following features contribute to the efficiency of Ext2: 

• When creating an Ext2 filesystem, the system administrator may choose the optimal 
block size (from 1024 to 4096 bytes), depending on the expected average file length. 
For instance, a 1024 block size is preferable when the average file length is smaller 
than a few thousand bytes because this leads to less internal fragmentation—that is, 
less of a mismatch between the file length and the portion of the disk that stores it (see 
also Section 6.2 in Chapter 6, where internal fragmentation was discussed for dynamic 
memory). On the other hand, larger block sizes are usually preferable for files greater 
than a few thousand bytes because this leads to fewer disk transfers, thus reducing 
system overhead. 

• When creating an Ext2 filesystem, the system administrator may choose how many 
inodes to allow for a partition of a given size, depending on the expected number of 
files to be stored on it. This maximizes the effectively usable disk space. 

• The filesystem partitions disk blocks into groups. Each group includes data blocks and 
inodes stored in adjacent tracks. Thanks to this structure, files stored in a single block 
group can be accessed with a lower average disk seek time. 
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• The filesystem preallocates disk data blocks to regular files before they are actually 
used. Thus, when the file increases in size, several blocks are already reserved at 
physically adjacent positions, reducing file fragmentation. 

• Fast symbolic links are supported. If the pathname of the symbolic link (see Section 
1.5.2 in Chapter 1) has 60 bytes or less, it is stored in the inode and can thus be 
translated without reading a data block. 

Moreover, the Second Extended File System includes other features that make it both robust 
and flexible: 

• A careful implementation of the file-updating strategy that minimizes the impact of 
system crashes. For instance, when creating a new hard link for a file, the counter of 
hard links in the disk inode is incremented first, and the new name is added into the 
proper directory next. In this way, if a hardware failure occurs after the inode update 
but before the directory can be changed, the directory is consistent, even if the inode's 
hard link counter is wrong. Deleting the file does not lead to catastrophic results, 
although the file's data blocks cannot be automatically reclaimed. If the reverse were 
done (changing the directory before updating the inode), the same hardware failure 
would produce a dangerous inconsistency: deleting the original hard link would 
remove its data blocks from disk, yet the new directory entry would refer to an inode 
that no longer exists. If that inode number is used later for another file, writing into the 
stale directory entry will corrupt the new file. 

• Support for automatic consistency checks on the filesystem status at boot time. The 
checks are performed by the /sbin/e2fsck external program, which may be activated 
not only after a system crash, but also after a predefined number of filesystem 
mountings (a counter is incremented after each mount operation) or after a predefined 
amount of time has elapsed since the most recent check. 

• Support for immutable files (they cannot be modified) and for append-only files (data 
can be added only to the end of them). Even the superuser is not allowed to override 
these kinds of protection. 

• Compatibility with both the Unix System V Release 4 and the BSD semantics of the 
Group ID for a new file. In SVR4 the new file assumes the Group ID of the process 
that creates it; in BSD the new file inherits the Group ID of the directory containing it. 
Ext2 includes a mount option that specifies which semantic is used. 

Several additional features are being considered for the next major version of the Ext2 
filesystem. Some of them have already been coded and are available as external patches. 
Others are just planned, but in some cases fields have already been introduced in the Ext2 
inode for them. The most significant features are: 

Block fragmentation  

System administrators usually choose large block sizes for accessing recent disks. As a 
result, small files stored in large blocks waste a lot of disk space. This problem can be 
solved by allowing several files to be stored in different fragments of the same block. 
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Access Control Lists  

Instead of classifying the users of a file under three classes—owner, group, and 
others—an access control list (ACL) is associated with each file to specify the access 
rights for any specific users or combinations of users. 

Handling of compressed and encrypted files  

These new options, which must be specified when creating a file, will allow users to 
store compressed and/or encrypted versions of their files on disk. 

Logical deletion  

An undelete option will allow users to easily recover, if needed, the contents of a 
previously removed file. 

17.2 Disk Data Structures  

Figure 17-1. Layouts of an Ext2 partition and of an Ext2 block group 

 

The first block in any Ext2 partition is never managed by the Ext2 filesystem, since it is 
reserved for the partition boot sector (see Appendix A). The rest of the Ext2 partition is split 
into block groups , each of which has the layout shown in Figure 17-1. As you will notice 
from the figure, some data structures must fit in exactly one block while others may require 
more than one block. All the block groups in the filesystem have the same size and are stored 
sequentially, so the kernel can derive the location of a block group in a disk simply from its 
integer index. 

Block groups reduce file fragmentation, since the kernel tries to keep the data blocks 
belonging to a file in the same block group if possible. Each block in a block group contains 
one of the following pieces of information: 

• A copy of the filesystem's superblock 
• A copy of the group of block group descriptors 
• A data block bitmap 
• A group of inodes 
• An inode bitmap 
• A chunk of data belonging to a file; that is, a data block 

If a block does not contain any meaningful information, it is said to be free. 
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As can be seen from Figure 17-1, both the superblock and the group descriptors are duplicated 
in each block group. Only the superblock and the group descriptors included in block group 
are used by the kernel, while the remaining superblocks and group descriptors are left 
unchanged; in fact, the kernel doesn't even look at them. When the /sbin/e2fsck program 
executes a consistency check on the filesystem status, it refers to the superblock and the group 
descriptors stored in block group 0, then copies them into all other block groups. If data 
corruption occurs and the main superblock or the main group descriptors in block group 
becomes invalid, the system administrator can instruct /sbin/e2fsck to refer to the old copies of 
the superblock and the group descriptors stored in a block groups other than the first. Usually, 
the redundant copies store enough information to allow /sbin/e2fsck to bring the Ext2 partition 
back to a consistent state. 

How many block groups are there? Well, that depends both on the partition size and on the 
block size. The main constraint is that the block bitmap, which is used to identify the blocks 
that are used and free inside a group, must be stored in a single block. Therefore, in each 
block group there can be at most 8xb blocks, where b is the block size in bytes. Thus, the total 
number of block groups is roughly s/(8xb), where s is the partition size in blocks. 

As an example, let's consider an 8 GB Ext2 partition with a 4 KB block size. In this case, each 
4 KB block bitmap describes 32 K data blocks, that is, 128 MB. Therefore, at most 64 block 
groups are needed. Clearly, the smaller the block size, the larger the number of block groups. 

17.2.1 Superblock 

An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are listed 
in Table 17-1. The __u8, __u16, and __u32 data types denote unsigned numbers of length 8, 
16, and 32 bits respectively, while the __s8, __s16, __s32 data types denote signed numbers 
of length 8, 16, and 32 bits. 
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Table 17-1. The Fields of the Ext2 Superblock 
Type Field Description 
_ _u32 s_inodes_count Total number of inodes 
_ _u32 s_blocks_count Filesystem size in blocks 
_ _u32 s_r_blocks_count Number of reserved blocks 
_ _u32 s_free_blocks_count Free blocks counter 
_ _u32 s_free_inodes_count Free inodes counter 
_ _u32 s_first_data_block Number of first useful block (always 1) 
_ _u32 s_log_block_size Block size 
_ _s32 s_log_frag_size Fragment size 
_ _u32 s_blocks_per_group Number of blocks per group 
_ _u32 s_frags_per_group Number of fragments per group 
_ _u32 s_inodes_per_group Number of inodes per group 
_ _u32 s_mtime Time of last mount operation 
_ _u32 s_wtime Time of last write operation 
_ _u16 s_mnt_count Mount operations counter 
_ _u16 s_max_mnt_count Number of mount operations before check 
_ _u16 s_magic Magic signature 
_ _u16 s_state Status flag 
_ _u16 s_errors Behavior when detecting errors 
_ _u16 s_minor_rev_level Minor revision level 
_ _u32 s_lastcheck Time of last check 
_ _u32 s_checkinterval Time between checks 
_ _u32 s_creator_os OS where filesystem was created 
_ _u32 s_rev_level Revision level 
_ _u16 s_def_resuid Default UID for reserved blocks 
_ _u16 s_def_resgid Default GID for reserved blocks 
_ _u32 s_first_ino Number of first nonreserved inode 
_ _u16 s_inode_size Size of on-disk inode structure 
_ _u16 s_block_group_nr Block group number of this superblock 
_ _u32 s_feature_compat Compatible features bitmap 
_ _u32 s_feature_incompat Incompatible features bitmap 
_ _u32 s_feature_ro_compat Read-only-compatible features bitmap 
_ _u8 [16] s_uuid 128-bit filesystem identifier 
char [16] s_volume_name Volume name 
char [64] s_last_mounted Pathname of last mount point 
_ _u32 s_algorithm_usage_bitmap Used for compression 
_ _u8 s_prealloc_blocks Number of blocks to preallocate 
_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate for directories 
_ _u8 [818] s_padding Nulls to pad out 1024 bytes 

The s_inodes_count field stores the number of inodes, while the s_blocks_count field 
stores the number of blocks in the Ext2 filesystem. 

The s_log_block_size field expresses the block size as a power of 2, using 1024 bytes as 
the unit. Thus, denotes 1024-byte blocks, 1 denotes 2048-byte blocks, and so on. The 
s_log_frag_size field is currently equal to s_log_block_size, since block fragmentation 
is not yet implemented. 
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The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the 
number of blocks, fragments, and inodes in each block group, respectively. 

Some disk blocks are reserved to the superuser (or to some other user or group of users 
selected by the s_def_resuid and s_def_resgid fields). These blocks allow the system 
administrator to continue to use the filesystem even when no more free blocks are available 
for normal users. 

The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up the 
Ext2 filesystem to be checked automatically at boot time. These fields cause /sbin/e2fsck to 
run after a predefined number of mount operations has been performed, or when a predefined 
amount of time has elapsed since the last consistency check. (Both kinds of checks can be 
used together.) The consistency check is also enforced at boot time if the filesystem has not 
been cleanly unmounted (for instance, after a system crash) or when the kernel discovers 
some errors in it. The s_state field stores the value if the filesystem is mounted or was not 
cleanly unmounted, 1 if it was cleanly unmounted, and 2 if it contains errors. 

17.2.2 Group Descriptor and Bitmap 

Each block group has its own group descriptor, an ext2_group_desc structure whose fields 
are illustrated in Table 17-2. 

Table 17-2. The Fields of the Ext2 Group Descriptor 
Type Field Description 
_ _u32 bg_block_bitmap Block number of block bitmap 
_ _u32 bg_inode_bitmap Block number of inode bitmap 
_ _u32 bg_inode_table Block number of first inode table block 
_ _u16 bg_free_blocks_count Number of free blocks in the group 
_ _u16 bg_free_inodes_count Number of free inodes in the group 
_ _u16 bg_used_dirs_count Number of directories in the group 
_ _u16 bg_pad Alignment to word 
_ _u32 [3] bg_reserved Nulls to pad out 24 bytes 

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are 
used when allocating new inodes and data blocks. These fields determine the most suitable 
block in which to allocate each data structure. The bitmaps are sequences of bits, where the 
value specifies that the corresponding inode or data block is free and the value 1 specifies that 
it is used. Since each bitmap must be stored inside a single block and since the block size can 
be 1024, 2048, or 4096 bytes, a single bitmap describes the state of 8192, 16,384, or 32,768 
blocks. 

17.2.3 Inode Table 

The inode table consists of a series of consecutive blocks, each of which contains a predefined 
number of inodes. The block number of the first block of the inode table is stored in the 
bg_inode_table field of the group descriptor. 

All inodes have the same size, 128 bytes. A 1024-byte block contains 8 inodes, while a 4096-
byte block contains 32 inodes. To figure out how many blocks are occupied by the inode 



Understanding the Linux Kernel 

457 

table, divide the total number of inodes in a group (stored in the s_inodes_per_group field 
of the superblock) by the number of inodes per block. 

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 17-3. 

Table 17-3. The Fields of an Ext2 Disk Inode 
Type Field Description 
_ _u16 i_mode File type and access rights 
_ _u16 i_uid Owner identifier 
_ _u32 i_size File length in bytes 
_ _u32 i_atime Time of last file access 
_ _u32 i_ctime Time that inode last changed 
_ _u32 i_mtime Time that file contents last changed 
_ _u32 i_dtime Time of file deletion 
_ _u16 i_gid Group identifier 
_ _u16 i_links_count Hard links counter 
_ _u32 i_blocks Number of data blocks of the file 
_ _u32 i_flags File flags 
union osd1 Specific operating system information 
_ _u32 [EXT2_N_BLOCKS] i_block Pointers to data blocks 
_ _u32 i_version File version (for NFS) 
_ _u32 i_file_acl File access control list 
_ _u32 i_dir_acl Directory access control list 
_ _u32 i_faddr Fragment address 
union osd2 Specific operating system information 

Many fields related to POSIX specifications are similar to the corresponding fields of the 
VFS's inode object and have already been discussed in Section 12.2.2 in Chapter 12.  
The remaining ones refer to the Ext2-specific implementation and deal mostly with block 
allocation. 

In particular, the i_size field stores the effective length of the file in bytes, while the 
i_blocks field stores the number of data blocks (in units of 512 bytes) that have been 
allocated to the file. 

The values of i_size and i_blocks are not necessarily related. Since a file is always stored 
in an integer number of blocks, a nonempty file receives at least one data block (since 
fragmentation is not yet implemented) and i_size may be smaller than 512xi_blocks. On 
the other hand, as we shall see in Section 17.6.4 later in this chapter, a file may contain holes. 
In that case, i_size may be greater than 512xi_blocks. 

The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to 
identify the data blocks allocated to the file (see Section 17.6.3 later in this chapter). 

The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the  
highest-order bit of the i_size field is not used, thus the maximum file size is limited to 2 
GB. However, the Ext2 filesystem includes a "dirty trick" that allows larger files on 64-bit 
architectures like Compaq's Alpha. Essentially, the i_dir_acl field of the inode, which is not 
used for regular files, represents a 32-bit extension of the i_size field. Therefore, the file size 
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is stored in the inode as a 64-bit integer. The 64-bit version of the Ext2 filesystem is 
somewhat compatible with the 32-bit version because an Ext2 filesystem created on a 64-bit 
architecture may be mounted on a 32-bit architecture, and vice versa. However, on a 32-bit 
architecture a large file cannot be accessed. 

Recall that the VFS model requires each file to have a different inode number. In Ext2, there 
is no need to store the inode number of a file on disk because its value can be derived from 
the block group number and the relative position inside the inode table. As an example, 
suppose that each block group contains 4096 inodes and that we want to know the address on 
disk of inode 13021. In this case, the inode belongs to the third block group and its disk 
address is stored in the 733rd entry of the corresponding inode table. As you can see, the 
inode number is just a key used by the Ext2 routines to retrieve quickly the proper inode 
descriptor on disk. 

17.2.4 How Various File Types Use Disk Blocks 

The different types of files recognized by Ext2 (regular files, pipes, etc.) use data blocks in 
different ways. Some files store no data and therefore need no data blocks at all. This section 
discusses the storage requirements for each type. 

17.2.4.1 Regular file 

Regular files are the most common case and receive almost all the attention in this chapter. 
But a regular file needs data blocks only when it starts to have data. When first created, a 
regular file is empty and needs no data blocks; it can also be emptied by the truncate( ) 
system call. Both situations are common; for instance, when you issue a shell command that 
includes the string >filename, the shell creates an empty file or truncates an existing one. 

17.2.4.2 Directory 

Ext2 implements directories as a special kind of file whose data blocks store filenames 
together with the corresponding inode numbers. In particular, such data blocks contain 
structures of type ext2_dir_entry_2. The fields of that structure are shown in Table 17-4. 
The structure has a variable length, since the last name field is a variable length array of up to 
EXT2_NAME_LEN characters (usually 255). Moreover, for reasons of efficiency, the length of a 
directory entry is always a multiple of 4, and therefore null characters (\0) are added for 
padding at the end of the filename if necessary. The name_len field stores the actual file name 
length (see Figure 17-2). 

Table 17-4. The Fields of an Ext2 Directory Entry 
Type Field Description 
_ _u32 inode Inode number 
_ _u16 rec_len Directory entry length 
_ _u8 name_len File name length 
_ _u8 file_type File type 
char [EXT2_NAME_LEN] name File name 

The file_type field stores a value that specifies the file type (see Table 17-5). The rec_len 
field may be interpreted as a pointer to the next valid directory entry: it is the offset to be 
added to the starting address of the directory entry to get the starting address of the next valid 
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directory entry. In order to delete a directory entry, it is sufficient to set its inode field to and 
to suitably increment the value of the rec_len field of the previous valid entry. Read the 
rec_len field of Figure 17-2 carefully; you'll see that the oldfile entry has been deleted 
because the rec_len field of usr is set to 12+16 (the lengths of the usr and oldfile entries). 

Figure 17-2. An example of EXT2 directory 

 

17.2.4.3 Symbolic link 

As stated before, if the pathname of the symbolic link has up to 60 characters, it is stored in 
the i_block field of the inode, which consists of an array of 15 4-byte integers; no data block 
is thus required. If the pathname is longer than 60 characters, however, a single data block is 
required. 

17.2.4.4 Device file, pipe, and socket 

No data blocks are required for these kinds of file. All the necessary information is stored in 
the inode. 

Table 17-5. Ext2 File Types 
file_type Description 
0 Unknown 
1 Regular file 
2 Directory 
3 Character device 
4 Block device 
5 Named pipe 
6 Socket 
7 Symbolic link 

17.3 Memory Data Structures 

For the sake of efficiency, most information stored in the disk data structures of an Ext2 
partition are copied into RAM when the filesystem is mounted, thus allowing the kernel to 
avoid many subsequent disk read operations. To get an idea of how often some data structures 
change, consider some fundamental operations: 
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• When a new file is created, the values of the s_free_inodes_count field in the Ext2 
superblock and of the bg_free_inodes_count field in the proper group descriptor 
must be decremented. 

• If the kernel appends some data to an existing file, so that the number of data blocks 
allocated for it increases, the values of the s_free_blocks_count field in the Ext2 
superblock and of the bg_free_blocks_count field in the group descriptor must be 
modified. 

• Even just rewriting a portion of an existing file involves an update of the s_wtime 
field of the Ext2 superblock. 

Since all Ext2 disk data structures are stored in blocks of the Ext2 partition, the kernel uses 
the buffer cache to keep them up-to-date (see Section 14.1.5 in Chapter 14). 

Table 17-6 specifies, for each type of data related to Ext2 filesystems and files, the data 
structure used on the disk to represent its data, the data structure used by the kernel in 
memory, and a rule of thumb used to determine how much caching is used. Data that is 
updated very frequently is always cached; that is, the data is permanently stored in memory 
and included in the buffer cache until the corresponding Ext2 partition is unmounted. The 
kernel gets this result by keeping the buffer's usage counter greater than at all times. 

Table 17-6. VFS Images of Ext2 Data Structures 
Type Disk Data Structure Memory Data Structure Caching Mode 
Superblock ext2_super_block ext2_sb_info Always cached 
Group descriptor ext2_group_desc ext2_group_desc Always cached 
Block bitmap Bit array in block Bit array in buffer Fixed limit 
Inode bitmap Bit array in block Bit array in buffer Fixed limit 
Inode ext2_inode ext2_inode_info Dynamic 
Data block Unspecified Buffer Dynamic 
Free inode ext2_inode None Never 
Free block Unspecified None Never 

The never-cached data is not kept in the buffer cache since it does not represent meaningful 
information. 

In between these extremes lie two other modes: fixed limit and dynamic. In the fixed limit 
mode, a specific number of data structures can be kept in the buffer cache; older ones are 
flushed to disk when the number is exceeded. In the dynamic mode, the data is kept in the 
buffer cache as long as the associated object (an inode or block) is in use; when the file is 
closed or the block is deleted, the shrink_mmap( ) function may remove the associated data 
from the cache and write it back to disk. 

17.3.1 The ext2_sb_info and ext2_inode_info Structures 

When an Ext2 filesystem is mounted, the u field of the VFS superblock, which contains 
filesystem-specific data, is loaded with a structure of type ext2_sb_info so that the kernel 
can find out things related to the filesystem as a whole. This structure includes the following 
information: 
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• Most of the disk superblock fields 
• The block bitmap cache, tracked by the s_block_bitmap and 

s_block_bitmap_number arrays (see next section) 
• The inode bitmap cache, tracked by the s_inode_bitmap and 

s_inode_bitmap_number arrays (see next section) 
• An s_sbh pointer to the buffer head of the buffer containing the disk superblock 
• An s_es pointer to the buffer containing the disk superblock 
• The number of group descriptors, s_desc_ per_block, that can be packed in a block 
• An s_group_desc pointer to an array of buffer heads of buffers containing the group 

descriptors (usually, a single entry is sufficient) 
• Other data related to mount state, mount options, and so on 

Similarly, when an inode object pertaining to an Ext2 file is initialized, the u field is loaded 
with a structure of type ext2_inode_info, which includes this information: 

• Most of the fields found in the disk's inode structure that are not kept in the generic 
VFS inode object (see Table 12-3 in Chapter 12) 

• The fragment size and the fragment number (not yet used) 
• The block_group block group index at which the inode belongs (see Section 17.2 

earlier in this chapter) 
• The i_alloc_block and i_alloc_count fields, which are used for data block 

preallocation (see the Section 17.6.5 later in this chapter) 
• The i_osync field, which is a flag specifying whether the disk inode should be 

synchronously updated (see Section 17.7 later in this chapter) 

17.3.2 Bitmap Caches 

When the kernel mounts an Ext2 filesystem, it allocates a buffer for the Ext2 disk superblock 
and reads its contents from disk. The buffer is released only when the Ext2 filesystem is 
unmounted. When the kernel must modify a field in the Ext2 superblock, it simply writes the 
new value in the proper position of the corresponding buffer and then marks the buffer as 
dirty. 

Unfortunately, this approach cannot be adopted for all Ext2 disk data structures. The tenfold 
increase in disk capacity reached in recent years has induced a tenfold increase in the size of 
inode and data block bitmaps, so we have reached the point at which it is no longer 
convenient to keep all the bitmaps in RAM at the same time. 

For instance, consider a 4 GB disk with a 1 KB block size. Since each bitmap fills all the bits 
of a single block, each of them describes the status of 8192 blocks, that is, of 8 MB of disk 
storage. The number of block groups is 4096 MB/8 MB=512. Since each block group requires 
both an inode bitmap and a data block bitmap, 1 MB of RAM would be required to store all 
1024 bitmaps in memory! 

The solution adopted to limit the memory requirements of the Ext2 descriptors is to use, for 
any mounted Ext2 filesystem, two caches of size EXT2_MAX_GROUP_LOADED (usually 8). One 
cache stores the most recently accessed inode bitmaps, while the other cache stores the most 
recently accessed block bitmaps. Buffers containing bitmaps included in a cache have a usage 
counter greater than 0, therefore they are never freed by shrink_mmap( ) (see Section 16.7.2 
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in Chapter 16). Conversely, buffers containing bitmaps not included in a bitmap cache have a 
null usage counter, and thus they can be freed if free memory becomes scarce. 

Each cache is implemented by means of two arrays of EXT2_MAX_GROUP_LOADED elements. 
One array contains the indexes of the block groups whose bitmaps are currently in the cache, 
while the other array contains pointers to the buffer heads that refer to those bitmaps. 

The ext2_sb_info structure stores the arrays pertaining to the inode bitmap cache: indexes of 
block groups are found in the s_inode_bitmap field and pointers to buffer heads in the 
s_inode_bitmap_number field. The corresponding arrays for the block bitmap cache are 
stored in the s_block_bitmap and s_block_bitmap_number fields. 

The load_inode_bitmap( ) function loads the inode bitmap of a specified block group and 
returns the cache position in which the bitmap can be found. 

If the bitmap is not already in the bitmap cache, load_inode_bitmap( ) invokes 
read_inode_bitmap( ). The latter function gets the number of the block containing the 
bitmap from the bg_inode_bitmap field of the group descriptor, then invokes bread( ) to 
allocate a new buffer and read the block from disk if it is not already included in the buffer 
cache. 

If the number of block groups in the Ext2 partition is less than or equal to 
EXT2_MAX_GROUP_LOADED, the index of the cache array position in which the bitmap is 
inserted always matches the block group index passed as the parameter to the 
load_inode_bitmap( ) function. 

Otherwise, if there are more block groups than cache positions, a bitmap is removed from 
cache, if necessary, by using a Least Recently Used (LRU) policy, and the requested bitmap is 
inserted in the first cache position. Figure 17-3 illustrates the three possible cases in which the 
bitmap in block group 5 is referenced: where the requested bitmap is already in cache, where 
the bitmap is not in cache but there is a free position, and where the bitmap is not in cache and 
there is no free position. 

Figure 17-3. Adding a bitmap to the cache 

 

The load_block_bitmap( ) and read_block_bitmap( ) functions are very similar to 
load_inode_bitmap( ) and read_inode_bitmap( ), but they refer to the block bitmap 
cache of an Ext2 partition. 
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Figure 17-4 illustrates the memory data structures of a mounted Ext2 filesystem. In our 
example, there are three block groups whose descriptors are stored in three blocks on disk; 
therefore, the s_group_desc field of the ext2_sb_info points to an array of three buffer 
heads. We have shown just one inode bitmap having index 2 and one block bitmap having 
index 4, although the kernel may keep in the bitmap caches 2 x EXT2_MAX_GROUP_LOADED 
bitmaps, and even more may be stored in the buffer cache. 

Figure 17-4. Ext2 memory data structures 

 

17.4 Creating the Filesystem 

Formatting a disk partition or a floppy is not the same thing as creating a filesystem on it. 
Formatting allows the disk driver to read and write blocks on the disk, while creating a 
filesystem means setting up the structures described in detail earlier in this chapter. 

Modern hard disks come preformatted from the factory and need not be reformatted; floppy 
disks may be formatted by using the /usr/bin/superformat utility program. 

Ext2 filesystems are created by the /sbin/mke2fs utility program; it assumes the following 
default options, which may be modified by the user with flags on the command line: 

• Block size: 1024 bytes 
• Fragment size: block size 
• Number of allocated inodes: one for each group of 4096 bytes 
• Percentage of reserved blocks: 5% 

The program performs the following actions: 

1. Initializes the superblock and the group descriptors 
2. Optionally, checks whether the partition contains defective blocks: if so, creates a list 

of defective blocks 
3. For each block group, reserves all the disk blocks needed to store the superblock, the 

group descriptors, the inode table, and the two bitmaps 
4. Initializes the inode bitmap and the data map bitmap of each block group to 
5. Initializes the inode table of each block group 
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6. Creates the / root directory 
7. Creates the lost+found directory, which is used by /sbin/e2fsck to link the lost and 

defective blocks found 
8. Updates the inode bitmap and the data block bitmap of the block group in which the 

two previous directories have been created 
9. Groups the defective blocks (if any) in the lost+found directory 

Let's consider, for the sake of concreteness, how an Ext2 1.4 MB floppy disk is initialized by 
/sbin/mke2fs with the default options. 

Once mounted, it will appear to the VFS as a volume consisting of 1390 blocks, each one 
1024 bytes in length. To examine the disk's contents, we can execute the Unix command: 

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex 

to get in the /tmp directory a file containing the hexadecimal dump of the floppy disk 
contents.[1]  

[1] Some information on an Ext2 filesystem could also be obtained by using the /sbin/dumpe2fs and /sbin/debugfs utility programs. 

By looking at that file, we can see that, due to the limited capacity of the disk, a single group 
descriptor is sufficient. We also notice that the number of reserved blocks is set to 72 (5% of 
1440) and that, according to the default option, the inode table must include 1 inode for each 
4096 bytes, that is, 360 inodes stored in 45 blocks. 

Table 17-7 summarizes how the Ext2 filesystem is created on a floppy disk when the default 
options are selected. 

Table 17-7. Ext2 Block Allocation for a Floppy Disk 
Block Content 
0 Boot block 
1 Superblock 
2 Block containing a single block group descriptor 
3 Data block bitmap 
4 Inode bitmap 
5-49 Inode table: inodes up to 10: reserved; inode 11: lost+found; inodes 12-360: free 
50 Root directory (includes ., .., and lost+found) 
51 lost+found directory (includes . and ..) 
52-62 Reserved blocks preallocated for lost+found directory 
63-1439 Free blocks 

17.5 Ext2 Methods 

Many of the VFS methods described in Chapter 12 have a corresponding Ext2 
implementation. Since it would take a whole book to describe all of them, we'll limit 
ourselves to briefly reviewing the methods implemented in Ext2. Once the disk and the 
memory data structures are clearly understood, the reader should be able to follow the code of 
the Ext2 functions that implement them. 
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17.5.1 Ext2 Superblock Operations 

All VFS superblock operations have a specific implementation in Ext2, with the exception of 
the clear_inode and umount_begin VFS methods. The addresses of the superblock methods 
are stored into the ext2_sops array of pointers. 

17.5.2 Ext2 Inode Operations 

Many of the VFS inode operations have a specific implementation in Ext2, which depends on 
the type of the file to which the inode refers. Table 17-8 illustrates the inode operations 
implemented for inodes that refer to regular and directory files; their addresses are stored in 
the ext2_file_inode_operations and in the ext2_dir_inode_operations tables, 
respectively. Recall that the VFS uses its own generic functions when the corresponding Ext2 
method is undefined (NULL pointer). 

Table 17-8. Ext2 Inode Operations for Regular and Directory Files 
VFS Inode Operation Ext2 File Inode Method Ext2 Directory Inode Method 
lookup NULL ext2_lookup( ) 
link NULL ext2_link( ) 
unlink NULL ext2_unlink( ) 
symlink NULL ext2_symlink( ) 
mkdir NULL ext2_mkdir( ) 
rmdir NULL ext2_rmdir( ) 
create NULL ext2_create( )  
mknod NULL ext2_mknod( ) 
rename NULL ext2_rename( ) 
readlink NULL NULL 
follow_link NULL NULL 
readpage generic_readpage( ) NULL 
writepage NULL NULL 
bmap ext2_bmap( ) NULL 
truncate ext2_truncate( ) NULL 
permission ext2_permission( ) ext2_permission( ) 
smap NULL NULL 
updatepage NULL NULL 
revalidate NULL NULL 

If the inode refers to a symbolic link, all inode methods are NULL except for readlink and 
follow_link, which are implemented by ext2_readlink( ) and ext2_follow_link( ), 
respectively. The addresses of those methods are stored in the 
ext2_symlink_inode_operations table. 

If the inode refers to a character device file, to a block device file, or to a named pipe (see 
Section 18.2 in Chapter 18), the inode operations do not depend on the filesystem. They are 
specified in the chrdev_inode_operations, blkdev_inode_operations, and 
fifo_inode_operations tables, respectively. 
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17.5.3 Ext2 File Operations 

The file operations specific to the Ext2 filesystem are listed in Table 17-9. As you can see, the 
read and mmap VFS methods are implemented by generic functions that are common to many 
filesystems. The addresses of these methods are stored in the ext2_file_operations table. 

Table 17-9. Ext2 File Operations 
VFS File Operation Ext2 Method 
lseek ext2_file_lseek( ) 
read generic_file_read( ) 
write ext2_file_write( ) 
readdir NULL 
poll NULL 
ioctl ext2_ioctl( ) 
mmap generic_file_mmap( ) 
open ext2_open_file( ) 
flush NULL 
release ext2_release_file( ) 
fsync ext2_sync_file( ) 
fasync NULL 
check_media_change NULL 
revalidate NULL 
lock NULL 

17.6 Managing Disk Space 

The storage of a file on disk differs from the view the programmer has of the file in two ways: 
blocks can be scattered around the disk (although the filesystem tries hard to keep blocks 
sequential to improve access time), and files may appear to a programmer to be bigger than 
they really are because a program can introduce holes into them (through the lseek( ) 
system call). 

In this section we explain how the Ext2 filesystem manages the disk space, that is, how it 
allocates and deallocates inodes and data blocks. Two main problems must be addressed: 

• Space management must make every effort to avoid file fragmentation, that is, the 
physical storage of a file in several, small pieces located in nonadjacent disk blocks. 
File fragmentation increases the average time of sequential read operations on the 
files, since the disk heads must be frequently repositioned during the read operation.[2] 
This problem is similar to the external fragmentation of RAM discussed in Section 
6.1.2 in Chapter 6. 

[2] Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-implemented fragmentation of blocks in 
order to store many files in one block (A Good Thing). 

• Space management must be time-efficient; that is, the kernel should be able to quickly 
derive from a file offset the corresponding logical block number in the Ext2 partition. 
In doing so, the kernel should limit as much as possible the number of accesses to 
addressing tables stored on disk, since each such intermediate access considerably 
increases the average file access time. 
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17.6.1 Creating Inodes 

The ext2_new_inode( ) function creates an Ext2 disk inode, returning the address of the 
corresponding inode object (or NULL in case of failure). It acts on two parameters: the address 
dir of the inode object that refers to the directory into which the new inode must be inserted 
and a mode that indicates the type of inode being created. The latter argument also includes an 
MS_SYNCHRONOUS flag that requires the current process to be suspended until the inode is 
allocated. The function performs the following actions: 

1. Invokes get_empty_inode( ) to allocate a new inode object and initializes its i_sb 
field to the superblock address stored in dir->i_sb. 

2. Invokes lock_super( ) to get exclusive access to the superblock object. The function 
tests and sets the value of the s_lock field and, if necessary, suspends the current 
process until the flag becomes 0. 

3. If the new inode is a directory, tries to place it so that directories are evenly scattered 
through partially filled block groups. In particular, allocates the new directory in the 
block group that has the maximum number of free blocks among all block groups 
having a number of free inodes greater than the average. (The average is the total 
number of free inodes divided by the number of block groups). 

4. If the new inode is not a directory, allocates it in a block group having a free inode. 
Selects the group by starting from the one containing the parent directory and moving 
farther and farther away from it, to be precise: 

a. Performs a quick logarithmic search starting from the block group that includes 
the parent directory dir. The algorithm searches log(n) block groups, where n 
is the total number of block groups. The algorithm jumps further and further 
ahead until it finds an available block group, as follows: if we call the number 
of the starting block group i, the algorithm considers block groups i mod (n), 
i+1 mod (n), i+1+2 mod (n), i+1+2+4 mod (n), . . . 

b. If the logarithmic search failed in finding a block group with a free inode, 
performs an exhaustive linear search starting from the first block group. 

5. Invokes load_inode_bitmap( ) to get the inode bitmap of the selected block group 
and searches for the first null bit into it, thus obtaining the number of the first free disk 
inode. 

6. Allocates the disk inode: sets the corresponding bit in the inode bitmap and marks the 
buffer containing the bitmap as dirty. Moreover, if the filesystem has been mounted 
specifying the MS_SYNCHRONOUS flag, invokes ll_rw_block( ) and waits until the 
write operation terminates (see Section 12.3.3 in Chapter 12). 

7. Decrements the bg_free_inodes_count field of the block group descriptor. If the 
new inode is a directory, increments bg_used_dirs_count. Marks the buffer 
containing the group descriptor as dirty. 

8. Decrements the s_free_inodes_count field of the disk superblock and marks the 
buffer containing it as dirty. Sets the s_dirt field of the VFS's superblock object to 1. 

9. Initializes the fields of the inode object. In particular, sets the inode number i_no and 
copies the value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also loads 
the i_block_group field in the ext2_inode_info structure with the block group 
index. Refer to Table 17-3 for the meaning of these fields. 

10. Inserts the new inode object into inode_hashtable. 
11. Invokes mark_inode_dirty( ) to move the inode object into the superblock's dirty 

inode list (see Section 12.2.2 in Chapter 12). 
12. Invokes unlock_super( ) to release the superblock object. 
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13. Returns the address of the new inode object. 

17.6.2 Deleting Inodes 

The ext2_free_inode( ) function deletes a disk inode, which is identified by an inode 
object whose address is passed as the parameter. The kernel should invoke the function after a 
series of cleanup operations involving internal data structures and the data in the file itself: it 
should come after the inode object has been removed from the inode hash table, after the last 
hard link referring to that inode has been deleted from the proper directory, and after the file 
is truncated to length in order to reclaim all its data blocks (see Section 17.6.6 later in this 
chapter). It performs the following actions: 

1. Invokes lock_super( ) to get exclusive access to the superblock object. 
2. Computes from the inode number and the number of inodes in each block group the 

index of the block group containing the disk inode. 
3. Invokes load_inode_bitmap( ) to get the inode bitmap. 
4. Invokes clear_inode( ) to perform the following operations: 

a. Release all pages in the page cache associated with the inode, suspending the 
current process if some of them are locked. (The pages could be locked 
because the kernel could be in the process of reading or writing them, and there 
is no way to stop the block device driver.) 

b. Invoke the clear_inode method of the superblock object, if defined; but the 
Ext2 filesystem does not define it. 

5. Increments the bg_free_inodes_count field of the group descriptor. If the deleted 
inode is a directory, decrements the bg_used_dirs_count field. Marks the buffer 
containing the group descriptor as dirty. 

6. Increments the s_free_inodes_count field of the disk superblock and marks the 
buffer that contains it as dirty. Also sets the s_dirt field of the superblock object to 1. 

7. Clears the bit corresponding to the disk inode in the inode bitmap and marks the buffer 
containing the bitmap as dirty. Moreover, if the filesystem has been mounted with the 
MS_SYNCHRONIZE flag, invokes ll_rw_block( ) and waits until the write operation 
on the bitmap's buffer terminates. 

8. Invokes unlock_super( ) to unlock the superblock object. 

17.6.3 Data Blocks Addressing 

Each nonempty regular file consists of a group of data blocks. Such blocks may be referred to 
either by their relative position inside the file (their file block number) or by their position 
inside the disk partition (their logical block number, explained in Section 13.5.6 in Chapter 
13). 

Deriving the logical block number of the corresponding data block from an offset f inside a 
file is a two-step process: 

• Derive from the offset f the file block number, that is, the index of the block 
containing the character at offset f. 

• Translate the file block number to the corresponding logical block number. 



Understanding the Linux Kernel 

469 

Since Unix files do not include any control character, it is quite easy to derive the file block 
number containing the f th character of a file: simply take the quotient of f and the filesystem's 
block size and round down to the nearest integer. 

For instance, let's assume a block size of 4 KB. If f is smaller than 4096, the character is 
contained in the first data block of the file, which has file block number 0. If f is equal to or 
greater than 4096 and less than 8192, the character is contained in the data block having file 
block number 1 and so on. 

This is fine as far as file block numbers are concerned. However, translating a file block 
number into the corresponding logical block number is not nearly as straightforward, since the 
data blocks of an Ext2 file are not necessarily adjacent on disk. 

The Ext2 filesystem must thus provide a method to store on disk the connection between each 
file block number and the corresponding logical block number. This mapping, which goes 
back to early versions of Unix from AT&T, is implemented partly inside the inode. It also 
involves some specialized data blocks, which may be considered an inode extension used to 
handle large files. 

The i_block field in the disk inode is an array of EXT2_N_BLOCKS components containing 
logical block numbers. In the following discussion, we assume that EXT2_N_BLOCKS has the 
default value, namely 15. The array represents the initial part of a larger data structure, which 
is illustrated in Figure 17-5. As can be noticed from the figure, the 15 components of the array 
are of four different types: 

• The first 12 components yield the logical block numbers corresponding to the first 12 
blocks of the file, that is, to the blocks having file block numbers from to 11. 

• The component at index 12 contains the logical block number of a block that 
represents a second-order array of logical block numbers. They correspond to the file 
block numbers ranging from 12 to b/4+11 where b is the filesystem's block size (each 
logical block number is stored in 4 bytes, so we divide by 4 in the formula). Therefore, 
the kernel must look in this component for a pointer to a block, then look in that block 
for another pointer to the ultimate block that contains the file contents. 

• The component at index 13 contains the logical block number of a block containing a 
second-order array of logical block numbers; in turn, the entries of this second-order 
array point to third-order arrays, which store the logical block numbers corresponding 
to the file block numbers ranging from b/4+12 to (b/4)2+(b/4)+11. 

• Finally, the component at index 14 makes use of triple indirection: the fourth-order 
arrays store the logical block numbers corresponding to the file block numbers ranging 
from (b/4)2+(b/4)+12 to (b/4)3+(b/4)2+(b/4)+11 upward. 
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Figure 17-5. Data structures used to address the file's data blocks 

 

In Figure 17-5, the number inside a block represents the corresponding file block number. The 
arrows, which represent logical block numbers stored in array components, show how the 
kernel finds its way to reach the block that contains the actual contents of the file. 

Notice how this mechanism favors small files. If the file does not require more than 12 data 
blocks, any data can be retrieved in two disk accesses: one to read a component in the 
i_block array of the disk inode and the other one to read the requested data block. For larger 
files, however, three or even four consecutive disk accesses may be needed in order to access 
the required block. In practice, this is a worst-case estimate, since dentry, buffer, and page 
caches contribute significantly to reduce the number of real disk accesses. 

Notice also how the block size of the filesystem affects the addressing mechanism, since a 
larger block size allows the Ext2 to store more logical block numbers inside a single block. 
Table 17-10 shows the upper limit placed on a file's size for each block size and each 
addressing mode. For instance, if the block size is 1024 bytes and the file contains up to 268 
kilobytes of data, the first 12 KB of a file can be accessed through direct mapping, and the 
remaining 13 through 268 KB can be addressed through simple indirection. With 4096-byte 
blocks, double indirection is sufficient to address a file of 2 GB (the maximum allowed by the 
Ext2 filesystem on 32-bit architecture). 

Table 17-10. File Size Upper Limits for Data Block Addressing 
Block Size Direct 1-Indirect 2-Indirect 3-Indirect 
1024 12 KB 268 KB 63.55 MB 2 GB 
2048 24 KB 1.02 MB 513.02 MB 2 GB 
4096 48 KB 4.04 MB 2 GB — 

17.6.4 File Holes 

A file hole is a portion of a regular file that contains null characters and is not stored in any 
data block on disk. Holes are a long-standing feature of Unix files. For instance, the following 
Unix command creates a file in which the first bytes are a hole: 
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$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6 

Now, /tmp/hole has 6145 characters (6144 null characters plus an X character), yet the file 
occupies just one data block on disk. 

File holes were introduced to avoid wasting disk space. They are used extensively by database 
applications and, more generally, by all applications that perform hashing on files. 

The Ext2 implementation of file holes is based on dynamic data block allocation: a block is 
actually assigned to a file only when the process needs to write data into it. The i_size field 
of each inode defines the size of the file as seen by the program, including the hole, while the 
i_blocks field stores the number of data blocks effectively assigned to the file (in units of 
512 bytes). 

In our earlier example of the dd command, suppose the /tmp/hole file was created on an Ext2 
partition having blocks of size 4096. The i_size field of the corresponding disk inode stores 
the number 6145, while the i_blocks field stores the number 8 (because each 4096-byte 
block includes eight 512-byte blocks). The second element of the i_block array 
(corresponding to the block having file block number 1) stores the logical block number of the 
allocated block, while all other elements in the array are null (see Figure 17-6). 

Figure 17-6. A file with an initial hole 

 

17.6.5 Allocating a Data Block 

When the kernel has to allocate a new block to hold data for an Ext2 regular file, it invokes 
the ext2_getblk( ) function. In turn, this function handles the data structures already 
described in Section 17.6.3 and invokes when necessary the ext2_alloc_block( ) function 
to actually search for a free block in the Ext2 partition. 

In order to reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file 
near the last block already allocated for the file. Failing that, the filesystem searches for a new 
block in the block group that includes the file's inode. As a last resort, the free block is taken 
from one of the other block groups. 

The Ext2 filesystem uses preallocation of data blocks. The file does not get just the requested 
block, but rather a group of up to eight adjacent blocks. The i_prealloc_count field in the 
ext2_inode_info structure stores the number of data blocks preallocated to some file that are 
still unused, and the i_prealloc_block field stores the logical block number of the next 
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preallocated block to be used. Any preallocated blocks that remain unused are freed when the 
file is closed, when it is truncated, or when a write operation is not sequential with respect to 
the write operation that triggered the block preallocation. 

The ext2_alloc_block( ) function receives as parameters a pointer to an inode object and a 
goal. The goal is a logical block number that represents the preferred position of the new 
block. The ext2_getblk( ) function sets the goal parameter according to the following 
heuristic: 

1. If the block being allocated and the previously allocated one have consecutive file 
block numbers, the goal is the logical block number of the previous block plus 1; it 
makes sense that consecutive blocks as seen by a program should be adjacent on disk. 

2. If the first rule does not apply and at least one block has been previously allocated to 
the file, the goal is one of these block's logical block number. More precisely, it is the 
logical block number of the already allocated block that precedes in the file the block 
to be allocated. 

3. If the preceding rules do not apply, the goal is the logical block number of the first 
block (not necessarily free) in the block group that contains the file's inode. 

The ext2_alloc_block( ) function checks whether the goal refers to one of the preallocated 
blocks of the file. If so, it allocates the corresponding block and return its logical block 
number; otherwise, the function discards all remaining preallocated blocks and invokes 
ext2_new_block( ). 

This latter function searches for a free block inside the Ext2 partition with the following 
strategy: 

1. If the preferred block passed to ext2_alloc_block( ) (the goal) is free, allocates it. 
2. If the goal is busy, checks whether one of the next 64 blocks after the preferred block 

is free. 
3. If no free block has been found in the near vicinity of the preferred block, considers all 

block groups, starting from the one including the goal. For each block group: 
a. Looks for a group of at least eight adjacent free blocks. 
b. If no such group is found, looks for a single free block. 

The search ends as soon as a free block is found. Before terminating, the ext2_new_block( ) 
function also tries to preallocate up to eight free blocks adjacent to the free block found and 
sets the i_prealloc_block and i_prealloc_count fields of the disk inode to the proper 
block location and number of blocks. 

17.6.6 Releasing a Data Block 

When a process deletes a file or truncates it to length, all its data blocks must be reclaimed. 
This is done by ext2_truncate( ), which receives the address of the file's inode object as its 
parameter. The function essentially scans the disk inode's i_block array to locate all data 
blocks, partitioning them into physically adjacent groups. Each such group is then released by 
invoking ext2_free_blocks( ). 



Understanding the Linux Kernel 

473 

The ext2_free_blocks( ) function releases a group of one or more adjacent data blocks. 
Besides its use by ext2_truncate( ), the function is invoked mainly when discarding the 
preallocated blocks of a file (see the earlier section Section 17.6.5). Its parameters are: 

inode  

Address of the inode object that describes the file 

block  

Logical block number of the first block to be released 

count  

Number of adjacent blocks to be released 

The function invokes lock_super( ) to get exclusive access to the filesystem's superblock, 
then performs the following actions for each block to be released: 

1. Gets the block bitmap of the block group including the block to be released 
2. Clears the bit in the block bitmap corresponding to the block to be released and marks 

the buffer containing the bitmap as dirty 
3. Increments the bg_free_blocks_count field in the block group descriptor and marks 

the corresponding buffer as dirty 
4. Increments the s_free_blocks_count field of the disk superblock, marks the 

corresponding buffer as dirty, and sets the s_dirt flag of the superblock object 
5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, invokes 

ll_rw_block( ) and waits until the write operation on the bitmap's buffer terminates 

Finally, the function invokes unlock_super( ) to release the superblock. 

17.7 Reading and Writing an Ext2 Regular File 

In Chapter 12 we described how the Virtual File System recognizes the type of file being 
accessed by a read( ) or write( ) system call and invokes the corresponding method of the 
proper file operation table. We now have all the needed tools to understand how a regular file 
is actually read or written in the Ext2 filesystem. 

There's nothing more to say about read operations, however, because they have already been 
completely discussed. As shown in Table 17-9, the Ext2's read method is implemented by the 
generic_file_read( ) function, which is described in the section Section 15.1.1 in  
Chapter 15. 

Let's concentrate then on Ext2's write method, which is implemented by the 
ext2_file_write( ) function. It acts on four parameters: 

fd  

File descriptor of the file being written 
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buf  

Address of a memory area containing the data to be written 

count  

Number of bytes to be written 

ppos  

Pointer to a variable storing the file offset where data must be written 

The function performs the following actions: 

1. Removes any superuser privilege from the file (to guard against tampering with setuid 
programs, described in Chapter 19). 

2. If the file has been opened with the O_APPEND flag set, sets the file offset where data 
must be written to the end of the file. 

3. If the file has been opened in synchronous mode (O_SYNC flag set), sets i_osync field 
in the ext2_inode_info structure of the disk inode to 1. This flag is tested when a 
data block is allocated for the file, so that the kernel can synchronously update the 
inode on disk as soon as it is modified. 

4. As done before, computes from the file offset and the filesystem block size the file 
block number of the first byte to be written and the relative offset within the block (see 
the earlier section Section 17.6.3). 

5. For each block to be written, performs the following substeps: 
a. Invokes ext2_getblk( ) to get the data block on the disk, allocating it when 

necessary. 
b. If the block has to be partially rewritten and the buffer is not up-to-date, 

invokes ll_rw_block( ) and waits until the read operation terminates. 
c. Copies the bytes to be written into the block from the process address space to 

the buffer and marks the buffer as dirty. 
d. Invokes update_vm_cache( ) to synchronize the contents of the page cache 

with that of the buffer cache. 
e. If the file has been opened in synchronous mode, inserts the buffer in a local 

array. If the array becomes filled (it includes 32 elements), invokes 
ll_rw_block( ) to start the write operations and waits until they terminate. 

6. If the file has been opened in synchronous mode, clears the i_osync flag of the disk 
inode; also invokes ll_rw_block( ) to start the write operation for any buffer still 
remaining in the local array and waits until I/O data transfers terminate. 

7. Updates the i_size field of the inode object. 
8. Sets the i_ctime and i_mtime fields of the inode object to xtime.tv_sec and marks 

the inode as dirty. 
9. Updates the variable *ppos storing the file offset where the data has been written (it is 

usually the file pointer). 
10. Returns the number of bytes written into the file. 
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17.8 Anticipating Linux 2.4 

Using the generic_file_write( ) function to write in a regular Ext2 file has several 
beneficial effects. One of them is that the 2 GB limit on the file size is gone and very large 
files can be accessed even on 32-bit architectures. However, none of the features mentioned at 
the end of Section 17.1 has been included in Linux 2.4. They will likely come out with the 
new Ext3 filesystem currently being tested. 
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Chapter 18. Process Communication 
This chapter explains how User Mode processes can synchronize themselves and exchange 
data. We have already covered a lot of synchronization topics in Chapter 11, but the actors 
there were kernel control paths, not User Mode programs. We are now ready, after having 
discussed I/O management and filesystems at length, to extend the discussion of 
synchronization to User Mode processes. These processes must rely on the kernel to 
synchronize themselves and to exchange data. 

As we saw in Section 12.6.1 in Chapter 12, a crude form of synchronization among User 
Mode processes can be achieved by creating a (possibly empty) file and by making use of 
suitable VFS system calls to lock and unlock it. Similarly, data sharing among processes can 
be obtained by storing data in temporary files protected by locks. This approach is costly 
since it requires accesses to the disk filesystem. For that reason, all Unix kernels include a set 
of system calls that supports process communication without interacting with the filesystem; 
furthermore, several wrapper functions have been developed and inserted in suitable libraries 
to expedite how processes issue their synchronization requests to the kernel. 

As usual, application programmers have a variety of needs that call for different 
communication mechanisms. Here are the basic mechanisms that Unix systems, and Linux in 
particular, offer to allow interprocess communication: 

Pipes and FIFOs (named pipes)  

Best suited to implement producer/consumer interactions among processes. Some 
processes fill the pipe with data while others extract data from the pipe. 

Semaphores  

Represents, as the name implies, the User Mode version of the kernel semaphores 
discussed in Section 11.2.4 in Chapter 11. 

Messages  

Allow processes to exchange messages (short blocks of data) in an asynchronous way. 
They can be thought of as signals carrying additional information. 

Shared memory regions  

Best suited to implement interaction schemes in which processes must share large 
amounts of data in an efficient way. 

This book does not cover another common communication mechanism, sockets. As stated in 
previous chapters, sockets were introduced initially to allow data communication between 
application programs and the network interface (see Section 13.2.1 in Chapter 13). They can 
also be used as a communication tool for processes located on the same host computer; the X 
Window System graphic interface, for instance, uses a socket to allow client programs to 
exchange data with the X server. We don't include them because they would require a long 
discussion of networking, which is beyond the scope of the book. 
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18.1 Pipes 

Pipes are an interprocess communication mechanism that is provided in all flavors of Unix. A 
pipe is a one-way flow of data between processes: all data written by a process to the pipe is 
routed by the kernel to another process, which can thus read it. 

In Unix command shells, pipes can be created by means of the | operator. For instance, the 
following statement instructs the shell to create two processes connected by a pipe: 

$ ls | more 

The standard output of the first process, which executes the ls program, is redirected to the 
pipe; the second process, which executes the more program, reads its input from the pipe. 

Note that the same results can also be obtained by issuing two commands such as the 
following: 

$ ls > temp  
$ more < temp 

The first command redirects the output of ls into a regular file; then the second command 
forces more to read its input from the same file. Of course, using pipes instead of temporary 
files is usually more convenient since: 

• The shell statement is much shorter and simpler. 
• There is no need to create temporary regular files, which must be deleted later. 

18.1.1 Using a Pipe 

Pipes may be considered open files that have no corresponding image in the mounted 
filesystems. A new pipe can be created by means of the pipe( ) system call, which returns a 
pair of file descriptors. The process can read from the pipe by using the read( ) system call 
with the first file descriptor; likewise, it can write into the pipe by using the write( ) system 
call with the second file descriptor. 

POSIX defines only half-duplex pipes, so even though the pipe( ) system call returns two 
file descriptors, each process must close one before using the other. If a two-way flow of data 
is required, the processes must use two different pipes by invoking pipe( ) twice. 

Several Unix systems, such as System V Release 4, implement full-duplex pipes and allow 
both descriptors to be written into and read from. Linux adopts another approach: each pipe's 
file descriptors are still one-way, but it is not necessary to close one of them before using the 
other. 

Let us resume the previous example: when the command shell interprets the ls|more 
statement, it essentially performs the following actions: 

1. Invokes the pipe( ) system call; let us assume that pipe( ) returns the file 
descriptors 3 (the pipe's read channel ) and 4 (the write channel ). 

2. Invokes the fork( ) system call twice. 
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3. Invokes the close( ) system call twice to release file descriptors 3 and 4. 

The first child process, which must execute the ls program, performs the following operations: 

1. Invokes dup2(4,1) to copy file descriptor 4 to file descriptor 1. From now on, file 
descriptor 1 refers to the pipe's write channel. 

2. Invokes the close( ) system call twice to release file descriptors 3 and 4. 
3. Invokes the execve( ) system call to execute the /bin/ls program (see Section 19.4 in 

Chapter 19). By default, such a program writes its output to the file having file 
descriptor 1 (the standard output), that is, it writes into the pipe. 

The second child process must execute the more program; therefore, it performs the following 
operations: 

1. Invokes dup2(3,0) to copy file descriptor 3 to file descriptor 0. From now on, file 
descriptor refers to the pipe's read channel. 

2. Invokes the close( ) system call twice to release file descriptors 3 and 4. 
3. Invokes the execve( ) system call to execute /bin/more. By default, that program 

reads its input from the file having file descriptor (the standard input); that is, it reads 
from the pipe. 

In this simple example, the pipe is used by exactly two processes. Because of its 
implementation, though, a pipe can be used by an arbitrary number of processes.[1] Clearly, if 
two or more processes read or write the same pipe, they must explicitly synchronize their 
accesses by using file locking (see Section 12.6.1 in Chapter 12) or IPC semaphores (see 
Section 18.3.3 later in this chapter). 

[1] Since most shells offer pipes that connect only two processes, applications requiring pipes used by more than two processes must be coded in a 
programming language such as C. 

Many Unix systems provide, besides the pipe( ) system call, two wrapper functions named 
popen( ) and pclose( ) that handle all the dirty work usually done when using pipes. Once 
a pipe has been created by means of the popen( ) function, it can be used with the high-level 
I/O functions included in the C library (fprintf( ), fscanf( ), and so on). 

In Linux, popen( ) and pclose( ) are included in the C library. The popen( ) function 
receives two parameters: the filename pathname of an executable file and a type string 
specifying the direction of the data transfer. It returns the pointer to a FILE data structure. The 
popen( ) function essentially performs the following operations: 

1. Creates a new pipe by making use of the pipe( ) system call 
2. Forks a new process, which in turn executes the following operations: 

a. If type is r, duplicates the file descriptor associated with the pipe's write 
channel as file descriptor 1 (standard output); otherwise, if type is w, 
duplicates the file descriptor associated with the pipe's read channel as file 
descriptor (standard input) 

b. Closes the file descriptors returned by pipe( ) 
c. Invokes the execve( ) system call to execute the program specified by 

filename 
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3. If type is r, closes the file descriptor associated with the pipe's write channel; 
otherwise, if type is w, closes the file descriptor associated with the pipe's read 
channel 

4. Returns the address of the FILE file pointer that refers to whichever file descriptor for 
the pipe is still open 

After the popen( ) invocation, parent and child can exchange information through the pipe: 
the parent can read (if type is r) or write (if type is w) some data by using the FILE pointer 
returned by the function. The data is written to the standard output or read from the standard 
input, respectively, by the program executed by the child process. 

The pclose( ) function, which receives the file pointer returned by popen( ) as its 
parameter, simply invokes the wait4( ) system call and waits for the termination of the 
process created by popen( ). 

18.1.2 Pipe Data Structures 

We now have to start thinking again on the system call level. Once a pipe has been created, a 
process uses the read( ) and write( ) VFS system calls to access it. Therefore, for each 
pipe, the kernel creates an inode object plus two file objects, one for reading and the other for 
writing. When a process wants to read from or write to the pipe, it must use the proper file 
descriptor. 

When the inode object refers to a pipe, its u field consists of a pipe_inode_info structure 
shown in Table 18-1. 

Table 18-1. The pipe_inode_info Structure 
Type Field Description 
char * base Address of kernel buffer 
unsigned int start Read position in kernel buffer 
unsigned int lock Locking flag for exclusive access 
struct wait_queue * wait Pipe/FIFO wait queue 
unsigned int readers Flag for (or number of) reading processes 
unsigned int writers Flag for (or number of) writing processes 
unsigned int rd_openers Used while opening a FIFO for reading 
unsigned int wr_openers Used while opening a FIFO for writing 

Besides one inode and two file objects, each pipe has its own pipe buffer, that is, a single page 
frame containing the data written into the pipe and yet to be read. The address of this page 
frame is stored in the base field of the pipe_inode_info structure. The i_size field of the 
inode object stores the number of bytes written into the pipe buffer that are yet to be read; in 
the following, we call that number the current pipe size. 

The pipe buffer is accessed both by reading processes and by writing ones, so the kernel must 
keep track of two current positions in the buffer: 

• The offset of the next byte to be read, which is stored in the start field of the 
pipe_inode_info structure 
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• The offset of the next byte to be written, which is derived from start and the pipe 
size 

To avoid race conditions on the pipe's data structures, the kernel forbids concurrent accesses 
to the pipe buffer. In order to achieve this, it makes use of the lock field in the 
pipe_inode_info data structure. Unfortunately, the lock field is not sufficient. As we shall 
see, POSIX dictates that some pipe operations are atomic. Moreover, the POSIX standard 
allows the writing process to be suspended when the pipe is full, so that readers can empty the 
buffer (see Section 18.1.5 later in this chapter). These requirements are satisfied by using an 
additional i_atomic_write semaphore that can be found in the inode object: this semaphore 
keeps a process from starting a write operation while another writer has been suspended 
because the buffer is full. 

18.1.3 Creating and Destroying a Pipe 

A pipe is implemented as a set of VFS objects, which have no corresponding disk image. As 
we shall see from the following discussion, a pipe remains in the system as long as some 
process owns a file descriptor referring to it. 

The pipe( ) system call is serviced by the sys_pipe( ) function, which in turn invokes the 
do_pipe( ) function. In order to create a new pipe, do_pipe( ) performs the following 
operations: 

1. Allocates a file object and a file descriptor for the read channel of the pipe, sets the 
flag field of the file object to O_RDONLY, and initializes the f_op field with the 
address of the read_ pipe_fops table. 

2. Allocates a file object and a file descriptor for the write channel of the pipe, sets the 
flag field of the file object to O_WRONLY, and initializes the f_op field with the 
address of the write_ pipe_fops table. 

3. Invokes the get_ pipe_inode( ) function, which allocates and initializes an inode 
object for the pipe. This function also allocates a page frame for the pipe buffer and 
stores its address in the base field of the pipe_inode_info structure. 

4. Allocates a dentry object and uses it to link together the two file objects and the inode 
object (see Section 12.1.1 in Chapter 12). 

5. Returns the two file descriptors to the User Mode process. 

The process that issues a pipe( ) system call is initially the only process that can access the 
new pipe, both for reading and for writing. To represent that the pipe has actually both a 
reader and a writer, the readers and writers fields of the pipe_inode_info data structure 
are initialized to 1. In general, each of these two fields is set to 1 if and only if the 
corresponding pipe's file object is still opened by some process; the field is set to if the 
corresponding file object has been released, since it is no longer accessed by any process. 

Forking a new process does not increase the value of the readers and writers fields, so they 
never rise above 1;[2] however, it does increase the value of the usage counters of all file 
objects still used by the parent process (see Section 3.3.1 in Chapter 3). Thus, the objects will 
not be released even when the parent dies, and the pipe will stay open for use by the children. 

[2] As we'll see, the readers and writers fields act as counters instead of flags when associated with FIFOs. 
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Whenever a process invokes the close( ) system call on a file descriptor associated with a 
pipe, the kernel executes the fput( ) function on the corresponding file object, which 
decrements the usage counter. If the counter becomes 0, the function invokes the release 
method of the file operations (see Section 12.5.3 and Section 12.2.7 in Chapter 12). 

Both the pipe_read_release( ) and the pipe_write_release( ) functions are used to 
implement the release method of the pipe's file objects. They set to the readers and the 
writers fields, respectively, of the pipe_inode_info structure. Each function then invokes 
the pipe_release( ) function. This function wakes up any processes sleeping in the pipe's 
wait queue so that they can recognize the change in the pipe state. Moreover, the function 
checks whether both the readers and writers fields are equal to 0; in this case, it releases 
the page frame containing the pipe buffer. 

18.1.4 Reading from a Pipe 

A process wishing to get data from a pipe issues a read( ) system call, specifying as its file 
descriptor the descriptor associated with the pipe's read channel. As described in Section 
12.5.2 in Chapter 12, the kernel ends up invoking the read method found in the file operation 
table associated with the proper file object. In the case of a pipe, the entry for the read method 
in the read_pipe_fops table points to the pipe_read( ) function. 

The pipe_read( ) function is quite involved, since the POSIX standard specifies several 
requirements for the pipe's read operations. Table 18-2 illustrates the expected behavior of a 
read( ) system call that requests n bytes from a pipe having a pipe size (number of bytes in 
the pipe buffer yet to be read) equal to p. Notice that the read operation can be nonblocking: 
in this case, it completes as soon as all available bytes (even none) have been copied into the 
user address space.[3] Notice also that the value is returned by the read( ) system call only if 
the pipe is empty and no process is currently using the file object associated with the pipe's 
write channel. 

[3] Nonblocking operations are usually requested by specifying the O_NONBLOCK flag in the open( ) system call. This method does not 
work for pipes, since they cannot be opened; a process can, however, require a nonblocking operation on a pipe by issuing a fcntl( ) system 
call on the corresponding file descriptor. 

Table 18-2. Reading n Bytes from a Pipe 
Pipe Size p At Least One Writing Process No Writing Process 
Blocking Read Nonblocking Read  
p=0 Wait for some data, copy it, and return its size. Return -EAGAIN. Return 0.
0<p<n Copy p bytes and return p: bytes are left in the pipe buffer.   

p  n Copy n bytes and return n: p-n bytes are left in the pipe buffer.   

The function performs the following operations: 

1. Determines if the pipe size, which is stored into the inode's i_size field, is 0. In this 
case, determines if the function must return or if the process must be blocked while 
waiting until another process writes some data in the pipe (see Table 18-2). The type 
of I/O operation (blocking or nonblocking) is specified by the O_NONBLOCK flag in the 
f_flags field of the file object. If necessary, invokes the interruptible_sleep_on( 
) function to suspend the current process after having inserted it in the wait queue to 
which the wait field of the pipe_inode_info data structure points. 
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2. Checks the lock field of the pipe_inode_info data structure. If it is not null, another 
process is currently accessing the pipe; in this case, either suspends the current process 
or immediately terminates the system call, depending on the type of read operation 
(blocking or nonblocking). 

3. Increments the lock field. 
4. Copies the requested number of bytes (or the number of available bytes, if the buffer 

size is too small) from the pipe's buffer to the user address space. 
5. Decrements the lock field. 
6. Invokes wake_up_interruptible( ) to wake up all processes sleeping on the pipe's 

wait queue. 
7. Returns the number of bytes copied into the user address space. 

18.1.5 Writing into a Pipe 

A process wishing to put data into a pipe issues a write( ) system call, specifying as its file 
descriptor the descriptor associated with the pipe's write channel. The kernel satisfies this 
request by invoking the write method of the proper file object; the corresponding entry in the 
write_pipe_fops table points to the pipe_write( ) function. 

Table 18-3 illustrates the behavior, specified by the POSIX standard, of a write( ) system 
call that requested to write n bytes into a pipe having u unused bytes in its buffer. In 
particular, the standard requires that write operations involving a small number of bytes must 
be automatically executed. More precisely, if two or more processes are concurrently writing 
into a pipe, any write operation involving fewer than 4096 bytes (the pipe buffer size) must 
finish without being interleaved with write operations of other processes to the same pipe. 
However, write operations involving more than 4096 bytes may be nonatomic and may also 
force the calling process to sleep. 

Table 18-3. Writing n Bytes to a Pipe 
  At Least One Reading Process At Least One Reading Process   
Available Buffer 
Space u Blocking Write Nonblocking Write No Reading Process 

u<n  4096 
Wait until n-u bytes are freed, 
copy n bytes, and return n. Return -EAGAIN. Send SIGPIPE signal 

and return -EPIPE. 

n>4096 Copy n bytes (waiting when 
necessary) and return n. 

If u>0, copy u bytes and return u, 
else return -EAGAIN. 

Send SIGPIPE signal 
and return -EPIPE. 

u n Copy n bytes and return n. Copy n bytes and return n. Send SIGPIPE signal 
and return -EPIPE. 

Moreover, any write operation to a pipe must fail if the pipe does not have a reading process 
(that is, if the readers field of the pipe's inode object has the value 0). In that case, the kernel 
sends a SIGPIPE signal to the writing process and terminates the write( ) system call with 
the -EPIPE error code, which usually leads to the familiar "Broken pipe" message. 

The pipe_write( ) function performs the following operations: 

1. Checks whether the pipe has at least one reading process. If not, sends a SIGPIPE 
signal to the current process and return an -EPIPE value. 
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2. Releases the i_sem semaphore of the pipe's inode, which was acquired by the 
sys_write( ) function (see Section 12.5.2 in Chapter 12), and acquires the 
i_atomic_write semaphore of the same inode.[4]  

[4] The i_sem semaphore prevents multiple processes from starting write operations on a file, and thus on the pipe. For some reason unknown to 
the authors, Linux prefers to make use of a specialized pipe semaphore. 

3. Checks whether the number of bytes to be written is within the pipe's buffer size: 
a. If so, the write operation must be atomic. Therefore, checks whether the buffer 

has enough free space to store all bytes to be written. 
b. If the number of bytes is greater than the buffer size, the operation can start as 

long as there is any free space at all. Therefore, checks for at least 1 free byte. 
4. If the buffer does not have enough free space and the write operation is blocking, 

inserts the current process into the pipe's wait queue and suspends it until some data is 
read from the pipe. Notice that the i_atomic_write semaphore is not released, so no 
other process can start a write operation on the buffer. If the write operation is 
nonblocking, returns the -EAGAIN error code. 

5. Checks the lock field of the pipe_inode_info data structure. If it is not null, another 
process is currently reading the pipe, so either suspends the current process or 
immediately terminates the write depending on whether the write operation is blocking 
or nonblocking. 

6. Increments the lock field. 
7. Copies the requested number of bytes (or the number of free bytes if the pipe size is 

too small) from the user address space to the pipe's buffer. 
8. If there are bytes yet to be written, goes to step 4. 
9. After all requested data is written, decrements the lock field. 
10. Invokes wake_up_interruptible( ) to wake up all processes sleeping on the pipe's 

wait queue. 
11. Releases the i_atomic_write semaphore and acquires the i_sem semaphore (so that 

sys_write( ) can safely release the latter). 
12. Returns the number of bytes written into the pipe's buffer. 

18.2 FIFOs 

Although pipes are a simple, flexible, and efficient communication mechanism, they have one 
main drawback, namely, that there is no way to open an already existing pipe. This makes it 
impossible for two arbitrary processes to share the same pipe, unless the pipe was created by a 
common ancestor process. 

This drawback is substantial for many application programs. Consider, for instance, a 
database engine server, which continuously polls client processes wishing to issue some 
queries and which sends back to them the results of the database lookups. Each interaction 
between the server and a given client might be handled by a pipe. However, client processes 
are usually created on demand by a command shell when a user explicitly queries the 
database; server and client processes thus cannot easily share a pipe. 

In order to address such limitations, Unix systems introduce a special file type called a named 
pipe or FIFO (which stands for "first in, first out": the first byte written into the special file is 
also the first byte that will be read).[5]  

[5] Starting with System V Release 3, FIFOs are implemented as full-duplex (bidirectional) objects. 
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FIFO files are similar to device files: they have a disk inode, but they do not make use of data 
blocks. Thanks to the disk inode, a FIFO can be accessed by any process, since the FIFO 
filename is included in the system's directory tree. In addition to having a filename, FIFOs are 
similar to unnamed pipes in that they also include a kernel buffer to temporarily store the data 
exchanged by two or more processes. Since they make use of kernel buffers, FIFOs are much 
more efficient than temporary files. 

Going back to the database example, the communication between server and clients may be 
easily established by using FIFOs instead of pipes. The server creates, at startup, a FIFO used 
by client programs to make their requests. Each client program creates, before establishing the 
connection, another FIFO to which the server program can write the answer to the query and 
includes the FIFO's name in the initial request to the server. 

18.2.1 Creating and Opening a FIFO 

A process creates a FIFO by issuing a mknod( )[6] system call (see Section 13.2.1 in  
Chapter 13), passing to it as parameters the pathname of the new FIFO and the value S_IFIFO 
(0x1000) logically ORed with the permission bit mask of the new file. POSIX introduces a 
system call named mkfifo( ) specifically to create a FIFO. This call is implemented in 
Linux, as in System V Release 4, as a C library function that invokes mknod( ). 

[6] In fact, mknod( ) can be used to create nearly any kind of file: block and character device files, FIFOs, and even regular files (it cannot create 
directories or sockets, though). 

Once created, a FIFO can be accessed through the usual open( ), read( ), write( ), and 
close( ) system calls, yet the VFS handles it in a special way because the FIFO inode and 
file operations are customized and do not depend on the filesystems in which the FIFO is 
stored. 

The POSIX standard specifies the behavior of the open( ) system call on named pipes; the 
behavior depends essentially on the requested access type, on the kind of I/O operation 
(blocking or nonblocking), and on the presence of other processes accessing the FIFO. 

A process may open a FIFO for reading, for writing, or for reading and writing. The file 
operations associated with the corresponding file object are set to special methods for these 
three cases. 

When a process opens a FIFO, the VFS performs the same operations as it does for device 
files (see Section 13.2.2 in Chapter 13). The inode object associated with the opened FIFO is 
initialized by a filesystem-dependent read_inode superblock method. This method always 
checks whether the inode on disk represents a FIFO: 

if ((inode->i_mode & 00170000) == S_IFIFO)  
    init_fifo(inode); 

The init_fifo( ) function sets the i_op field of the inode object to the address of the 
fifo_inode_operations table. The function also initializes to all fields of the 
pipe_inode_info data structure stored inside the inode object (see Table 18-1). 

The filp_open( ) function (invoked by sys_open( ), see Section 12.5.1 in Chapter 12) 
then fills the remaining fields of the inode object and initializes the f_op field of the new file 



Understanding the Linux Kernel 

485 

object with the contents of i_op->default_file_ops field of the inode object. As a 
consequence, the file operation table is set to def_fifo_fops. Then filp_open( ) invokes 
the open method from that table of operations, which is implemented in this specific case by 
the fifo_open( ) function. 

The fifo_open( ) function examines the values of the readers and writers fields in the 
pipe_inode_info data structure. When referring to FIFOs, such fields store the number of 
reading and writing processes, respectively. If necessary, the function suspends the current 
process until a reader or a writer process accesses the FIFO: Table 18-4 illustrates the possible 
behaviors of fifo_open( ). Moreover, the function further determines specialized behavior 
for the set of file operations to be used by setting the f_op field of the file object to the 
address of some predefined tables shown in Table 18-5. Finally, the function checks whether 
the base field of the pipe_inode_info data structure is NULL; in this case, it gets a free page 
frame for the FIFO's kernel buffer and stores its address in base. 

Table 18-4. Behavior of the fifo_open( ) Function 
Access Type Blocking Nonblocking 
Read only, with writers Successfully return Successfully return 
Read only, no writer Wait for a writer Successfully return 
Write only, with readers Successfully return Successfully return 
Write only, no reader Wait for a reader Return -ENXIO 
Read/write Successfully return Successfully return 

The FIFO's four specialized file operation tables differ mainly in the implementation of the 
read and write methods. If the access type allows read operations, the read method is 
implemented by the pipe_read( ) function. Otherwise, it is implemented by bad_pipe_r( 
), which just returns an error code. Similarly, if the access type allows write operations, the 
write method is implemented by the pipe_write( ) function; otherwise, it is implemented 
by bad_pipe_w( ), which also returns an error code. 

According to the POSIX standard, a process may open a FIFO successfully for reading in a 
nonblocking mode, even if the FIFO has no writers: in this case, the pipe_read( ) function 
cannot be used right away to implement the read method since it returns an -EAGAIN error 
code when it discovers that the pipe is empty and that there are no writers. The solution 
adopted consists of implementing the read method with an intermediate connect_read( ) 
function; if there are no writers, this function returns 0; otherwise, it sets the f_op field of the 
file object to read_fifo_fops and then invokes pipe_read( ). 

Table 18-5. FIFO's File Operations 
Access Type File Operations read Method write Method 
Read only, with writers read_fifo_fops pipe_read( ) bad_pipe_w( ) 
Read only, no writer connecting_fifo_fops connect_read( ) bad_pipe_w( ) 
Write only write_fifo_fops bad_pipe_r( ) pipe_write( ) 
Read/write rdwr_fifo_fops pipe_read( ) pipe_write( ) 

18.2.2 Reading from and Writing into a FIFO 

The read( ) and write( ) system calls that refer to a FIFO, as well as to any other file type, 
are handled by the VFS through the read( ) and write( ) file object methods. If the 
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operation is allowed, the corresponding entries in the file operation table point to the 
pipe_read( ) and pipe_write( ) functions (see Section 18.1.4 and Section 18.1.5). 

The VFS thus handles reading and writing for FIFOs the same as for unnamed pipes. In 
contrast to unnamed pipes, however, the same file descriptor may be used both for reading 
and for writing a FIFO. 

18.3 System V IPC 

IPC is an abbreviation that stands for Interprocess Communication. It denotes a set of system 
calls that allows a User Mode process to: 

• Synchronize itself with other processes by means of semaphores 
• Send messages to other processes or receive messages from them 
• Share a memory area with other processes 

IPC was introduced in a development Unix variant called "Columbus Unix" and later adopted 
by AT&T's System III. It is now commonly found in most Unix systems, including Linux. 

IPC data structures are created dynamically when a process requests an IPC resource (a 
semaphore, a message queue, or a shared memory segment). Each IPC resource is persistent: 
unless explicitly released by a process, it is kept in memory. An IPC resource may be used by 
any process, including those that do not share the ancestor that created the resource. 

Since a process may require several IPC resources of the same type, each new resource is 
identified by a 32-bit IPC key, which is similar to the file pathname in the system's directory 
tree. Each IPC resource also has a 32-bit IPC identifier, which is somewhat similar to the file 
descriptor associated with an open file. IPC identifiers are assigned to IPC resources by the 
kernel and are unique within the system, while IPC keys can be freely chosen by 
programmers. 

When two or more processes wish to communicate through an IPC resource, they all refer to 
the IPC identifier of the resource. 

18.3.1 Using an IPC Resource 

IPC resources are created by invoking the semget( ), msgget( ), or shmget( ) functions, 
depending on whether the new resource is a semaphore, a message queue, or a shared memory 
segment. 

The main objective of each of these three functions is to derive from the IPC key (passed as 
the first parameter) the corresponding IPC identifier, which will then be used by the process 
for accessing the resource. If there is no IPC resource already associated with the IPC key, a 
new resource is created. If everything goes right, the function returns a positive IPC identifier; 
otherwise, it returns one of the error codes illustrated in Table 18-6. 
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Table 18-6. Error Codes Returned While Requiring an IPC Identifier 
Error Code Description 
EACCESS Process does not have proper access rights. 
EEXIST Process tried to create an IPC resource with the same key as one that already exists. 
EIDRM The resource is marked so as to be deleted. 
ENOENT No IPC resource with the requested key exists and the process did not ask to create it. 
ENOMEM No more storage is left for an additional IPC resource. 
ENOSPC Maximum limit on the number of IPC resources has been exceeded. 

Assume that two independent processes want to share a common IPC resource. This can be 
achieved in two possible ways: 

• The processes agree on some fixed, predefined IPC key. This is the simplest case, and 
it works quite well for any complex application implemented by many processes. 
However, there's a chance that the same IPC key is adopted by another unrelated 
program. In this case, the IPC functions might be successfully invoked and yet return 
the IPC identifier of the wrong resource.[7]  

[7] The ftok( ) function attempts to create a new key from a file pathname and an 8-bit project identifier passed as parameters. It does not 
guarantee, however, a unique key number, since there is a small chance that it will return the same IPC key to two different applications using 
different pathnames and project identifiers. 

• One process issues a semget( ), msgget( ), or shmget( ) function by specifying 
IPC_PRIVATE as its IPC key. A new IPC resource is thus allocated, and the process 
can either communicate its IPC identifier to the other process in the application[8] or 
fork the other process itself. This method ensures that the IPC resource cannot be 
accidentally used by other applications. 

[8] This implies, of course, the existence of another communication channel between the processes not based on IPC. 

The last parameter of the semget( ), msgget( ), and shmget( ) functions can include two 
flags. IPC_CREAT specifies that the IPC resource must be created, if it does not already exist; 
IPC_EXCL specifies that the function must fail if the resource already exists and the 
IPC_CREAT flag is set. 

Even if the process uses the IPC_CREAT and IPC_EXCL flags, there is no way to ensure 
exclusive access to an IPC resource, since other processes may always refer to the resource by 
using its IPC identifier. 

In order to minimize the risk of incorrectly referencing the wrong resource, the kernel does 
not recycle IPC identifiers as soon as they become free. Instead, the IPC identifier assigned to 
a resource is almost always larger than the identifier assigned to the previously allocated 
resource of the same type. (The only exception occurs when the 32-bit IPC identifier 
overflows.) Each IPC identifier is computed by combining a slot usage sequence number 
relative to the resource type, an arbitrary slot index for the allocated resource, and the value 
chosen in the kernel for the maximum number of allocatable resources. If we choose s to 
represent the slot usage sequence number, M to represent the maximum number of resources, 
and i to represent the slot index, where 0  i<M, each IPC resource's ID is computed as 
follows: 

IPC identifier = s x M + i 
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The slot usage sequence number s is initialized to and is incremented by 1 at every resource 
deallocation. In two consecutive resource allocations, the slot index i can only increase; it can 
decrease only when a resource has been deallocated, but then the increased slot usage 
sequence number ensures that the new IPC identifier for the next allocated resource is larger 
than the previous one. 

Each IPC resource is associated with an ipc_perm data structure, whose fields are shown in 
Table 18-7. The uid, gid, cuid, and cgid fields store the user and group identifiers of the 
resource's creator and the user and group identifiers of the current resource's owner, 
respectively. The mode bit mask includes six flags, which store the read and write access 
permissions for the resource's owner, the resource's group, and all other users. IPC access 
permissions are similar to file access permissions described in Section 1.5.5 in Chapter 1, 
except that there is no Execute permission flag. 

Table 18-7. The Fields in the ipc_ perm Structure 
Type Field Description 
int key IPC key 
unsigned short uid Owner user ID 
unsigned short gid Owner group ID 
unsigned short cuid Creator user ID 
unsigned short cgid Creator group ID 
unsigned short mode Permission bit mask 
unsigned short seq Slot usage sequence number 

The ipc_perm data structure also includes a key field, which contains the IPC key of the 
corresponding resource, and a seq field, which stores the slot usage sequence number s used 
to compute the IPC identifier of the resource. 

The semctl( ), msgctl( ), and shmctl( ) functions may be used to handle IPC resources. 
The IPC_SET subcommand allows a process to change the owner's user and group identifiers 
and the permission bit mask in the ipc_perm data structure. The IPC_STAT and IPC_INFO 
subcommands retrieve some information concerning a resource. Finally, the IPC_RMID 
subcommand releases an IPC resource. Depending on the type of IPC resource, other 
specialized subcommands are also available.[9]  

[9] Another IPC design flaw is that a User Mode process cannot atomically create and initialize an IPC resource, since these two operations are 
performed by two different IPC functions. 

Once an IPC resource has been created, a process may act on the resource by means of a few 
specialized functions. A process may acquire or release an IPC semaphore by issuing the 
semop( ) function. When a process wants to send or receive an IPC message, it uses the 
msgsnd( ) and msgrcv( ) functions, respectively. Finally, a process attaches and detaches a 
shared memory segment in its address space by means of the shmat( ) and shmdt( ) 
functions, respectively. 

18.3.2 The ipc( ) System Call 

All IPC functions must be implemented through suitable Linux system calls. Actually, in the 
Intel 80x86 architecture, there is just one IPC system call named ipc( ). When a process 
invokes an IPC function, let's say msgget( ), it really invokes a wrapper function in the C 
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library, which in turn invokes the ipc( ) system call by passing to it all the parameters of 
msgget( ) plus a proper subcommand code, in this case MSGGET. The sys_ipc( ) service 
routine examines the subcommand code and invokes the kernel function that implements the 
requested service. 

The ipc( ) "multiplexer" system call is a legacy from older Linux versions, which included 
the IPC code in a dynamic module (see Appendix B). It did not make much sense to reserve 
several system call entries in the system_call table for a kernel component that could be 
missing, so the kernel designers adopted the multiplexer approach. 

Nowadays, System V IPC can no longer be compiled as a dynamic module, and there is no 
justification for using a single IPC system call. As a matter of fact, Linux provides one system 
call for each IPC function on Compaq's Alpha architecture. 

18.3.3 IPC Semaphores 

IPC semaphores are quite similar to the kernel semaphores introduced in Chapter 11: they are 
counters used to provide controlled access to shared data structures for multiple processes. 
The semaphore value is positive if the protected resource is available, and negative or if the 
protected resource is currently not available. A process that wants to access the resource 
decrements by 1 the semaphore value. It is allowed to use the resource only if the old value 
was positive; otherwise, the process waits until the semaphore becomes positive. When a 
process relinquishes a protected resource, it increments its semaphore value by 1; in doing so, 
any other process waiting for the semaphore is woken up. Actually, IPC semaphores are more 
complicated to handle than kernel semaphores for two main reasons: 

• Each IPC semaphore is a set of one or more semaphore values, not just a single value 
as for kernel semaphores. This means that the same IPC resource can protect several 
independent shared data structures. The number of semaphore values in each IPC 
semaphore must be specified as a parameter of the semget( ) function when the 
resource is being allocated, but it cannot be greater than SEMMSL (usually 32). From 
now on, we'll refer to the counters inside an IPC semaphore as primitive semaphores. 

• The IPC specification creates a fail-safe mechanism for situations in which a process 
dies without being able to undo the operations that it previously issued on a 
semaphore. When a process chooses to use this mechanism, the resulting operations 
are called undoable semaphore operations. When the process dies, all of its IPC 
semaphores can revert to the values they would have had if the process had never 
started its operations. This can help prevent deadlocks of other processes using the 
same semaphores. 

First, we'll briefly sketch the typical steps performed by a process wishing to access one or 
more resources protected by an IPC semaphore. The process: 

1. Invokes the semget( ) wrapper function to get the IPC semaphore identifier, 
specifying as the parameter the IPC key of the IPC semaphore that protects the shared 
resources. If the process wants to create a new IPC semaphore, it also specifies the 
IPC_CREATE or IPC_PRIVATE flag and the number of primitive semaphores required 
(see Section 18.3.1 earlier in this chapter). 

2. Invokes the semop( ) wrapper function to test and decrement all primitive semaphore 
values involved. If all the tests succeed, the decrements are performed, the function 
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terminates, and the process is allowed to access the protected resources. If some 
semaphores are in use, the process is usually suspended until some other process 
releases the resources. The function receives as parameters the IPC semaphore 
identifier, an array of numbers specifying the operations to be atomically performed 
on the primitive semaphores, and the number of such operations. Optionally, the 
process may specify the SEM_UNDO flag, which instructs the kernel to reverse the 
operations should the process exit without releasing the primitive semaphores. 

3. When relinquishing the protected resources, invokes the semop( ) function again to 
atomically increment all primitive semaphores involved. 

4. Optionally, invokes the semctl( ) wrapper function, specifying in its parameter the 
IPC_RMID flag to remove the IPC semaphore from the system. 

Now we can discuss how the kernel implements IPC semaphores. The data structures 
involved are shown in Figure 18-1. A statically allocated semary array includes SEMMNI 
values (usually 128). Each element in the array can assume one of the following values: 

• IPC_UNUSED (-1): no IPC resource refers to this slot. 
• IPC_NOID (-2): the IPC resource is being allocated or destroyed. 
• The address of a dynamically allocated memory area containing the IPC semaphore 

resource. 

Figure 18-1. IPC semaphore data structures 

 

The index number of the semary array represents the slot index i mentioned earlier. When a 
new IPC resource must be allocated, the kernel scans the array and uses the first array element 
(slot) containing the value IPC_UNUSED. The slot index can be easily derived from the IPC 
identifier by simply masking out its high-order bits (see Section 18.3.1). 

The first locations of the memory area containing the IPC semaphore store a descriptor of 
type struct semid_ds, whose fields are shown in Table 18-8. All other locations in the 
memory area store several sem data structures, one for each primitive semaphore in the IPC 



Understanding the Linux Kernel 

491 

semaphore resource. The sem_base field of the semid_ds structure points to the first sem 
structure in the memory area. The sem data structure includes only two fields: 

semval  

Value of the semaphore's counter. 

sempid  

PID of the last process that accessed the semaphore. This value can be queried by a 
process through the semctl( ) wrapper function. 

Table 18-8. The Fields in the semid_ds Structure 
Type Field Description 
struct ipc_perm sem_perm ipc_perm data structure 
long sem_otime Timestamp of last semop( ) 
long sem_ctime Timestamp of last change 
struct sem * sem_base Pointer to first sem structure 
struct sem_queue * sem_pending Pending operations 
struct sem_queue ** sem_pending_last Last pending operation 
struct sem_undo * undo Undo requests 
unsigned short sem_nsems Number of semaphores in array 

18.3.3.1 Undoable semaphore operations 

If a process aborts suddenly, it cannot undo the operations that it started (for instance, release 
the semaphores it reserved); so by declaring them undoable the process lets the kernel return 
the semaphores to a consistent state and allow other processes to proceed. Processes may 
require undoable operations by specifying the SEM_UNDO flag in the semop( ) function. 

Information to help the kernel reverse the undoable operations performed by a given process 
on a given IPC semaphore resource is stored in a sem_undo data structure. It essentially 
contains the IPC identifier of the semaphore and an array of integers representing the changes 
to the primitive semaphore's values caused by all undoable operations performed by the 
process. 

A simple example can illustrate how such sem_undo elements are used. Consider a process 
using an IPC semaphore resource with four primitive semaphores and suppose that it invokes 
the semop( ) function to increment by 1 the first counter and decrement by 2 the second one. 
If it specifies the SEM_UNDO flag, the integer in the first array element in the sem_undo data 
structure is decremented by 1, the integer in the second element is incremented by 2, and the 
other two integers are left unchanged. Further undoable operations on the IPC semaphore 
performed by the same process change accordingly the integers stored in the sem_undo 
structure. When the process exits, any nonzero value in that array corresponds to one or more 
unbalanced operations on the corresponding primitive semaphore; the kernel reverses these 
operations, simply adding the nonzero value to the corresponding semaphore's counter. In 
other words, the changes made by the aborted process are backed out while the changes made 
by other processes are still reflected in the state of the semaphores. 
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For each process, the kernel keeps track of all semaphore resources handled with undoable 
operations, so that it can roll them back if the process unexpectedly exits. Furthermore, the 
kernel has to keep track, for each semaphore, of all its sem_undo structures, so that it can 
quickly access them whenever a process uses semctl( ) to force an explicit value into a 
primitive semaphore's counter or to destroy an IPC semaphore resource. 

The kernel is able to handle these tasks efficiently thanks to two lists, which we denote as the 
per-process and the per-semaphore lists. The first one keeps track of all semaphores handled 
by a given process with undoable operations. The second one keeps track of all processes that 
are acting on a given semaphore with undoable operations. More precisely: 

• The per-process list includes all sem_undo data structures corresponding to IPC 
semaphores on which the process has performed undoable operations. The semundo 
field of the process descriptor points to the first element of the list, while the 
proc_next field of each sem_undo data structure points to the next element in the list. 

• The per-semaphore list includes all sem_undo data structures corresponding to the 
processes that performed undoable operations on it. The undo field of the semid_ds 
data structure points to the first element of the list, while the id_next field of each 
sem_undo data structure points to the next element in the list. 

The per-process list is used when a process terminates. The sem_exit( ) function, which is 
invoked by do_exit( ), walks through the list and reverses the effect of any unbalanced 
operation for every IPC semaphore touched by the process. By contrast, the per-semaphore 
list is mainly used when a process invokes the semctl( ) function to force an explicit value 
into a primitive semaphore. The kernel sets the corresponding element to in the arrays of all 
sem_undo data structures referring to that IPC semaphore resource, since it would no longer 
make any sense to reverse the effect of previous undoable operations performed on that 
primitive semaphore. Moreover, the per-semaphore list is also used when an IPC semaphore 
is destroyed; all related sem_undo data structures are invalidated by setting the semid field to 
-1.[10]  

[10] Notice that they are just invalidated, and not freed, since it would be too costly to remove the data structures from the per-process lists of all 
processes. 

18.3.3.2 The queue of pending requests 

The kernel associates to each IPC semaphore a queue of pending requests to identify 
processes that are waiting on one of the semaphores in the array. The queue is a doubly linked 
list of sem_queue data structures, whose fields are shown in Table 18-9. The first and last 
pending requests in the queue are referenced, respectively, by the sem_pending and 
sem_pending_last fields of the semid_ds structure. This last field allows the list to be 
handled easily as a FIFO: new pending requests are added to the end of the list so that they 
will be serviced later. The most important fields of a pending request are nsops, which stores 
the number of primitive semaphores involved in the pending operation, and sops, which 
points to an array of integer values describing each single semaphore operation. The sleeper 
field stores the address of the wait queue containing the sleeping process. 
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Table 18-9. The Fields in the sem_queue Structure 
Type Field Description 
struct sem_queue * next Pointer to next queue element 
struct sem_queue ** prev Pointer to previous queue element 
struct wait_queue * sleeper Pointer to sleeping process wait queue 
struct sem_undo * undo Pointer to sem_undo structure 
int pid Process identifier 
int status Completion status of operation 
struct semid_ds * sma Pointer to IPC semaphore descriptor 
struct sembuf * sops Pointer to array of pending operations 
int nsops Number of pending operations 
int alter Flag for altering operations 

Figure 18-1 illustrates an IPC semaphore that has three pending requests. Two of them refer 
to undoable operations, so the undo field of the sem_queue data structure points to the 
corresponding sem_undo structure; the third pending request has a NULL undo field since the 
corresponding operation is not undoable. 

18.3.4 IPC Messages 

Processes can communicate with each other by means of IPC messages. Each message 
generated by a process is sent to an IPC message queue where it stays until another process 
reads it. 

A message is composed of a fixed-size header and a variable-length text; it can be labeled 
with an integer value (the message type), which allows a process to selectively retrieve 
messages from its message queue.[11] Once a process has read a message from an IPC message 
queue, the kernel destroys it; therefore, only one process can receive a given message. 

[11] As we'll see, the message queue is implemented by means of a linked list. Since messages can be retrieved in an order different from "first in, first 
out," the name "message queue" is not appropriate. However, new messages are always put at the end of the linked list. 

In order to send a message, a process invokes the msgsnd( ) function, passing as parameters: 

• The IPC identifier of the destination message queue 
• The size of the message text 
• The address of a User Mode buffer that contains the message type immediately 

followed by the message text 

To retrieve a message, a process invokes the msgrcv( ) function, passing to it: 

• The IPC identifier of the IPC message queue resource 
• The pointer to a User Mode buffer to which the message type and message text should 

be copied 
• The size of this buffer 
• A value t that specifies what message should be retrieved 

If the value t is null, the first message in the queue is returned. If t is positive, the first 
message in the queue with its type equal to t is returned. Finally, if t is negative, the function 
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returns the first message whose message type is the lowest value less than or equal to the 
absolute value of t. 

The data structures associated with IPC message queues are shown in Figure 18-2. A 
statically allocated array msgque includes MSGMNI values (usually 128). Like the semary 
array, each element in a msgque array can assume the value IPC_UNUSED, IPC_NOID, or the 
address of an IPC message queue descriptor. 

Figure 18-2. IPC message queue data structures 

 

The message queue descriptor is a msqid_ds structure, whose fields are shown in Table 18-
10. The most important fields are msg_first and msg_last, which point to the first and to 
the last message in the linked list, respectively. The rwait field points to a wait queue that 
includes all processes currently waiting for some message in the queue. Conversely, the 
wwait field points to a wait queue that includes all processes currently waiting for some free 
space in the queue so they can add a new message. The total size of the header and the text of 
all messages in the queues cannot exceed the value stored in the msg_qbytes field; the default 
maximum size is MSGMNB, that is, 16,384 bytes. 

Table 18-10. The msqid_ds Structure 
Type Field Description 
struct ipc_perm msg_perm ipc_perm data structure 
struct msg * msg_first First message in queue 
struct msg * msg_last Last message in queue 
Long msg_stime Time of last msgsnd( ) 
Long msg_rtime Time of last msgrcv( ) 
Long msg_ctime Last change time 
struct wait_queue * wwait Processes waiting for free space 
struct wait_queue * rwait Processes waiting for messages 
unsigned short msg_cbytes Current number of bytes in queue 
unsigned short msg_qnum Number of messages in queue 
unsigned short msg_qbytes Maximum number of bytes in queue 
unsigned short msg_lspid PID of last msgsnd( ) 
unsigned short msg_lrpid PID of last msgrcv( ) 
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Each message is placed into a dynamically allocated memory area. The beginning of this area 
stores the message header, which is a data structure of type msg; its fields are listed in  
Table 18-11. The message text is stored in the rest of the memory area. The msg_spot field of 
the message header contains the starting address of the message text, while the msg_ts field 
contains the length of the message text; this length cannot be longer than MSGMAX (usually 
4056) bytes. 

Table 18-11. The msg Structure 
Type Field Description 
struct msg * msg_next Next message in queue 
long msg_type Message type 
char * msg_spot Message text address 
time_t msg_stime Time of msgsnd( ) 
short msg_ts Message text size 

Finally, each message is linked to the next message in the queue through the msg_next field 
of its message header. 

18.3.5 IPC Shared Memory 

The most useful IPC mechanism is shared memory, which allows two or more processes to 
access some common data structures by placing them in a shared memory segment. Each 
process that wants to access the data structures included in a shared memory segment must 
add to its address space a new memory region (see the section Section 7.3 in Chapter 7), 
which maps the page frames associated with the shared memory segment. Such page frames 
can thus be easily handled by the kernel through demand paging (see Section 7.4.3 in  
Chapter 7). 

As with semaphores and message queues, the shmget( ) function is invoked to get the IPC 
identifier of a shared memory segment, optionally creating it if it does not already exist. 

The shmat( ) function is invoked to "attach" a shared memory segment to a process. It 
receives as its parameter the identifier of the IPC shared memory resource and tries to add a 
shared memory region to the address space of the calling process. The calling process can 
require a specific starting linear address for the memory region, but the address is usually 
unimportant, and each process accessing the shared memory segment can use a different 
address in its own address space. The process's page tables are left unchanged by shmat( ). 
We'll describe later what the kernel does when the process tries to access a page belonging to 
the new memory region. 

The shmdt( ) function is invoked to "detach" a shared memory segment specified by its IPC 
identifier, that is, to remove the corresponding memory region from the process's address 
space. Recall that an IPC shared memory resource is persistent: even if no process is using it, 
the corresponding pages cannot be discarded, although they can be swapped out. 

Figure 18-3 illustrates the main data structures used for implementing IPC shared memory. A 
statically allocated array shm_segs includes SHMMNI values (usually 128). Like the semary 
and msgque arrays, each element in shm_segs can have the value IPC_UNUSED or IPC_NOID or 
the address of an IPC shared memory segment descriptor. 
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Figure 18-3. IPC shared memory data structures 

 

Each IPC shared memory segment descriptor is a shmid_kernel structure, whose fields are 
shown in Table 18-12. Some of the fields, which are accessible to User Mode processes, are 
included in a shmid_ds data structure named u inside the descriptor. Their contents can be 
accessed by means of the shmctl( ) function. 

The u.shm_segsz and shm_npages fields store the size of the shared memory segment in 
bytes and in pages, respectively. Although User Mode processes can require a shared memory 
segment of any length, the length of the allocated segment is a multiple of the page size, since 
the kernel must map the segment with a memory region. 

The shm_pages field points to an array that contains one element for each page of the 
segment. Each element stores a 32-bit value in the format of a Page Table entry (see  
Section 2.4.1 in Chapter 2). If a page frame is not currently allocated for the page, the element 
is 0. Otherwise, it is a regular Page Table entry containing the physical address of a page 
frame or a swapped-out page identifier. 

Table 18-12. The Fields in the shmid_kernel Structure 
Type Field Description 
struct ipc_perm u.shm_perm ipc_perm data structure 
int u.shm_segsz Size of shared memory region (bytes) 
long u.shm_atime Last attach time 
long u.shm_dtime Last detach time 
long u.shm_ctime Last change time 
unsigned short u.shm_cpid PID of creator 
unsigned short u.shm_lpid PID of last accessing process 
unsigned short u.shm_nattch Number of current attaches 
unsigned long shm_npages Size of shared memory region (pages) 
unsigned long * shm_pages Pointer to array of page frame PTEs 
struct vm_area_struct * attaches Pointer to VMA descriptor list 

In the example illustrated in Figure 18-3, the segment is contained in five pages. Three of 
them have never been accessed, while the other two pages are stored in RAM. 
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The attaches field points to the first element of a doubly linked list that includes the 
vm_area_struct descriptors of all memory regions associated with the shared memory 
segment. The list is implemented by means of the vm_next_share and vm_pprev_share 
fields of the descriptors. The number of elements in the list is stored in the u.shm_nattch 
field. In Figure 18-3, the shared memory segment has been attached to the address space of 
two processes. 

When mapping IPC shared memory segments, some fields of vm_area_struct descriptors 
have a special meaning: 

vm_start and vm_end  

Delimit the linear address range of the memory region 

vm_pte  

Stores the index of the shared memory segment in the shm_segs array 

vm_ops  

Points to a table of memory region operations called shm_vm_ops 

18.3.5.1 Demand paging for IPC shared memory segments 

The pages added to a process by shmat( ) are dummy pages; the function adds a new 
memory region into a process's address space, but it doesn't modify the process's page tables. 
We can now explain how these pages become usable. 

Because the shmat( ) function didn't modify the page tables, a "Page fault" occurs when a 
process tries to access a location of a shared memory segment. The corresponding exception 
handler determines that the faulty address is inside the process address space and that the 
corresponding Page Table entry is null; therefore, it invokes the do_no_page( ) function (see 
the section Section 7.4.3 in Chapter 7). In turn, this function checks whether the nopage 
method for the memory region is defined. The method is then invoked, and the Page Table 
entry is set to the address returned from it (see Section 15.2.5 in Chapter 15). 

Memory regions used for IPC shared memory always define the nopage method. It is 
implemented by the shm_nopage( ) function, which performs the following operations: 

1. Extracts from the vm_pte field of the memory region descriptor the index of the 
shm_segs array corresponding to the shared memory segment. 

2. Computes the logical page number inside the segment from the vm_start field of the 
memory region descriptor and the requested address. 

3. Accesses the array referenced by the shm_pages field of the shmid_kernel descriptor 
of the segment and gets the entry corresponding to the page that includes the faulty 
address. Three cases are considered, depending on the value of the entry: 

o Null entry: no page frame was ever allocated to the page. In this case, allocates 
a new page frame and stores its Page Table entry in the shm_pages array. 

o Regular entry with Present flag set: the page is already stored in some page 
frame. Extracts its physical address from the entry in shm_pages. 
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o Swapped-out page identifier: the page has been swapped out to disk. Allocates 
a new page frame, reads the page from disk, copies it into the page frame, and 
stores the new Page Table entry in the shm_pages array. Actually, the actions 
performed in this case correspond to the swap-in procedure for pages included 
in shared memory segments (described later). 

4. Increments the usage counter of the page frame allocated or identified in the previous 
step. 

5. Returns the physical address of the page frame. 

The do_no_page( ) function sets the entry corresponding to the faulty address in the 
process's Page Table so that it points to the page frame returned by the method. 

18.3.5.2 Swapping out pages of IPC shared memory segments 

The kernel has to be careful when swapping out pages included in shared memory segments. 
Suppose that two processes P1 and P2 are accessing a page of a shared memory segment. 
Suppose also that the swap_out( ) function tries to free a page frame assigned to process P1 
that is also shared with process P2 (see Section 16.5 in Chapter 16). According to the standard 
swap-out rules, the shared page should be copied to disk and then released, and a swapped-out 
page identifier should be written into the corresponding P1's Page Table entry. However, this 
standard procedure doesn't work, because process P2 could try to access the page through its 
own page tables: since the corresponding Page Table entry still points to the released page 
frame, all sort of data corruption could occur. 

The try_to_swap_out( ) function (see Section 16.5.1 in Chapter 16) recognizes this special 
case by checking whether the memory region includes a swapout method. If it is defined, the 
page frame is not released to the Buddy system; its usage counter is simply decremented by 1, 
and the corresponding entry in P1's Page Table is cleared. The swapout method in 
shm_vm_ops is an empty function: the method must be non-null to let the kernel know the 
memory is shared, so it must point to some function, even if that function has nothing to do. 
P2 can safely access the page frame, since it still contains the page of the IPC shared memory. 

Shared memory segments are persistent resources, like any IPC resource. This means that 
page frames of a shared memory segment no longer used by any process are still referenced 
by the shm_pages array. These page frames may be swapped out to disk by means of the 
shm_swap( ) function, which is periodically invoked by do_try_to_free_pages( ) (see 
Section 16.7.4 in Chapter 16). It iteratively scans all descriptors referenced by the shm_segs 
array and, for each descriptor, examines all page frames assigned to each segment. If it 
determines that the usage counter of some page frame is equal to 1, the corresponding page 
can be safely swapped out to disk. The swap-out procedure used is similar to that used for 
non-shared pages, except that the swapped-out page identifier is saved in the shm_pages 
array. 

In conclusion, though shared memory pages are in process page tables, they are not handled 
by the swapping facility like other pages. The swapped-out page identifiers of such pages do 
not appear in the page table entries but in the shm_pages array. When a process attempts to 
address a swapped-out page, the null page table entry triggers a "Page fault" exception. The 
kernel retrieves the swapped-out page identifier in the shm_pages array and performs the 
swap-in. 
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18.4 Anticipating Linux 2.4 

Static arrays used to represent semaphores and messages have been removed and replaced by 
dynamic data structures. Larger IPC messages can now be handled. 

IPC shared memory regions are implemented in a different way: a new /proc filesystem, 
denoted as sysvipc, has been introduced. It currently includes only one directory called shm 
containing a virtual file for each IPC shared memory region. 
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Chapter 19. Program Execution 
The concept of a "process," described in Chapter 3, was used in Unix from the beginning to 
represent the behavior of groups of running programs that compete for system resources. This 
final chapter focuses on the relationship between program and process. We'll specifically 
describe how the kernel sets up the execution context for a process according to the contents 
of the program file. While it may not seem like a big problem to load a bunch of instructions 
in memory and point the CPU to them, the kernel has to deal with flexibility in several areas: 

Different executable formats  

Linux is distinguished by its ability to run binaries that were compiled for other 
operating systems. 

Shared libraries  

Many executable files don't contain all the code required to run the program but expect 
the kernel to load in functions from a library at runtime. 

Other information in the execution context  

This includes the command-line arguments and environment variables familiar to 
programmers. 

A program is stored on disk as an executable file , which includes both the object code of the 
functions to be executed and the data on which such functions will act. Many functions of the 
program are service routines available to all programmers; their object code is included in 
special files called " libraries." Actually, the code of a library function may either be statically 
copied in the executable file (static libraries), or be linked to the process at run time (shared 
libraries, since their code can be shared by several independent processes). 

When launching a program, the user may supply two kinds of information that affect the way 
it is executed: command-line arguments and environment variables. Command-line arguments 
are typed in by the user following the executable filename at the shell prompt. Environment 
variables, such as HOME and PATH, are inherited from the shell, but the users may modify the 
values of any such variables before they launch the program. 

In Section 19.1 we explain what a program execution context is. In Section 19.2 we mention 
some of the executable formats supported by Linux and show how Linux can change its 
"personality" so as to execute programs compiled for other operating systems. Finally, in 
Section 19.4, we describe the system call that allows a process to start executing a new 
program. 

19.1 Executable Files 

Chapter 1, defined a process as an "execution context." By this we mean the collection of 
information needed to carry on a specific computation; it includes the pages accessed, the 
open files, the hardware register contents, and so on. An executable file is a regular file that 
describes how to initialize a new execution context, i.e., how to start a new computation. 
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Suppose a user wants to list the files in the current directory: he knows that this result can be 
simply achieved by typing the filename of the /bin/ls[1] external command at the shell prompt. 
The command shell forks a new process, which in turn invokes an execve( ) system call (see 
Section 19.4 later in this chapter), passing as one of its parameters a string including the full 
pathname for the ls executable file, /bin/ls in this case. The sys_execve( ) service routine 
finds the corresponding file, checks the executable format, and modifies the execution context 
of the current process according to the information stored in it. As a result, when the system 
call terminates, the process starts executing the code stored in the executable file, which 
performs the directory listing. 

[1] The pathnames of executable files are not fixed in Linux; they depend on the distribution used. Several standard naming schemes such as FHS and 
FSSTND have been proposed for all Unix systems. 

When a process starts running a new program, its execution context changes drastically since 
most of the resources obtained during the process's previous computations are discarded. In 
the preceding example, when the process starts executing /bin/ls, it replaces the shell's 
arguments with new ones passed as parameters in the execve( ) system call and acquires a 
new shell environment (see Section 19.1.2); all pages inherited from the parent (and shared 
with the Copy On Write mechanism) are released, so that the new computation starts with a 
fresh User Mode address space; even the privileges of the process could change (see  
Section 19.1.1). However, the process PID doesn't change, and the new computation inherits 
from the previous one all open file descriptors that have not been closed automatically while 
executing the execve( ) system call.[2]  

[2] By default, a file already opened by a process stays open after issuing an execve( )system call. However, the file will be automatically 
closed if the process has set the corresponding bit in the close_on_exec field of the files_struct structure (see Table 12-6 in 
Chapter 12); this is done by means of the fcntl( )system call. 

19.1.1 Process Credentials and Capabilities 

Traditionally, Unix systems associate with each process some credentials, which bind the 
process to a specific user and a specific user group. Credentials are important on multiuser 
systems because they determine what each process can or cannot do, thus preserving both the 
integrity of each user's personal data and the stability of the system as a whole. 

The use of credentials requires support both in the process data structure and in the resources 
being protected. One obvious resource is a file. Thus, in the Ext2 filesystem, each file is 
owned by a specific user and is bound to some group of users. The owner of a file may decide 
what kind of operations are allowed on that file, distinguishing among herself, the file's user 
group, and all other users. When some process tries to access a file, the VFS always checks 
whether the access is legal, according to the permissions established by the file owner and the 
process credentials. 

The process's credentials are stored in several fields of the process descriptor, listed in Table 
19-1. These fields contain identifiers of users and user groups in the system, which are usually 
compared with the corresponding identifiers stored in the inodes of the files being accessed. 
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Table 19-1. Traditional Process Credentials 
Name Description 
uid, gid User and group real identifiers 
euid, egid User and group effective identifiers 
fsuid, fsgid User and group effective identifiers for file access 
groups Supplementary group identifiers 
suid, sgid User and group saved identifiers 

A null UID specifies the root superuser, while a null GID specifies the root super-group. The 
kernel always allows a process to do anything whenever the process credential concerned 
stores a null value. Therefore, process credentials can also be used for checking non-file-
related operations, like those referring to system administration or hardware manipulation: if 
the UID stored in some process credential is null, the operation is allowed; otherwise, it is 
denied. 

When a process is created, it always inherits the credentials of its parent. However, these 
credentials can be modified later, either when the process starts executing a new program or 
when it issues suitable system calls. Usually, the uid, euid, fsuid, and suid fields of a 
process contain the same value. However, when the process executes a setuid program, that 
is, an executable file whose setuid flag is on, the euid and fsuid fields are set to the identifier 
of the file's owner. Almost all checks involve one of these two fields: fsuid is used for file-
related operations, while euid is used for all other operations. Similar considerations apply to 
the gid, egid, fsgid, and sgid fields that refer to group identifiers. 

As an illustration of how the fsuid field is used, consider the common situation when a user 
wants to change her password. All passwords are stored in a common file, but she cannot 
directly edit such file because it is protected. Therefore, she invokes a system program named 
/usr/bin/passwd, which has the setuid flag set and whose owner is the superuser. When the 
process forked by the shell executes such a program, its euid and fsuid fields are set to 0, 
that is, to the PID of the superuser. Now the process can access the file, since, when the kernel 
perform the access control, it finds a value in fsuid. Of course, the /usr/bin/passwd program 
does not allow the user to do anything but change her own password. 

Unix's long history teaches the lesson that setuid programs are quite dangerous: malicious 
users could trigger some programming errors (bugs) in the code in such a way to force setuid 
programs to perform operations that were never planned by the program's original designers. 
Often, the entire system's security can be compromised. In order to minimize such risks, 
Linux, like all modern Unix systems, allows processes to acquire setuid privileges only when 
necessary, and drop them when they are no longer needed. This feature may turn out to be 
useful when implementing user applications with several protection levels. The process 
descriptor includes an suid field, which stores the values of the effective identifiers (euid and 
fsuid) right after the execution of the setuid program. The process can change the effective 
identifiers by means of the setuid( ), setresuid( ), setfsuid( ), and setreuid( ) 
system calls.[3]  

[3] GID effective credentials can be changed by issuing the corresponding setgid( ), setresgid( ), setfsgid( ), and 
setregid( ) system calls. 

Table 19-2 shows how these system calls affect the process's credentials. Be warned that, if 
the calling process does not already have superuser privileges, that is, if its euid field is not 
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null, these system calls can be used only to set values already included in the process's 
credential fields. For instance, an average user process can force the value 500 into its fsuid 
field by invoking the setfsuid( ) system call, but only if one of the other credential fields 
already stores the same value of 500. 

Table 19-2. Semantics of the System Calls that Set Process Credentials 
  setuid(e) setuid(e) setresuid (u,e,s) setreuid (u,e) setfsuid (f) 

  euid=0 euid 0        
uid Set to e Unchanged Set to u Set to u Unchanged 
euid Set to e Set to e Set to e Set to e Unchanged 
fsuid Set to e Set to e Set to e Set to e Set to f 
suid Set to e Unchanged Set to s Set to e Unchanged 

To understand the sometimes complex relationships among the four user ID fields, consider 
for a moment the effects of the setuid( ) system call. The actions are different depending on 
whether the calling process's euid field is set to (that is, the process has superuser privileges) 
or to a normal UID. 

If the euid field is null, the system call sets all credential fields of the calling process (uid, 
euid, fsuid, and suid) to the value of the parameter e. A superuser process can thus drop its 
privileges and become a process owned by a normal user. This happens, for instance, when a 
user logs in: the system forks a new process with superuser privileges, but the process drops 
its privileges by invoking the setuid( ) system call and then starts executing the user's login 
shell program. 

If the euid field is not null, the system call modifies only the value stored in euid and fsuid, 
leaving the other two fields unchanged. This allows a process executing a setuid program to 
have its effective privileges stored in euid and fsuid set alternately to uid (the process acts 
as the user who launched the executable file) and to suid (the process acts as the user who 
owns the executable file). 

19.1.1.1 Process capabilities 

Linux is moving toward another model of process credentials based on the notion of 
"capabilities." A capability is simply a flag that asserts whether the process is allowed to 
perform a specific operation or a specific class of operations. This model is different from the 
traditional "superuser versus normal user" model in which a process can either do everything 
or do nothing, depending on its effective UID. As illustrated in Table 19-3, several 
capabilities have already been included in the Linux kernel. 
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Table 19-3. Linux Capabilities 
Name Description 
CAP_CHOWN Ignore restrictions on file and group ownership changes. 
CAP_DAC_OVERRIDE Ignore file access permissions. 
CAP_DAC_READ_SEARCH Ignore file/directory read and search permissions. 
CAP_FOWNER Ignore restrictions on file ownership. 
CAP_FSETID Ignore restrictions on setuid and setgid flags. 
CAP_KILL Ignore restrictions on signal sendings. 
CAP_SETGID Allow setgid flag manipulations. 
CAP_SETUID Allow setuid flag manipulations. 
CAP_SETPCAP Transfer/remove permitted capabilities to other processes. 
CAP_LINUX_IMMUTABLE Allow modification of append-only and immutable files. 
CAP_NET_BIND_SERVICE Allow binding to TCP/UDP sockets below 1024. 
CAP_NET_BROADCAST Allow network broadcasting and listen to multicast. 
CAP_NET_ADMIN Allow general networking administration. 
CAP_NET_RAW Allow use of RAW and PACKET sockets. 
CAP_IPC_LOCK Allow locking of pages and shared memory segments. 
CAP_IPC_OWNER Skip IPC ownership checks. 
CAP_SYS_MODULE Allow inserting and removing of kernel modules. 
CAP_SYS_RAWIO Allow access to I/O ports through ioperm( ) and iopl( ). 
CAP_SYS_CHROOT Allow use of chroot( ). 
CAP_SYS_PTRACE Allow use of ptrace( ) on any process. 
CAP_SYS_PACCT Allow configuration of process accounting. 
CAP_SYS_ADMIN Allow general system administration. 
CAP_SYS_BOOT Allow use of reboot( ). 
CAP_SYS_NICE Ignore restriction on nice( ). 
CAP_SYS_RESOURCE Ignore restrictions on several resources usage. 
CAP_SYS_TIME Allow manipulation of system clock and real-time clock. 
CAP_SYS_TTY_CONFIG Allow configuration of tty devices. 

The main advantage of capabilities is that, at any time, each program needs a limited number 
of them. Consequently, even if a malicious user discovers a way to exploit a buggy program, 
she can illegally perform a limited number of operation types. 

Assume, for instance, that a buggy program has only the CAP_SYS_TIME capability. In this 
case, the malicious user who discovers an exploitation of the bug can succeed only in illegally 
changing the real-time and the system clock. She won't be able to perform any other kind of 
privileged operations. 

A process can explicitly get and set its capabilities by using, respectively, the capget( ) and 
capset( ) system calls. However, neither the VFS nor the Ext2 filesystem currently supports 
the capability model, so there is no way to associate an executable file with the set of 
capabilities that should be enforced when a process executes that file. Therefore, capabilities 
are useless for Linux 2.2 end users, although we can easily predict that the situation will 
change very soon. 

In fact, the Linux kernel already takes capabilities into account. Let us consider, for instance, 
the nice( ) system call, which allows users to change the static priority of a process. In  
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the traditional model, only the superuser can raise a priority: the kernel should thus check 
whether the euid field in the descriptor of the calling process is set to 0. However, the Linux 
kernel defines a capability called CAP_SYS_NICE, which corresponds exactly to this kind of 
operation. The kernel checks the value of this flag by invoking the capable( ) function and 
by passing the CAP_SYS_NICE value to it. 

This approach works thanks to some "compatibility hacks" that have been added to the kernel 
code: each time a process sets the euid and fsuid fields to (either by invoking one of the 
system calls listed in Table 19-2 or by executing a setuid program owned by the superuser), 
the kernel sets all process capabilities, so that all checks will succeed. Similarly, when the 
process resets the euid and fsuid fields to the real UID of the process owner, the kernel 
drops all capabilities. 

19.1.2 Command-Line Arguments and Shell Environment 

When a user types a command, the program loaded to satisfy the request may receive some 
command-line arguments from the shell. For example, when a user types the command: 

$ ls -l /usr/bin 

in order to get a full listing of the files in the /usr/bin directory, the shell process creates a new 
process to execute the command. This new process loads the /bin/ls executable file. In doing 
so, most of the execution context inherited from the shell is lost, but the three separate 
arguments ls, -l, and /usr/bin are kept. Generally, the new process may receive any 
number of arguments. 

The conventions for passing the command-line arguments depend on the high-level language 
used. In the C language, the main( ) function of a program may receive as parameters an 
integer specifying how many arguments have been passed to the program and the address of 
an array of pointers to strings. The following prototype formalizes this standard: 

int main(int argc, char *argv[]) 

Going back to the previous example, when the /bin/ls program is invoked, argc has the value 
3, argv[0] points to the ls string, argv[1] points to the -l string, and argv[2] points to  
the /usr/bin string. The end of the argv array is always marked by a null pointer, so 
argv[3] contains NULL. 

A third optional parameter that may be passed in the C language to the main( ) function is 
the parameter containing environment variables. When the program uses it, main( ) must be 
declared as follows: 

int main(int argc, char *argv[], char *envp[]) 

The envp parameter points to an array of pointers to environment strings of the form: 

VAR_NAME=something 

where VAR_NAME represents the name of an environment variable, while the substring 
following the = delimiter represents the actual value assigned to the variable. The end of  
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the envp array is marked by a null pointer, like the argv array. Environment variables are 
used to customize the execution context of a process, to provide general information to a user 
or other processes, or to allow a process to keep some information across an execve( ) 
system call. 

Command-line arguments and environment strings are placed on the User Mode stack, right 
before the return address (see Section 8.2.3 in Chapter 8). The bottom locations of the User 
Mode stack are illustrated in Figure 19-1. Notice that the environment variables are located 
near the bottom of the stack right after a null long integer. 

Figure 19-1. The bottom locations of the User Mode stack 

 

19.1.3 Libraries 

Each high-level source code file is transformed through several steps into an object file, which 
contains the machine code of the assembly language instructions corresponding to the high-
level instructions. An object file cannot be executed, since it does not contain the linear 
address that corresponds to each reference to a name of a global symbol external to the source 
code file, such as functions in libraries or other source code files of the same program. The 
assigning, or resolution, of such addresses is performed by the linker, which collects together 
all the object files of the program and constructs the executable file. The linker also analyzes 
the library's functions used by the program and glues them into the executable file in a manner 
described later in this chapter. 

Any program, even the most trivial one, makes use of C libraries. Consider, for instance, the 
following one-line C program: 

void main(void) { } 

Although this program does not compute anything, a lot of work is needed to set up the 
execution environment (see Section 19.4 later in this chapter) and to kill the process when the 
program terminates (see Section 3.4 in Chapter 3). In particular, when the main( ) function 
terminates, the C compiler inserts an exit( ) system call in the object code. 



Understanding the Linux Kernel 

507 

We know from Chapter 8 that programs usually invoke system calls through wrapper routines 
in the C library. This holds for the C compiler too: besides including the code directly 
generated by compiling the program's statements, any executable file also includes some 
"glue" code to handle the interactions of the User Mode process with the kernel. Portions of 
such glue code are stored in the C library. 

Many other libraries of functions, besides the C library, are included in Unix systems. A 
generic Linux system could easily have 50 different libraries. Just to mention a couple of 
them: the math library libm includes basic functions for floating point operations, while the 
X11 library libX11 collects together the basic low-level functions for the X11 Window 
System graphics interface. 

All executable files in traditional Unix systems were based on static libraries. This means that 
the executable file produced by the linker includes not only the code of the original program 
but also the code of the library functions that the program refers to. 

Static libraries have one big disadvantage: they eat lots of space on disk. Indeed, each 
statically linked executable file duplicates some portion of library code. 

Modern Unix systems make use of shared libraries. The executable file does not contain the 
library object code, but only a reference to the library name. When the program is loaded in 
memory for execution, a suitable program called the program interpreter takes care of 
analyzing the library names in the executable file, locating the library in the system's directory 
tree and making the requested code available to the executing process. 

Shared libraries are especially convenient on systems that provide file memory mapping, 
since they reduce the amount of main memory requested for executing a program. When the 
program interpreter must link some shared library to a process, it does not copy the object 
code, but just performs a memory mapping of the relevant portion of the library file into the 
process's address space. This allows the page frames containing the machine code of the 
library to be shared among all processes that are using the same code. 

Shared libraries also have some disadvantages. The startup time of a dynamically linked 
program is usually much longer than that of a statically linked one. Moreover, dynamically 
linked programs are not as portable as statically linked ones, since they may not execute 
properly in systems that include a different version of the same library. 

A user may always require a program to be linked statically. The GCC compiler offers, for 
instance, the -static option, which tells the linker to use the static libraries instead of the 
shared ones. 

19.1.4 Program Segments and Process Memory Regions 

The linear address space of a Unix program is traditionally partitioned, from a logical point of 
view, in several linear address intervals called segments:[4]  

[4] The word "segment" has historical roots, since the first Unix systems implemented each linear address interval with a different segment register. 
Linux, however, does not rely on the segmentation mechanism of the Intel microprocessors to implement program segments. 
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Text segment  

Includes the executable code 

Data segment  

Contains the initialized data, that is, the static variables and the global variables whose 
initial values are stored in the executable file (because the program must know their 
values at startup) 

bss segment  

Contains the uninitialized data, that is, all global variables whose initial values are not 
stored in the executable file (because the program sets the values before referencing 
them) 

Stack segment  

Contains the program stack, which includes the return addresses, parameters, and local 
variables of the functions being executed 

Each mm_struct memory descriptor (see the section Section 7.2 in Chapter 7) includes some 
fields that identify the role of particular memory regions of the corresponding process: 

start_code , end_code  

Store the initial and final linear addresses of the memory region that includes the 
native code of the program, that is, the code in the executable file. Since the text 
segment includes shared libraries but the executable file does not, the memory region 
demarcated by these fields is a subset of the text segment. 

start_data , end_data  

Store the initial and final linear addresses of the memory region that includes the 
native initialized data of the program, as specified in the executable file. The fields 
identify a memory region that roughly corresponds to the data segment. Actually, 
start_data should almost always be set to the address of the first page right after 
end_code, and thus the field is unused. The end_data field is used, though. 

start_brk , brk  

Store the initial and final linear addresses of the memory region that includes the 
dynamically allocated memory areas of the process (see Section 7.6 in Chapter 7). 
This memory region is sometimes called heap. 

start_stack  

Stores the address right above that of main( )'s return address; as illustrated in  
Figure 19-1, higher addresses are reserved (recall that stacks grow toward lower 
addresses). 



Understanding the Linux Kernel 

509 

arg_start , arg_end  

Store the initial and final addresses of the stack portion containing the command-line 
arguments. 

env_start , env_end  

Store the initial and final addresses of the stack portion containing the environment 
strings. 

Notice that shared libraries and file memory mapping have made the classification of the 
process's address space based on program segments a bit obsolete, since each of the shared 
libraries is mapped into a different memory region from the ones discussed in the preceding 
list. 

Now we'll describe, by means of a simple example, how the Linux kernel maps shared 
libraries into the process's address space. We assume as usual that the User Mode address 
space ranges from 0x00000000 and 0xbfffffff. We consider the /sbin/init program, which 
creates and monitors the activity of all the processes that implement the outer layers of the 
operating system (see Section 3.3.2 in Chapter 3). The memory regions of the corresponding 
init process are shown in Table 19-4 (such information can be obtained from the /proc/1/maps 
file). Notice that all regions listed are implemented by means of private memory mappings 
(the letter p in the Permissions column). This is not surprising: these memory regions exist 
only to provide data to a process; while executing instructions, a process may modify the 
contents of these memory regions but the files on disk associated with them stay unchanged. 
This is precisely how private memory mappings act. 

Table 19-4. Memory Regions of the init Process 
Address Range Perms Mapped File 
0x08048000-0x0804cfff r-xp /sbin/init at offset 0 
0x0804d000-0x0804dfff rw-p /sbin/init atoffset 0x4000 
0x0804e000-0x0804efff rwxp Anonymous 
0x40000000-0x40005fff r-xp /lib/ld-linux.so.1.9.9 at offset 0 
0x40006000-0x40006fff rw-p /lib/ld-linux.so.1.9.9 at offset 0x5000 
0x40007000-0x40007fff rw-p Anonymous 
0x4000b000-0x40092fff r-xp /lib/libc.so.5.4.46 at offset 
0x40093000-0x40098fff rw-p /lib/libc.so.5.4.46 at offset 0x87000 
0x40099000-0x400cafff rw-p Anonymous 
0xbfffd000-0xbfffffff rwxp Anonymous 

The memory region starting from 0x8048000 is a memory mapping associated with the 
portion of the /sbin/init file ranging from byte to byte 20479 (only the start and end of the 
region are shown in the /proc/1/maps file, but the region size can easily be derived from 
them). The permissions specify that the region is executable (it contains object code), read 
only (it's not writable, because the instructions don't change during a run), and private, so we 
can guess that the region maps the text segment of the program. 

The memory region starting from 0x804d000 is a memory mapping associated with another 
portion of /sbin/init ranging from byte 16384 (corresponding to offset 0x4000 shown in  
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Table 19-4) to 20479. Since the permissions specify that the private region may be written, we 
can conclude that it maps the data segment of the program. 

The next one-page memory region starting from 0x0804e000 is anonymous, that is, it is not 
associated with any file. It is probably associated with the bss segment of init. 

Similarly, the next three memory regions starting from 0x40000000, 0x40006000, and 
0x40007000 correspond to the text segment, the data segment, and the bss segment, 
respectively, of the /lib/ld-linux.so.1.9.9 program, which actually is the program interpreter 
for the ELF shared libraries. The program interpreter is never executed alone: it is always 
memory-mapped inside the address space of a process executing another program. 

On this system, the C library happens to be stored in the /lib/libc.so.5.4.46 file. The text 
segment, data segment, and bss segment of the C library are mapped into the next three 
memory regions starting from address 0x4000b000. Remember that page frames included in 
private regions can be shared among several processes with the Copy On Write mechanism, 
as long as they are not modified. Thus, since the text segment is read only, the page frames 
containing the executable code of the C library are shared among almost all currently 
executing processes (all except the statically linked ones). 

Finally, the last anonymous memory region from 0xbfffd000 to 0xbfffffff is associated 
with the User Mode stack. We have already explained in Section 7.4 in Chapter 7 how the 
stack is automatically expanded toward lower addresses whenever necessary. 

19.1.5 Execution Tracing  

Execution tracing is a technique that allows a program to monitor the execution of another 
program. The traced program can be executed step-by-step, until a signal is received, or until 
a system call is invoked. Execution tracing is widely used by debuggers, together with other 
techniques like the insertion of breakpoints in the debugged program and run-time access to 
its variables. As usual, we'll focus on how the kernel supports execution tracing rather than 
discussing how debuggers work. 

In Linux, execution tracing is performed through the ptrace( ) system call, which can 
handle the commands listed in Table 19-5. Processes having the CAP_SYS_PTRACE capability 
flag set are allowed to trace any process in the system except init. Conversely, a process P 
with no CAP_SYS_PTRACE capability is allowed to trace only processes having the same owner 
as P. Moreover, a process cannot be traced by two processes at the same time. 
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Table 19-5. The ptrace Commands 
Command Description 
PTRACE_TRACEME Start execution tracing for the current process 
PTRACE_ATTACH Start execution tracing for another process 
PTRACE_DETACH Terminate execution tracing 
PTRACE_KILL Kill the traced process 
PTRACE_CONT Resume execution 
PTRACE_SYSCALL Resume execution until the next system call boundary 
PTRACE_SINGLESTEP Resume execution for a single assembly instruction 
PTRACE_PEEKTEXT Read a 32-bit value from the text segment 
PTRACE_PEEKDATA Read a 32-bit value from the data segment 
PTRACE_POKETEXT Write a 32-bit value into the text segment 
PTRACE_POKEDATA Write a 32-bit value into the data segment 
PTRACE_PEEKUSR Read the CPU's normal and debug registers 
PTRACE_POKEUSR Write the CPU's normal and debug registers 
PTRACE_GETREGS Read privileged CPU's registers 
PTRACE_SETREGS Write privileged CPU's registers 
PTRACE_GETFPREGS Read floating-point registers 
PTRACE_SETFPREGS Write floating-point registers 

The ptrace( ) system call modifies the p_pptr field in the descriptor of the traced process 
so that it points to the tracing process; therefore, the tracing process becomes the effective 
parent of the traced one. When execution tracing terminates, that is, when ptrace( ) is 
invoked with the PTRACE_DETACH command, the system call sets p_pptr to the value of 
p_opptr, thus restoring the original parent of the traced process (see Section 3.1.3 in  
Chapter 3). 

Several monitored events can be associated with a traced program: 

• End of execution of a single assembly instruction 
• Entering a system call 
• Exiting from a system call 
• Receiving a signal 

When a monitored event occurs, the traced program is stopped and a SIGCHLD signal is sent to 
its parent. When the parent wishes to resume the child's execution, it can use one of the 
PTRACE_CONT, PTRACE_SINGLESTEP, and PTRACE_SYSCALL commands, depending on the kind 
of event it wants to monitor. 

The PTRACE_CONT command just resumes execution: the child will execute until it receives 
another signal. This kind of tracing is implemented by means of the PF_PTRACED flag in the 
process descriptor, which is checked by the do_signal( ) function (see Section 9.3 in 
Chapter 9). 

The PTRACE_SINGLESTEP command forces the child process to execute the next assembly 
language instruction, then stops it again. This kind of tracing is implemented on Intel-based 
machines by means of the TF trap flag in the eflags register: when it is on, a "Debug" 
exception is raised right after any assembly language instruction. The corresponding 
exception handler just clears the flag, forces the current process to stop, and sends a SIGCHLD 
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signal to its parent. Notice that setting the TF flag is not a privileged operation, thus User 
Mode processes can force single-step execution even without the ptrace( ) system call. The 
kernel checks the PF_DTRACE flag in the process descriptor to keep track of whether the child 
process is being single-stepped through ptrace( ). 

The PTRACE_SYSCALL command causes the traced process to resume execution until a system 
call is invoked. The process is stopped twice, the first time when the system call starts, and 
the second time when the system call terminates. This kind of tracing is implemented by 
means of the PF_TRACESYS flag in the processor descriptor, which is checked in the 
system_call( ) assembly language function (see Section 8.2.2 in Chapter 8). 

A process can also be traced using some debugging features of the Intel Pentium processors. 
For example, the parent could set the values of the dr0, . . . dr7 debug registers for the child 
by using the PTRACE_POKEUSR command. When a monitored event occurs, the CPU raises the 
"Debug" exception; the exception handler can then suspend the traced process and send the 
SIGCHLD signal to the parent. 

19.2 Executable Formats 

The official Linux executable format is named ELF (Executable and Linking Format): it was 
developed by Unix System Laboratories and is quite popular in the Unix world. Several well-
known Unix operating systems such as System V Release 4 and Sun's Solaris 2 have adopted 
ELF as their main executable format. 

Older Linux versions supported another format named a.out (Assembler OUTput Format); 
actually, there were several versions of that format floating around the Unix world. It is little 
used nowadays, since ELF is much more practical. 

Linux supports many other different formats for executable files; in this way, it can run 
programs compiled for other operating systems like MS-DOS EXE programs, or Unix BSD's 
COFF executables. A few executable formats, like Java or bash scripts, are platform-
independent. 

An executable format is described by an object of type linux_binfmt, which essentially 
provide three methods: 

load_binary  

Sets up a new execution environment for the current process by reading the 
information stored in an executable file. 

load_shlib  

Used to dynamically bind a shared library to an already running process; it is activated 
by the uselib( ) system call. 

core_dump  

Stores the execution context of the current process in a file named core. This file, 
whose format depends on the type of executable of the program being executed, is 
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usually created when a process receives a signal whose default action is "dump" (see 
Section 9.1.1 in Chapter 9). 

All linux_binfmt objects are included in a simply linked list, and the address of the first 
element is stored in the formats variable. Elements can be inserted and removed in the list by 
invoking the register_binfmt( ) and unregister_binfmt( ) functions. The 
register_binfmt( ) function is executed during system startup for each executable format 
compiled into the kernel. This function is also executed when a module implementing a new 
executable format is being loaded, while the unregister_binfmt( ) function is invoked 
when the module is unloaded. 

The last element in the formats list is always an object describing the executable format for 
interpreted scripts. This format defines only the load_binary method. The corresponding 
do_load_script( ) function checks whether the executable file starts with the #! pair of 
characters. If so, it interprets the rest of the first line as the pathname of another executable 
file and tries to execute it by passing the name of the script file as a parameter.[5]  

[5] It is possible to execute a script file even if it doesn't start with the #! characters, as long as the file is written in the language recognized by the 
user's shell. In this case, however, the script is interpreted by the shell on which the user types the command, and thus the kernel is not directly 
involved. 

Linux allows users to register their own custom executable formats. Each such format may be 
recognized either by means of a magic number stored in the first 128 bytes of the file, or by a 
filename extension that identifies the file type. As an example, MS-DOS extensions consist of 
three characters separated from the filename by a dot: the .exe extension identifies executable 
programs while the .bat extension identifies shell scripts. 

Each custom format is associated with an interpreter program, which is automatically invoked 
by the kernel with the original custom executable filename as a parameter. The mechanism is 
similar to the script's format, but it's more powerful since it doesn't impose any restrictions on 
the custom format. To register a new format, the user writes into the 
/proc/sys/fs/binfmt_misc/register file a string having the following format: 

:name:type:offset:string:mask:interpreter: 

where each field has the following meaning: 

name  

An identifier for the new format 

type  

The type of recognition (M for magic number, E for extension) 

offset  

The starting offset of the magic number inside the file 
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string  

The byte sequence to be matched either in the magic number or in the extension 

mask  

String to mask out some bits in string 

interpreter  

The full pathname of the program interpreter 

As an example, the following command performed by the superuser will enable the kernel to 
recognize the Microsoft Windows executable format: 

$ echo ':DOSWin:M:0:MZ:0xff:/usr/local/bin/wine:' > \  
   /proc/sys/fs/binfmt_misc/register 

A Windows executable file has the MZ magic number in the first two bytes, and it will be 
executed by the /usr/local/bin/wine program interpreter. 

19.3 Execution Domains 

As mentioned in Chapter 1, a neat feature of Linux is its ability to execute files compiled for 
other operating systems. Of course, this is possible only if the files include machine code for 
the same computer architecture on which the kernel is running. Two kinds of support are 
offered for these "foreign" programs: 

• Emulated execution: necessary to execute programs that include system calls that are 
not POSIX-compliant 

• Native execution: valid for programs whose system calls are totally POSIX-compliant 

Microsoft MS-DOS and Windows programs are emulated: they cannot be natively executed, 
since they include APIs that are not recognized by Linux. An emulator like DOSemu or Wine 
(which appeared in the example at the end of the previous section) is invoked to translate each 
API call into an emulating wrapper function call, which in turn makes use of the existing 
Linux system calls. Since emulators are mostly implemented as User Mode applications, we 
don't discuss them further. 

On the other hand, POSIX-compliant programs compiled on operating systems other than 
Linux can be executed without too much trouble, since POSIX operating systems offer similar 
APIs. (Actually, the APIs should be identical, although this is not always the case.) Minor 
differences that the kernel must iron out usually refer to how system calls are invoked or how 
the various signals are numbered. This information is stored in execution domain descriptors 
of type exec_domain. 

A process specifies its execution domain by setting the personality field of its descriptor 
and by storing the address of the corresponding exec_domain data structure in the 
exec_domain field. A process can change its personality by issuing a suitable system call 
named personality( ); typical values assumed by the system call's parameter are listed in 
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Table 19-6. The C library does not include a corresponding wrapper routine, because 
programmers are not expected to directly change the personality of their programs. Instead, 
the personality( ) system call should be issued by the glue code that sets up the execution 
context of the process (see Section 19.4). 

Table 19-6. Main Personalities Supported by the Linux Kernel 
Personality Operating System 
PER_LINUX Standard execution domain 
PER_SVR4 System V Release 4 
PER_SVR3 System V Release 3 
PER_SCOSVR3 SCO Unix version 3.2 
PER_WYSEV386 Unix System V/386 Release 3.2.1 
PER_ISCR4 Interactive Unix 
PER_BSD BSD Unix 
PER_XENIX Xenix 
PER_IRIX32 SGI Irix-5 32 bit 
PER_IRIXN32 SGI Irix-6 32 bit 
PER_IRIX64 SGI Irix-6 64 bit 

19.4 The exec-like Functions 

Unix systems provide a family of functions that replace the execution context of a process 
with a new context described by an executable file. The names of such functions start with the 
prefix exec followed by one or two letters; therefore, a generic function in the family is 
usually referred to as an exec-like function. 

The exec-like functions are listed in Table 19-7; they differ in how the parameters are 
interpreted. 

Table 19-7. The exec-like Functions 
Function Name PATH Search Command-Line Arguments Environment Array 
execl( ) No List No 
execlp( ) Yes List No 
execle( ) No List Yes 
execv( ) No Array No 
execvp( ) Yes Array No 
execve( ) No Array Yes 

The first parameter of each function denotes the pathname of the file to be executed.  
The pathname can be absolute or relative to the process's current directory. Moreover, if the 
name does not include any / characters, the execlp( ) and execvp( ) functions search for 
the executable file in all directories specified by the PATH environment variable. 

Besides the first parameter, the execl( ), execlp( ), and execle( ) functions include  
a variable number of additional parameters. Each points to a string describing a command-line 
argument for the new program; as the l character in the function names suggests,  
the parameters are organized in a list terminated by a NULL value. Usually, the first command-
line argument duplicates the executable filename. Conversely, the execv( ), execvp( ), and 
execve( ) functions specify the command-line arguments with a single parameter: as the v 
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character in the function names suggests, the parameter is the address of a vector of pointers 
to command-line argument strings. The last component of the array must store the NULL value. 

The execle( ) and execve( ) functions receive as their last parameter the address of an 
array of pointers to environment strings; as usual, the last component of the array must be 
NULL. The other functions may access the environment for the new program from the external 
environ global variable, which is defined in the C library. 

All exec( )-like functions, with the exception of execve( ), are wrapper routines defined in 
the C library and make use of execve( ), which is the only system call offered by Linux to 
deal with program execution. 

The sys_execve( ) service routine receives the following parameters: 

• The address of the executable file pathname (in the User Mode address space). 
• The address of a NULL-terminated array (in the User Mode address space) of pointers 

to strings (again in the User Mode address space); each string represents a command-
line argument. 

• The address of a NULL-terminated array (in the User Mode address space) of pointers 
to strings (again in the User Mode address space); each string represents an 
environment variable in the NAME=value format. 

The function copies the executable file pathname into a newly allocated page frame. It then 
invokes the do_execve( ) function, passing to it the pointers to the page frame, to the 
pointer's arrays, and to the location of the Kernel Mode stack where the User Mode register 
contents are saved. In turn, do_execve( ) performs the following operations: 

1. Statically allocates a linux_binprm data structure, which will be filled with data 
concerning the new executable file. 

2. Invokes open_namei( ) to get the dentry object, thus the file object and the inode 
object, associated with the executable file. On failure, returns the proper error code. 

3. Invokes the prepare_binprm( ) function to fill the linux_binprm data structure. 
This function, in turn, performs the following operations: 

a. Checks whether the permissions of the file allow its execution; if not, returns 
an error code. 

b. Checks whether the file is being written (that is, whether i_writecount 
inode's field is not null): if so, returns an error code. 

c. Initializes the e_uid and e_gid fields of the linux_binprm structure, taking 
into account the values of the setuid and setgid flags of the executable file. 
These fields represent the effective user and group IDs, respectively. Also 
checks process capabilities (a compatibility hack explained in Section 19.1.1). 

d. Fills the buf field of the linux_binprm structure with the first 128 bytes of the 
executable file. These bytes include a magic number and other information 
suitable for recognizing the format of the executable file. 

4. Copies the file pathname, command-line arguments, and environment strings into one 
or more newly allocated page frames. (Eventually, they will be assigned to the User 
Mode address space.) 

5. Invokes the search_binary_handler( ) function, which scans the formats list and 
tries to apply the load_binary method of each element, passing to it the 
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linux_binprm data structure. The scan of the formats list terminates as soon as a 
load_binary method succeeds in acknowledging the executable format of the file. 

6. If the executable file format is not present in the formats list, releases all allocated 
page frames and returns the error code -ENOEXEC: Linux cannot recognize the 
executable file format. 

7. Otherwise, returns the code obtained from the load_binary method associated with 
the executable format of the file. 

The load_binary method corresponding to an executable file format performs the following 
operations (we assume that the executable file is stored on a filesystem that allows file 
memory mapping and that it requires one or more shared libraries): 

1. Checks some magic numbers stored in the first 128 bytes of the file to identify the 
executable format. If the magic numbers don't match, returns the error code -ENOEXEC. 

2. Reads the header of the executable file. This header describes the program's segments 
and the shared libraries requested. 

3. Gets from the executable file the pathname of the program interpreter, which will be 
used to locate the shared libraries and map them into memory. 

4. Gets the dentry object (as well as the inode object and the file object) of the program 
interpreter. 

5. Checks the execution permissions of the program interpreter. 
6. Copies the first 128 bytes of the program interpreter into the buf field of the 

linux_binprm structure. 
7. Performs some consistency checks on the program interpreter type. 
8. Invokes the flush_old_exec( ) function to release almost all resources used by the 

previous computation; in turn, this function performs the following operations. 
a. If the table of signal handlers is shared with other processes, allocates a new 

table and decrements the usage counter of the old one; this is done by invoking 
the make_private_signals( ) function. 

b. Updates the table of signal handlers by resetting each signal to its default 
action: this is done by invoking the release_old_signals( ) and 
flush_signal_handlers( ) functions. 

c. Invokes the exec_mmap( ) function to release the memory descriptor, all 
memory regions, and all page frames assigned to the process and to clean up 
the process's page tables. 

d. Sets the comm field of the process descriptor with the executable file pathname. 
e. Invokes the flush_thread( ) function to clear the values of the floating point 

registers and debug registers saved in the TSS segment. 
f. Invokes the flush_old_files( ) function to close all open files having the 

corresponding flag in the files->close_on_exec field of the process 
descriptor set (see Section 12.2.7 in Chapter 12).[6]  

[6] These flags can be read and modified by means of the fcntl( ) system call. 

9. Now we have reached the point of no return: the function cannot restore the previous 
computation if something goes wrong. 

10. Sets up the new personality of the process, that is, the personality field in the 
process descriptor. 

11. Invokes the setup_arg_pages( ) function to allocate a new memory region 
descriptor for the process's User Mode stack and to insert that memory region into the 
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process's address space. setup_arg_pages( ) also assigns the page frames 
containing the command-line arguments and the environment variable strings to the 
new memory region. 

12. Invokes the do_mmap( ) function to create a new memory region that maps the text 
segment (that is, the code) of the executable file. The initial linear address of the 
memory region depends on the executable format, since the program's executable code 
is usually not relocatable. Therefore, the function assumes that the text segment will 
be loaded starting from some specific logical address offset (and thus, from some 
specified linear address). ELF programs are loaded starting from linear address 
0x08048000. 

13. Invokes the do_mmap( ) function to create a new memory region that maps the data 
segment of the executable file. Again, the initial linear address of the memory region 
depends on the executable format, since the executable code expects to find its 
variables at specified offsets (that is, at specified linear addresses). In an ELF 
program, the data segment is loaded right after the text segment. 

14. Allocates additional memory regions for any other specialized segments of the 
executable file. Usually, there are none. 

15. Invokes a function that loads the program interpreter. If the program interpreter is an 
ELF executable, the function is named load_elf_interp( ). In general, the function 
performs the operations in steps 11 through 13, but for the program interpreter instead 
of the file to be executed. The initial addresses of the memory regions that will include 
the text and data of the program interpreter are specified by the program interpreter 
itself; however, they are very high (usually above 0x40000000) in order to avoid 
collisions with the memory regions that map the text and data of the file to be 
executed (see the earlier section Section 19.1.4). 

16. Sets the exec_domain field in the process descriptor according to the personality of 
the new program. 

17. Determines the new capabilities of the process. 
18. Clears the PF_FORKNOEXEC flag in the process descriptor. This flag, which is set when 

a process is forked and cleared when it executes a new program, is required by the 
POSIX standard for process accounting. 

19. Creates specific program interpreter tables and stores them on the User Mode stack, 
between the command-line arguments and the array of pointers to environment strings 
(see Figure 19-1). 

20. Sets the values of the start_code, end_code, end_data, start_brk, brk, and 
start_stack fields of the process's memory descriptor. 

21. Invokes the do_mmap( ) function to create a new anonymous memory region mapping 
the bss segment of the program. (When the process writes into a variable, it triggers 
demand paging, thus the allocation of a page frame.) The size of this memory region 
was computed when the executable program was linked. The initial linear address of 
the memory region must be specified, since the program's executable code is usually 
not relocatable. In an ELF program, the bss segment is loaded right after the data 
segment. 

22. Invokes the start_thread( ) macro to modify the values of the User Mode registers 
eip and esp saved on the Kernel Mode stack, so that they point to the entry point of 
the program interpreter and to the top of the new User Mode stack, respectively. 

23. If the process is being traced, sends the SIGTRAP signal to it. 
24. Returns the value (success). 



Understanding the Linux Kernel 

519 

When the execve( ) system call terminates and the calling process resumes its execution in 
User Mode, the execution context is dramatically changed: the code that invoked the system 
call no longer exists. In this sense, we could say that execve( ) never returns on success. 
Instead, a new program to be executed has been mapped in the address space of the process. 

However, the new program cannot yet be executed, since the program interpreter must still 
take care of loading the shared libraries.[7]  

[7] Things are much simpler if the executable file is statically linked, that is, if no shared library is requested. The load_binary method just 
maps the text, data, bss, and stack segments of the program into the process memory regions, and then sets the User Mode eip register to the entry 
point of the new program. 

Although the program interpreter runs in User Mode, we'll briefly sketch out here how it 
operates. Its first job is to set up a basic execution context for itself, starting from the 
information stored by the kernel in the User Mode stack between the array of pointers to 
environment strings and arg_start. Then, the program interpreter must examine the program 
to be executed, in order to identify which shared libraries must be loaded and which functions 
in each shared library are effectively requested. Next, the interpreter issues several mmap( ) 
system calls to create memory regions mapping the pages that will hold the library functions 
(text and data) actually used by the program. Then, the interpreter updates all references to the 
symbols of the shared library, according to the linear addresses of the library's memory 
regions. Finally, the program interpreter terminates its execution by jumping at the main entry 
point of the program to be executed. From now on, the process will execute the code of the 
executable file and of the shared libraries. 

As you may have noticed, executing a program is a complex activity that involves many 
facets of kernel design such as process abstraction, memory management, system calls, and 
filesystems. It is the kind of topic that makes you realize what a marvelous piece of work 
Linux is! 

19.5 Anticipating Linux 2.4 

Linux 2.4 adds a few more personalities: the new kernel is able to execute programs written 
for SunOS, Sun Solaris, and RISCOS operating systems. The implementation of the  
execve( ) system call is pretty much the same as in Linux 2.2, though. 
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Appendix A. System Startup 
This appendix explains what happens right after users have switched on their computers, that 
is, how a Linux kernel image is copied into memory and executed. In short, we discuss how 
the kernel, and thus the whole system, is "bootstrapped." 

Traditionally, the term bootstrap refers to a person who tries to stand up by pulling her own 
boots. In operating systems, the term denotes bringing at least a portion of the operating 
system into main memory and having the processor execute it. It also denotes the initialization 
of kernel data structures, the creation of some user processes, and the transfer of control to 
one of them. 

Computer bootstrapping is a tedious, long task, since initially nearly every hardware device 
including the RAM is in a random, unpredictable state. Moreover, the bootstrap process is 
highly dependent on the computer architecture; as usual, we refer to IBM's PC architecture in 
this appendix. 

A.1 Prehistoric Age: The BIOS 

The moment after a computer is powered on, it is practically useless because the RAM chips 
contain random data and no operating system is running. To begin the boot, a special 
hardware circuit raises the logical value of the RESET pin of the CPU. After RESET is thus 
asserted, some registers of the processor (including cs and eip) are set to fixed values, and 
the code found at physical address 0xfffffff0 is executed. This address is mapped by the 
hardware to some read-only, persistent memory chip, a kind of memory often called ROM 
(Read-Only Memory). The set of programs stored in ROM is traditionally called BIOS (Basic 
Input/Output System), since it includes several interrupt-driven low-level procedures used by 
some operating systems, including Microsoft's MS-DOS, to handle the hardware devices that 
make up the computer. 

Once initialized, Linux does not make any use of BIOS but provides its own device driver for 
every hardware device on the computer. In fact, the BIOS procedures must be executed in real 
mode, while the kernel executes in protected mode (see Section 2.2 in Chapter 2), so they 
cannot share functions even if that would be beneficial. 

BIOS uses Real Mode addresses because they are the only ones available when the computer 
is turned on. A Real Mode address is composed of a seg segment and an off offset; the 
corresponding physical address is given by seg *16+off. As a result, no Global Descriptor 
Table, Local Descriptor Table, or paging table is needed by the CPU addressing circuit to 
translate a logical address into a physical one. Clearly, the code that initializes the GDT, LDT, 
and paging tables must run in Real Mode. 

Linux is forced to use BIOS in the bootstrapping phase, when it must retrieve the kernel 
image from disk or from some other external device. The BIOS bootstrap procedure 
essentially performs the following four operations: 

1. Executes a series of tests on the computer hardware, in order to establish which 
devices are present and whether they are working properly. This phase is often called 
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POST (Power-On Self-Test). During this phase, several messages, such as the BIOS 
version banner, are displayed. 

2. Initializes the hardware devices. This phase is crucial in modern PCI-based 
architectures, since it guarantees that all hardware devices operate without conflicts on 
the IRQ lines and I/O ports. At the end of this phase, a table of installed PCI devices is 
displayed. 

3. Searches for an operating system to boot. Actually, depending on the BIOS setting, the 
procedure may try to access (in a predefined, customizable order) the first sector (boot 
sector) of any floppy disk, any hard disk, and any CD-ROM in the system. 

4. As soon as a valid device is found, copies the contents of its first sector into RAM, 
starting from physical address 0x00007c00, then jumps into that address and executes 
the code just loaded. 

The rest of this appendix takes you from the most primitive starting state to the full glory of a 
running Linux system. 

A.2 Ancient Age: The Boot Loader 

The boot loader is the program invoked by the BIOS to load the image of an operating system 
kernel into RAM. Let us briefly sketch how boot loaders work in IBM's PC architecture. 

In order to boot from a floppy disk, the instructions stored in its first sector are loaded in 
RAM and executed; these instructions copy all the remaining sectors containing the kernel 
image into RAM. 

Booting from a hard disk is done differently. The first sector of the hard disk, named the 
Master Boot Record (MBR), includes the partition table[A] and a small program, which loads 
the first sector of the partition containing the operating system to be started. Some operating 
systems such as Microsoft Windows 98 identify this partition by means of an active flag 
included in the partition table;[B] following this approach, only the operating system whose 
kernel image is stored in the active partition can be booted. As we shall see later, Linux is 
more flexible since it replaces the rudimentary program included in the MBR with a 
sophisticated program called LILO that allows users to select the operating system to be 
booted. 

[A] Each partition table entry typically includes the starting and ending sectors of a partition and the kind of operating system that handles it. 

[B] The active flag may be set through programs like MS-DOS's FDISK. 

A.2.1 Booting Linux from Floppy Disk 

The only way to store a Linux kernel on a single floppy disk is to compress the kernel image. 
As we shall see, compression is done at compile time and decompression by the loader. 

If the Linux kernel is loaded from a floppy disk, the boot loader is quite simple. It is coded in 
the arch/i386/boot/bootsect.S assembly language file. When a new kernel image is produced 
by compiling the kernel source, the executable code yielded by this assembly language file is 
placed at the beginning of the kernel image file. Thus, it is very easy to produce a bootable 
floppy containing the Linux kernel. The floppy can be created by copying the kernel image 
starting from the first sector of the disk. When the BIOS loads the first sector of the floppy 
disk, it actually copies the code of the boot loader. 
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The boot loader, which is invoked by the BIOS by jumping to physical address 0x00007c00, 
performs the following operations: 

1. Moves itself from address 0x00007c00 to address 0x00090000. 
2. Sets up the Real Mode stack, from address 0x00003ff4. As usual, the stack will grow 

toward lower addresses. 
3. Sets up the disk parameter table, used by the BIOS to handle the floppy device driver. 
4. Invokes a BIOS procedure to display a "Loading" message. 
5. Invokes a BIOS procedure to load the setup( ) code of the kernel image from the 

floppy disk and puts it in RAM starting from address 0x00090200. 
6. Invokes a BIOS procedure to load the rest of the kernel image from the floppy disk 

and puts the image in RAM starting from either low address 0x00010000 (for small 
kernel images compiled with make zImage) or high address 0x00100000 (for big 
kernel images compiled with make bzImage). In the following discussion, we will say 
that the kernel image is "loaded low" or "loaded high" in RAM, respectively. Support 
for big kernel images was introduced quite recently: while it uses essentially the same 
booting scheme as the older one, it places data in different physical memory addresses 
to avoid problems with the ISA hole mentioned in Section 2.5.3 in Chapter 2. 

7. Jumps to the setup( ) code. 

A.2.2 Booting Linux from Hard Disk 

In most cases, the Linux kernel is loaded from a hard disk, and a two-stage boot loader is 
required. The most commonly used Linux boot loader on Intel systems is named LILO (LInux 
LOader); corresponding programs exist for other architectures. LILO may be installed either 
on the MBR, replacing the small program that loads the boot sector of the active partition, or 
in the boot sector of a (usually active) disk partition. In both cases, the final result is the same: 
when the loader is executed at boot time, the user may choose which operating system to load. 

The LILO boot loader is broken into two parts, since otherwise it would be too large to fit into 
the MBR. The MBR or the partition boot sector includes a small boot loader, which is loaded 
into RAM starting from address 0x00007c00 by the BIOS. This small program moves itself to 
the address 0x0009a000, sets up the Real Mode stack (ranging from 0x0009b000 to 
0x0009a200), and loads the second part of the LILO boot loader into RAM starting from 
address 0x0009b000. In turn, this latter program reads a map of available operating systems 
from disk and offers the user a prompt so she can choose one of them. Finally, after the user 
has chosen the kernel to be loaded (or let a time-out elapse so that LILO chooses a default), 
the boot loader may either copy the boot sector of the corresponding partition into RAM and 
execute it or directly copy the kernel image into RAM. 

Assuming that a Linux kernel image must be booted, the LILO boot loader, which relies on 
BIOS routines, performs essentially the same operations as the boot loader integrated into the 
kernel image described in the previous section about floppy disks. The loader displays the 
"Loading Linux" message; then it copies the integrated boot loader of the kernel image to 
address 0x00090000, the setup( ) code to address 0x00090200, and the rest of the kernel 
image to address 0x00010000 or 0x00100000. Then it jumps to the setup( ) code. 
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A.3 Middle Ages: The setup( ) Function 

The code of the setup( ) assembly language function is placed by the linker immediately 
after the integrated boot loader of the kernel, that is, at offset 0x200 of the kernel image file. 
The boot loader can thus easily locate the code and copy it into RAM starting from physical 
address 0x00090200. 

The setup( ) function must initialize the hardware devices in the computer and set up the 
environment for the execution of the kernel program. Although the BIOS already initialized 
most hardware devices, Linux does not rely on it but reinitializes the devices in its own 
manner to enhance portability and robustness. setup( ) essentially performs the following 
operations: 

1. Invokes a BIOS procedure to find out the amount of RAM available in the system. 
2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past a 

certain amount of time, the keyboard device sends the corresponding keycode over 
and over to the CPU.) 

3. Initializes the video adapter card. 
4. Reinitializes the disk controller and determines the hard disk parameters. 
5. Checks for an IBM Micro Channel bus (MCA). 
6. Checks for a PS/2 pointing device (bus mouse). 
7. Checks for Advanced Power Management (APM) BIOS support. 
8. If the kernel image was loaded low in RAM (at physical address 0x00010000), moves 

it to physical address 0x00001000. Conversely, if the kernel image was loaded high in 
RAM, does not move it. This step is necessary because, in order to be able to store the 
kernel image on a floppy disk and to save time while booting, the kernel image stored 
on disk is compressed, and the decompression routine needs some free space to use as 
a temporary buffer following the kernel image in RAM. 

9. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global 
Descriptor Table (GDT). 

10. Resets the floating point unit (FPU), if any. 
11. Reprograms the Programmable Interrupt Controller (PIC) and maps the 16 hardware 

interrupts (IRQ lines) to the range of vectors from 32 to 47. The kernel must perform 
this step because the BIOS erroneously maps the hardware interrupts in the range from 
to 15, which is already used for CPU exceptions (see Section 4.2.3 in Chapter 4). 

12. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the cr0 
status register. As explained in Section 2.5.5 in Chapter 2, the provisional kernel page 
tables contained in swapper_pg_dir and pg0 identically map the linear addresses to 
the same physical addresses. Therefore, the transition from Real Mode to Protected 
Mode goes smoothly. 

13. Jumps to the startup_32( ) assembly language function. 

A.4 Renaissance: The startup_32( ) Functions 

There are two different startup_32( ) functions; the one we refer to here is coded in the 
arch/i386/boot/compressed/head.S file. After setup( ) terminates, the function has been 
moved either to physical address 0x00100000 or to physical address 0x00001000, depending 
on whether the kernel image was loaded high or low in RAM. 

This function performs the following operations: 
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1. Initializes the segmentation registers and a provisional stack. 
2. Fills the area of uninitialized data of the kernel identified by the _edata and _end 

symbols with zeros (see Section 2.5.3 in Chapter 2). 
3. Invokes the decompress_kernel( ) function to decompress the kernel image. The 

"Uncompressing Linux . . . " message is displayed first. After the kernel image has 
been decompressed, the "O K, booting the kernel." message is shown. If the kernel 
image was loaded low, the decompressed kernel is placed at physical address 
0x00100000. Otherwise, if the kernel image was loaded high, the decompressed kernel 
is placed in a temporary buffer located after the compressed image. The decompressed 
image is then moved into its final position, which starts at physical address 
0x00100000. 

4. Jumps to physical address 0x00100000. 

The decompressed kernel image begins with another startup_32( ) function included in the 
arch/i386/kernel/head.S file. Using the same name for both the functions does not create any 
problems (besides confusing our readers), since both functions are executed by jumping to 
their initial physical addresses. 

The second startup_32( ) function essentially sets up the execution environment for the 
first Linux process (process 0). The function performs the following operations: 

1. Initializes the segmentation registers with their final values. 
2. Sets up the Kernel Mode stack for process (see Section 3.3.2 in Chapter 3). 
3. Invokes setup_idt( ) to fill the IDT with null interrupt handlers (see Section 4.4.2 

in Chapter 4). 
4. Puts the system parameters obtained from the BIOS and the parameters passed to the 

operating system into the first page frame (see Section 2.5.3 in Chapter 2). 
5. Identifies the model of the processor. 
6. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables. 
7. Jumps to the start_kernel( ) function. 

A.5 Modern Age: The start_kernel( ) Function 

The start_kernel( ) function completes the initialization of the Linux kernel. Nearly every 
kernel component is initialized by this function; we mention just a few of them: 

• The page tables are initialized by invoking the paging_init( ) function (see  
Section 2.5.5 in Chapter 2). 

• The page descriptors are initialized by the mem_init( ) function (see Section 6.1 in 
Chapter 6). 

• The final initialization of the IDT is performed by invoking trap_init( ) (see the 
section Section 4.5 in Chapter 4) and init_IRQ( ) (see Section 4.6.2 in Chapter 4). 

• The slab allocator is initialized by the kmem_cache_init( ) and 
kmem_cache_sizes_init( ) functions (see Section 6.2.4 in Chapter 6). 

• The system date and time are initialized by the time_init( ) function (see  
Section 5.1.1 in Chapter 5). 

• The kernel thread for process 1 is created by invoking the kernel_thread( ) 
function. In turn, this kernel thread creates the other kernel threads and executes the 
/sbin/init program, as described in Section 3.3.2 in Chapter 3. 
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Besides the "Linux version 2.2.14 . . . " message, which is displayed right after the beginning 
of start_kernel( ), many other messages are displayed in this last phase both by the init 
functions and by the kernel threads. At the end, the familiar login prompt appears on the 
console (or in the graphical screen if the X Window System is launched at startup), telling the 
user that the Linux kernel is up and running. 
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Appendix B. Modules 
As stated in Chapter 1, modules are Linux's recipe for effectively achieving many of  
the theoretical advantages of microkernels without introducing performance penalties. 

B.1 To Be (a Module) or Not to Be? 

When system programmers want to add a new functionality to the Linux kernel, they are 
faced with an interesting dilemma: should they write the new code so that it will be compiled 
as a module, or should they statically link the new code to the kernel? 

As a general rule, system programmers tend to implement new code as a module. Because 
modules can be linked on demand, as we see later, the kernel does not have to be bloated with 
hundreds of seldom-used programs. Nearly every higher-level component of the Linux 
kernel—filesystems, device drivers, executable formats, network layers, and so on—can be 
compiled as a module. 

However, some Linux code must necessarily be linked statically, which means that either the 
corresponding component is included in the kernel, or it is not compiled at all. This happens 
typically when the component requires a modification to some data structure or function 
statically linked in the kernel. 

As an example, suppose that the component has to introduce new fields into the process 
descriptor. Linking a module cannot change an already defined data structure like 
task_struct since, even if the module uses its modified version of the data structure, all 
statically linked code continues to see the old version: data corruption will easily occur. A 
partial solution to the problem consists of "statically" adding the new fields to the process 
descriptor, thus making them available to the kernel component, no matter how it has been 
linked. However, if the kernel component is never used, such extra fields replicated in every 
process descriptor are a waste of memory. If the new kernel component increases the size of 
the process descriptor a lot, one would get better system performance by adding the required 
fields in the data structure only if the component is statically linked to the kernel. 

As a second example, consider a kernel component that has to replace statically linked code. 
It's pretty clear that no such component can be compiled as a module because the kernel 
cannot change the machine code already in RAM when linking the module. For instance, it is 
not possible to link a module that changes the way page frames are allocated, since the Buddy 
system functions are always statically linked to the kernel. 

The kernel has two key tasks to perform in managing modules. The first task is making sure 
the rest of the kernel can reach the module's global symbols, such as the entry point to its 
main function. A module must also know the addresses of symbols in the kernel and in other 
modules. So references are resolved once and for all when a module is linked. The second 
task consists of keeping track of the use of modules, so that no module is unloaded while 
another module or another part of the kernel is using it. A simple reference count keeps track 
of each module's usage. 
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B.2 Module Implementation 

Modules are stored in the filesystem as ELF object files. The kernel considers only modules 
that have been loaded into RAM by the /sbin/insmod program (see Section B.3) and for each 
of them it allocates a memory area containing the following data: 

• A module object 
• A null-terminated string that represents the name of the module (all modules should 

have unique names) 
• The code that implements the functions of the module 

The module object describes a module; its fields are shown in Table B-1. A simply linked list 
collects all module objects, where the next field of each object points to the next element in 
the list. The first element of the list is addressed by the module_list variable. But actually, 
the first element of the list is always the same: it is named kernel_module and refers to a 
fictitious module representing the statically linked kernel code. 

Table B-1. The module Object 
Type Name Description 
unsigned long size_of_struct Size of module object 
struct module * next Next list element 
const char * name Pointer to module name 
unsigned long size Module size 
atomic_t uc.usecount Module usage counter 
unsigned long flags Module flags 
unsigned int nsyms Number of exported symbols 
unsigned int ndeps Number of referenced modules 
struct module_symbol * syms Table of exported symbols 
struct module_ref * deps List of referenced modules 
struct module_ref * refs List of referencing modules 
int (*)(void) init Initialization method 
void (*)(void) cleanup Cleanup method 
struct exception_table_entry * ex_table_start Start of exception table 
struct exception_table_entry * ex_table_end End of exception table 

The total size of the memory area allocated for the module (including the module object and 
the module name) is contained in the size field. 

As already mentioned in Section 8.2.6 in Chapter 8, each module has its own exception table. 
The table includes the addresses of the fixup code of the module, if any. The table is copied in 
RAM when the module is linked, and its starting and ending addresses are stored in  
the ex_table_start and ex_table_end fields of the module object. 

B.2.1 Module Usage Counter 

Each module has a usage counter, stored in the uc.usecount field of the corresponding 
module object. The counter is incremented when an operation involving the module's 
functions is started and decremented when the operation terminates. A module can be 
unlinked only if its usage counter is null. 
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As an example, suppose that the MS-DOS filesystem layer has been compiled as a module 
and that the module has been linked at runtime. Initially, the module usage counter is null.  
If the user mounts an MS-DOS floppy disk, the module usage counter is incremented by 1. 
Conversely, when the user unmounts the floppy disk, the counter is decremented by 1. 

B.2.2 Exporting Symbols 

When linking a module, all references to global kernel symbols (variables and functions) in 
the module's object code must be replaced with suitable addresses. This operation, which is 
very similar to that performed by the linker while compiling a User Mode program (see 
Section 19.1.3 in Chapter 19), is delegated to the /sbin/insmod external program (described 
later in Section B.3). 

A special table is used by the kernel to store the symbols that can be accessed by modules 
together with their corresponding addresses. This kernel symbol table is contained in  
the _ _ksymtab section of the kernel code segment, and its starting and ending addresses are 
identified by two symbols produced by the C compiler: __start__ _ksymtab and  
__stop__ _ksymtab. The EXPORT_SYMBOL macro, when used inside the statically linked 
kernel code, forces the C compiler to add a specified symbol to the table. 

Only the kernel symbols actually used by some existing module are included in the table. 
Should a system programmer need, within some module, to access a kernel symbol that is not 
already exported, he can simply add the corresponding EXPORT_SYMBOL macro into the 
kernel/ksyms.c file of the Linux source code. 

Linked modules can also export their own symbols, so that other modules can access them. 
The module symbol table is contained in the _ _ksymtab section of the module code segment. 
If the module source code includes the EXPORT_NO_SYMBOLS macro, no symbols from that 
module are added to the table. To export a subset of symbols from the module, the 
programmer must define the EXPORT_SYMTAB macro before including the 
include/linux/module.h header file. Then he may use the EXPORT_SYMBOL macro to export a 
specific symbol. If neither EXPORT_NO_SYMBOLS nor EXPORT_SYMTAB appears in the module 
source code, all global symbols of the modules are exported. 

The symbol table in the __ksymtab section is copied into a memory area when the module is 
linked, and the address of the area is stored in the syms field of the module object. The 
symbols exported by the statically linked kernel and all linked-in modules can be retrieved by 
reading the /proc/ksyms file or using the query_module( ) system call (described in  
Section B.3). 

B.2.3 Module Dependency 

A module (B) can refer to the symbols exported by another module (A); in this case, we say 
that B is loaded on top of A, or equivalently that A is used by B. In order to link module B, 
module A must have already been linked; otherwise, the references to the symbols exported 
by A cannot be properly linked in B. In short, there is a dependency between modules. 

The deps field of the module object relative to B points to a list describing all modules that 
are used by B; in our example, A's module object would appear in that list. The ndeps field 
stores the number of modules used by B. Conversely, the refs field of A points to a list 
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describing all modules that are loaded on top of A (thus, B's module object will be included 
when it is loaded). The refs list must be updated dynamically whenever a module is loaded 
on top of A. In order to ensure that module A is not removed before B, A's usage counter is 
incremented for each module loaded on top of it. 

Beside A and B there could be, of course, another module (C) loaded on top of B, and so on. 
Stacking modules is an effective way to modularize the kernel source code in order to speed 
up its development and improve its portability. 

B.3 Linking and Unlinking Modules 

A user can link a module into the running kernel by executing the /sbin/insmod external 
program. This program performs the following operations: 

1. Reads from the command line the name of the module to be linked. 
2. Locates the file containing the module's object code in the system directory tree. The 

file is usually placed in some subdirectory below /lib/modules. 
3. Computes the size of the memory area needed to store the module code, its name, and 

the module object. 
4. Invokes the create_module( ) system call, passing to it the name and size of the 

new module. The corresponding sys_create_module( ) service routine performs the 
following operations: 

a. Checks whether the user is allowed to link the module (the current process 
must have the CAP_SYS_MODULE capability). In any situation where one is 
adding functionality to a kernel, which has access to all data and processes on 
the system, security is a paramount concern. 

b. Invokes the find_module( ) function to scan the module_list list of module 
objects looking for a module with the specified name. If it is found, the module 
has already been linked, so the system call terminates. 

c. Invokes vmalloc( ) to allocate a memory area for the new module. 
d. Initializes the fields of the module object at the beginning of the memory area 

and copies the name of the module right below the object. 
e. Inserts the module object into the list pointed to by module_list. 
f. Returns the starting address of the memory area allocated to the module. 

5. Invokes the query_module( ) system call with the QM_MODULES subcommand to get 
the name of all already linked modules. 

6. Invokes the query_module( ) system call with the QM_SYMBOL subcommand 
repeatedly, to get the kernel symbol table and the symbol tables of all modules that are 
already linked in. 

7. Using the kernel symbol table, the module symbol tables, and the address returned by 
the create_module( ) system call, relocates the object code included in the module's 
file. This means replacing all occurrences of external and global symbols with the 
corresponding logical address offsets. 

8. Allocates a memory area in the User Mode address space and loads it with a copy of 
the module object, the module's name, and the module's code relocated for the running 
kernel. The address fields of the object point to the relocated code. The init field is 
set to the relocated address of the module's init_module( ) function, if the module 
defines one. (Virtually all modules define a function of that name, which is invoked in 
the next step to perform any initialization required by the module.) Similarly, the 



Understanding the Linux Kernel 

530 

cleanup field is set to the relocated address of the module's cleanup_module( ) 
function, if one is present. 

9. Invokes the init_module( ) system call, passing to it the address of the User Mode 
memory area set up in the previous step. The sys_init_module( ) service routine 
performs the following operations: 

a. Checks whether the user is allowed to link the module (the current process 
must have the CAP_SYS_MODULE capability). 

b. Invokes find_module( ) to find the proper module object in the list to which 
module_list points. 

c. Overwrites the module object with the contents of the corresponding object in 
the User Mode memory area. 

d. Performs a series of sanity checks on the addresses in the module object. 
e. Copies the remaining part of the User Mode memory area into the memory 

area allocated to the module. 
f. Scans the module list and initializes the ndeps and deps fields of the module 

object. 
g. Sets the module usage counter to 1. 
h. If defined, executes the init method of the module to initialize the module's 

data structures properly. The method is usually implemented by the 
init_module( ) function defined inside the module. 

i. Sets the module usage counter to 0 and returns. 
10. Releases the User Mode memory area and terminates. 

In order to unlink a module, a user invokes the /sbin/rmmod external program, which 
performs the following operations: 

1. From the command line, reads the name of the module to be unlinked. 
2. Invokes the query_module( ) system call with the QM_MODULES subcommand to get 

the list of linked modules. 
3. Invokes the query_module( ) system call with the QM_REFS subcommand several 

times, to retrieve dependency information on the linked modules. If some module is 
linked on top of the one to be removed, terminates. 

4. Invokes the delete_module( ) system call, passing the module's name to it. The 
corresponding sys_delete_module( ) service routine performs these operations: 

a. Checks whether the user is allowed to remove the module (the current process 
must have the CAP_SYS_MODULE capability). 

b. Invokes find_module( ) to find the corresponding module object in the list to 
which module_list points. 

c. Checks whether both the refs field and the uc.usecount fields of the module 
object are null; otherwise, returns an error code. 

d. If defined, invokes the cleanup method to perform the operations needed to 
cleanly shut down the module. The method is usually implemented by the 
cleanup_module( ) function defined inside the module. 

e. Scans the deps list of the module and removes the module from the refs list 
of any element found. 

f. Removes the module from the list to which module_list points. 
g. Invokes vfree( ) to release the memory area used by the module and returns 

(success). 
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B.4 Linking Modules on Demand 

A module can be automatically linked when the functionality it provides is requested and 
automatically removed afterward. 

For instance, suppose that the MS-DOS filesystem has not been linked, either statically or 
dynamically. If a user tries to mount an MS-DOS filesystem, the mount( ) system call 
normally fails by returning an error code, since MS-DOS is not included in the file_systems 
list of registered filesystems. However, if support for automatic linking of modules has been 
specified when configuring the kernel, Linux makes an attempt to link the MS-DOS module, 
then scans the list of registered filesystems again. If the module was successfully linked, the 
mount( ) system call can continue its execution as if the MS-DOS filesystem were present 
from the beginning. 

B.4.1 The modprobe Program 

In order to automatically link a module, the kernel creates a kernel thread to execute the 
/sbin/modprobe external program,[A] which takes care of possible complications due to module 
dependencies. The dependencies were already discussed earlier: a module may require one or 
more other modules, and these in turn may require still other modules. For instance, the MS-
DOS module requires another module named fat containing some code common to all 
filesystems based on a File Allocation Table (FAT). Thus, if it is not already present, the fat 
module must also be automatically linked into the running kernel when the MS-DOS module 
is requested. Resolving dependencies and finding modules is a type of activity that's best done 
in User Mode, because it requires locating and accessing module object files in the filesystem. 

[A] This is one of the few examples in which the kernel relies on an external program. 

The /sbin/modprobe external program is similar to insmod, since it links in a module specified 
on the command line. However, modprobe also recursively links in all modules used by the 
module specified on the command line. For instance, if a user invokes modprobe to link the 
MS-DOS module, the program links the fat module, if necessary, followed by the MS-DOS 
module. Actually, modprobe just checks for module dependencies; the actual linking of each 
module is done by forking a new process and executing insmod. 

How does modprobe know about module dependencies? Another external program named 
/sbin/depmod is executed at system startup. It looks at all the modules compiled for the 
running kernel, which are usually stored inside the /lib/modules directory. Then it writes all 
module dependencies to a file named modules.dep. The modprobe program can thus simply 
compare the information stored in the file with the list of linked modules produced by the 
query_module( ) system call. 

B.4.2 The request_module( ) Function 

In some cases, the kernel may invoke the request_module( ) function to attempt automatic 
linking for a module. 

Consider again the case of a user trying to mount an MS-DOS filesystem: if the 
get_fs_type( ) function discovers that the filesystem is not registered, it invokes the 
request_module( ) function in the hope that MS-DOS has been compiled as a module. 
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If the request_module( ) function succeeds in linking the requested module, get_fs_type( 
) can continue as if the module were always present. Of course, this does not always happen; 
in our example, the MS-DOS module might not have been compiled at all. In this case, 
get_fs_type( ) returns an error code. 

The request_module( ) function receives the name of the module to be linked as its 
parameter. It invokes kernel_thread( ) to create a new kernel thread that executes the 
exec_modprobe( ) function, then it simply waits until that kernel thread terminates. 

The exec_modprobe( ) function, in turn, also receives the name of the module to be linked 
as its parameter. It invokes the execve( ) system call and executes the /sbin/modprobe 
external program,[B] passing the module name to it. In turn, the modprobe program actually 
links the requested module, along with any that it depends on. 

[B] The name and path of the program executed by exec_modprobe( ) can be customized by writing into the /proc/sys/kernel/modprobe 
file. 

Each module automatically linked into the kernel has the MOD_AUTOCLEAN flag in the flags 
field of the module object set. This flag allows automatic unlinking of the module when it is 
no longer used. 

In order to automatically unlink the module, a system process (like crond ) periodically 
executes the rmmod external program, passing the -a option to it. The latter program executes 
the delete_module( ) system call with a NULL parameter. The corresponding service routine 
scans the list of module objects and removes all unused modules having the MOD_AUTOCLEAN 
flag set. 
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Appendix C. Source Code Structure 
In order to help you to find your way through the files of the source code, we briefly describe 
the organization of the kernel directory tree. As usual, all pathnames refer to the main 
directory of the Linux kernel, which is, in most Linux distributions, /usr/src/linux. 

Linux source code for all supported architectures is contained in about 4500 C and Assembly 
files stored in about 270 subdirectories; it consists of about 2 million lines of code, which 
occupy more than 58 megabytes of disk space. 

The following list illustrates the directory tree containing the Linux source code. Please notice 
that only the subdirectories somehow related to the target of this book have been expanded. 

init Kernel initialization code 
kernel Kernel core: processes, timing, program execution, signals, modules, . . . 
mm Memory handling 
arch Platform-dependent code 
—i386 IBM's PC architecture 
——kernel Kernel core 
——mm Memory management 
——math-emu Software emulator for floating point unit 
——lib Hardware-dependent utility functions 
——boot Bootstrapping 
———compressed Compressed kernel handling 
———tools Programs to build compressed kernel image 
—alpha Compaq's Alpha architecture 
—s390 IBM's System/390 architecture 
—sparc Sun's SPARC architecture 
—sparc64 Sun's Ultra-SPARC architecture 
—mips Silicon Graphics' MIPS architecture 
—ppc Motorola-IBM's PowerPC-based architectures 
—m68k Motorola's MC680x0-based architecture 
—arm Architectures based on ARM processor 
fs Filesystems 
—proc /proc virtual filesystem 
—devpts /dev/pts virtual filesystem 
—ext2 Linux native Ext2 filesystem 
—isofs ISO9660 filesystem (CD-ROM) 
—nfs Network File System (NFS) 
—nfsd Integrated Network filesystem server 
—fat Common code for FAT-based filesystems 
—msdos Microsoft's MS-DOS filesystem 
—vfat Microsoft's Windows filesystem (VFAT) 
—nls Native Language Support 
—ntfs Microsoft's Windows NT filesystem 
—smbfs Microsoft's Windows Server Message Block (SMB) filesystem 
—umsdos UMSDOS filesystem 
—minix MINIX filesystem 
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—hpfs IBM's OS/2 filesystem 
—sysv System V, SCO, Xenix, Coherent, and Version 7 filesystem 
—ncpfs Novell's Netware Core Protocol (NCP) 
—ufs Unix BSD, SunOs, FreeBSD, NetBSD, OpenBSD, and NeXTStep filesystem 
—affs Amiga's Fast File System (FFS) 
—coda Coda network filesystem 
—hfs Apple's Macintosh filesystem 
—adfs Acorn Disc Filing System 
—efs SGI IRIX's EFS filesystem 
—qnx4 Filesystem for QNX 4 OS 
—romfs Small read-only filesystem 
—autofs Directory automounter support 
—lockd Remote file locking support 
net Networking code 
ipc System V's Interprocess Communication 
drivers Device drivers 
—block Block device drivers 
——paride Support for accessing IDE devices from parallel port 
—scsi SCSI device drivers 
—char Character device drivers 
——joystick Joysticks 
——ftape Tape-streaming devices 
——hfmodem Ham radio devices 
—ip2 IntelliPort's multiport serial controllers 
—net Network card devices 
—sound Audio card devices 
—video Video card devices 
—cdrom Proprietary CD-ROM devices (neither ATAPI nor SCSI) 
—isdn ISDN devices 
—ap1000 Fujitsu's AP1000 devices 
—macintosh Apple's Macintosh devices 
—sgi Silicon Graphics' devices 
—fc4 Fibre Channel devices 
—acorn Acorn's devices 
—misc Miscellaneous devices 
—pnp Plug-and-play support 
—usb Universal Serial Bus (USB) support 
—pci PCI bus support 
—sbus Sun's SPARC SBus support 
—nubus Apple's Macintosh Nubus support 
—zorro Amiga's Zorro bus support 
—dio Hewlett-Packard's HP300 DIO bus support 
—tc Sun's TurboChannel support (not yet finished) 
lib General-purpose kernel functions 
include Header files (.h) 
—linux Kernel core 
——lockd Remote file locking 
——nfsd Integrated Network File Server 
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——sunrpc Sun's Remote Procedure Call 
——byteorder Byte-swapping functions 
——modules Module support 
—asm-generic Platform-independent low-level header files 
—asm-i386 IBM's PC architecture 
—asm-alpha Compaq's Alpha architecture 
—asm-mips Silicon Graphics' MIPS architecture 
—asm-m68k Motorola-IBM's PowerPC-based architectures 
—asm-ppc Motorola-IBM's PowerPC architecture 
—asm-s390 IBM's System/390 architecture 
—asm-sparc Sun's SPARC architecture 
—asm-sparc64 Sun's Ultra-SPARC architecture 
—asm-arm Architectures based on ARM processor 
—net Networking 
—scsi SCSI support 
—video Video card support 
—config Header files containing the macros that define the kernel configuration 
scripts External programs for building the kernel image 
Documentation Text files with general explanations and hints about kernel components 
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